High-intensity exercise training for the prevention of type 2 diabetes mellitus.
Rynders, Corey A; Weltman, Arthur
2014-02-01
Aerobic exercise training and diet are recommended for the primary prevention of type 2 diabetes mellitus and cardiovascular disease. The American Diabetes Association (ADA) recommends that adults with prediabetes engage in ≥ 150 minutes per week of moderate activity and target a 7% weight loss. However, traditional moderate-intensity (MI) exercise training programs are often difficult to sustain for prediabetic adults; a commonly cited barrier to physical activity in this population is the "lack of time" to exercise. When matched for total energy expenditure, high-intensity (HI) exercise training has a lower overall time commitment compared with traditional low-intensity (LI) or MI exercise training. Several recent studies comparing HI exercise training with LI and MI exercise training reported that HI exercise training improves skeletal muscle metabolic control and cardiovascular function in a comparable and/or superior way relative to LI and MI exercise training. Although patients can accrue all exercise benefits by performing LI or MI activities such as walking, HI activities represent a time-efficient alternative to meeting physical activity guidelines. High-intensity exercise training is a potent tool for improving cardiometabolic risk for prediabetic patients with limited time and may be prescribed when appropriate.
Lee, Sung Soo; Yoo, Jae Ho; So, Yong Seok
2015-10-01
[Purpose] The primary objective of this study was to investigate the effect of low-intensity exercise training compare with high-intensity exercise training on endoplasmic reticulum stress and glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus. [Subjects and Methods] The low-intensity exercise training group performed aerobic exercise training at an intensity of ≤ 45% of the heart rate reserve. The high-intensity interval exercise training group performed interval exercise training at an intensity of ≥ 80% of the heart rate reserve. The exercise-related energy consumption was determined for both groups on a per-week basis (1,200 kcal/week). [Results] Both groups showed improvement in the glucose-regulated protein 78 and dipeptidyl peptidase-4, but the size of the between-group effect was not statistically significant. The high-intensity interval exercise training group showed a significant reduction in percentage body fat. The C-peptide level increased after the 12-weeks programs and was significantly different, between the groups. Fasting glucose, insulin resistance in the fasting state according to homeostasis model assessment, and leptin decreased after the 12-weeks exercise program and were significantly different between the groups, and glucagon-like peptide-1 increased after the 12-week exercise programs and was significantly different between the groups. [Conclusion] In conclusion high-intensity interval exercise training, as defined in this study, may lead to improvements in body composition, glycemic control, endoplasmic reticulum stress, and the glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus.
Lee, Sung Soo; Yoo, Jae Ho; So, Yong Seok
2015-01-01
[Purpose] The primary objective of this study was to investigate the effect of low-intensity exercise training compare with high-intensity exercise training on endoplasmic reticulum stress and glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus. [Subjects and Methods] The low-intensity exercise training group performed aerobic exercise training at an intensity of ≤ 45% of the heart rate reserve. The high-intensity interval exercise training group performed interval exercise training at an intensity of ≥ 80% of the heart rate reserve. The exercise-related energy consumption was determined for both groups on a per-week basis (1,200 kcal/week). [Results] Both groups showed improvement in the glucose-regulated protein 78 and dipeptidyl peptidase-4, but the size of the between-group effect was not statistically significant. The high-intensity interval exercise training group showed a significant reduction in percentage body fat. The C-peptide level increased after the 12-weeks programs and was significantly different, between the groups. Fasting glucose, insulin resistance in the fasting state according to homeostasis model assessment, and leptin decreased after the 12-weeks exercise program and were significantly different between the groups, and glucagon-like peptide-1 increased after the 12-week exercise programs and was significantly different between the groups. [Conclusion] In conclusion high-intensity interval exercise training, as defined in this study, may lead to improvements in body composition, glycemic control, endoplasmic reticulum stress, and the glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus. PMID:26644644
Cornelissen, V A; Verheyden, B; Aubert, A E; Fagard, R H
2010-03-01
We aimed to investigate the effects of endurance training intensity (1) on systolic blood pressure (SBP) and heart rate (HR) at rest before exercise, and during and after a maximal exercise test; and (2) on measures of HR variability at rest before exercise and during recovery from the exercise test, in at least 55-year-old healthy sedentary men and women. A randomized crossover study comprising three 10-week periods was performed. In the first and third period, participants exercised at lower or higher intensity (33% or 66% of HR reserve) in random order, with a sedentary period in between. Training programmes were identical except for intensity, and were performed under supervision thrice for 1 h per week. The results show that in the three conditions, that is, at rest before exercise, during exercise and during recovery, we found endurance training at lower and higher intensity to reduce SBP significantly (P<0.05) and to a similar extent. Further, SBP during recovery was, on average, not lower than at rest before exercise, and chronic endurance training did not affect the response of SBP after an acute bout of exercise. The effect of training on HR at rest, during exercise and recovery was more pronounced (P<0.05) with higher intensity. Finally, endurance training had no significant effect on sympathovagal balance. In conclusion, in participants at higher age, both training programmes exert similar effects on SBP at rest, during exercise and during post-exercise recovery, whereas the effects on HR are more pronounced after higher intensity training.
PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle
Dethlefsen, Maja Munk; Bangsbo, Jens; Pilegaard, Henriette
2017-01-01
The aim of the present study was to examine the role of PGC-1α in intensity dependent exercise and exercise training-induced metabolic adaptations in mouse skeletal muscle. Whole body PGC-1α knockout (KO) and littermate wildtype (WT) mice performed a single treadmill running bout at either low intensity (LI) for 40 min or moderate intensity (MI) for 20 min. Blood and quadriceps muscles were removed either immediately after exercise or at 3h or 6h into recovery from exercise and from resting controls. In addition PGC-1α KO and littermate WT mice were exercise trained at either low intensity (LIT) for 40 min or at moderate intensity (MIT) for 20 min 2 times pr. day for 5 weeks. In the first and the last week of the intervention period, mice performed a graded running endurance test. Quadriceps muscles were removed before and after the training period for analyses. The acute exercise bout elicited intensity dependent increases in LC3I and LC3II protein and intensity independent decrease in p62 protein in skeletal muscle late in recovery and increased LC3II with exercise training independent of exercise intensity and volume in WT mice. Furthermore, acute exercise and exercise training did not increase LC3I and LC3II protein in PGC-1α KO. In addition, exercise-induced mRNA responses of PGC-1α isoforms were intensity dependent. In conclusion, these findings indicate that exercise intensity affected autophagy markers differently in skeletal muscle and suggest that PGC-1α regulates both acute and exercise training-induced autophagy in skeletal muscle potentially in a PGC-1α isoform specific manner. PMID:29049322
Parfitt, Gaynor; Alrumh, Amnah; Rowlands, Alex V
2012-11-01
Affect-regulated exercise to feel 'good' can be used to control exercise intensity amongst both active and sedentary individuals and should support exercise adherence. It is not known, however, whether affect-regulated exercise training can lead to physical health gains. The aim of this study was to examine if affect-regulated exercise to feel 'good' leads to improved fitness over the course of an 8-week training programme. A repeated measures design (pretest-posttest) with independent groups (training and control). 20 sedentary females completed a submaximal graded exercise test and were then allocated to either a training group or control group. The training group completed two supervised sessions and one unsupervised session per week for 8 weeks. Exercise intensity was affect-regulated to feel 'good'. Following the 8 weeks of training, both groups completed a second submaximal graded exercise test. Repeated measures analyses of variance indicated a significant increase in the time to reach ventilatory threshold in the training group (318 ± 23.7s) compared to control (248 ± 16.9s). Overall compliance to training was high (>92%). Participants in the training group exercised at intensities that would be classified as being in the lower range of the recommended guidelines (≈ 50% V˙O(2) max) for cardiovascular health. Affect-regulated exercise to feel 'good' can be used in a training programme to regulate exercise intensity. This approach led to a 19% increase in time to reach ventilatory threshold, which is indicative of improved fitness. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Psychophysiological Responses to Group Exercise Training Sessions: Does Exercise Intensity Matter?
Vandoni, Matteo; Codrons, Erwan; Marin, Luca; Correale, Luca; Bigliassi, Marcelo; Buzzachera, Cosme Franklim
2016-01-01
Group exercise training programs were introduced as a strategy for improving health and fitness and potentially reducing dropout rates. This study examined the psychophysiological responses to group exercise training sessions. Twenty-seven adults completed two group exercise training sessions of moderate and vigorous exercise intensities in a random and counterbalanced order. The %HRR and the exertional and arousal responses to vigorous session were higher than those during the moderate session (p<0.05). Consequently, the affective responses to vigorous session were less pleasant than those during moderate session (p<0.05). These results suggest that the psychophysiological responses to group exercise training sessions are intensity-dependent. From an adherence perspective, interventionists are encouraged to emphasize group exercise training sessions at a moderate intensity to maximize affective responses and to minimize exertional responses, which in turn may positively affect future exercise behavior.
Hansen, D; Dendale, P; Jonkers, R A M; Beelen, M; Manders, R J F; Corluy, L; Mullens, A; Berger, J; Meeusen, R; van Loon, L J C
2009-09-01
Exercise represents an effective interventional strategy to improve glycaemic control in type 2 diabetes patients. However, the impact of exercise intensity on the benefits of exercise training remains to be established. In the present study, we compared the clinical benefits of 6 months of continuous low- to moderate-intensity exercise training with those of continuous moderate- to high-intensity exercise training, matched for energy expenditure, in obese type 2 diabetes patients. Fifty male obese type 2 diabetes patients (age 59 +/- 8 years, BMI 32 +/- 4 kg/m(2)) participated in a 6 month continuous endurance-type exercise training programme. All participants performed three supervised exercise sessions per week, either 55 min at 50% of whole body peak oxygen uptake (VO(2)peak (low to moderate intensity) or 40 min at 75% of VO(2)peak (moderate to high intensity). Oral glucose tolerance, blood glycated haemoglobin, lipid profile, body composition, maximal workload capacity, whole body and skeletal muscle oxidative capacity and skeletal muscle fibre type composition were assessed before and after 2 and 6 months of intervention. The entire 6 month intervention programme was completed by 37 participants. Continuous endurance-type exercise training reduced blood glycated haemoglobin levels, LDL-cholesterol concentrations, body weight and leg fat mass, and increased VO(2)peak, lean muscle mass and skeletal muscle cytochrome c oxidase and citrate synthase activity (p < 0.05). No differences were observed between the groups training at low to moderate or moderate to high intensity. When matched for energy cost, prolonged continuous low- to moderate-intensity endurance-type exercise training is equally effective as continuous moderate- to high-intensity training in lowering blood glycated haemoglobin and increasing whole body and skeletal muscle oxidative capacity in obese type 2 diabetes patients. ISRCTN32206301 None.
High-intensity exercise training induces morphological and biochemical changes in skeletal muscles.
Toti, L; Bartalucci, A; Ferrucci, M; Fulceri, F; Lazzeri, G; Lenzi, P; Soldani, P; Gobbi, P; La Torre, A; Gesi, M
2013-12-01
IN THE PRESENT STUDY WE INVESTIGATED THE EFFECT OF TWO DIFFERENT EXERCISE PROTOCOLS ON FIBRE COMPOSITION AND METABOLISM OF TWO SPECIFIC MUSCLES OF MICE: the quadriceps and the gastrocnemius. Mice were run daily on a motorized treadmill, at a velocity corresponding to 60% or 90% of the maximal running velocity. Blood lactate and body weight were measured during exercise training. We found that at the end of training the body weight significantly increased in high-intensity exercise mice compared to the control group (P=0.0268), whereas it decreased in low-intensity exercise mice compared to controls (P=0.30). In contrast, the food intake was greater in both trained mice compared to controls (P < 0.0001 and P < 0.0001 for low-intensity and high-intensity exercise mice, respectively). These effects were accompanied by a progressive reduction in blood lactate levels at the end of training in both the exercised mice compared with controls (P=0.03 and P < 0.0001 for low-intensity and high-intensity exercise mice, respectively); in particular, blood lactate levels after high-intensity exercise were significantly lower than those measured in low-intensity exercise mice (P=0.0044). Immunoblotting analysis demonstrated that high-intensity exercise training produced a significant increase in the expression of mitochondrial enzymes contained within gastrocnemius and quadriceps muscles. These changes were associated with an increase in the amount of slow fibres in both these muscles of high-intensity exercise mice, as revealed by the counts of slow fibres stained with specific antibodies (P < 0.0001 for the gastrocnemius; P=0.0002 for the quadriceps). Our results demonstrate that high-intensity exercise, in addition to metabolic changes consisting of a decrease in blood lactate and body weight, induces an increase in the mitochondrial enzymes and slow fibres in different skeletal muscles of mice, which indicates an exercise-induced increase in the aerobic metabolism.
Exercise Prescriptions for Training and Rehabilitation in Patients with Heart and Lung Disease.
Palermo, Pietro; Corrà, Ugo
2017-07-01
Rehabilitation in patients with advanced cardiac and pulmonary disease has been shown to increase survival and improve quality of life, among many other benefits. Exercise training is the fundamental ingredient in these rehabilitation programs. However, determining the amount of exercise is not straightforward or uniform. Most rehabilitation and training programs fix the time of exercise and set the exercise intensity to the goals of the rehabilitation program and the exercise-related hurdles of the individual. The exercise training intensity prescription must balance the desired gain in conditioning with safety. Symptom-limited cardiopulmonary exercise testing is the fundamental tool to identify the exercise intensity and define the appropriate training. In addition, cardiopulmonary exercise testing provides an understanding of the systems involved in oxygen transport and utilization, making it possible to identify the factors limiting exercise capacity in individual patients.
Gaskill, S E; Walker, A J; Serfass, R A; Bouchard, C; Gagnon, J; Rao, D C; Skinner, J S; Wilmore, J H; Leon, A S
2001-11-01
The purpose of this study was to evaluate the effect of exercise training intensity relative to the ventilatory threshold (VT) on changes in work (watts) and VO2 at the ventilatory threshold and at maximal exercise in previously sedentary participants in the HERITAGE Family Study. We hypothesized that those who exercised below their VT would improve less in VO2 at the ventilatory threshold (VO2vt) and VO2max than those who trained at an intensity greater than their VT. Supervised cycle ergometer training was performed at the 4 participating clinical centers, 3 times a week for 20 weeks. Exercise training progressed from the HR corresponding to 55% VO2max for 30 minutes to the HR associated with 75% VO2max for 50 minutes for the final 6 weeks. VT was determined at baseline and after exercise training using standardized methods. 432 sedentary white and black men (n = 224) and women (n = 208), aged 17 to 65 years, were retrospectively divided into groups based on whether exercise training was initiated below, at, or above VT. 1) Training intensity (relative to VT) accounting for about 26% of the improvement in VO2vt (R2 = 0.26, p < 0.0001). 2) The absolute intensity of training in watts (W) accounted for approximately 56% of the training effect at VT (R2 = 0.56, p < 0.0001) with post-training watts at VT (VT(watts)) being not significantly different than W during training (p > 0.70). 3) Training intensity (relative to VT) had no effect on DeltaVO2max. These data clearly show that as a result of aerobic training both the VO2 and W associated with VT respond and become similar to the absolute intensity of sustained (3 x /week for 50 min) aerobic exercise training. Higher intensities of exercise, relative to VT, result in larger gains in VO2vt but not in VO2max.
Physiological adaptations to interval training and the role of exercise intensity.
MacInnis, Martin J; Gibala, Martin J
2017-05-01
Interval exercise typically involves repeated bouts of relatively intense exercise interspersed by short periods of recovery. A common classification scheme subdivides this method into high-intensity interval training (HIIT; 'near maximal' efforts) and sprint interval training (SIT; 'supramaximal' efforts). Both forms of interval training induce the classic physiological adaptations characteristic of moderate-intensity continuous training (MICT) such as increased aerobic capacity (V̇O2 max ) and mitochondrial content. This brief review considers the role of exercise intensity in mediating physiological adaptations to training, with a focus on the capacity for aerobic energy metabolism. With respect to skeletal muscle adaptations, cellular stress and the resultant metabolic signals for mitochondrial biogenesis depend largely on exercise intensity, with limited work suggesting that increases in mitochondrial content are superior after HIIT compared to MICT, at least when matched-work comparisons are made within the same individual. It is well established that SIT increases mitochondrial content to a similar extent to MICT despite a reduced exercise volume. At the whole-body level, V̇O2 max is generally increased more by HIIT than MICT for a given training volume, whereas SIT and MICT similarly improve V̇O2 max despite differences in training volume. There is less evidence available regarding the role of exercise intensity in mediating changes in skeletal muscle capillary density, maximum stroke volume and cardiac output, and blood volume. Furthermore, the interactions between intensity and duration and frequency have not been thoroughly explored. While interval training is clearly a potent stimulus for physiological remodelling in humans, the integrative response to this type of exercise warrants further attention, especially in comparison to traditional endurance training. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Physiological adaptations to interval training and the role of exercise intensity
MacInnis, Martin J.
2016-01-01
Abstract Interval exercise typically involves repeated bouts of relatively intense exercise interspersed by short periods of recovery. A common classification scheme subdivides this method into high‐intensity interval training (HIIT; ‘near maximal’ efforts) and sprint interval training (SIT; ‘supramaximal’ efforts). Both forms of interval training induce the classic physiological adaptations characteristic of moderate‐intensity continuous training (MICT) such as increased aerobic capacity (V˙O2 max ) and mitochondrial content. This brief review considers the role of exercise intensity in mediating physiological adaptations to training, with a focus on the capacity for aerobic energy metabolism. With respect to skeletal muscle adaptations, cellular stress and the resultant metabolic signals for mitochondrial biogenesis depend largely on exercise intensity, with limited work suggesting that increases in mitochondrial content are superior after HIIT compared to MICT, at least when matched‐work comparisons are made within the same individual. It is well established that SIT increases mitochondrial content to a similar extent to MICT despite a reduced exercise volume. At the whole‐body level, V˙O2 max is generally increased more by HIIT than MICT for a given training volume, whereas SIT and MICT similarly improve V˙O2 max despite differences in training volume. There is less evidence available regarding the role of exercise intensity in mediating changes in skeletal muscle capillary density, maximum stroke volume and cardiac output, and blood volume. Furthermore, the interactions between intensity and duration and frequency have not been thoroughly explored. While interval training is clearly a potent stimulus for physiological remodelling in humans, the integrative response to this type of exercise warrants further attention, especially in comparison to traditional endurance training. PMID:27748956
Giallauria, Francesco; Smart, Neil Andrew; Cittadini, Antonio; Vigorito, Carlo
2016-10-14
Exercise training (ET) is strongly recommended in patients with chronic heart failure (CHF). Moderate-intensity aerobic continuous ET is the best established training modality in CHF patients. In the last decade, however, high-intensity interval exercise training (HIIT) has aroused considerable interest in cardiac rehabilitation community. Basically, HIIT consists of repeated bouts of high-intensity exercise alternated with recovery periods. In CHF patients, HIIT exerts larger improvements in exercise capacity compared to moderate-continuous ET. These results are intriguing, mostly considering that better functional capacity translates into an improvement of symptoms and quality of life. Notably, HIIT did not reveal major safety issues; although CHF patients should be clinically stable, have had recent exposure to at least regular moderate-intensity exercise, and appropriate supervision and monitoring during and after the exercise session are mandatory. The impact of HIIT on cardiac dimensions and function and on endothelial function remains uncertain. HIIT should not replace other training modalities in heart failure but should rather complement them. Combining and tailoring different ET modalities according to each patient's baseline clinical characteristics (i.e. exercise capacity, personal needs, preferences and goals) seem the most astute approach to exercise prescription.
Brandou, F; Savy-Pacaux, A M; Marie, J; Bauloz, M; Maret-Fleuret, I; Borrocoso, S; Mercier, J; Brun, J F
2005-09-01
We assessed the effect of two programs combining a hypocaloric diet with low-intensity (LI) or high-intensity (HI) exercise training, during two months, on substrate utilization at exercise in obese children. Fifteen obese boys participated in a combined program of exercise and caloric restriction-induced weight loss (diet starting two weeks before the training program). The maximal fat oxidation point (Lipox max) was determined to individualize exercise training. Training consisted of cycling at either LI (Lipox max) for seven children or HI (Lipoxmax+40% Lipox max) for eight children. All children exhibited a decrease in weight (LI: -5.2 kg +/- 0.7 (P<0.01), HI: -7 kg +/- 0.7 (P<0.01)). While in the LI group, both fat and CHO oxidation were unchanged after training, HI group oxidize less fat and more CHO after training when exercising at 20% and 30% Wmax th (P = 0.02). While a LI exercise training program maintains (but does not improve) the ability to oxidize fat at exercise, HI training actually shifts towards CHO the balance of substrate oxidation during exercise. Thus, a low intensity training protocol seems to counteract to some extent the decline in lipid oxidation at exercise that occurs after a hypocaloric diet, and is thus likely to be synergistic to diet in the weight lowering strategy.
Emtner, Margareta; Porszasz, Janos; Burns, Mary; Somfay, Attila; Casaburi, Richard
2003-11-01
Supplemental oxygen improves exercise tolerance of normoxemic and hypoxemic chronic obstructive pulmonary disease (COPD) patients. We determined whether nonhypoxemic COPD patients undergoing exercise training while breathing supplemental oxygen achieve higher intensity and therefore improve exercise capacity more than patients breathing air. A double-blinded trial was performed involving 29 nonhypoxemic patients (67 years, exercise SaO2 > 88%) with COPD (FEV1 = 36% predicted). All exercised on cycle ergometers for 45 minutes, 3 times per week for 7 weeks at high-intensity targets. During exercise, they received oxygen (3 L/minute) (n = 14) or compressed air (3 L/minute) (n = 15). Both groups had a higher exercise tolerance after training and when breathing oxygen. However, the oxygen-trained group increased the training work rate more rapidly than the air-trained group. The mean +/- SD work rate during the last week was 62 +/- 19 W (oxygen-trained group) and 52 +/- 22 W (air-trained group) (p < 0.01). After training, endurance in constant work rate tests increased more in the oxygen-trained group (14.5 minutes) than in the air-trained group (10.5 minutes) (p < 0.05). At isotime, the breathing rate decreased four breaths per minute in the oxygen-trained group and one breath per minute in the air-trained group (p = 0.001). We conclude that supplemental oxygen provided during high-intensity training yields higher training intensity and evidence of gains in exercise tolerance in laboratory testing.
Huynh, Virginia C; Fuhr, Desi P; Byers, Bradley W; Selzler, Anne-Marie; Moore, Linn E; Stickland, Michael K
2018-04-11
Some patients with chronic obstructive pulmonary disease (COPD) fail to achieve health benefits with pulmonary rehabilitation (PR). Exercise intensity and load represent stimulus for adaptation but it is unclear whether inappropriate exercise intensity and/or load are affected by severity of COPD, which may affect health benefits. The purpose was to determine whether COPD severity and/or the severity of pulmonary limitation to exercise (PLE) impacted exercising intensity or load and whether resultant intensity/load affected health outcomes derived from PR. Patients with COPD (n = 58, age = 67 ± 7 y, forced expiratory volume in the first second of expiration [FEV1] % predicted = 52 ± 21%) were recruited upon referral to PR. Primary health outcomes evaluated were 6-min walk distance and St George's Respiratory Questionnaire. Patients were stratified for disease severity using Global Initiative for Obstructive Lung Disease (GOLD) staging and PLE severity by change in inspiratory capacity during exercise. Exercise intensity and load were calculated from daily exercise records. Participants achieved comparable training duration and load regardless of GOLD severity. Patients with more severe PLE achieved greater training duration (more severe: 546 ± 143 min., less severe: 451 ± 109 min., P = .036), and relative training load (more severe: 2200.8 ± 595.3 kcal, less severe: 1648.3 ± 597.8 kcal, P = .007). Greater overall training load was associated with greater improvements in 6-min walk distance (r = 0.24, P = .035). No significant relationships were observed between PLE, GOLD severity, training parameters, and St George's Respiratory Questionnaire response. Improvements in exercise tolerance can be explained by achieving greater training loads, demonstrating the importance of appropriate training load to maximize health outcomes in PR.
High Intensity Interval Training for Maximizing Health Outcomes.
Karlsen, Trine; Aamot, Inger-Lise; Haykowsky, Mark; Rognmo, Øivind
Regular physical activity and exercise training are important actions to improve cardiorespiratory fitness and maintain health throughout life. There is solid evidence that exercise is an effective preventative strategy against at least 25 medical conditions, including cardiovascular disease, stroke, hypertension, colon and breast cancer, and type 2 diabetes. Traditionally, endurance exercise training (ET) to improve health related outcomes has consisted of low- to moderate ET intensity. However, a growing body of evidence suggests that higher exercise intensities may be superior to moderate intensity for maximizing health outcomes. The primary objective of this review is to discuss how aerobic high-intensity interval training (HIIT) as compared to moderate continuous training may maximize outcomes, and to provide practical advices for successful clinical and home-based HIIT. Copyright © 2017. Published by Elsevier Inc.
ERIC Educational Resources Information Center
Kemmler, Wolfgang; Engelke, Klaus; Lauber, Dirk; Weineck, Juergen; Hensen, Johannes; Kalender, Willi A.
2002-01-01
Investigated the effect of intense exercise training on physical fitness, coronary heart disease, bone mineral density (BMD), and parameters related to quality of life in early postmenopausal women with osteopenia. Data on woman in control and exercise training groups indicated that the intense exercise training program was effective in improving…
Adachi, H; Sakurai, S; Tanehata, M; Oshima, S; Taniguchi, K
2000-11-01
Blood viscosity (etaB) is low in athletes, but the effect of exercise training on etaB during endurance exercise at an anaerobic threshold (AT) intensity in non-athletes is not well known, although it is known that exercise training sometimes induces the hyperviscosity syndrome. Fourteen subjects were recruited and divided into 2 groups: those who trained at an AT intensity for 30 min/day, 3 times weekly for 1 year (Group T, n=8), and sedentary subjects (Group C, n=6). The test protocol consisted of a single 30-min treadmill exercise at each individual's AT intensity, which was determined in advance. The etaB, plasma viscosity (etaP), and hematocrit were measured just before and at the end of the treadmill exercise. The subjects were not allowed to drink any water before exercise. In the Group C subjects, the hematocrit and etaP increased significantly and the etaB tended to increase. However, in the Group T subjects, the hematocrit and etaP did not increase and the etaB decreased significantly. These data indicate that long-term exercise training attenuates the increase in blood viscosity during exercise.
Within-session responses to high-intensity interval training in spinal cord injury.
Astorino, Todd Anthony; Thum, Jacob S
2018-02-01
Completion of high-intensity interval training (HIIT) increases maximal oxygen uptake and health status, yet its feasibility in persons with spinal cord injury is unknown. To compare changes in cardiorespiratory and metabolic variables between two interval training regimes and moderate intensity exercise. Nine adults with spinal cord injury (duration = 6.8 ± 6.2 year) initially underwent determination of peak oxygen uptake. During subsequent sessions, they completed moderate intensity exercise, HIIT, or sprint interval training. Oxygen uptake, heart rate, and blood lactate concentration were measured. Oxygen uptake and heart rate increased (p < 0.05) during both interval training sessions and were similar (p > 0.05) to moderate intensity exercise. Peak oxygen uptake and heart rate were higher (p < 0.05) with HIIT (90% peak oxygen uptake and 99% peak heart rate) and sprint interval training (80% peak oxygen uptake and 96% peak heart rate) versus moderate intensity exercise. Despite a higher intensity and peak cardiorespiratory strain, all participants preferred interval training versus moderate exercise. Examining long-term efficacy and feasibility of interval training in this population is merited, considering that exercise intensity is recognized as the most important variable factor of exercise programming to optimize maximal oxygen uptake. Implications for Rehabilitation Spinal cord injury (SCI) reduces locomotion which impairs voluntary physical activity, typically resulting in a reduction in peak oxygen uptake and enhanced chronic disease risk. In various able-bodied populations, completion of high-intensity interval training (HIIT) has been consistently reported to improve cardiorespiratory fitness and other health-related outcomes, although its efficacy in persons with SCI is poorly understood. Data from this study in 9 men and women with SCI show similar changes in oxygen uptake and heart in response to HIIT compared to a prolonged bout of aerobic exercise, although peak values were higher in response to HIIT. Due to the higher peak metabolic strain induced by HIIT as well as universal preference for this modality versus aerobic exercise as reported in this study, further work testing utility of HIIT in this population is merited.
Effects of High Intensity Interval Training on Increasing Explosive Power, Speed, and Agility
NASA Astrophysics Data System (ADS)
Fajrin, F.; Kusnanik, N. W.; Wijono
2018-01-01
High Intensity Interval Training (HIIT) is a type of exercise that combines high-intensity exercise and low intensity exercise in a certain time interval. This type of training is very effective and efficient to improve the physical components. The process of improving athletes achievement related to how the process of improving the physical components, so the selection of a good practice method will be very helpful. This study aims to analyze how is the effects of HIIT on increasing explosive power, speed, and agility. This type of research is quantitative with quasi-experimental methods. The design of this study used the Matching-Only Design, with data analysis using the t-test (paired sample t-test). After being given the treatment for six weeks, the results showed there are significant increasing in explosive power, speed, and agility. HIIT in this study used a form of exercise plyometric as high-intensity exercise and jogging as mild or moderate intensity exercise. Increase was due to the improvement of neuromuscular characteristics that affect the increase in muscle strength and performance. From the data analysis, researchers concluded that, Exercises of High Intensity Interval Training significantly effect on the increase in Power Limbs, speed, and agility.
Nie, Jinlei; Zhang, Haifeng; Kong, Zhaowei; George, Keith; Little, Jonathan P; Tong, Tomas K; Li, Feifei; Shi, Qingde
2018-03-01
What is the central question of this study? Does exercise training impact resting and postexercise cardiac troponin T (cTnT) concentration? What is the main finding and its importance? This randomized controlled intervention study demonstrated that 12 weeks of either high-intensity interval training or moderate-intensity continuous training largely abolished the exercise-induced elevation in cTnT when exercise was performed at the same absolute intensity. There was no impact of training on resting cTnT or postexercise appearance of cTnT when exercise was performed at the same relative intensity. These findings provide new information that might help clinicians with decision-making in relationship to basal and postexercise values of cTnT in individuals with different training status. We evaluated the influence of 12 weeks of high-intensity interval training [HIIT; repeated 4 min cycling at 90% of maximal oxygen uptake (V̇O2max) interspersed with 3 min rest, 200-300 kJ per session, 3 or 4 days each week] and work-equivalent moderate-intensity continuous training (MICT; continuous cycling at 60% V̇O2max) on resting cardiac troponin T (cTnT) and the appearance of exercise-induced cTnT. Forty-eight sedentary obese young women were randomly assigned to HIIT, MICT or a control group. The V̇O2max and body composition were measured before and after training. At baseline, cTnT was assessed using a high-sensitivity assay at rest and immediately, 2 and 4 h after 45 min cycling at 60% V̇O2max. After a 12 week training period, cTnT was assessed before and after 45 min cycling at the same relative and absolute intensities as before training. Training led to higher V̇O2max and lower fat mass in both HIIT and MICT groups (all P < 0.05). Before training, cTnT was significantly elevated in all three groups (by 35-118%, all P < 0.05) with acute exercise. After training, both resting and postexercise cTnT concentrations (same relative intensity) were similar to pretraining values. In contrast, postexercise cTnT (same absolute intensity, which represented a smaller exercise stimulus) was not elevated from rest in both HIIT and MICT groups. In conclusion, 12 weeks of either HIIT or MICT largely abolished the postexercise elevation of cTnT concentration when exercise was performed at the same absolute intensity. There was, however, no impact of training on resting cTnT or postexercise appearance of cTnT for exercise performed at the same relative intensity. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Terada, Shin; Tabata, Izumi; Higuchi, Mitsuru
2004-02-01
We previously reported that high-intensity exercise training significantly increased citrate synthase (CS) activity, a marker of oxidative enzyme, in rat skeletal muscle to a level equaling that attained after low-intensity prolonged exercise training (Terada et al., J Appl Physiol 90: 2019-2024, 2001). Since mitochondrial oxidative enzymes and fatty acid oxidation (FAO) enzymes are often increased simultaneously, we assessed the effect of high-intensity intermittent swimming training on FAO enzyme activity in rat skeletal muscle. Male Sprague-Dawley rats (3 to 4 weeks old) were assigned to a 10-day period of high-intensity intermittent exercise training (HIT), low-intensity prolonged exercise training (LIT), or sedentary control conditions. In the HIT group, the rats repeated fourteen 20 s swimming sessions with a weight equivalent to 14-16% of their body weight. Between the exercise sessions, a 10 s pause was allowed. Rats in the LIT group swam 6 h/day in two 3 h sessions separated by 45 min of rest. CS activity in the triceps muscle of rats in the HIT and LIT groups was significantly higher than that in the control rats by 36 and 39%, respectively. Furthermore, 3-beta hydroxyacyl-CoA dehydrogenase (HAD) activity, an important enzyme in the FAO pathway in skeletal muscle, was higher in the two training groups than in the control rats (HIT: 100%, LIT: 88%). No significant difference in HAD activity was observed between the two training groups. In conclusion, the present investigation demonstrated that high-intensity intermittent swimming training elevated FAO enzyme activity in rat skeletal muscle to a level similar to that attained after 6 h of low-intensity prolonged swimming exercise training.
The effect of exercise intensity on postresistance exercise hypotension in trained men.
Duncan, Michael J; Birch, Samantha L; Oxford, Samuel W
2014-06-01
The occurrence of postresistance exercise hypotension (PEH) after resistance exercise remains unknown. This study examined blood pressure and heart rate (HR) responses to an acute bout of low- and high-intensity resistance exercise, matched for total work, in trained males. Sixteen resistance-trained males (23.1 ± 5.9 years) performed an acute bout of low- (40% of 1 repetition maximum [1RM]) and high-intensity resistance exercise (80% 1RM), matched for total work, separated by 7 days and performed in a counterbalanced order. Systolic blood pressure (SBP) and diastolic blood pressure (DBP), mean arterial pressure (MAP), and HR were assessed before exercise, after completion of each exercise resistance exercise (3 sets of back squat, bench press, and deadlift) and every 10 minutes after resistance exercise for a period of 60 minutes. Results indicated a significant intensity × time interaction for SBP (p = 0.034, partial η(2) = 0.122) and MAP (p = 0.047, partial η(2) = 0.116) whereby SBP and MAP at 50-minute recovery and 60-minute recovery were significantly lower after high-intensity exercise (p = 0.01 for SBP and p = 0.05 for MAP in both cases) compared with low-intensity exercise. There were no significant main effects or interactions in regard to DBP (all p > 0.05). Heart rate data indicated a significant main effect for time (F(9, 135) = 2.479, p = 0.0001, partial η(2) = 0.344). Post hoc multiple comparisons indicated that HR was significantly higher after squat, bench press, and deadlift exercise compared with resting HR and HR at 40-, 50-, and 60-minute recovery (all p = 0.03). The present findings suggest that an acute bout of high intensity, but not low intensity, resistance exercise using compound movements can promote PEH in trained men.
Rivero, José-Luis L; Ruz, Antonio; Martí-Korff, Silvia; Estepa, José-Carlos; Aguilera-Tejero, Escolástico; Werkman, Jutta; Sobotta, Mathias; Lindner, Arno
2007-05-01
This study examined the effects of the intensity and duration of exercise on the nature and magnitude of training adaptations in muscle of adolescent (2-3 yr old) racehorses. Six thoroughbreds that had been pretrained for 2 mo performed six consecutive conditioning programs of varying lactate-guided intensities [velocities eliciting blood lactate concentrations of 2.5 mmol/l (v2.5) and 4 mmol/l (v4), respectively] and durations (5, 15, 25 min). Pre- and posttraining gluteus muscle biopsies were analyzed for myosin heavy chain content, fiber-type composition, fiber size, capillarization, and fiber histochemical oxidative and glycolytic capabilities. Although training adaptations were similar in nature, they varied greatly in magnitude among the different training protocols. Overall, the use of v4 as the exercise intensity for 25 min elicited the most consistent training adaptations in muscle, whereas the minimal training stimulus that evoked any significant change was identified with exercises of 15 min at v2.5. Within this range, muscular adaptations showed significant trends to be proportional to the exercise load of specific training programs. Taken together, these data suggest that muscular adaptations to training in horses occur on a continuum that is based on the exercise intensity and duration of training. The practical implications of this study are that exercises for 15 to 25 min/day at velocities between v2.5 and v4 can improve in the short term (3 wk) the muscular stamina in thoroughbreds. However, exercises of 5-15 min at v4 are necessary to enhance muscular features related to strength (hypertrophy).
Stepto, Nigel K.; Benziane, Boubacar; Wadley, Glenn D.; Chibalin, Alexander V.; Canny, Benedict J.; Eynon, Nir; McConell, Glenn K.
2012-01-01
Reduced activation of exercise responsive signalling pathways have been reported in response to acute exercise after training; however little is known about the adaptive responses of the mitochondria. Accordingly, we investigated changes in mitochondrial gene expression and protein abundance in response to the same acute exercise before and after 10-d of intensive cycle training. Nine untrained, healthy participants (mean±SD; VO2peak 44.1±17.6 ml/kg/min) performed a 60 min bout of cycling exercise at 164±18 W (72% of pre-training VO2peak). Muscle biopsies were obtained from the vastus lateralis muscle at rest, immediately and 3 h after exercise. The participants then underwent 10-d of cycle training which included four high-intensity interval training sessions (6×5 min; 90–100% VO2peak) and six prolonged moderate-intensity sessions (45–90 min; 75% VO2peak). Participants repeated the pre-training exercise trial at the same absolute work load (64% of pre-training VO2peak). Muscle PGC1-α mRNA expression was attenuated as it increased by 11- and 4- fold (P<0.001) after exercise pre- and post-training, respectively. PGC1-α protein expression increased 1.5 fold (P<0.05) in response to exercise pre-training with no further increases after the post-training exercise bout. RIP140 protein abundance was responsive to acute exercise only (P<0.01). COXIV mRNA (1.6 fold; P<0.01) and COXIV protein expression (1.5 fold; P<0.05) were increased by training but COXIV protein expression was decreased (20%; P<0.01) by acute exercise pre- and post-training. These findings demonstrate that short-term intensified training promotes increased mitochondrial gene expression and protein abundance. Furthermore, acute indicators of exercise-induced mitochondrial adaptation appear to be blunted in response to exercise at the same absolute intensity following short-term training. PMID:23285255
Taylor, Jenna; Keating, Shelley E; Leveritt, Michael D; Holland, David J; Gomersall, Sjaan R; Coombes, Jeff S
2017-12-01
For decades, moderate intensity continuous training (MICT) has been the cornerstone of exercise prescription for cardiac rehabilitation (CR). High intensity interval training (HIIT) is now recognized in CR exercise guidelines as an appropriate and efficient modality for improving cardiorespiratory fitness, a strong predictor of mortality. However, the clinical application of HIIT in a real world CR setting, in terms of feasibility, safety, and long-term adherence, needs further investigation to address ongoing reservations. Furthermore, studies using objective measures of exercise intensity (such as heart rate; HR) have produced variable outcomes. Therefore we propose investigating the use of subjective measures (such as rating of perceived exertion (RPE)) for prescribing exercise intensity. One hundred adults with coronary artery disease (CAD) attending a hospital-initiated CR program will be randomized to 1) HIIT: 4 × 4 min high intensity intervals at 15-18 RPE interspersed with 3-min active recovery periods or 2) MICT: usual care exercise including 40 min continuous exercise at a moderate intensity corresponding to 11-13 RPE. Primary outcome is change in exercise capacity (peak VO 2 ) following 4 weeks of exercise training. Secondary outcome measures are: feasibility, safety, exercise adherence, body composition, vascular function, inflammatory markers, intrahepatic lipid, energy intake, and dietary behavior over 12-months; and visceral adipose tissue (VAT) following 12 weeks of exercise training. This study aims to address the ongoing concerns regarding the practicality and safety of HIIT in CR programs. We anticipate study findings will lead to the development of a standardized protocol to facilitate CR programs to incorporate HIIT as a standard exercise option for appropriate patients.
Thomassen, Martin; Gunnarsson, Thomas P.; Christensen, Peter M.; Pavlovic, Davor; Shattock, Michael J.
2016-01-01
The present study examined the effect of intensive training in combination with marked reduction in training volume on phospholemman (FXYD1) expression and phosphorylation at rest and during exercise. Eight well-trained cyclists replaced their regular training with speed-endurance training (10–12 × ∼30-s sprints) two or three times per week and aerobic high-intensity training (4–5 × 3–4 min at 90–95% of peak aerobic power output) 1–2 times per week for 7 wk and reduced the training volume by 70%. Muscle biopsies were obtained before and during a repeated high-intensity exercise protocol, and protein expression and phosphorylation were determined by Western blot analysis. Expression of FXYD1 (30%), actin (40%), mammalian target of rapamycin (mTOR) (12%), phospholamban (PLN) (16%), and Ca2+/calmodulin-dependent protein kinase II (CaMKII) γ/δ (25%) was higher (P < 0.05) than before the training intervention. In addition, after the intervention, nonspecific FXYD1 phosphorylation was higher (P < 0.05) at rest and during exercise, mainly achieved by an increased FXYD1 Ser-68 phosphorylation, compared with before the intervention. CaMKII, Thr-287, and eukaryotic elongation factor 2 Thr-56 phosphorylation at rest and during exercise, overall PKCα/β, Thr-638/641, and mTOR Ser-2448 phosphorylation during repeated intense exercise as well as resting PLN Thr-17 phosphorylation were also higher (P < 0.05) compared with before the intervention period. Thus, a period of high-intensity training with reduced training volume increases expression and phosphorylation levels of FXYD1, which may affect Na+/K+ pump activity and muscle K+ homeostasis during intense exercise. Furthermore, higher expression of CaMKII and PLN, as well as increased phosphorylation of CaMKII Thr-287 may have improved intracellular Ca2+ handling. PMID:26791827
Thomassen, Martin; Gunnarsson, Thomas P; Christensen, Peter M; Pavlovic, Davor; Shattock, Michael J; Bangsbo, Jens
2016-04-01
The present study examined the effect of intensive training in combination with marked reduction in training volume on phospholemman (FXYD1) expression and phosphorylation at rest and during exercise. Eight well-trained cyclists replaced their regular training with speed-endurance training (10-12 × ∼30-s sprints) two or three times per week and aerobic high-intensity training (4-5 × 3-4 min at 90-95% of peak aerobic power output) 1-2 times per week for 7 wk and reduced the training volume by 70%. Muscle biopsies were obtained before and during a repeated high-intensity exercise protocol, and protein expression and phosphorylation were determined by Western blot analysis. Expression of FXYD1 (30%), actin (40%), mammalian target of rapamycin (mTOR) (12%), phospholamban (PLN) (16%), and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) γ/δ (25%) was higher (P < 0.05) than before the training intervention. In addition, after the intervention, nonspecific FXYD1 phosphorylation was higher (P < 0.05) at rest and during exercise, mainly achieved by an increased FXYD1 Ser-68 phosphorylation, compared with before the intervention. CaMKII, Thr-287, and eukaryotic elongation factor 2 Thr-56 phosphorylation at rest and during exercise, overall PKCα/β, Thr-638/641, and mTOR Ser-2448 phosphorylation during repeated intense exercise as well as resting PLN Thr-17 phosphorylation were also higher (P < 0.05) compared with before the intervention period. Thus, a period of high-intensity training with reduced training volume increases expression and phosphorylation levels of FXYD1, which may affect Na(+)/K(+) pump activity and muscle K(+) homeostasis during intense exercise. Furthermore, higher expression of CaMKII and PLN, as well as increased phosphorylation of CaMKII Thr-287 may have improved intracellular Ca(2+) handling. Copyright © 2016 the American Physiological Society.
Shiotsu, Yoko; Yanagita, Masahiko
2018-06-01
This study aimed to examine the effects of exercise order of combined aerobic and low- or moderate-intensity resistance training into the same session on body composition, functional performance, and muscle strength in healthy older women. Furthermore, this study compared the effects of different (low- vs moderate-) intensity combined training. A total of 60 healthy older women (age 61-81 y) were randomly assigned to five groups that performed aerobic exercise before low-intensity resistance training (AR-L, n = 12) or after resistance training (RA-L, n = 12), performed aerobic exercise before moderate-intensity resistance training (AR-M, n = 12) or after resistance training (RA-M, n = 12), or nonintervention control conditions (CON, n = 12). Body composition, functional performance, and muscle strength were evaluated before and after the 10-week training. No effects of exercise order of combined aerobic and low- or moderate-intensity resistance training (AR-L vs RA-L, AR-M vs RA-M) were observed in body composition, functional performance, or muscle strength, whereas the effects of training intensity of combined training (AR-L vs AR-M, RA-L vs RA-M) were observed on functional performance. All combined trainings significantly increased muscle strength and gait ability (P < 0.01, respectively). Functional reach test significantly increased in the AR-M and RA-M groups (P < 0.01, respectively), and there were significant group differences between AR-L and AR-M (P = 0.002), RA-L and RA-M (P = 0.014). Preliminary findings suggest that combined aerobic and low- or moderate-intensity resistance training increases muscle strength and improves gait ability, regardless of the exercise order. Also, greater improvement in dynamic balance capacity, a risk factor associated with falling, is observed in moderate-intensity combined training.
Aguilera Eguía, Raúl Alberto; Russell Guzmán, Javier Antonio; Soto Muñoz, Marcelo Enrique; Villegas González, Bastián Eduardo; Poblete Aro, Carlos Emilio; Ibacache Palma, Alejandro
2015-03-05
Type 2 diabetes mellitus is one of the major non-communicable chronic diseases in the world. Its prevalence in Chile is significant, and complications associated with this disease involve great costs, which is why prevention and treatment of this condition are essential. Physical exercise is an effective means for prevention and treatment of type 2 diabetes mellitus. The emergence of new forms of physical training, such as "high intensity interval training", presents novel therapeutic alternatives for patients and health care professionals. To assess the validity and applicability of the results regarding the effectiveness of high intensity interval training in reducing glycosylated hemoglobin in adult patients with type 2 diabetes mellitus and answer the following question: In subjects with type 2 diabetes, can the method of high intensity interval training compared to moderate intensity exercise decrease glycosylated hemoglobin? We performed a critical analysis of the article "Feasibility and preliminary effectiveness of high intensity interval training in type 2 diabetes". We found no significant differences in the amount of glycosylated hemoglobin between groups of high intensity interval training and moderate-intensity exercise upon completion of the study (p>0.05). In adult patients with type 2 diabetes mellitus, high intensity interval training does not significantly improve glycosylated hemoglobin levels. Despite this, the high intensity interval training method shows as much improvement in body composition and physical condition as the moderate intensity exercise program.
Vanhees, L; Rauch, B; Piepoli, M; van Buuren, F; Takken, T; Börjesson, M; Bjarnason-Wehrens, B; Doherty, P; Dugmore, D; Halle, M
2012-12-01
The beneficial effect of exercise training and exercise-based cardiac rehabilitation on symptom-free exercise capacity,cardiovascular and skeletal muscle function, quality of life, general healthy lifestyle, and reduction of depressive symptoms and psychosocial stress is nowadays well recognized. However, it remains largely obscure, which characteristics of physical activity (PA) and exercise training--frequency, intensity, time (duration), type (mode), and volume (dose: intensity x duration) of exercise--are the most effective. The present paper, therefore, will deal with these exercise characteristics in the management of individuals with cardiovascular disease, i.e. coronary artery disease and chronic heart failure patients, but also in patients with congenital or valvular heart disease. Based on the current literature, and if sufficient evidence is available, recommendations from the European Association on Cardiovascular Prevention and Rehabilitation are formulated regarding frequency, intensity, time and type of PA, and safety aspects during exercise inpatients with cardiovascular disease. This paper is the third in a series of three papers, all devoted to the same theme: the importance of the exercise characteristics in the management of cardiovascular health. Part I is directed to the general population and Part II to individuals with cardiovascular risk factors. In general, PA recommendations and exercise training programmes for patients with coronary artery disease or chronic heart failure need to be tailored to the individual's exercise capacity and risk profile, with the aim to reach and maintain the individually highest fitness level possible and to perform endurance exercise training 30–60 min daily (3–5 days per week) in combination with resistance training 2–3 times a week. Because of the frequently reported dose–response relationship between training effect and exercise intensity, one should seek sufficiently high training intensities, although more scientific evidence on effect sizes and safety is warranted. At present, there is insufficient data to give more specific recommendations on type, dosage, and intensity of exercise in some other cardiovascular diseases, such as congenital heart disease, valve disease, cardiomyopathies, channelopathies, and patients with implanted devices.
Machado, Alexandre F; Baker, Julien S; Figueira Junior, Aylton J; Bocalini, Danilo S
2017-05-04
HIIT whole body (HWB)-based exercise is a new calisthenics exercise programme approach that can be considered an effective and safe method to improve physical fitness and body composition. HWB is a method that can be applied to different populations and ages. The purpose of this study was to describe possible methodologies for performing physical training based on whole-body exercise in healthy subjects. The HWB sessions consist of a repeated stimulus based on high-intensity exercise that also include monitoring time to effort, time to recuperation and session time. The exercise intensity is related to the maximal number of movements possible in a given time; therefore, the exercise sessions can be characterized as maximal. The intensity can be recorded using ratings of perceived exertion. Weekly training frequency and exercise selection should be structured according to individual subject functional fitness. Using this simple method, there is potential for greater adherence to physical activity which can promote health benefits to all members of society. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Cardiac parasympathetic reactivation following exercise: implications for training prescription.
Stanley, Jamie; Peake, Jonathan M; Buchheit, Martin
2013-12-01
The objective of exercise training is to initiate desirable physiological adaptations that ultimately enhance physical work capacity. Optimal training prescription requires an individualized approach, with an appropriate balance of training stimulus and recovery and optimal periodization. Recovery from exercise involves integrated physiological responses. The cardiovascular system plays a fundamental role in facilitating many of these responses, including thermoregulation and delivery/removal of nutrients and waste products. As a marker of cardiovascular recovery, cardiac parasympathetic reactivation following a training session is highly individualized. It appears to parallel the acute/intermediate recovery of the thermoregulatory and vascular systems, as described by the supercompensation theory. The physiological mechanisms underlying cardiac parasympathetic reactivation are not completely understood. However, changes in cardiac autonomic activity may provide a proxy measure of the changes in autonomic input into organs and (by default) the blood flow requirements to restore homeostasis. Metaboreflex stimulation (e.g. muscle and blood acidosis) is likely a key determinant of parasympathetic reactivation in the short term (0-90 min post-exercise), whereas baroreflex stimulation (e.g. exercise-induced changes in plasma volume) probably mediates parasympathetic reactivation in the intermediate term (1-48 h post-exercise). Cardiac parasympathetic reactivation does not appear to coincide with the recovery of all physiological systems (e.g. energy stores or the neuromuscular system). However, this may reflect the limited data currently available on parasympathetic reactivation following strength/resistance-based exercise of variable intensity. In this review, we quantitatively analyse post-exercise cardiac parasympathetic reactivation in athletes and healthy individuals following aerobic exercise, with respect to exercise intensity and duration, and fitness/training status. Our results demonstrate that the time required for complete cardiac autonomic recovery after a single aerobic-based training session is up to 24 h following low-intensity exercise, 24-48 h following threshold-intensity exercise and at least 48 h following high-intensity exercise. Based on limited data, exercise duration is unlikely to be the greatest determinant of cardiac parasympathetic reactivation. Cardiac autonomic recovery occurs more rapidly in individuals with greater aerobic fitness. Our data lend support to the concept that in conjunction with daily training logs, data on cardiac parasympathetic activity are useful for individualizing training programmes. In the final sections of this review, we provide recommendations for structuring training microcycles with reference to cardiac parasympathetic recovery kinetics. Ultimately, coaches should structure training programmes tailored to the unique recovery kinetics of each individual.
No Effect of Exercise Intensity on Appetite in Highly-Trained Endurance Women
Howe, Stephanie M.; Hand, Taryn M.; Larson-Meyer, D. Enette; Austin, Kathleen J.; Alexander, Brenda M.; Manore, Melinda M.
2016-01-01
In endurance-trained men, an acute bout of exercise is shown to suppress post-exercise appetite, yet limited research has examined this response in women. The purpose of this study was to investigate the effect of exercise intensity on appetite and gut hormone responses in endurance-trained women. Highly-trained women (n = 15, 18–40 years, 58.4 ± 6.4 kg, VO2MAX = 55.2 ± 4.3 mL/kg/min) completed isocaloric bouts (500 kcals or 2093 kJ) of moderate-intensity (MIE, 60% VO2MAX) and high-intensity (HIE, 85% VO2MAX) treadmill running at the same time of day, following a similar 48-h diet/exercise period, and at least 1-week apart. Blood was drawn pre-exercise (baseline), immediately post-exercise and every 20-min for the next 60-min. Plasma concentrations of acylated ghrelin, PYY3–36, GLP-1 and subjective appetite ratings via visual analog scale (VAS) were assessed at each time point. Acylated ghrelin decreased (p = 0.014) and PYY3–36 and GLP-1 increased (p = 0.036, p < 0.0001) immediately post-exercise, indicating appetite suppression. VAS ratings of hunger and desire to eat decreased immediately post-exercise (p = 0.0012, p = 0.0031, respectively), also indicating appetite suppression. There were no differences between exercise intensities for appetite hormones or VAS. Similar to males, post-exercise appetite regulatory hormones were altered toward suppression in highly-trained women and independent of energy cost of exercise. Results are important for female athletes striving to optimize nutrition for endurance performance. PMID:27096869
Translation of incremental talk test responses to steady-state exercise training intensity.
Lyon, Ellen; Menke, Miranda; Foster, Carl; Porcari, John P; Gibson, Mark; Bubbers, Terresa
2014-01-01
The Talk Test (TT) is a submaximal, incremental exercise test that has been shown to be useful in prescribing exercise training intensity. It is based on a subject's ability to speak comfortably during exercise. This study defined the amount of reduction in absolute workload intensity from an incremental exercise test using the TT to give appropriate absolute training intensity for cardiac rehabilitation patients. Patients in an outpatient rehabilitation program (N = 30) performed an incremental exercise test with the TT given every 2-minute stage. Patients rated their speech comfort after reciting a standardized paragraph. Anything other than a "yes" response was considered the "equivocal" stage, while all preceding stages were "positive" stages. The last stage with the unequivocally positive ability to speak was the Last Positive (LP), and the preceding stages were (LP-1 and LP-2). Subsequently, three 20-minute steady-state training bouts were performed in random order at the absolute workload at the LP, LP-1, and LP-2 stages of the incremental test. Speech comfort, heart rate (HR), and rating of perceived exertion (RPE) were recorded every 5 minutes. The 20-minute exercise training bout was completed fully by LP (n = 19), LP-1 (n = 28), and LP-2 (n = 30). Heart rate, RPE, and speech comfort were similar through the LP-1 and LP-2 tests, but the LP stage was markedly more difficult. Steady-state exercise training intensity was easily and appropriately prescribed at intensity associated with the LP-1 and LP-2 stages of the TT. The LP stage may be too difficult for patients in a cardiac rehabilitation program.
Winn, Nathan C; Liu, Ying; Rector, R Scott; Parks, Elizabeth J; Ibdah, Jamal A; Kanaley, Jill A
2018-01-01
Exercise training is commonly prescribed for individuals diagnosed with nonalcoholic fatty liver disease (NAFLD); however, consensus regarding the volume and intensity of exercise for optimal benefits is lacking. Thus, we determined whether high intensity interval exercise training (HIIT) produced greater reductions in intrahepatic lipid (IHL) content and NAFLD risk factors compared with energy-matched moderate intensity continuous exercise training (MICT) in obese adults with liver steatosis. Eighteen obese adults were randomized to either 4weeks of HIIT (4min 80% VO 2 peak/3min, 50% VO 2 peak) or MICT (55% VO 2 peak, ~60min), matched for energy expenditure (~400kcal/session) and compared to five non-exercising age-matched control subjects. IHL was measured by 1 H-MRS and frequent blood samples were analyzed for glucose, insulin, c-peptide, and NEFA levels during a liquid meal test (180min) to characterize metabolic phenotype. Baseline body weight, visceral abdominal adiposity, and fasting insulin concentrations were greater in the MICT vs HIIT group (P<0.05), while IHL was tightly matched between MICT and HIIT subjects (P>0.05), albeit higher than control subjects (P<0.01). Visceral abdominal adiposity, body mass, liver aminotransferases (ALT, AST), and hepatic apoptotic/inflammatory markers (cytokeratin 18 and fetuin a) were not reduced with either exercise training intervention (P>0.05). Both HIIT and MICT lowered IHL (HIIT, -37.0±12.4%; MICT, -20.1±6.6%, P<0.05); however, the reduction in IHL was not statistically different between exercise intensities (P=0.25). Furthermore, exercise training decreased postprandial insulin, c-peptide, and lipid peroxidation levels (iAUC, P<0.05). Collectively, these findings indicate that energy-matched high intensity and moderate intensity exercise are effective at decreasing IHL and NAFLD risk that is not contingent upon reductions in abdominal adiposity or body mass. Copyright © 2017 Elsevier Inc. All rights reserved.
Almenning, Ida; Rieber-Mohn, Astrid; Lundgren, Kari Margrethe; Shetelig Løvvik, Tone; Garnæs, Kirsti Krohn; Moholdt, Trine
2015-01-01
Polycystic ovary syndrome is a common endocrinopathy in reproductive-age women, and associates with insulin resistance. Exercise is advocated in this disorder, but little knowledge exists on the optimal exercise regimes. We assessed the effects of high intensity interval training and strength training on metabolic, cardiovascular, and hormonal outcomes in women with polycystic ovary syndrome. Three-arm parallel randomized controlled trial. Thirty-one women with polycystic ovary syndrome (age 27.2 ± 5.5 years; body mass index 26.7 ± 6.0 kg/m2) were randomly assigned to high intensity interval training, strength training, or a control group. The exercise groups exercised three times weekly for 10 weeks. The main outcome measure was change in homeostatic assessment of insulin resistance (HOMA-IR). HOMA-IR improved significantly only after high intensity interval training, by -0.83 (95% confidence interval [CI], -1.45, -0.20), equal to 17%, with between-group difference (p = 0.014). After high intensity interval training, high-density lipoprotein cholesterol increased by 0.2 (95% CI, 0.02, 0.5) mmol/L, with between group difference (p = 0.04). Endothelial function, measured as flow-mediated dilatation of the brachial artery, increased significantly after high intensity interval training, by 2.0 (95% CI, 0.1, 4.0) %, between-group difference (p = 0.08). Fat percentage decreased significantly after both exercise regimes, without changes in body weight. After strength training, anti-Müllarian hormone was significantly reduced, by -14.8 (95% CI, -21.2, -8.4) pmol/L, between-group difference (p = 0.04). There were no significant changes in high-sensitivity C-reactive protein, adiponectin or leptin in any group. High intensity interval training for ten weeks improved insulin resistance, without weight loss, in women with polycystic ovary syndrome. Body composition improved significantly after both strength training and high intensity interval training. This pilot study indicates that exercise training can improve the cardiometabolic profile in polycystic ovary syndrome in the absence of weight loss. ClinicalTrial.gov NCT01919281.
Evidence based exercise - clinical benefits of high intensity interval training.
Shiraev, Tim; Barclay, Gabriella
2012-12-01
Aerobic exercise has a marked impact on cardiovascular disease risk. Benefits include improved serum lipid profiles, blood pressure and inflammatory markers as well as reduced risk of stroke, acute coronary syndrome and overall cardiovascular mortality. Most exercise programs prescribed for fat reduction involve continuous, moderate aerobic exercise, as per Australian Heart Foundation clinical guidelines. This article describes the benefits of exercise for patients with cardiovascular and metabolic disease and details the numerous benefits of high intensity interval training (HIIT) in particular. Aerobic exercise has numerous benefits for high-risk populations and such benefits, especially weight loss, are amplified with HIIT. High intensity interval training involves repeatedly exercising at a high intensity for 30 seconds to several minutes, separated by 1-5 minutes of recovery (either no or low intensity exercise). HIT is associated with increased patient compliance and improved cardiovascular and metabolic outcomes and is suitable for implementation in both healthy and 'at risk' populations. Importantly, as some types of exercise are contraindicated in certain patient populations and HIIT is a complex concept for those unfamiliar to exercise, some patients may require specific assessment or instruction before commencing a HIIT program.
Forbes, Sean C; Slade, Jill M; Meyer, Ronald A
2008-12-01
Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant () of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 +/- 4 years; body mass, 69 +/- 11 kg) performed 6 sessions of 4-6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 +/- 5 years; body mass, 80 +/- 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy (31P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the of PCr recovery. The of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 +/- 14 s vs. post-training, 37 +/- 15 s; p < 0.05) with no change in the control group (44 +/- 12 s vs. 43 +/- 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle.
Smart, Neil A
2013-01-01
BACKGROUND: Peak oxygen consumption (VO2) is the gold standard measure of cardiorespiratory fitness and a reliable predictor of survival in chronic heart failure patients. Furthermore, any form of physical training usually improves cardiorespiratory fitness, although the magnitude of improvement in peak VO2 may vary across different training prescriptions. OBJECTIVE: To quantify, and subsequently rank, the magnitude of improvement in peak VO2 for different physical training prescriptions using data from published meta-analyses and randomized controlled trials. METHODS: Prospective randomized controlled parallel trials and meta-analyses of exercise training in chronic heart failure patients that provided data on change in peak VO2 for nine a priori comparative analyses were examined. RESULTS: All forms of physical training were beneficial, although the improvement in peak VO2 varied with modality. High-intensity interval exercise yielded the largest increase in peak VO2, followed in descending order by moderate-intensity aerobic exercise, functional electrical stimulation, inspiratory muscle training, combined aerobic and resistance training, and isolated resistance training. With regard to setting, the present study was unable to determine whether outpatient or unsupervised home exercise provided greater benefits in terms of peak VO2 improvment. CONCLUSIONS: Interval exercise is not suitable for all patients, especially the high-intensity variety; however, when indicated, this form of exercise should be adopted to optimize peak VO2 adaptations. Other forms of activity, such as functional electrical stimulation, may be more appropriate for patients who are not capable of high-intensity interval training, especially for severely deconditioned patients who are initially unable to exercise. PMID:24294043
Azuma, Koichiro; Matsumoto, Hideo
2017-06-25
Recently, high-intensity interval training (HIIT) has received much attention as a promising exercise option not only to improve aerobic fitness, but also to prevent and improve lifestyle-related diseases. Epidemiological studies have shown that the exercise volume, as determined by the product of exercise intensity, duration, and frequency, has been shown to be important for improvements in muscle mitochondrial activity and subsequent improvements in aerobic fitness, insulin sensitivity, and metabolic variables. Therefore, continuous moderate-intensity training has been widely recommended. On the other hand, the main contributor of HIIT to improvements in aerobic fitness and metabolic variables is its high-intensity nature, and many recent studies have shown results favoring HIIT when compared with conventional continuous training, despite its shorter exercise duration and smaller exercise volume. In this review, we aim to show the possible universal application of HIIT in a hospital setting, where athletes, sports lovers, and patients have sought medical advice and have the opportunity to undergo detailed evaluations, including an exercise stress test. For athletes, HIIT is mandatory to achieve further improvements in aerobic fitness. For patients, though higher levels of motivation and careful evaluation are required, the time constraints of HIIT are smaller and both aerobic and resistance training can be expected to yield favorable results because of the high-intensity nature of HIIT.
Weatherwax, Ryan M; Harris, Nigel K; Kilding, Andrew E; Dalleck, Lance C
2016-12-19
There is individual variability to cardiorespiratory fitness (CRF) training, but the underlying cause is not well understood. Traditionally, a standardized approach to exercise prescription has utilized relative percentages of maximal heart rate, heart rate reserve (HRR), maximal oxygen uptake (VO 2 max), or VO 2 reserve to establish exercise intensity. However, this model fails to take into consideration individual metabolic responses to exercise and may attribute to the variability in training responses. It has been proposed that an individualized approach would take into consideration metabolic responses to exercises to increase responsiveness to training. In this randomized control trial, participants will undergo a 12-week exercise intervention using individualized (ventilatory thresholds) and standardized (HRR) methods to prescribe CRF training intensity. Following the intervention, participants will be categorized as responders or non-responders based on changes in maximal aerobic abilities. Participants who are non-responders will complete a second 12-week intervention in a crossover design to determine whether they can become responders with a differing exercise prescription. There are four main research outcomes: (1) determine the cohort-specific technical error to use in the categorization of response rate; (2) determine if an individualized intensity prescription is superior to a standard approach in regards to VO 2 max and cardiometabolic risk factors; (3) investigate the time course changes throughout 12 weeks of CRF training between the two intervention groups; and (4) determine if non-responders can become responders if the exercise prescription is modified. The findings from this research will provide evidence on the effectiveness of individualized exercise prescription related to training responsiveness of VO 2 max and cardiometabolic risk factors compared to a standardized approach and further our understanding of individual exercise responses. If the individualized approach proposed is deemed effective, it may change the way exercise specialists prescribe exercise intensity to enhance training responsiveness. ClinicalTrials.gov, NCT02868710 . Registered on 15 August 2016.
An Evidence-Based Approach To Exercise Prescriptions on ISS
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori
2009-01-01
This presentation describes current exercise countermeasures and exercise equipment for astronauts onboard the ISS. Additionally, a strategy for evaluating evidence supporting spaceflight exercise is described and a new exercise prescription is proposed. The current exercise regimen is not fully effective as the ISS exercise hardware does not allow for sufficient exercise intensity, the exercise prescription is adequate and crew members are noncompliant with the prescription. New ISS hardware is proposed, Advanced Resistance Exercise Device (ARED), which allows additional exercises, is instrumented for data acquisition and offers improved loading. The new T2 hardware offers a better harness and subject loading system, is instrumented to allow ground reaction force data, and offers improved speed. A strategy for developing a spaceflight exercise prescription is described and involves identifying exercise training programs that have been shown to maximize adaptive benefits of people exercising in both 0 and 1 g environments. Exercise intensity emerged as an important factor in maintaining physiologic adaptations in the spaceflight environment and interval training is suggested. New ISS exercise hardware should allow for exercise at intensities high enough to elicit adaptive responses. Additionally, new exercise prescriptions should incorporate higher intensity exercises and seek to optimize intensity, duration and frequency for greater efficiency.
The influence of exercise intensity on heat acclimation in trained subjects.
Houmard, J A; Costill, D L; Davis, J A; Mitchell, J B; Pascoe, D D; Robergs, R A
1990-10-01
Low-intensity exercise (less than or equal to 50% VO2max) has been demonstrated to produce heat acclimation (HA) in trained subjects. The purpose of this study was to determine whether shorter-duration, moderate-intensity exercise would also result in HA. Nine trained runners performed two 9-d exercise heat-stress protocols. Each protocol consisted of a 90-min heat tolerance test on days 1 (HTT1) and 9 (HTT2). On days 2-8 the subjects exercised at 50% VO2max for 60 min.d-1 (T50) or at 75% VO2max for 30-35 min.d-1 (T75). Final HTT2 heart rate and rectal temperature (Tr) were significantly (P less than 0.001) reduced, as compared to HTT1, with no differences between T50 and T75. Both protocols resulted in significant (P less than 0.05) reductions in HTT2 pre-exercise Tr and total exercising caloric expenditure, both of which are known to contribute to HA. No changes in resting plasma volume, osmolality, protein, post-HTT aldosterone, and exercising sweat rate were observed. These results demonstrate that equal levels of HA were obtained with T50 and T75, which suggests that moderate-intensity, short-duration exercise in the heat can produce HA in trained subjects.
A pilot study on quantification of training load: The use of HRV in training practice.
Saboul, Damien; Balducci, Pascal; Millet, Grégoire; Pialoux, Vincent; Hautier, Christophe
2016-01-01
Recent laboratory studies have suggested that heart rate variability (HRV) may be an appropriate criterion for training load (TL) quantification. The aim of this study was to validate a novel HRV index that may be used to assess TL in field conditions. Eleven well-trained long-distance male runners performed four exercises of different duration and intensity. TL was evaluated using Foster and Banister methods. In addition, HRV measurements were performed 5 minutes before exercise and 5 and 30 minutes after exercise. We calculated HRV index (TLHRV) based on the ratio between HRV decrease during exercise and HRV increase during recovery. HRV decrease during exercise was strongly correlated with exercise intensity (R = -0.70; p < 0.01) but not with exercise duration or training volume. TLHRV index was correlated with Foster (R = 0.61; p = 0.01) and Banister (R = 0.57; p = 0.01) methods. This study confirms that HRV changes during exercise and recovery phase are affected by both intensity and physiological impact of the exercise. Since the TLHRV formula takes into account the disturbance and the return to homeostatic balance induced by exercise, this new method provides an objective and rational TL index. However, some simplification of the protocol measurement could be envisaged for field use.
Training Performed Above Lactate Threshold Decreases p53 and Shelterin Expression in Mice.
de Carvalho Cunha, Verusca Najara; Dos Santos Rosa, Thiago; Sales, Marcelo Magalhães; Sousa, Caio Victor; da Silva Aguiar, Samuel; Deus, Lysleine Alves; Simoes, Herbert Gustavo; de Andrade, Rosangela Vieira
2018-06-26
Telomere shortening is associated to sarcopenia leading to functional impairment during aging. There are mechanisms associated with telomere attrition, as well to its protection and repair. Physical training is a factor that attenuates telomere shortening, but little is known about the effects of different exercise intensities on telomere biology. Thus, we evaluated the effects of exercise intensity (moderate vs. high-intensity domain) on gene expression of senescence markers Checkpoint kinase 2 and tumor suppressor ( Chk2 and p53 , respectively), shelterin telomere repeat binding 1 and 2 ( Trf1 / Trf2 ), DNA repair ( Xrcc5 ), telomerase reverse transcriptase ( mTERT ) and telomere length in middle aged mice. Three groups were studied: a control group (CTL) and two groups submitted to swimming at intensities below the lactate threshold (LI group) and above the lactate threshold (HI group) for 40 and 20 min respectively, for 12 weeks. After training, the HI group showed reduction in p53 expression in the muscle, and decreased shelterin complex expression when compared to LI group. No differences were observed between groups for mTERT expression and telomere length. Thus, exercise training in high-intensity domain was more effective on reducing markers of senescence and apoptosis. The higher intensity exercise training also diminished shelterin expression, with no differences in telomere length and mTERT expression. Such results possibly indicate a more effective DNA protection for the higher-intensity exercise training. © Georg Thieme Verlag KG Stuttgart · New York.
Souza-Silva, Ana Angélica; Moreira, Eduardo; de Melo-Marins, Denise; Schöler, Cinthia M.; de Bittencourt, Paulo Ivo Homem; Laitano, Orlando
2016-01-01
ABSTRACT Aim. The purpose of this study was to determine the response of circulating markers of lipid and protein oxidation following an incremental test to exhaustion before and after 4 weeks of high-intensity interval training performed in the heat. Methods. To address this question, 16 physically active men (age = 23 ± 2 years; body mass = 73 ± 12 kg; height = 173 ± 6 cm; % body fat = 12.5 ± 6 %; body mass index = 24 ± 4 kg/m2) were allocated into 2 groups: control group (n = 8) performing high-intensity interval training at 22°C, 55% relative humidity and heat group (n = 8) training under 35°C, 55% relative humidity. Both groups performed high-intensity interval training 3 times per week for 4 consecutive weeks, accumulating a total of 12 training sessions. Before and after the completion of 4 weeks of high-intensity interval training, participants performed an incremental cycling test until exhaustion under temperate environment (22°C, 55% relative humidity) where blood samples were collected after the test for determination of exercise-induced changes in oxidative damage biomarkers (thiobarbituric acid reactive species and protein carbonyls). Results. When high-intensity interval training was performed under control conditions, there was an increase in protein carbonyls (p < 0.05) following the incremental test to exhaustion with no changes in thiobarbituric acid reactive species. Conversely, high-intensity interval training performed in high environmental temperature enhanced the incremental exercise-induced increases in thiobarbituric acid reactive species (p < 0.05) with no changes in protein carbonyls. Conclusion. In conclusion, 4 weeks of high-intensity interval training performed in the heat enhances exercise-induced lipid peroxidation, but prevents protein oxidation following a maximal incremental exercise in healthy active men. PMID:27227083
Effect of exercise training in 60- to 69-year-old persons with essential hypertension.
Hagberg, J M; Montain, S J; Martin, W H; Ehsani, A A
1989-08-01
This study sought to determine whether 9 months of low- or moderate-intensity exercise training could decrease blood pressure (BP) in hypertensive men and women (mean age 64 +/- 3 years). Patients underwent weekly BP evaluations for 1 month to ensure that they had persistently elevated BP and then completed a maximal treadmill exercise test to exclude those with overt coronary artery disease. The low- and moderate-intensity groups trained at 53 and 73% of maximal oxygen consumption (VO2 max), respectively; however, total caloric expenditure per week was similar in both groups. VO2 max did not increase in the low-intensity group with training, but increased 28% in the moderate-intensity group. Diastolic BP decreased 11 to 12 mm Hg in both training groups. Systolic BP decreased 20 mm Hg in the low-intensity group with training, which was significantly greater than the change in the control and the moderate-intensity groups. Although systolic BP decreased 8 mm Hg in the moderate-intensity training group, this reduction was not significant. Training resulted in a somewhat lower cardiac output at rest in the low-intensity group, whereas total peripheral resistance decreased slightly in the moderate-intensity training group. Plasma and blood volumes, plasma renin levels and urinary sodium excretion did not change in either group with training. Both groups manifested lower plasma norepinephrine levels after training during standing rest, but not while supine. Thus, low-intensity training may lower BP as much or more than moderate-intensity training in older persons with essential hypertension, but the underlying mechanisms are unclear.
Abe, Takashi; Loenneke, Jeremy P; Fahs, Christopher A; Rossow, Lindy M; Thiebaud, Robert S; Bemben, Michael G
2012-07-01
Although evidence for high-intensity resistance training-induced muscle hypertrophy has accumulated over the last several decades, the basic concept of the training can be traced back to ancient Greece: Milo of Croton lifted a bull-calf daily until it was fully grown, which would be known today as progressive overload. Now, in the 21st century, different types of training are being tested and studied, such as low-intensity exercise combined with arterial as well as venous blood flow restriction (BFR) to/from the working muscles. Because BFR training requires the use of a cuff that is placed at the proximal ends of the arms and/or legs, the BFR is only applicable to limb muscles. Consequently, most previous BFR training studies have focused on the physiological adaptations of BFR limb muscles. Muscle adaptations in non-BFR muscles of the hip and trunk are lesser known. Recent studies that have reported both limb and trunk muscle adaptations following BFR exercise training suggest that low-intensity (20-30% of 1RM) resistance training combined with BFR elicits muscle hypertrophy in both BFR limb and non-BFR muscles. However, the combination of leg muscle BFR with walk training elicits muscle hypertrophy only in the BFR leg muscles. In contrast to resistance exercise with BFR, the exercise intensity may be too low during BFR walk training to cause muscle hypertrophy in the non-BFR gluteus maximus and other trunk muscles. Other mechanisms including hypoxia, local and systemic growth factors and muscle cell swelling may also potentially affect the hypertrophic response of non-BFR muscles to BFR resistance exercise. © 2012 The Authors Clinical Physiology and Functional Imaging © 2012 Scandinavian Society of Clinical Physiology and Nuclear Medicine.
Saucedo Marquez, Cinthia Maria; Vanaudenaerde, Bart; Troosters, Thierry; Wenderoth, Nicole
2015-12-15
Exercise can have a positive effect on the brain by activating brain-derived neurotrophic factor (BDNF)-related processes. In healthy humans there appears to be a linear relationship between exercise intensity and the positive short-term effect of acute exercise on BDNF levels (i.e., the highest BDNF levels are reported after high-intensity exercise protocols). Here we performed two experiments to test the effectiveness of two high-intensity exercise protocols, both known to improve cardiovascular health, to determine whether they have a similar efficacy in affecting BDNF levels. Participants performed a continuous exercise (CON) protocol at 70% of maximal work rate and a high-intensity interval-training (HIT) protocol at 90% of maximal work rate for periods of 1 min alternating with 1 min of rest (both protocols lasted 20 min). We observed similar BDNF kinetics in both protocols, with maximal BDNF concentrations being reached toward the end of training (experiment 1). We then showed that both exercise protocols significantly increase BDNF levels compared with a rest condition (CON P = 0.04; HIT P < 0.001), with HIT reaching higher BDNF levels than CON (P = 0.035) (experiment 2). These results suggest that shorter bouts of high intensity exercise are slightly more effective than continuous high-intensity exercise for elevating serum BDNF. Additionally, 73% of the participants preferred the HIT protocol (P = 0.02). Therefore, we suggest that the HIT protocol might represent an effective and preferred intervention for elevating BDNF levels and potentially promoting brain health. Copyright © 2015 the American Physiological Society.
Hughes, William E.; Ueda, Kenichi
2016-01-01
Aging is associated with attenuated contraction-induced rapid onset vasodilation (ROV). We sought to examine whether chronic exercise training would improve ROV in older adults. Additionally, we examined whether a relationship between cardiorespiratory fitness and ROV exists in young and older adults. Chronically exercise-trained older adults (n = 16; 66 ± 2 yr, mean ± SE) performed single muscle contractions in the forearm and leg at various intensities. Brachial and femoral artery diameter and blood velocity were measured using Doppler ultrasound. Vascular conductance (VC) was calculated as the quotient of blood flow (ml/min) and mean arterial pressure (mmHg). These data were compared with our previously published work from an identical protocol in 16 older untrained (66 ± 1 yr, mean ± SE) and 14 young (23 ± 1 yr) adults. Peak (ΔVCpeak) and total vasodilator (VCtotal) responses were greater in trained compared with untrained older adults across leg exercise intensities (P < 0.05). There were no differences in responses between trained older and young adults in the arm or leg at any exercise intensity (P > 0.05). Comparison of ΔVCpeak in a subset of subjects at an absolute workload in the leg revealed that trained older adults exhibited augmented responses relative to untrained older adults. Exercise capacity (V̇o2 peak) was associated with ΔVCpeak and VCtotal across arm (r = 0.59–0.64) and leg exercise intensities (r = 0.55–0.68, P < 0.05) in older adults. Our data demonstrate that 1) chronic exercise training improves ROV in the arm and leg of trained older adults, such that age-related differences in ROV are abolished, and 2) VO2peak is associated with ΔVCpeak responses in both limbs of older adults. PMID:27032899
Hughes, William E; Ueda, Kenichi; Casey, Darren P
2016-06-01
Aging is associated with attenuated contraction-induced rapid onset vasodilation (ROV). We sought to examine whether chronic exercise training would improve ROV in older adults. Additionally, we examined whether a relationship between cardiorespiratory fitness and ROV exists in young and older adults. Chronically exercise-trained older adults (n = 16; 66 ± 2 yr, mean ± SE) performed single muscle contractions in the forearm and leg at various intensities. Brachial and femoral artery diameter and blood velocity were measured using Doppler ultrasound. Vascular conductance (VC) was calculated as the quotient of blood flow (ml/min) and mean arterial pressure (mmHg). These data were compared with our previously published work from an identical protocol in 16 older untrained (66 ± 1 yr, mean ± SE) and 14 young (23 ± 1 yr) adults. Peak (ΔVCpeak) and total vasodilator (VCtotal) responses were greater in trained compared with untrained older adults across leg exercise intensities (P < 0.05). There were no differences in responses between trained older and young adults in the arm or leg at any exercise intensity (P > 0.05). Comparison of ΔVCpeak in a subset of subjects at an absolute workload in the leg revealed that trained older adults exhibited augmented responses relative to untrained older adults. Exercise capacity (V̇o2 peak) was associated with ΔVCpeak and VCtotal across arm (r = 0.59-0.64) and leg exercise intensities (r = 0.55-0.68, P < 0.05) in older adults. Our data demonstrate that 1) chronic exercise training improves ROV in the arm and leg of trained older adults, such that age-related differences in ROV are abolished, and 2) VO2peak is associated with ΔVCpeak responses in both limbs of older adults. Copyright © 2016 the American Physiological Society.
Al-Sharif, Fadwa Al-Ghalib; Al-Jiffri, Osama Hussien; El-Kader, Shehab Mahmoud Abd; Ashmawy, Eman Mohamed
2014-03-01
Patients with hemophilia A have low bone density than healthy controls. It is now widely recognized that physical activity and sports are beneficial for patients with hemophilia. To compare the effects of mild and moderate intensity treadmill walking exercises on markers of bone metabolism and hand grip strength in male patients with moderate hemophilia A. Fifty male patients with moderate hemophilia, and age range from 25 to 45 years. The subjects were randomly assigned into 2 equal groups; the first group (A) received moderate intensity aerobic exercise training. The second group (B) received mild intensity aerobic exercise training. There was a 32.1% and 24.8% increase in mean values of serum calcium and hand grip strength respectively and 22.7 % reduction in mean values of parathyroid hormone in moderate exercise training group (A). While there was a 15.1 % and 15 % increase in mean values of Serum Calcium and Hand grip strength respectively and 10.3 % reduction in mean values of parathyroid hormone in mild exercise training group(B). The mean values of serum calcium and hand grip strength were significantly increased, while the mean values of parathyroid hormone were significantly decreased in both groups . There were significant differences between mean levels of the investigated parameters in group (A) and group (B) after treatment. Moderate intensity aerobic exercise training on treadmill is appropriate to improve markers of bone metabolism and hand grip strength in male patients with hemophilia A.
Villelabeitia-Jaureguizar, Koldobika; Vicente-Campos, Davinia; Senen, Alejandro Berenguel; Jiménez, Verónica Hernández; Garrido-Lestache, María Elvira Barrios; Chicharro, Jose López
2017-10-01
Heart rate recovery (HRR) has been considered a prognostic and mortality indicator in both healthy and coronary patients. Physical exercise prescription has shown improvements in VO 2 peak and HRR, but most of the studies have been carried out applying continuous training at a moderate intensity, being very limited the use of protocols of high intensity interval training in coronary patients. We aimed to compare the effects of a moderate continuous training (MCT) versus a high intensity interval training (HIIT) programme on VO 2 peak and HRR. Seventy three coronary patients were assigned to either HIIT or MCT groups for 8weeks. Incremental exercise tests in a cycloergometer were performed to obtain VO 2 peak data and heart rate was monitored during and after the exercise test to obtain heart rate recovery data. Both exercise programmes significantly increase VO 2 peak with a higher increase in the HIIT group (HIIT: 4.5±4.46ml/kg/min vs MCT: 2.46±3.57ml/kg/min; p=0.039). High intensity interval training resulted in a significantly increase in HRR at the first and second minute of the recovery phase (15,44±7,04 vs 21,22±6,62, p<0,0001 and 23,73±9,64 vs 31,52±8,02, p<0,0001, respectively). The results of our research show that the application of HIIT to patients with chronic ischemic heart disease of low risk resulted in an improvement in VO 2 peak, and also improvements in post-exercise heart-rate recovery, compared with continuous training. Copyright © 2017 Elsevier B.V. All rights reserved.
Preferred Exertion across Three Common Modes of Exercise Training.
ERIC Educational Resources Information Center
Glass, Stephen C.; Chvala, Angela M.
2001-01-01
Examined the influence of exercise mode on self-selected exercise intensities. Participants performed three types of intensity tests. Researchers collected data on VO2 values continuously and recorded 1-minute averages several times for each submaximal test. Participants allowed to self-select exercise intensity chose work rates within the…
Suárez Rodríguez, David; del Valle Soto, Miguel
2017-01-01
Background The aim of this study is to find the differences between two specific interval exercises. We begin with the hypothesis that the use of microintervals of work and rest allow for greater intensity of play and a reduction in fatigue. Methods Thirteen competition-level male tennis players took part in two interval training exercises comprising nine 2 min series, which consisted of hitting the ball with cross-court forehand and backhand shots, behind the service box. One was a high-intensity interval training (HIIT), made up of periods of continuous work lasting 2 min, and the other was intermittent interval training (IIT), this time with intermittent 2 min intervals, alternating periods of work with rest periods. Average heart rate (HR) and lactate levels were registered in order to observe the physiological intensity of the two exercises, along with the Borg Scale results for perceived exertion and the number of shots and errors in order to determine the intensity achieved and the degree of fatigue throughout the exercise. Results There were no significant differences in the average heart rate, lactate or the Borg Scale. Significant differences were registered, on the other hand, with a greater number of shots in the first two HIIT series (series 1 p>0.009; series 2 p>0.056), but not in the third. The number of errors was significantly lower in all the IIT series (series 1 p<0.035; series 2 p<0.010; series 3 p<0.001). Conclusion Our study suggests that high-intensity intermittent training allows for greater intensity of play in relation to the real time spent on the exercise, reduced fatigue levels and the maintaining of greater precision in specific tennis-related exercises. PMID:29021912
Neal, Craig M; Hunter, Angus M; Brennan, Lorraine; O'Sullivan, Aifric; Hamilton, D Lee; De Vito, Giuseppe; Galloway, Stuart D R
2013-02-15
This study was undertaken to investigate physiological adaptation with two endurance-training periods differing in intensity distribution. In a randomized crossover fashion, separated by 4 wk of detraining, 12 male cyclists completed two 6-wk training periods: 1) a polarized model [6.4 (±1.4 SD) h/wk; 80%, 0%, and 20% of training time in low-, moderate-, and high-intensity zones, respectively]; and 2) a threshold model [7.5 (±2.0 SD) h/wk; 57%, 43%, and 0% training-intensity distribution]. Before and after each training period, following 2 days of diet and exercise control, fasted skeletal muscle biopsies were obtained for mitochondrial enzyme activity and monocarboxylate transporter (MCT) 1 and 4 expression, and morning first-void urine samples were collected for NMR spectroscopy-based metabolomics analysis. Endurance performance (40-km time trial), incremental exercise, peak power output (PPO), and high-intensity exercise capacity (95% maximal work rate to exhaustion) were also assessed. Endurance performance, PPOs, lactate threshold (LT), MCT4, and high-intensity exercise capacity all increased over both training periods. Improvements were greater following polarized rather than threshold for PPO [mean (±SE) change of 8 (±2)% vs. 3 (±1)%, P < 0.05], LT [9 (±3)% vs. 2 (±4)%, P < 0.05], and high-intensity exercise capacity [85 (±14)% vs. 37 (±14)%, P < 0.05]. No changes in mitochondrial enzyme activities or MCT1 were observed following training. A significant multilevel, partial least squares-discriminant analysis model was obtained for the threshold model but not the polarized model in the metabolomics analysis. A polarized training distribution results in greater systemic adaptation over 6 wk in already well-trained cyclists. Markers of muscle metabolic adaptation are largely unchanged, but metabolomics markers suggest different cellular metabolic stress that requires further investigation.
Höchsmann, Christoph; Rossmeissl, Anja; Baumann, Sandra; Infanger, Denis; Schmidt-Trucksäss, Arno
2018-03-15
To examine cardiorespiratory exertion during mini trampoline exercises of different intensities in both endurance-trained athletes and overweight-obese adults. Physically healthy participants (Group A: normal-weight, endurance-trained athletes; Group B: inactive, overweight-obese adults) participated in two measurement appointments and three training sessions in between appointments, in which participants familiarized themselves with the use of the mini trampoline and the execution of the exercises. The primary outcome was the ⩒O 2peak for each of the six mini trampoline exercises relative to the ⩒O 2peak as established during an all-out exercise test on a bike ergometer during the first measurement appointment. Secondary outcomes were average ⩒O 2 as well as maximum and average heart rate. The six mini trampoline exercises generated ⩒O 2peak values between 42% and 81% in the endurance-trained athletes and between 58% and 87% in the overweight-obese participants, both in relation to the bike ergometer ⩒O 2peak . Average ⩒O 2 values ranged from 35% to 69% (endurance-trained athletes) and from 48% to 71% (overweight-obese participants), depending on exercise. Average heart rate likewise lay in a range that can be categorized as moderate-to-vigorous aerobic exercise for both groups. A moderate-to-strong correlation (0.658 to 0.875, depending on exercise) between bike ergometer ⩒O 2peak and mini trampoline ⩒O 2peak was found for all six exercises. Mini trampoline exercise has the potential to produce training intensities that concur with established exercise guidelines. The exercise intensity is self-adjusting and allows for an effective and safe workout for different users with a wide range of fitness levels.
Gremeaux, Vincent; Drigny, Joffrey; Nigam, Anil; Juneau, Martin; Guilbeault, Valérie; Latour, Elise; Gayda, Mathieu
2012-11-01
The aim of this study was to study the impact of a combined long-term lifestyle and high-intensity interval training intervention on body composition, cardiometabolic risk, and exercise tolerance in overweight and obese subjects. Sixty-two overweight and obese subjects (53.3 ± 9.7 yrs; mean body mass index, 35.8 ± 5 kg/m(2)) were retrospectively identified at their entry into a 9-mo program consisting of individualized nutritional counselling, optimized high-intensity interval exercise, and resistance training two to three times a week. Anthropometric measurements, cardiometabolic risk factors, and exercise tolerance were measured at baseline and program completion. Adherence rate was 97%, and no adverse events occurred with high-intensity interval exercise training. Exercise training was associated with a weekly energy expenditure of 1582 ± 284 kcal. Clinically and statistically significant improvements were observed for body mass (-5.3 ± 5.2 kg), body mass index (-1.9 ± 1.9 kg/m(2)), waist circumference (-5.8 ± 5.4 cm), and maximal exercise capacity (+1.26 ± 0.84 metabolic equivalents) (P < 0.0001 for all parameters). Total fat mass and trunk fat mass, lipid profile, and triglyceride/high-density lipoprotein ratio were also significantly improved (P < 0.0001). At program completion, the prevalence of metabolic syndrome was reduced by 32.5% (P < 0.05). Independent predictors of being a responder to body mass and waist circumference loss were baseline body mass index and resting metabolic rate; those for body mass index decrease were baseline waist circumference and triglyceride/high-density lipoprotein cholesterol ratio. A long-term lifestyle intervention with optimized high-intensity interval exercise improves body composition, cardiometabolic risk, and exercise tolerance in obese subjects. This intervention seems safe, efficient, and well tolerated and could improve adherence to exercise training in this population.
High-intensity and resistance training and elite young athletes.
Ratel, Sébastien
2011-01-01
Although in the past resistance and high-intensity exercise training among young children was the subject of numerous controversies, it is now well-documented that this training mode is a safe and effective means of developing maximal strength, maximal power output and athletic performance in youth, provided that exercises are performed with appropriate supervision and precautions. Muscular strength and power output values measured from vertical jump and Wingate anaerobic tests are higher in elite than in non-elite young athletes and normal children, and the specific training effects on maximal power output normalised for body size are clearly more distinct before puberty. At present, there is no scientific evidence to support the view that high-intensity and/or resistance training might hinder growth and maturation in young children. Pre-pubertal growth is not adversely affected by sport at a competitive level and anthropometric factors are of importance for choice of sport in children. However, coaches, teachers and parents should be aware that unsupervised high-intensity and resistance training programmes involving maximal loads or too frequently repeated resistance exercises increase the risk of injury. Resistance training alone is an effective additional means of developing athletic performance throughout planned youth sports training programmes. Strategies for enhancing the effectiveness and safety of youth resistance and high-intensity exercise training are discussed in this chapter. Copyright © 2011 S. Karger AG, Basel.
Bogdanis, G C; Stavrinou, P; Fatouros, I G; Philippou, A; Chatzinikolaou, A; Draganidis, D; Ermidis, G; Maridaki, M
2013-11-01
This study investigated the changes in oxidative stress biomarkers and antioxidant status indices caused by a 3-week high-intensity interval training (HIT) regimen. Eight physically active males performed three HIT sessions/week over 3 weeks. Each session included four to six 30-s bouts of high-intensity cycling separated by 4 min of recovery. Before training, acute exercise elevated protein carbonyls (PC), thiobarbituric acid reactive substances (TBARS), glutathione peroxidase (GPX) activity, total antioxidant capacity (TAC) and creatine kinase (CK), which peaked 24h post-exercise (252 ± 30%, 135 ± 17%, 10 ± 2%, 85 ± 14% and 36 ± 13%, above baseline, respectively; p<0.01), while catalase activity (CAT) peaked 30 min post-exercise (56 ± 18% above baseline; p<0.01). Training attenuated the exercise-induced increase in oxidative stress markers (PC by 13.3 ± 3.7%; TBARS by 7.2 ± 2.7%, p<0.01) and CK activity, despite the fact that total work done was 10.9 ± 3.6% greater in the post- compared with the pre-training exercise test. Training also induced a marked elevation of antioxidant status indices (TAC by 38.4 ± 7.2%; CAT by 26.2 ± 10.1%; GPX by 3.0 ± 0.6%, p<0.01). Short-term HIT attenuates oxidative stress and up-regulates antioxidant activity after only nine training sessions totaling 22 min of high intensity exercise, further supporting its positive effect not only on physical conditioning but also on health promotion. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tan, Sijie; Wang, Jianxiong; Cao, Liquan; Guo, Zhen; Wang, Yuan
2016-05-01
The purpose of this study was to test the hypothesis that 10 weeks of supervised exercise training at the maximal fat oxidation (FATmax) intensity would improve important variables of body composition and lipid metabolism in overweight middle-aged women. A longitudinal study design was employed to evaluate the effects of FATmax exercise training. Thirty women (45-59 years old; BMI 28·2 ± 1·8 kg m(-2) ; body fat 38·9 ± 4·1%) were randomly allocated into the Exercise and Control groups, n = 15 in each group. Body composition, FATmax, predicted VO2 max, lipid profile, plasma lipoprotein lipase activity and serum leptin concentration were measured before and after the experimental period. The Exercise group was trained at the individualized FATmax intensity, 5 days per week and 1 h per day for 10 weeks. No diet control was introduced during the experimental period for all participants. Exercise group obtained significant decreases in body mass, BMI, body fat % and abdominal fat mass, as well as the concentrations of triglycerides, serum leptin and blood glucose. The activity of lipoprotein lipase was increased in trained participants. There were no changes in these variables in the Control group. In addition, there was no significant change in daily energy intake for all participants before and after the experimental period. In conclusion, the 10-week FATmax exercise training achieved improvements in body composition and lipid metabolism in overweight middle-aged women. This result suggests FATmax is an effective exercise training intensity for obesity treatment. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
κ-opioid receptor is involved in the cardioprotection induced by exercise training
Li, Juan; Tian, Fei; Feng, Na; Fan, Rong; Jia, Min; Guo, Haitao; Cheng, Liang; Liu, Jincheng; Chen, Wensheng; Pei, Jianming
2017-01-01
The present study was designed to test the hypothesis that exercise training elicited a cardioprotective effect against ischemia and reperfusion (I/R) via the κ-opioid receptor (κ-OR)-mediated signaling pathway. Rats were randomly divided into four groups: the control group, the moderate intensity exercise (ME) group, the high intensity exercise (HE) group, and the acute exercise (AE) group. For the exercise training protocols, the rats were subjected to one week of adaptive treadmill training, while from the second week, the ME and HE groups were subjected to eight weeks of exercise training, and the AE group was subjected to three days of adaptive treadmill training and one day of vigorous exercise. After these protocols, the three exercise training groups were divided into different treatment groups, and the rats were subjected to 30 min of ischemia and 120 min of reperfusion. Changes in infarct size and serum cTnT (cardiac troponin T) caused by I/R were reduced by exercise training. Moreover, cardiac dysfunction caused by I/R was also alleviated by exercise training. These effects of exercise training were reversed by nor-BNI (a selective κ-OR antagonist), Compound C (a selective AMPK inhibitor), Akt inhibitor and L-NAME (a non-selective eNOS inhibitor). Expression of κ-OR and phosphorylation of AMPK, Akt and eNOS were significantly increased in the ME, HE and AE groups. These findings demonstrated that the cardioprotective effect of exercise training is possibly mediated by the κ-OR-AMPK-Akt-eNOS signaling pathway. PMID:28301473
Murach, Kevin A; Walton, R Grace; Fry, Christopher S; Michaelis, Sami L; Groshong, Jason S; Finlin, Brian S; Kern, Philip A; Peterson, Charlotte A
2016-09-01
This investigation evaluated whether moderate-intensity cycle ergometer training affects satellite cell and molecular responses to acute maximal concentric/eccentric resistance exercise in middle-aged women. Baseline and 72 h postresistance exercise vastus lateralis biopsies were obtained from seven healthy middle-aged women (56 ± 5 years, BMI 26 ± 1, VO2max 27 ± 4) before and after 12 weeks of cycle training. Myosin heavy chain (MyHC) I- and II-associated satellite cell density and cross-sectional area was determined via immunohistochemistry. Expression of 93 genes representative of the muscle-remodeling environment was also measured via NanoString. Overall fiber size increased ~20% with cycle training (P = 0.052). MyHC I satellite cell density increased 29% in response to acute resistance exercise before endurance training and 50% with endurance training (P < 0.05). Following endurance training, MyHC I satellite cell density decreased by 13% in response to acute resistance exercise (acute resistance × training interaction, P < 0.05). Genes with an interaction effect tracked with satellite cell behavior, increasing in the untrained state and decreasing in the endurance trained state in response to resistance exercise. Similar satellite cell and gene expression response patterns indicate coordinated regulation of the muscle environment to promote adaptation. Moderate-intensity endurance cycle training modulates the response to acute resistance exercise, potentially conditioning the muscle for more intense concentric/eccentric activity. These results suggest that cycle training is an effective endurance exercise modality for promoting growth in middle-aged women, who are susceptible to muscle mass loss with progressing age. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Chiu, Chih-Hui; Ko, Ming-Chen; Wu, Long-Shan; Yeh, Ding-Peng; Kan, Nai-Wen; Lee, Po-Fu; Hsieh, Jenn-Woei; Tseng, Ching-Yu; Ho, Chien-Chang
2017-08-24
The aim of present study was to compare the effects of different aerobic exercise intensities and energy expenditures on the body composition of sedentary obese college students in Taiwan. Forty-eight obese participants [body mass index (BMI) ≥ 27 kg/m 2 , age 18-26 years] were randomized into four equal groups (n = 12): light-intensity training group (LITG), 40%-50% heart rate reserve (HRR); middle-intensity training group (MITG), 50%-70% HRR; high-intensity training group (HITG), 70%-80% HRR; and control group (CG). The aerobic exercise training program was conducted for 60 min per day on a treadmill 3 days per week for 12 weeks. All participant anthropometric data, blood biochemical parameters, and health-related physical fitness components were measured at baseline and after 12 weeks. At baseline, the anthropometric indices did not differ significantly among the four groups (p > 0.05). After 12-week exercise intervention, the HITG and MITG had significantly more changes in body weight, waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) than the LITG. The changes in BMI and body fat percentage differed among all four groups (p < 0.05). A 12-week high-intensity exercise intervention with high energy expenditure can considerably reduce body weight, body fat, WC, WHR, and WHtR, whereas a light-intensity exercise intervention can significantly reduce body weight and body fat. Current Controlled Trials TPECTR09831410900 , registered on 24 th Dec 2009.
Military Applicability of Interval Training for Health and Performance.
Gibala, Martin J; Gagnon, Patrick J; Nindl, Bradley C
2015-11-01
Militaries from around the globe have predominantly used endurance training as their primary mode of aerobic physical conditioning, with historical emphasis placed on the long distance run. In contrast to this traditional exercise approach to training, interval training is characterized by brief, intermittent bouts of intense exercise, separated by periods of lower intensity exercise or rest for recovery. Although hardly a novel concept, research over the past decade has shed new light on the potency of interval training to elicit physiological adaptations in a time-efficient manner. This work has largely focused on the benefits of low-volume interval training, which involves a relatively small total amount of exercise, as compared with the traditional high-volume approach to training historically favored by militaries. Studies that have directly compared interval and moderate-intensity continuous training have shown similar improvements in cardiorespiratory fitness and the capacity for aerobic energy metabolism, despite large differences in total exercise and training time commitment. Interval training can also be applied in a calisthenics manner to improve cardiorespiratory fitness and strength, and this approach could easily be incorporated into a military conditioning environment. Although interval training can elicit physiological changes in men and women, the potential for sex-specific adaptations in the adaptive response to interval training warrants further investigation. Additional work is needed to clarify adaptations occurring over the longer term; however, interval training deserves consideration from a military applicability standpoint as a time-efficient training strategy to enhance soldier health and performance. There is value for military leaders in identifying strategies that reduce the time required for exercise, but nonetheless provide an effective training stimulus.
Effects of Endurance Training at the Crossover Point in Women with Metabolic Syndrome.
Borel, Benoit; Coquart, Jérémy; Boitel, Guillaume; Duhamel, Alain; Matran, Régis; Delsart, Pascal; Mounier-Vehier, Claire; Garcin, Murielle
2015-11-01
On the basis of theoretical evidence, intensity at the crossover point (COP) of substrate utilization could be considered as potential exercise intensity for metabolic syndrome (MetS). This study aimed to examine the effects of a training program at COP on exercise capacity parameters in women with MetS and to compare two metabolic indices (COP and the maximal fat oxidation rate point LIPOXmax®) with ventilatory threshold (VT). Nineteen women with MetS volunteered to perform a 12-wk training program on a cycle ergometer, with intensity corresponding to COP. Pre- and posttraining values of anthropometric and exercise capacity parameters were compared to determine the effects of exercise training. The pre-post training change of COP, LIPOXmax®, and VT were also investigated. After training, anthropometric parameters were significantly modified, with reduction of body mass (3.0% ± 3.0%, P < 0.001), fat mass (3.3% ± 3.4%, P < 0.001), and body mass index (3.2% ± 3.4%, P < 0.001). Exercise capacity was improved after the training program, with significant increase of maximal power output (25.0% ± 18.4%, P < 0.001) and maximal oxygen uptake (V˙O2max, 9.0% ± 11.2%; P < 0.01). Lastly, when expressed in terms of power output, COP, LIPOXmax®, and VT occurred at a similar exercise intensity, but the occurrence of these three indices is different when expressed in terms of oxygen uptake, HR, or RPE. This study highlights the effectiveness of a 12-wk training program at COP to improve physical fitness in women with MetS. The relations between metabolic indices and VT in terms of power output highlight the determination of VT from a shorter maximal exercise as a useful method for determining metabolic indices in MetS.
Tanaka, Midori; Sugawara, Motoaki; Ogasawara, Yasuo; Izumi, Tadafumi; Niki, Kiyomi; Kajiya, Fumihiko
2013-04-01
Aerobic exercise has been reported to be associated with reduced arterial stiffness. However, the intensity, duration, and frequency of aerobic exercise required to improve arterial stiffness have not been established. In addition, most reports base their conclusions on changes in pulse wave velocity, which is an indirect index of arterial stiffness. We studied the effects of short-term, intermittent, moderate-intensity exercise training on arterial stiffness based on measurements of the stiffness parameter (β) and pressure-strain elastic modulus (E p), which are direct indices of regional arterial stiffness. A total of 25 young healthy volunteers (18 men) were recruited. By use of ultrasonic diagnostic equipment we measured β and E p of the carotid artery before and after 8 weeks of exercise training. After exercise training, systolic pressure (P s), diastolic pressure (P d), pulse pressure, systolic arterial diameter (D s), and diastolic arterial diameter (D d) did not change significantly. However, the pulsatile change in diameter ((D s - D d)/D d) increased significantly, and β and E p decreased significantly. For healthy young subjects, β and E p were reduced by intermittent, moderate-intensity exercise training for only 8 weeks.
Machado, Marcus Vinicius; Vieira, Aline Bomfim; da Conceição, Fabiana Gomes; Nascimento, Alessandro Rodrigues; da Nóbrega, Antonio Claudio Lucas; Tibirica, Eduardo
2017-12-01
What is the central question of this study? Regular exercise is recommended as a non-pharmacological approach for the prevention and treatment of metabolic syndrome. However, the impact of different combinations of intensity, duration and frequency of exercise on metabolic syndrome and microvascular density has not been reported. What is the main finding and its importance? We provide evidence on the impact of aerobic exercise dose on metabolic and microvascular alterations in an experimental model of metabolic syndrome induced by high-fat diet. We found that the exercise frequency and duration were the main factors affecting anthropometric and metabolic parameters and microvascular density in the skeletal muscle. Exercise intensity was related only to microvascular density in the heart. We evaluated the effect of the frequency, duration and intensity of exercise training on metabolic parameters and structural capillary density in obese rats with metabolic syndrome. Wistar-Kyoto rats were fed either a standard commercial diet (CON) or a high-fat diet (HFD). Animals that received the HFD were randomly separated into either a sedentary (SED) group or eight different exercise groups that varied according to the frequency, duration and intensity of training. After 12 weeks of aerobic exercise training, the body composition, aerobic capacity, haemodynamic variables, metabolic parameters and capillary density in the heart and skeletal muscle were evaluated. All the exercise training groups showed reduced resting systolic blood pressure and heart rate and normalized fasting glucose. The minimal amount of exercise (90 min per week) produced little effect on metabolic syndrome parameters. A moderate amount of exercise (150 min per week) was required to reduce body weight and improve capillary density. However, only the high amount of exercise (300 min per week) significantly reduced the amount of body fat depots. The three-way ANOVA showed a main effect of exercise frequency and duration for the improvement of metabolic syndrome and capillary density in skeletal muscle. Exercise intensity was a main factor in reversing microvascular rarefaction in the heart. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Voorn, Eric L; Koopman, Fieke S; Brehm, Merel A; Beelen, Anita; de Haan, Arnold; Gerrits, Karin H L; Nollet, Frans
2016-01-01
To explore reasons for the lack of efficacy of a high intensity aerobic exercise program in post-polio syndrome (PPS) on cardiorespiratory fitness by evaluating adherence to the training program and effects on muscle function. A process evaluation using data from an RCT. Forty-four severely fatigued individuals with PPS were randomized to exercise therapy (n = 22) or usual care (n = 22). Participants in the exercise group were instructed to exercise 3 times weekly for 4 months on a bicycle ergometer (60-70% heart rate reserve). The attendance rate was high (median 89%). None of the participants trained within the target heart rate range during >75% of the designated time. Instead, participants exercised at lower intensities, though still around the anaerobic threshold (AT) most of the time. Muscle function did not improve in the exercise group. Our results suggest that severely fatigued individuals with PPS cannot adhere to a high intensity aerobic exercise program on a cycle ergometer. Despite exercise intensities around the AT, lower extremity muscle function nor cardiorespiratory fitness improved. Improving the aerobic capacity in PPS is difficult through exercise primarily focusing on the lower extremities, and may require a more individualized approach, including the use of other large muscle groups instead. Netherlands National Trial Register NTR1371.
Virtual and live social facilitation while exergaming: competitiveness moderates exercise intensity.
Snyder, Amanda L; Anderson-Hanley, Cay; Arciero, Paul J
2012-04-01
Grounded in social facilitation theory, this study compared the impact on exercise intensity of a virtual versus a live competitor, when riding a virtual reality-enhanced stationary bike ("cybercycle"). It was hypothesized that competitiveness would moderate effects. Twenty-three female college students were exposed to three conditions on a cybercycle: solo training, virtual competitor, and live competitor. After training without a competitor (solo condition for familiarization with equipment), participants competed against a virtual avatar or live rider (random order of presentation). A repeated-measures analysis revealed a significant condition (virtual/live) by competitiveness (high/low) interaction for exercise intensity (watts). More competitive participants exhibited significantly greater exercise intensity when competing against a live versus virtual competitor. The implication is that live competitors can have an added social facilitation effect and influence exercise intensity, although competitiveness moderates this effect.
Intensive Exercise Training During Bed Rest Attenuates Deconditioning
NASA Technical Reports Server (NTRS)
Greenleaf, John E.
1997-01-01
Intensive exercise training during bed rest attenuates deconditioning. Med. Sci. Sports Exerc., Vol. 29, No. 2, pp. 207-215, 1997. A 30-d 6 deg head-down bed rest project was conducted to evaluate variable high-intensity, short-duration, isotonic cycle ergometer exercise (ITE) training and high-intensity intermittent resistive isokinetic exercise (IKE) training regimens designed to maintain peak VO2 and muscle mass, strength, and endurance at ambulatory control levels throughout prolonged bed rest. Other elements of the deconditioning (adaptive) syndrome, such as proprioception, psychological performance, hypovolemia, water balance, body composition, and orthostatic tolerance, were also measured. Major findings are summarized in this paper. Compared with response during bed rest of the no exercise (NOE) control group: the ITE training regimen (a) maintained work capacity (peak VO2), (b) maintained plasma and red cell volumes, (c) induced positive body water balance, (d) decreased quality of sleep and mental concentration, and (e) had no effect on the decrease in orthostatic tolerance; the IKE training regimen (f) attenuated the decrease in peak VO2 by 50%, (g) attenuated loss of red cell volume by 40% but had no effect on loss of plasma volume, (b) induced positive body water balance, (i) had no adverse effect on quality of sleep or concentration, and 0) had no effect on the decrease in orthostatic tolerance. These findings suggest that various elements of the deconditioning syndrome can be manipulated by duration and intensity of ITE or IKE training regimens and that several different training protocols will be required to maintain or restore physiological and psychological performance of individuals confined to prolonged bed rest.
Hansen, Dominique; Stevens, An; Eijnde, Bert O; Dendale, Paul
2012-01-01
In the care of coronary artery disease (CAD) patients, the benefits of exercise therapy are generally established. Even though the selected endurance exercise intensity might affect medical safety, therapy adherence and effectiveness in the rehabilitation of CAD patients in how to determine endurance exercise intensity properly remains difficult. The aim of this review is to describe the available methods for endurance exercise intensity determination in the rehabilitation of CAD patients, accompanied with their (dis)advantages, validity and reproducibility. In general, endurance exercise intensity can objectively be determined in CAD patients by calculating a fraction of maximal exercise tolerance and/or determining ventilatory threshold after execution of a cardiopulmonary exercise test with ergospirometry. This can be translated to a corresponding training heart rate (HR) or workload. In the absence of ergospirometry equipment, target exercise HR can be calculated directly by different ways (fraction of maximal HR and/or Karvonen formula), and/or anaerobic threshold can be determined. However, the use of HR for determining exercise intensity during training sessions seems complicated, because many factors/conditions affect the HR. In this regard, proper standardization of the exercise sessions, as well as exercise testing, might be required to improve the accuracy of exercise intensity determination. Alternatively, subjective methods for the determination of endurance exercise intensity in CAD patients, such as the Borg ratings of perceived exertion and the talk test, have been developed. However, these methods lack proper validity and reliability to determine endurance exercise intensity in CAD patients. In conclusion, a practical and systematic approach for the determination of endurance exercise intensity in CAD patients is presented in this article.
Heinrich, Katie M; Patel, Pratik M; O'Neal, Joshua L; Heinrich, Bryan S
2014-08-03
Understanding exercise participation for overweight and obese adults is critical for preventing comorbid conditions. Group-based high-intensity functional training (HIFT) provides time-efficient aerobic and resistance exercise at self-selected intensity levels which can increase adherence; behavioral responses to HIFT are unknown. This study examined effects of HIFT as compared to moderate-intensity aerobic and resistance training (ART) on exercise initiation, enjoyment, adherence, and intentions. A stratified, randomized two-group pre-test posttest intervention was conducted for eight weeks in 2012 with analysis in 2013. Participants (n = 23) were stratified by median age (< or ≥ 28) and body mass index (BMI; < or ≥ 30.5). Participants were physically inactive with an average BMI of 31.1 ± 3.5 kg/m2, body fat percentage of 42.0 ± 7.4%, weight of 89.5 ± 14.2 kg, and ages 26.8 ± 5.9 years. Most participants were white, college educated, female, and married/engaged. Both groups completed 3 training sessions per week. The ART group completed 50 minutes of moderate aerobic exercise each session and full-body resistance training on two sessions per week. The HIFT group completed 60-minute sessions of CrossFit™ with actual workouts ranging from 5-30 minutes. Participants completed baseline and posttest questionnaires indicating reasons for exercise initiation (baseline), exercise enjoyment, and exercise intentions (posttest). Adherence was defined as completing 90% of exercise sessions. Daily workout times were recorded. Participants provided mostly intrinsic reasons for exercise initiation. Eighteen participants adhered (ART = 9, 81.8%; HIFT = 9, 75%). HIFT dropouts (p = .012) and ART participants (p = .009) reported lower baseline exercise enjoyment than HIFT participants, although ART participants improved enjoyment at posttest (p = .005). More HIFT participants planned to continue the same exercise than ART participants (p = .002). No significant changes in BMI or body composition were found. Workouts were shorter for HIFT than ART (p < .001). HIFT participants spent significantly less time exercising per week, yet were able to maintain exercise enjoyment and were more likely to intend to continue. High-intensity exercise options should be included in public health interventions. ClinicalTrials.gov Identifier: http://NCT02185872. Registered 9 July 2014.
Grisbrook, Tiffany L; Gittings, Paul M; Wood, Fiona M; Edgar, Dale W
2017-02-01
Session-rating of perceived exertion (RPE) is a method frequently utilised in exercise and sports science to quantify training load of an entire aerobic exercise session. It has also been demonstrated that session-RPE is a valid and reliable method to quantify training load during resistance exercise, in healthy and athletic populations. This study aimed to investigate the effectiveness of session-RPE as a method to quantify exercise intensity during resistance training in patients with acute burns. Twenty burns patients (mean age=31.65 (±10.09) years), with a mean TBSA of 16.4% (range=6-40%) were recruited for this study. Patients were randomly allocated to the resistance training (n=10) or control group (n=10). All patients completed a four week resistance training programme. Training load (session-RPE×session duration), resistance training session-volume and pre-exercise pain were recorded for each exercise session. The influence of; age, gender, %TBSA, exercise group (resistance training vs. control), pre-exercise pain, resistance training history and session-volume on training load were analysed using a multilevel mixed-effects linear regression. Session-volume did not influence training load in the final regression model, however training load was significantly greater in the resistance training group, compared with the control group (p<0.001). Pre-exercise pain significantly influenced training load, where increasing pain was associated with a higher session-RPE (p=0.004). Further research is indicated to determine the exact relationship between pain, resistance training history, exercise intensity and session-RPE and training load before it can be used as a method to monitor and prescribe resistance training load in acute burns patients. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.
Exercise training - Blood pressure responses in subjects adapted to microgravity
NASA Technical Reports Server (NTRS)
Convertino, Victor A.
1991-01-01
Conventional endurance exercise training that involves daily workouts of 1-2 hr duration during exposure to microgravity has not proven completely effective in ameliorating postexposure orthostatic hypotension. Single bouts of intense exercise have been shown to increase plasma volume and baroreflex sensitivity in ambulatory subjects through 24 hr postexercise and to reverse decrements in maximal oxygen uptake and syncopal episodes following exposure to simulated microgravity. These physiological adaptations to acute intense exercise were opposite to those observed following exposure to microgravity. These results suggest that the 'exercise training' stimulus used to prevent orthostatic hypotension induced by microgravity may be specific and should be redefined to include single bouts of maximal exercise which may provide an acute effective countermeasure against postflight hypotension.
[Hypertension and exercise. Sports methods for the hypertensive patient].
Thiele, Holger; Pohlink, Carla; Schuler, Gerhard
2004-06-01
Physical exercise is of paramount therapeutic importance in nonpharmacological interventions of arterial hypertension. The extent and the effects of exercise on blood pressure lowering are analyzed according to the actual literature. Suitable and nonsuitable activities are considered. Dynamic isotonic endurance training is more effective than static isometric exercise. A rather low or moderate extent of endurance training lowers the systolic and diastolic blood pressure by approximately 5-11 mmHg and 3-8 mmHg, respectively. This effect of exercise can be achieved besides the favorable effects on other cardiovascular risk factors. Intensity of exercise should be monitored by the heart rate. The mean intensity should not exceed 70% of the maximal heart rate. An initial ergometry might be suitable for the planning of training recommendations.
Effect of exercise intensity on post-exercise oxygen consumption and heart rate recovery.
Mann, Theresa N; Webster, Christopher; Lamberts, Robert P; Lambert, Michael I
2014-09-01
There is some evidence that measures of acute post-exercise recovery are sensitive to the homeostatic stress of the preceding exercise and these measurements warrant further investigation as possible markers of training load. The current study investigated which of four different measures of metabolic and autonomic recovery was most sensitive to changes in exercise intensity. Thirty-eight moderately trained runners completed 20-min bouts of treadmill exercise at 60, 70 and 80% of maximal oxygen uptake (VO2max) and four different recovery measurements were determined: the magnitude of excess post-exercise oxygen consumption (EPOCMAG), the time constant of the oxygen consumption recovery curve (EPOCτ), heart rate recovery within 1 min (HRR60s) and the time constant of the heart rate recovery curve (HRRτ) . Despite significant differences in exercise parameters at each exercise intensity, only EPOCMAG showed significantly slower recovery with each increase in exercise intensity at the group level and in the majority of individuals. EPOCτ was significantly slower at 70 and 80% of VO₂max vs. 60% VO₂max and HRRτ was only significantly slower when comparing the 80 vs. 60% VO₂max exercise bouts. In contrast, HRR60s reflected faster recovery at 70 and 80% of VO₂max than at 60% VO₂max. Of the four recovery measurements investigated, EPOCMAG was the most sensitive to changes in exercise intensity and shows potential to reflect changes in the homeostatic stress of exercise at the group and individual level. Determining EPOCMAG may help to interpret the homeostatic stress of laboratory-based research trials or training sessions.
Shih, Pei-Cheng; Yang, Yea-Ru; Wang, Ray-Yau
2013-01-01
Memory impairment is commonly noted in stroke survivors, and can lead to delay of functional recovery. Exercise has been proved to improve memory in adult healthy subjects. Such beneficial effects are often suggested to relate to hippocampal synaptic plasticity, which is important for memory processing. Previous evidence showed that in normal rats, low intensity exercise can improve synaptic plasticity better than high intensity exercise. However, the effects of exercise intensities on hippocampal synaptic plasticity and spatial memory after brain ischemia remain unclear. In this study, we investigated such effects in brain ischemic rats. The middle cerebral artery occlusion (MCAO) procedure was used to induce brain ischemia. After the MCAO procedure, rats were randomly assigned to sedentary (Sed), low-intensity exercise (Low-Ex), or high-intensity exercise (High-Ex) group. Treadmill training began from the second day post MCAO procedure, 30 min/day for 14 consecutive days for the exercise groups. The Low-Ex group was trained at the speed of 8 m/min, while the High-Ex group at the speed of 20 m/min. The spatial memory, hippocampal brain-derived neurotrophic factor (BDNF), synapsin-I, postsynaptic density protein 95 (PSD-95), and dendritic structures were examined to document the effects. Serum corticosterone level was also quantified as stress marker. Our results showed the Low-Ex group, but not the High-Ex group, demonstrated better spatial memory performance than the Sed group. Dendritic complexity and the levels of BDNF and PSD-95 increased significantly only in the Low-Ex group as compared with the Sed group in bilateral hippocampus. Notably, increased level of corticosterone was found in the High-Ex group, implicating higher stress response. In conclusion, after brain ischemia, low intensity exercise may result in better synaptic plasticity and spatial memory performance than high intensity exercise; therefore, the intensity is suggested to be considered during exercise training.
Nepveu, Jean-Francois; Thiel, Alexander; Tang, Ada; Fung, Joyce; Lundbye-Jensen, Jesper; Boyd, Lara A; Roig, Marc
2017-08-01
One bout of high-intensity cardiovascular exercise performed immediately after practicing a motor skill promotes changes in the neuroplasticity of the motor cortex and facilitates motor learning in nondisabled individuals. To determine if a bout of exercise performed at high intensity is sufficient to induce neuroplastic changes and improve motor skill retention in patients with chronic stroke. Twenty-two patients with different levels of motor impairment were recruited. On the first session, the effects of a maximal graded exercise test on corticospinal and intracortical excitability were assessed from the affected and unaffected primary motor cortex representational area of a hand muscle with transcranial magnetic stimulation. On the second session, participants were randomly assigned to an exercise or a nonexercise control group. Immediately after practicing a motor task, the exercise group performed 15 minutes of high-intensity interval training while the control group rested. Twenty-four hours after motor practice all participants completed a test of the motor task to assess skill retention. The graded exercise test reduced interhemispheric imbalances in GABA A -mediated short-interval intracortical inhibition but changes in other markers of excitability were not statistically significant. The group that performed high-intensity interval training showed a better retention of the motor skill. The performance of a maximal graded exercise test triggers only modest neuroplastic changes in patients with chronic stroke. However, a single bout of high-intensity interval training performed immediately after motor practice improves skill retention, which could potentially accelerate motor recovery in these individuals.
Tuazon, Marc A; Campbell, Sara C; Klein, Dylan J; Shapses, Sue A; Anacker, Keith R; Anthony, Tracy G; Uzumcu, Mehmet; Henderson, Gregory C
2018-06-01
Menopause is associated with fatty liver, glucose dysregulation, increased body fat, and impaired bone quality. Previously, it was demonstrated that single sessions of high-intensity interval exercise (HIIE) are more effective than distance- and duration-matched continuous exercise (CE) on altering hepatic triglyceride (TG) metabolism and very-low density lipoprotein-TG (VLDL-TG) secretion. Six weeks training using these modalities was examined for effects on hepatic TG metabolism/secretion, glucose tolerance, body composition, and bone mineral density (BMD) in ovariectomized (OVX) and sham-operated (SHAM) mice. OVX and SHAM were assigned to distance- and duration-matched CE and HIIE, or sedentary control. Energy expenditure during exercise was confirmed to be identical between CE and HIIE and both similarly reduced post-exercise absolute carbohydrate oxidation and spontaneous physical activity (SPA). OVX vs. SHAM displayed impaired glucose tolerance and greater body fat despite lower hepatic TG, and these outcomes were not affected by training. Only HIIE increased hepatic AMPK in OVX and SHAM, but neither training type impacted VLDL-TG secretion. As expected, BMD was lower in OVX, and training did not affect long bones. The results reveal intensity-dependent effects on hepatic AMPK expression and general exercise effects on subsequent SPA and substrate oxidation that is independent of estrogen status. These findings support the notion that HIIE can impact aspects of liver physiology in females while the effects of exercise on whole body substrate selection appear to be independent of training intensity. However, neither exercise approach mitigated the impairment in glucose tolerance and elevated body fat occurring in OVX mice. Copyright © 2018 Elsevier Inc. All rights reserved.
Role of metabolic stress for enhancing muscle adaptations: Practical applications
de Freitas, Marcelo Conrado; Gerosa-Neto, Jose; Zanchi, Nelo Eidy; Lira, Fabio Santos; Rossi, Fabrício Eduardo
2017-01-01
Metabolic stress is a physiological process that occurs during exercise in response to low energy that leads to metabolite accumulation [lactate, phosphate inorganic (Pi) and ions of hydrogen (H+)] in muscle cells. Traditional exercise protocol (i.e., Resistance training) has an important impact on the increase of metabolite accumulation, which influences hormonal release, hypoxia, reactive oxygen species (ROS) production and cell swelling. Changes in acute exercise routines, such as intensity, volume and rest between sets, are determinants for the magnitude of metabolic stress, furthermore, different types of training, such as low-intensity resistance training plus blood flow restriction and high intensity interval training, could be used to maximize metabolic stress during exercise. Thus, the objective of this review is to describe practical applications that induce metabolic stress and the potential effects of metabolic stress to increase systemic hormonal release, hypoxia, ROS production, cell swelling and muscle adaptations. PMID:28706859
Early exercise in critically ill patients enhances short-term functional recovery.
Burtin, Chris; Clerckx, Beatrix; Robbeets, Christophe; Ferdinande, Patrick; Langer, Daniel; Troosters, Thierry; Hermans, Greet; Decramer, Marc; Gosselink, Rik
2009-09-01
: To investigate whether a daily exercise session, using a bedside cycle ergometer, is a safe and effective intervention in preventing or attenuating the decrease in functional exercise capacity, functional status, and quadriceps force that is associated with prolonged intensive care unit stay. A prolonged stay in the intensive care unit is associated with muscle dysfunction, which may contribute to an impaired functional status up to 1 yr after hospital discharge. No evidence is available concerning the effectiveness of an early exercise training intervention to prevent these detrimental complications. : Randomized controlled trial. : Medical and surgical intensive care unit at University Hospital Gasthuisberg. : Ninety critically ill patients were included as soon as their cardiorespiratory condition allowed bedside cycling exercise (starting from day 5), given they still had an expected prolonged intensive care unit stay of at least 7 more days. : Both groups received respiratory physiotherapy and a daily standardized passive or active motion session of upper and lower limbs. In addition, the treatment group performed a passive or active exercise training session for 20 mins/day, using a bedside ergometer. : All outcome data are reflective for survivors. Quadriceps force and functional status were assessed at intensive care unit discharge and hospital discharge. Six-minute walking distance was measured at hospital discharge. No adverse events were identified during and immediately after the exercise training. At intensive care unit discharge, quadriceps force and functional status were not different between groups. At hospital discharge, 6-min walking distance, isometric quadriceps force, and the subjective feeling of functional well-being (as measured with "Physical Functioning" item of the Short Form 36 Health Survey questionnaire) were significantly higher in the treatment group (p < .05). : Early exercise training in critically ill intensive care unit survivors enhanced recovery of functional exercise capacity, self-perceived functional status, and muscle force at hospital discharge.
Shing, Cecilia M; Webb, Jessica J; Driller, Matthew W; Williams, Andrew D; Fell, James W
2013-08-01
Adiponectin influences metabolic adaptations that would prove beneficial to endurance athletes, and yet to date there is little known about the response of adiponectin concentrations to exercise, and, in particular, the response of this hormone to training in an athlete population. This study aimed to determine the response of plasma adiponectin concentrations to acute exercise after 2 different training programs and to determine the influence of the training on body composition. Seven state-level representative rowers (age: 19 ± 1.2 years [mean ± SD], height: 1.77 ± 0.10 m, body mass: 74.0 ± 10.7 kg, VO2peak 62.1 ± 7.0 ml·kg·min) participated in the double-blind, randomized crossover investigation. Rowers performed an incremental graded exercise test before and after completing 4 weeks of high-intensity interval ergometer training and 4 weeks of traditional ergometer rowing training. Rowers' body composition was assessed at baseline and after each training program. Significant increases in plasma adiponectin concentration occurred in response to maximal exercise after completion of the high-intensity interval training (p = 0.016) but not after traditional ergometer rowing training (p = 0.69). The high-intensity interval training also resulted in significant increases in mean 4-minute power output (p = 0.002) and VO2peak (p = 0.05), and a decrease in body fat percentage (p = 0.022). Mean 4-minute power output, VO2peak, and body fat percentage were not significantly different after 4 weeks of traditional ergometer rowing training (p > 0.05). Four weeks of high-intensity interval training is associated with an increase in adiponectin concentration in response to maximal exercise and a reduction in body fat percentage. The potential for changes in adiponectin concentration to reflect positive training adaptations and athlete performance level should be further explored.
Is there a minimum intensity threshold for resistance training-induced hypertrophic adaptations?
Schoenfeld, Brad J
2013-12-01
In humans, regimented resistance training has been shown to promote substantial increases in skeletal muscle mass. With respect to traditional resistance training methods, the prevailing opinion is that an intensity of greater than ~60 % of 1 repetition maximum (RM) is necessary to elicit significant increases in muscular size. It has been surmised that this is the minimum threshold required to activate the complete spectrum of fiber types, particularly those associated with the largest motor units. There is emerging evidence, however, that low-intensity resistance training performed with blood flow restriction (BFR) can promote marked increases in muscle hypertrophy, in many cases equal to that of traditional high-intensity exercise. The anabolic effects of such occlusion-based training have been attributed to increased levels of metabolic stress that mediate hypertrophy at least in part by enhancing recruitment of high-threshold motor units. Recently, several researchers have put forth the theory that low-intensity exercise (≤50 % 1RM) performed without BFR can promote increases in muscle size equal, or perhaps even superior, to that at higher intensities, provided training is carried out to volitional muscular failure. Proponents of the theory postulate that fatiguing contractions at light loads is simply a milder form of BFR and thus ultimately results in maximal muscle fiber recruitment. Current research indicates that low-load exercise can indeed promote increases in muscle growth in untrained subjects, and that these gains may be functionally, metabolically, and/or aesthetically meaningful. However, whether hypertrophic adaptations can equal that achieved with higher intensity resistance exercise (≤60 % 1RM) remains to be determined. Furthermore, it is not clear as to what, if any, hypertrophic effects are seen with low-intensity exercise in well-trained subjects as experimental studies on the topic in this population are lacking. Practical implications of these findings are discussed.
Understanding the factors that effect maximal fat oxidation.
Purdom, Troy; Kravitz, Len; Dokladny, Karol; Mermier, Christine
2018-01-01
Lipids as a fuel source for energy supply during submaximal exercise originate from subcutaneous adipose tissue derived fatty acids (FA), intramuscular triacylglycerides (IMTG), cholesterol and dietary fat. These sources of fat contribute to fatty acid oxidation (FAox) in various ways. The regulation and utilization of FAs in a maximal capacity occur primarily at exercise intensities between 45 and 65% VO 2max , is known as maximal fat oxidation (MFO), and is measured in g/min. Fatty acid oxidation occurs during submaximal exercise intensities, but is also complimentary to carbohydrate oxidation (CHOox). Due to limitations within FA transport across the cell and mitochondrial membranes, FAox is limited at higher exercise intensities. The point at which FAox reaches maximum and begins to decline is referred to as the crossover point. Exercise intensities that exceed the crossover point (~65% VO 2max ) utilize CHO as the predominant fuel source for energy supply. Training status, exercise intensity, exercise duration, sex differences, and nutrition have all been shown to affect cellular expression responsible for FAox rate. Each stimulus affects the process of FAox differently, resulting in specific adaptions that influence endurance exercise performance. Endurance training, specifically long duration (>2 h) facilitate adaptations that alter both the origin of FAs and FAox rate. Additionally, the influence of sex and nutrition on FAox are discussed. Finally, the role of FAox in the improvement of performance during endurance training is discussed.
Murray, Mike; Lange, Britt; Nørnberg, Bo Riebeling; Søgaard, Karen; Sjøgaard, Gisela
2017-04-07
Neck pain is frequent among military helicopter pilots and crew-members, and pain may influence individual health and work performance. The aim of this study was to examine if an exercise intervention could reduce neck pain among helicopter pilots and crew-members. Thirty-one pilots and thirty-eight crew-members were randomized to either an exercise-training-group (n = 35) or a reference-group (n = 34). The exercise-training-group received 20-weeks of specific neck/shoulder training. The reference-group received no training. Intensity of neck pain previous 3-months (scale 0-10). additional neck/shoulder pain intensity variables and pressure-pain-threshold in the trapezius muscle (TRA) and upper-neck-extensor muscles (UNE). Regular training adherence was defined as ≥1 training session a week. Statistical analyses performed were intention-to-treat and per-protocol. Students t-test was performed (p < 0.05). Intensity of neck pain previous 3-months at baseline was: 2.2 ± 1.8 and previous 7-days: 1.0 ± 1.5, and pressure-pain-threshold in TRA and UNE (right/left) was in kPa: 424 ± 187 / 434 ± 188 and 345 ± 157 / 371 ± 170 in the exercise-training-group, and 416 ± 177 / 405 ± 163 and 334 ± 147 / 335 ± 163 in the reference-group, with no differences between groups. Intention-to-treat-analysis revealed no significant between-group-differences in neck pain intensity and pressure-pain-threshold. Between-group-differences, including participants who trained regularly (n = 10) were also non-significant. Within-group-changes were significant among participants with regular training adherence in the exercise-training-group regarding intensity of neck pain previous 3-months (from 2.2 ± 0.6 to 1.3 ± 1.3, p = 0.019). Likewise, within the whole exercise-training-group, neck pain previous 7-days decreased (from 1.0 ± 1.4 to 0.6 ± 1.1, p = 0.024). Additional within-group-changes regarding pressure-pain-threshold in kPa were for the reference-group a reduction in TRA and UNE (right/left) to: 342 ± 143 / 332 ± 154 and 295 ± 116 / 292 ± 121 implying increased pain sensitivity, while for the exercise-training-group only a reduction in left TRA was seen: 311 ± 113. The exercise intervention did not reduce neck pain among helicopter pilots and crew-members as no significant between-group-differences were found. However, some trends were demonstrated as some neck pain intensity and sensitivity improved more within the exercise-training-group but not within the reference-group. The lack of effect may be due to low adherence since only ~ 1/3 of subjects in the exercise-training-group engaged in regular training which may be due to the self-administration of the training. Ethical committee of Southern Denmark (S-20120121) 29 August, 2012. Clinical Trail Registration ( NCT01926262 ) 16 August, 2013.
Shafer, K M; Janssen, L; Carrick-Ranson, G; Rahmani, S; Palmer, D; Fujimoto, N; Livingston, S; Matulevicius, S A; Forbess, L W; Brickner, B; Levine, B D
2015-01-01
We aimed to assess the haemodynamic effects of exercise training in transposition of the great arteries (TGA) patients with systemic right ventricles (SRVs). TGA patients have limited exercise tolerance and early mortality due to systemic (right) ventricular failure. Whether exercise training enhances or injures the SRV is unclear. Fourteen asymptomatic patients (34 ± 10 years) with TGA and SRV were enrolled in a 12 week exercise training programme (moderate and high-intensity workouts). Controls were matched on age, gender, BMI and physical activity. Exercise testing pre- and post- training included: (a) submaximal and peak; (b) prolonged (60 min) submaximal endurance and (c) high-intensity intervals. Oxygen uptake (; Douglas bag technique), cardiac output (, foreign-gas rebreathing), ventricular function (echocardiography and cardiac MRI) and serum biomarkers were assessed. TGA patients had lower peak , , and stroke volume (SV), a blunted / slope, and diminished SV response to exercise (SV increase from rest: TGA = 15.2%, controls = 68.9%, P < 0.001) compared with controls. After training, TGA patients increased peak by 6 ± 8.5%, similar to controls (interaction P = 0.24). The magnitude of SV reserve on initial testing correlated with training response (r = 0.58, P = 0.047), though overall, no change in peak was observed. High-sensitivity troponin T (hs-TnT) and N-terminal prohormone of brain naturetic peptide (NT pro-BNP) were low and did not change with acute exercise or after training. Our data show that TGA patients with SRVs in this study safely participated in exercise training and improved peak . Neither prolonged submaximal exercise, nor high-intensity intervals, nor short-term exercise training seem to injure the systemic right ventricle. Key Points Patients with transposition of the great arteries (TGA) and systemic right ventricles have premature congestive heart failure; there is also a growing concern that athletes who perform extraordinary endurance exercise may injure the right ventricle. Therefore we felt it essential to determine whether exercise training might injure a systemic right ventricle which is loaded with every heartbeat. Previous studies have shown that short term exercise training is feasible in TGA patients, but its effect on ventricular function is unclear. We demonstrate that systemic right ventricular function is preserved (and may be improved) in TGA patients with exercise training programmes that are typical of recreational and sports participation, with no evidence of injury on biomarker assessment. Stroke volume reserve during exercise correlates with exercise training response in our TGA patients, identifying this as a marker of a systemic right ventricle (SRV) that may most tolerate (and possibly even be improved by) exercise training. PMID:25809342
Ozaki, Hayao; Kitada, Tomoharu; Nakagata, Takashi; Naito, Hisashi
2017-05-01
Here, we aimed to compare the effect of a combination of body mass-based resistance exercise and moderate-intensity (55% peak oxygen uptake [ V˙O 2 peak]) walking or high-intensity (75% V˙O 2 peak) walking on muscle size and V˙O 2 peak in untrained older women. A total of 12 untrained older women (mean age 60 ± 2 years) were randomly assigned to either a moderate-intensity aerobic training group (n = 6) or high-intensity aerobic training group (n = 6). Both groups carried out body-mass based (lower body) resistance exercises (2 sets of 10 repetitions) on 3 days/week for 8 weeks. Between these exercises, the participants in the moderate-intensity aerobic training group walked at a previously determined speed equivalent to 55% V˙O 2 peak, whereas those in the high-intensity aerobic training group walked at a speed equivalent to 75% V˙O 2 peak. Muscle thickness of the anterior aspect of the thigh and maximal isokinetic knee extension strength significantly increased in both groups (P < 0.01); these relative changes were negatively correlated with the absolute muscle thickness of the anterior aspect of the thigh value and the relative value of maximal knee strength to body mass at pre-intervention, respectively. A significant group × time interaction was noted for V˙O 2 peak (P < 0.05), which increased only in the high-intensity aerobic training group. Body mass-based resistance training significantly induced muscle hypertrophy in untrained older women. In particular, lower muscle thickness before intervention was associated with greater training-induced growth. Furthermore, V˙O 2 peak can be increased by combined circuit training involving low-load resistance exercise and walking, particularly when a relatively high intensity of walking is maintained. Geriatr Gerontol Int 2017; 17: 779-784. © 2016 Japan Geriatrics Society.
The Chronic Effect of Interval Training on Energy Intake: A Systematic Review and Meta-Analysis
Holland, David J.; Coombes, Jeff S.; Leveritt, Michael D.
2018-01-01
Single bouts of acute exercise do not appear to increase subsequent energy intake (EI), even when energy deficit is large. However, studies have shown a compensatory effect on EI following chronic exercise, and it remains unclear whether this is affected by exercise intensity. We investigated the chronic effect of high-intensity interval training (HIIT) and sprint interval training (SIT) on EI when compared with moderate-intensity continuous training (MICT) or no exercise (CON). Databases were searched until 13 March 2017 for studies measuring EI in response to chronic exercise (≥4 weeks of duration) of a high-intensity interval nature. Meta-analysis was conducted for between-group comparisons on EI (kilojoules) and bodyweight (kg). Results showed large heterogeneity, and therefore, metaregression analyses were conducted. There were no significant differences in EI between HIIT/SIT versus MICT (P=0.282), HIIT/SIT versus CON (P=0.398), or MICT versus CON (P=0.329). Although bodyweight was significantly reduced after HIIT/SIT versus CON but not HIIT/SIT versus MICT (in studies measuring EI), this was not clinically meaningful (<2% mean difference). In conclusion, there is no compensatory increase in EI following a period of HIIT/SIT compared to MICT or no exercise. However, this review highlights important methodological considerations for future studies. PMID:29808115
Can HRV be used to evaluate training load in constant load exercises?
Kaikkonen, Piia; Hynynen, Esa; Mann, Theresa; Rusko, Heikki; Nummela, Ari
2010-02-01
The overload principle of training states that training load (TL) must be sufficient to threaten the homeostasis of cells, tissues, organs, and/or body. However, there is no "golden standard" for TL measurement. The aim of this study was to examine if any post-exercise heart rate variability (HRV) indices could be used to evaluate TL in exercises with different intensities and durations. Thirteen endurance-trained males (35 +/- 5 year) performed MODE (moderate intensity, 3 km at 60% of the maximal velocity of the graded maximal test (vVO(2max))), HI (high intensity, 3 km at 85% vVO(2max)), and PRO (prolonged, 14 km at 60% vVO(2max)) exercises on a treadmill. HRV was analyzed with short-time Fourier-transform method during rest, exercise, and 15-min recovery. Rating of perceived exertion (RPE), blood lactate (BLa), and HFP(120) (mean of 0-120 s post-exercise) described TL of these exercises similarly, being different for HI (P < 0.05) and PRO (P < 0.05) when compared with MODE. RPE and BLa also correlated negatively with HFP(120) (r = -0.604, -0.401), LFP(120) (-0.634, -0.601), and TP(120) (-0.691, -0.569). HRV recovery dynamics were similar after each exercise, but the level of HRV was lower after HI than MODE. Increased intensity or duration of exercise decreased immediate HRV recovery, suggesting that post-exercise HRV may enable an objective evaluation of TL in field conditions. The first 2-min recovery seems to give enough information on HRV recovery for evaluating TL.
2015-01-01
Background Recent advances in information and communication technology have prompted development of Web-based health tools to promote physical activity, the key component of cardiac rehabilitation and chronic disease management. Mobile apps can facilitate behavioral changes and help in exercise monitoring, although actual training usually takes place away from the point of care in specialized gyms or outdoors. Daily participation in conventional physical activities is expensive, time consuming, and mostly relies on self-management abilities of patients who are typically aged, overweight, and unfit. Facilitation of sustained exercise training at the point of care might improve patient engagement in cardiac rehabilitation. Objective In this study we aimed to test the feasibility of execution and automatic monitoring of several exercise regimens on-site using a Web-enabled leg training system. Methods The MedExercise leg rehabilitation machine was equipped with wireless temperature sensors in order to monitor its usage by the rise of temperature in the resistance unit (Δt°). Personal electronic devices such as laptop computers were fitted with wireless gateways and relevant software was installed to monitor the usage of training machines. Cloud-based software allowed monitoring of participant training over the Internet. Seven healthy participants applied the system at various locations with training protocols typically used in cardiac rehabilitation. The heart rates were measured by fingertip pulse oximeters. Results Exercising in home chairs, in bed, and under an office desk was made feasible and resulted in an intensity-dependent increase of participants’ heart rates and Δt° in training machine temperatures. Participants self-controlled their activities on smart devices, while a supervisor monitored them over the Internet. Individual Δt° reached during 30 minutes of moderate-intensity continuous training averaged 7.8°C (SD 1.6). These Δt° were used as personalized daily doses of exercise with automatic email alerts sent upon achieving them. During 1-week training at home, automatic notifications were received on 4.4 days (SD 1.8). Although the high intensity interval training regimen was feasible on-site, it was difficult for self- and remote management. Opportunistic leg exercise under the desk, while working with a computer, and training in bed while viewing television were less intensive than dosed exercise bouts, but allowed prolonged leg mobilization of 73.7 minutes/day (SD 29.7). Conclusions This study demonstrated the feasibility of self-control exercise training on-site, which was accompanied by online monitoring, electronic recording, personalization of exercise doses, and automatic reporting of adherence. The results suggest that this technology and its applications are useful for the delivery of Web-based exercise rehabilitation and cardiac training programs at the point of care. PMID:28582243
Vromen, T; Kraal, J J; Kuiper, J; Spee, R F; Peek, N; Kemps, H M
2016-04-01
Although aerobic exercise training has shown to be an effective treatment for chronic heart failure patients, there has been a debate about the design of training programs and which training characteristics are the strongest determinants of improvement in exercise capacity. Therefore, we performed a meta-regression analysis to determine a ranking of the individual effect of the training characteristics on the improvement in exercise capacity of an aerobic exercise training program in chronic heart failure patients. We focused on four training characteristics; session frequency, session duration, training intensity and program length, and their product; total energy expenditure. A systematic literature search was performed for randomized controlled trials comparing continuous aerobic exercise training with usual care. Seventeen unique articles were included in our analysis. Total energy expenditure appeared the only training characteristic with a significant effect on improvement in exercise capacity. However, the results were strongly dominated by one trial (HF-action trial), accounting for 90% of the total patient population and showing controversial results compared to other studies. A repeated analysis excluding the HF-action trial confirmed that the increase in exercise capacity is primarily determined by total energy expenditure, followed by session frequency, session duration and session intensity. These results suggest that the design of a training program requires high total energy expenditure as a main goal. Increases in training frequency and session duration appear to yield the largest improvement in exercise capacity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
A DIGE proteomic analysis for high-intensity exercise-trained rat skeletal muscle.
Yamaguchi, Wataru; Fujimoto, Eri; Higuchi, Mitsuru; Tabata, Izumi
2010-09-01
Exercise training induces various adaptations in skeletal muscles. However, the mechanisms remain unclear. In this study, we conducted 2D-DIGE proteomic analysis, which has not yet been used for elucidating adaptations of skeletal muscle after high-intensity exercise training (HIT). For 5 days, rats performed HIT, which consisted of 14 20-s swimming exercise bouts carrying a weight (14% of the body weight), and 10-s pause between bouts. The 2D-DIGE analysis was conducted on epitrochlearis muscles excised 18 h after the final training exercise. Proteomic profiling revealed that out of 800 detected and matched spots, 13 proteins exhibited changed expression by HIT compared with sedentary rats. All proteins were identified by MALDI-TOF/MS. Furthermore, using western immunoblot analyses, significantly changed expressions of NDUFS1 and parvalbumin (PV) were validated in relation to HIT. In conclusion, the proteomic 2D-DIGE analysis following HIT-identified expressions of NDUFS1 and PV, previously unknown to have functions related to exercise-training adaptations.
Exercise Training at Maximal Fat Oxidation Intensity for Older Women with Type 2 Diabetes.
Tan, Sijie; Du, Ping; Zhao, Wanting; Pang, Jiaqi; Wang, Jianxiong
2018-05-01
The purpose of this study was to investigate the pleiotropic effects of 12 weeks of supervised exercise training at maximal fat oxidation (FATmax) intensity on body composition, lipid profile, glycemic control, insulin sensitivity and serum adipokine levels in older women with type 2 diabetes. Thirty-one women with type 2 diabetes, aged 60 to 69 years, were randomly allocated into exercise and control groups. Body composition, lipid profile, blood glucose, insulin resistance and serum leptin and adiponectin concentrations were measured before and after the intervention. Exercise group (n=16) walked at individualized FATmax intensities for 1 h/day for 3 days/week over 12 weeks. No dietary intervention was introduced during the experimental period. Maximal fat oxidation rate was 0.37±0.10 g/min, and occurred at 37.3±7.3% of the estimated VO 2 max. Within the exercise group, significant improvements were observed for most of the measured variables compared to non-exercising controls; in particular, the FATmax program reduced body fat% (p<0.001), visceral fat% (p<0.001), and insulin resistance (p<0.001). There was no significant change in daily energy intake for all participants during the intervention period. These results suggest that individualized FATmax training is an effective exercise training intensity for managing type 2 diabetes in older women. © Georg Thieme Verlag KG Stuttgart · New York.
Voorn, Eric L.; Koopman, Fieke S.; Brehm, Merel A.; Beelen, Anita; de Haan, Arnold; Gerrits, Karin H. L.; Nollet, Frans
2016-01-01
Objective To explore reasons for the lack of efficacy of a high intensity aerobic exercise program in post-polio syndrome (PPS) on cardiorespiratory fitness by evaluating adherence to the training program and effects on muscle function. Design A process evaluation using data from an RCT. Patients Forty-four severely fatigued individuals with PPS were randomized to exercise therapy (n = 22) or usual care (n = 22). Methods Participants in the exercise group were instructed to exercise 3 times weekly for 4 months on a bicycle ergometer (60–70% heart rate reserve). Results The attendance rate was high (median 89%). None of the participants trained within the target heart rate range during >75% of the designated time. Instead, participants exercised at lower intensities, though still around the anaerobic threshold (AT) most of the time. Muscle function did not improve in the exercise group. Conclusion Our results suggest that severely fatigued individuals with PPS cannot adhere to a high intensity aerobic exercise program on a cycle ergometer. Despite exercise intensities around the AT, lower extremity muscle function nor cardiorespiratory fitness improved. Improving the aerobic capacity in PPS is difficult through exercise primarily focusing on the lower extremities, and may require a more individualized approach, including the use of other large muscle groups instead. Trial Registration Netherlands National Trial Register NTR1371 PMID:27419388
Currie, Katharine D; Rosen, Lee M; Millar, Philip J; McKelvie, Robert S; MacDonald, Maureen J
2013-06-01
Decreased heart rate variability and attenuated heart rate recovery following exercise are associated with an increased risk of mortality in cardiac patients. This study investigated the effects of 12 weeks of moderate-intensity endurance exercise (END) and a novel low-volume high-intensity interval exercise protocol (HIT) on measures of heart rate recovery and heart rate variability in patients with coronary artery disease (CAD). Fourteen males with CAD participated in 12 weeks of END or HIT training, each consisting of 2 supervised exercise sessions per week. END consisted of 30-50 min of continuous cycling at 60% peak power output (PPO). HIT involved ten 1-min intervals at 88% PPO separated by 1-min intervals at 10% PPO. Heart rate recovery at 1 min and 2 min was measured before and after training (pre- and post-training, respectively) using a submaximal exercise bout. Resting time and spectral and nonlinear domain measures of heart rate variability were calculated. Following 12 weeks of END and HIT, there was no change in heart rate recovery at 1 min (END, 40 ± 12 beats·min(-1) vs. 37 ± 19 beats·min(-1); HIT, 31 ± 8 beats·min(-1) vs. 35 ± 8 beats·min(-1); p ≥ 0.05 for pre- vs. post-training) or 2 min (END, 44 ± 18 beats·min(-1) vs. 43 ± 19 beats·min(-1); HIT, 42 ± 10 beats·min(-1) vs. 50 ± 6 beats·min(-1); p ≥ 0.05 for pre- vs. post-training). All heart rate variability indices were unchanged following END and HIT training. In conclusion, neither END nor HIT exercise programs elicited training-induced improvements in cardiac autonomic function in patients with CAD. The absence of improvements with training may be attributed to the optimal medical management and normative pretraining state of our sample.
Taya, Masanobu; Amiya, Eisuke; Hatano, Masaru; Maki, Hisataka; Nitta, Daisuke; Saito, Akihito; Tsuji, Masaki; Hosoya, Yumiko; Minatsuki, Shun; Nakayama, Atsuko; Fujiwara, Takayuki; Konishi, Yuto; Yokota, Kazuhiko; Watanabe, Masafumi; Morita, Hiroyuki; Haga, Nobuhiko; Komuro, Issei
2018-01-15
This study investigated the effectiveness and safety of interval training during in-hospital treatment of patients with advanced heart failure. Twenty-four consecutive patients with advanced symptomatic heart failure who were referred for cardiac transplant evaluation were recruited. After performing aerobic exercise for approximate intensity, high-intensity interval training (HIIT) was performed. The protocol consisted of 3 or 4 sessions of 1-min high-intensity exercise aimed at 80% of peak VO 2 or 80% heart rate reserve, followed by 4-min recovery periods of low intensity. In addition to the necessary laboratory data, hand grip strength and knee extensor strength were evaluated at the start of exercise training and both at the start and the end of HIIT. Knee extensor strength was standardized by body weight. The BNP level at the start of exercise training was 432 (812) pg/mL and it significantly decreased to 254 (400) pg/mL (p < 0.001) at the end of HIIT. Hand grip strength did not change during course. By contrast, knee extensor strength significantly increased during HIIT [4.42 ± 1.43 → 5.28 ± 1.45 N/kg, p < 0.001], whereas the improvement of knee extensor strength was not significant from the start of exercise training to the start of HIIT. In addition, the change in knee extensor strength during HIIT was significantly associated with the hemoglobin A1c level at the start of exercise (R = - 0.55; p = 0.015). HIIT has a positive impact on skeletal muscle strength among in-hospital patients with advanced heart failure.
Pascual-Guardia, Sergio; Wodja, Emil; Gorostiza, Amaya; López de Santamaría, Elena; Gea, Joaquim; Gáldiz, Juan B; Sliwinski, Pawel; Barreiro, Esther
2013-03-02
Despite the beneficial effects of exercise training in chronic obstructive pulmonary disease (COPD) patients, several studies have revealed functional and biological abnormalities in their peripheral muscles. The objective was to determine whether exercise training of high intensity and long duration modifies oxidative stress levels and structure of respiratory and peripheral muscles of severe COPD patients, while also improving their exercise capacity and quality of life. Multicenter study (Warsaw and Barakaldo) in which 25 severe COPD out-patients were recruited from the COPD clinics. In all patients, lung and muscle functions, exercise capacity (walking test and cycloergometer) and quality of life (QoL) were assessed, and open muscle biopsies from the vastus lateralis and external intercostals (n=14) were obtained before and after an exercise training program of high intensity (respiratory rehabilitation area, 70% maximal tolerated load in a cycloergometer) and long duration (10 weeks). Oxidative stress and muscle structural modifications were evaluated in all muscle biopsies using immunoblotting and immunohistochemistry. In all patients, after the training program, without any drop-outs, exercise capacity and QoL improved significantly, whereas oxidative stress, muscle damage and structure were not modified in their respiratory or limb muscles compared to baseline. In patients with severe COPD, exercise training of high intensity and long duration significantly improves their exercise capacity and QoL, without inducing significant modifications on oxidative stress levels or muscle structure in their respiratory or peripheral muscles. These results may have future clinical therapeutic implications. Copyright © 2011 Elsevier España, S.L. All rights reserved.
Novaković, Marko; Prokšelj, Katja; Rajkovič, Uroš; Vižintin Cuderman, Tjaša; Janša Trontelj, Katja; Fras, Zlatko; Jug, Borut
2018-03-15
Adults with repaired tetralogy of Fallot (ToF) have impaired exercise capacity, vascular and cardiac autonomic function, and quality of life (QoL). Specific effects of high-intensity interval or moderate continuous exercise training on these parameters in adults with repaired ToF remain unknown. Thirty adults with repaired ToF were randomized to either high-intensity interval, moderate intensity continuous training (36 sessions, 2-3 times a week) or usual care (no supervised exercise). Exercise capacity, flow-mediated vasodilation, pulse wave velocity, NT-proBNP and fibrinogen levels, heart rate variability and recovery, and QoL (SF-36 questionnaire) were determined at baseline and after the intervention period. Twenty-seven patients (mean age 39±9years, 63% females, 9 from each group) completed this pilot study. Both training groups improved in at least some parameters of cardiovascular health compared to no exercise. Interval-but not continuous-training improved VO2peak (21.2 to 22.9ml/kg/min, p=0.004), flow-mediated vasodilation (8.4 to 12.9%, p=0.019), pulse wave velocity (5.4 to 4.8m/s, p=0.028), NT-proBNP (202 to 190ng/L, p=0.032) and fibrinogen levels (2.67 to 2.46g/L, p=0.018). Conversely, continuous-but not interval-training improved heart rate variability (low-frequency domain, 0.32 to 0.22, p=0.039), heart rate recovery after 2min post-exercise (40 to 47 beats, p=0.023) and mental domain of SF-36 (87 to 95, p=0.028). Both interval and continuous exercise training modalities were safe. Interval training seems more efficacious in improving exercise capacity, vascular function, NT-proBNP and fibrinogen levels, while continuous training seems more efficacious in improving cardiac autonomic function and QoL. (Clinicaltrials.gov, NCT02643810). Copyright © 2018 Elsevier Ireland Ltd. All rights reserved.
Hajizadeh Maleki, Behzad; Tartibian, Bakhtyar; Mooren, Frank C; FitzGerald, Leah Z; Krüger, Karsten; Chehrazi, Mohammad; Malandish, Abbas
2018-02-01
Our aim was to explore the putative beneficial effects of low-to-moderate intensity exercise training program in patients with irritable bowel syndrome (IBS). This study evaluated the changes in blood oxidative stress status, inflammatory biomarkers and IBS severity symptoms following 24 weeks of moderate aerobic exercise in sedentary IBS patients. A total of 109 female volunteers (aged 18-41 yrs) who fulfilled Rome III criteria for the diagnosis of IBS were screened and 60 were randomized to exercise (EX, n = 30) and non-exercise (NON-EX, n = 30) groups. Exercise intervention favorably attenuated inflammation as indicated by plasma cytokines (IL-1β, IL-6, IL-8, IL-10 and TNF-α), adenosine deaminase, oxidative stress (XO, MDA and NO) and enhanced antioxidants (SOD, CAT and GSH-Px) (P < .05), and these alterations correlate with promising improvements in IBS symptoms (P < .05). Taken together, low-to-moderate intensity exercise training program attenuates symptoms in IBS. Symptom improvement was associated with a reversal of the ratio of anti- to pro-inflammatory cytokines as well as facilitating blood redox homeostasis, suggesting an immune- and redox modulating function for exercise training. Copyright © 2017 Elsevier Ltd. All rights reserved.
Moore, Kaitlin M; Girens, Renee E; Larson, Sara K; Jones, Maria R; Restivo, Jessica L; Holtzman, David M; Cirrito, John R; Yuede, Carla M; Zimmerman, Scott D; Timson, Benjamin F
2016-01-01
Physical activity has long been hypothesized to influence the risk and pathology of Alzheimer's disease. However, the amount of physical activity necessary for these benefits is unclear. We examined the effects of three months of low and high intensity exercise training on soluble Aβ40 and Aβ42 levels in extracellular enriched fractions from the cortex and hippocampus of young Tg2576 mice. Low (LOW) and high (HI) intensity exercise training animals ran at speeds of 15m/min on a level treadmill and 32 m/min at a 10% grade, respectively for 60 min per day, five days per week, from three to six months of age. Sedentary mice (SED) were placed on a level, non-moving, treadmill for the same duration. Soleus muscle citrate synthase activity increased by 39% in the LOW group relative to SED, and by 71% in the HI group relative to LOW, indicating an exercise training effect in these mice. Soluble Aβ40 concentrations decreased significantly in an exercise training dose-dependent manner in the cortex. In the hippocampus, concentrations were decreased significantly in the HI group relative to LOW and SED. Soluble Aβ42 levels also decreased significantly in an exercise training dose-dependent manner in both the cortex and hippocampus. Five proteins involved in Aβ clearance (neprilysin, IDE, MMP9, LRP1 and HSP70) were elevated by exercise training with its intensity playing a role in each case. Our data demonstrate that exercise training reduces extracellular soluble Aβ in the brains of Tg2576 mice in a dose-dependent manner through an up-regulation of Aβ clearance. Copyright © 2015 Elsevier Inc. All rights reserved.
Pinkstaff, Sherry O
2015-01-01
There is a robust trove of scientific studies that support the positive physical and mental health benefits associated with aerobic exercise for healthy individuals. These recommendations suggest that more vigorous exercise can be performed on fewer days for the same benefit. High-intensity intermittent exercise (HIIE) training has begun to show promise. HIIE seems safe and improves physiology, quality of life, and functional capacity. This review defines HIIE, discusses its physiologic benefit for patients with heart failure, outlines the studies that have been conducted to date, and places it in the context of the current clinical environment of exercise training for these patients. Copyright © 2015 Elsevier Inc. All rights reserved.
Roxburgh, Brendon H.; Nolan, Paul B.; Weatherwax, Ryan M.; Dalleck, Lance C.
2014-01-01
The purpose of this study was to compare the effectiveness of either continuous moderate intensity exercise training (CMIET) alone vs. CMIET combined with a single weekly bout of high intensity interval training (HIIT) on cardiorespiratory fitness. Twenty nine sedentary participants (36.3 ± 6.9 yrs) at moderate risk of cardiovascular disease were recruited for 12 weeks of exercise training on a treadmill and cycle ergometer. Participants were randomised into three groups: CMIET + HIIT (n = 7; 8-12 x 60 sec at 100% VO2max, 150 sec active recovery), CMIET (n = 6; 30 min at 45-60% oxygen consumption reserve (VO2R)) and a sedentary control group (n = 7). Participants in the CMIET + HIIT group performed a single weekly bout of HIIT and four weekly sessions of CMIET, whilst the CMIET group performed five weekly CMIET sessions. Probabilistic magnitude-based inferences were determined to assess the likelihood that the true value of the effect represents substantial change. Relative VO2max increased by 10.1% (benefit possible relative to control) in in the CMIET + HIIT group (32.7 ± 9.2 to 36.0 ± 11.5 mL·kg-1·min-1) and 3.9% (benefit possible relative to control) in the CMIET group (33.2 ± 4.0 to 34.5 ± 6.1 mL·kg-1·min-1), whilst there was a 5.7% decrease in the control group (30.0 ± 4.6 to 28.3 ± 6.5 mL·kg-1·min-1). It was ‘unclear’ if a clinically significant difference existed between the effect of CMIET + HIIT and CMIET on the change in VO2max. Both exercising groups showed clinically meaningful improvements in VO2max. Nevertheless, it remains ‘unclear’ whether one type of exercise training regimen elicits a superior improvement in cardiorespiratory fitness relative to its counterpart. Key Points Both continuous moderate intensity exercise training (CMIET) alone and CMIET combined with a single weekly bout of high intensity interval training (CMIET + HIIT) elicit ‘possibly beneficial’ clinically meaningful improvements in cardiorespiratory fitness. Cardiorespiratory fitness improved by ~1.0 MET in the CMIET + HIIT exercise intervention group, which likely leads to important long-term prevention implications as a 1 MET increase in cardiorespiratory fitness has been linked with an 18% reduction in deaths due to CVD. There was 100% adherence to interval sessions in the CMIET + HIIT group, suggesting this combination of training can be well-tolerated in previously inactive overweight/obese individuals. PMID:25177202
Crozier, Jennifer; Roig, Marc; Eng, Janice J; MacKay-Lyons, Marilyn; Fung, Joyce; Ploughman, Michelle; Bailey, Damian M; Sweet, Shane N; Giacomantonio, Nicholas; Thiel, Alexander; Trivino, Michael; Tang, Ada
2018-04-01
Stroke is the leading cause of adult disability. Individuals poststroke possess less than half of the cardiorespiratory fitness (CRF) as their nonstroke counterparts, leading to inactivity, deconditioning, and an increased risk of cardiovascular events. Preserving cardiovascular health is critical to lower stroke risk; however, stroke rehabilitation typically provides limited opportunity for cardiovascular exercise. Optimal cardiovascular training parameters to maximize recovery in stroke survivors also remains unknown. While stroke rehabilitation recommendations suggest the use of moderate-intensity continuous exercise (MICE) to improve CRF, neither is it routinely implemented in clinical practice, nor is the intensity always sufficient to elicit a training effect. High-intensity interval training (HIIT) has emerged as a potentially effective alternative that encompasses brief high-intensity bursts of exercise interspersed with bouts of recovery, aiming to maximize cardiovascular exercise intensity in a time-efficient manner. HIIT may provide an alternative exercise intervention and invoke more pronounced benefits poststroke. To provide an updated review of HIIT poststroke through ( a) synthesizing current evidence; ( b) proposing preliminary considerations of HIIT parameters to optimize benefit; ( c) discussing potential mechanisms underlying changes in function, cardiovascular health, and neuroplasticity following HIIT; and ( d) discussing clinical implications and directions for future research. Preliminary evidence from 10 studies report HIIT-associated improvements in functional, cardiovascular, and neuroplastic outcomes poststroke; however, optimal HIIT parameters remain unknown. Larger randomized controlled trials are necessary to establish ( a) effectiveness, safety, and optimal training parameters within more heterogeneous poststroke populations; (b) potential mechanisms of HIIT-associated improvements; and ( c) adherence and psychosocial outcomes.
The Importance of Movement Velocity as a Measure to Control Resistance Training Intensity
González-Badillo, Juan J.; Marques, Mário C.; Sánchez-Medina, Luis
2011-01-01
Configuration of the exercise stimulus in resitance training has been traditionally associated with a combination of the so-called ‘acute resistance exercise variables’ (exercise type and order, loading, number of repetitions and sets, rests duration and movement velocity). During typical resistance exercise in isoinertial conditions, and assuming every repetition is performed with maximal voluntary effort, velocity unintentionally declines as fatigue develops. However, few studies analyzing the response to different resitance training schemes have described changes in repetition velocity or power. It thus seems necessary to conduct more research using models of fatigue that analyze the reduction in mechanical variables such as force, velocity and power output over repeated dynamic contractions in actual training or competition settings. Thus, the aim of this paper was to discuss the importance of movement velocity concerning control training intensity. PMID:23487504
Arboleda Serna, Víctor Hugo; Arango Vélez, Elkin Fernando; Gómez Arias, Rubén Darío; Feito, Yuri
2016-08-18
Participation in aerobic exercise generates increased cardiorespiratory fitness, which results in a protective factor for cardiovascular disease and all-cause mortality. High-intensity interval training might cause higher increases in cardiorespiratory fitness in comparison with moderate-intensity continuous training; nevertheless, current evidence is not conclusive. To our knowledge, this is the first study to test the effect of high-intensity interval training with total load duration of 7.5 min per session. A randomized controlled trial will be performed on two groups of healthy, sedentary male volunteers (n = 44). The study protocol will include 24 exercise sessions, three times a week, including aerobic training on a treadmill and strength training exercises. The intervention group will perform 15 bouts of 30 s, each at an intensity between 90 % and 95 % of maximal heart rate. The control group will complete 40 min of continuous exercise, ranging between 65 % and 75 % of maximal heart rate. The primary outcome measure to be evaluated will be maximal oxygen uptake (VO2max), and systolic and diastolic blood pressure will be evaluated as secondary outcome measures. Waist circumference, body mass index, and body composition will also be evaluated. Epidemiological evidence shows the link between VO2max and its association with chronic conditions that trigger CVD. Therefore, finding ways to improve VO2max and reduce blood pressure it is of vital importance to public health. NCT02288403 . Registered on 4 November 2014.
Speed- and Circuit-Based High-Intensity Interval Training on Recovery Oxygen Consumption
SCHLEPPENBACH, LINDSAY N.; EZER, ANDREAS B.; GRONEMUS, SARAH A.; WIDENSKI, KATELYN R.; BRAUN, SAORI I.; JANOT, JEFFREY M.
2017-01-01
Due to the current obesity epidemic in the United States, there is growing interest in efficient, effective ways to increase energy expenditure and weight loss. Research has shown that high-intensity exercise elicits a higher Excess Post-Exercise Oxygen Consumption (EPOC) throughout the day compared to steady-state exercise. Currently, there is no single research study that examines the differences in Recovery Oxygen Consumption (ROC) resulting from high-intensity interval training (HIIT) modalities. The purpose of this study is to review the impact of circuit training (CT) and speed interval training (SIT), on ROC in both regular exercising and sedentary populations. A total of 26 participants were recruited from the UW-Eau Claire campus and divided into regularly exercising and sedentary groups, according to self-reported exercise participation status. Oxygen consumption was measured during and after two HIIT sessions and was used to estimate caloric expenditure. There was no significant difference in caloric expenditure during and after exercise among individuals who regularly exercise and individuals who are sedentary. There was also no significant difference in ROC between regular exercisers and sedentary or between SIT and CT. However, there was a significantly higher caloric expenditure in SIT vs. CT regardless of exercise status. It is recommended that individuals engage in SIT vs. CT when the goal is to maximize overall caloric expenditure. With respect to ROC, individuals can choose either modalities of HIIT to achieve similar effects on increased oxygen consumption post-exercise. PMID:29170696
Speed- and Circuit-Based High-Intensity Interval Training on Recovery Oxygen Consumption.
Schleppenbach, Lindsay N; Ezer, Andreas B; Gronemus, Sarah A; Widenski, Katelyn R; Braun, Saori I; Janot, Jeffrey M
2017-01-01
Due to the current obesity epidemic in the United States, there is growing interest in efficient, effective ways to increase energy expenditure and weight loss. Research has shown that high-intensity exercise elicits a higher Excess Post-Exercise Oxygen Consumption (EPOC) throughout the day compared to steady-state exercise. Currently, there is no single research study that examines the differences in Recovery Oxygen Consumption (ROC) resulting from high-intensity interval training (HIIT) modalities. The purpose of this study is to review the impact of circuit training (CT) and speed interval training (SIT), on ROC in both regular exercising and sedentary populations. A total of 26 participants were recruited from the UW-Eau Claire campus and divided into regularly exercising and sedentary groups, according to self-reported exercise participation status. Oxygen consumption was measured during and after two HIIT sessions and was used to estimate caloric expenditure. There was no significant difference in caloric expenditure during and after exercise among individuals who regularly exercise and individuals who are sedentary. There was also no significant difference in ROC between regular exercisers and sedentary or between SIT and CT. However, there was a significantly higher caloric expenditure in SIT vs. CT regardless of exercise status. It is recommended that individuals engage in SIT vs. CT when the goal is to maximize overall caloric expenditure. With respect to ROC, individuals can choose either modalities of HIIT to achieve similar effects on increased oxygen consumption post-exercise.
2014-01-01
Background Postnatal early overfeeding and physical inactivity are serious risk factors for obesity. Physical activity enhances energy expenditure and consumes fat stocks, thereby decreasing body weight (bw). This study aimed to examine whether low-intensity and moderate exercise training in different post-weaning stages of life is capable of modulating the autonomic nervous system (ANS) activity and inhibiting perinatal overfeeding-induced obesity in rats. Methods The obesity-promoting regimen was begun two days after birth when the litter size was adjusted to 3 pups (small litter, SL) or to 9 pups (normal litter, NL). The rats were organized into exercised groups as follows: from weaning until 90-day-old, from weaning until 50-day-old, or from 60- until 90-days-old. All experimental procedures were performed just one day after the exercise training protocol. Results The SL-no-exercised (SL-N-EXE) group exhibited excess weight and increased fat accumulation. We also observed fasting hyperglycemia and glucose intolerance in these rats. In addition, the SL-N-EXE group exhibited an increase in the vagus nerve firing rate, whereas the firing of the greater splanchnic nerve was not altered. Independent of the timing of exercise and the age of the rats, exercise training was able to significantly blocks obesity onset in the SL rats; even SL animals whose exercise training was stopped at the end of puberty, exhibited resistance to obesity progression. Fasting glycemia was maintained normal in all SL rats that underwent the exercise training, independent of the period. These results demonstrate that moderate exercise, regardless of the time of onset, is capable on improve the vagus nerves imbalanced tonus and blocks the onset of early overfeeding-induced obesity. Conclusions Low-intensity and moderate exercise training can promote the maintenance of glucose homeostasis, reduces the large fat pad stores associated to improvement of the ANS activity in adult rats that were obesity-programmed by early overfeeding. PMID:24914402
Kuukkanen, T; Mälkiä, E
2000-01-01
Spinal and muscle flexibility have been studied intensively and used clinically as outcome measurements in the rehabilitation of subjects with low back pain. The results of previous studies are contradictory and there is a lack of longitudinal data on the effects of long term therapeutic exercise on flexibility. A controlled experimental study was conducted to determine the effects of progressive therapeutic exercise on spinal and muscle flexibility. Eighty-six chronic low back pain subjects fulfilled the inclusion criteria and were divided into three study groups: (1) intensive training group, (2) home exercise group and (3) control group. The intervention period lasted three months and measurements were performed at both the beginning of the study and immediately after intervention. Follow-up measurements were carried out six and 12 months after baseline. Spinal flexibility was measured with lumbar flexion, extension, spinal lateral flexion and rotation, and muscle flexibility was measured with measurements of erector spinae, hamstring and iliopsoas muscles. Also self-reported outcomes of the Oswestry Index and Borg Scale--Back Pain Intensity were used. Associations between change (pre- to post-treatment) were determined for the dependent variables. The results showed no correlation between flexibility, the Oswestry Index or back pain intensity. After the first three-month period lumbar flexion, extension and spinal rotation decreased among all subjects. Spinal rotation and erector spinae muscle flexibility improved significantly with intensive training. At the nine-month follow-up, erector spine flexibility was still greater than at baseline. Hamstring flexibility increased among the intensive training and home exercise groups from pre- to post-intervention. However, the degree of hamstring flexibility gained during training was subsequently lost following the period without programmed exercise in both training groups. Self-reported outcome variables showed positive changes among the three study groups after the completion of intervention period, but these changes were only able to be maintained during subsequent follow-ups for the intensive training and home exercise groups. The findings suggest that flexibility does not play an important role in coping with chronic low back pain for subjects whose functional limitations are not severe. Also, it appears that the achieved gains in spinal and muscle flexibility may not be able to be maintained without continued exercise.
Hinkley, J Matthew; Konopka, Adam R; Suer, Miranda K; Harber, Matthew P
2017-03-01
The purpose of this investigation was to examine the influence of short-term intense endurance training on cycling performance, along with the acute and chronic signaling responses of skeletal muscle stress and stability markers. Ten recreationally active subjects (25 ± 2 yr, 79 ± 3 kg, 47 ± 2 ml·kg -1 ·min -1 ) were studied before and after a 12-day cycling protocol to examine the effects of short-term intense (70-100% V̇o 2max ) exercise training on resting and exercise-induced regulation of molecular factors related to skeletal muscle cellular stress and protein stability. Skeletal muscle biopsies were taken at rest and 3 h following a 20-km cycle time trial on days 1 and 12 to measure mRNA expression and protein content. Training improved ( P < 0.05) cycling performance by 5 ± 1%. Protein oxidation was unaltered on day 12 , while resting SAPK/JNK phosphorylation was reduced ( P < 0.05), suggesting a reduction in cellular stress. The maintenance in the myocellular environment may be due to synthesis of cytoprotective markers, along with enhanced degradation of damage proteins, as training tended ( P < 0.10) to increase resting protein content of manganese superoxide dismutase and heat shock protein 70 (HSP70), while mRNA expression of MuRF-1 was elevated ( P < 0.05). Following training ( day 12 ), the acute exercise-induced transcriptional response of TNF-α, NF-κB, MuRF-1, and PGC1α was attenuated ( P < 0.05) compared with day 1 Collectively, these data suggest that short-term intense training enhances protein stability, creating a cellular environment capable of resistance to exercise-induced stress, which may be favorable for adaptation. Copyright © 2017 the American Physiological Society.
Konopka, Adam R.; Suer, Miranda K.
2017-01-01
The purpose of this investigation was to examine the influence of short-term intense endurance training on cycling performance, along with the acute and chronic signaling responses of skeletal muscle stress and stability markers. Ten recreationally active subjects (25 ± 2 yr, 79 ± 3 kg, 47 ± 2 ml·kg−1·min−1) were studied before and after a 12-day cycling protocol to examine the effects of short-term intense (70–100% V̇o2max) exercise training on resting and exercise-induced regulation of molecular factors related to skeletal muscle cellular stress and protein stability. Skeletal muscle biopsies were taken at rest and 3 h following a 20-km cycle time trial on days 1 and 12 to measure mRNA expression and protein content. Training improved (P < 0.05) cycling performance by 5 ± 1%. Protein oxidation was unaltered on day 12, while resting SAPK/JNK phosphorylation was reduced (P < 0.05), suggesting a reduction in cellular stress. The maintenance in the myocellular environment may be due to synthesis of cytoprotective markers, along with enhanced degradation of damage proteins, as training tended (P < 0.10) to increase resting protein content of manganese superoxide dismutase and heat shock protein 70 (HSP70), while mRNA expression of MuRF-1 was elevated (P < 0.05). Following training (day 12), the acute exercise-induced transcriptional response of TNF-α, NF-κB, MuRF-1, and PGC1α was attenuated (P < 0.05) compared with day 1. Collectively, these data suggest that short-term intense training enhances protein stability, creating a cellular environment capable of resistance to exercise-induced stress, which may be favorable for adaptation. PMID:28039193
Lactate Threshold as a Measure of Aerobic Metabolism in Resistance Exercise.
Domínguez, Raúl; Maté-Muñoz, José Luis; Serra-Paya, Noemí; Garnacho-Castaño, Manuel Vicente
2018-02-01
In resistance training, load intensity is usually calculated as the percentage of a maximum repetition (1RM) or maximum number of possible repetitions (% of 1RM). Some studies have proposed a lactate threshold (LT) intensity as an optimal approach for concurrent training of cardiorespiratory endurance and muscle strength, as well as an alternative in resistance training. The objective of the present study was to analyze the results obtained in research evaluating the use of LT in resistance training. A keyword and search tree strategy identified 14 relevant articles in the Dialnet, Elsevier, Medline, Pubmed, Scopus and Web of Science databases. Based on the studies analyzed, the conclusion was that the LT in resistance exercises can be determined either by mathematical methods or by visual inspection of graphical plots. Another possibility is to measure the intensity at which LT might coincide with the first ventilatory threshold (VT1). Since performing an exercise session at one's LT intensity has been shown to accelerate the cardiorespiratory response and induce neuromuscular fatigue, this intensity could be used to set the training load in a resistance training program. © Georg Thieme Verlag KG Stuttgart · New York.
Biddle, Stuart J H; Batterham, Alan M
2015-07-18
The efficacy of high-intensity interval training for a broad spectrum of cardio-metabolic health outcomes is not in question. Rather, the effectiveness of this form of exercise is at stake. In this paper we debate the issues concerning the likely success or failure of high-intensity interval training interventions for population-level health promotion. Biddle maintains that high-intensity interval training cannot be a viable public health strategy as it will not be adopted or maintained by many people. This conclusion is based on an analysis of perceptions of competence, the psychologically aversive nature of high-intensity exercise, the affective component of attitudes, the less conscious elements of motivated behaviour that reflect our likes and dislikes, and analysis using the RE-AIM framework. Batterham argues that this appraisal is based on a constrained and outmoded definition of high-intensity interval training and that truly practical and scalable protocols have been - and continue to be - developed. He contends that the purported displeasure associated with this type of exercise has been overstated. Biddle suggests that the way forward is to help the least active become more active rather than the already active to do more. Batterham claims that traditional physical activity promotion has been a spectacular failure. He proposes that, within an evolutionary health promotion framework, high-intensity interval training could be a successful population strategy for producing rapid physiological adaptations benefiting public health, independent of changes in total physical activity energy expenditure. Biddle recommends that we focus our attention elsewhere if we want population-level gains in physical activity impacting public health. His conclusion is based on his belief that high-intensity interval training interventions will have limited reach, effectiveness, and adoption, and poor implementation and maintenance. In contrast, Batterham maintains that there is genuine potential for scalable, enjoyable high-intensity interval exercise interventions to contribute substantially to addressing areas of public health priority, including prevention and treatment of Type 2 diabetes and cardiovascular disease.
Beneka, Anastasia G; Malliou, Paraskevi K; Missailidou, Victoria; Chatzinikolaou, Athanasios; Fatouros, Ioannis; Gourgoulis, Vassilios; Georgiadis, Elias
2013-01-01
To determine the time course of performance responses after an acute bout of plyometric exercise combined with high and low intensity weight training, a 3-group (including a control group), repeated-measures design was employed. Changes in performance were monitored through jumping ability by measuring countermovement and squat jumping, and strength performance assessment through isometric and isokinetic testing of knee extensors (at two different velocities). Participants in both experimental groups performed a plyometric protocol consisting of 50 jumps over 50 cm hurdles and 50 drop jumps from a 50 cm plyometric box. Additionally, each group performed two basic weight exercises consisting of leg presses and leg extensions at 90-95% of maximum muscle strength for the high intensity group and 60% of maximum muscle strength for the low intensity group. The results of the study suggest that an acute bout of intense plyometric exercise combined with weight exercise induces time-dependent changes in performance, which are also dependent on the nature of exercise protocol and testing procedures. In conclusion, acute plyometric exercise with weight exercise may induce a substantial decline in jumping performance for as long as 72 hours but not in other forms of muscle strength.
Amano, Tatsuro; Shitara, Yosuke; Fujii, Naoto; Inoue, Yoshimitsu; Kondo, Narihiko
2017-07-01
The aim of the present study was to determine the β-adrenergic contribution to sweating during incremental exercise in habitually trained males. Nine habitually trained and 11 untrained males performed incremental cycling until exhaustion (20 W/min). Bilateral forearm sweat rates (ventilated capsule) were measured at two skin sites that were transdermally administered via iontophoresis with either 1% propranolol (Propranolol, a nonselective β-adrenergic receptor antagonist) or saline (Control). The sweat rate was evaluated as a function of both relative (percentage of maximum workload) and absolute exercise intensities. The sweat rate at the Propranolol site was lower than the control during exercise at 80 (0.57 ± 0.21 and 0.45 ± 0.19 mg·cm -2 ·min -1 for Control and Propranolol, respectively) and 90% (0.74 ± 0.22 and 0.65 ± 0.17 mg·cm -2 ·min -1 , respectively) of maximum workload in trained males (all P < 0.05). By contrast, no between-site differences in sweat rates were observed in untrained counterparts (all P > 0.05). At the same absolute intensity, higher sweat rates on the control site were observed in trained males relative to the untrained during exercise at 160 (0.23 ± 0.20 and 0.04 ± 0.05 mg·cm -2 ·min -1 for trained and untrained, respectively) and 180 W (0.40 ± 0.20 and 0.13 ± 0.13 mg·cm -2 ·min -1 , respectively) (all P < 0.05), whereas this between-group difference was not observed at the Propranolol site (all P > 0.05). We show that the β-adrenergic mechanism does modulate sweating during exercise at a submaximal high relative intensity in habitually trained males. The β-adrenergic mechanism may in part contribute to the greater sweat production in habitually trained males than in untrained counterparts during exercise. NEW & NOTEWORTHY We demonstrated for the first time that the β-adrenergic mechanism does modulate sweating (i.e., β-adrenergic sweating) during exercise using a localized β-adrenoceptor blockade in humans in vivo. β-Adrenergic sweating was evident in habitually trained individuals during exercise at a submaximal high relative intensity (80-90% maximal work). This observation advances our understanding of human thermoregulation during exercise and of the mechanism that underlies sweat gland adaptation to habitual exercise training. Copyright © 2017 the American Physiological Society.
Gillen, Jenna B; Gibala, Martin J
2014-03-01
Growing research suggests that high-intensity interval training (HIIT) is a time-efficient exercise strategy to improve cardiorespiratory and metabolic health. "All out" HIIT models such as Wingate-type exercise are particularly effective, but this type of training may not be safe, tolerable or practical for many individuals. Recent studies, however, have revealed the potential for other models of HIIT, which may be more feasible but are still time-efficient, to stimulate adaptations similar to more demanding low-volume HIIT models and high-volume endurance-type training. As little as 3 HIIT sessions per week, involving ≤10 min of intense exercise within a time commitment of ≤30 min per session, including warm-up, recovery between intervals and cool down, has been shown to improve aerobic capacity, skeletal muscle oxidative capacity, exercise tolerance and markers of disease risk after only a few weeks in both healthy individuals and people with cardiometabolic disorders. Additional research is warranted, as studies conducted have been relatively short-term, with a limited number of measurements performed on small groups of subjects. However, given that "lack of time" remains one of the most commonly cited barriers to regular exercise participation, low-volume HIIT is a time-efficient exercise strategy that warrants consideration by health practitioners and fitness professionals.
Concurrent exercise training: do opposites distract?
Coffey, Vernon G.
2016-01-01
Abstract Specificity is a core principle of exercise training to promote the desired adaptations for maximising athletic performance. The principle of specificity of adaptation is underpinned by the volume, intensity, frequency and mode of contractile activity and is most evident when contrasting the divergent phenotypes that result after undertaking either prolonged endurance or resistance training. The molecular profiles that generate the adaptive response to different exercise modes have undergone intense scientific scrutiny. Given divergent exercise induces similar signalling and gene expression profiles in skeletal muscle of untrained or recreationally active individuals, what is currently unclear is how the specificity of the molecular response is modified by prior training history. The time course of adaptation and when ‘phenotype specificity’ occurs has important implications for exercise prescription. This context is essential when attempting to concomitantly develop resistance to fatigue (through endurance‐based exercise) and increased muscle mass (through resistance‐based exercise), typically termed ‘concurrent training’. Chronic training studies provide robust evidence that endurance exercise can attenuate muscle hypertrophy and strength but the mechanistic underpinning of this ‘interference’ effect with concurrent training is unknown. Moreover, despite the potential for several key regulators of muscle metabolism to explain an incompatibility in adaptation between endurance and resistance exercise, it now seems likely that multiple integrated, rather than isolated, effectors or processes generate the interference effect. Here we review studies of the molecular responses in skeletal muscle and evidence for the interference effect with concurrent training within the context of the specificity of training adaptation. PMID:27506998
Exercise-Trained Men and Women: Role of Exercise and Diet on Appetite and Energy Intake
Howe, Stephanie M.; Hand, Taryn M.; Manore, Melinda M.
2014-01-01
The regulation of appetite and energy intake is influenced by numerous hormonal and neural signals, including feedback from changes in diet and exercise. Exercise can suppress subjective appetite ratings, subsequent energy intake, and alter appetite-regulating hormones, including ghrelin, peptide YY, and glucagon-like peptide 1(GLP-1) for a period of time post-exercise. Discrepancies in the degree of appetite suppression with exercise may be dependent on subject characteristics (e.g., body fatness, fitness level, age or sex) and exercise duration, intensity, type and mode. Following an acute bout of exercise, exercise-trained males experience appetite suppression, while data in exercise-trained women are limited and equivocal. Diet can also impact appetite, with low-energy dense diets eliciting a greater sense of fullness at a lower energy intake. To date, little research has examined the combined interaction of exercise and diet on appetite and energy intake. This review focuses on exercise-trained men and women and examines the impact of exercise on hormonal regulation of appetite, post-exercise energy intake, and subjective and objective measurements of appetite. The impact that low-energy dense diets have on appetite and energy intake are also addressed. Finally, the combined effects of high-intensity exercise and low-energy dense diets are examined. This research is in exercise-trained women who are often concerned with weight and body image issues and consume low-energy dense foods to keep energy intakes low. Unfortunately, these low-energy intakes can have negative health consequences when combined with high-levels of exercise. More research is needed examining the combined effect of diet and exercise on appetite regulation in fit, exercise-trained individuals. PMID:25389897
Exercise-trained men and women: role of exercise and diet on appetite and energy intake.
Howe, Stephanie M; Hand, Taryn M; Manore, Melinda M
2014-11-10
The regulation of appetite and energy intake is influenced by numerous hormonal and neural signals, including feedback from changes in diet and exercise. Exercise can suppress subjective appetite ratings, subsequent energy intake, and alter appetite-regulating hormones, including ghrelin, peptide YY, and glucagon-like peptide 1(GLP-1) for a period of time post-exercise. Discrepancies in the degree of appetite suppression with exercise may be dependent on subject characteristics (e.g., body fatness, fitness level, age or sex) and exercise duration, intensity, type and mode. Following an acute bout of exercise, exercise-trained males experience appetite suppression, while data in exercise-trained women are limited and equivocal. Diet can also impact appetite, with low-energy dense diets eliciting a greater sense of fullness at a lower energy intake. To date, little research has examined the combined interaction of exercise and diet on appetite and energy intake. This review focuses on exercise-trained men and women and examines the impact of exercise on hormonal regulation of appetite, post-exercise energy intake, and subjective and objective measurements of appetite. The impact that low-energy dense diets have on appetite and energy intake are also addressed. Finally, the combined effects of high-intensity exercise and low-energy dense diets are examined. This research is in exercise-trained women who are often concerned with weight and body image issues and consume low-energy dense foods to keep energy intakes low. Unfortunately, these low-energy intakes can have negative health consequences when combined with high-levels of exercise. More research is needed examining the combined effect of diet and exercise on appetite regulation in fit, exercise-trained individuals.
Ugata, Yusuke; Wada, Hiroshi; Sakakura, Kenichi; Ibe, Tatsuro; Ito, Miyuki; Ikeda, Nahoko; Fujita, Hideo; Momomura, Shin-Ichi
2018-01-27
Aerobic training based on anaerobic threshold (AT) is well-known to improve cardiac function, exercise capacity, and long-term outcomes of patients with heart failure. Recent reports suggested that high-intensity interval training (HIIT) for patients with cardiovascular disease may improve cardiopulmonary exercise capacity. We present a 61-year-old male patient of severe left ventricular dysfunction with left ventricular assisted device (LVAD). Following HIIT for 8 weeks, exercise capacity and muscle strength have improved without worsening left ventricular function. Our case showed the possibility that HIIT was feasible and effective even in patients with LVAD.
Kraal, Jos J; Vromen, Tom; Spee, Ruud; Kemps, Hareld M C; Peek, Niels
2017-10-15
Although exercise-based cardiac rehabilitation improves exercise capacity of coronary artery disease patients, it is unclear which training characteristic determines this improvement. Total energy expenditure and its constituent training characteristics (training intensity, session frequency, session duration and programme length) vary considerably among clinical trials, making it hard to compare studies directly. Therefore, we performed a systematic review and meta-regression analysis to assess the effect of total energy expenditure and its constituent training characteristics on exercise capacity. We identified randomised controlled trials comparing continuous aerobic exercise training with usual care for patients with coronary artery disease. Studies were included when training intensity, session frequency, session duration and programme length was described, and exercise capacity was reported in peakVO 2 . Energy expenditure was calculated from the four training characteristics. The effect of training characteristics on exercise capacity was determined using mixed effects linear regression analyses. The analyses were performed with and without total energy expenditure as covariate. Twenty studies were included in the analyses. The mean difference in peakVO 2 between the intervention group and control group was 3.97ml·min -1 ·kg -1 (p<0.01, 95% CI 2.86 to 5.07). Total energy expenditure was significantly related to improvement of exercise capacity (effect size 0.91ml·min -1 ·kg -1 per 100J·kg, p<0.01, 95% CI 0.77 to 1.06), no effect was found for its constituent training characteristics after adjustment for total energy expenditure. We conclude that the design of an exercise programme should primarily be aimed at optimising total energy expenditure rather than on one specific training characteristic. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Dedov, Vadim N; Dedova, Irina V
2015-11-23
Recent advances in information and communication technology have prompted development of Web-based health tools to promote physical activity, the key component of cardiac rehabilitation and chronic disease management. Mobile apps can facilitate behavioral changes and help in exercise monitoring, although actual training usually takes place away from the point of care in specialized gyms or outdoors. Daily participation in conventional physical activities is expensive, time consuming, and mostly relies on self-management abilities of patients who are typically aged, overweight, and unfit. Facilitation of sustained exercise training at the point of care might improve patient engagement in cardiac rehabilitation. In this study we aimed to test the feasibility of execution and automatic monitoring of several exercise regimens on-site using a Web-enabled leg training system. The MedExercise leg rehabilitation machine was equipped with wireless temperature sensors in order to monitor its usage by the rise of temperature in the resistance unit (Δt°). Personal electronic devices such as laptop computers were fitted with wireless gateways and relevant software was installed to monitor the usage of training machines. Cloud-based software allowed monitoring of participant training over the Internet. Seven healthy participants applied the system at various locations with training protocols typically used in cardiac rehabilitation. The heart rates were measured by fingertip pulse oximeters. Exercising in home chairs, in bed, and under an office desk was made feasible and resulted in an intensity-dependent increase of participants' heart rates and Δt° in training machine temperatures. Participants self-controlled their activities on smart devices, while a supervisor monitored them over the Internet. Individual Δt° reached during 30 minutes of moderate-intensity continuous training averaged 7.8°C (SD 1.6). These Δt° were used as personalized daily doses of exercise with automatic email alerts sent upon achieving them. During 1-week training at home, automatic notifications were received on 4.4 days (SD 1.8). Although the high intensity interval training regimen was feasible on-site, it was difficult for self- and remote management. Opportunistic leg exercise under the desk, while working with a computer, and training in bed while viewing television were less intensive than dosed exercise bouts, but allowed prolonged leg mobilization of 73.7 minutes/day (SD 29.7). This study demonstrated the feasibility of self-control exercise training on-site, which was accompanied by online monitoring, electronic recording, personalization of exercise doses, and automatic reporting of adherence. The results suggest that this technology and its applications are useful for the delivery of Web-based exercise rehabilitation and cardiac training programs at the point of care. ©Vadim N Dedov, Irina V Dedova. Originally published in JMIR Rehabilitation and Assistive Technology (http://rehab.jmir.org), 23.11.2015.
Hordern, Matthew D; Dunstan, David W; Prins, Johannes B; Baker, Michael K; Singh, Maria A Fiatarone; Coombes, Jeff S
2012-01-01
Type 2 diabetes mellitus (T2DM) and pre-diabetic conditions such as impaired fasting glucose (IFG) and/or impaired glucose tolerance (IGT) are rapidly increasing in prevalence. There is compelling evidence that T2DM is more likely to develop in individuals who are insufficiently active. Exercise training, often in combination with other lifestyle strategies, has beneficial effects on preventing the onset of T2DM and improving glycaemic control in those with pre-diabetes. In addition, exercise training improves cardiovascular risk profile, body composition and cardiorespiratory fitness, all strongly related to better health outcomes. Based on the evidence, it is recommended that patients with T2DM or pre-diabetes accumulate a minimum of 210 min per week of moderate-intensity exercise or 125 min per week of vigorous intensity exercise with no more than two consecutive days without training. Vigorous intensity exercise is more time efficient and may also result in greater benefits in appropriate individuals with consideration of complications and contraindications. It is further recommended that two or more resistance training sessions per week (2-4 sets of 8-10 repetitions) should be included in the total 210 or 125 min of moderate or vigorous exercise, respectively. It is also recommended that, due to the high prevalence and incidence of comorbid conditions in patients with T2DM, exercise training programs should be written and delivered by individuals with appropriate qualifications and experience to recognise and accommodate comorbidities and complications. Copyright © 2011 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Auditory feedback improves heart rate moderation during moderate-intensity exercise.
Shaykevich, Alex; Grove, J Robert; Jackson, Ben; Landers, Grant J; Dimmock, James
2015-05-01
The objective of this study is to determine whether exposure to automated HR feedback can produce improvements in the ability to regulate HR during moderate-intensity exercise and to evaluate the persistence of these improvements after feedback is removed. Twenty healthy adults performed 10 indoor exercise sessions on cycle ergometers over 5 wk after a twice-weekly schedule. During these sessions (FB), participants received auditory feedback designed to maintain HR within a personalized, moderate-intensity training zone between 70% and 80% of estimated maximum HR. All feedback was delivered via a custom mobile software application. Participants underwent an initial assessment (PREFB) to measure their ability to maintain exercise intensity defined by the training zone without use of feedback. After completing the feedback training, participants performed three additional assessments identical to PREFB at 1 wk (POST1), 2 wk (POST2), and 4 wk (POST3) after their last feedback session. Time in zone (TIZ), defined as the ratio of the time spent within the training zone divided by the overall time of exercise, rate of perceived exertion, instrumental attitudes, and affective attitudes were then evaluated to assess results using two-way, mixed-model ANOVA with sessions and gender as factors. Training with feedback significantly improved TIZ (P < 0.01) compared with PREFB. An absence of significant differences in TIZ between FB, POST1, POST2, and POST3 (P ≥ 0.35) indicated that these improvements were maintained after feedback was removed. No significant differences in rate of perceived exertion (P ≥ 0.40) or attitude measures (P ≥ 0.30) were observed. Auditory biofeedback is an effective mechanism for entraining HR regulation during moderate-intensity exercise in healthy adults.
Carbonera, Raquel Pinto; Vendrusculo, Fernanda Maria; Donadio, Márcio Vinícius Fagundes
2016-10-01
Interactive video games are recently being used as an exercise tool in cystic fibrosis (CF). This study aimed to assess the literature describing whether video games generate a physiological response similar to the exercise intensity needed for training in CF. An online search in PubMed, Embase, Cochrane, SciELO, LILACS and PEDro databases was conducted and original studies describing physiological responses of the use of video games as exercise in CF were included. In four, out of five studies, the heart rate achieved during video games was within the standards recommended for training (60-80%). Two studies assessed VO 2 and showed higher levels compared to the six-minute walk test. No desaturation was reported. Most games were classified as moderate intensity. Only one study used a maximum exercise test as comparator. Interactive video games generate a heart rate response similar to the intensity required for training in CF patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sun, Meng-Wei; Zhong, Mei-Fang; Gu, Jun; Qian, Feng-Lei; Gu, Jian-Zhong; Chen, Hong
2008-04-01
The objective of this study was to examine the effects of moderate and high levels of exercise volume on endothelium-dependent vasodilation and associated changes in vascular endothelial/inducible nitric oxide synthase (eNOS and iNOS) and heme oxygenase (HO). Male Sprague-Dawley rats were assigned to sedentary control, acute (2 weeks), or chronic (6 weeks) treadmill running at moderate intensity (50% maximal aerobic velocity) with different durations of exercise episodes: 2 h/d (endurance training, moderate volume) and 3 h/d (intense training, high volume). Endothelium-dependent vascular function was examined in isolated thoracic aorta. Co-localization and contents of aortic eNOS/iNOS and HO-1/HO-2 were determined with immunofluorescence and Western blotting. Compared with sedentary controls, rats subjected to acute and chronic endurance training showed enhanced endothelium-dependent relaxation (p<0.01). Whereas acetylcholine-induced dilation was inhibited completely by NOS inhibitor N(omega)-nitro-L-arginine methyl ester (L-NAME) in sedentary controls, the dilation in the training groups was only partly blocked by L-NAME (inhibition was 98+/-3%, 79+/-6%, and 77+/-5% in sedentary control, acute, and chronic training groups, respectively, p<0.01). The remnant dilation in the training groups was further inhibited by HO inhibitor protoporphyrin IX zinc, with concomitant elevation in aortic eNOS as well as HO-1 and HO-2. In contrast to endurance exercise, high-volume intense training resulted in mild hypertension with significant impairment in endothelium-dependent vasodilation and profuse increases in aortic iNOS and eNOS (p<0.01). In conclusion, endothelium-dependent vasodilation is improved by endurance exercise but impaired by chronic intense training. Elevations of vascular eNOS and HO-1/HO-2 may contribute to enhanced vasodilation, which can be offset by intense training and elevation in vascular iNOS.
Schulz, Sebastian Viktor Waldemar; Laszlo, Roman; Otto, Stephanie; Prokopchuk, Dmytro; Schumann, Uwe; Ebner, Florian; Huober, Jens; Steinacker, Jürgen Michael
2018-06-01
To evaluate feasibility of an exercise intervention consisting of high-intensity interval endurance and strength training in breast cancer patients. Twenty-six women with nonmetastatic breast cancer were consecutively assigned to the exercise intervention- (n= 15, mean age 51.9 ± 9.8 years) and the control group (n = 11, mean age 56.9 ± 7.0 years). Cardiopulmonary exercise testing that included lactate sampling, one-repetition maximum tests and a HADS-D questionnaire were used to monitor patients both before and after a supervised six weeks period of either combined high-intensity interval endurance and strength training (intervention group, twice a week) or leisure training (control group). Contrarily to the control group, endurance (mean change of VO 2 , peak 12.0 ± 13.0%) and strength performance (mean change of cumulative load 25.9 ± 11.2%) and quality of life increased in the intervention group. No training-related adverse events were observed. Our guided exercise intervention could be used effectively for initiation and improvement of performance capacity and quality of life in breast cancer patients in a relatively short time. This might be especially attractive during medical treatment. Long-term effects have to be evaluated in randomized controlled studies also with a longer follow-up. Implications for Rehabilitation High-intensity interval training allows improvement of aerobic capacity within a comparable short time. Standard leisure training in breast cancer patients is rather suitable for the maintenance of performance capacity and quality of life. Guided high-intensity interval training combined with strength training can be used effectively for the improvement of endurance and strength capacity and also quality of life. After exclusion of contraindications, guided adjuvant high-intensity interval training combined with strength training can be safely used in breast cancer patients.
Miele, Emily M; Headley, Samuel A E
2017-09-12
Aerobic exercise training is a component of diabetes mellitus (DM) care guidelines due to its favorable effects on glycemic control and cardiovascular disease (CVD) risk factors. The purpose of this review is to outline the recent evidence regarding the clinical effects of chronic aerobic exercise on CVD risk factors in persons with DM and to compare the effects of varying intensities and types of exercise. Among individuals with DM, all types of aerobic exercise training can impact positively on some traditional and non-traditional risk factors for CVD. Training programs with a higher volume or intensity induce greater improvements in vascular function, cardiorespiratory fitness (CRF), and lipid profiles. The beneficial outcomes of aerobic training include improvements in glycemic control, endothelial function, oxidative stress, dyslipidemia, myocardial function, adiposity, and CRF. Findings regarding markers of inflammation are discrepant and further research should focus on the role of exercise to impact upon the chronic inflammation associated with DM.
A practical guide to exercise training for heart failure patients.
Smart, Neil; Fang, Zhi You; Marwick, Thomas H
2003-02-01
Exercise training has been shown to improve exercise capacity in patients with heart failure. We sought to examine the optimal strategy of exercise training for patients with heart failure. Review of the published data on the characteristics of the training program, with comparison of physiologic markers of exercise capacity in heart failure patients and healthy individuals and comparison of the change in these characteristics after an exercise training program. Many factors, including the duration, supervision, and venue of exercise training; the volume of working muscle; the delivery mode (eg, continuous vs. intermittent exercise), training intensity; and the concurrent effects of medical treatments may influence the results of exercise training in heart failure. Starting in an individually prescribed and safely monitored hospital-based program, followed by progression to an ongoing and progressive home program of exercise appears to be the best solution to the barriers of anxiety, adherence, and "ease of access" encountered by the heart failure patient. Various exercise training programs have been shown to improve exercise capacity and symptom status in heart failure, but these improvements may only be preserved with an ongoing maintenance program.
Brown, Henry; Dawson, Brian; Binnie, Martyn J; Pinnington, Hugh; Sim, Marc; Clemons, Tristan D; Peeling, Peter
2017-07-01
This study compared markers of muscle damage and inflammation elevated by a matched-intensity interval running session on soft sand and grass surfaces. In a counterbalanced, repeated-measures and crossover design, 10 well-trained female athletes completed 2 interval-based running sessions 1 week apart on either a grass or a sand surface. Exercise heart rate (HR) was fixed at 83-88% of HR maximum. Venous blood samples were collected pre-, post- and 24 h post-exercise, and analysed for myoglobin (Mb) and C-reactive protein (CRP). Perceptual ratings of exertion (RPE) and muscle soreness (DOMS) were recorded immediately post- and 24 h post-exercise. A significant time effect showed that Mb increased from pre- to post-exercise on grass (p = .008) but not on sand (p = .611). Furthermore, there was a greater relative increase in Mb on grass compared with that on sand (p = .026). No differences in CRP were reported between surfaces (p > .05). The HR, RPE and DOMS scores were not significantly different between conditions (p > .05). These results suggest that in response to a matched-intensity exercise bout, markers of post-exercise muscle damage may be reduced by running on softer ground surfaces. Such training strategy may be used to minimize musculoskeletal strain while still incurring an equivalent cardiovascular training stimulus.
NASA Technical Reports Server (NTRS)
Ellis, S.; Kirby, L. C.; Greenleaf, J. E.
1993-01-01
Muscle thickness was measured in 19 Bed-Rested (BR) men (32-42 year) subjected to IsoTonic (ITE, cycle orgometer) and IsoKi- netic (IKE, torque orgometer) lower extremity exercise training, and NO Exercise (NOE) training. Thickness was measured with ultrasonography in anterior thigh-Rectus Femoris (RF) and Vastus Intermadius (VI), and combined posterior log-soleus, flexor ballucis longus, and tibialis posterior (S + FHL +TP) - muscles. Compared with ambulatory control values, thickness of the (S + FHL + TP) decreased by 90%-12% (p less than 0.05) In all three test groups. The (RF) thickness was unchanged in the two exercise groups, but decreased by 10% (p less than 0.05) in the NOE. The (VI) thickness was unchanged In the ITE group, but decreased by 12%-l6% (p less than 0.05) in the IKE and NOE groups. Thus, intensive, alternating, isotonic cycle ergometer exercise training is as effective as intensive, intermittent, isokinetic exercise training for maintaining thicknesses of rectus femoris and vastus lntermedius anterior thigh muscles, but not posterior log muscles, during prolonged BR deconditioning.
Concurrent exercise training: do opposites distract?
Coffey, Vernon G; Hawley, John A
2017-05-01
Specificity is a core principle of exercise training to promote the desired adaptations for maximising athletic performance. The principle of specificity of adaptation is underpinned by the volume, intensity, frequency and mode of contractile activity and is most evident when contrasting the divergent phenotypes that result after undertaking either prolonged endurance or resistance training. The molecular profiles that generate the adaptive response to different exercise modes have undergone intense scientific scrutiny. Given divergent exercise induces similar signalling and gene expression profiles in skeletal muscle of untrained or recreationally active individuals, what is currently unclear is how the specificity of the molecular response is modified by prior training history. The time course of adaptation and when 'phenotype specificity' occurs has important implications for exercise prescription. This context is essential when attempting to concomitantly develop resistance to fatigue (through endurance-based exercise) and increased muscle mass (through resistance-based exercise), typically termed 'concurrent training'. Chronic training studies provide robust evidence that endurance exercise can attenuate muscle hypertrophy and strength but the mechanistic underpinning of this 'interference' effect with concurrent training is unknown. Moreover, despite the potential for several key regulators of muscle metabolism to explain an incompatibility in adaptation between endurance and resistance exercise, it now seems likely that multiple integrated, rather than isolated, effectors or processes generate the interference effect. Here we review studies of the molecular responses in skeletal muscle and evidence for the interference effect with concurrent training within the context of the specificity of training adaptation. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Importance of exercise immunology in health promotion.
Neto, J C Rosa; Lira, F S; de Mello, M T; Santos, Ronaldo Vagner T
2011-11-01
Chronic physical exercise with adequate intensity and volume associated with sufficient recovery promotes adaptations in several physiological systems. While intense and exhaustive exercise is considered an important immunosuppressor agent and increases the incidence of upper respiratory tract infections (URTI), moderate regular exercise has been associated with significant disease protection and is a complementary treatment of many chronic diseases. The effects of chronic exercise occur because physical training can induce several physiological, biochemical and psychological adaptations. More recently, the effect of acute exercise and training on the immunological system has been discussed, and many studies suggest the importance of the immune system in prevention and partial recovery in pathophysiological situations. Currently, there are two important hypotheses that may explain the effects of exercise and training on the immune system. These hypotheses including (1) the effect of exercise upon hormones and cytokines (2) because exercise can modulate glutamine concentration. In this review, we discuss the hypothesis that exercise may modulate immune functions and the importance of exercise immunology in respect to chronic illnesses, chronic heart failure, malnutrition and inflammation.
Intra-dialytic training accelerates oxygen uptake kinetics in hemodialysis patients.
Reboredo, Maycon M; Neder, J Alberto; Pinheiro, Bruno V; Henrique, Diane Mn; Lovisi, Julio Cm; Paula, Rogério B
2015-07-01
End-stage renal disease is associated with several hemodynamic and peripheral muscle abnormalities that could slow the rate of change in oxygen uptake ([Formula: see text]O2) at the onset and at the end of exercise. This study was performed to determine whether an intra-dialytic aerobic training program would speed [Formula: see text]O2 kinetics at the transition to and from moderate and high-intensity exercise. This study was a randomized controlled trial. Twenty-four patients with end-stage renal disease (14 females; 47.0 ± 11.9 years) were randomly assigned to either 12-week cycle ergometer-based training at moderate exertion or a similar control period. At initial and final evaluations, patients underwent 6 min moderate and high-intensity tests to exercise intolerance (Tlim). Training improved Tlim by ∼90% (median (inter-quartile range) = 232 (59) s to 445 (451) s, p < 0.05); in contrast, Tlim decreased by ∼30% in controls (291 (134) s to 202 (131) s). [Formula: see text]O2 kinetics at the onset of moderate-intensity exercise were significantly accelerated with training leading to lower oxygen (O2) deficit (mean ± standard deviation (SD) = 3.2 ± 1.3 l vs 2.3 ± 1.2 l). Similar positive effects were found at the high-intensity test either at the onset of, or recovery from, exercise (p < 0.05). "Excess" [Formula: see text]O2 at the high-intensity test was also lessened with training. Changes in Tlim correlated with faster [Formula: see text]O2 kinetics and lower "excess" [Formula: see text]O2 (Spearman's ρ = -0.56 and -0.75, respectively; p < 0.01). A symptom-targeted intra-dialytic training program improved sub-maximal aerobic metabolism and endurance exercise capacity. [Formula: see text]O2 kinetics are valuable in providing relatively effort-independent information on the efficacy of exercise interventions in this patient population. © The European Society of Cardiology 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.
Cravana, Cristina; Medica, P; Ragonese, G; Fazio, E
2017-01-01
To investigate the effects of training sessions on circulating β-endorphin changes in sport horses before and after competition and to ascertain whether competition would affect this response. A total of 24 trained jumping horses were randomly assigned to one of two training groups: Group A (competing) and Group B (not competing). To determined plasma β-endorphin concentrations, two pre- and post-competition training weeks at aerobic workout and two competitive show jumping event days at anaerobic workout were measured before, 5 and 30 min after exercise. Exercise intensity is described using lactate concentrations and heart rate. The circuit design, intensity, and duration of training sessions were the same for both groups. In Group A, one-way analysis of variance for repeated measures (RM-ANOVA) showed significant effects of exercise on β-endorphin changes (F=14.41; p<0.001), only in the post-competition training sessions, while in Group B showed no significant effects. Two-way RM-ANOVA showed, after post-competition training sessions, a significant difference between Group A and Group B (F=6.235; p=0.023), with higher β-endorphin changes in Group A, compared to Group B. During the competitive show jumping sessions, one-way RM ANOVA showed significant effects of exercise on β-endorphin changes (F=51.10; p<0.001). The statistical analysis, in Group A, showed a significant difference between post-competition training and competitive exercise (F=6.32; p=0.024) with higher β-endorphin values in competitive sessions compared to those of post-competition training. Lactate concentrations seem to be the main factors being correlated with the raise of β-endorphin during anaerobic exercise of competitive events. Exercise of low intensity, as well as that one of training sessions, does not appear to stimulate a significant increased release of β-endorphin and it may depend on the duration of the exercise program. Moreover, the responses during exercise in the course of post-competition training sessions seem to be significantly different from those the pre-competition training. These data show that the preliminary competitive stress induced additional significant changes of β-endorphin pattern. It would reflect the need of a long-lasting modulation of fatigue and pain perception related to the effect of an additional physical and mental effort for the consecutive competitive and training sessions.
2013-01-01
Background Training of young Thoroughbred horses must balance development of cardiopulmonary function and aerobic capacity with loading of the musculoskeletal system that can potentially cause structural damage and/or lameness. High-speed equine treadmills are sometimes used to supplement exercise on a track in the training of young Thoroughbreds because the horse can run at high speeds but without the added weight of a rider. We tested the hypothesis that intermittent high-intensity exercise on a treadmill of young Thoroughbred horses entering training can enhance development of aerobic capacity (Vo2max) and running performance more than conventional training under saddle, and do so without causing lameness. Results Twelve yearling Thoroughbreds trained for 8 months with conventional riding (C) only, conventional riding plus a short (2 month, S) interval of once-per-week high-intensity treadmill exercise, or a long (8 month, L) interval of once-per-week high-intensity treadmill exercise. Three treadmill exercise tests evaluated Vo2max, oxygen transport and running performance variables in June of the yearling year (only for L), October of the yearling year and April of the 2-year-old year. No horses experienced lameness during the study. Aerobic capacity increased in all groups after training. In both October and April, Vo2max in L was higher than in C, but did not differ between L and S or S and C. Running speeds eliciting Vo2max also increased in all groups after training, with S (809 ± 3 m/s) and L (804 ± 9 m/s) higher than C (764 ± 27 m/s). Maximum heart rate decreased for all groups after training. Hematocrit and hemoglobin concentration increased for L throughout training. Conclusions Young Thoroughbred horses can increase aerobic capacity and running performance more than by strictly using track training under saddle with the addition of intermittent high-intensity treadmill exercise, and they can do so without experiencing lameness. This finding suggests that young racehorses might be able to achieve higher aerobic fitness during training without subjecting their musculoskeletal systems to increased loading and risk of developing lameness. The findings of this preliminary study do not indicate a specific protocol to best achieve this goal. PMID:23957961
Iwasaki, Ken-Ichi; Zhang, Rong; Zuckerman, Julie H; Levine, Benjamin D
2003-10-01
Occupational or recreational exercise reduces mortality from cardiovascular disease. The potential mechanisms for this reduction may include changes in blood pressure (BP) and autonomic control of the circulation. Therefore, we conducted the present long-term longitudinal study to quantify the dose-response relationship between the volume and intensity of exercise training, and regulation of heart rate (HR) and BP. We measured steady-state hemodynamics and analyzed dynamic cardiovascular regulation by spectral and transfer function analysis of cardiovascular variability in 11 initially sedentary subjects during 1 yr of progressive endurance training sufficient to allow them to complete a marathon. From this, we found that 1) moderate exercise training for 3 mo decreased BP, HR, and total peripheral resistance, and increased cardiovascular variability and arterial baroreflex sensitivity; 2) more prolonged and intense training did not augment these changes further; and 3) most of these changes returned to control values at 12 mo despite markedly increased training duration and intensity equivalent to that routinely observed in competitive athletes. In conclusion, increases in R-wave-R-wave interval and cardiovascular variability indexes are consistent with an augmentation of vagal modulation of HR after exercise training. It appears that moderate doses of training for 3 mo are sufficient to achieve this response as well as a modest hypotensive effect from decreasing vascular resistance. However, more prolonged and intense training does not necessarily lead to greater enhancement of circulatory control and, therefore, may not provide an added protective benefit via autonomic mechanisms against death by cardiovascular disease.
Effects of high-intensity swimming training on the bones of ovariectomized rats
Oh, Taewoong; Tanaka, Sakura; Naka, Tatsuki; Igawa, Shoji
2016-01-01
[Purpose] This study was performed to assess the effects of high-intensity intermittent swimming training(HIT) on bone in ovariectomized rats. [Methods] Six-week-old female Sprague-Dawley rats were randomly assigned to either sham operation or bilateral ovariectomy. After surgery, they were divided into the following four groups: 1) sham-operated sedentary (S), 2) sham-operated exercise training (SE), 3) OVX sedentary (O), 4) OVX exercise training (OE) 5) OVX given 17β-estradiol (OE2) and 6) OVX exercise training and given 17β-estradiol (OEE). SE, OE and OEE rats were used extremely high-intensity swim exercise. The rats repeated fourteen 20-s swimming bouts with a weight equivalent to 14, 15, and 16% of body weight for the first 5, the next 9, and the last 5 days, respectively. Between exercise bouts, a 10-s pause was allowed. HIT was originally designed as an exercise method; a method that very quickly induces an increase in the maximum oxygen intake (Tabata I et al., 1996). OEE and OE2 rats were subcutaneously injected ethanol with 25μg/kg body weight 17β-estradiol 3 times per week. [Results] Bone strength, bone mineral density and trabecular bone parameters were measured after a 8-weeks experimental period. Bone strength was significantly higher in the SE, OE, OE2 and OEE group compared with the O group. BV/TV was significant increase in the SE, OE groups compared with the O group. BMD showed no difference in the OE group compared with the O group. [Conclusion] This study demonstrate some beneficial effects of postmenopausal osteoporosis of high-intensity intermittent swimming training on bone structure and strength. PMID:27757386
Effects of high-intensity swimming training on the bones of ovariectomized rats.
Oh, Taewoong; Tanaka, Sakura; Naka, Tatsuki; Igawa, Shoji
2016-09-01
This study was performed to assess the effects of high-intensity intermittent swimming training(HIT) on bone in ovariectomized rats. Six-week-old female Sprague-Dawley rats were randomly assigned to either sham operation or bilateral ovariectomy. After surgery, they were divided into the following four groups: 1) sham-operated sedentary (S), 2) sham-operated exercise training (SE), 3) OVX sedentary (O), 4) OVX exercise training (OE) 5) OVX given 17β-estradiol (OE2) and 6) OVX exercise training and given 17β-estradiol (OEE). SE, OE and OEE rats were used extremely high-intensity swim exercise. The rats repeated fourteen 20-s swimming bouts with a weight equivalent to 14, 15, and 16% of body weight for the first 5, the next 9, and the last 5 days, respectively. Between exercise bouts, a 10-s pause was allowed. HIT was originally designed as an exercise method; a method that very quickly induces an increase in the maximum oxygen intake (Tabata I et al., 1996). OEE and OE2 rats were subcutaneously injected ethanol with 25μg/kg body weight 17β-estradiol 3 times per week. Bone strength, bone mineral density and trabecular bone parameters were measured after a 8-weeks experimental period. Bone strength was significantly higher in the SE, OE, OE2 and OEE group compared with the O group. BV/TV was significant increase in the SE, OE groups compared with the O group. BMD showed no difference in the OE group compared with the O group. This study demonstrate some beneficial effects of postmenopausal osteoporosis of high-intensity intermittent swimming training on bone structure and strength.
Role of fat metabolism in exercise.
Askew, E W
1984-07-01
Fat and carbohydrate are the two major energy sources used during exercise. Either source can predominate, depending upon the duration and intensity of exercise, degree of prior physical conditioning, and the composition of the diet consumed in the days prior to a bout of exercise. Fatty acid oxidation can contribute 50 to 60 per cent of the energy expenditure during a bout of low intensity exercise of long duration. Strenuous submaximal exercise requiring 65 to 80 per cent of VO2 max will utilize less fat (10 to 45 per cent of the energy expended). Exercise training is accompanied by metabolic adaptations that occur in skeletal muscle and adipose tissue and that facilitate a greater delivery and oxidation of fatty acids during exercise. The trained state is characterized by an increased flux of fatty acids through smaller pools of adipose tissue energy. This is reflected by smaller, more metabolically active adipose cells in smaller adipose tissue depots. Peak blood concentrations of free fatty acids and ketone bodies are lower during and following exercise in trained individuals, probably due to increased capacity of the skeletal musculature to oxidize these energy sources. Trained individuals oxidize more fat and less carbohydrate than untrained subjects when performing submaximal work of the same absolute intensity. This increased capacity to utilize energy from fat conserves crucial muscle and liver glycogen stores and can contribute to increased endurance. Further benefits of the enhanced lipid metabolism accompanying chronic aerobic exercise training are decreased cardiac risk factors. Exercise training results in lower blood cholesterol and triglycerides and increased high density lipoprotein cholesterol. High-fat diets are not recommended because of their association with atherosclerotic heart disease. Recent evidence suggests that low-fat high-carbohydrate diets may increase blood triglycerides and reduce high density lipoproteins. This suggests that the chronic ingestion of diets that are extreme in their composition of either fat or carbohydrate should be approached with caution in health-conscious athletes, as well as in sedentary individuals.
Panagopoulou, Niki; Karatzanos, Eleftherios; Dimopoulos, Stavros; Tasoulis, Athanasios; Tachliabouris, Ioannis; Vakrou, Styliani; Sideris, Antonios; Gratziou, Christina; Nanas, Serafim
2017-05-01
Background Exercise oscillatory ventilation in chronic heart failure has been suggested as a factor related to adverse cardiac events, aggravated prognosis and higher mortality. Exercise training is well known to affect exercise capacity and mechanisms of pathophysiology beneficially in chronic heart failure. Little is known, however, about the exercise training effects on characteristics of exercise oscillatory ventilation in chronic heart failure patients. Design and methods Twenty (out of 38) stable chronic heart failure patients exhibited exercise oscillatory ventilation (age 54 ± 11 years, peak oxygen uptake 15.0 ± 5.0 ml/kg per minute). Patients attended 36 sessions of high intensity interval exercise. All patients underwent cardiopulmonary exercise testing before and after the programme. Assessment of exercise oscillatory ventilation was based on the amplitude of cyclic fluctuations in breathing during rest and exercise. All values are mean ± SD. Results Exercise training reduced ( P < 0.05) the percentage of exercise oscillatory ventilation duration (79.0 ± 13.0 to 50.0 ± 25.0%), while average amplitude (5.2 ± 2.0 to 4.9 ± 1.6 L/minute) and length (44.0 ± 10.9 to 41.0 ± 6.7 seconds) did not change ( P > 0.05). Exercise oscillatory ventilation patients also increased exercise capacity ( P < 0.05). Conclusions A rehabilitation programme based on high intensity interval training improved exercise oscillatory ventilation observed in chronic heart failure patients, as well as cardiopulmonary efficiency and functional capacity.
Devine, Jennifer M; Wong, Bonnie; Gervino, Ernest; Pascual-Leone, Alvaro; Alexander, Michael P
2016-08-01
To determine whether people with moderate-to-severe traumatic brain injury (TBI) can adhere to a minimally supervised, community-based, vigorous aerobic exercise program. Prospective trial. Young Men's Christian Association (YMCA) facilities. Community-dwelling volunteers (N=10; 8 men, 2 women; age range, 22-49y) 6 to 15 months after moderate-to-severe TBI. Participants received memberships to local YMCAs and brief orientations to exercise. They were then asked to independently complete ≥12 weeks of ≥3 training sessions per week, performed at 65% to 85% of maximum heart rate for ≥30 minutes per session. Participants could self-select exercise modality, provided they met intensity and duration targets. Programmable heart rate monitors captured session intensity and duration. Independence with equipment and facility use and compliance with training goals (session frequency, duration, intensity, total weeks of training). All participants achieved independence with equipment and facility use. All met at least 2 of 4 training goals; half met all 4 goals. Participants averaged (±SD) 3.3±0.7 sessions per week for 13 weeks (range, 6-24). Average ± SD session duration was 62±23 minutes, of which 51±22 minutes occurred at or above individuals' heart rate training targets. People in recovery from moderate-to-severe TBI can, with minimal guidance, perform vigorous, community-based exercise. This suggests that decentralized exercise may be logistically and economically sustainable after TBI, expanding its potential therapeutic utility and rendering longer-duration exercise studies more feasible. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Piao, YongJun; Choi, YounJung; Kim, JungJa; Kwan, TaeKyu; Kim, Nam-Gyun
2009-03-01
Adequate postural balance depends on the spatial and temporal integration of vestibular, visual, and somatosensory information. Especially, the musculoskeletal function (range of joint, flexibility of spine, muscular strength) is essential in maintaining the postural balance. Muscular strength training methods include the use of commercialized devices and repeatable resistance training tools (rubber band, ball, etc). These training systems cost high price and can't control of intensity. Thus we suggest a new training system which can adjust training intensity and indicate the center of pressure of a subject while the training was passively controlled by applying controlled electric current to the Magneto- Rheological damper. And we performed experimental studies on the muscular activities in the lower extremities during maintaining, moving and pushing exercises on an unstable platform with Magneto rheological dampers. A subject executed the maintaining, moving and pushing exercises which were displayed in a monitor. The electromyographic signals of the eight muscles in lower extremities were recorded and analyzed in the time and frequency domain: the muscles of interest were rectus femoris, biceps femoris, tensor fasciae latae, vastus lateralis, vastus medialis, gastrocnemius, tibialis anterior, and soleus. The experimental results showed the difference of muscular activities at the four moving exercises and the nine maintaining exercises. The rate of the increase in the muscular activities was affected by the condition of the unstable platform with MR dampers for the maintaining and moving exercises. The experimental results suggested the choice of different maintaining and moving exercises could selectively train different muscles with varying intensity. Furthermore, the findings also suggested the training using this system can improve the ability of postural balance.
Effects of intensive therapy using gait trainer or floor walking exercises early after stroke.
Peurala, Sinikka H; Airaksinen, Olavi; Huuskonen, Pirjo; Jäkälä, Pekka; Juhakoski, Mika; Sandell, Kaisa; Tarkka, Ina M; Sivenius, Juhani
2009-02-01
To analyse the effects of gait therapy for patients after acute stroke in a randomized controlled trial. Fifty-six patients with a mean of 8 days post-stroke participated in: (i) gait trainer exercise; (ii) walking training over ground; or (iii) conventional treatment. Patients in the gait trainer exercise and walking groups practiced gait for 15 sessions over 3 weeks and received additional physiotherapy. Functional Ambulatory Category and several secondary outcome measures assessing gait and mobility were administered before and after rehabilitation and at 6-month follow-up. Patients also evaluated their own effort. Walking ability improved more with intensive walk training compared with conventional treatment; median Functional Ambulatory Category was zero in all patients at the start of the study, but it was 3 in both walk-training groups and 0.5 in the conventional treatment group at the end of the therapy. Median Functional Ambulatory Category was 4 in both walk-training groups and 2.5 in conventional treatment group at 6-month follow-up. Mean accomplished walking distance was not different between the gait trainer exercise and over ground walking groups. Borg scale indicated more effort in over ground walking. Secondary outcomes also indicated improvements. Exercise therapy with walking training improved gait function irrespective of the method used, but the time and effort required to achieve the results favour the gait trainer exercise. Early intensive gait training resulted in better walking ability than did conventional treatment.
Saberi, Sara; Wheeler, Matthew; Bragg-Gresham, Jennifer; Hornsby, Whitney; Agarwal, Prachi P; Attili, Anil; Concannon, Maryann; Dries, Annika M; Shmargad, Yael; Salisbury, Heidi; Kumar, Suwen; Herrera, Jonathan J; Myers, Jonathan; Helms, Adam S; Ashley, Euan A; Day, Sharlene M
2017-04-04
Formulating exercise recommendations for patients with hypertrophic cardiomyopathy is challenging because of concern about triggering ventricular arrhythmias and because a clinical benefit has not been previously established in this population. To determine whether moderate-intensity exercise training improves exercise capacity in adults with hypertrophic cardiomyopathy. A randomized clinical trial involving 136 patients with hypertrophic cardiomyopathy was conducted between April 2010 and October 2015 at 2 academic medical centers in the United States (University of Michigan Health System and Stanford University Medical Center). Date of last follow-up was November 2016. Participants were randomly assigned to 16 weeks of moderate-intensity exercise training (n = 67) or usual activity (n = 69). The primary outcome measure was change in peak oxygen consumption from baseline to 16 weeks. Among the 136 randomized participants (mean age, 50.4 [SD, 13.3] years; 42% women), 113 (83%) completed the study. At 16 weeks, the change in mean peak oxygen consumption was +1.35 (95% CI, 0.50 to 2.21) mL/kg/min among participants in the exercise training group and +0.08 (95% CI, -0.62 to 0.79) mL/kg/min among participants in the usual-activity group (between-group difference, 1.27 [95% CI, 0.17 to 2.37]; P = .02). There were no occurrences of sustained ventricular arrhythmia, sudden cardiac arrest, appropriate defibrillator shock, or death in either group. In this preliminary study involving patients with hypertrophic cardiomyopathy, moderate-intensity exercise compared with usual activity resulted in a statistically significant but small increase in exercise capacity at 16 weeks. Further research is needed to understand the clinical importance of this finding in patients with hypertrophic cardiomyopathy, as well as the long-term safety of exercise at moderate and higher levels of intensity. clinicaltrials.gov Identifier: NCT01127061.
Intensity level for exercise training in fibromyalgia by using mathematical models.
Lemos, Maria Carolina D; Valim, Valéria; Zandonade, Eliana; Natour, Jamil
2010-03-22
It has not been assessed before whether mathematical models described in the literature for prescriptions of exercise can be used for fibromyalgia syndrome patients. The objective of this paper was to determine how age-predicted heart rate formulas can be used with fibromyalgia syndrome populations as well as to find out which mathematical models are more accurate to control exercise intensity. A total of 60 women aged 18-65 years with fibromyalgia syndrome were included; 32 were randomized to walking training at anaerobic threshold. Age-predicted formulas to maximum heart rate ("220 minus age" and "208 minus 0.7 x age") were correlated with achieved maximum heart rate (HRMax) obtained by spiroergometry. Subsequently, six mathematical models using heart rate reserve (HRR) and age-predicted HRMax formulas were studied to estimate the intensity level of exercise training corresponding to heart rate at anaerobic threshold (HRAT) obtained by spiroergometry. Linear and nonlinear regression models were used for correlations and residues analysis for the adequacy of the models. Age-predicted HRMax and HRAT formulas had a good correlation with achieved heart rate obtained in spiroergometry (r = 0.642; p < 0.05). For exercise prescription in the anaerobic threshold intensity, the percentages were 52.2-60.6% HRR and 75.5-80.9% HRMax. Formulas using HRR and the achieved HRMax showed better correlation. Furthermore, the percentages of HRMax and HRR were significantly higher for the trained individuals (p < 0.05). Age-predicted formulas can be used for estimating HRMax and for exercise prescriptions in women with fibromyalgia syndrome. Karnoven's formula using heart rate achieved in ergometric test showed a better correlation. For the prescription of exercises in the threshold intensity, 52% to 60% HRR or 75% to 80% HRMax must be used in sedentary women with fibromyalgia syndrome and these values are higher and must be corrected for trained patients.
Intensity level for exercise training in fibromyalgia by using mathematical models
2010-01-01
Background It has not been assessed before whether mathematical models described in the literature for prescriptions of exercise can be used for fibromyalgia syndrome patients. The objective of this paper was to determine how age-predicted heart rate formulas can be used with fibromyalgia syndrome populations as well as to find out which mathematical models are more accurate to control exercise intensity. Methods A total of 60 women aged 18-65 years with fibromyalgia syndrome were included; 32 were randomized to walking training at anaerobic threshold. Age-predicted formulas to maximum heart rate ("220 minus age" and "208 minus 0.7 × age") were correlated with achieved maximum heart rate (HRMax) obtained by spiroergometry. Subsequently, six mathematical models using heart rate reserve (HRR) and age-predicted HRMax formulas were studied to estimate the intensity level of exercise training corresponding to heart rate at anaerobic threshold (HRAT) obtained by spiroergometry. Linear and nonlinear regression models were used for correlations and residues analysis for the adequacy of the models. Results Age-predicted HRMax and HRAT formulas had a good correlation with achieved heart rate obtained in spiroergometry (r = 0.642; p < 0.05). For exercise prescription in the anaerobic threshold intensity, the percentages were 52.2-60.6% HRR and 75.5-80.9% HRMax. Formulas using HRR and the achieved HRMax showed better correlation. Furthermore, the percentages of HRMax and HRR were significantly higher for the trained individuals (p < 0.05). Conclusion Age-predicted formulas can be used for estimating HRMax and for exercise prescriptions in women with fibromyalgia syndrome. Karnoven's formula using heart rate achieved in ergometric test showed a better correlation. For the prescription of exercises in the threshold intensity, 52% to 60% HRR or 75% to 80% HRMax must be used in sedentary women with fibromyalgia syndrome and these values are higher and must be corrected for trained patients. PMID:20307323
Liu, Wenfeng; Chen, Gan; Li, Fanling; Tang, Changfa; Yin, Dazhong
2014-12-01
This study elucidated the role of CaN-NFAT signaling and neurotrophins on the transformation of myosin heavy chain isoforms in the rat soleus muscle fiber following aerobic exercise training. To do so, we examined the content and distribution of myosin heavy chain (MyHC) isoforms in the rat soleus muscle fiber, the activity of CaN and expression of NFATc1 in these fibers, and changes in the expression of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and neutrophin-3 (NT-3) in the soleus and striatum following high-and medium-intensity aerobic treadmill training. Specific pathogen-free 2 month old male Sprague-Dawley (SD) rats were randomly divided into three groups: Control group (Con, n = 8), moderate-intensity aerobic exercise group (M-Ex, n = 8) and high-intensity aerobic exercise group (H-Ex, n = 8). We used ATPase staining to identify the muscle fiber type I and II, SDS-PAGE to separate and analyze the isoforms MyHCI, MyHCIIA, MyHCIIB and MyHCIIx, and performed western blots to determine the expression of NFATc1, NGF, BDNF and NT-3. CaN activity was measured using a colorimetric assay. In the soleus muscle, 8 weeks of moderate-intensity exercise can induce transformation of MyHC IIA and MyHC IIB to MyHC IIX and MyHC I (p < 0.01), while high-intensity treadmill exercise can induce transform MyHC IIx to MyHC IIB, MyHC IIA and MyHC I (p < 0.01). In comparison to the control group, CaN activity and NFATcl protein level were significantly increased in both the M-Ex and H-Ex groups (p < 0.05, p < 0.01), with a more pronounced upregulation in the M-Ex group (p < 0.05). Eight weeks of moderate- and high-intensity aerobic exercise induced the expression of NGF, BDNF and NT-3 in the soleus muscle and the striatum (p < 0.01), with the most significant increase in the H-Ex group (p < 0.01). In the rat soleus muscle, (1) CaN-NFATcl signaling contributes to the conversion of MyHC I isoform in response to moderate-intensity exercise; (2) Neurotrophins NGF, BDNF and NT-3 might play a role in the conversion of MyHC II isoform in response to high-intensity treadmill exercise. Key pointsEight weeks of moderate-intensity treadmill training induces the transformation MyHC IIA and MyHC IIB to MyHC IIX and MyHC I in the soleus muscles, while high-intensity exercise leads to transformation of MyHC IIX to MyHC IIA, MyHC IIB and MyHC I.MyHC I conversion in response to moderate-intensity aerobic exercise is mediated by calcineurin-NFATcl signaling.Eight weeks of moderate- and high-ntensity aerobic exercise induces the expression of NGF, BDNF and NT-3 in expression noted in rats subjected to high-intensity training. NGF and NT-3 expression in the striatum is lower than in the soleus muscle, while BDNF levels are similar. Neurotrophins may be involved in mediating MyHC II conversion in response to high-intensity aerobic exercise.
Comparison of high-intensity vs. high-volume resistance training on the BDNF response to exercise.
Church, David D; Hoffman, Jay R; Mangine, Gerald T; Jajtner, Adam R; Townsend, Jeremy R; Beyer, Kyle S; Wang, Ran; La Monica, Michael B; Fukuda, David H; Stout, Jeffrey R
2016-07-01
This study compared the acute and chronic response of circulating plasma brain-derived neurotrophic factor (BDNF) to high-intensity low-volume (HI) and low-intensity high volume (HV) resistance training. Twenty experienced resistance-trained men (23.5 ± 2.6 y, 1.79 ± 0.05 m, 75.7 ± 13.8 kg) volunteered for this study. Before the resistance training program (PRE), participants performed an acute bout of exercise using either the HI [3-5 reps; 90% of one repetition maximum (1RM)] or HV (10-12 reps; 70% 1RM) training paradigm. The acute exercise protocol was repeated after 7 wk of training (POST). Blood samples were obtained at rest (BL), immediately (IP), 30 min (30P), and 60 min (60P) post exercise at PRE and POST. A three-way repeated measure ANOVA was used to analyze acute changes in BDNF concentrations during HI and HV resistance exercise and the effect of 7 wk of training. No training × time × group interaction in BDNF was noted (P = 0.994). Significant main effects for training (P = 0.050) and time (P < 0.001) in BDNF were observed. Significant elevations in BDNF concentrations were seen from BL at IP (P = 0.001), 30P (P < 0.001), and 60P (P < 0.001) in both HI and HV combined during PRE and POST. BDNF concentrations were also observed to increase from PRE to POST when collapsed across groups and time. No significant group × training interaction (P = 0.342), training (P = 0.105), or group (P = 0.238) effect were noted in the BDNF area under the curve response. Results indicate that BDNF concentrations are increased after an acute bout of resistance exercise, regardless of training paradigm, and are further increased during a 7-wk training program in experienced lifters. Copyright © 2016 the American Physiological Society.
Physical activity participation and constraints among athletic training students.
Stanek, Justin; Rogers, Katherine; Anderson, Jordan
2015-02-01
Researchers have examined the physical activity (PA) habits of certified athletic trainers; however, none have looked specifically at athletic training students. To assess PA participation and constraints to participation among athletic training students. Cross-sectional study. Entry-level athletic training education programs (undergraduate and graduate) across the United States. Participants were 1125 entry-level athletic training students. Self-reported PA participation, including a calculated PA index based on a typical week. Leisure constraints and demographic data were also collected. Only 22.8% (252/1105) of athletic training students were meeting the American College of Sports Medicine recommendations for PA through moderate-intensity cardiorespiratory exercise. Although 52.3% (580/1105) were meeting the recommendations through vigorous-intensity cardiorespiratory exercise, 60.5% (681/1125) were meeting the recommendations based on the combined total of moderate or vigorous cardiorespiratory exercise. In addition, 57.2% (643/1125) of respondents met the recommendations for resistance exercise. Exercise habits of athletic training students appear to be better than the national average and similar to those of practicing athletic trainers. Students reported structural constraints such as lack of time due to work or studies as the most significant barrier to exercise participation. Athletic training students experienced similar constraints to PA participation as practicing athletic trainers, and these constraints appeared to influence their exercise participation during their entry-level education. Athletic training students may benefit from a greater emphasis on work-life balance during their entry-level education to promote better health and fitness habits.
Ferreira, Sandro S.; Krinski, Kleverton; Alves, Ragami C.; Benites, Mariana L.; Redkva, Paulo E.; Elsangedy, Hassan M.; Buzzachera, Cosme F.; Souza-Junior, Tácito P.; da Silva, Sergio G.
2014-01-01
The rating of perceived exertion (RPE) is ability to detect and interpret organic sensations while performing exercises. This method has been used to measure the level of effort that is felt during weight-training at a given intensity. The purpose of this investigation was to compare session RPE values with those of traditional RPE measurements for different weight-training muscle actions, performed together or separately. Fourteen women with no former weight-training experience were recruited for the investigation. All participants completed five sessions of exercise: familiarization, maximum force, concentric-only (CONC-only), eccentric-only (ECC-only), and dynamic (DYN = CONC + ECC). The traditional RPE method was measured after each series of exercises, and the session RPE was measured 30 min after the end of the training session. The statistical analyses used were the paired t-test, one-way analysis of variance, and repeated measures analysis of variance. Significant differences between traditional RPE and session RPE for DYN, CONC, and ECC exercises were not found. This investigation demonstrated that session RPE is similar to traditional RPE in terms of weight-training involving concentric, eccentric, or dynamic muscle exercises, and that it can be used to prescribe and monitor weight-training sessions in older subjects. PMID:24834354
Chen, C C; Chang, M W; Chang, C P; Chan, S C; Chang, W Y; Yang, C L; Lin, M T
2014-10-01
We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use.
Chen, C.C.; Chang, M.W.; Chang, C.P.; Chan, S.C.; Chang, W.Y.; Yang, C.L.; Lin, M.T.
2014-01-01
We developed a forced non-electric-shock running wheel (FNESRW) system that provides rats with high-intensity exercise training using automatic exercise training patterns that are controlled by a microcontroller. The proposed system successfully makes a breakthrough in the traditional motorized running wheel to allow rats to perform high-intensity training and to enable comparisons with the treadmill at the same exercise intensity without any electric shock. A polyvinyl chloride runway with a rough rubber surface was coated on the periphery of the wheel so as to permit automatic acceleration training, and which allowed the rats to run consistently at high speeds (30 m/min for 1 h). An animal ischemic stroke model was used to validate the proposed system. FNESRW, treadmill, control, and sham groups were studied. The FNESRW and treadmill groups underwent 3 weeks of endurance running training. After 3 weeks, the experiments of middle cerebral artery occlusion, the modified neurological severity score (mNSS), an inclined plane test, and triphenyltetrazolium chloride were performed to evaluate the effectiveness of the proposed platform. The proposed platform showed that enhancement of motor function, mNSS, and infarct volumes was significantly stronger in the FNESRW group than the control group (P<0.05) and similar to the treadmill group. The experimental data demonstrated that the proposed platform can be applied to test the benefit of exercise-preconditioning-induced neuroprotection using the animal stroke model. Additional advantages of the FNESRW system include stand-alone capability, independence of subjective human adjustment, and ease of use. PMID:25140816
Training effects on ROS production determined by electron paramagnetic resonance in master swimmers.
Mrakic-Sposta, Simona; Gussoni, Maristella; Porcelli, Simone; Pugliese, Lorenzo; Pavei, Gaspare; Bellistri, Giuseppe; Montorsi, Michela; Tacchini, Philippe; Vezzoli, Alessandra
2015-01-01
Acute exercise induces an increase in Reactive Oxygen Species (ROS) production dependent on exercise intensity with highest ROS amount generated by strenuous exercise. However, chronic repetition of exercise, that is, exercise training, may reduce exercise-induced oxidative stress. Aim of this study was to evaluate the effects of 6-weeks high-intensity discontinuous training (HIDT), characterized by repeated variations of intensity and changes of redox potential, on ROS production and antioxidant capacity in sixteen master swimmers. Time course changes of ROS generation were assessed by Electron Paramagnetic Resonance in capillary blood by a microinvasive approach. An incremental arm-ergometer exercise (IE) until exhaustion was carried out at both before (PRE) and after (POST) training (Trg) period. A significant (P < 0.01) increase of ROS production from REST to the END of IE in PRE Trg (2.82 ± 0.66 versus 3.28 ± 0.66 µmol·min(-1)) was observed. HIDT increased peak oxygen consumption (36.1 ± 4.3 versus 40.6 ± 5.7 mL·kg(-1)·min(-1) PRE and POST Trg, resp.) and the antioxidant capacity (+13%) while it significantly decreased the ROS production both at REST (-20%) and after IE (-25%). The observed link between ROS production, adaptive antioxidant defense mechanisms, and peak oxygen consumption provides new insight into the correlation between ROS response pathways and muscle metabolic function.
Practical Approaches to Prescribing Physical Activity and Monitoring Exercise Intensity.
Reed, Jennifer L; Pipe, Andrew L
2016-04-01
Regular physical activity helps to prevent heart disease, and reduces the risk of first or subsequent cardiovascular events. It is recommended that Canadian adults accumulate at least 150 minutes of moderate- to vigorous-intensity aerobic exercise per week, in bouts of 10 minutes or more, and perform muscle- and bone-strengthening activities at least 2 days per week. Individual exercise prescriptions can be developed using the frequency, intensity, time, and type principles. Increasing evidence suggests that high-intensity interval training is efficacious for a broad spectrum of heart health outcomes. Several practical approaches to prescribing and monitoring exercise intensity exist including: heart rate monitoring, the Borg rating of perceived exertion scale, the Talk Test, and, motion sensors. The Borg rating of perceived exertion scale matches a numerical value to an individual's perception of effort, and can also be used to estimate heart rate. The Talk Test, the level at which simple conversation is possible, can be used to monitor desired levels of moderate- to vigorous-intensity exercise. Motion sensors can provide users with practical and useful exercise training information to aid in meeting current exercise recommendations. These approaches can be used by the public, exercise scientists, and clinicians to easily and effectively guide physical activity in a variety of settings. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Langhammer, Birgitta; Stanghelle, Johan K; Lindmark, Birgitta
2008-02-01
To evaluate the impact of two different physiotherapy exercise regimes in patients after acute stroke on health-related quality of life (HRQoL) and to investigate how the degree of motor and balance function, gait capacity, activities of daily living and instrumental activities of daily living influenced HRQoL. A longitudinal randomized controlled stratified trial of two interventions: the intensive exercise groups with scheduled intensive training during four periods of the first year after stroke and the regular exercise group with self-initiated training. There was a tendency of better HRQoL in the regular exercise group on NHP total score (p = 0.05). Patients with low scores in activities of daily living, balance and motor function and inability to perform 6-minute walk test on admission, scored lower on self-perceived health than patients with high scores and ability to perform the walking test. At 1 year post-stroke, total scores on NHP were moderately associated with motor function (r = -0.63), balance (r = -0.56), gait (r = -0.57), activities of daily living (r = -0.57) and instrumental activities of daily living (r = -0.49-0.58). The physical mobility sub-scale of NHP had the strongest association ranging from r = -0.47-0.82. The regular exercise group with self-initiated training seemed to enhance HRQoL more than the intensive exercise group with scheduled intensive training. The degree of motor function, balance, walking capacity and independence in activities of daily living is of importance for perceived HRQoL.
High intensity interval exercise training in overweight young women.
Sijie, T; Hainai, Y; Fengying, Y; Jianxiong, W
2012-06-01
The purpose of this study was intended to evaluate the effects of a high intensity interval training (HIIT) program on the body composition, cardiac function and aerobic capacity in overweight young women. Sixty female university students (aged 19-20, BMI≥25kg/m2 and percentage body fat ≥ 30%) were chosen and then randomly assigned to each of the HIIT group, the moderate intensity continuous training (MICT) group and the non-training control group. The subjects in both the HIIT and MICT groups underwent exercise training five times per week for 12 weeks. In each of the training sessions, the HIIT group performed interval exercises at the individualized heart rate (HR) of 85% of VO2max and separated by brief periods of low intensity activity (HR at 50% of VO2max), while the MICT group did continuous walking and/or jogging at the individualized HR of 50% of VO2max. Both of these exercise training programs produced significant improvements in the subjects' body composition, left ventricular ejection fraction, heart rate at rest, maximal oxygen uptake and ventilatory threshold. However, the HIIT group achieved better results than those in the MICT group, as it was evaluated by the amount of the effect size. The control group did not achieve any change in all of the measured variables. The tangible results achieved by our relatively large groups of homogeneous subjects have demonstrated that the HIIT program is an effective measure for the treatment of young women who are overweight.
Exploiting significance of physical exercise in prevention of gastrointestinal disorders.
Bilski, Jan; Mazur-Bialy, Agnieszka; Magierowski, Marcin; Kwiecien, Slawomir; Wojcik, Dagmara; Ptak-Belowska, Agata; Surmiak, Marcin; Targosz, Aneta; Magierowska, Katarzyna; Brzozowski, Tomasz
2018-05-21
Physical activity can be involved in the prevention of gastrointestinal (GI)-tract diseases, however, the results regarding the volume and the intensity of exercise considered as beneficial for protection of gastrointestinal organs are conflicting. The main objective of this review is to provide a comprehensive and updated overview on the beneficial and harmful effects of physical activity on the gastrointestinal tract. We attempted to discuss recent evidence regarding the association between different modes and intensity levels of exercise and physiological functions of the gut and gut pathology. The regular, moderate exercise can exert a beneficial effect on GI-tract disorders such as reflux esophagitis, peptic ulcers, cholelithiasis, constipation and inflammatory bowel disease (IBD) leading to the attenuation of the symptoms. This voluntary exercise has been shown to reduce the risk of colorectal cancer. On the other hand, there is considerable evidence that the high-intensity training or prolonged endurance training can exert a negative influence on GI-tract resulting in the exacerbation of symptoms. Physical activity can exhibit a beneficial effect on a variety of gastrointestinal diseases, however, this effect depends upon the exercise mode, duration and intensity. The accumulated evidence indicate that management of gastrointestinal problems and their relief by the exercise seems to be complicated and require adjustments of physical activity training, dietary measures and medical monitoring of symptoms. More experimental and clinical studies on the effects of physical activity on GI-tract disorders are warranted. Especially, the association between the exercise intensity and data addressing the underlying mechanism(s) of the exercise as the complementary therapy in the treatment of gastrointestinal disorders, require further determination in animal models and humans. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
The role of exercise training in the treatment of hypertension: an update.
Hagberg, J M; Park, J J; Brown, M D
2000-09-01
Hypertension is a very prevalent cardiovascular (CV) disease risk factor in developed countries. All current treatment guidelines emphasise the role of nonpharmacological interventions, including physical activity, in the treatment of hypertension. Since our most recent review of the effects of exercise training on patients with hypertension, 15 studies have been published in the English literature. These results continue to indicate that exercise training decreases blood pressure (BP) in approximately 75% of individuals with hypertension, with systolic and diastolic BP reductions averaging approximately 11 and 8mm Hg, respectively. Women may reduce BP more with exercise training than men, and middle-aged people with hypertension may obtain greater benefits than young or older people. Low to moderate intensity training appears to be as, if not more, beneficial as higher intensity training for reducing BP in individuals with hypertension. BP reductions are rapidly evident although, at least for systolic BP, there is a tendency for greater reductions with more prolonged training. However, sustained BP reductions are evident during the 24 hours following a single bout of exercise in patients with hypertension. Asian and Pacific Island patients with hypertension reduce BP, especially systolic BP, more and more consistently than Caucasian patients. The minimal data also indicate that African-American patients reduce BP with exercise training. Some evidence indicates that common genetic variations may identify individuals with hypertension likely to reduce BP with exercise training. Patients with hypertension also improve plasma lipoprotein-lipid profiles and improve insulin sensitivity to the same degree as normotensive individuals with exercise training. Some evidence also indicates that exercise training in hypertensive patients may result in regression of pathological left ventricular hypertrophy. These results continue to support the recommendation that exercise training is an important initial or adjunctive step that is highly efficacious in the treatment of individuals with mild to moderate elevations in BP.
Can we HIIT cancer if we attack inflammation?
Papadopoulos, Efthymios; Santa Mina, Daniel
2018-01-01
Physical exercise offers numerous health-related benefits to individuals with cancer. Epidemiologic research has primarily been concerned with conventional exercise training that aligns with the recommendations of 150 min of moderate to vigorous physical activity per week. These recommendations are safe and effective at improving physical and psychosocial outcomes. Given the extensive evidence for generalized physical activity, researchers have begun to explore novel training regimens that may provide additional health benefits and/or improved adherence. Specifically, exercise at higher intensities may offer more or different benefits than conventional training approaches with potentially profound effects on the tumor microenvironment. This commentary focuses on the physiological effects of high-intensity interval training, also known as "HIIT," and its potential antineoplastic properties.
Leech, Kristan A.; Kinnaird, Catherine R.; Holleran, Carey L.; Kahn, Jennifer
2016-01-01
Background High-intensity stepping practice may be a critical component to improve gait following motor incomplete spinal cord injury (iSCI). However, such practice is discouraged by traditional theories of rehabilitation that suggest high-intensity locomotor exercise degrades gait performance. Accordingly, such training is thought to reinforce abnormal movement patterns, although evidence to support this notion is limited. Objective The purposes of this study were: (1) to evaluate the effects of short-term manipulations in locomotor intensity on gait performance in people with iSCI and (2) to evaluate potential detrimental effects of high-intensity locomotor training on walking performance. Design A single-day, repeated-measures, pretraining-posttraining study design was used. Methods Nineteen individuals with chronic iSCI performed a graded-intensity locomotor exercise task with simultaneous collection of lower extremity kinematic and electromyographic data. Measures of interest were compared across intensity levels of 33%, 67%, and 100% of peak gait speed. A subset of 9 individuals participated in 12 weeks of high-intensity locomotor training. Similar measurements were collected and compared between pretraining and posttraining evaluations. Results The results indicate that short-term increases in intensity led to significant improvements in muscle activity, spatiotemporal metrics, and joint excursions, with selected improvements in measures of locomotor coordination. High-intensity locomotor training led to significant increases in peak gait speed (0.64–0.80 m/s), and spatiotemporal and kinematic metrics indicate a trend for improved coordination. Limitations Measures of gait performance were assessed during treadmill ambulation and not compared with a control group. Generalizability of these results to overground ambulation is unknown. Conclusions High-intensity locomotor exercise and training does not degrade, but rather improves, locomotor function and quality in individuals with iSCI, which contrasts with traditional theories of motor dysfunction following neurologic injury. PMID:27313241
Tobina, Takuro; Mori, Yukari; Doi, Yukiko; Nakayama, Fuki; Kiyonaga, Akira; Tanaka, Hiroaki
2017-09-01
Muscle peroxisome proliferator-activated receptor gamma co-activator 1 (PGC-1)α gene expression is influenced by the Gly482Ser gene polymorphism, which is a candidate genetic risk factor for diabetes mellitus and obesity. This study investigated the effects of PGC-1 gene Gly482Ser polymorphisms on alterations in glucose and lipid metabolism induced by exercise training. A 12-week intervention study was performed for 119 participants who were more than 65 years of age and completed exercise training at lactate threshold intensity. Total cholesterol and low-density lipoprotein cholesterol were significantly reduced in Gly/Gly but not in Gly/Ser and Ser/Ser participants after exercise. The Gly/Gly genotype of the PGC-1 gene Gly482Ser polymorphism influences the effects of moderate-intensity exercise training on low-density lipoprotein cholesterol and total cholesterol concentrations in older people.
Ghodrati-Jaldbakhan, Shahrbanoo; Ahmadalipour, Ali; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Alizadeh, Maryam
2017-05-15
Previous studies from our laboratory have shown that treadmill exercise alleviates the deficits in cognitive functions and anxiety behaviors induced by chronic exposure to morphine in male rats. In this study, we investigated the effects of low and high intensities of treadmill exercise on spatial memory, anxiety-like behaviors, and biochemical changes in the hippocampus and serum of morphine-treated female rats. The adult virgin female rats were injected with bi-daily doses (10mg/kg, at 12h intervals) of morphine over a period of 10days. Following these injections, the rats were exercised under low or high intensities for 30min per session on five days a week for four weeks. After exercise training, object location memory, anxiety profile, hippocampal BDNF, and serum corticosterone and BDNF were examined. Morphine-treated animals exhibited increased anxiety levels, impaired object location memory, and reduced hippocampal BDNF. Exercise alleviated these impairing effects on anxiety profile and memory but not hippocampal BDNF. The high-intensity exercise even further reduced the hippocampal BDNF. Additionally, both exercise regimens in the morphine group and the high exercise in the saline group reduced serum BDNF. Finally, the high-intensity exercise enhanced corticosterone serum. These findings indicate that the negative cognitive and behavioral effects of chronic exposure to morphine could be relieved by forced exercise in female rats. However, the exercise intensity is an important factor to be considered during exercise training. Finally, the correlation between changes of brain and serum BDNF and cognitive functions following morphine exposure needs further research. Copyright © 2017 Elsevier B.V. All rights reserved.
Aerobic exercise enhances neural correlates of motor skill learning.
Singh, Amaya M; Neva, Jason L; Staines, W Richard
2016-03-15
Repetitive, in-phase bimanual motor training tasks can expand the excitable cortical area of the trained muscles. Recent evidence suggests that an acute bout of moderate-intensity aerobic exercise can enhance the induction of rapid motor plasticity at the motor hotspot. However, these changes have not been investigated throughout the entire cortical representation. Furthermore, it is unclear how exercise-induced changes in excitability may relate to motor performance. We investigated whether aerobic exercise could enhance the neural correlates of motor learning. We hypothesized that the combination of exercise and training would increase the excitable cortical area to a greater extent than either exercise or training alone, and that the addition of exercise would enhance performance on a motor training task. 25 young, healthy, right-handed individuals were recruited and divided into two groups and three experimental conditions. The exercise group performed exercise alone (EX) and exercise followed by training (EXTR) while the training group performed training alone (TR). The combination of exercise and training increased excitability within the cortical map of the trained muscle to a greater extent than training alone. However, there was no difference in performance between the two groups. These results indicate that exercise may enhance the cortical adaptations to motor skill learning. Copyright © 2015 Elsevier B.V. All rights reserved.
Psychophysiological effects of music on acute recovery from high-intensity interval training.
Jones, Leighton; Tiller, Nicholas B; Karageorghis, Costas I
2017-03-01
Numerous studies have examined the multifarious effects of music applied during exercise but few have assessed the efficacy of music as an aid to recovery. Music might facilitate physiological recovery via the entrainment of respiratory rhythms with music tempo. High-intensity exercise training is not typically associated with positive affective responses, and thus ways of assuaging negative affect warrant further exploration. This study assessed the psychophysiological effects of music on acute recovery and prevalence of entrainment in between bouts of high-intensity exercise. Thirteen male runners (M age =20.2±1.9years; BMI=21.7±1.7; V̇O 2 max=61.6±6.1mL·kg·min -1 ) completed three exercise sessions comprising 5×5-min bouts of high-intensity intervals interspersed with 3-min periods of passive recovery. During recovery, participants were administered positively-valenced music of a slow-tempo (55-65bpm), fast-tempo (125-135bpm), or a no-music control. A range of measures including affective responses, RPE, cardiorespiratory indices (gas exchange and pulmonary ventilation), and music tempo-respiratory entrainment were recorded during exercise and recovery. Fast-tempo, positively-valenced music resulted in higher Feeling Scale scores throughout recovery periods (p<0.01, η p 2 =0.38). There were significant differences in HR during initial recovery periods (p<0.05, η p 2 =0.16), but no other music-moderated differences in cardiorespiratory responses. In conclusion, fast-tempo, positively-valenced music applied during recovery periods engenders a more pleasant experience. However, there is limited evidence that music expedites cardiorespiratory recovery in between bouts of high-intensity exercise. These findings have implications for athletic training strategies and individuals seeking to make high-intensity exercise sessions more pleasant. Copyright © 2016 Elsevier Inc. All rights reserved.
Shimano, Tomoko; Kraemer, William J; Spiering, Barry A; Volek, Jeff S; Hatfield, Disa L; Silvestre, Ricardo; Vingren, Jakob L; Fragala, Maren S; Maresh, Carl M; Fleck, Steven J; Newton, Robert U; Spreuwenberg, Luuk P B; Häkkinen, Keijo
2006-11-01
Resistance exercise intensity is commonly prescribed as a percent of 1 repetition maximum (1RM). However, the relationship between percent 1RM and the number of repetitions allowed remains poorly studied, especially using free weight exercises. The purpose of this study was to determine the maximal number of repetitions that trained (T) and untrained (UT) men can perform during free weight exercises at various percentages of 1RM. Eight T and 8 UT men were tested for 1RM strength. Then, subjects performed 1 set to failure at 60, 80, and 90% of 1RM in the back squat, bench press, and arm curl in a randomized, balanced design. There was a significant (p < 0.05) intensity x exercise interaction. More repetitions were performed during the back squat than the bench press or arm curl at 60% 1RM for T and UT. At 80 and 90% 1RM, there were significant differences between the back squat and other exercises; however, differences were much less pronounced. No differences in number of repetitions performed at a given exercise intensity were noted between T and UT (except during bench press at 90% 1RM). In conclusion, the number of repetitions performed at a given percent of 1RM is influenced by the amount of muscle mass used during the exercise, as more repetitions can be performed during the back squat than either the bench press or arm curl. Training status of the individual has a minimal impact on the number of repetitions performed at relative exercise intensity.
Iscoe, K E; Riddell, M C
2011-07-01
Individuals with Type 1 diabetes mellitus are susceptible to hypoglycaemia during and after continuous moderate-intensity exercise, but hyperglycaemia during intermittent high-intensity exercise. The combination of both forms of exercise may have a moderating effect on glycaemia in recovery. The aims of this study were to compare the physiological responses and associated glycaemic changes to continuous moderate-intensity exercise vs. continuous moderate-intensity exercise + intermittent high-intensity exercise in athletes with Type 1 diabetes. Interstitial glucose levels were measured in a blinded fashion in 11 trained athletes with Type 1 diabetes during two sedentary days and during 2 days in which 45 min of afternoon continuous moderate-intensity exercise occurred either with or without intermittent high-intensity exercise. The total amount of work performed and the duration of exercise was identical between sessions. During exercise, heart rate, respiratory exchange ratio, oxygen utilization, ventilation and blood lactate levels were higher during continuous moderate-intensity + intermittent high-intensity exercise vs. continuous moderate-intensity exercise (all P < 0.05). Despite these marked cardiorespiratory differences between trials, there was no difference in the reduction of interstitial glucose or plasma glucose levels between the exercise trials. Nocturnal glucose levels were higher in continuous moderate-intensity + intermittent high-intensity exercise and in sedentary vs. continuous moderate-intensity exercise (P < 0.05). Compared with continuous moderate-intensity exercise alone, continuous moderate-intensity + intermittent high-intensity exercise was associated with less post-exercise hypoglycaemia (5.2 vs. 1.5% of the time spent with glucose < 4.0 mmol/l) and more post-exercise hyperglycaemia (33.8 vs. 20.4% of time > 11.0 mmol/l). Although the decreases in glucose level during continuous moderate-intensity exercise and continuous moderate-intensity + intermittent high-intensity exercise are similar, the latter form of exercise protects against nocturnal hypoglycaemia in athletes with Type 1 diabetes. © 2011 The Authors. Diabetic Medicine © 2011 Diabetes UK.
High-intensity Interval Training in Different Exercise Modes: Lessons from Time to Exhaustion.
Sousa, Ana Catarina; Fernandes, Ricardo J; Boas, Joao Paulo Vilas; Figueiredo, Pedro
2018-06-20
To provide information for high-intensity interval training (HIIT) load, we compared the temporal variables of VO 2 response at, and after, a time sustained at the exercise intensity corresponding to VO 2max (Tlim) in different exercise modes. Forty-five trained male swimmers (11), rowers (13), runners (10) and cyclists (11) completed an incremental protocol to determine the velocity (vVO 2max ) or power (wVO 2max ) at VO 2max and a square wave exercise from rest to 100% of vVO 2max /wVO 2max . The temporal variables of VO 2 response were examined using a breath-by-breath gas analyzer. VO 2 responses were not different between exercise modes, except for the percentage of VO 2max at 50% of Tlim, which was ~6% higher in rowing compared to cycling (97.70±2.90 vs 92.40±5.69%, p =0.013). During the recovery period, both swimmers and rowers evidenced higher percentages of VO 2max compared to cyclists at 30 s (65.1±10.4 and 65.7±5.6 vs 52.7±5.6%) and 60 s (41.7±10.8 and 38.4±5.4 vs 30.4±1.8%) time periods, all for p< 0.01. Furthermore, swimmers presented higher time values to reach 50% VO 2max compared to runners and cyclists (51.1±15.6 vs 38.1±6.7 and 33.8±4.7%; p <0.001). When training at 100% of VO 2max intensity, fixed intervals for HIIT could be set freely. However, recovery periods based on time or intensity are exercise-mode dependent. © Georg Thieme Verlag KG Stuttgart · New York.
Effects of Physical Activity and Inactivity on Muscle Fatigue
Bogdanis, Gregory C.
2012-01-01
The aim of this review was to examine the mechanisms by which physical activity and inactivity modify muscle fatigue. It is well known that acute or chronic increases in physical activity result in structural, metabolic, hormonal, neural, and molecular adaptations that increase the level of force or power that can be sustained by a muscle. These adaptations depend on the type, intensity, and volume of the exercise stimulus, but recent studies have highlighted the role of high intensity, short-duration exercise as a time-efficient method to achieve both anaerobic and aerobic/endurance type adaptations. The factors that determine the fatigue profile of a muscle during intense exercise include muscle fiber composition, neuromuscular characteristics, high energy metabolite stores, buffering capacity, ionic regulation, capillarization, and mitochondrial density. Muscle fiber-type transformation during exercise training is usually toward the intermediate type IIA at the expense of both type I and IIx myosin heavy-chain isoforms. High-intensity training results in increases of both glycolytic and oxidative enzymes, muscle capillarization, improved phosphocreatine resynthesis and regulation of K+, H+, and lactate ions. Decreases of the habitual activity level due to injury or sedentary lifestyle result in partial or even compete reversal of the adaptations due to previous training, manifested by reductions in fiber cross-sectional area, decreased oxidative capacity, and capillarization. Complete immobilization due to injury results in markedly decreased force output and fatigue resistance. Muscle unloading reduces electromyographic activity and causes muscle atrophy and significant decreases in capillarization and oxidative enzymes activity. The last part of the review discusses the beneficial effects of intermittent high-intensity exercise training in patients with different health conditions to demonstrate the powerful effect of exercise on health and well being. PMID:22629249
Interval Exercise Therapy for Type 2 Diabetes.
Hamasaki, Hidetaka
2018-01-01
Regular exercise improves glycemic control and reduces cardiovascular risk and mortality in patients with type 2 diabetes. Continuous moderate- to high-intensity exercise has been recommended to manage type 2 diabetes; however, only approximately 30% of diabetic patients achieve the recommended levels of physical activity. The reasons for not engaging in regular exercise vary; however, one of the common reasons is lack of time. Recently, the effectiveness of shortduration interval exercise such as high-intensity interval training and interval walking has been observed. Thus, the author aimed to summarize the current knowledge and discuss recent literature regarding the effects of interval exercise therapy in type 2 diabetes. The author searched the English literature on interval training and type 2 diabetes using Pub- Med. A total of 8 studies met the criteria. Interval exercise is feasible and effective in obtaining glycemic control in patients with type 2 diabetes. It may also improve body composition, insulin sensitivity, aerobic capacity, and oxidative stress more effectively than continuous exercise. As a novel exercise therapy, interval training appears to be effective in managing type 2 diabetes. However, the safety and efficacy of this exercise modality in patients with progressed diabetic complications or a history of cardiovascular disease and in extremely older individuals remain unknown. Additionally, there is considerable heterogeneity in exercise interventions (intensity and duration) between clinical studies. Further studies are needed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Röhling, M; Herder, C; Roden, M; Stemper, T; Müssig, K
2016-09-01
Aim: Physical activity is one of the cornerstones in the prevention and management of diabetes mellitus, but the effects of different training forms on metabolic control still remain unclear. The aims of this review are to summarize the recommendations of 5 selected diabetes associations and to systematically review the effects of long-term supervised exercise interventions without calorie-restriction on glycemic control in people with type 1 and 2 diabetes focusing on resistance, endurance and combined training consisting of both endurance and resistance training. Methods: Literature searches were performed using MEDLINE for articles published between January 1, 2000 and March 17, 2015. Of 76 articles retrieved, 15 randomized and controlled studies met the inclusion criteria and allowed for examining the effect of exercise training in type 1 and 2 diabetes. Results: Diabetes associations recommend volume-focused exercise in their guidelines. In our analysis, all 3 training forms have the potential to improve the glycemic control, as assessed by HbA 1c (absolute changes in HbA 1c ranging from -0.1% to -1.1% (-1.1 to -12 mmol/mol) in resistance training, from -0.2% to -1.6% (-2.2 to -17.5 mmol/mol) in endurance training and from +0.1% to -1.5% (+1.1 to -16.4 mmol/mol) in combined training, respectively). Conclusions: There is evidence that combined exercise training may improve glycemic control to a greater extent than single forms of exercise, especially under moderate-intensive training conditions with equal training durations. In addition, intensity of training appears to be an important determinant of the degree of metabolic improvement. Nonetheless, it is still unknown to what extent exercise effects glycemic homeostasis. © Georg Thieme Verlag KG Stuttgart · New York.
Damirchi, Arsalan; Farjaminezhad, Manoochehr
2016-01-01
Objective. To assess the influence of different physical training status on exercise-induced oxidative stress and changes in cellular redox state. Methods. Thirty male subjects participated in this study and were assigned as well-trained (WT), moderately trained (MT), and untrained (UT) groups. The levels of cortisol, creatine kinase, plasma reduced glutathione to oxidized glutathione (GSH/GSSG), cysteine/cystine (Cys/CySS), and GSH/GSSG ratio in red blood cells (RBCs) were measured immediately and 10 and 30 min after exercise. Results. Following the exercise, plasma GSH/GSSG (p = 0.001) and Cys/CySS (p = 0.005) were significantly reduced in all groups. Reduction in plasma GSH/GSSG ratio in all groups induced a transient shift in redox balance towards a more oxidizing environment without difference between groups (p = 0.860), while RBCs GSH/GSSG showed significant reduction (p = 0.003) and elevation (p = 0.007) in UT and MT groups, respectively. The highest level of RBCs GSH/GSSG ratio was recorded in MT group, and the lowest one was recorded in the WT group. Conclusion. Long term regular exercise training with moderate intensity shifts redox balance towards more reducing environment, versus intensive exercise training leads to more oxidizing environment and consequently development of related diseases. PMID:27064342
Binayi, Fateme; Joukar, Siyavash; Najafipour, Hamid; Karimi, Abdolah; Karimi, Ali; Abdollahi, Farzane; Masumi, Yaser
2016-01-01
We examined the influence of chronic administration of nandrolone decanoate with low-intensity endurance swimming exercise on susceptibility to lethal ventricular arrhythmias in rat. The animal groups included the control group, exercise group (EX), nandrolone group (Nan), vehicle group (Arach), trained vehicle group (Arach + Ex) and trained nandrolone group (Nan + Ex) that treated for 8 weeks. Then, arrhythmia induction was performed by intravenous infusion of aconitine and electrocardiogram recorded. Then, malondialdehyde (MDA), hydroxyproline (HYP) and glutathione peroxidase of heart tissue were measured. Chronic administration of nandrolone with low-intensity endurance swimming exercise had no significant effect on blood pressure, heart rate and basal ECG parameters except RR interval that showed increase (P < 0.05). Low-intensity exercise could prevent the incremental effect of nandrolone on MDA and HYP significantly. It also increased the heart hypertrophy index (P < 0.05) and reduced the abating effect of nandrolone on animal weighting. Nandrolone along with exercise significantly increased the duration of VF (P < 0.05) and reduced the VF latency (P < 0.05). The findings suggest that chronic co-administration of nandrolone with low-intensity endurance swimming exercise to some extent facilitates the occurrence of ventricular fibrillation in rat. Complementary studies are needed to elucidate the involved mechanisms of this abnormality.
Comparison of two exercise programs on general well-being of college students.
Bass, Martha A; Enochs, Wendy K; DiBrezzo, Ro
2002-12-01
Responses to life stressors are associated with negative behaviors that may increase risk for illness and injury. The effect of high intensity exercise in reducing reactivity to psychological stress has been well documented among older people. The purpose of this study was to ascertain the effect of weight-training versus aerobic dance on psychological stress in college students. 45 students participated in a weight-training course, 35 students participated in aerobic dance classes, and 34 students served as a control group. The Survey of Recent Life Experiences was used to appraise stressfulness of current experiences before and after exercise intervention. On immediate retest after 8 wk. of weight-training perceived stress was significantly reduced when compared with an 8-wk. aerobic dance program, but there were no significant differences between the control group and the weight-training group or the aerobic dance group. These results suggest that a regular routine of low intensity exercise such as weight-training may reduce perceived stress on an immediate test.
Cravana, Cristina; Medica, P.; Ragonese, G.; Fazio, E.
2017-01-01
Aim: To investigate the effects of training sessions on circulating β-endorphin changes in sport horses before and after competition and to ascertain whether competition would affect this response. Materials and Methods: A total of 24 trained jumping horses were randomly assigned to one of two training groups: Group A (competing) and Group B (not competing). To determined plasma β-endorphin concentrations, two pre- and post-competition training weeks at aerobic workout and two competitive show jumping event days at anaerobic workout were measured before, 5 and 30 min after exercise. Exercise intensity is described using lactate concentrations and heart rate. The circuit design, intensity, and duration of training sessions were the same for both groups. Results: In Group A, one-way analysis of variance for repeated measures (RM-ANOVA) showed significant effects of exercise on β-endorphin changes (F=14.41; p<0.001), only in the post-competition training sessions, while in Group B showed no significant effects. Two-way RM-ANOVA showed, after post-competition training sessions, a significant difference between Group A and Group B (F=6.235; p=0.023), with higher β-endorphin changes in Group A, compared to Group B. During the competitive show jumping sessions, one-way RM ANOVA showed significant effects of exercise on β-endorphin changes (F=51.10; p<0.001). The statistical analysis, in Group A, showed a significant difference between post-competition training and competitive exercise (F=6.32; p=0.024) with higher β-endorphin values in competitive sessions compared to those of post-competition training. Conclusion: Lactate concentrations seem to be the main factors being correlated with the raise of β-endorphin during anaerobic exercise of competitive events. Exercise of low intensity, as well as that one of training sessions, does not appear to stimulate a significant increased release of β-endorphin and it may depend on the duration of the exercise program. Moreover, the responses during exercise in the course of post-competition training sessions seem to be significantly different from those the pre-competition training. These data show that the preliminary competitive stress induced additional significant changes of β-endorphin pattern. It would reflect the need of a long-lasting modulation of fatigue and pain perception related to the effect of an additional physical and mental effort for the consecutive competitive and training sessions. PMID:28246449
Rydeard, Rochenda; Leger, Andrew; Smith, Drew
2006-07-01
A randomized controlled trial, prestest-posttest design, with a 3-, 6-, and 12-month follow-up. To investigate the efficacy of a therapeutic exercise approach in a population with chronic low back pain (LBP). Therapeutic approaches developed from the Pilates method are becoming increasingly popular; however, there have been no reports on their efficacy. Thirty-nine physically active subjects between 20 and 55 years old with chronic LBP were randomly assigned to 1 of 2 groups. The specific-exercise-training group participated in a 4-week program consisting of training on specialized (Pilates) exercise equipment, while the control group received the usual care, defined as consultation with a physician and other specialists and healthcare professionals, as necessary. Treatment sessions were designed to train the activation of specific muscles thought to stabilize the lumbar-pelvic region. Functional disability outcomes were measured with The Roland Morris Disability Questionnaire (RMQ/RMDQ-HK) and average pain intensity using a 101-point numerical rating scale. There was a significantly lower level of functional disability (P = .023) and average pain intensity (P = .002) in the specific-exercise-training group than in the control group following the treatment intervention period. The posttest adjusted mean in functional disability level in the specific-exercise-training group was 2.0 (95% CI, 1.3 to 2.7) RMQ/RMDQ-HK points compared to a posttest adjusted mean in the control group of 3.2 (95% CI, 2.5 to 4.0) RMQ/RMDQ-HK points. The posttest adjusted mean in pain intensity in the specific-exercise-training group was 18.3 (95% CI, 11.8 to 24.8), as compared to 33.9 (95% CI, 26.9 to 41.0) in the control group. Improved disability scores in the specific-exercise-training group were maintained for up to 12 months following treatment intervention. The individuals in the specific-exercise-training group reported a significant decrease in LBP and disability, which was maintained over a 12-month follow-up period. Treatment with a modified Pilates-based approach was more efficacious than usual care in a population with chronic, unresolved LBP.
Tai Chi training for patients with coronary heart disease.
Lan, Ching; Chen, Ssu-Yuan; Wong, May-Kuen; Lai, Jin-Shin
2008-01-01
Coronary heart disease (CHD) is the leading cause of death in the developed countries and many developing countries. Exercise training is the cornerstone of cardiac rehabilitation program for patients with CHD, and exercise intensities in the 50-70% heart rate reserve have been shown to improve functional capacity. However, recent studies found exercise with lower intensity also displayed benefits to CHD patients, and increased the acceptance of exercise program, particularly unfit and elderly patients. Tai Chi Chuan (TC) is a traditional conditioning exercise in the Chinese community, and recently it has become more popular in the Western societies. The exercise intensity of TC is low to moderate, depending on the training style, posture and duration. Participants can choose to perform a complete set of TC or selected movements according to their needs. Previous research substantiates that TC enhances aerobic capacity, muscular strength, endothelial function and psychological wellbeing. In addition, TC reduces some cardiovascular risk factors, such as hypertension and dyslipidemia. Recent studies have also proved that TC is safe and effective for patients with myocardial infarction, coronary bypass surgery and heart failure. Therefore, TC may be prescribed as an alternative exercise program for selected patients with cardiovascular diseases. In conclusion, TC has potential benefits for patients with CHD, and is appropriate for implementation in the community.
Physical Activity Participation and Constraints Among Athletic Training Students
Stanek, Justin; Rogers, Katherine; Anderson, Jordan
2015-01-01
Context: Researchers have examined the physical activity (PA) habits of certified athletic trainers; however, none have looked specifically at athletic training students. Objective: To assess PA participation and constraints to participation among athletic training students. Design: Cross-sectional study. Setting: Entry-level athletic training education programs (undergraduate and graduate) across the United States. Patients or Other Participants: Participants were 1125 entry-level athletic training students. Main Outcome Measure(s): Self-reported PA participation, including a calculated PA index based on a typical week. Leisure constraints and demographic data were also collected. Results: Only 22.8% (252/1105) of athletic training students were meeting the American College of Sports Medicine recommendations for PA through moderate-intensity cardiorespiratory exercise. Although 52.3% (580/1105) were meeting the recommendations through vigorous-intensity cardiorespiratory exercise, 60.5% (681/1125) were meeting the recommendations based on the combined total of moderate or vigorous cardiorespiratory exercise. In addition, 57.2% (643/1125) of respondents met the recommendations for resistance exercise. Exercise habits of athletic training students appear to be better than the national average and similar to those of practicing athletic trainers. Students reported structural constraints such as lack of time due to work or studies as the most significant barrier to exercise participation. Conclusions: Athletic training students experienced similar constraints to PA participation as practicing athletic trainers, and these constraints appeared to influence their exercise participation during their entry-level education. Athletic training students may benefit from a greater emphasis on work-life balance during their entry-level education to promote better health and fitness habits. PMID:25689560
Thompson, Christopher; Wylie, Lee J.; Blackwell, Jamie R.; Fulford, Jonathan; Black, Matthew I.; Kelly, James; McDonagh, Sinead T. J.; Carter, James; Bailey, Stephen J.; Vanhatalo, Anni
2017-01-01
We hypothesized that 4 wk of dietary nitrate supplementation would enhance exercise performance and muscle metabolic adaptations to sprint interval training (SIT). Thirty-six recreationally active subjects, matched on key variables at baseline, completed a series of exercise tests before and following a 4-wk period in which they were allocated to one of the following groups: 1) SIT and NO3−-depleted beetroot juice as a placebo (SIT+PL); 2) SIT and NO3−-rich beetroot juice (~13 mmol NO3−/day; SIT+BR); or 3) no training and NO3−-rich beetroot juice (NT+BR). During moderate-intensity exercise, pulmonary oxygen uptake was reduced by 4% following 4 wk of SIT+BR and NT+BR (P < 0.05) but not SIT+PL. The peak work rate attained during incremental exercise increased more in SIT+BR than in SIT+PL (P < 0.05) or NT+BR (P < 0.001). The reduction in muscle and blood [lactate] and the increase in muscle pH from preintervention to postintervention were greater at 3 min of severe-intensity exercise in SIT+BR compared with SIT+PL and NT+BR (P < 0.05). However, the change in severe-intensity exercise performance was not different between SIT+BR and SIT+PL (P > 0.05). The relative proportion of type IIx muscle fibers in the vastus lateralis muscle was reduced in SIT+BR only (P < 0.05). These findings suggest that BR supplementation may enhance some aspects of the physiological adaptations to SIT. NEW & NOTEWORTHY We investigated the influence of nitrate-rich and nitrate-depleted beetroot juice on the muscle metabolic and physiological adaptations to 4 wk of sprint interval training. Compared with placebo, dietary nitrate supplementation reduced the O2 cost of submaximal exercise, resulted in greater improvement in incremental (but not severe-intensity) exercise performance, and augmented some muscle metabolic adaptations to training. Nitrate supplementation may facilitate some of the physiological responses to sprint interval training. PMID:27909231
Exercise Training During Bed Rest Attenuates Deconditioning
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Hargens, Alan R. (Technical Monitor)
1995-01-01
A 30-day 6 deg. head-down bed rest study was conducted to evaluate high-intensity, short-duration, alternating isotonic cycle ergometer exercise (ITE) training and high-intensity intermittent isokinetic exercise (IKE) training regiments designed to maintain peak VO2 and muscle mass, strength, and endurance at ambulatory control levels throughout prolonged bed rest. Other elements of the deconditioning (acclimation) syndrome, such as proprioception, psychological performance, hypovolemia, water balance, body composition, and orthostatic tolerance, were also measured. Compared with response during bed rest of the no exercise (NOE) control group: the ITE training regimen (a) maintained work capacity (peak VO2), (b) maintained plasma and red cell volume, (c) induced positive body water balance, (d) decreased quality of sleep and mental concentration, and (e) had no effect on the decrease in orthostatic tolerance; the IKE training regimen (a) attenuated the decrease in peak VO2 by 50%, (b) attenuated loss of red cell volume by 40%, but had no effect on loss of plasma volume, (c) induced positive body water balance, (d) had no adverse effect on quality of sleep or concentration, and (e) had no effect on the decrease in orthostatic tolerance. These findings suggest that various elements of the deconditioning syndrome can be manipulated by duration and intensity of ITE or IKE training regiments, and that several different training protocols will be required to maintain or restore physiological and psychological performance of individuals confined to prolonged bed rest.
Gayda, Mathieu; Ribeiro, Paula A B; Juneau, Martin; Nigam, Anil
2016-04-01
In this review, we discuss the most recent forms of exercise training available to patients with cardiac disease and their comparison or their combination (or both) during short- and long-term (phase II and III) cardiac rehabilitation programs. Exercise training modalities to be discussed include inspiratory muscle training (IMT), resistance training (RT), continuous aerobic exercise training (CAET), and high-intensity interval training (HIIT). Particular emphasis is placed on HIIT compared or combined (or both) with other forms such as CAET or RT. For example, IMT combined with CAET was shown to be superior to CAET alone for improving functional capacity, ventilatory function, and quality of life in patients with chronic heart failure. Similarly, RT combined with CAET was shown to optimize benefits with respect to functional capacity, muscle function, and quality of life. Furthermore, in recent years, HIIT has emerged as an alternative or complementary (or both) exercise modality to CAET, providing equivalent if not superior benefits to conventional continuous aerobic training with respect to aerobic fitness, cardiovascular function, quality of life, efficiency, safety, tolerance, and exercise adherence in both short- and long-term training studies. Finally, short-interval HIIT was shown to be useful in the initiation and improvement phases of cardiac rehabilitation, whereas moderate- or longer-interval (or both) HIIT protocols appear to be more appropriate for the improvement and maintenance phases because of their high physiological stimulus. We now propose progressive models of exercise training (phases II-III) for patients with cardiac disease, including a more appropriate application of HIIT based on the scientific literature in the context of a multimodal cardiac rehabilitation program. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Hajizadeh Maleki, Behzad; Tartibian, Bakhtyar; Chehrazi, Mohammad
2017-02-01
The aim of this study was to investigate the effects of moderate-intensity continuous training (MICT), high-intensity continuous training (HICT) and high-intensity interval training (HIIT) on markers of male reproduction including seminal markers of oxidative stress and inflammation as well as semen quality and sperm DNA integrity in healthy human subjects. A total of 397 healthy male volunteers were screened and 280 were randomly assigned to one of the MICT (n = 70), HICT (n = 70), HIIT (n = 70) and non-exercise (NON-EX, n = 70) groups. Subjects had inflammatory markers (IL-1β, IL-6, IL-8 and TNF-α), oxidants (ROS, MDA and 8-isoprostane), antioxidants (SOD, catalase and TAC), semen parameters and sperm DNA damage measured at baseline (T 1 ), the end of week 12 (T 2 ), the end of week 24 (T 3 ), and 7 (T 4 ) and 30 days (T 5 ) after training. Chronic MICT, HICT and HIIT attenuated seminal markers of oxidative stress and inflammation with different kinetics for the three types of exercise (P < 0.05), and these changes were correlated with favorable improvements in semen quality parameters and sperm DNA integrity (P < 0.05). MICT was superior to HICT and HIIT in the improvements of markers of male reproductive function (P < 0.05). In conclusion, different exercise modalities favorably affect markers of male reproduction with different kinetics, suggesting intensity-, duration- and type-dependent adaptations to exercise training in healthy human subjects. © 2017 Society for Reproduction and Fertility.
Vezzoli, Alessandra; Pugliese, Lorenzo; Marzorati, Mauro; Serpiello, Fabio Rubens; La Torre, Antonio; Porcelli, Simone
2014-01-01
Beneficial systemic effects of regular physical exercise have been demonstrated to reduce risks of a number of age-related disorders. Antioxidant capacity adaptations are amongst these fundamental changes in response to exercise training. However, it has been claimed that acute physical exercise performed at high intensity (>60% of maximal oxygen uptake) may result in oxidative stress, due to reactive oxygen species being generated excessively by enhanced oxygen consumption. The aim of this study was to evaluate the effect of high-intensity discontinuous training (HIDT), characterized by repeated variations of intensity and changes of redox potential, on oxidative damage. Twenty long-distance masters runners (age 47.8±7.8 yr) on the basis of the individual values of gas exchange threshold were assigned to a different 8-weeks training program: continuous moderate-intensity training (MOD, n = 10) or HIDT (n = 10). In both groups before (PRE) and after (POST) training we examined the following oxidative damage markers: thiobarbituric acid reactive substances (TBARS) as marker of lipid peroxidation; protein carbonyls (PC) as marker of protein oxidation; 8-hydroxy-2-deoxy-guanosine (8-OH-dG) as a biomarker of DNA base modifications; and total antioxidant capacity (TAC) as indicator of the overall antioxidant system. Training induced a significant (p<0.05) decrease in resting plasma TBARS concentration in both MOD (7.53±0.30 and 6.46±0.27 µM, PRE and POST respectively) and HIDT (7.21±0.32 and 5.85±0.46 µM, PRE and POST respectively). Resting urinary 8-OH-dG levels were significantly decreased in both MOD (5.50±0.66 and 4.16±0.40 ng mg−1creatinine, PRE and POST respectively) and HIDT (4.52±0.50 and 3.18±0.34 ng mg−1creatinine, PRE and POST respectively). Training both in MOD and HIDT did not significantly modify plasma levels of PC. Resting plasma TAC was reduced in MOD while no significant changes were observed in HIDT. In conclusion, these results suggest that in masters runners high-intensity discontinuous does not cause higher level of exercise-induced oxidative stress than continuous moderate-intensity training, inducing similar beneficial effects on redox homeostasis. PMID:24498121
Zafeiridis, Andreas; Chatziioannou, Anastasia Chrysovalantou; Sarivasiliou, Haralambos; Kyparos, Antonios; Nikolaidis, Michalis G; Vrabas, Ioannis S; Pechlivanis, Alexandros; Zoumpoulakis, Panagiotis; Baskakis, Constantinos; Dipla, Konstantina; Theodoridis, Georgios A
2016-12-02
The overall metabolic/energetic stress that occurs during an acute bout of exercise is proposed to be the main driving force for long-term training adaptations. Continuous and high-intensity interval exercise protocols (HIIE) are currently prescribed to acquire the muscular and metabolic benefits of aerobic training. We applied 1 H NMR-based metabonomics to compare the overall metabolic perturbation and activation of individual bioenergetic pathways of three popular aerobic exercises matched for effort/strain. Nine men performed continuous, long-interval (3 min), and short-interval (30 s) bouts of exercise under isoeffort conditions. Blood was collected before and after exercise. The multivariate PCA and OPLS-DA models showed a distinct separation of pre- and postexercise samples in three protocols. The two models did not discriminate the postexercise overall metabolic profiles of the three exercise types. Analysis focused on muscle bioenergetic pathways revealed an extensive upregulation of carbohydrate-lipid metabolism and the TCA cycle in all three protocols; there were only a few differences among protocols in the postexercise abundance of molecules when long-interval bouts were performed. In conclusion, continuous and HIIE exercise protocols, when performed with similar effort/strain, induce comparable global metabolic response/stress despite their marked differences in work-bout intensities. This study highlights the importance of NMR metabonomics in comprehensive monitoring of metabolic consequences of exercise training in the blood of athletes and exercising individuals.
Pituitary-adrenal-gonadal responses to high-intensity resistance exercise overtraining.
Fry, A C; Kraemer, W J; Ramsey, L T
1998-12-01
Weight-trained men [OT; n = 11; age = 22.0 +/- 0.9 (SE) yr] resistance trained daily at 100% one-repetition maximum (1-RM) intensity for 2 wk, resulting in 1-RM strength decrements and in an overtrained state. A control group (Con; n = 6; age = 23.7 +/- 2.4 yr) trained 1 day/wk at a low relative intensity (50% 1 RM). After 2 wk, the OT group exhibited slightly increased exercise-induced testosterone (preexercise = 26.5 +/- 1.3 nmol/l, postexercise = 29.1 +/- 5.9 nmol/l) and testosterone-to-cortisol ratio (preexercise = 0. 049 +/- 0.007 nmol/l, postexercise = 0.061 +/- 0.006 nmol/l) and decreased exercise-induced cortisol (preexercise = 656.1 +/- 98.1 nmol/l, postexercise = 503.1 +/- 39.7 nmol/l). Serum concentrations for growth hormone and plasma peptide F [preproenkephalin (107-140)] were similar for both groups throughout the overtraining period. This hormonal profile is distinctly different from what has been previously reported for other types of overtraining, indicating that high-relative-intensity resistance exercise overtraining may not be successfully monitered via circulating testosterone and cortisol. Unlike overtraining conditions with endurance athletes, altered resting concentrations of pituitary, adrenal, or gonadal hormones were not evident, and exercise-induced concentrations were only modestly affected.
Exercise prescription to reverse frailty.
Bray, Nick W; Smart, Rowan R; Jakobi, Jennifer M; Jones, Gareth R
2016-10-01
Frailty is a clinical geriatric syndrome caused by physiological deficits across multiple systems. These deficits make it challenging to sustain homeostasis required for the demands of everyday life. Exercise is likely the best therapy to reverse frailty status. Literature to date suggests that pre-frail older adults, those with 1-2 deficits on the Cardiovascular Health Study-Frailty Phenotype (CHS-frailty phenotype), should exercise 2-3 times a week, for 45-60 min. Aerobic, resistance, flexibility, and balance training components should be incorporated but resistance and balance activities should be emphasized. On the other hand, frail (CHS-frailty phenotype ≥ 3 physical deficits) older adults should exercise 3 times per week, for 30-45 min for each session with an emphasis on aerobic training. During aerobic, balance, and flexibility training, both frail and pre-frail older adults should work at an intensity equivalent to a rating of perceived exertion of 3-4 ("somewhat hard") on the Borg CR10 scale. Resistance-training intensity should be based on a percentage of 1-repetition estimated maximum (1RM). Program onset should occur at 55% of 1RM (endurance) and progress to higher intensities of 80% of 1RM (strength) to maximize functional gains. Exercise is the medicine to reverse or mitigate frailty, preserve quality of life, and restore independent functioning in older adults at risk of frailty.
The essential role of exercise in the management of type 2 diabetes.
Kirwan, John P; Sacks, Jessica; Nieuwoudt, Stephan
2017-07-01
Exercise is typically one of the first management strategies advised for patients newly diagnosed with type 2 diabetes. Together with diet and behavior modification, exercise is an essential component of all diabetes and obesity prevention and lifestyle intervention programs. Exercise training, whether aerobic or resistance training or a combination, facilitates improved glucose regulation. High-intensity interval training is also effective and has the added benefit of being very time-efficient. While the efficacy, scalability, and affordability of exercise for the prevention and management of type 2 diabetes are well established, sustainability of exercise recommendations for patients remains elusive. Copyright © 2017 Cleveland Clinic.
Kline, Christopher E; Ewing, Gary B; Burch, James B; Blair, Steven N; Durstine, J Larry; Davis, J Mark; Youngstedt, Shawn D
2012-08-15
To explore the utility of exercise training for improving daytime functioning in adults with obstructive sleep apnea (OSA). Forty-three sedentary and overweight/obese adults aged 18-55 years with at least moderate-severity untreated OSA (apnea-hypopnea index ≥ 15) were randomized to 12 weeks of moderate-intensity aerobic and resistance exercise training (n = 27) or low-intensity stretching control treatment (n = 16). As part of a trial investigating the efficacy of exercise training on OSA severity, daytime functioning was assessed before and following the intervention. Sleepiness, functional impairment due to sleepiness, depressive symptoms, mood, and quality of life (QOL) were evaluated with validated questionnaires, and cognitive function was assessed with a neurobehavioral performance battery. OSA severity was measured with one night of laboratory polysomnography before and following the intervention. Compared with stretching control, exercise training resulted in significant improvements in depressive symptoms, fatigue and vigor, and aspects of QOL (p < 0.05). Sleepiness and functional impairment due to sleepiness also were improved following exercise versus control to a similar degree in terms of effect sizes (d > 0.5), though these changes were not statistically significant. No neurobehavioral performance improvements were found. Reduced fatigue following exercise training was mediated by a reduction in OSA severity, but changes in OSA severity did not significantly mediate improvement in any other measure of daytime functioning. These data provide preliminary evidence that exercise training may be helpful for improving aspects of daytime functioning of adults with OSA. Larger trials are needed to further verify the observed improvements.
Resistance exercise training attenuates exercise-induced lipid peroxidation in the elderly.
Vincent, Kevin R; Vincent, Heather K; Braith, Randy W; Lennon, Shannon L; Lowenthal, David T
2002-08-01
This study examined the effects of 6 months of resistance exercise (RX) on basal and post-aerobic exercise lipid peroxidation (LIPOX). Men and women [n = 62, mean (SD) age 68.4 (6) years] were divided randomly into either a control (n = 16, CON), low-intensity training [LEX n = 24; 50% one-repetition maximum (1RM), 13 repetitions/exercise], or high-intensity training (HEX n = 22, 80% 1RM, 8 repetitions/exercise) group. Pre- and post-training, subjects performed a graded aerobic exercise test (GXT). Blood samples were collected prior to and 10 min following each GXT. Subjects trained 3 times per week for 6 months using 12 RX machines. LIPOX was determined by measuring levels of thiobarbituric reactive acid substances (TBARS) and lipid hydroperoxides (PEROX). RX had no effect on resting LIPOX. Post-training, post-GXT TBARS were lower in the LEX and HEX groups by 14% and 18%, respectively, compared to CON (P < 0.05). Post-GXT PEROX levels were lower (P < 0.05) in LEX and HEX compared to CON [CON 3.51 (0.56) nmol/ml, LEX 2.89 (0.80) nmol/ml, HEX 2.99 (0.63) nmol/ml]. Serum total and non-protein (glutathione) thiols were higher in the LEX and HEX groups following training compared to CON (P < 0.05). These data suggest that RX can (1) reduce serum LIPOX, (2) provide protection against oxidizing agents in vitro, and (3) provide a "cross-protection" against the oxidative stress generated by aerobic exercise, perhaps mediated by improvements in the thiol portion of the antioxidant defense.
The impact of brief high-intensity exercise on blood glucose levels.
Adams, O Peter
2013-01-01
Moderate-intensity exercise improves blood glucose (BG), but most people fail to achieve the required exercise volume. High-intensity exercise (HIE) protocols vary. Maximal cycle ergometer sprint interval training typically requires only 2.5 minutes of HIE and a total training time commitment (including rest and warm up) of 25 minutes per session. The effect of brief high-intensity exercise on blood glucose levels of people with and without diabetes is reviewed. HIE (≥80% maximal oxygen uptake, VO2max) studies with ≤15 minutes HIE per session were reviewed. Six studies of nondiabetics (51 males, 14 females) requiring 7.5 to 20 minutes/week of HIE are reviewed. Two weeks of sprint interval training increased insulin sensitivity up to 3 days postintervention. Twelve weeks near maximal interval running (total exercise time 40 minutes/week) improved BG to a similar extent as running at 65% VO2max for 150 minutes/week. Eight studies of diabetics (41 type 1 and 22 type 2 subjects) were reviewed. Six were of a single exercise session with 44 seconds to 13 minutes of HIE, and the others were 2 and 7 weeks duration with 20 and 2 minutes/week HIE, respectively. With type 1 and 2 diabetes, BG was generally higher during and up to 2 hours after HIE compared to controls. With type 1 diabetics, BG decreased from midnight to 6 AM following HIE the previous morning. With type 2 diabetes, a single session improved postprandial BG for 24 hours, while a 2-week program reduced the average BG by 13% at 48 to 72 hours after exercise and also increased GLUT4 by 369%. Very brief HIE improves BG 1 to 3 days postexercise in both diabetics and non-diabetics. HIE is unlikely to cause hypoglycemia during and immediately after exercise. Larger and longer randomized studies are needed to determine the safety, acceptability, long-term efficacy, and optimal exercise intensity and duration.
Lensu, Sanna; Ahtiainen, Juha P.; Johansson, Petra P.; Koch, Lauren G.; Britton, Steven L.; Kainulainen, Heikki
2016-01-01
Key points Aerobic exercise, such as running, enhances adult hippocampal neurogenesis (AHN) in rodents.Little is known about the effects of high‐intensity interval training (HIT) or of purely anaerobic resistance training on AHN.Here, compared with a sedentary lifestyle, we report a very modest effect of HIT and no effect of resistance training on AHN in adult male rats.We found the most AHN in rats that were selectively bred for an innately high response to aerobic exercise that also run voluntarily and increase maximal running capacity.Our results confirm that sustained aerobic exercise is key in improving AHN. Abstract Aerobic exercise, such as running, has positive effects on brain structure and function, such as adult hippocampal neurogenesis (AHN) and learning. Whether high‐intensity interval training (HIT), referring to alternating short bouts of very intense anaerobic exercise with recovery periods, or anaerobic resistance training (RT) has similar effects on AHN is unclear. In addition, individual genetic variation in the overall response to physical exercise is likely to play a part in the effects of exercise on AHN but is less well studied. Recently, we developed polygenic rat models that gain differentially for running capacity in response to aerobic treadmill training. Here, we subjected these low‐response trainer (LRT) and high‐response trainer (HRT) adult male rats to various forms of physical exercise for 6–8 weeks and examined the effects on AHN. Compared with sedentary animals, the highest number of doublecortin‐positive hippocampal cells was observed in HRT rats that ran voluntarily on a running wheel, whereas HIT on the treadmill had a smaller, statistically non‐significant effect on AHN. Adult hippocampal neurogenesis was elevated in both LRT and HRT rats that underwent endurance training on a treadmill compared with those that performed RT by climbing a vertical ladder with weights, despite their significant gain in strength. Furthermore, RT had no effect on proliferation (Ki67), maturation (doublecortin) or survival (bromodeoxyuridine) of new adult‐born hippocampal neurons in adult male Sprague–Dawley rats. Our results suggest that physical exercise promotes AHN most effectively if the exercise is aerobic and sustained, especially when accompanied by a heightened genetic predisposition for response to physical exercise. PMID:26844666
Tomiya, Shigeto; Kikuchi, Naoki; Nakazato, Koichi
2017-01-01
The purpose of the present study was to examine the effect of 30-min moderate intensity cycling exercise immediately after upper-body resistance training on the muscle hypertrophy and strength gain. Fourteen subjects were randomly divided between two groups. One group performed moderate intensity (55% of maximum oxygen consumption [VO2max], 30 min) cycle training immediately after arm resistance training as concurrent training (CT; n = 7, age: 21.8 ± 0.7 years, height: 1.68 ± 0.06 m, weight: 60.3 ± 7.4 kg); the second group performed the same endurance and arm RT on separate days as control group (SEP; n=7, age: 22.1 ± 0.7 years, height: 1.76 ± 0.05 m, weight: 63.8 ± 3.6 kg). The supervised progressive RT program was designed to induce muscular hypertrophy (3-5 sets of 10 repetitions) with bilateral arm-curl exercise using 75% of the one repetition maximum (1RM) with 2-min rest intervals. The RT program was performed for 8 weeks, twice per week. Muscle cross-sectional area (CSA), 1RM, and VO2max were measured pre- and post-training. Significant increases in muscle CSA from pre- to post-training were observed in both the SEP (p = 0.001, effect size [ES] = 0.84) and the CT groups (p = 0.004, ES = 0.45). A significant increase in 1RM from pre- to post-training was observed in the SEP (p = 0.025, ES = 0.91) and CT groups (p = 0.001, ES = 2.38). There were no interaction effects (time × group) for CSA, 1RM, or VO2max. A significantly higher percentage change of CSA was observed in the SEP group (12.1 ± 4.9%) compared to the CT group (5.0 ± 2.7%, p = 0.029), but no significant difference was observed in the 1RM (SEP: 19.8 ± 16.8%, CT: 24.3 ± 11.1%). The data suggest that significant improvement of CSA and strength can be expected with progressive resistance training with subsequent endurance exercise performed immediately or on a different day. Changes in CSA might be affected by subsequent cycling exercise after 8 weeks of training. Key points Moderate intensity cycling exercise immediately after upper-body resistance training influences the magnitude of muscle hypertrophy and relative value of CSA changes. There was no statistically significant difference in the % change in 1RM between groups after concurrent strength training and moderate intensity endurance training. Timing of endurance training could alter the degree of muscular growth induced by resistance training. PMID:28912657
Time Course of Atrophic Remodeling: Effects of Exercise on Cardiac Morpology and Function
NASA Technical Reports Server (NTRS)
Scott, J. M.; Martin, D.; Caine, T.; Matz, T.; Ploutz-Snyder, L. L.
2014-01-01
Early and consistent evaluation of cardiac morphology and function throughout an atrophic stimulus is critically important for the design and optimization of interventions. Exercise training is one intervention that has been shown to confer favorable improvements in LV mass and function during unloading. However, the format and intensity of exercise required to induce optimal cardiac improvements has not been investigated. PURPOSE: This randomized, controlled trial was designed to 1) comprehensively characterize the time course of unloading-induced morpho-functional remodeling, and 2) examine the effects of high intensity exercise training on cardiac structural and functional parameters during unloading. METHODS: Twenty six subjects completed 70 days of head down tilt bed rest (HDBR): 17 were randomized to exercise training (ExBR) and 9 remained sedentary. Exercise consisted of integrated high intensity, continuous, and resistance exercise. We assessed cardiac morphology (left ventricular mass; LVM) and function (speckle-tracking assessment of longitudinal, radial, and circumferential strain and twist) before (BR-2), during (BR7,21,31,70), and following (BR+0, +3) HDBR. Cardiorespiratory fitness (VO2max) was evaluated before (BR- 3), during (BR4,25,46,68) and following (BR+0) HDBR. RESULTS: Sedentary HDBR resulted in a progressive decline in LVM, longitudinal, radial, and circumferential strain, and an increase in twist. ExBR mitigated decreases in LVM and function. Change in twist was significantly related to change in VO2max (R=0.68, p<0.01). CONCLUSIONS: Alterations in cardiac morphology and function begin early during unloading. High-intensity exercise attenuates atrophic morphological and functional remodeling.
Kılıç, M; Ulusoy, Ö; Cırrık, S; Hindistan, I E; Ozkaya, Y Gül
2014-03-01
The purpose of this study was to investigate the possible role of moderate and strenuous swimming training on plasma and cerebrospinal fluid (CSF) IL-6 (interleukin-6) levels during recovery from exhaustive exercise in rats. Wistar rats were divided into three groups: sedentary control (C), moderately trained (MT) and strenuously trained (ST). MT rats underwent swimming exercise for one hour/day and 5 days/week for 8 weeks. Animals in the ST group began swimming with 1 h/day and swimming duration was progressively increased by 30 min/wk, reaching 2.5 h/day by week 4 and stayed constant for an additional 4 weeks. After all animals underwent an acute exhaustive swimming exercise, animals were divided into 3 groups, and decapitated immediately, 24 and 48 hours after exhaustion to obtain tissue samples. Muscle citrate synthase activity, plasma and CSF IL-6 levels were determined. The citrate synthase activity was found to be higher in MT and ST groups compared to the C group. Although plasma IL-6 levels were found unaltered among all groups, the CSF IL-6 concentration was found to be increased 24 hours after exhaustive exercise of the ST group. We conclude that exercise training intensity is an important factor determining cerebrospinal IL-6 concentration after exhaustive exercise.
Savolainen, Anna M.; Eskelinen, Jari-Joonas; Toivanen, Jussi; Ishizu, Tamiko; Yli-Karjanmaa, Minna; Virtanen, Kirsi A.; Parkkola, Riitta; Kapanen, Jukka; Grönroos, Tove J.; Haaparanta-Solin, Merja; Solin, Olof; Savisto, Nina; Ahotupa, Markku; Löyttyniemi, Eliisa; Knuuti, Juhani; Nuutila, Pirjo; Kalliokoski, Kari K.
2017-01-01
Similar to muscles, the intestine is also insulin resistant in obese subjects and subjects with impaired glucose tolerance. Exercise training improves muscle insulin sensitivity, but its effects on intestinal metabolism are not known. We studied the effects of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on intestinal glucose and free fatty acid uptake from circulation in humans. Twenty-eight healthy, middle-aged, sedentary men were randomized for 2 wk of HIIT or MICT. Intestinal insulin-stimulated glucose uptake and fasting free fatty acid uptake from circulation were measured using positron emission tomography and [18F]FDG and [18F]FTHA. In addition, effects of HIIT and MICT on intestinal GLUT2 and CD36 protein expression were studied in rats. Training improved aerobic capacity (P = 0.001) and whole body insulin sensitivity (P = 0.04), but not differently between HIIT and MICT. Insulin-stimulated glucose uptake increased only after the MICT in the colon (HIIT = 0%; MICT = 37%) (P = 0.02 for time × training) and tended to increase in the jejunum (HIIT = −4%; MICT = 13%) (P = 0.08 for time × training). Fasting free fatty acid uptake decreased in the duodenum in both groups (HIIT = −6%; MICT = −48%) (P = 0.001 time) and tended to decrease in the colon in the MICT group (HIIT = 0%; MICT = −38%) (P = 0.08 for time × training). In rats, both training groups had higher GLUT2 and CD36 expression compared with control animals. This study shows that already 2 wk of MICT enhances insulin-stimulated glucose uptake, while both training modes reduce fasting free fatty acid uptake in the intestine in healthy, middle-aged men, providing an additional mechanism by which exercise training can improve whole body metabolism. NEW & NOTEWORTHY This is the first study where the effects of exercise training on the intestinal substrate uptake have been investigated using the most advanced techniques available. We also show the importance of exercise intensity in inducing these changes. PMID:28183816
Stork, Matthew J; Banfield, Laura E; Gibala, Martin J; Martin Ginis, Kathleen A
2017-12-01
While considerable evidence suggests that interval exercise confers numerous physiological adaptations linked to improved health, its psychological consequences and behavioural implications are less clear and the subject of intense debate. The purpose of this scoping review was to catalogue studies investigating the psychological responses to interval exercise in order to identify what psychological outcomes have been assessed, the research methods used, and the results. A secondary objective was to identify research issues and gaps. Forty-two published articles met the review inclusion/exclusion criteria. These studies involved 1258 participants drawn from various active/inactive and healthy/unhealthy populations, and 55 interval exercise protocols (69% high-intensity interval training [HIIT], 27% sprint interval training [SIT], and 4% body-weight interval training [BWIT]). Affect and enjoyment were the most frequently studied psychological outcomes. Post-exercise assessments indicate that overall, enjoyment of, and preferences for interval exercise are equal or greater than for continuous exercise, and participants can hold relatively positive social cognitions regarding interval exercise. Although several methodological issues (e.g., inconsistent use of terminology, measures and protocols) and gaps (e.g., data on adherence and real-world protocols) require attention, from a psychological perspective, the emerging data support the viability of interval exercise as an alternative to continuous exercise.
Rizk, Amanda K; Wardini, Rima; Chan-Thim, Emilie; Bacon, Simon L; Lavoie, Kim L; Pepin, Véronique
2015-11-01
The objectives of our study were to (i) compare, in chronic obstructive pulmonary disease (COPD) patients, acute responses to continuous training at high intensity (CTHI), continuous training at ventilatory threshold (CTVT) and interval training (IT); (ii) examine associations between acute responses and 12-week adherence; and (iii) investigate whether the relationship between acute responses and adherence is mediated/moderated by affect/vigour. Thirty-five COPD patients (forced expiratory volume in 1 second = 60.2 ± 15.8% predicted), underwent baseline assessments, were randomly assigned to CTHI, CTVT or IT, were monitored throughout about before training, and underwent 12 weeks of exercise training during which adherence was tracked. Compared with CTHI, CTVT was associated with lower respiratory exchange ratio, heart rate and respiratory rate (RR), while IT induced higher [Formula: see text], [Formula: see text]maximal voluntary ventilation, RR and lower pulse oxygen saturation. From pre- to post-exercise, positive affect increased (F = 9.74, p < 0.001) and negative affect decreased (F = 6.43, p = 0.005) across groups. CTVT reported greater end-exercise vigour compared to CTHI (p = 0.01) and IT (p = 0.02). IT exhibited lowest post-exercise vigour (p = 0.04 versus CTHI, p = 0.02 versus CTVT) and adherence rate (F = 6.69, p = 0.004). Mean [Formula: see text] (r = -0.466, p = 0.007) and end-exercise vigour (r = 0.420, p = 0.017) were most strongly correlated with adherence. End-exercise vigour moderated the relationship between [Formula: see text] and adherence (β = 2.74, t(32) = 2.32, p = 0.03). In summary, CTHI, CTVT and IT improved affective valence from rest to post-exercise and induced a significant 12-week exercise training effect. However, they elicited different acute physiological responses, which in turn were associated with differences in 12-week adherence to the target training intensity. This association was moderated by acute end-exercise vigour. © The Author(s) 2015.
De Crée, C; Van Kranenburg, G; Geurten, P; Fujimura, Y; Keizer, H A
1997-12-01
The present study was designed to assess the effects of acute exercise and short-term intensive training on catechol-O-methyltransferase (COMT) activity. COMT inactivates catecholamines and converts primary catecholestrogens (CE) into their O-methylated form yielding the 2- (2-MeOE) and 4-methoxyestrogens (4-MeOE). Blood samples were obtained from 15 previously untrained eumenorrheic women (mean +/- SE, VO2max: 43.8 mL x kg-1 x min-1 +/- 0.6) before and after a 5-d intensive training period, at rest and during incremental exercise. COMT activity was determined in the erythrocytes (RBC-COMT) after incubation of blood lysate with primary CE. The formation of both 2- and 4-MeOE was significantly higher (P < 0.05) during the luteal (LPh) than during the follicular phase (FPh). The amount of 2-MeOE formed (FPh: 4.2 +/- 0.2%; LPh: 4.9 +/- 0.2%) was significantly greater than the produced amount of 4-MeOE (FPh: 1.4 +/- 0.1%; LPh: 1.5 +/- 0.1%) (P < 0.05). Both before and after training, incremental exercise did not significantly alter RBC-COMT activity although we observed a trend for RBC-COMT activity increasing proportionally with the exercise intensity. After a brief period of exhaustive training, during rest the formation of 2-MeOE (FPh: +16.7%, LPh: +15.7%) and 4-MeOE (FPh: +28.6%; LPh: +40%) was significantly (P < 0.05) increased. The results of the present study are consistent with earlier findings reporting increased plasma concentrations of O-methylated CE following training. It is concluded that RBC-COMT activity is increased by brief intensive training, but not by acute exercise. We speculate that an increase in COMT-catalyzed O-methylation of CE may indicate that less COMT is available to deactivate norepinephrine.
Kampshoff, Caroline S; Buffart, Laurien M; Schep, Goof; van Mechelen, Willem; Brug, Johannes; Chinapaw, Mai J M
2010-11-30
Preliminary studies suggest that physical exercise interventions can improve physical fitness, fatigue and quality of life in cancer patients after completion of chemotherapy. Additional research is needed to rigorously test the effects of exercise programmes among cancer patients and to determine optimal training intensity accordingly. The present paper presents the design of a randomized controlled trial evaluating the effectiveness and cost-effectiveness of a high intensity exercise programme compared to a low-to-moderate intensity exercise programme and a waiting list control group on physical fitness and fatigue as primary outcomes. After baseline measurements, cancer patients who completed chemotherapy are randomly assigned to either a 12-week high intensity exercise programme or a low-to-moderate intensity exercise programme. Next, patients from both groups are randomly assigned to immediate training or a waiting list (i.e. waiting list control group). After 12 weeks, patients of the waiting list control group start with the exercise programme they have been allocated to.Both interventions consist of equal bouts of resistance and endurance interval exercises with the same frequency and duration, but differ in training intensity. Additionally, patients of both exercise programmes are counselled to improve compliance and achieve and maintain an active lifestyle, tailored to their individual preferences and capabilities.Measurements will be performed at baseline (t = 0), 12 weeks after randomization (t = 1), and 64 weeks after randomization (t = 2). The primary outcome measures are cardiorespiratory fitness and muscle strength assessed by means of objective performance indicators, and self-reported fatigue. Secondary outcome measures include health-related quality of life, self-reported physical activity, daily functioning, body composition, mood and sleep disturbances, and return to work. In addition, compliance and satisfaction with the interventions will be evaluated. Potential moderation by pre- and post-illness lifestyle, health and exercise-related attitudes, beliefs and motivation will also be assessed. Finally, the cost-effectiveness of both exercise interventions will be evaluated. This randomized controlled trial will be a rigorous test of effects of exercise programmes for cancer patients after chemotherapy, aiming to contribute to evidence-based practice in cancer rehabilitation programmes. This study is registered at the Netherlands Trial Register (NTR2153).
McGregor, Gordon; Nichols, Simon; Hamborg, Thomas; Bryning, Lucy; Tudor-Edwards, Rhiannon; Markland, David; Mercer, Jenny; Birkett, Stefan; Ennis, Stuart; Powell, Richard; Begg, Brian; Haykowsky, Mark J; Banerjee, Prithwish; Ingle, Lee; Shave, Rob; Backx, Karianne
2016-11-16
Current international guidelines for cardiac rehabilitation (CR) advocate moderate-intensity exercise training (MISS, moderate-intensity steady state). This recommendation predates significant advances in medical therapy for coronary heart disease (CHD) and may not be the most appropriate strategy for the 'modern' patient with CHD. High-intensity interval training (HIIT) appears to be a safe and effective alternative, resulting in greater improvements in peak oxygen uptake (VO 2 peak ). To date, HIIT trials have predominantly been proof-of-concept studies in the laboratory setting and conducted outside the UK. The purpose of this multicentre randomised controlled trial is to compare the effects of HIIT and MISS training in patients with CHD attending UK CR programmes. This pragmatic study will randomly allocate 510 patients with CHD to 8 weeks of twice weekly HIIT or MISS training at 3 centres in the UK. HIIT will consist of 10 high-intensity (85-90% peak power output (PPO)) and 10 low-intensity (20-25% PPO) intervals, each lasting 1 min. MISS training will follow usual care recommendations, adhering to currently accepted UK guidelines (ie, >20 min continuous exercise at 40-70% heart rate reserve). Outcome measures will be assessed at baseline, 8 weeks and 12 months. The primary outcome for the trial will be change in VO 2 peak as determined by maximal cardiopulmonary exercise testing. Secondary measures will assess physiological, psychosocial and economic outcomes. The study protocol V.1.0, dated 1 February 2016, was approved by the NHS Health Research Authority, East Midlands-Leicester South Research Ethics Committee (16/EM/0079). Recruitment will start in August 2016 and will be completed in June 2018. Results will be published in peer-reviewed journals, presented at national and international scientific meetings and are expected to inform future national guidelines for exercise training in UK CR. NCT02784873; pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
McGregor, Gordon; Nichols, Simon; Hamborg, Thomas; Bryning, Lucy; Tudor-Edwards, Rhiannon; Markland, David; Mercer, Jenny; Birkett, Stefan; Ennis, Stuart; Powell, Richard; Begg, Brian; Haykowsky, Mark J; Banerjee, Prithwish; Ingle, Lee; Shave, Rob; Backx, Karianne
2016-01-01
Introduction Current international guidelines for cardiac rehabilitation (CR) advocate moderate-intensity exercise training (MISS, moderate-intensity steady state). This recommendation predates significant advances in medical therapy for coronary heart disease (CHD) and may not be the most appropriate strategy for the ‘modern’ patient with CHD. High-intensity interval training (HIIT) appears to be a safe and effective alternative, resulting in greater improvements in peak oxygen uptake (VO2 peak). To date, HIIT trials have predominantly been proof-of-concept studies in the laboratory setting and conducted outside the UK. The purpose of this multicentre randomised controlled trial is to compare the effects of HIIT and MISS training in patients with CHD attending UK CR programmes. Methods and analysis This pragmatic study will randomly allocate 510 patients with CHD to 8 weeks of twice weekly HIIT or MISS training at 3 centres in the UK. HIIT will consist of 10 high-intensity (85–90% peak power output (PPO)) and 10 low-intensity (20–25% PPO) intervals, each lasting 1 min. MISS training will follow usual care recommendations, adhering to currently accepted UK guidelines (ie, >20 min continuous exercise at 40–70% heart rate reserve). Outcome measures will be assessed at baseline, 8 weeks and 12 months. The primary outcome for the trial will be change in VO2 peak as determined by maximal cardiopulmonary exercise testing. Secondary measures will assess physiological, psychosocial and economic outcomes. Ethics and dissemination The study protocol V.1.0, dated 1 February 2016, was approved by the NHS Health Research Authority, East Midlands—Leicester South Research Ethics Committee (16/EM/0079). Recruitment will start in August 2016 and will be completed in June 2018. Results will be published in peer-reviewed journals, presented at national and international scientific meetings and are expected to inform future national guidelines for exercise training in UK CR. Trial registration number NCT02784873; pre-results. PMID:27852718
Hatle, Håvard; Støbakk, Per Kristian; Mølmen, Harald Edvard; Brønstad, Eivind; Tjønna, Arnt Erik; Steinshamn, Sigurd; Skogvoll, Eirik; Wisløff, Ulrik; Ingul, Charlotte Björk; Rognmo, Øivind
2014-01-01
The training response of an intensified period of high-intensity exercise is not clear. Therefore, we compared the cardiovascular adaptations of completing 24 high-intensity aerobic interval training sessions carried out for either three or eight weeks, respectively. Twenty-one healthy subjects (23.0±2.1 years, 10 females) completed 24 high-intensity training sessions throughout a time-period of either eight weeks (moderate frequency, MF) or three weeks (high frequency, HF) followed by a detraining period of nine weeks without any training. In both groups, maximal oxygen uptake (VO2max) was evaluated before training, at the 9(th) and 17(th) session and four days after the final 24(th) training session. In the detraining phase VO2max was evaluated after 12 days and thereafter every second week for eight weeks. Left ventricular echocardiography, carbon monoxide lung diffusion transfer factor, brachial artery flow mediated dilatation and vastus lateralis citrate maximal synthase activity was tested before and after training. The cardiovascular adaptation after HF training was delayed compared to training with MF. Four days after ending training the HF group showed no improvement (+3.0%, p = 0.126), whereas the MF group reached their highest VO2max with a 10.7% improvement (p<0.001: group difference p = 0.035). The HF group reached their highest VO2max (6.1% increase, p = 0.026) twelve days into the detraining period, compared to a concomitant reduction to 7.9% of VO2max (p<0.001) above baseline in the MF group (group difference p = 0.609). Both HF and MF training of high-intensity aerobic exercise improves VO2max. The cardiovascular adaptation following a HF programme of high-intensity exercise is however delayed compared to MF training. ClinicalTrials.gov NCT00733941.
Grossman, Joan A Cebrick; Payne, Ellen K
2016-03-01
The mode and duration of exercise necessary to change body composition and reduce weight remains debatable. Menopause results in hormonal changes that preclude weight loss. This randomized pilot study compared the effects of short-duration, high-intensity interval training and traditional exercise on anthropometric and body composition measurement changes in post-menopausal women. To compare the effects of short-duration, high-intensity interval training and traditional methods of exercise (walking) on anthropometric, body composition and body weight change over a 12-week period. Subjects (N = 18) were post-menopausal, sedentary female volunteers, randomly assigned into one of two exercise groups. Both groups exercised five out of seven days for 12 weeks. The resistance group (n = 8) (54.3 ± 7.3 years; BMI = 28.0 ± 2.1 kg/m(2); mean ± SD) exercised for 15.0 ± 3.5 min, which consisted of five different exercise routines including upper and lower extremity, a cardio segment, yoga and abdominal exercises. The walkers (n = 10) (56.6 ± 5.2 years; BMI = 29.2 ± 2.6 kg/m(2); mean ± SD) exercised for 40.0 ± 5.0 min at 65% of their age-predicted maximum heart rate. Relative (%) body fat was measured via DEXA scan, along with five anthropometric measurements, all of which were taken prior to and after 12 weeks. Independent sample t-tests were probed for differences, p ≤ 0.05. No statistically significant changes were determined between the groups for pre-and post-measurements. The outcomes of this study provide a foundation for future comparisons of short-duration high-intensity interval training exercise and traditional exercise, or walking, on anthropometric and body composition measurement changes in sedentary, overweight, post-menopausal females over a 12-week period. © The Author(s) 2016.
AMPK signaling in skeletal muscle during exercise: Role of reactive oxygen and nitrogen species.
Morales-Alamo, David; Calbet, Jose A L
2016-09-01
Reactive oxygen and nitrogen species (RONS) are generated during exercise depending on intensity, duration and training status. A greater amount of RONS is released during repeated high-intensity sprint exercise and when the exercise is performed in hypoxia. By activating adenosine monophosphate-activated kinase (AMPK), RONS play a critical role in the regulation of muscle metabolism but also in the adaptive responses to exercise training. RONS may activate AMPK by direct an indirect mechanisms. Directly, RONS may activate or deactivate AMPK by modifying RONS-sensitive residues of the AMPK-α subunit. Indirectly, RONS may activate AMPK by reducing mitochondrial ATP synthesis, leading to an increased AMP:ATP ratio and subsequent Thr(172)-AMPK phosphorylation by the two main AMPK kinases: LKB1 and CaMKKβ. In presence of RONS the rate of Thr(172)-AMPK dephosphorylation is reduced. RONS may activate LKB1 through Sestrin2 and SIRT1 (NAD(+)/NADH.H(+)-dependent deacetylase). RONS may also activate CaMKKβ by direct modification of RONS sensitive motifs and, indirectly, by activating the ryanodine receptor (Ryr) to release Ca(2+). Both too high (hypoxia) and too low (ingestion of antioxidants) RONS levels may lead to Ser(485)-AMPKα1/Ser(491)-AMPKα2 phosphorylation causing inhibition of Thr(172)-AMPKα phosphorylation. Exercise training increases muscle antioxidant capacity. When the same high-intensity training is applied to arm and leg muscles, arm muscles show signs of increased oxidative stress and reduced mitochondrial biogenesis, which may be explained by differences in RONS-sensing mechanisms and basal antioxidant capacities between arm and leg muscles. Efficient adaptation to exercise training requires optimal exposure to pulses of RONS. Inappropriate training stimulus may lead to excessive RONS formation, oxidative inactivation of AMPK and reduced adaptation or even maladaptation. Theoretically, exercise programs should be designed taking into account the intrinsic properties of different skeletal muscles, the specific RONS induction and the subsequent signaling responses. Copyright © 2016 Elsevier Inc. All rights reserved.
Granata, Cesare; Jamnick, Nicholas A; Bishop, David J
2018-04-19
Physical inactivity represents the fourth leading risk factor for mortality, and it has been linked with a series of chronic disorders, the treatment of which absorbs ~ 85% of healthcare costs in developed countries. Conversely, physical activity promotes many health benefits; endurance exercise in particular represents a powerful stimulus to induce mitochondrial biogenesis, and it is routinely used to prevent and treat chronic metabolic disorders linked with sub-optimal mitochondrial characteristics. Given the importance of maintaining a healthy mitochondrial pool, it is vital to better characterize how manipulating the endurance exercise dose affects cellular mechanisms of exercise-induced mitochondrial biogenesis. Herein, we propose a definition of mitochondrial biogenesis and the techniques available to assess it, and we emphasize the importance of standardizing biopsy timing and the determination of relative exercise intensity when comparing different studies. We report an intensity-dependent regulation of exercise-induced increases in nuclear peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) protein content, nuclear phosphorylation of p53 (serine 15), and PGC-1α messenger RNA (mRNA), as well as training-induced increases in PGC-1α and p53 protein content. Despite evidence that PGC-1α protein content plateaus within a few exercise sessions, we demonstrate that greater training volumes induce further increases in PGC-1α (and p53) protein content, and that short-term reductions in training volume decrease the content of both proteins, suggesting training volume is still a factor affecting training-induced mitochondrial biogenesis. Finally, training-induced changes in mitochondrial transcription factor A (TFAM) protein content are regulated in a training volume-dependent manner and have been linked with training-induced changes in mitochondrial content.
Signal, Nada; McPherson, Kathryn; Lewis, Gwyn; Kayes, Nicola; Saywell, Nicola; Mudge, Suzie; Taylor, Denise
2016-10-14
Intensity refers to the amount of effort or rate of work undertaken during exercise. People receiving rehabilitation after stroke frequently do not reach the moderate to high intensity exercise recommended to maximise gains. To explore the factors that influence the acceptability of, and engagement with, a high intensity group-based exercise programme for people with stroke. This qualitative descriptive study included 14 people with stroke who had completed a 12-week, high intensity group-based exercise rehabilitation programme. Semi-structured interviews were used to explore the acceptability of high intensity exercise and the barriers and facilitators to engagement. Interviews were recorded, transcribed and analysed using qualitative content analysis. The participants found high intensity exercise rehabilitation acceptable despite describing the exercise intensity as hard and reporting post-exercise fatigue. Participants accepted the fatigue as a normal response to exercise, and it did not appear to negatively influence engagement. The ease with which an individual engaged in high intensity exercise rehabilitation appeared to be mediated by inter-related factors, including: seeing progress, sourcing motivation, working hard, the people involved and the fit with the person and their life. Participants directly related the intensity of their effort to the gains that they made. In this study, people with stroke viewed training at higher intensities as a facilitator, not a barrier, to engagement in exercise rehabilitation. The findings may challenge assumptions about the influence of exercise intensity on engagement.
Fat max as an index of aerobic exercise performance in mice during uphill running
Taniguchi, Hirokazu
2018-01-01
Endurance exercise performance has been used as a representative index in experimental animal models in the field of health sciences, exercise physiology, comparative physiology, food function or nutritional physiology. The objective of the present study was to evaluate the effectiveness of Fatmax (the exercise intensity that elicits maximal fat oxidation) as an additional index of endurance exercise performance that can be measured during running at submaximal exercise intensity in mice. We measured both Fatmax and Vo2 peak of trained ICR mice that voluntary exercised for 8 weeks and compared them with a sedentary group of mice at multiple inclinations of 20, 30, 40, and 50° on a treadmill. The Vo2 at Fatmax of the training group was significantly higher than that of the sedentary group at inclinations of 30 and 40° (P < 0.001). The running speed at Fatmax of the training group was significantly higher than that of the sedentary group at inclinations of 20, 30, and 40° (P < 0.05). Blood lactate levels sharply increased in the sedentary group (7.33 ± 2.58 mM) compared to the training group (3.13 ± 1.00 mM, P < 0.01) when running speeds exceeded the Fatmax of sedentary mice. Vo2 at Fatmax significantly correlated to Vo2 peak, running time to fatigue, and lactic acid level during running (P < 0.05) although the reproducibility of Vo2 peak was higher than that of Vo2 at Fatmax. In conclusion, Fatmax can be used as a functional assessment of the endurance exercise performance of mice during submaximal exercise intensity. PMID:29474428
Franchini, Emerson; Julio, Ursula F.; Panissa, Valéria L. G.; Lira, Fábio S.; Gerosa-Neto, José; Branco, Braulio H. M.
2016-01-01
Purpose: The present study investigated the effects of high-intensity intermittent training (HIIT) on lower- and upper-body graded exercise and high-intensity intermittent exercise (HIIE, four Wingate bouts) performance, and on physiological and muscle damage markers responses in judo athletes. Methods: Thirty-five subjects were randomly allocated to a control group (n = 8) or to one of the following HIIT groups (n = 9 for each) and tested pre- and post-four weeks (2 training d·wk−1): (1) lower-body cycle-ergometer; (2) upper-body cycle-ergometer; (3) uchi-komi (judo technique entrance). All HIIT were constituted by two blocks of 10 sets of 20 s of all out effort interspersed by 10 s set intervals and 5-min between blocks. Results: For the upper-body group there was an increase in maximal aerobic power in graded upper-body exercise test (12.3%). The lower-body group increased power at onset blood lactate in graded upper-body exercise test (22.1%). The uchi-komi group increased peak power in upper- (16.7%) and lower-body (8.5%), while the lower-body group increased lower-body mean power (14.2%) during the HIIE. There was a decrease in the delta blood lactate for the uchi-komi training group and in the third and fourth bouts for the upper-body training group. Training induced testosterone-cortisol ratio increased in the lower-body HIIE for the lower-body (14.9%) and uchi-komi (61.4%) training groups. Conclusion: Thus, short-duration low-volume HIIT added to regular judo training was able to increase upper-body aerobic power, lower- and upper-body HIIE performance. PMID:27445856
Naugle, Keith E.; Naugle, Kelly M.; Wikstrom, Erik A.
2014-01-01
Naugle, KE, Naugle, KM, and Wikstrom, EA. Cardiovascular and affective outcomes of active gaming: Using the Nintendo Wii as a cardiovascular training tool. J Strength Cond Res 28(2): 443–451, 2014–Active-video gaming is purported to produce similar cardiovascular responses as aerobic fitness activities. This study compared the emotional and cardiovascular effects of Wii games with those of traditional exercise in college-aged adults with different exercise backgrounds. Specifically, the percentage of heart rate reserve, rate of perceived exertion (RPE), level of enjoyment, and Positive and Negative Affect Schedule scores were compared between subjects who reported exercising frequently at high intensities (high-intensity exerciser group: age = 20.18 years [0.87]; Height = 165.23 cm [9.97]; Mass = 62.37 kg [11.61]), N = 11 and those who exercise more often at lower intensities (low-intensity exercisers group: age = 20.72 years [1.19]; Height = 164.39 cm [8.05]; Mass = 68.04 kg [10.71]), N = 11. The subjects completed six 20-minute exercises sessions: treadmill walking, stationary cycling, and Wii's Tennis, Boxing, Cycling, and Step. The low-intensity exerciser group achieved a greater percentage of heart rate reserve (a) during traditional exercise compared with that during Wii boxing, (b) playing Wii boxing compared with that for Wii tennis, and (c) playing Wii boxing compared with that when the high-intensity exercisers group played any Wii games (p < 0.05). The RPE was greater for boxing and cycling compared with that for tennis and step (p < 0.05). Ratings of enjoyment and the increase in positive emotion were greater for boxing and for tennis compared with those for traditional exercises (p < 0.05). Results suggest that Wii boxing shows the greatest potential as a cardiovascular fitness tool among the Wii games, particularly for individuals who typically exercise at lower intensities. PMID:23660574
Central and Peripheral Fatigue During Resistance Exercise - A Critical Review.
Zając, Adam; Chalimoniuk, Małgorzata; Maszczyk, Adam; Gołaś, Artur; Lngfort, Józef
2015-12-22
Resistance exercise is a popular form of conditioning for numerous sport disciplines, and recently different modes of strength training are being evaluated for health benefits. Resistance exercise differs significantly in nature, and several variables determine the direction and range of adaptive changes that occur in the muscular and skeletal system of the body. Some modes of resistance training can also be effective in stimulating the cardiovascular system. These variables include exercise selection (general, specific, single or multi joint, dynamic, explosive), type of resistance (free weights, variable resistance, isokinetics), order of exercise (upper and lower body or push and pull exercises), and most of all the training load which includes intensity expressed as % of 1RM, number of repetitions, number of sets and the rest interval between sets. Manipulating these variables allows for specific adaptive changes which may include gains in muscle mass, muscle strength or muscle endurance. It has been well established that during resistance exercise fatigue occurs, regardless of the volume and intensity of work applied. The peripheral mechanisms of fatigue have been studied and explained in more detail than those related to the CNS. This review is an attempt to bring together the latest knowledge regarding fatigue, both peripheral and central, during resistance exercise. The authors of this review concentrated on physiological and biochemical mechanisms underlying fatigue in exercises performed with maximal intensity, as well as those performed to exhaustion with numerous repetitions and submaximal load.
Farah, B Q; Ritti-Dias, R M; Balagopal, P B; Hill, J O; Prado, W L
2014-04-01
Aerobic exercise improves cardiovascular health in general, but whether the impact varies with exercise intensity is not clear. The aim of the current study was to compare the effects of a high-intensity aerobic exercise training (HIT) vs. a low-intensity aerobic exercise training (LIT) on blood pressure (BP), heart rate (HR) and heart rate variability (HRV) in obese adolescents. Forty-three (13-18 years) Tanner stage (III-IV) matched obese adolescents were studied in a randomized trial of either HIT (corresponding to the ventilatory threshold I; n = 20) or LIT (corresponding to 20% below the ventilatory threshold I; n = 23) programme for a period of 6 months. All participants also received a multidisciplinary therapy that included nutritional, psychological and clinical counselling. Both HIT and LIT sessions were isocaloric, with energy expenditure set at 350 kcal. BP, HR and HRV were measured along with markers of body adiposity and insulin resistance before and after the respective interventions. The participants in both groups had similar physical and clinical characteristics. After the 6-month intervention, systolic, diastolic and mean BP decreased (P < 0.05, for all) similarly in both groups, whereas waist circumference, HR and HRV showed beneficial changes only in the HIT group (P < 0.05). Aerobic exercise training set at a high intensity compared with the low intensity appears to have additional benefits on abdominal obesity and cardiovascular health in that it enhances the parasympathetic and autonomic modulation of the heart in obese adolescents. © 2013 The Authors. Pediatric Obesity © 2013 International Association for the Study of Obesity.
Perspectives on high-intensity interval exercise for health promotion in children and adolescents
Bond, Bert; Weston, Kathryn L; Williams, Craig A; Barker, Alan R
2017-01-01
Physical activity lowers future cardiovascular disease (CVD) risk; however, few children and adolescents achieve the recommended minimum amount of daily activity. Accordingly, there is virtue in identifying the efficacy of small volumes of high-intensity exercise for health benefits in children and adolescents for the primary prevention of CVD risk. The purpose of this narrative review is to provide a novel overview of the available literature concerning high-intensity interval-exercise (HIIE) interventions in children and adolescents. Specifically, the following areas are addressed: 1) outlining the health benefits observed following a single bout of HIIE, 2) reviewing the role of HIIE training in the management of pediatric obesity, and 3) discussing the effectiveness of school-based HIIE training. In total, 39 HIIE intervention studies were included in this review. Based upon the available data, a single bout of high-intensity exercise provides a potent stimulus for favorable, acute changes across a range of cardiometabolic outcomes that are often superior to a comparative bout of moderate-intensity exercise (14 studies reviewed). HIIE also promotes improvements in cardiorespiratory fitness and cardiometabolic health status in overweight and obese children and adolescents (10 studies reviewed) and when delivered in the school setting (15 studies reviewed). We thus conclude that high-intensity exercise is a feasible and potent method of improving a range of cardiometabolic outcomes in children and adolescents. However, further work is needed to optimize the delivery of HIIE interventions in terms of participant enjoyment and acceptability, to include a wider range of health outcomes, and to control for important confounding variables (eg, changes in diet and habitual physical activity). Finally, research into the application of HIIE training interventions to children and adolescents of different ages, sexes, pubertal status, and sociocultural backgrounds is required. PMID:29225481
Hearris, Mark A.; Hammond, Kelly M.; Fell, J. Marc; Morton, James P.
2018-01-01
Since the introduction of the muscle biopsy technique in the late 1960s, our understanding of the regulation of muscle glycogen storage and metabolism has advanced considerably. Muscle glycogenolysis and rates of carbohydrate (CHO) oxidation are affected by factors such as exercise intensity, duration, training status and substrate availability. Such changes to the global exercise stimulus exert regulatory effects on key enzymes and transport proteins via both hormonal control and local allosteric regulation. Given the well-documented effects of high CHO availability on promoting exercise performance, elite endurance athletes are typically advised to ensure high CHO availability before, during and after high-intensity training sessions or competition. Nonetheless, in recognition that the glycogen granule is more than a simple fuel store, it is now also accepted that glycogen is a potent regulator of the molecular cell signaling pathways that regulate the oxidative phenotype. Accordingly, the concept of deliberately training with low CHO availability has now gained increased popularity amongst athletic circles. In this review, we present an overview of the regulatory control of CHO metabolism during exercise (with a specific emphasis on muscle glycogen utilization) in order to discuss the effects of both high and low CHO availability on modulating exercise performance and training adaptations, respectively. PMID:29498691
Lifelong endurance training attenuates age-related genotoxic stress in human skeletal muscle.
Cobley, James N; Sakellariou, George K; Murray, Scott; Waldron, Sarah; Gregson, Warren; Burniston, Jatin G; Morton, James P; Iwanejko, Lesley A; Close, Graeme L
2013-07-12
The aim of the present study was to determine the influence of age and habitual activity level, at rest and following a single bout of high-intensity exercise, on the levels of three proteins poly(ADP-ribose) polymerase-1 (PARP-1), cleaved-PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), involved in the DNA repair and cell death responses to stress and genotoxic insults. Muscle biopsies were obtained from the vastus lateralis of young trained (22 ± 3 years, n = 6), young untrained (24 ± 4 years, n = 6), old trained (64 ± 3 years, n = 6) and old untrained (65 ± 6 years, n = 6) healthy males before, immediately after and three days following a high-intensity interval exercise bout. PARP-1, which catalyzes poly(ADP-ribosyl)ation of proteins and DNA in response to a range of intrinsic and extrinsic stresses, was increased at baseline in old trained and old untrained compared with young trained and young untrained participants (P ≤ 0.05). Following exercise, PARP-1 levels remained unchanged in young trained participants, in contrast to old trained and old untrained where levels decreased and young untrained where levels increased (P ≤ 0.05). Interestingly, baseline levels of the cleaved PARP-1, a marker of apoptosis, and PARG, responsible for polymer degradation, were both significantly elevated in old untrained compared with old trained, young trained and young untrained (P ≤ 0.05). Despite this baseline difference in PARG, there was no change in any group following exercise. There was a non-significant statistical trend (P = 0.072) towards increased cleaved-PARP-1 expression post-exercise in younger but not old persons, regardless of training status. Collectively, these results show that exercise slows the progression towards a chronically stressed state but has no impact on the age-related attenuated response to acute exercise. Our findings provide valuable insight into how habitual exercise training could protect skeletal muscle from chronic damage to macromolecules and may reduce sarcopenia in older people.
Kim, Hye Jin; Lee, Won Jun
2017-09-30
Postmenopausal women are highly susceptible to diseases, such as obesity, type 2 diabetes, osteoporosis, or skeletal muscle atrophy and many people recognize the need for regular physical activity. Aerobic exercise training is known to improve the oxidative capacity and insulin sensitivity of skeletal muscles. This study aimed to investigate the role of low-intensity aerobic exercise training on skeletal muscle protein degradation or synthesis in the plantaris muscles of high-fat-fed ovariectomized rats. Ovariectomized female rats were divided into two groups: a high-fat diet-sedentary group (HFD), and a high-fat diet-aerobic exercise group (HFD+EX). The exercise group exercised aerobically on a treadmill 5 days/week for 8 weeks. The rats progressively ran 30 min/day at 15 m/min, up to 40 min/day at 18 m/min, 0% slope, in the last 4 weeks. Although aerobic exercise led to significantly increased AMP-activated protein kinase (AMPK) phosphorylation at Thr172, phosphorylation of the mammalian target of rapamycin (mTOR) substrate Thr389 S6K1 level did not decrease. Additionally, even though Akt activity did not increase at Ser473, the atrogin-1 level significantly decreased in the exercise group compared to the non-exercise group. Immunohistochemical staining revealed that high-fat-induced TSC2 protein expression was eliminated in response to aerobic exercise. These results suggest that aerobic exercise can inhibit skeletal muscle protein degradation, but it cannot increase protein synthesis in the plantaris muscle of high-fat-fed ovariectomized rats. Our findings have implications in understanding skeletal muscle mass maintenance with low intensity aerobic exercise in post-menopausal women. ©2017 The Korean Society for Exercise Nutrition
Ramírez-Campillo, Rodrigo; Vergara-Pedreros, Marcelo; Henríquez-Olguín, Carlos; Martínez-Salazar, Cristian; Alvarez, Cristian; Nakamura, Fábio Yuzo; De La Fuente, Carlos I; Caniuqueo, Alexis; Alonso-Martinez, Alicia M; Izquierdo, Mikel
2016-01-01
In a randomised controlled trial design, effects of 6 weeks of plyometric training on maximal-intensity exercise and endurance performance were compared in male and female soccer players. Young (age 21.1 ± 2.7 years) players with similar training load and competitive background were assigned to training (women, n = 19; men, n = 21) and control (women, n = 19; men, n = 21) groups. Players were evaluated for lower- and upper-body maximal-intensity exercise, 30 m sprint, change of direction speed and endurance performance before and after 6 weeks of training. After intervention, the control groups did not change, whereas both training groups improved jumps (effect size (ES) = 0.35-1.76), throwing (ES = 0.62-0.78), sprint (ES = 0.86-1.44), change of direction speed (ES = 0.46-0.85) and endurance performance (ES = 0.42-0.62). There were no differences in performance improvements between the plyometric training groups. Both plyometric groups improved more in all performance tests than the controls. The results suggest that adaptations to plyometric training do not differ between men and women.
Leslie, Andrew W; Lanovaz, Joel L; Andrushko, Justin W; Farthing, Jonathan P
2017-10-01
Both the repeated-bout effect and increased flexibility have been linked to reduced muscle damage, fatigue, and strength loss after intense eccentric exercise. Our purpose was to compare the eccentric-training (ECC) response after first priming the muscles with either static flexibility training or a single intense bout of eccentric exercise. Twenty-five participants were randomly assigned to flexibility training (n = 8; 3×/week; 30 min/day), a single bout of intense eccentric exercise (n = 9), or no intervention (control; n = 8) during a 4-week priming phase, prior to completing a subsequent 4-week period of eccentric training of the knee flexors. Testing was completed prior to the priming phase, before ECC, during acute ECC (0 h, 24 h, and 48 h after bouts 1 and 4), and after ECC. Measures included muscle thickness (MT; via ultrasound); isometric, concentric, and eccentric strength; muscle power (dynamometer); electromyography; range of motion; optimal angle of peak torque; and soreness (visual analog scale). Flexibility training and single-bout groups had 47% less soreness at 48 h after the first bout of ECC compared with control (p < 0.05). The flexibility training group had 10% less soreness at 48 h after the fourth ECC bout compared with both the single-bout and control groups (p < 0.05). Isometric strength loss was attenuated for the flexibility training group (-9%) after the fourth ECC bout compared with control (-19%; p < 0.05). All groups had similar increases in strength, MT, and power after ECC (p < 0.05). Prior flexibility training may be more effective than a single session of eccentric exercise in reducing adverse symptoms during the acute stages of eccentric training; however, these benefits did not translate into greater performance after training.
Cronin, John; Storey, Adam; Zourdos, Michael C.
2016-01-01
ABSTRACT RATINGS OF PERCEIVED EXERTION ARE A VALID METHOD OF ESTIMATING THE INTENSITY OF A RESISTANCE TRAINING EXERCISE OR SESSION. SCORES ARE GIVEN AFTER COMPLETION OF AN EXERCISE OR TRAINING SESSION FOR THE PURPOSES OF ATHLETE MONITORING. HOWEVER, A NEWLY DEVELOPED SCALE BASED ON HOW MANY REPETITIONS ARE REMAINING AT THE COMPLETION OF A SET MAY BE A MORE PRECISE TOOL. THIS APPROACH ADJUSTS LOADS AUTOMATICALLY TO MATCH ATHLETE CAPABILITIES ON A SET-TO-SET BASIS AND MAY MORE ACCURATELY GAUGE INTENSITY AT NEAR-LIMIT LOADS. THIS ARTICLE OUTLINES HOW TO INCORPORATE THIS NOVEL SCALE INTO A TRAINING PLAN. PMID:27531969
Molina, Catalina; Cifuentes, Gabriela; Martínez, Cristian; Mancilla, Rodrigo; Díaz, Erik
2016-10-01
The search of efficient exercise alternatives to treat obesity is worthwhile. To demonstrate the effect of high intensity intermittent exercise on body fat reduction in overweight and obese subjects. A group of 65 overweight and obese adult subjects (25 men), aged 18-65 years, participated during 12 sessions in a high intensity physical exercise program, 3 days/week. Weight, height and body fat was measured before and after the intervention by bioimpedance. Each session consisted of 1 min stationary cycling exercise at high intensity, followed by 2 min inactive rest. This cycle was repeated 10 times, thus the method is called 1*2*10. There was a significant reduction of body fat of -1.88 ± 2.8 and -3.44 ± 2.7 kg, in women and men, respectively (p < 0.05). The 1*2*10 training protocol lasting 12 weeks in association with nutrition counseling is effective in reducing body fat in overweight persons.
Hansen, Dominique; Rovelo Ruiz, Gustavo; Doherty, Patrick; Iliou, Marie-Christine; Vromen, Tom; Hinton, Sally; Frederix, Ines; Wilhelm, Matthias; Schmid, Jean-Paul; Abreu, Ana; Ambrosetti, Marco; Garcia-Porrero, Esteban; Coninx, Karin; Dendale, Paul
2018-05-01
Background Although disease-specific exercise guidelines for cardiovascular disease (CVD) are widely available, it remains uncertain whether these different exercise guidelines are integrated properly for patients with different CVDs. The aim of this study was to assess the inter-clinician variance in exercise prescription for patients with various CVDs and to compare these prescriptions with recommendations from the EXercise Prescription in Everyday practice and Rehabilitative Training (EXPERT) tool, a digital decision support system for integrated state-of-the-art exercise prescription in CVD. Design The study was a prospective observational survey. Methods Fifty-three CV rehabilitation clinicians from nine European countries were asked to prescribe exercise intensity (based on percentage of peak heart rate (HR peak )), frequency, session duration, programme duration and exercise type (endurance or strength training) for the same five patients. Exercise prescriptions were compared between clinicians, and relationships with clinician characteristics were studied. In addition, these exercise prescriptions were compared with recommendations from the EXPERT tool. Results A large inter-clinician variance was found for prescribed exercise intensity (median (interquartile range (IQR)): 83 (13) % of HR peak ), frequency (median (IQR): 4 (2) days/week), session duration (median (IQR): 45 (18) min/session), programme duration (median (IQR): 12 (18) weeks), total exercise volume (median (IQR): 1215 (1961) peak-effort training hours) and prescription of strength training exercises (prescribed in 78% of all cases). Moreover, clinicians' exercise prescriptions were significantly different from those of the EXPERT tool ( p < 0.001). Conclusions This study reveals significant inter-clinician variance in exercise prescription for patients with different CVDs and disagreement with an integrated state-of-the-art system for exercise prescription, justifying the need for standardization efforts regarding integrated exercise prescription in CV rehabilitation.
Cardiac Remodeling in Response to 1 Year of Intensive Endurance Training
Arbab-Zadeh, Armin; Perhonen, Merja; Howden, Erin; Peshock, Ronald M.; Zhang, Rong; Adams-Huet, Beverly; Haykowsky, Mark J.; Levine, Benjamin D.
2017-01-01
Background It is unclear whether, and to what extent, the striking cardiac morphological manifestations of endurance athletes are a result of exercise training or a genetically determined characteristic of talented athletes. We hypothesized that prolonged and intensive endurance training in previously sedentary healthy young individuals could induce cardiac remodeling similar to that observed cross-sectionally in elite endurance athletes. Methods and Results Twelve previously sedentary subjects (aged 29±6 years; 7 men and 5 women) trained progressively and intensively for 12 months such that they could compete in a marathon. Magnetic resonance images for assessment of right and left ventricular mass and volumes were obtained at baseline and after 3, 6, 9, and 12 months of training. Maximum oxygen uptake (V̇o2 max) and cardiac output at rest and during exercise (C2H2 rebreathing) were measured at the same time periods. Pulmonary artery catheterization was performed before and after 1 year of training, and pressure-volume and Starling curves were constructed during decreases (lower body negative pressure) and increases (saline infusion) in cardiac volume. Mean V̇o2 max rose from 40.3±1.6 to 48.7±2.5 mL/kg per minute after 1 year (P<0.00001), associated with an increase in both maximal cardiac output and stroke volume. Left and right ventricular mass increased progressively with training duration and intensity and reached levels similar to those observed in elite endurance athletes. In contrast, left ventricular volume did not change significantly until 6 months of training, although right ventricular volume increased progressively from the outset; Starling and pressure-volume curves approached but did not match those of elite athletes. Conclusions One year of prolonged and intensive endurance training leads to cardiac morphological adaptations in previously sedentary young subjects similar to those observed in elite endurance athletes; however, it is not sufficient to achieve similar levels of cardiac compliance and performance. Contrary to conventional thinking, the left ventricle responds to exercise with initial concentric but not eccentric remodeling during the first 6 to 9 months after commencement of endurance training depending on the duration and intensity of exercise. Thereafter, the left ventricle dilates and restores the baseline mass-to-volume ratio. In contrast, the right ventricle responds to endurance training with eccentric remodeling at all levels of training. PMID:25281664
Jacobs, Robert Acton; Flück, Daniela; Bonne, Thomas Christian; Bürgi, Simon; Christensen, Peter Møller; Toigo, Marco; Lundby, Carsten
2013-09-01
Six sessions of high-intensity interval training (HIT) are sufficient to improve exercise capacity. The mechanisms explaining such improvements are unclear. Accordingly, the aim of this study was to perform a comprehensive evaluation of physiologically relevant adaptations occurring after six sessions of HIT to determine the mechanisms explaining improvements in exercise performance. Sixteen untrained (43 ± 6 ml·kg(-1)·min(-1)) subjects completed six sessions of repeated (8-12) 60 s intervals of high-intensity cycling (100% peak power output elicited during incremental maximal exercise test) intermixed with 75 s of recovery cycling at a low intensity (30 W) over a 2-wk period. Potential training-induced alterations in skeletal muscle respiratory capacity, mitochondrial content, skeletal muscle oxygenation, cardiac capacity, blood volumes, and peripheral fatigue resistance were all assessed prior to and again following training. Maximal measures of oxygen uptake (Vo2peak; ∼8%; P = 0.026) and cycling time to complete a set amount of work (∼5%; P = 0.008) improved. Skeletal muscle respiratory capacities increased, most likely as a result of an expansion of skeletal muscle mitochondria (∼20%, P = 0.026), as assessed by cytochrome c oxidase activity. Skeletal muscle deoxygenation also increased while maximal cardiac output, total hemoglobin, plasma volume, total blood volume, and relative measures of peripheral fatigue resistance were all unaltered with training. These results suggest that increases in mitochondrial content following six HIT sessions may facilitate improvements in respiratory capacity and oxygen extraction, and ultimately are responsible for the improvements in maximal whole body exercise capacity and endurance performance in previously untrained individuals.
Green, Nicole; Wertz, Timothy; LaPorta, Zachary; Mora, Adam; Serbas, Jasmine; Astorino, Todd A
2017-07-19
High intensity interval training (HIIT) elicits similar physiological adaptations as moderate intensity continuous training (MICT) despite less time commitment. However, there is debate whether HIIT is more aversive than MICT. This study compared physiological and perceptual responses between MICT and three regimes of HIIT. Nineteen active adults (age = 24.0 ± 3.3 yr) unfamiliar with HIIT initially performed ramp exercise to exhaustion to measure maximal oxygen uptake (VO2 max) and determine workload for subsequent sessions, whose order was randomized. Sprint interval training (SIT) consisted of six 20 s bouts of "all-out" cycling at 140% of maximum watts (Wmax). Low volume (HIITLV) and high volume HIIT (HIITHV) consisted of eight 60 s bouts at 85% Wmax and six 2 min bouts at 70% Wmax, respectively. MICT consisted of 25 min at 40% Wmax. Across regimes, work was not matched. Heart rate, VO2, blood lactate concentration (BLa), affect, and rating of perceived exertion (RPE) were assessed during exercise. Ten minutes post-exercise, Physical Activity Enjoyment (PACES) was measured via a survey. Results revealed significantly higher (p<0.05) VO2, heart rate, BLa, and RPE in SIT, HIITLV, and HIITHV versus MICT. Despite a decline in affect during exercise (p<0.01) and significantly lower affect (p<0.05) during all HIIT regimes versus MICT at 50, 75, and 100 % of session duration, PACES was similar across regimes (p=0.65) although it was higher in women (p=0.03). Findings from healthy adults unaccustomed to interval training demonstrate that HIIT and SIT are perceived as enjoyable as MICT despite being more aversive.
Kelly, Neil A.; Ford, Matthew P.; Standaert, David G.; Watts, Ray L.; Bickel, C. Scott; Moellering, Douglas R.; Tuggle, S. Craig; Williams, Jeri Y.; Lieb, Laura; Windham, Samuel T.
2014-01-01
We conducted, in persons with Parkinson's disease (PD), a thorough assessment of neuromotor function and performance in conjunction with phenotypic analyses of skeletal muscle tissue, and further tested the adaptability of PD muscle to high-intensity exercise training. Fifteen participants with PD (Hoehn and Yahr stage 2–3) completed 16 wk of high-intensity exercise training designed to simultaneously challenge strength, power, endurance, balance, and mobility function. Skeletal muscle adaptations (P < 0.05) to exercise training in PD included myofiber hypertrophy (type I: +14%, type II: +36%), shift to less fatigable myofiber type profile, and increased mitochondrial complex activity in both subsarcolemmal and intermyofibrillar fractions (I: +45–56%, IV: +39–54%). These adaptations were accompanied by a host of functional and clinical improvements (P < 0.05): total body strength (+30–56%); leg power (+42%); single leg balance (+34%); sit-to-stand motor unit activation requirement (−30%); 6-min walk (+43 m), Parkinson's Disease Quality of Life Scale (PDQ-39, −7.8pts); Unified Parkinson's Disease Rating Scale (UPDRS) total (−5.7 pts) and motor (−2.7 pts); and fatigue severity (−17%). Additionally, PD subjects in the pretraining state were compared with a group of matched, non-PD controls (CON; did not exercise). A combined assessment of muscle tissue phenotype and neuromuscular function revealed a higher distribution and larger cross-sectional area of type I myofibers and greater type II myofiber size heterogeneity in PD vs. CON (P < 0.05). In conclusion, persons with moderately advanced PD adapt to high-intensity exercise training with favorable changes in skeletal muscle at the cellular and subcellular levels that are associated with improvements in motor function, physical capacity, and fatigue perception. PMID:24408997
Ritti-Dias, Raphael Mendes; de Moraes Forjaz, Cláudia Lúcia; Cucato, Gabriel Grizzo; Costa, Luis Augusto Riani; Wolosker, Nelson; de Fátima Nunes Marucci, Maria
2009-01-01
Walking training is considered as the first treatment option for patients with peripheral arterial disease and intermittent claudication (IC). Walking exercise has been prescribed for these patients by relative intensity of peak oxygen uptake (VO2peak), ranging from 40% to 70% VO2peak, or pain threshold (PT). However, the relationship between these methods and anaerobic threshold (AT), which is considered one of the best metabolic markers for establishing training intensity, has not been analyzed. Thus, the aim of this study was to compare, in IC patients, the physiological responses at exercise intensities usually prescribed for training (% VO2peak or % PT) with the ones observed at AT. Thirty-three IC patients performed maximal graded cardiopulmonary treadmill test to assess exercise tolerance. During the test, heart rate (HR), VO2, and systolic blood pressure were measured and responses were analyzed at the following: 40% of VO2peak; 70% of VO2peak; AT; and PT. Heart rate and VO2 at 40% and 70% of VO2peak were lower than those at AT (HR: -13 +/- 9% and -3 +/- 8%, P < .01, respectively; VO2: -52 +/- 12% and -13 +/- 15%, P < .01, respectively). Conversely, HR and VO2 at PT were slightly higher than those at AT (HR: +3 +/- 8%, P < .01; VO2: +6 +/- 15%, P = .04). None of the patients achieved the respiratory compensation point. Prescribing exercise for IC patients between 40% and 70% of VO2peak will induce a lower stimulus than that at AT, whereas prescribing exercise at PT will result in a stimulus above AT. Thus, prescribing exercise training for IC patients on the basis of PT will probably produce a greater metabolic stimulus, promoting better cardiovascular benefits.
The respiration pattern as an indicator of the anaerobic threshold.
Mirmohamadsadeghi, Leila; Vesin, Jean-Marc; Lemay, Mathieu; Deriaz, Olivier
2015-08-01
The anaerobic threshold (AT) is a good index of personal endurance but needs a laboratory setting to be determined. It is important to develop easy AT field measurements techniques in order to rapidly adapt training programs. In the present study, it is postulated that the variability of the respiratory parameters decreases with exercise intensity (especially at the AT level). The aim of this work was to assess, on healthy trained subjects, the putative relationships between the variability of some respiration parameters and the AT. The heart rate and respiratory variables (volume, rate) were measured during an incremental exercise performed on a treadmill by healthy moderately trained subjects. Results show a decrease in the variance of 1/tidal volume with the intensity of exercise. Consequently, the cumulated variance (sum of the variance measured at each level of the exercise) follows an exponential relationship with respect to the intensity to reach eventually a plateau. The amplitude of this plateau is closely related to the AT (r=-0.8). It is concluded that the AT is related to the variability of the respiration.
Labsy, Z; Prieur, F; Le Panse, B; Do, M C; Gagey, O; Lasne, F; Collomp, K
2013-03-01
Diurnal patterns of cortisol and dehydroepiandrosterone (DHEA) secretion, the two main peripheral secretory products of the hypothalamic-pituitary-adrenal neuroendocrine stress axis, have been well characterized in rest conditions but not in relation to physical exercise. The purpose of this investigation was therefore to determine the effects of an intense 90-min aerobic exercise on the waking diurnal cortisol and DHEA cycles on three separate days [without exercise, with morning exercise (10:00-11:30 h), and with afternoon exercise (14:00-15:30 h)] in nine recreationally trained soccer players. Saliva samples were collected at awakening, 30 min after awakening, and then every 2 h from 08:00 to 22:00 h. A burst of secretory activity was found for cortisol (p < 0.01) but not for DHEA after awakening. Overall, diurnal decline for both adrenal steroids was observed on resting and exercise days under all conditions. However, there was a significant increase in salivary cortisol concentrations on the morning-exercise and afternoon-exercise days at, respectively, 12:00 h (p < 0.05) and 16:00 h (p < 0.01), versus the other trials. This acute response to exercise was not evident for DHEA. The results of this investigation indicate that 90 min of intense aerobic exercise does not affect the circadian pattern of salivary adrenal steroids in recreationally trained athletes over a 16-h waking period, despite a transitory increase in post-exercise cortisol concentration. Further studies are necessary to determine whether these results are applicable to elite athletes or patients with cortisol or DHEA deficiency.
Mijwel, Sara; Cardinale, Daniele A; Norrbom, Jessica; Chapman, Mark; Ivarsson, Niklas; Wengström, Yvonne; Sundberg, Carl Johan; Rundqvist, Helene
2018-05-11
Exercise has been suggested to ameliorate the detrimental effects of chemotherapy on skeletal muscle. The aim of this study was to compare the effects of different exercise regimens with usual care on skeletal muscle morphology and mitochondrial markers in patients being treated with chemotherapy for breast cancer. Specifically, we compared moderate-intensity aerobic training combined with high-intensity interval training (AT-HIIT) and resistance training combined with high-intensity interval training (RT-HIIT) with usual care (UC). Resting skeletal muscle biopsies were obtained pre- and postintervention from 23 randomly selected women from the OptiTrain breast cancer trial who underwent RT-HIIT, AT-HIIT, or UC for 16 wk. Over the intervention, citrate synthase activity, muscle fiber cross-sectional area, capillaries per fiber, and myosin heavy chain isoform type I were reduced in UC, whereas RT-HIIT and AT-HIIT were able to counteract these declines. AT-HIIT promoted up-regulation of the electron transport chain protein levels vs. UC. RT-HIIT favored satellite cell count vs. UC and AT-HIIT. There was a significant association between change in citrate synthase activity and self-reported fatigue. AT-HIIT and RT-HIIT maintained or improved markers of skeletal muscle function compared with the declines found in the UC group, indicating a sustained trainability in addition to the preservation of skeletal muscle structural and metabolic characteristics during chemotherapy. These findings highlight the importance of supervised exercise programs for patients with breast cancer during chemotherapy.-Mijwel, S., Cardinale, D. A., Norrbom, J., Chapman, M., Ivarsson, N., Wengström, Y., Sundberg, C. J., Rundqvist, H. Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer.
Baker, Michael K; Kennedy, David J; Bohle, Philip L; Campbell, Deena S; Knapman, Leona; Grady, Jodie; Wiltshire, James; McNamara, Maria; Evans, William J; Atlantis, Evan; Fiatarone Singh, Maria A
2007-01-01
To test the feasibility and efficacy of current guidelines for multimodal exercise programs in older adults. Randomized, controlled trial. Retirement village. Thirty-eight subjects (14 men and 24 women) aged 76.6 +/- 6.1. A wait list control or 10 weeks of supervised exercise consisting of high-intensity (80% of one-repetition maximum (1RM)) progressive resistance training (PRT) 3 days per week, moderate-intensity (rating of perceived exertion 11 to 14/20) aerobic training 2 days per week, and progressive balance training 1 day per week. Blinded assessments of dynamic muscle strength (1RM), balance, 6-minute walk, gait velocity, chair stand, stair climb, depressive symptoms, self-efficacy, and habitual physical activity level. Higher baseline strength and psychological well-being were associated with better functional performance. Strength gains over 10 weeks averaged 39+/-31% in exercise, versus 21+/-24% in controls (P=.10), with greater improvements in hip flexion (P=.01), hip abduction (P=.02), and chest press (P=.04) in the exercise group. Strength adaptations were greatest in exercises in which the intended continuous progressive overload was achieved. Stair climb power (12.3+/-15%, P=.002) and chair stand time (-7.1+/-15%, P=.006) improved significantly and similarly in both groups. Reduction in depressive symptoms was significantly related to compliance (attendance rate r=-0.568, P=.009, PRT progression in loading r=-0.587, P=.02, and total volume of aerobic training r=-0.541, P=.01), as well as improvements in muscle strength (r=-0.498, P=.002). Robust physical and psychological adaptations to exercise are linked, although volumes and intensities of multiple exercise modalities sufficient to cause significant adaptation appear difficult to prescribe and adhere to simultaneously in older adults.
Franklin, Ashley; Mishtal, Joanna; Johnson, Teresa; Simms-Cendan, Judith
2017-08-01
Background The American College of Obstetrics and Gynecology notes that pregnant athletes require more supervision due to their involvement in strenuous training schedules throughout pregnancy. Currently, rowing is not mentioned in the guidelines despite its increasing popularity, high cardiovascular demands, and risk for abdominal trauma. Methods This study aimed to elicit information from competitive female rowers regarding exercise, training, and competition during pregnancy. We administered a survey consisting of 122 items to female Masters rowers in the United States, aged 21 to 49 years, from June to December 2013. Results A total of 224 recreational and elite rowers met the inclusion criteria. Pregnant rowers self-reported high levels of exercise engagement: 85.2% (n/N = 98/115) exercised during any past pregnancy; exercise adherence decreased throughout pregnancy with 51.3%, 42.4%, and 15.7% meeting and/or exceeding national guidelines during the first, second, and third trimesters, respectively. Rowers were significantly (p < 0.001) more likely to state that an activity at a specified intensity and trimester was unsafe if they were younger, had less rowing experience, or were nulliparous. Decreased perceived rowing safety was associated with on-water training, higher intensity exercise, competition, and increasing gestational age. Primary safety concerns were the risk of oar-induced abdominal trauma and physiological effects due to high intensities required by the sport. Novel barriers to exercise in pregnancy included guilt towards the team and a mental barrier due to decreased performance. Healthcare providers are the number one information source for rowers regarding exercise during pregnancy. Conclusion Pregnant rowers are a relevant obstetrics population and have barriers and sport-specific safety concerns not previously identified in the literature. Rowers consider exercising in pregnancy to be important and struggle to meet exercise guidelines like the general population, indicating the need for healthcare providers to provide prenatal and antenatal education and interventions to support exercise during pregnancy even amongst athletes.
Mishtal, Joanna; Johnson, Teresa; Simms-Cendan, Judith
2017-01-01
Background The American College of Obstetrics and Gynecology notes that pregnant athletes require more supervision due to their involvement in strenuous training schedules throughout pregnancy. Currently, rowing is not mentioned in the guidelines despite its increasing popularity, high cardiovascular demands, and risk for abdominal trauma. Methods This study aimed to elicit information from competitive female rowers regarding exercise, training, and competition during pregnancy. We administered a survey consisting of 122 items to female Masters rowers in the United States, aged 21 to 49 years, from June to December 2013. Results A total of 224 recreational and elite rowers met the inclusion criteria. Pregnant rowers self-reported high levels of exercise engagement: 85.2% (n/N = 98/115) exercised during any past pregnancy; exercise adherence decreased throughout pregnancy with 51.3%, 42.4%, and 15.7% meeting and/or exceeding national guidelines during the first, second, and third trimesters, respectively. Rowers were significantly (p < 0.001) more likely to state that an activity at a specified intensity and trimester was unsafe if they were younger, had less rowing experience, or were nulliparous. Decreased perceived rowing safety was associated with on-water training, higher intensity exercise, competition, and increasing gestational age. Primary safety concerns were the risk of oar-induced abdominal trauma and physiological effects due to high intensities required by the sport. Novel barriers to exercise in pregnancy included guilt towards the team and a mental barrier due to decreased performance. Healthcare providers are the number one information source for rowers regarding exercise during pregnancy. Conclusion Pregnant rowers are a relevant obstetrics population and have barriers and sport-specific safety concerns not previously identified in the literature. Rowers consider exercising in pregnancy to be important and struggle to meet exercise guidelines like the general population, indicating the need for healthcare providers to provide prenatal and antenatal education and interventions to support exercise during pregnancy even amongst athletes. PMID:28983443
Nandrolone Plus Moderate Exercise Increases the Susceptibility to Lethal Arrhythmias
Ghorbani Baravati, Hamideh; Joukar, Siyavash; Fathpour, Hossein; Kordestani, Zeinab
2015-01-01
Background: Until now, no experimental study has directly assessed the arrhythmogenesis of chronic consumption of anabolic androgenic steroids along with moderate-intensity endurance exercise. Objectives: We evaluated the influence of integration of anabolic androgenic steroids along with moderate-intensity endurance exercise on susceptibility to lethal ventricular arrhythmias in rat. Materials and Methods: The animal groups were as follows: control group (CTL); exercise group (EX) which were under 6 weeks of treadmill exercise; nandrolone group (Nan) which received 5 mg/kg of nandrolone decanoate twice a week; vehicle group (Arach) which received Arachis oil (solvent of nandrolone); trained vehicle group (Arach + Ex); and trained nandrolone group (Nan + Ex). One day after ending of the intervention period, arrhythmia was inducted by intravenous infusion of aconitine and ventricular arrhythmias were recorded. Then malondialdehyde (MDA) and glutathione peroxidase (GPX) of heart tissue were measured. Results: Nandrolone, exercise, and their combination were associated with heart hypertrophy. Exercise could prevent the incremental effect of nandrolone on MDA/GPX ratio. Chronic administration of nandrolone with moderate-intensity endurance exercise had no significant effect on blood pressure, heart rate, and basal electrocardiographic parameters. Combination of nandrolone and exercise significantly increased the incidence of ventricular fibrillation (VF) and reduced the VF latency (P < 0.05). Conclusions: The findings suggest that chronic coadministration of nandrolone with moderate-intensity endurance exercise facilitates the VF occurrence in rat. Complementary studies are needed to elucidate the involved mechanisms of this abnormality. PMID:26396972
Performance in sports--With specific emphasis on the effect of intensified training.
Bangsbo, J
2015-12-01
Performance in most sports is determined by the athlete's technical, tactical, physiological and psychological/social characteristics. In the present article, the physical aspect will be evaluated with a focus on what limits performance, and how training can be conducted to improve performance. Specifically how intensified training, i.e., increasing the amount of aerobic high-intensity and speed endurance training, affects physiological adaptations and performance of trained subjects. Periods of speed endurance training do improve performance in events lasting 30 s-4 min, and when combined with aerobic high-intensity sessions, also performance during longer events. Athletes in team sports involving intense exercise actions and endurance aspects, such as soccer and basketball, can also benefit from intensified training. Speed endurance training does reduce energy expenditure and increase expression of muscle Na(+), K(+) pump α subunits, which may preserve muscle cell excitability and delay fatigue development during intense exercise. When various types of training are conducted in the same period (concurrent training), as done in a number of sports, one type of training may blunt the effect of other types of training. It is not, however, clear how various training modalities are affecting each other, and this issue should be addressed in future studies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
van der Scheer, Jan W; de Groot, Sonja; Vegter, Riemer J K; Hartog, Johanneke; Tepper, Marga; Slootman, Hans; Veeger, DirkJan H E J; van der Woude, Lucas H V
2015-11-01
The objective of this study was to investigate the effects of a low-intensity wheelchair training on propulsion technique in inactive people with long-term spinal cord injury. Participants in this multicenter nonblinded randomized controlled trial were inactive manual wheelchair users with spinal cord injury for at least 10 yrs (N = 29), allocated to exercise (n = 14) or no exercise. The 16-wk training consisted of wheelchair treadmill propulsion at 30%-40% heart rate reserve or equivalent in rate of perceived exertion, twice a week, 30 mins per session. Propulsion technique was assessed at baseline as well as after 8, 16, and 42 wks during two submaximal treadmill-exercise blocks using a measurement wheel attached to a participant's own wheelchair. Changes over time between the groups were analyzed using Mann-Whitney U tests on difference scores (P < 0.05/3). Data of 16 participants could be analyzed (exercise: n = 8). Significant differences between the exercise and control groups were only found in peak force after 8 wks (respective medians, -20 N vs. 1 N; P = 0.01; r(u) = 0.78). Significant training effects on propulsion technique were not found in this group. Perhaps, substantial effects require a higher intensity or frequency. Investigating whether more effective and feasible interventions exist might help reduce the population's risk of upper-body joint damage during daily wheelchair propulsion.
Shamsoddini, Alireza; Sobhani, Vahid; Ghamar Chehreh, Mohammad Ebrahim; Alavian, Seyed Moayed; Zaree, Ali
2015-10-01
Nonalcoholic fatty liver disease (NAFLD) has different prevalence rates in various parts of the world and is a risk factor for diabetes and cardiovascular disease that could progress to nonalcoholic steatohepatitis, cirrhosis, and liver failure. The current study aimed to investigate the effect of Aerobic Training (AT) and resistance training (RT) on hepatic fat content and liver enzyme levels in Iranian men. In a randomized clinical trial study, 30 men with clinically defined NAFLD were allocated into three groups (aerobic, resistance and control). An aerobic group program consisted of 45 minutes of aerobic exercise at 60% - 75% maximum heart rate intensity, a resistance group performed seven resistance exercises at intensity of 50% - 70% of 1 repetition maximum (1RM ) and the control group had no exercise training program during the study. Before and after training, anthropometry, insulin sensitivity, liver enzymes and hepatic fat were elevated. After training, hepatic fat content was markedly reduced, to a similar extent, in both the aerobic and resistance exercise training groups (P ≤ 0.05). In the two exercise training groups, alanine amino transferase and aspartate amino transferase serum levels were significantly decreased compared to the control group (P = 0.002) and (P = 0.02), respectively. Moreover, body fat (%), fat mass (kg), homeostasis model assessment insulin resistance (HOMI-IR) were all improved in the AT and RT. These changes in the AT group were independent of weight loss. This study demonstrated that RT and AT are equally effective in reducing hepatic fat content and liver enzyme levels among patients with NAFLD. However, aerobic exercise specifically improves NAFLD independent of any change in body weight.
Shamsoddini, Alireza; Sobhani, Vahid; Ghamar Chehreh, Mohammad Ebrahim; Alavian, Seyed Moayed; Zaree, Ali
2015-01-01
Background: Nonalcoholic fatty liver disease (NAFLD) has different prevalence rates in various parts of the world and is a risk factor for diabetes and cardiovascular disease that could progress to nonalcoholic steatohepatitis, cirrhosis, and liver failure. Objectives: The current study aimed to investigate the effect of Aerobic Training (AT) and resistance training (RT) on hepatic fat content and liver enzyme levels in Iranian men. Patients and Methods: In a randomized clinical trial study, 30 men with clinically defined NAFLD were allocated into three groups (aerobic, resistance and control). An aerobic group program consisted of 45 minutes of aerobic exercise at 60% - 75% maximum heart rate intensity, a resistance group performed seven resistance exercises at intensity of 50% - 70% of 1 repetition maximum (1RM ) and the control group had no exercise training program during the study. Before and after training, anthropometry, insulin sensitivity, liver enzymes and hepatic fat were elevated. Results: After training, hepatic fat content was markedly reduced, to a similar extent, in both the aerobic and resistance exercise training groups (P ≤ 0.05). In the two exercise training groups, alanine amino transferase and aspartate amino transferase serum levels were significantly decreased compared to the control group (P = 0.002) and (P = 0.02), respectively. Moreover, body fat (%), fat mass (kg), homeostasis model assessment insulin resistance (HOMI-IR) were all improved in the AT and RT. These changes in the AT group were independent of weight loss. Conclusions: This study demonstrated that RT and AT are equally effective in reducing hepatic fat content and liver enzyme levels among patients with NAFLD. However, aerobic exercise specifically improves NAFLD independent of any change in body weight. PMID:26587039
Horii, Naoki; Hasegawa, Natsuki; Fujie, Shumpei; Uchida, Masataka; Miyamoto-Mikami, Eri; Hashimoto, Takeshi; Tabata, Izumi; Iemitsu, Motoyuki
2017-04-01
The purpose of this study was to investigate the effect of chronic chlorella intake alone or in combination with high-intensity intermittent exercise (HIIE) training on exercise performance and muscle glycolytic and oxidative metabolism in rats. Forty male Sprague-Dawley rats were randomly assigned to the four groups: sedentary control, chlorella intake (0.5% chlorella powder in normal feed), HIIE training, and combination of HIIE training and chlorella intake for 6 wk ( n = 10 each group). HIIE training comprised 14 repeats of a 20-s swimming session with a 10-s pause between sessions, while bearing a weight equivalent to 16% of body weight, 4 days/week. Exercise performance was tested after the interventions by measuring the maximal number of HIIE sessions that could be completed. Chlorella intake and HIIE training significantly increased the maximal number of HIIE sessions and enhanced the expression of monocarboxylate transporter (MCT)1, MCT4, and peroxisome proliferator-activated receptor γ coactivator-1α concomitantly with the activities of lactate dehydrogenase (LDH), phosphofructokinase, citrate synthase (CS), and cytochrome- c oxidase (COX) in the red region of the gastrocnemius muscle. Furthermore, the combination further augmented the increased exercise performance and the enhanced expressions and activities. By contrast, in the white region of the muscle, MCT1 expression and LDH, CS, and COX activities did not change. These results showed that compared with only chlorella intake and only HIIE training, chlorella intake combined with HIIE training has a more pronounced effect on exercise performance and muscle glycolytic and oxidative metabolism, in particular, lactate metabolism. Copyright © 2017 the American Physiological Society.
Gielen, Stephan; Laughlin, M Harold; O'Conner, Christopher; Duncker, Dirk J
2015-01-01
Over the last decades exercise training has evolved into an established evidence-based therapeutic strategy with prognostic benefits in many cardiovascular diseases (CVDs): In stable coronary artery disease (CAD) exercise training attenuates disease progression by beneficially influencing CVD risk factors (i.e., hyperlipidemia, hypertension) and coronary endothelial function. In heart failure (HF) with reduced ejection fraction (HFrEF) training prevents the progressive loss of exercise capacity by antagonizing peripheral skeletal muscle wasting and by promoting left ventricular reverse remodeling with reduction in cardiomegaly and improvement of ejection fraction. Novel areas for exercise training interventions include HF with preserved ejection fraction (HFpEF), pulmonary hypertension, and valvular heart disease. In HFpEF, randomized studies indicate a lusitropic effect of training on left ventricular diastolic function associated with symptomatic improvement of exercise capacity. In pulmonary hypertension, reductions in pulmonary artery pressure were observed following endurance exercise training. Recently, innovative training methods such as high-intensity interval training, resistance training and others have been introduced. Although their prognostic value still needs to be determined, these approaches may achieve superior improvements in aerobic exercise capacity and gain in muscle mass, respectively. In this review, we give an overview of the prognostic and symptomatic benefits of exercise training in the most common cardiac disease entities. Additionally, key guideline recommendations for the initiation of training programs are summarized. Copyright © 2014 Elsevier Inc. All rights reserved.
Exercise-induced muscle damage and running economy in humans.
Assumpção, Cláudio de Oliveira; Lima, Leonardo Coelho Rabello; Oliveira, Felipe Bruno Dias; Greco, Camila Coelho; Denadai, Benedito Sérgio
2013-01-01
Running economy (RE), defined as the energy demand for a given velocity of submaximal running, has been identified as a critical factor of overall distance running performance. Plyometric and resistance trainings, performed during a relatively short period of time (~15-30 days), have been successfully used to improve RE in trained athletes. However, these exercise types, particularly when they are unaccustomed activities for the individuals, may cause delayed onset muscle soreness, swelling, and reduced muscle strength. Some studies have demonstrated that exercise-induced muscle damage has a negative impact on endurance running performance. Specifically, the muscular damage induced by an acute bout of downhill running has been shown to reduce RE during subsequent moderate and high-intensity exercise (>65% VO₂max). However, strength exercise (i.e., jumps, isoinertial and isokinetic eccentric exercises) seems to impair RE only for subsequent high-intensity exercise (~90% VO₂max). Finally, a single session of resistance exercise or downhill running (i.e., repeated bout effect) attenuates changes in indirect markers of muscle damage and blunts changes in RE.
Eccentric resistance training intensity may affect the severity of exercise induced muscle damage.
Hasenoehrl, Timothy; Wessner, Barbara; Tschan, Harald; Vidotto, Claudia; Crevenna, Richard; Csapo, Robert
2017-09-01
The aim of the present study was to assess the role of eccentric exercise intensity in the development of and recovery from delayed onset muscle soreness (DOMS). Using a cross-over study design, 15 healthy, male college students were tested on two occasions. The training stimulus consisted of an exhaustive series of eccentric muscle contractions of the elbow flexors at either 100% (high intensity) or 50% (low intensity) of the individual concentric one-repetition maximum. Blood samples were taken at baseline as well as 24, 48, 72 and 96 hours postexercise, and analyzed for creatine kinase, myoglobin, interleukin-6 and prostaglandin-2. Additionally, upper arm circumference (CIRC) and DOMS-related sensation of pain (PAIN) were measured. Following high intensity training, CIRC was significantly greater (P=0.007). Further, creatine kinase, myoglobin and interleukin-6 tended to be higher, although the main effect of the factor "intensity" just failed to reach significance (creatine kinase: P=0.056, myoglobin: P=0.064, interleukin-6: P=0.091). No differences were found for prostaglandin-2 (P=0.783) and PAIN (P=0.147). When performed at greater intensity, fatiguing eccentric resistance exercise of the elbow flexors leads to greater muscle swelling and, potentially, increases in serum markers reflecting lesions in the muscle's cellular membrane.
Asadi, Abbas; Ramirez-Campillo, Rodrigo; Meylan, Cesar; Nakamura, Fabio Y; Cañas-Jamett, Rodrigo; Izquierdo, Mikel
2017-12-01
The aim of the present study was to compare maximal-intensity exercise adaptations in young basketball players (who were strong individuals at baseline) participating in regular basketball training versus regular plus a volume-based plyometric training program in the pre-season period. Young basketball players were recruited and assigned either to a plyometric with regular basketball training group (experimental group [EG]; N.=8), or a basketball training only group (control group [CG]; N.=8). The athletes in EG performed periodized (i.e., from 117 to 183 jumps per session) plyometric training for eight weeks. Before and after the intervention, players were assessed in vertical and broad jump, change of direction, maximal strength and a 60-meter sprint test. No significant improvements were found in the CG, while the EG improved vertical jump (effect size [ES] 2.8), broad jump (ES=2.4), agility T test (ES=2.2), Illinois agility test (ES=1.4), maximal strength (ES=1.8), and 60-m sprint (ES=1.6) (P<0.05) after intervention, and the improvements were greater compared to the CG (P<0.05). Plyometric training in addition to regular basketball practice can lead to meaningful improvements in maximal-intensity exercise adaptations among young basketball players during the pre-season.
Isometric strength training lowers the O2 cost of cycling during moderate-intensity exercise.
Zoladz, Jerzy A; Szkutnik, Zbigniew; Majerczak, Joanna; Grandys, Marcin; Duda, Krzysztof; Grassi, Bruno
2012-12-01
The effect of maximal voluntary isometric strength training of knee extensor muscles on pulmonary V'O(2) on-kinetics, the O(2) cost of cycling and peak oxygen uptake (V'O(2peak)) in humans was studied. Seven healthy males (mean ± SD, age 22.3 ± 2.0 years, body weight 75.0 ± 9.2 kg, V'O(2peak) 49.5 ± 3.8 ml kg(-1) min(-1)) performed maximal isometric strength training lasting 7 weeks (4 sessions per week). Force during maximal voluntary contraction (MVC) increased by 15 % (P < 0.001) after 1 week of training, and by 19 % (P < 0.001) after 7 weeks of training. This increase in MVC was accompanied by no significant changes in the time constant of the V'O(2) on-kinetics during 6 min of moderate and heavy cycling intensities. Strength training resulted in a significant decrease (by ~7 %; P < 0.02) in the amplitude of the fundamental component of the V'O(2) on-kinetics, and therefore in a lower O(2) cost of cycling during moderate cycling intensity. The amplitude of the slow component of V'O(2) on-kinetics during heavy cycling intensity did not change with training. Training had no effect on the V'O(2peak), whereas the maximal power output reached at V'O(2peak) was slightly but significantly increased (P < 0.05). Isometric strength training rapidly (i.e., after 1 week) decreases the O(2) cost of cycling during moderate-intensity exercise, whereas it does not affect the amplitude of the slow component of the V'O(2) on-kinetics during heavy-intensity exercise. Isometric strength training can have beneficial effects on performance during endurance events.
Effect of Short-Term, High-Intensity Exercise on Anaerobic Threshold in Women.
ERIC Educational Resources Information Center
Evans, Blanche W.
This study investigated the effects of a six-week, high-intensity cycling program on anaerobic threshold (AT) in ten women. Subjects trained four days a week using high-intensity interval-type cycle exercises. Workouts included six 4-minute intervals cycling at 85 percent maximal oxygen uptake (VO sub 2 max), separated by 3-minute intervals of…
Effects of active recovery during interval training on plasma catecholamines and insulin.
Nalbandian, Harutiun M; Radak, Zsolt; Takeda, Masaki
2018-06-01
BACKGROUNDː Active recovery has been used as a method to accelerate the recovery during intense exercise. It also has been shown to improve performance in subsequent exercises, but little is known about its acute effects on the hormonal and metabolic profile. The aim of this research was to study the effects of active recovery on plasma catecholamines and plasma insulin during a high-intensity interval exercise. METHODSː Seven subjects performed two high-intensity interval training protocols which consisted of three 30-second high-intensity bouts (constant intensity), separated by a recovery of 4 minutes. The recovery was either active recovery or passive recovery. During the main test blood samples were collected and plasma insulin, plasma catecholamines and blood lactate were determined. Furthermore, respiratory gasses were also measured. RESULTSː Plasma insulin and blood lactate were significantly higher in the passive recovery trial, while plasma adrenaline was higher in the active recovery. Additionally, VO2 and VCO2 were significantly more increased during the active recovery trials. CONCLUSIONSː These results suggest that active recovery affects the hormonal and metabolic responses to high-intensity interval exercise. Active recovery produces a hormonal environment which may favor lipolysis and oxidative metabolism, while passive recovery may be favoring glycolysis.
Kline, Christopher E.; Ewing, Gary B.; Burch, James B.; Blair, Steven N.; Durstine, J. Larry; Davis, J. Mark; Youngstedt, Shawn D.
2012-01-01
Study Objectives: To explore the utility of exercise training for improving daytime functioning in adults with obstructive sleep apnea (OSA). Methods: Forty-three sedentary and overweight/obese adults aged 18-55 years with at least moderate-severity untreated OSA (apnea-hypopnea index ≥ 15) were randomized to 12 weeks of moderate-intensity aerobic and resistance exercise training (n = 27) or low-intensity stretching control treatment (n = 16). As part of a trial investigating the efficacy of exercise training on OSA severity, daytime functioning was assessed before and following the intervention. Sleepiness, functional impairment due to sleepiness, depressive symptoms, mood, and quality of life (QOL) were evaluated with validated questionnaires, and cognitive function was assessed with a neurobehavioral performance battery. OSA severity was measured with one night of laboratory polysomnography before and following the intervention. Results: Compared with stretching control, exercise training resulted in significant improvements in depressive symptoms, fatigue and vigor, and aspects of QOL (p < 0.05). Sleepiness and functional impairment due to sleepiness also were improved following exercise versus control to a similar degree in terms of effect sizes (d > 0.5), though these changes were not statistically significant. No neurobehavioral performance improvements were found. Reduced fatigue following exercise training was mediated by a reduction in OSA severity, but changes in OSA severity did not significantly mediate improvement in any other measure of daytime functioning. Conclusions: These data provide preliminary evidence that exercise training may be helpful for improving aspects of daytime functioning of adults with OSA. Larger trials are needed to further verify the observed improvements. Trial Registration: Clinicaltrials.gov identification number NCT00956423. Citation: Kline CE; Ewing GB; Burch JB; Blair SN; Durstine JL; Davis JM; Youngstedt SD. Exercise training improves selected aspects of daytime functioning in adults with obstructive sleep apnea. J Clin Sleep Med 2012;8(4):357-365. PMID:22893765
NASA Technical Reports Server (NTRS)
Lee, S. M.; Bennett, B. S.; Hargens, A. R.; Watenpaugh, D. E.; Ballard, R. E.; Murthy, G.; Ford, S. R.; Fortney, S. M.
1997-01-01
Adaptation to bed rest or space flight is accompanied by an impaired ability to exercise in an upright position. We hypothesized that a daily, 30-min bout of intense, interval exercise in upright posture or supine against lower body negative pressure (LBNP) would maintain upright exercise heart rate and respiratory responses after bed rest. Twenty-four men (31 +/- 3 yr) underwent 5 d of 6 degree head-down tilt: eight performed no exercise (CON), eight performed upright treadmill exercise (UPex), and eight performed supine treadmill exercise against LBNP at -51.3 +/- 0.4 mm Hg (LBNPex). Submaximal treadmill exercise responses (56, 74, and 85% of VO2peak) were measured pre- and post-bed rest. In CON, submaximal heart rate, respiratory exchange ratio, and ventilation were significantly greater (P < or = 0.05) after bed rest. In UPex and LBNPex, submaximal exercise responses were similar pre- and post-bed rest. Our results indicate that a daily 30-min bout of intense, interval upright exercise training or supine exercise training against LBNP is sufficient to maintain upright exercise responses after 5 d of bed rest. These results may have important implications for the development of exercise countermeasures during space flight.
He, L I; Wei, Wang Ren; Can, Zhao
2018-01-24
Essential hypertension (EP) is characterized by blood pressure (BP) elevations, which often lead to target organ damage and cardiovascular illness. The following study investigates whether aerobic exercise programs with different intensities could reduce the magnitude of BP rise. Patients with essential hypertension were recruited from the Baoshan Community Health Service Center. A total of 46 patients were finally selected and randomly assigned into two groups: control group (CON) included patients who did not participate in exercise intervention training; treatment group (TRG) included patients who participated in 12-week brisk walking training (60-min of brisk walking, three times a week for a total of 12 weeks). 3-minute step tests of low and high intensity were conducted pre- and post-intervention. To compare the effects of exercise intervention, 23 subjects with normal blood pressure (NBP) who did not participate in 12-week brisk walking training, were recruited. After 12 weeks of brisk walking, SBP of TRG during resting, low and high-intensity exercise was significantly reduced by 8.3mmHg, 15.6mmHg, and 22.6mmHg, respectively; while HR of TRG's during resting, low and high intensity was significantly reduced by 3.6beats/minute, 8.7beats/minute and 11.3beats/minute, respectively. Meanwhile, after 12 weeks of brisk walking, TRG's steps per day, [Formula: see text]o 2max , moderate physical activity time and physical activity energy expenditure significantly increased by 6000 steps, 2.4 ml/kg/m, 40 minutes and 113 kcal, respectively. At the same time, TRG's body fat rate and sedentary time significantly reduced by 2% and 60 minutes per day. Brisk walking can reduce the magnitude of BP rise during exercise of different intensities and may be reduced the risk of acute cardiovascular incidents in elderly patients with essential hypertension. EP: Essential hypertension; BP: blood pressure; CON: control group; TRG: treatment group; NBP: normal blood pressure; PA: physical activity.
Emter, Craig A; Tharp, Darla L; Ivey, Jan R; Ganjam, Venkataseshu K; Bowles, Douglas K
2011-10-01
Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ET(A)) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K(+) currents (I(K(+))) in coronary smooth muscle cells. Raising internal Ca(2+) from 200 to 500 nM increased Ca(2+)-sensitive K(+) current in HF-TR and control, but not HF animals. In conclusion, an ET(A)-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca(2+)-sensitive I(K(+)) was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca(2+)-sensitive I(K(+)), illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy.
Tharp, Darla L.; Ivey, Jan R.; Ganjam, Venkataseshu K.; Bowles, Douglas K.
2011-01-01
Coronary vascular dysfunction has been observed in several models of heart failure (HF). Recent evidence indicates that exercise training is beneficial for patients with HF, but the precise intensity and underlying mechanisms are unknown. Left ventricular (LV) hypertrophy can play a significant role in the development of HF; therefore, the purpose of this study was to assess the effects of low-intensity interval exercise training on coronary vascular function in sedentary (HF) and exercise trained (HF-TR) aortic-banded miniature swine displaying LV hypertrophy. Six months postsurgery, in vivo coronary vascular responses to endothelin-1 (ET-1) and adenosine were measured in the left anterior descending coronary artery. Baseline and maximal coronary vascular conductance were similar between all groups. ET-1-induced reductions in coronary vascular conductance (P < 0.05) were greater in HF vs. sedentary control and HF-TR groups. Pretreatment with the ET type A (ETA) receptor blocker BQ-123 prevented ET-1 hypersensitivity in HF animals. Whole cell voltage clamp was used to characterize composite K+ currents (IK+) in coronary smooth muscle cells. Raising internal Ca2+ from 200 to 500 nM increased Ca2+-sensitive K+ current in HF-TR and control, but not HF animals. In conclusion, an ETA-receptor-mediated hypersensitivity to ET-1, elevated resting LV wall tension, and decreased coronary smooth muscle cell Ca2+-sensitive IK+ was found in sedentary animals with LV hypertrophy. Low-intensity interval exercise training preserved normal coronary vascular function and smooth muscle cell Ca2+-sensitive IK+, illustrating a potential mechanism underlying coronary vascular dysfunction in a large-animal model of LV hypertrophy. Our results demonstrate the potential clinical impact of exercise on coronary vascular function in HF patients displaying pathological LV hypertrophy. PMID:21841018
Devin, James L; Jenkins, David G; Sax, Andrew T; Hughes, Gareth I; Aitken, Joanne F; Chambers, Suzanne K; Dunn, Jeffrey C; Bolam, Kate A; Skinner, Tina L
2018-06-01
Deteriorations in cardiorespiratory fitness (V˙o 2peak ) and body composition are associated with poor prognosis after colorectal cancer treatment. However, the optimal intensity and frequency of aerobic exercise training to improve these outcomes in colorectal cancer survivors is unknown. This trial compared 8 weeks of moderate-intensity continuous exercise (MICE; 50 minutes; 70% peak heart rate [HR peak ]; 24 sessions), with high-intensity interval exercise (HIIE; 4 × 4 minutes; 85%-95% HR peak ) at an equivalent (HIIE; 24 sessions) and tapered frequency (HIIE-T; 16 sessions) on V˙o 2peak and on lean and fat mass, measured at baseline, 4, 8, and 12 weeks. Increases in V˙o 2peak were significantly greater after both 4 (+3.0 mL·kg -1 ·min -1 , P = .008) and 8 (+2.3 mL·kg -1 ·min -1 , P = .049) weeks of HIIE compared to MICE. After 8 weeks, there was a significantly greater reduction in fat mass after HIIE compared to MICE (-0.7 kg, P = .038). Four weeks after training, the HIIE group maintained elevated V˙o 2peak (+3.3 mL·kg -1 ·min -1 , P = .006) and reduced fat mass (-0.7 kg, P = .045) compared to the MICE group, with V˙o 2peak in the HIIE-T also being superior to the MICE group (+2.8 mL·kg -1 ·min -1 , P = .013). Compared to MICE, HIIE promotes superior improvements and short-term maintenance of V˙o 2peak and fat mass improvements. HIIE training at a reduced frequency also promotes maintainable cardiorespiratory fitness improvements. In addition to promoting accelerated and superior benefits to the current aerobic exercise guidelines, HIIE promotes clinically relevant improvements even with a substantial reduction in exercise training and for a period after withdrawal. Copyright © 2018 Elsevier Inc. All rights reserved.
Tew, Garry A; Carpenter, Roger; Seed, Michael; Anderson, Simon; Langmead, Louise; Fairhurst, Caroline; Bottoms, Lindsay
2017-01-01
Structured exercise training has been proposed as a useful adjunctive therapy for Crohn's disease by improving immune function and psychological health, reducing fatigue and promoting gains in muscle and bone strength. However, the evidence for exercise in Crohn's disease is sparse, with only a handful of small prospective trials [1, 2], with methodological limitations, including the use of non-randomised and non-controlled study designs and small sample sizes. Here, we describe the protocol for a study that aims to assess the feasibility and acceptability of two common types of exercise training-high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT)-in adults with inactive or mildly active Crohn's disease (CD). This is a randomised, controlled, assessor-blinded, feasibility trial with three parallel groups. Forty-five adults with inactive or mildly active Crohn's disease will be randomly assigned 1:1:1 to HIIT, MICT or usual care control. Participants in the HIIT and MICT groups will be invited to undertake three sessions of supervised exercise each week for 12 consecutive weeks. HIIT sessions will consist of ten 1-min intervals of cycling exercise at 90% of peak power output separated by 1 min of active recovery. MICT sessions will involve 30 min of continuous cycling at 35% of peak power output. Participants will be assessed before randomisation and 13 and 26 weeks after randomisation. Feasibility outcomes include rates of recruitment, retention and adherence. Interviews with participants will explore the acceptability of the exercise programmes and study procedures. Clinical/health outcomes include cardiorespiratory fitness, body mass index, resting blood pressure, markers of disease activity (faecal calprotectin and Crohn's Disease Activity Index) and activated T cell cytokine profiles. Study questionnaires include the Inflammatory Bowel Disease Quality of Life Questionnaire, EQ-5D-5L, IBD Fatigue Scale, Hospital and Anxiety Depression Scale, and International Physical Activity Questionnaire. This study will provide useful information on the feasibility and acceptability of supervised exercise training in adults with inactive and mildly active Crohn's disease and will inform the design of a subsequent, adequately powered, multi-centre trial. The trial is registered with the International Standard Randomised Controlled Trial Register (ISRCTN13021107). Date registration assigned was 02/12/2015.
Measurement of Exercise Intensity with a Tri-Axial Accelerometer during Military Training
2009-10-01
PO Box 90.004 3509 AA Utrecht The Netherlands ABSTRACT Exercise load and intensity, as reflected in energy expenditure, are determinants of...18. Total body water was estimated from calculated body composition, based on height, weight, age and gender , with the equation of Deurenberg et
De Crée, C; Ball, P; Seidlitz, B; Van Kranenburg, G; Geurten, P; Keizer, H A
1997-10-01
It has been hypothesized that exercise-related hypo-estrogenemia occurs as a consequence of increased competition of catecholestrogens (CE) for catechol-O-methyltransferase (COMT). This may result in higher norepinephrine (NE) concentrations, which could interfere with normal gonadotropin pulsatility. The present study investigates the effects of training on CE responses to acute exercise stress. Nine untrained eumenorrheic women (mean percentage of body fat +/-SD: 24.8 +/- 3.1%) volunteered for an intensive 5-day training program. Resting, submaximal, and maximal (tmax) exercise plasma CE, estrogen, and catecholamine responses were determined pre- and post training in both the follicular (FPh) and luteal phase (LPh). Acute exercise stress increased total primary estrogens (E) but had little effect on total 2-hydroxyestrogens (2-OHE) and 2-hydroxyestrogen-monomethylethers (2-MeOE) (= O-methylated CE after competition for catechol-O-methyltransferase). This pattern was not significantly changed by training. However, posttraining LPh mean (+/-SE) plasma E, 2-OHE, and 2-MeOE concentrations were significantly lower (P < 0.05) at each exercise intensity (for 2-OHE: 332 +/- 47 vs. 422 +/- 57 pg/mL at tmax; for 2-MeOE: 317 +/- 26 vs. 354 +/- 34 pg/mL at tmax). Training produced opposite effects on 2-OHE:E ratios (an estimation of CE formation) during acute exercise in the FPh (reduction) and LPh (increase). The 2-MeOE:2-OHE ratio (an estimation of CE activity) showed significantly higher values at tmax in both menstrual phases after training (FPh: +11%; LPh: +23%; P < 0.05). After training, NE values were significantly higher (P < 0.05). The major findings of this study were that: training lowers absolute concentrations of plasma estrogens and CE; the acute exercise challenge altered plasma estrogens but had little effect on CE; estimation of the formation and activity of CE suggests that formation and O-methylation of CE proportionately increases. These findings may be of importance for NE-mediated effects on gonadotropin release.
Training with the International Space Station interim resistive exercise device
NASA Technical Reports Server (NTRS)
Schneider, Suzanne M.; Amonette, William E.; Blazine, Kristi; Bentley, Jason; Lee, Stuart M C.; Loehr, James A.; Moore, Alan D Jr; Rapley, Michael; Mulder, Edwin R.; Smith, Scott M.
2003-01-01
A unique, interim elastomer-based resistive exercise device (iRED) is being used on the International Space Station. PURPOSE: This study characterized iRED training responses in a 1-g environment by: 1) determining whether 16 wk of high-intensity training with iRED produces increases in muscle strength and volume and bone mineral density (BMD), 2) comparing training responses with iRED to free weights, and 3) comparing iRED training responses at two training volumes. METHODS: Twenty-eight untrained men were assigned to four groups of seven subjects each: a no exercise control group (CON), an iRED group who trained with three sets/exercise (iRED3), a free-weight group (FW) who trained with three sets/exercise, and an iRED group who trained with six sets/exercise (iRED6). Training exercises included squat (SQ), heel raise (HR), and dead lift (DL) exercises, 3 d.wk(-1) for 16 wk. RESULTS: For CON, no changes occurred pre- to posttraining. For iRED3, increases (P< or =0.05) in one-repetition maximum (1-RM) strength (SQ 21 +/- 4%, HR 17 +/- 4%, DL 29 +/- 5%), leg lean mass (3.1 +/- 0.5%) by dual energy x-ray absorptiometry (DXA), and thigh (4.5 +/- 0.9%) and calf (5.9 +/- 0.7%) muscle volume (by magnetic resonance imaging) occurred after training with no changes in BMD (DXA). For FW, increases in 1-RM strength (SQ 22 +/- 5%, HR 24 +/- 3%, DL 41 +/- 7%), whole body (3.0 +/- 1.1%) and leg lean mass (5.4 +/- 1.2%), thigh (9.2 +/- 1.3%) and calf (4.2 +/- 1.0%) muscle volumes, and lumbar BMD (4.2 +/- 0.7%) occurred after training. For iRED6, all responses were similar to iRED3. CONCLUSION: High-intensity training with the iRED produced muscle responses similar to FW but was not effective in stimulating bone. Bed rest and spaceflight studies are needed to evaluate the effectiveness of the iRED to prevent microgravity deconditioning.
Broman-Fulks, Joshua J; Kelso, Kerry; Zawilinski, Laci
2015-01-01
The purpose of this study was to compare the relative effects of a single bout of aerobic exercise versus resistance training on cognitive vulnerabilities for anxiety disorders. Seventy-seven participants (60% female; 84% Caucasian) were randomized to complete 20 min of moderate-intensity aerobic exercise, resistance training, or rest, followed by a 35% CO2/65% O2 inhalation challenge task. Results indicated that aerobic exercise and resistance training were significantly and equally effective in reducing anxiety sensitivity (AS) compared with rest ((η(2)(p ) = 52), though only aerobic exercise significantly attenuated reactivity to the CO2 challenge task. Neither form of exercise generated observable effects on distress tolerance, discomfort intolerance, or state anxiety (all ps >.10). The results of this study are discussed with regard to their implications for the use of exercise interventions for anxiety and related forms of psychopathology, and potential directions for future research are discussed.
Foster, Carl; Farland, Courtney V.; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T.; Porcari, John P.
2015-01-01
High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. Results: There were significant (p < 0.05) increases in VO2max (+19, +18 and +18%) and PPO (+17, +24 and +14%) for each training group, as well as significant increases in peak (+8, + 9 and +5%) & mean (+4, +7 and +6%) power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p < 0.05) than the steady state and Meyer protocols, and that the enjoyment of all protocols declined (p < 0.05) across the duration of the study. The results suggest that although HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults. Key points Steady state training equivalent to HIIT in untrained students Mild interval training presents very similar physiologic challenge compared to steady state training HIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval training Enjoyment of training decreases across the course of an 8 week experimental training program PMID:26664271
Foster, Carl; Farland, Courtney V; Guidotti, Flavia; Harbin, Michelle; Roberts, Brianna; Schuette, Jeff; Tuuri, Andrew; Doberstein, Scott T; Porcari, John P
2015-12-01
High intensity interval training (HIIT) has become an increasingly popular form of exercise due to its potentially large effects on exercise capacity and small time requirement. This study compared the effects of two HIIT protocols vs steady-state training on aerobic and anaerobic capacity following 8-weeks of training. Fifty-five untrained college-aged subjects were randomly assigned to three training groups (3x weekly). Steady-state (n = 19) exercised (cycle ergometer) 20 minutes at 90% of ventilatory threshold (VT). Tabata (n = 21) completed eight intervals of 20s at 170% VO2max/10s rest. Meyer (n = 15) completed 13 sets of 30s (20 min) @ 100% PVO2 max/ 60s recovery, average PO = 90% VT. Each subject did 24 training sessions during 8 weeks. There were significant (p < 0.05) increases in VO2max (+19, +18 and +18%) and PPO (+17, +24 and +14%) for each training group, as well as significant increases in peak (+8, + 9 and +5%) & mean (+4, +7 and +6%) power during Wingate testing, but no significant differences between groups. Measures of the enjoyment of the training program indicated that the Tabata protocol was significantly less enjoyable (p < 0.05) than the steady state and Meyer protocols, and that the enjoyment of all protocols declined (p < 0.05) across the duration of the study. The results suggest that although HIIT protocols are time efficient, they are not superior to conventional exercise training in sedentary young adults. Key pointsSteady state training equivalent to HIIT in untrained studentsMild interval training presents very similar physiologic challenge compared to steady state trainingHIIT (particularly very high intensity variants were less enjoyable than steady state or mild interval trainingEnjoyment of training decreases across the course of an 8 week experimental training program.
Exercise for Breast Cancer Survivors: Research Evidence and Clinical Guidelines.
ERIC Educational Resources Information Center
Courneya, Kerry S.; Mackey, John R.; McKenzie, Donald C.
2002-01-01
Exercise can significantly benefit breast cancer survivors during and after treatment. Moderate intensity aerobic exercise as well as resistance training are important. Psychological health is optimized by enjoyable exercise that develops new skills, incorporates social interaction, and occurs in a stimulating environment. Several conditions…
Nytrøen, Kari; Yardley, Marianne; Rolid, Katrine; Bjørkelund, Elisabeth; Karason, Kristjan; Wigh, Julia Philip; Dall, Christian Have; Arora, Satish; Aakhus, Svend; Lunde, Ketil; Solberg, Ole Geir; Gustafsson, Finn; Prescott, Eva Irene Bossano; Gullestad, Lars
2016-02-01
There is no consensus on how, when, and at what intensity exercise should be performed and organized after heart transplantation (HTx). Most rehabilitation programs are conducted in HTx centers, which might be impractical and costly. We have recently shown that high-intensity interval training (HIT) is safe, well tolerated, and efficacious in maintenance HTx recipients, but there are no studies among de novo patients, and whether HIT is feasible and superior to moderate training in HTx recipients is unclear. A total of 120 clinically stable HTx recipients older than 18 years will be recruited from 3 Scandinavian HTx centers. Participants are randomized to HIT or moderate training, shortly after surgery. All exercises are supervised in the patients' local communities. Testing at baseline and follow-up includes the following: VO2peak (primary end point), muscle strength, body composition, quality of life, myocardial performance, endothelial function, biomarkers, and progression of cardiac allograft vasculopathy. A subgroup (n = 90) will also be tested at 3-year follow-up to assess long-term effects of exercise. So far, the HIT intervention is well tolerated, without any serious adverse events. We aim to test whether decentralized HIT is feasible, safe, and superior to moderate training, and whether it will lead to significant improvement in exercise capacity and less long-term complications. Copyright © 2015 Elsevier Inc. All rights reserved.
Physiological adaptations to low-volume, high-intensity interval training in health and disease.
Gibala, Martin J; Little, Jonathan P; Macdonald, Maureen J; Hawley, John A
2012-03-01
Exercise training is a clinically proven, cost-effective, primary intervention that delays and in many cases prevents the health burdens associated with many chronic diseases. However, the precise type and dose of exercise needed to accrue health benefits is a contentious issue with no clear consensus recommendations for the prevention of inactivity-related disorders and chronic diseases. A growing body of evidence demonstrates that high-intensity interval training (HIT) can serve as an effective alternate to traditional endurance-based training, inducing similar or even superior physiological adaptations in healthy individuals and diseased populations, at least when compared on a matched-work basis. While less well studied, low-volume HIT can also stimulate physiological remodelling comparable to moderate-intensity continuous training despite a substantially lower time commitment and reduced total exercise volume. Such findings are important given that 'lack of time' remains the most commonly cited barrier to regular exercise participation. Here we review some of the mechanisms responsible for improved skeletal muscle metabolic control and changes in cardiovascular function in response to low-volume HIT. We also consider the limited evidence regarding the potential application of HIT to people with, or at risk for, cardiometabolic disorders including type 2 diabetes. Finally, we provide insight on the utility of low-volume HIT for improving performance in athletes and highlight suggestions for future research.
Dedov, Vadim N; Dedova, Irina V
2015-07-01
Sustained exercise training could significantly improve patient rehabilitation and management of noncommunicable diseases in the community. This study aimed to develop a universal telecare system for delivery of exercise rehabilitation and cardiovascular training services at home. An innovative bilateral leg training device was equipped with an electronic system for the ongoing measurement of training activities with the device. A single-item parameter reflecting the intensity of training was monitored using several modern telecommunication technologies. According to the application protocol, eight volunteers first tried the device for 30-60 min to determine their personal training capacity. Then, they were provided with equipment to use at home for 4 weeks. Adherence to daily training was assessed by the number of training days per week, training intensity, and duration of training sessions. The system provided reliable recording of training activities with the device using (1) long-term data logging without an ongoing connection to the computer, (2) wireless monitoring and recording of training activities on a stand-alone computer, and (3) a secure cloud-based monitoring over the Internet connection using electronic devices, including smartphones. Overall analysis of recordings and phone feedbacks to participants took only approximately 5 h for the duration of study. This study, although of a pilot nature, described the comprehensive exercise telerehabilitation system integrating mobile training equipment with personalized training protocols and remote monitoring. A single-item electronic parameter of the system usage facilitated time-effective data management. Wireless connection allowed various locations of device application and several monitoring arrangements ranging from real-time monitoring to long-term recording of exercise activities. A cloud-based software platform enabled management of multiple users at distance. Implementation of this model may facilitate both accessibility and availability of personalized exercise telerehabilitation services. Further studies would validate it in the clinical and healthcare environment.
Sze, Wei Ping; Yoon, Wai Lam; Escoffier, Nicolas; Rickard Liow, Susan J
2016-04-01
In this study, the efficacy of two dysphagia interventions, the Chin Tuck against Resistance (CTAR) and Shaker exercises, were evaluated based on two principles in exercise science-muscle-specificity and training intensity. Both exercises were developed to strengthen the suprahyoid muscles, whose contractions facilitate the opening of the upper esophageal sphincter, thereby improving bolus transfer. Thirty-nine healthy adults performed two trials of both exercises in counter-balanced order. Surface electromyography (sEMG) recordings were simultaneously collected from suprahyoid muscle group and sternocleidomastoid muscle during the exercises. Converging results using sEMG amplitude analyses suggested that the CTAR was more specific in targeting the suprahyoid muscles than the Shaker exercise. Fatigue analyses on sEMG signals further indicated that the suprahyoid muscle group were equally or significantly fatigued (depending on metric), when participants carried out CTAR compared to the Shaker exercise. Importantly, unlike during Shaker exercise, the sternocleidomastoid muscles were significantly less activated and fatigued during CTAR. Lowering the chin against resistance is therefore sufficiently specific and intense to fatigue the suprahyoid muscles.
Denou, Emmanuel; Marcinko, Katarina; Surette, Michael G.; Steinberg, Gregory R.
2016-01-01
Diet and exercise underpin the risk of obesity-related metabolic disease. Diet alters the gut microbiota, which contributes to aspects of metabolic disease during obesity. Repeated exercise provides metabolic benefits during obesity. We assessed whether exercise could oppose changes in the taxonomic and predicted metagenomic characteristics of the gut microbiota during diet-induced obesity. We hypothesized that high-intensity interval training (HIIT) would counteract high-fat diet (HFD)-induced changes in the microbiota without altering obesity in mice. Compared with chow-fed mice, an obesity-causing HFD decreased the Bacteroidetes-to-Firmicutes ratio and decreased the genetic capacity in the fecal microbiota for metabolic pathways such as the tricarboxylic acid (TCA) cycle. After HFD-induced obesity was established, a subset of mice were HIIT for 6 wk, which increased host aerobic capacity but did not alter body or adipose tissue mass. The effects of exercise training on the microbiota were gut segment dependent and more extensive in the distal gut. HIIT increased the alpha diversity and Bacteroidetes/Firmicutes ratio of the distal gut and fecal microbiota during diet-induced obesity. Exercise training increased the predicted genetic capacity related to the TCA cycle among other aspects of metabolism. Strikingly, the same microbial metabolism indexes that were increased by exercise were all decreased in HFD-fed vs. chow diet-fed mice. Therefore, exercise training directly opposed some of the obesity-related changes in gut microbiota, including lower metagenomic indexes of metabolism. Some host and microbial pathways appeared similarly affected by exercise. These exercise- and diet-induced microbiota interactions can be captured in feces. PMID:27117007
Denou, Emmanuel; Marcinko, Katarina; Surette, Michael G; Steinberg, Gregory R; Schertzer, Jonathan D
2016-06-01
Diet and exercise underpin the risk of obesity-related metabolic disease. Diet alters the gut microbiota, which contributes to aspects of metabolic disease during obesity. Repeated exercise provides metabolic benefits during obesity. We assessed whether exercise could oppose changes in the taxonomic and predicted metagenomic characteristics of the gut microbiota during diet-induced obesity. We hypothesized that high-intensity interval training (HIIT) would counteract high-fat diet (HFD)-induced changes in the microbiota without altering obesity in mice. Compared with chow-fed mice, an obesity-causing HFD decreased the Bacteroidetes-to-Firmicutes ratio and decreased the genetic capacity in the fecal microbiota for metabolic pathways such as the tricarboxylic acid (TCA) cycle. After HFD-induced obesity was established, a subset of mice were HIIT for 6 wk, which increased host aerobic capacity but did not alter body or adipose tissue mass. The effects of exercise training on the microbiota were gut segment dependent and more extensive in the distal gut. HIIT increased the alpha diversity and Bacteroidetes/Firmicutes ratio of the distal gut and fecal microbiota during diet-induced obesity. Exercise training increased the predicted genetic capacity related to the TCA cycle among other aspects of metabolism. Strikingly, the same microbial metabolism indexes that were increased by exercise were all decreased in HFD-fed vs. chow diet-fed mice. Therefore, exercise training directly opposed some of the obesity-related changes in gut microbiota, including lower metagenomic indexes of metabolism. Some host and microbial pathways appeared similarly affected by exercise. These exercise- and diet-induced microbiota interactions can be captured in feces. Copyright © 2016 the American Physiological Society.
An exploration of exercise training effects in coronary heart disease.
Piperidou, Eleana; Bliss, Julie
2008-06-01
Coronary Heart Disease (CHD) remains the most common cause of death and disability in many developed and developing countries. The evidence presented so far, clearly shows that exercise training leads to favourable improvements in exercise capacity, lipid levels, weight and psychosocial variables for CHD patients. Nevertheless, despite recommendations and government support, the lack of physical activity remains a major health problem, particularly for people with established CHD. The aim of this review was to explore the effects of exercise training on physical and psychosocial function among CHD patients, by analysing the content of relevant research reports. The findings showed that although there is sufficient evidence that exercise training has a number of effects that are beneficial in treatment and secondary prevention of CHD, different aspects of exercise characteristics (mode, frequency, intensity and duration) for different cardiac patient groups, warrant additional investigation.
Cancer and Exercise: Warburg Hypothesis, Tumour Metabolism and High-Intensity Anaerobic Exercise.
Hofmann, Peter
2018-01-31
There is ample evidence that regular moderate to vigorous aerobic physical activity is related to a reduced risk for various forms of cancer to suggest a causal relationship. Exercise is associated with positive changes in fitness, body composition, and physical functioning as well as in patient-reported outcomes such as fatigue, sleep quality, or health-related quality of life. Emerging evidence indicates that exercise may also be directly linked to the control of tumour biology through direct effects on tumour-intrinsic factors. Beside a multitude of effects of exercise on the human body, one underscored effect of exercise training is to target the specific metabolism of tumour cells, namely the Warburg-type highly glycolytic metabolism. Tumour metabolism as well as the tumour⁻host interaction may be selectively influenced by single bouts as well as regularly applied exercise, dependent on exercise intensity, duration, frequency and mode. High-intensity anaerobic exercise was shown to inhibit glycolysis and some studies in animals showed that effects on tumour growth might be stronger compared with moderate-intensity aerobic exercise. High-intensity exercise was shown to be safe in patients; however, it has to be applied carefully with an individualized prescription of exercise.
Optimizing functional exercise capacity in the elderly surgical population.
Carli, Franco; Zavorsky, Gerald S
2005-01-01
There are several studies on the effect of exercise post surgery (rehabilitation), but few studies have looked at augmenting functional capacity prior to surgical admission (prehabilitation). A programme of prehabilitation is proposed in order to enhance functional exercise capacity in elderly patients with the intent to minimize the postoperative morbidity and accelerate postsurgical recovery. Few studies have looked at exercise prehabilitation to improve functional capacity prior to surgical admission. Prehabilitation prior to orthopaedic surgery does not seem to improve quality of life or recovery. However, prehabilitation prior to abdominal or cardiac surgery, based on 275 elderly patients, results in fewer postoperative complications, shorter postoperative length of stay, improved quality of life, and reduced declines in functional disability compared to sedentary controls. A concentrated 3-month progressive exercise prehabilitation programme consisting of aerobic training at 45-65% of maximal heart rate reserve (%HRR) along with periodic high-intensity interval training ( approximately 90% HRR) four times per week, 30-50 minutes per session, is recommended for improving cardiovascular functioning. A strength training programme of about 10 different exercises focused on large, multi-jointed muscle groups should also be implemented twice per week at a mean training intensity of 80% of one-repetition maximum. Finally, a minimum of 140 g ( approximately 560 kcal) of carbohydrate (CHO) should be taken 3 h before training to increase liver and muscle glycogen stores and a minimum of about 200 kcal of mixed protein-CHO should be ingested within 30 min following training to enhance muscle hypertrophy.
Oliver, Jonathan M.; Almada, Anthony L.; Van Eck, Leighsa E.; Shah, Meena; Mitchell, Joel B.; Jones, Margaret T.; Jagim, Andrew R.; Rowlands, David S.
2016-01-01
Athletes in sports demanding repeat maximal work outputs frequently train concurrently utilizing sequential bouts of intense endurance and resistance training sessions. On a daily basis, maximal work within subsequent bouts may be limited by muscle glycogen availability. Recently, the ingestion of a unique high molecular weight (HMW) carbohydrate was found to increase glycogen re-synthesis rate and enhance work output during subsequent endurance exercise, relative to low molecular weight (LMW) carbohydrate ingestion. The effect of the HMW carbohydrate, however, on the performance of intense resistance exercise following prolonged-intense endurance training is unknown. Sixteen resistance trained men (23±3 years; 176.7±9.8 cm; 88.2±8.6 kg) participated in a double-blind, placebo-controlled, randomized 3-way crossover design comprising a muscle-glycogen depleting cycling exercise followed by ingestion of placebo (PLA), or 1.2 g•kg•bw-1 of LMW or HMW carbohydrate solution (10%) with blood sampling for 2-h post-ingestion. Thereafter, participants performed 5 sets of 10 maximal explosive repetitions of back squat (75% of 1RM). Compared to PLA, ingestion of HMW (4.9%, 90%CI 3.8%, 5.9%) and LMW (1.9%, 90%CI 0.8%, 3.0%) carbohydrate solutions substantially increased power output during resistance exercise, with the 3.1% (90% CI 4.3, 2.0%) almost certain additional gain in power after HMW-LMW ingestion attributed to higher movement velocity after force kinematic analysis (HMW-LMW 2.5%, 90%CI 1.4, 3.7%). Both carbohydrate solutions increased post-exercise plasma glucose, glucoregulatory and gut hormones compared to PLA, but differences between carbohydrates were unclear; thus, the underlying mechanism remains to be elucidated. Ingestion of a HMW carbohydrate following prolonged intense endurance exercise provides superior benefits to movement velocity and power output during subsequent repeated maximal explosive resistance exercise. This study was registered with clinicaltrials.gov (NCT02778373). PMID:27636206
Oliver, Jonathan M; Almada, Anthony L; Van Eck, Leighsa E; Shah, Meena; Mitchell, Joel B; Jones, Margaret T; Jagim, Andrew R; Rowlands, David S
2016-01-01
Athletes in sports demanding repeat maximal work outputs frequently train concurrently utilizing sequential bouts of intense endurance and resistance training sessions. On a daily basis, maximal work within subsequent bouts may be limited by muscle glycogen availability. Recently, the ingestion of a unique high molecular weight (HMW) carbohydrate was found to increase glycogen re-synthesis rate and enhance work output during subsequent endurance exercise, relative to low molecular weight (LMW) carbohydrate ingestion. The effect of the HMW carbohydrate, however, on the performance of intense resistance exercise following prolonged-intense endurance training is unknown. Sixteen resistance trained men (23±3 years; 176.7±9.8 cm; 88.2±8.6 kg) participated in a double-blind, placebo-controlled, randomized 3-way crossover design comprising a muscle-glycogen depleting cycling exercise followed by ingestion of placebo (PLA), or 1.2 g•kg•bw-1 of LMW or HMW carbohydrate solution (10%) with blood sampling for 2-h post-ingestion. Thereafter, participants performed 5 sets of 10 maximal explosive repetitions of back squat (75% of 1RM). Compared to PLA, ingestion of HMW (4.9%, 90%CI 3.8%, 5.9%) and LMW (1.9%, 90%CI 0.8%, 3.0%) carbohydrate solutions substantially increased power output during resistance exercise, with the 3.1% (90% CI 4.3, 2.0%) almost certain additional gain in power after HMW-LMW ingestion attributed to higher movement velocity after force kinematic analysis (HMW-LMW 2.5%, 90%CI 1.4, 3.7%). Both carbohydrate solutions increased post-exercise plasma glucose, glucoregulatory and gut hormones compared to PLA, but differences between carbohydrates were unclear; thus, the underlying mechanism remains to be elucidated. Ingestion of a HMW carbohydrate following prolonged intense endurance exercise provides superior benefits to movement velocity and power output during subsequent repeated maximal explosive resistance exercise. This study was registered with clinicaltrials.gov (NCT02778373).
Martins, Catia; Kazakova, Irina; Ludviksen, Marit; Mehus, Ingar; Wisloff, Ulrik; Kulseng, Bard; Morgan, Linda; King, Neil
2016-06-01
This study aimed to determine the effects of 12 weeks of isocaloric programs of high-intensity intermittent training (HIIT) or moderate-intensity continuous training (MICT) or a short-duration HIIT (1/2HIIT) inducing only half the energy deficit on a cycle ergometer, on body weight and composition, cardiovascular fitness, resting metabolism rate (RMR), respiratory exchange ratio (RER), nonexercise physical activity (PA) levels and fasting and postprandial insulin response in sedentary obese individuals. Forty-six sedentary obese individuals (30 women), with a mean BMI of 33.3 ± 2.9 kg/m2 and a mean age of 34.4 ± 8.8 years were randomly assigned to one of the three training groups: HIIT (n = 16), MICT (n = 14) or 1/2HIIT (n = 16) and exercise was performed 3 times/week for 12 weeks. Overall, there was a significant reduction in body weight, waist (p < .001) and hip (p < .01) circumference,, trunk and leg fat mass (FM; p < .01) and an increase in trunk and leg fat free mass (FFM; p < .01) and cardiovascular fitness (VO2max in ml/kg/min; p < .001) with exercise. However, no significant differences were observed between groups. There was no significant change in RMR, RER, nonexercise PA levels, fasting insulin or insulin sensitivity with exercise or between groups. There was a tendency for a reduction in AUC insulin with exercise (p = .069), but no differences between groups. These results indicate that isocaloric training protocols of HIIT or MICT (or 1/2HIIT inducing only half the energy deficit) exert similar metabolic and cardiovascular improvements in sedentary obese individuals.
Effect of Gravity on Robot-Assisted Motor Training After Chronic Stroke: A Randomized Trial
Conroy, Susan S.; Whitall, Jill; Dipietro, Laura; Jones-Lush, Lauren M.; Zhan, Min; Finley, Margaret A.; Wittenberg, George F.; Krebs, Hermano I.; Bever, Christopher T.
2015-01-01
Objectives To determine the efficacy of 2 distinct 6-week robot-assisted reaching programs compared with an intensive conventional arm exercise program (ICAE) for chronic, stroke-related upper-extremity (UE) impairment. To examine whether the addition of robot-assisted training out of the horizontal plane leads to improved outcomes. Design Randomized controlled trial, single-blinded, with 12-week follow-up. Setting Research setting in a large medical center. Participants Adults (N=62) with chronic, stroke-related arm weakness stratified by impairment severity using baseline UE motor assessments. Interventions Sixty minutes, 3 times a week for 6 weeks of robot-assisted planar reaching (gravity compensated), combined planar with vertical robot-assisted reaching, or intensive conventional arm exercise program. Main Outcome Measure UE Fugl-Meyer Assessment (FMA) mean change from baseline to final training. Results All groups showed modest gains in the FMA from baseline to final with no significant between group differences. Most change occurred in the planar robot group (mean change ± SD, 2.94± 0.77; 95% confidence interval [CI], 1.40 – 4.47). Participants with greater motor impairment (n=41) demonstrated a larger difference in response (mean change ± SD, 2.29±0.72; 95% CI, 0.85–3.72) for planar robot-assisted exercise compared with the intensive conventional arm exercise program (mean change ± SD, 0.43±0.72; 95% CI, −1.00 to 1.86). Conclusions Chronic UE deficits because of stroke are responsive to intensive motor task training. However, training outside the horizontal plane in a gravity present environment using a combination of vertical with planar robots was not superior to training with the planar robot alone. PMID:21849168
Baschung Pfister, Pierrette; de Bruin, Eling D; Tobler-Ammann, Bernadette C; Maurer, Britta; Knols, Ruud H
2015-10-01
Physical exercise seems to be a safe and effective intervention in patients with inflammatory myopathy (IM). However, the optimal training intervention is not clear. To achieve an optimum training effect, physical exercise training principles must be considered and to replicate research findings, FITT components (frequency, intensity, time, and type) of exercise training should be reported. This review aims to evaluate exercise interventions in studies with IM patients in relation to (1) the application of principles of exercise training, (2) the reporting of FITT components, (3) the adherence of participants to the intervention, and (4) to assess the methodological quality of the included studies. The literature was searched for exercise studies in IM patients. Data were extracted to evaluate the application of the training principles, the reporting of and the adherence to the exercise prescription. The Downs and Black checklist was used to assess methodological quality of the included studies. From the 14 included studies, four focused on resistance, two on endurance, and eight on combined training. In terms of principles of exercise training, 93 % reported specificity, 50 % progression and overload, and 79 % initial values. Reversibility and diminishing returns were never reported. Six articles reported all FITT components in the prescription of the training though no study described adherence to all of these components. Incomplete application of the exercise training principles and insufficient reporting of the exercise intervention prescribed and completed hamper the reproducibility of the intervention and the ability to determine the optimal dose of exercise.
Kinetic quantification of plyometric exercise intensity.
Ebben, William P; Fauth, McKenzie L; Garceau, Luke R; Petushek, Erich J
2011-12-01
Ebben, WP, Fauth, ML, Garceau, LR, and Petushek, EJ. Kinetic quantification of plyometric exercise intensity. J Strength Cond Res 25(12): 3288-3298, 2011-Quantification of plyometric exercise intensity is necessary to understand the characteristics of these exercises and the proper progression of this mode of exercise. The purpose of this study was to assess the kinetic characteristics of a variety of plyometric exercises. This study also sought to assess gender differences in these variables. Twenty-six men and 23 women with previous experience in performing plyometric training served as subjects. The subjects performed a variety of plyometric exercises including line hops, 15.24-cm cone hops, squat jumps, tuck jumps, countermovement jumps (CMJs), loaded CMJs equal to 30% of 1 repetition maximum squat, depth jumps normalized to the subject's jump height (JH), and single leg jumps. All plyometric exercises were assessed with a force platform. Outcome variables associated with the takeoff, airborne, and landing phase of each plyometric exercise were evaluated. These variables included the peak vertical ground reaction force (GRF) during takeoff, the time to takeoff, flight time, JH, peak power, landing rate of force development, and peak vertical GRF during landing. A 2-way mixed analysis of variance with repeated measures for plyometric exercise type demonstrated main effects for exercise type and all outcome variables (p ≤ 0.05) and for the interaction between gender and peak vertical GRF during takeoff (p ≤ 0.05). Bonferroni-adjusted pairwise comparisons identified a number of differences between the plyometric exercises for the outcome variables assessed (p ≤ 0.05). These findings can be used to guide the progression of plyometric training by incorporating exercises of increasing intensity over the course of a program.
Abell, Bridget; Glasziou, Paul; Briffa, Tom; Hoffmann, Tammy
2016-01-01
Exercise training is a core component of cardiac rehabilitation (CR), however, little information exists regarding the specific exercise interventions currently provided for coronary heart disease in Australian practice. We aimed to analyse the current status of exercise-based CR services across Australia. Cross-sectional survey. Australian sites offering exercise-based CR were identified from publically available directories. All sites were invited by email to participate in an online Survey Monkey questionnaire between October 2014 and March 2015, with reminders via email and phone follow-up. Questions investigated the demographics and format of individual programmes, as well as specific exercise training characteristics. 297 eligible programmes were identified, with an 82% response rate. Most sites (82%) were based at hospital or outpatient centres, with home (15%), community (18%) or gym-based options (5%) less common. While CR was most often offered in a comprehensive format (72% of sites), the level of exercise intervention varied greatly among programmes. Most frequently, exercise was prescribed 1-2 times per week for 60 min over 7 weeks. Almost one-quarter (24%) had a sole practitioner supervising exercise, although the majority used a nurse/physiotherapist combination. Low to moderate exercise intensities were used in 60% of programmes, however, higher intensity prescriptions were not uncommon. Few sites (<6%) made use of technology, such as mobile phones or the internet, to deliver or support exercise training. While advances have been made towards providing flexible and accessible exercise-based CR, much of Australia's service remains within traditional models of care. A continuing focus on service improvement and evidence-based care should, therefore, be considered a core aim of those providing exercise for CR in order to improve health service delivery and optimise outcomes for patients.
Ploughman, Michelle; Kelly, Liam P
2016-12-01
Converging evidence from animal models of stroke and clinical trials suggests that aerobic exercise has effects across multiple targets. The subacute phase is characterized by a period of heightened neuroplasticity when aerobic exercise has the potential to optimize recovery. In animals, low intensity aerobic exercise shrinks lesion size and reduces cell death and inflammation, beginning 24 h poststroke. Also in animals, aerobic exercise upregulates brain-derived neurotrophic factor near the lesion and improves learning. In terms of neuroplastic effects, clinical trial results are less convincing and have only examined effects in chronic stroke. Stroke patients demonstrate cardiorespiratory fitness levels below the threshold required to carry out daily activities. This may contribute to a 'neurorehabilitation ceiling' that limits capacity to practice at a high enough frequency and intensity to promote recovery. Aerobic exercise when delivered 2-5 days per week at moderate to high intensity beginning as early as 5 days poststroke improves cardiorespiratory fitness, dyslipidemia, and glucose tolerance. Based on the evidence discussed and applying principles of periodization commonly used to prepare athletes for competition, we have created a model of aerobic training in subacute stroke in which training is delivered in density blocks (duration × intensity) matched to recovery phases.
High intensity training in obesity: a Meta‐analysis
Theel, W.; Kasteleyn, M. J.; Franssen, F. M. E.; Hiemstra, P. S.; Rudolphus, A.; Taube, C.; Braunstahl, G. J.
2017-01-01
Summary Introduction High Intensity training (HIT) is a time‐effective alternative to traditional exercise programs in adults with obesity, but the superiority in terms of improving cardiopulmonary fitness and weight loss has not been demonstrated. Objective to determine the effectiveness of HIT on cardiopulmonary fitness and body composition in adults with obesity compared to traditional (high volume continuous) exercise. Methods A systematic search of the main health science databases was conducted for randomized controlled trials comparing HIT with traditional forms of exercise in people with obesity. Eighteen studies were included in the meta‐analysis. The (unstandardized) mean difference of each outcome parameters was calculated and pooled with the random effects model. Results HIT resulted in greater improvement of cardiopulmonary fitness (VO2max) (MD 1.83, 95% CI 0.70, 2.96, p<0.005; I2=31%) and a greater reduction of %body fat (MD ‐1.69, 95% CI ‐3.10, ‐0.27, p=0.02, I2=30%) compared to traditional exercise. Overall effect for BMI was not different between HIT and traditional exercise. Conclusion Training at high intensity is superior to improve cardiopulmonary fitness and to reduce %body fat in adults with obesity compared to traditional exercise. Future studies are needed to design specific HIT programs for the obese with regard to optimal effect and long‐term adherence. PMID:29071102
Baguley, Brenton J; Skinner, Tina L; Leveritt, Michael D; Wright, Olivia R L
2017-01-03
Cancer-related fatigue is one of the most prevalent, prolonged and distressing side effects of prostate cancer treatment with androgen deprivation therapy. Preliminary evidence suggests natural therapies such as nutrition therapy and structured exercise prescription can reduce symptoms of cancer-related fatigue. Men appear to change their habitual dietary patterns after prostate cancer diagnosis, yet prostate-specific dietary guidelines provide limited support for managing adverse side effects of treatment. The exercise literature has shown high intensity interval training can improve various aspects of health that are typically impaired with androgen deprivation therapy; however exercise at this intensity is yet to be conducted in men with prostate cancer. The purpose of this study is to examine the effects of nutrition therapy beyond the current healthy eating guidelines with high intensity interval training for managing cancer-related fatigue in men with prostate cancer treated with androgen deprivation therapy. This is a two-arm randomized control trial of 116 men with prostate cancer and survivors treated with androgen deprivation therapy. Participants will be randomized to either the intervention group i.e. nutrition therapy and high intensity interval training, or usual care. The intervention group will receive 20 weeks of individualized nutrition therapy from an Accredited Practising Dietitian, and high intensity interval training (from weeks 12-20 of the intervention) from an Accredited Exercise Physiologist. The usual care group will maintain their standard treatment regimen over the 20 weeks. Both groups will undertake primary and secondary outcome testing at baseline, week 8, 12, and 20; testing includes questionnaires of fatigue and quality of life, objective measures of body composition, muscular strength, cardiorespiratory fitness, biomarkers for disease progression, as well as dietary analysis. The primary outcomes for this trial are measures of fatigue and quality of life. This study is the first of its kind to determine the efficacy of nutrition therapy above the healthy eating guidelines and high intensity interval training for alleviating prostate-cancer related fatigue. If successful, nutrition therapy and high intensity interval training may be proposed as an effective therapy for managing cancer-related fatigue and improving quality of life in men during and after prostate cancer treatment. Australian New Zealand Clinical Trials Registry ACTRN12615000512527 . Trial registered on the 22/5/2015.
Cassidy, Sophie; Thoma, Christian; Houghton, David; Trenell, Michael I
2017-01-01
Exercise plays a central role in the management and treatment of common metabolic diseases, but modern society presents many barriers to exercise. Over the past decade there has been considerable interest surrounding high-intensity interval training (HIIT), with advocates claiming it can induce health benefits of similar, if not superior magnitude to moderate-intensity continuous exercise, despite reduced time commitment. As the safety of HIIT becomes clearer, focus has shifted away from using HIIT in healthy individuals towards using this form of training in clinical populations. The continued growth of metabolic disease and reduced physical activity presents a global health challenge and effective therapies are urgently required. The aim of this review is to explore whether the acclaim surrounding HIIT is justified by examining the effect of HIIT on glucose control, its ability to affect cardiovascular function and the underlying mechanisms of the changes observed in those with common metabolic diseases. It also explores translation of the research into clinical practice.
Do antioxidant supplements interfere with skeletal muscle adaptation to exercise training?
Ristow, Michael
2016-01-01
Abstract A popular belief is that reactive oxygen species (ROS) and reactive nitrogen species (RNS) produced during exercise by the mitochondria and other subcellular compartments ubiquitously cause skeletal muscle damage, fatigue and impair recovery. However, the importance of ROS and RNS as signals in the cellular adaptation process to stress is now evident. In an effort to combat the perceived deleterious effects of ROS and RNS it has become common practice for active individuals to ingest supplements with antioxidant properties, but interfering with ROS/RNS signalling in skeletal muscle during acute exercise may blunt favourable adaptation. There is building evidence that antioxidant supplementation can attenuate endurance training‐induced and ROS/RNS‐mediated enhancements in antioxidant capacity, mitochondrial biogenesis, cellular defence mechanisms and insulin sensitivity. However, this is not a universal finding, potentially indicating that there is redundancy in the mechanisms controlling skeletal muscle adaptation to exercise, meaning that in some circumstances the negative impact of antioxidants on acute exercise response can be overcome by training. Antioxidant supplementation has been more consistently reported to have deleterious effects on the response to overload stress and high‐intensity training, suggesting that remodelling of skeletal muscle following resistance and high‐intensity exercise is more dependent on ROS/RNS signalling. Importantly there is no convincing evidence to suggest that antioxidant supplementation enhances exercise‐training adaptions. Overall, ROS/RNS are likely to exhibit a non‐linear (hormetic) pattern on exercise adaptations, where physiological doses are beneficial and high exposure (which would seldom be achieved during normal exercise training) may be detrimental. PMID:26638792
Exercise Training Reverses Extrapulmonary Impairments in Smoke-exposed Mice.
Bowen, T Scott; Aakerøy, Lars; Eisenkolb, Sophia; Kunth, Patricia; Bakkerud, Fredrik; Wohlwend, Martin; Ormbostad, Anne Marie; Fischer, Tina; Wisloff, Ulrik; Schuler, Gerhard; Steinshamn, Sigurd; Adams, Volker; Bronstad, Eivind
2017-05-01
Cigarette smoking is the main risk factor for chronic obstructive pulmonary disease and emphysema. However, evidence on the extrapulmonary effects of smoke exposure that precede lung impairments remains unclear at present, as are data on nonpharmacological treatments such as exercise training. Three groups of mice, including control (n = 10), smoking (n = 10), and smoking with 6 wk of high-intensity interval treadmill running (n = 11), were exposed to 20 wk of fresh air or whole-body cigarette smoke. Exercise capacity (peak oxygen uptake) and lung destruction (histology) were subsequently measured, whereas the heart, peripheral endothelium (aorta), and respiratory (diaphragm) and limb (extensor digitorum longus and soleus) skeletal muscles were assessed for in vivo and in vitro function, in situ mitochondrial respiration, and molecular alterations. Smoking reduced body weight by 26% (P < 0.05) without overt airway destruction (P > 0.05). Smoking impaired exercise capacity by 15% while inducing right ventricular dysfunction by ~20%, endothelial dysfunction by ~20%, and diaphragm muscle weakness by ~15% (all P < 0.05), but these were either attenuated or reversed by exercise training (P < 0.05). Compared with controls, smoking mice had normal limb muscle and mitochondrial function (cardiac and skeletal muscle fibers); however, diaphragm measures of oxidative stress and protein degradation were increased by 111% and 65%, respectively (P < 0.05), but these were attenuated by exercise training (P < 0.05). Prolonged cigarette smoking reduced exercise capacity concomitant with functional impairments to the heart, peripheral endothelium, and respiratory muscle that preceded the development of overt emphysema. However, high-intensity exercise training was able to reverse these smoke-induced extrapulmonary impairments.
Hafstad, Anne D; Lund, Jim; Hadler-Olsen, Elin; Höper, Anje C; Larsen, Terje S; Aasum, Ellen
2013-07-01
Although exercise reduces several cardiovascular risk factors associated with obesity/diabetes, the metabolic effects of exercise on the heart are not well-known. This study was designed to investigate whether high-intensity interval training (HIT) is superior to moderate-intensity training (MIT) in counteracting obesity-induced impairment of left ventricular (LV) mechanoenergetics and function. C57BL/6J mice with diet-induced obesity (DIO mice) displaying a cardiac phenotype with altered substrate utilization and impaired mechanoenergetics were subjected to a sedentary lifestyle or 8-10 weeks of isocaloric HIT or MIT. Although both modes of exercise equally improved aerobic capacity and reduced obesity, only HIT improved glucose tolerance. Hearts from sedentary DIO mice developed concentric LV remodeling with diastolic and systolic dysfunction, which was prevented by both HIT and MIT. Both modes of exercise also normalized LV mechanical efficiency and mechanoenergetics. These changes were associated with altered myocardial substrate utilization and improved mitochondrial capacity and efficiency, as well as reduced oxidative stress, fibrosis, and intracellular matrix metalloproteinase 2 content. As both modes of exercise equally ameliorated the development of diabetic cardiomyopathy by preventing LV remodeling and mechanoenergetic impairment, this study advocates the therapeutic potential of physical activity in obesity-related cardiac disorders.
Hafstad, Anne D.; Lund, Jim; Hadler-Olsen, Elin; Höper, Anje C.; Larsen, Terje S.; Aasum, Ellen
2013-01-01
Although exercise reduces several cardiovascular risk factors associated with obesity/diabetes, the metabolic effects of exercise on the heart are not well-known. This study was designed to investigate whether high-intensity interval training (HIT) is superior to moderate-intensity training (MIT) in counteracting obesity-induced impairment of left ventricular (LV) mechanoenergetics and function. C57BL/6J mice with diet-induced obesity (DIO mice) displaying a cardiac phenotype with altered substrate utilization and impaired mechanoenergetics were subjected to a sedentary lifestyle or 8–10 weeks of isocaloric HIT or MIT. Although both modes of exercise equally improved aerobic capacity and reduced obesity, only HIT improved glucose tolerance. Hearts from sedentary DIO mice developed concentric LV remodeling with diastolic and systolic dysfunction, which was prevented by both HIT and MIT. Both modes of exercise also normalized LV mechanical efficiency and mechanoenergetics. These changes were associated with altered myocardial substrate utilization and improved mitochondrial capacity and efficiency, as well as reduced oxidative stress, fibrosis, and intracellular matrix metalloproteinase 2 content. As both modes of exercise equally ameliorated the development of diabetic cardiomyopathy by preventing LV remodeling and mechanoenergetic impairment, this study advocates the therapeutic potential of physical activity in obesity-related cardiac disorders. PMID:23493573
Dose-Response of High-Intensity Training (HIT) on Atheroprotective miRNA-126 Levels
Schmitz, Boris; Schelleckes, Katrin; Nedele, Johanna; Thorwesten, Lothar; Klose, Andreas; Lenders, Malte; Krüger, Michael; Brand, Eva; Brand, Stefan-Martin
2017-01-01
Aim: MicroRNA-126 (miR-126) exerts beneficial effects on vascular integrity, angiogenesis, and atherosclerotic plaque stability. The purpose of this investigation was to analyze the dose-response relationship of high-intensity interval training (HIIT) on miR-126-3p and -5p levels. Methods: Sixty-one moderately trained individuals (females = 31 [50.8%]; 22.0 ± 1.84 years) were consecutively recruited and allocated into three matched groups using exercise capacity. During a 4-week intervention a HIIT group performed three exercise sessions/week of 4 × 30 s at maximum speed (all-out), a progressive HIIT (proHIIT) group performed three exercise sessions/week of 4 × 30 s at maximum speed (all-out) with one extra session every week (up to 7 × 30 s) and a low-intensity training (LIT) control group performed three exercise sessions/week for 25 min <75% of maximum heart rate. Exercise miR-126-3p/-5p plasma levels were determined using capillary blood from earlobes. Results: No exercise-induced increase in miR-126 levels was detected at baseline, neither in the LIT (after 25 min low-intensity running) nor the HIIT groups (after 4 min of high-intensity running). After the intervention, the LIT group presented an increase in miR-126-3p, while in the HIIT group, miR-126-3p levels were still reduced (all p < 0.05). An increase for both, miR-126-3p and -5p levels (all p < 0.05, pre- vs. during and post-exercise) was detected in the proHIIT group. Between group analysis revealed that miR-126-3p levels after LIT and proHIIT increased by 2.12 ± 2.55 and 1.24 ± 2.46 units (all p < 0.01), respectively, compared to HIIT (−1.05 ± 2.6 units). Conclusions: LIT and proHIIT may be performed to increase individual miR-126 levels. HIIT without progression was less effective in increasing miR-126. PMID:28611681
Dose-Response of High-Intensity Training (HIT) on Atheroprotective miRNA-126 Levels.
Schmitz, Boris; Schelleckes, Katrin; Nedele, Johanna; Thorwesten, Lothar; Klose, Andreas; Lenders, Malte; Krüger, Michael; Brand, Eva; Brand, Stefan-Martin
2017-01-01
Aim: MicroRNA-126 (miR-126) exerts beneficial effects on vascular integrity, angiogenesis, and atherosclerotic plaque stability. The purpose of this investigation was to analyze the dose-response relationship of high-intensity interval training (HIIT) on miR-126-3p and -5p levels. Methods: Sixty-one moderately trained individuals (females = 31 [50.8%]; 22.0 ± 1.84 years) were consecutively recruited and allocated into three matched groups using exercise capacity. During a 4-week intervention a HIIT group performed three exercise sessions/week of 4 × 30 s at maximum speed (all-out), a progressive HIIT (proHIIT) group performed three exercise sessions/week of 4 × 30 s at maximum speed (all-out) with one extra session every week (up to 7 × 30 s) and a low-intensity training (LIT) control group performed three exercise sessions/week for 25 min <75% of maximum heart rate. Exercise miR-126-3p/-5p plasma levels were determined using capillary blood from earlobes. Results: No exercise-induced increase in miR-126 levels was detected at baseline, neither in the LIT (after 25 min low-intensity running) nor the HIIT groups (after 4 min of high-intensity running). After the intervention, the LIT group presented an increase in miR-126-3p, while in the HIIT group, miR-126-3p levels were still reduced (all p < 0.05). An increase for both, miR-126-3p and -5p levels (all p < 0.05, pre- vs. during and post-exercise) was detected in the proHIIT group. Between group analysis revealed that miR-126-3p levels after LIT and proHIIT increased by 2.12 ± 2.55 and 1.24 ± 2.46 units (all p < 0.01), respectively, compared to HIIT (-1.05 ± 2.6 units). Conclusions: LIT and proHIIT may be performed to increase individual miR-126 levels. HIIT without progression was less effective in increasing miR-126.
Hansen, Dominique; Dendale, Paul; Coninx, Karin; Vanhees, Luc; Piepoli, Massimo F; Niebauer, Josef; Cornelissen, Veronique; Pedretti, Roberto; Geurts, Eva; Ruiz, Gustavo R; Corrà, Ugo; Schmid, Jean-Paul; Greco, Eugenio; Davos, Constantinos H; Edelmann, Frank; Abreu, Ana; Rauch, Bernhard; Ambrosetti, Marco; Braga, Simona S; Barna, Olga; Beckers, Paul; Bussotti, Maurizio; Fagard, Robert; Faggiano, Pompilio; Garcia-Porrero, Esteban; Kouidi, Evangelia; Lamotte, Michel; Neunhäuserer, Daniel; Reibis, Rona; Spruit, Martijn A; Stettler, Christoph; Takken, Tim; Tonoli, Cajsa; Vigorito, Carlo; Völler, Heinz; Doherty, Patrick
2017-07-01
Background Exercise rehabilitation is highly recommended by current guidelines on prevention of cardiovascular disease, but its implementation is still poor. Many clinicians experience difficulties in prescribing exercise in the presence of different concomitant cardiovascular diseases and risk factors within the same patient. It was aimed to develop a digital training and decision support system for exercise prescription in cardiovascular disease patients in clinical practice: the European Association of Preventive Cardiology Exercise Prescription in Everyday Practice and Rehabilitative Training (EXPERT) tool. Methods EXPERT working group members were requested to define (a) diagnostic criteria for specific cardiovascular diseases, cardiovascular disease risk factors, and other chronic non-cardiovascular conditions, (b) primary goals of exercise intervention, (c) disease-specific prescription of exercise training (intensity, frequency, volume, type, session and programme duration), and (d) exercise training safety advices. The impact of exercise tolerance, common cardiovascular medications and adverse events during exercise testing were further taken into account for optimized exercise prescription. Results Exercise training recommendations and safety advices were formulated for 10 cardiovascular diseases, five cardiovascular disease risk factors (type 1 and 2 diabetes, obesity, hypertension, hypercholesterolaemia), and three common chronic non-cardiovascular conditions (lung and renal failure and sarcopaenia), but also accounted for baseline exercise tolerance, common cardiovascular medications and occurrence of adverse events during exercise testing. An algorithm, supported by an interactive tool, was constructed based on these data. This training and decision support system automatically provides an exercise prescription according to the variables provided. Conclusion This digital training and decision support system may contribute in overcoming barriers in exercise implementation in common cardiovascular diseases.
Francois, Monique E; Durrer, Cody; Pistawka, Kevin J; Halperin, Frank A; Chang, Courtney; Little, Jonathan P
2017-01-01
Background: High-intensity interval training (HIIT) can improve several aspects of cardiometabolic health. Previous studies have suggested that adaptations to exercise training can be augmented with post-exercise milk or protein consumption, but whether this nutritional strategy can impact the cardiometabolic adaptations to HIIT in type 2 diabetes is unknown. Objective: To determine if the addition of a post-exercise milk or protein beverage to a high-intensity interval training (HIIT) intervention improves cardiometabolic health in individuals with type 2 diabetes. Design: In a proof-of-concept, double-blind clinical trial 53 adults with uncomplicated type 2 diabetes were randomized to one of three nutritional beverages (500 mL skim-milk, macronutrient control, or flavored water placebo) consumed after exercise (3 days/week) during a 12 week low-volume HIIT intervention. HIIT involved 10 X 1-min high-intensity intervals separated by 1-min low-intensity recovery periods. Two sessions per week were cardio-based (at ~90% of heart rate max) and one session involved resistance-based exercises (at RPE of 5-6; CR-10 scale) in the same interval pattern. Continuous glucose monitoring (CGM), glycosylated hemoglobin (HbA 1c ), body composition (dual-energy X-ray absorptiometry), cardiorespiratory fitness ([Formula: see text]), blood pressure, and endothelial function (%FMD) were measured before and after the intervention. Results: There were significant main effects of time (all p < 0.05) but no difference between groups (Interaction: all p > 0.71) for CGM 24-h mean glucose (-0.5 ± 1.1 mmol/L), HbA 1c (-0.2 ± 0.4%), percent body fat (-0.8 ± 1.6%), and lean mass (+1.1 ± 2.8 kg). Similarly, [Formula: see text] (+2.5 ± 1.6 mL/kg/min) and %FMD (+1.4 ± 1.9%) were increased, and mean arterial blood pressure reduced (-6 ± 7 mmHg), after 12 weeks of HIIT (all p < 0.01) with no difference between beverage groups (Interaction: all p > 0.11). Conclusion: High-intensity interval training is a potent stimulus for improving several important metabolic and cardiovascular risk factors in type 2 diabetes. The benefits of HIIT are not augmented by the addition of post-exercise protein.
Francois, Monique E.; Durrer, Cody; Pistawka, Kevin J.; Halperin, Frank A.; Chang, Courtney; Little, Jonathan P.
2017-01-01
Background: High-intensity interval training (HIIT) can improve several aspects of cardiometabolic health. Previous studies have suggested that adaptations to exercise training can be augmented with post-exercise milk or protein consumption, but whether this nutritional strategy can impact the cardiometabolic adaptations to HIIT in type 2 diabetes is unknown. Objective: To determine if the addition of a post-exercise milk or protein beverage to a high-intensity interval training (HIIT) intervention improves cardiometabolic health in individuals with type 2 diabetes. Design: In a proof-of-concept, double-blind clinical trial 53 adults with uncomplicated type 2 diabetes were randomized to one of three nutritional beverages (500 mL skim-milk, macronutrient control, or flavored water placebo) consumed after exercise (3 days/week) during a 12 week low-volume HIIT intervention. HIIT involved 10 X 1-min high-intensity intervals separated by 1-min low-intensity recovery periods. Two sessions per week were cardio-based (at ~90% of heart rate max) and one session involved resistance-based exercises (at RPE of 5–6; CR-10 scale) in the same interval pattern. Continuous glucose monitoring (CGM), glycosylated hemoglobin (HbA1c), body composition (dual-energy X-ray absorptiometry), cardiorespiratory fitness (V˙O2peak), blood pressure, and endothelial function (%FMD) were measured before and after the intervention. Results: There were significant main effects of time (all p < 0.05) but no difference between groups (Interaction: all p > 0.71) for CGM 24-h mean glucose (−0.5 ± 1.1 mmol/L), HbA1c (−0.2 ± 0.4%), percent body fat (−0.8 ± 1.6%), and lean mass (+1.1 ± 2.8 kg). Similarly, V˙O2peak (+2.5 ± 1.6 mL/kg/min) and %FMD (+1.4 ± 1.9%) were increased, and mean arterial blood pressure reduced (−6 ± 7 mmHg), after 12 weeks of HIIT (all p < 0.01) with no difference between beverage groups (Interaction: all p > 0.11). Conclusion: High-intensity interval training is a potent stimulus for improving several important metabolic and cardiovascular risk factors in type 2 diabetes. The benefits of HIIT are not augmented by the addition of post-exercise protein. PMID:28790929
Interval training intensity affects energy intake compensation in obese men.
Alkahtani, Shaea A; Byrne, Nuala M; Hills, Andrew P; King, Neil A
2014-12-01
Compensatory responses may attenuate the effectiveness of exercise training in weight management. The aim of this study was to compare the effect of moderate- and high-intensity interval training on eating behavior compensation. Using a crossover design, 10 overweight and obese men participated in 4-week moderate (MIIT) and high (HIIT) intensity interval training. MIIT consisted of 5-min cycling stages at ± 20% of mechanical work at 45%VO(2)peak, and HIIT consisted of alternate 30-s work at 90%VO(2)peak and 30-s rests, for 30 to 45 min. Assessments included a constant-load exercise test at 45%VO(2)peak for 45 min followed by 60-min recovery. Appetite sensations were measured during the exercise test using a Visual Analog Scale. Food preferences (liking and wanting) were assessed using a computer-based paradigm, and this paradigm uses 20 photographic food stimuli varying along two dimensions, fat (high or low) and taste (sweet or nonsweet). An ad libitum test meal was provided after the constant-load exercise test. Exercise-induced hunger and desire to eat decreased after HIIT, and the difference between MIIT and HIIT in desire to eat approached significance (p = .07). Exercise-induced liking for high-fat nonsweet food tended to increase after MIIT and decreased after HIIT (p = .09). Fat intake decreased by 16% after HIIT, and increased by 38% after MIIT, with the difference between MIIT and HIIT approaching significance (p = .07). This study provides evidence that energy intake compensation differs between MIIT and HIIT.
High-intensity interval exercise and cerebrovascular health: curiosity, cause, and consequence
Lucas, Samuel J E; Cotter, James D; Brassard, Patrice; Bailey, Damian M
2015-01-01
Exercise is a uniquely effective and pluripotent medicine against several noncommunicable diseases of westernised lifestyles, including protection against neurodegenerative disorders. High-intensity interval exercise training (HIT) is emerging as an effective alternative to current health-related exercise guidelines. Compared with traditional moderate-intensity continuous exercise training, HIT confers equivalent if not indeed superior metabolic, cardiac, and systemic vascular adaptation. Consequently, HIT is being promoted as a more time-efficient and practical approach to optimize health thereby reducing the burden of disease associated with physical inactivity. However, no studies to date have examined the impact of HIT on the cerebrovasculature and corresponding implications for cognitive function. This review critiques the implications of HIT for cerebrovascular function, with a focus on the mechanisms and translational impact for patient health and well-being. It also introduces similarly novel interventions currently under investigation as alternative means of accelerating exercise-induced cerebrovascular adaptation. We highlight a need for studies of the mechanisms and thereby also the optimal dose-response strategies to guide exercise prescription, and for studies to explore alternative approaches to optimize exercise outcomes in brain-related health and disease prevention. From a clinical perspective, interventions that selectively target the aging brain have the potential to prevent stroke and associated neurovascular diseases. PMID:25833341
High-intensity interval exercise and cerebrovascular health: curiosity, cause, and consequence.
Lucas, Samuel J E; Cotter, James D; Brassard, Patrice; Bailey, Damian M
2015-06-01
Exercise is a uniquely effective and pluripotent medicine against several noncommunicable diseases of westernised lifestyles, including protection against neurodegenerative disorders. High-intensity interval exercise training (HIT) is emerging as an effective alternative to current health-related exercise guidelines. Compared with traditional moderate-intensity continuous exercise training, HIT confers equivalent if not indeed superior metabolic, cardiac, and systemic vascular adaptation. Consequently, HIT is being promoted as a more time-efficient and practical approach to optimize health thereby reducing the burden of disease associated with physical inactivity. However, no studies to date have examined the impact of HIT on the cerebrovasculature and corresponding implications for cognitive function. This review critiques the implications of HIT for cerebrovascular function, with a focus on the mechanisms and translational impact for patient health and well-being. It also introduces similarly novel interventions currently under investigation as alternative means of accelerating exercise-induced cerebrovascular adaptation. We highlight a need for studies of the mechanisms and thereby also the optimal dose-response strategies to guide exercise prescription, and for studies to explore alternative approaches to optimize exercise outcomes in brain-related health and disease prevention. From a clinical perspective, interventions that selectively target the aging brain have the potential to prevent stroke and associated neurovascular diseases.
Blood flow restriction training and the exercise pressor reflex: a call for concern.
Spranger, Marty D; Krishnan, Abhinav C; Levy, Phillip D; O'Leary, Donal S; Smith, Scott A
2015-11-01
Blood flow restriction (BFR) training (also known as Kaatsu training) is an increasingly common practice employed during resistance exercise by athletes attempting to enhance skeletal muscle mass and strength. During BFR training, blood flow to the exercising muscle is mechanically restricted by placing flexible pressurizing cuffs around the active limb proximal to the working muscle. This maneuver results in the accumulation of metabolites (e.g., protons and lactic acid) in the muscle interstitium that increase muscle force and promote muscle growth. Therefore, the premise of BFR training is to simulate and receive the benefits of high-intensity resistance exercise while merely performing low-intensity resistance exercise. This technique has also been purported to provide health benefits to the elderly, individuals recovering from joint injuries, and patients undergoing cardiac rehabilitation. Since the seminal work of Alam and Smirk in the 1930s, it has been well established that reductions in blood flow to exercising muscle engage the exercise pressor reflex (EPR), a reflex that significantly contributes to the autonomic cardiovascular response to exercise. However, the EPR and its likely contribution to the BFR-mediated cardiovascular response to exercise is glaringly missing from the scientific literature. Inasmuch as the EPR has been shown to generate exaggerated increases in sympathetic nerve activity in disease states such as hypertension (HTN), heart failure (HF), and peripheral artery disease (PAD), concerns are raised that BFR training can be used safely for the rehabilitation of patients with cardiovascular disease, as has been suggested. Abnormal BFR-induced and EPR-mediated cardiovascular complications generated during exercise could precipitate adverse cardiovascular or cerebrovascular events (e.g., cardiac arrhythmia, myocardial infarction, stroke and sudden cardiac death). Moreover, although altered EPR function in HTN, HF, and PAD underlies our concern for the widespread implementation of BFR, use of this training mechanism may also have negative consequences in the absence of disease. That is, even normal, healthy individuals performing resistance training exercise with BFR are potentially at increased risk for deleterious cardiovascular events. This review provides a brief yet detailed overview of the mechanisms underlying the autonomic cardiovascular response to exercise with BFR. A more complete understanding of the consequences of BFR training is needed before this technique is passively explored by the layman athlete or prescribed by a health care professional. Copyright © 2015 the American Physiological Society.
Wang, Ningning; Liu, Yang; Ma, Yanan; Wen, Deliang
2017-12-15
Exercise is beneficial in obesity, however, the debate about the value of high-intensity interval training (HIIT) vs. moderate-intensity continuous training (MICT) has been long lasting. Therefore, here we have compared the possible beneficial effects of two different exercise training regimes in a mouse model of diet-induced obesity (DIO). Following 7wk. on high fat diet (HFD), ten-week-old male ICR mice (n=30) were assigned to HIIT, distance-matched MICT or remained sedentary for the next 8 constitutive weeks while maintaining the dietary treatments. Age-matched sedentary mice with standard diet were used as a control (n=10). Exercise was performed on a motorized treadmill for 5days a week. Both modes of exercise ameliorated adiposity and related metabolic dysfunction induced by HFD and sedentary lifestyle, while mice following HIIT exhibited significantly lower body weight, percentage of fat mass and smaller adipocyte size. HIIT was more favorable in preventing liver lipid accumulation by restoring mRNA levels of genes involved in hepatic lipogenesis (SREBP1, ACC1, FAS) and β-oxidation (PPARα, CPT1a, HAD). In addition, HIIT was more efficient in mitigating adipose tissue inflammation and insulin insensitivity, partly dependent on abrogating phosphorylation of JNK/IRS1 (Ser307) pathway. Moreover, only HIIT led to pronounced beige adipocyte recruitment in inguinal subcutaneous adipose tissue. We conclude that HIIT contribute a more favorable regulation of metabolic dysfunctions in DIO mice compared with MICT. Copyright © 2017 Elsevier Inc. All rights reserved.
Cipryan, Lukas; Tschakert, Gerhard; Hofmann, Peter
2017-01-01
The purpose of the presented study was to compare acute and post-exercise differences in cardiorespiratory, metabolic, cardiac autonomic, inflammatory and muscle damage responses to high-intensity interval exercise (HIIT) between endurance and sprint athletes. The study group consisted of sixteen highly-trained males (age 22.1 ± 2.5 years) participating in endurance (n = 8) or sprint (n = 8) sporting events. All the participants underwent three exercise sessions: short HIIT (work interval duration 30s), long HIIT (3min) and constant load exercise (CE). The exercise interventions were matched for mean power, total time and in case of HIIT interventions also for work-to-relief ratio. The acute cardiorespiratory (HR, V̇O2, RER) and metabolic (lactate) variables as well as the post-exercise changes (up to 3 h) in the heart rate variability, inflammation (interleukin-6, leucocytes) and muscle damage (creatine kinase, myoglobin) were monitored. Endurance athletes performed exercise interventions with moderately (CE) or largely (both HIIT modes) higher mean V̇O2. These differences were trivial/small when V̇O2 was expressed as a percentage of V̇O2max. Moderately to largely lower RER and lactate values were found in endurance athletes. Markers of cardiac autonomic regulation, inflammation and muscle damage did not reveal any considerable differences between endurance and sprint athletes. In conclusions, endurance athletes were able to perform both HIIT formats with increased reliance on aerobic metabolic pathways although exercise intensity was identical in relative terms for all the participants. However, other markers of the acute and early post-exercise physiological response to these HIIT interventions indicated similarities between endurance and sprint athletes. Key points The manner in which each training background (endurance vs. sprint) influences the response to HIIT is not well known. Despite the identical exercise intensity in relative terms, endurance athletes are able to perform HIIT with increased reliance on aerobic metabolic pathways when compared to sprint athletes. The mean V̇O2 (% V̇O2max) and HR as well as markers of the cardiac autonomic regulation, systemic inflammation and muscle damage monitored during the early recovery phase did not demonstrate any differences between endurance and sprint trained individuals. PMID:28630575
Kellogg, Erin; Cantacessi, Cheyann; McNamer, Olivia; Holmes, Heather; von Bargen, Robert; Ramirez, Richard; Gallagher, Daren; Vargas, Stacy; Santia, Ben; Rodriguez, Karen; Astorino, Todd A
2018-05-08
Kellogg, E, Cantacessi, C, McNamer, O, Holmes, H, von Bargen, R, Ramirez, R, Gallagher, D, Vargas, S, Santia, B, Rodriguez, K, and Astorino, TA. Comparison of psychological and physiological responses to imposed vs. self-selected high-intensity interval training. J Strength Cond Res XX(X): 000-000, 2018-High-intensity interval training elicits similar physiological adaptations as moderate intensity continuous training (MICT). Some studies report greater enjoyment to a bout of high-intensity interval exercise (HIIE) vs. MICT, which is surprising considering that HIIE is more intense and typically imposed on the participant. This study compared physiological and perceptual responses between imposed and self-selected HIIE. Fourteen adults (age = 24 ± 3 years) unfamiliar with HIIE initially performed ramp exercise to exhaustion to measure maximal oxygen uptake (V[Combining Dot Above]O2max) followed by 2 subsequent sessions whose order was randomized. Imposed HIIE consisted of eight 60 seconds bouts at 80 percent peak power output (%PPO) separated by 60 seconds recovery at 10 %PPO. Self-selected HIIE (HIIESS) followed the same structure, but participants freely selected intensity in increments of 10 %PPO to achieve a rating of perceived exertion (RPE) ≥7. During exercise, heart rate, V[Combining Dot Above]O2, blood lactate concentration (BLa), affect (+5 to -5), and RPE were assessed. Physical Activity Enjoyment Scale was measured after exercise. Results showed higher V[Combining Dot Above]O2 (+10%, p = 0.013), BLa (p = 0.001), and RPE (p = 0.001) in HIIESS vs. HIIEIMP, and lower affect (p = 0.01), and enjoyment (87.6 ± 15.7 vs. 95.7 ± 11.7, p = 0.04). There was a significantly higher power output in self-selected vs. imposed HIIE (263.9 ± 81.4 W vs. 225.2 ± 59.6 W, p < 0.001). Data suggest that intensity mediates affective responses rather than the mode of HIIE performed by the participant.
Free testosterone as marker of adaptation to medium-intensive exercise.
Shkurnikov, M U; Donnikov, A E; Akimov, E B; Sakharov, D A; Tonevitsky, A G
2008-09-01
A 4-week study of adaptation reserves of the body was carried out during medium intensive exercise (medium intensive training: 60-80% threshold anaerobic metabolism). Two groups of athletes were singled out by the results of pulsometry analysis: with less than 20% work duration at the level above the 80% threshold anaerobic metabolism and with more than 20% work duration at the level above 80% threshold anaerobic metabolism. No appreciable differences between the concentrations of total testosterone, growth hormone, and cortisol before and after exercise in the groups with different percentage of anaerobic work duration were detected. In group 1 the concentrations of free testosterone did not change throughout the period of observation in comparison with the levels before training. In group 2, the level of free testosterone increased in comparison with the basal level: from 0.61+/-0.12 nmol/liter at the end of week 1 to 0.98+/-0.11 nmol/liter at the end of week 4 (p<0.01). The results indicate that the level of free testosterone can be used for evaluating the degree of athlete's adaptation to medium intensive exercise.
Huang, Guoyuan; Wang, Ru; Chen, Peijie; Huang, Sunny C; Donnelly, Joseph E; Mehlferber, Jon P
2016-03-01
The purpose of this investigation was to identify a quantitative dose-response relationship for enhancing maximal oxygen consumption (VO2max) in healthy sedentary older adults after controlled endurance training. This meta-analysis of controlled clinical trials included 1257 exercisers and 845 controls with a mean age of 67.45 ± 5.25 years. Effect sizes were calculated for training-induced VO2max changes. Different training regimens were analyzed and compared. The weighted net change of the mean VO2max values showed a significant increase of 3.78 ml/kg per min (95% confidence interval = 3.29 to 4.27; p < 0.0001) in response to aerobic training. Interstudy differences in VO2max changes were significantly related to exercise intensity, and explained approximately 11% of the variance of the VO2max responses. VO2max improved significantly at 35%-50% heart rate reserve (HRR) and continued improving at a greater rate with increasing "dose". The largest VO2max-improvement adaptation was achieved with a mean intensity of 66%-73% HRR. The magnitudes of the VO2max adaptation are identical to exercise at 57%-65% HRR and at 75%-80% HRR. Higher intensity doses more than 75-80% HRR did not lead to greater enhancement of VO2max improvements but, conversely, resulted in large declines. Our data provide quantitative insight into the magnitude of VO2max alterations as affected by exercise intensity, duration, frequency, and program length. The shapes of the dose-response curves are not simply linear, but with many similar trends and noteworthy characteristics. Aerobic training at a mean intensity of 66%-73% HRR with 40-50 min per session for 3-4 day/week for 30-40 weeks appears to be effective and optimal for maximum cardiorespiratory benefits in healthy sedentary older adults. © The European Society of Cardiology 2015.
Gomes Neto, Mansueto; Durães, André Rodrigues; Conceição, Lino Sergio Rocha; Saquetto, Micheli Bernardone; Ellingsen, Øyvind; Carvalho, Vitor Oliveira
2018-06-15
The aim of this study was to investigate the effects of high intensity interval training (HIIT) versus moderate intensity continuous training (MICT) in heart failure patients with reduced ejection fraction (HFrEF). Despite the well-known positive effects of exercise in heart failure patients, the best mode of exercise is still under discussion. We searched Pubmed/MEDLINE, Cochrane Central Register of Controlled Trials, PEDro data base, and SciELO (from the earliest date available to October 2017) for randomized controlled trials that evaluated the effects of HIIT versus MICT in HFrEF patients. Weighted mean differences (WMD) with 95% confidence interval (CI) were calculated, and heterogeneity was assessed using the I 2 test. 13 studies met the study criteria, including 411 patients. Compared to MICT, HIIT resulted in improvement in Peak VO 2 WMD (1.35 mL·kg -1 ·min -1 95% CI: 0.03 to 2.64 N = 411). HIIT resulted in no difference in VE/VCO 2 slope WMD (-1.21 95% CI: -3.0 to 0.58 N = 135), and quality of life measured by Minnesota Living with Heart Failure questionnaire WMD (1.19 95% CI: -5.81 to 8.19 N = 79). Sub-group analyses comparing studies with and without isocaloric exercise training protocol also showed a nonsignificant difference in peak VO 2 for participants in the HIIT group compared with MICT group. HIIT improves peak VO 2 and should be considered as a component of care of HFrEF patients. However, its superiority versus MICT disappears when isocaloric protocols are compared. An important caveat is uncertainty and variation of actual training intensities compared to program targets. Copyright © 2018 Elsevier B.V. All rights reserved.
Kilding, Andrew E; Jones, Andrew M
2008-02-01
The purpose of this study was to investigate the influence of exercise modality on the 'overshoot' in V(O2) that has been reported following the onset of moderate-intensity (below the gas exchange threshold, GET) exercise in endurance athletes. Seven trained endurance cyclists and seven trained endurance runners completed six square-wave transitions to a work-rate or running speed requiring 80% of mode-specific GET during both cycle and treadmill running exercise. The kinetics of V(O2) was assessed using non-linear regression and any overshoot in V(O2) was quantified as the integrated volume (IV) of O(2) consumed above the steady-state requirement. During cycling, an overshoot in V(O2) was evident in all seven cyclists (IV = 136 +/- 41 ml) and in four runners (IV = 81 +/- 94 ml). During running, an overshoot in V(O2) was evident in four runners (IV = 72 +/- 61 ml) but no cyclists. These data challenge the notion that V(O2) always rises towards a steady-state with near-exponential kinetics in this exercise intensity domain. The greater incidence of the V(O2) overshoot during cycling (11/14 subjects) compared to running (4/14 subjects) indicates that the overshoot phenomenon is related to an interaction between high levels of aerobic fitness and exercise modality. We speculate that a transient loss in muscle efficiency as a consequence of a non-constant ATP requirement following the onset of constant-work-rate exercise or an initially excessive recruitment of motor units (relative to the work-rate) might contribute to the overshoot phenomenon.
Caritá, Renato Aparecido Corrêa; Greco, Camila Coelho; Denadai, Benedito Sérgio
2014-01-01
The purpose of this study was to determine both the independent and additive effects of prior heavy-intensity exercise and pacing strategies on the VO2 kinetics and performance during high-intensity exercise. Fourteen endurance cyclists (VO2max = 62.8±8.5 mL.kg−1.min−1) volunteered to participate in the present study with the following protocols: 1) incremental test to determine lactate threshold and VO2max; 2) four maximal constant-load tests to estimate critical power; 3) six bouts of exercise, using a fast-start (FS), even-start (ES) or slow-start (SS) pacing strategy, with and without a preceding heavy-intensity exercise session (i.e., 90% critical power). In all conditions, the subjects completed an all-out sprint during the final 60 s of the test as a measure of the performance. For the control condition, the mean response time was significantly shorter (p<0.001) for FS (27±4 s) than for ES (32±5 s) and SS (32±6 s). After the prior exercise, the mean response time was not significantly different among the paced conditions (FS = 24±5 s; ES = 25±5 s; SS = 26±5 s). The end-sprint performance (i.e., mean power output) was only improved (∼3.2%, p<0.01) by prior exercise. Thus, in trained endurance cyclists, an FS pacing strategy does not magnify the positive effects of priming exercise on the overall VO2 kinetics and short-term high-intensity performance. PMID:24740278
Hall, Katharine E; McDonald, Matthew W; Grisé, Kenneth N; Campos, Oscar A; Noble, Earl G; Melling, C W James
2013-10-01
Individuals with Type 1 Diabetes Mellitus (T1DM) can develop insulin resistance. Regular exercise may improve insulin resistance partially through increased expression of skeletal muscle GLUT4 content. To examine if different exercise training modalities can alter glucose tolerance through changes in skeletal muscle GLUT4 content in T1DM rats. Fifty rats were divided into 5 groups; control, diabetic control, diabetic resistance exercised, and diabetic high and low intensity treadmill exercised. Diabetes was induced using multiple low dose Streptozotocin (20 mg/kg/day) injections and blood glucose concentrations were maintained moderately hyperglycemic through subcutaneous insulin pellets. Resistance trained rats climbed a ladder with incremental loads, while treadmill trained rats ran on a treadmill at 27 or 15 m/min, respectively, all for 6 weeks. At weeks 3 and 6, area under the curve measurements following an intravenous glucose tolerance test (AUC-IVGTT) in all diabetic groups were higher than control rats (p<0.05). At 6 weeks, all exercise groups had significantly lower AUC-IVGTT values than diabetic control animals (p<0.05). Treadmill trained rats had the lowest insulin dose requirement of the T1DM rats and the greatest reduction in insulin dosage was evident in high intensity treadmill exercise. Concomitant with improvements in glucose handling improvements, tissue-specific elevations in GLUT4 content were demonstrated in both red and white portions of vastus lateralis and gastrocnemius muscles, suggesting that glucose handling capacity was altered in the skeletal muscle of exercised T1DM rats. These results suggest that, while all exercise modalities can improve glucose tolerance, each mode leads to differential improvements in insulin requirements and protein content alterations. Copyright © 2013 Elsevier Inc. All rights reserved.
Chen, Chia-Hsin; Chen, Yi-Jen; Tu, Hung-Pin; Huang, Mao-Hsiung; Jhong, Jing-Hui; Lin, Ko-Long
2014-10-01
Cardiopulmonary exercise training is beneficial to people with coronary artery disease (CAD). Nevertheless, the correlation between aerobic capacity, and functional mobility and quality of life in elderly CAD patients is less addressed. The purpose of the current study is to investigate the beneficial effects of exercise training in elderly people with CAD, integrating exercise stress testing, functional mobility, handgrip strength, and health-related quality of life. Elderly people with CAD were enrolled from the outpatient clinic of a cardiac rehabilitation unit in a medical center. Participants were assigned to the exercise training group (N = 21) or the usual care group (N = 15). A total of 36 sessions of exercise training, completed in 12 weeks, was prescribed. Echocardiography, exercise stress testing, the 6-minute walking test, Timed Up and Go test, and handgrip strength testing were performed, and the Short-Form 36 questionnaire (SF-36) was administered at baseline and at 12-week follow-up. Peak oxygen consumption improved significantly after training. The heart rate recovery improved from 13.90/minute to 16.62/minute after exercise training. Functional mobility and handgrip strength also improved after training. Significant improvements were found in SF-36 physical function, social function, role limitation due to emotional problems, and mental health domains. A significant correlation between dynamic cardiopulmonary exercise testing parameters, the 6-minute walking test, Timed Up and Go test, handgrip strength, and SF-36 physical function and general health domains was also detected. Twelve-week, 36-session exercise training, including moderate-intensity cardiopulmonary exercise training, strengthening exercise, and balance training, is beneficial to elderly patients with CAD, and cardiopulmonary exercise testing parameters correlate well with balance and quality of life. Copyright © 2014. Published by Elsevier Taiwan.
Light-intensity and high-intensity interval training improve cardiometabolic health in rats.
Batacan, Romeo B; Duncan, Mitch J; Dalbo, Vincent J; Connolly, Kylie J; Fenning, Andrew S
2016-09-01
Physical activity has the potential to reduce cardiometabolic risk factors but evaluation of different intensities of physical activity and the mechanisms behind their health effects still need to be fully established. This study examined the effects of sedentary behaviour, light-intensity training, and high-intensity interval training on biometric indices, glucose and lipid metabolism, inflammatory and oxidative stress markers, and vascular and cardiac function in adult rats. Rats (12 weeks old) were randomly assigned to 1 of 4 groups: control (CTL; no exercise), sedentary (SED; no exercise and housed in small cages to reduce activity), light-intensity trained (LIT; four 30-min exercise bouts/day at 8 m/min separated by 2-h rest period, 5 days/week), and high-intensity interval trained (HIIT, four 2.5-min work bouts/day at 50 m/min separated by 3-min rest periods, 5 days/week). After 12 weeks of intervention, SED had greater visceral fat accumulation (p < 0.01) and slower cardiac conduction (p = 0.04) compared with the CTL group. LIT and HIIT demonstrated beneficial changes in body weight, visceral and epididymal fat weight, glucose regulation, low-density lipoprotein cholesterol, total cholesterol, and mesenteric vessel contractile response compared with the CTL group (p < 0.05). LIT had significant improvements in insulin sensitivity and cardiac conduction compared with the CTL and SED groups whilst HIIT had significant improvements in systolic blood pressure and endothelium-independent vasodilation to aorta and mesenteric artery compared with the CTL group (p < 0.05). LIT and HIIT induce health benefits by improving traditional cardiometabolic risk factors. LIT improves cardiac health while HIIT promotes improvements in vascular health.
Tsitkanou, S; Spengos, K; Stasinaki, A-N; Zaras, N; Bogdanis, G; Papadimas, G; Terzis, G
2017-11-01
Aim of the study was to investigate whether high-intensity interval cycling performed immediately after resistance training would inhibit muscle strength increase and hypertrophy expected from resistance training per se. Twenty-two young men were assigned into either resistance training (RE; N = 11) or resistance training plus high-intensity interval cycling (REC; N = 11). Lower body muscle strength and rate of force development (RFD), quadriceps cross-sectional area (CSA) and vastus lateralis muscle architecture, muscle fiber type composition and capillarization, and estimated aerobic capacity were evaluated before and after 8 weeks of training (2 times per week). Muscle strength and quadriceps CSA were significantly and similarly increased after both interventions. Fiber CSA increased significantly and similarly after both RE (type I: 13.6 ± 3.7%, type IIA: 17.6 ± 4.4%, type IIX: 23.2 ± 5.7%, P < 0.05) and REC (type I: 10.0 ± 2.7%, type IIA: 14.8 ± 4.3% type IIX: 20.8 ± 6.0%, P < 0.05). In contrast, RFD decreased and fascicle angle increased (P < 0.05) only after REC. Capillary density and estimated aerobic capacity increased (P < 0.05) only after REC. These results suggest that high-intensity interval cycling performed after heavy-resistance exercise may not inhibit resistance exercise-induced muscle strength/hypertrophy after 2 months of training, while it prompts aerobic capacity and muscle capillarization. The addition of high-intensity cycling after heavy-resistance exercise may decrease RFD partly due to muscle architectural changes. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Exercise training reduces the acute physiological severity of post‐menopausal hot flushes
Bailey, Tom G.; Cable, N. Timothy; Aziz, Nabil; Atkinson, Greg; Cuthbertson, Daniel J.; Low, David A.
2016-01-01
Key points A post‐menopausal hot flush consists of profuse physiological elevations in cutaneous vasodilatation and sweating that are accompanied by reduced brain blood flow. These responses can be used to objectively quantify hot flush severity.The impact of an exercise training intervention on the physiological responses occurring during a hot flush is currently unknown.In a preference‐controlled trial involving 21 post‐menopausal women, 16 weeks of supervised moderate intensity exercise training was found to improve cardiorespiratory fitness and attenuate cutaneous vasodilatation, sweating and the reductions in cerebral blood flow during a hot flush.It is concluded that the improvements in fitness that are mediated by 16 weeks of exercise training reduce the severity of physiological symptoms that occur during a post‐menopausal hot flush. Abstract A hot flush is characterised by feelings of intense heat, profuse elevations in cutaneous vasodilatation and sweating, and reduced brain blood flow. Exercise training reduces self‐reported hot flush severity, but underpinning physiological data are lacking. We hypothesised that exercise training attenuates the changes in cutaneous vasodilatation, sweat rate and cerebral blood flow during a hot flush. In a preference trial, 18 symptomatic post‐menopausal women underwent a passive heat stress to induce hot flushes at baseline and follow‐up. Fourteen participants opted for a 16 week moderate intensity supervised exercise intervention, while seven participants opted for control. Sweat rate, cutaneous vasodilatation, blood pressure, heart rate and middle cerebral artery velocity (MCAv) were measured during the hot flushes. Data were binned into eight equal segments, each representing 12.5% of hot flush duration. Weekly self‐reported frequency and severity of hot flushes were also recorded at baseline and follow‐up. Following training, mean hot flush sweat rate decreased by 0.04 mg cm2 min−1 at the chest (95% confidence interval 0.02–0.06, P = 0.01) and by 0.03 mg cm2 min−1 (0.02–0.05, P = 0.03) at the forearm, compared with negligible changes in control. Training also mediated reductions in cutaneous vasodilatation by 9% (6–12%) at the chest and by 7% (4–9%) at forearm (P ≤ 0.05). Training attenuated hot flush MCAv by 3.4 cm s−1 (0.7–5.1 cm s−1, P = 0.04) compared with negligible changes in control. Exercise training reduced the self‐reported severity of hot flushes by 109 arbitrary units (80–121, P < 0.001). These data indicate that exercise training leads to parallel reductions in hot flush severity and within‐flush changes in cutaneous vasodilatation, sweating and cerebral blood flow. PMID:26676059
Martins, Fernanda Maria; de Paula Souza, Aletéia; Nunes, Paulo Ricardo Prado; Michelin, Márcia Antoniazi; Murta, Eddie Fernando Candido; Resende, Elisabete Aparecida Mantovani Rodrigues; de Oliveira, Erick Prado; Orsatti, Fábio Lera
2018-07-01
This study compared the effects of 12 weeks of high-intensity interval body weight training (HIBWT) with combined training (COMT; aerobic and resistance exercises on body composition, a 6-minute walk test (6MWT; physical performance), insulin resistance (IR) and inflammatory markers in postmenopausal women (PW) at high risk of type 2 diabetes mellitus (TDM2). In this randomized controlled clinical study, 16 PW at high risk of TDM2 were randomly allocated into two groups: HIBWT (n = 8) and COMT (n = 8). The HIBWT group performed a training protocol (length time ~28 min) consisting of ten sets of 60 s of high intensity exercise interspersed by a recovery period of 60 s of low intensity exercise. The COMT group performed a training protocol (length time ~60 min) consisting of a 30 min walk of moderate intensity following by five resistance exercises. All training sessions were performed in the university gym facility three days a week (no consecutive days) for 12 weeks. All outcomes (body composition, muscle function, and IR and inflammatory markers) were assessed at the baseline and at the end of the study. Both groups increased (P < 0.05) muscle mass index (MMI), 6MWT, and interleukin 1 receptor antagonist and decreased fasting glucose, glycated hemoglobin , Insulin, HOMA-IR, and monocyte chemoattractant protein-1 (trend, P = 0.056). HIBWT effects were indistinguishable (P > 0.05) from the effects of COMT. There was a significant (P < 0.05) interaction of time by the group in muscle strength, indicating that only the COMT increased the muscle strength. This study suggests that changes in HOMA, IL-1ra, 6MWT, and MMI with HITBW are similar when compared to COMT in PW at high risk of TDM2. The patients were part of a 12-week training study (ClinicalTrials.gov Identifier: NCT03200639). Copyright © 2018 Elsevier Inc. All rights reserved.
Zoladz, Jerzy A.; Majerczak, Joanna; Grassi, Bruno; Szkutnik, Zbigniew; Korostyński, Michał; Gołda, Sławomir; Grandys, Marcin; Jarmuszkiewicz, Wiesława; Kilarski, Wincenty; Karasinski, Janusz; Korzeniewski, Bernard
2016-01-01
In this study we have examined the effect of prolonged endurance training program on the pulmonary oxygen uptake (V’O2) kinetics during heavy-intensity cycling-exercise and its impact on maximal cycling and running performance. Twelve healthy, physically active men (mean±SD: age 22.33±1.44 years, V’O2peak 3198±458 mL ∙ min-1) performed an endurance training composed mainly of moderate-intensity cycling, lasting 20 weeks. Training resulted in a decrease (by ~5%, P = 0.027) in V’O2 during prior low-intensity exercise (20 W) and in shortening of τp of the V’O2 on-kinetics (30.1±5.9 s vs. 25.4±1.5 s, P = 0.007) during subsequent heavy-intensity cycling. This was accompanied by a decrease of the slow component of V’O2 on-kinetics by 49% (P = 0.001) and a decrease in the end-exercise V’O2 by ~5% (P = 0.005). An increase (P = 0.02) in the vascular endothelial growth factor receptor 2 mRNA level and a tendency (P = 0.06) to higher capillary-to-fiber ratio in the vastus lateralis muscle were found after training (n = 11). No significant effect of training on the V’O2peak was found (P = 0.12). However, the power output reached at the lactate threshold increased by 19% (P = 0.01). The power output obtained at the V’O2peak increased by 14% (P = 0.003) and the time of 1,500-m performance decreased by 5% (P = 0.001). Computer modeling of the skeletal muscle bioenergetic system suggests that the training-induced decrease in the slow component of V’O2 on-kinetics found in the present study is mainly caused by two factors: an intensification of the each-step activation (ESA) of oxidative phosphorylation (OXPHOS) complexes after training and decrease in the ‘‘additional” ATP usage rising gradually during heavy-intensity exercise. PMID:27104346
Lei, Tze‐Huan; Stannard, Stephen R.; Perry, Blake G.; Schlader, Zachary J.; Cotter, James D.
2017-01-01
Key points Despite an attenuated fluctuation in ovarian hormone concentrations in well‐trained women, one in two of such women believe their menstrual cycle negatively impacts training and performance.Forthcoming large international events will expose female athletes to hot environments, and studies evaluating aerobic exercise performance in such environments across the menstrual cycle are sparse, with mixed findings.We have identified that autonomic heat loss responses at rest and during fixed‐intensity exercise in well‐trained women are not affected by menstrual cycle phase, but differ between dry and humid heat.Furthermore, exercise performance is not different across the menstrual cycle, yet is lower in humid heat, in conjunction with reduced evaporative cooling.Menstrual cycle phase does not appear to affect exercise performance in the heat in well‐trained women, but humidity impairs performance, probably due to reduced evaporative power. Abstract We studied thermoregulatory responses of ten well‐trained [V˙O2 max , 57 (7) ml min−1 kg−1] eumenorrheic women exercising in dry and humid heat, across their menstrual cycle. They completed four trials, each of resting and cycling at fixed intensities (125 and 150 W), to assess autonomic regulation, then self‐paced intensity (30 min work trial), to assess behavioural regulation. Trials were in early‐follicular (EF) and mid‐luteal (ML) phases in dry (DRY) and humid (HUM) heat matched for wet bulb globe temperature (WBGT, 27°C). During rest and fixed‐intensity exercise, rectal temperature was ∼0.2°C higher in ML than EF (P < 0.01) independent of environment (P = 0.66). Mean skin temperature did not differ between menstrual phases (P ≥ 0.13) but was higher in DRY than HUM (P < 0.01). Local sweat rate and/or forearm blood flow differed as a function of menstrual phase and environment (interaction: P ≤ 0.01). Exercise performance did not differ between phases [EF: 257 (37), ML: 255 (43) kJ, P = 0.62], but was 7 (9)% higher in DRY than HUM [263 (39), 248 (40) kJ; P < 0.01] in conjunction with equivalent autonomic regulation and thermal strain but higher evaporative cooling [16 (6) W m2; P < 0.01]. In well‐trained women exercising in the heat: (1) menstrual phase did not affect performance, (2) humidity impaired performance due to reduced evaporative cooling despite matched WBGT and (3) behavioural responses nullified thermodynamic and autonomic differences associated with menstrual phase and dry vs. humid heat. PMID:27900769
Lei, Tze-Huan; Stannard, Stephen R; Perry, Blake G; Schlader, Zachary J; Cotter, James D; Mündel, Toby
2017-05-01
Despite an attenuated fluctuation in ovarian hormone concentrations in well-trained women, one in two of such women believe their menstrual cycle negatively impacts training and performance. Forthcoming large international events will expose female athletes to hot environments, and studies evaluating aerobic exercise performance in such environments across the menstrual cycle are sparse, with mixed findings. We have identified that autonomic heat loss responses at rest and during fixed-intensity exercise in well-trained women are not affected by menstrual cycle phase, but differ between dry and humid heat. Furthermore, exercise performance is not different across the menstrual cycle, yet is lower in humid heat, in conjunction with reduced evaporative cooling. Menstrual cycle phase does not appear to affect exercise performance in the heat in well-trained women, but humidity impairs performance, probably due to reduced evaporative power. We studied thermoregulatory responses of ten well-trained [V̇O2 max , 57 (7) ml min -1 kg -1 ] eumenorrheic women exercising in dry and humid heat, across their menstrual cycle. They completed four trials, each of resting and cycling at fixed intensities (125 and 150 W), to assess autonomic regulation, then self-paced intensity (30 min work trial), to assess behavioural regulation. Trials were in early-follicular (EF) and mid-luteal (ML) phases in dry (DRY) and humid (HUM) heat matched for wet bulb globe temperature (WBGT, 27°C). During rest and fixed-intensity exercise, rectal temperature was ∼0.2°C higher in ML than EF (P < 0.01) independent of environment (P = 0.66). Mean skin temperature did not differ between menstrual phases (P ≥ 0.13) but was higher in DRY than HUM (P < 0.01). Local sweat rate and/or forearm blood flow differed as a function of menstrual phase and environment (interaction: P ≤ 0.01). Exercise performance did not differ between phases [EF: 257 (37), ML: 255 (43) kJ, P = 0.62], but was 7 (9)% higher in DRY than HUM [263 (39), 248 (40) kJ; P < 0.01] in conjunction with equivalent autonomic regulation and thermal strain but higher evaporative cooling [16 (6) W m 2 ; P < 0.01]. In well-trained women exercising in the heat: (1) menstrual phase did not affect performance, (2) humidity impaired performance due to reduced evaporative cooling despite matched WBGT and (3) behavioural responses nullified thermodynamic and autonomic differences associated with menstrual phase and dry vs. humid heat. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Vardar, Selma Arzu; Karaca, Aziz; Güldiken, Sibel; Palabıyık, Orkide; Süt, Necdet; Demir, Ahmet Muzaffer
2018-05-01
The aim of this study was to investigate the plasma adipokine responses to high-intensity interval training (HIT) in overweight/obese women. Twelve women (age 21.7 ± 3.8 years) completed a 19 days of HIT comprising six session of 4-6 repeats of a Wingate test (0.065 kg load/kg). Plasma adipokine levels were measured before exercise, and at 5 and 90 min after exercise on the first and the last training days. Adiponectin was higher at 5 min than 90 min post-exercise (11.7 ± 7.3 and 10.5 ± 5.8 ng/ml; p = .01) in the first exercise day. Leptin decreased 5 min after exercise (23.6 ± 13.2 vs. baseline 27.8 ± 14.4 ng/ml; p < .01) and remained depressed following 90 min (p < .01). The changes in adiponectin and leptin concentrations were similar on the first and last exercise days. No consistent effect was found on resistin concentration. Future studies are required to disclose the functional consequences of these alterations in plasma adipokine levels.
Haddad, Monoem; Chaouachi, Anis; Wong, Del P.; Castagna, Carlo; Chamari, Karim
2011-01-01
The efficacy of replacing generic running with Taekwondo (TKD) specific technical skills during interval training at an intensity corresponding to 90–95% of maximum heart rate (HRmax) has not yet been demonstrated. Therefore, the purpose of this study was to compare the HR responses and perceived exertion between controlled running and high-intensity TKD technical interval training in adolescent TKD athletes. Eighteen adolescent, male TKD athletes performed short-duration interval running and TKD specific technical skills (i.e. 10–20 [10-s of exercise interspersed with 20 s of passive recovery]) in a counterbalanced design. In both training methods, HR was measured and expressed as the percentage of HR reserve (%HRres). Rating of perceived exertion (RPE, Borg’s category rating-10 scale), Banister’s training impulse (TRIMP) and Edwards’ training load (TL) were used to quantify the internal training load. Recorded cardiovascular responses expressed in %HRres in the two training methods were not significantly different (p > 0.05). Furthermore, the two training methods induced similar training loads as calculated by Banister and Edwards’ methods. Perceived exertion ranged between “hard” and “very hard” during all interval training sessions. These findings showed that performing repeated TKD specific skills increased HR to the same level, and were perceived as producing the same training intensity as did short-duration interval running in adolescent TKD athletes. Therefore, using specific TKD kicking exercises in high-intensity interval training can be applied to bring more variety during training, mixing physical and technical aspects of the sport, while reaching the same intensity as interval running. PMID:23486727
The acute effect of moderate intensity aquatic exercise on coagulation factors in haemophiliacs.
Beltrame, Luis Gustavo Normanton; Abreu, Laurinda; Almeida, Jussara; Boullosa, Daniel Alexandre
2015-05-01
The objective of this cross-sectional study was to analyse the acute effect of aquatic exercise on haemostasis in persons with haemophilia. Ten adult haemophiliacs (8 type A, 2 type B) familiarized with aquatic training performed a 20-min exercise session in a swimming pool at an intensity of ~70% maximum heart rate (HR). Blood samples were collected immediately after the training session. The haemostatic parameters selected for analyses were factor VIII (FVIII), prothrombin time (PT), activated partial thromboplastin time (APTT) and fibrinogen. There were unclear effects of the exercise bout on FVIII and APTT, with a possibly beneficial effect on PT (-11·4%; 90% confidence interval: -26·1;3·3%), and a trivial change on fibrinogen levels. It was found an association between the mean rise in HR during exercise and the decrement in PT after exercise (r = 0·729; P = 0·026). The greater changes were observed in the patients diagnosed with a moderate level of haemophilia. It is concluded that a short bout of moderate intensity of aquatic exercise may have a positive influence on PT in adults with haemophilia with greater changes in those individuals exhibiting a greater rise in HR during exercise. This may be an important issue to the haemostatic control of haemophiliacs in clinical settings. Further studies are warranted for testing the influence of different aquatic exercise intensities on haemostasis. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Exercise and the Regulation of Immune Functions.
Simpson, Richard J; Kunz, Hawley; Agha, Nadia; Graff, Rachel
2015-01-01
Exercise has a profound effect on the normal functioning of the immune system. It is generally accepted that prolonged periods of intensive exercise training can depress immunity, while regular moderate intensity exercise is beneficial. Single bouts of exercise evoke a striking leukocytosis and a redistribution of effector cells between the blood compartment and the lymphoid and peripheral tissues, a response that is mediated by increased hemodynamics and the release of catecholamines and glucocorticoids following the activation of the sympathetic nervous system and the hypothalamic-pituitary-adrenal axis. Single bouts of prolonged exercise may impair T-cell, NK-cell, and neutrophil function, alter the Type I and Type II cytokine balance, and blunt immune responses to primary and recall antigens in vivo. Elite athletes frequently report symptoms associated with upper respiratory tract infections (URTI) during periods of heavy training and competition that may be due to alterations in mucosal immunity, particularly reductions in secretory immunoglobulin A. In contrast, single bouts of moderate intensity exercise are "immuno-enhancing" and have been used to effectively increase vaccine responses in "at-risk" patients. Improvements in immunity due to regular exercise of moderate intensity may be due to reductions in inflammation, maintenance of thymic mass, alterations in the composition of "older" and "younger" immune cells, enhanced immunosurveillance, and/or the amelioration of psychological stress. Indeed, exercise is a powerful behavioral intervention that has the potential to improve immune and health outcomes in the elderly, the obese, and patients living with cancer and chronic viral infections such as HIV. © 2015 Elsevier Inc. All rights reserved.
Intensive exercise training suppresses testosterone during bed rest
NASA Technical Reports Server (NTRS)
Wade, C. E.; Stanford, K. I.; Stein, T. P.; Greenleaf, J. E.
2005-01-01
Spaceflight and prolonged bed rest (BR) alter plasma hormone levels inconsistently. This may be due, in part, to prescription of heavy exercise as a countermeasure for ameliorating the adverse effects of disuse. The initial project was to assess exercise programs to maintain aerobic performance and leg strength during BR. The present study evaluates the effect of BR and the performance of the prescribed exercise countermeasures on plasma steroid levels. In a 30-day BR study of male subjects, the efficacy of isotonic (ITE, n = 7) or isokinetic exercise (IKE, n = 7) training was evaluated in contrast to no exercise (n = 5). These exercise countermeasures protected aerobic performance and leg strength successfully. BR alone (no-exercise group) did not change steroidogenesis, as assessed by the plasma concentrations of cortisol, progesterone, aldosterone, and free (FT) and total testosterone (TT). In the exercise groups, both FT and TT were decreased (P < 0.05): FT during IKE from 24 +/- 1.7 to 18 +/- 2.0 pg/ml and during ITE from 21 +/- 1.5 to 18 +/- 1 pg/ml, and TT during IKE from 748 +/- 68 to 534 +/- 46 ng/dl and during ITE from 565 +/- 36 to 496 +/- 38 ng/dl. The effect of intensive exercise countermeasures on plasma testosterone was not associated with indexes of overtraining. The reduction in plasma testosterone associated with both the IKE and ITE countermeasures during BR supports our hypothesis that intensive exercise countermeasures may, in part, contribute to changes in plasma steroid concentrations during spaceflight.
The Effect of Exercise Intensity on Total PYY and GLP-1 in Healthy Females: A Pilot Study.
Hallworth, Jillian R; Copeland, Jennifer L; Doan, Jon; Hazell, Tom J
2017-01-01
We compared the acute response of anorexigenic signals (total PYY and GLP-1) in response to submaximal and supramaximal exercise. Nine females completed three sessions: (1) moderate-intensity continuous training (MICT; 30 min; 65% VO 2max ); (2) sprint interval training (SIT; 6 × 30 sec "all-out" cycling sprints with 4 min recovery); or (3) control (CTRL; no exercise). PYY and GLP-1 were measured via blood samples drawn before, immediately after, and 90 min after exercise. Perceptions of hunger were rated using a visual analogue scale at all blood sampling time points. There was a session × time interaction for GLP-1 ( p = 0.004) where SIT and MICT ( p < 0.015 and p < 0.001) were higher compared to CTRL both immediately and 90 min after exercise. There was a main effect of time for PYY where 90 min after exercise it was decreased versus before and immediately after exercise. There was a session × time interaction for hunger with lower ratings following SIT versus MICT ( p = 0.027) and CTRL ( p = 0.031) 90 min after exercise. These results suggest that though GLP-1 is elevated after exercise in women, it is not affected by exercise intensity though hunger was lower 90 min after exercise with SIT. As the sample size is small further study is needed to confirm these findings.
A Scientific Rationale to Improve Resistance Training Prescription in Exercise Oncology.
Fairman, Ciaran M; Zourdos, Michael C; Helms, Eric R; Focht, Brian C
2017-08-01
To date, the prevailing evidence in the field of exercise oncology supports the safety and efficacy of resistance training to attenuate many oncology treatment-related adverse effects, such as risk for cardiovascular disease, increased fatigue, and diminished physical functioning and quality of life. Moreover, findings in the extant literature supporting the benefits of exercise for survivors of and patients with cancer have resulted in the release of exercise guidelines from several international agencies. However, despite research progression and international recognition, current exercise oncology-based exercise prescriptions remain relatively basic and underdeveloped, particularly in regards to resistance training. Recent publications have called for a more precise manipulation of training variables such as volume, intensity, and frequency (i.e., periodization), given the large heterogeneity of a cancer population, to truly optimize clinically relevant patient-reported outcomes. Indeed, increased attention to integrating fundamental principles of exercise physiology into the exercise prescription process could optimize the safety and efficacy of resistance training during cancer care. The purpose of this article is to give an overview of the current state of resistance training prescription and discuss novel methods that can contribute to improving approaches to exercise prescription. We hope this article may facilitate further evaluation of best practice regarding resistance training prescription, monitoring, and modification to ultimately optimize the efficacy of integrating resistance training as a supportive care intervention for survivors or and patients with cancer.
Sanz-de la Garza, Maria; Rubies, Cira; Batlle, Montserrat; Bijnens, Bart H; Mont, Lluis; Sitges, Marta; Guasch, Eduard
2017-09-01
Arrhythmogenic right ventricular (RV) remodeling has been reported in response to regular training, but it remains unclear how exercise intensity affects the presence and extent of such remodeling. We aimed to assess the relationship between RV remodeling and exercise load in a long-term endurance training model. Wistar rats were conditioned to run at moderate (MOD; 45 min, 30 cm/s) or intense (INT; 60 min, 60 cm/s) workloads for 16 wk; sedentary rats served as controls. Cardiac remodeling was assessed with standard echocardiographic and tissue Doppler techniques, sensor-tip pressure catheters, and pressure-volume loop analyses. After MOD training, both ventricles similarly dilated (~16%); the RV apical segment deformation, but not the basal segment deformation, was increased [apical strain rate (SR): -2.9 ± 0.5 vs. -3.3 ± 0.6 s -1 , SED vs. MOD]. INT training prompted marked RV dilatation (~26%) but did not further dilate the left ventricle (LV). A reduction in both RV segments' deformation in INT rats (apical SR: -3.3 ± 0.6 vs. -3.0 ± 0.4 s -1 and basal SR: -3.3 ± 0.7 vs. -2.7 ± 0.6 s -1 , MOD vs. INT) led to decreased global contractile function (maximal rate of rise of LV pressure: 2.53 ± 0.15 vs. 2.17 ± 0.116 mmHg/ms, MOD vs. INT). Echocardiography and hemodynamics consistently pointed to impaired RV diastolic function in INT rats. LV systolic and diastolic functions remained unchanged in all groups. In conclusion, we showed a biphasic, unbalanced RV remodeling response with increasing doses of exercise: physiological adaptation after MOD training turns adverse with INT training, involving disproportionate RV dilatation, decreased contractility, and impaired diastolic function. Our findings support the existence of an exercise load threshold beyond which cardiac remodeling becomes maladaptive. NEW & NOTEWORTHY Exercise promotes left ventricular eccentric hypertrophy with no changes in systolic or diastolic function in healthy rats. Conversely, right ventricular adaptation to physical activity follows a biphasic, dose-dependent, and segmentary pattern. Moderate exercise promotes a mild systolic function enhancement at the right ventricular apex and more intense exercise impairs systolic and diastolic function. Copyright © 2017 the American Physiological Society.
Casella-Filho, Antonio; Chagas, Antonio Carlos P; Maranhão, Raul C; Trombetta, Ivani C; Cesena, Fernando H Y; Silva, Vanessa M; Tanus-Santos, Jose Eduardo; Negrão, Carlos E; da Luz, Protasio L
2011-04-15
Intense lifestyle modifications can change the high-density lipoprotein (HDL) cholesterol concentration. The aim of the present study was to analyze the early effects of short-term exercise training, without any specific diet, on the HDL cholesterol plasma levels and HDL functional characteristics in patients with the metabolic syndrome (MS). We studied 30 sedentary subjects, 20 with and 10 without the MS. The patients with the MS underwent moderate intensity exercise training for 3 months on bicycle ergometers. Blood was sampled before and after training for biochemical analysis, paraoxonase-1 activity, and HDL subfraction composition and antioxidative capacity. Lipid transfer to HDL was assayed in vitro using a labeled nanoemulsion as the lipid donor. At baseline, the MS group had greater triglyceride levels and a lower HDL cholesterol concentration and lower paraoxonase-1 activity than did the controls. Training decreased the plasma triglycerides but did not change the low-density lipoprotein or HDL cholesterol levels. Nonetheless, exercise training increased the HDL subfractions' antioxidative capacity and paraoxonase-1 activity. After training, the MS group had compositional changes in the smallest HDL subfractions associated with increased free cholesterol and cholesterol ester transfers to HDL, reaching normal values. In conclusion, the present investigation has added relevant information about the dissociation between the quantitative and qualitative aspects of HDL after short-term exercise training without any specific diet in those with the MS, highlighting the importance of evaluating the functional aspects of the lipoproteins, in addition to their plasma levels. Copyright © 2011 Elsevier Inc. All rights reserved.
Korzeniowska-Kubacka, Iwona; Bilińska, Maria; Piotrowska, Dorota; Stepnowska, Monika; Piotrowicz, Ryszard
2017-06-01
The aim of the study was to assess the effectiveness of exercise training on depression, anxiety, physical capacity and sympatho-vagal balance in patients after myocardial infarction and compare differences between men and women. Thirty-two men aged 56.3±7.6 years and 30 women aged 59.2±8.1 years following myocardial infarction underwent an 8-week training programme consisting of 24 interval trainings on cycloergometer, three times a week. Before and after completing the training programme, patients underwent: depression intensity assessment with the Beck depression inventory; anxiety assessment with the state-trait anxiety inventory; a symptom-limited exercise test during which were analysed: maximal workload, duration, double product. In women the initial depression intensity was higher than in men, and decreased significantly after the training programme (14.8±8.7 vs. 10.5±8.8; P<0.01). The anxiety manifestation for state anxiety in women was higher than in men and decreased significantly after the training programme (45.7±9.7 vs. 40.8±0.3; P<0.01). Of note, no depression and anxiety manifestation was found in men. Physical capacity improved significantly after the training programme in all groups, and separately in men and in women. Moreover, an 8-week training programme favourably modified the parasympathetic tone. Participating in the exercise training programme contributed beneficially to a decrease in depression and anxiety manifestations in women post-myocardial infarction. Neither depression nor anxiety changed significantly in men. The impact of exercise training on physical capacity and autonomic balance was beneficial and comparable between men and women.
Zaenker, Pierre; Favret, Fabrice; Lonsdorfer, Evelyne; Muff, Guillaume; de Seze, Jérôme; Isner-Horobeti, Marie-Eve
2018-02-01
Numerous studies have shown that mild-to-moderate intensity or resistance exercise training improves physical capacities such as, peak oxygen consumption, maximal tolerated power and strength in multiple sclerosis patients. However, few studies have evaluated the effects of high-intensity interval training (HIIT) associated to with resistance training. Only few studies have analyzed difference between men and women before and after combined training. Moreover, the evaluation of exercise between ambulatory multiple sclerosis patients without disability (Expanded Disability Status Score [EDSS] 0-3) and patients with disabilities (EDSS 3.5-5) was not largely published. The main objective of our study was to determine if HIIT combined with resistance training improved aerobic and strength capacities as well as quality of life in multiple sclerosis patients and if gender and disabilities play a role in these changes. This study was an open-label uncontrolled study. The study was performed outside from conventional care facilities and including homebased training. Twenty-six multiple sclerosis patients have completed the program (19 women, 7 men; mean age 44.6±7.9 years, EDSS 2 [0-5]). We conducted a 12-week program of high-intensity interval training combined with resistance training at body weight. Peak oxygen consumption, maximal tolerated power, lactates, isokinetic strength of quadriceps and hamstrings (at 90°/s, 180°/s, and 240°/s) and quality of life were evaluated before and after the program. Peak oxygen consumption and maximum tolerated power improved by 13.5% and 9.4%, respectively. Isokinetic muscle strength increased in both quadriceps and hamstrings at each speed, with a rebalancing of strength between the two legs in quadriceps. Quality of life was also enhanced in three domains. Women showed better improvements than men in V̇O2peak, maximal tolerated power, lactates at the end of test, and heart rate peak, strength in both quadriceps and hamstrings mostly at low speed, and quality of life. The two EDSS groups increased V̇O2peak and strength. Our study has shown that HIIT combined with resistance exercise training induced an improvement in physical capacity and quality of life. Moreover, this study allowed patients, irrespective of their sex or EDSS score, to resume exercise autonomously. The results of the study showed that aerobic training at moderate intensity is not the single type of training tolerated by multiple sclerosis patients. High-intensity interval training is well tolerated too and can be used in clinical rehabilitation with resistance training, in both men and women with and without disabilities.
Terada, S; Yokozeki, T; Kawanaka, K; Ogawa, K; Higuchi, M; Ezaki, O; Tabata, I
2001-06-01
This study was performed to assess the effects of short-term, extremely high-intensity intermittent exercise training on the GLUT-4 content of rat skeletal muscle. Three- to four-week-old male Sprague-Dawley rats with an initial body weight ranging from 45 to 55 g were used for this study. These rats were randomly assigned to an 8-day period of high-intensity intermittent exercise training (HIT), relatively high-intensity intermittent prolonged exercise training (RHT), or low-intensity prolonged exercise training (LIT). Age-matched sedentary rats were used as a control. In the HIT group, the rats repeated fourteen 20-s swimming bouts with a weight equivalent to 14, 15, and 16% of body weight for the first 2, the next 4, and the last 2 days, respectively. Between exercise bouts, a 10-s pause was allowed. RHT consisted of five 17-min swimming bouts with a 3-min rest between bouts. During the first bout, the rat swam without weight, whereas during the following four bouts, the rat was attached to a weight equivalent to 4 and 5% of its body weight for the first 5 days and the following 3 days, respectively. Rats in the LIT group swam 6 h/day for 8 days in two 3-h bouts separated by 45 min of rest. In the first experiment, the HIT, LIT, and control rats were compared. GLUT-4 content in the epitrochlearis muscle in the HIT and LIT groups after training was significantly higher than that in the control rats by 83 and 91%, respectively. Furthermore, glucose transport activity, stimulated maximally by both insulin (2 mU/ml) (HIT: 48%, LIT: 75%) and contractions (25 10-s tetani) (HIT: 55%, LIT: 69%), was higher in the training groups than in the control rats. However, no significant differences in GLUT-4 content or in maximal glucose transport activity in response to both insulin and contractions were observed between the two training groups. The second experiment demonstrated that GLUT-4 content after HIT did not differ from that after RHT (66% higher in trained rats than in control). In conclusion, the present investigation demonstrated that 8 days of HIT lasting only 280 s elevated both GLUT-4 content and maximal glucose transport activity in rat skeletal muscle to a level similar to that attained after LIT, which has been considered a tool to increase GLUT-4 content maximally.
Lambert, Conor; Beck, Belinda R; Harding, Amy T; Watson, Steven L; Weeks, Benjamin K
2017-01-01
Introduction The aim of the Osteoporosis Prevention Through Impact and Muscle-loading Approaches to Exercise trial is to compare the bone response to two known osteogenic stimuli — impact loading exercise and resistance training. Specifically, we will examine the effect of a 10-month, twice-weekly, high-intensity impact loading exercise intervention and a 10-month, twice-weekly, high-intensity resistance training intervention on bone mass and strength at clinically important skeletal sites. The intervention groups will be compared against a home-based ‘positive’ control group. Safety and acceptability of each exercise modality will also be determined. Methods and analysis Sedentary otherwise healthy young women aged 18–30 years with bone mineral density (BMD) T-scores less than or equal to 0 at the hip and lumbar spine, screened for conditions and medications that influence bone and physical function, will be recruited. Eligible participants are randomised to 10-month, twice-weekly, either supervised high-intensity impact training, high-intensity resistance training or a home-based ‘positive’ control group. The primary outcome measure will be lumbar spine areal BMD, while secondary outcome measures will include: whole body, femoral neck and regional measures (upper and lower limb) of bone, muscle and fat; anthropometrics; muscle strength and power; quality of life and exercise safety, enjoyment and acceptability. All outcome measures will be conducted at baseline (T0) and 10 months (T10) and will be analysed according to the intention-to-treat principle and per protocol. Ethics and dissemination The study has been granted ethical approval from the Griffith University Human Research Ethics Committee (GU Ref: 2015/775). Standard scientific reporting practices will occur, including publication in peer-reviewed journals. Participant confidentiality will be maintained in all forms of reporting. Trial registration number ACTRN12616001444471. PMID:28864705
Sympathetic adaptations to one-legged training
NASA Technical Reports Server (NTRS)
Ray, C. A.
1999-01-01
The purpose of the present study was to determine the effect of leg exercise training on sympathetic nerve responses at rest and during dynamic exercise. Six men were trained by using high-intensity interval and prolonged continuous one-legged cycling 4 day/wk, 40 min/day, for 6 wk. Heart rate, mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA; peroneal nerve) were measured during 3 min of upright dynamic one-legged knee extensions at 40 W before and after training. After training, peak oxygen uptake in the trained leg increased 19 +/- 2% (P < 0.01). At rest, heart rate decreased from 77 +/- 3 to 71 +/- 6 beats/min (P < 0.01) with no significant changes in MAP (91 +/- 7 to 91 +/- 11 mmHg) and MSNA (29 +/- 3 to 28 +/- 1 bursts/min). During exercise, both heart rate and MAP were lower after training (108 +/- 5 to 96 +/- 5 beats/min and 132 +/- 8 to 119 +/- 4 mmHg, respectively, during the third minute of exercise; P < 0.01). MSNA decreased similarly from rest during the first 2 min of exercise both before and after training. However, MSNA was significantly less during the third minute of exercise after training (32 +/- 2 to 22 +/- 3 bursts/min; P < 0.01). This training effect on MSNA remained when MSNA was expressed as bursts per 100 heartbeats. Responses to exercise in five untrained control subjects were not different at 0 and 6 wk. These results demonstrate that exercise training prolongs the decrease in MSNA during upright leg exercise and indicates that attenuation of MSNA to exercise reported with forearm training also occurs with leg training.
Irisin in response to acute and chronic whole-body vibration exercise in humans.
Huh, Joo Young; Mougios, Vassilis; Skraparlis, Athanasios; Kabasakalis, Athanasios; Mantzoros, Christos S
2014-07-01
Irisin is a recently identified myokine, suggested to mediate the beneficial effects of exercise by inducing browning of white adipocytes and thus increasing energy expenditure. In humans, the regulation of irisin by exercise is not completely understood. We investigated the effect of acute and chronic whole-body vibration exercise, a moderate-intensity exercise that resembles shivering, on circulating irisin levels in young healthy subjects. Healthy untrained females participated in a 6-week program of whole-body vibration exercise training. Blood was drawn before and immediately after an acute bout of exercise at baseline (week 0) and after 6 weeks of training. The resting irisin levels were not different at baseline (week 0) and after 6 weeks of training. At both 0 and 6 weeks of training, an acute bout of vibration exercise significantly elevated circulating irisin levels by 9.5% and 18.1%, respectively (p=0.05 for the percent change of irisin levels). Acute bouts of whole-body vibration exercise are effective in increasing circulating irisin levels but chronic training does not change levels of baseline irisin levels in humans. Copyright © 2014 Elsevier Inc. All rights reserved.
Combined exercise for people with type 2 diabetes mellitus: a systematic review.
Oliveira, César; Simões, Mário; Carvalho, Joana; Ribeiro, José
2012-11-01
Type 2 diabetes mellitus has emerged as a major non-communicable chronic diseases in many countries. The importance of exercise in the prevention and management of this disease is evident. This paper briefly reviews the effects of combining aerobic and resistance exercises on glycemic control, and details the training and characteristics of various interventions in adults with type 2 diabetes mellitus. Literature searches were performed using electronic databases between the 1st of January 1950 and the 15th of September 2011. Of the 403 articles retrieved, 28 studies met our inclusion criteria. Combined exercise protocols seem to improve glycemic control to a greater extent than isolated forms of exercise. Nevertheless, length, duration, intensity, mode, number of exercises, sets and repetitions varied markedly among studies. Supervised training sessions, recommended structured exercises, and splitting aerobic and resistance training in separate sessions may be relevant for best results. Future studies should analyze the effects of different aerobic and resistance training modes, different training and progression methods, and whether one type of exercise is optimal, as these issues are likely to convey greater knowledge on type 2 diabetes mellitus management through combined exercise. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Hostrup, Morten; Onslev, Johan; Jacobson, Glenn A; Wilson, Richard; Bangsbo, Jens
2018-01-15
While several studies have investigated the effects of exercise training in human skeletal muscle and the chronic effect of β 2 -agonist treatment in rodent muscle, their effects on muscle proteome signature with related functional measures in humans are still incompletely understood. Herein we show that daily β 2 -agonist treatment attenuates training-induced enhancements in exercise performance and maximal oxygen consumption, and alters muscle proteome signature and phenotype in trained young men. Daily β 2 -agonist treatment abolished several of the training-induced enhancements in muscle oxidative capacity and caused a repression of muscle metabolic pathways; furthermore, β 2 -agonist treatment induced a slow-to-fast twitch muscle phenotype transition. The present study indicates that chronic β 2 -agonist treatment confounds the positive effect of high intensity training on exercise performance and oxidative capacity, which is of interest for the large proportion of persons using inhaled β 2 -agonists on a daily basis, including athletes. Although the effects of training have been studied for decades, data on muscle proteome signature remodelling induced by high intensity training in relation to functional changes in humans remains incomplete. Likewise, β 2 -agonists are frequently used to counteract exercise-induced bronchoconstriction, but the effects β 2 -agonist treatment on muscle remodelling and adaptations to training are unknown. In a placebo-controlled parallel study, we randomly assigned 21 trained men to 4 weeks of high intensity training with (HIT+β 2 A) or without (HIT) daily inhalation of β 2 -agonist (terbutaline, 4 mg dose -1 ). Of 486 proteins identified by mass-spectrometry proteomics of muscle biopsies sampled before and after the intervention, 32 and 85 were changing (false discovery rate (FDR) ≤5%) with the intervention in HIT and HIT+β 2 A, respectively. Proteome signature changes were different in HIT and HIT+β 2 A (P = 0.005), wherein β 2 -agonist caused a repression of 25 proteins in HIT+β 2 A compared to HIT, and an upregulation of 7 proteins compared to HIT. β 2 -Agonist repressed or even downregulated training-induced enrichment of pathways related to oxidative phosphorylation and glycogen metabolism, but upregulated pathways related to histone trimethylation and the nucleosome. Muscle contractile phenotype changed differently in HIT and HIT+β 2 A (P ≤ 0.001), with a fast-to-slow twitch transition in HIT and a slow-to-fast twitch transition in HIT+β 2 A. β 2 -Agonist attenuated training-induced enhancements in maximal oxygen consumption (P ≤ 0.01) and exercise performance (6.1 vs. 11.6%, P ≤ 0.05) in HIT+β 2 A compared to HIT. These findings indicate that daily β 2 -agonist treatment attenuates the beneficial effects of high intensity training on exercise performance and oxidative capacity, and causes remodelling of muscle proteome signature towards a fast-twitch phenotype. © 2017 The Authors. The Journal of Physiology © 2017 The Physiological Society.
NASA Astrophysics Data System (ADS)
Matsuo, Tomoaki; Ohkawara, Kazunori; Seino, Satoshi; Shimojo, Nobutake; Yamada, Shin; Ohshima, Hiroshi; Tanaka, Kiyoji; Mukai, Chiaki
2013-02-01
Maximal oxygen consumption decreases during spaceflight, and astronauts also experience controversial weight loss. Future space missions require a more efficient exercise program to maintain work efficiency and to control increased energy expenditure (EE). We have been developing two types of original exercise training protocols which are better suited to astronauts’ daily routine exercise during long-term spaceflight: sprint interval training (SIT) and high-intensity interval aerobic training (HIAT). In this study, we compared the total EE, including excess post-exercise energy expenditure (EPEE), induced by our interval cycling protocols with the total EE of a traditional, continuous aerobic training (CAT). In the results, while the EPEEs after the SIT and HIAT were greater than after the CAT, the total EE for an entire exercise/rest session with the CAT was the greatest of our three exercise protocols. The SIT and HIAT would be potential protocols to control energy expenditure for long space missions.
1998-06-01
ACSM Position Stand on The Recommended Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory and Muscular Fitness, and Flexibility in Adults. Med. Sci. Sports Exerc., Vol. 30, No. 6, pp. 975-991, 1998. The combination of frequency, intensity, and duration of chronic exercise has been found to be effective for producing a training effect. The interaction of these factors provide the overload stimulus. In general, the lower the stimulus the lower the training effect, and the greater the stimulus the greater the effect. As a result of specificity of training and the need for maintaining muscular strength and endurance, and flexibility of the major muscle groups, a well-rounded training program including aerobic and resistance training, and flexibility exercises is recommended. Although age in itself is not a limiting factor to exercise training, a more gradual approach in applying the prescription at older ages seems prudent. It has also been shown that aerobic endurance training of fewer than 2 d.wk-1, at less than 40-50% of VO2R, and for less than 10 min-1 is generally not a sufficient stimulus for developing and maintaining fitness in healthy adults. Even so, many health benefits from physical activity can be achieved at lower intensities of exercise if frequency and duration of training are increased appropriately. In this regard, physical activity can be accumulated through the day in shorter bouts of 10-min durations. In the interpretation of this position stand, it must be recognized that the recommendations should be used in the context of participant's needs, goals, and initial abilities. In this regard, a sliding scale as to the amount of time allotted and intensity of effort should be carefully gauged for the cardiorespiratory, muscular strength and endurance, and flexibility components of the program. An appropriate warm-up and cool-down period, which would include flexibility exercises, is also recommended. The important factor is to design a program for the individual to provide the proper amount of physical activity to attain maximal benefit at the lowest risk. Emphasis should be placed on factors that result in permanent lifestyle change and encourage a lifetime of physical activity.
High-Intensity Interval Training for Improving Postprandial Hyperglycemia
ERIC Educational Resources Information Center
Little, Jonathan P.; Francois, Monique E.
2014-01-01
High-intensity interval training (HIIT) has garnered attention in recent years as a time-efficient exercise option for improving cardiovascular and metabolic health. New research demonstrates that HIIT may be particularly effective for improving postprandial hyperglycemia in individuals with, or at risk for, type 2 diabetes (T2D). These findings…
Using recovery modalities between training sessions in elite athletes: does it help?
Barnett, Anthony
2006-01-01
Achieving an appropriate balance between training and competition stresses and recovery is important in maximising the performance of athletes. A wide range of recovery modalities are now used as integral parts of the training programmes of elite athletes to help attain this balance. This review examined the evidence available as to the efficacy of these recovery modalities in enhancing between-training session recovery in elite athletes. Recovery modalities have largely been investigated with regard to their ability to enhance the rate of blood lactate removal following high-intensity exercise or to reduce the severity and duration of exercise-induced muscle injury and delayed onset muscle soreness (DOMS). Neither of these reflects the circumstances of between-training session recovery in elite athletes. After high-intensity exercise, rest alone will return blood lactate to baseline levels well within the normal time period between the training sessions of athletes. The majority of studies examining exercise-induced muscle injury and DOMS have used untrained subjects undertaking large amounts of unfamiliar eccentric exercise. This model is unlikely to closely reflect the circumstances of elite athletes. Even without considering the above limitations, there is no substantial scientific evidence to support the use of the recovery modalities reviewed to enhance the between-training session recovery of elite athletes. Modalities reviewed were massage, active recovery, cryotherapy, contrast temperature water immersion therapy, hyperbaric oxygen therapy, nonsteroidal anti-inflammatory drugs, compression garments, stretching, electromyostimulation and combination modalities. Experimental models designed to reflect the circumstances of elite athletes are needed to further investigate the efficacy of various recovery modalities for elite athletes. Other potentially important factors associated with recovery, such as the rate of post-exercise glycogen synthesis and the role of inflammation in the recovery and adaptation process, also need to be considered in this future assessment.
Adams, Richard; Qin, Huanying; Bilbrey, Tim; Schussler, Jeffrey M.
2015-01-01
A 55-year-old powerlifter in Tennessee learned about the sport-specific, high-intensity cardiac rehabilitation training available in Dallas, Texas, and contacted the staff by phone. He was recovering from quadruple coronary artery bypass grafting (CABG) and had completed several weeks of traditional cardiac rehabilitation in his hometown, but the exercise program no longer met his needs. He wanted help in returning both to his normal training regimen and to powerlifting competition but was unable to attend the Dallas program in person. An exercise physiologist with the program devised a virtual coaching model in which the patient was sent a wrist blood pressure cuff for self-monitoring and was advised about exercises that would not harm his healing sternum, even as the weight loads were gradually increased. After 17 weeks of symptom-limited, high-intensity training that was complemented by phone and e-mail support, the patient was lifting heavier loads than he had before CABG. At a powerlifting competition 10 months after CABG, he placed first in his age group. This case report exemplifies the need for alternative approaches to the delivery of cardiac rehabilitation services. PMID:25552808
Adams, Volker; Reich, Bernhard; Uhlemann, Madlen; Niebauer, Josef
2017-07-01
For decades, we have known that exercise training exerts beneficial effects on the human body, and clear evidence is available that a higher fitness level is associated with a lower incidence of suffering premature cardiovascular death. Despite this knowledge, it took some time to also incorporate physical exercise training into the treatment plan for patients with cardiovascular disease (CVD). In recent years, in addition to continuous exercise training, further training modalities such as high-intensity interval training and pyramid training have been introduced for coronary artery disease patients. The beneficial effect for patients with CVD is clearly documented, and during the last years, we have also started to understand the molecular mechanisms occurring in the skeletal muscle (limb muscle and diaphragm) and endothelium, two systems contributing to exercise intolerance in these patients. In the present review, we describe the effects of the different training modalities in CVD and summarize the molecular effects mainly in the skeletal muscle and cardiovascular system. Copyright © 2017 the American Physiological Society.
Neunhäuserer, Daniel; Steidle-Kloc, Eva; Weiss, Gertraud; Kaiser, Bernhard; Niederseer, David; Hartl, Sylvia; Tschentscher, Marcus; Egger, Andreas; Schönfelder, Martin; Lamprecht, Bernd; Studnicka, Michael; Niebauer, Josef
2016-11-01
Physical exercise training is an evidence-based treatment in chronic obstructive pulmonary disease, and patients' peak work rate is associated with reduced chronic obstructive pulmonary disease mortality. We assessed whether supplemental oxygen during exercise training in nonhypoxemic patients with chronic obstructive pulmonary disease might lead to superior training outcomes, including improved peak work rate. This was a randomized, double-blind, controlled, crossover trial. Twenty-nine patients with chronic obstructive pulmonary disease (aged 63.5 ± 5.9 years; forced expiratory volume in 1 second percent predicted, 46.4 ± 8.6) completed 2 consecutive 6-week periods of endurance and strength training with progressive intensity, which was performed 3 times per week with supplemental oxygen or compressed medical air (flow via nasal cannula: 10 L/min). Each session of electrocardiography-controlled interval cycling lasted 31 minutes and consisted of a warm-up, 7 cycles of 1-minute intervals at 70% to 80% of peak work rate alternating with 2 minutes of active recovery, and final cooldown. Thereafter, patients completed 8 strength-training exercises of 1 set each with 8 to 15 repetitions to failure. Change in peak work rate was the primary study end point. The increase in peak work rate was more than twice as high when patients exercised with supplemental oxygen compared with medical air (0.16 ± 0.02 W/kg vs 0.07 ± 0.02 W/kg; P < .001), which was consistent with all other secondary study end points related to exercise capacity. The impact of oxygen on peak work rate was 39.1% of the overall training effect, whereas it had no influence on strength gain (P > .1 for all exercises). We report that supplemental oxygen in nonhypoxemic chronic obstructive pulmonary disease doubled the effect of endurance training but had no effect on strength gain. Copyright © 2016 Elsevier Inc. All rights reserved.
Evaluating intervention fidelity: an example from a high-intensity interval training study.
Taylor, Kathryn L; Weston, Matthew; Batterham, Alan M
2015-01-01
Intervention fidelity refers to the degree to which an experimental manipulation has been implemented as intended, but simple, robust methods for quantifying fidelity have not been well documented. Therefore, we aim to illustrate a rigorous quantitative evaluation of intervention fidelity, using data collected during a high-intensity interval training intervention. Single-group measurement study. Seventeen adolescents (mean age ± standard deviation [SD] 14.0 ± 0.3 years) attended a 10-week high-intensity interval training intervention, comprising two exercise sessions per week. Sessions consisted of 4-7 45-s maximal effort repetitions, interspersed with 90-s rest. We collected heart rate data at 5-s intervals and recorded the peak heart rate for each repetition. The high-intensity exercise criterion was ≥ 90% of individual maximal heart rate. For each participant, we calculated the proportion of total exercise repetitions exceeding this threshold. A linear mixed model was applied to properly separate the variability in peak heart rate between- and within-subjects. Results are presented both as intention to treat (including missed sessions) and per protocol (only participants with 100% attendance; n=8). For intention to treat, the median (interquartile range) proportion of repetitions meeting the high-intensity criterion was 58% (42% to 68%). The mean peak heart rate was 85% of maximal, with a between-subject SD of 7.8 (95% confidence interval 5.4 to 11.3) percentage points and a within-subject SD of 15.1 (14.6 to 15.6) percentage points. For the per protocol analysis, the median proportion of high-intensity repetitions was 68% (47% to 86%). The mean peak heart rate was 91% of maximal, with between- and within-subject SDs of 3.1 (-1.3 to 4.6) and 3.4 (3.2 to 3.6) percentage points, respectively. Synthesising information on exercise session attendance and compliance (exercise intensity) quantifies the intervention dose and informs evaluations of treatment fidelity.
Drigny, J; Gremeaux, V; Guiraud, T; Gayda, M; Juneau, M; Nigam, A
2013-07-01
QT dispersion (QTd) is a marker of myocardial electrical instability, and is increased in metabolic syndrome (MetS). Moderate intensity continuous exercise (MICE) training was shown to improve QTd in MetS patients. To describe long-term effects of MICE and high-intensity interval exercise training (HIIT) on QTd parameters in MetS. Sixty-five MetS patients (53 ± 9 years) were assigned to either a MICE (60% of peak power output [PPO]), or a HIIT program (alternating phases of 15-30 s at 80% of PPO interspersed by passive recovery phases of equal duration), twice weekly during 9 months. Ventricular repolarization indices (QT dispersion=QTd, standard deviation of QT = sdQT, relative dispersion of QT = rdQT, QT corrected dispersion = QTcd), metabolic, anthropometric and exercise parameters were measured before and after the intervention. No adverse events were noted during exercise. QTd decreased significantly in both groups (51 vs 56 ms in MICE, P < 0.05; 34 vs 38 ms in HIIT, P < 0.05). Changes in QTd were correlated with changes in maximal heart rate (r = -0.69, P < 0.0001) and in heart rate recovery (r = -0.49, P < 0.01) in the HIIT group only. When compared to MICE, HIIT training induced a greater decrease in weight, BMI and waist circumference. Exercise capacity significantly improved by 0.82 and 1.25 METs in MICE and HIIT groups respectively (P < 0.0001). Lipid parameters also improved to the same degree in both groups. In MetS, long-term HIIT and MICE training led to comparable effects on ventricular repolarization indices, and HIIT might be associated with greater improvements in certain cardiometabolic risk factors. Copyright © 2013 Elsevier Masson SAS. All rights reserved.
Thiele, R M; Conchola, E C; Palmer, T B; DeFreitas, J M; Thompson, B J
2015-01-01
The purpose of this study was to investigate the effects of a high-intensity free-weight back-squat exercise on postural stability characteristics in resistance-trained males. Eighteen college-aged (mean ± SD: age = 22.9 ± 2.9 years; height = 175.8 ± 6.4 cm; mass = 86.3 ± 9.3 kg), resistance-trained males performed postural stability testing before and after completing five sets of eight repetitions of back-squat exercises at 80% of one-repetition maximum. A commercial balance testing device was used to assess sway index at pre- and at 0, 5, 10, 15 and 20 min post-exercise. Each balance assessment consisted of four, 20-s static stance conditions: eyes-open firm surface, eyes-closed firm surface, eyes-open soft surface and eyes-closed soft surface. Sway index was greater (P = 0.001-0.020) at Post 0 than at all other time points. No differences (P > 0.05) were observed between any other time phases. Sway index was greater (P < 0.001) for eyes-closed soft surface than all other conditions. These findings revealed sway index for all conditions significantly increased following completion of the back-squat; however, sway index recovered within 5 min of exercise. Higher sway index values as a result of neuromuscular fatigue induced by a back-squat exercise may have performance and injury risk consequences to subsequent activities that rely on postural stability. However, these findings suggest balance impairments may recover in ~5 min following high-intensity lower body resistance exercise.
Hagberg, Jan; Axén, Iben; Kwak, Lydia; Lohela-Karlsson, Malin; Skillgate, Eva; Dahlgren, Gunilla; Jensen, Irene
2017-01-01
Background Exercise is effective in improving non-specific low back pain (LBP). Certain components of physical exercise, such as the type, intensity and frequency of exercise, are likely to influence participation among working adults with non-specific LBP, but the value and relative importance of these components remain unknown. The study’s aim was to examine such specific components and their influence on individual preferences for exercise for secondary prevention of non-specific LBP among working adults. Methods In a discrete choice experiment, working individuals with non-specific LBP answered a web-based questionnaire. Each respondent was given ten pairs of hypothetical exercise programs and asked to choose one option from each pair. The choices comprised six attributes of exercise (i.e., type of training, design, intensity, frequency, proximity and incentives), each with either three or four levels. A conditional logit regression that reflected the random utility model was used to analyze the responses. Results The final study population consisted of 112 participants. The participants’ preferred exercise option was aerobic (i.e., cardiovascular) rather than strength training, group exercise with trainer supervision, rather than individual or unsupervised exercise. They also preferred high intensity exercise performed at least once or twice per week. The most popular types of incentive were exercise during working hours and a wellness allowance rather than coupons for sports goods. The results show that the relative value of some attribute levels differed between young adults (age ≤ 44 years) and older adults (age ≥ 45 years) in terms of the level of trainer supervision required, exercise intensity, travel time to exercise location and financial incentives. For active study participants, exercise frequency (i.e., twice per week, 1.15; CI: 0.25; 2.06) influenced choice of exercise. For individuals with more than one child, travel time (i.e., 20 minutes, -0.55; CI: 0.65; 3.26) was also an influential attribute for choice of exercise, showing that people with children at home preferred to exercise close to home. Conclusions This study adds to our knowledge about what types of exercise working adults with back pain are most likely to participate in. The exercise should be a cardiovascular type of training carried out in a group with trainer supervision. It should also be of high intensity and preferably performed twice per week during working hours. Coupons for sports goods do not appear to motivate physical activity among workers with LBP. The findings of the study could have a substantial impact on the planning and development of exercise provision and promotion strategies to improve non-specific LBP. Providers and employers may be able to improve participation in exercise programs for adults with non-specific LBP by focusing on the exercise components which are the most attractive. This in turn would improve satisfaction and adherence to exercise interventions aimed at preventing recurrent non-specific LBP. PMID:29244841
Aboagye, Emmanuel; Hagberg, Jan; Axén, Iben; Kwak, Lydia; Lohela-Karlsson, Malin; Skillgate, Eva; Dahlgren, Gunilla; Jensen, Irene
2017-01-01
Exercise is effective in improving non-specific low back pain (LBP). Certain components of physical exercise, such as the type, intensity and frequency of exercise, are likely to influence participation among working adults with non-specific LBP, but the value and relative importance of these components remain unknown. The study's aim was to examine such specific components and their influence on individual preferences for exercise for secondary prevention of non-specific LBP among working adults. In a discrete choice experiment, working individuals with non-specific LBP answered a web-based questionnaire. Each respondent was given ten pairs of hypothetical exercise programs and asked to choose one option from each pair. The choices comprised six attributes of exercise (i.e., type of training, design, intensity, frequency, proximity and incentives), each with either three or four levels. A conditional logit regression that reflected the random utility model was used to analyze the responses. The final study population consisted of 112 participants. The participants' preferred exercise option was aerobic (i.e., cardiovascular) rather than strength training, group exercise with trainer supervision, rather than individual or unsupervised exercise. They also preferred high intensity exercise performed at least once or twice per week. The most popular types of incentive were exercise during working hours and a wellness allowance rather than coupons for sports goods. The results show that the relative value of some attribute levels differed between young adults (age ≤ 44 years) and older adults (age ≥ 45 years) in terms of the level of trainer supervision required, exercise intensity, travel time to exercise location and financial incentives. For active study participants, exercise frequency (i.e., twice per week, 1.15; CI: 0.25; 2.06) influenced choice of exercise. For individuals with more than one child, travel time (i.e., 20 minutes, -0.55; CI: 0.65; 3.26) was also an influential attribute for choice of exercise, showing that people with children at home preferred to exercise close to home. This study adds to our knowledge about what types of exercise working adults with back pain are most likely to participate in. The exercise should be a cardiovascular type of training carried out in a group with trainer supervision. It should also be of high intensity and preferably performed twice per week during working hours. Coupons for sports goods do not appear to motivate physical activity among workers with LBP. The findings of the study could have a substantial impact on the planning and development of exercise provision and promotion strategies to improve non-specific LBP. Providers and employers may be able to improve participation in exercise programs for adults with non-specific LBP by focusing on the exercise components which are the most attractive. This in turn would improve satisfaction and adherence to exercise interventions aimed at preventing recurrent non-specific LBP.
Morrison, Steven; Colberg, Sheri R; Parson, Henri K; Vinik, Aaron I
2014-01-01
For older adults with type 2 diabetes (T2DM), declines in balance and walking ability are risk factors for falls, and peripheral neuropathy magnifies this risk. Exercise training may improve balance, gait and reduce the risk of falling. This study investigated the effects of 12weeks of aerobic exercise training on walking, balance, reaction time and falls risk metrics in older T2DM individuals with/without peripheral neuropathy. Adults with T2DM, 21 without (DM; age 58.7±1.7years) and 16 with neuropathy (DM-PN; age 58.9±1.9years), engaged in either moderate or intense supervised exercise training thrice-weekly for 12weeks. Pre/post-training assessments included falls risk (using the physiological profile assessment), standing balance, walking ability and hand/foot simple reaction time. Pre-training, the DM-PN group had higher falls risk, slower (hand) reaction times (232 vs. 219ms), walked at a slower speed (108 vs. 113cm/s) with shorter strides compared to the DM group. Following training, improvements in hand/foot reaction times and faster walking speed were seen for both groups. While falls risk was not significantly reduced, the observed changes in gait, reaction time and balance metrics suggest that aerobic exercise of varying intensities is beneficial for improving dynamic postural control in older T2DM adults with/without neuropathy. Copyright © 2014 Elsevier Inc. All rights reserved.
Acute regulation of IGF-I by alterations in post-exercise macronutrients
USDA-ARS?s Scientific Manuscript database
This investigation sought to examine the contributions of exercise and nutrient replenishment on in vivo regulation of the insulin-like growth factor-I (IGF-I) axis components. Eight college-aged males completed three high-intensity interval training (HIIT) protocols followed by three post-exercise ...
MacInnis, Martin J.; Zacharewicz, Evelyn; Martin, Brian J.; Haikalis, Maria E.; Skelly, Lauren E.; Tarnopolsky, Mark A.; Murphy, Robyn M.
2016-01-01
Key points A classic unresolved issue in human integrative physiology involves the role of exercise intensity, duration and volume in regulating skeletal muscle adaptations to training.We employed counterweighted single‐leg cycling as a unique within‐subject model to investigate the role of exercise intensity in promoting training‐induced increases in skeletal muscle mitochondrial content.Six sessions of high‐intensity interval training performed over 2 weeks elicited greater increases in citrate synthase maximal activity and mitochondrial respiration compared to moderate‐intensity continuous training matched for total work and session duration.These data suggest that exercise intensity, and/or the pattern of contraction, is an important determinant of exercise‐induced skeletal muscle remodelling in humans. Abstract We employed counterweighted single‐leg cycling as a unique model to investigate the role of exercise intensity in human skeletal muscle remodelling. Ten young active men performed unilateral graded‐exercise tests to measure single‐leg V˙O2, peak and peak power (W peak). Each leg was randomly assigned to complete six sessions of high‐intensity interval training (HIIT) [4 × (5 min at 65% W peak and 2.5 min at 20% W peak)] or moderate‐intensity continuous training (MICT) (30 min at 50% W peak), which were performed 10 min apart on each day, in an alternating order. The work performed per session was matched for MICT (143 ± 8.4 kJ) and HIIT (144 ± 8.5 kJ, P > 0.05). Post‐training, citrate synthase (CS) maximal activity (10.2 ± 0.8 vs. 8.4 ± 0.9 mmol kg protein−1 min−1) and mass‐specific [pmol O2•(s•mg wet weight)−1] oxidative phosphorylation capacities (complex I: 23.4 ± 3.2 vs. 17.1 ± 2.8; complexes I and II: 58.2 ± 7.5 vs. 42.2 ± 5.3) were greater in HIIT relative to MICT (interaction effects, P < 0.05); however, mitochondrial function [i.e. pmol O2•(s•CS maximal activity)−1] measured under various conditions was unaffected by training (P > 0.05). In whole muscle, the protein content of COXIV (24%), NDUFA9 (11%) and mitofusin 2 (MFN2) (16%) increased similarly across groups (training effects, P < 0.05). Cytochrome c oxidase subunit IV (COXIV) and NADH:ubiquinone oxidoreductase subunit A9 (NDUFA9) were more abundant in type I than type II fibres (P < 0.05) but training did not increase the content of COXIV, NDUFA9 or MFN2 in either fibre type (P > 0.05). Single‐leg V˙O2, peak was also unaffected by training (P > 0.05). In summary, single‐leg cycling performed in an interval compared to a continuous manner elicited superior mitochondrial adaptations in human skeletal muscle despite equal total work. PMID:27396440
West, Daniel W D; Phillips, Stuart M
2012-07-01
The purpose of this study was to investigate associations between acute exercise-induced hormone responses and adaptations to high intensity resistance training in a large cohort (n = 56) of young men. Acute post-exercise serum growth hormone (GH), free testosterone (fT), insulin-like growth factor (IGF-1) and cortisol responses were determined following an acute intense leg resistance exercise routine at the midpoint of a 12-week resistance exercise training study. Acute hormonal responses were correlated with gains in lean body mass (LBM), muscle fibre cross-sectional area (CSA) and leg press strength. There were no significant correlations between the exercise-induced elevations (area under the curve-AUC) of GH, fT and IGF-1 and gains in LBM or leg press strength. Significant correlations were found for cortisol, usually assumed to be a hormone indicative of catabolic drive, AUC with change in LBM (r = 0.29, P < 0.05) and type II fibre CSA (r = 0.35, P < 0.01) as well as GH AUC and gain in fibre area (type I: r = 0.36, P = 0.006; type II: r = 0.28, P = 0.04, but not lean mass). No correlations with strength were observed. We report that the acute exercise-induced systemic hormonal responses of cortisol and GH are weakly correlated with resistance training-induced changes in fibre CSA and LBM (cortisol only), but not with changes in strength.
[Effects of high intensity interval training on blood pressure in hypertensive subjects].
Olea, María Angélica; Mancilla, Rodrigo; Martínez, Sergio; Díaz, Erik
2017-09-01
Exercise training may reduce blood pressure. To determine the effects of a high intensity interval training (HIIT) exercise protocol on systolic and diastolic blood pressure in hypertensive subjects. Eleven men and 27 women aged 46.4 ± 9.8 years were divided in two groups according to their blood pressure. Sixteen were classified as normotensive and 22 as hypertensive. All attended an exercise program with 3 sessions per week for a total of 24 sessions. Each session consisted of one minute of intense exercise performed on a stationary bike, followed by an inactive pause lasting two minutes. This cycle was repeated 10 times and it was thus called 1 * 2 * 10. Blood pressure, weight (kg) and body fat were assessed. In the hypertensive group, there was a significant reduction in systolic blood pressure from 145.4 ± 9.0 to 118.3 ± 15.6 mm Hg (p < 0.05). No significant change was observed in diastolic blood pressure (84.9 ± 3.9 and 85.8 ± 17.6 mmHg. Thus, there was a mean reduction in systolic pressure of 27. 7 ± 18.9 mmHg. Therefore, 73% of patients achieved systolic pressures within normal range, without medication. The 1 * 2 * 10 exercise method is effective to improve and restore normal blood pressure in persons with hypertension in a period of two months and 24 sessions.
Hormetic effects by exercise on hippocampal neurogenesis with glucocorticoid signaling
Okamoto, Masahiro; Yamamura, Yuhei; Liu, Yu-Fan; Min-Chul, Lee; Matsui, Takashi; Shima, Takeru; Soya, Mariko; Takahashi, Kanako; Soya, Shingo; McEwen, Bruce S.; Soya, Hideaki
2015-01-01
Abstract Exercise enhances adult hippocampal neurogenesis (AHN), although the exact nature of how this happens remains controversial. The beneficial effects of exercise vary depending upon the exercise condition, especially intensity. Most animal studies, however, have used wheel running, which only evaluates running distance (exercise volume) and does not consider intensity. In our rat model, we have found that exercise-induced neurogenesis varies depending on the intensity of the exercise and have found that exercise-enhanced neurogenesis is more pronounced with mild exercise than with moderate and/or intense exercise. This may be due, at least in part, to increased glucocorticoid (CORT) secretion. To test this hypothesis, we used our special exercise model in mice, with and without a stress response, based on the lactate threshold (LT) in which moderate exercise above the LT increases lactate and adrenocorticotropic hormone (ACTH) release, while mild exercise does not. Adult male C57BL/6J mice were subjected to two weeks of exercise training and AHN was measured with a 5-Bromo-2-deoxyuridine (BrdU) pre-injection and immunohistochemistry. The role of glucocorticoid signaling was examined using intrapertioneal injections of antagonists for the glucocorticoid receptor (GR), mifepristone, and the mineralocorticoid receptor (MR), spironolactone. We found that, while mild exercise increased AHN without elevating CORT blood levels, both MR and GR antagonists abolished mild-exercise-induced AHN, but did not affect AHN under intense exercise. This suggests a facilitative, permissive role of glucocorticoid and mineralocorticoid receptors in AHN during mild exercise (234/250)
Cardiac autonomic response following high-intensity running work-to-rest interval manipulation.
Cipryan, Lukas; Laursen, Paul B; Plews, Daniel J
2016-10-01
The cardiorespiratory, cardiac autonomic (via heart rate variability (HRV)) and plasma volume responses to varying sequences of high-intensity interval training (HIT) of consistent external work were investigated. Twelve moderately trained males underwent three HIT bouts and one control session. The HIT trials consisted of warm-up, followed by 12 min of 15 s, 30 s or 60 s work:relief HIT sequences at an exercise intensity of 100% of the individual velocity at [Formula: see text]O2max (v[Formula: see text]O2max), interspersed by relief intervals at 60% [Formula: see text]O2max (work/relief ratio = 1). HRV was evaluated via the square root of the mean sum of the squared differences between R-R intervals (rMSSD) before, 1 h, 3 h and 24 h after the exercise. Plasma volume was assessed before, immediately after, and 3 h and 24 h after. There were no substantial between-trial differences in acute cardiorespiratory responses. The rMSSD values remained decreased 1 h after the exercise cessation in all exercise groups. The rMSSD subsequently increased between 1 h and 3 h after exercise, with the most pronounced change in the 15/15 group. There were no relationships between HRV and plasma volume. All HIT protocols resulted in similar cardiorespiratory responses with slightly varying post-exercise HRV responses, with the 30/30 protocol eliciting the least disruption to post-exercise HRV. These post-exercise HRV findings suggest that the 30/30 sequence may be the preferable HIT prescription when the between-training period is limited.
Effects of High-Intensity Intermittent Exercise Training on Appetite Regulation.
Sim, Aaron Y; Wallman, Karen E; Fairchild, Timothy J; Guelfi, Kym J
2015-11-01
An acute bout of high-intensity intermittent exercise suppresses ad libitum energy intake at the postexercise meal. The present study examined the effects of 12 wk of high-intensity intermittent exercise training (HIIT) compared with moderate-intensity continuous exercise training (MICT) on appetite regulation. Thirty overweight inactive men (body mass index, 27.2 ± 1.3 kg·m(-2); V˙O2peak, 35.3 ± 5.3 mL·kg(-1)·min(-1) were randomized to either HIIT or MICT (involving 12 wk of training, three sessions per week) or a control group (CON) (n = 10 per group). Ad libitum energy intake from a laboratory test meal was assessed after both a low-energy (847 kJ) and a high-energy preload (2438 kJ) before and after the intervention. Perceived appetite and appetite-related blood variables were also measured. There was no significant effect of the intervention period on energy intake at the test meal after the two different preloads (P ≥ 0.05). However, the 95% confidence interval indicated a clinically meaningful decrease in energy intake after the high-energy preload compared with the low-energy preload in response to HIIT (516 ± 395 kJ decrease), but not for MICT or CON, suggesting improved appetite regulation. This was not associated with alterations in the perception of appetite or the circulating concentration of a number of appetite-related peptides or metabolites, although insulin sensitivity was enhanced with HIIT only (P = 0.003). HIIT seems to benefit appetite regulation in overweight men. The mechanisms for this remain to be elucidated.
Aerobic Training Improves Quality of Life in Women with Polycystic Ovary Syndrome.
Costa, Eduardo Caldas; de Sá, Joceline Cássia Ferezini; Stepto, Nigel Keith; Costa, Ingrid Bezerra Barbosa; Farias-Junior, Luiz Fernando; da Nóbrega Tomaz Moreira, Simone; Soares, Elvira Maria Mafaldo; Lemos, Telma Maria Araújo Moura; Browne, Rodrigo Alberto Vieira; Azevedo, George Dantas
2018-02-13
To investigate the effects of a supervised aerobic exercise training intervention on health-related quality of life (HRQL), cardiorespiratory fitness, cardiometabolic profile, and affective response in overweight/obese women with polycystic ovary syndrome (PCOS). Twenty-seven overweight/obese inactive women with PCOS (body mass index, BMI ≥ 25 kg/m; aged from 18 to 34 years) were allocated into an exercise group (n = 14) and a control group (n = 13). Progressive aerobic exercise training was performed three times per week (~150 min/week) over 16 weeks. Cardiorespiratory fitness, HRQL, and cardiometabolic profile were evaluated before and after the intervention. Affective response (i.e., feeling of pleasure/displeasure) was evaluated during the exercise sessions. The exercise group improved 21 ± 12% of cardiorespiratory fitness (p < 0.001) and HRQL in the following domains: physical-functioning, general health, and mental health (p < 0.05). Moreover, the exercise group decreased BMI, waist circumference, systolic and diastolic blood pressure, and total cholesterol level (p < 0.05). The affective response varied from "good" to "fairly good" (i.e., positive affective response) in an exercise intensity dependent manner during the exercise training sessions. Progressive aerobic exercise training improved HRQL, cardiorespiratory fitness, and cardiometabolic profile of overweight/obese women with PCOS. Moreover, the participants reported the exercise training sessions as pleasant over the intervention. These results reinforce the importance of supervised exercise training as a therapeutic approach for overweight/obese women with PCOS.
Effect of swim exercise training on human muscle fiber function
NASA Technical Reports Server (NTRS)
Fitts, R. H.; Costill, D. L.; Gardetto, P. R.
1989-01-01
The effect of swim exercise training on the human muscle fiber function was investigated in swimmers trained in a typical collegiate swim-training program followed by an intensified 10-day training period. The measured parameters included the peak tension (P0), negative log molar Ca(2+) concentration (pCa)-force, and maximal shortening speed (Vmax) of the slow-twitch type I and fast-twitch type II fibers obtained by biopsy from the deltoid muscle. The P0 values were found to be not altered after either the training or the 10-day intensive program. The type I fibers from the trained swimmers showed pCa-force curves shifted to the right, such that higher free Ca(2+) levels were required to elicit a given percent of P0. The training program significantly increased the Vmax in the type I fibers and decreased that of the type II fibers, and the 10-day intensive training produced a further significant decrease of the type II fibers.
Kehler, Ainslie K; Heinrich, Katie M
2015-12-01
Traditional society values have long-held the notion that the pregnant woman is construed as a risk to her growing fetus and is solely responsible for controlling this risk to ensure a healthy pregnancy. It is hard to ignore the participation of pregnant women in sport and exercise today, especially in high-level sports and popular fitness programs such as CrossFit™. This challenges both traditional and modern prenatal exercise guidelines from health care professionals and governing health agencies. The guidelines and perceived limitations of prenatal exercise have drastically evolved since the 1950s. The goal of this paper is to bring awareness to the idea that much of the information regarding exercise safety during pregnancy is hypersensitive and dated, and the earlier guidelines had no scientific rigor. Research is needed on the upper limits of exercise intensity and exercise frequency, as well as their potential risks (if any) on the woman or fetus. Pregnant women are physically capable of much more than what was once thought. There is still disagreement about the types of exercise deemed appropriate, the stage at which exercise should begin and cease, the frequency of exercise sessions, as well as the optimal level of intensity during prenatal exercise. Research is needed to determine the upper limits of exercise frequency and intensity for pregnant women who are already trained. Healthy women and female athletes can usually maintain their regular training regime once they become pregnant. Copyright © 2015 Australian College of Midwives. Published by Elsevier Ltd. All rights reserved.
Kehler, Ainslie K.; Heinrich, Katie M.
2017-01-01
Background Traditional society values have long-held the notion that the pregnant woman is construed as a risk to her growing fetus and is solely responsible for controlling this risk to ensure a healthy pregnancy. It is hard to ignore the participation of pregnant women in sport and exercise today, especially in high-level sports and popular fitness programs such as CrossFit™. This challenges both traditional and modern prenatal exercise guidelines from health care professionals and governing health agencies. The guidelines and perceived limitations of prenatal exercise have drastically evolved since the 1950’s. Aim The goal of this paper is to bring awareness to the idea that much of the information regarding exercise safety during pregnancy is hypersensitive and dated, and the earlier guidelines had no scientific rigor. Research is needed on the upper limits of exercise intensity and exercise frequency, as well as their potential risks (if any) on the woman or fetus. Discussion Pregnant women are physically capable of much more than what was once thought. There is still disagreement about the types of exercise deemed appropriate, the stage at which exercise should begin and cease, the frequency of exercise sessions, as well as the optimal level of intensity during prenatal exercise. Conclusion Research is needed to determine the upper limits of exercise frequency and intensity for pregnant women who are already trained. Healthy women and female athletes can usually maintain their regular training regime once they become pregnant. PMID:26210535
Characteristic analysis of the lower limb muscular strength training system applied with MR dampers.
Yu, Chang Ho; Piao, Young Jun; Kim, Kyung; Kwon, Tae Kyu
2014-01-01
A new training system that can adjust training intensity and indicate the center pressure of a subject was proposed by applying controlled electric current to the Magneto-Rheological damper. The experimental studying on the muscular activities were performed in lower extremities during maintaining and moving exercises, which were processed on an unstable platform with Magneto rheological dampers and recorded in a monitor. The electromyography (EMG) signals of the eight muscles in lower extremities were recorded and analyzed in certain time and frequency domain. Muscles researched in this paper were rectus femoris (RF), biceps femoris (BF), tensor fasciae latae (TFL), vastuslateralis (VL), vastusmedialis (VM), gastrocnemius (Ga), tibialis anterior (TA), and soleus (So). Differences of muscular activities during four moving exercises were studied in our experimental results. The rate of the increment of the muscular activities was affected by the condition of the unstable platform with MR dampers, which suggested the difference of moving exercises could selectively train each muscle with varying intensities. Furthermore, these findings also proposed that this training system can improve the ability of postural balance.
García, M; Martínez-Moreno, J M; Reyes-Ortiz, A; Suarez Moreno-Arrones, L; García A, A; Garcíacaballero, M
2014-04-01
Top athletes are subjected to intense training to achieve high performance. There are factors such as diet and strenuous exercise that affects body composition and can modify the performance. The aim of the study was to evaluate the effect of a personalized plan of diet and training on body composition. We studied the body composition of 18 professional rugby players using Kinanthropometry parameters. The study was conducted from the preseason to the end of the season taking into account the position of the player for measuring exercise intensity, and developing a personalized nutritional and training plan to each player. At baseline the players were away from the internationally recommended body composition, with high percentages of body fat. Appropriate and personalized diet plans and training custom achieved fat percentages close to those recommended. The personalized program of diet and training directed has adequate leverage to improve all parameters studied them bringing them as close to the ideal. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Angadi, Siddhartha S; Mookadam, Farouk; Lee, Chong D; Tucker, Wesley J; Haykowsky, Mark J; Gaesser, Glenn A
2015-09-15
Heart failure with preserved ejection fraction (HFpEF) is a major cause of morbidity and mortality. Exercise training is an established adjuvant therapy in heart failure; however, the effects of high-intensity interval training (HIIT) in HFpEF are unknown. We compared the effects of HIIT vs. moderate-intensity aerobic continuous training (MI-ACT) on peak oxygen uptake (V̇o₂peak), left ventricular diastolic dysfunction, and endothelial function in patients with HFpEF. Nineteen patients with HFpEF (age 70 ± 8.3 yr) were randomized to either HIIT (4 × 4 min at 85-90% peak heart rate, with 3 min active recovery) or MI-ACT (30 min at 70% peak heart rate). Fifteen patients completed exercise training (HIIT: n = 9; MI-ACT: n = 6). Patients trained 3 days/wk for 4 wk. Before and after training patients underwent a treadmill test for V̇o₂peak determination, 2D-echocardiography for assessment of left ventricular diastolic dysfunction, and brachial artery flow-mediated dilation (FMD) for assessment of endothelial function. HIIT improved V̇o₂peak (pre = 19.2 ± 5.2 ml·kg(-1)·min(-1); post = 21.0 ± 5.2 ml·kg(-1)·min(-1); P = 0.04) and left ventricular diastolic dysfunction grade (pre = 2.1 ± 0.3; post = 1.3 ± 0.7; P = 0.02), but FMD was unchanged (pre = 6.9 ± 3.7%; post = 7.0 ± 4.2%). No changes were observed following MI-ACT. A trend for reduced left atrial volume index was observed following HIIT compared with MI-ACT (-3.3 ± 6.6 vs. +5.8 ± 10.7 ml/m(2); P = 0.06). In HFpEF patients 4 wk of HIIT significantly improved V̇o₂peak and left ventricular diastolic dysfunction. HIIT may provide a more robust stimulus than MI-ACT for early exercise training adaptations in HFpEF. Copyright © 2015 the American Physiological Society.
Wilke, Carolina F; Ramos, Guilherme P; Pacheco, Diogo A S; Santos, Weslley H M; Diniz, Mateus S L; Gonçalves, Gabriela G P; Marins, João C B; Wanner, Samuel P; Silami-Garcia, Emerson
2016-08-01
Wilke, CF, Ramos, GP, Pacheco, DAS, Santos, WHM, Diniz, MSL, Gonçalves, GGP, Marins, JCB, Wanner, SP, and Silami-Garcia, E. Metabolic demand and internal training load in technical-tactical training sessions of professional futsal players. J Strength Cond Res 30(8): 2330-2340, 2016-The aim of the study was to characterize aspects of technical-tactical training sessions of a professional futsal team. We addressed 4 specific aims: characterize the metabolic demands and intensity of these training sessions, compare the training intensity among players of different positions, compare the intensity of different futsal-specific activities (4 × 4, 6 × 4, and match simulation), and investigate the association between an objective (training impulse; TRIMP) and a subjective method (session rating of perceived exertion; sRPE) of measuring a player's internal training load. Twelve top-level futsal players performed an incremental exercise to determine their maximal oxygen consumption, maximal heart rate (HRmax), ventilatory threshold (VT), and respiratory compensation point (RCP). Each player's HR and RPE were measured and used to calculate energy expenditure, TRIMP, and sRPE during 37 training sessions over 8 weeks. The average intensity was 74 ± 4% of HRmax, which corresponded to 9.3 kcal·min. The players trained at intensities above the RCP, between the RCP and VT and below the VT for 20 ± 8%, 28 ± 6%, and 51 ± 10% of the session duration, respectively. Wingers, defenders, and pivots exercised at a similar average intensity but with different intensity distributions. No difference in intensity was found between the 3 typical activities. A strong correlation between the average daily TRIMP and sRPE was observed; however, this relationship was significant for only 4 of 12 players, indicating that sRPE is a useful tool for monitoring training loads but that it should be interpreted for each player individually rather than collectively.
Effect of leg exercise training on vascular volumes during 30 days of 6 deg head-down bed rest
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Vernikos, J.; Wade, C. E.; Barnes, P. R.
1992-01-01
In order to investigate the effects of leg exercise training on vascular volumes during 30 d of 6-deg head-down bed rest, plasma and red cell volumes, body density, and water balance were measured in 19 men confined to bed rest (BR). One group had no exercise training (NOE), another near-maximal variable-intensity isotonic exercise (ITE) for 60 min/d, and the third near-maximal intermittent isokinetic exercise (IKE) for 60 min/d. Mean energy costs for the NOE, IKE, and ITE regimens were determined. Body densities within groups and mean urine volumes between groups were unchanged during BR. Changes in red cell volume followed changes in plasma volume. There was close coupling between resting plasma volume and plasma protein and osmotic content. It is argued that the ITE training protocol is better than the IKE protocol for maintaining plasma volume during prolonged exposure to BR.
Comparable Neutrophil Responses for Arm and Intensity-matched Leg Exercise.
Leicht, Christof A; Goosey-Tolfrey, Victoria L; Bishop, Nicolette C
2017-08-01
Arm exercise is performed at lower absolute intensities than lower body exercise. This may impact on intensity-dependent neutrophil responses, and it is unknown whether individuals restricted to arm exercise experience the same changes in the neutrophil response as found for lower body exercise. Therefore, we aimed to investigate the importance of exercise modality and relative exercise intensity on the neutrophil response. Twelve moderately trained men performed three 45-min constant load exercise trials after determination of peak oxygen uptake for arm exercise (V˙O2peak arms) and cycling (V˙O2peak legs): 1) arm cranking exercise at 60% V˙O2peak arms, 2) moderate cycling at 60% V˙O2peak legs, and 3) easy cycling at 60% V˙O2peak arms. Neutrophil numbers in the circulation increased for all exercise trials, but were significantly lower for easy cycling when compared with arm exercise (P = 0.009), mirroring the blunted increase in HR and epinephrine during easy cycling. For all trials, exercising HR explained some of the variation of the neutrophil number 2 h postexercise (R = 0.51-0.69), epinephrine explaining less of this variation (R = 0.21-0.34). The number of neutrophils expressing CXCR2 decreased in the recovery from exercise in all trials (P < 0.05). Arm and leg exercise elicits the same neutrophil response when performed at the same relative intensity, implying that populations restricted to arm exercise might achieve a similar exercise induced neutrophil response as those performing lower body exercise. A likely explanation for this is the higher sympathetic activation and cardiac output for arm and relative intensity-matched leg exercise when compared with easy cycling, which is partly reflected in HR. This study further shows that the downregulation of CXCR2 may be implicated in exercise-induced neutrophilia.
[Exercise therapy as a therapeutic concept].
Reer, R; Ziegler, M; Braumann, K-M
2005-08-01
Lack of exercise is a primary cause for today's level of morbidity and mortality in the Western world. Thus, exercise as a therapeutic modality has an important role. Beneficial effects of exercise have been extensively documented, specifically in primary and secondary prevention of coronary heart disease (CHD), diabetes mellitus, hypertension, disorders of fat metabolism, heart insufficiency, cancer, etc. A regular (at least 3 x per week) endurance training program of 30-40 min duration at an intensity of 65-70% of VO(2)max involving large muscle groups is recommended. The specific exercise activity can also positively affect individuals with orthopedic disease patterns, i.e., osteoporosis, back pain, postoperative rehabilitation, etc. Endurance strength training in the form of sequential training involving approx. 8-10 different exercises for the most important muscle groups 2 x per week is a suitable exercise therapy. One to three sets with 8-12 repetitions per exercise should be performed until volitional exhaustion of the trained muscle groups among healthy adults and 15-20 repetitions among older and cardiac patients. Apart from a positive effect on the locomotor system, this type of strength training has positive effects on CHD, diabetes mellitus, and cancer.
A framework for prescription in exercise-oncology research†
Sasso, John P; Eves, Neil D; Christensen, Jesper F; Koelwyn, Graeme J; Scott, Jessica; Jones, Lee W
2015-01-01
The field of exercise-oncology has increased dramatically over the past two decades, with close to 100 published studies investigating the efficacy of structured exercise training interventions in patients with cancer. Of interest, despite considerable differences in study population and primary study end point, the vast majority of studies have tested the efficacy of an exercise prescription that adhered to traditional guidelines consisting of either supervised or home-based endurance (aerobic) training or endurance training combined with resistance training, prescribed at a moderate intensity (50–75% of a predetermined physiological parameter, typically age-predicted heart rate maximum or reserve), for two to three sessions per week, for 10 to 60 min per exercise session, for 12 to 15 weeks. The use of generic exercise prescriptions may, however, be masking the full therapeutic potential of exercise treatment in the oncology setting. Against this background, this opinion paper provides an overview of the fundamental tenets of human exercise physiology known as the principles of training, with specific application of these principles in the design and conduct of clinical trials in exercise-oncology research. We contend that the application of these guidelines will ensure continued progress in the field while optimizing the safety and efficacy of exercise treatment following a cancer diagnosis. PMID:26136187
Fisher, Gordon; Brown, Andrew W; Bohan Brown, Michelle M; Alcorn, Amy; Noles, Corey; Winwood, Leah; Resuehr, Holly; George, Brandon; Jeansonne, Madeline M; Allison, David B
2015-01-01
To compare the effects of six weeks of high intensity interval training (HIIT) vs continuous moderate intensity training (MIT) for improving body composition, insulin sensitivity (SI), blood pressure, blood lipids, and cardiovascular fitness in a cohort of sedentary overweight or obese young men. We hypothesized that HIIT would result in similar improvements in body composition, cardiovascular fitness, blood lipids, and SI as compared to the MIT group, despite requiring only one hour of activity per week compared to five hours per week for the MIT group. 28 sedentary overweight or obese men (age, 20 ± 1.5 years, body mass index 29.5 ± 3.3 kg/m2) participated in a six week exercise treatment. Participants were randomly assigned to HIIT or MIT and evaluated at baseline and post-training. DXA was used to assess body composition, graded treadmill exercise test to measure cardiovascular fitness, oral glucose tolerance to measure SI, nuclear magnetic resonance spectroscopy to assess lipoprotein particles, and automatic auscultation to measure blood pressure. A greater improvement in VO2peak was observed in MIT compared to HIIT (11.1% vs 2.83%, P = 0.0185) in the complete-case analysis. No differences were seen in the intention to treat analysis, and no other group differences were observed. Both exercise conditions were associated with temporal improvements in % body fat, total cholesterol, medium VLDL, medium HDL, triglycerides, SI, and VO2peak (P < 0.05). Participation in HIIT or MIT exercise training displayed: 1) improved SI, 2) reduced blood lipids, 3) decreased % body fat, and 4) improved cardiovascular fitness. While both exercise groups led to similar improvements for most cardiometabolic risk factors assessed, MIT led to a greater improvement in overall cardiovascular fitness. Overall, these observations suggest that a relatively short duration of either HIIT or MIT training may improve cardiometabolic risk factors in previously sedentary overweight or obese young men, with no clear advantage between these two specific regimes (Clinical Trial Registry number NCT01935323). ClinicalTrials.gov NCT01935323.
Fisher, Gordon; Brown, Andrew W.; Bohan Brown, Michelle M.; Alcorn, Amy; Noles, Corey; Winwood, Leah; Resuehr, Holly; George, Brandon; Jeansonne, Madeline M.; Allison, David B.
2015-01-01
Purpose To compare the effects of six weeks of high intensity interval training (HIIT) vs continuous moderate intensity training (MIT) for improving body composition, insulin sensitivity (SI), blood pressure, blood lipids, and cardiovascular fitness in a cohort of sedentary overweight or obese young men. We hypothesized that HIIT would result in similar improvements in body composition, cardiovascular fitness, blood lipids, and SI as compared to the MIT group, despite requiring only one hour of activity per week compared to five hours per week for the MIT group. Methods 28 sedentary overweight or obese men (age, 20 ± 1.5 years, body mass index 29.5 ± 3.3 kg/m2) participated in a six week exercise treatment. Participants were randomly assigned to HIIT or MIT and evaluated at baseline and post-training. DXA was used to assess body composition, graded treadmill exercise test to measure cardiovascular fitness, oral glucose tolerance to measure SI, nuclear magnetic resonance spectroscopy to assess lipoprotein particles, and automatic auscultation to measure blood pressure. Results A greater improvement in VO2peak was observed in MIT compared to HIIT (11.1% vs 2.83%, P = 0.0185) in the complete-case analysis. No differences were seen in the intention to treat analysis, and no other group differences were observed. Both exercise conditions were associated with temporal improvements in % body fat, total cholesterol, medium VLDL, medium HDL, triglycerides, SI, and VO2peak (P < 0.05). Conclusion Participation in HIIT or MIT exercise training displayed: 1) improved SI, 2) reduced blood lipids, 3) decreased % body fat, and 4) improved cardiovascular fitness. While both exercise groups led to similar improvements for most cardiometabolic risk factors assessed, MIT led to a greater improvement in overall cardiovascular fitness. Overall, these observations suggest that a relatively short duration of either HIIT or MIT training may improve cardiometabolic risk factors in previously sedentary overweight or obese young men, with no clear advantage between these two specific regimes (Clinical Trial Registry number NCT01935323). Trial Registration ClinicalTrials.gov NCT01935323 PMID:26489022
Exercise-based cardiac rehabilitation in heart transplant recipients.
Anderson, Lindsey; Nguyen, Tricia T; Dall, Christian H; Burgess, Laura; Bridges, Charlene; Taylor, Rod S
2017-04-04
Heart transplantation is considered to be the gold standard treatment for selected patients with end-stage heart disease when medical therapy has been unable to halt progression of the underlying pathology. Evidence suggests that aerobic exercise training may be effective in reversing the pathophysiological consequences associated with cardiac denervation and prevent immunosuppression-induced adverse effects in heart transplant recipients. To determine the effectiveness and safety of exercise-based rehabilitation on the mortality, hospital admissions, adverse events, exercise capacity, health-related quality of life, return to work and costs for people after heart transplantation. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) in the Cochrane Library, MEDLINE (Ovid), Embase (Ovid), CINAHL (EBSCO) and Web of Science Core Collection (Thomson Reuters) to June 2016. We also searched two clinical trials registers and handsearched the reference lists of included studies. We included randomised controlled trials (RCTs) of parallel group, cross-over or cluster design, which compared exercise-based interventions with (i) no exercise control (ii) a different dose of exercise training (e.g. low- versus high-intensity exercise training); or (iii) an active intervention (i.e. education, psychological intervention). The study population comprised adults aged 18 years or over who had received a heart transplant. Two review authors independently screened all identified references for inclusion based on pre-specified inclusion criteria. Disagreements were resolved by consensus or by involving a third person. Two review authors extracted outcome data from the included trials and assessed their risk of bias. One review author extracted study characteristics from included studies and a second author checked them against the trial report for accuracy. We included 10 RCTs that involved a total of 300 participants whose mean age was 54.4 years. Women accounted for fewer than 25% of all study participants. Nine trials which randomised 284 participants to receive exercise-based rehabilitation (151 participants) or no exercise (133 participants) were included in the main analysis. One cross-over RCT compared high-intensity interval training with continued moderate-intensity training in 16 participants. We reported findings for all trials at their longest follow-up (median 12 weeks).Exercise-based cardiac rehabilitation increased exercise capacity (VO 2peak ) compared with no exercise control (MD 2.49 mL/kg/min, 95% CI 1.63 to 3.36; N = 284; studies = 9; moderate quality evidence). There was evidence from one trial that high-intensity interval exercise training was more effective in improving exercise capacity than continuous moderate-intensity exercise (MD 2.30 mL/kg/min, 95% CI 0.59 to 4.01; N = 16; 1 study). Four studies reported health-related quality of life (HRQoL) measured using SF-36, Profile of Quality of Life in the Chronically Ill (PLC) and the World Health Organization Quality Of Life (WHOQoL) - BREF. Due to the variation in HRQoL outcomes and methods of reporting we were unable to meta-analyse results across studies, but there was no evidence of a difference between exercise-based cardiac rehabilitation and control in 18 of 21 HRQoL domains reported, or between high and moderate intensity exercise in any of the 10 HRQoL domains reported. One adverse event was reported by one study.Exercise-based cardiac rehabilitation improves exercise capacity, but exercise was found to have no impact on health-related quality of life in the short-term (median 12 weeks follow-up), in heart transplant recipients whose health is stable.There was no evidence of statistical heterogeneity across trials for exercise capacity and no evidence of small study bias. The overall risk of bias in included studies was judged as low or unclear; more than 50% of included studies were assessed at unclear risk of bias with respect to allocation concealment, blinding of outcome assessors and declaration of conflicts of interest. Evidence quality was assessed as moderate according to GRADE criteria. We found moderate quality evidence suggesting that exercise-based cardiac rehabilitation improves exercise capacity, and that exercise has no impact on health-related quality of life in the short-term (median 12 weeks follow-up), in heart transplant recipients. Cardiac rehabilitation appears to be safe in this population, but long-term follow-up data are incomplete and further good quality and adequately-powered trials are needed to demonstrate the longer-term benefits of exercise on safety and impact on both clinical and patient-related outcomes, such as health-related quality of life, and healthcare costs.
The Benefits and Risks of CrossFit: A Systematic Review.
Meyer, Jena; Morrison, Janet; Zuniga, Julie
2017-12-01
With the increase in popularity of the CrossFit exercise program, occupational health nurses may be asked questions about the appropriateness of CrossFit training for workers. This systematic literature review was conducted to analyze the current research on CrossFit, and assess the benefits and risks of this exercise strategy. Thirteen studies ( N = 2,326 participants) examined the use of CrossFit training among adults; CrossFit is comparable to other exercise programs with similar injury rates and health outcomes. Occupational health nurses should assess previous injuries prior to recommending this form of exercise. Ideal candidates for CrossFit are adults who seek high-intensity exercise with a wide variety of exercise components.
Exercise in the healthy older adult.
Karani, R; McLaughlin, M A; Cassel, C K
2001-01-01
Habitual exercise provides numerous health benefits to the older adult. While dynamic aerobic activities increase stamina and lung capacity, isometric or resistance training improves muscle strength and endurance. Long-term benefits of continued exercise include a decreased risk of death from heart disease, enhanced balance and mobility, a decreased risk of diabetes, and an improvement in depressive symptoms. While the hazards of exercise relate predominantly to extremes of intensity and duration, all older adults should consult with a physician before beginning a new activity program. A prescription for exercise should include both aerobic and resistance training components, and frequent follow-up to improve adherence is highly recommended. (c)2001 CVRR, Inc.
Biochemical changes in response to intensive resistance exercise training in the elderly.
Bautmans, Ivan; Njemini, Rose; Vasseur, Sabine; Chabert, Hans; Moens, Lisa; Demanet, Christian; Mets, Tony
2005-01-01
It is assumed that low-grade inflammation, characterized by increased circulating IL-6 and TNF-alpha, is related to the development of sarcopenia. Physical exercise, especially high intensity resistance training, has been shown to be effective in restoring the strength deficit in the elderly. Intensive exercise is accompanied by significant release of IL-6 and TNF-alpha into the blood circulation, but does not result in muscle wasting. Exercise-induced changes in heat-shock protein (Hsp), responsible for cellular protection during stressful situations, might interfere with the acute phase reaction and muscle adaptation. To investigate if intensive strength training in elderly persons induces changes in Hsp70 expression, and if these changes are related to changes in the acute phase reaction or muscle adaptation. 31 elderly persons (aged 68.4+/-5.4 years) performed 6 weeks' intensive strength training. At baseline and after 6 weeks, muscle strength, functional performance (physical activity profile, 6-min walk, 30- second chair stand, grip strength, chair sit & reach and back scratch), linear isokinetic leg extension, circulating IL-6, TNF-alpha, IL-10 and TGF-beta, and Hsp70 in monocytes (M) and lymphocytes (L) immediately after sampling (IAS), after incubation at 37 and 42 degrees C were determined. In 12 participants, cytokines were determined in untrained and trained conditions before and after a single training session. After 6 weeks' training, muscle strength and functional performance improved significantly, together with decreased Hsp70 IAS and Hsp70 37 degrees C and increased Hsp70 42 degrees C (all p<0.05). Strength gains correlated positively with baseline Hsp70 37 degrees C and training-induced changes of Hsp70 42 degrees C in M and L. In an untrained condition, training induced an increase of IL-6 (p<0.05) and a tendency of IL-10 to decrease (p=0.06). In a trained condition the decrease of IL-10 disappeared. Baseline physical activity and 6-min walk distance correlated negatively with circulating IL-6 (p<0.05); except for a negative correlation between TGF-beta and Hsp70 37 degrees C L (p<0.05), no significant relationships were found between cytokines and Hsp70. After the training program, Hsp70 37 degrees C was negatively related to circulating TNF-alpha, IL-10 and TGF-beta. Strength training in the elderly induces changes in Hsp70 expression, associated to strength gains and circulating cytokines. Copyright (c) 2005 S. Karger AG, Basel.
Perceptually regulated training at RPE13 is pleasant and improves physical health.
Parfitt, Gaynor; Evans, Harrison; Eston, Roger
2012-08-01
Despite endorsement by various health organizations, there is a lack of research on the effectiveness of perceptually regulated exercise training (PRET) as a method of exercise intensity prescription. The purpose of this study was to confirm the efficacy of an 8-wk PRET program clamped at RPE13 to improve aerobic fitness and cardiovascular health. The affective response to this method of exercise prescription was also assessed. Sedentary volunteers (age = 34.3 ± 13.0 yr, weight = 72.5 ± 13.7 kg, height = 1.7 ± 0.1 m) were randomly assigned to either a training (n = 16) or a control (n = 10) group. All participants completed a graded exercise test to determine aerobic capacity at baseline and after the intervention. Participants allocated to the training group performed 30 min of PRET at RPE13 on the Borg 6-20 RPE Scale on three occasions per week for 8 wk. Affective valence was measured using the Feeling Scale. The RPE-regulated training resulted in improvements (P < 0.01) in V˙O(2max), mean arterial pressure, total cholesterol, and body mass index in the training group across time. During training at RPE13, V˙O(2) increased (P < 0.01) from week 1 (19.2 ± 1.1 mL·kg·min) to week 8 (23.4 ± 1.1 mL·kg·min). On average, affect was positive and stable throughout training (3.4 ± 1.2). Affect measured at RPE13 in the baseline and postintervention graded exercise tests increased in the training group (3.1 ± .9 to 3.7 ± 1.1, P < 0.05), whereas it decreased in the control group (2.8 ± 1.1 to 2.6 ± 1). Sedentary individuals were able to use PRET at RPE13 to improve their cardiovascular health and fitness, and on average, the exercise intensities selected were perceived to feel pleasant.
Perceived importance of components of asynchronous music during circuit training.
Crust, Lee
2008-12-01
This study examined regular exercisers' perceptions of specific components of music during circuit training. Twenty-four men (38.8 years, s = 11.8 years) and 31 women (32.4 years, s = 9.6 years) completed two questionnaires immediately after a circuit training class. Participants rated the importance of 13 components of music (rhythm, melody, etc.) in relation to exercise enjoyment, and each completed the "Affect Intensity Measure" (Larsen, 1984, Dissertation Abstracts International, 5, 2297B. (University microfilms No. 84-22112)) to measure emotional reactivity. Independent t-tests were used to evaluate gender differences in perceptions of musical importance. Pearson correlations were computed to evaluate the relationships between affect intensity, age and importance of musical components. Consistent with previous research and theoretical predictions, rhythm response components (rhythm, tempo, beat) were rated as most important. Women rated the importance of melody significantly higher than did men, whereas men gave more importance to music associated with sport. Affect intensity was found to be positively and significantly related to the perceived importance of melody, lyrical content, musical style, personal associations and emotional content. Results suggest that exercise leaders need to be sensitive to personal factors when choosing music to accompany exercise. Qualitative research that focuses on the personal meaning of music is encouraged.
Thum, Jacob S.; Parsons, Gregory; Whittle, Taylor
2017-01-01
Exercise adherence is affected by factors including perceptions of enjoyment, time availability, and intrinsic motivation. Approximately 50% of individuals withdraw from an exercise program within the first 6 mo of initiation, citing lack of time as a main influence. Time efficient exercise such as high intensity interval training (HIIT) may provide an alternative to moderate intensity continuous exercise (MICT) to elicit substantial health benefits. This study examined differences in enjoyment, affect, and perceived exertion between MICT and HIIT. Twelve recreationally active men and women (age = 29.5 ± 10.7 yr, VO2max = 41.4 ± 4.1 mL/kg/min, BMI = 23.1 ± 2.1 kg/m2) initially performed a VO2max test on a cycle ergometer to determine appropriate workloads for subsequent exercise bouts. Each subject returned for two additional exercise trials, performing either HIIT (eight 1 min bouts of cycling at 85% maximal workload (Wmax) with 1 min of active recovery between bouts) or MICT (20 min of cycling at 45% Wmax) in randomized order. During exercise, rating of perceived exertion (RPE), affect, and blood lactate concentration (BLa) were measured. Additionally, the Physical Activity Enjoyment Scale (PACES) was completed after exercise. Results showed higher enjoyment (p = 0.013) in response to HIIT (103.8 ± 9.4) versus MICT (84.2 ± 19.1). Eleven of 12 participants (92%) preferred HIIT to MICT. However, affect was lower (p<0.05) and HR, RPE, and BLa were higher (p<0.05) in HIIT versus MICT. Although HIIT is more physically demanding than MICT, individuals report greater enjoyment due to its time efficiency and constantly changing stimulus. Trial Registration: NCT:02981667. PMID:28076352
Thum, Jacob S; Parsons, Gregory; Whittle, Taylor; Astorino, Todd A
2017-01-01
Exercise adherence is affected by factors including perceptions of enjoyment, time availability, and intrinsic motivation. Approximately 50% of individuals withdraw from an exercise program within the first 6 mo of initiation, citing lack of time as a main influence. Time efficient exercise such as high intensity interval training (HIIT) may provide an alternative to moderate intensity continuous exercise (MICT) to elicit substantial health benefits. This study examined differences in enjoyment, affect, and perceived exertion between MICT and HIIT. Twelve recreationally active men and women (age = 29.5 ± 10.7 yr, VO2max = 41.4 ± 4.1 mL/kg/min, BMI = 23.1 ± 2.1 kg/m2) initially performed a VO2max test on a cycle ergometer to determine appropriate workloads for subsequent exercise bouts. Each subject returned for two additional exercise trials, performing either HIIT (eight 1 min bouts of cycling at 85% maximal workload (Wmax) with 1 min of active recovery between bouts) or MICT (20 min of cycling at 45% Wmax) in randomized order. During exercise, rating of perceived exertion (RPE), affect, and blood lactate concentration (BLa) were measured. Additionally, the Physical Activity Enjoyment Scale (PACES) was completed after exercise. Results showed higher enjoyment (p = 0.013) in response to HIIT (103.8 ± 9.4) versus MICT (84.2 ± 19.1). Eleven of 12 participants (92%) preferred HIIT to MICT. However, affect was lower (p<0.05) and HR, RPE, and BLa were higher (p<0.05) in HIIT versus MICT. Although HIIT is more physically demanding than MICT, individuals report greater enjoyment due to its time efficiency and constantly changing stimulus. NCT:02981667.
Yardley, Jane E; Kenny, Glen P; Perkins, Bruce A; Riddell, Michael C; Goldfield, Gary S; Donovan, Lois; Hadjiyannakis, Stasia; Wells, George A; Phillips, Penny; Sigal, Ronald J
2015-03-01
The Resistance Exercise in Already Active Diabetic Individuals (READI) trial aimed to examine whether adding a 6-month resistance training program would improve glycemic control (as reflected in reduced HbA₁c) in individuals with type 1 diabetes who were already engaged in aerobic exercise compared to aerobic training alone. After a 5-week run-in period including optimization of diabetes care and low-intensity exercise, 131 physically active adults with type 1 diabetes were randomized to two groups for 22weeks: resistance training three times weekly, or waiting-list control. Both groups maintained the same volume, duration and intensity of aerobic exercise throughout the study as they did at baseline. HbA₁c, body composition, frequency of hypoglycemia, lipids, blood pressure, apolipoproteins B and A-1 (ApoB and ApoA1), the ApoB-ApoA1 ratio, urinary albumin excretion, serum C-reactive protein, free fatty acids, total daily insulin dose, health-related quality of life, cardiorespiratory fitness and musculoskeletal fitness were recorded at baseline, 3 (for some variables), and 6 months. To our knowledge, READI is the only trial to date assessing the incremental health-related impact of adding resistance training for individuals with type 1 diabetes who are already aerobically active. Few exercise trials have been completed in this population, and even fewer have assessed resistance exercise. With recent improvements in the quality of diabetes care, the READI study will provide conclusive evidence to support or refute a major clinically relevant effect of exercise type in the recommendations for physical activity in patients with type 1 diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.
Exercise at the Extremes: The Amount of Exercise to Reduce Cardiovascular Events.
Eijsvogels, Thijs M H; Molossi, Silvana; Lee, Duck-Chul; Emery, Michael S; Thompson, Paul D
2016-01-26
Habitual physical activity and regular exercise training improve cardiovascular health and longevity. A physically active lifestyle is, therefore, a key aspect of primary and secondary prevention strategies. An appropriate volume and intensity are essential to maximally benefit from exercise interventions. This document summarizes available evidence on the relationship between the exercise volume and risk reductions in cardiovascular morbidity and mortality. Furthermore, the risks and benefits of moderate- versus high-intensity exercise interventions are compared. Findings are presented for the general population and cardiac patients eligible for cardiac rehabilitation. Finally, the controversy of excessive volumes of exercise in the athletic population is discussed. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.
Is Weight Training Safe during Pregnancy?
ERIC Educational Resources Information Center
Work, Janis A.
1989-01-01
Examines the opinions of several experts on the safety of weight training during pregnancy, noting that no definitive research on weight training alone has been done. Experts agree that low-intensity weight training probably poses no harm for mother or fetus; exercise programs should be individualized. (SM)
... muscle breakdown when doing intense exercise, such as competitive sports or military training under unfavorable temperatures( very ... during training. People with SCT who participate in competitive or team sports (i.e. student athletes) should ...
Autonomic function responses to training: Correlation with body composition changes.
Tian, Ye; Huang, Chuanye; He, Zihong; Hong, Ping; Zhao, Jiexiu
2015-11-01
The causal relation between autonomic function and adiposity is an unresolved issue. Thus, we studied whether resting heart rate variability (HRV) changes could be used to predict changes in body composition after 16 weeks of individualized exercise training. A total of 117 sedentary overweight/obese adults volunteered to join an intervention group (IN, n=82) or a control group (CON, n=35). The intervention group trained for 30-40 min three times a week with an intensity of 85-100% of individual ventilatory threshold (Thvent). At baseline and after a 16-week training period, resting HRV variables, body composition and peak oxygen uptake (VO2peak) were assessed. Compared with CON, exercise training significantly improved HRV and body composition and increased VO2peak (P<0.05). Significant correlations were observed between changes of HRV variables and body composition indices and VO2peak (P<0.05). Greater individual changes in HRV in response to exercise training were observed for those with greater total and central fat loss. Individual aerobic-based exercise training was for improving autonomic function and resting HRV responses to aerobic training is a potential indicator for adaptations to exercise training. Copyright © 2015. Published by Elsevier Inc.
Exercise training guidelines for the elderly.
Evans, W J
1999-01-01
The capacity of older men and women to adapt to increased levels of physical activity is preserved, even in the most elderly. Aerobic exercise results in improvements in functional capacity and reduced risk of developing Type II diabetes in the elderly. High-intensity resistance training (above 60% of the one repetition maximum) has been demonstrated to cause large increases in strength in the elderly. In addition, resistance training result in significant increases in muscle size in elderly men and women. Resistance training has also been shown to significantly increase energy requirements and insulin action of the elderly. We have recently demonstrated that resistance training has a positive effect on multiple risk factors for osteoporotic fracture in previously sedentary postmenopausal women. Because the sedentary lifestyle of a long-term care facility may exacerbate losses of muscle function, we have applied this same training program to frail, institutionalized elderly men and women. In a population of 100 nursing home residents, a randomly assigned high-intensity strength-training program resulted in significant gains in strength and functional status. In addition, spontaneous activity, measured by activity monitors, increased significantly in those participating in the exercise program whereas there was no change in the sedentary control group. Before the strength training intervention, the relationship of whole body potassium and leg strength was seen to be relatively weak (r2 = 0.29, P < 0.001), indicating that in the very old, muscle mass is an important but not the only determining factor of functional status. Thus, exercise may minimize or reverse the syndrome of physical frailty, which is so prevalent among the most elderly. Because of their low functional status and high incidence of chronic disease, there is no segment of the population that can benefit more from exercise than the elderly.
Ho, Chiung-Fang; Maa, Suh-Hwa
2016-08-01
Exercise training improves the management of stable chronic obstructive pulmonary disease (COPD). COPD patients benefit from exercise training programs in terms of improved VO2 peak values and decreased dyspnea, fatigue, hospital admissions, and rates of mortality, increasing exercise capacity and health-related quality of life (HRQOL). COPD is often associated with impairment in exercise tolerance. About 51% of patients have a limited capacity for normal activity, which often further degrades exercise capacity, creating a vicious circle. Exercise testing is highly recommended to assess a patient's individualized functions and limitations in order to determine the optimal level of training intensity prior to initiating an exercise-training regimen. The outcomes of exercise testing provide a powerful indicator of prognosis in COPD patients. The six-minute walking test (6MWT) and the incremental shuttle-walking test (ISWT) are widely used in exercise testing to measure a patient's exercise ability by walking distances. While nursing-related articles published in Taiwan frequently cite and use the 6MWT to assess exercise capacity in COPD patients, the ISWT is rarely used. This paper introduces the testing method, strengths and weaknesses, and application of the two tests in order to provide clinical guidelines for assessing the current exercise capacity of COPD patients.
Creatine supplementation with specific view to exercise/sports performance: an update
2012-01-01
Creatine is one of the most popular and widely researched natural supplements. The majority of studies have focused on the effects of creatine monohydrate on performance and health; however, many other forms of creatine exist and are commercially available in the sports nutrition/supplement market. Regardless of the form, supplementation with creatine has regularly shown to increase strength, fat free mass, and muscle morphology with concurrent heavy resistance training more than resistance training alone. Creatine may be of benefit in other modes of exercise such as high-intensity sprints or endurance training. However, it appears that the effects of creatine diminish as the length of time spent exercising increases. Even though not all individuals respond similarly to creatine supplementation, it is generally accepted that its supplementation increases creatine storage and promotes a faster regeneration of adenosine triphosphate between high intensity exercises. These improved outcomes will increase performance and promote greater training adaptations. More recent research suggests that creatine supplementation in amounts of 0.1 g/kg of body weight combined with resistance training improves training adaptations at a cellular and sub-cellular level. Finally, although presently ingesting creatine as an oral supplement is considered safe and ethical, the perception of safety cannot be guaranteed, especially when administered for long period of time to different populations (athletes, sedentary, patient, active, young or elderly). PMID:22817979
Cardiovascular Drift during Training for Fitness in Patients with Metabolic Syndrome.
Morales-Palomo, Felix; Ramirez-Jimenez, Miguel; Ortega, Juan Fernando; Pallares, Jesus Garcia; Mora-Rodriguez, Ricardo
2017-03-01
The health benefits of a training program are largely influenced by the exercise dose and intensity. We sought to determine whether during a training bout of continuous versus interval exercise the workload needs to be reduced to maintain the prescribed target heart rate (HR). Fourteen obese (31 ± 4 kg·m) middle-age (57 ± 8 yr) individuals with metabolic syndrome, underwent two exercise training bouts matched by energy expenditure (i.e., 70 ± 5 min of continuous exercise [CE] or 45 min of interval exercise, high-intensity interval training [HIIT]). All subjects completed both trials in a randomized order. HR, power output (W), percent dehydration, intestinal and skin temperature (TINT and TSK), mean arterial pressure, cardiac output (CO), stroke volume (SV), and blood lactate concentration (La) were measured at the initial and latter stages of each trial to assess time-dependent drift. During the HIIT trial, power output was lowered by 30 ± 16 W to maintain the target HR, whereas a 10 ± 11 W reduction was needed in the CE trial (P < 0.05). Energy expenditure, CO, and SV declined with exercise time only in the HIIT trial (15%, 10%, and 13%, respectively). During HIIT, percent dehydration, TINT, and TSK increased more than during the CE trial (all P = 0.001). Mean arterial pressure and La were higher in HIIT without time drift in any trial. Our findings suggests that while CE results in mild power output reductions to maintain target HR, the increasingly popular HIIT results in marked reductions in power output, energy expenditure, and CO (21%, 15%, and 10%, respectively). HIIT based on target HR may result in lower than expected training adaptations because of workload adjustments to avoid HR drift.
Carbohydrate Dependence During Prolonged, Intense Endurance Exercise.
Hawley, John A; Leckey, Jill J
2015-11-01
A major goal of training to improve the performance of prolonged, continuous, endurance events lasting up to 3 h is to promote a range of physiological and metabolic adaptations that permit an athlete to work at both higher absolute and relative power outputs/speeds and delay the onset of fatigue (i.e., a decline in exercise intensity). To meet these goals, competitive endurance athletes undertake a prodigious volume of training, with a large proportion performed at intensities that are close to or faster than race pace and highly dependent on carbohydrate (CHO)-based fuels to sustain rates of muscle energy production [i.e., match rates of adenosine triphosphate (ATP) hydrolysis with rates of resynthesis]. Consequently, to sustain muscle energy reserves and meet the daily demands of training sessions, competitive athletes freely select CHO-rich diets. Despite renewed interest in high-fat, low-CHO diets for endurance sport, fat-rich diets do not improve training capacity or performance, but directly impair rates of muscle glycogenolysis and energy flux, limiting high-intensity ATP production. When highly trained athletes compete in endurance events lasting up to 3 h, CHO-, not fat-based fuels are the predominant fuel for the working muscles and CHO, not fat, availability becomes rate limiting for performance.
Puhan, M; Schunemann, H; Frey, M; Scharplatz, M; Bachmann, L
2005-01-01
Background: Physical exercise is an important component of respiratory rehabilitation because it reverses skeletal muscle dysfunction, a clinically important manifestation of COPD associated with reduced health-related quality of life (HRQL) and survival. However, there is controversy regarding the components of the optimal exercise protocol. A study was undertaken to systematically evaluate and summarise randomised controlled trials (RCTs) comparing different exercise protocols for COPD patients. Methods: Six electronic databases, congress proceedings and bibliographies of included studies were searched without imposing language restrictions. Two reviewers independently screened all records and extracted data on study samples, interventions and methodological characteristics of included studies. Results: The methodological quality of the 15 included RCTs was low to moderate. Strength exercise led to larger improvements of HRQL than endurance exercise (weighted mean difference for Chronic Respiratory Questionnaire 0.27, 95% CI 0.02 to 0.52). Interval exercise seems to be of similar effectiveness as continuous exercise, but there are few data on clinically relevant outcomes. One small RCT which included patients with mild COPD compared the effect of high and low intensity exercise (at 80% and 40% of the maximum exercise capacity, respectively) and found larger physiological training effects from high intensity exercise. Conclusions: Strength exercise should be routinely incorporated in respiratory rehabilitation. There is insufficient evidence to recommend high intensity exercise for COPD patients and investigators should conduct larger high quality trials to evaluate exercise intensities in patients with moderate to severe COPD. PMID:15860711
Slattery, Katie; Bentley, David; Coutts, Aaron J
2015-04-01
During periods of intensified physical training, reactive oxygen species (ROS) release may exceed the protective capacity of the antioxidant system and lead to dysregulation within the inflammatory and neuroendocrinological systems. Consequently, the efficacy of exogenous antioxidant supplementation to maintain the oxidative balance in states of exercise stress has been widely investigated. The aim of this review was to (1) collate the findings of prior research on the effect of intensive physical training on oxidant-antioxidant balance; (2) summarise the influence of antioxidant supplementation on the reduction-oxidation signalling pathways involved in physiological adaptation; and (3) provide a synopsis on the interactions between the oxidative, inflammatory and neuroendocrinological response to exercise stimuli. Based on prior research, it is evident that ROS are an underlying aetiology in the adaptive process; however, the impact of antioxidant supplementation on physiological adaptation remains unclear. Equivocal results have been reported on the impact of antioxidant supplementation on exercise-induced gene expression. Further research is required to establish whether the interference of antioxidant supplementation consistently observed in animal-based and in vivo research extends to a practical sports setting. Moreover, the varied results reported within the literature may be due to the hormetic response of oxidative, inflammatory and neuroendocrinological systems to an exercise stimulus. The collective findings suggest that intensified physical training places substantial stress on the body, which can manifest as an adaptive or maladaptive physiological response. Additional research is required to determine the efficacy of antioxidant supplementation to minimise exercise-stress during intensive training and promote an adaptive state.
Effects of treadmill exercise intensity on spatial working memory and long-term memory in rats.
Wang, Xiao-Qin; Wang, Gong-Wu
2016-03-15
Moderate exercise promotes learning and memory. Most studies mainly focused on memory exercise effects of in the ageing and patients. There is lack of quantitative research about effect of regular exercise intensity on different memory types in normal subjects. Present study investigated the effects of different intensities of treadmill exercise on working memory and long-term memory. Fifty female Wistar rats were trained by T-maze delayed spatial alternation (DSA) task with 3 delays (10s, 60s and 300s). Then they got a 30min treadmill exercise for 30days in 4 intensities (control, 0m/min; lower, 15m/min; middle, 20m/min, and higher, 30m/min). Then animals were tested in DSA, passive avoidance and Morris water maze tasks. 1. Exercise increased the neuronal density of hippocampal subregions (CA1, CA3 and dentate gyrus) vs. naïve/control. 2. In DSA task, all groups have similar baseline, lower intensity improved 10s delay accuracy vs. baseline/control; middle and higher intensities improved 300s delay accuracy vs. baseline/control. 3. In water maze learning, all groups successfully found the platform, but middle intensity improved platform field crossing times vs. control in test phase. Present results suggested that treadmill exercise can improve long-term spatial memory and working memory; lower intensity benefits to short-term delayed working memory, and middle or higher intensity benefits to long-term delayed working memory. There was an inverted U dose-effect relationship between exercise intensity and memory performance, but exercise -working memory effect was impacted by delay duration. Copyright © 2016 Elsevier Inc. All rights reserved.
Osuka, Yosuke; Matsubara, Muneaki; Hamasaki, Ai; Hiramatsu, Yuji; Ohshima, Hiroshi; Tanaka, Kiyoji
2017-01-01
The purposes of this study were to identify 1) the feasibility of a novel exercise protocol (elderly Japanese male version of high-intensity interval aerobic training: EJ-HIAT) and 2) its preliminary data (%V̇O 2peak , rating of perceived exertion) in comparison with traditional moderate-intensity continuous aerobic training (MICT). Twenty-one sedentary elderly men, aged 60-69 years, performed two exercise protocols: EJ-HIAT, consisting of 3 sets of 2-3-min cycling at 75-85%V̇O 2peak with 1-2-min active rests at 50%V̇O 2peak between sets, and MICT, consisting of 40-min cycling at 65%V̇O 2peak . The completion rate, defined as the rate of participants who 1) did not demand withdrawal, 2) were not interrupted by the tester, and 3) did not change the workload during either exercise protocol, of EJ-HIAT was similar to that of MICT (EJ-HIAT: 100%, MICT: 95.2%). Maximal perceived exertion ratings assessed by Borg scale were also similar between EJ-HIAT and MICT. However, objectively measured maximal intensity assessed by %V̇O 2peak was higher for EJ-HIAT than for MICT (EJ-HIAT: 86.0 ± 5.6%, MICT: 67.1 ± 6.4%). These results suggested that EJ-HIAT has good feasibility and perceived exertion similar to MICT despite having higher objectively measured intensity than MICT. An intervention aimed as identifying the effects of EJ-HIAT on exercise tolerance should be performed in the future. UMIN000021185 (February 26, 2016).
Périard, Julien D; Caillaud, Corinne; Thompson, Martin W
2012-06-01
The aim of this study was to examine the influence of aerobic fitness and exercise intensity on the development of thermal and cardiovascular strain in uncompensable heat stress conditions. In three separate trials, eight aerobically trained and eight untrained subjects cycled to exhaustion at 60% (H60%) and 75% (H75%) of maximal oxygen uptake [Formula: see text] in 40°C conditions, and for 60 min at 60% [Formula: see text] in 18°C conditions (CON). Training status had no influence on time to exhaustion between trained (61 ± 10 and 31 ± 9 min) and untrained (58 ± 12 and 26 ± 10 min) subjects (H60% and H75%, respectively). Rectal temperature at exhaustion was also not significantly different between trained (39.8 ± 0.3, 39.3 ± 0.6 and 38.2 ± 0.3°C) and untrained (39.4 ± 0.5, 38.8 ± 0.5 and 38.2 ± 0.4°C) subjects, but was different between trials (H60%, H75% and CON, respectively; P < 0.01). However, because exercise was terminated on reaching the ethics approved rectal temperature limit in four trained subjects in the H60% trial and two in the H75% trial, it is speculated that increased rectal temperature may have further occurred in this cohort. Nonetheless, exhaustion occurred >96% of maximum heart rate in both cohorts and was accompanied by significant declines in stroke volume (15-26%), cardiac output (5-10%) and mean arterial pressure (9-13%) (P < 0.05). The increase in cardiovascular strain appears to represent the foremost factor precipitating fatigue during moderate and high intensity aerobic exercise in the heat in both trained and untrained subjects.
Bonsu, Biggie; Terblanche, Elmarie
2016-01-01
Studies evaluating the response in blood pressure (BP) following high-intensity interval training (HIIT) are scant even though there has been extensive work done on the BP response following acute and chronic low- to moderate-intensity aerobic and resistance exercise in both hypertensive and normotensive individuals. The present study sought to investigate the training and detraining effects of short-term HIIT on the post-exercise hypotension (PEH) response in overweight/obese young women. Twenty young untrained women volunteered for the study. Participants performed six HIIT sessions on a treadmill within 2 weeks (week 1: 10 × 1 min and week 2: 15 × 1 min intervals at 90-95% HRmax, separated by 1 min active recovery at 70% HRmax each session) and detrained for 2 weeks. Post-exercise BP was measured for 1 h following the first and last HIIT sessions. Participants were normotensive (SBP: 119.2 ± 5.60 mmHg; DBP: 78.8 ± 4.12 mmHg) and had a BMI greater than 25 kg m(-2). The magnitude of the systolic hypotensive response was slightly greater after the six sessions HIIT compared to pre-training (5.04 and 4.28 mmHg, respectively), and both would be considered clinically significant (>3 mmHg decrease). After 2 weeks, detraining the PEH response was not clinically significant (1.08 mmHg decrease). The magnitude of the DBP response was only clinically significant following post- and detraining (4.26 and 3.87 mmHg, respectively). The findings suggest that six HIIT sessions is sufficient to affect clinically significant PEH responses in young, overweight/obese women; however, the training effects are lost within 2 weeks of detraining.
Frýbort, Pavel; Kokštejn, Jakub; Musálek, Martin; Süss, Vladimír
2016-06-01
A soccer player's capability to control and manage his behaviour in a game situation is a prerequisite, reflecting not only swift and accurate tactical decision-making, but also prompt implementation of a motor task during intermittent exercise conditions. The purpose of this study was to analyse the relationship between varying exercise intensity and the visual-motor response time and the accuracy of motor response in an offensive game situation in soccer. The participants (n = 42) were male, semi-professional, soccer players (M age 18.0 ± 0.9 years) and trained five times a week. Each player performed four different modes of exercise intensity on the treadmill (motor inactivity, aerobic, intermittent and anaerobic activity). After the end of each exercise, visual-motor response time and accuracy of motor response were assessed. Players' motion was captured by digital video camera. ANOVA indicated no significant difference (p = 0.090) in the accuracy of motor response between the four exercise intensity modes. Practical significance (Z-test = 0.31) was found in visual-motor response time between exercise with dominant involvement of aerobic metabolism, and intense intermittent exercise. A medium size effect (Z-test = 0.34) was also found in visual-motor response time between exercise with dominant involvement of aerobic metabolism and exercise with dominant involvement of anaerobic metabolism, which was confirmed by ANOVA (897.02 ± 57.46 vs. 940.95 ± 71.14; p = 0.002). The results showed that different modes of exercise intensity do not adversely affect the accuracy of motor responses; however, high-intensity exercise has a negative effect on visual-motor response time in comparison to moderate intensity exercise. Key pointsDifferent exercise intensity modes did not affect the accuracy of motor response.Anaerobic, highly intensive short-term exercise significantly decreased the visual-motor response time in comparison with aerobic exercise.Further research should focus on the assessment of VMRT from a player's real - field position view rather than a perspective view.
Figueira, Tiago R.; Caputo, Fabrizio; Machado, Carlos E.P.; Denadai, Benedito S.
2008-01-01
The aim of this study was to address the question if the VO2 kinetics is further improved as the aerobic training status increases from trained to elite level athletes. Maximal oxygen uptake (VO2max), work-rate associated to VO2max (IVO2max) and VO2 kinetics of moderate (Mod) and maximal exercise (Max) were determined in fifty- five subjects. Then, they were assigned into three groups: low (LF), intermediate (IF) and high (HF) aerobic fitness level. In average, the VO2max of LF, IF and HF groups were, respectively, 36.0 ± 3.1, 51.1 ± 4.5 and 68.1 ± 3.9 ml·kg·min-1 (p ≤ 0.05 among each other). VO2 kinetics mean response time of both exercise intensities were significantly faster (p ≤ 0.05) in HF (Mod, 27.5 ± 5.5 s; Max, 32.6 ± 8.3 s) and IF (Mod, 25.0 ± 3.1 s; Max, 42.6 ± 10.4 s) when compared to LF (Mod, 35.7 ± 7.9 s; Max: 57.8 ± 17.8 s). We can conclude that VO2 kinetics is improved as the fitness level is increased from low to intermediate but not further improved as the aerobic fitness level increases from intermediate to high. Key points Currently, it is reasonable to believe that the rate-limiting step of VO2 kinetics depends on exercise intensity. The well known physiological adaptations induced by endurance training are likely the most extreme means to overcome rate-limiting steps determining VO2 kinetics across exercise intensities. However, exercise adaptation leading individuals to the high-end of aerobic fitness level range (VO2max > 65 ml.kg.min-1) is not able to further improve VO2 kinetics during both, moderate and maximal intensity exercise. PMID:24150145
Leddy, Abigail L; Connolly, Mark; Holleran, Carey L; Hennessy, Patrick W; Woodward, Jane; Arena, Ross A; Roth, Elliot J; Hornby, T George
2016-10-01
Impairments in metabolic capacity and economy (O2cost) are hallmark characteristics of locomotor dysfunction following stroke. High-intensity (aerobic) training has been shown to improve peak oxygen consumption in this population, with fewer reports of changes in O2cost. However, particularly in persons with subacute stroke, inconsistent gains in walking function are observed with minimal associations with gains in metabolic parameters. The purpose of this study was to evaluate changes in aerobic exercise performance in participants with subacute stroke following high-intensity variable stepping training as compared with conventional therapy. A secondary analysis was performed on data from a randomized controlled trial comparing high-intensity training with conventional interventions, and from the pilot study that formed the basis for the randomized controlled trial. Participants 1 to 6 months poststroke received 40 or fewer sessions of high-intensity variable stepping training (n = 21) or conventional interventions (n = 12). Assessments were performed at baseline (BSL), posttraining, and 2- to 3-month follow-up and included changes in submaximal (Equation is included in full-text article.)O2 ((Equation is included in full-text article.)O2submax) and O2cost at fastest possible treadmill speeds and peak speeds at BSL testing. Significant improvements were observed in (Equation is included in full-text article.)O2submax with less consistent improvements in O2cost, although individual responses varied substantially. Combined changes in both (Equation is included in full-text article.)O2submax and (Equation is included in full-text article.)O2 at matched peak BSL speeds revealed stronger correlations to improvements in walking function as compared with either measure alone. High-intensity stepping training may elicit significant improvements in (Equation is included in full-text article.)O2submax, whereas changes in both peak capacity and economy better reflect gains in walking function. Providing high-intensity training to improve locomotor and aerobic exercise performance may increase the efficiency of rehabilitation sessions.Video Abstract available for more insights from the authors (see Supplemental Digital Content, http://links.lww.com/JNPT/A142).
Goldie, Catherine L; Brown, C Ann; Hains, Sylvia M J; Parlow, Joel L; Birtwhistle, Richard
2013-10-01
The effects of a 12-week low-intensity exercise conditioning program (walking) on blood pressure (BP), heart rate (HR), rate-pressure product (RPP), and cardiac autonomic function were measured in 40 sedentary women with hypertension. Women were assigned to either an exercise group (n = 20) or a control group (n = 20), matched for β-blockade treatment. They underwent testing at the beginning and at the end of the 12-week study period in three conditions: supine rest, standing, and low-intensity steady state exercise. The exercise group participated in a 12-week, low-intensity walking program, while the control group continued with usual sedentary activity. Compared with the control group, women in the exercise group showed reductions in systolic and diastolic BP and RPP (i.e., the estimated cardiac workload). β-Blockers increased baroreflex sensitivity and lowered BP and HR in all participants; however, those in the exercise group showed the effects of both treatments: a greater reduction in HR and RPP. The combination of exercise training and β-blockade produces cardiac and autonomic adaptations that are not observed with either treatment alone, suggesting that β-blockade enhances the conditioning effects of low-intensity exercise in women with hypertension.
Effect of Aerobic Training on Glucose Control and Blood Pressure in T2DDM East African Males
Prista, Antonio; Ranadive, Sushant M.; Damasceno, Albertino; Caupers, Paula; Kanaley, Jill A.; Fernhall, Bo
2014-01-01
Background. Exercise training intervention is underused in the management of type 2 diabetes mellitus in East Africa. Methods. 41 physically-active males with type 2 diabetes mellitus living in Mozambique were recruited and randomly assigned to 12 weeks of supervised exercise of low intensity exercise (LEX), vigorous intensity exercise (VEX), or to a control group (CON). Since there were no differences for any outcome variables between the exercise groups, VEX and LEX were combined into one exercise group (EX). Results. Age and baseline body weight were similar between EX and CON. Plasma glucose at 120 min following glucose load (Glu 120) was significantly reduced in the EX group after training (Glu 120 : 17.3 mmol/L to 15.0 mmol/L, P < 0.05), whereas Glu 120 remained unchanged in the CON (Glu 120 : 16.6 mmol/L to 18.7 mmol/L). After controlling for baseline blood pressure (BP), posttraining systolic BP and diastolic BP were lower in the EX group than in the CON group (EX: 129/77 mm Hg, CON: 152/83 mm Hg, P < 0.05). Conclusion. Adding exercise to already active African men with type 2 diabetes improved glucose control and BP levels without concomitant changes in weight. PMID:24729886
Shepherd, Sam O.; Wilson, Oliver J.; Adlan, Ahmed M.; Wagenmakers, Anton J. M.; Shaw, Christopher S.; Lord, Janet M.
2017-01-01
Neutrophils and monocytes are key components of the innate immune system that undergo age-associated declines in function. This study compared the impact of high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on immune function in sedentary adults. Twenty-seven (43 ± 11 years) healthy sedentary adults were randomized into ten weeks of either a HIIT (>90% maximum heart rate) or MICT (70% maximum heart rate) group training program. Aerobic capacity (VO2peak), neutrophil and monocyte bacterial phagocytosis and oxidative burst, cell surface receptor expression, and systemic inflammation were measured before and after the training. Total exercise time commitment was 57% less for HIIT compared to that for MICT while both significantly improved VO2peak similarly. Neutrophil phagocytosis and oxidative burst and monocyte phagocytosis and percentage of monocytes producing an oxidative burst were improved by training similarly in both groups. Expression of monocyte but not neutrophil CD16, TLR2, and TLR4 was reduced by training similarly in both groups. No differences in systemic inflammation were observed for training; however, leptin was reduced in the MICT group only. With similar immune-enhancing effects for HIIT compared to those for MICT at 50% of the time commitment, our results support HIIT as a time efficient exercise option to improve neutrophil and monocyte function. PMID:28656073
Acute hormonal responses in elite junior weightlifters.
Kraemer, W J; Fry, A C; Warren, B J; Stone, M H; Fleck, S J; Kearney, J T; Conroy, B P; Maresh, C M; Weseman, C A; Triplett, N T
1992-02-01
To date, no published studies have demonstrated resistance exercise-induced increases in serum testosterone in adolescent males. Furthermore, few data are available on the effects of training experience and lifting performance on acute hormonal responses to weightlifting in young males. Twenty-eight junior elite male Olympic-style weightlifters (17.3 +/- 1.4 yrs) volunteered for the study. An acute weightlifting exercise protocol using moderate to high intensity loads and low volume, characteristic of many weightlifting training sessions, was examined. The exercise protocol was directed toward the training associated with the snatch lift weightlifting exercise. Blood samples were obtained from a superficial arm vein at 7 a.m. (for baseline measurements), and again at pre-exercise, 5 min post-, and 15 min post-exercise time points for determination of serum testosterone, cortisol, growth hormone, plasma beta-endorphin, and whole blood lactate. The exercise protocol elicited significant (p less than or equal to 0.05) increases in each of the hormones and whole blood lactate compared to pre-exercise measures. While not being significantly older, subsequent analysis revealed that subjects with greater than 2 years training experience exhibited significant exercise-induced increases in serum testosterone from pre-exercise to 5 min post-exercise (16.2 +/- 6.2 to 21.4 +/- 7.9 nmol.l-1), while those with less than or equal to 2 years training showed no significant serum testosterone differences. None of the other hormones or whole blood lactate appear to be influenced by training experience.(ABSTRACT TRUNCATED AT 250 WORDS)
Facilitating aerobic exercise training in older adults with Alzheimer's disease.
Yu, Fang; Kolanowski, Ann
2009-01-01
Emerging science suggests that aerobic exercise might modify the pathophysiology of Alzheimer's disease (AD) and improve cognition. However, there are no clinical practice guidelines for aerobic exercise prescription and training in older adults with AD. A few existing studies showed that older adults with AD can participate in aerobic exercise and improve dementia symptoms, but lack adequate descriptions of their aerobic exercise training programs and their clinical applicability. In this paper, we summarize current knowledge about the potential benefits of aerobic exercise in older adults with AD. We then describe the development of a moderate-intensity aerobic exercise program for this population and report results from its initial testing in a feasibility trial completed by two persons with AD. Two older adults with AD completed the aerobic exercise program. Barriers to the program's implementation are described, and methods to improve more wide-spread adoption of such programs and the design of future studies that test them are suggested.
Gomes-Neto, Mansueto; Conceição, Cristiano Sena; Carvalho, Vitor Oliveira; Brites, Carlos
2013-01-01
Several studies have reported the benefits of exercise training for adults with HIV, although there is no consensus regarding the most efficient modalities. The aim of this study was to determine the effects of different types of exercise on physiologic and functional measurements in patients with HIV using a systematic strategy for searching randomized controlled trials. The sources used in this review were the Cochrane Library, EMBASE, MEDLINE, and PEDro from 1950 to August 2012. We selected randomized controlled trials examining the effects of exercise on body composition, muscle strength, aerobic capacity, and/or quality of life in adults with HIV. Two independent reviewers screened the abstracts using the Cochrane Collaboration's protocol. The PEDro score was used to evaluate methodological quality. In total, 29 studies fulfilled the inclusion criteria. Individual studies suggested that exercise training contributed to improvement of physiologic and functional parameters, but that the gains were specific to the type of exercise performed. Resistance exercise training improved outcomes related to body composition and muscle strength, with little impact on quality of life. Aerobic exercise training improved body composition and aerobic capacity. Concurrent training produced significant gains in all outcomes evaluated, although moderate intensity and a long duration were necessary. We concluded that exercise training was shown to be a safe and beneficial intervention in the treatment of patients with HIV. PMID:24037014
Reis, Victor M.; Silva, António J.; Ascensão, António; Duarte, José A.
2005-01-01
The present study intended to verify if the inclusion of intensities above lactate threshold (LT) in the VO2/running speed regression (RSR) affects the estimation error of accumulated oxygen deficit (AOD) during a treadmill running performed by endurance-trained subjects. Fourteen male endurance-trained runners performed a sub maximal treadmill running test followed by an exhaustive supra maximal test 48h later. The total energy demand (TED) and the AOD during the supra maximal test were calculated from the RSR established on first testing. For those purposes two regressions were used: a complete regression (CR) including all available sub maximal VO2 measurements and a sub threshold regression (STR) including solely the VO2 values measured during exercise intensities below LT. TED mean values obtained with CR and STR were not significantly different under the two conditions of analysis (177.71 ± 5.99 and 174.03 ± 6.53 ml·kg-1, respectively). Also the mean values of AOD obtained with CR and STR did not differ under the two conditions (49.75 ± 8.38 and 45.8 9 ± 9.79 ml·kg-1, respectively). Moreover, the precision of those estimations was also similar under the two procedures. The mean error for TED estimation was 3.27 ± 1.58 and 3.41 ± 1.85 ml·kg-1 (for CR and STR, respectively) and the mean error for AOD estimation was 5.03 ± 0.32 and 5.14 ± 0.35 ml·kg-1 (for CR and STR, respectively). The results indicated that the inclusion of exercise intensities above LT in the RSR does not improve the precision of the AOD estimation in endurance-trained runners. However, the use of STR may induce an underestimation of AOD comparatively to the use of CR. Key Points It has been suggested that the inclusion of exercise intensities above the lactate threshold in the VO2/power regression can significantly affect the estimation of the energy cost and, thus, the estimation of the AOD. However data on the precision of those AOD measurements is rarely provided. We have evaluated the effects of the inclusion of those exercise intensities on the AOD precision. The results have indicated that the inclusion of exercise intensities above the lactate threshold in the VO2/running speed regression does not improve the precision of AOD estimation in endurance-trained runners. However, the use of sub threshold regressions may induce an underestimation of AOD comparatively to the use of complete regressions. PMID:24501560
Influence of acute exercise of varying intensity and duration on postprandial oxidative stress.
Canale, Robert E; Farney, Tyler M; McCarthy, Cameron G; Bloomer, Richard J
2014-09-01
Aerobic exercise can reduce postprandial lipemia, and possibly oxidative stress, when performed prior to a lipid-rich meal. To compare the impact of acute exercise on postprandial oxidative stress. We compared aerobic and anaerobic exercise bouts of different intensities and durations on postprandial blood triglycerides (TAG), oxidative stress biomarkers (malondialdehyde, hydrogen peroxide, advanced oxidation protein products), and antioxidant status (trolox equivalent antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase). Twelve trained men (21-35 years) underwent four conditions: (1) No exercise rest; (2) 60-min aerobic exercise at 70% heart rate reserve; (3) five 60-s sprints at 100% max capacity; and (4) ten 15-s sprints at 200% max capacity. All exercise bouts were performed on a cycle ergometer. A high-fat meal was consumed 1 h after exercise cessation. Blood samples were collected pre-meal and 2 and 4 h post-meal and analyzed for TAG, oxidative stress biomarkers, and antioxidant status. No significant interaction or condition effects were noted for any variable (p > 0.05), with acute exercise having little to no effect on the magnitude of postprandial oxidative stress. In a sample of healthy, well-trained men, neither aerobic nor anaerobic exercise attenuates postprandial oxidative stress in response to a high-fat meal.
Sport therapy for hypertension: why, how, and how much?
Manfredini, Fabio; Malagoni, Anna M; Mandini, Simona; Boari, Benedetta; Felisatti, Michele; Zamboni, Paolo; Manfredini, Roberto
2009-01-01
Exercise may prevent or reduce the effects of metabolic and cardiovascular diseases, including arterial hypertension. Both acute and chronic exercise, alone or combined with lifestyle modifications, decrease blood pressure and avoid or reduce the need for pharmacologic therapy in patients with hypertension. The hypotensive effect of exercise is observed in a large percentage of subjects, with differences due to age, sex, race, health conditions, parental history, and genetic factors. Exercise regulates autonomic nervous system activity, increases shear stress, improves nitric oxide production in endothelial cells and its bioavailability for vascular smooth muscle, up-regulates antioxidant enzymes. Endurance training is primarily effective, and resistance training can be combined with it. Low-to-moderate intensity training in sedentary patients with hypertension is necessary, and tailored programs make exercise safe and effective also in special populations. Supervised or home-based exercise programs allow a nonpharmacological reduction of hypertension and reduce risk factors, with possible beneficial effects on cardiovascular morbidity.
Energy expenditure during an exercise training session for cardiac patients.
Santa-Clara, Helena; Melo, Xavier; Willi, Romina; Pinto, Rita; Santos, Vanessa; Almeida, José P; Martins, Rodrigo; Clijsen, Ron; Mendes, Miguel; Fernhall, Bo
2018-03-01
Increasing energy expenditure (EE) in cardiac patients remains a challenge. Exercise approaches in cardiac rehabilitation/secondary prevention programs (CR/SP) have consistently resulted in minimal weight loss, due in part to the low exercise-related EE. The purpose of this study was to measure the EE among patients participating in a routine exercise session of Phase III maintenance CR/SP, where a recreational activity was introduced. Twelve overweight/obese male patients with coronary artery disease (aged 62.6 ± 8.5 years) had their total EE measured during a combined aerobic (circuit workout (ACW) and recreational activity) and resistance training (RT) session using a portable gas analyzer. Subjects were instructed to exercise at 60%-70% of heart rate reserve. Activity EE was calculated from total EE and resting EE. The duration of the session was 75.3 ± 1.5 min, of which 59.7 ± 8.8 min were above moderate intensity (3-6 METs). Activity EE was 309 ± 76 kcal, concurring to a total EE of 457 ± 80 kcal (3.9 ± 0.8 METs-h). ACW, recreational activity, and RT fulfilled 34.4% ± 6.4%, 25.0% ± 5.3%, and 14.2% ± 2.7% of the activity EE, respectively. Absolute intensities (METs) were significantly different between the RT (3.9 ± 1.0) and the ACW (6.9 ± 1.8) and recreational activity (5.9 ± 0.8). In conclusion, a combined aerobic and resistance training following standard exercise prescription practices, coupled with a recreational activity, is an effective tool to promote exercise above moderate intensity in male coronary artery disease patients. Clinicians can adopt concepts from recreational activity to develop CR/SP sessions.
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.; Lee, P. L.; Ellis, S.; Selzer, R. H.; Ortendahl, D. A.
1994-01-01
Magnetic resonance imaging (MRI) was used to compare the effect of two modes of lower-extremity exercise training on the mass (volume) of posterior leg group (PLG) muscles (soleus, flexor hallucis longus, tibialis posterior, lateral and medial gastrocnemius, and flexor digitorum longus) on 19 men (ages 32-42 years) subjected to intense dynamic-isotonic (ITE, cycle ergometer, number of subjects (N) = 7), isokinetic (IKE, torque egrometer, N = 7), and no exercise (NOE, N = 5) training for 60 min/day during head-down bed rest (HDBR). Total volume of the PLG muscles decreased (p less than 0.05) similarly: ITE = 4.3 +/- SE 1.6%, IKE = 7.7 +/- 1.6%, and NOE = 6.3 +/- 0.8%; combined volume (N = 19) loss was 6.1 +/- 0.9%. Ranges of volume changes were 2.6% to -9.0% (ITE), -2.1% to -14.9% (IKE), and -3.4% to -8/1% (NOE). Correlation coefficients (r) of muscle volume versus thickness measured with ultrasonography were: ITE r + 0.79 (p less than 0.05), IKE r = 0.27 (not significant (NS)), and NOE r = 0.63 (NS). Leg-muscle volume and thickness were highly correlated (r = 0.79) when plasma volume was maintained during HDBR with ITE. Thus, neither intensive lower extremity ITE nor IKE training influence the normal non-exercised posterior leg muscle atrophy during HDBR. The relationship of muscle volume and thickness may depend on the mode of exercise training associated with the maintenance of plasma volume.
Silva, Vagner R; Belozo, Felipe L; Micheletti, Thayana O; Conrado, Marcelo; Stout, Jeffrey R; Pimentel, Gustavo D; Gonzalez, Adam M
2017-09-01
β-Hydroxy-β-methylbutyrate free acid (HMB-FA) has been suggested to accelerate the regenerative capacity of skeletal muscle after high-intensity exercise and attenuate markers of skeletal muscle damage. Herein a systematic review on the use of HMB-FA supplementation as an ergogenic aid to improve measures of muscle recovery, performance, and hypertrophy after resistance training was conducted. This review was performed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. We included randomized, double-blinded, placebo-controlled trials investigating the effects of HMB-FA supplementation in conjunction with resistance exercise in humans. The search was conducted using Medline and Google Scholar databases for the terms beta-hydroxy-beta-methylbutyrate, HMB free acid, exercise, resistance exercise, strength training, and HMB supplementation. Only research articles published from 1996 to 2016 in English language were considered for the analysis. Nine studies met the criteria for inclusion in the analyses. Most studies included resistance-trained men, and the primary intervention strategy involved administration of 3g of HMB-FA per day. In conjunction with resistance training, HMB-FA supplementation may attenuate markers of muscle damage, augment acute immune and endocrine responses, and enhance training-induced muscle mass and strength. HMB-FA supplementation may also improve markers of aerobic fitness when combined with high-intensity interval training. Nevertheless, more studies are needed to determine the overall efficacy of HMB-FA supplementation as an ergogenic aid. Copyright © 2017 Elsevier Inc. All rights reserved.
Jurio-Iriarte, Borja; Maldonado-Martín, Sara
2018-05-01
The goal of the study was to compare the effects of two supervised aerobic exercise programs (moderate-intensity continuous training [MICT] vs. high-intensity interval training [HIIT]) after 8-, 12-, and 16-week intervention periods on cardiorespiratory fitness (CRF) in overweight/obese adults diagnosed with hypertension. Participants ( N = 64) were divided into three intervention cohorts (control group [CG], MICT, and HIIT) and each of these, in turn, into three intervention length cohorts (8, 12, and 16 weeks). Supervised groups exercised twice a week. There were no statistical changes in postintervention periods in CG ( g < 0.1). CRF as assessed by peak oxygen uptake (mL kg -1 ·min -1 ) increased ( p < .001) in exercise groups (MICT, 3.8 ± 3.3, g = 0.6; HIIT, 4.2 ± 4.7, g = 0.7). The effect of exercise interventions compared with CG was substantial ( p < .02, g > .8) and mostly consequence of HIIT-related effects. The improvements on CRF occurred after 12 and 16 weeks in exercise interventions, rather than in the 8-week group or CG, where Hedges's g index indicated small effect. This study may suggest that both MICT and HIIT exert cardioprotector effects on hypertension in the overweight/obese population. However, short-term training duration (<12 weeks) does not seem to improve CRF, and HIIT intervention might generate higher aerobic capacity, which seems to grow as intervention lengthens.
ERIC Educational Resources Information Center
Greer, Beau Kjerulf; Sirithienthad, Prawee; Moffatt, Robert J.; Marcello, Richard T.; Panton, Lynn B.
2015-01-01
Purpose: Excess postexercise oxygen consumption (EPOC) is dependent on intensity, duration, and mode of exercise. The purpose of this study was to compare the effect of both exercise mode and intensity on EPOC while controlling for caloric expenditure and duration. Method: Ten low to moderately physically active men (22 ± 2 yrs) performed 3…
Kroll, Thilo; Kratz, Anna; Kehn, Matthew; Jensen, Mark P; Groah, Suzanne; Ljungberg, Inger H; Molton, Ivan R; Bombardier, Charles
2012-08-01
The purpose of this study was to test the hypothesized association between exercise self-efficacy and exercise behavior, controlling for demographic variables and clinical characteristics, in a sample of individuals with spinal cord injuries. A cross-sectional national survey of 612 community-dwelling adults with spinal cord injury in the United States ranging from 18 to 89 yrs of age was conducted. Sample consisted of 63.1% men with a mean (SD) duration of 15.8 (12.79) yrs postinjury; 86.3% reported using a wheelchair. Self-efficacy was the only independent variable that consistently predicted all four exercise outcomes. Self-efficacy beliefs were significantly related to frequency and intensity of resistance training (R(2) change = 0.08 and 0.03, respectively; P < 0.01 for all) and aerobic training (R(2) change = 0.07 and 0.05, respectively; P < 0.01 for all), thus explaining between 3% and 8% of the variance. Hierarchical linear regression analysis revealed that controlling for other demographic and physical capability variables, the age-related variables made statistically significant contributions and explained between 1% and 3% of the variance in aerobic exercise frequency and intensity (R(2) change = 0.01 and 0.03, respectively; P < 0.01 for all). Clinical functional characteristics but not demographic variables explained participation in resistance exercise. Self-efficacy beliefs play an important role as predictors of exercise. Variations in exercise intensity along the age continuum have implications for exercise prescription and composition. Future research should replicate findings with objective activity measures.
Woodfield, John; Zacharias, Matthew; Wilson, Genevieve; Munro, Fran; Thomas, Kate; Gray, Andrew; Baldi, James
2018-06-25
Risk factors, such as the number of pre-existing co-morbidities, the extent of the underlying pathology and the magnitude of the required operation, cannot be changed before surgery. It may, however, be possible to improve the cardiopulmonary fitness of the patient with an individualised exercise program. We are performing a randomised controlled trial (RCT) assessing the impact of High Intensity Interval Training (HIIT) on preoperative cardiopulmonary fitness and postoperative outcomes in patients undergoing major abdominal surgery. Consecutive eligible patients undergoing elective abdominal surgery are being randomised to HIIT or standard care in a 1:1 ratio. Participants allocated to HIIT will perform 14 exercise sessions on a stationary cycle ergometer, over a period of 4-6 weeks before surgery. The sessions, which are individualised, aim to start with ten repeated 1-min blocks of intense exercise with a target of reaching a heart rate exceeding 90% of the age predicted maximum, followed by 1 min of lower intensity cycling. As endurance improves, the duration of exercise is increased to achieve five 2-min intervals of high intensity exercise followed by 2 min of lower intensity cycling. Each training session lasts approximately 30 min. The primary endpoint, change in peak oxygen consumption (Peak VO 2 ) measured during cardiopulmonary exercise testing, is assessed at baseline and before surgery. Secondary endpoints include postoperative complications, length of hospital stay and three clinically validated scores: the surgical recovery scale; the postoperative morbidity survey; and the SF-36 quality of life score. The standard deviation for changes in Peak VO 2 will be assessed after the first 30 patients and will be used to calculate the required sample size. We want to assess if 14 sessions of HIIT is sufficient to improve Peak VO 2 by 2 mL/kg/min in patients undergoing major abdominal surgery and to explore the best clinical endpoint for a subsequent RCT designed to assess if improving Peak VO 2 will translate into improving clinical outcomes after surgery. Australian New Zealand Clinical Trials Registry, ACTRN12617000587303 . Registered on 26 April 2017.
Negrao, Marcelo V; Alves, Cleber R; Alves, Guilherme B; Pereira, Alexandre C; Dias, Rodrigo G; Laterza, Mateus C; Mota, Gloria F; Oliveira, Edilamar M; Bassaneze, Vinícius; Krieger, Jose E; Negrao, Carlos E; Rondon, Maria Urbana P B
2010-09-01
Allele T at promoter region of the eNOS gene has been associated with an increase in coronary disease mortality, suggesting that this allele increases susceptibility for endothelial dysfunction. In contrast, exercise training improves endothelial function. Thus, we hypothesized that: 1) Muscle vasodilatation during exercise is attenuated in individuals homozygous for allele T, and 2) Exercise training improves muscle vasodilatation in response to exercise for TT genotype individuals. From 133 preselected healthy individuals genotyped for the T786C polymorphism, 72 participated in the study: TT (n = 37; age 27 ± 1 yr) and CT+CC (n = 35; age 26 ± 1 yr). Forearm blood flow (venous occlusion plethysmography) and blood pressure (oscillometric automatic cuff) were evaluated at rest and during 30% handgrip exercise. Exercise training consisted of three sessions per week for 18 wk, with intensity between anaerobic threshold and respiratory compensation point. Resting forearm vascular conductance (FVC, P = 0.17) and mean blood pressure (P = 0.70) were similar between groups. However, FVC responses during handgrip exercise were significantly lower in TT individuals compared with CT+CC individuals (0.39 ± 0.12 vs. 1.08 ± 0.27 units, P = 0.01). Exercise training significantly increased peak VO(2) in both groups, but resting FVC remained unchanged. This intervention significantly increased FVC response to handgrip exercise in TT individuals (P = 0.03), but not in CT+CC individuals (P = 0.49), leading to an equivalent FVC response between TT and CT+CC individuals (1.05 ± 0.18 vs. 1.59 ± 0.27 units, P = 0.27). In conclusion, exercise training improves muscle vasodilatation in response to exercise in TT genotype individuals, demonstrating that genetic variants influence the effects of interventions such as exercise training.
The Benefits of High Intensity Functional Training (HIFT) Fitness Programs for Military Personnel
Haddock, Christopher K.; Poston, Walker S.C.; Heinrich, Katie M.; Jahnke, Sara A.; Jitnarin, Nattinee
2016-01-01
High intensity functional training (HIFT) programs are designed to address multiple fitness domains, potentially providing improved physical and mental readiness in a changing operational environment. Programs consistent with HIFT principals such as CrossFit, SEALFIT and the US Marine Corps’ High Intensity Tactical Training (HITT) program are increasingly popular among military personnel. This article reviews the practical, health, body composition, and military fitness implications of HIFT exercise programs. We conclude that, given the unique benefits of HIFT, the military should consider evaluating whether these programs should be the standard for military fitness training. PMID:27849484
Lauber, Benedikt; Franke, Steffen; Taube, Wolfgang; Gollhofer, Albert
2017-04-07
Increasing evidence suggests that cardiovascular exercise has positive effects on motor memory consolidation. In this study, we investigated whether a single session of high-intensity interval training (HIIT) mitigates the effects of practicing an interfering motor task. Furthermore, learning and interference effects were assessed in the actively trained and untrained limb as it is known that unilateral motor learning can cause bilateral adaptations. Subjects performed a ballistic training and then the HIIT either before (HIIT_before) or after (HIIT_after) practicing an interfering accuracy task (AT). The control group (No_HIIT) did not participate in the HIIT but rested instead. Performance in the ballistic task (BT) was tested before and after the ballistic training, after the exercise and practice of the AT and 24h later. After ballistic training, all groups showed comparable increases in performance in the trained and untrained limb. Despite the practice of the AT, HIIT_before maintained their BT performance after the high-intensity interval training whereas HIIT_after (trend) & No_HIIT showed prominent interference effects. After 24h, HIIT_before still did not show any interference effects but further improved ballistic motor performance. HIIT_after counteracted the interference resulting in a comparable BT performance after 24h than directly after the ballistic training while No_HIIT had a significantly lower BT performance in the retention test. The results were similar in the trained and untrained limb. The current results imply that a single session of cardiovascular exercise can prevent motor interference in the trained and untrained hemisphere. Overall learning was best, and interference least, when HIIT was performed before the interfering motor task. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Marshall, Paul W M; Desai, Imtiaz
2010-06-01
Although there is now some evidence examining the use of a Swiss ball during core stability and resistance exercises, this has commonly been performed using basic or isometric exercises. There is currently no evidence examining more advanced Swiss ball exercises. The purpose of this study was to determine whether or not muscle activity measured during advanced Swiss ball exercises was at an approximate intensity recommended for strength or endurance training in advanced, or novice individuals. After a familiarization session, 14 recreationally active subjects performed 6 different "advanced" Swiss ball exercises in a randomized order. The primary dependent variables in this study were the activity levels collected from anterior deltoid, pectoralis major, rectus abdominis (RA), external obliques, lumbar erector spinae, vastus lateralis (VL), and biceps femoris using surface electromyography. All signals were normalized to maximal voluntary isometric contractions performed before testing for each muscle. The results of this study showed that the Swiss ball roll elicited muscle activity in triceps brachii (72.5+/-32.4%) and VL (83.6+/-44.2%) commensurate with the intensity recommended for strength exercises in advanced trainers. Rectus abdominis activity was greatest during the bridge exercise (61.3+/-28.5%, p
Cardoso, A M; Bagatini, M D; Roth, M A; Martins, C C; Rezer, J F P; Mello, F F; Lopes, L F D; Morsch, V M; Schetinger, M R C
2012-12-01
The aim of this study was to compare the effect of an intermittent intense aerobic exercise session and a resistance exercise session on blood cell counts and oxidative stress parameters in middle-aged women. Thirty-four women were selected and divided into three groups: RE group (performing 60 min of resistance exercises, N = 12), spinning group (performing 60 min of spinning, N = 12), and control group (not exercising regularly, N = 10). In both exercise groups, lymphocytes and monocytes decreased after 1-h recuperation (post-exercise) compared to immediately after exercise (P < 0.05). Immediately after exercise, in both exercised groups, a significant increase in TBARS (from 16.5 ± 2 to 25 ± 2 for the spinning group and from 18.6 ± 1 to 28.2 ± 3 nmol MDA/mL serum for the RE group) and protein carbonyl (from 1.0 ± 0.3 to 1.6 ± 0.2 for the spinning group and from 0.9 ± 0.2 to 1.5 ± 0.2 nmol/mg protein for the RE group) was observed (P < 0.05). A decrease in antioxidant activities (non-protein sulfhydryl, superoxide dismutase, catalase) was also demonstrated with a negative correlation between damage markers and antioxidant body defenses (P < 0.05). These results indicate that an acute bout of intermittent or anaerobic exercise induces immune suppression and increases the production of reactive oxygen species, causing oxidative stress in middle-aged and trained women. Furthermore, we demonstrated that trained women show improved antioxidant capacity and lower oxidative damage than sedentary ones, demonstrating the benefits of chronic regular physical activity.
Cardoso, A.M.; Bagatini, M.D.; Roth, M.A.; Martins, C.C.; Rezer, J.F.P.; Mello, F.F.; Lopes, L.F.D.; Morsch, V.M.; Schetinger, M.R.C.
2012-01-01
The aim of this study was to compare the effect of an intermittent intense aerobic exercise session and a resistance exercise session on blood cell counts and oxidative stress parameters in middle-aged women. Thirty-four women were selected and divided into three groups: RE group (performing 60 min of resistance exercises, N = 12), spinning group (performing 60 min of spinning, N = 12), and control group (not exercising regularly, N = 10). In both exercise groups, lymphocytes and monocytes decreased after 1-h recuperation (post-exercise) compared to immediately after exercise (P < 0.05). Immediately after exercise, in both exercised groups, a significant increase in TBARS (from 16.5 ± 2 to 25 ± 2 for the spinning group and from 18.6 ± 1 to 28.2 ± 3 nmol MDA/mL serum for the RE group) and protein carbonyl (from 1.0 ± 0.3 to 1.6 ± 0.2 for the spinning group and from 0.9 ± 0.2 to 1.5 ± 0.2 nmol/mg protein for the RE group) was observed (P < 0.05). A decrease in antioxidant activities (non-protein sulfhydryl, superoxide dismutase, catalase) was also demonstrated with a negative correlation between damage markers and antioxidant body defenses (P < 0.05). These results indicate that an acute bout of intermittent or anaerobic exercise induces immune suppression and increases the production of reactive oxygen species, causing oxidative stress in middle-aged and trained women. Furthermore, we demonstrated that trained women show improved antioxidant capacity and lower oxidative damage than sedentary ones, demonstrating the benefits of chronic regular physical activity. PMID:23090122
Excessive exercise habits of runners as new signs of hypertension and arrhythmia.
Kim, Young-Joo; Kim, Chul-Hyun; Park, Kyoung-Min
2016-08-15
Excessive exercise may induce arrhythmia, and this risk is higher in middle-aged people. The study aim was to compare the exercise characteristics of middle-aged runners participating in excessive endurance exercise. The subjects of this study were 552 runners (mean age; 49.0±7.4years) without structural heart disease who performed exercise at least twice per week, had consistently exercised for at least three years, and had finished at least five marathons. The arrhythmia runner group (ARG, n=14) and normal runner group (NRG, n=538) were compared with regard to hemodynamic response, cardiorespiratory fitness level, training history, number of finished races, finishing times, and exercise habits. The mean resting systolic (134.0±15.8mmHg) and diastolic (85.8±10.9mmHg) blood pressure values indicated pre-hypertension, while the mean maximal SBP (213.7±27.4mmHg) values indicated exercise-induced hypertension. The VO2max was significantly higher and the maximal DBP was significantly lower in the ARG than in the NRG (p<0.05). Training history was significantly longer in the ARG than in the NRG (p<0.05), while the number of finished marathons, the finishing times in marathons and the exercise frequency per week didn't differ significantly between the two groups. Exercise intensity was significantly higher in the ARG than in the NRG (p<0.01). Middle-aged long-distance runners showed pre-hypertension and exercise-induced hypertension, and the ARG had higher VO2max values, greater exercise intensities, and longer training histories than the NRG. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Spee, Ruud F; Niemeijer, Victor M; Wijn, Pieter F; Doevendans, Pieter A; Kemps, Hareld M
2016-12-01
Background High-intensity interval training (HIT) improves exercise capacity in patients with chronic heart failure (CHF). Moreover, HIT was associated with improved resting cardiac function. However, the extent to which these improvements actually contribute to training-induced changes in exercise capacity remains to be elucidated. Therefore, we evaluated the effects of HIT on exercising central haemodynamics and skeletal muscle oxygenation. Methods Twenty-six CHF patients were randomised to a 12-week 4 × 4 minute HIT program at 85-95% of peak VO 2 or usual care. Patients performed maximal and submaximal cardiopulmonary exercise testing with simultaneous assessment of cardiac output and skeletal muscle oxygenation by near infrared spectroscopy, using the amplitude of the tissue saturation index (TSIamp). Results Peak workload increased by 11% after HIT ( p between group = 0.01) with a non-significant increase in peak VO 2 (+7%, p between group = 0.19). Cardiac reserve increased by 37% after HIT ( p within group = 0.03, p between group = 0.08); this increase was not related to improvements in peak workload. Oxygen uptake recovery kinetics after submaximal exercise were accelerated by 20% ( p between group = 0.02); this improvement was related to a decrease in TSIamp ( r = 0.71, p = 0.03), but not to changes in cardiac output kinetics. Conclusion HIT induced improvements in maximal exercise capacity and exercising haemodynamics at peak exercise. Improvements in recovery after submaximal exercise were associated with attenuated skeletal muscle deoxygenation during submaximal exercise, but not with changes in cardiac output kinetics, suggesting that the effect of HIT on submaximal exercise capacity is mediated by improved microvascular oxygen delivery-to-utilisation matching.
Electromyography Biofeedback Exergames to Enhance Grip Strength and Motivation.
Garcia-Hernandez, Nadia; Garza-Martinez, Karen; Parra-Vega, Vicente
2018-02-01
Hand strength weakness affects the performance of most activities of daily living. This study aims to design, develop, and test an electromyography (EMG) biofeedback training system based on serious games to promote motivation and synchronization and proper work intensity in grip exercises for improving hand strength. An EMG surface sensor, soft balls with different stiffness and three exergames, conforms the system to drive videogame clues in response to EMG-inferred grip strength, while overseeing motivation. An experiment was designed to study the effect of performing handgrip (HG) exercises with the proposed system versus traditional exercises. Participants, organized into two groups, followed a training program for each hand. One group followed a HG exergame training (ET) with the dominant hand and traditional HG training with the nondominant hand and inverse sequence by the second group. Initial and final grip forces were measured using a digital dynamometer. Questionnaires evaluated motivation and user experience, and exercise performance was evaluated in terms of work and rest time percentage and maximal voluntary contraction percentage over contraction periods. Data were analyzed for statistically significant differences and increase of means. Participants showed significantly better exercise performance and higher grip forces, with sustained intrinsic motivation and user experience, with the ET. Improvement in force level arises evidently from the synchronized work-rest time pattern and appropriated intensity of the muscle activity. This leads to support that EMG biofeedback exergames improve motor neurons firing and resting.
Effects of regular aerobic exercise on visual perceptual learning.
Connell, Charlotte J W; Thompson, Benjamin; Green, Hayden; Sullivan, Rachel K; Gant, Nicholas
2017-12-02
This study investigated the influence of five days of moderate intensity aerobic exercise on the acquisition and consolidation of visual perceptual learning using a motion direction discrimination (MDD) task. The timing of exercise relative to learning was manipulated by administering exercise either before or after perceptual training. Within a matched-subjects design, twenty-seven healthy participants (n = 9 per group) completed five consecutive days of perceptual training on a MDD task under one of three interventions: no exercise, exercise before the MDD task, or exercise after the MDD task. MDD task accuracy improved in all groups over the five-day period, but there was a trend for impaired learning when exercise was performed before visual perceptual training. MDD task accuracy (mean ± SD) increased in exercise before by 4.5 ± 6.5%; exercise after by 11.8 ± 6.4%; and no exercise by 11.3 ± 7.2%. All intervention groups displayed similar MDD threshold reductions for the trained and untrained motion axes after training. These findings suggest that moderate daily exercise does not enhance the rate of visual perceptual learning for an MDD task or the transfer of learning to an untrained motion axis. Furthermore, exercise performed immediately prior to a visual perceptual learning task may impair learning. Further research with larger groups is required in order to better understand these effects. Copyright © 2017 Elsevier Ltd. All rights reserved.
Garber, Carol Ewing; Blissmer, Bryan; Deschenes, Michael R; Franklin, Barry A; Lamonte, Michael J; Lee, I-Min; Nieman, David C; Swain, David P
2011-07-01
The purpose of this Position Stand is to provide guidance to professionals who counsel and prescribe individualized exercise to apparently healthy adults of all ages. These recommendations also may apply to adults with certain chronic diseases or disabilities, when appropriately evaluated and advised by a health professional. This document supersedes the 1998 American College of Sports Medicine (ACSM) Position Stand, "The Recommended Quantity and Quality of Exercise for Developing and Maintaining Cardiorespiratory and Muscular Fitness, and Flexibility in Healthy Adults." The scientific evidence demonstrating the beneficial effects of exercise is indisputable, and the benefits of exercise far outweigh the risks in most adults. A program of regular exercise that includes cardiorespiratory, resistance, flexibility, and neuromotor exercise training beyond activities of daily living to improve and maintain physical fitness and health is essential for most adults. The ACSM recommends that most adults engage in moderate-intensity cardiorespiratory exercise training for ≥30 min·d on ≥5 d·wk for a total of ≥150 min·wk, vigorous-intensity cardiorespiratory exercise training for ≥20 min·d on ≥3 d·wk (≥75 min·wk), or a combination of moderate- and vigorous-intensity exercise to achieve a total energy expenditure of ≥500-1000 MET·min·wk. On 2-3 d·wk, adults should also perform resistance exercises for each of the major muscle groups, and neuromotor exercise involving balance, agility, and coordination. Crucial to maintaining joint range of movement, completing a series of flexibility exercises for each the major muscle-tendon groups (a total of 60 s per exercise) on ≥2 d·wk is recommended. The exercise program should be modified according to an individual's habitual physical activity, physical function, health status, exercise responses, and stated goals. Adults who are unable or unwilling to meet the exercise targets outlined here still can benefit from engaging in amounts of exercise less than recommended. In addition to exercising regularly, there are health benefits in concurrently reducing total time engaged in sedentary pursuits and also by interspersing frequent, short bouts of standing and physical activity between periods of sedentary activity, even in physically active adults. Behaviorally based exercise interventions, the use of behavior change strategies, supervision by an experienced fitness instructor, and exercise that is pleasant and enjoyable can improve adoption and adherence to prescribed exercise programs. Educating adults about and screening for signs and symptoms of CHD and gradual progression of exercise intensity and volume may reduce the risks of exercise. Consultations with a medical professional and diagnostic exercise testing for CHD are useful when clinically indicated but are not recommended for universal screening to enhance the safety of exercise.
Therapeutic physical exercise in neural injury: friend or foe?
Park, Kanghui; Lee, Seunghoon; Hong, Yunkyung; Park, Sookyoung; Choi, Jeonghyun; Chang, Kyu-Tae; Kim, Joo-Heon; Hong, Yonggeun
2015-12-01
[Purpose] The intensity of therapeutic physical exercise is complex and sometimes controversial in patients with neural injuries. This review assessed whether therapeutic physical exercise is beneficial according to the intensity of the physical exercise. [Methods] The authors identified clinically or scientifically relevant articles from PubMed that met the inclusion criteria. [Results] Exercise training can improve body strength and lead to the physiological adaptation of skeletal muscles and the nervous system after neural injuries. Furthermore, neurophysiological and neuropathological studies show differences in the beneficial effects of forced therapeutic exercise in patients with severe or mild neural injuries. Forced exercise alters the distribution of muscle fiber types in patients with neural injuries. Based on several animal studies, forced exercise may promote functional recovery following cerebral ischemia via signaling molecules in ischemic brain regions. [Conclusions] This review describes several types of therapeutic forced exercise and the controversy regarding the therapeutic effects in experimental animals versus humans with neural injuries. This review also provides a therapeutic strategy for physical therapists that grades the intensity of forced exercise according to the level of neural injury.
Effectiveness and safety of high-intensity interval training in patients with type 2 diabetes.
Francois, Monique E; Little, Jonathan P
2015-01-01
IN BRIEF Recent research has shown that high-intensity interval training (HIIT) can promote improvements in glucose control and cardiovascular health in individuals with type 2 diabetes. This article summarizes the evidence and highlights the ways in which HIIT might be safely implemented as an adjunct to more traditional exercise approaches.
High-Frequency, Moderate-Intensity Training in Sedentary Middle-Aged Women.
ERIC Educational Resources Information Center
Johannessen, S.; And Others
1986-01-01
The effects of a five-day-a-week, moderate-intensity aerobic training program were studied in previously sedentary middle-aged women. After 10 weeks of graduated-length sessions of continuous exercise, the subjects showed a 20 percent improvement in maximal oxygen uptake but no change in body weight or composition. Results are discussed.…
Designing a Task Based Curriculum for Intensive Language Training
ERIC Educational Resources Information Center
Elshoff, Joost
2014-01-01
In this paper, I will report on the progress made in designing a curriculum for intensive language training, in which one-on-one instruction is combined with online exercises and drills to achieve an optimal blend of expertise and technology enhanced language learning. The Common European Framework of Reference (CEFR) has become a crucial tool for…
Effectiveness and Safety of High-Intensity Interval Training in Patients With Type 2 Diabetes
Francois, Monique E.
2015-01-01
IN BRIEF Recent research has shown that high-intensity interval training (HIIT) can promote improvements in glucose control and cardiovascular health in individuals with type 2 diabetes. This article summarizes the evidence and highlights the ways in which HIIT might be safely implemented as an adjunct to more traditional exercise approaches. PMID:25717277
Ried-Larsen, Mathias; Thomsen, Reimar W; Berencsi, Klara; Brinkløv, Cecilie F; Brøns, Charlotte; Valentiner, Laura S; Karstoft, Kristian; Langberg, Henning; Vaag, Allan A; Pedersen, Bente K; Nielsen, Jens S
2016-01-01
Promoting physical activity is a first-line choice of treatment for patients with type 2 diabetes (T2D). However, there is a need for more effective tools and technologies to facilitate structured lifestyle interventions and to ensure a better compliance, sustainability, and health benefits of exercise training in patients with T2D. The InterWalk initiative and its innovative application (app) for smartphones described in this study were developed by the Danish Centre for Strategic Research in T2D aiming at implementing, testing, and validating interval walking in patients with T2D in Denmark. The interval walking training approach consists of repetitive 3-minute cycles of slow and fast walking with simultaneous intensity guiding, based on the exercise capacity of the user. The individual intensity during slow and fast walking is determined by a short initial self-conducted and audio-guided fitness test, which combined with automated audio instructions strives to motivate the individual to adjust the intensity to the predetermined individualized walking intensities. The InterWalk app data are collected prospectively from all users and will be linked to the unique Danish nationwide databases and administrative registries, allowing extensive epidemiological studies of exercise in patients with T2D, such as the level of adherence to InterWalk training and long-term effectiveness surveys of important health outcomes, including cardiovascular morbidity and mortality. Currently, the InterWalk app has been downloaded by >30,000 persons, and the achieved epidemiological data quality is encouraging. Of the 9,466 persons providing personal information, 80% of the men and 62% women were overweight or obese (body mass index ≥25). The InterWalk project represents a contemporary technology-driven public health approach to monitor real-life exercise adherence and to propagate improved health through exercise intervention in T2D and in the general population. PMID:27354828
Hegge, Ann Magdalen; Myhre, Kenneth; Welde, Boye; Holmberg, Hans-Christer; Sandbakk, Øyvind
2015-01-01
In the current study, we evaluated the impact of exercise intensity on gender differences in upper-body poling among cross-country skiers, as well as the associated differences in aerobic capacity, maximal strength, body composition, technique and extent of training. Eight male and eight female elite skiers, gender-matched for level of performance by FIS points, carried out a 4-min submaximal, and a 3-min and 30-sec maximal all-out test of isolated upper-body double poling on a Concept2 ski ergometer. Maximal upper-body power and strength (1RM) were determined with a pull-down exercise. In addition, body composition was assessed with a DXA scan and training during the previous six months quantified from diaries. Relative to the corresponding female values (defined as 100%), the power output produced by the men was 88%, 95% and 108% higher during the submaximal, 3-min and 30-sec tests, respectively, and peak power in the pull-down strength exercise was 118% higher (all P<0.001). During the ergometer tests the work performed per cycle by the men was 97%, 102% and 91% greater, respectively, and the men elevated their cycle rate to a greater extent at higher intensities (both P<0.01). Furthermore, men had a 61% higher VO2peak, 58% higher 1RM, relatively larger upper-body mass (61% vs 56%) and reported considerably more upper-body strength and endurance training (all P<0.05). In conclusion, gender differences in upper-body power among cross-country skiers augmented as the intensity of exercise increased. The gender differences observed here are greater than those reported previously for both lower- and whole-body sports and coincided with greater peak aerobic capacity and maximal upper-body strength, relatively more muscle mass in the upper-body, and more extensive training of upper-body strength and endurance among the male skiers.
Hegge, Ann Magdalen; Myhre, Kenneth; Welde, Boye; Holmberg, Hans-Christer; Sandbakk, Øyvind
2015-01-01
In the current study, we evaluated the impact of exercise intensity on gender differences in upper-body poling among cross-country skiers, as well as the associated differences in aerobic capacity, maximal strength, body composition, technique and extent of training. Eight male and eight female elite skiers, gender-matched for level of performance by FIS points, carried out a 4-min submaximal, and a 3-min and 30-sec maximal all-out test of isolated upper-body double poling on a Concept2 ski ergometer. Maximal upper-body power and strength (1RM) were determined with a pull-down exercise. In addition, body composition was assessed with a DXA scan and training during the previous six months quantified from diaries. Relative to the corresponding female values (defined as 100%), the power output produced by the men was 88%, 95% and 108% higher during the submaximal, 3-min and 30-sec tests, respectively, and peak power in the pull-down strength exercise was 118% higher (all P<0.001). During the ergometer tests the work performed per cycle by the men was 97%, 102% and 91% greater, respectively, and the men elevated their cycle rate to a greater extent at higher intensities (both P<0.01). Furthermore, men had a 61% higher VO2peak, 58% higher 1RM, relatively larger upper-body mass (61% vs 56%) and reported considerably more upper-body strength and endurance training (all P<0.05). In conclusion, gender differences in upper-body power among cross-country skiers augmented as the intensity of exercise increased. The gender differences observed here are greater than those reported previously for both lower- and whole-body sports and coincided with greater peak aerobic capacity and maximal upper-body strength, relatively more muscle mass in the upper-body, and more extensive training of upper-body strength and endurance among the male skiers. PMID:26000713
Appetite, food intake and gut hormone responses to intense aerobic exercise of different duration.
Holliday, Adrian; Blannin, Andrew
2017-12-01
The purpose of the study is to investigate the effect of acute bouts of high-intensity aerobic exercise of differing durations on subjective appetite, food intake and appetite-associated hormones in endurance-trained males. Twelve endurance-trained males (age = 21 ± 2 years; BMI = 21.0 ± 1.6 kg/m 2 ; VO 2max = 61.6 ± 6.0 mL/kg/min) completed four trials, within a maximum 28 day period, in a counterbalanced order: resting (REST); 15 min exercise bout (15-min); 30 min exercise bout (30-min) and 45 min exercise bout (45-min). All exercise was completed on a cycle ergometer at an intensity of ~76% VO 2max Sixty minutes post exercise, participants consumed an ad libitum meal. Measures of subjective appetite and blood samples were obtained throughout the morning, with plasma analyzed for acylated ghrelin, total polypeptide tyrosine-tyrosine (PYY) and total glucagon-like peptide 1 (GLP-1) concentrations. The following results were obtained: Neither subjective appetite nor absolute food intake differed between trials. Relative energy intake (intake - expenditure) was significantly greater after REST (2641 ± 1616 kJ) compared with both 30-min (1039 ± 1520 kJ) and 45-min (260 ± 1731 kJ), and significantly greater after 15-min (2699 ± 1239 kJ) compared with 45-min (condition main effect, P < 0.001). GLP-1 concentration increased immediately post exercise in 30-min and 45-min, respectively (condition × time interaction, P < 0.001). Acylated ghrelin was transiently suppressed in all exercise trials (condition × time interaction, P = 0.011); the greatest, most enduring suppression, was observed in 45-min. PYY concentration was unchanged with exercise. In conclusion, high-intensity aerobic cycling lasting up to 45 min did not suppress subjective appetite or affect absolute food intake, but did reduce relative energy intake, in well-trained endurance athletes. Findings question the role of appetite hormones in regulating subjective appetite in the acute post-exercise period. © 2017 Society for Endocrinology.
Nyakayiru, Jean; Jonvik, Kristin L; Trommelen, Jorn; Pinckaers, Philippe J M; Senden, Joan M; van Loon, Luc J C; Verdijk, Lex B
2017-03-22
It has been shown that nitrate supplementation can enhance endurance exercise performance. Recent work suggests that nitrate ingestion can also increase intermittent type exercise performance in recreational athletes. We hypothesized that six days of nitrate supplementation can improve high-intensity intermittent type exercise performance in trained soccer players. Thirty-two male soccer players (age: 23 ± 1 years, height: 181 ± 1 m, weight: 77 ± 1 kg, playing experience: 15.2 ± 0.5 years, playing in the first team of a 2nd or 3rd Dutch amateur league club) participated in this randomized, double-blind cross-over study. All subjects participated in two test days in which high-intensity intermittent running performance was assessed using the Yo-Yo IR1 test. Subjects ingested nitrate-rich (140 mL; ~800 mg nitrate/day; BR) or a nitrate-depleted beetroot juice (PLA) for six subsequent days, with at least eight days of wash-out between trials. The distance covered during the Yo-Yo IR1 was the primary outcome measure, while heart rate (HR) was measured continuously throughout the test, and a single blood and saliva sample were collected just prior to the test. Six days of BR ingestion increased plasma and salivary nitrate and nitrite concentrations in comparison to PLA ( p < 0.001), and enhanced Yo-Yo IR1 test performance by 3.4 ± 1.3% (from 1574 ± 47 to 1623 ± 48 m; p = 0.027). Mean HR was lower in the BR (172 ± 2) vs. PLA trial (175 ± 2; p = 0.014). Six days of BR ingestion effectively improves high-intensity intermittent type exercise performance in trained soccer players.
Nyakayiru, Jean; Jonvik, Kristin L.; Trommelen, Jorn; Pinckaers, Philippe J. M.; Senden, Joan M.; van Loon, Luc J. C.; Verdijk, Lex B.
2017-01-01
It has been shown that nitrate supplementation can enhance endurance exercise performance. Recent work suggests that nitrate ingestion can also increase intermittent type exercise performance in recreational athletes. We hypothesized that six days of nitrate supplementation can improve high-intensity intermittent type exercise performance in trained soccer players. Thirty-two male soccer players (age: 23 ± 1 years, height: 181 ± 1 m, weight: 77 ± 1 kg, playing experience: 15.2 ± 0.5 years, playing in the first team of a 2nd or 3rd Dutch amateur league club) participated in this randomized, double-blind cross-over study. All subjects participated in two test days in which high-intensity intermittent running performance was assessed using the Yo-Yo IR1 test. Subjects ingested nitrate-rich (140 mL; ~800 mg nitrate/day; BR) or a nitrate-depleted beetroot juice (PLA) for six subsequent days, with at least eight days of wash-out between trials. The distance covered during the Yo-Yo IR1 was the primary outcome measure, while heart rate (HR) was measured continuously throughout the test, and a single blood and saliva sample were collected just prior to the test. Six days of BR ingestion increased plasma and salivary nitrate and nitrite concentrations in comparison to PLA (p < 0.001), and enhanced Yo-Yo IR1 test performance by 3.4 ± 1.3% (from 1574 ± 47 to 1623 ± 48 m; p = 0.027). Mean HR was lower in the BR (172 ± 2) vs. PLA trial (175 ± 2; p = 0.014). Six days of BR ingestion effectively improves high-intensity intermittent type exercise performance in trained soccer players. PMID:28327503
Provocative issues in heart disease prevention.
Juneau, Martin; Hayami, Douglas; Gayda, Mathieu; Lacroix, Sébastien; Nigam, Anil
2014-12-01
In this article, new areas of cardiovascular (CV) prevention and rehabilitation research are discussed: high-intensity interval training (HIIT) and new concepts in nutrition. HIIT consists of brief periods of high-intensity exercise interspersed by periods of low-intensity exercise or rest. The optimal mode according our work (15-second exercise intervals at peak power with passive recovery intervals of the same duration) is associated with longer total exercise time, similar time spent near peak oxygen uptake (VO2 peak) VO2 peak, and lesser perceived exertion relative to other protocols that use longer intervals and active recovery periods. Evidence also suggests that compared with moderate-intensity continuous exercise training, HIIT has superior effects on cardiorespiratory function and on the attenuation of multiple cardiac and peripheral abnormalities. With respect to nutrition, a growing body of evidence suggests that the gut microbiota is influenced by lifestyle choices and might play a pivotal role in modulating CV disease development. For example, recent evidence linking processed (but not unprocessed) meats to increased CV risk pointed to the gut microbial metabolite trimethylamine N-oxide as a potential culprit. In addition, altered gut microbiota could also mediate the proinflammatory and cardiometabolic abnormalities associated with excess added free sugar consumption, and in particular high-fructose corn syrup. Substantially more research is required, however, to fully understand how and which alterations in gut flora can prevent or lead to CV disease and other chronic illnesses. We conclude with thoughts about the appropriate role for HIIT in CV training and future research in the role of gut flora-directed interventions in CV prevention. Copyright © 2014 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Lin, Yin-Liang; Karduna, Andrew
2016-10-01
Proprioception is essential for shoulder neuromuscular control and shoulder stability. Exercise of the rotator cuff and scapulothoracic muscles is an important part of shoulder rehabilitation. The purpose of this study was to investigate the effect of rotator cuff and scapulothoracic muscle exercises on shoulder joint position sense. Thirty-six healthy subjects were recruited and randomly assigned into either a control or training group. The subjects in the training group received closed-chain and open-chain exercises focusing on rotator cuff and scapulothoracic muscles for four weeks. Shoulder joint position sense errors in elevation, including the humerothoracic, glenohumeral and scapulothoracic joints, was measured. After four weeks of exercise training, strength increased overall in the training group, which demonstrated the effect of exercise on the muscular system. However, the changes in shoulder joint position sense errors in any individual joint of the subjects in the training group were not different from those of the control subjects. Therefore, exercises specifically targeting individual muscles with low intensity may not be sufficient to improve shoulder joint position sense in healthy subjects. Future work is needed to further investigate which types of exercise are more effective in improving joint position sense, and the mechanisms associated with those changes. Copyright © 2016 Elsevier B.V. All rights reserved.
Liberman, Keliane; Forti, Louis N; Beyer, Ingo; Bautmans, Ivan
2017-01-01
This systematic review reports the most recent literature regarding the effects of physical exercise on muscle strength, body composition, physical functioning and inflammation in older adults. All articles were assessed for methodological quality and where possible effect size was calculated. Thirty-four articles were included - four involving frail, 24 healthy and five older adults with a specific disease. One reported on both frail and nonfrail patients. Several types of exercise were used: resistance training, aerobic training, combined resistance training and aerobic training and others. In frail older persons, moderate-to-large beneficial exercise effects were noted on inflammation, muscle strength and physical functioning. In healthy older persons, effects of resistance training (most frequently investigated) on inflammation or muscle strength can be influenced by the exercise modalities (intensity and rest interval between sets). Muscle strength seemed the most frequently used outcome measure, with moderate-to-large effects obtained regardless the exercise intervention studied. Similar effects were found in patients with specific diseases. Exercise has moderate-to-large effects on muscle strength, body composition, physical functioning and inflammation in older adults. Future studies should focus on the influence of specific exercise modalities and target the frail population more.
Lin, Yin-Liang; Karduna, Andrew
2016-01-01
Proprioception is essential for shoulder neuromuscular control and shoulder stability. Exercise of the rotator cuff and scapulothoracic muscles is an important part of shoulder rehabilitation. The purpose of this study was to investigate the effect of rotator cuff and scapulothoracic muscle exercises on shoulder joint position sense. Thirty-six healthy subjects were recruited and randomly assigned into either a control or training group. The subjects in the training group received closed-chain and open-chain exercises focusing on rotator cuff and scapulothoracic muscles for four weeks. Shoulder joint position sense errors in elevation, including the humerothoracic, glenohumeral and scapulothoracic joints, was measured. After four weeks of exercise training, strength increased overall in the training group, which demonstrated the effect of exercise on the muscular system. However, the changes in shoulder joint position sense errors in any individual joint of the subjects in the training group were not different from those of the control subjects. Therefore, exercises specifically targeting individual muscles with low intensity may not be sufficient to improve shoulder joint position sense in healthy subjects. Future work is needed to further investigate which types of exercise are more effective in improving joint position sense, and the mechanisms associated with those changes. PMID:27475714
Christensen, Peter M.; Bangsbo, Jens
2016-01-01
Athletes in intense endurance sports (e.g., 4000-m track cycling) often perform maximally (~4 min) twice a day due to qualifying and finals being placed on the same day. The purpose of the present study was to evaluate repeated performance on the same day in a competitive setting (part A) and the influence from prior intense exercise on subsequent performance and physiological response to moderate and maximal exercise with and without the use of cold water immersion (CWI) in recovery (part B). In part A, performance times during eight World championships for male track cyclists were extracted from the qualifying and final races in 4000-m individual pursuit. In part B, twelve trained cyclists with an average (±SD) ⩒O2-peak of 67 ± 5 mL/min/kg performed a protocol mimicking a qualifying race (QUAL) followed 3 h later by a performance test (PT) with each exercise period encompassing intense exercise for ~4 min preceded by an identical warm-up period in both a control setting (CON) and using cold water immersion in recovery (CWI; 15 min at 15°C). Performance was lowered (P < 0.001) from qualification to finals (259 ± 3 vs. 261 ± 3 s) for the track cyclists during World championships in part A. In part B, mean power in PT was not different in CWI relative to CON (406 ± 43 vs. 405 ± 38 W). Peak ⩒O2 (5.04 ± 0.50 vs. 5.00 ± 0.49 L/min) and blood lactate (13 ± 3 vs. 14 ± 3 mmol/L) did not differ between QUAL and PT and cycling economy and potassium handling was not impaired by prior intense exercise. In conclusion, performance is reduced with repeated maximal exercise in world-class track cyclists during 4000-m individual pursuit lasting ~4 min, however prior intense exercise do not appear to impair peak ⩒O2, peak lactate, cycling economy, or potassium handling in trained cyclists and CWI in recovery does not improve subsequent performance. PMID:27445857
Fueling strategies to optimize performance: training high or training low?
Burke, L M
2010-10-01
Availability of carbohydrate as a substrate for the muscle and central nervous system is critical for the performance of both intermittent high-intensity work and prolonged aerobic exercise. Therefore, strategies that promote carbohydrate availability, such as ingesting carbohydrate before, during and after exercise, are critical for the performance of many sports and a key component of current sports nutrition guidelines. Guidelines for daily carbohydrate intakes have evolved from the "one size fits all" recommendation for a high-carbohydrate diets to an individualized approach to fuel needs based on the athlete's body size and exercise program. More recently, it has been suggested that athletes should train with low carbohydrate stores but restore fuel availability for competition ("train low, compete high"), based on observations that the intracellular signaling pathways underpinning adaptations to training are enhanced when exercise is undertaken with low glycogen stores. The present literature is limited to studies of "twice a day" training (low glycogen for the second session) or withholding carbohydrate intake during training sessions. Despite increasing the muscle adaptive response and reducing the reliance on carbohydrate utilization during exercise, there is no clear evidence that these strategies enhance exercise performance. Further studies on dietary periodization strategies, especially those mimicking real-life athletic practices, are needed. © 2010 John Wiley & Sons A/S.
Promoting training adaptations through nutritional interventions.
Hawley, John A; Tipton, Kevin D; Millard-Stafford, Mindy L
2006-07-01
Training and nutrition are highly interrelated in that optimal adaptation to the demands of repeated training sessions typically requires a diet that can sustain muscle energy reserves. As nutrient stores (i.e. muscle and liver glycogen) play a predominant role in the performance of prolonged, intense, intermittent exercise typical of the patterns of soccer match-play, and in the replenishment of energy reserves for subsequent training sessions, the extent to which acutely altering substrate availability might modify the training impulse has been a key research area among exercise physiologists and sport nutritionists for several decades. Although the major perturbations to cellular homeostasis and muscle substrate stores occur during exercise, the activation of several major signalling pathways important for chronic training adaptations take place during the first few hours of recovery, returning to baseline values within 24 h after exercise. This has led to the paradigm that many chronic training adaptations are generated by the cumulative effects of the transient events that occur during recovery from each (acute) exercise bout. Evidence is accumulating that nutrient supplementation can serve as a potent modulator of many of the acute responses to both endurance and resistance training. In this article, we review the molecular and cellular events that occur in skeletal muscle during exercise and subsequent recovery, and the potential for nutrient supplementation (e.g. carbohydrate, fat, protein) to affect many of the adaptive responses to training.
Rutledge, Dana N; Jones, C Jessie
2007-12-01
We determined--in women with fibromyalgia (FM)--effects of essential oils used with a 12-week exercise program on exercise volume, pain, physical performance, and physical function. This was a randomized clinical trial comparing 024 essential oil with sham oil combined with exercise. SETTINGS included community sites in southern California. The study included 20 women randomized to 024 oil, 23 to sham oil. Women were trained in oil application before exercise, at bedtime on exercise days; the 12-week program included weekly group sessions with trained leaders guided by a prerecorded regimen (allowing choice of program level) plus 2 days of home exercise with the recorded regimen. Primary: Exercise volume (number of days exercised multiplied by exercise level--intensity and duration). Secondary: Pain (Brief Pain Inventory), measures of physical performance (30-second chair stands, 6-minute walk, multidimensional balance), and self-reported physical function (Composite Physical Function scale). The average participant was 54 years old, had some college education, was married, Caucasian, and minimally/mildly depressed. There was no significant difference in exercise volume between women using 024 as compared with those using sham oil after 12 weeks (depression as covariate). There were no significant group nor pre- to postexercise changes in pain intensity or interference. There were greater positive changes in 30-second chair stands, 6-minute walk distance, and multidimensional balance scores in the 024 group than in the sham group, but these were not significant. The counterirritant 024 oil was not different from the sham oil in its effect on exercise volume (frequency, exercise level--intensity and duration) for women with FM. It is unknown whether 024 actually decreases local pain when used with exercise. Increases in physical function found, while not significant, may be attributable to the exercise regimen or to the interaction of the oils and exercise regimen.
Impact of a cafeteria diet and daily physical training on the rat serum metabolome
Suárez-García, Susana; del Bas, Josep M.; Caimari, Antoni; Escorihuela, Rosa M.; Arola, Lluís; Suárez, Manuel
2017-01-01
Regular physical activity and healthy dietary patterns are commonly recommended for the prevention and treatment of metabolic syndrome (MetS), which is diagnosed at an alarmingly increasing rate, especially among adolescents. Nevertheless, little is known regarding the relevance of physical exercise on the modulation of the metabolome in healthy people and those with MetS. We have previously shown that treadmill exercise ameliorated different symptoms of MetS. The aim of this study was to investigate the impact of a MetS-inducing diet and different intensities of aerobic training on the overall serum metabolome of adolescent rats. For 8 weeks, young rats were fed either standard chow (ST) or cafeteria diet (CAF) and were subjected to a daily program of training on a treadmill at different speeds. Non-targeted metabolomics was used to identify changes in circulating metabolites, and a combination of multivariate analysis techniques was implemented to achieve a holistic understanding of the metabolome. Among all the identified circulating metabolites influenced by CAF, lysophosphatidylcholines were the most represented family. Serum sphingolipids, bile acids, acylcarnitines, unsaturated fatty acids and vitamin E and A derivatives also changed significantly in CAF-fed rats. These findings suggest that an enduring systemic inflammatory state is induced by CAF. The impact of physical training on the metabolome was less striking than the impact of diet and mainly altered circulating bile acids and glycerophospholipids. Furthermore, the serum levels of monocyte chemoattractant protein-1 were increased in CAF-fed rats, and C-reactive protein was decreased in trained groups. The leptin/adiponectin ratio, a useful marker of MetS, was increased in CAF groups, but decreased in proportion to training intensity. Multivariate analysis revealed that ST-fed animals were more susceptible to exercise-induced changes in metabolites than animals with MetS, in which moderate-intensity seems more effective than high-intensity training. Our results indicate that CAF has a strong negative impact on the metabolome of animals that is difficult to reverse by daily exercise. PMID:28192465
Impact of a cafeteria diet and daily physical training on the rat serum metabolome.
Suárez-García, Susana; Del Bas, Josep M; Caimari, Antoni; Escorihuela, Rosa M; Arola, Lluís; Suárez, Manuel
2017-01-01
Regular physical activity and healthy dietary patterns are commonly recommended for the prevention and treatment of metabolic syndrome (MetS), which is diagnosed at an alarmingly increasing rate, especially among adolescents. Nevertheless, little is known regarding the relevance of physical exercise on the modulation of the metabolome in healthy people and those with MetS. We have previously shown that treadmill exercise ameliorated different symptoms of MetS. The aim of this study was to investigate the impact of a MetS-inducing diet and different intensities of aerobic training on the overall serum metabolome of adolescent rats. For 8 weeks, young rats were fed either standard chow (ST) or cafeteria diet (CAF) and were subjected to a daily program of training on a treadmill at different speeds. Non-targeted metabolomics was used to identify changes in circulating metabolites, and a combination of multivariate analysis techniques was implemented to achieve a holistic understanding of the metabolome. Among all the identified circulating metabolites influenced by CAF, lysophosphatidylcholines were the most represented family. Serum sphingolipids, bile acids, acylcarnitines, unsaturated fatty acids and vitamin E and A derivatives also changed significantly in CAF-fed rats. These findings suggest that an enduring systemic inflammatory state is induced by CAF. The impact of physical training on the metabolome was less striking than the impact of diet and mainly altered circulating bile acids and glycerophospholipids. Furthermore, the serum levels of monocyte chemoattractant protein-1 were increased in CAF-fed rats, and C-reactive protein was decreased in trained groups. The leptin/adiponectin ratio, a useful marker of MetS, was increased in CAF groups, but decreased in proportion to training intensity. Multivariate analysis revealed that ST-fed animals were more susceptible to exercise-induced changes in metabolites than animals with MetS, in which moderate-intensity seems more effective than high-intensity training. Our results indicate that CAF has a strong negative impact on the metabolome of animals that is difficult to reverse by daily exercise.
Aerobic Exercise Training and Arterial Changes in African-Americans versus Caucasians
Ranadive, Sushant M.; Yan, Huimin; Lane, Abbi D.; Kappus, Rebecca M.; Cook, Marc D.; Sun, Peng; Harvey, Idethia; Ploutz-Synder, Robert; Woods, Jeffrey A.; Wilund, Kenneth R.; Fernhall, Bo
2015-01-01
African-Americans (AA) have increased carotid artery intima-media thickness and decreased vascular function compared to their Caucasian (CA) peers. Aerobic exercise prevents and potentially reverses arterial dysfunction. Purpose The purpose of this study was to examine the effect of 8 weeks of moderate-high intensity aerobic training in young healthy sedentary AA and CA men and women. Methods Sixty-four healthy volunteers (men = 28, women = 36) with mean age = 24 underwent measures of arterial structure, function and blood pressure variables at baseline, post-4 week control period and 8 weeks post-training. Results There was a significant increase in VO2peak amongst both groups post exercise training. Brachial systolic blood pressure decreased significantly following control period in both groups but not following exercise training. Carotid pulse pressure decreased significantly in both groups post exercise training as compared to baseline. There was no change in any of the other blood pressure variables. AAs had a higher intima-media thickness at baseline and post-control period, but significantly decreased following exercise training compared to CAs. AAs had significantly lower baseline forearm blood flow and RH compared to CAs, but exercise training had no effect on these variables. There was no significant difference in arterial stiffness (cPWV) and wave-reflection (AIx) between the two groups at any time point. Conclusions This is the first study to show that, 8 weeks of aerobic exercise training causes significant improvement in the arterial structure in young, healthy AAs, making it comparable to the CAs and with minimal effects on blood pressure variables. PMID:26225767
Aerobic Exercise Training and Arterial Changes in African Americans versus Caucasians.
Ranadive, Sushant M; Yan, Huimin; Lane, Abbi D; Kappus, Rebecca M; Cook, Marc D; Sun, Peng; Harvey, Idethia; Ploutz-Synder, Robert; Woods, Jeffrey A; Wilund, Kenneth R; Fernhall, B O
2016-01-01
African Americans (AA) have increased carotid artery intima-media thickness and decreased vascular function compared with their Caucasian (CA) peers. Aerobic exercise prevents and potentially reverses arterial dysfunction. The purpose of this study was to examine the effect of 8 wk of moderate- to high-intensity aerobic training in young healthy sedentary AA and CA men and women. Sixty-four healthy volunteers (men, 28; women, 36) with mean age 24 yr underwent measures of arterial structure, function, and blood pressure (BP) variables at baseline, after the 4-wk control period, and 8 wk after training. There was a significant increase in VO2peak among both groups after exercise training. Brachial systolic BP decreased significantly after the control period in both groups but not after exercise training. Carotid pulse pressure decreased significantly in both groups after exercise training as compared with that in baseline. There was no change in any of the other BP variables. AA had higher intima-media thickness at baseline and after the control period but it significantly decreased after exercise training compared with that of CA. AA had significantly lower baseline forearm blood flow and reactive hyperemia compared with those of CA, but exercise training had no effect on these variables. There was no significant difference in arterial stiffness (central pulse wave velocity) and wave-reflection (augmentation index) between the two groups at any time point. This is the first study to show that 8 wk of aerobic exercise training causes significant improvement in the arterial structure in young, healthy AA, making it comparable with the CA and with minimal effects on BP variables.
Hettinga, Dries M; Andrews, Brian J
2008-01-01
A lesion in the spinal cord leads in most cases to a significant reduction in active muscle mass, whereby the paralysed muscles cannot contribute to oxygen consumption (VO2) during exercise. Consequently, persons with spinal cord injury (SCI) can only achieve high VO2 values by excessively stressing the upper body musculature, which might increase the risk of musculoskeletal overuse injury. Alternatively, the muscle mass involved may be increased by using functional electrical stimulation (FES). FES-assisted cycling, FES-cycling combined with arm cranking (FES-hybrid exercise) and FES-rowing have all been suggested as candidates for cardiovascular training in SCI. In this article, we review the levels of VO2 (peak [VO2peak] and sub-peak [VO2sub-peak]) that have been reported for SCI subjects using these FES exercise modalities. A systematic literature search in MEDLINE, EMBASE, AMED, CINAHL, SportDiscus and the authors' own files revealed 35 studies that reported on 499 observations of VO2 levels achieved during FES-exercise in SCI. The results show that VO2peak during FES-rowing (1.98 L/min, n = 17; 24.1 mL/kg/min, n = 11) and FES-hybrid exercise (1.78 L/min, n = 67; 26.5 mL/kg/min, n = 35) is considerably higher than during FES-cycling (1.05 L/min, n = 264; 14.3 mL/kg/min, n = 171). VO2sub-peak values during FES-hybrid exercise were higher than during FES-cycling. FES-exercise training can produce large increases in VO2peak; the included studies report average increases of +11% after FES-rowing training, +12% after FES-hybrid exercise training and +28% after FES-cycling training. This review shows that VO2 during FES-rowing or FES-hybrid exercise is considerably higher than during FES-cycling. These observations are confirmed by a limited number of direct comparisons; larger studies to test the differences in effectiveness of the various types of FES-exercise as cardiovascular exercise are needed. The results to date suggest that FES-rowing and FES-hybrid are more suited for high-intensity, high-volume exercise training than FES-cycling. In able-bodied people, such exercise programmes have shown to result in superior health and fitness benefits. Future research should examine whether similar high-intensity and high-volume exercise programmes also give persons with SCI superior fitness and health benefits. This kind of research is very timely given the high incidence of physical inactivity-related health conditions in the aging SCI population.
Long-term exercise-specific neuroprotection in spinal muscular atrophy-like mice.
Chali, Farah; Desseille, Céline; Houdebine, Léo; Benoit, Evelyne; Rouquet, Thaïs; Bariohay, Bruno; Lopes, Philippe; Branchu, Julien; Della Gaspera, Bruno; Pariset, Claude; Chanoine, Christophe; Charbonnier, Frédéric; Biondi, Olivier
2016-04-01
The real impact of physical exercise parameters, i.e. intensity, type of contraction and solicited energetic metabolism, on neuroprotection in the specific context of neurodegeneration remains poorly explored. In this study behavioural, biochemical and cellular analyses were conducted to compare the effects of two different long-term exercise protocols, high intensity swimming and low intensity running, on motor units of a type 3 spinal muscular atrophy (SMA)-like mouse model. Our data revealed a preferential SMA-induced death of intermediate and fast motor neurons which was limited by the swimming protocol only, suggesting a close relationship between neuron-specific protection and their activation levels by specific exercise. The exercise-induced neuroprotection was independent of SMN protein expression and associated with specific metabolic and behavioural adaptations with notably a swimming-induced reduction of muscle fatigability. Our results provide new insight into the motor units' adaptations to different physical exercise parameters and will contribute to the design of new active physiotherapy protocols for patient care. Spinal muscular atrophy (SMA) is a group of autosomal recessive neurodegenerative diseases differing in their clinical outcome, characterized by the specific loss of spinal motor neurons, caused by insufficient level of expression of the protein survival of motor neuron (SMN). No cure is at present available for SMA. While physical exercise might represent a promising approach for alleviating SMA symptoms, the lack of data dealing with the effects of different exercise types on diseased motor units still precludes the use of active physiotherapy in SMA patients. In the present study, we have evaluated the efficiency of two long-term physical exercise paradigms, based on either high intensity swimming or low intensity running, in alleviating SMA symptoms in a mild type 3 SMA-like mouse model. We found that 10 months' physical training induced significant benefits in terms of resistance to muscle damage, energetic metabolism, muscle fatigue and motor behaviour. Both exercise types significantly enhanced motor neuron survival, independently of SMN expression, leading to the maintenance of neuromuscular junctions and skeletal muscle phenotypes, particularly in the soleus, plantaris and tibialis of trained mice. Most importantly, both exercises significantly improved neuromuscular excitability properties. Further, all these training-induced benefits were quantitatively and qualitatively related to the specific characteristics of each exercise, suggesting that the related neuroprotection is strongly dependent on the specific activation of some motor neuron subpopulations. Taken together, the present data show significant long-term exercise benefits in type 3 SMA-like mice providing important clues for designing rehabilitation programmes in patients. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Kuo, Chia-Hua; Harris, M Brennan
2016-07-01
Fat burning, defined by fatty acid oxidation into carbon dioxide, is the most described hypothesis to explain the actual abdominal fat reducing outcome of exercise training. This hypothesis is strengthened by evidence of increased whole-body lipolysis during exercise. As a result, aerobic training is widely recommended for obesity management. This intuition raises several paradoxes: first, both aerobic and resistance exercise training do not actually elevate 24 h fat oxidation, according to data from chamber-based indirect calorimetry. Second, anaerobic high-intensity intermittent training produces greater abdominal fat reduction than continuous aerobic training at similar amounts of energy expenditure. Third, significant body fat reduction in athletes occurs when oxygen supply decreases to inhibit fat burning during altitude-induced hypoxia exposure at the same training volume. Lack of oxygen increases post-meal blood distribution to human skeletal muscle, suggesting that shifting the postprandial hydrocarbons towards skeletal muscle away from adipose tissue might be more important than fat burning in decreasing abdominal fat. Creating a negative energy balance in fat cells due to competition of skeletal muscle for circulating hydrocarbon sources may be a better model to explain the abdominal fat reducing outcome of exercise than the fat-burning model.
Ichinose, Takashi; Arai, Natsuko; Nagasaka, Tomoaki; Asano, Masaya; Hashimoto, Kenji
2012-01-01
Not only increasing body carbohydrate (CHO) stores before exercise but also suppressing CHO oxidation during exercise is important for improving endurance performance. We tested the hypothesis that intensive high-fat ingestion in the early stage of recovery from exercise training (ET) for 2 d would suppress CHO oxidation during exercise by increasing whole body lipolysis and/or fat oxidation. In a randomized crossover design, on days 1 and 2, six male subjects performed cycle ET at 50% peak oxygen consumption (VO(2 peak)) for 60-90 min, and consumed a control diet (CON: 1,224 kcal, 55% carbohydrate, 30% fat) or the same diet supplemented with high fat (HF: 1,974 kcal, 34% carbohydrate, 56% fat) 1 h after ET, with the diet other than post-ET similar in both trials. On day 3, subjects performed cycle exercise at 65% VO(2 peak) until exhaustion. Exercise time to exhaustion was longer in the HF trial than in the CON trial (CON: 48.9 ± 6.7 vs. HF: 55.8 ± 7.7 min, p<0.05). In the HF trial, total fat oxidation until exhaustion was higher, accompanied by higher post-exercise plasma glycerol concentration, than in the CON trial (CON: 213 ± 54 vs. HF: 286 ± 63 kcal, p<0.05), whereas total carbohydrate oxidation until exhaustion was not different between trials. These results suggest that intensive high-fat ingestion in the early stage of recovery from ET for a few days until the day before exercise was an effective means of eliciting a CHO-sparing effect during exercise by enhancing fat metabolism.
Grant, Catharina C; Mongwe, Lot; Janse van Rensburg, Dina C; Fletcher, Lizelle; Wood, Paola S; Terblanche, Etrisia; du Toit, Peet J
2016-09-01
Grant, CC, Mongwe, L, Janse van Rensburg, DC, Fletcher, L, Wood, PS, Terblanche, E, and du Toit, PJ. The difference between exercise-induced autonomic and fitness changes measured after 12 and 20 weeks of medium-to-high intensity military training. J Strength Cond Res 30(9): 2453-2459, 2016-The aim of this study was to compare the physical fitness, based on VO2max and exercise-induced cardiac autonomic changes, measured by heart rate variability (HRV) of 12 weeks with 20 weeks of training in the South African National Defence Force. Recruits (n = 154) participated in a medium-to-high intensity exercise intervention (daily energy expenditure: 8,485 kJ·d). The significant effect on VO2max between weeks 1 and 12 (48.57, SD = 9.25 vs. 53.36, SD = 7.21] did not continue during weeks 12-20 (53.36, SD = 7.21 vs. 53.87, SD = 7.87). No changes in the supine low frequency (LF)/high frequency (HF) (0.48, SD = 0.51 vs. 0.41, SD = 0.64) or the standing LF/HF (4.02, SD = 5.14 vs. 3.91, SD = 5.28), an indicator of autonomic balance and a possible indicator of overtraining syndrome, suggests that overtraining did not take place during weeks 12-20. This was confirmed with further decreases in supine and standing heart rate. However, the power of the vagal-induced variability continued to increase after 12 weeks. Increased vagal influence without concurrent change in autonomic balance may be interpreted as decreased sympathetic cardiac control. It is important to note that although no fitness changes were detected, positive cardiac autonomic conditioning did continue between weeks 12 and 20, as measured by increased vagal-induced HRV and decreased sympathetic influence on cardiac control. Results may be extrapolated to training in the normal population/athletes after a medium-to-high intensity exercise program, as this intervention was a closely monitored and standardized exercise program.
Drigny, Joffrey; Gremeaux, Vincent; Dupuy, Olivier; Gayda, Mathieu; Bherer, Louis; Juneau, Martin; Nigam, Anil
2014-11-01
To assess the effect of a 4-month high-intensity interval training programme on cognitive functioning, cerebral oxygenation, central haemodynamic and cardiometabolic parameters and aerobic capacity in obese patients. Cognitive functioning, cerebral oxygenation, central haemodynamic, cardiometabolic and exercise para-meters were measured before and after a 4-month high-intensity interval training programme in 6 obese patients (mean age 49 years (standard deviation 8), fat mass percentage 31 ± 7%). Body composition (body mass, total and trunk fat mass, waist circumference) and fasting insulin were improved after the programme (p < 0.05). V. O2 and power output at ventilatory threshold and peak power output were improved after the programme (p < 0.05). Cognitive functioning, including short-term and verbal memory, attention and processing speed, was significantly improved after training (p < 0.05). Cerebral oxygen extraction was also improved after training (p < 0.05). These preliminary results indicate that a 4-month high-intensity interval training programme in obese patients improved both cognitive functioning and cere-bral oxygen extraction, in association with improved exercise capacity and body composition.
The effects of intensity on V̇O2 kinetics during incremental free swimming.
de Jesus, Kelly; Sousa, Ana; de Jesus, Karla; Ribeiro, João; Machado, Leandro; Rodríguez, Ferran; Keskinen, Kari; Vilas-Boas, João Paulo; Fernandes, Ricardo J
2015-09-01
Swimming and training are carried out with wide variability in distances and intensities. However, oxygen uptake kinetics for the intensities seen in swimming has not been reported. The purpose of this study was to assess and compare the oxygen uptake kinetics throughout low-moderate to severe intensities during incremental swimming exercise. We hypothesized that the oxygen uptake kinetic parameters would be affected by swimming intensity. Twenty male trained swimmers completed an incremental protocol of seven 200-m crawl swims to exhaustion (0.05 m·s(-1) increments and 30-s intervals). Oxygen uptake was continuously measured by a portable gas analyzer connected to a respiratory snorkel and valve system. Oxygen uptake kinetics was assessed using a double exponential regression model that yielded both fast and slow components of the response of oxygen uptake to exercise. From low-moderate to severe swimming intensities changes occurred for the first and second oxygen uptake amplitudes (P ≤ 0.04), time constants (P = 0.01), and time delays (P ≤ 0.02). At the heavy and severe intensities, a notable oxygen uptake slow component (>255 mL·min(-1)) occurred in all swimmers. Oxygen uptake kinetics whilst swimming at different intensities offers relevant information regarding cardiorespiratory and metabolic stress that might be useful for appropriate performance diagnosis and training prescription.
Group aquatic training improves gait efficiency in adolescents with cerebral palsy.
Ballaz, Laurent; Plamondon, Suzanne; Lemay, Martin
2011-01-01
To evaluate the effect and feasibility of a 10-week group aquatic training programme on gait efficiency in adolescents with cerebral palsy (CP). The secondary purpose was to determine the exercise intensity during aquatic training in a heterogeneous group of adolescents with CP and to investigate the impact of the training programme on the musculoskeletal system. Twelve ambulatory adolescents with spastic CP were recruited. They participated in 20 aquatic training sessions (45 min twice a week). Three physical therapists and a sports teacher supervised the training sessions. Participants wore a heart rate monitor to assess sessions' intensity and a floatation device as appropriate. The primary outcome measure was gait efficiency as measured by the gait energy expenditure index (EEI). The secondary measures were (1) gait spatiotemporal parameters, (2) maximal isometric knee strength and (3) gross motor function. Ten adolescents completed the training programme. No adverse effect was reported. Average exercise intensity was mild to moderate for more than half of the training session. A significant reduction of the EEI and the heart rate during walking was observed following the training programme. No significant change was observed on secondary outcome measures. Group aquatic training increases gait efficiency in adolescents with CP. This improvement is related to systemic cardiorespiratory adaptations. Group aquatic training programme is feasible in adolescents presenting CP at different levels of severity.
Sex impacts the flow-mediated dilation response to acute aerobic exercise in older adults.
Yoo, Jeung-Ki; Pinto, Michelle M; Kim, Han-Kyul; Hwang, Chueh-Lung; Lim, Jisok; Handberg, Eileen M; Christou, Demetra D
2017-05-01
There is growing evidence of sex differences in the chronic effect of aerobic exercise on endothelial function (flow-mediated dilation; FMD) in older adults, but whether there are sex differences also in the acute effect of aerobic exercise on FMD in older adults is unknown. The purpose of this study was to test the hypothesis that sex modulates the FMD response to acute aerobic exercise in older adults. Thirteen older men and fifteen postmenopausal women (67±1 vs. 65±2years, means±SE, P=0.6), non-smokers, free of major clinical disease, participated in this randomized crossover study. Brachial artery FMD was measured: 1) prior to exercise; 2) 20min after a single bout of high-intensity interval training (HIIT; 40min; 4×4 intervals 90% peak heart rate (HRpeak)), moderate-intensity continuous training (MICT; 47min 70% HRpeak) and low-intensity continuous training (LICT; 47min 50% HRpeak) on treadmill; and 3) following 60-min recovery from exercise. In older men, FMD was attenuated by 45% following HIIT (5.95±0.85 vs. 3.27±0.52%, P=0.003) and by 37% following MICT (5.97±0.87 vs. 3.73±0.47%, P=0.03; P=0.9 for FMD response to HIIT vs. MICT) and was normalized following 60-min recovery (P=0.99). In postmenopausal women, FMD did not significantly change in response to HIIT (4.93±0.55 vs. 6.31±0.57%, P=0.14) and MICT (5.32±0.62 vs. 5.60±0.68%, P=0.99). In response to LICT, FMD did not change in postmenopausal women nor older men (5.21±0.64 vs. 6.02±0.73%, P=0.7 and 5.70±0.80 vs. 5.55±0.67%, P=0.99). In conclusion, sex and exercise intensity influence the FMD response to acute aerobic exercise in older adults. Copyright © 2017 Elsevier Inc. All rights reserved.
Optimizing Cardiovascular Benefits of Exercise: A Review of Rodent Models
Davis, Brittany; Moriguchi, Takeshi; Sumpio, Bauer
2013-01-01
Although research unanimously maintains that exercise can ward off cardiovascular disease (CVD), the optimal type, duration, intensity, and combination of forms are yet not clear. In our review of existing rodent-based studies on exercise and cardiovascular health, we attempt to find the optimal forms, intensities, and durations of exercise. Using Scopus and Medline, a literature review of English language comparative journal studies of cardiovascular benefits and exercise was performed. This review examines the existing literature on rodent models of aerobic, anaerobic, and power exercise and compares the benefits of various training forms, intensities, and durations. The rodent studies reviewed in this article correlate with reports on human subjects that suggest regular aerobic exercise can improve cardiac and vascular structure and function, as well as lipid profiles, and reduce the risk of CVD. Findings demonstrate an abundance of rodent-based aerobic studies, but a lack of anaerobic and power forms of exercise, as well as comparisons of these three components of exercise. Thus, further studies must be conducted to determine a truly optimal regimen for cardiovascular health. PMID:24436579
Updating Tradition: Necessary Changes to Marine Corps Recruit Training
2006-03-31
Crucible does retain some of its initial value. From a training standpoint, the free play conducted at pre-planned stations makes the Crucible the...players, and conducting debriefs, the interior guard package has the potential to become an excellent small-unit leadership exercise. Free play during...Those combat skills, rehearsed with the same intensity as close-order drill, can be reinforced during free play exercises conducted during the
Devin, James L; Sax, Andrew T; Hughes, Gareth I; Jenkins, David G; Aitken, Joanne F; Chambers, Suzanne K; Dunn, Jeffrey C; Bolam, Kate A; Skinner, Tina L
2016-06-01
Following colorectal cancer diagnosis and anti-cancer therapy, declines in cardiorespiratory fitness and body composition lead to significant increases in morbidity and mortality. There is increasing interest within the field of exercise oncology surrounding potential strategies to remediate these adverse outcomes. This study compared 4 weeks of moderate-intensity exercise (MIE) and high-intensity exercise (HIE) training on peak oxygen consumption (V̇O2peak) and body composition in colorectal cancer survivors. Forty seven post-treatment colorectal cancer survivors (HIE = 27 months post-treatment; MIE = 38 months post-treatment) were randomised to either HIE [85-95 % peak heart rate (HRpeak)] or MIE (70 % HRpeak) in equivalence with current physical activity guidelines and completed 12 training sessions over 4 weeks. HIE was superior to MIE in improving absolute (p = 0.016) and relative (p = 0.021) V̇O2peak. Absolute (+0.28 L.min(-1), p < 0.001) and relative (+3.5 ml.kg(-1).min(-1), p < 0.001) V̇O2 peak were increased in the HIE group but not the MIE group following training. HIE led to significant increases in lean mass (+0.72 kg, p = 0.002) and decreases in fat mass (-0.74 kg, p < 0.001) and fat percentage (-1.0 %, p < 0.001), whereas no changes were observed for the MIE group. There were no severe adverse events. In response to short-term training, HIE is a safe, feasible and efficacious intervention that offers clinically meaningful improvements in cardiorespiratory fitness and body composition for colorectal cancer survivors. HIE appears to offer superior improvements in cardiorespiratory fitness and body composition in comparison to current physical activity recommendations for colorectal cancer survivors and therefore may be an effective clinical utility following treatment.
NASA Technical Reports Server (NTRS)
Ploutz-Snyder, Lori; Goetchius, Elizabeth; Crowell, Brent; Hackney, Kyle; Wickwire, Jason; Ploutz-Snyder, Robert; Snyder, Scott
2012-01-01
Background: Known incompatibilities exist between resistance and aerobic training. Of particular importance are findings that concurrent resistance and aerobic training reduces the effectiveness of the resistance training and limits skeletal muscle adaptations (example: Dudley & Djamil, 1985). Numerous unloading studies have documented the effectiveness of resistance training alone for the maintenance of skeletal muscle size and strength. However the practical applications of those studies are limited because long ]duration crew members perform both aerobic and resistance exercise throughout missions/spaceflight. To date, such integrated training on the International Space Station (ISS) has not been fully effective in the maintenance of skeletal muscle function. Purpose: The purpose of this study was to evaluate the efficacy of high intensity concurrent resistance and aerobic training for the maintenance of cardiovascular fitness and skeletal muscle strength, power and endurance over 14 days of strict bed rest. Methods: 9 subjects (8 male and 1 female; 34.5 +/- 8.2 years) underwent 14 days of bed rest with concurrent training. Resistance and aerobic training were integrated as shown in table 1. Days that included 2 exercise sessions had a 4-8 hour rest between exercise bouts. The resistance training consisted of 3 sets of 12 repetitions of squat, heel raise, leg press and hamstring curl exercise. Aerobic exercise consisted of periodized interval training that included 30 sec, 2 min and 4 min intervals alternating by day with continuous aerobic exercise.
The Impact of Rope Jumping Exercise on Physical Fitness of Visually Impaired Students
ERIC Educational Resources Information Center
Chen, Chao-Chien; Lin, Shih-Yen
2011-01-01
The main purpose of this study was to investigate the impact of rope jumping exercise on the health-related physical fitness of visually impaired students. The participants' physical fitness was examined before and after the training. The exercise intensity of the experimental group was controlled with Rating of Perceived Exertion (RPE) (values…
Sonnenschein, Kristina; Horváth, Tibor; Mueller, Maja; Markowski, Andrea; Siegmund, Tina; Jacob, Christian; Drexler, Helmut; Landmesser, Ulf
2011-06-01
Endothelial dysfunction and injury are considered to contribute considerably to the development and progression of atherosclerosis. It has been suggested that intense exercise training can increase the number and angiogenic properties of early endothelial progenitor cells (EPCs). However, whether exercise training stimulates the capacity of early EPCs to promote repair of endothelial damage and potential underlying mechanisms remain to be determined. The present study was designed to evaluate the effects of moderate exercise training on in vivo endothelial repair capacity of early EPCs, and their nitric oxide and superoxide production as characterized by electron spin resonance spectroscopy analysis in subjects with metabolic syndrome. Twenty-four subjects with metabolic syndrome were randomized to an 8 weeks exercise training or a control group. Superoxide production and nitric oxide (NO) availability of early EPCs were characterized by using electron spin resonance (ESR) spectroscopy analysis. In vivo endothelial repair capacity of EPCs was examined by transplantation into nude mice with defined carotid endothelial injury. Endothelium-dependent, flow-mediated vasodilation was analysed using high-resolution ultrasound. Importantly, exercise training resulted in a substantially improved in vivo endothelial repair capacity of early EPCs (24.0 vs 12.7%; p < 0.05) and improved endothelium-dependent vasodilation. Nitric oxide production of EPCs was substantially increased after exercise training, but not in the control group. Moreover, exercise training reduced superoxide production of EPCs, which was not observed in the control group. The present study suggests for the first time that moderate exercise training increases nitric oxide production of early endothelial progenitor cells and reduces their superoxide production. Importantly, this is associated with a marked beneficial effect on the in vivo endothelial repair capacity of early EPCs in subjects with metabolic syndrome.
Fallahi, Aliasghar; Gaeini, Abbasali; Shekarfroush, Shahnaz; Khoshbaten, Ali
2015-09-01
The aim of this study was to investigate the effects of High-Intensity Interval Training (HIIT) on nitric oxide metabolites (NO2(-), NO3(-)) and myocardial infarct size after Ischemia/Reperfusion (I/R) injury in healthy male rats. A total of 44 Wistar rats were randomly divided into 4 groups including HIIT (n=8), HIIT + IR protocol (n=14), control (n=8), and control + IR (n=14). Each training session of HIIT consisted of 1 hour of exercise in three stages: 6-minute running at 50-60% VO2max for warm-up; 7 intervals of 7-minute running on treadmill with a slope of 5° to 20° (4 minutes with an intensity of 80-100% VO2max and 3 minutes at 50-60% VO2max); and 5-minute running at 50-60% VO2max for cool-down. The control group did not participate in any exercise program. Nitric Oxide (NO) and its metabolites were measured by using Griess reaction test. The results showed that eight weeks of exercise training exerted a significantly increasing effect on nitrite (8.55 μmol per liter, equivalent to 34.79%), nitrate (62.02 μmol per liter, equivalent to 149.48%), and NOx (66 μmol per liter, equivalent to 98.11%) in the HIIT group compared with the control group. The results showed myocardial infract size (IS) was significantly smaller (23.2%, P<0.001) in the exercise training group compared with the control group. Incremental changes in NO-NO3 (-), NO2 (-) axis are one of mechanisms through which HIIT program can protect the heart from I/R injury and decrease myocardial infarction.
Hanssen, H; Minghetti, A; Magon, S; Rossmeissl, A; Rasenack, M; Papadopoulou, A; Klenk, C; Faude, O; Zahner, L; Sprenger, T; Donath, L
2018-03-01
Aerobic exercise training is a promising complementary treatment option in migraine and can reduce migraine days and improve retinal microvascular function. Our aim was to elucidate whether different aerobic exercise programs at high vs moderate intensities distinctly affect migraine days as primary outcome and retinal vessel parameters as a secondary. In this randomized controlled trial, migraine days were recorded by a validated migraine diary in 45 migraineurs of which 36 (female: 28; age: 36 (SD:10)/BMI: 23.1 (5.3) completed the training period (dropout: 20%). Participants were assigned (Strata: age, gender, fitness and migraine symptomatology) to either high intensity interval training (HIT), moderate continuous training (MCT), or a control group (CON). Intervention groups trained twice a week over a 12-week intervention period. Static retinal vessel analysis, central retinal arteriolar (CRAE) and venular (CRVE) diameters, as well as the arteriolar-to-venular diameter ratio (AVR) were obtained for cerebrovascular health assessment. Incremental treadmill testing yielded maximal and submaximal fitness parameters. Overall, moderate migraine day reductions were observed (ηP2 = .12): HIT revealed 89% likely beneficial effects (SMD = 1.05) compared to MCT (SMD = 0.50) and CON (SMD = 0.59). Very large intervention effects on AVR improvement (ηP2 = 0.27), slightly favoring HIT (SMD=-0.43) over CON (SMD=0), were observed. HIT seems more effective for migraine day reduction and improvement of cerebrovascular health compared to MCT. Intermittent exercise programs of higher intensities may need to be considered as an additional treatment option in migraine patients. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Risks and Benefits of Exercise Training in Adults With Congenital Heart Disease.
Chaix, Marie-A; Marcotte, François; Dore, Annie; Mongeon, François-Pierre; Mondésert, Blandine; Mercier, Lise-Andrée; Khairy, Paul
2016-04-01
Exercise capacity in adults with various forms of congenital heart disease is substantially lower than that of the general population. Although the underlying congenital heart defect, and its sequelae, certainly contribute to observed exercise limitations, there is evidence suggesting that deconditioning and a sedentary lifestyle are important implicated factors. The prevalence of acquired cardiovascular comorbidities is on the increase in the aging population with congenital heart disease, such that obesity and a sedentary lifestyle confer increased risk. Health fears and misconceptions are common barriers to regular physical activity in adults with congenital heart disease, despite evidence linking lower functional capacity to poor outcomes, and data supporting the safety and efficacy of exercise in bestowing numerous physical and psychosocial rewards. With few exceptions, adults with congenital heart disease should be counselled to exercise regularly. In this contemporary review, we provide a practical approach to assessing adults with congenital heart disease before exercise training. We examine available evidence supporting the safety and benefits of exercise training. Risks associated with exercise training in adults with congenital heart disease are discussed, particularly with regard to sudden cardiac death. Finally, recommendations for exercise training are provided, with consideration for the type of congenital heart disease, the nature (ie, static vs dynamic) and intensity (ie, low, medium, high) of the physical activity, and associated factors such as systemic ventricular dysfunction and residual defects. Further research is required to determine optimal exercise regimens and to identify effective strategies to implement exercise training as a key determinant of healthy living. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
de Bruin, Eling D.; Schindelholz, Matthias; Schuster-Amft, Corina; de Bie, Rob A.; Hunt, Kenneth J.
2015-01-01
Background and Purpose: Cardiovascular fitness is greatly reduced after stroke. Although individuals with mild to moderate impairments benefit from conventional cardiovascular exercise interventions, there is a lack of effective approaches for persons with severely impaired physical function. This randomized controlled pilot trial investigated efficacy and feasibility of feedback-controlled robotics-assisted treadmill exercise (FC-RATE) for cardiovascular rehabilitation in persons with severe impairments early after stroke. Methods: Twenty individuals (age 61 ± 11 years; 52 ± 31 days poststroke) with severe motor limitations (Functional Ambulation Classification 0-2) were recruited for FC-RATE or conventional robotics-assisted treadmill exercise (RATE) (4 weeks, 3 × 30-minute sessions/wk). Outcome measures focused on peak cardiopulmonary performance parameters, training intensity, and feasibility, with examiners blinded to allocation. Results: All 14 allocated participants (70% of recruited) completed the intervention (7/group, withdrawals unrelated to intervention), without serious adverse events occurring. Cardiovascular fitness increased significantly in both groups, with peak oxygen uptake increasing from 14.6 to 17.7 mL · kg−1 · min−1 (+17.8%) after 4 weeks (45.8%-55.7% of predicted maximal aerobic capacity; time effect P = 0.01; no group-time interaction). Training intensity (% heart rate reserve) was significantly higher for FC-RATE (40% ± 3%) than for conventional RATE (14% ± 2%) (P = 0.001). Discussion and Conclusions: Substantive overall increases in the main cardiopulmonary performance parameters were observed, but there were no significant between-group differences when comparing FC-RATE and conventional RATE. Feedback-controlled robotics-assisted treadmill exercise significantly increased exercise intensity, but recommended intensity levels for cardiovascular training were not consistently achieved. Future research should focus on appropriate algorithms within advanced robotic systems to promote optimal cardiovascular stress. Video abstract available for more insights from the authors (Supplemental Digital Content 1, http://links.lww.com/JNPT/A107). PMID:26050073
Stoller, Oliver; de Bruin, Eling D; Schindelholz, Matthias; Schuster-Amft, Corina; de Bie, Rob A; Hunt, Kenneth J
2015-07-01
Cardiovascular fitness is greatly reduced after stroke. Although individuals with mild to moderate impairments benefit from conventional cardiovascular exercise interventions, there is a lack of effective approaches for persons with severely impaired physical function. This randomized controlled pilot trial investigated efficacy and feasibility of feedback-controlled robotics-assisted treadmill exercise (FC-RATE) for cardiovascular rehabilitation in persons with severe impairments early after stroke. Twenty individuals (age 61 ± 11 years; 52 ± 31 days poststroke) with severe motor limitations (Functional Ambulation Classification 0-2) were recruited for FC-RATE or conventional robotics-assisted treadmill exercise (RATE) (4 weeks, 3 × 30-minute sessions/wk). Outcome measures focused on peak cardiopulmonary performance parameters, training intensity, and feasibility, with examiners blinded to allocation. All 14 allocated participants (70% of recruited) completed the intervention (7/group, withdrawals unrelated to intervention), without serious adverse events occurring. Cardiovascular fitness increased significantly in both groups, with peak oxygen uptake increasing from 14.6 to 17.7 mL · kg · min (+17.8%) after 4 weeks (45.8%-55.7% of predicted maximal aerobic capacity; time effect P = 0.01; no group-time interaction). Training intensity (% heart rate reserve) was significantly higher for FC-RATE (40% ± 3%) than for conventional RATE (14% ± 2%) (P = 0.001). Substantive overall increases in the main cardiopulmonary performance parameters were observed, but there were no significant between-group differences when comparing FC-RATE and conventional RATE. Feedback-controlled robotics-assisted treadmill exercise significantly increased exercise intensity, but recommended intensity levels for cardiovascular training were not consistently achieved. Future research should focus on appropriate algorithms within advanced robotic systems to promote optimal cardiovascular stress.Video abstract available for more insights from the authors (Supplemental Digital Content 1, http://links.lww.com/JNPT/A107).
Exercise intensity, redox homeostasis and inflammation in type 2 diabetes mellitus.
Mallard, Alistair R; Hollekim-Strand, Siri Marte; Coombes, Jeff S; Ingul, Charlotte B
2017-10-01
To compare 12 weeks of exercise training at two intensities on oxidative stress, antioxidants and inflammatory biomarkers in patients with type 2 diabetes (T2D). Randomized trial. Thirty-six participants with T2D were randomized to complete either 12 weeks of treadmill based high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT), followed by 40 weeks of home-based training at the same intensities. Plasma inflammation, oxidative stress and antioxidant biomarkers (total F2-isoprostanes, protein carbonyls, total antioxidant capacity, glutathione peroxidase activity, interleukin-10, interleukin-6, interleukin-8 and TNF-α) were measured at baseline, 12-weeks and 1-year. There were no significant changes (p>0.05) in oxidative stress and inflammation biomarkers from baseline to 12-weeks in either intervention. A decrease in total antioxidant capacity in the MICT group from baseline to 1-year by 0.05mmol/L (p=0.05) was observed. There was a significant difference (p<0.05) when groups were separated by sex with females in the MICT group having a 22.1% (p<0.05) decrease in protein carbonyls from baseline to 1-year. HIIT and MICT had no acute effect on oxidative stress and inflammatory biomarkers in patients with T2D. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.
Lanzi, Stefano; Codecasa, Franco; Cornacchia, Mauro; Maestrini, Sabrina; Capodaglio, Paolo; Brunani, Amelia; Fanari, Paolo; Salvadori, Alberto; Malatesta, Davide
2015-10-01
To compare the effects of two different 2-week-long training modalities [continuous at the intensity eliciting the maximal fat oxidation (Fatmax) versus high-intensity interval training (HIIT)] in men with class II and III obesity. Nineteen men with obesity (BMI ≥ 35 kg · m(-2)) were assigned to Fatmax group (GFatmax) or to HIIT group (GHIIT). Both groups performed eight cycling sessions matched for mechanical work. Aerobic fitness and fat oxidation rates (FORs) during exercise were assessed prior and following the training. Blood samples were drawn to determine hormones and plasma metabolites levels. Insulin resistance was assessed by the homeostasis model assessment of insulin resistance (HOMA2-IR). Aerobic fitness and FORs during exercise were significantly increased in both groups after training (P ≤ 0.001). HOMA2-IR was significantly reduced only for GFatmax (P ≤ 0.001). Resting non-esterified fatty acids (NEFA) and insulin decreased significantly only in GFatmax (P ≤ 0.002). Two weeks of HIIT and Fatmax training are effective for the improvement of aerobic fitness and FORs during exercise in these classes of obesity. The decreased levels of resting NEFA only in GFatmax may be involved in the decreased insulin resistance only in this group. © 2015 The Obesity Society.
Effect of controlled exercise on middle gluteal muscle fibre composition in Thoroughbred foals.
Eto, D; Yamano, S; Kasashima, Y; Sugiura, T; Nasu, T; Tokuriki, M; Miyata, H
2003-11-01
Most racehorses are trained regularly from about age 18 months; therefore, little information is available on the effect of training in Thoroughbred foals. Well-controlled exercise could improve muscle potential ability for endurance running. Thoroughbred foals at age 2 months were separated into control and training (treadmill exercise) groups and samples obtained from the middle gluteal muscle at 2 and 12 months post partum. Muscle fibre compositions were determined by histochemical and electrophoretical techniques and succinic dehydrogenase (SDH) activity was analysed in each fibre type. All fibre types were hypertrophied with growth and type I and IIA fibres were significantly larger in the training than the control group at age 12 months. A significant increase of SDH activity was found in type IIX muscle fibres in the training group. Training in young Thoroughbred horses can facilitate muscle fibre hypertrophy and increase the oxidative capacity of type IIX fibres, which could potentially enhance stamina at high speeds. To apply this result to practical training, further studies are needed to determine more effective and safe intensities of controlled exercise.
Hartard, M; Haber, P; Ilieva, D; Preisinger, E; Seidl, G; Huber, J
1996-01-01
Physical exercise is often recommended as a therapeutic tool to combat pre- and postmenopausal loss of bone density. However, the relationship between training dosage (intensity, duration, frequency) and the effect on bone density still is undergoing discussion. Furthermore, the exercise quantification programs are often described so inadequately that they are neither quantitatively nor qualitatively reproducible. The aim of this investigation was to determine whether a clearly defined training of muscle strength, under defined safety aspects, performed only twice weekly, can counteract bone density loss in women with postmenopausal osteopenia. Data from 16 women in the training group (age, 63.6 +/- 6.2 yr) and 15 women in the control group (age, 67.4 +/-9.7 yr), of comparable height and weight, were evaluated. Strength training was performed for 6 mo as continually adapted strength training, providing an intensity of about 70% of each test person's one repetition maximum. Bone mineral density of lumbar vertebrae 2 to 4 and the femoral neck was measured by dual-energy x-ray absorptiometry. Maximum performance in watts and parameters of hemodynamics were controlled with a bicycle ergometer test to maximal effort. In addition, metabolic data were assessed. In the lumbar spine and femoral neck, the training group showed no significant changes, whereas the control group demonstrated a significant loss of bone mineral density, especially in the femoral neck (P<0.05). The strength increase was highly significant in all exercised muscle groups, rising to about 70% above the pretraining status (P<0.001). Heart rate and blood pressure data indicated a slight economization, metabolism was not significantly influenced. Based on these findings, we conclude that continually adapted strength training is an effective, safe, reproducible, and adaptable method of therapeutic strength training, following only two exercise sessions per week.
Hoffman, Jay R; Ratamess, Nicholas A; Faigenbaum, Avery D; Ross, Ryan; Kang, Jie; Stout, Jeffrey R; Wise, John A
2008-01-01
The purpose of this study was to examine the effect of 30 days of beta-alanine supplementation in collegiate football players on anaerobic performance measures. Subjects were randomly divided into a supplement (beta-alanine group [BA], 4.5 g x d(-1) of beta-alanine) or placebo (placebo group [P], 4.5 g x d(-1) of maltodextrin) group. Supplementation began 3 weeks before preseason football training camp and continued for an additional 9 days during camp. Performance measures included a 60-second Wingate anaerobic power test and 3 line drills (200-yd shuttle runs with a 2-minute rest between sprints) assessed on day 1 of training camp. Training logs recorded resistance training volumes, and subjects completed questionnaires on subjective feelings of soreness, fatigue, and practice intensity. No difference was seen in fatigue rate in the line drill, but a trend (P = .07) was observed for a lower fatigue rate for BA compared with P during the Wingate anaerobic power test. A significantly higher training volume was seen for BA in the bench press exercise, and a trend (P = .09) for a greater training volume was seen for all resistance exercise sessions. In addition, subjective feelings of fatigue were significantly lower for BA than P. In conclusion, despite a trend toward lower fatigue rates during 60 seconds of maximal exercise, 3 weeks of beta-alanine supplementation did not result in significant improvements in fatigue rates during high-intensity anaerobic exercise. However, higher training volumes and lower subjective feelings of fatigue in BA indicated that as duration of supplementation continued, the efficacy of beta-alanine supplementation in highly trained athletes became apparent.
Beelen, Milou; Cermak, Naomi M; van Loon, Luc J C
2015-01-01
Endogenous carbohydrate availability does not provide sufficient energy for prolonged moderate to high-intensity exercise. Carbohydrate ingestion during high-intensity exercise can therefore enhance performance.- For exercise lasting 1 to 2.5 hours, athletes are advised to ingest 30-60 g of carbohydrates per hour.- Well-trained endurance athletes competing for longer than 2.5 hours at high intensity can metabolise up to 90 g of carbohydrates per hour, provided that a mixture of glucose and fructose is ingested.- Athletes participating in intermittent or team sports are advised to follow the same strategies but the timing of carbohydrate intake depends on the type of sport.- If top performance is required again within 24 hours after strenuous exercise, the advice is to supplement endogenous carbohydrate supplies quickly within the first few hours post-exercise by ingesting large amounts of carbohydrate (1.2 g/kg/h) or a lower amount of carbohydrate (0.8 g/kg/h) with a small amount of protein (0.2-0.4 g/kg/h).
Moderate Recovery Unnecessary to Sustain High Stroke Volume during Interval Training. A Brief Report
Stanley, Jamie; Buchheit, Martin
2014-01-01
It has been suggested that the time spent at a high stroke volume (SV) is important for improving maximal cardiac function. The aim of this study was to examine the effect of recovery intensity on cardiovascular parameters during a typical high-intensity interval training (HIIT) session in fourteen well-trained cyclists. Oxygen consumption (VO2), heart rate (HR), SV, cardiac output (Qc), and oxygenation of vastus lateralis (TSI) were measured during a HIIT (3×3-min work period, 2 min of recovery) session on two occasions. VO2, HR and Qc were largely higher during moderate-intensity (60%) compared with low-intensity (30%) (VO2, effect size; ES = +2.6; HR, ES = +2.8; Qc, ES = +2.2) and passive (HR, ES = +2.2; Qc, ES = +1.7) recovery. By contrast, there was no clear difference in SV between the three recovery conditions, with the SV during the two active recovery periods not being substantially different than during exercise (60%, ES = −0.1; 30%, ES = −0.2). To conclude, moderate-intensity recovery may not be required to maintain a high SV during HIIT. Key points Moderate-intensity recovery periods may not be necessary to maintain high stroke volume during the exercise intervals of HIIT. Stroke volume did not surpass the levels attained during the exercise intervals during the recovery periods of HIIT. The practical implication of these finding is that reducing the intensity of the recovery period during a HIIT protocol may prolong the time to exhaustion, potentially allowing completion of additional high-intensity intervals increasing the time accumulated at maximal cardiac output. PMID:24790495
De Strijcker, Dorien; Lapauw, Bruno; Ouwens, D Margriet; Van de Velde, Dominique; Hansen, Dominique; Petrovic, Mirko; Cuvelier, Claude; Tonoli, Cajsa; Calders, Patrick
2018-06-01
To evaluate the effect of high intensity training (HIT) on physical fitness, basal respiratory exchange ratio (bRER), insulin sensitivity and muscle histology in overweight/obese men compared to continuous aerobic training (CAT). 16 male participants with overweight/obesity (age: 42-57 years, body mass index: 28-36 kg/m2) were randomized to HIT (n=8) or CAT (n=8) for 10 weeks, twice a week. HIT was composed of 10 minutes high intensity, 10 minutes continuous aerobic, 10 minutes high intensity exercises. CAT was composed of three times 10 minutes continuous exercising. Changes in anthropometry, physical and metabolic fitness were evaluated. Muscle histology (mitochondria and lipid content) was evaluated by transmission electron microscopy (TEM). HIT showed a significant increase for peak VO2 (P=0.01), for insulin sensitivity (AUC glucose (P<0,001), AUC insulin (P<0,001), OGTT composite score (P=0.007)) and a significant decrease of bRER (P<0.001) compared to CAT. Muscle mitochondrial content was significantly increased after HIT at the subsarcolemmal (P=0.004 number and P=0.001 surface) as well as the intermyofibrillar site (P<0.001 number and P=0.001 surface). High intensity training elicits stronger beneficial effects on physical fitness, basal RER, insulin sensitivity, and muscle mitochondrial content, as compared to continuous aerobic training.
Effects of strongman training on salivary testosterone levels in a sample of trained men.
Ghigiarelli, Jamie J; Sell, Katie M; Raddock, Jessica M; Taveras, Kurt
2013-03-01
Strongman exercises consist of multi-joint movements that incorporate large muscle mass groups and impose a substantial amount of neuromuscular stress. The purpose of this study was to examine salivary testosterone responses from 2 novel strongman training (ST) protocols in comparison with an established hypertrophic (H) protocol reported to acutely elevate testosterone levels. Sixteen men (24 ± 4.4 years, 181.2 ± 6.8 cm, and 95.3 ± 20.3 kg) volunteered to participate in this study. Subjects completed 3 protocols designed to ensure equal total volume (sets and repetitions), rest period, and intensity between the groups. Exercise sets were performed to failure. Exercise selection and intensity (3 sets × 10 repetitions at 75% 1 repetition maximum) were chosen as they reflected commonly prescribed resistance exercise protocols recognized to elicit a large acute hormonal response. In each of the protocols, subjects were required to perform 3 sets to muscle failure of 5 different exercises (tire flip, chain drag, farmers walk, keg carry, and atlas stone lift) with a 2-minute rest interval between sets and a 3-minute rest interval between exercises. Saliva samples were collected pre-exercise (PRE), immediate postexercise (PST), and 30 minutes postexercise (30PST). Delta scores indicated a significant difference between PRE and PST testosterone level within each group (p ≤ 0.05), with no significant difference between the groups. Testosterone levels spiked 136% (225.23 ± 148.01 pg·ml(-1)) for the H group, 74% (132.04 ± 98.09 pg·ml(-1)) for the ST group, and 54% (122.10 ± 140.67 pg·ml) for the mixed strongman/hypertrophy (XST) group. A significant difference for testosterone level occurred over time (PST to 30PST) for the H group p ≤ 0.05. In conclusion, ST elicits an acute endocrine response similar to a recognized H protocol when equated for duration and exercise intensity.
Iglesias-Soler, Eliseo; Boullosa, Daniel A; Carballeira, Eduardo; Sánchez-Otero, Tania; Mayo, Xian; Castro-Gacio, Xabier; Dopico, Xurxo
2015-07-01
The aim of this study was to compare the effect of two different high-intensity resistance exercise (RE) set configurations on the following: systolic blood pressure (SBP), rate pressure product (RPP), heart rate (HR) variability (HRV), and HR complexity (HRC). Ten well-trained males performed three parallel squat sets until failure (traditional training; TT) with the four repetitions maximum load (4RM), and a rest of 3 min between sets. Thereafter, participants performed a cluster training session (CT) of equated load but with resting time distributed between each repetition. Dependent variables were recorded before, during, and after RE. Mean SBP (25·7 versus 10·9% percentage increase; P = 0·016) and RPP (112·5 versus 69·9%; P = 0·01) were significantly higher in TT. The decrease in HRV after exercise and the drop of HRC during exercise were similar in CT and TT. Change of standard deviation of normal RR intervals after TT correlated with change in SBP (r = 0·803; P = 0·009) while the change of Sample Entropy during exercise correlated with the increment of RPP during CT (ρ = -0·667; P = 0·05). This study suggests that set configuration influences acute cardiovascular responses during RE. When intensity, volume and work-to-rest ratio are equated, CT is less demanding in terms of SBP and RPP. A greater hemodynamic response during exercise would be associated with a faster parasympathetic recovery. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.
Home-Based Exercise Improves Fitness and Exercise Attitude and Intention in Women with GDM.
Halse, Rhiannon E; Wallman, Karen E; Dimmock, James A; Newnham, John P; Guelfi, Kym J
2015-08-01
The purpose of the study was to determine the effect of a home-based cycling program for women with a recent diagnosis of gestational diabetes mellitus (GDM) on aerobic fitness, weight gain, self-reported mobility, attitude, and intentions toward maternal exercise, and obstetric and neonatal outcomes. Forty women (mean ± SD, 28.8 ± 0.9-wk gestation) were randomized to either a supervised, home-based exercise program, combining continuous steady-state and interval cycling at various intensities, in combination with unsupervised moderate intensity aerobic activity and conventional diabetic management (EX; n = 20) or to conventional management alone (CON; n = 20). The program began following diagnosis until week 34 of pregnancy (mean ± SD duration of training, 6 ± 1 wk). Mean compliance to the training program was 96%. Maternal aerobic fitness, and attitude and intentions toward exercise were improved in response to the home-based exercise intervention compared with CON (P < 0.05). No differences were observed between the groups with respect to maternal weight gain or obstetric and neonatal outcomes (P > 0.05). A home-based exercise program of 6 ± 1 wk in duration commenced after diagnosis of GDM can improve aerobic fitness and attitude and intentions toward exercise, with no adverse effect on maternal and neonatal pregnancy outcomes.
Cipryan, Lukas; Tschakert, Gerhard; Hofmann, Peter
2017-06-01
The purpose of the presented study was to compare acute and post-exercise differences in cardiorespiratory, metabolic, cardiac autonomic, inflammatory and muscle damage responses to high-intensity interval exercise (HIIT) between endurance and sprint athletes. The study group consisted of sixteen highly-trained males (age 22.1 ± 2.5 years) participating in endurance (n = 8) or sprint (n = 8) sporting events. All the participants underwent three exercise sessions: short HIIT (work interval duration 30s), long HIIT (3min) and constant load exercise (CE). The exercise interventions were matched for mean power, total time and in case of HIIT interventions also for work-to-relief ratio. The acute cardiorespiratory (HR, V̇ O 2 , RER) and metabolic (lactate) variables as well as the post-exercise changes (up to 3 h) in the heart rate variability, inflammation (interleukin-6, leucocytes) and muscle damage (creatine kinase, myoglobin) were monitored. Endurance athletes performed exercise interventions with moderately (CE) or largely (both HIIT modes) higher mean V̇ O 2 . These differences were trivial/small when V̇ O 2 was expressed as a percentage of V̇ O 2max . Moderately to largely lower RER and lactate values were found in endurance athletes. Markers of cardiac autonomic regulation, inflammation and muscle damage did not reveal any considerable differences between endurance and sprint athletes. In conclusions, endurance athletes were able to perform both HIIT formats with increased reliance on aerobic metabolic pathways although exercise intensity was identical in relative terms for all the participants. However, other markers of the acute and early post-exercise physiological response to these HIIT interventions indicated similarities between endurance and sprint athletes.
Martins Cunha, Raphael; Raiana Bentes, Mariana; Araújo, Victor H; DA Costa Souza, Mayara C; Vasconcelos Noleto, Marcelo; Azevedo Soares, Ademar; Machado Lehnen, Alexandre
2016-12-01
Blood glucose changes response during and after exercise are modulated by the postabsorptive state, intensity and duration of exercise, and the level of physical fitness as well. This study focused on the idea that high-intensity interval exercise, as mini-trampoline class, can reduce blood glucose. Thus, we examined acute changes in blood glucose among trained normoglycemic adults during a mini-trampoline exercise session. Twenty-four normoglycemic adult subjects were enrolled in the study. After physical assessment they were randomly assigned to either the experimental (N.=12) or the control group (N.=12). The experimental group performed a 50-minute session of moderate-to-high intensity (70 to 85% HRmax) exercise on a mini-trampoline commonly used in fitness classes. The control group did not perform any exercise, and all procedures were otherwise similar to the experimental group. Capillary blood glucose was measured before and every 15 minutes during the exercise session. The effects of exercise on blood glucose levels (group; time; and group interaction) were estimated using a generalized estimating equation (GEE) followed by Bonferroni's post-hoc Test (P<0.05). The experimental group showed a decrease in blood glucose levels from baseline (108.7 mg/dL): 26.1% reduction (15 min; P<0.001), 24.2% (30 min; P<0.001), and 15.7% (45 min; P<0.001). Compared to the control group, blood glucose levels in the experimental group were reduced by 18.8% (15 min; P<0.001), 14.3% (30 min; P<0.001) and 6.9% (45 min; P=0.025). The study results provide good evidence that a prescribed exercise program on a mini-trampoline can be used for reducing blood glucose levels and thus can potentially control blood glucose.
Exercise training in older adults, what effects on muscle oxygenation? A systematic review.
Fiogbé, Elie; de Vassimon-Barroso, Verena; de Medeiros Takahashi, Anielle Cristhine
2017-07-01
To determine the effects of different modality of exercise training programs on muscle oxygenation in older adults. Relevant articles were searched in PubMed, Web of Science, Science Direct and Scopus, using the keywords: "Aged" AND "Muscle oxygenation" AND (Exercise OR "Exercise therapy" OR "Exercise Movement Techniques" OR Hydrotherapy), without limitation concerning the publication date. To be included in the full analysis, the study had to be a randomized controlled trial in which older adults participants (mean age: 65 years at least) were submitted to an exercise-training program and muscle oxygenation assessment. The searches resulted in 1238 articles from which 7 met all the inclusion criteria. The trials involved 370 older adults (68.7±1.7years), healthy and with peripheral arterial disease. Studies included resistance and endurance exercises as well as walking sessions. Training sessions were 2-6 time per week, lasted 3-24 months and with different training intensity throughout studies. After a long-term resistance training, healthy older adults showed enhanced muscle oxygen extraction capacity, regulation of vessels and vascular endothelium function; endurance training is reported to improve microvascular blood flow and matching of oxygen delivery to oxygen utilization, muscle oxidative capacity and muscle saturation, and walking sessions results in better muscle oxygen availability and muscle oxygen extraction capacity in older adults with peripheral arterial disease. This review supports the fact that depending on the clinical status of the participants and the modality, exercise training improves different aspects of the muscle oxygenation in older adults. Copyright © 2017 Elsevier B.V. All rights reserved.
McDonald, Matthew W; Murray, Michael R; Hall, Katharine E; Noble, Earl G; Melling, C W James
2014-01-01
Regular exercise has been shown to improve many complications of Type 1 diabetes mellitus (T1DM) including enhanced glucose tolerance and increased cardiac function. While exercise training has been shown to increase insulin content in pancreatic islets of rats with T1DM, experimental models were severely hyperglycemic and not undergoing insulin treatment. Further, research to date has yet to determine how exercise training alters glucagon content in pancreatic islets. The purpose of the present investigation was to determine the impact of a 10-week aerobic training program on pancreatic islet composition in insulin-treated rats with T1DM. Second, it was determined whether the acute, exercise-mediated reduction in blood glucose experienced in rats with T1DM would become larger in magnitude following aerobic exercise training. Diabetes was induced in male Sprague-Dawley rats by multiple low dose injections of streptozotocin (20mg/kg i.p.) and moderate intensity aerobic exercise training was performed on a motorized treadmill for one hour per day for a total of 10 weeks. Rats with T1DM demonstrated significantly less islet insulin, and significantly more islet glucagon hormone content compared with non-T1DM rats, which did not significantly change following aerobic training. The reduction in blood glucose in response to a single exercise bout was similar across 10 weeks of training. Results also support the view that different subpopulations of islets exist, as small islets (<50 μm diameter) had significantly more insulin and glucagon in rats with and without T1DM.
Tramonti, Caterina; Rossi, Bruno; Chisari, Carmelo
2016-06-13
Low-intensity aerobic training seems to have positive effects on muscle strength, endurance and fatigue in Becker Muscular Dystrophy (BMD) patients. We describe the case of a 33-year old BMD man, who performed a four-week aerobic training. Extensive functional evaluations were executed to monitor the efficacy of the rehabilitative treatment. Results evidenced an increased force exertion and an improvement in muscle contraction during sustained exercise. An improvement of walk velocity, together with agility, endurance capacity and oxygen consumption during exercise was observed. Moreover, an enhanced metabolic efficiency was evidenced, as shown by reduced lactate blood levels after training. Interestingly, CK showed higher levels after the training protocol, revealing possible muscle damage. In conclusion, aerobic training may represent an effective method improving exercise performance, functional status and metabolic efficiency. Anyway, a careful functional assessment should be taken into account as a useful approach in the management of the disease's rehabilitative treatment.
Does Resistance Training Stimulate Cardiac Muscle Hypertrophy?
ERIC Educational Resources Information Center
Bloomer, Richard J.
2003-01-01
Reviews the literature on the left ventricular structural adaptations induced by resistance/strength exercise, focusing on human work, particularly well-trained strength athletes engaged in regular, moderate- to high-intensity resistance training (RT). The article discusses both genders and examines the use of anabolic-androgenic steroids in…
Music enhances performance and perceived enjoyment of sprint interval exercise.
Stork, Matthew J; Kwan, Matthew Y W; Gibala, Martin J; Martin Ginis, Kathleen A
2015-05-01
Interval exercise training can elicit physiological adaptations similar to those of traditional endurance training, but with reduced time. However, the intense nature of specific protocols, particularly the "all-out" efforts characteristic of sprint interval training (SIT), may be perceived as being aversive. The purpose of this study was to determine whether listening to self-selected music can reduce the potential aversiveness of an acute session of SIT by improving affect, motivation, and enjoyment, and to examine the effects of music on performance. Twenty moderately active adults (22 ± 4 yr) unfamiliar with interval exercise completed an acute session of SIT under two different conditions: music and no music. The exercise consisted of four 30-s "all-out" Wingate Anaerobic Test bouts on a cycle ergometer, separated by 4 min of rest. Peak and mean power output, RPE, affect, task motivation, and perceived enjoyment of the exercise were measured. Mixed-effects models were used to evaluate changes in dependent measures over time and between the two conditions. Peak and mean power over the course of the exercise session were higher in the music condition (coefficient = 49.72 [SE = 13.55] and coefficient = 23.65 [SE = 11.30]; P < 0.05). A significant time by condition effect emerged for peak power (coefficient = -12.31 [SE = 4.95]; P < 0.05). There were no between-condition differences in RPE, affect, or task motivation. Perceived enjoyment increased over time and was consistently higher in the music condition (coefficient = 7.00 [SE = 3.05]; P < 0.05). Music enhances in-task performance and enjoyment of an acute bout of SIT. Listening to music during intense interval exercise may be an effective strategy for facilitating participation in, and adherence to, this form of training.
Frýbort, Pavel; Kokštejn, Jakub; Musálek, Martin; Süss, Vladimír
2016-01-01
A soccer player’s capability to control and manage his behaviour in a game situation is a prerequisite, reflecting not only swift and accurate tactical decision-making, but also prompt implementation of a motor task during intermittent exercise conditions. The purpose of this study was to analyse the relationship between varying exercise intensity and the visual-motor response time and the accuracy of motor response in an offensive game situation in soccer. The participants (n = 42) were male, semi-professional, soccer players (M age 18.0 ± 0.9 years) and trained five times a week. Each player performed four different modes of exercise intensity on the treadmill (motor inactivity, aerobic, intermittent and anaerobic activity). After the end of each exercise, visual-motor response time and accuracy of motor response were assessed. Players’ motion was captured by digital video camera. ANOVA indicated no significant difference (p = 0.090) in the accuracy of motor response between the four exercise intensity modes. Practical significance (Z-test = 0.31) was found in visual-motor response time between exercise with dominant involvement of aerobic metabolism, and intense intermittent exercise. A medium size effect (Z-test = 0.34) was also found in visual-motor response time between exercise with dominant involvement of aerobic metabolism and exercise with dominant involvement of anaerobic metabolism, which was confirmed by ANOVA (897.02 ± 57.46 vs. 940.95 ± 71.14; p = 0.002). The results showed that different modes of exercise intensity do not adversely affect the accuracy of motor responses; however, high-intensity exercise has a negative effect on visual-motor response time in comparison to moderate intensity exercise. Key points Different exercise intensity modes did not affect the accuracy of motor response. Anaerobic, highly intensive short-term exercise significantly decreased the visual-motor response time in comparison with aerobic exercise. Further research should focus on the assessment of VMRT from a player’s real - field position view rather than a perspective view. PMID:27274671
Schaun, Gustavo Zaccaria; Pinto, Stephanie Santana; Praia, Aline Borges de Carvalho; Alberton, Cristine Lima
2018-02-05
The present study compared the energy expenditure (EE) during and after two water aerobics protocols, high-intensity interval training (HIIT) and moderate continuous training (CONT). A crossover randomized design was employed comprising 11 healthy young women. HIIT consisted of eight 20s bouts at 130% of the cadence associated with the maximal oxygen consumption (measured in the aquatic environment) with 10s passive rest. CONT corresponded to 30 min at a heart rate equivalent to 90-95% of the second ventilatory threshold. EE was measured during and 30 min before and after the protocols and excess post-exercise oxygen consumption (EPOC) was calculated. Total EE during session was higher in CONT (227.62 ± 31.69 kcal) compared to HIIT (39.91 ± 4.24 kcal), while EE per minute was greater in HIIT (9.98 ± 1.06 kcal) than in CONT (7.58 ± 1.07 kcal). Post-exercise EE (64.48 ± 3.50 vs. 63.65 ± 10.39 kcal) and EPOC (22.53 ± 4.98 vs.22.10 ± 8.00 kcal) were not different between HIIT and CONT, respectively. Additionally, oxygen uptake had already returned to baseline fifteen minutes post-exercise. These suggest that a water aerobics CONT session results in post-exercise EE and EPOC comparable to HIIT despite the latter supramaximal nature. Still, CONT results in higher total EE.
Wittke, Andreas; von Stengel, Simon; Hettchen, Michael; Fröhlich, Michael; Giessing, Jürgen; Lell, Michael; Scharf, Michael; Bebenek, Michael; Kohl, Matthias; Kemmler, Wolfgang
2017-01-01
High intensity (resistance exercise) training (HIT) defined as a "single set resistance exercise to muscular failure" is an efficient exercise method that allows people with low time budgets to realize an adequate training stimulus. Although there is an ongoing discussion, recent meta-analysis suggests the significant superiority of multiple set (MST) methods for body composition and strength parameters. The aim of this study is to determine whether additional protein supplementation may increase the effect of a HIT-protocol on body composition and strength to an equal MST-level. One hundred and twenty untrained males 30-50 years old were randomly allocated to three groups: (a) HIT, (b) HIT and protein supplementation (HIT&P), and (c) waiting-control (CG) and (after cross-over) high volume/high-intensity-training (HVHIT). HIT was defined as "single set to failure protocol" while HVHIT consistently applied two equal sets. Protein supplementation provided an overall intake of 1.5-1.7 g/kg/d/body mass. Primary study endpoint was lean body mass (LBM). LBM significantly improved in all exercise groups ( p ≤ 0.043); however only HIT&P and HVHIT differ significantly from control ( p ≤ 0.002). HIT diverges significantly from HIT&P ( p = 0.017) and nonsignificantly from HVHIT ( p = 0.059), while no differences were observed for HIT&P versus HVHIT ( p = 0.691). In conclusion, moderate to high protein supplementation significantly increases the effects of a HIT-protocol on LBM in middle-aged untrained males.
Evaluation of anaerobic threshold in non-pregnant and pregnant rats.
Netto, Aline Oliveira; Macedo, Nathália C D; Gallego, Franciane Q; Sinzato, Yuri K; Volpato, Gustavo T; Damasceno, Débora C
2017-01-01
Several studies present different methodologies and results about intensity exercise, and many of them are performed in male rats. However, the impact of different type, intensity, frequency and duration of exercise on female rats needs more investigation. From the analysis of blood lactate concentration during lactate minimum test (LacMin) in the swimming exercise, the anaerobic threshold (AT) was identified, which parameter is defined as the transition point between aerobic and anaerobic metabolism. LacMin test is considered a good indicator of aerobic conditioning and has been used in prescription of training in different exercise modalities. However, there is no evidence of LacMin test in female rats. The objective was to determine AT in non-pregnant and pregnant Wistar rats. The LacMin test was performed and AT defined for mild exercise intensity was from a load equivalent to 1% of body weight (bw), moderate exercise as carrying 4% bw and severe intensity as carrying 7% bw. In pregnant rats, the AT was reached at a lower loading from 5.0% to 5.5% bw, while in non-pregnant the load was from 5.5% to 6.0% bw. Thus, this study was effective to identify exercise intensities in pregnant and non-pregnant rats using anaerobic threshold by LacMin test.
Bonfim, Mariana Rotta; Oliveira, Acary Souza Bulle; do Amaral, Sandra Lia; Monteiro, Henrique Luiz
2015-04-01
Statin treatment in association with physical exercise practice can substantially reduce cardiovascular mortality risk of dyslipidemic individuals, but this practice is associated with myopathic event exacerbation. This study aimed to present the most recent results of specific literature about the effects of statins and its association with physical exercise on skeletal musculature. Thus, a literature review was performed using PubMed and SciELO databases, through the combination of the keywords "statin" AND "exercise" AND "muscle", restricting the selection to original studies published between January 1990 and November 2013. Sixteen studies evaluating the effects of statins in association with acute or chronic exercises on skeletal muscle were analyzed. Study results indicate that athletes using statins can experience deleterious effects on skeletal muscle, as the exacerbation of skeletal muscle injuries are more frequent with intense training or acute eccentric and strenuous exercises. Moderate physical training, in turn, when associated to statins does not increase creatine kinase levels or pain reports, but improves muscle and metabolic functions as a consequence of training. Therefore, it is suggested that dyslipidemic patients undergoing statin treatment should be exposed to moderate aerobic training in combination to resistance exercises three times a week, and the provision of physical training prior to drug administration is desirable, whenever possible.
A review of adolescent high-intensity interval training.
Logan, Greig R M; Harris, Nigel; Duncan, Scott; Schofield, Grant
2014-08-01
Despite the promising evidence supporting positive effects of high-intensity interval training (HIIT) on the metabolic profile in adults, there is limited research targeting adolescents. Given the rising burden of chronic disease, it is essential to implement strategies to improve the cardiometabolic health in adolescence, as this is a key stage in the development of healthy lifestyle behaviours. This narrative review summarises evidence of the relative efficacy of HIIT regarding the metabolic health of adolescents. Methodological inconsistencies confound our ability to draw conclusions; however, there is meaningful evidence supporting HIIT as a potentially efficacious exercise modality for use in the adolescent cohort. Future research must examine the effects of various HIIT protocols to determine the optimum strategy to deliver cardiometabolic health benefits. Researchers should explicitly show between-group differences for HIIT intervention and steady-state exercise or control groups, as the magnitude of difference between HIIT and other exercise modalities is of key interest to public health. There is scope for research to examine the palatability of HIIT as an exercise modality for adolescents through investigating perceived enjoyment during and after HIIT, and consequent long-term exercise adherence.
Heiskanen, Marja A; Leskinen, Tuija; Heinonen, Ilkka H A; Löyttyniemi, Eliisa; Eskelinen, Jari-Joonas; Virtanen, Kirsi; Hannukainen, Jarna C; Kalliokoski, Kari K
2016-09-01
Despite the recent studies on structural and functional adaptations of the right ventricle (RV) to exercise training, adaptations of its metabolism remain unknown. We investigated the effects of short-term, high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on RV glucose and fat metabolism. Twenty-eight untrained, healthy 40-55 yr-old-men were randomized into HIIT (n = 14) and MICT (n = 14) groups. Subjects performed six supervised cycle ergometer training sessions within 2 wk (HIIT session: 4-6 × 30 s all-out cycling/4-min recovery; MICT session: 40-60 min at 60% peak O2 uptake). Primary outcomes were insulin-stimulated RV glucose uptake (RVGU) and fasted state RV free fatty acid uptake (RVFFAU) measured by positron emission tomography. Secondary outcomes were changes in RV structure and function, determined by cardiac magnetic resonance. RVGU decreased after training (-22% HIIT, -12% MICT, P = 0.002 for training effect), but RVFFAU was not affected by the training (P = 0.74). RV end-diastolic and end-systolic volumes, respectively, increased +5 and +7% for HIIT and +4 and +8% for MICT (P = 0.002 and 0.005 for training effects, respectively), but ejection fraction mildly decreased (-2% HIIT, -4% MICT, P = 0.034 for training effect). RV mass and stroke volume remained unaltered. None of the observed changes differed between the training groups (P > 0.12 for group × training interaction). Only 2 wk of physical training in previously sedentary subjects induce changes in RV glucose metabolism, volumes, and ejection fraction, which precede exercise-induced hypertrophy of RV. Copyright © 2016 the American Physiological Society.
Circulating T-Regulatory Cells, Exercise and the Elite Adolescent Swimmer
Wilson, Lori D.; Zaldivar, Frank P.; Schwindt, Christina D.; Wang-Rodriguez, Jessica; Cooper, Dan M.
2014-01-01
Brief high intensity exercise induces peripheral leukocytosis possibly leading to a higher incidence of allergic symptoms in athletes undergoing excessive training. We studied the exercise-induced alternation of circulating Tregs and FoxP3+ Tregs due to acute intense swim exercise in elite swimmers (n = 22, 12 males, age = 15.4 yrs). Twelve had prior or current rhinitis or asthma and 10 had no current or prior allergy or asthma. Circulating Tregs increased significantly (p < .001) following exercise (pre = 133 ± 11.2, post = 196 ± 17.6) as did FoxP3+ cells (pre = 44, post = 64 cells/µl). Increases in Tregs and FoxP3+ Tregs occurred to the same extent in both groups of adolescent swimmers. PMID:19827454
Nemet, Dan; Eliakim, Alon
2010-01-01
Physical activity plays an important role in tissue anabolism, growth and development, but the mechanisms that link patterns of exercise with tissue anabolism are not completely understood. The effectiveness of physical training depends on the training load and on the individual ability to tolerate it, and an imbalance between the two may lead to under or over-training. Therefore, many efforts have been made to find objective parameters to quantify the balance between training load and the athlete's tolerance. One of the unique features of exercise is that it leads to a simultaneous increase of antagonistic mediators. On the one hand, exercise stimulates anabolic components of the growth hormone (GH) → IGF-1 (insulin-like growth factor-1) axis. On the other hand, exercise elevates catabolic pro-inflammatory cytokines such as interleukin-6 (IL-6), IL-1 and tumor necrosis factor-α (TNF-α). This emphasizes probably the importance of optimal adaptation to exercise in particularly during adolescence. The very fine balance between the anabolic and inflammatory/catabolic response to exercise will determine the effectiveness of exercise training and the health consequences of exercise. If the anabolic response is stronger, exercise will probably lead ultimately to increased muscle mass and improved fitness. A greater catabolic response, in particularly if persists for long duration, may lead to overtraining. Therefore, changes in the anabolic-catabolic hormonal balance and in circulating inflammatory cytokines can be used by adolescent athletes and/or their coaches to gauge the training intensity in individual and team sports. Copyright © 2010 S. Karger AG, Basel.
The Effects of Exercise on the Firing Patterns of Single Motor Units.
ERIC Educational Resources Information Center
Cracraft, Joe D.
In this study, the training effects of static and dynamic exercise programs on the firing patterns of 450 single motor units (SMU) in the human tibialis anterior muscle were investigated. In a six week program, the static group (N=5) participated in daily high intensity, short duration, isometric exercises while the dynamic group (N=5)…
Hall, Eric E; Petruzzello, Steven J; Ekkekakis, Panteleimon; Miller, Paul C; Bixby, Walter R
2014-09-01
Performance in fitness tests could depend on factors beyond the bioenergetic and skeletomuscular systems, such as individual differences in preference for and tolerance of different levels of exercise-induced somatosensory stimulation. Although such individual-difference variables could play a role in exercise testing and prescription, they have been understudied. The purpose of these studies was to examine the relationships of self-reported preference for and tolerance of exercise intensity with performance in fitness tests. Participants in study I were 516 men and women volunteers from a campus community, and participants in study II were 42 men recruit firefighters undergoing a 6-week training program. Both the Preference and Tolerance scores exhibited significant relationships with performance in several fitness tests and with body composition and physical activity participation. Preference and Tolerance did not change after the training program in study II, despite improvements in objective and perceived fitness, supporting their conceptualization as dispositional traits. Preference and Tolerance scores could be useful not only in ameliorating the current understanding of the determinants of physical performance, but also in personalizing exercise prescriptions and, thus, delivering exercise experiences that are more pleasant, tolerable, and sustainable.
Ambulatory blood pressure response to a bout of HIIT in metabolic syndrome patients.
Ramirez-Jimenez, M; Morales-Palomo, F; Pallares, J G; Mora-Rodriguez, Ricardo; Ortega, J F
2017-07-01
The effectiveness of exercise to lower blood pressure may depend on the type and intensity of exercise. We study the short-term (i.e., 14-h) effects of a bout of high-intensity aerobic interval training (HIIT) on blood pressure in metabolic syndrome (MetS) patients. Nineteen MetS patients (55.2 ± 7.3 years, 6 women) entered the study. Eight of them were normotensive and eleven hypertensive according to MetS threshold (≥130 mmHg for SBP and/or ≥85 mmHg for DBP). In the morning of 3 separated days, they underwent a cycling exercise bout of HIIT (>90% of maximal heart rate, ~85% VO 2max ), or a bout of isocaloric moderate-intensity continuous training (MICT; ~70% of maximal heart rate, ~60% VO 2max ), or a control no-exercise trial (REST). After exercise, ambulatory blood pressure (ABP; 14 h) was monitored, while subjects continued their habitual daily activities wearing a wrist-band activity monitor. No ABP differences were found for normotensive subjects. In hypertensive subjects, systolic ABP was reduced by 6.1 ± 2.2 mmHg after HIIT compared to MICT and REST (130.8 ± 3.9 vs. 137.4 ± 5.1 and 136.4 ± 3.8 mmHg, respectively; p < 0.05). However, diastolic ABP was similar in all three trials (77.2 ± 2.6 vs. 78.0 ± 2.6 and 78.9 ± 2.8 mmHg, respectively). Motion analysis revealed no differences among trials during the 14-h. This study suggests that the blood pressure reducing effect of a bout of exercise is influence by the intensity of exercise. A HIIT exercise bout is superior to an equivalent bout of continuous exercise when used as a non-pharmacological aid in the treatment of hypertension in MetS.
Moms in motion: a group-mediated cognitive-behavioral physical activity intervention.
Cramp, Anita G; Brawley, Lawrence R
2006-08-22
When examining the prevalence of physical inactivity by gender and age, women over the age of 25 are at an increased risk for sedentary behavior. Childbearing and motherhood have been explored as one possible explanation for this increased risk. Post natal exercise studies to date demonstrate promising physical and psychological outcomes, however few physical activity interventions have been theory-driven and tailored to post natal exercise initiates. The purpose of this study was to compare the effects of a group-mediated cognitive behavioral intervention based upon social-cognitive theory and group dynamics (GMCB) to a standard care postnatal exercise program (SE). A randomized, two-arm intervention design was used. Fifty-seven post natal women were randomized to one of two conditions: (1) a standard exercise treatment (SE) and (2) a standard exercise treatment plus group-mediated cognitive behavioral intervention (GMCB). Participants in both conditions participated in a four-week intensive phase where participants received standard exercise training. In addition, GMCB participants received self-regulatory behavioral skills training via six group-mediated counseling sessions. Following the intensive phase, participants engaged in a four-week home-based phase of self-structured exercise. Measures of physical activity, barrier efficacy, and proximal outcome expectations were administered and data were analyzed using ANCOVA procedures. ANCOVA of change scores for frequency, minutes, and volume of physical activity revealed significant treatment effects over the intensive and home-based phases (p's < 0.01). In addition, ANCOVA of change in mean barrier efficacy and proximal outcome expectations at the conclusion of the intensive phase demonstrated that GMCB participants increased their initial level of barrier efficacy and outcome expectations while SE participants decreased (p < 0.05). While both exercise programs resulted in improvements to exercise participation, the GMCB intervention produced greater improvement in overall physical activity, barrier efficacy and proximal outcome expectations.
Mora-Rodriguez, Ricardo; Fernandez-Elias, V E; Morales-Palomo, F; Pallares, J G; Ramirez-Jimenez, M; Ortega, J F
2017-10-01
The aim of this study was to determine the effects of high-intensity aerobic interval training (AIT) on exercise hemodynamics in metabolic syndrome (MetS) volunteers. Thirty-eight, MetS participants were randomly assigned to a training (TRAIN) or to a non-training control (CONT) group. TRAIN consisted of stationary interval cycling alternating bouts at 70-90% of maximal heart rate during 45 min day -1 for 6 months. CONT maintained baseline physical activity and no changes in cardiovascular function or MetS factors were detected. In contrast, TRAIN increased cardiorespiratory fitness (14% in VO 2PEAK ; 95% CI 9-18%) and improved metabolic syndrome (-42% in Z score; 95% CI 83-1%). After TRAIN, the workload that elicited a VO 2 of 1500 ml min -1 increased 15% (95% CI 5-25%; P < 0.001). After TRAIN when subjects pedaled at an identical submaximal rate of oxygen consumption, cardiac output increased by 8% (95% CI 4-11%; P < 0.01) and stroke volume by 10% (95% CI, 6-14%; P < 0.005) being above the CONT group values at that time point. TRAIN reduced submaximal exercise heart rate (109 ± 15-106 ± 13 beats min -1 ; P < 0.05), diastolic blood pressure (83 ± 8-75 ± 8 mmHg; P < 0.001) and systemic vascular resistances (P < 0.01) below CONT values. Double product was reduced only after TRAIN (18.2 ± 3.2-17.4 ± 2.4 bt min -1 mmHg 10 -3 ; P < 0.05). The data suggest that intense aerobic interval training improves hemodynamics during submaximal exercise in MetS patients. Specifically, it reduces diastolic blood pressure, systemic vascular resistances, and the double product. The reduction in double product, suggests decreased myocardial oxygen demands which could prevent the occurrence of adverse cardiovascular events during exercise in this population. CLINICALTRIALS. NCT03019796.
Dalager, Tina; Justesen, Just Bendix; Murray, Mike; Boyle, Eleanor; Sjøgaard, Gisela
2016-07-01
The aim was to assess 1-year cardiovascular health effects of Intelligent Physical Exercise Training, IPET. Office workers from six companies were randomized 1:1 to a training group, TG (N = 194) or a control group, CG (N = 195). TG received 1-h supervised high intensity IPET every week within working hours for 1 year, and was recommended to perform 30-min of moderate intensity physical activity 6 days a week during leisure. The training program was based on baseline health check measures of cardiorespiratory fitness (CRF), body composition, blood pressure, blood profile, and musculoskeletal health. There were no baseline differences between groups. CRF assessed as VO2max in absolute values and relative to body weight was (mean ± SD): 3.0 ± 0.8 l/min and 35.4 ± 10.9 ml/min/kg for females, 3.9 ± 1.0 l/min and 37.9 ± 11.79 ml/min/kg for males. Intention to treat analysis demonstrated a significant almost 5 % increase in VO2max in TG compared with CG. A per protocol analysis of those with an adherence of ≥70 % demonstrated a significant increase in CRF of more than 10 % compared with CG, and a significant reduction in systolic blood pressure (-5.3 ± 13.7 mm Hg) compared with CG. High intensity IPET combined with the recommendations of moderate intensity physical activity demonstrated significant clinical relevant improvements in CRF and systolic blood pressure. This underlines the effectiveness of health promotion by implementing physical exercise training at the workplace.
Gender differences in substrate utilisation during exercise.
Ruby, B C; Robergs, R A
1994-06-01
The selection and utilisation of metabolic substrates during endurance exercise are regulated by a complex array of effectors. These factors include, but are not limited to, endurance training and cardiorespiratory fitness, exercise intensity and duration, muscle morphology and histology, hormonal factors and diet. Although the effects of these factors on substrate utilisation patterns are well understood, the variation in substrate utilisation during endurance exercise between males and females is not. Because of the extreme heterogeneity in exercise protocols and individuals studied, the differences in substrate utilisation between males and females remain somewhat inconclusive. Regardless of heterogeneity, if the results from studies are interpreted collectively, an apparent gender difference in the selection and metabolism of substrates can be seen in sedentary individuals. However, this difference between genders diminishes as the level of cardiorespiratory fitness is increased to that of highly trained individuals. During rest and lower intensity exercise, the preferential metabolism of lipid occurs with a concomitant sparing of muscle glycogen. However, as the intensity of exercise is increased, the relative contribution of carbohydrate also increases. The exercise intensity at which the shift from lipid to carbohydrate is determined and regulated by the previously mentioned factors. Because the intensity and duration of exercise play a predominant role, the variation in exercise protocols poses a methodological concern when interpreting previous research. When attempting to compare the metabolism of substrates during endurance exercise, appropriate selection and interpretation of measurement techniques are necessary. Measurement techniques include the nonprotein respiratory exchange ratio, muscle and fat biopsies and the measurement of various blood metabolites, such as free fatty acids and glycerol. Similarly, in vitro analysis of lipolytic activity has also been demonstrated in males and females in response to varying levels of female gonadotrophic hormones. When comparing the substrate utilisation patterns between males and females, the area of hormonal regulation has received less attention. Often the catecholamine response to endurance exercise is measured; however, the gonadotrophic hormones, particularly those of the female, have received less attention when comparing genders. Indeed, the regulatory nature of the female gonadotrophic hormones has been demonstrated. Collectively, the effects of elevated estrogen, as in the luteal phase of menstruation, appear to promote lipolytic activity. Estrogen-mediated lipolytic activation occurs by apparently altering the sensitivity to lipoprotein lipase and by increasing the levels of human growth hormone (somatotropin), an activator of lipolysis.(ABSTRACT TRUNCATED AT 400 WORDS)
Exercise countermeasures for bed-rest deconditioning
NASA Technical Reports Server (NTRS)
Greenleaf, John (Editor)
1993-01-01
The purpose for this 30-day bed rest study was to investigate the effects of short-term, high intensity isotonic and isokinetic exercise training on maintenance of working capacity (peak oxygen uptake), muscular strength and endurance, and on orthostatic tolerance, posture and gait. Other data were collected on muscle atrophy, bone mineralization and density, endocrine analyses concerning vasoactivity and fluid-electrolyte balance, muscle intermediary metabolism, and on performance and mood of the subjects. It was concluded that: The subjects maintained a relatively stable mood, high morale, and high esprit de corps throughout the study. Performance improved in nearly all tests in almost all the subjects. Isotonic training, as opposed to isokinetic exercise training, was associated more with decreasing levels of psychological tension, concentration, and motivation; and improvement in the quality of sleep. Working capacity (peak oxygen uptake) was maintained during bed rest with isotonic exercise training; it was not maintained with isokinetic or no exercise training. In general, there was no significant decrease in strength or endurance of arm or leg muscles during bed rest, in spite of some reduction in muscle size (atrophy) of some leg muscles. There was no effect of isotonic exercise training on orthostasis, since tilt-table tolerance was reduced similarly in all three groups following bed rest. Bed rest resulted in significant decreases of postural stability and self-selected step length, stride length, and walking velocity, which were not influenced by either exercise training regimen. Most pre-bed rest responses were restored by the fourth day of recovery.
Gorostegi-Anduaga, Ilargi; Corres, Pablo; MartinezAguirre-Betolaza, Aitor; Pérez-Asenjo, Javier; Aispuru, G Rodrigo; Fryer, Simon M; Maldonado-Martín, Sara
2018-03-01
Background Both exercise training and diet are recommended to prevent and control hypertension and overweight/obesity. Purpose The purpose of this study was to determine the effectiveness of different 16-week aerobic exercise programmes with hypocaloric diet on blood pressure, body composition, cardiorespiratory fitness and pharmacological treatment. Methods Overweight/obese, sedentary participants ( n = 175, aged 54.0 ± 8.2 years) with hypertension were randomly assigned into an attention control group (physical activity recommendations) or one of three supervised exercise groups (2 days/week: high-volume with 45 minutes of moderate-intensity continuous training (MICT), high-volume and high-intensity interval training (HIIT), alternating high and moderate intensities, and low-volume HIIT (20 minutes)). All variables were assessed pre- and post-intervention. All participants received the same hypocaloric diet. Results Following the intervention, there was a significant reduction in blood pressure and body mass in all groups with no between-group differences for blood pressure. However, body mass was significantly less reduced in the attention control group compared with all exercise groups (attention control -6.6%, high-volume MICT -8.3%, high-volume HIIT -9.7%, low-volume HIIT -6.9%). HIIT groups had significantly higher cardiorespiratory fitness than high-volume MICT, but there were no significant between-HIIT differences (attention control 16.4%, high-volume MICT 23.6%, high-volume HIIT 36.7%, low-volume HIIT 30.5%). Medication was removed in 7.6% and reduced in 37.7% of the participants. Conclusions The combination of hypocaloric diet with supervised aerobic exercise 2 days/week offers an optimal non-pharmacological tool in the management of blood pressure, cardiorespiratory fitness and body composition in overweight/obese and sedentary individuals with hypertension. High-volume HIIT seems to be better for reducing body mass compared with low-volume HIIT. The exercise-induced improvement in cardiorespiratory fitness is intensity dependent with low-volume HIIT as a time-efficient method in this population. ClinicalTrials.gov Registration: NCT02283047.
Wang, Zun; Wang, Lei; Fan, Hongjuan; Jiang, Wenjun; Wang, Sheng; Gu, Zhaohua; Wang, Tong
2014-09-01
[Purpose] To evaluate the feasibility and efficacy of adapted low intensity ergometer aerobic training for early and severely impaired stroke survivors. [Subjects] The subjects were forty-eight early stroke survivors. [Methods] Eligible subjects were recruited and randomly assigned to an experimental group and a control group. Both groups participated in comprehensive rehabilitation training. Low intensity aerobic training was only performed by the experimental group. Outcome measures were the Fugl-Meyer motor score, Barthel index, exercise test time, peak heart rate, plasma glucose level and serum lipid profiles. [Results] Patients in the experimental group finished 88.6% of the total aerobic training sessions prescribed. In compliant participants (adherence≥80%), aerobic training significantly improved the Barthel index (from 40.1±21.1 to 79.2±14.2), Fugl-Meyer motor score (from 26.4±19.4 to 45.4±12.7), exercise test time (from 12.2±3.62 min to 13.9±3.6 min), 2-hour glucose level (from 9.22±1.16 mmol/L to 7.21±1.36 mmol/L) and homeostasis model of assessment for insulin resistence index (from 1.72±1.01 to 1.28±0.88). [Conclusion] Preliminary findings suggest that early and severely impaired stroke patients may benefit from low intensity ergometer aerobic training.
Beckers, Paul J; Possemiers, Nadine M; Van Craenenbroeck, Emeline M; Van Berendoncks, An M; Wuyts, Kurt; Vrints, Christiaan J; Conraads, Viviane M
2012-02-01
Exercise training efficiently improves peak oxygen uptake (V˙O2peak) in patients with chronic heart failure. To optimize training-derived benefit, higher exercise intensities are being explored. The correct identification of anaerobic threshold is important to allow safe and effective exercise prescription. During 48 cardiopulmonary exercise tests obtained in patients with chronic heart failure (59.6 ± 11 yrs; left ventricular ejection fraction, 27.9% ± 9%), ventilatory gas analysis findings and lactate measurements were collected. Three technicians independently determined the respiratory compensation point (RCP), the heart rate turning point (HRTP) and the second lactate turning point (LTP2). Thereafter, exercise intensity (target heart rate and workload) was calculated and compared between the three methods applied. Patients had significantly reduced maximal exercise capacity (68% ± 21% of predicted V˙O2peak) and chronotropic incompetence (74% ± 7% of predicted peak heart rate). Heart rate, workload, and V˙O2 at HRTP and at RCP were not different, but at LTP2, these parameters were significantly (P < 0.0001) higher. Mean target heart rate and target workload calculated using the LTP2 were 5% and 12% higher compared with those calculated using HRTP and RCP, respectively. The calculation of target heart rate based on LTP2 was 5% and 10% higher in 12 of 48 (25%) and 6 of 48 (12.5%) patients, respectively, compared with the other two methods. In patients with chronic heart failure, RCP and HRTP, determined during cardiopulmonary exercise tests, precede the occurrence of LTP2. Target heart rates and workloads used to prescribe tailored exercise training in patients with chronic heart failure based on LTP2 are significantly higher than those derived from HRTP and RCP.
Rahimi, Mostafa; Shekarforoush, Shahnaz; Asgari, Ali Reza; Khoshbaten, Ali; Rajabi, Hamid; Bazgir, Behzad; Mohammadi, Mohammad Taghi; Sobhani, Vahid; Shakibaee, Abolfazl
2015-01-01
The aims of the present study were to determine whether short term high intensity interval training (HIIT) could protect the heart against ischemia reperfusion (IR) injury; and if so, to evaluate how long the exercise-associated protection can be lasted. Sixty-three rats were randomly assigned into sedentary (n = 15), sham (n = 7), and exercise groups (n = 41). Rats in the exercise groups performed 5 consecutive days of HIIT on treadmill: 5 min warm up with 50 % VO2max, 6×2 min with 95-105 % VO2max (about 40 to 45 m/min), 5×2 min recovery with 65-75 % VO2max (about 28 to 32 m/min), and 3 min cool down with 50 % VO2max, all at 0 % grade. Animals exposed to an in vivo cardiac IR surgery, performed at days 1, 7, and 14 following the final exercise session. Ischemia-induced arrhythmias, myocardial infarct size (IS), plasma lactate dehydrogenase (LDH) and creatine kinase (CK) activities were measured in all animals. Compared to sedentary rats, exercised animals sustained less IR injury as evidenced by a lower size of infarction and lower levels of LDH and CK at day one and day 7 post exercise. In comparison of sedentary group, IS significantly decreased in EX-IR1 and EX-IR7 groups (50 and 35 %, respectively), but not in EX-IR14 group (19 %). The exercise-induced cardioprotection disappeared 14 days following exercise cessation. There were no significant changes in ischemia-induced arrhythmia between exercised and sedentary rats. The results clearly demonstrate that HIIT protects the heart against myocardial IR injury. This protective effect can be sustained for at least one week following the cessation of the training. PMID:26417361
Cheema, Birinder S; Davies, Timothy B; Stewart, Matthew; Papalia, Shona; Atlantis, Evan
2015-01-01
High-intensity interval training (HIIT) performed on exercise cycle or treadmill is considered safe and often more beneficial for fat loss and cardiometabolic health than moderate-intensity continuous training (MICT). The aim of this pilot study was to assess the feasibility and effectiveness of a 12-week boxing training (HIIT) intervention compared with an equivalent dose of brisk walking (MICT) in obese adults. Men and women with abdominal obesity and body mass index >25 kg/m(2) were randomized to either a boxing group or a brisk walking (control) group for 12 weeks. Each group engaged in 4 training sessions per week, equated for total physical activity. Feasibility outcomes included recruitment rates, assessment of training intensities, adherence and adverse events. Effectiveness was assessed pre and post intervention via pertinent obesity-, cardiovascular-, and health-related quality of life (HRQoL) outcomes. Nineteen individuals expressed an interest and 63% (n = 12) consented. Recruitment was slower than anticipated (1.3 participants/week). The boxing group trained at a significantly higher intensity each week versus the brisk walking group (p < 0.05). Two participants in the boxing group experienced an adverse event; both continued to exercise with modifications to the exercise program. No other adverse events were noted. The boxing group attended more sessions (79% vs. 55%) and had a lower attrition rate (n = 0 vs. n = 2) than the walking group. Analysis of covariance revealed that the boxing group significantly improved body fat percentage (p = 0.047), systolic blood pressure (p = 0.026), augmentation index (AIx; p < 0.001), absolute VO2max (p = 0.015), and Physical Functioning (p = 0.042) and Vitality (p = 0.024) domains of HRQoL over time. The walking group did not improve any clinical outcomes, and experienced a worsening of Vitality (p = 0.043). Boxing training (HIIT) in adults with abdominal obesity is feasible and may elicit a better therapeutic effect on obesity, cardiovascular, and HRQoL outcomes than an equivalent dose of brisk walking (MICT). Robustly designed randomized controlled trials are required to confirm these findings and inform clinical guidelines and practice for obesity treatment. ACTRN12615000007538.