Sample records for exercise training reduced

  1. Clinical Utility of Exercise Training in Heart Failure with Reduced and Preserved Ejection Fraction

    PubMed Central

    Asrar Ul Haq, Muhammad; Goh, Cheng Yee; Levinger, Itamar; Wong, Chiew; Hare, David L

    2015-01-01

    Reduced exercise tolerance is an independent predictor of hospital readmission and mortality in patients with heart failure (HF). Exercise training for HF patients is well established as an adjunct therapy, and there is sufficient evidence to support the favorable role of exercise training programs for HF patients over and above the optimal medical therapy. Some of the documented benefits include improved functional capacity, quality of life (QoL), fatigue, and dyspnea. Major trials to assess exercise training in HF have, however, focused on heart failure with reduced ejection fraction (HFREF). At least half of the patients presenting with HF have heart failure with preserved ejection fraction (HFPEF) and experience similar symptoms of exercise intolerance, dyspnea, and early fatigue, and similar mortality risk and rehospitalization rates. The role of exercise training in the management of HFPEF remains less clear. This article provides a brief overview of pathophysiology of reduced exercise tolerance in HFREF and heart failure with preserved ejection fraction (HFPEF), and summarizes the evidence and mechanisms by which exercise training can improve symptoms and HF. Clinical and practical aspects of exercise training prescription are also discussed. PMID:25698883

  2. Structural remodeling of coronary resistance arteries: effects of age and exercise training

    PubMed Central

    Hanna, Mina A.; Taylor, Curtis R.; Chen, Bei; La, Hae-Sun; Maraj, Joshua J.; Kilar, Cody R.; Behnke, Bradley J.; Delp, Michael D.

    2014-01-01

    Age is known to induce remodeling and stiffening of large-conduit arteries; however, little is known of the effects of age on remodeling and mechanical properties of coronary resistance arteries. We employed a rat model of aging to investigate whether 1) age increases wall thickness and stiffness of coronary resistance arteries, and 2) exercise training reverses putative age-induced increases in wall thickness and stiffness of coronary resistance arteries. Young (4 mo) and old (21 mo) Fischer 344 rats remained sedentary or underwent 10 wk of treadmill exercise training. Coronary resistance arteries were isolated for determination of wall-to-lumen ratio, effective elastic modulus, and active and passive responses to changes in intraluminal pressure. Elastin and collagen content of the vascular wall were assessed histologically. Wall-to-lumen ratio increased with age, but this increase was reversed by exercise training. In contrast, age reduced stiffness, and exercise training increased stiffness in coronary resistance arteries from old rats. Myogenic responsiveness was reduced with age and restored by exercise training. Collagen-to-elastin ratio (C/E) of the wall did not change with age and was reduced with exercise training in arteries from old rats. Thus age induces hypertrophic remodeling of the vessel wall and reduces the stiffness and myogenic function of coronary resistance arteries. Exercise training reduces wall-to-lumen ratio, increases wall stiffness, and restores myogenic function in aged coronary resistance arteries. The restorative effect of exercise training on myogenic function of coronary resistance arteries may be due to both changes in vascular smooth muscle phenotype and expression of extracellular matrix proteins. PMID:25059239

  3. The role of exercise training in the treatment of hypertension: an update.

    PubMed

    Hagberg, J M; Park, J J; Brown, M D

    2000-09-01

    Hypertension is a very prevalent cardiovascular (CV) disease risk factor in developed countries. All current treatment guidelines emphasise the role of nonpharmacological interventions, including physical activity, in the treatment of hypertension. Since our most recent review of the effects of exercise training on patients with hypertension, 15 studies have been published in the English literature. These results continue to indicate that exercise training decreases blood pressure (BP) in approximately 75% of individuals with hypertension, with systolic and diastolic BP reductions averaging approximately 11 and 8mm Hg, respectively. Women may reduce BP more with exercise training than men, and middle-aged people with hypertension may obtain greater benefits than young or older people. Low to moderate intensity training appears to be as, if not more, beneficial as higher intensity training for reducing BP in individuals with hypertension. BP reductions are rapidly evident although, at least for systolic BP, there is a tendency for greater reductions with more prolonged training. However, sustained BP reductions are evident during the 24 hours following a single bout of exercise in patients with hypertension. Asian and Pacific Island patients with hypertension reduce BP, especially systolic BP, more and more consistently than Caucasian patients. The minimal data also indicate that African-American patients reduce BP with exercise training. Some evidence indicates that common genetic variations may identify individuals with hypertension likely to reduce BP with exercise training. Patients with hypertension also improve plasma lipoprotein-lipid profiles and improve insulin sensitivity to the same degree as normotensive individuals with exercise training. Some evidence also indicates that exercise training in hypertensive patients may result in regression of pathological left ventricular hypertrophy. These results continue to support the recommendation that exercise training is an important initial or adjunctive step that is highly efficacious in the treatment of individuals with mild to moderate elevations in BP.

  4. The Effect of Different Doses of Aerobic Exercise Training on Exercise Blood Pressure in Overweight and Obese Postmenopausal Women

    PubMed Central

    Swift, Damon L.; Earnest, Conrad P.; Katzmarzyk, Peter T.; Rankinen, Tuomo; Blair, Steven N.; Church, Timothy S.

    2011-01-01

    Objective Abnormally elevated exercise blood pressure is associated with increased risk of cardiovascular disease. Aerobic exercise training has been shown to reduce exercise blood pressure. However, it is unknown if these improvements occur in a dose dependent manner. The purpose of the present study is to determine the effect of different doses of aerobic exercise training on exercise blood pressure in obese postmenopausal women. Methods Participants (n=404) were randomized to one of 4 groups: 4, 8, or 12 kilocalories per kilogram of energy expenditure per week (kcal/kg/week) or the non-exercise control group for 6 months. Exercise blood pressure was obtained during the 50 watts stage of a cycle ergometer maximal exercise test. Results There was a significant reduction in systolic blood pressure at 50 watts in the 4 kcal/kg/week (−10.9 mmHg, p< 0.001), 8 kcal/kg/week (−9.9 mmHg, p= 0.022), and 12 kcal/kg/week (−13.7 mmHg, p<0.001) compared to control (−4.2 mmHg). Only the highest exercise training dose significantly reduced diastolic blood pressure (−4.3 mmHg, p= 0.033) compared to control. Additionally, resting blood pressure was not altered following exercise training (p>0.05) compared to control, and was not associated with changes in exercise systolic (r=0.09, p=0.09) or diastolic (r=0.10, p=0.08) blood pressure. Conclusions Aerobic exercise training reduces exercise blood pressure and may be more modifiable than changes in resting blood pressure. A high dose of aerobic exercise is recommended to successfully reduce both exercise systolic and diastolic blood pressure, and therefore may attenuate the CVD risk associated with abnormally elevated exercise blood pressure. PMID:22547251

  5. Plasma lactic dehydrogenase activities in men during bed rest with exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Juhos, L. T.; Young, H. L.

    1985-01-01

    Peak oxygen uptake and the activity of lactic dehydrogenase (LDH-T) and its five isoenzymes were measured by spectrophotometer in seven men before, during, and after bed rest and exercise training. Exercise training consisted of isometric leg exercises of 250 kcal/hr for a period of one hour per day. It is found that LDH-T was reduced by 0.05 percent in all three regimens by day 10 of bed rest, and that the decrease occurred at different rates. The earliest reduction in LDH-T activity in the no-exercise regimen was associated with a decrease in peak oxygen uptake of 12.3 percent. It is concluded that isometric (aerobic) muscular strength training appear to maintain skeletal muscle integrity better during bed rest than isotonic exercise training. Reduced hydrostatic pressure during bed rest, however, ultimately counteracts the effects of both moderate isometric and isotonic exercise training, and may result in decreased LDH-T activity.

  6. Effects of exercise training on circulating and skeletal muscle renin-angiotensin system in chronic heart failure rats.

    PubMed

    Gomes-Santos, Igor Lucas; Fernandes, Tiago; Couto, Gisele Kruger; Ferreira-Filho, Julio César Ayres; Salemi, Vera Maria Cury; Fernandes, Fernanda Barrinha; Casarini, Dulce Elena; Brum, Patricia Chakur; Rossoni, Luciana Venturini; de Oliveira, Edilamar Menezes; Negrao, Carlos Eduardo

    2014-01-01

    Accumulated evidence shows that the ACE-AngII-AT1 axis of the renin-angiotensin system (RAS) is markedly activated in chronic heart failure (CHF). Recent studies provide information that Angiotensin (Ang)-(1-7), a metabolite of AngII, counteracts the effects of AngII. However, this balance between AngII and Ang-(1-7) is still little understood in CHF. We investigated the effects of exercise training on circulating and skeletal muscle RAS in the ischemic model of CHF. Male Wistar rats underwent left coronary artery ligation or a Sham operation. They were divided into four groups: 1) Sedentary Sham (Sham-S), 2) exercise-trained Sham (Sham-Ex), sedentary CHF (CHF-S), and exercise-trained CHF (CHF-Ex). Angiotensin concentrations and ACE and ACE2 activity in the circulation and skeletal muscle (soleus and plantaris) were quantified. Skeletal muscle ACE and ACE2 protein expression, and AT1, AT2, and Mas receptor gene expression were also evaluated. CHF reduced ACE2 serum activity. Exercise training restored ACE2 and reduced ACE activity in CHF. Exercise training reduced plasma AngII concentration in both Sham and CHF rats and increased the Ang-(1-7)/AngII ratio in CHF rats. CHF and exercise training did not change skeletal muscle ACE and ACE2 activity and protein expression. CHF increased AngII levels in both soleus and plantaris muscle, and exercise training normalized them. Exercise training increased Ang-(1-7) in the plantaris muscle of CHF rats. The AT1 receptor was only increased in the soleus muscle of CHF rats, and exercise training normalized it. Exercise training increased the expression of the Mas receptor in the soleus muscle of both exercise-trained groups, and normalized it in plantaris muscle. Exercise training causes a shift in RAS towards the Ang-(1-7)-Mas axis in skeletal muscle, which can be influenced by skeletal muscle metabolic characteristics. The changes in RAS circulation do not necessarily reflect the changes occurring in the RAS of skeletal muscle.

  7. Effects of exercise training on chronic inflammation in obesity : current evidence and potential mechanisms.

    PubMed

    You, Tongjian; Arsenis, Nicole C; Disanzo, Beth L; Lamonte, Michael J

    2013-04-01

    Chronic, systemic inflammation is an independent risk factor for several major clinical diseases. In obesity, circulating levels of inflammatory markers are elevated, possibly due to increased production of pro-inflammatory cytokines from several tissues/cells, including macrophages within adipose tissue, vascular endothelial cells and peripheral blood mononuclear cells. Recent evidence supports that adipose tissue hypoxia may be an important mechanism through which enlarged adipose tissue elicits local tissue inflammation and further contributes to systemic inflammation. Current evidence supports that exercise training, such as aerobic and resistance exercise, reduces chronic inflammation, especially in obese individuals with high levels of inflammatory biomarkers undergoing a longer-term intervention. Several studies have reported that this effect is independent of the exercise-induced weight loss. There are several mechanisms through which exercise training reduces chronic inflammation, including its effect on muscle tissue to generate muscle-derived, anti-inflammatory 'myokine', its effect on adipose tissue to improve hypoxia and reduce local adipose tissue inflammation, its effect on endothelial cells to reduce leukocyte adhesion and cytokine production systemically, and its effect on the immune system to lower the number of pro-inflammatory cells and reduce pro-inflammatory cytokine production per cell. Of these potential mechanisms, the effect of exercise training on adipose tissue oxygenation is worth further investigation, as it is very likely that exercise training stimulates adipose tissue angiogenesis and increases blood flow, thereby reducing hypoxia and the associated chronic inflammation in adipose tissue of obese individuals.

  8. Exercise training modulates functional sympatholysis and α-adrenergic vasoconstrictor responsiveness in hypertensive and normotensive individuals

    PubMed Central

    Mortensen, Stefan P; Nyberg, Michael; Gliemann, Lasse; Thaning, Pia; Saltin, Bengt; Hellsten, Ylva

    2014-01-01

    Essential hypertension is linked to an increased sympathetic vasoconstrictor activity and reduced tissue perfusion. We investigated the role of exercise training on functional sympatholysis and postjunctional α-adrenergic responsiveness in individuals with essential hypertension. Leg haemodynamics were measured before and after 8 weeks of aerobic training (3–4 times per week) in eight hypertensive (47 ± 2 years) and eight normotensive untrained individuals (46 ± 1 years) during arterial tyramine infusion, arterial ATP infusion and/or one-legged knee extensions. Before training, exercise hyperaemia and leg vascular conductance (LVC) were lower in the hypertensive individuals (P < 0.05) and tyramine lowered exercise hyperaemia and LVC in both groups (P < 0.05). Training lowered blood pressure in the hypertensive individuals (P < 0.05) and exercise hyperaemia was similar to the normotensive individuals in the trained state. After training, tyramine did not reduce exercise hyperaemia or LVC in either group. When tyramine was infused at rest, the reduction in blood flow and LVC was similar between groups, but exercise training lowered the magnitude of the reduction in blood flow and LVC (P < 0.05). There was no difference in the vasodilatory response to infused ATP or in muscle P2Y2 receptor content between the groups before and after training. However, training lowered the vasodilatory response to ATP and increased skeletal muscle P2Y2 receptor content in both groups (P < 0.05). These results demonstrate that exercise training improves functional sympatholysis and reduces postjunctional α-adrenergic responsiveness in both normo- and hypertensive individuals. The ability for functional sympatholysis and the vasodilator and sympatholytic effect of intravascular ATP appear not to be altered in essential hypertension. PMID:24860173

  9. Effects of exercise training on the cardiovascular system: pharmacological approaches.

    PubMed

    Zanesco, Angelina; Antunes, Edson

    2007-06-01

    Physical exercise promotes beneficial health effects by preventing or reducing the deleterious effects of pathological conditions, such as arterial hypertension, coronary artery disease, atherosclerosis, diabetes mellitus, osteoporosis, Parkinson's disease, and Alzheimer disease. Human movement studies are becoming an emerging science in the epidemiological area and public health. A great number of studies have shown that exercise training, in general, reduces sympathetic activity and/or increases parasympathetic tonus either in human or laboratory animals. Alterations in autonomic nervous system have been correlated with reduction in heart rate (resting bradycardia) and blood pressure, either in normotensive or hypertensive subjects. However, the underlying mechanisms by which physical exercise produce bradycardia and reduces blood pressure has not been fully understood. Pharmacological studies have particularly contributed to the comprehension of the role of receptor and transduction signaling pathways on the heart and blood vessels in response to exercise training. This review summarizes and examines the data from studies using animal models and human to determine the effect of exercise training on the cardiovascular system.

  10. Benefits of Exercise in Rheumatoid Arthritis

    PubMed Central

    Cooney, Jennifer K.; Law, Rebecca-Jane; Matschke, Verena; Lemmey, Andrew B.; Moore, Jonathan P.; Ahmad, Yasmeen; Jones, Jeremy G.; Maddison, Peter; Thom, Jeanette M.

    2011-01-01

    This paper aims to highlight the importance of exercise in patients with rheumatoid arthritis (RA) and to demonstrate the multitude of beneficial effects that properly designed exercise training has in this population. RA is a chronic, systemic, autoimmune disease characterised by decrements to joint health including joint pain and inflammation, fatigue, increased incidence and progression of cardiovascular disease, and accelerated loss of muscle mass, that is, “rheumatoid cachexia”. These factors contribute to functional limitation, disability, comorbidities, and reduced quality of life. Exercise training for RA patients has been shown to be efficacious in reversing cachexia and substantially improving function without exacerbating disease activity and is likely to reduce cardiovascular risk. Thus, all RA patients should be encouraged to include aerobic and resistance exercise training as part of routine care. Understanding the perceptions of RA patients and health professionals to exercise is key to patients initiating and adhering to effective exercise training. PMID:21403833

  11. Euterpe oleracea Mart. (açaí) seed extract associated with exercise training reduces hepatic steatosis in type 2 diabetic male rats.

    PubMed

    de Bem, Graziele Freitas; da Costa, Cristiane Aguiar; da Silva Cristino Cordeiro, Viviane; Santos, Izabelle Barcellos; de Carvalho, Lenize Costa Reis Marins; de Andrade Soares, Ricardo; Ribeiro, Jéssica Honorato; de Souza, Marcelo Augusto Vieira; da Cunha Sousa, Pergentino José; Ognibene, Dayane Teixeira; Resende, Angela Castro; de Moura, Roberto Soares

    2018-02-01

    Type 2 diabetes mellitus contributes to an increased risk of metabolic and morphological changes in key organs, such as the liver. We aimed to assess the effect of the açaí seed extract (ASE) associated with exercise training on hepatic steatosis induced by high-fat (HF) diet plus streptozotocin (STZ) in rats. Type 2 diabetes was induced by feeding rats with HF diet (55% fat) for 5 weeks, followed by a single low dose of STZ (35 mg/kg i.p.). Control and diabetic groups were subdivided into four groups that were fed with standard chow diet for 4 weeks. Control (C) group was subdivided into Sedentary C, Training C, ASE Sedentary C and ASE Training C. Diabetic (D) group was subdivided into Sedentary D, Training D, ASE Sedentary D and ASE Training D. ASE (200 mg/kg/day) was administered by intragastric gavage, and the exercise training was performed on a treadmill (30 min/day; 5 days/week). Treatment with ASE associated with exercise training reduced the blood glucose (70.2%), total cholesterol (81.2%), aspartate aminotransferase (51.7%) and hepatic triglyceride levels (66.8%) and steatosis (72%) in ASE Training D group compared with the Sedentary D group. ASE associated with exercise training reduced the hepatic lipogenic proteins' expression (77.3%) and increased the antioxidant defense (63.1%), pAMPK expression (70.2%), cholesterol transporters (71.1%) and the pLKB1/LKB1 ratio (57.1%) in type 2 diabetic rats. In conclusion, ASE treatment associated with exercise training protects against hepatic steatosis in diabetic rats by reducing hepatic lipogenesis and increasing antioxidant defense and cholesterol excretion. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Chronic aerobic exercise training attenuates aortic stiffening and endothelial dysfunction through preserving aortic mitochondrial function in aged rats.

    PubMed

    Gu, Qi; Wang, Bing; Zhang, Xiao-Feng; Ma, Yan-Ping; Liu, Jian-Dong; Wang, Xiao-Ze

    2014-08-01

    Aging leads to large vessel arterial stiffening and endothelial dysfunction, which are important determinants of cardiovascular risk. The aim of present work was to assess the effects of chronic aerobic exercise training on aortic stiffening and endothelial dysfunction in aged rats and investigate the underlying mechanism about mitochondrial function. Chronic aerobic exercise training attenuated aortic stiffening with age marked by reduced collagen concentration, increased elastin concentration and reduced pulse wave velocity (PWV), and prevented aging-related endothelial dysfunction marked by improved endothelium-mediated vascular relaxation of aortas in response to acetylcholine. Chronic aerobic exercise training abated oxidative stress and nitrosative stress in aortas of aged rats. More importantly, we found that chronic aerobic exercise training in old rats preserved aortic mitochondrial function marked by reduced reactive oxygen species (ROS) formation and mitochondrial swelling, increased ATP formation and mitochondrial DNA content, and restored activities of complexes I and III and electron-coupling capacity between complexes I and III and between complexes II and III. In addition, it was found that chronic aerobic exercise training in old rats enhanced protein expression of uncoupling protein 2 (UCP-2), peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), manganese superoxide dismutase (Mn-SOD), aldehyde dehydrogenase 2 (ALDH-2), prohibitin (PHB) and AMP-activated kinase (AMPK) phosphorylation in aortas. In conclusion, chronic aerobic exercise training preserved mitochondrial function in aortas, which, at least in part, explained the aorta-protecting effects of exercise training in aging. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Exercise training regulates SOD-1 and oxidative stress in porcine aortic endothelium.

    PubMed

    Rush, James W E; Turk, James R; Laughlin, M Harold

    2003-04-01

    Vascular oxidative stress contributes to endothelial dysfunction. Aerobic exercise training improves vascular function. The purpose of this study was to test the hypothesis that exercise training would improve the balance of antioxidant to prooxidant enzymes and reduce markers of oxidative stress in aortic endothelial cells (AEC). Female Yucatan miniature pigs either remained sedentary (SED) or were exercise trained (EX) for 16-19 wk. EX pigs had increased AEC SOD-1 protein levels and Cu/Zn SOD activity of the whole aorta compared with SED pigs. Protein levels of other antioxidant enzymes (SOD-2, catalase) were not affected by exercise training. Protein levels of p67(phox), a subunit of the prooxidant enzyme NAD(P)H oxidase, were reduced in EX vs. SED AEC. These EX adaptations were associated with lower AEC malondialdehyde levels and decreased phosphorylation of ERK-1/2. Endothelial nitric oxide synthase protein, protein nitrotyrosine content, and heme oxygenase-1 protein were not different in EX vs. SED pigs. We conclude that chronic aerobic exercise training influenced both antioxidant and prooxidant enzymes and decreased indexes of oxidative stress in AEC. These adaptations may contribute to improved endothelial function with exercise training.

  14. Abdominal fat reducing outcome of exercise training: fat burning or hydrocarbon source redistribution?

    PubMed

    Kuo, Chia-Hua; Harris, M Brennan

    2016-07-01

    Fat burning, defined by fatty acid oxidation into carbon dioxide, is the most described hypothesis to explain the actual abdominal fat reducing outcome of exercise training. This hypothesis is strengthened by evidence of increased whole-body lipolysis during exercise. As a result, aerobic training is widely recommended for obesity management. This intuition raises several paradoxes: first, both aerobic and resistance exercise training do not actually elevate 24 h fat oxidation, according to data from chamber-based indirect calorimetry. Second, anaerobic high-intensity intermittent training produces greater abdominal fat reduction than continuous aerobic training at similar amounts of energy expenditure. Third, significant body fat reduction in athletes occurs when oxygen supply decreases to inhibit fat burning during altitude-induced hypoxia exposure at the same training volume. Lack of oxygen increases post-meal blood distribution to human skeletal muscle, suggesting that shifting the postprandial hydrocarbons towards skeletal muscle away from adipose tissue might be more important than fat burning in decreasing abdominal fat. Creating a negative energy balance in fat cells due to competition of skeletal muscle for circulating hydrocarbon sources may be a better model to explain the abdominal fat reducing outcome of exercise than the fat-burning model.

  15. Sport therapy for hypertension: why, how, and how much?

    PubMed

    Manfredini, Fabio; Malagoni, Anna M; Mandini, Simona; Boari, Benedetta; Felisatti, Michele; Zamboni, Paolo; Manfredini, Roberto

    2009-01-01

    Exercise may prevent or reduce the effects of metabolic and cardiovascular diseases, including arterial hypertension. Both acute and chronic exercise, alone or combined with lifestyle modifications, decrease blood pressure and avoid or reduce the need for pharmacologic therapy in patients with hypertension. The hypotensive effect of exercise is observed in a large percentage of subjects, with differences due to age, sex, race, health conditions, parental history, and genetic factors. Exercise regulates autonomic nervous system activity, increases shear stress, improves nitric oxide production in endothelial cells and its bioavailability for vascular smooth muscle, up-regulates antioxidant enzymes. Endurance training is primarily effective, and resistance training can be combined with it. Low-to-moderate intensity training in sedentary patients with hypertension is necessary, and tailored programs make exercise safe and effective also in special populations. Supervised or home-based exercise programs allow a nonpharmacological reduction of hypertension and reduce risk factors, with possible beneficial effects on cardiovascular morbidity.

  16. Serum free light chains are reduced in endurance trained older adults: Evidence that exercise training may reduce basal inflammation in older adults.

    PubMed

    Heaney, Jennifer L J; Phillips, Anna C; Drayson, Mark T; Campbell, John P

    2016-05-01

    Traditionally, free light chains (FLCs) are used as key serum biomarkers in the diagnosis and monitoring of plasma cell malignancies, but polyclonal FLCs can also be used as an accurate real-time indicator of immune-activation and inflammation. The primary aim of the present study was to assess the effects of exercise training status on serum FLCs in older adults, and secondly, to examine if training status moderated serum FLC responses to acute exercise. Kappa and lambda serum FLC levels were measured in 45 healthy older adults (aged ≥ 60 years) who were either sedentary, physically active or endurance trained. FLCs were measured at baseline and in response to an acute bout of submaximal exercise. The endurance trained group had significantly lower levels of kappa and lambda serum FLCs compared with physically active or sedentary elderly adults; these effects were independent of age, BMI and renal function. There was no significant difference in whole immunoglobulins between groups. Exercise training status had no effect on serum FLC responses to acute exercise, which were marginal. In conclusion, endurance training was associated with lower FLC levels compared with less physically active individuals. These findings suggest that long-term endurance training may be beneficial in reducing basal inflammation in older adults as well as elevated FLCs present in inflammatory and autoimmune conditions, often associated with ageing. FLCs may serve as a useful biomarker for monitoring the efficacy of exercise intervention studies in healthy and clinical populations. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Physical Exercise as Therapy for Frailty.

    PubMed

    Aguirre, Lina E; Villareal, Dennis T

    2015-01-01

    Longitudinal studies demonstrate that regular physical exercise extends longevity and reduces the risk of physical disability. Decline in physical activity with aging is associated with a decrease in exercise capacity that predisposes to frailty. The frailty syndrome includes a lowered activity level, poor exercise tolerance, and loss of lean body and muscle mass. Poor exercise tolerance is related to aerobic endurance. Aerobic endurance training can significantly improve peak oxygen consumption by ∼10-15%. Resistance training is the best way to increase muscle strength and mass. Although the increase in muscle mass in response to resistance training may be attenuated in frail older adults, resistance training can significantly improve muscle strength, particularly in institutionalized patients, by ∼110%. Because both aerobic and resistance training target specific components of frailty, studies combining aerobic and resistance training provide the most promising evidence with respect to successfully treating frailty. At the molecular level, exercise reduces frailty by decreasing muscle inflammation, increasing anabolism, and increasing muscle protein synthesis. More studies are needed to determine which exercises are best suited, most effective, and safe for this population. Based on the available studies, an individualized multicomponent exercise program that includes aerobic activity, strength exercises, and flexibility is recommended to treat frailty. © 2015 Michael E. DeBakey VA Medical Center (US Government) Published by S. Karger AG, Basel.

  18. Effects of interval aerobic training combined with strength exercise on body composition, glycaemic and lipid profile and aerobic capacity of obese rats.

    PubMed

    Coll-Risco, Irene; Aparicio, Virginia A; Nebot, Elena; Camiletti-Moirón, Daniel; Martínez, Rosario; Kapravelou, Garyfallia; López-Jurado, María; Porres, Jesús M; Aranda, Pilar

    2016-08-01

    The purpose of this study was to investigate the effects of interval aerobic training combined with strength exercise in the same training session on body composition, and glycaemic and lipid profile in obese rats. Sixteen lean Zucker rats and sixteen obese Zucker rats were randomly divided into exercise and sedentary subgroups (4 groups, n = 8). Exercise consisted of interval aerobic training combined with strength exercise in the same training session. The animals trained 60 min/day, 5 days/week for 8 weeks. Body composition, lipid and glycaemic profiles and inflammatory markers were assessed. Results showed that fat mass was reduced in both lean and obese rats following the exercise training (effect size (95% confidence interval (CI)) = 1.8 (0.5-3.0)). Plasma low-density lipoprotein-cholesterol and fasting glucose were lower in the exercise compared to the sedentary groups (d = 2.0 (0.7-3.2) and 1.8 (0.5-3.0), respectively). Plasma insulin was reduced in exercise compared to sedentary groups (d = 2.1 (0.8-3.4)). Some exercise × phenotype interactions showed that the highest decreases in insulin, homeostatic model assessment-insulin resistance, fasting and postprandial glucose were observed in the obese + exercise group (all, P < 0.01). The findings of this study suggest that interval aerobic training combined with strength exercise would improve body composition, and lipid and glycaemic profiles, especially in obese rats.

  19. Previous Exercise Training Reduces Markers of Renal Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Female Rats.

    PubMed

    Amaral, Liliany Souza de Brito; Souza, Cláudia Silva; Volpini, Rildo Aparecido; Shimizu, Maria Heloisa Massola; de Bragança, Ana Carolina; Canale, Daniele; Seguro, Antonio Carlos; Coimbra, Terezila Machado; de Magalhães, Amélia Cristina Mendes; Soares, Telma de Jesus

    2018-01-01

    The aim of this study is to evaluate the effects of regular moderate exercise training initiated previously or after induction of diabetes mellitus on renal oxidative stress and inflammation in STZ-induced diabetic female rats. For this purpose, Wistar rats were divided into five groups: sedentary control (SC), trained control (TC), sedentary diabetic (SD), trained diabetic (TD), and previously trained diabetic (PTD). Only the PTD group was submitted to treadmill running for 4 weeks previously to DM induction with streptozotocin (40 mg/kg, i.v). After confirming diabetes, the PTD, TD, and TC groups were submitted to eight weeks of exercise training. At the end of the training protocol, we evaluated the following: glycosuria, body weight gain, plasma, renal and urinary levels of nitric oxide and thiobarbituric acid reactive substances, renal glutathione, and immunolocalization of lymphocytes, macrophages, and nuclear factor-kappa B (NF- κ B/p65) in the renal cortex. The results showed that exercise training reduced glycosuria, renal TBARS levels, and the number of immune cells in the renal tissue of the TD and PTD groups. Of note, only previous exercise increased weight gain and urinary/renal NO levels and reduced NF- κ B (p65) immunostaining in the renal cortex of the PTD group. In conclusion, our study shows that exercise training, especially when initiated previously to diabetes induction, promotes protective effects in diabetic kidney by reduction of renal oxidative stress and inflammation markers in female Wistar rats.

  20. Previous Exercise Training Reduces Markers of Renal Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Female Rats

    PubMed Central

    Souza, Cláudia Silva; Volpini, Rildo Aparecido; Shimizu, Maria Heloisa Massola; de Bragança, Ana Carolina; Canale, Daniele; Seguro, Antonio Carlos; Coimbra, Terezila Machado; de Magalhães, Amélia Cristina Mendes

    2018-01-01

    The aim of this study is to evaluate the effects of regular moderate exercise training initiated previously or after induction of diabetes mellitus on renal oxidative stress and inflammation in STZ-induced diabetic female rats. For this purpose, Wistar rats were divided into five groups: sedentary control (SC), trained control (TC), sedentary diabetic (SD), trained diabetic (TD), and previously trained diabetic (PTD). Only the PTD group was submitted to treadmill running for 4 weeks previously to DM induction with streptozotocin (40 mg/kg, i.v). After confirming diabetes, the PTD, TD, and TC groups were submitted to eight weeks of exercise training. At the end of the training protocol, we evaluated the following: glycosuria, body weight gain, plasma, renal and urinary levels of nitric oxide and thiobarbituric acid reactive substances, renal glutathione, and immunolocalization of lymphocytes, macrophages, and nuclear factor-kappa B (NF-κB/p65) in the renal cortex. The results showed that exercise training reduced glycosuria, renal TBARS levels, and the number of immune cells in the renal tissue of the TD and PTD groups. Of note, only previous exercise increased weight gain and urinary/renal NO levels and reduced NF-κB (p65) immunostaining in the renal cortex of the PTD group. In conclusion, our study shows that exercise training, especially when initiated previously to diabetes induction, promotes protective effects in diabetic kidney by reduction of renal oxidative stress and inflammation markers in female Wistar rats. PMID:29785400

  1. Physical Training Status Determines Oxidative Stress and Redox Changes in Response to an Acute Aerobic Exercise

    PubMed Central

    Damirchi, Arsalan; Farjaminezhad, Manoochehr

    2016-01-01

    Objective. To assess the influence of different physical training status on exercise-induced oxidative stress and changes in cellular redox state. Methods. Thirty male subjects participated in this study and were assigned as well-trained (WT), moderately trained (MT), and untrained (UT) groups. The levels of cortisol, creatine kinase, plasma reduced glutathione to oxidized glutathione (GSH/GSSG), cysteine/cystine (Cys/CySS), and GSH/GSSG ratio in red blood cells (RBCs) were measured immediately and 10 and 30 min after exercise. Results. Following the exercise, plasma GSH/GSSG (p = 0.001) and Cys/CySS (p = 0.005) were significantly reduced in all groups. Reduction in plasma GSH/GSSG ratio in all groups induced a transient shift in redox balance towards a more oxidizing environment without difference between groups (p = 0.860), while RBCs GSH/GSSG showed significant reduction (p = 0.003) and elevation (p = 0.007) in UT and MT groups, respectively. The highest level of RBCs GSH/GSSG ratio was recorded in MT group, and the lowest one was recorded in the WT group. Conclusion. Long term regular exercise training with moderate intensity shifts redox balance towards more reducing environment, versus intensive exercise training leads to more oxidizing environment and consequently development of related diseases. PMID:27064342

  2. Effects of Swimming and Cycling Exercise Intervention on Vascular Function in Patients With Osteoarthritis.

    PubMed

    Alkatan, Mohammed; Machin, Daniel R; Baker, Jeffrey R; Akkari, Amanda S; Park, Wonil; Tanaka, Hirofumi

    2016-01-01

    Swimming exercise is an ideal and excellent form of exercise for patients with osteoarthritis (OA). However, there is no scientific evidence that regular swimming reduces vascular dysfunction and inflammation and elicits similar benefits compared with land-based exercises such as cycling in terms of reducing vascular dysfunction and inflammation in patients with OA. Forty-eight middle-aged and older patients with OA were randomly assigned to swimming or cycling training groups. Cycling training was included as a non-weight-bearing land-based comparison group. After 12 weeks of supervised exercise training, central arterial stiffness, as determined by carotid-femoral pulse wave velocity, and carotid artery stiffness, through simultaneous ultrasound and applanation tonometry, decreased significantly after both swimming and cycling training. Vascular endothelial function, as determined by brachial flow-mediated dilation, increased significantly after swimming but not after cycling training. Both swimming and cycling interventions reduced interleukin-6 levels, whereas no changes were observed in other inflammatory markers. In conclusion, these results indicate that regular swimming exercise can exert similar or even superior effects on vascular function and inflammatory markers compared with land-based cycling exercise in patients with OA who often has an increased risk of developing cardiovascular disease. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Exercise following myocardial infarction. Current recommendations.

    PubMed

    Leon, A S

    2000-05-01

    Cardiac rehabilitation services are comprehensive long term programmes designed to limit the physiological and psychological effects of cardiovascular disease (CVD), control cardiac symptoms and reduce the risk of subsequent CVD events by stabilising or partially reversing the underlying atherosclerosis process through risk factor modification. Exercise training is the cornerstone of such programmes. Ideally, exercise conditioning or training for the stable cardiac patient should include a combination of cardiorespiratory endurance (aerobic) training, arm exercises and muscular conditioning resistance (strength) training. Flexibility exercises should also be performed, usually as part of the warm-up and cool-down routines preceding and following endurance and strength training. This review discusses the potential physiological, psychological and health benefits of regular exercise and provides guidelines for exercise training for the rehabilitation of post-myocardial infarction patients following hospitalisation.

  4. Psychophysiological Responses to Group Exercise Training Sessions: Does Exercise Intensity Matter?

    PubMed

    Vandoni, Matteo; Codrons, Erwan; Marin, Luca; Correale, Luca; Bigliassi, Marcelo; Buzzachera, Cosme Franklim

    2016-01-01

    Group exercise training programs were introduced as a strategy for improving health and fitness and potentially reducing dropout rates. This study examined the psychophysiological responses to group exercise training sessions. Twenty-seven adults completed two group exercise training sessions of moderate and vigorous exercise intensities in a random and counterbalanced order. The %HRR and the exertional and arousal responses to vigorous session were higher than those during the moderate session (p<0.05). Consequently, the affective responses to vigorous session were less pleasant than those during moderate session (p<0.05). These results suggest that the psychophysiological responses to group exercise training sessions are intensity-dependent. From an adherence perspective, interventionists are encouraged to emphasize group exercise training sessions at a moderate intensity to maximize affective responses and to minimize exertional responses, which in turn may positively affect future exercise behavior.

  5. MAP Training My Brain™: Meditation Plus Aerobic Exercise Lessens Trauma of Sexual Violence More Than Either Activity Alone

    PubMed Central

    Shors, Tracey J.; Chang, Han Y. M.; Millon, Emma M.

    2018-01-01

    Sexual violence against women often leads to post-traumatic stress disorder (PTSD), a mental illness characterized by intrusive thoughts and memories about the traumatic event (Shors and Millon, 2016). These mental processes are obviously generated by the brain but often felt in the body. MAP Training My Brain™ is a novel clinical intervention that combines mental training of the brain with physical training of the body (Curlik and Shors, 2013; Shors et al., 2014). Each training session begins with 20-min of sitting meditation, followed by 10-min of slow-walking meditation, and ending with 30-min of aerobic exercise at 60–80% of the maximum heart rate (see maptrainmybrain.com). In previous studies, the combination of mental and physical (MAP) training together significantly reduced symptoms of depression and ruminative thoughts, while reducing anxiety (Shors et al., 2014, 2017; Alderman et al., 2016). We also documented positive changes in brain activity during cognitive control and whole-body oxygen consumption in various populations. In the present pilot study, we asked whether the combination of meditation and aerobic exercise during MAP Training would reduce trauma-related thoughts, ruminations, and memories in women and if so, whether the combination would be more effective than either activity alone. To test this hypothesis, interventions were provided to a group of women (n = 105), many of whom had a history of sexual violence (n = 32). Groups were trained with (1) MAP Training, (2) meditation alone, (3) aerobic exercise alone, or (4) not trained. Individuals in training groups completed two sessions a week for at least 6 weeks. MAP Training My Brain™ significantly reduced post-traumatic cognitions and ruminative thoughts in women with a history of sexual violence, whereas meditation alone, and exercise alone did not. MAP Training significantly enhanced a measure of self-worth, whereas meditation and exercise alone did not. Similar positive effects were observed for all participants, although meditation alone was also effective in reducing trauma-related thoughts. Overall, these data indicate the combination of meditation and exercise is synergistic. As a consequence, MAP Training is preferable and especially so for women who have experienced sexual violence in their past. Simply put, the whole is greater than the sum of its parts. PMID:29740264

  6. MAP Training My Brain™: Meditation Plus Aerobic Exercise Lessens Trauma of Sexual Violence More Than Either Activity Alone.

    PubMed

    Shors, Tracey J; Chang, Han Y M; Millon, Emma M

    2018-01-01

    Sexual violence against women often leads to post-traumatic stress disorder (PTSD), a mental illness characterized by intrusive thoughts and memories about the traumatic event (Shors and Millon, 2016). These mental processes are obviously generated by the brain but often felt in the body. MAP Training My Brain ™ is a novel clinical intervention that combines mental training of the brain with physical training of the body (Curlik and Shors, 2013; Shors et al., 2014). Each training session begins with 20-min of sitting meditation, followed by 10-min of slow-walking meditation, and ending with 30-min of aerobic exercise at 60-80% of the maximum heart rate (see maptrainmybrain.com). In previous studies, the combination of mental and physical (MAP) training together significantly reduced symptoms of depression and ruminative thoughts, while reducing anxiety (Shors et al., 2014, 2017; Alderman et al., 2016). We also documented positive changes in brain activity during cognitive control and whole-body oxygen consumption in various populations. In the present pilot study, we asked whether the combination of meditation and aerobic exercise during MAP Training would reduce trauma-related thoughts, ruminations, and memories in women and if so, whether the combination would be more effective than either activity alone. To test this hypothesis, interventions were provided to a group of women ( n = 105), many of whom had a history of sexual violence ( n = 32). Groups were trained with (1) MAP Training, (2) meditation alone, (3) aerobic exercise alone, or (4) not trained. Individuals in training groups completed two sessions a week for at least 6 weeks. MAP Training My Brain ™ significantly reduced post-traumatic cognitions and ruminative thoughts in women with a history of sexual violence, whereas meditation alone, and exercise alone did not. MAP Training significantly enhanced a measure of self-worth, whereas meditation and exercise alone did not. Similar positive effects were observed for all participants, although meditation alone was also effective in reducing trauma-related thoughts. Overall, these data indicate the combination of meditation and exercise is synergistic. As a consequence, MAP Training is preferable and especially so for women who have experienced sexual violence in their past. Simply put, the whole is greater than the sum of its parts.

  7. The Beneficial Effects of Group-Based Exercises on Fall Risk Profile and Physical Activity Persist One-Year Post-Intervention in Older Women with Low Bone Mass: Follow-up After Withdrawal of Exercise

    PubMed Central

    Liu-Ambrose, Teresa YL; Khan, Karim M; Eng, Janice J; Gillies, Graham L; Lord, Stephen R; McKay, Heather A

    2012-01-01

    OBJECTIVE To determine whether exercise-induced reductions in fall risk are maintained in older women one year following the cessation of three types of interventions – resistance training, agility training, and general stretching. DESIGN One-year observational study. PARTICIPANTS 98 women aged 75–85 years with low bone mass. MEASUREMENTS Primary outcome measure was fall risk as measured by the Physiological Profile Assessment tool. Secondary outcome measures were current physical activity level as assessed by the Physical Activity Scale for the Elderly and formal exercise participation as assessed by interview. RESULTS At the end of the follow-up, the fall risk among former participants of all three exercise programs was maintained (i.e., still reduced) from trial completion. Mean fall risk value at the end of follow-up was 43.3% reduced compared with the mean baseline value among former participants of the Resistance Training group, 40.1% reduced in the Agility Training group, and 37.4% reduced in the general Stretching group. Physical activity levels were also maintained from trial completion. Specifically, there was a 3.8% increase in physical activity from baseline for the Resistance Training group, a 29.2% increase for the Agility Training group, and 37.7% increase for the general Stretching group. CONCLUSION After three types of group-based exercise programs, benefits are sustained for at least 12 months without further formal exercise intervention. Thus, these six-month exercise interventions appeared to act as a catalyst for increasing physical activity with resultant reductions in fall risk profile that were maintained for at least 18 months among older women with low bone mass. PMID:16181178

  8. Baroreflex responses and LBNP tolerance following exercise training

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Thompson, C. A.; Eckberg, D. L.; Fritsch, J. M.; Mack, G. W.; Nadel, E. R.

    1990-01-01

    The hypothesis that endurance exercise training designed to increase aerobic capacity results in reduced orthostatic tolerance due to alterations of blood-pressure controlling mechanisms was reexamined using a specially designed training in which tolerance to orthostasis and the primary mechanisms associated with the blood-pressure control could be measured before and after the increase in aerobic capacity. Results demonstrate that maximal oxygen uptake can be significantly elevated in individuals of average fit without reducing lower body negative pressure tolerance. The exercise training was found to cause a resting bradycardia, which had no effect on the cardiac vagal reflex response.

  9. Chronic Exercise Reduces CETP and Mesterolone Treatment Counteracts Exercise Benefits on Plasma Lipoproteins Profile: Studies in Transgenic Mice.

    PubMed

    Casquero, Andrea Camargo; Berti, Jairo Augusto; Teixeira, Laura Lauand Sampaio; de Oliveira, Helena Coutinho Franco

    2017-12-01

    Regular exercise and anabolic androgenic steroids have opposing effects on the plasma lipoprotein profile and risk of cardio-metabolic diseases in humans. Studies in humans and animal models show conflicting results. Here, we used a mice model genetically modified to mimic human lipoprotein profile and metabolism. They under-express the endogenous LDL receptor gene (R1) and express a human transgene encoding the cholesteryl ester transfer protein (CETP), normally absent in mice. The present study was designed to evaluate the independent and interactive effects of testosterone supplementation, exercise training and CETP expression on the plasma lipoprotein profile and CETP activity. CETP/R1 and R1 mice were submitted to a 6-week swimming training and mesterolone (MEST) supplementation in the last 3 weeks. MEST treatment increased markedly LDL levels (40%) in sedentary CETP/R1 mice and reduced HDL levels in exercised R1 mice (18%). A multifactorial ANOVA revealed the independent effects of each factor, as follows. CETP expression reduced HDL (21%) and increased non-HDL (15%) fractions. MEST treatment increased the VLDL concentrations (42%) regardless of other interventions. Exercise training reduced triacylglycerol (25%) and free fatty acids (20%), increased both LDL and HDL (25-33%), and reduced CETP (19%) plasma levels. Significant factor interactions showed that the increase in HDL induced by exercise is explained by reducing CETP activity and that MEST blunted the exercise-induced elevation of HDL-cholesterol. These results reinforce the positive metabolic effects of exercise, resolved a controversy about CETP response to exercise and evidenced MEST potency to counteract specific exercise benefits.

  10. The Effects of Resistance Exercise on Cocaine Self-Administration, Muscle Hypertrophy, and BDNF Expression in the Nucleus Accumbens

    PubMed Central

    Strickland, Justin C.; Abel, Jean M.; Lacy, Ryan T.; Beckmann, Joshua S.; Witte, Maryam A.; Lynch, Wendy J.; Smith, Mark A.

    2016-01-01

    Background Exercise is associated with positive outcomes in drug abusing populations and reduces drug self-administration in laboratory animals. To date, most research has focused on aerobic exercise, and other types of exercise have not been examined. This study examined the effects of resistance exercise (strength training) on cocaine self-administration and BDNF expression, a marker of neuronal activation regulated by aerobic exercise. Methods Female rats were assigned to either exercising or sedentary conditions. Exercising rats climbed a ladder wearing a weighted vest and trained six days/week. Training consisted of a three-set “pyramid” in which the number of repetitions and resistance varied across three sets: eight climbs carrying 70% body weight (BW), six climbs carrying 85% BW, and four climbs carrying 100% BW. Rats were implanted with intravenous catheters and cocaine self-administration was examined. Behavioral economic measures of demand intensity and demand elasticity were derived from the behavioral data. BDNF mRNA expression was measured via qRT-PCR in the nucleus accumbens following behavioral testing. Results Exercising rats self-administered significantly less cocaine than sedentary rats. A behavioral economic analysis revealed that exercise increased demand elasticity for cocaine, reducing consumption at higher unit prices. Exercising rats had lower BDNF expression in the nucleus accumbens core than sedentary rats. Conclusions These data indicate that resistance exercise decreases cocaine self-administration and reduces BDNF expression in the nucleus accumbens after a history of cocaine exposure. Collectively, these findings suggest that strength training reduces the positive reinforcing effects of cocaine and may decrease cocaine use in human populations. PMID:27137405

  11. The effects of resistance exercise on cocaine self-administration, muscle hypertrophy, and BDNF expression in the nucleus accumbens.

    PubMed

    Strickland, Justin C; Abel, Jean M; Lacy, Ryan T; Beckmann, Joshua S; Witte, Maryam A; Lynch, Wendy J; Smith, Mark A

    2016-06-01

    Exercise is associated with positive outcomes in drug abusing populations and reduces drug self-administration in laboratory animals. To date, most research has focused on aerobic exercise, and other types of exercise have not been examined. This study examined the effects of resistance exercise (strength training) on cocaine self-administration and BDNF expression, a marker of neuronal activation regulated by aerobic exercise. Female rats were assigned to either exercising or sedentary conditions. Exercising rats climbed a ladder wearing a weighted vest and trained six days/week. Training consisted of a three-set "pyramid" in which the number of repetitions and resistance varied across three sets: eight climbs carrying 70% body weight (BW), six climbs carrying 85% BW, and four climbs carrying 100% BW. Rats were implanted with intravenous catheters and cocaine self-administration was examined. Behavioral economic measures of demand intensity and demand elasticity were derived from the behavioral data. BDNF mRNA expression was measured via qRT-PCR in the nucleus accumbens following behavioral testing. Exercising rats self-administered significantly less cocaine than sedentary rats. A behavioral economic analysis revealed that exercise increased demand elasticity for cocaine, reducing consumption at higher unit prices. Exercising rats had lower BDNF expression in the nucleus accumbens core than sedentary rats. These data indicate that resistance exercise decreases cocaine self-administration and reduces BDNF expression in the nucleus accumbens after a history of cocaine exposure. Collectively, these findings suggest that strength training reduces the positive reinforcing effects of cocaine and may decrease cocaine use in human populations. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Exercise training reduces the frequency of menopausal hot flushes by improving thermoregulatory control.

    PubMed

    Bailey, Tom G; Cable, N Timothy; Aziz, Nabil; Dobson, Rebecca; Sprung, Victoria S; Low, David A; Jones, Helen

    2016-07-01

    Postmenopausal hot flushes occur due to a reduction in estrogen production causing thermoregulatory and vascular dysfunction. Exercise training enhances thermoregulatory control of sweating, skin and brain blood flow. We aimed to determine if improving thermoregulatory control and vascular function with exercise training alleviated hot flushes. Twenty-one symptomatic women completed a 7-day hot flush questionnaire and underwent brachial artery flow-mediated dilation and a cardiorespiratory fitness test. Sweat rate and skin blood flow temperature thresholds and sensitivities, and middle cerebral artery velocity (MCAv) were measured during passive heating. Women performed 16 weeks of supervised exercise training or control, and measurements were repeated. There was a greater improvement in cardiorespiratory fitness (4.45 mL/kg/min [95% CI: 1.87, 8.16]; P = 0.04) and reduced hot flush frequency (48 hot flushes/wk [39, 56]; P < 0.001) after exercise compared with control. Exercise reduced basal core temperature (0.14°C [0.01, 0.27]; P = 0.03) and increased basal MCAv (2.8 cm/s [1.0, 5.2]; P = 0.04) compared with control. Sweat rate and skin blood flow thresholds occurred approximately 0.19°C and 0.17°C earlier, alongside improved sweating sensitivity with exercise. MCAv decreased during heating (P < 0.005), but was maintained 4.5 cm/s (3.6, 5.5; P < 0.005) higher during heating after exercise compared with control (0.6 cm/s [-0.4, 1.4]). Exercise training that improves cardiorespiratory fitness reduces self-reported hot flushes. Improvements are likely mediated through greater thermoregulatory control in response to increases in core temperature and enhanced vascular function in the cutaneous and cerebral circulations.

  13. Aerobic Exercise Training Attenuates Tumor Growth and Reduces Insulin Secretion in Walker 256 Tumor-Bearing Rats

    PubMed Central

    Moreira, Veridiana Mota; da Silva Franco, Claudinéia Conationi; Prates, Kelly Valério; Gomes, Rodrigo Mello; de Moraes, Ana Maria Praxedes; Ribeiro, Tatiane Aparecida; Martins, Isabela Peixoto; Previate, Carina; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Almeida, Douglas Lopes; Francisco, Flávio Andrade; Malta, Ananda; Tófolo, Laize Peron; da Silva Silveira, Sandra; Saavedra, Lucas Paulo Jacinto; Machado, Katia; da Silva, Paulo Henrique Olivieri; Fabrício, Gabriel S.; Palma-Rigo, Kesia; de Souza, Helenir Medri; de Fátima Silva, Flaviane; Biazi, Giuliana Regina; Pereira, Taís Susane; Vieira, Elaine; Miranda, Rosiane Aparecida; de Oliveira, Júlio Cezar; da Costa Lima, Luiz Delmar; Rinaldi, Wilson; Ravanelli, Maria Ida; de Freitas Mathias, Paulo Cezar

    2018-01-01

    Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55–65% VO2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training did not cause injury or trigger inflammatory processes prior to tumor cell inoculation. Taken together, the current study suggests that aerobic exercise training applied during adolescence may mitigate tumor growth and related disorders in Walker 256 tumor-bearing adult rats. Improved insulin sensibility, lower glucose and insulin levels and/or reduced insulin secretion stimulated by glucose may be implicated in this tumor attenuation.

  14. Aerobic Exercise Training Attenuates Tumor Growth and Reduces Insulin Secretion in Walker 256 Tumor-Bearing Rats.

    PubMed

    Moreira, Veridiana Mota; da Silva Franco, Claudinéia Conationi; Prates, Kelly Valério; Gomes, Rodrigo Mello; de Moraes, Ana Maria Praxedes; Ribeiro, Tatiane Aparecida; Martins, Isabela Peixoto; Previate, Carina; Pavanello, Audrei; Matiusso, Camila Cristina Ianoni; Almeida, Douglas Lopes; Francisco, Flávio Andrade; Malta, Ananda; Tófolo, Laize Peron; da Silva Silveira, Sandra; Saavedra, Lucas Paulo Jacinto; Machado, Katia; da Silva, Paulo Henrique Olivieri; Fabrício, Gabriel S; Palma-Rigo, Kesia; de Souza, Helenir Medri; de Fátima Silva, Flaviane; Biazi, Giuliana Regina; Pereira, Taís Susane; Vieira, Elaine; Miranda, Rosiane Aparecida; de Oliveira, Júlio Cezar; da Costa Lima, Luiz Delmar; Rinaldi, Wilson; Ravanelli, Maria Ida; de Freitas Mathias, Paulo Cezar

    2018-01-01

    Aerobic exercise training can improve insulin sensitivity in many tissues; however, the relationship among exercise, insulin, and cancer cell growth is unclear. We tested the hypothesis that aerobic exercise training begun during adolescence can attenuate Walker 256 tumor growth in adult rats and alter insulin secretion. Thirty-day-old male Wistar rats engaged in treadmill running for 8 weeks, 3 days/week, 44 min/day, at 55-65% VO 2max until they were 90 days old (TC, Trained Control). An equivalently aged group was kept inactive during the same period (SC, Sedentary Control). Then, half the animals of the SC and TC groups were reserved as the control condition and the other half were inoculated with Walker 256 cancer cells, yielding two additional groups (Sedentary Walker and Trained Walker). Zero mortalities were observed in tumor-bearing rats. Body weight (BW), food intake, plasma glucose, insulin levels, and peripheral insulin sensitivity were analyzed before and after tumor cell inoculation. We also evaluated tumor growth, metastasis and cachexia. Isolated pancreatic islets secretory activity was analyzed. In addition, we evaluated mechanic sensibility. Our results showed improved physical performance according to the final workload and VO 2max and reduced BW in trained rats at the end of the running protocol. Chronic adaptation to the aerobic exercise training decreased tumor weight, cachexia and metastasis and were associated with low glucose and insulin levels and high insulin sensitivity before and after tumor cell inoculation. Aerobic exercise started at young age also reduced pancreatic islet insulin content and insulin secretion in response to a glucose stimulus, without impairing islet morphology in trained rats. Walker 256 tumor-bearing sedentary rats also presented reduced pancreatic islet insulin content, without changing insulin secretion through isolated pancreatic islets. The mechanical sensitivity test indicated that aerobic exercise training did not cause injury or trigger inflammatory processes prior to tumor cell inoculation. Taken together, the current study suggests that aerobic exercise training applied during adolescence may mitigate tumor growth and related disorders in Walker 256 tumor-bearing adult rats. Improved insulin sensibility, lower glucose and insulin levels and/or reduced insulin secretion stimulated by glucose may be implicated in this tumor attenuation.

  15. Regulation of autophagy in human skeletal muscle: effects of exercise, exercise training and insulin stimulation

    PubMed Central

    Fritzen, Andreas M.; Madsen, Agnete B.; Kleinert, Maximilian; Treebak, Jonas T.; Lundsgaard, Anne‐Marie; Jensen, Thomas E.; Richter, Erik A.; Wojtaszewski, Jørgen; Kiens, Bente

    2016-01-01

    Key points Regulation of autophagy in human muscle in many aspects differs from the majority of previous reports based on studies in cell systems and rodent muscle.An acute bout of exercise and insulin stimulation reduce human muscle autophagosome content.An acute bout of exercise regulates autophagy by a local contraction‐induced mechanism.Exercise training increases the capacity for formation of autophagosomes in human muscle.AMPK activation during exercise seems insufficient to regulate autophagosome content in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. Abstract Studies in rodent muscle suggest that autophagy is regulated by acute exercise, exercise training and insulin stimulation. However, little is known about the regulation of autophagy in human skeletal muscle. Here we investigate the autophagic response to acute one‐legged exercise, one‐legged exercise training and subsequent insulin stimulation in exercised and non‐exercised human muscle. Acute one‐legged exercise decreased (P<0.01) lipidation of microtubule‐associated protein 1A/1B‐light chain 3 (LC3) (∼50%) and the LC3‐II/LC3‐I ratio (∼60%) indicating that content of autophagosomes decreases with exercise in human muscle. The decrease in LC3‐II/LC3‐I ratio did not correlate with activation of 5′AMP activated protein kinase (AMPK) trimer complexes in human muscle. Consistently, pharmacological AMPK activation with 5‐aminoimidazole‐4‐carboxamide riboside (AICAR) in mouse muscle did not affect the LC3‐II/LC3‐I ratio. Four hours after exercise, insulin further reduced (P<0.01) the LC3‐II/LC3‐I ratio (∼80%) in muscle of the exercised and non‐exercised leg in humans. This coincided with increased Ser‐757 phosphorylation of Unc51 like kinase 1 (ULK1), which is suggested as a mammalian target of rapamycin complex 1 (mTORC1) target. Accordingly, inhibition of mTOR signalling in mouse muscle prevented the ability of insulin to reduce the LC3‐II/LC3‐I ratio. In response to 3 weeks of one‐legged exercise training, the LC3‐II/LC3‐I ratio decreased (P<0.05) in both trained and untrained muscle and this change was largely driven by an increase in LC3‐I content. Taken together, acute exercise and insulin stimulation reduce muscle autophagosome content, while exercise training may increase the capacity for formation of autophagosomes in muscle. Moreover, AMPK activation during exercise may not be sufficient to regulate autophagy in muscle, while mTORC1 signalling via ULK1 probably mediates the autophagy‐inhibiting effect of insulin. PMID:26614120

  16. Dairy Attenuates Weight Gain to a Similar Extent as Exercise in Rats Fed a High-Fat, High-Sugar Diet.

    PubMed

    Trottier, Sarah K; MacPherson, Rebecca E K; Knuth, Carly M; Townsend, Logan K; Peppler, Willem T; Mikhaeil, John S; Leveille, Cam F; LeBlanc, Paul J; Shearer, Jane; Reimer, Raylene A; Wright, David C

    2017-10-01

    To compare the individual and combined effects of dairy and endurance exercise training in reducing weight gain and adiposity in a rodent model of diet-induced obesity. An 8-week feeding intervention of a high-fat, high-sugar diet was used to induce obesity in male Sprague-Dawley rats. Rats were then assigned to one of four groups for 6 weeks: (1) casein sedentary (casein-S), (2) casein exercise (casein-E), (3) dairy sedentary (dairy-S), and (4) dairy exercise (dairy-E). Rats were exercise trained by treadmill running 5 d/wk. Dairy-E prevented weight gain to a greater extent than either dairy or exercise alone. Adipose tissue and liver mass were reduced to a similar extent in dairy-S, casein-E, and dairy-E groups. Differences in weight gain were not explained by food intake or total energy expenditure. The total amount of lipid excreted was greater in the dairy-S compared to casein-S and dairy-E groups. This study provides evidence that dairy limits weight gain to a similar extent as exercise training and the combined effects are greater than either intervention alone. While exercise training reduces weight gain through increases in energy expenditure, dairy appears to increase lipid excretion in the feces. © 2017 The Obesity Society.

  17. Comparison of two exercise programs on general well-being of college students.

    PubMed

    Bass, Martha A; Enochs, Wendy K; DiBrezzo, Ro

    2002-12-01

    Responses to life stressors are associated with negative behaviors that may increase risk for illness and injury. The effect of high intensity exercise in reducing reactivity to psychological stress has been well documented among older people. The purpose of this study was to ascertain the effect of weight-training versus aerobic dance on psychological stress in college students. 45 students participated in a weight-training course, 35 students participated in aerobic dance classes, and 34 students served as a control group. The Survey of Recent Life Experiences was used to appraise stressfulness of current experiences before and after exercise intervention. On immediate retest after 8 wk. of weight-training perceived stress was significantly reduced when compared with an 8-wk. aerobic dance program, but there were no significant differences between the control group and the weight-training group or the aerobic dance group. These results suggest that a regular routine of low intensity exercise such as weight-training may reduce perceived stress on an immediate test.

  18. Exercise training reduces the acute physiological severity of post‐menopausal hot flushes

    PubMed Central

    Bailey, Tom G.; Cable, N. Timothy; Aziz, Nabil; Atkinson, Greg; Cuthbertson, Daniel J.; Low, David A.

    2016-01-01

    Key points A post‐menopausal hot flush consists of profuse physiological elevations in cutaneous vasodilatation and sweating that are accompanied by reduced brain blood flow. These responses can be used to objectively quantify hot flush severity.The impact of an exercise training intervention on the physiological responses occurring during a hot flush is currently unknown.In a preference‐controlled trial involving 21 post‐menopausal women, 16 weeks of supervised moderate intensity exercise training was found to improve cardiorespiratory fitness and attenuate cutaneous vasodilatation, sweating and the reductions in cerebral blood flow during a hot flush.It is concluded that the improvements in fitness that are mediated by 16 weeks of exercise training reduce the severity of physiological symptoms that occur during a post‐menopausal hot flush. Abstract A hot flush is characterised by feelings of intense heat, profuse elevations in cutaneous vasodilatation and sweating, and reduced brain blood flow. Exercise training reduces self‐reported hot flush severity, but underpinning physiological data are lacking. We hypothesised that exercise training attenuates the changes in cutaneous vasodilatation, sweat rate and cerebral blood flow during a hot flush. In a preference trial, 18 symptomatic post‐menopausal women underwent a passive heat stress to induce hot flushes at baseline and follow‐up. Fourteen participants opted for a 16 week moderate intensity supervised exercise intervention, while seven participants opted for control. Sweat rate, cutaneous vasodilatation, blood pressure, heart rate and middle cerebral artery velocity (MCAv) were measured during the hot flushes. Data were binned into eight equal segments, each representing 12.5% of hot flush duration. Weekly self‐reported frequency and severity of hot flushes were also recorded at baseline and follow‐up. Following training, mean hot flush sweat rate decreased by 0.04 mg cm2 min−1 at the chest (95% confidence interval 0.02–0.06, P = 0.01) and by 0.03 mg cm2 min−1 (0.02–0.05, P = 0.03) at the forearm, compared with negligible changes in control. Training also mediated reductions in cutaneous vasodilatation by 9% (6–12%) at the chest and by 7% (4–9%) at forearm (P ≤ 0.05). Training attenuated hot flush MCAv by 3.4 cm s−1 (0.7–5.1 cm s−1, P = 0.04) compared with negligible changes in control. Exercise training reduced the self‐reported severity of hot flushes by 109 arbitrary units (80–121, P < 0.001). These data indicate that exercise training leads to parallel reductions in hot flush severity and within‐flush changes in cutaneous vasodilatation, sweating and cerebral blood flow. PMID:26676059

  19. Exercise training prevents the attenuation of anesthetic pre-conditioning-mediated cardioprotection in diet-induced obese rats.

    PubMed

    Li, L; Meng, F; Li, N; Zhang, L; Wang, J; Wang, H; Li, D; Zhang, X; Dong, P; Chen, Y

    2015-01-01

    Obesity abolishes anesthetic pre-conditioning-induced cardioprotection due to impaired reactive oxygen species (ROS)-mediated adenosine monophosphate-activated protein kinase (AMPK) pathway, a consequence of increased basal myocardial oxidative stress. Exercise training has been shown to attenuate obesity-related oxidative stress. This study tests whether exercise training could normalize ROS-mediated AMPK pathway and prevent the attenuation of anesthetic pre-conditioning-induced cardioprotection in obesity. Male Sprague-Dawley rats were divided into lean rats fed with control diet and obese rats fed with high-fat diet. After 4 weeks of feeding, lean and obese rats were assigned to sedentary conditions or treadmill exercise for 8 weeks. There was no difference in infarct size between lean sedentary and obese sedentary rats after 25 min of myocardial ischemia followed by 120 min reperfusion. In lean rats, sevoflurane equally reduced infarct size in lean sedentary and lean exercise-trained rats. Molecular studies revealed that AMPK activity, endothelial nitric oxide synthase, and superoxide production measured at the end of ischemia in lean rats were increased in response to sevoflurane. In obese rats, sevoflurane increased the above molecular parameters and reduced infarct size in obese exercise-trained rats but not in obese sedentary rats. Additional study showed that obese exercise-trained rats had decreased basal oxidative stress than obese sedentary rats. The results indicate that exercise training can prevent the attenuation of anesthetic cardioprotection in obesity. Preventing the attenuation of this strategy may be associated with reduced basal oxidative stress and normalized ROS-mediated AMPK pathway, but the causal relationship remains to be determined. © 2014 The Acta Anaesthesiologica Scandinavica Foundation. Published by John Wiley & Sons Ltd.

  20. Intensive training and reduced volume increases muscle FXYD1 expression and phosphorylation at rest and during exercise in athletes

    PubMed Central

    Thomassen, Martin; Gunnarsson, Thomas P.; Christensen, Peter M.; Pavlovic, Davor; Shattock, Michael J.

    2016-01-01

    The present study examined the effect of intensive training in combination with marked reduction in training volume on phospholemman (FXYD1) expression and phosphorylation at rest and during exercise. Eight well-trained cyclists replaced their regular training with speed-endurance training (10–12 × ∼30-s sprints) two or three times per week and aerobic high-intensity training (4–5 × 3–4 min at 90–95% of peak aerobic power output) 1–2 times per week for 7 wk and reduced the training volume by 70%. Muscle biopsies were obtained before and during a repeated high-intensity exercise protocol, and protein expression and phosphorylation were determined by Western blot analysis. Expression of FXYD1 (30%), actin (40%), mammalian target of rapamycin (mTOR) (12%), phospholamban (PLN) (16%), and Ca2+/calmodulin-dependent protein kinase II (CaMKII) γ/δ (25%) was higher (P < 0.05) than before the training intervention. In addition, after the intervention, nonspecific FXYD1 phosphorylation was higher (P < 0.05) at rest and during exercise, mainly achieved by an increased FXYD1 Ser-68 phosphorylation, compared with before the intervention. CaMKII, Thr-287, and eukaryotic elongation factor 2 Thr-56 phosphorylation at rest and during exercise, overall PKCα/β, Thr-638/641, and mTOR Ser-2448 phosphorylation during repeated intense exercise as well as resting PLN Thr-17 phosphorylation were also higher (P < 0.05) compared with before the intervention period. Thus, a period of high-intensity training with reduced training volume increases expression and phosphorylation levels of FXYD1, which may affect Na+/K+ pump activity and muscle K+ homeostasis during intense exercise. Furthermore, higher expression of CaMKII and PLN, as well as increased phosphorylation of CaMKII Thr-287 may have improved intracellular Ca2+ handling. PMID:26791827

  1. Intensive training and reduced volume increases muscle FXYD1 expression and phosphorylation at rest and during exercise in athletes.

    PubMed

    Thomassen, Martin; Gunnarsson, Thomas P; Christensen, Peter M; Pavlovic, Davor; Shattock, Michael J; Bangsbo, Jens

    2016-04-01

    The present study examined the effect of intensive training in combination with marked reduction in training volume on phospholemman (FXYD1) expression and phosphorylation at rest and during exercise. Eight well-trained cyclists replaced their regular training with speed-endurance training (10-12 × ∼30-s sprints) two or three times per week and aerobic high-intensity training (4-5 × 3-4 min at 90-95% of peak aerobic power output) 1-2 times per week for 7 wk and reduced the training volume by 70%. Muscle biopsies were obtained before and during a repeated high-intensity exercise protocol, and protein expression and phosphorylation were determined by Western blot analysis. Expression of FXYD1 (30%), actin (40%), mammalian target of rapamycin (mTOR) (12%), phospholamban (PLN) (16%), and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) γ/δ (25%) was higher (P < 0.05) than before the training intervention. In addition, after the intervention, nonspecific FXYD1 phosphorylation was higher (P < 0.05) at rest and during exercise, mainly achieved by an increased FXYD1 Ser-68 phosphorylation, compared with before the intervention. CaMKII, Thr-287, and eukaryotic elongation factor 2 Thr-56 phosphorylation at rest and during exercise, overall PKCα/β, Thr-638/641, and mTOR Ser-2448 phosphorylation during repeated intense exercise as well as resting PLN Thr-17 phosphorylation were also higher (P < 0.05) compared with before the intervention period. Thus, a period of high-intensity training with reduced training volume increases expression and phosphorylation levels of FXYD1, which may affect Na(+)/K(+) pump activity and muscle K(+) homeostasis during intense exercise. Furthermore, higher expression of CaMKII and PLN, as well as increased phosphorylation of CaMKII Thr-287 may have improved intracellular Ca(2+) handling. Copyright © 2016 the American Physiological Society.

  2. Exercise training improves in vivo endothelial repair capacity of early endothelial progenitor cells in subjects with metabolic syndrome.

    PubMed

    Sonnenschein, Kristina; Horváth, Tibor; Mueller, Maja; Markowski, Andrea; Siegmund, Tina; Jacob, Christian; Drexler, Helmut; Landmesser, Ulf

    2011-06-01

    Endothelial dysfunction and injury are considered to contribute considerably to the development and progression of atherosclerosis. It has been suggested that intense exercise training can increase the number and angiogenic properties of early endothelial progenitor cells (EPCs). However, whether exercise training stimulates the capacity of early EPCs to promote repair of endothelial damage and potential underlying mechanisms remain to be determined. The present study was designed to evaluate the effects of moderate exercise training on in vivo endothelial repair capacity of early EPCs, and their nitric oxide and superoxide production as characterized by electron spin resonance spectroscopy analysis in subjects with metabolic syndrome. Twenty-four subjects with metabolic syndrome were randomized to an 8 weeks exercise training or a control group. Superoxide production and nitric oxide (NO) availability of early EPCs were characterized by using electron spin resonance (ESR) spectroscopy analysis. In vivo endothelial repair capacity of EPCs was examined by transplantation into nude mice with defined carotid endothelial injury. Endothelium-dependent, flow-mediated vasodilation was analysed using high-resolution ultrasound. Importantly, exercise training resulted in a substantially improved in vivo endothelial repair capacity of early EPCs (24.0 vs 12.7%; p < 0.05) and improved endothelium-dependent vasodilation. Nitric oxide production of EPCs was substantially increased after exercise training, but not in the control group. Moreover, exercise training reduced superoxide production of EPCs, which was not observed in the control group. The present study suggests for the first time that moderate exercise training increases nitric oxide production of early endothelial progenitor cells and reduces their superoxide production. Importantly, this is associated with a marked beneficial effect on the in vivo endothelial repair capacity of early EPCs in subjects with metabolic syndrome.

  3. Intermittent, moderate-intensity aerobic exercise for only eight weeks reduces arterial stiffness: evaluation by measurement of stiffness parameter and pressure-strain elastic modulus by use of ultrasonic echo tracking.

    PubMed

    Tanaka, Midori; Sugawara, Motoaki; Ogasawara, Yasuo; Izumi, Tadafumi; Niki, Kiyomi; Kajiya, Fumihiko

    2013-04-01

    Aerobic exercise has been reported to be associated with reduced arterial stiffness. However, the intensity, duration, and frequency of aerobic exercise required to improve arterial stiffness have not been established. In addition, most reports base their conclusions on changes in pulse wave velocity, which is an indirect index of arterial stiffness. We studied the effects of short-term, intermittent, moderate-intensity exercise training on arterial stiffness based on measurements of the stiffness parameter (β) and pressure-strain elastic modulus (E p), which are direct indices of regional arterial stiffness. A total of 25 young healthy volunteers (18 men) were recruited. By use of ultrasonic diagnostic equipment we measured β and E p of the carotid artery before and after 8 weeks of exercise training. After exercise training, systolic pressure (P s), diastolic pressure (P d), pulse pressure, systolic arterial diameter (D s), and diastolic arterial diameter (D d) did not change significantly. However, the pulsatile change in diameter ((D s - D d)/D d) increased significantly, and β and E p decreased significantly. For healthy young subjects, β and E p were reduced by intermittent, moderate-intensity exercise training for only 8 weeks.

  4. Glucocorticoid receptor expression on circulating leukocytes in healthy and asthmatic adolescents in response to exercise

    PubMed Central

    Lu, Kim D.; Cooper, Dan; Haddad, Fadia; Zaldivar, Frank; Kraft, Monica; Radom-Aizik, Shlomit

    2017-01-01

    Background Poor aerobic fitness is associated with worsening of asthma symptoms and fitness training may improve asthma control. The mechanism linking fitness with asthma is not known. We hypothesized that repeated bouts of exercise would lead to a downregulation of glucocorticoid receptor (GR) expression on circulating leukocytes reflecting a reduced responsiveness to stress. Methods In a prospective exercise training intervention of healthy and asthmatic adolescents, GR expression in leukocytes was measured using flow cytometry in response to a brief exercise challenge before and after the training intervention. PBMC gene expression of GR, GRβ, HSP70, and TGFβ1, 2 were determined using RT-PCR. Results Peak V̇O2 increased by 14.6 ± 2.3% indicating an effective training (p<0.01). There was a significant difference in GR expression among leukocyte subtypes, with highest expression in eosinophils. Following the training intervention, there was a significant decrease in baseline GR expression (p<0.05) in leukocyte and monocyte subtypes in both healthy and asthmatic adolescents. Conclusions This is the first study in adolescents to show that exercise training reduces GR expression on circulating leukocytes. We speculate that exercise training downregulates the stress response in general, manifested by decreased GR expression, and may explain why improving fitness improves asthma health. PMID:28796240

  5. Effects of exercise on tumor physiology and metabolism.

    PubMed

    Pedersen, Line; Christensen, Jesper Frank; Hojman, Pernille

    2015-01-01

    Exercise is a potent regulator of a range of physiological processes in most tissues. Solid epidemiological data show that exercise training can reduce disease risk and mortality for several cancer diagnoses, suggesting that exercise training may directly regulate tumor physiology and metabolism. Here, we review the body of literature describing exercise intervention studies performed in rodent tumor models and elaborate on potential mechanistic effects of exercise on tumor physiology. Exercise has been shown to reduce tumor incidence, tumor multiplicity, and tumor growth across numerous different transplantable, chemically induced or genetic tumor models. We propose 4 emerging mechanistic effects of exercise, including (1) vascularization and blood perfusion, (2) immune function, (3) tumor metabolism, and (4) muscle-to-cancer cross-talk, and discuss these in details. In conclusion, exercise training has the potential to be a beneficial and integrated component of cancer management, but has yet to fully elucidate its potential. Understanding the mechanistic effects of exercise on tumor physiology is warranted. Insight into these mechanistic effects is emerging, but experimental intervention studies are still needed to verify the cause-effect relationship between these mechanisms and the control of tumor growth.

  6. In Vivo, Fatty Acid Translocase (CD36) Critically Regulates Skeletal Muscle Fuel Selection, Exercise Performance, and Training-induced Adaptation of Fatty Acid Oxidation*

    PubMed Central

    McFarlan, Jay T.; Yoshida, Yuko; Jain, Swati S.; Han, Xioa-Xia; Snook, Laelie A.; Lally, James; Smith, Brennan K.; Glatz, Jan F. C.; Luiken, Joost J. F. P.; Sayer, Ryan A.; Tupling, A. Russell; Chabowski, Adrian; Holloway, Graham P.; Bonen, Arend

    2012-01-01

    For ∼40 years it has been widely accepted that (i) the exercise-induced increase in muscle fatty acid oxidation (FAO) is dependent on the increased delivery of circulating fatty acids, and (ii) exercise training-induced FAO up-regulation is largely attributable to muscle mitochondrial biogenesis. These long standing concepts were developed prior to the recent recognition that fatty acid entry into muscle occurs via a regulatable sarcolemmal CD36-mediated mechanism. We examined the role of CD36 in muscle fuel selection under basal conditions, during a metabolic challenge (exercise), and after exercise training. We also investigated whether CD36 overexpression, independent of mitochondrial changes, mimicked exercise training-induced FAO up-regulation. Under basal conditions CD36-KO versus WT mice displayed reduced fatty acid transport (−21%) and oxidation (−25%), intramuscular lipids (less than or equal to −31%), and hepatic glycogen (−20%); but muscle glycogen, VO2max, and mitochondrial content and enzymes did not differ. In acutely exercised (78% VO2max) CD36-KO mice, fatty acid transport (−41%), oxidation (−37%), and exercise duration (−44%) were reduced, whereas muscle and hepatic glycogen depletions were accelerated by 27–55%, revealing 2-fold greater carbohydrate use. Exercise training increased mtDNA and β-hydroxyacyl-CoA dehydrogenase similarly in WT and CD36-KO muscles, but FAO was increased only in WT muscle (+90%). Comparable CD36 increases, induced by exercise training (+44%) or by CD36 overexpression (+41%), increased FAO similarly (84–90%), either when mitochondrial biogenesis and FAO enzymes were up-regulated (exercise training) or when these were unaltered (CD36 overexpression). Thus, sarcolemmal CD36 has a key role in muscle fuel selection, exercise performance, and training-induced muscle FAO adaptation, challenging long held views of mechanisms involved in acute and adaptive regulation of muscle FAO. PMID:22584574

  7. Beneficial effects of previous exercise training on renal changes in streptozotocin-induced diabetic female rats

    PubMed Central

    Amaral, Liliany S de Brito; Silva, Fernanda A; Correia, Vicente B; Andrade, Clara EF; Dutra, Bárbara A; Oliveira, Márcio V; de Magalhães, Amélia CM; Volpini, Rildo A; Seguro, Antonio C; Coimbra, Terezila M

    2016-01-01

    This study evaluated the effects of aerobic exercise performed both previously and after the induction of diabetes mellitus on changes of renal function and structure in streptozotocin-induced diabetic rats. Female wistar rats were divided into five groups: sedentary control (C + Se); trained control (C + Ex); sedentary diabetic (D + Se); trained diabetic (D + Ex) and previously trained diabetic (D + PEx). The previous exercise consisted of treadmill running for four weeks before the induction of diabetes mellitus. After induction of diabetes mellitus with streptozotocin, the D + PEx, D + Ex and C + Ex groups were submitted to eight weeks of aerobic exercise. At the end of the training protocol, we evaluate the serum glucose, insulin and 17β-estradiol levels, renal function and structure, proteinuria, and fibronectin, collagen IV and transforming growth factor beta 1 (TGF-β1) renal expressions. Induction of diabetes mellitus reduced the insulin and did not alter 17β-estradiol levels, and exercise did not affect any of these parameters. Previous exercise training attenuated the loss of body weight, the blood glucose, the increase of glomerular filtration rate and prevented the proteinuria in the D + PEx group compared to D + Se group. Previous exercise also reduced glomerular hypertrophy, tubular and glomerular injury, as well as the expressions of fibronectin and collagen IV. These expressions were associated with reduced expression of TGF-β1. In conclusion, our study shows that regular aerobic exercise especially performed previously to induction of diabetes mellitus improved metabolic control and has renoprotective action on the diabetic kidney. PMID:26490345

  8. Beneficial effects of previous exercise training on renal changes in streptozotocin-induced diabetic female rats.

    PubMed

    Amaral, Liliany S de Brito; Silva, Fernanda A; Correia, Vicente B; Andrade, Clara E F; Dutra, Bárbara A; Oliveira, Márcio V; de Magalhães, Amélia C M; Volpini, Rildo A; Seguro, Antonio C; Coimbra, Terezila M; Soares, Telma de J

    2016-02-01

    This study evaluated the effects of aerobic exercise performed both previously and after the induction of diabetes mellitus on changes of renal function and structure in streptozotocin-induced diabetic rats. Female wistar rats were divided into five groups: sedentary control (C + Se); trained control (C + Ex); sedentary diabetic (D + Se); trained diabetic (D + Ex) and previously trained diabetic (D + PEx). The previous exercise consisted of treadmill running for four weeks before the induction of diabetes mellitus. After induction of diabetes mellitus with streptozotocin, the D + PEx, D + Ex and C + Ex groups were submitted to eight weeks of aerobic exercise. At the end of the training protocol, we evaluate the serum glucose, insulin and 17β-estradiol levels, renal function and structure, proteinuria, and fibronectin, collagen IV and transforming growth factor beta 1 (TGF-β1) renal expressions. Induction of diabetes mellitus reduced the insulin and did not alter 17β-estradiol levels, and exercise did not affect any of these parameters. Previous exercise training attenuated the loss of body weight, the blood glucose, the increase of glomerular filtration rate and prevented the proteinuria in the D + PEx group compared to D + Se group. Previous exercise also reduced glomerular hypertrophy, tubular and glomerular injury, as well as the expressions of fibronectin and collagen IV. These expressions were associated with reduced expression of TGF-β1. In conclusion, our study shows that regular aerobic exercise especially performed previously to induction of diabetes mellitus improved metabolic control and has renoprotective action on the diabetic kidney. © 2016 by the Society for Experimental Biology and Medicine.

  9. AMPK signaling in skeletal muscle during exercise: Role of reactive oxygen and nitrogen species.

    PubMed

    Morales-Alamo, David; Calbet, Jose A L

    2016-09-01

    Reactive oxygen and nitrogen species (RONS) are generated during exercise depending on intensity, duration and training status. A greater amount of RONS is released during repeated high-intensity sprint exercise and when the exercise is performed in hypoxia. By activating adenosine monophosphate-activated kinase (AMPK), RONS play a critical role in the regulation of muscle metabolism but also in the adaptive responses to exercise training. RONS may activate AMPK by direct an indirect mechanisms. Directly, RONS may activate or deactivate AMPK by modifying RONS-sensitive residues of the AMPK-α subunit. Indirectly, RONS may activate AMPK by reducing mitochondrial ATP synthesis, leading to an increased AMP:ATP ratio and subsequent Thr(172)-AMPK phosphorylation by the two main AMPK kinases: LKB1 and CaMKKβ. In presence of RONS the rate of Thr(172)-AMPK dephosphorylation is reduced. RONS may activate LKB1 through Sestrin2 and SIRT1 (NAD(+)/NADH.H(+)-dependent deacetylase). RONS may also activate CaMKKβ by direct modification of RONS sensitive motifs and, indirectly, by activating the ryanodine receptor (Ryr) to release Ca(2+). Both too high (hypoxia) and too low (ingestion of antioxidants) RONS levels may lead to Ser(485)-AMPKα1/Ser(491)-AMPKα2 phosphorylation causing inhibition of Thr(172)-AMPKα phosphorylation. Exercise training increases muscle antioxidant capacity. When the same high-intensity training is applied to arm and leg muscles, arm muscles show signs of increased oxidative stress and reduced mitochondrial biogenesis, which may be explained by differences in RONS-sensing mechanisms and basal antioxidant capacities between arm and leg muscles. Efficient adaptation to exercise training requires optimal exposure to pulses of RONS. Inappropriate training stimulus may lead to excessive RONS formation, oxidative inactivation of AMPK and reduced adaptation or even maladaptation. Theoretically, exercise programs should be designed taking into account the intrinsic properties of different skeletal muscles, the specific RONS induction and the subsequent signaling responses. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Whole-body vibration exercise training reduces arterial stiffness in postmenopausal women with prehypertension and hypertension.

    PubMed

    Figueroa, Arturo; Kalfon, Roy; Madzima, Takudzwa A; Wong, Alexei

    2014-02-01

    The purpose of this study was to examine the impact of whole-body vibration (WBV) exercise training on arterial stiffness (pulse wave velocity [PWV]), blood pressure (BP), and leg muscle function in postmenopausal women. Twenty-five postmenopausal women with prehypertension and hypertension (mean [SE]; age, 56 [1] y; systolic BP, 139 [2] mm Hg; body mass index, 34.7 [0.8] kg/m2) were randomized to 12 weeks of WBV exercise training (n = 13) or to the no-exercise control group. Systolic BP, diastolic BP, mean arterial pressure, heart rate, carotid-femoral PWV, brachial-ankle PWV, femoral-ankle PWV (legPWV), leg lean mass, and leg muscle strength were measured before and after 12 weeks. There was a group-by-time interaction (P < 0.05) for arterial stiffness, BP, and strength as brachial-ankle PWV (-1.3 [0.3] m/s, P < 0.01), legPWV (-0.81 [0.22] m/s, P < 0.01), systolic BP (-12 [3] mm Hg, P < 0.01), diastolic BP (-6 [2] mm Hg, P < 0.01), and mean arterial pressure (-9 [3] mm Hg, P < 0.01) decreased and as strength increased (21.0% [2.2%], P < 0.001) after WBV exercise training compared with no change after control. Heart rate decreased (-3 [1] beats/min, P < 0.05) after WBV exercise training, but there was no interaction (P > 0.05). Leg lean mass and carotid-femoral PWV were not significantly (P > 0.05) affected by WBV exercise training or control. Our findings indicate that WBV exercise training improves systemic and leg arterial stiffness, BP, and leg muscle strength in postmenopausal women with prehypertension or hypertension. WBV exercise training may decrease cardiovascular and disability risks in postmenopausal women by reducing legPWV and increasing leg muscle strength.

  11. Exercise training attenuates neutrophil infiltration and elastase expression in adipose tissue of high-fat-diet-induced obese mice

    PubMed Central

    Kawanishi, Noriaki; Niihara, Hiroyuki; Mizokami, Tsubasa; Yada, Koichi; Suzuki, Katsuhiko

    2015-01-01

    The innate immune system is associated with the development of local inflammation. Neutrophils play an essential role in the development of the adipose tissue (AT) inflammation associated with obesity by producing elastase, which can promote the activation and infiltration of macrophages. Exercise training attenuates AT inflammation via suppression of macrophage infiltration. However, the mechanisms driving this phenomenon remains to be elucidated. Here, we evaluated the effects of exercise training on the infiltration of neutrophils and elastase expression in an obese mouse model. Four-week-old male C57BL/6J mice were randomly assigned to one of three groups that either received a normal diet (ND) plus sedentary activity (n = 15), a high-fat diet (HFD) plus sedentary activity (n = 15), or a HFD plus exercise training (n = 15). Mice were fed the ND or HFD from the age of 4 weeks until 20 weeks. Mice in the exercise group ran on a treadmill for 60 min/day, 5 days/week over the same experimental period. Mice fed with the HFD had increased content of macrophages in the AT and increased inflammatory cytokine mRNA levels, which were reduced by exercise training. Similarly, AT from the HFD sedentary mice contained more neutrophils than AT from the ND mice, and the amount of neutrophils in this tissue in HFD-fed mice was lowered by exercise training. The mRNA levels of neutrophil elastase in AT were lower in the HFD exercise-trained mice than those in the HFD sedentary mice. These results suggest that exercise training plays a critical role in reducing macrophage infiltration and AT inflammation by regulating the infiltration of neutrophils. PMID:26341995

  12. Obesity impairs skeletal muscle AMPK signaling during exercise: role of AMPKα2 in the regulation of exercise capacity in vivo.

    PubMed

    Lee-Young, R S; Ayala, J E; Fueger, P T; Mayes, W H; Kang, L; Wasserman, D H

    2011-07-01

    Skeletal muscle AMP-activated protein kinase (AMPK)α2 activity is impaired in obese, insulin-resistant individuals during exercise. We determined whether this defect contributes to the metabolic dysregulation and reduced exercise capacity observed in the obese state. C57BL/6J wild-type (WT) mice and/or mice expressing a kinase dead AMPKα2 subunit in skeletal muscle (α2-KD) were fed chow or high-fat (HF) diets from 3 to 16 weeks of age. At 15 weeks, mice performed an exercise stress test to determine exercise capacity. In WT mice, muscle glucose uptake and skeletal muscle AMPKα2 activity was assessed in chronically catheterized mice (carotid artery/jugular vein) at 16 weeks. In a separate study, HF-fed WT and α2-KD mice performed 5 weeks of exercise training (from 15 to 20 weeks of age) to test whether AMPKα2 is necessary to restore work tolerance. HF-fed WT mice had reduced exercise tolerance during an exercise stress test, and an attenuation in muscle glucose uptake and AMPKα2 activity during a single bout of exercise (P<0.05 versus chow). In chow-fed α2-KD mice, running speed and time were impaired ∼45 and ∼55%, respectively (P<0.05 versus WT chow); HF feeding further reduced running time ∼25% (P<0.05 versus α2-KD chow). In response to 5 weeks of exercise training, HF-fed WT and α2-KD mice increased maximum running speed ∼35% (P<0.05 versus pre-training) and maintained body weight at pre-training levels, whereas body weight increased in untrained HF WT and α2-KD mice. Exercise training restored running speed to levels seen in healthy, chow-fed mice. HF feeding impairs AMPKα2 activity in skeletal muscle during exercise in vivo. Although this defect directly contributes to reduced exercise capacity, findings in HF-fed α2-KD mice show that AMPKα2-independent mechanisms are also involved. Importantly, α2-KD mice on a HF-fed diet adapt to regular exercise by increasing exercise tolerance, demonstrating that this adaptation is independent of skeletal muscle AMPKα2 activity.

  13. Exercise training for managing behavioral and psychological symptoms in people with dementia: A systematic review and meta-analysis.

    PubMed

    Barreto, Philipe de Souto; Demougeot, Laurent; Pillard, Fabien; Lapeyre-Mestre, Maryse; Rolland, Yves

    2015-11-01

    This systematic review and meta-analysis of randomized controlled trials assessed the effects of exercise on behavioral and psychological symptoms of dementia (BPSD, including depression) in people with dementia (PWD). Secondary outcomes for the effects of exercise were mortality and antipsychotic use. Twenty studies were included in this review (n=18 in the meta-analysis). Most studies used a multicomponent exercise training (n=13) as intervention; the control group was often a usual care (n=10) or a socially-active (n=8) group. Exercise did not reduce global levels of BPSD (n=4. Weighted mean difference -3.884; 95% CI -8.969-1.201; I(2)=69.4%). Exercise significantly reduced depression levels in PWD (n=7). Standardized mean difference -0.306; 95% CI -0.571 to -0.041; I(2)=46.8%); similar patterns were obtained in sensitivity analysis performed among studies with: institutionalized people (p=0.038), multicomponent training (p=0.056), social control group (p=0.08), and low risk of attrition bias (p=0.11). Exploratory analysis showed that the principal BPSD (other than depression) positively affected by exercise was aberrant motor behavior. Exercise had no effect on mortality. Data on antipsychotics were scarce. In conclusion, exercise reduces depression levels in PWD. Future studies should examine whether exercise reduces the use (and doses) of antipsychotics and other drugs often used to manage BPSD. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension

    PubMed Central

    Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes

    2013-01-01

    Background and Purpose Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Experimental Approach Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Key Results Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O2− production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Conclusions and Implications Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. PMID:22994554

  15. Aerobic exercise reduces oxidative stress and improves vascular changes of small mesenteric and coronary arteries in hypertension.

    PubMed

    Roque, Fernanda R; Briones, Ana M; García-Redondo, Ana B; Galán, María; Martínez-Revelles, Sonia; Avendaño, Maria S; Cachofeiro, Victoria; Fernandes, Tiago; Vassallo, Dalton V; Oliveira, Edilamar M; Salaices, Mercedes

    2013-02-01

    Regular physical activity is an effective non-pharmacological therapy for prevention and control of hypertension. We investigated the effects of aerobic exercise training in vascular remodelling and in the mechanical and functional alterations of coronary and small mesenteric arteries from spontaneously hypertensive rats (SHR). Normotensive Wistar Kyoto (WKY), SHR and SHR trained on a treadmill for 12 weeks were used to evaluate vascular structural, mechanical and functional properties. Exercise did not affect lumen diameter, wall thickness and wall/lumen ratio but reduced vascular stiffness of coronary and mesenteric arteries from SHR. Exercise also reduced collagen deposition and normalized altered internal elastic lamina organization and expression of MMP-9 in mesenteric arteries from SHR. Exercise did not affect contractile responses of coronary arteries but improved the endothelium-dependent relaxation in SHR. In mesenteric arteries, training normalized the increased contractile responses induced by U46619 and by high concentrations of acetylcholine. In vessels from SHR, exercise normalized the effects of the NADPH oxidase inhibitor apocynin and the NOS inhibitor l-NAME in vasodilator or vasoconstrictor responses, normalized the increased O(2) (-) production and the reduced Cu/Zn superoxide dismutase expression and increased NO production. Exercise training of SHR improves endothelial function and vascular stiffness in coronary and small mesenteric arteries. This might be related to the concomitant decrease of oxidative stress and increase of NO bioavailability. Such effects demonstrate the beneficial effects of exercise on the vascular system and could contribute to a reduction in blood pressure. © 2012 The Authors. British Journal of Pharmacology © 2012 The British Pharmacological Society.

  16. κ-opioid receptor is involved in the cardioprotection induced by exercise training

    PubMed Central

    Li, Juan; Tian, Fei; Feng, Na; Fan, Rong; Jia, Min; Guo, Haitao; Cheng, Liang; Liu, Jincheng; Chen, Wensheng; Pei, Jianming

    2017-01-01

    The present study was designed to test the hypothesis that exercise training elicited a cardioprotective effect against ischemia and reperfusion (I/R) via the κ-opioid receptor (κ-OR)-mediated signaling pathway. Rats were randomly divided into four groups: the control group, the moderate intensity exercise (ME) group, the high intensity exercise (HE) group, and the acute exercise (AE) group. For the exercise training protocols, the rats were subjected to one week of adaptive treadmill training, while from the second week, the ME and HE groups were subjected to eight weeks of exercise training, and the AE group was subjected to three days of adaptive treadmill training and one day of vigorous exercise. After these protocols, the three exercise training groups were divided into different treatment groups, and the rats were subjected to 30 min of ischemia and 120 min of reperfusion. Changes in infarct size and serum cTnT (cardiac troponin T) caused by I/R were reduced by exercise training. Moreover, cardiac dysfunction caused by I/R was also alleviated by exercise training. These effects of exercise training were reversed by nor-BNI (a selective κ-OR antagonist), Compound C (a selective AMPK inhibitor), Akt inhibitor and L-NAME (a non-selective eNOS inhibitor). Expression of κ-OR and phosphorylation of AMPK, Akt and eNOS were significantly increased in the ME, HE and AE groups. These findings demonstrated that the cardioprotective effect of exercise training is possibly mediated by the κ-OR-AMPK-Akt-eNOS signaling pathway. PMID:28301473

  17. Exercise training in patients with heart disease: review of beneficial effects and clinical recommendations.

    PubMed

    Gielen, Stephan; Laughlin, M Harold; O'Conner, Christopher; Duncker, Dirk J

    2015-01-01

    Over the last decades exercise training has evolved into an established evidence-based therapeutic strategy with prognostic benefits in many cardiovascular diseases (CVDs): In stable coronary artery disease (CAD) exercise training attenuates disease progression by beneficially influencing CVD risk factors (i.e., hyperlipidemia, hypertension) and coronary endothelial function. In heart failure (HF) with reduced ejection fraction (HFrEF) training prevents the progressive loss of exercise capacity by antagonizing peripheral skeletal muscle wasting and by promoting left ventricular reverse remodeling with reduction in cardiomegaly and improvement of ejection fraction. Novel areas for exercise training interventions include HF with preserved ejection fraction (HFpEF), pulmonary hypertension, and valvular heart disease. In HFpEF, randomized studies indicate a lusitropic effect of training on left ventricular diastolic function associated with symptomatic improvement of exercise capacity. In pulmonary hypertension, reductions in pulmonary artery pressure were observed following endurance exercise training. Recently, innovative training methods such as high-intensity interval training, resistance training and others have been introduced. Although their prognostic value still needs to be determined, these approaches may achieve superior improvements in aerobic exercise capacity and gain in muscle mass, respectively. In this review, we give an overview of the prognostic and symptomatic benefits of exercise training in the most common cardiac disease entities. Additionally, key guideline recommendations for the initiation of training programs are summarized. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Reduced exercise capacity in persons with Down syndrome: cause, effect, and management

    PubMed Central

    Mendonca, Goncalo V; Pereira, Fernando D; Fernhall, Bo

    2010-01-01

    Persons with Down syndrome (DS) have reduced peak and submaximal exercise capacity. Because ambulation is one predictor of survival among adults with DS, a review of the current knowledge of the causes, effects, and management of reduced exercise capacity in these individuals would be important. Available data suggest that reduced exercise capacity in persons with DS results from an interaction between low peak oxygen uptake (VO2peak) and poor exercise economy. Of several possible explanations, chronotropic incompetence has been shown to be the primary cause of low VO2peak in DS. In contrast, poor exercise economy is apparently dependent on disturbed gait kinetics and kinematics resulting from joint laxity and muscle hypotonia. Importantly, there is enough evidence to suggest that such low levels of physical fitness (reduced exercise capacity and muscle strength) limit the ability of adults with DS to perform functional tasks of daily living. Consequently, clinical management of reduced exercise capacity in DS seems important to ensure that these individuals remain productive and healthy throughout their lives. However, few prospective studies have examined the effects of structured exercise training in this population. Existent data suggest that exercise training is beneficial for improving exercise capacity and physiological function in persons with DS. This article reviews the current knowledge of the causes, effects, and management of reduced exercise capacity in DS. This review is limited to the acute and chronic responses to submaximal and peak exercise intensities because data on supramaximal exercise capacity of persons with DS have been shown to be unreliable. PMID:21206759

  19. Mitochondria-specific antioxidant supplementation does not influence endurance exercise training-induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake.

    PubMed

    Shill, Daniel D; Southern, W Michael; Willingham, T Bradley; Lansford, Kasey A; McCully, Kevin K; Jenkins, Nathan T

    2016-12-01

    Reducing excessive oxidative stress, through chronic exercise or antioxidants, can decrease the negative effects induced by excessive amounts of oxidative stress. Transient increases in oxidative stress produced during acute exercise facilitate beneficial vascular training adaptations, but the effects of non-specific antioxidants on exercise training-induced vascular adaptations remain elusive. Circulating angiogenic cells (CACs) are an exercise-inducible subset of white blood cells that maintain vascular integrity. We investigated whether mitochondria-specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training in CACs, muscle mitochondrial capacity and maximal oxygen uptake in young healthy men. We show that endurance exercise training increases multiple CAC types, an adaptation that is not altered by MitoQ supplementation. Additionally, MitoQ does not affect skeletal muscle or whole-body aerobic adaptations to exercise training. These results indicate that MitoQ supplementation neither enhances nor attenuates endurance training adaptations in young healthy men. Antioxidants have been shown to improve endothelial function and cardiovascular outcomes. However, the effects of antioxidants on exercise training-induced vascular adaptations remain elusive. General acting antioxidants combined with exercise have not impacted circulating angiogenic cells (CACs). We investigated whether mitochondria-specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training on CD3 + , CD3 + /CD31 + , CD14 + /CD31 + , CD31 + , CD34 + /VEGFR2 + and CD62E + peripheral blood mononuclear cells (PBMCs), muscle mitochondrial capacity, and maximal oxygen uptake (VO2 max ) in healthy men aged 22.1 ± 0.7 years, with a body mass index of 26.9 ± 0.9 kg m -2 , and 24.8 ± 1.3% body fat. Analysis of main effects revealed that training induced 33, 105 and 285% increases in CD14 + /CD31 + , CD62E + and CD34 + /VEGFR2 + CACs, respectively, and reduced CD3 + /CD31 - PBMCs by 14%. There was no effect of MitoQ on CAC levels. Also independent of MitoQ supplementation, exercise training significantly increased quadriceps muscle mitochondrial capacity by 24% and VO2 max by roughly 7%. In conclusion, endurance exercise training induced increases in multiple CAC types, and this adaptation is not modified by MitoQ supplementation. Furthermore, we demonstrate that a mitochondrial-targeted antioxidant does not influence skeletal muscle or whole-body aerobic adaptations to exercise training. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  20. Improved heart rate recovery despite reduced exercise performance following heavy training: A within-subject analysis.

    PubMed

    Thomson, Rebecca L; Bellenger, Clint R; Howe, Peter R C; Karavirta, Laura; Buckley, Jonathan D

    2016-03-01

    The recovery of heart rate (HRR) after exercise is a potential indicator of fitness which has been shown to respond to changes in training. This study investigated the within-individual association between HRR and exercise performance following three different training loads. 11 male cyclists/triathletes were tested after two weeks of light training, two weeks of heavy training and two days of rest. Exercise performance was measured using a 5-min maximal cycling time-trial. HRR was measured over 60s during supine recovery. Exercise performance decreased 2.2±2.5% following heavy training compared with post-light training (p=0.01), and then increased 4.0±4.2% following rest (p=0.004). Most HRR indices indicated a more rapid recovery of heart rate (HR) following heavy training, and reverted to post light training levels following two days of rest. HRR indices did not differ between post-light training and after the rest period (p>0.6). There were inverse within-subject relationships between indices of HRR and performance (r=-0.6, p≤0.004). Peak HR decreased 3.2±5.1bpm following heavy training (p=0.06) and significantly increased 4.9±4.3bpm following recovery (p=0.004). There was a moderate within-subject relationship between peak HR and exercise performance (r=0.7, p≤0.001). Controlling for peak HR reduced the relationships between HRR and performance (r=-0.4-0.5, p<0.05). This study demonstrated that HRR tracks short-term changes in exercise performance within-individuals, such that increases in HRR are associated with poorer exercise performance following heavy training. Peak HR can be compromised under conditions of fatigue, and needs to be taken into account in HRR analyses. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  1. Exercise training promotes cardioprotection through oxygen-sparing action in high fat-fed mice.

    PubMed

    Lund, J; Hafstad, A D; Boardman, N T; Rossvoll, L; Rolim, N P; Ahmed, M S; Florholmen, G; Attramadal, H; Wisløff, U; Larsen, T S; Aasum, E

    2015-04-15

    Although exercise training has been demonstrated to have beneficial cardiovascular effects in diabetes, the effect of exercise training on hearts from obese/diabetic models is unclear. In the present study, mice were fed a high-fat diet, which led to obesity, reduced aerobic capacity, development of mild diastolic dysfunction, and impaired glucose tolerance. Following 8 wk on high-fat diet, mice were assigned to 5 weekly high-intensity interval training (HIT) sessions (10 × 4 min at 85-90% of maximum oxygen uptake) or remained sedentary for the next 10 constitutive weeks. HIT increased maximum oxygen uptake by 13%, reduced body weight by 16%, and improved systemic glucose homeostasis. Exercise training was found to normalize diastolic function, attenuate diet-induced changes in myocardial substrate utilization, and dampen cardiac reactive oxygen species content and fibrosis. These changes were accompanied by normalization of obesity-related impairment of mechanical efficiency due to a decrease in work-independent myocardial oxygen consumption. Finally, we found HIT to reduce infarct size by 47% in ex vivo hearts subjected to ischemia-reperfusion. This study therefore demonstrated for the first time that exercise training mediates cardioprotection following ischemia in diet-induced obese mice and that this was associated with oxygen-sparing effects. These findings highlight the importance of optimal myocardial energetics during ischemic stress. Copyright © 2015 the American Physiological Society.

  2. The short and long term effects of exercise training in non-cystic fibrosis bronchiectasis--a randomised controlled trial.

    PubMed

    Lee, Annemarie L; Hill, Catherine J; Cecins, Nola; Jenkins, Sue; McDonald, Christine F; Burge, Angela T; Rautela, Linda; Stirling, Robert G; Thompson, Philip J; Holland, Anne E

    2014-04-15

    Exercise training is recommended for non-cystic fibrosis (CF) bronchiectasis, but the long-term effects are unclear. This randomised controlled trial aimed to determine the effects of exercise training and review of airway clearance therapy (ACT) on exercise capacity, health related quality of life (HRQOL) and the incidence of acute exacerbations in people with non-CF bronchiectasis. Participants were randomly allocated to 8 weeks of supervised exercise training and review of ACT, or control. Primary outcomes of exercise capacity and HRQOL (Chronic respiratory disease questionnaire) and secondary outcomes of cough-related QOL (Leicester cough questionnaire) and psychological symptoms (Hospital anxiety and depression scale) were measured at baseline, following completion of the intervention period and at 6 and 12 months follow up. Secondary outcomes of the exacerbation rate and time to first exacerbation were analysed over 12 months. Eighty-five participants (mean FEV1 74% predicted; median Modified Medical Research Council Dyspnoea grade of 1 (IQR [1-3]) were included. Exercise training increased the incremental shuttle walk distance (mean difference to control 62 m, 95% CI 24 to 101 m) and the 6-minute walking distance (mean difference to control 41 m, 95% CI 19 to 63 m), but these improvements were not sustained at 6 or 12 months. Exercise training reduced dyspnoea (p = 0.009) and fatigue (p = 0.01) but did not impact on cough-related QOL or mood. Exercise training reduced the frequency of acute exacerbations (median 1[IQR 1-3]) compared to the control group (2[1-3]) over 12 months follow up (p = 0.012), with a longer time to first exacerbation with exercise training of 8 months (95% CI 7 to 9 months) compared to the control group (6 months [95% CI 5 to 7 months], p = 0.047). Exercise training in bronchiectasis is associated with short term improvement in exercise capacity, dyspnoea and fatigue and fewer exacerbations over 12 months. ClinicalTrials.gov (NCT00885521).

  3. The short and long term effects of exercise training in non-cystic fibrosis bronchiectasis – a randomised controlled trial

    PubMed Central

    2014-01-01

    Background Exercise training is recommended for non-cystic fibrosis (CF) bronchiectasis, but the long-term effects are unclear. This randomised controlled trial aimed to determine the effects of exercise training and review of airway clearance therapy (ACT) on exercise capacity, health related quality of life (HRQOL) and the incidence of acute exacerbations in people with non-CF bronchiectasis. Methods Participants were randomly allocated to 8 weeks of supervised exercise training and review of ACT, or control. Primary outcomes of exercise capacity and HRQOL (Chronic respiratory disease questionnaire) and secondary outcomes of cough-related QOL (Leicester cough questionnaire) and psychological symptoms (Hospital anxiety and depression scale) were measured at baseline, following completion of the intervention period and at 6 and 12 months follow up. Secondary outcomes of the exacerbation rate and time to first exacerbation were analysed over 12 months. Results Eighty-five participants (mean FEV1 74% predicted; median Modified Medical Research Council Dyspnoea grade of 1 (IQR [1–3]) were included. Exercise training increased the incremental shuttle walk distance (mean difference to control 62 m, 95% CI 24 to 101 m) and the 6-minute walking distance (mean difference to control 41 m, 95% CI 19 to 63 m), but these improvements were not sustained at 6 or 12 months. Exercise training reduced dyspnoea (p = 0.009) and fatigue (p = 0.01) but did not impact on cough-related QOL or mood. Exercise training reduced the frequency of acute exacerbations (median 1[IQR 1–3]) compared to the control group (2[1–3]) over 12 months follow up (p = 0.012), with a longer time to first exacerbation with exercise training of 8 months (95% CI 7 to 9 months) compared to the control group (6 months [95% CI 5 to 7 months], p = 0.047). Conclusions Exercise training in bronchiectasis is associated with short term improvement in exercise capacity, dyspnoea and fatigue and fewer exacerbations over 12 months. Trial registry ClinicalTrials.gov (NCT00885521). PMID:24731015

  4. Exercise training dose differentially alters muscle and heart capillary density and metabolic functions in an obese rat with metabolic syndrome.

    PubMed

    Machado, Marcus Vinicius; Vieira, Aline Bomfim; da Conceição, Fabiana Gomes; Nascimento, Alessandro Rodrigues; da Nóbrega, Antonio Claudio Lucas; Tibirica, Eduardo

    2017-12-01

    What is the central question of this study? Regular exercise is recommended as a non-pharmacological approach for the prevention and treatment of metabolic syndrome. However, the impact of different combinations of intensity, duration and frequency of exercise on metabolic syndrome and microvascular density has not been reported. What is the main finding and its importance? We provide evidence on the impact of aerobic exercise dose on metabolic and microvascular alterations in an experimental model of metabolic syndrome induced by high-fat diet. We found that the exercise frequency and duration were the main factors affecting anthropometric and metabolic parameters and microvascular density in the skeletal muscle. Exercise intensity was related only to microvascular density in the heart. We evaluated the effect of the frequency, duration and intensity of exercise training on metabolic parameters and structural capillary density in obese rats with metabolic syndrome. Wistar-Kyoto rats were fed either a standard commercial diet (CON) or a high-fat diet (HFD). Animals that received the HFD were randomly separated into either a sedentary (SED) group or eight different exercise groups that varied according to the frequency, duration and intensity of training. After 12 weeks of aerobic exercise training, the body composition, aerobic capacity, haemodynamic variables, metabolic parameters and capillary density in the heart and skeletal muscle were evaluated. All the exercise training groups showed reduced resting systolic blood pressure and heart rate and normalized fasting glucose. The minimal amount of exercise (90 min per week) produced little effect on metabolic syndrome parameters. A moderate amount of exercise (150 min per week) was required to reduce body weight and improve capillary density. However, only the high amount of exercise (300 min per week) significantly reduced the amount of body fat depots. The three-way ANOVA showed a main effect of exercise frequency and duration for the improvement of metabolic syndrome and capillary density in skeletal muscle. Exercise intensity was a main factor in reversing microvascular rarefaction in the heart. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  5. Effects of aerobic training intensity on resting, exercise and post-exercise blood pressure, heart rate and heart-rate variability.

    PubMed

    Cornelissen, V A; Verheyden, B; Aubert, A E; Fagard, R H

    2010-03-01

    We aimed to investigate the effects of endurance training intensity (1) on systolic blood pressure (SBP) and heart rate (HR) at rest before exercise, and during and after a maximal exercise test; and (2) on measures of HR variability at rest before exercise and during recovery from the exercise test, in at least 55-year-old healthy sedentary men and women. A randomized crossover study comprising three 10-week periods was performed. In the first and third period, participants exercised at lower or higher intensity (33% or 66% of HR reserve) in random order, with a sedentary period in between. Training programmes were identical except for intensity, and were performed under supervision thrice for 1 h per week. The results show that in the three conditions, that is, at rest before exercise, during exercise and during recovery, we found endurance training at lower and higher intensity to reduce SBP significantly (P<0.05) and to a similar extent. Further, SBP during recovery was, on average, not lower than at rest before exercise, and chronic endurance training did not affect the response of SBP after an acute bout of exercise. The effect of training on HR at rest, during exercise and recovery was more pronounced (P<0.05) with higher intensity. Finally, endurance training had no significant effect on sympathovagal balance. In conclusion, in participants at higher age, both training programmes exert similar effects on SBP at rest, during exercise and during post-exercise recovery, whereas the effects on HR are more pronounced after higher intensity training.

  6. Exercise Training in Progressive Multiple Sclerosis: A Comparison of Recumbent Stepping and Body Weight-Supported Treadmill Training.

    PubMed

    Pilutti, Lara A; Paulseth, John E; Dove, Carin; Jiang, Shucui; Rathbone, Michel P; Hicks, Audrey L

    2016-01-01

    Background: There is evidence of the benefits of exercise training in multiple sclerosis (MS); however, few studies have been conducted in individuals with progressive MS and severe mobility impairment. A potential exercise rehabilitation approach is total-body recumbent stepper training (TBRST). We evaluated the safety and participant-reported experience of TBRST in people with progressive MS and compared the efficacy of TBRST with that of body weight-supported treadmill training (BWSTT) on outcomes of function, fatigue, and health-related quality of life (HRQOL). Methods: Twelve participants with progressive MS (Expanded Disability Status Scale scores, 6.0-8.0) were randomized to receive TBRST or BWSTT. Participants completed three weekly sessions (30 minutes) of exercise training for 12 weeks. Primary outcomes included safety assessed as adverse events and patient-reported exercise experience assessed as postexercise response and evaluation of exercise equipment. Secondary outcomes included the Multiple Sclerosis Functional Composite, the Modified Fatigue Impact Scale, and the Multiple Sclerosis Quality of Life-54 questionnaire scores. Assessments were conducted at baseline and after 12 weeks. Results: Safety was confirmed in both exercise groups. Participants reported enjoying both exercise modalities; however, TBRST was reviewed more favorably. Both interventions reduced fatigue and improved HRQOL (P ≤ .05); there were no changes in function. Conclusions: Both TBRST and BWSTT seem to be safe, well tolerated, and enjoyable for participants with progressive MS with severe disability. Both interventions may also be efficacious for reducing fatigue and improving HRQOL. TBRST should be further explored as an exercise rehabilitation tool for patients with progressive MS.

  7. Effects of short-term heated water-based exercise training on systemic blood pressure in patients with resistant hypertension: a pilot study.

    PubMed

    Guimarães, Guilherme V; Cruz, Lais G B; Tavares, Aline C; Dorea, Egidio L; Fernandes-Silva, Miguel M; Bocchi, Edimar A

    2013-12-01

    High blood pressure (BP) increases the risk of cardiovascular diseases, and its control is a clinical challenge. Regular exercise lowers BP in patients with mild-to-moderate hypertension. No data are available on the effects of heated water-based exercise in hypertensive patients. Our objective was to evaluate the effects of heated water-based exercise on BP in patients with resistant hypertension. We tested the effects of 60-min heated water-based exercise training three times per week in 16 patients with resistant hypertension (age 55±6 years). The protocol included walking and callisthenic exercises. All patients underwent 24-h ambulatory blood pressure monitoring (ABPM) before and after a 2-week exercise program in a heated pool. Systolic office BP was reduced from 162 to 144 mmHg (P<0.004) after heated-water training. After the heated-water exercise training during 24-h ABPM, systolic BP decreased from 135 to 123 mmHg (P=0.02), diastolic BP decreased from 83 to 74 mmHg (P=0.001), daytime systolic BP decreased from 141 to 125 mmHg (P=0.02), diastolic BP decreased from 87 to 77 mmHg (P=0.009), night-time systolic BP decreased from 128 to 118 mmHg (P=0.06), and diastolic BP decreased from 77 to 69 mmHg (P=0.01). In addition, BP cardiovascular load was reduced significantly during the 24-h daytime and night-time period after the heated water-based exercise. Heated water-based exercise reduced office BP and 24-h daytime and night-time ABPM levels. These effects suggest that heated water-based exercise may have a potential as a new therapeutic approach to resistant hypertensive patients.

  8. Aerobic exercise training-induced changes in serum adropin level are associated with reduced arterial stiffness in middle-aged and older adults.

    PubMed

    Fujie, Shumpei; Hasegawa, Natsuki; Sato, Koji; Fujita, Satoshi; Sanada, Kiyoshi; Hamaoka, Takafumi; Iemitsu, Motoyuki

    2015-11-15

    Aging-induced arterial stiffening is reduced by aerobic exercise training, and elevated production of nitric oxide (NO) participates in this effect. Adropin is a regulator of endothelial NO synthase and NO release, and circulating adropin level decreases with age. However, the effect of habitual aerobic exercise on circulating adropin levels in healthy middle-aged and older adults remains unclear. We sought to determine whether serum adropin level is associated with exercise training-induced changes in arterial stiffness. First, in a cross-sectional study, we investigated the association between serum adropin level and both arterial stiffness and cardiorespiratory fitness in 80 healthy middle-aged and older subjects (65.6 ± 0.9 yr). Second, in an intervention study, we examined the effects of 8-wk aerobic exercise training on serum adropin level and arterial stiffness in 40 healthy middle-aged and older subjects (67.3 ± 1.0 yr) divided into two groups: aerobic exercise training and sedentary controls. In the cross-sectional study, serum adropin level was negatively correlated with carotid β-stiffness (r = -0.437, P < 0.001) and positively correlated with plasma NOx level (r = 0.493, P < 0.001) and cardiorespiratory fitness (r = 0.457, P < 0.001). Serum adropin levels were elevated after the 8-wk aerobic exercise training intervention, and training-induced changes in serum adropin level were correlated with training-induced changes in carotid β-stiffness (r = -0.399, P < 0.05) and plasma NOx level (r = 0.623, P < 0.001). Thus the increase in adropin may participate in the exercise-induced reduction of arterial stiffness. Copyright © 2015 the American Physiological Society.

  9. A spectrum of exercise training reduces soluble Aβ in a dose-dependent manner in a mouse model of Alzheimer's disease.

    PubMed

    Moore, Kaitlin M; Girens, Renee E; Larson, Sara K; Jones, Maria R; Restivo, Jessica L; Holtzman, David M; Cirrito, John R; Yuede, Carla M; Zimmerman, Scott D; Timson, Benjamin F

    2016-01-01

    Physical activity has long been hypothesized to influence the risk and pathology of Alzheimer's disease. However, the amount of physical activity necessary for these benefits is unclear. We examined the effects of three months of low and high intensity exercise training on soluble Aβ40 and Aβ42 levels in extracellular enriched fractions from the cortex and hippocampus of young Tg2576 mice. Low (LOW) and high (HI) intensity exercise training animals ran at speeds of 15m/min on a level treadmill and 32 m/min at a 10% grade, respectively for 60 min per day, five days per week, from three to six months of age. Sedentary mice (SED) were placed on a level, non-moving, treadmill for the same duration. Soleus muscle citrate synthase activity increased by 39% in the LOW group relative to SED, and by 71% in the HI group relative to LOW, indicating an exercise training effect in these mice. Soluble Aβ40 concentrations decreased significantly in an exercise training dose-dependent manner in the cortex. In the hippocampus, concentrations were decreased significantly in the HI group relative to LOW and SED. Soluble Aβ42 levels also decreased significantly in an exercise training dose-dependent manner in both the cortex and hippocampus. Five proteins involved in Aβ clearance (neprilysin, IDE, MMP9, LRP1 and HSP70) were elevated by exercise training with its intensity playing a role in each case. Our data demonstrate that exercise training reduces extracellular soluble Aβ in the brains of Tg2576 mice in a dose-dependent manner through an up-regulation of Aβ clearance. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. The effects of exercise on cardiovascular biomarkers in patients with chronic heart failure.

    PubMed

    Ahmad, Tariq; Fiuzat, Mona; Mark, Daniel B; Neely, Ben; Neely, Megan; Kraus, William E; Kitzman, Dalane W; Whellan, David J; Donahue, Mark; Zannad, Faiez; Piña, Ileana L; Adams, Kirkwood; O'Connor, Christopher M; Felker, G Michael

    2014-02-01

    Exercise training is recommended for chronic heart failure (HF) patients to improve functional status and reduce risk of adverse outcomes. Elevated plasma levels of amino-terminal pro-brain natriuretic peptide (NT-proBNP), high-sensitivity C-reactive protein (hs-CRP), and cardiac troponin T (cTnT) are associated with increased risk of adverse outcomes in this patient population. Whether exercise training leads to improvements in biomarkers and how such improvements relate to clinical outcomes are unclear. Amino-terminal pro-brain natriuretic peptide, hs-CRP, and cTnT levels were assessed at baseline and 3 months in a cohort of 928 subjects from the HF-ACTION study, a randomized clinical trial of exercise training versus usual care in chronic HF patients with reduced left ventricular ejection fraction (<35%). Linear and logistic regressions were used to assess 3-month biomarker levels as a function of baseline value, treatment assignment (exercise training vs usual care), and volume of exercise. Linear regression and Cox proportional hazard modeling were used to evaluate the relations between changes in biomarker levels and clinical outcomes of interest that included change in peak oxygen consumption (peak VO2), hospitalizations, and mortality. Exercise training was not associated with significant changes in levels of NT-proBNP (P = .10), hs-CRP (P = .80), or detectable cTnT levels (P = .83) at 3 months. Controlling for baseline biomarker levels or volume of exercise did not alter these findings. Decreases in plasma concentrations of NT-proBNP, but not hs-CRP or cTnT, were associated with increases in peak VO2 (P < .001) at 3 months and decreased risk of hospitalizations or mortality (P ≤ .04), even after adjustment for a comprehensive set of known predictors. Exercise training did not lead to meaningful changes in biomarkers of myocardial stress, inflammation, or necrosis in patients with chronic HF. Only improvements in NT-proBNP translated to reductions in peak VO2 and reduced risk of clinical events. © 2014.

  11. Skeletal muscle neuronal nitric oxide synthase micro protein is reduced in people with impaired glucose homeostasis and is not normalized by exercise training.

    PubMed

    Bradley, Scott J; Kingwell, Bronwyn A; Canny, Benedict J; McConell, Glenn K

    2007-10-01

    Skeletal muscle inducible nitric oxide synthase (NOS) protein is greatly elevated in people with type 2 diabetes mellitus, whereas endothelial NOS is at normal levels. Diabetic rat studies suggest that skeletal muscle neuronal NOS (nNOS) micro protein expression may be reduced in human insulin resistance. The aim of this study was to determine whether skeletal muscle nNOSmicro protein expression is reduced in people with impaired glucose homeostasis and whether exercise training increases nNOSmicro protein expression in these individuals because exercise training increases skeletal muscle nNOSmicro protein in rats. Seven people with type 2 diabetes mellitus or prediabetes (impaired fasting glucose and/or impaired glucose tolerance) and 7 matched (sex, age, fitness, body mass index, blood pressure, lipid profile) healthy controls aged 36 to 60 years participated in this study. Vastus lateralis muscle biopsies for nNOSmicro protein determination were obtained, aerobic fitness was measured (peak pulmonary oxygen uptake [Vo(2) peak]), and glucose tolerance and insulin homeostasis were assessed before and after 1 and 4 weeks of cycling exercise training (60% Vo(2) peak, 50 minutes x 5 d wk(-1)). Skeletal muscle nNOSmicro protein was significantly lower (by 32%) in subjects with type 2 diabetes mellitus or prediabetes compared with that in controls before training (17.7 +/- 1.2 vs 26.2 +/- 3.4 arbitrary units, P < .05). The Vo(2) peak and indicators of insulin sensitivity improved with exercise training in both groups (P < .05), but there was no effect of exercise training on skeletal muscle nNOSmicro protein in either group. In conclusion, individuals with impaired glucose homeostasis have reduced skeletal muscle nNOSmicro protein content. However, because exercise training improves insulin sensitivity without influencing skeletal muscle nNOSmicro protein expression, it seems that changes in skeletal muscle nNOSmicro protein are not central to the control of insulin sensitivity in humans and therefore may be a consequence rather than a cause of diabetes.

  12. Effect of Voluntary Ethanol Consumption Combined with Testosterone Treatment on Cardiovascular Function in Rats: Influence of Exercise Training

    PubMed Central

    Engi, Sheila A.; Planeta, Cleopatra S.; Crestani, Carlos C.

    2016-01-01

    This study evaluated the effects of voluntary ethanol consumption combined with testosterone treatment on cardiovascular function in rats. Moreover, we investigated the influence of exercise training on these effects. To this end, male rats were submitted to low-intensity training on a treadmill or kept sedentary while concurrently being treated with ethanol for 6 weeks. For voluntary ethanol intake, rats were given access to two bottles, one containing ethanol and other containing water, three 24-hour sessions per week. In the last two weeks (weeks 5 and 6), animals underwent testosterone treatment concurrently with exercise training and exposure to ethanol. Ethanol consumption was not affected by either testosterone treatment or exercise training. Also, drug treatments did not influence the treadmill performance improvement evoked by training. However, testosterone alone, but not in combination with ethanol, reduced resting heart rate. Moreover, combined treatment with testosterone and ethanol reduced the pressor response to the selective α1-adrenoceptor agonist phenylephrine. Treatment with either testosterone or ethanol alone also affected baroreflex activity and enhanced depressor response to acetylcholine, but these effects were inhibited when drugs were coadministrated. Exercise training restored most cardiovascular effects evoked by drug treatments. Furthermore, both drugs administrated alone increased pressor response to phenylephrine in trained animals. Also, drug treatments inhibited the beneficial effects of training on baroreflex function. In conclusion, the present results suggest a potential interaction between toxic effects of testosterone and ethanol on cardiovascular function. Data also indicate that exercise training is an important factor influencing the effects of these substances. PMID:26760038

  13. There is not yet strong evidence that exercise regimens other than pelvic floor muscle training can reduce stress urinary incontinence in women: a systematic review.

    PubMed

    Bø, Kari; Herbert, Robert D

    2013-09-01

    What evidence is there for alternative exercises to specific pelvic floor muscle training for treatment of stress urinary incontinence in women? A systematic review was conducted with searches of PubMed and PEDro to January 2013. The quality of randomised trials was evaluated using the PEDro scale. Each type of exercise was classified as being in a Development Phase, Testing Phase, or Refinement and Dissemination Phase. Women with stress or mixed urinary incontinence with predominantly stress urinary incontinence. Exercise regimens other than pelvic floor muscle training. The primary outcome was urinary leakage. Seven randomised controlled trials were found: three on abdominal training, two on the Paula method, and two on Pilates exercise. The methodological quality score ranged between 4 and 8 with a mean of 5.7. There was no convincing evidence for the effect of these exercise regimens so they remain in the Testing Phase. Because no randomised trials were found for posture correction, breathing exercise, yoga, Tai Chi, and general fitness training, these were classified as being in the Development Phase. There is not yet strong evidence that alternative exercise regimens can reduce urinary leakage in women with stress urinary incontinence. Alternative exercise regimens should not yet be recommended for use in clinical practice for women with stress urinary incontinence. Copyright © 2013 Australian Physiotherapy Association. Published by .. All rights reserved.

  14. The 'aerobic/resistance/inspiratory muscle training hypothesis in heart failure'.

    PubMed

    Laoutaris, Ioannis D

    2018-01-01

    Evidence from large multicentre exercise intervention trials in heart failure patients, investigating both moderate continuous aerobic training and high intensity interval training, indicates that the 'crème de la crème' exercise programme for this population remains to be found. The 'aerobic/resistance/inspiratory (ARIS) muscle training hypothesis in heart failure' is introduced, suggesting that combined ARIS muscle training may result in maximal exercise pathophysiological and functional benefits in heart failure patients. The hypothesis is based on the decoding of the 'skeletal muscle hypothesis in heart failure' and on revision of experimental evidence to date showing that exercise and functional intolerance in heart failure patients are associated not only with reduced muscle endurance, indication for aerobic training (AT), but also with reduced muscle strength and decreased inspiratory muscle function contributing to weakness, dyspnoea, fatigue and low aerobic capacity, forming the grounds for the addition of both resistance training (RT) and inspiratory muscle training (IMT) to AT. The hypothesis will be tested by comparing all potential exercise combinations, ARIS, AT/RT, AT/IMT, AT, evaluating both functional and cardiac indices in a large sample of heart failure patients of New York Heart Association class II-III and left ventricular ejection fraction ≤35% ad hoc by the multicentre randomized clinical trial, Aerobic Resistance, InSpiratory Training OutcomeS in Heart Failure (ARISTOS-HF trial).

  15. Exercise detraining: Applicability to microgravity

    NASA Technical Reports Server (NTRS)

    Coyle, Edward F.

    1994-01-01

    Physical training exposes the various systems of the body to potent physiologic stimuli. These stimuli induce specific adaptations that enhance an individual's tolerance for the type of exercise encountered in training. The level of adaptation and the magnitude of improvement in exercise tolerance is proportional to the potency of the physical training stimuli. Likewise, our bodies are stimulated by gravity, which promotes adaptations of both the cardiovascular and skeletal muscles. Exposure to microgravity removes normal stimuli to these systems, and the body adapts to these reduced demands. In many respects the cessation of physical training in athletes and the transition from normal gravity to microgravity represent similar paradigms. Inherent to these situations is the concept of the reversibility of the adaptations induced by training or by exposure to normal gravity. The reversibility concept holds that when physical training is stopped (i.e., detraining) or reduced, or a person goes from normal gravity to microgravity, the bodily systems readjust in accordance with the diminished physiologic stimuli. The focus of this chapter is on the time course of loss of the adaptations to endurance training as well as on the possibility that certain adaptations persist, to some extent, when training is stopped. Because endurance exercise training generally improves cardiovascular function and promotes metabolic adaptations within the exercising skeletal musculature, the reversibility of these specific adaptations is considered. These observations have some applicability to the transition from normal to microgravity.

  16. Individualizing Exercise: Some Biomechanical and Physiological Reminders.

    ERIC Educational Resources Information Center

    Browder, Kathy D.; Darby, Lynn A.

    1998-01-01

    It is important to individualize exercise programs to safely achieve exercise goals. The article reviews several key points to help exercise leaders individualize new exercise programs or rejuvenate routine workouts, focusing on cardiorespiratory and muscular training. The article emphasizes that individualizing exercise programs reduces injury,…

  17. Eight weeks of exercise training increases aerobic capacity and muscle mass and reduces fatigue in patients with cirrhosis.

    PubMed

    Zenith, Laura; Meena, Neha; Ramadi, Ailar; Yavari, Milad; Harvey, Andrea; Carbonneau, Michelle; Ma, Mang; Abraldes, Juan G; Paterson, Ian; Haykowsky, Mark J; Tandon, Puneeta

    2014-11-01

    Patients with cirrhosis have reduced exercise tolerance, measured objectively as decreased peak exercise oxygen uptake (peak VO2). Reduced peak VO2 is associated with decreased survival time. The effect of aerobic exercise training on peak VO2 has not been well studied in patients with cirrhosis. We evaluated the safety and efficacy of 8 weeks of supervised exercise on peak VO2, quadriceps muscle thickness, and quality of life. In a prospective pilot study, stable patients (79% male, 57.6 ± 6.7 years old) with Child-Pugh class A or B cirrhosis (mean Model for End-Stage Liver Disease score, 10 ± 2.2) were randomly assigned to groups that received exercise training (n = 9) or usual care (controls, n = 10) at the University of Alberta Hospital in Canada from February through June 2013. Supervised exercise was performed on a cycle ergometer 3 days/week for 8 weeks at 60%-80% of baseline peak VO2. Peak VO2, quadriceps muscle thickness (measured by ultrasound), thigh circumference, answers from Chronic Liver Disease Questionnaires, EQ-visual analogue scales, 6-minute walk distance, and Model for End-Stage Liver Disease scores were evaluated at baseline and at week 8. Analysis of covariance was used to compare variables. At week 8, peak VO2 was 5.3 mL/kg/min higher in the exercise group compared with controls (95% confidence interval, 2.9-7.8; P = .001). Thigh circumference (P = .001), thigh muscle thickness (P = .01), and EQ-visual analogue scale determined self-perceived health status (P = .01) was also significantly higher in the exercise group compared with controls at week 8; fatigue subscores of the Chronic Liver Disease Questionnaires were lower in the exercise group compared with controls (P = .01). No adverse events occurred during cardiopulmonary exercise testing or training. In a controlled prospective pilot trial, 8 weeks of supervised aerobic exercise training increased peak VO2 and muscle mass and reduced fatigue in patients with cirrhosis. No relevant adverse effects were observed. Larger trials are needed to evaluate the effects of exercise in patients with cirrhosis. ClinicalTrials.gov number: NCT01799785. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  18. Exercise effects on fitness, lipids, glucose tolerance and insulin levels in young adults.

    PubMed

    Israel, R G; Davidson, P C; Albrink, M J; Krall, J M

    1981-07-01

    The effect of 3 different physical training programs on cardiorespiratory (cr) fitness, fasting plasma lipids, glucose and insulin levels, and scapular skinfold thickness was assessed in 64 healthy college men. Training sessions were held 4 times a week for 5 weeks. The cr fitness improved significantly and skinfold thickness decreased following the aerobic, the pulse workout (interval training), and the anaerobic training compared to the control group. Skinfold thickness, plasma insulin, and triglyceride concentrations were significantly intercorrelated before and after training. The exercise programs had no significant effect on plasma cholesterol, triglycerides, phospholipids, glucose tolerance, or insulin levels. Change in adipose mass was thus dissociated from change in plasma insulin and triglyceride concentrations. It was concluded that in young men plasma triglycerides, the lipid component mostly readily reduced by exercise, were too low to be reduced further by a physical training program.

  19. Benefits of aerobic exercise after stroke.

    PubMed

    Potempa, K; Braun, L T; Tinknell, T; Popovich, J

    1996-05-01

    The debilitating loss of function after a stroke has both primary and secondary effects on sensorimotor function. Primary effects include paresis, paralysis, spasticity, and sensory-perceptual dysfunction due to upper motor neuron damage. Secondary effects, contractures and disuse muscle atrophy, are also debilitating. This paper presents theoretical and empirical benefits of aerobic exercise after stroke, issues relevant to measuring peak capacity, exercise training protocols, and the clinical use of aerobic exercise in this patient population. A stroke, and resulting hemiparesis, produces physiological changes in muscle fibres and muscle metabolism during exercise. These changes, along with comorbid cardiovascular disease, must be considered when exercising stroke patients. While few studies have measured peak exercise capacity in hemiparetic populations, it has been consistently observed in these studies that stroke patients have a lower functional capacity than healthy populations. Hemiparetic patients have low peak exercise responses probably due to a reduced number of motor units available for recruitment during dynamic exercise, the reduced oxidative capacity of paretic muscle, and decreased overall endurance. Consequently, traditional methods to predict aerobic capacity are not appropriate for use with stroke patients. Endurance exercise training is increasingly recognised as an important component in rehabilitation. An average improvement in maximal oxygen consumption (VO2max) of 13.3% in stroke patients who participated in a 10-week aerobic exercise training programme has been reported compared with controls. This study underscored the potential benefits of aerobic exercise training in stroke patients. In this paper, advantages and disadvantages of exercise modalities are discussed in relation to stroke patients. Recommendations are presented to maximise physical performance and minimise potential cardiac risks during exercise.

  20. Swimming Training Induces Liver Mitochondrial Adaptations to Oxidative Stress in Rats Submitted to Repeated Exhaustive Swimming Bouts

    PubMed Central

    Lima, Frederico D.; Stamm, Daniel N.; Della-Pace, Iuri D.; Dobrachinski, Fernando; de Carvalho, Nélson R.; Royes, Luiz Fernando F.; Soares, Félix A.; Rocha, João B.; González-Gallego, Javier; Bresciani, Guilherme

    2013-01-01

    Background and Aims Although acute exhaustive exercise is known to increase liver reactive oxygen species (ROS) production and aerobic training has shown to improve the antioxidant status in the liver, little is known about mitochondria adaptations to aerobic training. The main objective of this study was to investigate the effects of the aerobic training on oxidative stress markers and antioxidant defense in liver mitochondria both after training and in response to three repeated exhaustive swimming bouts. Methods Wistar rats were divided into training (n = 14) and control (n = 14) groups. Training group performed a 6-week swimming training protocol. Subsets of training (n = 7) and control (n = 7) rats performed 3 repeated exhaustive swimming bouts with 72 h rest in between. Oxidative stress biomarkers, antioxidant activity, and mitochondria functionality were assessed. Results Trained group showed increased reduced glutathione (GSH) content and reduced/oxidized (GSH/GSSG) ratio, higher superoxide dismutase (MnSOD) activity, and decreased lipid peroxidation in liver mitochondria. Aerobic training protected against exhaustive swimming ROS production herein characterized by decreased oxidative stress markers, higher antioxidant defenses, and increases in methyl-tetrazolium reduction and membrane potential. Trained group also presented higher time to exhaustion compared to control group. Conclusions Swimming training induced positive adaptations in liver mitochondria of rats. Increased antioxidant defense after training coped well with exercise-produced ROS and liver mitochondria were less affected by exhaustive exercise. Therefore, liver mitochondria also adapt to exercise-induced ROS and may play an important role in exercise performance. PMID:23405192

  1. Vigorous, Aerobic Exercise versus General Motor Training Activities: Effects on Maladaptive and Stereotypic Behaviors of Adults with Both Autism and Mental Retardation.

    ERIC Educational Resources Information Center

    Elliott, Reed O., Jr.; And Others

    1994-01-01

    Six adults with both autism and moderate/profound mental retardation were assessed in a controlled environment for changes in frequency of maladaptive and stereotypic behaviors following nonexercise activities, general motor training activities, and aerobic exercise. Although antecedent aerobic exercise reduced undesirable behaviors, general motor…

  2. Integrated Resistance and Aerobic Training Study - Sprint

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Lori; Moore, Alan; Ryder, Jeffrey; Everett, Meg; Bloomberg, Jacob; Sibonga, Jean; Shackelford, Linda; Platts, Steven; Martin, David; Ploutz-Snyder, Robert; hide

    2010-01-01

    Space flight causes reductions in fitness/health: (1) Cardiovascular -- reduced VO2max, cardiac output (2) Bone -- reduced bone mineral density (3) Muscle -- reduced mass, strength and endurance. Exercise is the primary countermeasure to protect against these changes and was made operational before completely mature. Research continues to identify most effective/efficient exercise programs. Crew medical tests (cardio, muscle, bone) do not yield sufficient information to fine tune the effectiveness of exercise programs, thus there is a need for more detailed testing aimed at identifying the most effective training program. The objective of this program was to obtain detailed information about crew physical fitness pre-and post-flight and evaluate new evidence based exercise prescription with higher intensity, lower duration and frequency.

  3. The Effects of Exercise on Pharmacokinetics and Pharmacodynamics of Physostigmine in Rats

    DTIC Science & Technology

    1989-02-15

    Phy ( cholinesterase activity ) are likely to be altered by exercise due to altered blood flow rates to liver and pH of muscle. During exercise...concurrent acute exercise on the ChE activity in RBC aad tissues and in blood biochemical parameters in rats. Phy has been reported to reduce the...Springfield, Illinois. Also, we have studied the effect of exercise training, Phy and training + Phy on ChE activity in RBC and tissues and on blood biochemi

  4. Effects of a Single Bout of Aerobic Exercise Versus Resistance Training on Cognitive Vulnerabilities for Anxiety Disorders.

    PubMed

    Broman-Fulks, Joshua J; Kelso, Kerry; Zawilinski, Laci

    2015-01-01

    The purpose of this study was to compare the relative effects of a single bout of aerobic exercise versus resistance training on cognitive vulnerabilities for anxiety disorders. Seventy-seven participants (60% female; 84% Caucasian) were randomized to complete 20 min of moderate-intensity aerobic exercise, resistance training, or rest, followed by a 35% CO2/65% O2 inhalation challenge task. Results indicated that aerobic exercise and resistance training were significantly and equally effective in reducing anxiety sensitivity (AS) compared with rest ((η(2)(p ) = 52), though only aerobic exercise significantly attenuated reactivity to the CO2 challenge task. Neither form of exercise generated observable effects on distress tolerance, discomfort intolerance, or state anxiety (all ps >.10). The results of this study are discussed with regard to their implications for the use of exercise interventions for anxiety and related forms of psychopathology, and potential directions for future research are discussed.

  5. Burrowing as a novel voluntary strength training method for mice: A comparison of various voluntary strength or resistance exercise methods.

    PubMed

    Roemers, P; Mazzola, P N; De Deyn, P P; Bossers, W J; van Heuvelen, M J G; van der Zee, E A

    2018-04-15

    Voluntary strength training methods for rodents are necessary to investigate the effects of strength training on cognition and the brain. However, few voluntary methods are available. The current study tested functional and muscular effects of two novel voluntary strength training methods, burrowing (digging a substrate out of a tube) and unloaded tower climbing, in male C57Bl6 mice. To compare these two novel methods with existing exercise methods, resistance running and (non-resistance) running were included. Motor coordination, grip strength and muscle fatigue were measured at baseline, halfway through and near the end of a fourteen week exercise intervention. Endurance was measured by an incremental treadmill test after twelve weeks. Both burrowing and resistance running improved forelimb grip strength as compared to controls. Running and resistance running increased endurance in the treadmill test and improved motor skills as measured by the balance beam test. Post-mortem tissue analyses revealed that running and resistance running induced Soleus muscle hypertrophy and reduced epididymal fat mass. Tower climbing elicited no functional or muscular changes. As a voluntary strength exercise method, burrowing avoids the confounding effects of stress and positive reinforcers elicited in forced strength exercise methods. Compared to voluntary resistance running, burrowing likely reduces the contribution of aerobic exercise components. Burrowing qualifies as a suitable voluntary strength training method in mice. Furthermore, resistance running shares features of strength training and endurance (aerobic) exercise and should be considered a multi-modal aerobic-strength exercise method in mice. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Carnitine supplementation and depletion: tissue carnitines and enzymes in fatty acid oxidation.

    PubMed

    Negrao, C E; Ji, L L; Schauer, J E; Nagle, F J; Lardy, H A

    1987-07-01

    Sixty-two male rats were randomly assigned into a 3 X 2 X 2 factorial design containing 12 groups according to carnitine treatment, exercise training (treadmill, 1 h, 5 times/wk, 8 wk, 26.8 m/min, 15% grade), and physical activity [rested for 60 h before they were killed or with an acute bout of exercise (1 h, 26.8 m/min, 15% grade) immediately before they were killed]. Isotonic saline was injected intraperitoneally 5 times/wk in the controls, whereas 750 mg/kg of L- or D-carnitine, respectively, were injected in the supplemented and depleted treatment groups. A significant increase in free and short-chain acyl carnitine concentration in skeletal muscle and heart was observed in L-carnitine supplemented rats, whereas a significant reduction in skeletal muscle, heart, and liver occurred in rats depleted of L-carnitine. Long-chain acyl carnitine in all tissues was not altered by carnitine treatment; training increased plasma and liver concentrations, whereas acute exercise decreased skeletal muscle and increased liver concentrations. An acute bout of exercise significantly increased short-chain acylcarnitine in liver, regardless of carnitine and/or training effects. beta-Hydroxyacyl-CoA dehydrogenase activity in skeletal muscle was induced by training but reduced by depletion. Carnitine acetyltransferase (CAT) was significantly increased in heart by L-carnitine supplementation, whereas it was reduced by depletion in skeletal muscle. Exercise training significantly increased CAT activity in skeletal muscle but not in heart, whereas acute exercise significantly increased activity in both tissues. Carnitine palmitoyltransferase activity was increased by acute exercise in the heart in only the supplemented and exercise-trained rats.

  7. Trampoline exercise vs. strength training to reduce neck strain in fighter pilots.

    PubMed

    Sovelius, Roope; Oksa, Juha; Rintala, Harri; Huhtala, Heini; Ylinen, Jari; Siitonen, Simo

    2006-01-01

    Fighter pilots' muscular strength and endurance are subjected to very high demands. Pilots' fatigued muscles are at higher risk for injuries. The purpose of this study was to compare the effects of two different training methods in reducing muscular loading during in-flight and cervical loading testing (CLT). There were 16 volunteer Finnish Air Force cadets who were divided into 2 groups: a strength training group (STG) and a trampoline training group (TTG). During the 6-wk training period, the STG performed dynamic flexion and extension and isometric rotation exercises, and the TTG performed trampoline bouncing exercises. During in-flight and CLT, muscle strain from the sternocleidomastoid, cervical erector spinae, trapezius, and thoracic erector spinae muscles was recorded with EMG. In-flight muscle strain in the STG after the training period decreased in the sternocleidomastoid 50%, cervical erector spinae 3%, trapezius 4%, and thoracic erector spinae 8%. In the TTG, the decrease was 41%, 30%, 20%, and 6%, respectively. In CLT, the results were similar. After a 3-mo follow-up period with intensive high +Gz flying, EMG during CLT was still lower than in baseline measurements. Both training methods were found to be effective in reducing muscle strain during in-flight and CLT, especially in the cervical muscles. There was no statistically significant difference between the training groups. Introduced exercises expand muscles' capacities in different ways and the authors recommend both strength and trampoline training programs to be included in fighter pilots' physical education programs.

  8. Mobile-phone-based home exercise training program decreases systemic inflammation in COPD: a pilot study.

    PubMed

    Wang, Chun-Hua; Chou, Pai-Chien; Joa, Wen-Ching; Chen, Li-Fei; Sheng, Te-Fang; Ho, Shu-Chuan; Lin, Horng-Chyuan; Huang, Chien-Da; Chung, Fu-Tsai; Chung, Kian Fan; Kuo, Han-Pin

    2014-08-30

    Moderate-intensity exercise training improves skeletal muscle aerobic capacity and increased oxidative enzyme activity, as well as exercise tolerance in COPD patients. To investigate whether the home-based exercise training program can reduce inflammatory biomarkers in patients with COPD, twelve patients using mobile phone assistance and 14 with free walk were assessed by incremental shuttle walk test (ISWT), spirometry, strength of limb muscles, and serum C-reactive protein (CRP) and inflammatory cytokines. Patients in the mobile phone group improved their ISWT walking distance, with decrease in serum CRP after 2 months, and sustained at 6 months. Patients in the control group had no improvement. Serum IL-8 in the mobile phone group was significantly reduced at 2, 3 and 6 months after doing home exercise training compared to baseline. IL-6 and TNF-α were significantly elevated at 3 and 6 months in control group, while there were no changes in mobile phone group. The strength of limb muscles was significantly greater compared to baseline at 3 and 6 months in the mobile phone group. A mobile-phone-based system can provide an efficient home endurance exercise training program with improved exercise capacity, strength of limb muscles and a decrease in serum CRP and IL-8 in COPD patients. Decreased systemic inflammation may contribute to these clinical benefits. (Clinical trial registration No.: NCT01631019).

  9. Regular exercise training reverses ectonucleotidase alterations and reduces hyperaggregation of platelets in metabolic syndrome patients.

    PubMed

    Martins, Caroline Curry; Bagatini, Margarete Dulce; Cardoso, Andréia Machado; Zanini, Daniela; Abdalla, Fátima Husein; Baldissarelli, Jucimara; Dalenogare, Diéssica Padilha; Farinha, Juliano Boufleur; Schetinger, Maria Rosa Chitolina; Morsch, Vera Maria

    2016-02-15

    Alterations in the activity of ectonucleotidase enzymes have been implicated in cardiovascular diseases, whereas regular exercise training has been shown to prevent these alterations. However, nothing is known about it relating to metabolic syndrome (MetS). We investigated the effect of exercise training on platelet ectonucleotidase enzymes and on the aggregation profile of MetS patients. We studied 38 MetS patients who performed regular concurrent exercise training for 30 weeks. Anthropometric measurements, biochemical profiles, hydrolysis of adenine nucleotides in platelets and platelet aggregation were collected from patients before and after the exercise intervention as well as from individuals of the control group. An increase in the hydrolysis of adenine nucleotides (ATP, ADP and AMP) and a decrease in adenosine deamination in the platelets of MetS patients before the exercise intervention were observed (P<0.001). However, these alterations were reversed by exercise training (P<0.001). Additionally, an increase in platelet aggregation was observed in the MetS patients (P<0.001) and the exercise training prevented platelet hyperaggregation in addition to decrease the classic cardiovascular risks. An alteration of ectonucleotidase enzymes occurs during MetS, whereas regular exercise training had a protective effect on these enzymes and on platelet aggregation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Efficacy of the Otago Exercise Programme to reduce falls in community-dwelling adults aged 65-80 years old when delivered as group or individual training.

    PubMed

    Albornos-Muñoz, Laura; Moreno-Casbas, María Teresa; Sánchez-Pablo, Clara; Bays-Moneo, Ana; Fernández-Domínguez, Juan Carlos; Rich-Ruiz, Manuel; Gea-Sánchez, Montserrat

    2018-04-06

    This study will compare how falls can be reduced in non-institutionalized older Spanish adults aged 65-80 years by providing group or individual exercise sessions using the Otago Exercise Programme. The Otago Exercise Programme is a progressive home-based exercise programme, where trained health professionals help people engage in strength, balance and endurance exercises. Its format is based on the evidence from four clinical trials. The benefits of the Otago Exercise Programme are the same for people who have and have not suffered falls and it can also be used for visually impaired people. A multicentre, simply blinded, randomized, non-inferiority clinical trial, with two arms-group training and individual training-that started in January 2017 and will continue until December 2019. Each study group has 364 subjects, who will take part in four individual or group sessions delivered mainly by nurses over an 8-week period, with a reinforcement session 6 months later. Data will be collected at baseline and after 6 and 12 months. The fall percentage will be the most relevant clinical variable and we will also consider safety, viability, compliance, economic analysis and therapeutic value. Approval and funding was granted in December 2016 for this 3-year study by the Spanish Health Research Fund (PI16CIII/00031). Older people from 65-80 years old tend to be more isolated and tackling worries about falls can improve social activities and independence. It has been shown that group training provides better adherence to exercise than individual training and this study will test that hypothesis for the Otago Exercise Programme. © 2018 John Wiley & Sons Ltd.

  11. Epicardial fat gene expression after aerobic exercise training in pigs with coronary atherosclerosis: relationship to visceral and subcutaneous fat.

    PubMed

    Company, Joseph M; Booth, Frank W; Laughlin, M Harold; Arce-Esquivel, Arturo A; Sacks, Harold S; Bahouth, Suleiman W; Fain, John N

    2010-12-01

    Epicardial adipose tissue (EAT) is contiguous with coronary arteries and myocardium and potentially may play a role in coronary atherosclerosis (CAD). Exercise is known to improve cardiovascular disease risk factors. The purpose of this study was to investigate the effect of aerobic exercise training on the expression of 18 genes, measured by RT-PCR and selected for their role in chronic inflammation, oxidative stress, and adipocyte metabolism, in peri-coronary epicardial (cEAT), peri-myocardial epicardial (mEAT), visceral abdominal (VAT), and subcutaneous (SAT) adipose tissues from a castrate male pig model of familial hypercholesterolemia with CAD. We tested the hypothesis that aerobic exercise training for 16 wk would reduce the inflammatory profile of mRNAs in both components of EAT and VAT but would have little effect on SAT. Exercise increased mEAT and total heart weights. EAT and heart weights were directly correlated. Compared with sedentary pigs matched for body weight to exercised animals, aerobic exercise training reduced the inflammatory response in mEAT but not cEAT, had no effect on inflammatory genes but preferentially decreased expression of adiponectin and other adipocyte-specific genes in VAT, and had no effect in SAT except that IL-6 mRNA went down and VEGFa mRNA went up. We conclude that 1) EAT is not homogeneous in its inflammatory response to aerobic exercise training, 2) cEAT around CAD remains proinflammatory after chronic exercise, 3) cEAT and VAT share similar inflammatory expression profiles but different metabolic mRNA responses to exercise, and 4) gene expression in SAT cannot be extrapolated to VAT and heart adipose tissues in exercise intervention studies.

  12. Epicardial fat gene expression after aerobic exercise training in pigs with coronary atherosclerosis: relationship to visceral and subcutaneous fat

    PubMed Central

    Booth, Frank W.; Laughlin, M. Harold; Arce-Esquivel, Arturo A.; Sacks, Harold S.; Bahouth, Suleiman W.; Fain, John N.

    2010-01-01

    Epicardial adipose tissue (EAT) is contiguous with coronary arteries and myocardium and potentially may play a role in coronary atherosclerosis (CAD). Exercise is known to improve cardiovascular disease risk factors. The purpose of this study was to investigate the effect of aerobic exercise training on the expression of 18 genes, measured by RT-PCR and selected for their role in chronic inflammation, oxidative stress, and adipocyte metabolism, in peri-coronary epicardial (cEAT), peri-myocardial epicardial (mEAT), visceral abdominal (VAT), and subcutaneous (SAT) adipose tissues from a castrate male pig model of familial hypercholesterolemia with CAD. We tested the hypothesis that aerobic exercise training for 16 wk would reduce the inflammatory profile of mRNAs in both components of EAT and VAT but would have little effect on SAT. Exercise increased mEAT and total heart weights. EAT and heart weights were directly correlated. Compared with sedentary pigs matched for body weight to exercised animals, aerobic exercise training reduced the inflammatory response in mEAT but not cEAT, had no effect on inflammatory genes but preferentially decreased expression of adiponectin and other adipocyte-specific genes in VAT, and had no effect in SAT except that IL-6 mRNA went down and VEGFa mRNA went up. We conclude that 1) EAT is not homogeneous in its inflammatory response to aerobic exercise training, 2) cEAT around CAD remains proinflammatory after chronic exercise, 3) cEAT and VAT share similar inflammatory expression profiles but different metabolic mRNA responses to exercise, and 4) gene expression in SAT cannot be extrapolated to VAT and heart adipose tissues in exercise intervention studies. PMID:20947714

  13. Effect of Aerobic and Resistance Exercise Training on Liver Enzymes and Hepatic Fat in Iranian Men With Nonalcoholic Fatty Liver Disease.

    PubMed

    Shamsoddini, Alireza; Sobhani, Vahid; Ghamar Chehreh, Mohammad Ebrahim; Alavian, Seyed Moayed; Zaree, Ali

    2015-10-01

    Nonalcoholic fatty liver disease (NAFLD) has different prevalence rates in various parts of the world and is a risk factor for diabetes and cardiovascular disease that could progress to nonalcoholic steatohepatitis, cirrhosis, and liver failure. The current study aimed to investigate the effect of Aerobic Training (AT) and resistance training (RT) on hepatic fat content and liver enzyme levels in Iranian men. In a randomized clinical trial study, 30 men with clinically defined NAFLD were allocated into three groups (aerobic, resistance and control). An aerobic group program consisted of 45 minutes of aerobic exercise at 60% - 75% maximum heart rate intensity, a resistance group performed seven resistance exercises at intensity of 50% - 70% of 1 repetition maximum (1RM ) and the control group had no exercise training program during the study. Before and after training, anthropometry, insulin sensitivity, liver enzymes and hepatic fat were elevated. After training, hepatic fat content was markedly reduced, to a similar extent, in both the aerobic and resistance exercise training groups (P ≤ 0.05). In the two exercise training groups, alanine amino transferase and aspartate amino transferase serum levels were significantly decreased compared to the control group (P = 0.002) and (P = 0.02), respectively. Moreover, body fat (%), fat mass (kg), homeostasis model assessment insulin resistance (HOMI-IR) were all improved in the AT and RT. These changes in the AT group were independent of weight loss. This study demonstrated that RT and AT are equally effective in reducing hepatic fat content and liver enzyme levels among patients with NAFLD. However, aerobic exercise specifically improves NAFLD independent of any change in body weight.

  14. Effect of Aerobic and Resistance Exercise Training on Liver Enzymes and Hepatic Fat in Iranian Men With Nonalcoholic Fatty Liver Disease

    PubMed Central

    Shamsoddini, Alireza; Sobhani, Vahid; Ghamar Chehreh, Mohammad Ebrahim; Alavian, Seyed Moayed; Zaree, Ali

    2015-01-01

    Background: Nonalcoholic fatty liver disease (NAFLD) has different prevalence rates in various parts of the world and is a risk factor for diabetes and cardiovascular disease that could progress to nonalcoholic steatohepatitis, cirrhosis, and liver failure. Objectives: The current study aimed to investigate the effect of Aerobic Training (AT) and resistance training (RT) on hepatic fat content and liver enzyme levels in Iranian men. Patients and Methods: In a randomized clinical trial study, 30 men with clinically defined NAFLD were allocated into three groups (aerobic, resistance and control). An aerobic group program consisted of 45 minutes of aerobic exercise at 60% - 75% maximum heart rate intensity, a resistance group performed seven resistance exercises at intensity of 50% - 70% of 1 repetition maximum (1RM ) and the control group had no exercise training program during the study. Before and after training, anthropometry, insulin sensitivity, liver enzymes and hepatic fat were elevated. Results: After training, hepatic fat content was markedly reduced, to a similar extent, in both the aerobic and resistance exercise training groups (P ≤ 0.05). In the two exercise training groups, alanine amino transferase and aspartate amino transferase serum levels were significantly decreased compared to the control group (P = 0.002) and (P = 0.02), respectively. Moreover, body fat (%), fat mass (kg), homeostasis model assessment insulin resistance (HOMI-IR) were all improved in the AT and RT. These changes in the AT group were independent of weight loss. Conclusions: This study demonstrated that RT and AT are equally effective in reducing hepatic fat content and liver enzyme levels among patients with NAFLD. However, aerobic exercise specifically improves NAFLD independent of any change in body weight. PMID:26587039

  15. Impact of Exercise Training on Peak Oxygen Uptake and its Determinants in Heart Failure with Preserved Ejection Fraction

    PubMed Central

    Tucker, Wesley J; Nelson, Michael D; Beaudry, Rhys I; Halle, Martin; Sarma, Satyam; Kitzman, Dalane W; Gerche, Andre La

    2016-01-01

    Heart failure with preserved ejection (HFpEF) accounts for over 50 % of all HF cases, and the proportion is higher among women and older individuals. A hallmark feature of HFpEF is dyspnoea on exertion and reduced peak aerobic power (VO2peak) secondary to central and peripheral abnormalities that result in reduced oxygen delivery to and/or utilisation by exercising skeletal muscle. The purpose of this brief review is to discuss the role of exercise training to improve VO2peak and the central and peripheral adaptations that reduce symptoms following physical conditioning in patients with HFpEF. PMID:28785460

  16. Aerobic interval training reduces vascular resistances during submaximal exercise in obese metabolic syndrome individuals.

    PubMed

    Mora-Rodriguez, Ricardo; Fernandez-Elias, V E; Morales-Palomo, F; Pallares, J G; Ramirez-Jimenez, M; Ortega, J F

    2017-10-01

    The aim of this study was to determine the effects of high-intensity aerobic interval training (AIT) on exercise hemodynamics in metabolic syndrome (MetS) volunteers. Thirty-eight, MetS participants were randomly assigned to a training (TRAIN) or to a non-training control (CONT) group. TRAIN consisted of stationary interval cycling alternating bouts at 70-90% of maximal heart rate during 45 min day -1 for 6 months. CONT maintained baseline physical activity and no changes in cardiovascular function or MetS factors were detected. In contrast, TRAIN increased cardiorespiratory fitness (14% in VO 2PEAK ; 95% CI 9-18%) and improved metabolic syndrome (-42% in Z score; 95% CI 83-1%). After TRAIN, the workload that elicited a VO 2 of 1500 ml min -1 increased 15% (95% CI 5-25%; P < 0.001). After TRAIN when subjects pedaled at an identical submaximal rate of oxygen consumption, cardiac output increased by 8% (95% CI 4-11%; P < 0.01) and stroke volume by 10% (95% CI, 6-14%; P < 0.005) being above the CONT group values at that time point. TRAIN reduced submaximal exercise heart rate (109 ± 15-106 ± 13 beats min -1 ; P < 0.05), diastolic blood pressure (83 ± 8-75 ± 8 mmHg; P < 0.001) and systemic vascular resistances (P < 0.01) below CONT values. Double product was reduced only after TRAIN (18.2 ± 3.2-17.4 ± 2.4 bt min -1  mmHg 10 -3 ; P < 0.05). The data suggest that intense aerobic interval training improves hemodynamics during submaximal exercise in MetS patients. Specifically, it reduces diastolic blood pressure, systemic vascular resistances, and the double product. The reduction in double product, suggests decreased myocardial oxygen demands which could prevent the occurrence of adverse cardiovascular events during exercise in this population. CLINICALTRIALS. NCT03019796.

  17. Physical activity and training in sarcoidosis: review and experience-based recommendations.

    PubMed

    Strookappe, Bert; Saketkoo, Lesley Ann; Elfferich, Marjon; Holland, Anne; De Vries, Jolanda; Knevel, Ton; Drent, Marjolein

    2016-10-01

    Sarcoidosis is a multisystemic inflammatory disorder with a great variety of symptoms, including fatigue, dyspnea, pain, reduced exercise tolerance and muscle strength. Physical training has the potential to improve exercise capacity and muscle strength, and reduce fatigue. The aim of this review and survey was to present information about the role of physical training in sarcoidosis and offer practical guidelines. A systematic literature review guided an international consensus effort among sarcoidosis experts to establish practice-basic recommendations for the implementation of exercise as treatment for patients with various manifestations of sarcoidosis. International sarcoidosis experts suggested considering physical training in symptomatic patients with sarcoidosis. Expert commentary: There is promising evidence of a positive effect of physical training. Recommendations were based on available data and expert consensus. However, the heterogeneity of these patients will require modification and program adjustment of the standard rehabilitation format for e.g. COPD or interstitial lung diseases. An optimal training program (types of exercise, intensities, frequency, duration) still needs to be defined to optimize training adjustments, especially reduction of fatigue. Further randomized controlled trials are needed to consolidate these findings and optimize the comprehensive care of sarcoidosis patients.

  18. Short-Term Intensified Cycle Training Alters Acute and Chronic Responses of PGC1α and Cytochrome C Oxidase IV to Exercise in Human Skeletal Muscle

    PubMed Central

    Stepto, Nigel K.; Benziane, Boubacar; Wadley, Glenn D.; Chibalin, Alexander V.; Canny, Benedict J.; Eynon, Nir; McConell, Glenn K.

    2012-01-01

    Reduced activation of exercise responsive signalling pathways have been reported in response to acute exercise after training; however little is known about the adaptive responses of the mitochondria. Accordingly, we investigated changes in mitochondrial gene expression and protein abundance in response to the same acute exercise before and after 10-d of intensive cycle training. Nine untrained, healthy participants (mean±SD; VO2peak 44.1±17.6 ml/kg/min) performed a 60 min bout of cycling exercise at 164±18 W (72% of pre-training VO2peak). Muscle biopsies were obtained from the vastus lateralis muscle at rest, immediately and 3 h after exercise. The participants then underwent 10-d of cycle training which included four high-intensity interval training sessions (6×5 min; 90–100% VO2peak) and six prolonged moderate-intensity sessions (45–90 min; 75% VO2peak). Participants repeated the pre-training exercise trial at the same absolute work load (64% of pre-training VO2peak). Muscle PGC1-α mRNA expression was attenuated as it increased by 11- and 4- fold (P<0.001) after exercise pre- and post-training, respectively. PGC1-α protein expression increased 1.5 fold (P<0.05) in response to exercise pre-training with no further increases after the post-training exercise bout. RIP140 protein abundance was responsive to acute exercise only (P<0.01). COXIV mRNA (1.6 fold; P<0.01) and COXIV protein expression (1.5 fold; P<0.05) were increased by training but COXIV protein expression was decreased (20%; P<0.01) by acute exercise pre- and post-training. These findings demonstrate that short-term intensified training promotes increased mitochondrial gene expression and protein abundance. Furthermore, acute indicators of exercise-induced mitochondrial adaptation appear to be blunted in response to exercise at the same absolute intensity following short-term training. PMID:23285255

  19. Aerobic exercise training without weight loss reduces dyspnea on exertion in obese women

    PubMed Central

    Bernhardt, Vipa; Stickford, Jonathon L.; Bhammar, Dharini M.; Babb, Tony G.

    2015-01-01

    Dyspnea on exertion (DOE) is a common symptom in obesity. We investigated whether aerobic exercise training without weight loss could reduce DOE. Twenty-two otherwise healthy obese women participated in a 12-week supervised aerobic exercise training program, exercising 30 min/day at 70–80% heart rate reserve, 4 days/week. Subjects were grouped based on their Ratings of Perceived Breathlessness (RPB) during constant load 60W cycling: +DOE (n = 12, RPB ≥ 4, 37 ± 7 years, 34 ± 4kg/m2) and −DOE (n = 10, RPB ≤ 2, 32 ± 6 years, 33 ± 3kg/m2). No significant differences between the groups in body composition, pulmonary function, or cardiorespiratory fitness were observed pre-training. Post-training, peak was improved significantly in both groups (+DOE: 12 ± 7, −DOE: 14 ± 8%). RPB was significantly decreased in the + DOE (4.7 ± 1.0–2.5 ± 1.0) and remained low in the −DOE group (1.2 ± 0.6–1.3 ± 1.0) (interaction p < 0.001). The reduction in RPB was not significantly correlated with the improvement in cardiorespiratory fitness. Aerobic exercise training improved cardiorespiratory fitness and DOE and thus appears to be an effective treatment for DOE in obese women. PMID:26593640

  20. Improved Function and Reduced Pain after Swimming and Cycling Training in Patients with Osteoarthritis.

    PubMed

    Alkatan, Mohammed; Baker, Jeffrey R; Machin, Daniel R; Park, Wonil; Akkari, Amanda S; Pasha, Evan P; Tanaka, Hirofumi

    2016-03-01

    Arthritis and its associated joint pain act as significant barriers for adults attempting to perform land-based physical activity. Swimming can be an ideal form of exercise for patients with arthritis. Yet there is no information on the efficacy of regular swimming exercise involving patients with arthritis. The effect of a swimming exercise intervention on joint pain, stiffness, and physical function was evaluated in patients with osteoarthritis (OA). Using a randomized study design, 48 sedentary middle-aged and older adults with OA underwent 3 months of either swimming or cycling exercise training. Supervised exercise training was performed for 45 min/day, 3 days/week at 60-70% heart rate reserve for 12 weeks. The Western Ontario and McMaster Universities Arthritis Index was used to measure joint pain, stiffness, and physical limitation. After the exercise interventions, there were significant reductions in joint pain, stiffness, and physical limitation accompanied by increases in quality of life in both groups (all p < 0.05). Functional capacity as assessed by maximal handgrip strength, isokinetic knee extension and flexion power (15-30% increases), and the distance covered in the 6-min walk test increased (all p < 0.05) in both exercise groups. No differences were observed in the magnitude of improvements between swimming and cycling training. Regular swimming exercise reduced joint pain and stiffness associated with OA and improved muscle strength and functional capacity in middle-aged and older adults with OA. Additionally, the benefits of swimming exercise were similar to the more frequently prescribed land-based cycling training. clinicaltrials.gov NCT01836380.

  1. Insurgent Uprising: An Unconventional Warfare Wargame

    DTIC Science & Technology

    2017-12-01

    collection of information, including suggestions for reducing this burden, to Washington headquarters Services , Directorate for Information Operations...Command (USSOCOM) trains , equips, and restructures to meet future UW requirements, a classroom-based practical exercise educational tool may prove critical...preparation of UW exercises in all training environments including the qualification courses, JADE HELM, and the Combined Training Center (CTC) rotations

  2. Voluntary exercise training in mice increases the expression of antioxidant enzymes and decreases the expression of TNF-alpha in intestinal lymphocytes.

    PubMed

    Hoffman-Goetz, L; Pervaiz, N; Guan, J

    2009-05-01

    Acute exercise in mice induces intestinal lymphocyte (IL) apoptosis. Freewheel running reduces apoptosis and forced exercise training increases splenocyte antioxidant levels. The purpose of this study was to examine the effect of freewheel running and acute exercise on mouse IL numbers and concentrations of apoptosis and antioxidant proteins and pro-inflammatory cytokines in IL. Female C57BL/6 mice had access to in-cage running wheels (RW) or cages without wheels (NRW) for 16 weeks and were randomized at the end of training to no exercise control (TC) or to treadmill exercise with sacrifice after 90 min of running (TREAD; 30 min, 22 m min(-1); 30 min, 25 m min(-1); 30 min, 28 m min(-1); 2 degrees slope). IL were analyzed for pro-(caspase 3 and 7) and anti-(Bcl-2) apoptotic proteins, endogenous antioxidants (glutathione peroxidase: GPx; catalase: CAT) and the pro-inflammatory cytokine, TNF-alpha. RW mice had higher cytochrome oxidase (p<0.001) and citrate synthase (p<0.01) activities in plantaris and soleus muscles and higher GPx and CAT expression in IL (p<0.05) (indicative of training) compared with NRW mice. TNF-alpha expression was lower (p<0.05) and IL numbers higher (p<0.05) in RW vs. NRW mice. No training effect was observed for apoptotic protein expression, although TREAD resulted in higher caspase and lower Bcl-2. These results suggest that freewheel running in mice for 16 weeks enhances antioxidant and reduces TNF-alpha expression in IL but does not reduce pro-apoptotic protein expression after acute exercise. Results are discussed in terms of implications for inflammatory bowel diseases where apoptotic proteins and TNF-alpha levels are elevated.

  3. The Effect of Inspiratory Muscle Training on Respiratory and Limb Locomotor Muscle Deoxygenation During Exercise with Resistive Inspiratory Loading.

    PubMed

    Turner, L A; Tecklenburg-Lund, S L; Chapman, R; Shei, R-J; Wilhite, D P; Mickleborough, T

    2016-07-01

    We investigated how inspiratory muscle training impacted respiratory and locomotor muscle deoxygenation during submaximal exercise with resistive inspiratory loading. 16 male cyclists completed 6 weeks of either true (n=8) or sham (n=8) inspiratory muscle training. Pre- and post-training, subjects completed 3, 6-min experimental trials performed at ~80%  ˙VO2peak with interventions of either moderate inspiratory loading, heavy inspiratory loading, or maximal exercise imposed in the final 3 min. Locomotor and respiratory muscle oxy-, deoxy-, and total-haemoglobin and myoglobin concentration was continuously monitored using near-infrared spectroscopy. Locomotor muscle deoxygenation changes from 80%  ˙VO2peak to heavy inspiratory loading were significantly reduced pre- to post-training from 4.3±5.6 µM to 2.7±4.7 µM. Respiratory muscle deoxygenation was also significantly reduced during the heavy inspiratory loading trial (4.6±3.5 µM to 1.9±1.5 µM) post-training. There was no significant difference in oxy-, deoxy-, or total-haemoglobin and myoglobin during any of the other loading trials, from pre- to post-training, in either group. After inspiratory muscle training, highly-trained cyclists exhibited decreased locomotor and respiratory muscle deoxygenation during exercise with heavy inspiratory loading. These data suggest that inspiratory muscle training reduces oxygen extraction by the active respiratory and limb muscles, which may reflect changes in respiratory and locomotor muscle oxygen delivery. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Mitochondria‐specific antioxidant supplementation does not influence endurance exercise training‐induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake

    PubMed Central

    Shill, Daniel D.; Southern, W. Michael; Willingham, T. Bradley; Lansford, Kasey A.; McCully, Kevin K.

    2016-01-01

    Key points Reducing excessive oxidative stress, through chronic exercise or antioxidants, can decrease the negative effects induced by excessive amounts of oxidative stress. Transient increases in oxidative stress produced during acute exercise facilitate beneficial vascular training adaptations, but the effects of non‐specific antioxidants on exercise training‐induced vascular adaptations remain elusive.Circulating angiogenic cells (CACs) are an exercise‐inducible subset of white blood cells that maintain vascular integrity.We investigated whether mitochondria‐specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training in CACs, muscle mitochondrial capacity and maximal oxygen uptake in young healthy men.We show that endurance exercise training increases multiple CAC types, an adaptation that is not altered by MitoQ supplementation. Additionally, MitoQ does not affect skeletal muscle or whole‐body aerobic adaptations to exercise training.These results indicate that MitoQ supplementation neither enhances nor attenuates endurance training adaptations in young healthy men. Abstract Antioxidants have been shown to improve endothelial function and cardiovascular outcomes. However, the effects of antioxidants on exercise training‐induced vascular adaptations remain elusive. General acting antioxidants combined with exercise have not impacted circulating angiogenic cells (CACs). We investigated whether mitochondria‐specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training on CD3+, CD3+/CD31+, CD14+/CD31+, CD31+, CD34+/VEGFR2+ and CD62E+ peripheral blood mononuclear cells (PBMCs), muscle mitochondrial capacity, and maximal oxygen uptake (VO2 max ) in healthy men aged 22.1 ± 0.7 years, with a body mass index of 26.9 ± 0.9 kg m–2, and 24.8 ± 1.3% body fat. Analysis of main effects revealed that training induced 33, 105 and 285% increases in CD14+/CD31+, CD62E+ and CD34+/VEGFR2+ CACs, respectively, and reduced CD3+/CD31− PBMCs by 14%. There was no effect of MitoQ on CAC levels. Also independent of MitoQ supplementation, exercise training significantly increased quadriceps muscle mitochondrial capacity by 24% and VO2 max by roughly 7%. In conclusion, endurance exercise training induced increases in multiple CAC types, and this adaptation is not modified by MitoQ supplementation. Furthermore, we demonstrate that a mitochondrial‐targeted antioxidant does not influence skeletal muscle or whole‐body aerobic adaptations to exercise training. PMID:27501153

  5. Exercise improves mitochondrial and redox-regulated stress responses in the elderly: better late than never!

    PubMed

    Cobley, James N; Moult, Peter R; Burniston, Jatin G; Morton, James P; Close, Graeme L

    2015-04-01

    Ageing is associated with several physiological declines to both the cardiovascular (e.g. reduced aerobic capacity) and musculoskeletal system (muscle function and mass). Ageing may also impair the adaptive response of skeletal muscle mitochondria and redox-regulated stress responses to an acute exercise bout, at least in mice and rodents. This is a functionally important phenomenon, since (1) aberrant mitochondrial and redox homeostasis are implicated in the pathophysiology of musculoskeletal ageing and (2) the response to repeated exercise bouts promotes exercise adaptations and some of these adaptations (e.g. improved aerobic capacity and exercise-induced mitochondrial remodelling) offset age-related physiological decline. Exercise-induced mitochondrial remodelling is mediated by upstream signalling events that converge on downstream transcriptional co-factors and factors that orchestrate a co-ordinated nuclear and mitochondrial transcriptional response associated with mitochondrial remodelling. Recent translational human investigations have demonstrated similar exercise-induced mitochondrial signalling responses in older compared with younger skeletal muscle, regardless of training status. This is consistent with data indicating normative mitochondrial remodelling responses to long-term exercise training in the elderly. Thus, human ageing is not accompanied by diminished mitochondrial plasticity to acute and chronic exercise stimuli, at least for the signalling pathways measured to date. Exercise-induced increases in reactive oxygen and nitrogen species promote an acute redox-regulated stress response that manifests as increased heat shock protein and antioxidant enzyme content. In accordance with previous reports in rodents and mice, it appears that sedentary ageing is associated with a severely attenuated exercise-induced redox stress response that might be related to an absent redox signal. In this regard, regular exercise training affords some protection but does not completely override age-related defects. Despite some failed redox-regulated stress responses, it seems mitochondrial responses to exercise training are intact in skeletal muscle with age and this might underpin the protective effect of exercise training on age-related musculoskeletal decline. Whilst further investigation is required, recent data suggest that it is never too late to begin exercise training and that lifelong training provides protection against several age-related declines at both the molecular (e.g. reduced mitochondrial function) and whole-body level (e.g. aerobic capacity).

  6. Attention Training to Reduce Attention Bias and Social Stressor Reactivity: An Attempt to Replicate and Extend Previous Findings

    PubMed Central

    Julian, Kristin; Beard, Courtney; Schmidt, Norman B.; Powers, Mark B.; Smits, Jasper A. J.

    2012-01-01

    Cognitive theories suggest that social anxiety is maintained, in part, by an attentional bias toward threat. Recent research shows that a single session of attention modification training (AMP) reduces attention bias and vulnerability to a social stressor (Amir, Weber, Beard, Bomyea, & Taylor, 2008). In addition, exercise may augment the effects of attention training by its direct effects on attentional control and inhibition, thereby allowing participants receiving the AMP to more effectively disengage attention from the threatening cues and shift attention to the neutral cues. We attempted to replicate and extend previous findings by randomizing participants (N = 112) to a single session of: a) Exercise + attention training (EX + AMP); b) Rest + attention training (REST + AMP); c) Exercise + attention control condition (EX + ACC); or d) Rest + attention control condition (REST + ACC) prior to completing a public speaking challenge. We used identical assessment and training procedures to those employed by Amir et al. (2008). Results showed there was no effect of attention training on attention bias or anxiety reactivity to the speech challenge and no interactive effects of attention training and exercise on attention bias or anxiety reactivity to the speech challenge. The failure to replicate previous findings is discussed. PMID:22466022

  7. Exercise Training positively modulates the Ectonucleotidase Enzymes in Lymphocytes of Metabolic Syndrome Patients.

    PubMed

    Martins, C C; Bagatini, M D; Cardoso, A M; Zanini, D; Abdalla, F H; Baldissarelli, J; Dalenogare, D P; Dos Santos, D L; Schetinger, M R C; Morsch, V M M

    2016-11-01

    In this study, we investigated the cardiovascular risk factors as well as ectonucleotidase activities in lymphocytes of metabolic syndrome (MetS) patients before and after an exercise intervention. 20 MetS patients, who performed regular concurrent exercise training for 30 weeks, 3 times/week, were studied. Anthropometric, biochemical, inflammatory and hepatic parameters and hydrolysis of adenine nucleotides and nucleoside in lymphocytes were collected from patients before and after 15 and 30 weeks of the exercise intervention as well as from participants of the control group. An increase in the hydrolysis of ATP and ADP, and a decrease in adenosine deamination in lymphocytes of MetS patients before the exercise intervention were observed (P<0.001). However, these alterations were reversed by exercise training after 30 weeks of intervention. Additionally, exercise training reduced the inflammatory and hepatic markers to baseline levels after 30 weeks of exercise. Our results clearly indicated alteration in ectonucleotidase enzymes in lymphocytes in the MetS, whereas regular exercise training had a protective effect on the enzymatic alterations and on inflammatory and hepatic parameters, especially if it is performed regularly and for a long period. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Distractive Auditory Stimuli in the Form of Music in Individuals With COPD: A Systematic Review.

    PubMed

    Lee, Annemarie L; Desveaux, Laura; Goldstein, Roger S; Brooks, Dina

    2015-08-01

    Music has been used as a distractive auditory stimulus (DAS) in patients with COPD, but its effects are unclear. This systematic review aimed to establish the effect of DAS on exercise capacity, symptoms, and health-related quality of life (HRQOL) under three conditions: (1) during exercise training, (2) during exercise testing, and (3) for symptom management at rest. Randomized controlled or crossover trials as well as cohort studies of DAS during exercise training, during formal exercise testing, and for symptom management among individuals with COPD were identified from a search of seven databases. Two reviewers independently assessed study quality. Weighted mean differences (WMDs) with 95% CIs were calculated using a random-effects model. Thirteen studies (12 of which were randomized controlled or crossover trials) in 415 participants were included. DAS increased exercise capacity when applied over at least 2 months of exercise training (WMD, 98 m; 95% CI, 47-150 m). HRQOL improved only after a training duration of 3 months. Less dyspnea was noted with DAS during exercise training, but this was not consistently observed in short-term exercise testing or as a symptom management strategy at rest. DAS appears to reduce symptoms of dyspnea and fatigue when used during exercise training, with benefits observed in exercise capacity and HRQOL. When applied during exercise testing, the effects on exercise capacity and symptoms and as a strategy for symptom management at rest are inconsistent.

  9. Cross-training in birds: cold and exercise training produce similar changes in maximal metabolic output, muscle masses and myostatin expression in house sparrows (Passer domesticus)

    PubMed Central

    Zhang, Yufeng; Eyster, Kathleen; Liu, Jin-Song; Swanson, David L.

    2015-01-01

    ABSTRACT Maximal metabolic outputs for exercise and thermogenesis in birds presumably influence fitness through effects on flight and shivering performance. Because both summit (Msum, maximum thermoregulatory metabolic rate) and maximum (MMR, maximum exercise metabolic rate) metabolic rates are functions of skeletal muscle activity, correlations between these measurements and their mechanistic underpinnings might occur. To examine whether such correlations occur, we measured the effects of experimental cold and exercise training protocols for 3 weeks on body (Mb) and muscle (Mpec) masses, basal metabolic rate (BMR), Msum, MMR, pectoralis mRNA and protein expression for myostatin, and mRNA expression of TLL-1 and TLL-2 (metalloproteinase activators of myostatin) in house sparrows (Passer domesticus). Both training protocols increased Msum, MMR, Mb and Mpec, but BMR increased with cold training and decreased with exercise training. No significant differences occurred for pectoralis myostatin mRNA expression, but cold and exercise increased the expression of TLL-1 and TLL-2. Pectoralis myostatin protein levels were generally reduced for both training groups. These data clearly demonstrate cross-training effects of cold and exercise in birds, and are consistent with a role for myostatin in increasing pectoralis muscle mass and driving organismal increases in metabolic capacities. PMID:25987736

  10. Exercise Versus +Gz Acceleration Training

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Simonson, S. R.; Stocks, J. M.; Evans, J. M.; Knapp, C. F.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    Decreased working capacity and "orthostatic" intolerance are two major problems for astronauts during and after landing from spaceflight in a return vehicle. The purpose was to test the hypotheses that (1) supine-passive-acceleration training, supine-interval-exercise plus acceleration training, and supine exercise plus acceleration training will improve orthostatic tolerance (OT) in ambulatory men; and that (2) addition of aerobic exercise conditioning will not influence this enhanced OT from that of passive-acceleration training. Seven untrained men (24-38 yr) underwent 3 training regimens (30 min/d x 5d/wk x 3wk on the human-powered centrifuge - HPC): (a) Passive acceleration (alternating +1.0 Gz to 50% Gzmax); (b) Exercise acceleration (alternating 40% - 90% V02max leg cycle exercise plus 50% of HPCmax acceleration); and (c) Combined intermittent exercise-acceleration at 40% to 90% HPCmax. Maximal supine exercise workloads increased (P < 0.05) by 8.3% with Passive, by 12.6% with Exercise, and by 15.4% with Combined; but maximal V02 and HR were unchanged in all groups. Maximal endurance (time to cessation) was unchanged with Passive, but increased (P < 0.05) with Exercise and Combined. Resting pre-tilt HR was elevated by 12.9% (P < 0.05) only after Passive training, suggesting that exercise training attenuated this HR response. All resting pre-tilt blood pressures (SBP, DBP, MAP) were not different pre- vs. post-training. Post-training tilt-tolerance time and HR were increased (P < 0.05) only with Passive training by 37.8% and by 29.1%, respectively. Thus, addition of exercise training attenuated the increased Passive tilt tolerance. Resting (pre-tilt) and post-tilt cardiac R-R interval, stroke volume, end-diastolic volume, and cardiac output were all uniformly reduced (P < 0.05) while peripheral resistance was uniformly increased (P < 0.05) pre-and post-training for the three regimens indicating no effect of any training regimen on those cardiovascular variables. Plasma volume (% delta) was uniformly decreased by 8% to 14% (P < 0.05) at tilt-tolerance pre- vs. post-training for all regimens indicating no effect of these training regimens on the level of vascular fluid shifts.

  11. Concurrent and aerobic exercise training promote similar benefits in body composition and metabolic profiles in obese adolescents.

    PubMed

    Monteiro, Paula Alves; Chen, Kong Y; Lira, Fabio Santos; Saraiva, Bruna Thamyres Cicotti; Antunes, Barbara Moura Mello; Campos, Eduardo Zapaterra; Freitas, Ismael Forte

    2015-11-26

    The prevalence of obesity in pediatric population is increasing at an accelerated rate in many countries, and has become a major public health concern. Physical activity, particularly exercise training, remains to be a cornerstone of pediatric obesity interventions. The purpose of our current randomized intervention trial was to compare the effects of two types of training matched for training volume, aerobic and concurrent, on body composition and metabolic profile in obese adolescents. Thus the aim of the study was compare the effects of two types of training matched for training volume, aerobic and concurrent, on body composition and metabolic profile in obese adolescents. 32 obese adolescents participated in two randomized training groups, concurrent or aerobic, for 20 weeks (50 mins x 3 per week, supervised), and were compared to a 16-subject control group. We measured the percentage body fat (%BF, primary outcome), fat-free mass, percentage of android fat by dual energy x-ray absorptiometry, and others metabolic profiles at baseline and after interventions, and compared them between groups using the Intent-to-treat design. In 20 weeks, both exercise training groups significantly reduced %BF by 2.9-3.6% as compare to no change in the control group (p = 0.042). There were also positive changes in lipid levels in exercise groups. No noticeable changes were found between aerobic and concurrent training groups. The benefits of exercise in reducing body fat and metabolic risk profiles can be achieved by performing either type of training in obese adolescents. RBR-4HN597.

  12. Exercise training starting at weaning age preserves cardiac pacemaker function in adulthood of diet-induced obese rats.

    PubMed

    Carvalho de Lima, Daniel; Guimarães, Juliana Bohnen; Rodovalho, Gisele Vieira; Silveira, Simonton Andrade; Haibara, Andrea Siqueira; Coimbra, Cândido Celso

    2014-08-01

    Peripheral sympathetic overdrive in young obese subjects contributes to further aggravation of insulin resistance, diabetes, and hypertension, thus inducing worsening clinical conditions in adulthood. Exercise training has been considered a strategy to repair obesity autonomic dysfunction, thereby reducing the cardiometabolic risk. Therefore, the aim of this study was to assess the effect of early exercise training, starting immediately after weaning, on cardiac autonomic control in diet-induced obese rats. Male Wistar rats (weaning) were divided into four groups: (i) a control group (n = 6); (ii) an exercise-trained control group (n = 6); (iii) a diet-induced obesity group (n = 6); and (iv) an exercise-trained diet-induced obesity group (n = 6). The development of obesity was induced by 9 weeks of palatable diet intake, and the training program was implemented in a motor-driven treadmill (5 times per week) during the same period. After this period, animals were submitted to vein and artery catheter implantation to assess cardiac autonomic balance by methylatropine (3 mg/kg) and propranolol (4 mg/kg) administration. Exercise training increased running performance in both groups (p < 0.05). Exercise training also prevented the increased resting heart rate in obese rats, which seemed to be related to cardiac pacemaker activity preservation (p < 0.05). Additionally, the training program preserved the pressure and bradycardia responses to autonomic blockade in obese rats (p < 0.05). An exercise program beginning at weaning age prevents cardiovascular dysfunction in obese rats, indicating that exercise training may be used as a nonpharmacological therapeutic strategy for the treatment of cardiometabolic diseases.

  13. Exercise Training Reverses Extrapulmonary Impairments in Smoke-exposed Mice.

    PubMed

    Bowen, T Scott; Aakerøy, Lars; Eisenkolb, Sophia; Kunth, Patricia; Bakkerud, Fredrik; Wohlwend, Martin; Ormbostad, Anne Marie; Fischer, Tina; Wisloff, Ulrik; Schuler, Gerhard; Steinshamn, Sigurd; Adams, Volker; Bronstad, Eivind

    2017-05-01

    Cigarette smoking is the main risk factor for chronic obstructive pulmonary disease and emphysema. However, evidence on the extrapulmonary effects of smoke exposure that precede lung impairments remains unclear at present, as are data on nonpharmacological treatments such as exercise training. Three groups of mice, including control (n = 10), smoking (n = 10), and smoking with 6 wk of high-intensity interval treadmill running (n = 11), were exposed to 20 wk of fresh air or whole-body cigarette smoke. Exercise capacity (peak oxygen uptake) and lung destruction (histology) were subsequently measured, whereas the heart, peripheral endothelium (aorta), and respiratory (diaphragm) and limb (extensor digitorum longus and soleus) skeletal muscles were assessed for in vivo and in vitro function, in situ mitochondrial respiration, and molecular alterations. Smoking reduced body weight by 26% (P < 0.05) without overt airway destruction (P > 0.05). Smoking impaired exercise capacity by 15% while inducing right ventricular dysfunction by ~20%, endothelial dysfunction by ~20%, and diaphragm muscle weakness by ~15% (all P < 0.05), but these were either attenuated or reversed by exercise training (P < 0.05). Compared with controls, smoking mice had normal limb muscle and mitochondrial function (cardiac and skeletal muscle fibers); however, diaphragm measures of oxidative stress and protein degradation were increased by 111% and 65%, respectively (P < 0.05), but these were attenuated by exercise training (P < 0.05). Prolonged cigarette smoking reduced exercise capacity concomitant with functional impairments to the heart, peripheral endothelium, and respiratory muscle that preceded the development of overt emphysema. However, high-intensity exercise training was able to reverse these smoke-induced extrapulmonary impairments.

  14. Effect of Combined Exercise Versus Aerobic-Only Training on Skeletal Muscle Lipid Metabolism in a Rodent Model of Type1 Diabetes.

    PubMed

    Dotzert, Michelle S; McDonald, Matthew W; Murray, Michael R; Nickels, J Zachary; Noble, Earl G; Melling, C W James

    2017-12-04

    Abnormal skeletal muscle lipid metabolism is associated with insulin resistance in people with type 1 diabetes. Although lipid metabolism is restored with aerobic exercise training, the risk for postexercise hypoglycemia is increased with this modality. Integrating resistance and aerobic exercise is associated with reduced hypoglycemic risk; however, the effects of this exercise modality on lipid metabolism and insulin resistance remain unknown. We compared the effects of combined (aerobic + resistance) versus aerobic exercise training on oxidative capacity and muscle lipid metabolism in a rat model of type 1 diabetes. Male Sprague-Dawley rats were divided into 4 groups: sedentary control (C), sedentary control + diabetes (CD), diabetes + high-intensity aerobic exercise (DAE) and diabetes + combined aerobic and resistance exercise (DARE). Following diabetes induction (20 mg/kg streptozotocin over five days), DAE rats ran for 12 weeks (5 days/week for 1 hour) on a motorized treadmill (27 m/min at a 6-degree grade), and DARE rats alternated daily between running and incremental weighted ladder climbing. After training, DAE showed reduced muscle CD36 protein content and lipid content compared to CD (p≤0.05). DAE rats also had significantly increased citrate synthase (CS) activity compared to CD (p≤0.05). DARE rats showed reduced CD36 protein content compared to CD and increased CS activity compared to CD and DAE rats (p≤0.05). DARE rats demonstrated increased skeletal muscle lipid staining, elevated lipin-1 protein content and insulin sensitivity (p≤0.05). Integration of aerobic and resistance exercise may exert a synergistic effect, producing adaptations characteristic of the "athlete's paradox," including increased capacity to store and oxidize lipids. Crown Copyright © 2017. Published by Elsevier Inc. All rights reserved.

  15. Exercise training increases basal tone in arterioles distal to chronic coronary occlusion

    PubMed Central

    Heaps, Cristine L.; Mattox, Mildred L.; Kelly, Katherine A.; Meininger, Cynthia J.; Parker, Janet L.

    2014-01-01

    Endurance exercise training increases basal active tone in coronary arteries and enhances myogenic tone in coronary arterioles of control animals. Paradoxically, exercise training has also been shown to augment nitric oxide production and nitric oxide-mediated relaxation in coronary arterioles. The purpose of the present study was to examine the effect of exercise training on basal active tone of arterioles (~150 µm ID) isolated from the collateral-dependent region of hearts exposed to chronic coronary occlusion. Ameroid occluders were surgically placed around the proximal left circumflex coronary artery of miniature swine. Arterioles were isolated from both the collateral-dependent and nonoccluded myocardial regions of sedentary (pen confined) and exercise-trained (treadmill run; 14 wk) pigs. Coronary tone was studied in isolated arterioles using microvessel myographs and standard isometric techniques. Exposure to nominally Ca2+-free external solution reduced resting tension in all arterioles; decreases were most profound (P < 0.05) in arterioles from the collateral-dependent region of exercise-trained animals. Furthermore, nitric oxide synthase (NOS) inhibition (Nω-nitro-l-arginine methylester; 100 µM) unmasked markedly increased nitric oxide-sensitive tone in arterioles from the collateral-dependent region of exercise-trained swine. Blockade of K+ channels revealed significantly enhanced K+ channel contribution to basal tone in collateral-dependent arterioles of exercise-trained pigs. Protein content of endothelial NOS (eNOS) and phosphorylated eNOS (pS1179), determined by immunoblot, was elevated in arterioles from exercise-trained animals with the greatest effect in collateral-dependent vasculature. Taken together, we demonstrate the interaction of opposing exercise training-enhanced arteriolar basal active tone, nitric oxide production, and K+ channel activity in chronic coronary occlusion, potentially enhancing the capacity to regulate blood flow to collateral-dependent myocardium. PMID:16243909

  16. Effect of exercise training and food restriction on endothelium-dependent relaxation in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous NIDDM.

    PubMed

    Sakamoto, S; Minami, K; Niwa, Y; Ohnaka, M; Nakaya, Y; Mizuno, A; Kuwajima, M; Shima, K

    1998-01-01

    We investigated whether endothelial function may be impaired in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat, a model of spontaneous NIDDM. The effect of exercise training and food restriction on endothelial function was also studied. OLETF rats were divided into three groups at age 16 weeks: sedentary, exercise trained, and food restricted (70% of the food intake of sedentary rats). Otsuka Long-Evans Tokushima rats were used as the age-matched nondiabetic controls. Endothelium-dependent relaxation of the thoracic aorta induced by histamine was significantly attenuated in the sedentary or food-restricted rats, and exercise training improved endothelial function. Relaxation induced by sodium nitroprusside, a donor of nitric oxide, did not differ significantly among groups. Both exercise training and food restriction significantly suppressed plasma levels of glucose and insulin and serum levels of triacylglycerol and cholesterol and reduced the accumulation of abdominal fat. Insulin sensitivity, as measured by the hyperinsulinemic-euglycemic clamp technique, was significantly decreased in sedentary rats but was enhanced in exercise-trained and food-restricted rats. The urinary excretion of nitrite was significantly decreased in sedentary and food-restricted rats compared with nondiabetic rats and was significantly increased in exercise-trained rats. These results indicate that exercise training, but not food restriction, prevents endothelial dysfunction in NIDDM rats, presumably due to the exercise-induced increase in the production of nitric oxide.

  17. Exercise-induced muscle damage and running economy in humans.

    PubMed

    Assumpção, Cláudio de Oliveira; Lima, Leonardo Coelho Rabello; Oliveira, Felipe Bruno Dias; Greco, Camila Coelho; Denadai, Benedito Sérgio

    2013-01-01

    Running economy (RE), defined as the energy demand for a given velocity of submaximal running, has been identified as a critical factor of overall distance running performance. Plyometric and resistance trainings, performed during a relatively short period of time (~15-30 days), have been successfully used to improve RE in trained athletes. However, these exercise types, particularly when they are unaccustomed activities for the individuals, may cause delayed onset muscle soreness, swelling, and reduced muscle strength. Some studies have demonstrated that exercise-induced muscle damage has a negative impact on endurance running performance. Specifically, the muscular damage induced by an acute bout of downhill running has been shown to reduce RE during subsequent moderate and high-intensity exercise (>65% VO₂max). However, strength exercise (i.e., jumps, isoinertial and isokinetic eccentric exercises) seems to impair RE only for subsequent high-intensity exercise (~90% VO₂max). Finally, a single session of resistance exercise or downhill running (i.e., repeated bout effect) attenuates changes in indirect markers of muscle damage and blunts changes in RE.

  18. Time to adapt exercise training regimens in pulmonary rehabilitation – a review of the literature

    PubMed Central

    Lee, Annemarie L; Holland, Anne E

    2014-01-01

    Exercise intolerance, exertional dyspnea, reduced health-related quality of life, and acute exacerbations are features characteristic of chronic obstructive pulmonary disease (COPD). Patients with a primary diagnosis of COPD often report comorbidities and other secondary manifestations, which diversifies the clinical presentation. Pulmonary rehabilitation that includes whole body exercise training is a critical part of management, and core programs involve endurance and resistance training for the upper and lower limbs. Improvement in maximal and submaximal exercise capacity, dyspnea, fatigue, health-related quality of life, and psychological symptoms are outcomes associated with exercise training in pulmonary rehabilitation, irrespective of the clinical state in which it is commenced. There may be benefits for the health care system as well as the individual patient, with fewer exacerbations and subsequent hospitalization reported with exercise training. The varying clinical profile of COPD may direct the need for modification to traditional training strategies for some patients. Interval training, one-legged cycling (partitioning) and non-linear periodized training appear to be equally or more effective than continuous training. Inspiratory muscle training may have a role as an adjunct to whole body training in selected patients. The benefits of balance training are also emerging. Strategies to ensure that health enhancing behaviors are adopted and maintained are essential. These may include training for an extended duration, alternative environments to undertake the initial program, maintenance programs following initial exercise training, program repetition, and incorporation of approaches to address behavioral change. This may be complemented by methods designed to maximize uptake and completion of a pulmonary rehabilitation program. PMID:25419125

  19. Time to adapt exercise training regimens in pulmonary rehabilitation--a review of the literature.

    PubMed

    Lee, Annemarie L; Holland, Anne E

    2014-01-01

    Exercise intolerance, exertional dyspnea, reduced health-related quality of life, and acute exacerbations are features characteristic of chronic obstructive pulmonary disease (COPD). Patients with a primary diagnosis of COPD often report comorbidities and other secondary manifestations, which diversifies the clinical presentation. Pulmonary rehabilitation that includes whole body exercise training is a critical part of management, and core programs involve endurance and resistance training for the upper and lower limbs. Improvement in maximal and submaximal exercise capacity, dyspnea, fatigue, health-related quality of life, and psychological symptoms are outcomes associated with exercise training in pulmonary rehabilitation, irrespective of the clinical state in which it is commenced. There may be benefits for the health care system as well as the individual patient, with fewer exacerbations and subsequent hospitalization reported with exercise training. The varying clinical profile of COPD may direct the need for modification to traditional training strategies for some patients. Interval training, one-legged cycling (partitioning) and non-linear periodized training appear to be equally or more effective than continuous training. Inspiratory muscle training may have a role as an adjunct to whole body training in selected patients. The benefits of balance training are also emerging. Strategies to ensure that health enhancing behaviors are adopted and maintained are essential. These may include training for an extended duration, alternative environments to undertake the initial program, maintenance programs following initial exercise training, program repetition, and incorporation of approaches to address behavioral change. This may be complemented by methods designed to maximize uptake and completion of a pulmonary rehabilitation program.

  20. Physiological Adaptations to Chronic Endurance Exercise Training in Patients with Coronary Artery Disease.

    ERIC Educational Resources Information Center

    Physician and Sportsmedicine, 1987

    1987-01-01

    In a roundtable format, five doctors explore the reasons why regular physical activity should continue to play a significant role in the rehabilitation of patients with coronary artery disease. Endurance exercise training improves aerobic capacity, reduces blood pressure, and decreases risk. (Author/MT)

  1. Stress reactivity to and recovery from a standardised exercise bout: a study of 31 runners practising relaxation techniques

    PubMed Central

    Solberg, E; Ingjer, F; Holen, A; Sundgot-Borgen, J; Nilsson, S; Holme, I

    2000-01-01

    Objective—To compare the efficacy in runners of two relaxation techniques with regard to exercise reactivity and recovery after exercise. Methods—Thirty one adult male runners were studied prospectively for six months in three groups practising either meditation (n = 11) or autogenic training (n = 11) or serving as controls (n = 10). Before and after the six months relaxation intervention, indicators of reactivity to exercise and metabolism after exercise (blood lactate concentration, heart rate (HR), and oxygen consumption (VO2)), were tested immediately after and 10 minutes after exercise. Resting HR was also assessed weekly at home during the trial. State anxiety was measured before and after the intervention. Results—After the relaxation training, blood lactate concentration after exercise was significantly (p<0.01) decreased in the meditation group compared with the control group. No difference was observed in lactate responses between the autogenic training group and the control group. There were no significant differences among the groups with regard to HR, VO2, or levels of anxiety. Conclusion—Meditation training may reduce the lactate response to a standardised exercise bout. Key Words: autogenic training; lactate; meditation; recovery; relaxation; psychology PMID:10953899

  2. Short-term aerobic exercise training improves gut peptide regulation in nonalcoholic fatty liver disease.

    PubMed

    Kullman, Emily L; Kelly, Karen R; Haus, Jacob M; Fealy, Ciaran E; Scelsi, Amanda R; Pagadala, Mangesh R; Flask, Chris A; McCullough, Arthur J; Kirwan, John P

    2016-05-15

    Obesity-related nonalcoholic fatty liver disease (NAFLD) is now the most common chronic liver disease. Exercise and diet are uniformly prescribed treatments for NAFLD; however, there are limited empirical data on the effects of exercise training on metabolic function in these patients. The purpose of this study was to investigate the fasting and glucose-stimulated adaptation of gut peptides to short-term aerobic exercise training in patients with NAFLD. Twenty-two obese subjects, 16 with NAFLD [body mass index (BMI), 33.2 ± 1.1 (SE) kg/m(2)] and 6 obese controls (BMI, 31.3 ± 1.2 kg/m(2)), were enrolled in a supervised aerobic exercise program (60 min/day, 85% of their heart rate maximum, for 7 days). Fasting and glucose-stimulated glucagon-like peptide-1 (GLP-17-36) and peptide tyrosine tyrosine (PYYTotal) concentrations in plasma were assessed before and after the exercise program. Initially, the NAFLD group had higher fasting PYY (NAFLD = 117 ± 18.6, control = 47.2 ± 6.4 pg/ml, P < 0.05) and GLP-1 (NAFLD = 12.4 ± 2.2, control = 6.2 ± 0.2 pg/ml, P < 0.05) and did not significantly increase GLP-1 or PYY in response to glucose ingestion. After the exercise program, fasting GLP-1 was reduced in the NAFLD group (10.7 ± 2.0 pg/ml, P < 0.05). Furthermore, exercise training led to significant increase in the acute (0-30 min) PYY and GLP-1 responses to glucose in the NAFLD group, while the total area under the glucose-stimulated GLP-1 response curve was reduced in both NAFLD and controls (P < 0.05). In summary, 7 days of vigorous aerobic exercise normalized the dynamic PYY and GLP-1 responses to nutrient stimulation and reduced the GLP-1 response in NAFLD, suggesting that exercise positively modulates gut hormone regulation in obese adults with NAFLD. Copyright © 2016 the American Physiological Society.

  3. Effects of 12-week brisk walking training on exercise blood pressure in elderly patients with essential hypertension: a pilot study.

    PubMed

    He, L I; Wei, Wang Ren; Can, Zhao

    2018-01-24

    Essential hypertension (EP) is characterized by blood pressure (BP) elevations, which often lead to target organ damage and cardiovascular illness. The following study investigates whether aerobic exercise programs with different intensities could reduce the magnitude of BP rise. Patients with essential hypertension were recruited from the Baoshan Community Health Service Center. A total of 46 patients were finally selected and randomly assigned into two groups: control group (CON) included patients who did not participate in exercise intervention training; treatment group (TRG) included patients who participated in 12-week brisk walking training (60-min of brisk walking, three times a week for a total of 12 weeks). 3-minute step tests of low and high intensity were conducted pre- and post-intervention. To compare the effects of exercise intervention, 23 subjects with normal blood pressure (NBP) who did not participate in 12-week brisk walking training, were recruited. After 12 weeks of brisk walking, SBP of TRG during resting, low and high-intensity exercise was significantly reduced by 8.3mmHg, 15.6mmHg, and 22.6mmHg, respectively; while HR of TRG's during resting, low and high intensity was significantly reduced by 3.6beats/minute, 8.7beats/minute and 11.3beats/minute, respectively. Meanwhile, after 12 weeks of brisk walking, TRG's steps per day, [Formula: see text]o 2max , moderate physical activity time and physical activity energy expenditure significantly increased by 6000 steps, 2.4 ml/kg/m, 40 minutes and 113 kcal, respectively. At the same time, TRG's body fat rate and sedentary time significantly reduced by 2% and 60 minutes per day. Brisk walking can reduce the magnitude of BP rise during exercise of different intensities and may be reduced the risk of acute cardiovascular incidents in elderly patients with essential hypertension. EP: Essential hypertension; BP: blood pressure; CON: control group; TRG: treatment group; NBP: normal blood pressure; PA: physical activity.

  4. Central mechanisms for exercise training-induced reduction in sympatho-excitation in chronic heart failure.

    PubMed

    Haack, Karla K V; Zucker, Irving H

    2015-03-01

    The control of sympathetic outflow in the chronic heart failure (CHF) state is markedly abnormal. Patients with heart failure present with increased plasma norepinephrine and increased sympathetic nerve activity. The mechanism for this sympatho-excitation is multiple and varied. Both depression in negative feedback sensory control mechanisms and augmentation of excitatory reflexes contribute to this sympatho-excitation. These include the arterial baroreflex, cardiac reflexes, arterial chemoreflexes and cardiac sympathetic afferent reflexes. In addition, abnormalities in central signaling in autonomic pathways have been implicated in the sympatho-excitatory process in CHF. These mechanisms include increases in central Angiotensin II and the Type 1 receptor, increased in reactive oxygen stress, upregulation in glutamate signaling and NR1 (N-methyl-D-aspartate subtype 1) receptors and others. Exercise training in the CHF state has been shown to reduce sympathetic outflow and result in increased survival and reduced cardiac events. Exercise training has been shown to reduce central Angiotensin II signaling including the Type 1 receptor and reduce oxidative stress by lowering the expression of many of the subunits of NADPH oxidase. In addition, there are profound effects on the central generation of nitric oxide and nitric oxide synthase in sympatho-regulatory areas of the brain. Recent studies have pointed to the balance between Angiotensin Converting Enzyme (ACE) and ACE2, translating into Angiotensin II and Angiotensin 1-7 as important regulators of sympathetic outflow. These enzymes appear to be normalized following exercise training in CHF. Understanding the precise molecular mechanisms by which exercise training is sympatho-inhibitory will uncover new targets for therapy. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. The perceived feasibility and acceptability of a conceptually challenging exercise training program in older adults.

    PubMed

    Miller, Clint T; Teychenne, Megan; Maple, Jaimie-Lee

    2018-01-01

    Exercise training is an essential component of falls prevention strategies, but they do not fully address components of physical function that leads to falls. The training approaches to achieve this may not be perceived as appropriate or even feasible in older adults. This study aims to assess the perceived feasibility and acceptability of novel exercise training approaches not usually prescribed to older adults. Fourteen adults were exposed to conceptually and physically demanding exercises. Interviews were then conducted to determine perceptions and acceptability of individual exercise tasks. Qualitative thematic analysis was used to identify themes. Safety and confidence, acceptability, and population participation were the key themes identified. Staff knowledge, presence, program design, and overt safety equipment were important for alleviating initial apprehension. Although physically demanding, participants expressed satisfaction when challenged. Prior disposition, understanding the value, and the appeal of novel exercises were perceived to influence program engagement. Given the evidence for acceptability, this type of training is feasible and may be appropriate as part of an exercise training program for older adults. Further research should be conducted to confirm that the physical adaptations to exercise training approaches as presented in this study occur in a similar manner to that observed in younger adults, and to also determine whether these adaptations lead to prolonged independence and reduced falls in older adults compared to usual care.

  6. Sex differences in ventricular-vascular coupling following endurance training.

    PubMed

    Lane, A D; Yan, H; Ranadive, S M; Kappus, R M; Sun, P; Cook, M D; Harvey, I; Woods, J; Wilund, K; Fernhall, B

    2014-12-01

    Ventricular and vascular coupling is defined as the ratio of arterial elastance (Ea) to ventricular elastance (Elv) and describes the interaction between the heart and arterial system. There are sex differences in both arterial and ventricular function in response to both acute exercise and aerobic exercise training. To examine the effects of aerobic exercise training on elastances and the coupling ratio in young adult men and women. We hypothesized a reduction in the coupling ratio in both sexes due to a decrease in Ea that would be more pronounced in men and an increase in Elv that would be larger in women. Fifty-three healthy, young adults completed the study. Central pulse wave velocity and heart volumes were measured before and after an 8-week aerobic training intervention. Elastances were calculated as Ea = end-systolic pressure/stroke volume and Elv = end-systolic pressure/end-systolic volume and indexed to body surface area. After the intervention, women augmented indexed and un-indexed Elv from 2.09 ± 0.61 to 2.52 ± 0.80 mmHg/ml, p < 0.05, and reduced the coupling ratio from 0.72 ± 18 to 0.62 ± 15, p < 0.05, while men maintained their pre-training ratio (from 0.66 ± 0.20 to 0.74 ± 0.21, p > 0.05). Women also reduced end-systolic pressure (from 91 ± 10 to 87 ± 10 mmHg), and both groups reduced central pulse wave velocity (from 6.0 ± 1.0 to 5.6 ± 0.6 m/s, p < 0.05). We conclude that after 8 weeks of aerobic training, only women reduced their coupling ratio due to an increase in Elv. This suggests that aerobic exercise training elicits sex-dependent changes in the coupling ratio in young, healthy individuals.

  7. The Effects of Exercise Training on Anxiety in Fibromyalgia Patients: A Meta-analysis.

    PubMed

    McDowell, Cillian P; Cook, Dane B; Herring, Matthew P

    2017-09-01

    Physical inactivity and comorbid anxiety symptoms are prevalent among fibromyalgia (FM) patients. Exercise training may be an effective alternative therapy to reduce these symptoms. This study aimed to evaluate the effects of exercise training on anxiety symptoms in patients with FM and to examine whether variables of theoretical or practical importance moderate the estimated mean effect. Twenty-five effects were derived from 10 articles published before June 2016 located using Google Scholar, MEDLINE, PsycINFO, PubMed, and Web of Science. Trials involved 595 patients with FM (mean age = 47.6 yr, 97.5% female) and included both randomization to exercise training (n = 297) or a nonexercise control condition (n = 298) and an anxiety outcome measured at baseline and during and/or after exercise training. Hedges' d effect sizes were computed, data for moderator variables were extracted, and random effects models were used to estimate sampling error and population variance for all analyses. Meta-regression quantified the extent to which patient and trial characteristics moderated the mean effect. Exercise training significantly reduced anxiety symptoms by a mean effect Δ of 0.28 (95% confidence interval [CI] = 0.16-0.40). No significant heterogeneity was observed (Q24 = 30.79, P = 0.16, I = 25.29%). Program duration (β = 1.44, z = 2.50, P ≤ 0.01) was significantly related to the overall effect, with significantly larger anxiety improvements resulting from programs lasting greater than 26 wk (Δ = 0.35, 95% CI = 0.05-0.66) compared with those lasting less than 26 wk (Δ = 0.26, 95% CI = 0.13-0.39). Exercise training improves anxiety symptoms among FM patients. The findings also suggest that larger anxiety symptom reductions will be achieved by focusing on longer exercise programs while promoting long-term adherence. Future well-designed investigations are required to examine the potential moderating effect of pain-related improvements in FM patients.

  8. Swim training restores glucagon-like peptide-1 insulinotropic action in pancreatic islets from monosodium glutamate-obese rats.

    PubMed

    Svidnicki, P V; de Carvalho Leite, N; Venturelli, A C; Camargo, R L; Vicari, M R; de Almeida, M C; Artoni, R F; Nogaroto, V; Grassiolli, S

    2013-09-01

    Glucagon-like peptide-1 (GLP-1) is an important modulator of insulin secretion by endocrine pancreas. In the present study, we investigated the effect of swim training on GLP-1 insulinotropic action in pancreatic islets from monosodium glutamate (MSG)-obese rats. Obesity was induced by neonatal MSG administration. MSG-obese and control (CON) exercised rats swam for 30 min (3 times week(-1) ) for 10 weeks. Pancreatic islets were isolated by colagenase technique and incubated with low (5.6 mM) or high (16.7 mM) glucose concentrations in the presence or absence of GLP-1 (10 nM). In addition, GLP-1 gene expression in ileum was quantified in fasting and glucose conditions. Exercise reduced obesity and hyperinsulinemia in MSG-obese rats. Swim training also inhibited glucose-induced insulin secretion in islets from both groups. Islets from MSG-obese rats maintained GLP-1 insulinotropic response in low glucose concentration. In contrast, in the presence of high glucose concentration, GLP-1 insulinotropic action was absent in islets from MSG-obese rats. Islets from MSG-exercised rats showed reduced GLP-1 insulinotropic action in the presence of low glucose. However, in high glucose concentration swim training restored GLP-1 insulinotropic response in islets from MSG-obese rats. In all groups, glucose intake increased GLP-1 immunoreactivity and gene expression in ileum cells in relation to fasting conditions. Swim training reduced these parameters only in ileum cells from CON-exercised rats. Neither MSG treatment nor exercise affected GLP-1 expression in the ileum. Exercise avoids insulin hypersecretion restoring GLP-1's insulinotropic action in pancreatic islets from MSG-obese rats. © 2013 Scandinavian Physiological Society. Published by John Wiley & Sons Ltd.

  9. Exercise training improves characteristics of exercise oscillatory ventilation in chronic heart failure.

    PubMed

    Panagopoulou, Niki; Karatzanos, Eleftherios; Dimopoulos, Stavros; Tasoulis, Athanasios; Tachliabouris, Ioannis; Vakrou, Styliani; Sideris, Antonios; Gratziou, Christina; Nanas, Serafim

    2017-05-01

    Background Exercise oscillatory ventilation in chronic heart failure has been suggested as a factor related to adverse cardiac events, aggravated prognosis and higher mortality. Exercise training is well known to affect exercise capacity and mechanisms of pathophysiology beneficially in chronic heart failure. Little is known, however, about the exercise training effects on characteristics of exercise oscillatory ventilation in chronic heart failure patients. Design and methods Twenty (out of 38) stable chronic heart failure patients exhibited exercise oscillatory ventilation (age 54 ± 11 years, peak oxygen uptake 15.0 ± 5.0 ml/kg per minute). Patients attended 36 sessions of high intensity interval exercise. All patients underwent cardiopulmonary exercise testing before and after the programme. Assessment of exercise oscillatory ventilation was based on the amplitude of cyclic fluctuations in breathing during rest and exercise. All values are mean ± SD. Results Exercise training reduced ( P < 0.05) the percentage of exercise oscillatory ventilation duration (79.0 ± 13.0 to 50.0 ± 25.0%), while average amplitude (5.2 ± 2.0 to 4.9 ± 1.6 L/minute) and length (44.0 ± 10.9 to 41.0 ± 6.7 seconds) did not change ( P > 0.05). Exercise oscillatory ventilation patients also increased exercise capacity ( P < 0.05). Conclusions A rehabilitation programme based on high intensity interval training improved exercise oscillatory ventilation observed in chronic heart failure patients, as well as cardiopulmonary efficiency and functional capacity.

  10. Stress reactivity to and recovery from a standardised exercise bout: a study of 31 runners practising relaxation techniques.

    PubMed

    Solberg, E E; Ingjer, F; Holen, A; Sundgot-Borgen, J; Nilsson, S; Holme, I

    2000-08-01

    To compare the efficacy in runners of two relaxation techniques with regard to exercise reactivity and recovery after exercise. Thirty one adult male runners were studied prospectively for six months in three groups practising either meditation (n = 11) or autogenic training (n = 11) or serving as controls (n = 10). Before and after the six months relaxation intervention, indicators of reactivity to exercise and metabolism after exercise (blood lactate concentration, heart rate (HR), and oxygen consumption (VO2)), were tested immediately after and 10 minutes after exercise. Resting HR was also assessed weekly at home during the trial. State anxiety was measured before and after the intervention. After the relaxation training, blood lactate concentration after exercise was significantly (p<0.01) decreased in the meditation group compared with the control group. No difference was observed in lactate responses between the autogenic training group and the control group. There were no significant differences among the groups with regard to HR, VO2, or levels of anxiety. Meditation training may reduce the lactate response to a standardised exercise bout.

  11. Influence of dietary nitrate supplementation on physiological and muscle metabolic adaptations to sprint interval training

    PubMed Central

    Thompson, Christopher; Wylie, Lee J.; Blackwell, Jamie R.; Fulford, Jonathan; Black, Matthew I.; Kelly, James; McDonagh, Sinead T. J.; Carter, James; Bailey, Stephen J.; Vanhatalo, Anni

    2017-01-01

    We hypothesized that 4 wk of dietary nitrate supplementation would enhance exercise performance and muscle metabolic adaptations to sprint interval training (SIT). Thirty-six recreationally active subjects, matched on key variables at baseline, completed a series of exercise tests before and following a 4-wk period in which they were allocated to one of the following groups: 1) SIT and NO3−-depleted beetroot juice as a placebo (SIT+PL); 2) SIT and NO3−-rich beetroot juice (~13 mmol NO3−/day; SIT+BR); or 3) no training and NO3−-rich beetroot juice (NT+BR). During moderate-intensity exercise, pulmonary oxygen uptake was reduced by 4% following 4 wk of SIT+BR and NT+BR (P < 0.05) but not SIT+PL. The peak work rate attained during incremental exercise increased more in SIT+BR than in SIT+PL (P < 0.05) or NT+BR (P < 0.001). The reduction in muscle and blood [lactate] and the increase in muscle pH from preintervention to postintervention were greater at 3 min of severe-intensity exercise in SIT+BR compared with SIT+PL and NT+BR (P < 0.05). However, the change in severe-intensity exercise performance was not different between SIT+BR and SIT+PL (P > 0.05). The relative proportion of type IIx muscle fibers in the vastus lateralis muscle was reduced in SIT+BR only (P < 0.05). These findings suggest that BR supplementation may enhance some aspects of the physiological adaptations to SIT. NEW & NOTEWORTHY We investigated the influence of nitrate-rich and nitrate-depleted beetroot juice on the muscle metabolic and physiological adaptations to 4 wk of sprint interval training. Compared with placebo, dietary nitrate supplementation reduced the O2 cost of submaximal exercise, resulted in greater improvement in incremental (but not severe-intensity) exercise performance, and augmented some muscle metabolic adaptations to training. Nitrate supplementation may facilitate some of the physiological responses to sprint interval training. PMID:27909231

  12. Exercise training improves endothelial function in young prehypertensives

    PubMed Central

    Beck, Darren T; Casey, Darren P; Martin, Jeffrey S; Emerson, Blaze D; Braith, Randy W

    2015-01-01

    Prehypertensives exhibit marked endothelial dysfunction, a risk factor for future cardiovascular morbidity and mortality. However, the ability of exercise to ameliorate endothelial dysfunction in prehypertensives is grossly underinvestigated. This prospective randomized and controlled study examined the separate effects of resistance and endurance training on conduit artery endothelial function in young prehypertensives. Forty-three unmedicated prehypertensive (systolic blood pressure [SBP]=120–139 mmHg; diastolic blood pressure [DBP]=80–89 mmHg) but otherwise healthy men and women and 15 normotensive matched time-controls (NMTC); n = 15) between 18 and 35 y of age met screening requirements and participated in the study. Prehypertensive subjects were randomly assigned to either a resistance exercise training (PHRT; n = 15), endurance exercise training (PHET; n = 13) or time-control group (PHTC; n = 15). The treatment groups performed exercise training three days per week for eight weeks. The control groups did not initiate exercise programs throughout the study. Flow mediated dilation (FMD) of the brachial artery, biomarkers of enodothelial function and peripheral blood pressure were evaluated before and after exercise intervention or time-matched control. PHRT and PHET reduced resting SBP (9.6 ± 3.6 and 11.9 ± 3.4 mmHg, respectively; P < 0.05) and DBP (8.0 ± 5.1 and 7.2 ± 3.4 mmHg, respectively; P < 0.05). Exercise training improved brachial artery FMD absolute diameter, percent dilation and normalized percent dilation by 30%, 34% and 19% for PHRT, P < 0.05; and by 54%, 63% and 75% for PHET, P < 0.05; respectively. PHRT and PHET increased plasma concentrations of 6-keto prostaglandin F1α (19% and 22%, respectively; P < 0.05), NOx (19% and 23%, respectively; P < 0.05), and reduced endothelin-1 by (16% and 24%, respectively; P < 0.01). This study provides novel evidence that resistance and endurance exercise separately have beneficial effects on resting peripheral blood pressure, brachial artery FMD and endothelial-derived vasoactive agents in young prehypertensives. PMID:23760009

  13. Effects of a Social Welfare Program for Health Promotion on Cardiovascular Risk Factors.

    PubMed

    Choi, Seong-Jin; Chang, Jae Seung; Kong, In Deok

    2015-09-01

    Socioeconomic status is closely associated with an individual's health status. However, there are few studies examining the role of exercise-training as part of a community-based social welfare program in socially vulnerable groups. Given this, our aim was to measure whether long-term exercise training as a social welfare program affects the prevalence of depressive symptoms, metabolic syndrome and peripheral blood vessel condition among participants with low household income. Twenty-nine adults and twenty-two older adults were recruited into this study with non-radomized, pre/post-test design. The subjects underwent a combined training consisting of aerobic and muscle strengthening exercises for 6 months or more. Depressive symptoms were evaluated using the Beck Depression Inventory and the Korean version of Geriatric Depression Scale. Metabolic syndrome was defined according to the International Diabetes Federation criteria. Blood vessel condition was assessed using non-invasive accelerated photoplethysmograph. Mean skeletal muscle mass increased after exercise-training, but body mass index and percent body fat were unchanged. Overall age-specific physical fitness and performance increased markedly among both adult and elderly subjects, respectively. The proportion of depressive symptoms was significantly reduced by 33% after exercise-training among all participants. The prevalence of individuals having metabolic syndrome was significantly reduced by 19.6% and the number of individual components of metabolic syndrome decreased after the exercise intervention. Among components of metabolic syndrome, waist circumference, HDL cholesterol and systolic blood pressure significantly improved. In addition, the proportions of moderate and severe arteriosclerotic progression significantly decreased. Long-term exercise-training as a social welfare program is beneficial for health promotion and effective in simultaneously improving psychological and physiological health status in a low income population. This suggests that the development and expansion of an exercise intervention as a health-promoting welfare program are needed to address the inequality of exercise participation among socially vulnerable groups.

  14. Exercise training and cardiometabolic diseases: focus on the vascular system.

    PubMed

    Roque, Fernanda R; Hernanz, Raquel; Salaices, Mercedes; Briones, Ana M

    2013-06-01

    The regular practice of physical activity is a well-recommended strategy for the prevention and treatment of several cardiovascular and metabolic diseases. Physical exercise prevents the progression of vascular diseases and reduces cardiovascular morbidity and mortality. Exercise training also ameliorates vascular changes including endothelial dysfunction and arterial remodeling and stiffness, usually present in type 2 diabetes, obesity, hypertension and metabolic syndrome. Common to these diseases is excessive oxidative stress, which plays an important role in the processes underlying vascular changes. At the vascular level, exercise training improves the redox state and consequently NO availability. Moreover, growing evidence indicates that other mediators such as prostanoids might be involved in the beneficial effects of exercise. The purpose of this review is to update recent findings describing the adaptation response induced by exercise in cardiovascular and metabolic diseases, focusing more specifically on the beneficial effects of exercise in the vasculature and the underlying mechanisms.

  15. Strength training alone, exercise therapy alone, and exercise therapy with passive manual mobilisation each reduce pain and disability in people with knee osteoarthritis: a systematic review.

    PubMed

    Jansen, Mariette J; Viechtbauer, Wolfgang; Lenssen, Antoine F; Hendriks, Erik J M; de Bie, Rob A

    2011-01-01

    What are the effects of strength training alone, exercise therapy alone, and exercise with additional passive manual mobilisation on pain and function in people with knee osteoarthritis compared to control? What are the effects of these interventions relative to each other? A meta-analysis of randomised controlled trials. Adults with osteoarthritis of the knee. INTERVENTION TYPES: Strength training alone, exercise therapy alone (combination of strength training with active range of motion exercises and aerobic activity), or exercise with additional passive manual mobilisation, versus any non-exercise control. Comparisons between the three interventions were also sought. The primary outcome measures were pain and physical function. 12 trials compared one of the interventions against control. The effect size on pain was 0.38 (95% CI 0.23 to 0.54) for strength training, 0.34 (95% CI 0.19 to 0.49) for exercise, and 0.69 (95% CI 0.42 to 0.96) for exercise plus manual mobilisation. Each intervention also improved physical function significantly. No randomised comparisons of the three interventions were identified. However, meta-regression indicated that exercise plus manual mobilisations improved pain significantly more than exercise alone (p = 0.03). The remaining comparisons between the three interventions for pain and physical function were not significant. Exercise therapy plus manual mobilisation showed a moderate effect size on pain compared to the small effect sizes for strength training or exercise therapy alone. To achieve better pain relief in patients with knee osteoarthritis physiotherapists or manual therapists might consider adding manual mobilisation to optimise supervised active exercise programs. Copyright © 2011 Australian Physiotherapy Association. Published by .. All rights reserved.

  16. The effect of exercise training on clinical outcomes in patients with the metabolic syndrome: a systematic review and meta-analysis.

    PubMed

    Ostman, C; Smart, N A; Morcos, D; Duller, A; Ridley, W; Jewiss, D

    2017-08-30

    Purpose: to establish if exercise training improves clinical outcomes in people with metabolic syndrome (MetS). Registered with PROSPERO international prospective register of systematic reviews ( https://www.crd.york.ac.uk/PROSPERO/Identifier:CRD42017055491 ). studies were identified through a MEDLINE search strategy (1985 to Jan 12, 2017), Cochrane controlled trials registry, CINAHL and SPORTDiscus. prospective randomized or controlled trials of exercise training in humans with metabolic syndrome, lasting 12 weeks or more. We included 16 studies with 23 intervention groups; 77,000 patient-hours of exercise training. In analyses of aerobic exercise studies versus control: body mass index was significantly reduced, mean difference (MD) -0.29 (kg m -2 ) (95% CI -0.44, -0.15, p < 0.0001); body mass was significantly reduced, MD -1.16 kg (95% CI -1.83, -0.48, p = 0.0008); waist circumference was significantly reduced MD -1.37 cm (95% CI -2.02, -0.71, p < 0.0001), peak VO 2 was significantly improved MD 3.00 mL kg -1  min -1 (95% CI 1.92, 4.08, p < 0.000001); systolic blood pressure and diastolic blood pressure were significantly reduced, MD -2.54 mmHg (95% CI -4.34, -0.75, p = 0.006), and, MD -2.27 mmHg (95% CI -3.47, -1.06, p = 0.0002) respectively; fasting blood glucose was significantly reduced MD -0.16 mmol L -1 (95% CI -0.32, -0.01, p = 0.04); triglycerides were significantly reduced MD -0.21 mmol L -1 (95% CI -0.29, -0.13, p < 0.00001); and low density lipoprotein was significantly reduced MD -0.03 mmol L -1 (95% CI -0.05, -0.00, p = 0.02). In analyses of combined exercise versus control: waist circumference, MD -3.80 cm (95% CI -5.65, -1.95, p < 0.0001); peak VO 2 MD 4.64 mL kg -1  min -1 (95% CI 2.42, 6.87, p < 0.0001); systolic blood pressure MD -3.79 mmHg (95% CI -6.18, -1.40, p = 0.002); and high density lipoprotein (HDL) MD 0.14 (95% CI 0.04, 0.25, p = 0.009) were all significantly improved. We found no significant differences between outcome measures between the two exercise interventions. Exercise training improves body composition, cardiovascular, and, metabolic outcomes in people with metabolic syndrome. For some outcome measures, isolated aerobic exercise appears optimal.

  17. Cross-training in birds: cold and exercise training produce similar changes in maximal metabolic output, muscle masses and myostatin expression in house sparrows (Passer domesticus).

    PubMed

    Zhang, Yufeng; Eyster, Kathleen; Liu, Jin-Song; Swanson, David L

    2015-07-01

    Maximal metabolic outputs for exercise and thermogenesis in birds presumably influence fitness through effects on flight and shivering performance. Because both summit (Msum, maximum thermoregulatory metabolic rate) and maximum (MMR, maximum exercise metabolic rate) metabolic rates are functions of skeletal muscle activity, correlations between these measurements and their mechanistic underpinnings might occur. To examine whether such correlations occur, we measured the effects of experimental cold and exercise training protocols for 3 weeks on body (Mb) and muscle (Mpec) masses, basal metabolic rate (BMR), Msum, MMR, pectoralis mRNA and protein expression for myostatin, and mRNA expression of TLL-1 and TLL-2 (metalloproteinase activators of myostatin) in house sparrows (Passer domesticus). Both training protocols increased Msum, MMR, Mb and Mpec, but BMR increased with cold training and decreased with exercise training. No significant differences occurred for pectoralis myostatin mRNA expression, but cold and exercise increased the expression of TLL-1 and TLL-2. Pectoralis myostatin protein levels were generally reduced for both training groups. These data clearly demonstrate cross-training effects of cold and exercise in birds, and are consistent with a role for myostatin in increasing pectoralis muscle mass and driving organismal increases in metabolic capacities. © 2015. Published by The Company of Biologists Ltd.

  18. Perturbation training to promote safe independent mobility post-stroke: study protocol for a randomized controlled trial.

    PubMed

    Mansfield, Avril; Aqui, Anthony; Centen, Andrew; Danells, Cynthia J; DePaul, Vincent G; Knorr, Svetlana; Schinkel-Ivy, Alison; Brooks, Dina; Inness, Elizabeth L; McIlroy, William E; Mochizuki, George

    2015-06-06

    Falls are one of the most common medical complications post-stroke. Physical exercise, particularly exercise that challenges balance, reduces the risk of falls among healthy and frail older adults. However, exercise has not proven effective for preventing falls post-stroke. Falls ultimately occur when an individual fails to recover from a loss of balance. Thus, training to specifically improve reactive balance control could prevent falls. Perturbation training aims to improve reactive balance control by repeatedly exposing participants to postural perturbations. There is emerging evidence that perturbation training reduces fall rates among individuals with neurological conditions, such as Parkinson disease. The primary aim of this work is to determine if perturbation-based balance training can reduce occurrence of falls in daily life among individuals with chronic stroke. Secondary objectives are to determine the effect of perturbation training on balance confidence and activity restriction, and functional balance and mobility. Individuals with chronic stroke will be recruited. Participants will be randomly assigned to one of two groups: 1) perturbation training, or 2) 'traditional' balance training. Perturbation training will involve both manual perturbations (e.g., a push or pull from a physiotherapist), and rapid voluntary movements to cause a loss of balance. Training will occur twice per week for 6 weeks. Participants will record falls and activity for 12 months following completion of the training program. Standardized clinical tools will be used to assess functional balance and mobility, and balance confidence before and after training. Falls are a significant problem for those with stroke. Despite the large body of work demonstrating effective interventions, such as exercise, for preventing falls in other populations, there is little evidence for interventions that prevent falls post-stroke. The proposed study will investigate a novel and promising intervention: perturbation training. If effective, this training has the potential to not only prevent falls, but to also improve safe independent mobility and engagement in daily activities for those with stroke. Current Controlled Trials: ISRCTN05434601 .

  19. Continuous low- to moderate-intensity exercise training is as effective as moderate- to high-intensity exercise training at lowering blood HbA(1c) in obese type 2 diabetes patients.

    PubMed

    Hansen, D; Dendale, P; Jonkers, R A M; Beelen, M; Manders, R J F; Corluy, L; Mullens, A; Berger, J; Meeusen, R; van Loon, L J C

    2009-09-01

    Exercise represents an effective interventional strategy to improve glycaemic control in type 2 diabetes patients. However, the impact of exercise intensity on the benefits of exercise training remains to be established. In the present study, we compared the clinical benefits of 6 months of continuous low- to moderate-intensity exercise training with those of continuous moderate- to high-intensity exercise training, matched for energy expenditure, in obese type 2 diabetes patients. Fifty male obese type 2 diabetes patients (age 59 +/- 8 years, BMI 32 +/- 4 kg/m(2)) participated in a 6 month continuous endurance-type exercise training programme. All participants performed three supervised exercise sessions per week, either 55 min at 50% of whole body peak oxygen uptake (VO(2)peak (low to moderate intensity) or 40 min at 75% of VO(2)peak (moderate to high intensity). Oral glucose tolerance, blood glycated haemoglobin, lipid profile, body composition, maximal workload capacity, whole body and skeletal muscle oxidative capacity and skeletal muscle fibre type composition were assessed before and after 2 and 6 months of intervention. The entire 6 month intervention programme was completed by 37 participants. Continuous endurance-type exercise training reduced blood glycated haemoglobin levels, LDL-cholesterol concentrations, body weight and leg fat mass, and increased VO(2)peak, lean muscle mass and skeletal muscle cytochrome c oxidase and citrate synthase activity (p < 0.05). No differences were observed between the groups training at low to moderate or moderate to high intensity. When matched for energy cost, prolonged continuous low- to moderate-intensity endurance-type exercise training is equally effective as continuous moderate- to high-intensity training in lowering blood glycated haemoglobin and increasing whole body and skeletal muscle oxidative capacity in obese type 2 diabetes patients. ISRCTN32206301 None.

  20. Acute and Chronic Effects of Aerobic and Resistance Exercise on Ambulatory Blood Pressure

    PubMed Central

    Cardoso, Crivaldo Gomes; Gomides, Ricardo Saraceni; Queiroz, Andréia Cristiane Carrenho; Pinto, Luiz Gustavo; da Silveira Lobo, Fernando; Tinucci, Tais; Mion, Décio; de Moraes Forjaz, Claudia Lucia

    2010-01-01

    Hypertension is a ubiquitous and serious disease. Regular exercise has been recommended as a strategy for the prevention and treatment of hypertension because of its effects in reducing clinical blood pressure; however, ambulatory blood pressure is a better predictor of target-organ damage than clinical blood pressure, and therefore studying the effects of exercise on ambulatory blood pressure is important as well. Moreover, different kinds of exercise might produce distinct effects that might differ between normotensive and hypertensive subjects. The aim of this study was to review the current literature on the acute and chronic effects of aerobic and resistance exercise on ambulatory blood pressure in normotensive and hypertensive subjects. It has been conclusively shown that a single episode of aerobic exercise reduces ambulatory blood pressure in hypertensive patients. Similarly, regular aerobic training also decreases ambulatory blood pressure in hypertensive individuals. In contrast, data on the effects of resistance exercise is both scarce and controversial. Nevertheless, studies suggest that resistance exercise might acutely decrease ambulatory blood pressure after exercise, and that this effect seems to be greater after low-intensity exercise and in patients receiving anti-hypertensive drugs. On the other hand, only two studies investigating resistance training in hypertensive patients have been conducted, and neither has demonstrated any hypotensive effect. Thus, based on current knowledge, aerobic training should be recommended to decrease ambulatory blood pressure in hypertensive individuals, while resistance exercise could be prescribed as a complementary strategy. PMID:20360924

  1. Short-term intense exercise training reduces stress markers and alters the transcriptional response to exercise in skeletal muscle.

    PubMed

    Hinkley, J Matthew; Konopka, Adam R; Suer, Miranda K; Harber, Matthew P

    2017-03-01

    The purpose of this investigation was to examine the influence of short-term intense endurance training on cycling performance, along with the acute and chronic signaling responses of skeletal muscle stress and stability markers. Ten recreationally active subjects (25 ± 2 yr, 79 ± 3 kg, 47 ± 2 ml·kg -1 ·min -1 ) were studied before and after a 12-day cycling protocol to examine the effects of short-term intense (70-100% V̇o 2max ) exercise training on resting and exercise-induced regulation of molecular factors related to skeletal muscle cellular stress and protein stability. Skeletal muscle biopsies were taken at rest and 3 h following a 20-km cycle time trial on days 1 and 12 to measure mRNA expression and protein content. Training improved ( P < 0.05) cycling performance by 5 ± 1%. Protein oxidation was unaltered on day 12 , while resting SAPK/JNK phosphorylation was reduced ( P < 0.05), suggesting a reduction in cellular stress. The maintenance in the myocellular environment may be due to synthesis of cytoprotective markers, along with enhanced degradation of damage proteins, as training tended ( P < 0.10) to increase resting protein content of manganese superoxide dismutase and heat shock protein 70 (HSP70), while mRNA expression of MuRF-1 was elevated ( P < 0.05). Following training ( day 12 ), the acute exercise-induced transcriptional response of TNF-α, NF-κB, MuRF-1, and PGC1α was attenuated ( P < 0.05) compared with day 1 Collectively, these data suggest that short-term intense training enhances protein stability, creating a cellular environment capable of resistance to exercise-induced stress, which may be favorable for adaptation. Copyright © 2017 the American Physiological Society.

  2. Short-term intense exercise training reduces stress markers and alters the transcriptional response to exercise in skeletal muscle

    PubMed Central

    Konopka, Adam R.; Suer, Miranda K.

    2017-01-01

    The purpose of this investigation was to examine the influence of short-term intense endurance training on cycling performance, along with the acute and chronic signaling responses of skeletal muscle stress and stability markers. Ten recreationally active subjects (25 ± 2 yr, 79 ± 3 kg, 47 ± 2 ml·kg−1·min−1) were studied before and after a 12-day cycling protocol to examine the effects of short-term intense (70–100% V̇o2max) exercise training on resting and exercise-induced regulation of molecular factors related to skeletal muscle cellular stress and protein stability. Skeletal muscle biopsies were taken at rest and 3 h following a 20-km cycle time trial on days 1 and 12 to measure mRNA expression and protein content. Training improved (P < 0.05) cycling performance by 5 ± 1%. Protein oxidation was unaltered on day 12, while resting SAPK/JNK phosphorylation was reduced (P < 0.05), suggesting a reduction in cellular stress. The maintenance in the myocellular environment may be due to synthesis of cytoprotective markers, along with enhanced degradation of damage proteins, as training tended (P < 0.10) to increase resting protein content of manganese superoxide dismutase and heat shock protein 70 (HSP70), while mRNA expression of MuRF-1 was elevated (P < 0.05). Following training (day 12), the acute exercise-induced transcriptional response of TNF-α, NF-κB, MuRF-1, and PGC1α was attenuated (P < 0.05) compared with day 1. Collectively, these data suggest that short-term intense training enhances protein stability, creating a cellular environment capable of resistance to exercise-induced stress, which may be favorable for adaptation. PMID:28039193

  3. Elevated pentraxin 3 level at the early stage of exercise training is associated with reduction of arterial stiffness in middle-aged and older adults.

    PubMed

    Zempo-Miyaki, A; Fujie, S; Sato, K; Hasegawa, N; Sanada, K; Maeda, S; Hamaoka, T; Iemitsu, M

    2016-09-01

    Regular exercise improves aging-induced deterioration of arterial stiffness, and is associated with elevated production of pentraxin 3 (PTX3) and anti-inflammatory as well as anti-atherosclerotic effects. However, the time-dependent effect of exercise training on arterial stiffness and PTX3 production remains unclear. The purpose of this study was to investigate the time course of the association between the effects of training on the circulating PTX3 level and arterial stiffness in middle-aged and older adults. Thirty-two healthy Japanese subjects (66.2±1.3 year) were randomly divided into two groups: training (exercise intervention) and sedentary controls. Subjects in the training group completed 8 weeks of aerobic exercise training (60-70% peak oxygen uptake (VO2peak) for 45 min, 3 days per week); during the training period, we evaluated plasma PTX3 concentration and carotid-femoral pulse wave velocity (cfPWV) every 2 wk. cfPWV gradually declined over the 8-week training period, and was significantly reduced after 6 and 8 week of exercise intervention (P<0.05). Plasma PTX3 level was significantly increased after 4 weeks of the intervention (P<0.05). In addition, the exercise training-induced reduction in cfPWV was negatively correlated with the percent change in plasma PTX3 level after 6 week (r=-0.54, P<0.05) and 8 weeks (r=-0.51, P<0.05) of the intervention, but not correlated at 4 weeks. Plasma PTX3 level was elevated at the early stage of the exercise training intervention, and was subsequently associated with training-induced alteration of arterial stiffness in middle-aged and older adults.

  4. Exercise training alters the balance between vasoactive compounds in skeletal muscle of individuals with essential hypertension.

    PubMed

    Hansen, Ane H; Nyberg, Michael; Bangsbo, Jens; Saltin, Bengt; Hellsten, Ylva

    2011-11-01

    The effects of physical training on the formation of vasodilating and vasoconstricting compounds, as well as on related proteins important for vascular function, were examined in skeletal muscle of individuals with essential hypertension (n=10). Muscle microdialysis samples were obtained from subjects with hypertension before and after 16 weeks of physical training. Muscle dialysates were analyzed for thromboxane A(2), prostacyclin, nucleotides, and nitrite/nitrate. Protein levels of thromboxane synthase, prostacyclin synthase, cyclooxygenase 1 and 2, endothelial nitric oxide synthase (eNOS), cystathionine-γ-lyase, cytochrome P450 4A and 2C9, and the purinergic receptors P2X1 and P2Y2 were determined in skeletal muscle. The protein levels were compared with those of normotensive control subjects (n=12). Resting muscle dialysate thromboxane A(2) and prostacyclin concentrations were lower (P<0.05) after training compared with before training. Before training, dialysate thromboxane A(2) decreased with acute exercise, whereas after training, no changes were found. Before training, dialysate prostacyclin levels did not increase with acute exercise, whereas after training there was an 82% (P<0.05) increase from rest to exercise. The exercise-induced increase in ATP and ADP was markedly reduced after training (P<0.05). The amount of eNOS protein in the hypertensive subjects was 40% lower (P<0.05) than in the normotensive control subjects, whereas cystathionine-γ-lyase levels were 25% higher (P<0.05), potentially compensating for the lower eNOS level. We conclude that exercise training alters the balance between vasodilating and vasoconstricting compounds as evidenced by a decrease in the level of thromboxane, reduction in the exercise-induced increase in ATP and a greater exercise-induced increase in prostacyclin.

  5. Coconut oil supplementation and physical exercise improves baroreflex sensitivity and oxidative stress in hypertensive rats.

    PubMed

    Alves, Naiane F B; Porpino, Suênia K P; Monteiro, Matheus M O; Gomes, Enéas R M; Braga, Valdir A

    2015-04-01

    The hypothesis that oral supplementation with virgin coconut oil (Cocos nucifera L.) and exercise training would improve impaired baroreflex sensitivity (BRS) and reduce oxidative stress in spontaneously hypertensive rats (SHR) was tested. Adult male SHR and Wistar Kyoto rats (WKY) were divided into 5 groups: WKY + saline (n = 8); SHR + saline (n = 8); SHR + coconut oil (2 mL·day(-1), n = 8); SHR + trained (n = 8); and SHR + trained + coconut oil (n = 8). Mean arterial pressure (MAP) was recorded and BRS was tested using phenylephrine (8 μg/kg, intravenous) and sodium nitroprusside (25 μg·kg(-1), intravenous). Oxidative stress was measured using dihydroethidium in heart and aorta. SHR + saline, SHR + coconut oil, and SHR + trained group showed higher MAP compared with WKY + saline (175 ± 6, 148 ± 6, 147 ± 7 vs. 113 ± 2 mm Hg; p < 0.05). SHR + coconut oil, SHR + trained group, and SHR + trained + coconut oil groups presented lower MAP compared with SHR + saline group (148 ± 6, 147 ± 7, 134 ± 8 vs. 175 ± 6 mm Hg; p < 0.05). Coconut oil combined with exercise training improved BRS in SHR compared with SHR + saline group (-2.47 ± 0.3 vs. -1.39 ± 0.09 beats·min(-1)·mm Hg(-1); p < 0.05). SHR + saline group showed higher superoxide levels when compared with WKY + saline (774 ± 31 vs. 634 ± 19 arbitrary units (AU), respectively; p < 0.05). SHR + trained + coconut oil group presented reduced oxidative stress compared with SHR + saline in heart (622 ± 16 vs. 774 ± 31 AU, p < 0.05). In aorta, coconut oil reduced oxidative stress in SHR compared with SHR + saline group (454 ± 33 vs. 689 ± 29 AU, p < 0.05). Oral supplementation with coconut oil combined with exercise training improved impaired BRS and reduced oxidative stress in SHR.

  6. Exercise-training protocols for astronauts in microgravity

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bulbulian, R.; Bernauer, E. M.; Haskell, W. L.; Moore, T.

    1989-01-01

    Based on physical working requirements for astronauts during intra- and extravehicular activity and on the findings from bed-rest studies that utilized exercise training as a countermeasure for the reduction of aerobic power, deterioration of muscular strength and endurance, decrements in mood and cognitive performance, and possibly for bone loss, two exercise protocols are proposed. One assumes that, during microgravity, astronaut exercise physiological functions should be maintained at 100 percent of ground-based levels. The other assumes that maximal aerobic power in flight can be reduced by 10 percent of the ground-based level.

  7. Military Applicability of Interval Training for Health and Performance.

    PubMed

    Gibala, Martin J; Gagnon, Patrick J; Nindl, Bradley C

    2015-11-01

    Militaries from around the globe have predominantly used endurance training as their primary mode of aerobic physical conditioning, with historical emphasis placed on the long distance run. In contrast to this traditional exercise approach to training, interval training is characterized by brief, intermittent bouts of intense exercise, separated by periods of lower intensity exercise or rest for recovery. Although hardly a novel concept, research over the past decade has shed new light on the potency of interval training to elicit physiological adaptations in a time-efficient manner. This work has largely focused on the benefits of low-volume interval training, which involves a relatively small total amount of exercise, as compared with the traditional high-volume approach to training historically favored by militaries. Studies that have directly compared interval and moderate-intensity continuous training have shown similar improvements in cardiorespiratory fitness and the capacity for aerobic energy metabolism, despite large differences in total exercise and training time commitment. Interval training can also be applied in a calisthenics manner to improve cardiorespiratory fitness and strength, and this approach could easily be incorporated into a military conditioning environment. Although interval training can elicit physiological changes in men and women, the potential for sex-specific adaptations in the adaptive response to interval training warrants further investigation. Additional work is needed to clarify adaptations occurring over the longer term; however, interval training deserves consideration from a military applicability standpoint as a time-efficient training strategy to enhance soldier health and performance. There is value for military leaders in identifying strategies that reduce the time required for exercise, but nonetheless provide an effective training stimulus.

  8. A call for the better utilization of physical activity and exercise training in the defense against cardiovascular disease.

    PubMed

    Murlasits, Zsolt

    2015-11-01

    Statins, also known as 3-Hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, effectively reduce elevated levels of serum LDL-C concentration and in turn lower cardiovascular morbidity and mortality. Regular exercise and physical activity also have significant preventive effects against cardiovascular diseases by simultaneously reducing multiple risk factors. However, statins also produce a number of adverse events, including muscle pain, which increases dramatically in statin users who also exercise, likely limiting the cardiovascular benefits. Most importantly, reduced physical activity participation due to statin-related side effects can cancel out the benefits of the pharmacological treatment. Although exercise training offers more modest benefits compared to pharmacological therapy against traditional risk factors, considering the total impact of exercise on cardiovascular health, it is now evident that this intervention may offer a greater reduction of risks compared to statin therapy alone. However, primary recommendations regarding cardiovascular therapy still center around pharmacological approaches. Thus a new outlook is called for in clinical practice that provides room for physical activity and exercise training, thus lipid targets can be reached by a combined intervention along with improvements in other cardiovascular parameters, such as endothelial function and low-grade inflammation. Databases such as Pubmed and Google Scholar as well as the reference list of the relevant articles were searched to collect information for this opinion article.

  9. Effects of resistance or aerobic exercise training on total and regional body composition in sedentary overweight middle-aged adults.

    PubMed

    Donges, Cheyne E; Duffield, Rob

    2012-06-01

    The purpose of this study was to examine the effects of 10 weeks of aerobic endurance training (AET), resistance exercise training (RET), or a control (CON) condition on absolute and relative fat mass (FM) or fat-free mass (FFM) in the total body (TB) and regions of interest (ROIs) of sedentary overweight middle-aged males and females. Following prescreening, 102 subjects underwent anthropometric measurements, dual-energy X-ray absorptiometry, and strength and aerobic exercise testing. Randomized subjects (male RET, n = 16; female RET, n = 19; male AET, n = 16; and female AET, n = 25) completed supervised and periodized exercise programs (AET, 30-50 min cycling at 70%-75% maximal heart rate; RET, 2-4 sets × 8-10 repetitions of 5-7 exercises at 70%-75% 1 repetition maximum) or a nonexercising control condition (male CON, n = 13 and female CON, n = 13). Changes in absolute and relative TB-FM and TB-FFM and ROI-FM and ROI-FFM were determined. At baseline, and although matched for age and body mass index, males had greater strength, aerobic fitness, body mass, absolute and relative TB-FFM and ROI-FFM, but reduced absolute and relative TB-FM and ROI-FM, compared with females (p < 0.05). After training, both female exercise groups showed equivalent or greater relative improvements in strength and aerobic fitness than did the male exercise groups (p < 0.05); however, the male exercise groups increased TB-FFM and reduced TB-FM more than did the female exercise groups (p < 0.05). Male AET altered absolute FM more than male RET altered absolute FFM, thus resulting in a greater enhancement of relative FFM. Despite equivalent or greater responses to RET or AET by female subjects, the corresponding respective increases in FFM or reductions in FM were lower than those in males, indicating that a biased dose-response relationship exists between sexes following 10 weeks of exercise training.

  10. Regular aerobic exercise reduces endothelin-1-mediated vasoconstrictor tone in overweight and obese adults.

    PubMed

    Dow, Caitlin A; Stauffer, Brian L; Brunjes, Danielle L; Greiner, Jared J; DeSouza, Christopher A

    2017-09-01

    What is the central question of this study? Does aerobic exercise training reduce endothelin-1 (ET-1)-mediated vasoconstrictor tone in overweight/obese adults? And, if so, does lower ET-1 vasoconstriction underlie the exercise-related enhancement in endothelium-dependent vasodilatation in overweight/obese adults? What is the main finding and its importance? Regular aerobic exercise reduces ET-1-mediated vasoconstrictor tone in previously sedentary overweight/obese adults, independent of weight loss. Decreased ET-1 vasoconstriction is an important mechanism underlying the aerobic exercise-induced improvement in endothelium-dependent vasodilator function in overweight/obese adults. Endothelin-1 (ET-1)-mediated vasoconstrictor tone is elevated in overweight and obese adults, contributing to vasomotor dysfunction and increased cardiovascular disease risk. Although the effects of habitual aerobic exercise on endothelium-dependent vasodilatation in overweight/obese adults have been studied, little is known regarding ET-1-mediated vasoconstriction. Accordingly, the aims of the present study were to determine the following: (i) whether regular aerobic exercise training reduces ET-1-mediated vasoconstrictor tone in overweight and obese adults; and, if so, (ii) whether the reduction in ET-1-mediated vasoconstriction contributes to exercise-induced improvement in endothelium-dependent vasodilatation in this population. Forearm blood flow (FBF) in response to intra-arterial infusion of selective ET A receptor blockade (BQ-123, 100 nmol min -1 for 60 min), acetylcholine [4.0, 8.0 and 16.0 μg (100 ml tissue) -1  min -1 ] in the absence and presence of ET A receptor blockade and sodium nitroprusside [1.0, 2.0 and 4.0 μg (100 ml tissue) -1  min -1 ] were determined before and after a 3 month aerobic exercise training intervention in 25 (16 men and nine women) overweight/obese (body mass index 30.1 ± 0.5 kg m -2 ) adults. The vasodilator response to BQ-123 was significantly lower (∼25%) and the FBF responses to acetylcholine were ∼35% higher after exercise training. Before the exercise intervention, the co-infusion of acetylcholine plus BQ-123 resulted in a greater vasodilator response than acetylcholine alone; however, after the exercise intervention the FBF response to acetylcholine was not significantly increased by ET A receptor blockade. These results demonstrate that regular aerobic exercise reduces ET-1-mediated vasoconstrictor tone in previously sedentary overweight and obese adults. Moreover, decreased ET-1-mediated vasoconstriction is an important mechanism underlying the aerobic exercise-induced improvement in endothelium-dependent vasodilator function in overweight/obese adults. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  11. Cell-derived microparticles promote coagulation after moderate exercise.

    PubMed

    Sossdorf, Maik; Otto, Gordon P; Claus, Ralf A; Gabriel, Holger H W; Lösche, Wolfgang

    2011-07-01

    Cell-derived procoagulant microparticles (MP) might be able to contribute to exercise-induced changes in blood hemostasis. This study aimed to examine (i) the concentration and procoagulant activity of cell-derived MP after a moderate endurance exercise and (ii) the differences in the release, clearance, and activity of MP before and after exercise between trained and untrained individuals. All subjects performed a single bout of physical exercise on a bicycle ergometer for 90 min at 80% of their individual anaerobic threshold. MP were identified and quantified by flow cytometry measurements. Procoagulant activity of MP was measured by a prothrombinase activity assay as well as tissue factor-induced fibrin formation in MP-containing plasma. At baseline, no differences were observed for the absolute number and procoagulant activities of MP between trained and untrained subjects. However, trained individuals had a lower number of tissue factor-positive monocyte-derived MP compared with untrained individuals. In trained subjects, exercise induced a significant increase in the number of MP derived from platelets, monocytes, and endothelial cells, with maximum values at 45 min after exercise and returned to basal levels at 2 h after exercise. Untrained subjects revealed a similar increase in platelet-derived MP, but their level was still increased at 2 h after exercise, indicating a reduced clearance compared with trained individuals. Procoagulant activities of MP were increased immediately after exercise and remained elevated up to 2 h after exercise. We conclude that increased levels of MP were found in healthy individuals after an acute bout of exercise, that the amount of circulating MP contributes to an exercise-induced increase of hemostatic potential, and that there were differences in kinetic and dynamic characteristics between trained and untrained individuals.

  12. Relation of Angina Pectoris to Outcomes, Quality of Life and Response to Exercise Training in Patients with Chronic Heart Failure (from HF-ACTION)

    PubMed Central

    Parikh, Kishan S.; Coles, Adrian; Schulte, Phillip J.; Kraus, William E.; Fleg, Jerome L.; Keteyian, Steven J.; Piña, Ileana L.; Fiuzat, Mona; Whellan, David J.; O’Connor, Christopher M.; Mentz, Robert J.

    2016-01-01

    Angina pectoris (AP) is associated with worse outcomes in heart failure (HF). We investigated the association of AP with health-related quality of life (HRQoL), exercise capacity, and clinical outcomes, and its interaction with exercise training in a HF population. We grouped 2,331 HF patients with reduced ejection fraction (EF) in the HF-ACTION trial of usual care +/− exercise training according to whether they had self-reported AP by Canadian classification score (CCS). HRQoL and clinical outcomes were assessed by AP status. In HF-ACTION, 406 (17%) patients had AP at baseline (44% with CCS ≥ II) with HF severity similar to those without AP. Patients with AP had similar baseline exercise capacity but worse depressive symptoms and HRQoL. AP was associated with 22% greater adjusted risk for all-cause mortality/hospitalizations, driven by hospitalizations. There was significant interaction between baseline AP and exercise training peak VO2 change (P=0.019), but not other endpoints. Exercise training was associated with greater peak VO2 improvement after 3 months in patients with AP (treatment effect=1.25 mL/kg/min, 95% CI=0.6–1.9). In conclusion, AP was associated with worse HRQoL and depressive symptoms. Despite greater peak VO2 improvement with exercise training, patients with AP experienced more adverse outcomes. PMID:27561194

  13. Exercise improves gait, reaction time and postural stability in older adults with type 2 diabetes and neuropathy.

    PubMed

    Morrison, Steven; Colberg, Sheri R; Parson, Henri K; Vinik, Aaron I

    2014-01-01

    For older adults with type 2 diabetes (T2DM), declines in balance and walking ability are risk factors for falls, and peripheral neuropathy magnifies this risk. Exercise training may improve balance, gait and reduce the risk of falling. This study investigated the effects of 12weeks of aerobic exercise training on walking, balance, reaction time and falls risk metrics in older T2DM individuals with/without peripheral neuropathy. Adults with T2DM, 21 without (DM; age 58.7±1.7years) and 16 with neuropathy (DM-PN; age 58.9±1.9years), engaged in either moderate or intense supervised exercise training thrice-weekly for 12weeks. Pre/post-training assessments included falls risk (using the physiological profile assessment), standing balance, walking ability and hand/foot simple reaction time. Pre-training, the DM-PN group had higher falls risk, slower (hand) reaction times (232 vs. 219ms), walked at a slower speed (108 vs. 113cm/s) with shorter strides compared to the DM group. Following training, improvements in hand/foot reaction times and faster walking speed were seen for both groups. While falls risk was not significantly reduced, the observed changes in gait, reaction time and balance metrics suggest that aerobic exercise of varying intensities is beneficial for improving dynamic postural control in older T2DM adults with/without neuropathy. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Assessment of the ability of wheelchair subjects with spinal cord injury to perform a specific protocol of shoulder training: a pilot study.

    PubMed

    Merolla, Giovanni; Dellabiancia, Fabio; Filippi, Maria Vittoria; De Santis, Elisa; Alpi, Daniele; Magrini, Paola; Porcellini, Giuseppe

    2014-04-01

    a regular program of exercises in subjects with spinal cord injury (SCI) can contribute to reduce the risk of upper extremities injuries. in this prospective laboratory study we tested the hypothesis that a training machine developed for able-body users is suitable for a shoulder training protocol in 11 paraplegic subjects with SCI. Overall subjects were assessed with the SCIM III, CS, DASH and standard shoulder examination. We set a protocol of shoulder exercises performed with a training machine. Overall subjects were able to perform the protocol but 2 did not complete the exercises n° 6 and 7. The position of the wheelchair during each exercise was recorded. Wheelchair position/loading level were significantly correlated with the protocol n° 2, 3 and 5 as well as BMI/loading level for the exercises n° 5 and 9 and age/loading level for the exercise n° 7. Clinical scores were neither correlated with loading nor with anthropometric data. FROM THE ANALYSIS OF DATA COLLECTED IN THIS STUDY ARISED THAT: 1) the training machine needs some adjustments for paraplegic subjects, 2) the training protocol was appropriate except for the exercises needing a torso-rotation and 3) the template for wheelchair position may be a valid guide for an optimal paraplegic shoulder training.

  15. Exercise training in chronic heart failure: improving skeletal muscle O2 transport and utilization

    PubMed Central

    Hirai, Daniel M.; Musch, Timothy I.

    2015-01-01

    Chronic heart failure (CHF) impairs critical structural and functional components of the O2 transport pathway resulting in exercise intolerance and, consequently, reduced quality of life. In contrast, exercise training is capable of combating many of the CHF-induced impairments and enhancing the matching between skeletal muscle O2 delivery and utilization (Q̇mO2 and V̇mO2, respectively). The Q̇mO2/V̇mO2 ratio determines the microvascular O2 partial pressure (PmvO2), which represents the ultimate force driving blood-myocyte O2 flux (see Fig. 1). Improvements in perfusive and diffusive O2 conductances are essential to support faster rates of oxidative phosphorylation (reflected as faster V̇mO2 kinetics during transitions in metabolic demand) and reduce the reliance on anaerobic glycolysis and utilization of finite energy sources (thus lowering the magnitude of the O2 deficit) in trained CHF muscle. These adaptations contribute to attenuated muscle metabolic perturbations (e.g., changes in [PCr], [Cr], [ADP], and pH) and improved physical capacity (i.e., elevated critical power and maximal V̇mO2). Preservation of such plasticity in response to exercise training is crucial considering the dominant role of skeletal muscle dysfunction in the pathophysiology and increased morbidity/mortality of the CHF patient. This brief review focuses on the mechanistic bases for improved Q̇mO2/V̇mO2 matching (and enhanced PmvO2) with exercise training in CHF with both preserved and reduced ejection fraction (HFpEF and HFrEF, respectively). Specifically, O2 convection within the skeletal muscle microcirculation, O2 diffusion from the red blood cell to the mitochondria, and muscle metabolic control are particularly susceptive to exercise training adaptations in CHF. Alternatives to traditional whole body endurance exercise training programs such as small muscle mass and inspiratory muscle training, pharmacological treatment (e.g., sildenafil and pentoxifylline), and dietary nitrate supplementation are also presented in light of their therapeutic potential. Adaptations within the skeletal muscle O2 transport and utilization system underlie improvements in physical capacity and quality of life in CHF and thus take center stage in the therapeutic management of these patients. PMID:26320036

  16. Blood Volume: Its Adaptation to Endurance Training

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.

    1991-01-01

    Expansion of blood volume (hypervolemia) has been well documented in both cross-sectional and longitudinal studies as a consequence of endurance exercise training. Plasma volume expansion can account for nearly all of the exercise-induced hypervolemia up to 2-4 wk; after this time expansion may be distributed equally between plasma and red cell volumes. The exercise stimulus for hypervolemia has both thermal and nonthermal components that increase total circulating plasma levels of electrolytes and proteins. Although protein and fluid shifts from the extravascular to intravascular space may provide a mechanism for rapid hypervolemia immediately after exercise, evidence supports the notion that chronic hypervolemia associated with exercise training represents a net expansion of total body water and solutes. This net increase of body fluids with exercise training is associated with increased water intake and decreased urine volume output. The mechanism of reduced urine output appears to be increased renal tubular reabsorption of sodium through a more sensitive aldosterone action in man. Exercise training-induced hypervolemia appears to be universal among most animal species, although the mechanisms may be quite different. The hypervolemia may provide advantages of greater body fluid for heat dissipation and thermoregulatory stability as well as larger vascular volume and filling pressure for greater cardiac stroke volume and lower heart rates during exercise.

  17. Integrated Resistance and Aerobic Training Maintains Cardiovascular and Skeletal Muscle Fitness During 14 Days of Bed Rest

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Lori; Goetchius, Elizabeth; Crowell, Brent; Hackney, Kyle; Wickwire, Jason; Ploutz-Snyder, Robert; Snyder, Scott

    2012-01-01

    Background: Known incompatibilities exist between resistance and aerobic training. Of particular importance are findings that concurrent resistance and aerobic training reduces the effectiveness of the resistance training and limits skeletal muscle adaptations (example: Dudley & Djamil, 1985). Numerous unloading studies have documented the effectiveness of resistance training alone for the maintenance of skeletal muscle size and strength. However the practical applications of those studies are limited because long ]duration crew members perform both aerobic and resistance exercise throughout missions/spaceflight. To date, such integrated training on the International Space Station (ISS) has not been fully effective in the maintenance of skeletal muscle function. Purpose: The purpose of this study was to evaluate the efficacy of high intensity concurrent resistance and aerobic training for the maintenance of cardiovascular fitness and skeletal muscle strength, power and endurance over 14 days of strict bed rest. Methods: 9 subjects (8 male and 1 female; 34.5 +/- 8.2 years) underwent 14 days of bed rest with concurrent training. Resistance and aerobic training were integrated as shown in table 1. Days that included 2 exercise sessions had a 4-8 hour rest between exercise bouts. The resistance training consisted of 3 sets of 12 repetitions of squat, heel raise, leg press and hamstring curl exercise. Aerobic exercise consisted of periodized interval training that included 30 sec, 2 min and 4 min intervals alternating by day with continuous aerobic exercise.

  18. Fueling strategies to optimize performance: training high or training low?

    PubMed

    Burke, L M

    2010-10-01

    Availability of carbohydrate as a substrate for the muscle and central nervous system is critical for the performance of both intermittent high-intensity work and prolonged aerobic exercise. Therefore, strategies that promote carbohydrate availability, such as ingesting carbohydrate before, during and after exercise, are critical for the performance of many sports and a key component of current sports nutrition guidelines. Guidelines for daily carbohydrate intakes have evolved from the "one size fits all" recommendation for a high-carbohydrate diets to an individualized approach to fuel needs based on the athlete's body size and exercise program. More recently, it has been suggested that athletes should train with low carbohydrate stores but restore fuel availability for competition ("train low, compete high"), based on observations that the intracellular signaling pathways underpinning adaptations to training are enhanced when exercise is undertaken with low glycogen stores. The present literature is limited to studies of "twice a day" training (low glycogen for the second session) or withholding carbohydrate intake during training sessions. Despite increasing the muscle adaptive response and reducing the reliance on carbohydrate utilization during exercise, there is no clear evidence that these strategies enhance exercise performance. Further studies on dietary periodization strategies, especially those mimicking real-life athletic practices, are needed. © 2010 John Wiley & Sons A/S.

  19. Physiological adaptations to interval training and the role of exercise intensity.

    PubMed

    MacInnis, Martin J; Gibala, Martin J

    2017-05-01

    Interval exercise typically involves repeated bouts of relatively intense exercise interspersed by short periods of recovery. A common classification scheme subdivides this method into high-intensity interval training (HIIT; 'near maximal' efforts) and sprint interval training (SIT; 'supramaximal' efforts). Both forms of interval training induce the classic physiological adaptations characteristic of moderate-intensity continuous training (MICT) such as increased aerobic capacity (V̇O2 max ) and mitochondrial content. This brief review considers the role of exercise intensity in mediating physiological adaptations to training, with a focus on the capacity for aerobic energy metabolism. With respect to skeletal muscle adaptations, cellular stress and the resultant metabolic signals for mitochondrial biogenesis depend largely on exercise intensity, with limited work suggesting that increases in mitochondrial content are superior after HIIT compared to MICT, at least when matched-work comparisons are made within the same individual. It is well established that SIT increases mitochondrial content to a similar extent to MICT despite a reduced exercise volume. At the whole-body level, V̇O2 max is generally increased more by HIIT than MICT for a given training volume, whereas SIT and MICT similarly improve V̇O2 max despite differences in training volume. There is less evidence available regarding the role of exercise intensity in mediating changes in skeletal muscle capillary density, maximum stroke volume and cardiac output, and blood volume. Furthermore, the interactions between intensity and duration and frequency have not been thoroughly explored. While interval training is clearly a potent stimulus for physiological remodelling in humans, the integrative response to this type of exercise warrants further attention, especially in comparison to traditional endurance training. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  20. Physiological adaptations to interval training and the role of exercise intensity

    PubMed Central

    MacInnis, Martin J.

    2016-01-01

    Abstract Interval exercise typically involves repeated bouts of relatively intense exercise interspersed by short periods of recovery. A common classification scheme subdivides this method into high‐intensity interval training (HIIT; ‘near maximal’ efforts) and sprint interval training (SIT; ‘supramaximal’ efforts). Both forms of interval training induce the classic physiological adaptations characteristic of moderate‐intensity continuous training (MICT) such as increased aerobic capacity (V˙O2 max ) and mitochondrial content. This brief review considers the role of exercise intensity in mediating physiological adaptations to training, with a focus on the capacity for aerobic energy metabolism. With respect to skeletal muscle adaptations, cellular stress and the resultant metabolic signals for mitochondrial biogenesis depend largely on exercise intensity, with limited work suggesting that increases in mitochondrial content are superior after HIIT compared to MICT, at least when matched‐work comparisons are made within the same individual. It is well established that SIT increases mitochondrial content to a similar extent to MICT despite a reduced exercise volume. At the whole‐body level, V˙O2 max is generally increased more by HIIT than MICT for a given training volume, whereas SIT and MICT similarly improve V˙O2 max despite differences in training volume. There is less evidence available regarding the role of exercise intensity in mediating changes in skeletal muscle capillary density, maximum stroke volume and cardiac output, and blood volume. Furthermore, the interactions between intensity and duration and frequency have not been thoroughly explored. While interval training is clearly a potent stimulus for physiological remodelling in humans, the integrative response to this type of exercise warrants further attention, especially in comparison to traditional endurance training. PMID:27748956

  1. High- and moderate-intensity training normalizes ventricular function and mechanoenergetics in mice with diet-induced obesity.

    PubMed

    Hafstad, Anne D; Lund, Jim; Hadler-Olsen, Elin; Höper, Anje C; Larsen, Terje S; Aasum, Ellen

    2013-07-01

    Although exercise reduces several cardiovascular risk factors associated with obesity/diabetes, the metabolic effects of exercise on the heart are not well-known. This study was designed to investigate whether high-intensity interval training (HIT) is superior to moderate-intensity training (MIT) in counteracting obesity-induced impairment of left ventricular (LV) mechanoenergetics and function. C57BL/6J mice with diet-induced obesity (DIO mice) displaying a cardiac phenotype with altered substrate utilization and impaired mechanoenergetics were subjected to a sedentary lifestyle or 8-10 weeks of isocaloric HIT or MIT. Although both modes of exercise equally improved aerobic capacity and reduced obesity, only HIT improved glucose tolerance. Hearts from sedentary DIO mice developed concentric LV remodeling with diastolic and systolic dysfunction, which was prevented by both HIT and MIT. Both modes of exercise also normalized LV mechanical efficiency and mechanoenergetics. These changes were associated with altered myocardial substrate utilization and improved mitochondrial capacity and efficiency, as well as reduced oxidative stress, fibrosis, and intracellular matrix metalloproteinase 2 content. As both modes of exercise equally ameliorated the development of diabetic cardiomyopathy by preventing LV remodeling and mechanoenergetic impairment, this study advocates the therapeutic potential of physical activity in obesity-related cardiac disorders.

  2. High- and Moderate-Intensity Training Normalizes Ventricular Function and Mechanoenergetics in Mice With Diet-Induced Obesity

    PubMed Central

    Hafstad, Anne D.; Lund, Jim; Hadler-Olsen, Elin; Höper, Anje C.; Larsen, Terje S.; Aasum, Ellen

    2013-01-01

    Although exercise reduces several cardiovascular risk factors associated with obesity/diabetes, the metabolic effects of exercise on the heart are not well-known. This study was designed to investigate whether high-intensity interval training (HIT) is superior to moderate-intensity training (MIT) in counteracting obesity-induced impairment of left ventricular (LV) mechanoenergetics and function. C57BL/6J mice with diet-induced obesity (DIO mice) displaying a cardiac phenotype with altered substrate utilization and impaired mechanoenergetics were subjected to a sedentary lifestyle or 8–10 weeks of isocaloric HIT or MIT. Although both modes of exercise equally improved aerobic capacity and reduced obesity, only HIT improved glucose tolerance. Hearts from sedentary DIO mice developed concentric LV remodeling with diastolic and systolic dysfunction, which was prevented by both HIT and MIT. Both modes of exercise also normalized LV mechanical efficiency and mechanoenergetics. These changes were associated with altered myocardial substrate utilization and improved mitochondrial capacity and efficiency, as well as reduced oxidative stress, fibrosis, and intracellular matrix metalloproteinase 2 content. As both modes of exercise equally ameliorated the development of diabetic cardiomyopathy by preventing LV remodeling and mechanoenergetic impairment, this study advocates the therapeutic potential of physical activity in obesity-related cardiac disorders. PMID:23493573

  3. A systematic review and meta-analysis on the effects of exercise training versus hypocaloric diet: distinct effects on body weight and visceral adipose tissue.

    PubMed

    Verheggen, R J H M; Maessen, M F H; Green, D J; Hermus, A R M M; Hopman, M T E; Thijssen, D H T

    2016-08-01

    Exercise training ('exercise') and hypocaloric diet ('diet') are frequently prescribed for weight loss in obesity. Whilst body weight changes are commonly used to evaluate lifestyle interventions, visceral adiposity (VAT) is a more relevant and stronger predictor for morbidity and mortality. A meta-analysis was performed to assess the effects of exercise or diet on VAT (quantified by radiographic imaging). Relevant databases were searched through May 2014. One hundred seventeen studies (n = 4,815) were included. We found that both exercise and diet cause VAT loss (P < 0.0001). When comparing diet versus training, diet caused a larger weight loss (P = 0.04). In contrast, a trend was observed towards a larger VAT decrease in exercise (P = 0.08). Changes in weight and VAT showed a strong correlation after diet (R(2)  = 0.737, P < 0.001), and a modest correlation after exercise (R(2)  = 0.451, P < 0.001). In the absence of weight loss, exercise is related to 6.1% decrease in VAT, whilst diet showed virtually no change (1.1%). In conclusion, both exercise and diet reduce VAT. Despite a larger effect of diet on total body weight loss, exercise tends to have superior effects in reducing VAT. Finally, total body weight loss does not necessarily reflect changes in VAT and may represent a poor marker when evaluating benefits of lifestyle-interventions. © 2016 World Obesity.

  4. Nutritional concerns in the diabetic athlete.

    PubMed

    Jensen, Jørgen

    2004-08-01

    The etiology of type I and type II diabetes differs and so do the nutritional challenges during and after exercise. For type I diabetics, exercise may cause hypoglycemia. To avoid hypoglycemia, a carbohydrate-rich meal should be eaten 1 to 3 hours prior to exercise and the insulin dose reduced. During exercise, at least 40 g glucose per hour should be ingested; more if the insulin dose is not reduced. After exercise, it is important to rebuild the glycogen stores to reduce the risk for hypoglycemia. Carbohydrates should always be available during training and in the recovery period. Despite these difficulties, exercise is recommended for type I diabetics and competition at high level is possible. Exercise prevents development of type II diabetes and improves metabolic regulation. For type II diabetics, exercise is normally performed to improve insulin sensitivity and to reduce body weight. Carbohydrates should only be supplied to prevent hypoglycemia.

  5. Exercise and sports science Australia (ESSA) position statement on exercise and spinal cord injury.

    PubMed

    Tweedy, Sean M; Beckman, Emma M; Geraghty, Timothy J; Theisen, Daniel; Perret, Claudio; Harvey, Lisa A; Vanlandewijck, Yves C

    2017-02-01

    Traumatic spinal cord injury (SCI) may result in tetraplegia (motor and/or sensory nervous system impairment of the arms, trunk and legs) or paraplegia (motor and/or sensory impairment of the trunk and/or legs only). The adverse effects of SCI on health, fitness and functioning are frequently compounded by profoundly sedentary behaviour. People with paraplegia (PP) and tetraplegia (TP) have reduced exercise capacity due to paralysis/paresis and reduced exercising stroke volume. TP often further reduces exercise capacity due to lower maximum heart-rate and respiratory function. There is strong, consistent evidence that exercise can improve cardiorespiratory fitness and muscular strength in people with SCI. There is emerging evidence for a range of other exercise benefits, including reduced risk of cardio-metabolic disease, depression and shoulder pain, as well as improved respiratory function, quality-of-life and functional independence. Exercise recommendations for people with SCI are: ≥30min of moderate aerobic exercise on ≥5d/week or ≥20min of vigorous aerobic ≥3d/week; strength training on ≥2d/week, including scapula stabilisers and posterior shoulder girdle; and ≥2d/week flexibility training, including shoulder internal and external rotators. These recommendations may be aspirational for profoundly inactive clients and stratification into "beginning", "intermediate" and "advanced" will assist application of the recommendations in clinical practice. Flexibility exercise is recommended to preserve upper limb function but may not prevent contracture. For people with TP, Rating of Perceived Exertion may provide a more valid indication of exercise intensity than heart rate. The safety and effectiveness of exercise interventions can be enhanced by initial screening for autonomic dysreflexia, orthostatic hypotension, exercise-induced hypotension, thermoregulatory dysfunction, pressure sores, spasticity and pain. Copyright © 2016 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  6. Ventricular action potential adaptation to regular exercise: role of β-adrenergic and KATP channel function.

    PubMed

    Wang, Xinrui; Fitts, Robert H

    2017-08-01

    Regular exercise training is known to affect the action potential duration (APD) and improve heart function, but involvement of β-adrenergic receptor (β-AR) subtypes and/or the ATP-sensitive K + (K ATP ) channel is unknown. To address this, female and male Sprague-Dawley rats were randomly assigned to voluntary wheel-running or control groups; they were anesthetized after 6-8 wk of training, and myocytes were isolated. Exercise training significantly increased APD of apex and base myocytes at 1 Hz and decreased APD at 10 Hz. Ca 2+ transient durations reflected the changes in APD, while Ca 2+ transient amplitudes were unaffected by wheel running. The nonselective β-AR agonist isoproterenol shortened the myocyte APD, an effect reduced by wheel running. The isoproterenol-induced shortening of APD was largely reversed by the selective β 1 -AR blocker atenolol, but not the β 2 -AR blocker ICI 118,551, providing evidence that wheel running reduced the sensitivity of the β 1 -AR. At 10 Hz, the K ATP channel inhibitor glibenclamide prolonged the myocyte APD more in exercise-trained than control rats, implicating a role for this channel in the exercise-induced APD shortening at 10 Hz. A novel finding of this work was the dual importance of altered β 1 -AR responsiveness and K ATP channel function in the training-induced regulation of APD. Of physiological importance to the beating heart, the reduced response to adrenergic agonists would enhance cardiac contractility at resting rates, where sympathetic drive is low, by prolonging APD and Ca 2+ influx; during exercise, an increase in K ATP channel activity would shorten APD and, thus, protect the heart against Ca 2+ overload or inadequate filling. NEW & NOTEWORTHY Our data demonstrated that regular exercise prolonged the action potential and Ca 2+ transient durations in myocytes isolated from apex and base regions at 1-Hz and shortened both at 10-Hz stimulation. Novel findings were that wheel running shifted the β-adrenergic receptor agonist dose-response curve rightward compared with controls by reducing β 1 -adrenergic receptor responsiveness and that, at the high activation rate, myocytes from trained animals showed higher K ATP channel function. Copyright © 2017 the American Physiological Society.

  7. Active Intervention Program Using Dietary Education and Exercise Training for Reducing Obesity in Mexican American Male Children

    ERIC Educational Resources Information Center

    Lee, Sukho; Misra, Ranjita; Kaster, Elizabeth

    2012-01-01

    This study evaluated the effectiveness of a 10-week active intervention program (AIP), which incorporates dietary education with exercise training, among 30 healthy Mexican American male children, aged 8-12 years, in Laredo, Texas. Participants were randomly divided into 3 groups: education (EDU), dietary education to participants and parents and…

  8. Neither Hematocrit Normalization nor Exercise Training Restores Oxygen Consumption to Normal Levels in Hemodialysis Patients

    PubMed Central

    Stray-Gundersen, James; Parsons, Dora Beth; Thompson, Jeffrey R.

    2016-01-01

    Patients treated with hemodialysis develop severely reduced functional capacity, which can be partially ameliorated by correcting anemia and through exercise training. In this study, we determined perturbations of an erythroid-stimulating agent and exercise training to examine if and where limitation to oxygen transport exists in patients on hemodialysis. Twenty-seven patients on hemodialysis completed a crossover study consisting of two exercise training phases at two hematocrit (Hct) values: 30% (anemic) and 42% (physiologic; normalized by treatment with erythroid-stimulating agent). To determine primary outcome measures of peak power and oxygen consumption (VO2) and secondary measures related to components of oxygen transport and utilization, all patients underwent numerous tests at five time points: baseline, untrained at Hct of 30%, after training at Hct of 30%, untrained at Hct of 42%, and after training at Hct of 42%. Hct normalization, exercise training, or the combination thereof significantly improved peak power and VO2 relative to values in the untrained anemic phase. Hct normalization increased peak arterial oxygen and arteriovenous oxygen difference, whereas exercise training improved cardiac output, citrate synthase activity, and peak tissue diffusing capacity. However, although the increase in arterial oxygen observed in the combination phase reached a value similar to that in healthy sedentary controls, the increase in peak arteriovenous oxygen difference did not. Muscle biopsy specimens showed markedly thickened endothelium and electron–dense interstitial deposits. In conclusion, exercise and Hct normalization had positive effects but failed to normalize exercise capacity in patients on hemodialysis. This effect may be caused by abnormalities identified within skeletal muscle. PMID:27153927

  9. Exercise training preserves vagal preganglionic neurones and restores parasympathetic tonus in heart failure.

    PubMed

    Ichige, Marcelo H A; Santos, Carla R; Jordão, Camila P; Ceroni, Alexandre; Negrão, Carlos E; Michelini, Lisete C

    2016-11-01

    Heart Failure (HF) is accompanied by reduced ventricular function, activation of compensatory neurohormonal mechanisms and marked autonomic dysfunction characterized by exaggerated sympathoexcitation and reduced parasympathetic activity. With 6 weeks of exercise training, HF-related loss of choline acetyltransferase (ChAT)-positive vagal preganglionic neurones is avoided, restoring the parasympathetic tonus to the heart, and the immunoreactivity of dopamine β-hydroxylase-positive premotor neurones that drive sympathetic outflow to the heart is reduced. Training-induced correction of autonomic dysfunction occurs even with the persistence of abnormal ventricular function. Strong positive correlation between improved parasympathetic tonus to the heart and increased ChAT immunoreactivity in vagal preganglionic neurones after training indicates this is a crucial mechanism to restore autonomic function in heart failure. Exercise training is an efficient tool to attenuate sympathoexcitation, a hallmark of heart failure (HF). Although sympathetic modulation in HF is widely studied, information regarding parasympathetic control is lacking. We examined the combined effects of sympathetic and vagal tonus to the heart in sedentary (Sed) and exercise trained (ET) HF rats and the contribution of respective premotor and preganglionic neurones. Wistar rats submitted to coronary artery ligation or sham surgery were assigned to training or sedentary protocols for 6 weeks. After haemodynamic, autonomic tonus (atropine and atenolol i.v.) and ventricular function determinations, brains were collected for immunoreactivity assays (choline acetyltransferase, ChATir; dopamine β-hydroxylase, DBHir) and neuronal counting in the dorsal motor nucleus of vagus (DMV), nucleus ambiguus (NA) and rostroventrolateral medulla (RVLM). HF-Sed vs. SHAM-Sed exhibited decreased exercise capacity, reduced ejection fraction, increased left ventricle end diastolic pressure, smaller positive and negative dP/dt, decreased intrinsic heart rate (IHR), lower parasympathetic and higher sympathetic tonus, reduced preganglionic vagal neurones and ChATir in the DMV/NA, and increased RVLM DBHir. Training increased treadmill performance, normalized autonomic tonus and IHR, restored the number of DMV and NA neurones and corrected ChATir without affecting ventricular function. There were strong positive correlations between parasympathetic tonus and ChATir in NA and DMV. RVLM DBHir was also normalized by training, but there was no change in neurone number and no correlation with sympathetic tonus. Training-induced preservation of preganglionic vagal neurones is crucial to normalize parasympathetic activity and restore autonomic balance to the heart even in the persistence of cardiac dysfunction. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  10. Adding a post-training FIFA 11+ exercise program to the pre-training FIFA 11+ injury prevention program reduces injury rates among male amateur soccer players: a cluster-randomised trial.

    PubMed

    Al Attar, Wesam Saleh A; Soomro, Najeebullah; Pappas, Evangelos; Sinclair, Peter J; Sanders, Ross H

    2017-10-01

    Does adding a post-training Fédération Internationale de Football Association (FIFA) 11+ exercise program to the pre-training FIFA 11+ injury prevention program reduce injury rates among male amateur soccer players? Cluster-randomised, controlled trial with concealed allocation. Twenty-one teams of male amateur soccer players aged 14 to 35 years were randomly assigned to the experimental group (n=10 teams, 160 players) or the control group (n=11 teams, 184 players). Both groups performed pre-training FIFA 11+ exercises for 20minutes. The experimental group also performed post-training FIFA 11+ exercises for 10minutes. The primary outcomes measures were incidence of overall injury, incidence of initial and recurrent injury, and injury severity. The secondary outcome measure was compliance to the experimental intervention (pre and post FIFA 11+ program) and the control intervention (pre FIFA 11+ program). During one season, 26 injuries (team mean=0.081 injuries/1000 exposure hours, SD=0.064) were reported in the experimental group, and 82 injuries were reported in the control group (team mean=0.324 injuries/1000hours, SD=0.084). Generalised Estimating Equations were applied with an intention-to-treat analysis. The pre and post FIFA 11+ program reduced the total number of injuries (χ 2 (1)=11.549, p=0.001) and the incidence of initial injury (χ 2 (2)=8.987, p=0.003) significantly more than the pre FIFA 11+ program alone. However, the odds of suffering a recurrent injury were not different between the two groups (χ 2 (1)=2.350, p=0.125). Moreover, the severity level of injuries was not dependent upon whether or not the pre and post FIFA 11+ program was implemented (χ 2 (1)=0.016, p=0.898). Implementation of the FIFA 11+ program pre-training and post-training reduced overall injury rates in male amateur soccer players more than the pre FIFA 11+ program alone. ACTRN12615001206516. [Al Attar WSA, Soomro N, Pappas E, Sinclair PJ, Sanders RH (2017) Adding a post-training FIFA 11+ exercise program to the pre-training FIFA 11+ injury prevention program reduces injury rates among male amateur soccer players: a cluster-randomised trial. Journal of Physiotherapy 63: 235-242]. Copyright © 2017 Australian Physiotherapy Association. Published by Elsevier B.V. All rights reserved.

  11. The Influence of CO2 and Exercise on Hypobaric Hypoxia Induced Pulmonary Edema in Rats

    PubMed Central

    Sheppard, Ryan L.; Swift, Joshua M.; Hall, Aaron; Mahon, Richard T.

    2018-01-01

    Introduction: Individuals with a known susceptibility to high altitude pulmonary edema (HAPE) demonstrate a reduced ventilation response and increased pulmonary vasoconstriction when exposed to hypoxia. It is unknown whether reduced sensitivity to hypercapnia is correlated with increased incidence and/or severity of HAPE, and while acute exercise at altitude is known to exacerbate symptoms the effect of exercise training on HAPE susceptibility is unclear. Purpose: To determine if chronic intermittent hypercapnia and exercise increases the incidence of HAPE in rats. Methods: Male Wistar rats were randomized to sedentary (sed-air), CO2 (sed-CO2,) exercise (ex-air), or exercise + CO2 (ex-CO2) groups. CO2 (3.5%) and treadmill exercise (15 m/min, 10% grade) were conducted on a metabolic treadmill, 1 h/day for 4 weeks. Vascular reactivity to CO2 was assessed after the training period by rheoencephalography (REG). Following the training period, animals were exposed to hypobaric hypoxia (HH) equivalent to 25,000 ft for 24 h. Pulmonary injury was assessed by wet/dry weight ratio, lung vascular permeability, bronchoalveolar lavage (BAL), and histology. Results: HH increased lung wet/dry ratio (HH 5.51 ± 0.29 vs. sham 4.80 ± 0.11, P < 0.05), lung permeability (556 ± 84 u/L vs. 192 ± 29 u/L, P < 0.001), and BAL protein (221 ± 33 μg/ml vs. 114 ± 13 μg/ml, P < 0.001), white blood cell (1.16 ± 0.26 vs. 0.66 ± 0.06, P < 0.05), and platelet (16.4 ± 2.3, vs. 6.0 ± 0.5, P < 0.001) counts in comparison to normobaric normoxia. Vascular reactivity was suppressed by exercise (−53% vs. sham, P < 0.05) and exercise+CO2 (−71% vs. sham, P < 0.05). However, neither exercise nor intermittent hypercapnia altered HH-induced changes in lung wet/dry weight, BAL protein and cellular infiltration, or pulmonary histology. Conclusion: Exercise training attenuates vascular reactivity to CO2 in rats but neither exercise training nor chronic intermittent hypercapnia affect HH- induced pulmonary edema. PMID:29541032

  12. Exercise training and immune crosstalk in breast cancer microenvironment: exploring the paradigms of exercise-induced immune modulation and exercise-induced myokines.

    PubMed

    Goh, Jorming; Niksirat, Negin; Campbell, Kristin L

    2014-01-01

    Observational research suggests that exercise may reduce the risk of breast cancer and improve survival. One proposed mechanism for the protective effect of aerobic exercise related to cancer risk and outcomes, but has not been examined definitively, is the immune response to aerobic exercise. Two prevailing paradigms are proposed. The first considers the host immune response as modifiable by aerobic exercise training. This exercise-modulated immune-tumor crosstalk in the mammary microenvironment may alter the balance between tumor initiation and progression versus tumor suppression. The second paradigm considers the beneficial role of exercise-induced, skeletal muscle-derived cytokines, termed "myokines". These myokines exert endocrine-like effects on multiple organs, including the mammary glands. In this systematic review, we i) define the role of macrophages and T-cells in breast cancer initiation and progression; ii) address the two paradigms that support exercise-induced immunomodulation; iii) systematically assessed the literature for exercise intervention that assessed biomarkers relevant to both paradigms in human intervention trials of aerobic exercise training, in healthy women and women with breast cancer; iv) incorporated pre-clinical animal studies and non-RCTs for background discussion of putative mechanisms, through which aerobic exercise training modulates the immunological crosstalk, or the myokine-tumor interaction in the tumor microenvironment; and v) speculated on the potential biomarkers and mechanisms that define an exercise-induced, anti-tumor "signature", with a view toward developing relevant biomarkers for future aerobic exercise intervention trials.

  13. Aerobic exercise training performed by parents reduces mice offspring adiposity.

    PubMed

    Romero, Paulo Vitor da Silva; Guariglia, Débora Alves; Da Rocha, Francielli Ferreira; Picoli, Caroline de Carvalho; Gilio, Gustavo Renan; Fabricio, Gabriel Sergio; Mathias, Paulo Cesar de Freitas; Moraes, Solange Marta Franzói de; Peres, Sidney Barnabé

    2018-07-01

    The present study aimed to determine the effects of physical training performed by parents on mice offspring adiposity. Male and female parents underwent an aerobic training protocol for 7 weeks. The trained and sedentary parents were allowed to mate and the resultant offspring divided in: S (Offspring from Sedentary Parents), T (Offspring from Trained Parents), ST (Offspring from Sedentary Father and Trained Mother) and TS (Offspring from Trained Father and Sedentary Mother). After weaning, offspring was euthanized, blood collected and samples of mesenteric and inguinal fat pads used to isolate adipocytes for morphologic and histological analyses. Lee index, mesenteric fat pad, sum of visceral fat and total fat weight of female T was reduced in comparison to the other groups (p < 0.05). Periepididymal and sum of visceral fat in male T group was also reduced when compared to the other groups (p < 0.05). The diameter of mesenteric and inguinal adipocytes of T group was smaller compared to all groups comparisons for both sexes (p < 0.05). In summary, exercise training performed by parents reduced visceral offspring adiposity, the diameter of subcutaneous adipocytes and improved metabolic parameters associated to metabolic syndrome.

  14. The Benefits of Exercise Training on Aerobic Capacity in Patients with Heart Failure and Preserved Ejection Fraction.

    PubMed

    do Prado, Danilo Marcelo Leite; Rocco, Enéas Antônio

    2017-01-01

    Heart failure with preserved ejection fraction (HFpEF) is defined as an inability of the ventricles to optimally accept blood from atria with blunted end- diastolic volume response by limiting the stroke volume and cardiac output. The HEpEF prevalence is higher in elderly and women and may be associated to hypertension, diabetes mellitus and atrial fibrillation. Severe exercise intolerance, manifested by dyspnea and fatigue during physical effort is the important chronic symptom in HFpEF patients, in which is the major determinant of their reduced quality of life. In this sense, several studies demonstrated reduced aerobic capacity in terms of lower peak oxygen consumption (peak VO 2 ) in patients with HFpEF. In addition, the lower aerobic capacity observed in HFpEF may be due to impaired both convective and diffusive O 2 transport (i.e. reduced cardiac output and arteriovenous oxygen difference, respectively).Exercise training program can help restore physiological function in order to increase aerobic capacity and improve the quality of life in HFpEF patients. Therefore, the primary purpose of this chapter was to clarify the physiological mechanisms associated with reduced aerobic capacity in HFpEF patients. Secondly, special focus was devoted to show how aerobic exercise training can improve aerobic capacity and quality of life in HFpEF patients.

  15. Running exercise delays neurodegeneration in amygdala and hippocampus of Alzheimer's disease (APP/PS1) transgenic mice.

    PubMed

    Lin, Tzu-Wei; Shih, Yao-Hsiang; Chen, Shean-Jen; Lien, Chi-Hsiang; Chang, Chia-Yuan; Huang, Tung-Yi; Chen, Shun-Hua; Jen, Chauying J; Kuo, Yu-Min

    2015-02-01

    Alzheimer's disease (AD) is an age-related neurodegenerative disease. Post-mortem examination and brain imaging studies indicate that neurodegeneration is evident in the hippocampus and amygdala of very early stage AD patients. Exercise training is known to enhance hippocampus- and amygdala-associated neuronal function. Here, we investigated the effects of exercise (running) on the neuronal structure and function of the hippocampus and amygdala in APP/PS1 transgenic (Tg) mice. At 4-months-old, an age before amyloid deposition, the amygdala-associated, but not the hippocampus-associated, long-term memory was impaired in the Tg mice. The dendritic complexities of the amygdalar basolateral neurons, but not those in the hippocampal CA1 and CA3 neurons, were reduced. Furthermore, the levels of BDNF/TrkB signaling molecules (i.e. p-TrkB, p-Akt and p-PKC) were reduced in the amygdala, but not in the hippocampus of the 4-month-old Tg mice. The concentrations of Aβ40 and Aβ42 in the amygdala were higher than those in the hippocampus. Ten weeks of treadmill training (from 1.5- to 4-month-old) increased the hippocampus-associated memory and dendritic arbor of the CA1 and CA3 neurons, and also restored the amygdala-associated memory and the dendritic arbor of amygdalar basolateral neurons in the Tg mice. Similarly, exercise training also increased the levels of p-TrkB, p-AKT and p-PKC in the hippocampus and amygdala. Furthermore, exercise training reduced the levels of soluble Aβ in the amygdala and hippocampus. Exercise training did not change the levels of APP or RAGE, but significantly increased the levels of LRP-1 in both brain regions of the Tg mice. In conclusion, our results suggest that tests of amygdala function should be incorporated into subject selection for early prevention trials. Long-term exercise protects neurons in the amygdala and hippocampus against AD-related degeneration, probably via enhancements of BDNF signaling pathways and Aβ clearance. Physical exercise may serve as a means to delay the onset of AD. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. National Strength and Conditioning Association Position Statement: Health Aspects of Resistance Exercise and Training.

    ERIC Educational Resources Information Center

    Conley, Michael S.; Rozenek, Ralph

    2001-01-01

    Resistance training may enhance cardiovascular health, improve body composition, increase bone mineral density, reduce anxiety and depression, reduce the risk of injury during other sports, and increase muscular strength and endurance. The paper describes the effects of resistance training on: the cardiovascular system, energy expenditure and body…

  17. [Effect of 3-month exercise training on daily energy expenditure in formerly obese women with reduced and stable weight].

    PubMed

    Buemann, B; Astrup, A V

    1993-06-14

    Predisposition to obesity has been suggested to be related to a low energy expenditure (EE). This condition could be counteracted by physical exercise. In the present study we wanted to elucidate if aerob training could increase sedentary 24-hour energy expenditure in formerly obese subjects. Seven reduced-obese premenopausal women were studied in a respiration chamber before and after a three month period of aerobic training. No significant effects of training were seen on daytime, sleeping or total 24-hour EE. However, the change in daytime EE was positively correlated to the change in VO2max. Sleeping and 24-hour respiratory quotients were slightly increased after the training period. In order to reveal a possible role of the sympathetic nervous system in the observed effect of training, additional experiments were performed with beta blockade. However, no interactions between training and beta blockade were found.

  18. Endurance- and Resistance-Trained Men Exhibit Lower Cardiovascular Responses to Psychosocial Stress Than Untrained Men.

    PubMed

    Gröpel, Peter; Urner, Maren; Pruessner, Jens C; Quirin, Markus

    2018-01-01

    Evidence shows that regular physical exercise reduces physiological reactivity to psychosocial stress. However, previous research mainly focused on the effect of endurance exercise, with only a few studies looking at the effect of resistance exercise. The current study tested whether individuals who regularly participate in either endurance or resistance training differ from untrained individuals in adrenal and cardiovascular reactivity to psychosocial stress. Twelve endurance-trained men, 10 resistance-trained men, and 12 healthy but untrained men were exposed to a standardized psychosocial stressor, the Trier Social Stress Test. Measurements of heart rate, free salivary cortisol levels, and mood were obtained throughout the test and compared among the three groups. Overall, both endurance- and resistance-trained men had lower heart rate levels than untrained men, indicating higher cardiac performance of the trained groups. Trained men also exhibited lower heart rate responses to psychosocial stress compared with untrained men. There were no significant group differences in either cortisol responses or mood responses to the stressor. The heart rate results are consistent with previous studies indicating reduced cardiovascular reactivity to psychosocial stress in trained individuals. These findings suggest that long-term endurance and resistance trainings may be related to the same cardiovascular benefits, without exhibiting strong effects on the cortisol reactivity to stress.

  19. Effects of detraining and retraining on muscle energy-sensing network and meteorin-like levels in obese mice.

    PubMed

    Bae, Ju Yong; Woo, Jinhee; Kang, Sunghwun; Shin, Ki Ok

    2018-04-27

    Increased intramuscular peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) with exercise directly or indirectly affects other tissues, but the effector pathway of PGC-1α has not been clearly elucidated. The purpose of this study was to investigate the effect of exercise and/or dietary change on the protein levels of the soleus muscle energy-sensing network and meteorin-like (Metrnl), and additionally to analyze the detraining and retraining effects in high-fat diet (HFD)-induced obese mice. One hundred male C57BL/6 mice were divided into normal-diet + sedentary (CO, n = 20) and HFD + sedentary (HF, n = 80) groups, and obesity was induced in the HF group through consumption of a 45% HFD for 6 weeks. The HF group was subdivided into HF only (n = 20), HF + training (HFT, n = 20), dietary change + sedentary (HFND, n = 20), and HFND + training (HFNDT, n = 20) groups, and the mice in the training groups underwent a treadmill training for 8 weeks, 5 times per week, 40 min per day. The HFT and HFNDT groups underwent 8-week training, 8-week detraining, and 4-week retraining. An 8-week training was effective in increasing the protein levels of soleus muscle AMP-activated protein kinase (AMPK), PGC-1α, and plasma Metrnl in the obese mice (P < 0.05). Moreover, exercise in obesity reduced body weight (P < 0.05), and exercise with dietary conversion was effective in reducing body weight (P < 0.05) and fat mass (P < 0.05) after 8-week training. 8-week detraining restored the increased protein level to the pre-exercise state, but, the previous exercise effect in body weight and fat mass (P < 0.05) of the HFNDT group remained until the end of 4-week detraining. 4-week retraining was effective in increasing the protein levels of soleus muscle AMPK, PGC-1α, blood Metrnl (P < 0.05), and reducing in body weight (P < 0.05) and fat mass (P < 0.05), when retraining with dietary change. The results of this study suggest that regular exercise is indispensable to reduce body weight and fat mass through upregulation of the muscle energy-sensing network and Metrnl protein levels, and retraining with dietary change is necessary to obtain the retraining effects more quickly.

  20. Isometric handgrip training reduces arterial pressure at rest without changes in sympathetic nerve activity

    NASA Technical Reports Server (NTRS)

    Ray, C. A.; Carrasco, D. I.

    2000-01-01

    The purpose of this study was to determine whether isometric handgrip (IHG) training reduces arterial pressure and whether reductions in muscle sympathetic nerve activity (MSNA) mediate this drop in arterial pressure. Normotensive subjects were assigned to training (n = 9), sham training (n = 7), or control (n = 8) groups. The training protocol consisted of four 3-min bouts of IHG exercise at 30% of maximal voluntary contraction (MVC) separated by 5-min rest periods. Training was performed four times per week for 5 wk. Subjects' resting arterial pressure and heart rate were measured three times on 3 consecutive days before and after training, with resting MSNA (peroneal nerve) recorded on the third day. Additionally, subjects performed IHG exercise at 30% of MVC to fatigue followed by muscle ischemia. In the trained group, resting diastolic (67 +/- 1 to 62 +/- 1 mmHg) and mean arterial pressure (86 +/- 1 to 82 +/- 1 mmHg) significantly decreased, whereas systolic arterial pressure (116 +/- 3 to 113 +/- 2 mmHg), heart rate (67 +/- 4 to 66 +/- 4 beats/min), and MSNA (14 +/- 2 to 15 +/- 2 bursts/min) did not significantly change following training. MSNA and cardiovascular responses to exercise and postexercise muscle ischemia were unchanged by training. There were no significant changes in any variables for the sham training and control groups. The results indicate that IHG training is an effective nonpharmacological intervention in lowering arterial pressure.

  1. Exercise training during normobaric hypoxic confinement does not alter hormonal appetite regulation.

    PubMed

    Debevec, Tadej; Simpson, Elizabeth J; Macdonald, Ian A; Eiken, Ola; Mekjavic, Igor B

    2014-01-01

    Both exposure to hypoxia and exercise training have the potential to modulate appetite and induce beneficial metabolic adaptations. The purpose of this study was to determine whether daily moderate exercise training performed during a 10-day exposure to normobaric hypoxia alters hormonal appetite regulation and augments metabolic health. Fourteen healthy, male participants underwent a 10-day hypoxic confinement at ∼ 4000 m simulated altitude (FIO2 = 0.139 ± 0.003%) either combined with daily moderate intensity exercise (Exercise group; N = 8, Age = 25.8 ± 2.4 yrs, BMI = 22.9 ± 1.2 kg · m(-2)) or without any exercise (Sedentary group; N = 6 Age = 24.8 ± 3.1 yrs, BMI = 22.3 ± 2.5 kg · m(-2)). A meal tolerance test was performed before (Pre) and after the confinement (Post) to quantify fasting and postp randial concentrations of selected appetite-related hormones and metabolic risk markers. 13C-Glucose was dissolved in the test meal and 13CO2 determined in breath samples. Perceived appetite ratings were obtained throughout the meal tolerance tests. While body mass decreased in both groups (-1.4 kg; p = 0.01) following the confinement, whole body fat mass was only reduced in the Exercise group (-1.5 kg; p = 0.01). At Post, postprandial serum insulin was reduced in the Sedentary group (-49%; p = 0.01) and postprandial plasma glucose in the Exercise group (-19%; p = 0.03). Fasting serum total cholesterol levels were reduced (-12%; p = 0.01) at Post in the Exercise group only, secondary to low-density lipoprotein cholesterol reduction (-16%; p = 0.01). No differences between groups or testing periods were noted in fasting and/or postprandial concentrations of total ghrelin, peptide YY, and glucagon-like peptide-1, leptin, adiponectin, expired 13CO2 as well as perceived appetite ratings (p>0.05). These findings suggest that performing daily moderate intensity exercise training during continuous hypoxic exposure does not alter hormonal appetite regulation but can improve the lipid profile in healthy young males.

  2. Moderate Load Eccentric Exercise; A Distinct Novel Training Modality

    PubMed Central

    Hoppeler, Hans

    2016-01-01

    Over the last 20 years a number of studies have been published using progressive eccentric exercise protocols on motorized ergometers or similar devices that allow for controlled application of eccentric loads. Exercise protocols ramp eccentric loads over an initial 3 weeks period in order to prevent muscle damage and delayed onset muscle soreness. Final training loads reach 400–500 W in rehabilitative settings and over 1200 W in elite athletes. Training is typically carried out three times per week for durations of 20–30 min. This type of training has been characterizes as moderate load eccentric exercise. It has also been denoted RENEW (Resistance Exercise via Negative Eccentric Work by LaStayo et al., 2014). It is distinct from plyometric exercises (i.e., drop jumps) that impose muscle loads of several thousand Watts on muscles and tendons. It is also distinct from eccentric overload training whereby loads in a conventional strength training setting are increased in the eccentric phase of the movement to match concentric loads. Moderate load eccentric exercise (or RENEW) has been shown to be similarly effective as conventional strength training in increasing muscle strength and muscle volume. However, as carried out at higher angular velocities of joint movement, it reduces joint loads. A hallmark of moderate load eccentric exercise is the fact that the energy requirements are typically 4-fold smaller than in concentric exercise of the same load. This makes moderate load eccentric exercise training the tool of choice in medical conditions with limitations in muscle energy supply. The use and effectiveness of moderate load eccentric exercise has been demonstrated mostly in small scale studies for cardiorespiratory conditions, sarcopenia of old age, cancer, diabetes type 2, and neurological conditions. It has also been used effectively in the prevention and rehabilitation of injuries of the locomotor system in particular the rehabilitation after anterior cruciate ligament surgery. PMID:27899894

  3. The effect of cinnamon extract and long-term aerobic training on heart function, biochemical alterations and lipid profile following exhaustive exercise in male rats.

    PubMed

    Badalzadeh, Reza; Shaghaghi, Mehrnoush; Mohammadi, Mustafa; Dehghan, Gholamreza; Mohammadi, Zeynab

    2014-12-01

    Regular training is suggested to offer a host of benefits especially on cardiovascular system. In addition, medicinal plants can attenuate oxidative stress-mediated damages induced by stressor insults. In this study, we investigated the concomitant effect of cinnamon extract and long-term aerobic training on cardiac function, biochemical alterations and lipid profile following exhaustive exercise. Male Wistar rats (250-300 g) were divided into five groups depending on receiving regular training, cinnamon bark extraction, none or both of them, and then encountered with an exhausted exercise in last session. An 8-week endurance training program was designed with a progressive increase in training speed and time. Myocardial hemodynamics was monitored using a balloon-tipped catheter inserted into left ventricles. Blood samples were collected for analyzing biochemical markers, lipid profiles and lipid-peroxidation marker, malondealdehyde (MDA). Trained animals showed an enhanced cardiac force and contractility similar to cinnamon-treated rats. Co-application of regular training and cinnamon had additive effect in cardiac hemodynamic (P<0.05). Both regular training and supplementation with cinnamon significantly decreased serum levels of total cholesterol, low-density lipoprotein (LDL), and increased high-density lipoprotein (HDL) level and HDL/LDL ratio as compared to control group (P<0.01). Furthermore, pre-treatment with cinnamon extract and/or regular training significantly reduced MDA level elevation induced by exhausted exercise (P<0.01). Long-term treatment of rats with cinnamon and regular training improved cardiac hemodynamic through an additive effect. The positive effects of cinnamon and regular training on cardiac function were associated with a reduced serum MDA level and an improved blood lipid profile.

  4. Flexibility training and the repeated-bout effect: priming interventions prior to eccentric training of the knee flexors.

    PubMed

    Leslie, Andrew W; Lanovaz, Joel L; Andrushko, Justin W; Farthing, Jonathan P

    2017-10-01

    Both the repeated-bout effect and increased flexibility have been linked to reduced muscle damage, fatigue, and strength loss after intense eccentric exercise. Our purpose was to compare the eccentric-training (ECC) response after first priming the muscles with either static flexibility training or a single intense bout of eccentric exercise. Twenty-five participants were randomly assigned to flexibility training (n = 8; 3×/week; 30 min/day), a single bout of intense eccentric exercise (n = 9), or no intervention (control; n = 8) during a 4-week priming phase, prior to completing a subsequent 4-week period of eccentric training of the knee flexors. Testing was completed prior to the priming phase, before ECC, during acute ECC (0 h, 24 h, and 48 h after bouts 1 and 4), and after ECC. Measures included muscle thickness (MT; via ultrasound); isometric, concentric, and eccentric strength; muscle power (dynamometer); electromyography; range of motion; optimal angle of peak torque; and soreness (visual analog scale). Flexibility training and single-bout groups had 47% less soreness at 48 h after the first bout of ECC compared with control (p < 0.05). The flexibility training group had 10% less soreness at 48 h after the fourth ECC bout compared with both the single-bout and control groups (p < 0.05). Isometric strength loss was attenuated for the flexibility training group (-9%) after the fourth ECC bout compared with control (-19%; p < 0.05). All groups had similar increases in strength, MT, and power after ECC (p < 0.05). Prior flexibility training may be more effective than a single session of eccentric exercise in reducing adverse symptoms during the acute stages of eccentric training; however, these benefits did not translate into greater performance after training.

  5. Strength exercise improves muscle mass and hepatic insulin sensitivity in obese youth

    USDA-ARS?s Scientific Manuscript database

    Data on the metabolic effects of resistance exercise (strength training) in adolescents are limited. The objective of this study was to determine whether a controlled resistance exercise program without dietary intervention or weight loss reduces body fat accumulation, increases lean body mass, and ...

  6. Exercise and diet enhance fat oxidation and reduce insulin resistance in older obese adults

    PubMed Central

    Solomon, Thomas P.J.; Sistrun, Sakita N.; Krishnan, Raj K.; Del Aguila, Luis F.; Marchetti, Christine M.; O'Carroll, Susan M.; O'Leary, Valerie B.; Kirwan, John P.

    2013-01-01

    Older, obese, and sedentary individuals are at high risk of developing diabetes and cardiovascular disease. Exercise training improves metabolic anomalies associated with such diseases, but the effects of caloric restriction in addition to exercise in such a high risk group are not known. Changes in body composition and metabolism during a lifestyle intervention were investigated in twenty three older, obese men and women (aged 66 ± 1 years, BMI 33.2 ± 1.4 kg.m−2) with impaired glucose tolerance. All volunteers undertook twelve weeks of aerobic exercise training (5 days per week for 60 min @ 75% VO2max) with either normal caloric intake (eucaloric group, 1901 ± 277 kcal.day−1, n = 12) or a reduced-calorie diet (hypocaloric group, 1307 ± 70 kcal.day−1, n = 11), as dictated by nutritional counseling. Body composition (decreased fat mass; maintained fat-free mass), aerobic fitness (VO2max), leptinemia, insulin sensitivity, and intramyocellular lipid accumulation (IMCL) in skeletal muscle improved in both groups (P < 0.05). Improvements in body composition, leptin and basal fat oxidation were greater in the hypocaloric group. Following the intervention there was a correlation between the increase in basal fat oxidation and the decrease in IMCL (r = −0.53, P = 0.04). In addition, basal fat oxidation was associated with circulating leptin after (r = 0.65, P = 0.0007), but not before the intervention (r = 0.05, P = 0.84). In conclusion, these data show that exercise training improves resting substrate oxidation and creates a metabolic milieu that appears to promote lipid utilization in skeletal muscle, thus facilitating a reversal of insulin resistance. We also demonstrate that leptin sensitivity is improved, but that such a trend may rely on reducing caloric intake in addition to exercise training. PMID:18323464

  7. The influence of exercise intensity on heat acclimation in trained subjects.

    PubMed

    Houmard, J A; Costill, D L; Davis, J A; Mitchell, J B; Pascoe, D D; Robergs, R A

    1990-10-01

    Low-intensity exercise (less than or equal to 50% VO2max) has been demonstrated to produce heat acclimation (HA) in trained subjects. The purpose of this study was to determine whether shorter-duration, moderate-intensity exercise would also result in HA. Nine trained runners performed two 9-d exercise heat-stress protocols. Each protocol consisted of a 90-min heat tolerance test on days 1 (HTT1) and 9 (HTT2). On days 2-8 the subjects exercised at 50% VO2max for 60 min.d-1 (T50) or at 75% VO2max for 30-35 min.d-1 (T75). Final HTT2 heart rate and rectal temperature (Tr) were significantly (P less than 0.001) reduced, as compared to HTT1, with no differences between T50 and T75. Both protocols resulted in significant (P less than 0.05) reductions in HTT2 pre-exercise Tr and total exercising caloric expenditure, both of which are known to contribute to HA. No changes in resting plasma volume, osmolality, protein, post-HTT aldosterone, and exercising sweat rate were observed. These results demonstrate that equal levels of HA were obtained with T50 and T75, which suggests that moderate-intensity, short-duration exercise in the heat can produce HA in trained subjects.

  8. Exercise-Induced Oxidative Stress Responses in the Pediatric Population

    PubMed Central

    Avloniti, Alexandra; Chatzinikolaou, Athanasios; Deli, Chariklia K.; Vlachopoulos, Dimitris; Gracia-Marco, Luis; Leontsini, Diamanda; Draganidis, Dimitrios; Jamurtas, Athanasios Z.; Mastorakos, George; Fatouros, Ioannis G.

    2017-01-01

    Adults demonstrate an upregulation of their pro- and anti-oxidant mechanisms in response to acute exercise while systematic exercise training enhances their antioxidant capacity, thereby leading to a reduced generation of free radicals both at rest and in response to exercise stress. However, less information exists regarding oxidative stress responses and the underlying mechanisms in the pediatric population. Evidence suggests that exercise-induced redox perturbations may be valuable in order to monitor exercise-induced inflammatory responses and as such training overload in children and adolescents as well as monitor optimal growth and development. The purpose of this review was to provide an update on oxidative stress responses to acute and chronic exercise in youth. It has been documented that acute exercise induces age-specific transient alterations in both oxidant and antioxidant markers in children and adolescents. However, these responses seem to be affected by factors such as training phase, training load, fitness level, mode of exercise etc. In relation to chronic adaptation, the role of training on oxidative stress adaptation has not been adequately investigated. The two studies performed so far indicate that children and adolescents exhibit positive adaptations of their antioxidant system, as adults do. More studies are needed in order to shed light on oxidative stress and antioxidant responses, following acute exercise and training adaptations in youth. Available evidence suggests that small amounts of oxidative stress may be necessary for growth whereas the transition to adolescence from childhood may promote maturation of pro- and anti-oxidant mechanisms. Available evidence also suggests that obesity may negatively affect basal and exercise-related antioxidant responses in the peripubertal period during pre- and early-puberty. PMID:28106721

  9. Treatment of dyslipidemia with statins and physical exercises: recent findings of skeletal muscle responses.

    PubMed

    Bonfim, Mariana Rotta; Oliveira, Acary Souza Bulle; do Amaral, Sandra Lia; Monteiro, Henrique Luiz

    2015-04-01

    Statin treatment in association with physical exercise practice can substantially reduce cardiovascular mortality risk of dyslipidemic individuals, but this practice is associated with myopathic event exacerbation. This study aimed to present the most recent results of specific literature about the effects of statins and its association with physical exercise on skeletal musculature. Thus, a literature review was performed using PubMed and SciELO databases, through the combination of the keywords "statin" AND "exercise" AND "muscle", restricting the selection to original studies published between January 1990 and November 2013. Sixteen studies evaluating the effects of statins in association with acute or chronic exercises on skeletal muscle were analyzed. Study results indicate that athletes using statins can experience deleterious effects on skeletal muscle, as the exacerbation of skeletal muscle injuries are more frequent with intense training or acute eccentric and strenuous exercises. Moderate physical training, in turn, when associated to statins does not increase creatine kinase levels or pain reports, but improves muscle and metabolic functions as a consequence of training. Therefore, it is suggested that dyslipidemic patients undergoing statin treatment should be exposed to moderate aerobic training in combination to resistance exercises three times a week, and the provision of physical training prior to drug administration is desirable, whenever possible.

  10. Clinical impact of exercise in patients with peripheral arterial disease.

    PubMed

    Novakovic, Marko; Jug, Borut; Lenasi, Helena

    2017-08-01

    Increasing prevalence, high morbidity and mortality, and decreased health-related quality of life are hallmarks of peripheral arterial disease. About one-third of peripheral arterial disease patients have intermittent claudication with deleterious effects on everyday activities, such as walking. Exercise training improves peripheral arterial disease symptoms and is recommended as first line therapy for peripheral arterial disease. This review examines the effects of exercise training beyond improvements in walking distance, namely on vascular function, parameters of inflammation, activated hemostasis and oxidative stress, and quality of life. Exercise training not only increases walking distance and physiologic parameters in patients with peripheral arterial disease, but also improves the cardiovascular risk profile by helping patients achieve better control of hypertension, hyperglycemia, obesity and dyslipidemia, thus further reducing cardiovascular risk and the prevalence of coexistent atherosclerotic diseases. American guidelines suggest supervised exercise training, performed for a minimum of 30-45 min, at least three times per week, for at least 12 weeks. Walking is the most studied exercise modality and its efficacy in improving cardiovascular parameters in patients with peripheral arterial disease has been extensively proven. As studies have shown that supervised exercise training improves walking performance, cardiovascular parameters and quality of life in patients with peripheral arterial disease, it should be encouraged and more often prescribed.

  11. Peroxisome proliferator-activated receptor gamma co-activator 1 gene Gly482Ser polymorphism is associated with the response of low-density lipoprotein cholesterol concentrations to exercise training in elderly Japanese.

    PubMed

    Tobina, Takuro; Mori, Yukari; Doi, Yukiko; Nakayama, Fuki; Kiyonaga, Akira; Tanaka, Hiroaki

    2017-09-01

    Muscle peroxisome proliferator-activated receptor gamma co-activator 1 (PGC-1)α gene expression is influenced by the Gly482Ser gene polymorphism, which is a candidate genetic risk factor for diabetes mellitus and obesity. This study investigated the effects of PGC-1 gene Gly482Ser polymorphisms on alterations in glucose and lipid metabolism induced by exercise training. A 12-week intervention study was performed for 119 participants who were more than 65 years of age and completed exercise training at lactate threshold intensity. Total cholesterol and low-density lipoprotein cholesterol were significantly reduced in Gly/Gly but not in Gly/Ser and Ser/Ser participants after exercise. The Gly/Gly genotype of the PGC-1 gene Gly482Ser polymorphism influences the effects of moderate-intensity exercise training on low-density lipoprotein cholesterol and total cholesterol concentrations in older people.

  12. Moderate physical exercise reduces parasitaemia and protects colonic myenteric neurons in mice infected with Trypanosoma cruzi.

    PubMed

    Moreira, Neide M; Santos, Franciele d N; Toledo, Max Jean d O; Moraes, Solange M F d; Araujo, Eduardo J d A; Sant'Ana, Debora d M G; Araujo, Silvana M d

    2013-12-01

    This study evaluated the influence of moderate physical exercise on the myenteric neurons in the colonic intestinal wall of mice that had been infected with Trypanosoma cruzi. Parasitology and immunological aspects of the mice were considered. Forty-day-old male Swiss mice were divided into four groups: Trained Infected (TI), Sedentary Infected (SI), Trained Control (TC), and Sedentary Control (SC). The TC and TI were subjected to a moderate physical exercise program on a treadmill for 8 weeks. Three days after finishing exercise, the TI and SI groups were inoculated with 1,300 blood trypomastigotes of the Y strain-T. cruzi. After 75 days of infection results were obtained. Kruskal-Wallis or Analyze of variance (Tukey post hoc test) at 5% level of significance was performed. Moderate physical exercise reduced both the parasite peak (day 8 of infection) and total parasitemia compared with the sedentary groups (P < 0.05). This activity also contributed to neuronal survival (P < 0.05). Exercise caused neuronal hypertrophy (P < 0.05) and an increase in the total thickness of the intestinal wall (P < 0.05). The TI group exhibited an increase in the number of intraepithelial lymphocytes (P > 0.05). In trained animals, the number of goblet cells was reduced compared with sedentary animals (P < 0.05). Physical exercise prevented the formation of inflammatory foci in the TI group (P < 0.05) and increased the synthesis of TNF-α (P < 0.05) and TGF-β (P > 0.05). The present results demonstrated the benefits of moderate physical exercise, and reaffirmed the possibility of that it may contribute to improving clinical treatment in Chagas' disease patients. © 2013 The Authors. International Journal of Experimental Pathology © 2013 International Journal of Experimental Pathology.

  13. Moderate physical exercise reduces parasitaemia and protects colonic myenteric neurons in mice infected with Trypanosoma cruzi

    PubMed Central

    Moreira, Neide M; Santos, Franciele d N; Toledo, Max Jean d O; Moraes, Solange M F d; Araujo, Eduardo J d A; Sant'Ana, Debora d M G; Araujo, Silvana M d

    2013-01-01

    This study evaluated the influence of moderate physical exercise on the myenteric neurons in the colonic intestinal wall of mice that had been infected with Trypanosoma cruzi. Parasitology and immunological aspects of the mice were considered. Forty-day-old male Swiss mice were divided into four groups: Trained Infected (TI), Sedentary Infected (SI), Trained Control (TC), and Sedentary Control (SC). The TC and TI were subjected to a moderate physical exercise program on a treadmill for 8 weeks. Three days after finishing exercise, the TI and SI groups were inoculated with 1,300 blood trypomastigotes of the Y strain-T. cruzi. After 75 days of infection results were obtained. Kruskal-Wallis or Analyze of variance (Tukey post hoc test) at 5% level of significance was performed. Moderate physical exercise reduced both the parasite peak (day 8 of infection) and total parasitemia compared with the sedentary groups (P < 0.05). This activity also contributed to neuronal survival (P < 0.05). Exercise caused neuronal hypertrophy (P < 0.05) and an increase in the total thickness of the intestinal wall (P < 0.05). The TI group exhibited an increase in the number of intraepithelial lymphocytes (P > 0.05). In trained animals, the number of goblet cells was reduced compared with sedentary animals (P < 0.05). Physical exercise prevented the formation of inflammatory foci in the TI group (P < 0.05) and increased the synthesis of TNF-α (P < 0.05) and TGF-β (P > 0.05). The present results demonstrated the benefits of moderate physical exercise, and reaffirmed the possibility of that it may contribute to improving clinical treatment in Chagas' disease patients. PMID:24205797

  14. Exercise countermeasures for bed-rest deconditioning

    NASA Technical Reports Server (NTRS)

    Greenleaf, John (Editor)

    1993-01-01

    The purpose for this 30-day bed rest study was to investigate the effects of short-term, high intensity isotonic and isokinetic exercise training on maintenance of working capacity (peak oxygen uptake), muscular strength and endurance, and on orthostatic tolerance, posture and gait. Other data were collected on muscle atrophy, bone mineralization and density, endocrine analyses concerning vasoactivity and fluid-electrolyte balance, muscle intermediary metabolism, and on performance and mood of the subjects. It was concluded that: The subjects maintained a relatively stable mood, high morale, and high esprit de corps throughout the study. Performance improved in nearly all tests in almost all the subjects. Isotonic training, as opposed to isokinetic exercise training, was associated more with decreasing levels of psychological tension, concentration, and motivation; and improvement in the quality of sleep. Working capacity (peak oxygen uptake) was maintained during bed rest with isotonic exercise training; it was not maintained with isokinetic or no exercise training. In general, there was no significant decrease in strength or endurance of arm or leg muscles during bed rest, in spite of some reduction in muscle size (atrophy) of some leg muscles. There was no effect of isotonic exercise training on orthostasis, since tilt-table tolerance was reduced similarly in all three groups following bed rest. Bed rest resulted in significant decreases of postural stability and self-selected step length, stride length, and walking velocity, which were not influenced by either exercise training regimen. Most pre-bed rest responses were restored by the fourth day of recovery.

  15. Exercise training improves selected aspects of daytime functioning in adults with obstructive sleep apnea.

    PubMed

    Kline, Christopher E; Ewing, Gary B; Burch, James B; Blair, Steven N; Durstine, J Larry; Davis, J Mark; Youngstedt, Shawn D

    2012-08-15

    To explore the utility of exercise training for improving daytime functioning in adults with obstructive sleep apnea (OSA). Forty-three sedentary and overweight/obese adults aged 18-55 years with at least moderate-severity untreated OSA (apnea-hypopnea index ≥ 15) were randomized to 12 weeks of moderate-intensity aerobic and resistance exercise training (n = 27) or low-intensity stretching control treatment (n = 16). As part of a trial investigating the efficacy of exercise training on OSA severity, daytime functioning was assessed before and following the intervention. Sleepiness, functional impairment due to sleepiness, depressive symptoms, mood, and quality of life (QOL) were evaluated with validated questionnaires, and cognitive function was assessed with a neurobehavioral performance battery. OSA severity was measured with one night of laboratory polysomnography before and following the intervention. Compared with stretching control, exercise training resulted in significant improvements in depressive symptoms, fatigue and vigor, and aspects of QOL (p < 0.05). Sleepiness and functional impairment due to sleepiness also were improved following exercise versus control to a similar degree in terms of effect sizes (d > 0.5), though these changes were not statistically significant. No neurobehavioral performance improvements were found. Reduced fatigue following exercise training was mediated by a reduction in OSA severity, but changes in OSA severity did not significantly mediate improvement in any other measure of daytime functioning. These data provide preliminary evidence that exercise training may be helpful for improving aspects of daytime functioning of adults with OSA. Larger trials are needed to further verify the observed improvements.

  16. Resistance exercise training attenuates exercise-induced lipid peroxidation in the elderly.

    PubMed

    Vincent, Kevin R; Vincent, Heather K; Braith, Randy W; Lennon, Shannon L; Lowenthal, David T

    2002-08-01

    This study examined the effects of 6 months of resistance exercise (RX) on basal and post-aerobic exercise lipid peroxidation (LIPOX). Men and women [n = 62, mean (SD) age 68.4 (6) years] were divided randomly into either a control (n = 16, CON), low-intensity training [LEX n = 24; 50% one-repetition maximum (1RM), 13 repetitions/exercise], or high-intensity training (HEX n = 22, 80% 1RM, 8 repetitions/exercise) group. Pre- and post-training, subjects performed a graded aerobic exercise test (GXT). Blood samples were collected prior to and 10 min following each GXT. Subjects trained 3 times per week for 6 months using 12 RX machines. LIPOX was determined by measuring levels of thiobarbituric reactive acid substances (TBARS) and lipid hydroperoxides (PEROX). RX had no effect on resting LIPOX. Post-training, post-GXT TBARS were lower in the LEX and HEX groups by 14% and 18%, respectively, compared to CON (P < 0.05). Post-GXT PEROX levels were lower (P < 0.05) in LEX and HEX compared to CON [CON 3.51 (0.56) nmol/ml, LEX 2.89 (0.80) nmol/ml, HEX 2.99 (0.63) nmol/ml]. Serum total and non-protein (glutathione) thiols were higher in the LEX and HEX groups following training compared to CON (P < 0.05). These data suggest that RX can (1) reduce serum LIPOX, (2) provide protection against oxidizing agents in vitro, and (3) provide a "cross-protection" against the oxidative stress generated by aerobic exercise, perhaps mediated by improvements in the thiol portion of the antioxidant defense.

  17. Prior exercise training blunts short-term high-fat diet-induced weight gain.

    PubMed

    Snook, Laelie A; MacPherson, Rebecca E K; Monaco, Cynthia M F; Frendo-Cumbo, Scott; Castellani, Laura; Peppler, Willem T; Anderson, Zachary G; Buzelle, Samyra L; LeBlanc, Paul J; Holloway, Graham P; Wright, David C

    2016-08-01

    High-fat diets rapidly cause weight gain and glucose intolerance. We sought to determine whether these changes could be mitigated with prior exercise training. Male C57BL/6J mice were exercise-trained by treadmill running (1 h/day, 5 days/wk) for 4 wk. Twenty-four hours after the final bout of exercise, mice were provided with a high-fat diet (HFD; 60% kcal from lard) for 4 days, with no further exercise. In mice fed the HFD prior to exercise training, the results were blunted weight gain, reduced fat mass, and a slight attenuation in glucose intolerance that was mirrored by greater insulin-induced Akt phosphorylation in skeletal muscle compared with sedentary mice fed the HFD. When ad libitum-fed sedentary mice were compared with sedentary high-fat fed mice that were calorie restricted (-30%) to match the weight gain of the previously trained high-fat fed mice, the same attenuated impairments in glucose tolerance were found. Blunted weight gain was associated with a greater capacity to increase energy expenditure in trained compared with sedentary mice when challenged with a HFD. Although mitochondrial enzymes in white adipose tissue and UCP-1 protein content in brown adipose tissue were increased in previously exercised compared with sedentary mice fed a HFD, ex vivo mitochondrial respiration was not increased in either tissue. Our data suggest that prior exercise training attenuates high-fat diet-induced weight gain and glucose intolerance and is associated with a greater ability to increase energy expenditure in response to a high-fat diet. Copyright © 2016 the American Physiological Society.

  18. JELC-LITE: Unconventional Instructional Design for Special Operations Training

    NASA Technical Reports Server (NTRS)

    Friedman, Mark

    2012-01-01

    Current special operations staff training is based on the Joint Event Life Cycle (JELC). It addresses operational level tasks in multi-week, live military exercises which are planned over a 12 to 18 month timeframe. As the military experiences changing global mission sets, shorter training events using distributed technologies will increasingly be needed to augment traditional training. JELC-Lite is a new approach for providing relevant training between large scale exercises. This new streamlined, responsive training model uses distributed and virtualized training technologies to establish simulated scenarios. It keeps proficiency levels closer to optimal levels -- thereby reducing the performance degradation inherent in periodic training. It can be delivered to military as well as under-reached interagency groups to facilitate agile, repetitive training events. JELC-Lite is described by four phases paralleling the JELC, differing mostly in scope and scale. It has been successfully used with a Theater Special Operations Command and fits well within the current environment of reduced personnel and financial resources.

  19. Aerobic exercise training and burnout: a pilot study with male participants suffering from burnout

    PubMed Central

    2013-01-01

    Background Occupational burnout is associated with severe negative health effects. While stress management programs proved to have a positive influence on the well-being of patients suffering from burnout, it remains unclear whether aerobic exercise alleviates burnout severity and other parameters related to occupational burnout. Therefore, the main purpose of this study was to pilot-test the potential outcomes of a 12-week exercise training to generate hypotheses for future larger scale studies. Methods The sample consisted of 12 male participants scoring high on the MBI emotional exhaustion and depersonalization subscales. The training program took place in a private fitness center with a 17.5 kcal/kg minimum requirement of weekly energy expenditure. Results The key findings are that increased exercise reduced overall perceived stress as well as symptoms of burnout and depression. The magnitude of the effects was large, revealing changes of substantial practical relevance. Additionally, profiles of mood states improved considerably after single exercise sessions with a marked shift towards an iceberg profile. Conclusion Among burnout patients, the findings provide preliminary evidence that exercise has the potential to reduce stress and prevent the development of a deeper depression. This has important health implications given that burnout is considered an antecedent of depressive disorders. Trial registration ClinicalTrials.gov Identifier: ISRNCT01575743 PMID:23497731

  20. Incongruent changes in heart rate variability and body weight after discontinuing aerobic exercise in patients with schizophrenia.

    PubMed

    Hsu, Chung-Chih; Liang, Chih-Sung; Tai, Yueh-Ming; Cheng, Shu-Li

    2016-11-01

    A bidirectional connection exists between obesity and altered heart rate variability (HRV). Schizophrenia has been associated with a high risk of obesity and decreased vagal modulation. Few studies have examined the link between obesity and HRV in patients with schizophrenia. The aim of this study was to investigate the effects of aerobic exercise on body weight and HRV, and if so, whether these effects could be sustained after discontinuation of exercise training. A total of 18 overweight patients with schizophrenia completed an 8-week moderate-intensity aerobic exercise program conducted twice weekly for 50min. Body weight and heart rate variability were measured at baseline, week 8, and 4weeks after discontinuation of exercise training. Compared with the control group (15 overweight patients with schizophrenia without exercise training), the exercise group had reduced 2.3kg at week 8. Furthermore, the exercise program increased the low frequency, high frequency, and low frequency plus high frequency of HRV. However, after discontinuation of the exercise program for 4weeks, the changes in body weight and the HRV parameters diverged. All of the HRV parameters returned to their baseline values, but no change was seen in the reduced body weight. This suggests that HRV analysis is a more sensitive tool to detect health conditions in patients with schizophrenia. Although exercise is an easy and effective way to prevent and improve health problems, mental health providers might have underestimated the benefits of exercise in daily clinical practice. A regular exercise program should be considered as an essential part of treatment strategies for patients with schizophrenia. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Implementation of laparoscopy surgery training via simulation in a low-income country.

    PubMed

    Ghesquière, L; Garabedian, C; Boukerrou, M; Dennis, T; Garbin, O; Hery, R; Rubod, C; Cosson, M

    2018-05-01

    The objective of this study was to evaluate laparoscopy training using pelvitrainers for gynaecological surgeons in a low-income country. The study was carried out in Madagascar from April 2016 to January 2017. The participants were gynaecological surgeons who had not previously performed laparoscopy. Each surgeon was timed to evaluate the execution times of four proposed exercises, based on the fundamentals of laparoscopic surgery (FLS) programme's skills manual, as follows: exercise 1, involving a simple object transfer; exercises 2 and 3, comprising complex object transfers; and exercise 4, a precision cutting exercise. The 8-month training and evaluation programme was divided into different stages, and the four following evaluations were compared: a pretest (T0), assessment at the end of the first training (T1) and auto-evaluation at 2 months (T2) and 8 months (T3). Eight participants were included. The median time was significantly reduced (P<0.05) at each evaluation for exercises 1, 2 and 4 compared to the pretest. For exercise 3, there was no difference between T0 and T1 (P=0.07). After 8 months of training, all participants progressed in all exercises. Our study showed that it is possible and beneficial to develop a programme for teaching laparoscopic surgery in low-income countries before providing the necessary equipment. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  2. Self-administered physical exercise training as treatment of neck and shoulder pain among military helicopter pilots and crew: a randomized controlled trial.

    PubMed

    Murray, Mike; Lange, Britt; Nørnberg, Bo Riebeling; Søgaard, Karen; Sjøgaard, Gisela

    2017-04-07

    Neck pain is frequent among military helicopter pilots and crew-members, and pain may influence individual health and work performance. The aim of this study was to examine if an exercise intervention could reduce neck pain among helicopter pilots and crew-members. Thirty-one pilots and thirty-eight crew-members were randomized to either an exercise-training-group (n = 35) or a reference-group (n = 34). The exercise-training-group received 20-weeks of specific neck/shoulder training. The reference-group received no training. Intensity of neck pain previous 3-months (scale 0-10). additional neck/shoulder pain intensity variables and pressure-pain-threshold in the trapezius muscle (TRA) and upper-neck-extensor muscles (UNE). Regular training adherence was defined as ≥1 training session a week. Statistical analyses performed were intention-to-treat and per-protocol. Students t-test was performed (p < 0.05). Intensity of neck pain previous 3-months at baseline was: 2.2 ± 1.8 and previous 7-days: 1.0 ± 1.5, and pressure-pain-threshold in TRA and UNE (right/left) was in kPa: 424 ± 187 / 434 ± 188 and 345 ± 157 / 371 ± 170 in the exercise-training-group, and 416 ± 177 / 405 ± 163 and 334 ± 147 / 335 ± 163 in the reference-group, with no differences between groups. Intention-to-treat-analysis revealed no significant between-group-differences in neck pain intensity and pressure-pain-threshold. Between-group-differences, including participants who trained regularly (n = 10) were also non-significant. Within-group-changes were significant among participants with regular training adherence in the exercise-training-group regarding intensity of neck pain previous 3-months (from 2.2 ± 0.6 to 1.3 ± 1.3, p = 0.019). Likewise, within the whole exercise-training-group, neck pain previous 7-days decreased (from 1.0 ± 1.4 to 0.6 ± 1.1, p = 0.024). Additional within-group-changes regarding pressure-pain-threshold in kPa were for the reference-group a reduction in TRA and UNE (right/left) to: 342 ± 143 / 332 ± 154 and 295 ± 116 / 292 ± 121 implying increased pain sensitivity, while for the exercise-training-group only a reduction in left TRA was seen: 311 ± 113. The exercise intervention did not reduce neck pain among helicopter pilots and crew-members as no significant between-group-differences were found. However, some trends were demonstrated as some neck pain intensity and sensitivity improved more within the exercise-training-group but not within the reference-group. The lack of effect may be due to low adherence since only ~ 1/3 of subjects in the exercise-training-group engaged in regular training which may be due to the self-administration of the training. Ethical committee of Southern Denmark (S-20120121) 29 August, 2012. Clinical Trail Registration ( NCT01926262 ) 16 August, 2013.

  3. Multi-modal intervention to reduce cardiovascular risk among hypertensive older adults: Design of a randomized clinical trial

    PubMed Central

    Buford, Thomas W.; Anton, Stephen D.; Bavry, Anthony; Carter, Christy S.; Daniels, Michael J.; Pahor, Marco

    2015-01-01

    Persons aged over 65 years account for over 75% of healthcare expenditures and deaths attributable to cardiovascular disease (CVD). Accordingly, reducing CVD risk among older adults is an important public health priority. Functional status, determined by measures of physical performance, is an important predictor of cardiovascular outcomes in older adults and declines more rapidly in seniors with hypertension. To date, physical exercise is the primary strategy for attenuating declines in functional status. Yet despite the general benefits of training, exercise alone appears to be insufficient for preventing this decline. Thus, alternative or adjuvant strategies are needed to preserve functional status among seniors with hypertension. Prior data suggest that angiotensin converting enzyme inhibitors (ACEi) may be efficacious in enhancing exercise-derived improvements in functional status yet this hypothesis has not been tested in a randomized controlled trial. The objective of this randomized, double-masked pilot trial is to gather preliminary efficacy and safety data necessary for conducting a full-scale trial to test this hypothesis. Sedentary men and women ≥ 65 years of age with functional limitations and hypertension are being recruited into this 24 week intervention study. Participants are randomly assigned to one of three conditions: (1) ACEi plus exercise training, (2) thiazide diuretic plus exercise training, or (3) AT1 receptor antagonist plus exercise training. The primary outcome is change in walking speed and secondary outcomes consist of other indices of CV risk including exercise capacity, body composition, as well as circulating indices of metabolism, inflammation and oxidative stress. PMID:26115878

  4. Physical exercise reduces pyruvate carboxylase (PCB) and contributes to hyperglycemia reduction in obese mice.

    PubMed

    Muñoz, Vitor Rosetto; Gaspar, Rafael Calais; Crisol, Barbara Moreira; Formigari, Guilherme Pedron; Sant'Ana, Marcella Ramos; Botezelli, José Diego; Gaspar, Rodrigo Stellzer; da Silva, Adelino S R; Cintra, Dennys Esper; de Moura, Leandro Pereira; Ropelle, Eduardo Rochete; Pauli, José Rodrigo

    2018-07-01

    The present study evaluated the effects of exercise training on pyruvate carboxylase protein (PCB) levels in hepatic tissue and glucose homeostasis control in obese mice. Swiss mice were distributed into three groups: control mice (CTL), fed a standard rodent chow; diet-induced obesity (DIO), fed an obesity-inducing diet; and a third group, which also received an obesity-inducing diet, but was subjected to an exercise training protocol (DIO + EXE). Protocol training was carried out for 1 h/d, 5 d/wk, for 8 weeks, performed at an intensity of 60% of exhaustion velocity. An insulin tolerance test (ITT) was performed in the last experimental week. Twenty-four hours after the last physical exercise session, the animals were euthanized and the liver was harvested for molecular analysis. Firstly, DIO mice showed increased epididymal fat and serum glucose and these results were accompanied by increased PCB and decreased p-Akt in hepatic tissue. On the other hand, physical exercise was able to increase the performance of the mice and attenuate PCB levels and hyperglycemia in DIO + EXE mice. The above findings show that physical exercise seems to be able to regulate hyperglycemia in obese mice, suggesting the participation of PCB, which was enhanced in the obese condition and attenuated after a treadmill running protocol. This is the first study to be aimed at the role of exercise training in hepatic PCB levels, which may be a novel mechanism that can collaborate to reduce the development of hyperglycemia and type 2 diabetes in DIO mice.

  5. Eccentric exercise training as a countermeasure to non-weight-bearing soleus muscle atrophy

    NASA Technical Reports Server (NTRS)

    Kirby, Christopher R.; Ryan, Mirelle J.; Booth, Frank W.

    1992-01-01

    This investigation tested whether eccentric resistance training could prevent soleus muscle atrophy during non-weight bearing. Adult female rats were randomly assigned to either weight bearing +/- intramuscular electrodes or non-weight bearing +/- intramuscular electrodes groups. Electrically stimulated maximal eccentric contractions were performed on anesthetized animals at 48-h intervals during the 10-day experiment. Non-weight bearing significantly reduced soleus muscle wet weight (28-31 percent) and noncollagenous protein content (30-31 percent) compared with controls. Eccentric exercise training during non-weight bearing attenuated but did not prevent the loss of soleus muscle wet weight and noncollagenous protein by 77 and 44 percent, respectively. The potential of eccentric exercise training as an effective and highly efficient counter-measure to non-weight-bearing atrophy is demonstrated in the 44 percent attenuation of soleus muscle noncollagenous protein loss by eccentric exercise during only 0.035 percent of the total non-weight-bearing time period.

  6. Balance training reduces falls risk in older individuals with type 2 diabetes.

    PubMed

    Morrison, Steven; Colberg, Sheri R; Mariano, Mira; Parson, Henri K; Vinik, Arthur I

    2010-04-01

    This study assessed the effects of balance/strength training on falls risk and posture in older individuals with type 2 diabetes. Sixteen individuals with type 2 diabetes and 21 age-matched control subjects (aged 50-75 years) participated. Postural stability and falls risk was assessed before and after a 6-week exercise program. Diabetic individuals had significantly higher falls risk score compared with control subjects. The diabetic group also exhibited evidence of mild-to-moderate neuropathy, slower reaction times, and increased postural sway. Following exercise, the diabetic group showed significant improvements in leg strength, faster reaction times, decreased sway, and, consequently, reduced falls risk. Older individuals with diabetes had impaired balance, slower reactions, and consequently a higher falls risk than age-matched control subjects. However, all these variables improved after resistance/balance training. Together these results demonstrate that structured exercise has wide-spread positive effects on physiological function for older individuals with type 2 diabetes.

  7. Fatty acid kinetic responses to running above or below lactate threshold.

    PubMed

    Kanaley, J A; Mottram, C D; Scanlon, P D; Jensen, M D

    1995-08-01

    During running exercise above the lactate threshold (LT), it is unknown whether free fatty acid (FFA) mobilization can meet the energy demands for fatty acid oxidation. This study was performed to determine whether FFA availability is reduced during running exercise above compared with below the LT and to assess whether the level of endurance training influences FFA mobilization. Twelve marathon runners and 12 moderately trained runners ran at a workload that was either above or below their individual LT. Fatty acid oxidation (indirect calorimetry) and FFA release ([1-14C]palmitate) were measured at baseline, throughout exercise, and at recovery. The plasma FFA rate of appearance increased during exercise in both groups; running above or below the LT, but the total FFA availability for 30 min of exercise was greater (P < 0.01) in the below LT group (marathon, 23 +/- 2 mmol; moderate, 21 +/- 2 mmol) than in the above LT group (18 +/- 3 and 13 +/- 3 mmol, respectively). Total fatty acid oxidation (indirect calorimetry) greatly exceeded circulating FFA availability, regardless of training or exercise group (P < 0.01). No statistically significant exercise intensity or training differences in fatty acid oxidation were found (above LT: marathon, 71 +/- 12, moderate, 64 +/- 17 mmol/30 min; below LT: marathon 91 +/- 12, moderate, 60 +/- 5 mmol/30 min). In conclusion, during exercise above or below LT, circulating FFA cannot meet the oxidative needs and intramuscular triglyceride stores must be utilized. Further marathon training does not enhance effective adipose tissue lipolysis during exercise compared with moderate endurance training.

  8. Supplementation with beta-hydroxy-beta-methylbutyrate (HMB) and alpha-ketoisocaproic acid (KIC) reduces signs and symptoms of exercise-induced muscle damage in man.

    PubMed

    van Someren, Ken A; Edwards, Adam J; Howatson, Glyn

    2005-08-01

    This study examined the effects of beta-hydroxyl-beta-methylbutyrate (HMB) and alpha-ketoisocaproic acid (KIC) supplementation on signs and symptoms of exercise-induced muscle damage following a single bout of eccentrically biased resistance exercise. Six non-resistance trained male subjects performed an exercise protocol designed to induce muscle damage on two separate occasions, performed on the dominant or non-dominant arm in a counter-balanced crossover design. Subjects were assigned to an HMB/KIC (3 g HMB and 0.3 g alpha-ketoisocaproic acid, daily) or placebo treatment for 14 d prior to exercise in the counter-balanced crossover design. One repetition maximum (1RM), plasma creatine kinase activity (CK), delayed onset muscle soreness (DOMS), limb girth, and range of motion (ROM) were determined pre-exercise, at 1h, 24 h, 48 h, and 72 h post-exercise. DOMS and the percentage changes in 1RM, limb girth, and ROM all changed over the 72 h period (P < 0.05). HMB//IC supplementation attenuated the CK response, the percentage decrement in 1RM, and the percentage increase in limb girth (P < 0.05). In addition, DOMS was reduced at 24 h post-exercise (P < 0.05) in the HMB/KIC treatment. In conclusion, 14 d of HMB and KIC supplementation reduced signs and symptoms of exercise-induced muscle damage in non-resistance trained males following a single bout of eccentrically biased resistance exercise.

  9. The link between exercise and titin passive stiffness.

    PubMed

    Lalande, Sophie; Mueller, Patrick J; Chung, Charles S

    2017-09-01

    What is the topic of this review? This review focuses on how in vivo and molecular measurements of cardiac passive stiffness can predict exercise tolerance and how exercise training can reduce cardiac passive stiffness. What advances does it highlight? This review highlights advances in understanding the relationship between molecular (titin-based) and in vivo (left ventricular) passive stiffness, how passive stiffness modifies exercise tolerance, and how exercise training may be therapeutic for cardiac diseases with increased passive stiffness. Exercise can help alleviate the negative effects of cardiovascular disease and cardiovascular co-morbidities associated with sedentary behaviour; this may be especially true in diseases that are associated with increased left ventricular passive stiffness. In this review, we discuss the inverse relationship between exercise tolerance and cardiac passive stiffness. Passive stiffness is the physical property of cardiac muscle to produce a resistive force when stretched, which, in vivo, is measured using the left ventricular end diastolic pressure-volume relationship or is estimated using echocardiography. The giant elastic protein titin is the major contributor to passive stiffness at physiological muscle (sarcomere) lengths. Passive stiffness can be modified by altering titin isoform size or by post-translational modifications. In both human and animal models, increased left ventricular passive stiffness is associated with reduced exercise tolerance due to impaired diastolic filling, suggesting that increased passive stiffness predicts reduced exercise tolerance. At the same time, exercise training itself may induce both short- and long-term changes in titin-based passive stiffness, suggesting that exercise may be a treatment for diseases associated with increased passive stiffness. Direct modification of passive stiffness to improve exercise tolerance is a potential therapeutic approach. Titin passive stiffness itself may be a treatment target based on the recent discovery of RNA binding motif 20, which modifies titin isoform size and passive stiffness. Translating these discoveries that link exercise and left ventricular passive stiffness may provide new methods to enhance exercise tolerance and treat patients with cardiovascular disease. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  10. The beneficial effect of regular endurance exercise training on blood pressure and quality of life in patients with hypertension.

    PubMed

    Tsai, Jen-Chen; Yang, Hung-Yu; Wang, Wei-Hsin; Hsieh, Ming-Hsiung; Chen, Pei-Ti; Kao, Ching-Chiu; Kao, Pai-Feng; Wang, Chia-Hui; Chan, Paul

    2004-04-01

    Regular aerobic exercise can reduce blood pressure and is recommended as part of the lifestyle modification to reduce high blood pressure and cardiovascular risk. Hypertension itself, or/and pharmacological treatment for hypertension is associated with adverse effects on some aspects of quality of life. This study was performed to evaluate the effects of regular endurance exercise training on quality of life and blood pressure. Patients with mild to moderate hypertension (systolic blood pressure 140-180 or diastolic blood pressure 90-110 mm Hg) were randomized to a moderate-intensity aerobic exercise group training for 3 sessions/week over 10 weeks or to a non-exercising control group. Health-related quality of life was assessed with the Short Form 36-item Health Survey (SF-36) at baseline and after 6 and 10 weeks. In the 102 subjects (47 male, mean age 47 years) who completed the study, reductions in blood pressure in the exercise group at 10 weeks (-13.1/-6.3 mm Hg) were significant (P < 0.001) compared to baseline and to the control group (-1.5/+6.0 mm Hg). Unlike the control group, the exercise group showed an increase in exercise capacity from 8.2 +/- 1.6 to 10.8 +/- 2.2 METS (P < 0.01) and showed higher scores on 7 out of 8 subscales (P < 0.05) of the SF-36. Improvement in bodily pain and general health sub-scores correlated with reduction in systolic blood pressure. Regular endurance training improves both blood pressure and quality of life in hypertensive patients and should be encouraged more widely.

  11. Does a 20-week aerobic exercise training programme increase our capabilities to buffer real-life stressors? A randomized, controlled trial using ambulatory assessment.

    PubMed

    von Haaren, Birte; Ottenbacher, Joerg; Muenz, Julia; Neumann, Rainer; Boes, Klaus; Ebner-Priemer, Ulrich

    2016-02-01

    The cross-stressor adaptation hypothesis suggests that regular exercise leads to adaptations in the stress response systems that induce decreased physiological responses to psychological stressors. Even though an exercise intervention to buffer the detrimental effects of psychological stressors on health might be of utmost importance, empirical evidence is mixed. This may be explained by the use of cross-sectional designs and non-personally relevant stressors. Using a randomized controlled trial, we hypothesized that a 20-week aerobic exercise training does reduce physiological stress responses to psychological real-life stressors in sedentary students. Sixty-one students were randomized to either a control group or an exercise training group. The academic examination period (end of the semester) served as a real-life stressor. We used ambulatory assessment methods to assess physiological stress reactivity of the autonomic nervous system (heart rate variability: LF/HF, RMSSD), physical activity and perceived stress during 2 days of everyday life and multilevel models for data analyses. Aerobic capacity (VO2max) was assessed pre- and post-intervention via cardiopulmonary exercise testing to analyze the effectiveness of the intervention. During real-life stressors, the exercise training group showed significantly reduced LF/HF (β = -0.15, t = -2.59, p = .01) and increased RMSSD (β = 0.15, t = 2.34, p = .02) compared to the control group. Using a randomized controlled trial and a real-life stressor, we could show that exercise appears to be a useful preventive strategy to buffer the effects of stress on the autonomic nervous system, which might result into detrimental health outcomes.

  12. Combined exercise reduces arterial stiffness, blood pressure, and blood markers for cardiovascular risk in postmenopausal women with hypertension.

    PubMed

    Son, Won-Mok; Sung, Ki-Dong; Cho, Jae-Min; Park, Song-Young

    2017-03-01

    Postmenopausal women exhibit elevated brachial-ankle pulse wave velocity (baPWV), an indicator of arterial stiffness, which is associated with an increased risk of cardiovascular events and mortality. The purpose of this study is to examine the impact of combined resistance and aerobic exercise training on baPWV, blood pressure (BP), and cardiovascular fitness in postmenopausal women with stage 1 hypertension. Twenty postmenopausal women (age, 75 ± 2 y; systolic BP, 152 ± 2 mm Hg, diastolic BP, 95 ± 3 mm Hg) were randomly assigned to a "no-exercise" (CON, n = 10) or combined exercise (EX, n = 10) group. The EX group performed resistance and aerobic exercise for 12 weeks, 3 times per week. Exercise intensity was increased gradually, from 40% to 70% of heart rate reserve, every 4 weeks. BaPWV, BP, blood nitrite/nitrate, endothelin-1 (ET-1), cardiovascular fitness, and body composition were measured before and after the 12-week intervention. BP, baPWV (-1.2 ± 0.4 m/s), ET-1 (-2.7 ± 0.3 μmol/mL), nitrite/nitrate (+4.5 ± 0.5 μM), functional capacity, and body composition were significantly improved (P < 0.05) in the EX group after 12 weeks of training, but no changes were observed in the CON group. These findings indicate that 12 weeks of combined exercise training improves arterial stiffness, BP, ET-1, blood nitrite/nitrate, functional capacity, and body composition in postmenopausal women with stage 1 hypertension. Thus, this study provides evidence that combined exercise training is a useful therapeutic method to improve cardiovascular health which can reduce cardiovascular disease risk in postmenopausal women with hypertension.

  13. Exercise and nutritional interventions for improving aging muscle health.

    PubMed

    Forbes, Scott C; Little, Jonathan P; Candow, Darren G

    2012-08-01

    Skeletal muscle mass declines with age (i.e., sarcopenia) resulting in muscle weakness and functional limitations. Sarcopenia has been associated with physiological changes in muscle morphology, protein and hormonal kinetics, insulin resistance, inflammation, and oxidative stress. The purpose of this review is to highlight how exercise and nutritional intervention strategies may benefit aging muscle. It is well known that resistance exercise training increases muscle strength and size and evidence also suggests that resistance training can increase mitochondrial content and decrease oxidative stress in older adults. Recent findings suggest that fast-velocity resistance exercise may be an effective intervention for older adults to enhance muscle power and functional capacity. Aerobic exercise training may also benefit aging skeletal muscle by enhancing mitochondrial bioenergetics, improving insulin sensitivity, and/or decreasing oxidative stress. In addition to exercise, creatine monohydrate, milk-based proteins, and essential fatty acids all have biological effects which could enhance some of the physiological adaptations from exercise training in older adults. Additional research is needed to determine whether skeletal muscle adaptations to increased activity in older adults are further enhanced with effective nutritional interventions and whether this is due to enhanced muscle protein synthesis, improved mitochondrial function, and/or a reduced inflammatory response.

  14. Benefits of different intensity of aerobic exercise in modulating body composition among obese young adults: a pilot randomized controlled trial.

    PubMed

    Chiu, Chih-Hui; Ko, Ming-Chen; Wu, Long-Shan; Yeh, Ding-Peng; Kan, Nai-Wen; Lee, Po-Fu; Hsieh, Jenn-Woei; Tseng, Ching-Yu; Ho, Chien-Chang

    2017-08-24

    The aim of present study was to compare the effects of different aerobic exercise intensities and energy expenditures on the body composition of sedentary obese college students in Taiwan. Forty-eight obese participants [body mass index (BMI) ≥ 27 kg/m 2 , age 18-26 years] were randomized into four equal groups (n = 12): light-intensity training group (LITG), 40%-50% heart rate reserve (HRR); middle-intensity training group (MITG), 50%-70% HRR; high-intensity training group (HITG), 70%-80% HRR; and control group (CG). The aerobic exercise training program was conducted for 60 min per day on a treadmill 3 days per week for 12 weeks. All participant anthropometric data, blood biochemical parameters, and health-related physical fitness components were measured at baseline and after 12 weeks. At baseline, the anthropometric indices did not differ significantly among the four groups (p > 0.05). After 12-week exercise intervention, the HITG and MITG had significantly more changes in body weight, waist circumference (WC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR) than the LITG. The changes in BMI and body fat percentage differed among all four groups (p < 0.05). A 12-week high-intensity exercise intervention with high energy expenditure can considerably reduce body weight, body fat, WC, WHR, and WHtR, whereas a light-intensity exercise intervention can significantly reduce body weight and body fat. Current Controlled Trials TPECTR09831410900 , registered on 24 th Dec 2009.

  15. The physiological basis of rehabilitation in chronic heart and lung disease.

    PubMed

    Vogiatzis, Ioannis; Zakynthinos, Spyros

    2013-07-01

    Cardiopulmonary rehabilitation is recognized as a core component of management of individuals with congestive heart failure (CHF) or chronic obstructive pulmonary disease (COPD) that is designed to improve their physical and psychosocial condition without impacting on the primary organ impairment. This has lead the scientific community increasingly to believe that the main effects of cardiopulmonary rehabilitative exercise training are focused on skeletal muscles that are regarded as dysfunctional in both CHF and COPD. Accordingly, following completion of a cardiopulmonary rehabilitative exercise training program there are important peripheral muscular adaptations in both disease entities, namely increased capillary density, blood flow, mitochondrial volume density, fiber size, distribution of slow twitch fibers, and decreased lactic acidosis and vascular resistance. Decreased lactic acidosis at a given level of submaximal exercise not only offsets the occurrence of peripheral muscle fatigue, leading to muscle task failure and muscle discomfort, but also concurrently mitigates the additional burden on the respiratory muscles caused by the increased respiratory drive, thereby reducing dyspnea sensations. Furthermore in patients with COPD, exercise training reduces the degree of dynamic lung hyperinflation leading to improved arterial oxygen content and central hemodynamic responses, thus increasing systemic muscle oxygen availability. In patients with CHF, exercise training has beneficial direct and reflex sympathoinhibitory effects and favorable effects on normalization of neurohumoral excitation. These physiological benefits apply to all COPD and CHF patients independently of the degree of disease severity and are associated with improved exercise tolerance, functional capacity, and quality of life.

  16. Lifelong endurance training attenuates age-related genotoxic stress in human skeletal muscle.

    PubMed

    Cobley, James N; Sakellariou, George K; Murray, Scott; Waldron, Sarah; Gregson, Warren; Burniston, Jatin G; Morton, James P; Iwanejko, Lesley A; Close, Graeme L

    2013-07-12

    The aim of the present study was to determine the influence of age and habitual activity level, at rest and following a single bout of high-intensity exercise, on the levels of three proteins poly(ADP-ribose) polymerase-1 (PARP-1), cleaved-PARP-1 and poly(ADP-ribose) glycohydrolase (PARG), involved in the DNA repair and cell death responses to stress and genotoxic insults. Muscle biopsies were obtained from the vastus lateralis of young trained (22 ± 3 years, n = 6), young untrained (24 ± 4 years, n = 6), old trained (64 ± 3 years, n = 6) and old untrained (65 ± 6 years, n = 6) healthy males before, immediately after and three days following a high-intensity interval exercise bout. PARP-1, which catalyzes poly(ADP-ribosyl)ation of proteins and DNA in response to a range of intrinsic and extrinsic stresses, was increased at baseline in old trained and old untrained compared with young trained and young untrained participants (P ≤ 0.05). Following exercise, PARP-1 levels remained unchanged in young trained participants, in contrast to old trained and old untrained where levels decreased and young untrained where levels increased (P ≤ 0.05). Interestingly, baseline levels of the cleaved PARP-1, a marker of apoptosis, and PARG, responsible for polymer degradation, were both significantly elevated in old untrained compared with old trained, young trained and young untrained (P ≤ 0.05). Despite this baseline difference in PARG, there was no change in any group following exercise. There was a non-significant statistical trend (P = 0.072) towards increased cleaved-PARP-1 expression post-exercise in younger but not old persons, regardless of training status. Collectively, these results show that exercise slows the progression towards a chronically stressed state but has no impact on the age-related attenuated response to acute exercise. Our findings provide valuable insight into how habitual exercise training could protect skeletal muscle from chronic damage to macromolecules and may reduce sarcopenia in older people.

  17. Forearm training attenuates sympathetic responses to prolonged rhythmic forearm exercise

    NASA Technical Reports Server (NTRS)

    Sinoway, L.; Shenberger, J.; Leaman, G.; Zelis, R.; Gray, K.; Baily, R.; Leuenberger, U.

    1996-01-01

    We previously demonstrated that nonfatiguing rhythmic forearm exercise at 25% maximal voluntary contraction (12 2-s contractions/min) evokes sympathoexcitation without significant engagement of metabolite-sensitive muscle afferents (B.A. Batman, J.C. Hardy, U.A. Leuenberger, M.B. Smith, Q.X. Yang and L.I. Sinoway. J. Appl. Physiol. 76: 1077-1081, 1994). This is in contrast to the sympathetic nervous system responses observed during fatiguing static forearm exercise where metabolite-sensitive afferents are the key determinants of sympathetic activation. In this report we examined whether forearm exercise training would attenuate sympathetic nervous system responses to rhythmic forearm exercise. We measured heart rate, mean arterial blood pressure (MAP), muscle sympathetic nerve activity (microneurography), plasma norepinephrine (NE), and NE spillover and clearance (tritiated NE kinetics) during nonfatiguing rhythmic forearm exercise before and after a 4-wk unilateral forearm training paradigm. Training had no effect on forearm mass, maximal voluntary contraction, or heart rate but did attenuate the increase in MAP (increase in MAP: from 15.2 +/- 1.8 before training to 11.4 +/- 1.4 mmHg after training; P < 0.017), muscle sympathetic nerve activity (increase in bursts: from 10.8 +/- 1.4 before training to 6.2 +/- 1.1 bursts/min after training; P < 0.030), and the NE spillover (increases in arterial spillover: from 1.3 +/- 0.2 before training to 0.6 +/- 0.2 nmol.min-1.m-2 after training, P < 0.014; increase in venous spillover: from 2.0 +/- 0.6 before training to 1.0 +/- 0.5 nmol.min-1.m-2 after training, P < 0.037) seen in response to exercise performed by the trained forearm. Thus forearm training reduces sympathetic responses during a nonfatiguing rhythmic handgrip paradigm that does not engage muscle metaboreceptors. We speculate that this effect is due to a conditioning-induced reduction in mechanically sensitive muscle afferent discharge.

  18. High-speed resistance training and balance training for people with knee osteoarthritis to reduce falls risk: study protocol for a pilot randomized controlled trial.

    PubMed

    Levinger, Pazit; Dunn, Jeremy; Bifera, Nancy; Butson, Michael; Elias, George; Hill, Keith D

    2017-08-18

    The number of falls experienced by people with knee osteoarthritis (OA) is almost double the number experienced by people with no OA. The neuromuscular elements required to arrest a fall are more impaired in people with knee OA compared to their asymptomatic counterparts. Therefore, these elements may need to be incorporated into an exercise intervention to reduce the risk of falling. The aim of this study will be to examine the feasibility, safety and patient satisfaction of a high-speed resistance-training program, with and without balance exercises, in people with knee OA compared to a control group. The effect of these exercise programs on lower-limb muscle strength and physiological and functional risk factors for falls will also be examined. This study will be a pilot randomized controlled trial with a pre- and post-intervention design (outcome assessments at baseline and 8 weeks after participation commencement) comparing three groups: a control group (no intervention), a high-speed resistance-training group and a high-speed resistance-training plus balance exercises group. Thirty people with knee osteoarthritis aged 60-90 years will be recruited and randomized to one of the three groups. Feasibility and safety will be assessed by examining adherence to the exercise program, dropout rate, pain level during and following exercise, number of exercises stopped due to pain, and any adverse event or any incident that prevents the participant from completing the prescribed exercise. Secondary measures of lower-limb strength, physical function, self-reported pain and function, fear of falls, and executive function and quality of life will also be assessed. To determine statistical trends of effectiveness and hence to inform sample size for a fully powered study, analyses of the secondary outcomes will be performed to assess the changes within and between groups over time (pre-post) using repeated measure ANOVA. The results of this study will improve understanding of what type of exercise is safe and beneficial for people with knee OA to reduce their risk of falling, and hence will inform the development of a future large research trial. Australian New Zealand Clinical Trials Registry, ID: ACTRN12616001382460 . Registered on 6 October 2016.

  19. Evidence based exercise - clinical benefits of high intensity interval training.

    PubMed

    Shiraev, Tim; Barclay, Gabriella

    2012-12-01

    Aerobic exercise has a marked impact on cardiovascular disease risk. Benefits include improved serum lipid profiles, blood pressure and inflammatory markers as well as reduced risk of stroke, acute coronary syndrome and overall cardiovascular mortality. Most exercise programs prescribed for fat reduction involve continuous, moderate aerobic exercise, as per Australian Heart Foundation clinical guidelines. This article describes the benefits of exercise for patients with cardiovascular and metabolic disease and details the numerous benefits of high intensity interval training (HIIT) in particular. Aerobic exercise has numerous benefits for high-risk populations and such benefits, especially weight loss, are amplified with HIIT. High intensity interval training involves repeatedly exercising at a high intensity for 30 seconds to several minutes, separated by 1-5 minutes of recovery (either no or low intensity exercise). HIT is associated with increased patient compliance and improved cardiovascular and metabolic outcomes and is suitable for implementation in both healthy and 'at risk' populations. Importantly, as some types of exercise are contraindicated in certain patient populations and HIIT is a complex concept for those unfamiliar to exercise, some patients may require specific assessment or instruction before commencing a HIIT program.

  20. Effect of exercise on diastolic function in heart failure patients: a systematic review and meta-analysis.

    PubMed

    Pearson, M J; Mungovan, S F; Smart, N A

    2017-03-01

    Diastolic dysfunction contributes to the development and progression of heart failure. Conventional echocardiography and tissue Doppler imaging are widely utilised in clinical research providing a number of indices of diastolic function valuable in the diagnosis and prognosis of heart failure patients. The aim of this meta-analysis was to quantify the effect of exercise training on diastolic function in patients with heart failure. Exercise training studies that investigate different indices of diastolic function in patients with heart failure have reported that exercise training improves diastolic function in these patients. We sought to add to the current literature by quantifying, where possible, the effect of exercise training on diastolic function. We conducted database searches (PubMed, EBSCO, EMBASE, and Cochrane Trials Register to 31 July 2016) for exercise based rehabilitation trials in heart failure, using the search terms 'exercise training, diastolic function and diastolic dysfunction'. Data from six studies, with a total of 266 heart failure with reduced ejection fraction (HFrEF) participants, 144 in intervention groups and 122 in control groups, indicated a significant reduction in the ratio of early diastolic transmitral velocity (E) to early diastolic tissue velocity (E') (E/E' ratio) with exercise training, exercise vs. control mean difference (MD) of -2.85 (95% CI -3.66 to -2.04, p < 0.00001). Data from five studies in heart failure with preserved ejection fraction (HFpEF) patients, with a total of 204 participants, 115 in intervention groups and 89 in control groups, also demonstrated a significant improvement in E/E' in exercise vs. control MD of -2.38 (95% CI -3.47 to -1.28, p < 0.0001).

  1. Aerobic exercise training lowers platelet reactivity and improves platelet sensitivity to prostacyclin in pre- and postmenopausal women.

    PubMed

    Lundberg Slingsby, M H; Nyberg, M; Egelund, J; Mandrup, C M; Frikke-Schmidt, R; Kirkby, N S; Hellsten, Y

    2017-12-01

    Essentials It is unknown how regular exercise affects platelet function after menopause. We studied the effect of 3-months of high-intensity exercise in pre- and postmenopausal women. Platelet sensitivity to the inhibitory effect of arterially infused prostacyclin was increased. Reduced basal platelet reactivity was seen in the premenopausal women only. Background The risk of atherothrombotic events increases after the menopause. Regular physical activity has been shown to reduce platelet reactivity in younger women, but it is unknown how regular exercise affects platelet function after the menopause. Objectives To examine the effects of regular aerobic exercise in late premenopausal and recent postmenopausal women by testing basal platelet reactivity and platelet sensitivity to prostacyclin and nitric oxide. Methods Twenty-five sedentary, but healthy, late premenopausal and 24 matched recently postmenopausal women, mean (95% confidence interval) 49.1 (48.2-49.9) and 53.7 (52.5-55.0) years old, participated in an intervention study: 3-month high-intensity supervised aerobic spinning-cycle training (1 h, × 3/week). Basal platelet reactivity was analyzed in platelet-rich plasma from venous blood as agonist-induced % aggregation. In a subgroup of 13 premenopausal and 14 postmenopausal women, platelet reactivity was tested ex vivo after femoral arterial infusion of prostacyclin, acetylcholine, a cyclooxygenase inhibitor, and after acute one-leg knee extensor exercise. Results Basal platelet reactivity (%aggregation) to TRAP-6 (1 μm) was higher in the postmenopausal, 59% (50-68), than the premenopausal women, 45% (35-55). Exercise training reduced basal platelet reactivity to collagen (1 μg mL -1 ) in the premenopausal women only: from 63% (55-71%) to 51% (41-62%). After the training intervention, platelet aggregation was more inhibited by the arterial prostacyclin infusion and the acute exercise in both premenopausal and postmenopausal women. Conclusions These results highlight previously unknown cardioprotective aspects of regular aerobic exercise in premenopausal and postmenopausal women, improving their regulation of platelet reactivity through an increased platelet sensitivity to prostacyclin, which may counterbalance the increased atherothrombotic risk associated with the menopause. © 2017 International Society on Thrombosis and Haemostasis.

  2. Exercise interventions in polypathological aging patients that coexist with diabetes mellitus: improving functional status and quality of life.

    PubMed

    Cadore, Eduardo Lusa; Izquierdo, Mikel

    2015-06-01

    In elderly populations, diabetes is associated with reduced muscle strength, poor muscle quality, and accelerated loss of muscle mass. In addition, diabetes mellitus increases risk for accelerated aging and for the development of frailty syndrome. This disease is also associated with a polypathological condition, and its complications progressively affect quality of life and survival. Exercise interventions, including resistance training, represent the cornerstones of diabetes management, especially in patients at severe functional decline. This review manuscript aimed to describe the beneficial effects of different exercise interventions on the functional capacity of elderly diabetics, including those at polypathological condition. The SciELO, Science Citation Index, MEDLINE, Scopus, SPORTDiscus, and ScienceDirect databases were searched from 1980 to 2015 for articles published from original scientific investigations. In addition to the beneficial effects of exercise interventions on glycemic control, and on the cardiovascular risk factors associated with diabetes, physical exercise is an effective intervention to improve muscle strength, power output, and aerobic power and functional capacity in elderly diabetic patients. Thus, a combination of resistance and endurance training is the most effective exercise intervention to promote overall physical fitness in these patients. In addition, in diabetic patients with frailty and severe functional decline, a multicomponent exercise program including strength and power training, balance exercises, and gait retraining may be an effective intervention to reduce falls and improve functional capacity and quality of life in these patients.

  3. A randomized controlled exercise training trial on insulin sensitivity in African American men: The ARTIIS study: Major category: study design, statistical design, study protocols.

    PubMed

    Newton, Robert L; Johnson, William D; Hendrick, Chelsea; Harris, Melissa; Andrews, Emanuel; Johannsen, Neil; Rodarte, Ruben Q; Hsia, Daniel S; Church, Timothy S

    2015-07-01

    Lack of regular physical activity at prescribed intensity levels is a modifiable risk factor for insulin resistance and the development of diabetes. African American men are at increased risk for developing diabetes and most African American men are not meeting the current recommended levels of physical activity. The primary objective of the Aerobic Plus Resistance Training and Insulin Resistance in African American Men (ARTIIS) study is to determine the effectiveness of an exercise training intervention aimed at reducing diabetes risk factors in African American men at risk for developing diabetes. Insufficiently active 35-70 year old African American men with a family history of diabetes were eligible for the study. The 5-month randomized controlled trial assigns 116 men to an exercise training or healthy living control arm. The exercise training arm combines aerobic and resistance training according to the current national physical activity recommendations and is conducted in community (YMCA) facilities. The healthy living arm receives information promoting healthy lifestyle changes. Insulin response to an oral glucose load is the primary outcome measure, and changes in physiological parameters, cardiorespiratory fitness, strength, body composition, and psychological well-being comprise the secondary outcomes. The ARTIIS study is one of the first adequately powered, rigorously designed studies to investigate the effects of an aerobic plus resistance exercise training program and to assess adherence to exercise training in community facilities, in African American men. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Extensive Functional Evaluations to Monitor Aerobic Training in Becker Muscular Dystrophy: A Case Report.

    PubMed

    Tramonti, Caterina; Rossi, Bruno; Chisari, Carmelo

    2016-06-13

    Low-intensity aerobic training seems to have positive effects on muscle strength, endurance and fatigue in Becker Muscular Dystrophy (BMD) patients. We describe the case of a 33-year old BMD man, who performed a four-week aerobic training. Extensive functional evaluations were executed to monitor the efficacy of the rehabilitative treatment. Results evidenced an increased force exertion and an improvement in muscle contraction during sustained exercise. An improvement of walk velocity, together with agility, endurance capacity and oxygen consumption during exercise was observed. Moreover, an enhanced metabolic efficiency was evidenced, as shown by reduced lactate blood levels after training. Interestingly, CK showed higher levels after the training protocol, revealing possible muscle damage. In conclusion, aerobic training may represent an effective method improving exercise performance, functional status and metabolic efficiency. Anyway, a careful functional assessment should be taken into account as a useful approach in the management of the disease's rehabilitative treatment.

  5. Eight weeks of a combination of high intensity interval training and conventional training reduce visceral adiposity and improve physical fitness: a group-based intervention.

    PubMed

    Giannaki, Christoforos D; Aphamis, George; Sakkis, Panikos; Hadjicharalambous, Marios

    2016-04-01

    High intensity interval training (HIIT) has been recently promoted as an effective, low volume and time-efficient training method for improving fitness and health related parameters. The aim of the current study was to examine the effect of a combination of a group-based HIIT and conventional gym training on physical fitness and body composition parameters in healthy adults. Thirty nine healthy adults volunteered to participate in this eight-week intervention study. Twenty three participants performed regular gym training 4 days a week (C group), whereas the remaining 16 participants engaged twice a week in HIIT and twice in regular gym training (HIIT-C group) as the other group. Total body fat and visceral adiposity levels were calculated using bioelectrical impedance analysis. Physical fitness parameters such as cardiorespiratory fitness, speed, lower limb explosiveness, flexibility and isometric arm strength were assessed through a battery of field tests. Both exercise programs were effective in reducing total body fat and visceral adiposity (P<0.05) and improving handgrip strength, sprint time, jumping ability and flexibility (P<0.05) whilst only the combination of HIIT and conventional training improved cardiorespiratory fitness levels (P<0.05). A between of group changes analysis revealed that HIIT-C resulted in significantly greater reduction in both abdominal girth and visceral adiposity compared with conventional training (P<0.05). Eight weeks of combined group-based HIIT and conventional training improve various physical fitness parameters and reduce both total and visceral fat levels. This type of training was also found to be superior compared with conventional exercise training alone in terms of reducing more visceral adiposity levels. Group-based HIIT may consider as a good methods for individuals who exercise in gyms and craving to acquire significant fitness benefits in relatively short period of time.

  6. Low-intensity and moderate exercise training improves autonomic nervous system activity imbalanced by postnatal early overfeeding in rats

    PubMed Central

    2014-01-01

    Background Postnatal early overfeeding and physical inactivity are serious risk factors for obesity. Physical activity enhances energy expenditure and consumes fat stocks, thereby decreasing body weight (bw). This study aimed to examine whether low-intensity and moderate exercise training in different post-weaning stages of life is capable of modulating the autonomic nervous system (ANS) activity and inhibiting perinatal overfeeding-induced obesity in rats. Methods The obesity-promoting regimen was begun two days after birth when the litter size was adjusted to 3 pups (small litter, SL) or to 9 pups (normal litter, NL). The rats were organized into exercised groups as follows: from weaning until 90-day-old, from weaning until 50-day-old, or from 60- until 90-days-old. All experimental procedures were performed just one day after the exercise training protocol. Results The SL-no-exercised (SL-N-EXE) group exhibited excess weight and increased fat accumulation. We also observed fasting hyperglycemia and glucose intolerance in these rats. In addition, the SL-N-EXE group exhibited an increase in the vagus nerve firing rate, whereas the firing of the greater splanchnic nerve was not altered. Independent of the timing of exercise and the age of the rats, exercise training was able to significantly blocks obesity onset in the SL rats; even SL animals whose exercise training was stopped at the end of puberty, exhibited resistance to obesity progression. Fasting glycemia was maintained normal in all SL rats that underwent the exercise training, independent of the period. These results demonstrate that moderate exercise, regardless of the time of onset, is capable on improve the vagus nerves imbalanced tonus and blocks the onset of early overfeeding-induced obesity. Conclusions Low-intensity and moderate exercise training can promote the maintenance of glucose homeostasis, reduces the large fat pad stores associated to improvement of the ANS activity in adult rats that were obesity-programmed by early overfeeding. PMID:24914402

  7. Effect of triiodothyronine (T3) excess on fatty acid metabolism in the soleus muscle from endurance-trained rats.

    PubMed

    Górecka, M; Synak, M; Brzezińska, Z; Dąbrowski, J; Żernicka, E

    2016-04-01

    We studied whether short-term administration of triiodothyronine (T3) for the last 3 days of endurance training would influence the rate of uptake of palmitic acid (PA) as well as metabolism in rat soleus muscle, in vitro. Training per se did not affect the rate of PA uptake by the soleus; however, an excess of T3 increased the rate of this process at 1.5 mmol/L PA, as well as the rate that at which PA was incorporated into intramuscular triacylglycerols (TG). The rate of TG synthesis in trained euthyroid rats was reduced after exercise (1.5 mmol/L PA). The rate of PA oxidation in all of the trained rats immediately after exercise was enhanced by comparison with the sedentary values. Hyperthyroidism additionally increased the rate of this process at 1.5 mmol/L PA. After a recovery period, the rate of PA oxidation returned to the control values in both the euthyroid and the hyperthyroid groups. Examination of the high-energy phosphate levels indicated that elevated PA oxidation after exercise-training in euthyroid rats was associated with stable ATP levels and increased ADP and AMP levels, thus reducing energy cellular potential (ECP). In the hyperthyroid rats, levels of ADP and AMP were increased in the sedentary as well as the exercise-trained rats. ECP levels were high as a result of high levels of ATP and decreased levels of ADP and AMP in hyperthyroid rats after the recovery period. In conclusion, short-term hyperthyroidism accelerates PA utilization in well-trained soleus muscle.

  8. The role of exercise in cardiovascular rehabilitation: a review.

    PubMed

    Koutroumpi, Matina; Pitsavos, Christos; Stefanadis, Christodoulos

    2008-02-01

    The epidemiological literature supports an inverse association and a dose-response gradient between exercise training and both cardiovascular disease in general and coronary artery disease in particular. An overwhelming number of studies has supported similar findings for hypertension, dyslipidaemia, obesity, diabetes, inflammatory and coagulation markers related to cardiovascular disease and cardiac heart failure. Findings are highly suggestive that endurance type exercise training, of moderate intensity most days of the week can lower blood pressure in patients with hypertension, can decrease triglyceride levels and increase HDL cholesterol levels in patients with dyslipidaemia, reduces body weight when combined with diet, improves insulin sensitivity, modifies the inflammatory process and finally can improve stroke volume and reduce cardiomegaly in patients with cardiac heart failure.

  9. The action of pre-exercise low-level laser therapy (LLLT) on the expression of IL-6 and TNF-α proteins and on the functional fitness of elderly rats subjected to aerobic training.

    PubMed

    Amadio, Eliane Martins; Serra, Andrey Jorge; Guaraldo, Simone A; Silva, José Antônio; Antônio, Ednei Luis; Silva, Flávio; Portes, Leslie Andrews; Tucci, Paulo José Ferreira; Leal-Junior, Ernesto Cesar Pinto; de Carvalho, Paulo de Tarso Camillo

    2015-04-01

    The aim of the present study was to determine whether low-level laser therapy (LLLT), when used in conjunction with aerobic training, interferes with the expression of inflammatory markers IL-6 and TNF-α, thereby influencing the performance of old rats participating in swimming. A total of 30 Wistar rats (Rattus norvegicus albinus) were used for this study: 24 aged rats, and 6 young rats. The older animals were randomly divided into four groups designated as follows: aged-control, aged-exercise, aged-LLLT, aged-LLLT/exercise group, and young-control animals. Aerobic capacity (VO2max) was analyzed before and after training period. The aged-exercise and aged-LLLT/exercise groups were trained for 6 weeks. LLLT laser was applied before each training session with 808 nm and 4 J of energy to the indicated groups throughout training. The rats were euthanized, and muscle tissue and serum were collected for muscle cross-sectional area and IL-6 and TNF-α protein analysis. In VO2 showed statistical difference between young- and aged-control groups (used as baseline) (p < 0.05). The same difference can be observed in the young control group compared with all intervention groups (exercise, LLLT and LLLT + exercise). In comparison with the aged-control group, a difference was observed only for comparison with the exercise group (p < 0.05), and exercise associated with LLLT group (p < 0.001). Levels of IL-6 and TNF-α for the aged-exercise and the aged-LLLT/exercise groups were significantly decreased compared to the aged-control group (p < 0.05). Analysis of the transverse section of the gastrocnemius muscle showed a significant difference between the aged-exercise and aged-LLLT/exercise groups (p < 0.001). These results suggest that laser therapy in conjunction with aerobic training may provide a therapeutic approach for reducing the inflammatory markers (IL-6 and TNF-α), however, LLLT without exercise was not able to improve physical performance of aged rats.

  10. Reduced AMPK-ACC and mTOR signaling in muscle from older men, and effect of resistance exercise

    PubMed Central

    Li, Mengyao; Verdijk, Lex B.; Sakamoto, Kei; Ely, Brian; van Loon, Luc J.C.; Musi, Nicolas

    2012-01-01

    AMP-activated protein kinase (AMPK) is a key energy-sensitive enzyme that controls numerous metabolic and cellular processes. Mammalian target of rapamycin (mTOR) is another energy/nutrient-sensitive kinase that controls protein synthesis and cell growth. In this study we determined whether older versus younger men have alterations in the AMPK and mTOR pathways in skeletal muscle, and examined the effect of a long term resistance type exercise training program on these signaling intermediaries. Older men had decreased AMPKα2 activity and lower phosphorylation of AMPK and its downstream signaling substrate acetyl-CoA carboxylase (ACC). mTOR phosphylation also was reduced in muscle from older men. Exercise training increased AMPKα1 activity in older men, however, AMPKα2 activity, and the phosphorylation of AMPK, ACC and mTOR, were not affected. In conclusion, older men have alterations in the AMPK-ACC and mTOR pathways in muscle. In addition, prolonged resistance type exercise training induces an isoform-selective up regulation of AMPK activity. PMID:23000302

  11. Reduced AMPK-ACC and mTOR signaling in muscle from older men, and effect of resistance exercise.

    PubMed

    Li, Mengyao; Verdijk, Lex B; Sakamoto, Kei; Ely, Brian; van Loon, Luc J C; Musi, Nicolas

    2012-01-01

    AMP-activated protein kinase (AMPK) is a key energy-sensitive enzyme that controls numerous metabolic and cellular processes. Mammalian target of rapamycin (mTOR) is another energy/nutrient-sensitive kinase that controls protein synthesis and cell growth. In this study we determined whether older versus younger men have alterations in the AMPK and mTOR pathways in skeletal muscle, and examined the effect of a long term resistance type exercise training program on these signaling intermediaries. Older men had decreased AMPKα2 activity and lower phosphorylation of AMPK and its downstream signaling substrate acetyl-CoA carboxylase (ACC). mTOR phosphylation also was reduced in muscle from older men. Exercise training increased AMPKα1 activity in older men, however, AMPKα2 activity, and the phosphorylation of AMPK, ACC and mTOR, were not affected. In conclusion, older men have alterations in the AMPK-ACC and mTOR pathways in muscle. In addition, prolonged resistance type exercise training induces an isoform-selective up regulation of AMPK activity. Published by Elsevier Ireland Ltd.

  12. Influence of menstrual phase and arid vs. humid heat stress on autonomic and behavioural thermoregulation during exercise in trained but unacclimated women

    PubMed Central

    Lei, Tze‐Huan; Stannard, Stephen R.; Perry, Blake G.; Schlader, Zachary J.; Cotter, James D.

    2017-01-01

    Key points Despite an attenuated fluctuation in ovarian hormone concentrations in well‐trained women, one in two of such women believe their menstrual cycle negatively impacts training and performance.Forthcoming large international events will expose female athletes to hot environments, and studies evaluating aerobic exercise performance in such environments across the menstrual cycle are sparse, with mixed findings.We have identified that autonomic heat loss responses at rest and during fixed‐intensity exercise in well‐trained women are not affected by menstrual cycle phase, but differ between dry and humid heat.Furthermore, exercise performance is not different across the menstrual cycle, yet is lower in humid heat, in conjunction with reduced evaporative cooling.Menstrual cycle phase does not appear to affect exercise performance in the heat in well‐trained women, but humidity impairs performance, probably due to reduced evaporative power. Abstract We studied thermoregulatory responses of ten well‐trained [V˙O2 max , 57 (7) ml min−1 kg−1] eumenorrheic women exercising in dry and humid heat, across their menstrual cycle. They completed four trials, each of resting and cycling at fixed intensities (125 and 150 W), to assess autonomic regulation, then self‐paced intensity (30 min work trial), to assess behavioural regulation. Trials were in early‐follicular (EF) and mid‐luteal (ML) phases in dry (DRY) and humid (HUM) heat matched for wet bulb globe temperature (WBGT, 27°C). During rest and fixed‐intensity exercise, rectal temperature was ∼0.2°C higher in ML than EF (P < 0.01) independent of environment (P = 0.66). Mean skin temperature did not differ between menstrual phases (P ≥ 0.13) but was higher in DRY than HUM (P < 0.01). Local sweat rate and/or forearm blood flow differed as a function of menstrual phase and environment (interaction: P ≤ 0.01). Exercise performance did not differ between phases [EF: 257 (37), ML: 255 (43) kJ, P = 0.62], but was 7 (9)% higher in DRY than HUM [263 (39), 248 (40) kJ; P < 0.01] in conjunction with equivalent autonomic regulation and thermal strain but higher evaporative cooling [16 (6) W m2; P < 0.01]. In well‐trained women exercising in the heat: (1) menstrual phase did not affect performance, (2) humidity impaired performance due to reduced evaporative cooling despite matched WBGT and (3) behavioural responses nullified thermodynamic and autonomic differences associated with menstrual phase and dry vs. humid heat. PMID:27900769

  13. Influence of menstrual phase and arid vs. humid heat stress on autonomic and behavioural thermoregulation during exercise in trained but unacclimated women.

    PubMed

    Lei, Tze-Huan; Stannard, Stephen R; Perry, Blake G; Schlader, Zachary J; Cotter, James D; Mündel, Toby

    2017-05-01

    Despite an attenuated fluctuation in ovarian hormone concentrations in well-trained women, one in two of such women believe their menstrual cycle negatively impacts training and performance. Forthcoming large international events will expose female athletes to hot environments, and studies evaluating aerobic exercise performance in such environments across the menstrual cycle are sparse, with mixed findings. We have identified that autonomic heat loss responses at rest and during fixed-intensity exercise in well-trained women are not affected by menstrual cycle phase, but differ between dry and humid heat. Furthermore, exercise performance is not different across the menstrual cycle, yet is lower in humid heat, in conjunction with reduced evaporative cooling. Menstrual cycle phase does not appear to affect exercise performance in the heat in well-trained women, but humidity impairs performance, probably due to reduced evaporative power. We studied thermoregulatory responses of ten well-trained [V̇O2 max , 57 (7) ml min -1  kg -1 ] eumenorrheic women exercising in dry and humid heat, across their menstrual cycle. They completed four trials, each of resting and cycling at fixed intensities (125 and 150 W), to assess autonomic regulation, then self-paced intensity (30 min work trial), to assess behavioural regulation. Trials were in early-follicular (EF) and mid-luteal (ML) phases in dry (DRY) and humid (HUM) heat matched for wet bulb globe temperature (WBGT, 27°C). During rest and fixed-intensity exercise, rectal temperature was ∼0.2°C higher in ML than EF (P < 0.01) independent of environment (P = 0.66). Mean skin temperature did not differ between menstrual phases (P ≥ 0.13) but was higher in DRY than HUM (P < 0.01). Local sweat rate and/or forearm blood flow differed as a function of menstrual phase and environment (interaction: P ≤ 0.01). Exercise performance did not differ between phases [EF: 257 (37), ML: 255 (43) kJ, P = 0.62], but was 7 (9)% higher in DRY than HUM [263 (39), 248 (40) kJ; P < 0.01] in conjunction with equivalent autonomic regulation and thermal strain but higher evaporative cooling [16 (6) W m 2 ; P < 0.01]. In well-trained women exercising in the heat: (1) menstrual phase did not affect performance, (2) humidity impaired performance due to reduced evaporative cooling despite matched WBGT and (3) behavioural responses nullified thermodynamic and autonomic differences associated with menstrual phase and dry vs. humid heat. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  14. The Effect of Exercise Training Modality on C-reactive Protein in Type-2 Diabetes

    PubMed Central

    Swift, Damon L.; Johannsen, Neil M.; Earnest, Conrad P.; Blair, Steven N.; Church, Timothy S.

    2012-01-01

    Purpose Type-2 diabetes is associated with increased risk of cardiovascular disease and elevated C-reactive protein levels (CRP). Aerobic exercise training has been shown to improve CRP, however there are limited data evaluating the effect of other exercise training modalities (aerobic, resistance or combination training) in individuals with type-2 diabetes. Methods Participants (n=204) were randomized to an aerobic exercise (aerobic), resistance exercise (resistance) or a combination of both (combination) for nine months. CRP was evaluated at baseline and at follow-up. Results Baseline CRP was correlated with fat mass, waist circumference, BMI, and VO2 peak (p<0.05). CRP was not reduced following aerobic (0.16 mg·L -1, 95% CI: −1.0, 1.3), resistance (−0.03 mg·L -1, 95% CI: −1.1, 1.0) or combination (−0.49 mg·L -1, 95% CI: −1.5 to 0.6) training compared to control (0.35 mg·L -1, 95% CI: −1.0, 1.7). Change in fasting glucose (r=0.20, p=0.009), glycated hemoglobin (HbA1C) (r=0.21 p=0.005), and fat mass (r=0.19, p=0.016) were associated with reductions in CRP, but not change in fitness or weight (p > 0.05). There were significant trends observed for CRP among tertiles of change in HbA1C (p=0.009) and body fat (p=0.040). Conclusion Aerobic, resistance or a combination of both did not reduce CRP levels in individuals with type-2 diabetes. However, exercise related improvements in HbA1C, fasting glucose, and fat mass were associated with reductions in CRP. PMID:22157880

  15. Consumption of a high-fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice

    PubMed Central

    Borg, Melissa L; Omran, Simin Fallah; Weir, Jacquelyn; Meikle, Peter J; Watt, Matthew J

    2012-01-01

    Obesity is characterised by increased storage of fatty acids in an expanded adipose tissue mass and in peripheral tissues such as the skeletal muscle and liver, where it is associated with the development of insulin resistance. Insulin resistance also develops in the central nervous system with high-fat feeding. The capacity for hypothalamic cells to accumulate/store lipids, and the effects of obesity remain undefined. The aims of this study were (1) to examine hypothalamic lipid content in mice with increased dietary fat intake and in obese ob/ob mice fed a low-fat diet, and (2) to determine whether endurance exercise training could reduce hypothalamic lipid accumulation in high-fat fed mice. Male C57BL/6 mice were fed a low- (LFD) or high-fat diet (HFD) for 12 weeks; ob/ob mice were maintained on a chow diet. HFD-exercise (HFD-ex) mice underwent 12 weeks of high-fat feeding with 6 weeks of treadmill exercise training (increasing from 30 to 70 min day−1). Hypothalamic lipids were assessed by unbiased mass spectrometry. The HFD increased body mass and hepatic lipid accumulation, and induced glucose intolerance, while the HFD-ex mice had reduced body weight and improved glucose tolerance. A total of 335 lipid molecular species were identified and quantified. Lipids known to induce insulin resistance, including ceramide (22%↑), diacylglycerol (25%↑), lysophosphatidylcholine (17%↑), cholesterol esters (60%↑) and dihexosylceramide (33%↑), were increased in the hypothalamus of HFD vs. LFD mice. Hypothalamic lipids were unaltered with exercise training and in the ob/ob mice, suggesting that obesity per se does not alter hypothalamic lipids. Overall, hypothalamic lipid accumulation is regulated by dietary lipid content and is refractory to change with endurance exercise training. PMID:22674717

  16. Consumption of a high-fat diet, but not regular endurance exercise training, regulates hypothalamic lipid accumulation in mice.

    PubMed

    Borg, Melissa L; Omran, Simin Fallah; Weir, Jacquelyn; Meikle, Peter J; Watt, Matthew J

    2012-09-01

    Obesity is characterised by increased storage of fatty acids in an expanded adipose tissue mass and in peripheral tissues such as the skeletal muscle and liver, where it is associated with the development of insulin resistance. Insulin resistance also develops in the central nervous system with high-fat feeding. The capacity for hypothalamic cells to accumulate/store lipids, and the effects of obesity remain undefined. The aims of this study were (1) to examine hypothalamic lipid content in mice with increased dietary fat intake and in obese ob/ob mice fed a low-fat diet, and (2) to determine whether endurance exercise training could reduce hypothalamic lipid accumulation in high-fat fed mice. Male C57BL/6 mice were fed a low- (LFD) or high-fat diet (HFD) for 12 weeks; ob/ob mice were maintained on a chow diet. HFD-exercise (HFD-ex) mice underwent 12 weeks of high-fat feeding with 6 weeks of treadmill exercise training (increasing from 30 to 70 min day(-1)). Hypothalamic lipids were assessed by unbiased mass spectrometry. The HFD increased body mass and hepatic lipid accumulation, and induced glucose intolerance, while the HFD-ex mice had reduced body weight and improved glucose tolerance. A total of 335 lipid molecular species were identified and quantified. Lipids known to induce insulin resistance, including ceramide (22%↑), diacylglycerol (25%↑), lysophosphatidylcholine (17%↑), cholesterol esters (60%↑) and dihexosylceramide (33%↑), were increased in the hypothalamus of HFD vs. LFD mice. Hypothalamic lipids were unaltered with exercise training and in the ob/ob mice, suggesting that obesity per se does not alter hypothalamic lipids. Overall, hypothalamic lipid accumulation is regulated by dietary lipid content and is refractory to change with endurance exercise training.

  17. Impact of exercise on fecal and cecal metabolome over aging: a longitudinal study in rats.

    PubMed

    Deda, Olga; Gika, Helen; Panagoulis, Theodoros; Taitzoglou, Ioannis; Raikos, Nikolaos; Theodoridis, Georgios

    2017-01-01

    Physical exercise can reduce adverse conditions during aging, while both exercise and aging act as metabolism modifiers. The present study investigates rat fecal and cecal metabolome alterations derived from exercise during rats' lifespan. Groups of rats trained life-long or for a specific period of time were under study. The training protocol consisted of swimming, 15-18 min per day, 3-5 days per week, with load of 4-0% of rat's weight. Fecal samples and cecal extracts were analyzed by targeted and untargeted metabolic profiling methods (GC-MS and LC-MS/MS). Effects of exercise and aging on the rats' fecal and cecal metabolome were observed. Fecal and cecal metabolomics are a promising field to investigate exercise biochemistry and age-related alterations.

  18. The effect of exercise on plasma lipids and LDL subclass metabolism in miniature swine.

    PubMed

    Stucchi, A F; Terpstra, A H; Foxall, T L; Nicolosi, R J; Smith, S C

    1991-05-01

    The effects of exercise on plasma lipids and lipoproteins, high density lipoprotein (HDL) subclass cholesterol levels, and low density lipoprotein (LDL) subclass composition and metabolism were studied in Yucatan miniature swine following 2 yr of training. The exercise protocol produced significant training effects. Post-heparin lipolytic activity was also significantly increased. Although plasma cholesterol and triglycerides did not differ significantly (P = 0.08) between the exercised and control groups, multivariate analysis indicated a strong association between lipoprotein lipase (LPL) and HDL2-C (P less than 0.0001). Although HDL-C levels rose only slightly (P less than 0.09) with exercise, a significant shift was noted in the distribution of cholesterol from the HDL3 to the HDL2 fractions, perhaps mediated by the substantial increase in LPL activity. Exercise had little effect on the chemical composition of the major lipoprotein classes; however, the triglyceride content of the lighter LDL1 subclass was significantly reduced. In the more dense LDL2 subclass, exercise resulted in a significant decrease in triglycerides concomitant with a significant increase in free cholesterol levels. In contrast with the small reductions in fractional catabolic rates (FCR) in either subclass, production rates of the exercised group were reduced, which accounted for the reduction in LDL subclass pool size. These data indicate that exercise produces subtle but significant changes in lipoprotein metabolism that have been previously associated with reduced risk of atherosclerosis.

  19. Low- and high-intensity treadmill exercise attenuates chronic morphine-induced anxiogenesis and memory impairment but not reductions in hippocampal BDNF in female rats.

    PubMed

    Ghodrati-Jaldbakhan, Shahrbanoo; Ahmadalipour, Ali; Rashidy-Pour, Ali; Vafaei, Abbas Ali; Miladi-Gorji, Hossein; Alizadeh, Maryam

    2017-05-15

    Previous studies from our laboratory have shown that treadmill exercise alleviates the deficits in cognitive functions and anxiety behaviors induced by chronic exposure to morphine in male rats. In this study, we investigated the effects of low and high intensities of treadmill exercise on spatial memory, anxiety-like behaviors, and biochemical changes in the hippocampus and serum of morphine-treated female rats. The adult virgin female rats were injected with bi-daily doses (10mg/kg, at 12h intervals) of morphine over a period of 10days. Following these injections, the rats were exercised under low or high intensities for 30min per session on five days a week for four weeks. After exercise training, object location memory, anxiety profile, hippocampal BDNF, and serum corticosterone and BDNF were examined. Morphine-treated animals exhibited increased anxiety levels, impaired object location memory, and reduced hippocampal BDNF. Exercise alleviated these impairing effects on anxiety profile and memory but not hippocampal BDNF. The high-intensity exercise even further reduced the hippocampal BDNF. Additionally, both exercise regimens in the morphine group and the high exercise in the saline group reduced serum BDNF. Finally, the high-intensity exercise enhanced corticosterone serum. These findings indicate that the negative cognitive and behavioral effects of chronic exposure to morphine could be relieved by forced exercise in female rats. However, the exercise intensity is an important factor to be considered during exercise training. Finally, the correlation between changes of brain and serum BDNF and cognitive functions following morphine exposure needs further research. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effect of aerobic exercise and fish oil supplements on plasma levels of inflammatory indexes in mice.

    PubMed

    Alizadeh, Hamid; Bazgir, Behzad; Daryanoosh, Farhad; Koushki, Maryam; Sobhani, Vahid

    2014-01-01

    Exercise has positive and negative effects on immune system. Herein, we would like to investigate the effects of incremental aerobic training and fish oil supplementation on the plasma levels of CRP, CPK and IL-17 in trained mice. One of the major roles of immune system is to produce soluble or cellular components that provide the immunity against inflammatory agent. The purpose of this study is to investigate distinct and combine effects of incremental aerobic training and fish oil supplement on plasma levels of IL-17, CPK and CRP in trained male mice. Totally, 54 healthy male mice (2 months old, weight= 34±1 grams) were selected. At first 10 mice were killed to determine base line values, the rest of them were randomly divided into four groups, control group (C, n=11), supplement group (S, n=11), training group (T, n=11) and supplement-training group (ST, n=11).The supplement and supplement-training groups were fed with 0.2cc/day fish oil for 8 weeks. Training and supplement-training groups underwent exercise for 5 sessions per week for a period of 8 weeks on animal treadmill. SPSS 16.0 software and multivariate analysis of variance were used for statistical analysis of data Exercise and fish oil supplement lead to a decrease in CRP levels and subsequently causing a reduction in plasma levels of IL-17 and CK in mice (p<0.05). Combination of exercise and fish oil can reduce regulate inflammatory response caused by incremental exercise.

  1. What do community football players think about different exercise-training programmes? Implications for the delivery of lower limb injury prevention programmes

    PubMed Central

    Finch, Caroline F; Doyle, Tim LA; Dempsey, Alasdair R; Elliott, Bruce C; Twomey, Dara M; White, Peta E; Diamantopoulou, Kathy; Young, Warren; Lloyd, David G

    2014-01-01

    Background Players are the targeted end-users and beneficiaries of exercise-training programmes implemented during coach-led training sessions, and the success of programmes depends upon their active participation. Two variants of an exercise-training programme were incorporated into the regular training schedules of 40 community Australian Football teams, over two seasons. One variant replicated common training practices, while the second was an evidence-based programme to alter biomechanical and neuromuscular factors related to risk of knee injuries. This paper describes the structure of the implemented programmes and compares players’ end-of-season views about the programme variants. Methods This study was nested within a larger group-clustered randomised controlled trial of the effectiveness of two exercise-training programmes (control and neuromuscular control (NMC)) for preventing knee injuries. A post-season self-report survey, derived from Health Belief Model constructs, included questions to obtain players’ views about the benefits and physical challenges of the programme in which they participated. Results Compared with control players, those who participated in the NMC programme found it to be less physically challenging but more enjoyable and potentially of more benefit. Suggestions from players about potential improvements to the training programme and its future implementation included reducing duration, increasing range of drills/exercises and promoting its injury prevention and other benefits to players. Conclusions Players provide valuable feedback about the content and focus of implemented exercise-training programmes, that will directly inform the delivery of similar, or more successful, programmes in the future. PMID:24047571

  2. Early initiation of post-sternotomy cardiac rehabilitation exercise training (SCAR): study protocol for a randomised controlled trial and economic evaluation

    PubMed Central

    Lobley, Grace; Worrall, Sandra; Powell, Richard; Kimani, Peter K; Banerjee, Prithwish; Barker, Thomas

    2018-01-01

    Introduction Current guidelines recommend abstinence from supervised cardiac rehabilitation (CR) exercise training for 6 weeks post-sternotomy. This practice is not based on empirical evidence, thus imposing potentially unnecessary activity restrictions. Delayed participation in CR exercise training promotes muscle atrophy, reduces cardiovascular fitness and prolongs recovery. Limited data suggest no detrimental effect of beginning CR exercise training as early as 2 weeks post-surgery, but randomised controlled trials are yet to confirm this. The purpose of this trial is to compare CR exercise training commenced early (2 weeks post-surgery) with current usual care (6 weeks post-surgery) with a view to informing future CR guidelines for patients recovering from sternotomy. Methods and analysis In this assessor-blind randomised controlled trial, 140 cardiac surgery patients, recovering from sternotomy, will be assigned to 8 weeks of twice-weekly supervised CR exercise training commencing at either 2 weeks (early CR) or 6 weeks (usual care CR) post-surgery. Usual care exercise training will adhere to current UK recommendations. Participants in the early CR group will undertake a highly individualised 2–3 week programme of functional mobility, strength and cardiovascular exercise before progressing to a usual care CR programme. Outcomes will be assessed at baseline (inpatient), pre-CR (2 or 6 weeks post-surgery), post-CR (10 or 14 weeks post-surgery) and 12 months. The primary outcome will be change in 6 min walk distance. Secondary outcomes will include measures of functional fitness, quality of life and cost-effectiveness. Ethics and dissemination Recruitment commenced on July 2017 and will complete by December 2019. Results will be disseminated via national governing bodies, scientific meetings and peer-reviewed journals. Trial registration number NCT03223558; Pre-results. PMID:29574443

  3. A conceptual model for worksite intelligent physical exercise training--IPET--intervention for decreasing life style health risk indicators among employees: a randomized controlled trial.

    PubMed

    Sjøgaard, Gisela; Justesen, Just Bendix; Murray, Mike; Dalager, Tina; Søgaard, Karen

    2014-06-26

    Health promotion at the work site in terms of physical activity has proven positive effects but optimization of relevant exercise training protocols and implementation for high adherence are still scanty. The aim of this paper is to present a study protocol with a conceptual model for planning the optimal individually tailored physical exercise training for each worker based on individual health check, existing guidelines and state of the art sports science training recommendations in the broad categories of cardiorespiratory fitness, muscle strength in specific body parts, and functional training including balance training. The hypotheses of this research are that individually tailored worksite-based intelligent physical exercise training, IPET, among workers with inactive job categories will: 1) Improve cardiorespiratory fitness and/or individual health risk indicators, 2) Improve muscle strength and decrease musculoskeletal disorders, 3) Succeed in regular adherence to worksite and leisure physical activity training, and 3) Reduce sickness absence and productivity losses (presenteeism) in office workers. The present RCT study enrolled almost 400 employees with sedentary jobs in the private as well as public sectors. The training interventions last 2 years with measures at baseline as well as one and two years follow-up. If proven effective, the intelligent physical exercise training scheduled as well as the information for its practical implementation can provide meaningful scientifically based information for public health policy. ClinicalTrials.gov, number: NCT01366950.

  4. A conceptual model for worksite intelligent physical exercise training - IPET - intervention for decreasing life style health risk indicators among employees: a randomized controlled trial

    PubMed Central

    2014-01-01

    Background Health promotion at the work site in terms of physical activity has proven positive effects but optimization of relevant exercise training protocols and implementation for high adherence are still scanty. Methods/Design The aim of this paper is to present a study protocol with a conceptual model for planning the optimal individually tailored physical exercise training for each worker based on individual health check, existing guidelines and state of the art sports science training recommendations in the broad categories of cardiorespiratory fitness, muscle strength in specific body parts, and functional training including balance training. The hypotheses of this research are that individually tailored worksite-based intelligent physical exercise training, IPET, among workers with inactive job categories will: 1) Improve cardiorespiratory fitness and/or individual health risk indicators, 2) Improve muscle strength and decrease musculoskeletal disorders, 3) Succeed in regular adherence to worksite and leisure physical activity training, and 3) Reduce sickness absence and productivity losses (presenteeism) in office workers. The present RCT study enrolled almost 400 employees with sedentary jobs in the private as well as public sectors. The training interventions last 2 years with measures at baseline as well as one and two years follow-up. Discussion If proven effective, the intelligent physical exercise training scheduled as well as the information for its practical implementation can provide meaningful scientifically based information for public health policy. Trial Registration ClinicalTrials.gov, number: NCT01366950. PMID:24964869

  5. Psychological Factors and Cardiac Risk And Impact of Exercise Training Programs—A Review of Ochsner Studies

    PubMed Central

    Lavie, Carl J.; Milani, Richard V.; Artham, Surya M.; Gilliland, Yvonne

    2007-01-01

    Although under-emphasized, substantial evidence indicates that psychological distress, especially depression, hostility, and anxiety, are risk factors for coronary heart disease (CHD) and affect recovery following major coronary heart disease events. We review several major studies from Ochsner Medical Center demonstrating the high prevalence of psychological distress in CHD patients and the marked benefits that occur following formal cardiac rehabilitation and exercise training programs. These benefits include reductions in psychological stress, improvements in CHD risk factors that accompany high stress, and reduced all-cause mortality. These data support the benefits of exercise training and increased levels of fitness to improve psychological stress and subsequent prognosis. PMID:21603539

  6. Treatment of Dyslipidemia with Statins and Physical Exercises: Recent Findings of Skeletal Muscle Responses

    PubMed Central

    Bonfim, Mariana Rotta; Oliveira, Acary Souza Bulle; do Amaral, Sandra Lia; Monteiro, Henrique Luiz

    2015-01-01

    Statin treatment in association with physical exercise practice can substantially reduce cardiovascular mortality risk of dyslipidemic individuals, but this practice is associated with myopathic event exacerbation. This study aimed to present the most recent results of specific literature about the effects of statins and its association with physical exercise on skeletal musculature. Thus, a literature review was performed using PubMed and SciELO databases, through the combination of the keywords “statin” AND “exercise” AND “muscle”, restricting the selection to original studies published between January 1990 and November 2013. Sixteen studies evaluating the effects of statins in association with acute or chronic exercises on skeletal muscle were analyzed. Study results indicate that athletes using statins can experience deleterious effects on skeletal muscle, as the exacerbation of skeletal muscle injuries are more frequent with intense training or acute eccentric and strenuous exercises. Moderate physical training, in turn, when associated to statins does not increase creatine kinase levels or pain reports, but improves muscle and metabolic functions as a consequence of training. Therefore, it is suggested that dyslipidemic patients undergoing statin treatment should be exposed to moderate aerobic training in combination to resistance exercises three times a week, and the provision of physical training prior to drug administration is desirable, whenever possible. PMID:25993596

  7. Active Video Games as a Training Tool for Individuals With Chronic Respiratory Diseases: A SYSTEMATIC REVIEW.

    PubMed

    Butler, Stacey J; Lee, Annemarie L; Goldstein, Roger S; Brooks, Dina

    2018-02-26

    Exercise is an effective treatment for reducing symptom severity and improving quality of life for patients with chronic respiratory diseases. Active video games offer a new and enjoyable way to exercise and have gained popularity in a rehabilitation setting. However, it is unclear whether they achieve comparable physiological and clinical effects as traditional exercise training. A systematic literature search was performed to identify studies that included an active video game component as a form of exercise training and a comparator group in chronic respiratory disease. Two assessors independently reviewed study quality using the Cochrane risk of bias tool and extracted data for exercise capacity, quality of life, and preference of exercise model. Six studies were included in this review. Because of the heterogeneity of the populations, study designs, length of intervention, and outcome measures, meta-analysis could not be performed. Active video game training resulted in comparable training maximal heart rate and dyspnea levels to those achieved when exercising using a treadmill or cycle (n = 5). There was insufficient evidence (n = 3) to determine whether active video game training improved exercise capacity as measured by 6-min walk test or treadmill endurance walking. Although the quality of evidence was low, in a small number of studies active video games induced peak heart rates and dyspnea levels comparable with traditional exercise training. Larger and longer-term randomized controlled trials are needed to establish the impact of video game training for individuals with chronic respiratory diseases.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.

  8. Exercise Training Improves Selected Aspects of Daytime Functioning in Adults with Obstructive Sleep Apnea

    PubMed Central

    Kline, Christopher E.; Ewing, Gary B.; Burch, James B.; Blair, Steven N.; Durstine, J. Larry; Davis, J. Mark; Youngstedt, Shawn D.

    2012-01-01

    Study Objectives: To explore the utility of exercise training for improving daytime functioning in adults with obstructive sleep apnea (OSA). Methods: Forty-three sedentary and overweight/obese adults aged 18-55 years with at least moderate-severity untreated OSA (apnea-hypopnea index ≥ 15) were randomized to 12 weeks of moderate-intensity aerobic and resistance exercise training (n = 27) or low-intensity stretching control treatment (n = 16). As part of a trial investigating the efficacy of exercise training on OSA severity, daytime functioning was assessed before and following the intervention. Sleepiness, functional impairment due to sleepiness, depressive symptoms, mood, and quality of life (QOL) were evaluated with validated questionnaires, and cognitive function was assessed with a neurobehavioral performance battery. OSA severity was measured with one night of laboratory polysomnography before and following the intervention. Results: Compared with stretching control, exercise training resulted in significant improvements in depressive symptoms, fatigue and vigor, and aspects of QOL (p < 0.05). Sleepiness and functional impairment due to sleepiness also were improved following exercise versus control to a similar degree in terms of effect sizes (d > 0.5), though these changes were not statistically significant. No neurobehavioral performance improvements were found. Reduced fatigue following exercise training was mediated by a reduction in OSA severity, but changes in OSA severity did not significantly mediate improvement in any other measure of daytime functioning. Conclusions: These data provide preliminary evidence that exercise training may be helpful for improving aspects of daytime functioning of adults with OSA. Larger trials are needed to further verify the observed improvements. Trial Registration: Clinicaltrials.gov identification number NCT00956423. Citation: Kline CE; Ewing GB; Burch JB; Blair SN; Durstine JL; Davis JM; Youngstedt SD. Exercise training improves selected aspects of daytime functioning in adults with obstructive sleep apnea. J Clin Sleep Med 2012;8(4):357-365. PMID:22893765

  9. Can endurance training improve physical capacity and quality of life in young Fontan patients?

    PubMed

    Hedlund, Eva R; Lundell, Bo; Söderström, Liselott; Sjöberg, Gunnar

    2018-03-01

    Children after Fontan palliation have reduced exercise capacity and quality of life. Our aim was to study whether endurance training could improve physical capacity and quality of life in Fontan patients. Fontan patients (n=30) and healthy age- and gender-matched control subjects (n=25) performed a 6-minute walk test at submaximal capacity and a maximal cycle ergometer test. Quality of life was assessed with Pediatric Quality of Life Inventory Version 4.0 questionnaires for children and parents. All tests were repeated after a 12-week endurance training programme and after 1 year. Patients had decreased submaximal and maximal exercise capacity (maximal oxygen uptake 35.0±5.1 ml/minute per·kg versus 43.7±8.4 ml/minute·per·kg, p<0.001) and reported a lower quality of life score (70.9±9.9 versus 85.7±8.0, p<0.001) than controls. After training, patients improved their submaximal exercise capacity in a 6-minute walk test (from 590.7±65.5 m to 611.8±70.9 m, p<0.05) and reported a higher quality of life (p<0.01), but did not improve maximal exercise capacity. At follow-up, submaximal exercise capacity had increased further and improved quality of life was sustained. The controls improved their maximal exercise capacity (p<0.05), but not submaximal exercise capacity or quality of life after training. At follow-up, improvement of maximal exercise capacity was sustained. We believe that an individualised endurance training programme for Fontan patients improves submaximal exercise capacity and quality of life in Fontan patients and the effect on quality of life appears to be long-lasting.

  10. Preserving mobility in older adults.

    PubMed Central

    Buchner, D M

    1997-01-01

    Age-related loss of strength contributes to impaired mobility and increases the risk of falls. Recent research has focused on 2 approaches to preventing age-related loss of strength--promoting physical activity and exercise (especially strength training) and using trophic factors to enhance muscle performance. Epidemiologic evidence strongly supports a role of regular physical activity in successful aging by preserving muscle performance, promoting mobility, and reducing fall risk. Randomized controlled trials provide convincing evidence that strength and endurance training improve muscle performance in older adults. Evidence is rapidly accumulating from randomized trials that endurance, strength, and balance training promote mobility and reduce fall risk, though exercise effects differ according to the type of exercise, details of the exercise program, and the target group of older adults. Because lifetime regular physical activity is recommended for all older adults, a reasonable strategy (especially for weak adults) is an activity program that includes strength training. In contrast, insufficient evidence exists to recommend the long-term use of trophic factors to preserve muscular performance. An intervention that merits additional study is avoiding the use of psychoactive drugs because drugs like benzodiazepines appear to be risk factors for inactivity and may have unrecognized direct effects on muscular performance. Because chronic illness is a risk factor for inactivity and disuse muscle atrophy, randomized trials comparing strength training with other interventions would be useful in understanding whether strength training has advantages in preserving muscle performance and improving health-related quality of life in a variety of chronic illnesses such as depressive illness. PMID:9348757

  11. The Impact of Exercise on Statin-Associated Skeletal Muscle Myopathy

    PubMed Central

    Chung, Hae R.; Vakil, Mayand; Munroe, Michael; Parikh, Alay; Meador, Benjamin M.; Wu, Pei T.; Jeong, Jin H.; Woods, Jeffrey A.; Wilund, Kenneth R.; Boppart, Marni D.

    2016-01-01

    HMG-CoA reductase inhibitors (statins) are the most effective pharmacological means of reducing cardiovascular disease risk. The most common side effect of statin use is skeletal muscle myopathy, which may be exacerbated by exercise. Hypercholesterolemia and training status are factors that are rarely considered in the progression of myopathy. The purpose of this study was to determine the extent to which acute and chronic exercise can influence statin-induced myopathy in hypercholesterolemic (ApoE-/-) mice. Mice either received daily injections of saline or simvastatin (20 mg/kg) while: 1) remaining sedentary (Sed), 2) engaging in daily exercise for two weeks (novel, Nov), or 3) engaging in daily exercise for two weeks after a brief period of training (accustomed, Acct) (2x3 design, n = 60). Cholesterol, activity, strength, and indices of myofiber damage and atrophy were assessed. Running wheel activity declined in both exercise groups receiving statins (statin x time interaction, p<0.05). Cholesterol, grip strength, and maximal isometric force were significantly lower in all groups following statin treatment (statin main effect, p<0.05). Mitochondrial content and myofiber size were increased and 4-HNE was decreased by exercise (statin x exercise interaction, p<0.05), and these beneficial effects were abrogated by statin treatment. Exercise (Acct and Nov) increased atrogin-1 mRNA in combination with statin treatment, yet enhanced fiber damage or atrophy was not observed. The results from this study suggest that exercise (Nov, Acct) does not exacerbate statin-induced myopathy in ApoE-/- mice, yet statin treatment reduces activity in a manner that prevents muscle from mounting a beneficial adaptive response to training. PMID:27936249

  12. Exercise training modulates the hepatic renin-angiotensin system in fructose-fed rats.

    PubMed

    Frantz, Eliete Dalla Corte; Medeiros, Renata Frauches; Giori, Isabele Gomes; Lima, Juliana Bittencourt Silveira; Bento-Bernardes, Thais; Gaique, Thaiane Gadioli; Fernandes-Santos, Caroline; Fernandes, Tiago; Oliveira, Edilamar Menezes; Vieira, Carla Paulo; Conte-Junior, Carlos Adam; Oliveira, Karen Jesus; Nobrega, Antonio Claudio Lucas

    2017-09-01

    What is the central question of this study? What are the effects of exercise training on the hepatic renin-angiotensin system and their contribution to damage resulting from fructose overload in rats? What is the main finding and its importance? Exercise training attenuated the deleterious actions of the angiotensin-converting enzyme/angiotensin II/angiotensin II type 1 receptor axis and increased expression of the counter-regulatory (angiotensin-converting enzyme 2/angiotensin (1-7)/Mas receptor) axis in the liver. Therefore, our study provides evidence that exercise training modulates the hepatic renin-angiotensin system, which contributes to reducing the progression of metabolic dysfunction and non-alcoholic fatty liver disease in fructose-fed rats. The renin-angiotensin system (RAS) has been implicated in the development of metabolic syndrome. We investigated whether the hepatic RAS is modulated by exercise training and whether this modulation improves the deleterious effects of fructose overload in rats. Male Wistar rats were divided into (n = 8 each) control (CT), exercise control (CT-Ex), high-fructose (HFr) and exercise high-fructose (HFr-Ex) groups. Fructose-drinking rats received d-fructose (100 g l -1 ). After 2 weeks, CT-Ex and HFr-Ex rats were assigned to a treadmill training protocol at moderate intensity for 8 weeks (60 min day -1 , 4 days per week). We assessed body mass, glucose and lipid metabolism, hepatic histopathology, angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) activity, the angiotensin concentration and the expression profile of proteins affecting the hepatic RAS, gluconeogenesis and inflammation. Neither fructose overload nor exercise training influenced body mass gain and serum ACE and ACE2 activity. The HFr group showed hyperinsulinaemia, but exercise training normalized this parameter. Exercise training was effective in preventing hepatic steatosis and in preventing triacylglycerol and glycogen accumulation. Furthermore, exercise improved the response to the deleterious effects of HFr overload by normalizing the gluconeogenesis pathway and the protein levels of interleukin-6 and tumour necrosis factor-α. The HFr rats displayed increased hepatic ACE activity and protein expression and angiotensin II concentration, which were attenuated by exercise training. Exercise training restored the ACE2/angiotensin-(1-7)/Mas receptor axis. Exercise training may favour the counter-regulatory ACE2/angiotensin-(1-7)/Mas receptor axis over the classical RAS (ACE/angiotensin II/angiotensin II type 1 receptor axis), which could be responsible for the reduction of metabolic dysfunction and the prevention of non-alcoholic fatty liver disease. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  13. Music enhances performance and perceived enjoyment of sprint interval exercise.

    PubMed

    Stork, Matthew J; Kwan, Matthew Y W; Gibala, Martin J; Martin Ginis, Kathleen A

    2015-05-01

    Interval exercise training can elicit physiological adaptations similar to those of traditional endurance training, but with reduced time. However, the intense nature of specific protocols, particularly the "all-out" efforts characteristic of sprint interval training (SIT), may be perceived as being aversive. The purpose of this study was to determine whether listening to self-selected music can reduce the potential aversiveness of an acute session of SIT by improving affect, motivation, and enjoyment, and to examine the effects of music on performance. Twenty moderately active adults (22 ± 4 yr) unfamiliar with interval exercise completed an acute session of SIT under two different conditions: music and no music. The exercise consisted of four 30-s "all-out" Wingate Anaerobic Test bouts on a cycle ergometer, separated by 4 min of rest. Peak and mean power output, RPE, affect, task motivation, and perceived enjoyment of the exercise were measured. Mixed-effects models were used to evaluate changes in dependent measures over time and between the two conditions. Peak and mean power over the course of the exercise session were higher in the music condition (coefficient = 49.72 [SE = 13.55] and coefficient = 23.65 [SE = 11.30]; P < 0.05). A significant time by condition effect emerged for peak power (coefficient = -12.31 [SE = 4.95]; P < 0.05). There were no between-condition differences in RPE, affect, or task motivation. Perceived enjoyment increased over time and was consistently higher in the music condition (coefficient = 7.00 [SE = 3.05]; P < 0.05). Music enhances in-task performance and enjoyment of an acute bout of SIT. Listening to music during intense interval exercise may be an effective strategy for facilitating participation in, and adherence to, this form of training.

  14. Targeted spine strengthening exercise and posture training program to reduce hyperkyphosis in older adults: results from the study of hyperkyphosis, exercise, and function (SHEAF) randomized controlled trial.

    PubMed

    Katzman, W B; Vittinghoff, E; Lin, F; Schafer, A; Long, R K; Wong, S; Gladin, A; Fan, B; Allaire, B; Kado, D M; Lane, N E

    2017-10-01

    A 6-month randomized controlled trial of spine-strengthening exercise and posture training reduced both radiographic and clinical measures of kyphosis. Participants receiving the intervention improved self-image and satisfaction with their appearance. Results suggest that spine-strengthening exercise and postural training may be an effective treatment option for older adults with hyperkyphosis. The purpose of the present study is to determine in a randomized controlled trial whether spine-strengthening exercises improve Cobb angle of kyphosis in community-dwelling older adults. We recruited adults ≥60 years with kyphosis ≥40° and enrolled 99 participants (71 women, 28 men), mean age 70.6 ± 0.6 years, range 60-88, with baseline Cobb angle 57.4 ± 12.5°. The intervention included group spine-strengthening exercise and postural training, delivered by a physical therapist, 1-h, three times weekly for 6 months. Controls received four group health education meetings. The primary outcome was change in the gold standard Cobb angle of kyphosis measured from standing lateral spine radiographs. Secondary outcomes included change in kyphometer-measured kyphosis, physical function (modified Physical Performance Test, gait speed, Timed Up and Go, Timed Loaded Standing, 6-Min Walk), and health-related quality of life (HRQoL) (PROMIS global health and physical function indexes, SRS-30 self-image domain). ANCOVA was used to assess treatment effects on change from baseline to 6 months in all outcomes. There was a -3.0° (95% CI -5.2, -0.8) between-group difference in change in Cobb angle, p = 0.009, favoring the intervention and approximating the magnitude of change from an incident vertebral fracture. Kyphometer-measured kyphosis (p = 0.03) and SRS-30 self-esteem (p < 0.001) showed favorable between-group differences in change, with no group differences in physical function or additional HRQoL outcomes, p > 0.05. Spine-strengthening exercise and posture training over 6 months reduced kyphosis compared to control. Our randomized controlled trial results suggest that a targeted kyphosis-specific exercise program may be an effective treatment option for older adults with hyperkyphosis. ClinicalTrials.gov; identifier NCT01751685.

  15. What the Logs Can Tell You: Mediation to Implement Feedback in Training

    NASA Technical Reports Server (NTRS)

    Maluf, David; Wiederhold, Gio; Abou-Khalil, Ali; Norvig, Peter (Technical Monitor)

    2000-01-01

    The problem addressed by Mediation to Implement Feedback in Training (MIFT) is to customize the feedback from training exercizes by exploiting knowledge about the training scenario, training objectives, and specific student/teacher needs. We achieve this by inserting an intelligent mediation layer into the information flow from observations collected during training exercises to the display and user interface. Knowledge about training objectives, scenarios, and tasks is maintained in the mediating layer. A designer constraint is that domain experts must be able to extend mediators by adding domain-specific knowledge that supports additional aggregations, abstractions, and views of the results of training exercises. The MIFT mediation concept is intended to be integrated with existing military training exercise management tools and reduce the cost of developing and maintaining separate feedback and evaluation tools for every training simulator and every set of customer needs. The MIFT Architecture is designed as a set of independently reusable components which interact with each other through standardized formalisms such as the Knowledge Interchange Format (KIF) and Knowledge Query and Manipulation Language (KQML).

  16. Ginger extract and aerobic training reduces lipid profile in high-fat fed diet rats.

    PubMed

    Khosravani, M; Azarbayjani, M A; Abolmaesoomi, M; Yusof, A; Zainal Abidin, N; Rahimi, E; Feizolahi, F; Akbari, M; Seyedjalali, S; Dehghan, F

    2016-04-01

    Obesity, hyperglycemia and dyslipidemia, are major risk factors. However, natural therapies, dietary components, and physical activity may effect on these concerns. The aim of this study was to examine the effect of aerobic exercise and consumption of liquid ginger extract on lipid profile of Male rats with a high-fat fed diet. 32 rats were randomly divided into 4 groups: 1) aerobic exercise, 2) Ginger extract, 3) combined aerobic exercise and Ginger extract, and 4) the control. Subjects of the first three groups received ginger extract via gavage feeding of 250 mg/kg. The exercise program was 3 sessions per week on 3 different days over 4 weeks. Total cholesterol (TC), Triglyceride (TG), HDL and LDL were measured 24-h before the first session and 24-h after the final training session. The concentration of TG in the control group was significantly higher than other groups. In addition, the mean concentration of TG in the aerobic exercise group was significantly lower than Ginger extract group but there was no significant difference as compared to combined aerobic exercise and ginger extract group. The combination of aerobic exercise and ginger consumption significantly reduced the TG level compared to ginger group. TC and LDL concentrations were significantly decreased in all groups compare to control. The combination of aerobic exercise and ginger extract feeding caused a significant increase in HDL levels. The finding of this study suggests that the combination of aerobic exercise and liquid ginger extract consumption might be an effective method of reducing lipid profiles, which will reduce the risk of cardiovascular diseases caused by high-fat diets.

  17. Usage of an Exercise App in the Care for People With Osteoarthritis: User-Driven Exploratory Study

    PubMed Central

    2018-01-01

    Background Exercise has proven to reduce pain and increase quality of life among people living with osteoarthritis (OA). However, one major challenge is adherence to exercise once supervision ends. Objective This study aimed to identify mental and physical barriers and motivational and social aspects of training at home, and to test or further develop an exercise app. Methods The study was inspired from participatory design, engaging users in the research process. Data were collected through focus groups and workshops, and analyzed by systematic text condensation. Results Three main themes were found: competition as motivation, training together, and barriers. The results revealed that the participants wanted to do their training and had knowledge on exercise and pain but found it hard to motivate themselves. They missed the observation, comments, and encouragement by the supervising physiotherapist as well as their peers. Ways to optimize the training app were identified during the workshops as participants shared their experience. Conclusions This study concludes that the long-term continuation of exercising for patients with OA could be improved with the use of a technology tailored to users’ needs, including motivational and other behavioral factors. PMID:29326092

  18. Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions.

    PubMed

    Taivassalo, Tanja; Gardner, Julie L; Taylor, Robert W; Schaefer, Andrew M; Newman, Jane; Barron, Martin J; Haller, Ronald G; Turnbull, Douglass M

    2006-12-01

    At present there are limited therapeutic interventions for patients with mitochondrial myopathies. Exercise training has been suggested as an approach to improve physical capacity and quality of life but it is uncertain whether it offers a safe and effective treatment for patients with heteroplasmic mitochondrial DNA (mtDNA) mutations. The objectives of this study were to assess the effects of exercise training and detraining in eight patients with single, large-scale mtDNA deletions to determine: (i) the efficacy and safety of endurance training (14 weeks) in this patient population; (ii) to determine the effect of more prolonged (total of 28 weeks) exercise training upon muscle and cardiovascular function and (iii) to evaluate the effect of discontinued training (14 weeks) upon muscle and cardiovascular function. Our results show that: (i) 14 weeks of exercise training significantly improved tolerance of submaximal exercise and peak capacity for work, oxygen utilization and skeletal muscle oxygen extraction with no change in the level of deleted mtDNA; (ii) continued training for an additional 14 weeks maintained these beneficial adaptations; (iii) the cessation of training (detraining) resulted in loss of physiological adaptation to baseline capacity with no overall change in mutation load. Patients' self assessment of quality of life as measured by the SF-36 questionnaire improved with training and declined with detraining. Whilst our findings of beneficial effects of training on physiological outcome and quality of life without increases in the percentage of deleted mtDNA are encouraging, we did not observe changes in mtDNA copy number. Therefore there remains a need for longer term studies to confirm that endurance exercise is a safe and effective treatment for patients with mitochondrial myopathies. The effects of detraining clearly implicate physical inactivity as an important mechanism in reducing exercise capacity and quality of life in patients with mitochondrial myopathy.

  19. Low-level laser therapy (LLLT) associated with aerobic plus resistance training to improve inflammatory biomarkers in obese adults.

    PubMed

    da Silveira Campos, Raquel Munhoz; Dâmaso, Ana Raimunda; Masquio, Deborah Cristina Landi; Aquino, Antonio Eduardo; Sene-Fiorese, Marcela; Duarte, Fernanda Oliveira; Tock, Lian; Parizotto, Nivaldo Antonio; Bagnato, Vanderlei Salvador

    2015-07-01

    Recently, investigations suggest the benefits of low-level laser (light) therapy (LLLT) in noninvasive treatment of cellulite, improvement of body countering, and control of lipid profile. However, the underlying key mechanism for such potential effects associated to aerobic plus resistance training to reduce body fat and inflammatory process, related to obesity in women still unclear. The purpose of the present investigation was to evaluate the effects of combined therapy of LLLT and aerobic plus resistance training in inflammatory profile and body composition of obese women. For this study, it involved 40 obese women with age of 20-40 years. Inclusion criteria were primary obesity and body mass index (BMI) greater than 30 kg/m(2) and less than 40 kg/m(2). The voluntaries were allocated in two different groups: phototherapy group and SHAM group. The interventions consisted on physical exercise training and application of phototherapy (808 nm), immediately after the physical exercise, with special designed device. Proinflammatory/anti-inflammatory adipokines were measured. It was showed that LLLT associated to physical exercise is more effective than physical exercise alone to increase adiponectin concentration, an anti-inflammatory adipokine. Also, it showed reduced values of neck circumference (cm), insulin concentration (μU/ml), and interleukin-6 (pg/ml) in LLLT group. In conclusion, phototherapy can be an important tool in the obesity, mostly considering its potential effects associated to exercise training in attenuating inflammation in women, being these results applicable in the clinical practices to control related risk associated to obesity.

  20. Impact of Oral Ubiquinol on Blood Oxidative Stress and Exercise Performance

    PubMed Central

    Bloomer, Richard J.; Canale, Robert E.; McCarthy, Cameron G.; Farney, Tyler M.

    2012-01-01

    Coenzyme Q10 (CoQ10) plays an important role in bioenergetic processes and has antioxidant activity. Fifteen exercise-trained individuals (10 men and 5 women; 30–65 years) received reduced CoQ10 (Kaneka QH ubiquinol; 300 mg per day) or a placebo for four weeks in a random order, double blind, cross-over design (3 week washout). After each four-week period, a graded exercise treadmill test and a repeated cycle sprint test were performed (separated by 48 hours). Blood samples were collected before and immediately following both exercise tests and analyzed for lactate, malondialdehyde, and hydrogen peroxide. Resting blood samples were analyzed for CoQ10 (ubiquinone and ubiquinol) profile before and after each treatment period. Treatment with CoQ10 resulted in a significant increase in total blood CoQ10 (138%; P = 0.02) and reduced blood CoQ10 (168%; P = 0.02), but did not improve exercise performance (with the exception of selected individuals) or impact oxidative stress. The relationship between the percentage change in total blood CoQ10 and the cycle sprint total work (R2 = 0.6009) was noted to be moderate to strong. We conclude that treatment with CoQ10 in healthy, exercise-trained subjects increases total and reduced blood CoQ10, but this increase does not translate into improved exercise performance or decreased oxidative stress. PMID:22966414

  1. Physiotherapy home exercise program for haemophiliacs.

    PubMed

    Pierstorff, K; Seuser, A; Weinspach, S; Laws, H-J

    2011-05-01

    Regular physiotherapy can improve the stability and flexibility of joints and decrease the bleeding risk in patients with haemophilia. To reduce the appointments for the patients and to make exercising a part of daily live, an individualized home exercise program (HEP) was designed. Retrospectively the number of bleedings during the HEP was compared to number of bleedings before. 8 patients aged between 4 and 16 years with haemophilia A were evaluated. At start and after 13 month patients had a motion analysis via topographic ultrasound. According to the results and clinical findings an individualized HEP was created. Standardised scores for clinical evaluation and the patient based evaluation of exercises were designed. At every appointment exercises were individually adjusted. Patients exercised in median 1.7 times a week. No training related bleeds occurred. 7 of 8 patients showed reduced joint and/or muscle bleeds (p<0.02). Clinical scores raised slightly in every patient. However the second motion analysis of squat and gait showed a worsening in 7 of 8 patients (p>0.05). A HEP can help to advance in physical fitness and coordination and may reduce bleeding tendency, but needs to be accomplished regularly. Patients are interested but the motivation to exercise at home is low. Disorders measured by motion analysis seem not to be sufficiently influenced by our surrogate training program. © Georg Thieme Verlag KG Stuttgart · New York.

  2. The influence of nighttime feeding of carbohydrate or protein combined with exercise training on appetite and cardiometabolic risk in young obese women.

    PubMed

    Ormsbee, Michael J; Kinsey, Amber W; Eddy, Wyatt R; Madzima, Takudzwa A; Arciero, Paul J; Figueroa, Arturo; Panton, Lynn B

    2015-01-01

    Single macronutrient intake prior to sleep reduces appetite but may negatively impact insulin sensitivity in sedentary obese women. The present study examined the additive impact of nighttime feeding of whey (WH), casein (CAS), or carbohydrate (CHO) combined with exercise training on appetite, cardiometabolic health, and strength in obese women. Thirty-seven sedentary obese women (WH, n = 13, body mass index (BMI) 34.4 ± 1.3 kg/m(2); CAS, n = 14, BMI 36.5 ± 1.8 kg/m(2); CHO, n = 10, BMI 33.1 ± 1.7 kg/m(2)) consumed WH, CAS, or CHO (140-150 kcal/serving), every night of the week, within 30 min of sleep, for 4 weeks. Supervised exercise training (2 days of resistance training and 1 day of high-intensity interval training) was completed 3 days per week. Pre- and post-testing measurements included appetite ratings, mood state, resting metabolic rate, fasting lipids, glucose, and hormonal responses (insulin, leptin, adiponectin, hs-CRP, IGF-1, and cortisol), body composition, and strength. Nighttime intake of CAS significantly (p < 0.05) increased morning satiety (pretraining, 25 ± 5; post-training 41 ± 6) more than WH (pretraining, 34 ± 5; post-training, 35 ± 6) or CHO (pre 40 ± 8, post 43 ± 7). Exercise training increased lean mass and strength, decreased body fat, and improved mood state in all groups. No other differences were noted. Nighttime feeding of CAS combined with exercise training increased morning satiety more than WH or CHO. Nighttime feeding for 4 weeks did not impact insulin sensitivity (assessed via homeostatic model assessment of insulin resistance) when combined with exercise training in obese women. ClinicalTrial.gov: NCT01830946.

  3. The application of a feasible exercise training program in the office setting.

    PubMed

    Shariat, Ardalan; Lam, Eddie T C; Kargarfard, Mehdi; Tamrin, Shamsul B M; Danaee, Mahmoud

    2017-01-01

    Previous research support the claim that people who work in offices and sit for a long time are particularly prone to musculoskeletal disorders. The main objective of this paper is to introduce an exercise training program designed to decrease muscle stiffness and pain that can be performed in the office setting. Forty healthy office workers (age: 28±5.3 years old; body mass: 87.2±10.2 kg; height: 1.79±0.15 m) apart from suffering from any sub-clinical symptoms of muscle and joint stiffness, and who had at least two years of experience in office work were chosen and randomly assigned to either an experimental group (n = 20) or a control group (n = 20). The experimental group performed the exercise training program three times a week for 11 weeks. The Cornell Musculoskeletal Discomfort Questionnaire was used to measure the pain levels in the neck, shoulders, and lower back areas. The Borg CR-10 Scale was used to measure their perceived exertion when doing the exercises, and a goniometer was used to measure the changes in range of motion (ROM) of the neck, hips, knees, and shoulders. The overall results indicated that the exercise program could significantly (p < 0.05) reduce the neck, shoulders, and lower back pains of the participants in the exercise group while those in the control group showed no improvement in those pains. There were significant (p < 0.05) increases in the ROM of the hips, the neck, both knees and shoulders in the exercise group. Participants showed significant (p = 0.011) decreases in perceived exertion scores after the exercises. The exercise training program designed in this study not only can effectively reduce neck, shoulders, and lower back pains, but also can improve the ROM or flexibility of the office workers.

  4. Kata techniques training consistently decreases stereotypy in children with autism spectrum disorder.

    PubMed

    Bahrami, Fatimah; Movahedi, Ahmadreza; Marandi, Sayed Mohammad; Abedi, Ahmad

    2012-01-01

    The effects of 14 weeks of Kata techniques training on stereotypic behaviors of children with autism spectrum disorders (ASD) were investigated. The study included 30 eligible (diagnosed ASD, school age) children with ages ranging from 5 to 16 years whom they assigned to an exercise (n=15) or a no-exercise control group (n=15). Participants of the exercise group received Kata techniques instruction four times per week for 14 weeks (56 sessions). Stereotypy was assessed at baseline (pre-intervention), week 14 (post-intervention), and at one month follow up in both groups. Results showed that Kata techniques training significantly reduced stereotypy in the exercise group. Following participation in Kata techniques training, stereotypy decreased from baseline levels by a M of 42.54% across participants. Interestingly, after 30 days of no practice, stereotypy in the exercise group remained significantly decreased compared to pre-intervention time. The participants of the control group did not show significant changes in the stereotypy. Teaching martial arts techniques to children with ASD for a long period of time consistently decreased their stereotypic behaviors. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Exercise coupled with dietary restriction reduces oxidative stress in male adolescents with obesity.

    PubMed

    Li, Chunyan; Feng, Feihu; Xiong, Xiaoling; Li, Rui; Chen, Ning

    2017-04-01

    The increased oxidative stress is usually observed in obese population, but the control of body weight by calorie restriction and/or exercise training can ameliorate oxidative stress. In order to evaluate oxidative stress in response to exercise and dietary restriction in obese adolescents, a total of 20 obese volunteers were enrolled in a 4-week intervention program including exercise training and dietary restriction. Body compositions and blood samples were analysed before and after 4-week intervention, and biomarkers associated with oxidative stress were examined. After 4-week exercise training coupled with dietary restriction, physical composition parameters including body mass, body mass index (BMI), lean body mass, body fat mass and fat mass ratio had obvious reduction by 12.43%, 13.51%, 5.83%, 25.05% and 14.52%, respectively. In addition, the activities of antioxidant enzymes, such as superoxide dismutase (SOD) and glutathione peroxidase (GPx) revealed a remarkable enhancement. On the other hand, protein carbonyls (PC) exhibited an obvious reduction. Moreover, total thiols and nitrites with respect to baseline revealed a reducing trend although no significant difference was observed. Therefore, the 4-week exercise intervention coupled with dietary restriction is benefit for the loss of body weight and the mitigation of oxidative stress in obese population so that it can be a recommendable intervention prescription for the loss of body weight.

  6. Endurance exercise training blunts the deleterious effect of high-fat feeding on whole body efficiency

    PubMed Central

    Holloway, Cameron J.; Murray, Andrew J.; Knight, Nicholas S.; Carter, Emma E.; Kemp, Graham J.; Thompson, Campbell H.; Tyler, Damian J.; Neubauer, Stefan; Robbins, Peter A.; Clarke, Kieran

    2011-01-01

    We recently showed that a week-long, high-fat diet reduced whole body exercise efficiency in sedentary men by >10% (Edwards LM, Murray AJ, Holloway CJ, Carter EE, Kemp GJ, Codreanu I, Brooker H, Tyler DJ, Robbins PA, Clarke K. FASEB J 25: 1088–1096, 2011). To test if a similar dietary regime would blunt whole body efficiency in endurance-trained men and, as a consequence, hinder aerobic exercise performance, 16 endurance-trained men were given a short-term, high-fat (70% kcal from fat) and a moderate carbohydrate (50% kcal from carbohydrate) diet, in random order. Efficiency was assessed during a standardized exercise task on a cycle ergometer, with aerobic performance assessed during a 1-h time trial and mitochondrial function later measured using 31P-magnetic resonance spectroscopy. The subjects then underwent a 2-wk wash-out period, before the study was repeated with the diets crossed over. Muscle biopsies, for mitochondrial protein analysis, were taken at the start of the study and on the 5th day of each diet. Plasma fatty acids were 60% higher on the high-fat diet compared with moderate carbohydrate diet (P < 0.05). However, there was no change in whole body efficiency and no change in mitochondrial function. Endurance exercise performance was significantly reduced (P < 0.01), most probably due to glycogen depletion. Neither diet led to changes in citrate synthase, ATP synthase, or mitochondrial uncoupling protein 3. We conclude that prior exercise training blunts the deleterious effect of short-term, high-fat feeding on whole body efficiency. PMID:21632846

  7. Exercise x BCAA Supplementation in Young Trained Rats: What are their Effects on Body Growth?

    PubMed

    de Campos-Ferraz, Patricia Lopes; Ribeiro, Sandra Maria Lima; Luz, Silmara Dos Santos; Lancha, Antonio Herbert; Tirapegui, Julio

    2011-01-01

    The purpose of this study was to evaluate whether Branched-chain amino acids (BCAAs) supplementation had any beneficial effects on growth and metabolic parameters of young rats submitted to chronic aerobic exercise. Thirty-two young rats (age: 21-d) were randomly assigned to four experimental groups (n = 8): Supplemented Trained (Sup/Ex), Control Trained (Ctrl/Ex), Supplemented Sedentary (Sup/Sed) and Control Sedentary (Ctrl/Sed). The trained groups underwent a five-week swimming protocol and received supplemented (45 mg BCAA/body weight/day) or control ration. Trained animals presented a lower body length and a higher cartilage weight, regardless of supplementation. Physical activity was responsible for a substantial reduction in proteoglycan synthesis in cartilage tissue, and BCAA supplementation was able to attenuate this reduction and also to improve glycogen stores in the liver, although no major differences were found in body growth associated to this supplementation. Key pointsCartilage proteoglycan synthesis was dramatically reduced in trained animals as a whole.BCAA supplementation augmented liver glycogen stores and reduced proteolysis in our experimental conditionsTrained animals receiving BCAA supplementation featured increased proteoglycan synthesis compared to sedentary ones, probably because BCAA may have attenuated the negative effects of exercise on cartilage development.BCAA supplementation was not capable of neutralizing directly the negative effects of long-term physical training and lower food intake in young male rats on body growth.

  8. Exercise Training during Normobaric Hypoxic Confinement Does Not Alter Hormonal Appetite Regulation

    PubMed Central

    Debevec, Tadej; Simpson, Elizabeth J.; Macdonald, Ian A.; Eiken, Ola; Mekjavic, Igor B.

    2014-01-01

    Background Both exposure to hypoxia and exercise training have the potential to modulate appetite and induce beneficial metabolic adaptations. The purpose of this study was to determine whether daily moderate exercise training performed during a 10-day exposure to normobaric hypoxia alters hormonal appetite regulation and augments metabolic health. Methods Fourteen healthy, male participants underwent a 10-day hypoxic confinement at ∼4000 m simulated altitude (FIO2 = 0.139±0.003%) either combined with daily moderate intensity exercise (Exercise group; N = 8, Age = 25.8±2.4 yrs, BMI = 22.9±1.2 kg·m−2) or without any exercise (Sedentary group; N = 6 Age = 24.8±3.1 yrs, BMI = 22.3±2.5 kg·m−2). A meal tolerance test was performed before (Pre) and after the confinement (Post) to quantify fasting and postprandial concentrations of selected appetite-related hormones and metabolic risk markers. 13C-Glucose was dissolved in the test meal and 13CO2 determined in breath samples. Perceived appetite ratings were obtained throughout the meal tolerance tests. Results While body mass decreased in both groups (−1.4 kg; p = 0.01) following the confinement, whole body fat mass was only reduced in the Exercise group (−1.5 kg; p = 0.01). At Post, postprandial serum insulin was reduced in the Sedentary group (−49%; p = 0.01) and postprandial plasma glucose in the Exercise group (−19%; p = 0.03). Fasting serum total cholesterol levels were reduced (−12%; p = 0.01) at Post in the Exercise group only, secondary to low-density lipoprotein cholesterol reduction (−16%; p = 0.01). No differences between groups or testing periods were noted in fasting and/or postprandial concentrations of total ghrelin, peptide YY, and glucagon-like peptide-1, leptin, adiponectin, expired 13CO2 as well as perceived appetite ratings (p>0.05). Conclusion These findings suggest that performing daily moderate intensity exercise training during continuous hypoxic exposure does not alter hormonal appetite regulation but can improve the lipid profile in healthy young males. PMID:24887106

  9. Core stability training: applications to sports conditioning programs.

    PubMed

    Willardson, Jeffrey M

    2007-08-01

    In recent years, fitness practitioners have increasingly recommended core stability exercises in sports conditioning programs. Greater core stability may benefit sports performance by providing a foundation for greater force production in the upper and lower extremities. Traditional resistance exercises have been modified to emphasize core stability. Such modifications have included performing exercises on unstable rather than stable surfaces, performing exercises while standing rather than seated, performing exercises with free weights rather than machines, and performing exercises unilaterally rather than bilaterally. Despite the popularity of core stability training, relatively little scientific research has been conducted to demonstrate the benefits for healthy athletes. Therefore, the purpose of this review was to critically examine core stability training and other issues related to this topic to determine useful applications for sports conditioning programs. Based on the current literature, prescription of core stability exercises should vary based on the phase of training and the health status of the athlete. During preseason and in-season mesocycles, free weight exercises performed while standing on a stable surface are recommended for increases in core strength and power. Free weight exercises performed in this manner are specific to the core stability requirements of sports-related skills due to moderate levels of instability and high levels of force production. Conversely, during postseason and off-season mesocycles, Swiss ball exercises involving isometric muscle actions, small loads, and long tension times are recommended for increases in core endurance. Furthermore, balance board and stability disc exercises, performed in conjunction with plyometric exercises, are recommended to improve proprioceptive and reactive capabilities, which may reduce the likelihood of lower extremity injuries.

  10. Exercise Training and Cardiovascular Health in Cancer Patients.

    PubMed

    Squires, Ray W; Shultz, Adam M; Herrmann, Joerg

    2018-03-10

    Cancer patients nearly universally experience a decline in quality of life, with fatigue and reduced exercise tolerance as cardinal reflections. A routine exercise program can improve these signs and symptoms as well as overall outcomes. The review provides an updated overview of the field and its translation to clinical practice. A wealth of clinical studies have documented the safety and benefits of exercise after and during cancer therapy, and pilot and larger-scale studies are currently ongoing to integrate exercise into the treatment program for cancer patients undergoing active therapy (EXACT pilot, OptiTrain, and TITAN study). More recently, efforts have emerged to commence exercise programs before the start of cancer therapy, so-called pre-habilitation. The concept of increasing the cardiovascular reserve beforehand is intuitively attractive. In agreement, preclinical studies support exercise as an effective preventive means before and during cardiotoxic drug exposure. Assuming that a pronounced drop in exercise tolerance will occur during cancer therapy, pre-habilitation can potentially curtail or raise the nadir level of exercise tolerance. Furthermore, such efforts might serve as pre-conditioning efforts in reducing not only the nadir, but even the magnitude of drop in cardiovascular reserve. Initiated beforehand, cancer patients are also more likely to continue these efforts during cancer therapy. Finally, an active exercise routine (≥ 150 min/week moderate intensity or ≥ 75 min/week vigorous intensity or combination) in conjunction with the other six American Heart Association's cardiovascular health metrics (BMI < 25 kg/m 2 , blood pressure < 120/80 mmHg, fasting plasma glucose < 100 mg/dL, total cholesterol < 200 mg/dL, 4-5 component healthy diet, no smoking) reduces not only the cardiovascular but also the cancer disease risk. Exercise can reduce the risks of developing cancer, the detrimental effects of its treatment on the cardiovascular system, and overall morbidity and mortality. Exercise should become an integral part of the care for every cancer patient.

  11. Comparison of trunk kinematics in trunk training exercises and throwing.

    PubMed

    Stodden, David F; Campbell, Brian M; Moyer, Todd M

    2008-01-01

    Strength and conditioning professionals, as well as coaches, have emphasized the importance of training the trunk and the benefits it may have on sport performance and reducing the potential for injury. However, no data on the efficacy of trunk training support such claims. The purpose of this study was to examine the maximum differential trunk rotation and maximum angular velocities of the pelvis and upper torso of participants while they performed 4 trunk exercises (seated band rotations, cross-overs, medicine ball throws, and twisters) and compare these trunk exercise kinematics with the trunk kinematics demonstrated in actual throwing performance. Nine NCAA Division I baseball players participated in this study. Each participant's trunk kinematics was analyzed while he performed 5 repetitions of each exercise in both dominant and nondominant rotational directions. Results indicated maximum differentiated rotation in all 4 trunk exercises was similar to maximum differentiated rotation (approximately 50-60 degrees) demonstrated in throwing performance. Maximum angular velocities of the pelvis and upper torso in the trunk exercises were appreciably slower (approximately 50% or less) than the angular velocities demonstrated during throwing performance. Incorporating trunk training exercises that demonstrate sufficient trunk ranges of motion and velocities into a strength and conditioning program may help to increase ball velocity and/or decrease the risk injury.

  12. Endurance exercise and selective breeding for longevity extend Drosophila healthspan by overlapping mechanisms.

    PubMed

    Sujkowski, Alyson; Bazzell, Brian; Carpenter, Kylie; Arking, Robert; Wessells, Robert J

    2015-08-01

    Endurance exercise has emerged as a powerful intervention that promotes healthy aging by maintaining the functional capacity of critical organ systems. In addition, long-term exercise reduces the incidence of age-related diseases in humans and in model organisms. Despite these evident benefits, the genetic pathways required for exercise interventions to achieve these effects are still relatively poorly understood. Here, we compare gene expression changes during endurance training in Drosophila melanogaster to gene expression changes during selective breeding for longevity. Microarrays indicate that 65% of gene expression changes found in flies selectively bred for longevity are also found in flies subjected to three weeks of exercise training. We find that both selective breeding and endurance training increase endurance, cardiac performance, running speed, flying height, and levels of autophagy in adipose tissue. Both interventions generally upregulate stress defense, folate metabolism, and lipase activity, while downregulating carbohydrate metabolism and odorant receptor expression. Several members of the methuselah-like (mthl) gene family are downregulated by both interventions. Knockdown of mthl-3 was sufficient to provide extension of negative geotaxis behavior, endurance and cardiac stress resistance. These results provide support for endurance exercise as a broadly acting anti-aging intervention and confirm that exercise training acts in part by targeting longevity assurance pathways.

  13. A multi-ingredient nutritional supplement enhances exercise training-related reductions in markers of systemic inflammation in healthy older men.

    PubMed

    Bell, Kirsten E; Snijders, Tim; Zulyniak, Michael A; Kumbhare, Dinesh; Parise, Gianni; Chabowski, Adrian; Phillips, Stuart M

    2018-03-01

    We evaluated whether twice-daily consumption of a multi-ingredient nutritional supplement (SUPP) would reduce systemic inflammatory markers following 6 weeks of supplementation alone (phase 1), and the subsequent addition of 12 weeks of exercise training (phase 2) in healthy older men, in comparison with a carbohydrate-based control (CON). Tumour necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6) concentrations were progressively reduced (P-time < 0.05) in the SUPP group. No change in TNF-α or IL-6 concentrations was observed in the CON group.

  14. Comparing the effects of eccentric training with eccentric training and static stretching exercises in the treatment of patellar tendinopathy. A controlled clinical trial.

    PubMed

    Dimitrios, Stasinopoulos; Pantelis, Manias; Kalliopi, Stasinopoulou

    2012-05-01

    The aim of the present study was to investigate the effectiveness of eccentric training and eccentric training with static stretching exercises in the management of patellar tendinopathy. Controlled clinical trial. Rheumatology and rehabilitation centre. Forty-three patients who had patellar tendinopathy for at least three months. They were allocated to two groups by alternative allocation. Group A (n = 22) was treated with eccentric training of patellar tendon and static stretching exercises of quadriceps and hamstrings and Group B (n = 21) received eccentric training of patellar tendon. All patients received five treatments per week for four weeks. Pain and function were evaluated using the VISA-P score at baseline, at the end of treatment (week 4), and six months (week 24) after the end of treatment. At the end of treatment, there was a rise in VISA-P score in both groups compared with baseline (P<0.0005, paired t test). There were significant differences in the VISA-P score between the groups at the end of treatment (+14; 10 to 18) and at the six-month follow-up (+19; 13 to 24); eccentric training and static stretching exercises produced the largest effect (P<0.0005, one-way ANOVA). Eccentric training and static stretching exercises is superior to eccentric training alone to reduce pain and improve function in patients with patellar tendinopathy at the end of the treatment and at follow-up.

  15. Heat training increases exercise capacity in hot but not in temperate conditions: a mechanistic counter-balanced cross-over study.

    PubMed

    Keiser, Stefanie; Flück, Daniela; Hüppin, Fabienne; Stravs, Alexander; Hilty, Matthias P; Lundby, Carsten

    2015-09-01

    The aim was to determine the mechanisms facilitating exercise performance in hot conditions following heat training. In a counter-balanced order, seven males (V̇o2max 61.2 ± 4.4 ml·min(-1)·kg(-1)) were assigned to either 10 days of 90-min exercise training in 18 or 38°C ambient temperature (30% relative humidity) applying a cross-over design. Participants were tested for V̇o2max and 30-min time trial performance in 18 (T18) and 38°C (T38) before and after training. Blood volume parameters, sweat output, cardiac output (Q̇), cerebral perfusion (i.e., middle cerebral artery velocity [MCAvmean]), and other variables were determined. Before one set of exercise tests in T38, blood volume was acutely expanded by 538 ± 16 ml with an albumin solution (T38A) to determine the role of acclimatization induced hypervolemia on exercise performance. We furthermore hypothesized that heat training would restore MCAvmean and thereby limit centrally mediated fatigue. V̇o2max and time trial performance were equally reduced in T38 and T38A (7.2 ± 1.6 and 9.3 ± 2.5% for V̇o2max; 12.8 ± 2.8 and 12.9 ± 2.8% for time trial). Following heat training both were increased in T38 (9.6 ± 2.1 and 10.4 ± 3.1%, respectively), whereas both V̇o2max and time trial performance remained unchanged in T18. As expected, heat training augmented plasma volume (6 ± 2%) and mean sweat output (26 ± 6%), whereas sweat [Na(+)] became reduced by 19 ± 7%. In T38 Q̇max remained unchanged before (21.3 ± 0.6 l/min) to after (21.7 ± 0.5 l/min) training, whereas MCAvmean was increased by 13 ± 10%. However, none of the observed adaptations correlated with the concomitant observed changes in exercise performance. Copyright © 2015 the American Physiological Society.

  16. Four Weeks of Nordic Hamstring Exercise Reduce Muscle Injury Risk Factors in Young Adults.

    PubMed

    Ribeiro-Alvares, João Breno; Marques, Vanessa B; Vaz, Marco A; Baroni, Bruno M

    2018-05-01

    Ribeiro-Alvares, JB, Marques, VB, Vaz, MA, and Baroni, BM. Four weeks of Nordic hamstring exercise reduce muscle injury risk factors in young adults. J Strength Cond Res 32(5): 1254-1262, 2018-The Nordic hamstring exercise (NHE) is a field-based exercise designed for knee-flexor eccentric strengthening, aimed at prevention of muscle strains. However, possible effects of NHE programs on other hamstring injury risk factors remain unclear. The purpose of this study was to investigate the effects of a NHE training program on multiple hamstring injury risk factors. Twenty physically active young adults were allocated into 2 equal-sized groups: control group (CG) and training group (TG). The TG was engaged in a 4-week NHE program, twice a week, 3 sets of 6-10 repetitions; while CG received no exercise intervention. The knee flexor and extensor strength were assessed through isokinetic dynamometry, the biceps femoris long head muscle architecture through ultrasound images, and the hamstring flexibility through sit-and-reach test. The results showed that CG subjects had no significant change in any outcome. TG presented higher percent changes than CG for hamstring isometric peak torque (9%; effect size [ES] = 0.27), eccentric peak torque (13%; ES = 0.60), eccentric work (18%; ES = 0.86), and functional hamstring-to-quadriceps torque ratio (13%; ES = 0.80). The NHE program led also to increased fascicle length (22%; ES = 2.77) and reduced pennation angle (-17%; ES = 1.27) in biceps femoris long head of the TG, without significant changes on muscle thickness. In conclusion, a short-term NHE training program (4 weeks; 8 training sessions) counteracts multiple hamstring injury risk factors in physically active young adults.

  17. Improved Insulin Sensitivity After Exercise Training is Linked to Reduced Plasma C14:0 Ceramide in Obesity and Type 2 Diabetes

    PubMed Central

    Kasumov, Takhar; Solomon, Thomas P.J.; Hwang, Calvin; Huang, Hazel; Haus, Jacob M.; Zhang, Renliang; Kirwan, John P.

    2015-01-01

    Objective To assess the effect of exercise training on insulin sensitivity and plasma ceramides in obesity and type 2 diabetes (T2D). Methods Twenty-four adults with obesity and normal glucose tolerance (NGT, n=14), or diabetes (n=10) were studied before and after a 12-week supervised exercise-training program (5 d/wk, 1 hr/d, 80–85% of maximum heart rate). Changes in body composition were assessed using hydrostatic weighing and computed tomography. Peripheral tissue insulin sensitivity was assessed by a 40 mU/m2/min hyperinsulinemic euglycemic clamp. Plasma ceramides (C14:0, C16:0, C18:0, C18:1, C20:0, C24:0 and C24:1) were quantified using electrospray ionization tandem mass spectrometry after separation with HPLC. Results Plasma ceramides were similar for the obese NGT and subjects with diabetes, despite differences in glucose tolerance. Exercise significantly reduced body weight and adiposity, and increased peripheral insulin sensitivity in both groups (P<0.05). In addition, plasma C14:0, C16:0, C18:1, and C24:0 ceramide levels were reduced in all subjects following the intervention (P<0.05). Decreases in total (r=-0.51, P=0.02) and C14:0 (r=-0.56, P=0.009) ceramide were negatively correlated with the increase in insulin sensitivity. Conclusion Ceramides are linked to exercise training-induced improvements in insulin sensitivity, and plasma C14:0 ceramide may provide a specific target for investigating lipid-related insulin resistance in obesity and T2D. PMID:25966363

  18. Improved insulin sensitivity after exercise training is linked to reduced plasma C14:0 ceramide in obesity and type 2 diabetes.

    PubMed

    Kasumov, Takhar; Solomon, Thomas P J; Hwang, Calvin; Huang, Hazel; Haus, Jacob M; Zhang, Renliang; Kirwan, John P

    2015-07-01

    To assess the effect of exercise training on insulin sensitivity and plasma ceramides in obesity and type 2 diabetes (T2D). Twenty-four adults with obesity and normal glucose tolerance (NGT, n = 14) or diabetes (n = 10) were studied before and after a 12-week supervised exercise-training program (5 days/week, 1 h/day, 80-85% of maximum heart rate). Changes in body composition were assessed using hydrostatic weighing and computed tomography. Peripheral tissue insulin sensitivity was assessed by a 40 mU/m(2) /min hyperinsulinemic euglycemic clamp. Plasma ceramides (C14:0, C16:0, C18:0, C18:1, C20:0, C24:0, and C24:1) were quantified using electrospray ionization tandem mass spectrometry after separation with HPLC. Plasma ceramides were similar for the subjects with obesity and NGT and the subjects with diabetes, despite differences in glucose tolerance. Exercise significantly reduced body weight and adiposity and increased peripheral insulin sensitivity in both groups (P < 0.05). In addition, plasma C14:0, C16:0, C18:1, and C24:0 ceramide levels were reduced in all subjects following the intervention (P < 0.05). Decreases in total (r = -0.51, P = 0.02) and C14:0 (r = -0.56, P = 0.009) ceramide were negatively correlated with the increase in insulin sensitivity. Ceramides are linked to exercise training-induced improvements in insulin sensitivity, and plasma C14:0 ceramide may provide a specific target for investigating lipid-related insulin resistance in obesity and T2D. © 2015 The Obesity Society.

  19. Cardiorespiratory deconditioning with static and dynamic leg exercise during bed rest

    NASA Technical Reports Server (NTRS)

    Stremel, R. W.; Convertino, V. A.; Bernauer, E. M.; Greenleaf, J. E.

    1976-01-01

    Results are presented for an experimental study designed to compare the effects of heavy static and dynamic exercise training during 14 days of bed rest on the cardiorespiratory responses to submaximal and maximal exercise performed by seven healthy men aged 19-22 yr. The parameters measured were submaximal and maximal oxygen uptake, minute ventilation, heart rate, and plasma volume. The results indicate that exercise alone during bed rest reduces but does not eliminate the reduction in maximal oxygen uptake. An additional positive hydrostatic effect is therefore necessary to restore maximal oxygen uptake to ambulatory control levels. The greater protective effect of static exercise on maximal oxygen uptake is probably due to a greater hydrostatic component from the isometric muscular contraction. Neither the static nor the dynamic exercise training regimes are found to minimize the changes in all the variables studied, thereby suggesting a combination of static and dynamic exercises.

  20. Specific trunk and general exercise elicit similar changes in anticipatory postural adjustments in patients with chronic low back pain: a randomized controlled trial.

    PubMed

    Brooks, Cristy; Kennedy, Suzanne; Marshall, Paul W M

    2012-12-01

    A randomized controlled trial. To compare changes in self-rated disability, pain, and anticipatory postural adjustments between specific trunk exercise and general exercise in patients with chronic low back pain. Chronic low back pain is associated with altered motor control of the trunk muscles. The best exercise to address altered motor control is unclear. Sixty-four patients with chronic low back pain were randomly assigned to a specific trunk exercise group (SEG) that included skilled cognitive activation of the trunk muscles in addition to a number of other best practice exercises, whereas the general exercise group performed only seated cycling exercise. The training program lasted for 8 weeks. Self-rated disability and pain scores were collected before and after the training period. Electromyographic activity of various trunk muscles was recorded during performance of a rapid shoulder flexion task before and after training. Muscle onsets were calculated, and the latency time (in ms) between the onset of each trunk muscle and the anterior deltoid formed the basis of the motor control analysis. After training, disability was significantly lower in the SEG (d = 0.62, P = 0.018). Pain was reduced in both groups after training (P < 0.05), but was lower for the SEG (P < 0.05). Despite the general exercise group performing no specific trunk exercise, similar changes in trunk muscle onsets were observed in both groups after training. SEG elicited significant reductions in self-rated disability and pain, whereas similar between-group changes in trunk muscle onsets were observed. The motor control adaptation seems to reflect a strategy of improved coordination between the trunk muscles with the unilateral shoulder movement. Trunk muscle onsets during rapid limb movement do not seem to be a valid mechanism of action for specific trunk exercise rehabilitation programs.

  1. Improved Arterial–Ventricular Coupling in Metabolic Syndrome after Exercise Training

    PubMed Central

    Fournier, Sara B.; Donley, David A.; Bonner, Daniel E.; DeVallance, Evan; Olfert, I. Mark; Chantler, Paul D.

    2014-01-01

    Purpose The metabolic syndrome (MetS) is associated with a three-fold increase risk of cardiovascular (CV) morbidity and mortality, which is in part, due to a blunted CV reserve capacity, reflected by a reduced peak exercise left ventricular contractility and aerobic capacity, and a blunted peak arterial-ventricular coupling. To date, no study has examined whether aerobic exercise training in MetS can reverse the peak exercise CV dysfunction. Further, examining how exercise training alters CV function in a group of individuals with MetS prior to the development of diabetes and/or overt CVD, can provide insights into whether some of the pathophysiological changes to the CV can be delayed/reversed, lowering their CV risk. The objective of this study was to examine the effects of 8 weeks of aerobic exercise training in individuals with MetS on resting and peak exercise CV function. Methods Twenty MetS underwent either 8 weeks of aerobic exercise training (MetS-ExT; n=10) or remained sedentary (MetS-NonT; n=10) during this time period. Resting and peak exercise CV function was characterized using Doppler echocardiography and gas exchange. Results Exercise training did not alter resting left ventricular diastolic or systolic function and arterial-ventricular coupling in MetS. In contrast, at peak exercise an increase in LV contractility (40%, p<0.01), cardiac output (28%, p<0.05) and aerobic capacity (20%, p<0.01), while a reduction in vascular resistance (30%, p<0.05) and arterial-ventricular coupling (27%, p<0.01), were noted in the MetS-ExT but not the MetS-NonT group. Further, an improvement in Lifetime Risk Score was also noted in the MetS-ExT group. Conclusions These findings have clinical importance as they provide insight that some of the pathophysiological changes associated with MetS can be improved and lower the risk of CVD. PMID:24870568

  2. Improved arterial-ventricular coupling in metabolic syndrome after exercise training: a pilot study.

    PubMed

    Fournier, Sara B; Donley, David A; Bonner, Daniel E; Devallance, Evan; Olfert, I Mark; Chantler, Paul D

    2015-01-01

    The metabolic syndrome (MetS) is associated with threefold increased risk of cardiovascular (CV) morbidity and mortality, which is partly due to a blunted CV reserve capacity, reflected by a reduced peak exercise left ventricular (LV) contractility and aerobic capacity and a blunted peak arterial-ventricular coupling. To date, no study has examined whether aerobic exercise training in MetS can reverse peak exercise CV dysfunction. Furthermore, examining how exercise training alters CV function in a group of individuals with MetS before the development of diabetes and/or overt CV disease can provide insights into whether some of the pathophysiological CV changes can be delayed/reversed, lowering their CV risk. The objective of this study was to examine the effects of 8 wk of aerobic exercise training in individuals with MetS on resting and peak exercise CV function. Twenty participants with MetS underwent either 8 wk of aerobic exercise training (MetS-ExT, n = 10) or remained sedentary (MetS-NonT, n = 10) during this period. Resting and peak exercise CV function was characterized using Doppler echocardiography and gas exchange. Exercise training did not alter resting LV diastolic or systolic function and arterial-ventricular coupling in MetS. In contrast, at peak exercise, an increase in LV contractility (40%, P < 0.01), cardiac output (28%, P < 0.05), and aerobic capacity (20%, P < 0.01), but a reduction in vascular resistance (30%, P < 0.05) and arterial-ventricular coupling (27%, P < 0.01), were noted in the MetS-ExT but not in the MetS-NonT group. Furthermore, an improvement in lifetime risk score was also noted in the MetS-ExT group. These findings have clinical importance because they provide insight that some of the pathophysiological changes associated with MetS can be improved and can lower the risk of CV disease.

  3. Role of fat metabolism in exercise.

    PubMed

    Askew, E W

    1984-07-01

    Fat and carbohydrate are the two major energy sources used during exercise. Either source can predominate, depending upon the duration and intensity of exercise, degree of prior physical conditioning, and the composition of the diet consumed in the days prior to a bout of exercise. Fatty acid oxidation can contribute 50 to 60 per cent of the energy expenditure during a bout of low intensity exercise of long duration. Strenuous submaximal exercise requiring 65 to 80 per cent of VO2 max will utilize less fat (10 to 45 per cent of the energy expended). Exercise training is accompanied by metabolic adaptations that occur in skeletal muscle and adipose tissue and that facilitate a greater delivery and oxidation of fatty acids during exercise. The trained state is characterized by an increased flux of fatty acids through smaller pools of adipose tissue energy. This is reflected by smaller, more metabolically active adipose cells in smaller adipose tissue depots. Peak blood concentrations of free fatty acids and ketone bodies are lower during and following exercise in trained individuals, probably due to increased capacity of the skeletal musculature to oxidize these energy sources. Trained individuals oxidize more fat and less carbohydrate than untrained subjects when performing submaximal work of the same absolute intensity. This increased capacity to utilize energy from fat conserves crucial muscle and liver glycogen stores and can contribute to increased endurance. Further benefits of the enhanced lipid metabolism accompanying chronic aerobic exercise training are decreased cardiac risk factors. Exercise training results in lower blood cholesterol and triglycerides and increased high density lipoprotein cholesterol. High-fat diets are not recommended because of their association with atherosclerotic heart disease. Recent evidence suggests that low-fat high-carbohydrate diets may increase blood triglycerides and reduce high density lipoproteins. This suggests that the chronic ingestion of diets that are extreme in their composition of either fat or carbohydrate should be approached with caution in health-conscious athletes, as well as in sedentary individuals.

  4. Dietary Supplements for Health, Adaptation, and Recovery in Athletes.

    PubMed

    Rawson, Eric S; Miles, Mary P; Larson-Meyer, D Enette

    2018-03-01

    Some dietary supplements are recommended to athletes based on data that supports improved exercise performance. Other dietary supplements are not ergogenic per se, but may improve health, adaptation to exercise, or recovery from injury, and so could help athletes to train and/or compete more effectively. In this review, we describe several dietary supplements that may improve health, exercise adaptation, or recovery. Creatine monohydrate may improve recovery from and adaptation to intense training, recovery from periods of injury with extreme inactivity, cognitive processing, and reduce severity of or enhance recovery from mild traumatic brain injury (mTBI). Omega 3-fatty acid supplementation may also reduce severity of or enhance recovery from mTBI. Replenishment of vitamin D insufficiency or deficiency will likely improve some aspects of immune, bone, and muscle health. Probiotic supplementation can reduce the incidence, duration, and severity of upper respiratory tract infection, which may indirectly improve training or competitive performance. Preliminary data show that gelatin and/or collagen may improve connective tissue health. Some anti-inflammatory supplements, such as curcumin or tart cherry juice, may reduce inflammation and possibly delayed onset muscle soreness (DOMS). Beta-hydroxy beta-methylbutyrate (HMB) does not consistently increase strength and/or lean mass or reduce markers of muscle damage, but more research on recovery from injury that includes periods of extreme inactivity is needed. Several dietary supplements, including creatine monohydrate, omega 3-fatty acids, vitamin D, probiotics, gelatin, and curcumin/tart cherry juice could help athletes train and/or compete more effectively.

  5. A randomized 9-month study of blood pressure and body fat responses to aerobic training versus combined aerobic and resistance training in older men.

    PubMed

    Sousa, Nelson; Mendes, Romeu; Abrantes, Catarina; Sampaio, Jaime; Oliveira, José

    2013-08-01

    This randomized study evaluated the impact of different exercise training modalities on blood pressure and body fat responses in apparently healthy older men. Forty-eight elderly men (aged 65-75 years) were randomly assigned to an aerobic training group (ATG, n=15), a combined aerobic and resistance training group (CTG, n=16), or a control group (n=17). Both exercise training programs were moderate-to-vigorous intensity, three days/week for 9-months. Strength, aerobic endurance, body fat and blood pressure were measured on five different occasions. The data were analyzed using a mixed-model ANOVA, and the independence between systolic blood pressure (SBP), diastolic blood pressure (DBP) and group was tested. A significant main effect of group (p<0.001) was observed in strength and aerobic endurance, with higher performance observed in the CTG. A significant main effect of group (p<0.001) and time (p=0.029) was observed in body fat percentage, with a 2.3% decrease in CTG. A significant main effect of time was observed in SBP (p=0.005) and in DBP (p=0.011) for both ATG and CTG. Mean decreases in SBP and DBP, respectively, were 15 and 6 mmHg for ATG and 24 and 12 mmHg for CTG. There was a significant association for SBP (p=0.008) and DBP (p=0.005) in the CTG, with significant individual BP profile modifications. Both exercise-training programs reduce resting blood pressure. However, only the combined exercise training was effective at reducing body fat percentage; consequently, there were larger changes in blood pressure, which result in a significant reduction in hypertensive subjects. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Sand training: Exercise-induced muscle damage and inflammatory responses to matched-intensity exercise.

    PubMed

    Brown, Henry; Dawson, Brian; Binnie, Martyn J; Pinnington, Hugh; Sim, Marc; Clemons, Tristan D; Peeling, Peter

    2017-07-01

    This study compared markers of muscle damage and inflammation elevated by a matched-intensity interval running session on soft sand and grass surfaces. In a counterbalanced, repeated-measures and crossover design, 10 well-trained female athletes completed 2 interval-based running sessions 1 week apart on either a grass or a sand surface. Exercise heart rate (HR) was fixed at 83-88% of HR maximum. Venous blood samples were collected pre-, post- and 24 h post-exercise, and analysed for myoglobin (Mb) and C-reactive protein (CRP). Perceptual ratings of exertion (RPE) and muscle soreness (DOMS) were recorded immediately post- and 24 h post-exercise. A significant time effect showed that Mb increased from pre- to post-exercise on grass (p = .008) but not on sand (p = .611). Furthermore, there was a greater relative increase in Mb on grass compared with that on sand (p = .026). No differences in CRP were reported between surfaces (p > .05). The HR, RPE and DOMS scores were not significantly different between conditions (p  >  .05). These results suggest that in response to a matched-intensity exercise bout, markers of post-exercise muscle damage may be reduced by running on softer ground surfaces. Such training strategy may be used to minimize musculoskeletal strain while still incurring an equivalent cardiovascular training stimulus.

  7. Cardiovascular exercise training extends influenza vaccine seroprotection in sedentary older adults: the immune function intervention trial.

    PubMed

    Woods, Jeffrey A; Keylock, K Todd; Lowder, Thomas; Vieira, Victoria J; Zelkovich, William; Dumich, Sara; Colantuano, Kim; Lyons, Kristin; Leifheit, Kurt; Cook, Marc; Chapman-Novakofski, Karen; McAuley, Edward

    2009-12-01

    To determine whether cardiovascular exercise training resulted in improved antibody responses to influenza vaccination in sedentary elderly people who exhibited poor vaccine responses. Single-site randomized parallel-arm 10-month controlled trial. University of Illinois at Urbana-Champaign. One hundred forty-four sedentary, healthy older (69.9 +/- 0.4) adults. Moderate (60-70% maximal oxygen uptake) cardiovascular exercise was compared with flexibility and balance training. The primary outcome was influenza vaccine response, as measured according to hemagglutination inhibition (HI) anti-influenza antibody titer and seroprotective responses (HI titer > or =40). Secondary measures included cardiovascular fitness and body composition. Of the 160 participants enrolled, 144 (90%) completed the 10-month intervention with excellent compliance ( approximately 83%). Cardiovascular, but not flexibility, exercise intervention resulted in improvements in indices of cardiovascular fitness, including maximal oxygen uptake. Although not affecting peak (e.g., 3 and 6 weeks) postvaccine anti-influenza HI titers, cardiovascular exercise resulted in a significant increase in seroprotection 24 weeks after vaccination (30-100% dependent on vaccine variant), whereas flexibility training did not. Participants randomized to cardiovascular exercise experienced improvements in influenza seroprotection throughout the entire influenza season, whereas those in the balance and flexibility intervention did not. Although there were no differences in reported respiratory tract infections, the exercise group exhibited reduced overall illness severity and sleep disturbance. These data support the hypothesis that regular endurance exercise improves influenza vaccine responses.

  8. Effect of endurance exercise training on oxidative stress in spontaneously hypertensive rats (SHR) after emergence of hypertension.

    PubMed

    Kimura, Hiroko; Kon, Nobuko; Furukawa, Satoshi; Mukaida, Masahiro; Yamakura, Fumiyuki; Matsumoto, Kazuko; Sone, Hirohito; Murakami-Murofushi, Kimiko

    2010-01-01

    The purpose of this study is to elucidate the effect of wheel training on oxidative stress maker levels in spontaneous hypertensive rats (SHR). 4-hydroxynonenal and 3-nitrotyrosine levels in the aorta of SHRs were allowed to run for 10 weeks from the age of 15 weeks were measured and compared with those of nonexercised SHRs. The 4-hydroxynonenal and 3-nitrotyrosine levels in the exercised group were significantly lower than those in the nonexercised group. The exercised group showed a significant increase of manganese-containing superoxide dismutase. Endurance exercise showed a possible suppressing effect on the arteriosclerosis development by reducing oxidative stress, even after emergence of hypertension.

  9. Exercise training reduces inflammatory mediators in the intestinal tract of healthy older adult mice.

    PubMed

    Packer, Nicholas; Hoffman-Goetz, Laurie

    2012-06-01

    Aging is associated with increased intestinal inflammation and elevated risk of chronic diseases including inflammatory bowel diseases and colon cancer; many epidemiologic studies show that regular exercise reduces risk. This study examined the effects of long-term voluntary exercise on inflammatory mediators expressed in the intestine of older (15-16 months), healthy C57BL/6 mice. Animals were assigned to four months of freewheel running (WR; n = 20) or to a "sedentary" no wheel running (NWR; n = 20) control group. Intestinal lymphocytes were harvested and analysed for expression of (1) pro-inflammatory (TNF-α, IL-1β) and pleiotropic (IL-6) cytokines, and (2) pro-(caspase-3/-7) and anti-(Bcl-2) apoptotic proteins. Training was confirmed by skeletal muscle enzyme activity; stress was assessed by plasma 8-iso-PGF(2α) and corticosterone. The WR mice had a lower expression of TNF-α, caspase-7, and 8-isoprostanes (p < .05) compared to sedentary controls, suggesting that long-term exercise may "protect" the bowel by reducing inflammatory cytokine and apoptotic protein expression.

  10. Regular Exercise Reduces Endothelial Cortical Stiffness in Western Diet-Fed Female Mice.

    PubMed

    Padilla, Jaume; Ramirez-Perez, Francisco I; Habibi, Javad; Bostick, Brian; Aroor, Annayya R; Hayden, Melvin R; Jia, Guanghong; Garro, Mona; DeMarco, Vincent G; Manrique, Camila; Booth, Frank W; Martinez-Lemus, Luis A; Sowers, James R

    2016-11-01

    We recently showed that Western diet-induced obesity and insulin resistance promotes endothelial cortical stiffness in young female mice. Herein, we tested the hypothesis that regular aerobic exercise would attenuate the development of endothelial and whole artery stiffness in female Western diet-fed mice. Four-week-old C57BL/6 mice were randomized into sedentary (ie, caged confined, n=6) or regular exercise (ie, access to running wheels, n=7) conditions for 16 weeks. Exercise training improved glucose tolerance in the absence of changes in body weight and body composition. Compared with sedentary mice, exercise-trained mice exhibited reduced endothelial cortical stiffness in aortic explants (sedentary 11.9±1.7 kPa versus exercise 5.5±1.0 kPa; P<0.05), as assessed by atomic force microscopy. This effect of exercise was not accompanied by changes in aortic pulse wave velocity (P>0.05), an in vivo measure of aortic stiffness. In comparison, exercise reduced femoral artery stiffness in isolated pressurized arteries and led to an increase in femoral internal artery diameter and wall cross-sectional area (P<0.05), indicative of outward hypertrophic remodeling. These effects of exercise were associated with an increase in femoral artery elastin content and increased number of fenestrae in the internal elastic lamina (P<0.05). Collectively, these data demonstrate for the first time that the aortic endothelium is highly plastic and, thus, amenable to reductions in stiffness with regular aerobic exercise in the absence of changes in in vivo whole aortic stiffness. Comparatively, the same level of exercise caused destiffening effects in peripheral muscular arteries, such as the femoral artery, that perfuse the working limbs. © 2016 American Heart Association, Inc.

  11. What are the Physiological Mechanisms for Post-Exercise Cold Water Immersion in the Recovery from Prolonged Endurance and Intermittent Exercise?

    PubMed

    Ihsan, Mohammed; Watson, Greig; Abbiss, Chris R

    2016-08-01

    Intense training results in numerous physiological perturbations such as muscle damage, hyperthermia, dehydration and glycogen depletion. Insufficient/untimely restoration of these physiological alterations might result in sub-optimal performance during subsequent training sessions, while chronic imbalance between training stress and recovery might lead to overreaching or overtraining syndrome. The use of post-exercise cold water immersion (CWI) is gaining considerable popularity among athletes to minimize fatigue and accelerate post-exercise recovery. CWI, through its primary ability to decrease tissue temperature and blood flow, is purported to facilitate recovery by ameliorating hyperthermia and subsequent alterations to the central nervous system (CNS), reducing cardiovascular strain, removing accumulated muscle metabolic by-products, attenuating exercise-induced muscle damage (EIMD) and improving autonomic nervous system function. The current review aims to provide a comprehensive and detailed examination of the mechanisms underpinning acute and longer term recovery of exercise performance following post-exercise CWI. Understanding the mechanisms will aid practitioners in the application and optimisation of CWI strategies to suit specific recovery needs and consequently improve athletic performance. Much of the literature indicates that the dominant mechanism by which CWI facilitates short term recovery is via ameliorating hyperthermia and consequently CNS mediated fatigue and by reducing cardiovascular strain. In contrast, there is limited evidence to support that CWI might improve acute recovery by facilitating the removal of muscle metabolites. CWI has been shown to augment parasympathetic reactivation following exercise. While CWI-mediated parasympathetic reactivation seems detrimental to high-intensity exercise performance when performed shortly after, it has been shown to be associated with improved longer term physiological recovery and day to day training performances. The efficacy of CWI for attenuating the secondary effects of EIMD seems dependent on the mode of exercise utilised. For instance, CWI application seems to demonstrate limited recovery benefits when EIMD was induced by single-joint eccentrically biased contractions. In contrast, CWI seems more effective in ameliorating effects of EIMD induced by whole body prolonged endurance/intermittent based exercise modalities.

  12. The effect of fatigue and training status on firefighter performance.

    PubMed

    Dennison, Katie J; Mullineaux, David R; Yates, James W; Abel, Mark G

    2012-04-01

    Firefighting is a strenuous occupation that requires optimal levels of physical fitness. The National Fire Protection Association suggests that firefighters should be allowed to exercise on duty to maintain adequate fitness levels. However, no research has addressed the effect of exercise-induced fatigue on subsequent fire ground performance. Therefore, the primary purpose of this study was to determine the effect that a single exercise session had on the performance of a simulated fire ground test (SFGT). Secondarily, this study sought to compare the effect of physical training status (i.e., trained vs. untrained firefighters) on the performance of an SFGT. Twelve trained (age: 31.8 ± 6.9 years; body mass index [BMI]: 27.7 ± 3.3 kg·m(-2); VO2peak: 45.6 ± 3.3 ml·kg(-1)·min(-1)) and 37 untrained (age: 31.0 ± 9.0 years; BMI: 31.3 ± 5.2 kg·m(-2); VO2peak: 40.2 ± 5.2 ml·kg(-1)·min(-1)) male career firefighters performed a baseline SFGT. The trained firefighters performed a second SFGT after an exercise session. Time to complete the SFGT, heart rate, and blood lactate were compared between baseline and exercise SFGT (EX-SFGT) conditions. In the trained firefighters, time to complete the SFGT (9.6% increase; p = 0.002) and heart rate (4.1% increase; p = 0.032) were greater during the EX-SFGT compared with baseline, with no difference in post-SFGT blood lactate (p = 0.841). The EX-SFGT time of the trained firefighters was faster than approximately 70% of the untrained firefighters' baseline SFGT time. In addition, the baseline SFGT time of the trained firefighters was faster than 81% of the untrained firefighters. This study demonstrated that on-duty exercise training reduced the work efficiency in firefighters. However, adaptations obtained through regular on-duty exercise training may limit decrements in work efficiency because of acute exercise fatigue and allow for superior work efficiency compared with not participating in a training program.

  13. Recognizing Privilege and Bias: An Interactive Exercise to Expand Health Care Providers' Personal Awareness.

    PubMed

    Holm, Amanda L; Rowe Gorosh, Marla; Brady, Megan; White-Perkins, Denise

    2017-03-01

    Despite increasing awareness of the social determinants of health, health care disparities among sociocultural groups persist. Health care providers' unconscious bias resulting from unrecognized social privilege is one contributor to these disparities. In 2009, Henry Ford Health System initiated the Healthcare Equity Campaign both to raise employees' awareness of inequalities related to the social determinants of health and to increase their motivation to reduce them. After conducting awareness-raising activities to increase employees' understanding of the social determinants of health, a curriculum team developed the interactive Privilege and Responsibility Curricular Exercise (PRCE) and incorporated it into a series of trainings. The team designed the exercise to enhance participants' awareness of privilege in their lives and work, to improve their understanding of the impact of privilege on their own and others' lived experiences as a step beyond cultural competence toward cultural humility, and to encourage them to leverage their advantages to reduce health care inequities. About 300 participants of diverse professional and personal backgrounds from across the health system completed the training between the spring of 2009 and the spring of 2012, and many provided qualitative feedback about the exercise. Evaluations showed the exercise's potential as a powerful learning experience that might enhance a variety of equity- or diversity-related trainings, and also showed that participants considered the PRCE a highlight of the training. The PRCE is worthy of additional study and could prove valuable to other organizations.

  14. Does training-induced orthostatic hypotension result from reduced carotid baroreflex responsiveness?

    NASA Technical Reports Server (NTRS)

    Pawelczyk, James A.; Raven, Peter B.

    1994-01-01

    As manned space travel has steadily increased in duration and sophistication, the answer to a simple, relevant question remains elusive. Does endurance exercise training - high intensity rhythmic activity, performed regularly for extended periods of time - alter the disposition to, or severity of, postflight orthostatic hypotension? Research results continue to provide different views; however, data are difficult to compare because of the following factors that vary between investigations: the type of orthostatic stress imposed (+Gz, lower body negative pressure (LBNP), head-up tilt); pretest perturbations used (exercise, heat exposure, head-down tilting, bed rest, water immersion, hypohydration, pharmacologically-induced diuresis); the length of the training program used in longitudinal investigations (days versus weeks versus months); the criteria used to define fitness; and the criteria used to define orthostatic tolerance. Generally, research results indicate that individuals engaged in aerobic exercise activities for a period of years have been reported to have reduced orthostatic tolerance compared to untrained control subjects, while the results of shorter term longitudinal studies remain equivocal. Such conclusions suggest that chronic athletic training programs reduce orthostatic tolerance, whereas relatively brief (days to weeks) training programs do not affect orthostatic tolerance to any significant degree (increase or decrease). A primary objective was established to identify the alterations in blood pressure control that contribute to training-induced orthostatic hypotension (TIOH). Although any aspect of blood pressure regulation is suspect, current research has been focused on the baroreceptor system. Reductions in carotid baroreflex responsiveness have been documented in exercise-trained rabbits, reportedly due to an inhibitory influence from cardiac afferent, presumably vagal, nerve fibers that is abolished with intrapericardiac denervation. The purpose of this investigation was to attempt to determine if similar relationships existed in men with varied levels of fitness, using maximal aerobic power, VO2 max, as the marker of fitness.

  15. Balance Training Reduces Falls Risk in Older Individuals With Type 2 Diabetes

    PubMed Central

    Morrison, Steven; Colberg, Sheri R.; Mariano, Mira; Parson, Henri K.; Vinik, Arthur I.

    2010-01-01

    OBJECTIVE This study assessed the effects of balance/strength training on falls risk and posture in older individuals with type 2 diabetes. RESEARCH DESIGN AND METHODS Sixteen individuals with type 2 diabetes and 21 age-matched control subjects (aged 50–75 years) participated. Postural stability and falls risk was assessed before and after a 6-week exercise program. RESULTS Diabetic individuals had significantly higher falls risk score compared with control subjects. The diabetic group also exhibited evidence of mild-to-moderate neuropathy, slower reaction times, and increased postural sway. Following exercise, the diabetic group showed significant improvements in leg strength, faster reaction times, decreased sway, and, consequently, reduced falls risk. CONCLUSIONS Older individuals with diabetes had impaired balance, slower reactions, and consequently a higher falls risk than age-matched control subjects. However, all these variables improved after resistance/balance training. Together these results demonstrate that structured exercise has wide-spread positive effects on physiological function for older individuals with type 2 diabetes. PMID:20097781

  16. High-intensity interval training: a review of its impact on glucose control and cardiometabolic health.

    PubMed

    Cassidy, Sophie; Thoma, Christian; Houghton, David; Trenell, Michael I

    2017-01-01

    Exercise plays a central role in the management and treatment of common metabolic diseases, but modern society presents many barriers to exercise. Over the past decade there has been considerable interest surrounding high-intensity interval training (HIIT), with advocates claiming it can induce health benefits of similar, if not superior magnitude to moderate-intensity continuous exercise, despite reduced time commitment. As the safety of HIIT becomes clearer, focus has shifted away from using HIIT in healthy individuals towards using this form of training in clinical populations. The continued growth of metabolic disease and reduced physical activity presents a global health challenge and effective therapies are urgently required. The aim of this review is to explore whether the acclaim surrounding HIIT is justified by examining the effect of HIIT on glucose control, its ability to affect cardiovascular function and the underlying mechanisms of the changes observed in those with common metabolic diseases. It also explores translation of the research into clinical practice.

  17. Work volume and strength training responses to resistive exercise improve with periodic heat extraction from the palm.

    PubMed

    Grahn, Dennis A; Cao, Vinh H; Nguyen, Christopher M; Liu, Mengyuan T; Heller, H Craig

    2012-09-01

    Body core cooling via the palm of a hand increases work volume during resistive exercise. We asked: (a) "Is there a correlation between elevated core temperatures and fatigue onset during resistive exercise?" and (b) "Does palm cooling between sets of resistive exercise affect strength and work volume training responses?" Core temperature was manipulated by 30-45 minutes of fixed load and duration treadmill exercise in the heat with or without palm cooling. Work volume was then assessed by 4 sets of fixed load bench press exercises. Core temperatures were reduced and work volumes increased after palm cooling (Control: Tes = 39.0 ± 0.1° C, 36 ± 7 reps vs. Cooling: Tes = 38.4 ± 0.2° C, 42 ± 7 reps, mean ± SD, n = 8, p < 0.001). In separate experiments, the impact of palm cooling on work volume and strength training responses were assessed. The participants completed biweekly bench press or pull-up exercises for multiple successive weeks. Palm cooling was applied for 3 minutes between sets of exercise. Over 3 weeks of bench press training, palm cooling increased work volume by 40% (vs. 13% with no treatment; n = 8, p < 0.05). Over 6 weeks of pull-up training, palm cooling increased work volume by 144% in pull-up experienced subjects (vs. 5% over 2 weeks with no treatment; n = 7, p < 0.001) and by 80% in pull-up naïve subjects (vs. 20% with no treatment; n = 11, p < 0.01). Strength (1 repetition maximum) increased 22% over 10 weeks of pyramid bench press training (4 weeks with no treatment followed by 6 weeks with palm cooling; n = 10, p < 0.001). These results verify previous observations about the effects of palm cooling on work volume, demonstrate a link between core temperature and fatigue onset during resistive exercise, and suggest a novel means for improving strength and work volume training responses.

  18. Probiotic Supplements Beneficially Affect Tryptophan–Kynurenine Metabolism and Reduce the Incidence of Upper Respiratory Tract Infections in Trained Athletes: A Randomized, Double-Blinded, Placebo-Controlled Trial

    PubMed Central

    Strasser, Barbara; Geiger, Daniela; Schauer, Markus; Gostner, Johanna M.; Gatterer, Hannes; Burtscher, Martin; Fuchs, Dietmar

    2016-01-01

    Background: Prolonged intense exercise has been associated with transient suppression of immune function and an increased risk of infections. In this context, the catabolism of amino acid tryptophan via kynurenine may play an important role. The present study examined the effect of a probiotic supplement on the incidence of upper respiratory tract infections (URTI) and the metabolism of aromatic amino acids after exhaustive aerobic exercise in trained athletes during three months of winter training. Methods: Thirty-three highly trained individuals were randomly assigned to probiotic (PRO, n = 17) or placebo (PLA, n = 16) groups using double blind procedures, receiving either 1 × 1010 colony forming units (CFU) of a multi-species probiotic (Bifidobacterium bifidum W23, Bifidobacterium lactis W51, Enterococcus faecium W54, Lactobacillus acidophilus W22, Lactobacillus brevis W63, and Lactococcus lactis W58) or placebo once per day for 12 weeks. The serum concentrations of tryptophan, phenylalanine and their primary catabolites kynurenine and tyrosine, as well as the concentration of the immune activation marker neopterin were determined at baseline and after 12 weeks, both at rest and immediately after exercise. Participants completed a daily diary to identify any infectious symptoms. Results: After 12 weeks of treatment, post-exercise tryptophan levels were lowered by 11% (a significant change) in the PLA group compared to the concentrations measured before the intervention (p = 0.02), but remained unchanged in the PRO group. The ratio of subjects taking the placebo who experienced one or more URTI symptoms was increased 2.2-fold compared to those on probiotics (PLA 0.79, PRO 0.35; p = 0.02). Conclusion: Data indicate reduced exercise-induced tryptophan degradation rates in the PRO group. Daily supplementation with probiotics limited exercise-induced drops in tryptophan levels and reduced the incidence of URTI, however, did not benefit athletic performance. PMID:27886064

  19. Effects of ovariectomy and exercise training intensity on energy substrate and hepatic lipid metabolism, and spontaneous physical activity in mice.

    PubMed

    Tuazon, Marc A; Campbell, Sara C; Klein, Dylan J; Shapses, Sue A; Anacker, Keith R; Anthony, Tracy G; Uzumcu, Mehmet; Henderson, Gregory C

    2018-06-01

    Menopause is associated with fatty liver, glucose dysregulation, increased body fat, and impaired bone quality. Previously, it was demonstrated that single sessions of high-intensity interval exercise (HIIE) are more effective than distance- and duration-matched continuous exercise (CE) on altering hepatic triglyceride (TG) metabolism and very-low density lipoprotein-TG (VLDL-TG) secretion. Six weeks training using these modalities was examined for effects on hepatic TG metabolism/secretion, glucose tolerance, body composition, and bone mineral density (BMD) in ovariectomized (OVX) and sham-operated (SHAM) mice. OVX and SHAM were assigned to distance- and duration-matched CE and HIIE, or sedentary control. Energy expenditure during exercise was confirmed to be identical between CE and HIIE and both similarly reduced post-exercise absolute carbohydrate oxidation and spontaneous physical activity (SPA). OVX vs. SHAM displayed impaired glucose tolerance and greater body fat despite lower hepatic TG, and these outcomes were not affected by training. Only HIIE increased hepatic AMPK in OVX and SHAM, but neither training type impacted VLDL-TG secretion. As expected, BMD was lower in OVX, and training did not affect long bones. The results reveal intensity-dependent effects on hepatic AMPK expression and general exercise effects on subsequent SPA and substrate oxidation that is independent of estrogen status. These findings support the notion that HIIE can impact aspects of liver physiology in females while the effects of exercise on whole body substrate selection appear to be independent of training intensity. However, neither exercise approach mitigated the impairment in glucose tolerance and elevated body fat occurring in OVX mice. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. High Intensity Interval Training Favourably Affects Angiotensinogen mRNA Expression and Markers of Cardiorenal Health in a Rat Model of Early-Stage Chronic Kidney Disease.

    PubMed

    Tucker, Patrick S; Scanlan, Aaron T; Dalbo, Vincent J

    2015-01-01

    The majority of CKD-related complications stem from cardiovascular pathologies such as hypertension. To help reduce cardiovascular complications, aerobic exercise is often prescribed. Emerging evidence suggests high intensity interval training (HIIT) may be more beneficial than traditional aerobic exercise. However, appraisals of varying forms of aerobic exercise, along with descriptions of mechanisms responsible for health-related improvements, are lacking. This study examined the effects of 8 weeks of HIIT (85% VO2max), versus low intensity aerobic exercise (LIT; 45-50% VO2max) and sedentary behaviour (SED), in an animal model of early-stage CKD. Tissue-specific mRNA expression of RAAS-related genes and CKD-related clinical markers were examined. Compared to SED, HIIT resulted in increased plasma albumin (p = 0.001), reduced remnant kidney weight (p = 0.028), and reduced kidney weight-body weight ratios (p = 0.045). Compared to LIT, HIIT resulted in reduced Agt mRNA expression (p = 0.035), reduced plasma LDL (p = 0.001), triglycerides (p = 0.029), and total cholesterol (p = 0.002), increased plasma albumin (p = 0.047), reduced remnant kidney weight (p = 0.005), and reduced kidney weight-body weight ratios (p = 0.048). These results suggest HIIT is a more potent regulator of several markers that describe and influence health in CKD.

  1. High Intensity Interval Training Favourably Affects Angiotensinogen mRNA Expression and Markers of Cardiorenal Health in a Rat Model of Early-Stage Chronic Kidney Disease

    PubMed Central

    Tucker, Patrick S.; Scanlan, Aaron T.; Dalbo, Vincent J.

    2015-01-01

    The majority of CKD-related complications stem from cardiovascular pathologies such as hypertension. To help reduce cardiovascular complications, aerobic exercise is often prescribed. Emerging evidence suggests high intensity interval training (HIIT) may be more beneficial than traditional aerobic exercise. However, appraisals of varying forms of aerobic exercise, along with descriptions of mechanisms responsible for health-related improvements, are lacking. This study examined the effects of 8 weeks of HIIT (85% VO2max), versus low intensity aerobic exercise (LIT; 45–50% VO2max) and sedentary behaviour (SED), in an animal model of early-stage CKD. Tissue-specific mRNA expression of RAAS-related genes and CKD-related clinical markers were examined. Compared to SED, HIIT resulted in increased plasma albumin (p = 0.001), reduced remnant kidney weight (p = 0.028), and reduced kidney weight-body weight ratios (p = 0.045). Compared to LIT, HIIT resulted in reduced Agt mRNA expression (p = 0.035), reduced plasma LDL (p = 0.001), triglycerides (p = 0.029), and total cholesterol (p = 0.002), increased plasma albumin (p = 0.047), reduced remnant kidney weight (p = 0.005), and reduced kidney weight-body weight ratios (p = 0.048). These results suggest HIIT is a more potent regulator of several markers that describe and influence health in CKD. PMID:26090382

  2. Within-session responses to high-intensity interval training in spinal cord injury.

    PubMed

    Astorino, Todd Anthony; Thum, Jacob S

    2018-02-01

    Completion of high-intensity interval training (HIIT) increases maximal oxygen uptake and health status, yet its feasibility in persons with spinal cord injury is unknown. To compare changes in cardiorespiratory and metabolic variables between two interval training regimes and moderate intensity exercise. Nine adults with spinal cord injury (duration = 6.8 ± 6.2 year) initially underwent determination of peak oxygen uptake. During subsequent sessions, they completed moderate intensity exercise, HIIT, or sprint interval training. Oxygen uptake, heart rate, and blood lactate concentration were measured. Oxygen uptake and heart rate increased (p < 0.05) during both interval training sessions and were similar (p > 0.05) to moderate intensity exercise. Peak oxygen uptake and heart rate were higher (p < 0.05) with HIIT (90% peak oxygen uptake and 99% peak heart rate) and sprint interval training (80% peak oxygen uptake and 96% peak heart rate) versus moderate intensity exercise. Despite a higher intensity and peak cardiorespiratory strain, all participants preferred interval training versus moderate exercise. Examining long-term efficacy and feasibility of interval training in this population is merited, considering that exercise intensity is recognized as the most important variable factor of exercise programming to optimize maximal oxygen uptake. Implications for Rehabilitation Spinal cord injury (SCI) reduces locomotion which impairs voluntary physical activity, typically resulting in a reduction in peak oxygen uptake and enhanced chronic disease risk. In various able-bodied populations, completion of high-intensity interval training (HIIT) has been consistently reported to improve cardiorespiratory fitness and other health-related outcomes, although its efficacy in persons with SCI is poorly understood. Data from this study in 9 men and women with SCI show similar changes in oxygen uptake and heart in response to HIIT compared to a prolonged bout of aerobic exercise, although peak values were higher in response to HIIT. Due to the higher peak metabolic strain induced by HIIT as well as universal preference for this modality versus aerobic exercise as reported in this study, further work testing utility of HIIT in this population is merited.

  3. Attenuation of endothelial dysfunction by exercise training in STZ-induced diabetic rats.

    PubMed

    Chakraphan, Daroonwan; Sridulyakul, Patarin; Thipakorn, Bundit; Bunnag, Srichitra; Huxley, Virginia H; Patumraj, Suthiluk

    2005-01-01

    The protective effects of exercise training on the diabetic-induced endothelial cell (EC) dysfunction were determined using intravital fluorescent microscopy. Male Sprague-Dawley rats were divided into three groups of control (Con), diabetes (DM), and diabetes with exercise--training (DM+Ex). Diabetes was induced by single intravenous injection of streptozotocin (STZ; 50 mg/kg BW). The exercise training protocol consisted of treadmill running, 5 times/week with the velocity of 13-15 m/min, 30 min/day periods for 12 and 24 weeks (wks). 24 wks after the STZ injection, blood glucose (BG), glycosylated hemoglobin (HbA1C), mean arterial blood pressure (MAP) and heart weight (HW) were significantly higher in DM rats (p < 0.001). However, DM+Ex rats had reduced the abnormalities of MAP (p < 0.01) and HW (p < 0.05) compared with DM rats. Furthermore, there was a significant decrease in heart rate (HR) of DM+Ex rats (p < 0.05) relative to Con rats. To examine the influence of exercise training on EC dysfunction, leukocyte-EC interactions in mesenteric venules and vascular reactivity responses to vasodilators in mesenteric arterioles were monitored by using intravital fluorescence microscopy. The diabetic state enhanced leukocyte adhesion in mesenteric postcapillary venules (p < 0.001). Moreover, an impaired vasodilatory response to the EC-dependent vasodilator, acetylcholine (Ach), not to sodium nitroprusside (SNP), was found in 12- and 24-wk diabetic rats (p < 0.01). The leukocyte adhesion and the impairment of EC-dependent vasodilation to Ach were attenuated by exercise training (p < 0.05). In addition, exercise training was also shown to have favorable preventive effects on hyperglycemia induced oxidative stress, as lower malondialdehyde (MDA) levels were observed from both groups of 12 and 24 weeks DM+Ex compared with DM (p < 0.01). In conclusion, our findings indicate that the endothelial dysfunction of diabetic rats could be characterized by increased leukocyte adhesion and impaired endothelium-dependent relaxation. Regular low intensity exercise training could improve both indices of endothelial dysfunction through amelioration of diabetic-induced oxidant/antioxidant levels. These findings support the notion that regular exercise training could be a fundamental form of therapy in preventing diabetic cardiovascular complications potentiated by endothelial dysfunction.

  4. Physical training improves non-spatial memory, locomotor skills and the blood brain barrier in diabetic rats.

    PubMed

    de Senna, Priscylla Nunes; Xavier, Léder Leal; Bagatini, Pamela Brambilla; Saur, Lisiani; Galland, Fabiana; Zanotto, Caroline; Bernardi, Caren; Nardin, Patrícia; Gonçalves, Carlos Alberto; Achaval, Matilde

    2015-08-27

    Type 1 diabetes mellitus (T1DM) progressively affects cognitive domains, increases blood-brain barrier (BBB) permeability and promotes neurovascular impairment in specific brain areas. Physical exercise, on the other hand, has beneficial effects on brain functions, improving learning and memory. This study investigated the effects of treadmill training on cognitive and motor behavior, and on the expression of proteins related to BBB integrity, such as claudin-5 and aquaporin-4 (AQP4) in the hippocampus and striatum in diabetic rats. For this study, 60 Wistar rats were divided into four groups (n=15 per group): non-trained control (NTC), trained control (TC), non-trained diabetic (NTD), trained diabetic (TD). After diabetic induction of 30 days by streptozotocin injection, the exercise groups were submitted to 5 weeks of running training. After that, all groups were assessed in a novel object-recognition task (NOR) and the rotarod test. Additionally, claudin-5 and AQP4 levels were measured using biochemical assays. The results showed that exercise enhanced NOR task performance and rotarod ability in the TC and TD animals. Diabetes produced a decrease in claudin-5 expression in the hippocampus and striatum and reduced AQP4 in the hippocampus. Exercise preserved the claudin-5 content in the striatum of TD rats, but not in the hippocampus. The reduction of AQP4 levels produced by diabetes was not reversed by exercise. We conclude that exercise improves short-term memory retention, enhances motor performance in diabetic rats and affects important structural components of the striatal BBB. The results obtained could enhance the knowledge regarding the neurochemical benefits of exercise in diabetes. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Reduction of lymphocyte G protein-coupled receptor kinase-2 (GRK2) after exercise training predicts survival in patients with heart failure.

    PubMed

    Rengo, Giuseppe; Galasso, Gennaro; Femminella, Grazia D; Parisi, Valentina; Zincarelli, Carmela; Pagano, Gennaro; De Lucia, Claudio; Cannavo, Alessandro; Liccardo, Daniela; Marciano, Caterina; Vigorito, Carlo; Giallauria, Francesco; Ferrara, Nicola; Furgi, Giuseppe; Filardi, Pasquale Perrone; Koch, Walter J; Leosco, Dario

    2014-01-01

    Increased cardiac G protein-coupled receptor kinase-2 (GRK2) expression has a pivotal role at inducing heart failure (HF)-related β-adrenergic receptor (βAR) dysfunction. Importantly, abnormalities of βAR signalling in the failing heart, including GRK2 overexpression, are mirrored in circulating lymphocytes and correlate with HF severity. Exercise training has been shown to exert several beneficial effects on the failing heart, including normalization of cardiac βAR function and GRK2 protein levels. In the present study, we evaluated whether lymphocyte GRK2 levels and short-term changes of this kinase after an exercise training programme can predict long-term survival in HF patients. For this purpose, we prospectively studied 193 HF patients who underwent a 3-month exercise training programme. Lymphocyte GRK2 protein levels, plasma N-terminal pro-brain natriuretic peptide, and norepinephrine were measured at baseline and after training along with clinical and functional parameters (left ventricular ejection fraction, NYHA class, and peak-VO2). Cardiac-related mortality was evaluated during a mean follow-up period of 37 ± 20 months. Exercise was associated with a significant reduction of lymphocyte GRK2 protein levels (from 1.29 ± 0.52 to 1.16 ± 0.65 densitometric units, p < 0.0001). Importantly, exercise related changes of GRK2 (delta values) robustly predicted survival in our study population. Interestingly, HF patients who did not show reduced lymphocyte GRK2 protein levels after training presented the poorest outcome. Our data offer the first demonstration that changes of lymphocyte GRK2 after exercise training can strongly predict outcome in advanced HF.

  6. Mitochondrial and performance adaptations to exercise training in mice lacking skeletal muscle LKB1

    PubMed Central

    Tanner, Colby B.; Madsen, Steven R.; Hallowell, David M.; Goring, Darren M. J.; Moore, Timothy M.; Hardman, Shalene E.; Heninger, Megan R.; Atwood, Daniel R.

    2013-01-01

    LKB1 and its downstream targets of the AMP-activated protein kinase family are important regulators of many aspects of skeletal muscle cell function, including control of mitochondrial content and capillarity. LKB1 deficiency in skeletal and cardiac muscle (mLKB1-KO) greatly impairs exercise capacity. However, cardiac dysfunction in that genetic model prevents a clear assessment of the role of skeletal muscle LKB1 in the observed effects. Our purposes here were to determine whether skeletal muscle-specific knockout of LKB1 (skmLKB1-KO) decreases exercise capacity and mitochondrial protein content, impairs accretion of mitochondrial proteins after exercise training, and attenuates improvement in running performance after exercise training. We found that treadmill and voluntary wheel running capacity was reduced in skmLKB1-KO vs. control (CON) mice. Citrate synthase activity, succinate dehydrogenase activity, and pyruvate dehydrogenase kinase content were lower in KO vs. CON muscles. Three weeks of treadmill training resulted in significantly increased treadmill running performance in both CON and skmLKB1-KO mice. Citrate synthase activity increased significantly with training in both genotypes, but protein content and activity for components of the mitochondrial electron transport chain increased only in CON mice. Capillarity and VEGF protein was lower in skmLKB1-KO vs. CON muscles, but VEGF increased with training only in skmLKB1-KO. Three hours after an acute bout of muscle contractions, PGC-1α, cytochrome c, and VEGF gene expression all increased in CON but not skmLKB1-KO muscles. Our findings indicate that skeletal muscle LKB1 is required for accretion of some mitochondrial proteins but not for early exercise capacity improvements with exercise training. PMID:23982155

  7. Self-Managed Exercises, Fitness and Strength Training, and Multifidus Muscle Size in Elite Footballers.

    PubMed

    Hides, Julie A; Walsh, Jazmin C; Smith, Melinda M Franettovich; Mendis, M Dilani

    2017-07-01

      Low back pain (LBP) and lower limb injuries are common among Australian Football League (AFL) players. Smaller size of 1 key trunk muscle, the lumbar multifidus (MF), has been associated with LBP and injuries in footballers. The size of the MF muscle has been shown to be modifiable with supervised motor-control training programs. Among AFL players, supervised motor-control training has also been shown to reduce the incidence of lower limb injuries and was associated with increased player availability for games. However, the effectiveness of a self-managed MF exercise program is unknown.   To investigate the effect of self-managed exercises and fitness and strength training on MF muscle size in AFL players with or without current LBP.   Cross-sectional study.   Professional AFL context.   Complete data were available for 242 players from 6 elite AFL clubs.   Information related to the presence of LBP and history of injury was collected at the start of the preseason. At the end of the preseason, data were collected regarding performance of MF exercises as well as fitness and strength training. Ultrasound imaging of the MF muscle was conducted at the start and end of the preseason.   Size of the MF muscles.   An interaction effect was found between performance of MF exercises and time (F = 13.89, P ≤ .001). Retention of MF muscle size was greatest in players who practiced the MF exercises during the preseason (F = 4.77, P = .03). Increased adherence to fitness and strength training was associated with retained MF muscle size over the preseason (F = 5.35, P = .02).   Increased adherence to a self-administered MF exercise program and to fitness and strength training was effective in maintaining the size of the MF muscle in the preseason.

  8. Exercise training improves sleep pattern and metabolic profile in elderly people in a time-dependent manner

    PubMed Central

    2011-01-01

    Aging and physical inactivity are two factors that favors the development of cardiovascular disease, metabolic syndrome, obesity, diabetes, and sleep dysfunction. In contrast, the adoption a habitual of moderate exercise may present a non-pharmacological treatment alternative for sleep and metabolic disorders. We aimed to assess the effects of moderate exercise training on sleep quality and on the metabolic profile of elderly people with a sedentary lifestyle. Fourteen male sedentary, healthy, elderly volunteers performed moderate training for 60 minutes/day, 3 days/week for 24 wk at a work rate equivalent to the ventilatory aerobic threshold. The environment was kept at a temperature of 23 ± 2°C, with an air humidity 60 ± 5%. Blood and polysomnographs analysis were collected 3 times: at baseline (1 week before training began), 3 and 6 months (after 3 and 6 months of training). Training promoted increasing aerobic capacity (relative VO2, time and velocity to VO2max; p < 0.05), and reduced serum NEFA, and insulin concentrations as well as improved HOMA index (p < 0.05), and increased adiponectin levels (p < 0.05), after 3 months of training when compared with baseline data. The sleep parameters, awake time and REM sleep latency were decreased after 6 months exercise training (p < 0.05) in relation baseline values. Our results demonstrate that the moderate exercise training protocol improves the sleep profile in older people, but the metabolism adaptation does not persist. Suggesting that this population requires training strategy modifications as to ensure consistent alterations regarding metabolism. PMID:21733182

  9. Probiotic Bacillus coagulans GBI-30, 6086 reduces exercise-induced muscle damage and increases recovery

    PubMed Central

    Jäger, Ralf; Shields, Kevin A.; Lowery, Ryan P.; De Souza, Eduardo O.; Partl, Jeremy M.; Hollmer, Chase; Purpura, Martin

    2016-01-01

    Objective. Probiotics have been reported to support healthy digestive and immune function, aid in protein absorption, and decrease inflammation. Further, a trend to increase vertical jump power has been observed following co-administration of protein and probiotics in resistance-trained subjects. However, to date the potential beneficial effect of probiotics on recovery from high intensity resistance exercise have yet to be explored. Therefore, this study examined the effect of co-administration of protein and probiotics on muscle damage, recovery and performance following a damaging exercise bout. Design. Twenty nine (n = 29) recreationally-trained males (mean ± SD; 21.5 ± 2.8 years; 89.7 ± 28.2 kg; 177.4 ± 8.0 cm) were assigned to consume either 20 g of casein (PRO) or 20 g of casein plus probiotic (1 billion CFU Bacillus coagulans GBI-30, 6086, PROBC) in a crossover, diet-controlled design. After two weeks of supplementation, perceptional measures, athletic performance, and muscle damage were analyzed following a damaging exercise bout. Results. The damaging exercise bout significantly increased muscle soreness, and reduced perceived recovery; however, PROBC significantly increased recovery at 24 and 72 h, and decreased soreness at 72 h post exercise in comparison to PRO. Perceptual measures were confirmed by increases in CK (PRO: +266.8%, p = 0.0002; PROBC: +137.7%, p = 0.01), with PROBC showing a trend towards reduced muscle damage (p = 0.08). The muscle-damaging exercise resulted in significantly increased muscle swelling and Blood Urea Nitrogen levels in both conditions with no difference between groups. The strenuous exercise significantly reduced athletic performance in PRO (Wingate Peak Power; PRO: (−39.8 watts, −5.3%, p = 0.03)), whereas PROBC maintained performance (+10.1 watts, +1.7%). Conclusions. The results provide evidence that probiotic supplementation in combination with protein tended to reduce indices of muscle damage, improves recovery, and maintains physical performance subsequent to damaging exercise. PMID:27547577

  10. Ethanol does not delay muscle recovery but decreases testosterone/cortisol ratio.

    PubMed

    Haugvad, Anders; Haugvad, Lars; Hamarsland, Håvard; Paulsen, Gøran

    2014-11-01

    This study investigated the effects of ethanol consumption on recovery from traditional resistance exercise in recreationally trained individuals. Nine recreationally trained volunteers (eight males and one female, 26 ± 4 yr, 81 ± 4 kg) conducted four resistance exercise sessions and consumed a low (0.6 (females) and 0.7 (males) g · kg(-1) body mass) or a high dose (1.2 or 1.4 g · kg(-1) body mass) of ethanol 1-2.5 h after exercise on two occasions. The first session was for familiarization with the tests and exercises and was performed without ethanol consumption. As a control trial, alcohol-free drinks were consumed after the exercise session. The sequence of trials, with low and high ethanol doses and alcohol-free drinks (control), was randomized. Maximal voluntary contractions (MVC) (knee extension), electrically stimulated contractions (knee extension), squat jumps, and hand grip strength were assessed 10-15 min and 12 and 24 h after the ethanol/placebo drinks. In addition to a baseline sample, blood was collected 1, 12, and 24 h after the ethanol/placebo drinks. The exercise session comprised 4 × 8 repetition maximum of squats, leg presses, and knee extensions. MVC were reduced by 13%-15% immediately after the exercise sessions (P < 0.01). MVC, electrically stimulated force, and squat jump performance were recovered 24 h after ethanol drinks. MVC was not fully recovered at 24 h in the control trial. Compared with those in the control, cortisol increased and the free testosterone/cortisol ratio were reduced after the high ethanol dose (P < 0.01). Neither a low nor a high dose of ethanol adversely affected recovery of muscle function after resistance exercise in recreationally strength-trained individuals. However, the increased cortisol levels and reduced testosterone/cortisol ratio after the high ethanol dose could translate into long-term negative effects.

  11. Aerobic exercise training reduces arterial stiffness in metabolic syndrome.

    PubMed

    Donley, David A; Fournier, Sara B; Reger, Brian L; DeVallance, Evan; Bonner, Daniel E; Olfert, I Mark; Frisbee, Jefferson C; Chantler, Paul D

    2014-06-01

    The metabolic syndrome (MetS) is associated with a threefold increase risk of cardiovascular disease (CVD) mortality partly due to increased arterial stiffening. We compared the effects of aerobic exercise training on arterial stiffening/mechanics in MetS subjects without overt CVD or type 2 diabetes. MetS and healthy control (Con) subjects underwent 8 wk of exercise training (ExT; 11 MetS and 11 Con) or remained inactive (11 MetS and 10 Con). The following measures were performed pre- and postintervention: radial pulse wave analysis (applanation tonometry) was used to measure augmentation pressure and index, central pressures, and an estimate of myocardial efficiency; arterial stiffness was assessed from carotid-femoral pulse-wave velocity (cfPWV, applanation tonometry); carotid thickness was assessed from B-mode ultrasound; and peak aerobic capacity (gas exchange) was performed in the seated position. Plasma matrix metalloproteinases (MMP) and CVD risk (Framingham risk score) were also assessed. cfPWV was reduced (P < 0.05) in MetS-ExT subjects (7.9 ± 0.6 to 7.2 ± 0.4 m/s) and Con-ExT (6.6 ± 1.8 to 5.6 ± 1.6 m/s). Exercise training reduced (P < 0.05) central systolic pressure (116 ± 5 to 110 ± 4 mmHg), augmentation pressure (9 ± 1 to 7 ± 1 mmHg), augmentation index (19 ± 3 to 15 ± 4%), and improved myocardial efficiency (155 ± 8 to 168 ± 9), but only in the MetS group. Aerobic capacity increased (P < 0.05) in MetS-ExT (16.6 ± 1.0 to 19.9 ± 1.0) and Con-ExT subjects (23.8 ± 1.6 to 26.3 ± 1.6). MMP-1 and -7 were correlated with cfPWV, and both MMP-1 and -7 were reduced post-ExT in MetS subjects. These findings suggest that some of the pathophysiological changes associated with MetS can be improved after aerobic exercise training, thereby lowering their cardiovascular risk. Copyright © 2014 the American Physiological Society.

  12. Aerobic exercise training reduces arterial stiffness in metabolic syndrome

    PubMed Central

    Donley, David A.; Fournier, Sara B.; Reger, Brian L.; DeVallance, Evan; Bonner, Daniel E.; Olfert, I. Mark; Frisbee, Jefferson C.

    2014-01-01

    The metabolic syndrome (MetS) is associated with a threefold increase risk of cardiovascular disease (CVD) mortality partly due to increased arterial stiffening. We compared the effects of aerobic exercise training on arterial stiffening/mechanics in MetS subjects without overt CVD or type 2 diabetes. MetS and healthy control (Con) subjects underwent 8 wk of exercise training (ExT; 11 MetS and 11 Con) or remained inactive (11 MetS and 10 Con). The following measures were performed pre- and postintervention: radial pulse wave analysis (applanation tonometry) was used to measure augmentation pressure and index, central pressures, and an estimate of myocardial efficiency; arterial stiffness was assessed from carotid-femoral pulse-wave velocity (cfPWV, applanation tonometry); carotid thickness was assessed from B-mode ultrasound; and peak aerobic capacity (gas exchange) was performed in the seated position. Plasma matrix metalloproteinases (MMP) and CVD risk (Framingham risk score) were also assessed. cfPWV was reduced (P < 0.05) in MetS-ExT subjects (7.9 ± 0.6 to 7.2 ± 0.4 m/s) and Con-ExT (6.6 ± 1.8 to 5.6 ± 1.6 m/s). Exercise training reduced (P < 0.05) central systolic pressure (116 ± 5 to 110 ± 4 mmHg), augmentation pressure (9 ± 1 to 7 ± 1 mmHg), augmentation index (19 ± 3 to 15 ± 4%), and improved myocardial efficiency (155 ± 8 to 168 ± 9), but only in the MetS group. Aerobic capacity increased (P < 0.05) in MetS-ExT (16.6 ± 1.0 to 19.9 ± 1.0) and Con-ExT subjects (23.8 ± 1.6 to 26.3 ± 1.6). MMP-1 and -7 were correlated with cfPWV, and both MMP-1 and -7 were reduced post-ExT in MetS subjects. These findings suggest that some of the pathophysiological changes associated with MetS can be improved after aerobic exercise training, thereby lowering their cardiovascular risk. PMID:24744384

  13. Aerobic training suppresses exercise-induced lipid peroxidation and inflammation in overweight/obese adolescent girls.

    PubMed

    Youssef, Hala; Groussard, Carole; Lemoine-Morel, Sophie; Pincemail, Joel; Jacob, Christophe; Moussa, Elie; Fazah, Abdallah; Cillard, Josiane; Pineau, Jean-Claude; Delamarche, Arlette

    2015-02-01

    This study aimed to determine whether aerobic training could reduce lipid peroxidation and inflammation at rest and after maximal exhaustive exercise in overweight/obese adolescent girls. Thirty-nine adolescent girls (14-19 years old) were classified as nonobese or overweight/obese and then randomly assigned to either the nontrained or trained group (12-week multivariate aerobic training program). Measurements at the beginning of the experiment and at 3 months consisted of body composition, aerobic fitness (VO2peak) and the following blood assays: pre- and postexercise lipid peroxidation (15F2a-isoprostanes [F2-Isop], lipid hydroperoxide [ROOH], oxidized LDL [ox-LDL]) and inflammation (myeloperoxidase [MPO]) markers. In the overweight/ obese group, the training program significantly increased their fat-free mass (FFM) and decreased their percentage of fat mass (%FM) and hip circumference but did not modify their VO2peak. Conversely, in the nontrained overweight/obese group, weight and %FM increased, and VO2peak decreased, during the same period. Training also prevented exercise-induced lipid peroxidation and/or inflammation in overweight/obese girls (F2-Isop, ROOH, ox-LDL, MPO). In addition, in the trained overweight/obese group, exercise-induced changes in ROOH, ox-LDL and F2-Isop were correlated with improvements in anthropometric parameters (waist-to-hip ratio, %FM and FFM). In conclusion aerobic training increased tolerance to exercise-induced oxidative stress in overweight/obese adolescent girls partly as a result of improved body composition.

  14. Exercise Training and Weight Gain in Obese Pregnant Women: A Randomized Controlled Trial (ETIP Trial)

    PubMed Central

    Garnæs, Kirsti Krohn; Mørkved, Siv; Salvesen, Øyvind; Moholdt, Trine

    2016-01-01

    Background The effectiveness of exercise training for preventing excessive gestational weight gain (GWG) and gestational diabetes mellitus (GDM) is still uncertain. As maternal obesity is associated with both GWG and GDM, there is a special need to assess whether prenatal exercise training programs provided to obese women reduce the risk of adverse pregnancy outcomes. Our primary aim was to assess whether regular supervised exercise training in pregnancy could reduce GWG in women with prepregnancy overweight/obesity. Secondary aims were to examine the effects of exercise in pregnancy on 30 outcomes including GDM incidence, blood pressure, blood measurements, skinfold thickness, and body composition. Methods and Findings This was a single-center study where we randomized (1:1) 91 pregnant women with a prepregnancy body mass index (BMI) ≥ 28 kg/m2 to exercise training (n = 46) or control (standard maternity care) (n = 45). Assessments were done at baseline (pregnancy week 12–18) and in late pregnancy (week 34–37), as well as at delivery. The exercise group was offered thrice weekly supervised sessions of 35 min of moderate intensity endurance exercise and 25 min of strength training. Seventeen women were lost to follow-up (eight in the exercise group and nine in the control group). Our primary endpoint was GWG from baseline testing to delivery. The principal analyses were done as intention-to-treat analyses, with supplementary per protocol analyses where we assessed outcomes in the women who adhered to the exercise program (n = 19) compared to the control group. Mean GWG from baseline to delivery was 10.5 kg in the exercise group and 9.2 kg in the control group, with a mean difference of 0.92 kg (95% CI −1.35, 3.18; p = 0.43). Among the 30 secondary outcomes in late pregnancy, an apparent reduction was recorded in the incidence of GDM (2009 WHO definition) in the exercise group (2 cases; 6.1%) compared to the control group (9 cases; 27.3%), with an odds ratio of 0.1 (95% CI 0.02, 0.95; p = 0.04). Systolic blood pressure was significantly lower in the exercise group (mean 120.4 mm Hg) compared to the control group (mean 128.1 mm Hg), with a mean difference of −7.73 mm Hg (95% CI −13.23, −2.22; p = 0.006). No significant between-group differences were seen in diastolic blood pressure, blood measurements, skinfold thickness, or body composition in late pregnancy. In per protocol analyses, late pregnancy systolic blood pressure was 115.7 (95% CI 110.0, 121.5) mm Hg in the exercise group (significant between-group difference, p = 0.001), and diastolic blood pressure was 75.1 (95% CI 71.6, 78.7) mm Hg (significant between-group difference, p = 0.02). We had planned to recruit 150 women into the trial; hence, under-recruitment represents a major limitation of our results. Another limitation to our study was the low adherence to the exercise program, with only 50% of the women included in the intention-to-treat analysis adhering as described in the study protocol. Conclusions In this trial we did not observe a reduction in GWG among overweight/obese women who received a supervised exercise training program during their pregnancy. The incidence of GDM in late pregnancy seemed to be lower in the women randomized to exercise training than in the women receiving standard maternity care only. Systolic blood pressure in late pregnancy was also apparently lower in the exercise group than in the control group. These results indicate that supervised exercise training might be beneficial as a part of standard pregnancy care for overweight/obese women. Trial Registration ClinicalTrials.gov NCT01243554 PMID:27459375

  15. Exercise training reduces peripheral arterial stiffness and myocardial oxygen demand in young prehypertensive subjects.

    PubMed

    Beck, Darren T; Martin, Jeffrey S; Casey, Darren P; Braith, Randy W

    2013-09-01

    Large artery stiffness is a major risk factor for the development of hypertension and cardiovascular disease. Persistent prehypertension accelerates the progression of arterial stiffness. Forty-three unmedicated prehypertensive (systolic blood pressure (SBP) = 120-139 mm Hg or diastolic blood pressure (DBP) = 80-89 mm Hg) men and women and 15 normotensive time-matched control subjects (NMTCs; n = 15) aged 18-35 years of age met screening requirements and participated in the study. Prehypertensive subjects were randomly assigned to a resistance exercise training (PHRT; n = 15), endurance exercise training (PHET; n = 13) or time-control group (PHTC; n = 15). Treatment groups performed exercise training 3 days per week for 8 weeks. Pulse wave analysis, pulse wave velocity (PWV), and central and peripheral blood pressures were evaluated before and after exercise intervention or time-matched control. PHRT and PHET reduced resting SBP by 9.6±3.6mm Hg and 11.9±3.4mm Hg, respectively, and DBP by 8.0±5.1mm Hg and 7.2±3.4mm Hg, respectively (P < 0.05). PHRT and PHET decreased augmentation index (AIx) by 7.5% ± 2.8% and 8.1% ± 3.2% (P < 0.05), AIx@75 by 8.0% ± 3.2% and 9.2% ± 3.8% (P < 0.05), and left ventricular wasted pressure energy, an index of extra left ventricular myocardial oxygen requirement due to early systolic wave reflection, by 573±161 dynes s/cm(2) and 612±167 dynes s/cm(2) (P < 0.05), respectively. PHRT and PHET reduced carotid-radial PWV by 1.02±0.32 m/sec and 0.92±0.36 m/sec (P < 0.05) and femoral-distal PWV by 1.04±0.31 m/sec and 1.34±0.33 m/sec (P < 0.05), respectively. No significant changes were observed in the time-control groups. This study suggests that both resistance and endurance exercise alone effectively reduce peripheral arterial stiffness, central blood pressures, augmentation index, and myocardial oxygen demand in young prehypertensive subjects.

  16. Exercise Training Reduces Peripheral Arterial Stiffness and Myocardial Oxygen Demand in Young Prehypertensive Subjects

    PubMed Central

    2013-01-01

    BACKGROUND Large artery stiffness is a major risk factor for the development of hypertension and cardiovascular disease. Persistent prehypertension accelerates the progression of arterial stiffness. METHODS Forty-three unmedicated prehypertensive (systolic blood pressure (SBP) = 120–139mm Hg or diastolic blood pressure (DBP) = 80–89mm Hg) men and women and 15 normotensive time-matched control subjects (NMTCs; n = 15) aged 18–35 years of age met screening requirements and participated in the study. Prehypertensive subjects were randomly assigned to a resistance exercise training (PHRT; n = 15), endurance exercise training (PHET; n = 13) or time-control group (PHTC; n = 15). Treatment groups performed exercise training 3 days per week for 8 weeks. Pulse wave analysis, pulse wave velocity (PWV), and central and peripheral blood pressures were evaluated before and after exercise intervention or time-matched control. RESULTS PHRT and PHET reduced resting SBP by 9.6±3.6mm Hg and 11.9±3.4mm Hg, respectively, and DBP by 8.0±5.1mm Hg and 7.2±3.4mm Hg, respectively (P < 0.05). PHRT and PHET decreased augmentation index (AIx) by 7.5% ± 2.8% and 8.1% ± 3.2% (P < 0.05), AIx@75 by 8.0% ± 3.2% and 9.2% ± 3.8% (P < 0.05), and left ventricular wasted pressure energy, an index of extra left ventricular myocardial oxygen requirement due to early systolic wave reflection, by 573±161 dynes s/cm2 and 612±167 dynes s/cm2 (P < 0.05), respectively. PHRT and PHET reduced carotid–radial PWV by 1.02±0.32 m/sec and 0.92±0.36 m/sec (P < 0.05) and femoral–distal PWV by 1.04±0.31 m/sec and 1.34±0.33 m/sec (P < 0.05), respectively. No significant changes were observed in the time-control groups. CONCLUSIONS This study suggests that both resistance and endurance exercise alone effectively reduce peripheral arterial stiffness, central blood pressures, augmentation index, and myocardial oxygen demand in young prehypertensive subjects. PMID:23736111

  17. Preventive strength training improves working ergonomics during welding.

    PubMed

    Krüger, Karsten; Petermann, Carmen; Pilat, Christian; Schubert, Emil; Pons-Kühnemann, Jörn; Mooren, Frank C

    2015-01-01

    To investigate the effect of a preventive strength training program on cardiovascular, metabolic and muscular strains during welding. Welders are one of the occupation groups which typically have to work in extended forced postures which are known to be an important reason for musculoskeletal disorders. Subjects (exercise group) accomplished a 12-week strength training program, while another group served as controls (control group). Pre and post training examinations included the measurements of the one repetition maximum and an experimental welding test. Local muscle activities were analysed by surface electromyography. Furthermore, heart rate, blood pressure, lactate and rating of perceived exertion were examined. In the exercise group, strength training lead to a significant increase of one repetition maximum in all examined muscles (p<.05). During the experimental welding test muscle activities of trunk and shoulder muscles and arm muscles were significantly reduced in the exercise group after intervention (p<.05). While no changes of neither cardiovascular nor metabolic parameters were found, subjects of the exercise group rated a significantly decreased rate of perceived exertion welding (p<.05). Effects of strength training can be translated in an improved working ergonomics and tolerance against the exposure to high physical demands at work.

  18. Optimizing functional exercise capacity in the elderly surgical population.

    PubMed

    Carli, Franco; Zavorsky, Gerald S

    2005-01-01

    There are several studies on the effect of exercise post surgery (rehabilitation), but few studies have looked at augmenting functional capacity prior to surgical admission (prehabilitation). A programme of prehabilitation is proposed in order to enhance functional exercise capacity in elderly patients with the intent to minimize the postoperative morbidity and accelerate postsurgical recovery. Few studies have looked at exercise prehabilitation to improve functional capacity prior to surgical admission. Prehabilitation prior to orthopaedic surgery does not seem to improve quality of life or recovery. However, prehabilitation prior to abdominal or cardiac surgery, based on 275 elderly patients, results in fewer postoperative complications, shorter postoperative length of stay, improved quality of life, and reduced declines in functional disability compared to sedentary controls. A concentrated 3-month progressive exercise prehabilitation programme consisting of aerobic training at 45-65% of maximal heart rate reserve (%HRR) along with periodic high-intensity interval training ( approximately 90% HRR) four times per week, 30-50 minutes per session, is recommended for improving cardiovascular functioning. A strength training programme of about 10 different exercises focused on large, multi-jointed muscle groups should also be implemented twice per week at a mean training intensity of 80% of one-repetition maximum. Finally, a minimum of 140 g ( approximately 560 kcal) of carbohydrate (CHO) should be taken 3 h before training to increase liver and muscle glycogen stores and a minimum of about 200 kcal of mixed protein-CHO should be ingested within 30 min following training to enhance muscle hypertrophy.

  19. Energy-matched moderate and high intensity exercise training improves nonalcoholic fatty liver disease risk independent of changes in body mass or abdominal adiposity - A randomized trial.

    PubMed

    Winn, Nathan C; Liu, Ying; Rector, R Scott; Parks, Elizabeth J; Ibdah, Jamal A; Kanaley, Jill A

    2018-01-01

    Exercise training is commonly prescribed for individuals diagnosed with nonalcoholic fatty liver disease (NAFLD); however, consensus regarding the volume and intensity of exercise for optimal benefits is lacking. Thus, we determined whether high intensity interval exercise training (HIIT) produced greater reductions in intrahepatic lipid (IHL) content and NAFLD risk factors compared with energy-matched moderate intensity continuous exercise training (MICT) in obese adults with liver steatosis. Eighteen obese adults were randomized to either 4weeks of HIIT (4min 80% VO 2 peak/3min, 50% VO 2 peak) or MICT (55% VO 2 peak, ~60min), matched for energy expenditure (~400kcal/session) and compared to five non-exercising age-matched control subjects. IHL was measured by 1 H-MRS and frequent blood samples were analyzed for glucose, insulin, c-peptide, and NEFA levels during a liquid meal test (180min) to characterize metabolic phenotype. Baseline body weight, visceral abdominal adiposity, and fasting insulin concentrations were greater in the MICT vs HIIT group (P<0.05), while IHL was tightly matched between MICT and HIIT subjects (P>0.05), albeit higher than control subjects (P<0.01). Visceral abdominal adiposity, body mass, liver aminotransferases (ALT, AST), and hepatic apoptotic/inflammatory markers (cytokeratin 18 and fetuin a) were not reduced with either exercise training intervention (P>0.05). Both HIIT and MICT lowered IHL (HIIT, -37.0±12.4%; MICT, -20.1±6.6%, P<0.05); however, the reduction in IHL was not statistically different between exercise intensities (P=0.25). Furthermore, exercise training decreased postprandial insulin, c-peptide, and lipid peroxidation levels (iAUC, P<0.05). Collectively, these findings indicate that energy-matched high intensity and moderate intensity exercise are effective at decreasing IHL and NAFLD risk that is not contingent upon reductions in abdominal adiposity or body mass. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Long-term lifestyle intervention with optimized high-intensity interval training improves body composition, cardiometabolic risk, and exercise parameters in patients with abdominal obesity.

    PubMed

    Gremeaux, Vincent; Drigny, Joffrey; Nigam, Anil; Juneau, Martin; Guilbeault, Valérie; Latour, Elise; Gayda, Mathieu

    2012-11-01

    The aim of this study was to study the impact of a combined long-term lifestyle and high-intensity interval training intervention on body composition, cardiometabolic risk, and exercise tolerance in overweight and obese subjects. Sixty-two overweight and obese subjects (53.3 ± 9.7 yrs; mean body mass index, 35.8 ± 5 kg/m(2)) were retrospectively identified at their entry into a 9-mo program consisting of individualized nutritional counselling, optimized high-intensity interval exercise, and resistance training two to three times a week. Anthropometric measurements, cardiometabolic risk factors, and exercise tolerance were measured at baseline and program completion. Adherence rate was 97%, and no adverse events occurred with high-intensity interval exercise training. Exercise training was associated with a weekly energy expenditure of 1582 ± 284 kcal. Clinically and statistically significant improvements were observed for body mass (-5.3 ± 5.2 kg), body mass index (-1.9 ± 1.9 kg/m(2)), waist circumference (-5.8 ± 5.4 cm), and maximal exercise capacity (+1.26 ± 0.84 metabolic equivalents) (P < 0.0001 for all parameters). Total fat mass and trunk fat mass, lipid profile, and triglyceride/high-density lipoprotein ratio were also significantly improved (P < 0.0001). At program completion, the prevalence of metabolic syndrome was reduced by 32.5% (P < 0.05). Independent predictors of being a responder to body mass and waist circumference loss were baseline body mass index and resting metabolic rate; those for body mass index decrease were baseline waist circumference and triglyceride/high-density lipoprotein cholesterol ratio. A long-term lifestyle intervention with optimized high-intensity interval exercise improves body composition, cardiometabolic risk, and exercise tolerance in obese subjects. This intervention seems safe, efficient, and well tolerated and could improve adherence to exercise training in this population.

  1. Endurance exercise training decreases capillary basement membrane width in older nondiabetic and diabetic adults.

    PubMed

    Williamson, J R; Hoffmann, P L; Kohrt, W M; Spina, R J; Coggan, A R; Holloszy, O

    1996-03-01

    The objectives of these studies were to 1) evaluate the relationships among age, glucose intolerance, and skeletal muscle capillary basement membrane (CBM) width (CBMW) and 2) determine the effects of exercise training on CBMW by comparing values of young (28 +/- 4 yr) and older (63 +/- 7 yr) athletes with those of age-matched sedentary control subjects and by measuring CBMW in older men and women before and after a 9-mo endurance-exercise training program. CBMW was measured in tissue samples obtained from the gastrocnemius muscle. CBMW in sedentary 64 +/- 3-yr-old subjects was 25% thicker than in sedentary 24 +/- 3-yr-old subjects. CBMW was similar in young and older athletes and was thinner than the CBMW of age-matched sedentary control subjects. There were no differences in CBMW among older sedentary individuals with normal or impaired glucose tolerance or mild non-insulin-dependent diabetes mellitus. Nine months of endurance exercise training reduced CBMW in older men and women by 30-40%, to widths that were not different from those of the young subjects; this response was independent of glucose tolerance status. These findings suggest that habitual exercise prevents the thickening of the skeletal muscle CBM that is characteristic of advancing age. Moreover, the thickening of the CBM appears to be readily reversed as a result of exercise training, even in older individuals.

  2. The effects of low-repetition and light-load power training on bone mineral density in postmenopausal women with sarcopenia: a pilot study.

    PubMed

    Hamaguchi, Kanako; Kurihara, Toshiyuki; Fujimoto, Masahiro; Iemitsu, Motoyuki; Sato, Koji; Hamaoka, Takafumi; Sanada, Kiyoshi

    2017-05-02

    Age-related reduction in bone mineral density (BMD) is generally accelerated in women after menopause, and could be even more pronounced in individuals with sarcopenia. Light-load power training with a low number of repetitions would increase BMD, significantly reducing bone loss in individuals at risk of osteoporosis. This study investigated the effects of low-repetition, light-load power training on BMD in Japanese postmenopausal women with sarcopenia. The training group (n = 7) followed a progressive power training protocol that increased the load with a weighted vest, for two sessions per week, over the course of 6 weeks. The training exercise comprised five kinds of exercises (squats, front lunges, side lunges, calf raises, and toe raises), and each exercise contained eight sets of three repetitions with a 15-s rest between each set. The control group (n = 8) did not undergo any training intervention. We measured BMD, muscle strength, and anthropometric data. Within-group changes in pelvis BMD and knee extensor strength were significantly greater in the training group than the control group (p = 0.029 and 0.030 for pelvis BMD and knee extensor strength, respectively). After low-repetition, light-load power training, we noted improvements in pelvis BMD (1.6%) and knee extensor strength (15.5%). No significant within- or between-group differences were observed for anthropometric data or forearm BMD. Six weeks of low-repetition, light-load power training improved pelvis BMD and knee extensor strength in postmenopausal women with sarcopenia. Since this training program does not require high-load exercise and is therefore easily implementable as daily exercise, it could be an effective form of exercise for sedentary adults at risk for osteoporosis who are fearful of heavy loads and/or training that could cause fatigue. This trial was registered with the University Hospital Medical Information Network on 31 October 2016 ( UMIN000024651 ).

  3. Swimming exercise demonstrates advantages over running exercise in reducing proteinuria and glomerulosclerosis in spontaneously hypertensive rats.

    PubMed

    Totou, N L; Moura, S S; Coelho, D B; Oliveira, E C; Becker, L K; Lima, W G

    2018-03-01

    Experimental studies in animal models have described the benefits of physical exercise (PE) to kidney diseases associated with hypertension. Land- and water-based exercises induce different responses in renal function. Our aim was to evaluate the renal alterations induced by different environments of PE in spontaneously hypertensive rats (SHRs). The SHRs were divided into sedentary (S), swimming exercise (SE), and running exercise (RE) groups, and were trained for 8 weeks under similar intensities (60 min/day). Arterial pressure (AP) and heart rate (HR) were recorded. The renal function was evaluated through urinary volume at each week of training; sodium and potassium excretions, plasma and urinary osmolarities, glomerular filtration rate (GFR), levels of proteinuria, and renal damage were determined. SE and RE rats presented reduced mean AP, systolic blood pressure, and HR in comparison with S group. SE and RE rats showed higher urine osmolarity compared with S. SE rats showed higher free water clearance (P < 0.01), lower urinary density (P < 0.0001), and increased weekly urine volume (P < 0.05) in comparison with RE and S groups. GFR was increased in both SE and RE rats. The proteinuria of SE (7.0 ± 0.8 mg/24 h) rats was decreased at the 8th week of the PE in comparison with RE (9.6 ± 0.8 mg/24 h) and S (9.8 ± 0.5 mg/24 h) groups. The glomerulosclerosis was reduced in SE rats (P < 0.02). SE produced different response in renal function in comparison with RE, in which only swimming-trained rats had better profile for proteinuria and glomerulosclerosis.

  4. Effects of Different Exercise Modalities on Fatigue in Prostate Cancer Patients Undergoing Androgen Deprivation Therapy: A Year-long Randomised Controlled Trial.

    PubMed

    Taaffe, Dennis R; Newton, Robert U; Spry, Nigel; Joseph, David; Chambers, Suzanne K; Gardiner, Robert A; Wall, Brad A; Cormie, Prue; Bolam, Kate A; Galvão, Daniel A

    2017-08-01

    Physical exercise mitigates fatigue during androgen deprivation therapy (ADT); however, the effects of different exercise prescriptions are unknown. To determine the long-term effects of different exercise modes on fatigue in prostate cancer patients undergoing ADT. Between 2009 and 2012, 163 prostate cancer patients aged 43-90 y on ADT were randomised to exercise targeting the musculoskeletal system (impact loading+resistance training; ILRT; n=58), the cardiovascular and muscular systems (aerobic+resistance training; ART; n=54), or to usual care/delayed exercise (DEL; n=51) for 12 mo across university-affiliated exercise clinics in Australia. Supervised ILRT for 12 mo, supervised ART for 6 mo followed by a 6-mo home program, and DEL received a printed booklet on exercise information for 6 mo followed by 6-mo stationary cycling exercise. Fatigue was assessed using the European Organisation for Research and Treatment of Cancer Quality of Life Questionnaire-Core 36 and vitality using the Short Form-36. Analysis of variance was used to compare outcomes for groups at 6 mo and 12 mo. Fatigue was reduced (p=0.005) in ILRT at 6 mo and 12 mo (∼5 points), and in ART (p=0.005) and DEL (p=0.022) at 12 mo. Similarly, vitality increased for all groups (p≤0.001) at 12 mo (∼4 points). Those with the highest levels of fatigue and lowest vitality improved the most with exercise (p trend <0.001). A limitation was inclusion of mostly well-functioning individuals. Different exercise modes have comparable effects on reducing fatigue and enhancing vitality during ADT. Patients with the highest levels of fatigue and lowest vitality had the greatest benefits. We compared the effects of different exercise modes on fatigue in men on androgen deprivation therapy. All exercise programs reduced fatigue and enhanced vitality. We conclude that undertaking some form of exercise will help reduce fatigue, especially in those who are the most fatigued. Copyright © 2017 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  5. Changes in blood glucose among trained normoglycemic adults during a mini-trampoline exercise session.

    PubMed

    Martins Cunha, Raphael; Raiana Bentes, Mariana; Araújo, Victor H; DA Costa Souza, Mayara C; Vasconcelos Noleto, Marcelo; Azevedo Soares, Ademar; Machado Lehnen, Alexandre

    2016-12-01

    Blood glucose changes response during and after exercise are modulated by the postabsorptive state, intensity and duration of exercise, and the level of physical fitness as well. This study focused on the idea that high-intensity interval exercise, as mini-trampoline class, can reduce blood glucose. Thus, we examined acute changes in blood glucose among trained normoglycemic adults during a mini-trampoline exercise session. Twenty-four normoglycemic adult subjects were enrolled in the study. After physical assessment they were randomly assigned to either the experimental (N.=12) or the control group (N.=12). The experimental group performed a 50-minute session of moderate-to-high intensity (70 to 85% HRmax) exercise on a mini-trampoline commonly used in fitness classes. The control group did not perform any exercise, and all procedures were otherwise similar to the experimental group. Capillary blood glucose was measured before and every 15 minutes during the exercise session. The effects of exercise on blood glucose levels (group; time; and group interaction) were estimated using a generalized estimating equation (GEE) followed by Bonferroni's post-hoc Test (P<0.05). The experimental group showed a decrease in blood glucose levels from baseline (108.7 mg/dL): 26.1% reduction (15 min; P<0.001), 24.2% (30 min; P<0.001), and 15.7% (45 min; P<0.001). Compared to the control group, blood glucose levels in the experimental group were reduced by 18.8% (15 min; P<0.001), 14.3% (30 min; P<0.001) and 6.9% (45 min; P=0.025). The study results provide good evidence that a prescribed exercise program on a mini-trampoline can be used for reducing blood glucose levels and thus can potentially control blood glucose.

  6. Rehabilitation (exercise and strength training) and osteoarthritis: A critical narrative review.

    PubMed

    Nguyen, Christelle; Lefèvre-Colau, Marie-Martine; Poiraudeau, Serge; Rannou, François

    2016-06-01

    Rehabilitation is widely recommended in national and international guidelines for managing osteoarthritis (OA) in primary care settings. According to the 2014 OA Research Society International (OARSI) recommendations, rehabilitation is even considered the core treatment of OA and is recommended for all patients. Rehabilitation for OA widely includes land- and water-based exercise, strength training, weight management, self-management and education, biomechanical interventions, and physically active lifestyle. We performed a critical narrative review of the efficacy and safety of rehabilitation for managing OA and discuss evidence-based international recommendations. The process of article selection was unsystematic. Articles were selected based on authors' expertise, self-knowledge, and reflective practice. For the purpose of the review, we focused on land- and water-based exercise and strength training for knee, hip and hand OA. Other aspects of rehabilitation in OA are treated elsewhere in this special issue. Exercise therapy is widely recommended for managing knee, hip and hand OA. However, the level of evidence varies according to OA location. Overall, consistent evidence suggests that exercise therapy and specific strengthening exercise or strength training for the lower limb reduce pain and improve physical function in knee OA. Evidence for other OA sites are less consistent. Therefore, because of the lack of specific studies, recommendations for hip and hand OA are mainly derived from studies of knee OA. In addition, no recommendations have been established regarding the exercise regimen. The efficacy and safety of exercise therapy and strength training need to be further evaluated in randomized controlled trials of patients with hip and hand OA. The optimal delivery of exercise programs also has to be more clearly defined. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  7. An Innovative Running Wheel-based Mechanism for Improved Rat Training Performance.

    PubMed

    Chen, Chi-Chun; Yang, Chin-Lung; Chang, Ching-Ping

    2016-09-19

    This study presents an animal mobility system, equipped with a positioning running wheel (PRW), as a way to quantify the efficacy of an exercise activity for reducing the severity of the effects of the stroke in rats. This system provides more effective animal exercise training than commercially available systems such as treadmills and motorized running wheels (MRWs). In contrast to an MRW that can only achieve speeds below 20 m/min, rats are permitted to run at a stable speed of 30 m/min on a more spacious and high-density rubber running track supported by a 15 cm wide acrylic wheel with a diameter of 55 cm in this work. Using a predefined adaptive acceleration curve, the system not only reduces the operator error but also trains the rats to run persistently until a specified intensity is reached. As a way to evaluate the exercise effectiveness, real-time position of a rat is detected by four pairs of infrared sensors deployed on the running wheel. Once an adaptive acceleration curve is initiated using a microcontroller, the data obtained by the infrared sensors are automatically recorded and analyzed in a computer. For comparison purposes, 3 week training is conducted on rats using a treadmill, an MRW and a PRW. After surgically inducing middle cerebral artery occlusion (MCAo), modified neurological severity scores (mNSS) and an inclined plane test were conducted to assess the neurological damages to the rats. PRW is experimentally validated as the most effective among such animal mobility systems. Furthermore, an exercise effectiveness measure, based on rat position analysis, showed that there is a high negative correlation between the effective exercise and the infarct volume, and can be employed to quantify a rat training in any type of brain damage reduction experiments.

  8. Antidiabetic effect of Euterpe oleracea Mart. (açaí) extract and exercise training on high-fat diet and streptozotocin-induced diabetic rats: A positive interaction

    PubMed Central

    de Bem, Graziele Freitas; Costa, Cristiane Aguiar; Santos, Izabelle Barcellos; Cristino Cordeiro, Viviane da Silva; de Carvalho, Lenize Costa Reis Marins; de Souza, Marcelo Augusto Vieira; Soares, Ricardo de Andrade; Sousa, Pergentino José da Cunha; Ognibene, Dayane Teixeira; de Moura, Roberto Soares

    2018-01-01

    A growing body of evidence suggests a protective role of polyphenols and exercise training on the disorders of type 2 diabetes mellitus (T2DM). We aimed to assess the effect of the açaí seed extract (ASE) associated with exercise training on diabetic complications induced by high-fat (HF) diet plus streptozotocin (STZ) in rats. Type 2 diabetes was induced by feeding rats with HF diet (55% fat) for 5 weeks and a single dose of STZ (35 mg/kg i.p.). Control (C) and Diabetic (D) animals were subdivided into four groups each: Sedentary, Training, ASE Sedentary, and ASE Training. ASE (200 mg/kg/day) was administered by gavage and the exercise training was performed on a treadmill (30min/day; 5 days/week) for 4 weeks after the diabetes induction. In type 2 diabetic rats, the treatment with ASE reduced blood glucose, insulin resistance, leptin and IL-6 levels, lipid profile, and vascular dysfunction. ASE increased the expression of insulin signaling proteins in skeletal muscle and adipose tissue and plasma GLP-1 levels. ASE associated with exercise training potentiated the reduction of glycemia by decreasing TNF-α levels, increasing pAKT and adiponectin expressions in adipose tissue, and IR and pAMPK expressions in skeletal muscle of type 2 diabetic rats. In conclusion, ASE treatment has an antidiabetic effect in type 2 diabetic rats by activating the insulin-signaling pathway in muscle and adipose tissue, increasing GLP-1 levels, and an anti-inflammatory action. Exercise training potentiates the glucose-lowering effect of ASE by activating adiponectin-AMPK pathway and increasing IR expression. PMID:29920546

  9. Effect of resistance training on muscle use during exercise

    NASA Technical Reports Server (NTRS)

    Ploutz, Lori L.; Tesch, Per A.; Biro, Ronald L.; Dudley, Gary A.

    1994-01-01

    This study examined the effect of resistance training on exercise-induced contrast shift in magnetic resonance (MR) images. It was hypothesized that a given load could be lifted after training with less muscle showing contrast shift, thereby suggesting less muscle was used to perform the exercise. Nine males trained the left quadriceps femoris (QF) muscle 2 days/wk for 9 wk using 3-6 sets of 12 knee extensions each day. The right QF served as a control. Exercise-induced contrast shifts in MR images evoked by each of three bouts of exercise (5 sets of 10 knee extensions with a load equal to 50, 75, and 100% of the maximum pretraining load that could be lifted for 5 sets of 10 repetitions) were quantified pre- and posttraining. MR image contrast shift was quantified by determining QF cross-sectional area (CSA) showing increased spin-spin relaxation time. One repetition maximum increased 14% in the left trained QF and 7% in the right untrained QF. Left QF CSA increased 5%, with no change in right QSF CSA. Left QF CSA showing contrast shift was less after each bout of the exercise test posttraining. This was also true, to a lesser extent, for the right QF at the higher two loads. The results suggest that short-term resistance training reduces MR image contrast shift evoked by a given effort, thereby reflecting the use of less muscle to lift the load. Because this response was evident in both trained and contralateral untrained muscle, neural factors are suggested to be responsible. The consequence of this adaptation could be to increase 'stress' per unit area of active muscle during the course of training and thereby evoke hypertrophy.

  10. Four-month course of soluble milk proteins interacts with exercise to improve muscle strength and delay fatigue in elderly participants.

    PubMed

    Gryson, Céline; Ratel, Sébastien; Rance, Mélanie; Penando, Stéphane; Bonhomme, Cécile; Le Ruyet, Pascale; Duclos, Martine; Boirie, Yves; Walrand, Stéphane

    2014-12-01

    The benefit of protein supplementation on the adaptive response of muscle to exercise training in older people is controversial. To investigate the independent and combined effects of a multicomponent exercise program with and without a milk-based nutritional supplement on muscle strength and mass, lower-extremity fatigue, and metabolic markers. A sample of 48 healthy sedentary men aged 60.8 ± 0.4 years were randomly assigned to a 16-week multicomponent exercise training program with a milk-based supplement containing, besides proteins [total milk proteins 4 or 10 g/day or soluble milk proteins rich in leucine (PRO) 10 g/day], carbohydrates and fat. Body composition, muscle mass and strength, and time to task failure, an index of muscle fatigue, were measured. Blood lipid, fibrinogen, creatine phosphokinase, glucose, insulin, C-reactive protein, interleukin-6, tumor necrosis factor-α soluble receptors, and endothelial markers were assessed. Body fat mass was reduced after the 4-month training program in groups receiving 10 g/day of protein supplementation (P < .01). The training program sustained with the daily 10 g/day PRO was associated with a significant increase in dominant fat free mass (+5.4%, P < .01) and in appendicular muscle mass (+4.5%, P < .01). Blood cholesterol was decreased in the trained group receiving 10 g/day PRO. The index of insulin resistance (homeostasis model assessment-insulin resistance) and blood creatine phosphokinase were reduced in the groups receiving 10 g/day PRO, irrespective of exercise. The inflammatory and endothelial markers were not different between the groups. Training caused a significant improvement (+10.6% to 19.4%, P < .01) in the maximal oxygen uptake. Increased maximum voluntary contraction force was seen in the trained groups receiving 10 g/day of proteins (about 3%, P < .05). Time to task failure was improved in the trained participants receiving a 10 g/day supplementation with PRO (P < .01). Soluble milk proteins rich in leucine improved time to muscle failure and increase in skeletal muscle mass and strength after prolonged multicomponent exercise training in healthy older men. Copyright © 2014 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  11. Daily Supine LBNP Treadmill Exercise Maintains Upright Exercise Capacity During 14 Days of Bed Rest

    NASA Technical Reports Server (NTRS)

    Ertl, Andy C.; Watenpaugh, D. E.; Hargens, Alan R.; Fortney, S. M.; Lee, S. M. C.; Ballard, R. E.; William, J. M.

    1996-01-01

    Exposure to microgravity or bed rest reduces upright exercise capacity. Exercise modes, durations, and intensities which will effectively and efficiently counteract such deconditioning are presently unresolved. We that daily supine treadmill interval training with lower body negative pressure (LBNP) would prevent reduction in upright exercise capacity during 14 days of 6 deg. head-down bed rest (BR). Eight healthy male subjects underwent two 14 day BR protocols separated by 3 months. In a crossover design, subjects either remained at strict BR or performed 40 min of daily exercise consisting of supine walking and running at intensities varying from 40-80% of pre-BR upright peak oxygen uptake (VO2). LBNP during supine exercise was used to provide 1.0 to 1.2 times body weight of footward force. An incremental upright treadmill test to measure submaximal and peak exercise responses was given pre- and post-BR. In the non-exercise condition, peak VO2 and time to exhaustion were reduced 16 +/- 4% and 10 +/- 1% (p less than 0.05), respectively, from pre-BR. With LBNP exercise these variables were not significantly different (NS) from pre-BR. During submaximal treadmill speeds after BR, heart rate was higher (11 +/- 11 bpm, p less than 0.05) and respiratory exchange ratio was elevated (p less than 0.05) in the no exercise condition. Both were maintained at pre-BR levels in the LBNP exercise condition (NS from pre-BR). Since this supine treadmill interval training with addition of LBNP maintained upright exercise responses and capacity during BR, this countermeasure may also be effective during space flight.

  12. Improving Exercise Performance with an Accelerometer-Based Smartphone App: A Randomized Controlled Trial.

    PubMed

    Bittel, Daniel C; Bittel, Adam J; Williams, Christine; Elazzazi, Ashraf

    2017-05-01

    Proper exercise form is critical for the safety and efficacy of therapeutic exercise. This research examines if a novel smartphone application, designed to monitor and provide real-time corrections during resistance training, can reduce performance errors and elicit a motor learning response. Forty-two participants aged 18 to 65 years were randomly assigned to treatment and control groups. Both groups were tested for the number of movement errors made during a 10-repetition set completed at baseline, immediately after, and 1 to 2 weeks after a single training session of knee extensions. The treatment group trained with real-time, smartphone-generated feedback, whereas the control subjects did not. Group performance (number of errors) was compared across test sets using a 2-factor mixed-model analysis of variance. No differences were observed between groups for age, sex, or resistance training experience. There was a significant interaction between test set and group. The treatment group demonstrated fewer errors on posttests 1 and 2 compared with pretest (P < 0.05). There was no reduction in the number of errors on any posttest for control subjects. Smartphone apps, such as the one used in this study, may enhance patient supervision, safety, and exercise efficacy across rehabilitation settings. A single training session with the app promoted motor learning and improved exercise performance.

  13. Next Gen One Portal Usability Evaluation

    NASA Technical Reports Server (NTRS)

    Cross, E. V., III; Perera, J. S.; Hanson, A. M.; English, K.; Vu, L.; Amonette, W.

    2018-01-01

    Each exercise device on the International Space Station (ISS) has a unique, customized software system interface with unique layouts / hierarchy, and operational principles that require significant crew training. Furthermore, the software programs are not adaptable and provide no real-time feedback or motivation to enhance the exercise experience and/or prevent injuries. Additionally, the graphical user interfaces (GUI) of these systems present information through multiple layers resulting in difficulty navigating to the desired screens and functions. These limitations of current exercise device GUI's lead to increased crew time spent on initiating, loading, performing exercises, logging data and exiting the system. To address these limitations a Next Generation One Portal (NextGen One Portal) Crew Countermeasure System (CMS) was developed, which utilizes the latest industry guidelines in GUI designs to provide an intuitive ease of use approach (i.e., 80% of the functionality gained within 5-10 minutes of initial use without/limited formal training required). This is accomplished by providing a consistent interface using common software to reduce crew training, increase efficiency & user satisfaction while also reducing development & maintenance costs. Results from the usability evaluations showed the NextGen One Portal UI having greater efficiency, learnability, memorability, usability and overall user experience than the current Advanced Resistive Exercise Device (ARED) UI used by astronauts on ISS. Specifically, the design of the One-Portal UI as an app interface similar to those found on the Apple and Google's App Store, assisted many of the participants in grasping the concepts of the interface with minimum training. Although the NextGen One-Portal UI was shown to be an overall better interface, observations by the test facilitators noted specific exercise tasks appeared to have a significant impact on the NextGen One-Portal UI efficiency. Future updates to the NextGen One Portal UI will address these inefficiencies.

  14. Aerobic training reduces oxidative stress in skeletal muscle of rats exposed to air pollution and supplemented with chromium picolinate.

    PubMed

    Marmett, Bruna; Nunes, Ramiro Barcos; de Souza, Kellen Sábio; Lago, Pedro Dal; Rhoden, Cláudia Ramos

    2018-12-01

    The purpose of this study was to investigate the effects of chromium picolinate (CrPic) supplementation associated with aerobic exercise using measures of oxidative stress in rats exposed to air pollution. Sixty-one male Wistar rats were divided into eight groups: residual oil fly ash (ROFA) exposure and sedentary (ROFA-SED); ROFA exposure, sedentary and supplemented (ROFA-SED-CrPic); ROFA exposure and trained (ROFA-AT); ROFA exposure, supplemented and trained (ROFA-AT-CrPic); sedentary (Sal-SED); sedentary and supplemented (Sal-SED-CrPic); trained (Sal-AT); and supplemented and trained (Sal-AT-CrPic). Rats exposed to ROFA (air pollution) received 50 µg of ROFA daily via intranasal instillation. Supplemented rats received CrPic (1 mg/kg/day) daily by oral gavage. Exercise training was performed on a rat treadmill (5×/week). Oxidative parameters were evaluated at the end of protocols. Trained groups demonstrated lower gain of body mass (P < .001) and increased exercise tolerance (P < .0001). In the gastrocnemius, trained groups demonstrated increased SOD activity (P < .0001) and decrease levels of TBARS (P = .0014), although CAT activity did not differ among groups (P = .4487). Air pollution exposure did not lead to alterations in oxidative markers in lungs and heart, and exercise training was responsible for decreasing oxidative stress of the gastrocnemius.

  15. Functional Fitness Training: Is it Right for You?

    MedlinePlus

    ... risk of injury and improve your quality of life. Functional exercise training may be especially beneficial as part of a comprehensive program for older adults to improve balance, agility and muscle strength, and reduce the risk ...

  16. Exercise Interventions for Preventing Falls Among Older People in Care Facilities: A Meta-Analysis.

    PubMed

    Lee, Seon Heui; Kim, Hee Sun

    2017-02-01

    Falls in older people are a common problem, often leading to considerable morbidity. However, the overall effect of exercise interventions on fall prevention in care facilities remains controversial. To evaluate the effectiveness of exercise interventions on the rate of falls and number of fallers in care facilities. A meta-analysis was conducted of randomized controlled trials published up to December 2014. Eight databases were searched including Ovid-Medline, Embase, CINAHL, Cochrane Library, KoreaMed, KMbase, KISS, and KisTi. Two investigators independently extracted data and assessed study quality. Twenty-one studies were selected, that included 5,540 participants. Fifteen studies included exercise as a single intervention, whereas the remaining six included exercise combined with two or more fall interventions tailored to each resident's fall risk (i.e., medication review, environmental modification or staff education). Meta-analysis showed that exercise had a preventive effect on the rate of falls (risk ratio [RR] 0.81, 95% CI 0.68-0.97). This effect was stronger when exercise combined with other fall interventions on the rate of falls (RR 0.61, 95% CI 0.52-0.72) and on the number of fallers (RR 0.85, 95% CI 0.77-0.95). Exercise interventions including balance training (i.e., gait, balance, and functional training; or balance and strength) resulted in reduced the rate of falls. Sensitivity analyses indicated that exercise interventions resulted in reduced numbers of recurrent fallers (RR 0.71, 95% CI 0.53-0.97). This review provides an important basis for developing evidence-based exercise intervention protocols for older people living in care facilities. Exercise programs, which are combined with tailored other fall interventions and challenge balance training to improve balance skills, should be applied to frail older people with functional limitations in institutional settings. © 2016 Sigma Theta Tau International.

  17. Acute exercise and periodized training in different environments affect histone deacetylase activity and interleukin-10 levels in peripheral blood of patients with type 2 diabetes.

    PubMed

    Korb, Arthiese; Bertoldi, Karine; Agustini Lovatel, Gisele; Sudatti Dellevatti, Rodrigo; Rostirola Elsner, Viviane; Carolina Ferreira Meireles, Louisiana; Fernando Martins Kruel, Luiz; Rodrigues Siqueira, Ionara

    2018-05-02

    Our purpose was to investigate the effects of aerobic periodized training in aquatic and land environments on plasma histone deacetylase (HDAC) activity and cytokines levels in peripheral blood of diabetes mellitus type 2 (T2DM) patients. The patients underwent 12 weeks of periodized training programs that including walking or running in a swimming pool (aquatic group) or in a track (dry land group). Blood samples were collected immediately before and after both first and last sessions. Plasma cytokine levels and HDAC activity in peripheral blood mononuclear cell (PBMC) was measured. The exercise performed in both environments similarly modulated the evaluated acetylation mark, global HDAC activity. However, a differential profile depending on the evaluated moments was detected, since exercise increased acutely HDAC activity in sedentary and after 12 weeks of training period, while a reduced HDAC activity was observed following periodized training (samples collected before the last session). Additionally, the 12 weeks of periodized exercise in both environments increased IL-10 levels. Our data support the hypothesis that the modulation of HDAC activity and inflammatory status might be at least partially related to the effects of exercise effects on T2DM. The periodized training performed in both aquatic and land environments impacts similarly epigenetic and inflammatory status. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Exercise reduces inflammation and cell proliferation in rat colon carcinogenesis.

    PubMed

    Demarzo, Marcelo Marcos Piva; Martins, Lisandra Vanessa; Fernandes, Cleverson Rodrigues; Herrero, Fábio Augusto; Perez, Sérgio Eduardo de Andrade; Turatti, Aline; Garcia, Sérgio Britto

    2008-04-01

    There is evidence that the risk of colon cancer is reduced by appropriate levels of physical exercise. Nevertheless, the mechanisms involved in this protective effect of exercise remain largely unknown. Inflammation is emerging as a unifying link between a range of environment exposures and neoplastic risk. The carcinogen dimethyl-hydrazine (DMH) induces an increase in epithelial cell proliferation and in the expression of the inflammation-related enzyme cyclooxigenase-2 (COX-2) in the colon of rats. Our aim was to verify whether these events could be attenuated by exercise. Four groups of eight Wistar rats were used in the experiment. The groups G1 and G3 were sedentary (controls), and the groups G2 and G4 were submitted to 8 wk of swimming training, 5 d.wk. The groups G3 and G4 were given subcutaneous injections of DMH immediately after the exercise protocols. Fifteen days after the neoplasic induction, the rats were sacrificed and the colon was processed for histological examination and immunohistochemistry staining of proliferating cell nuclear antigen (PCNA) and COX-2. We found a significant increase in the PCNA-labeling index in both DMH-treated groups of rats. However, this increase was significantly attenuated in the training group G4 (P < 0.01). Similar results were observed in relation to the COX-2 expression. From our findings, we conclude that exercise training exerts remarkable antiproliferative and antiinflammatory effects in the rat colonic mucosa, suggesting that this may be an important mechanism to explain how exercise protects against colonic cancer.

  19. The Chronic Effect of Interval Training on Energy Intake: A Systematic Review and Meta-Analysis

    PubMed Central

    Holland, David J.; Coombes, Jeff S.; Leveritt, Michael D.

    2018-01-01

    Single bouts of acute exercise do not appear to increase subsequent energy intake (EI), even when energy deficit is large. However, studies have shown a compensatory effect on EI following chronic exercise, and it remains unclear whether this is affected by exercise intensity. We investigated the chronic effect of high-intensity interval training (HIIT) and sprint interval training (SIT) on EI when compared with moderate-intensity continuous training (MICT) or no exercise (CON). Databases were searched until 13 March 2017 for studies measuring EI in response to chronic exercise (≥4 weeks of duration) of a high-intensity interval nature. Meta-analysis was conducted for between-group comparisons on EI (kilojoules) and bodyweight (kg). Results showed large heterogeneity, and therefore, metaregression analyses were conducted. There were no significant differences in EI between HIIT/SIT versus MICT (P=0.282), HIIT/SIT versus CON (P=0.398), or MICT versus CON (P=0.329). Although bodyweight was significantly reduced after HIIT/SIT versus CON but not HIIT/SIT versus MICT (in studies measuring EI), this was not clinically meaningful (<2% mean difference). In conclusion, there is no compensatory increase in EI following a period of HIIT/SIT compared to MICT or no exercise. However, this review highlights important methodological considerations for future studies. PMID:29808115

  20. Hypoxic exercise training causes erythrocyte senescence and rheological dysfunction by depressed Gardos channel activity.

    PubMed

    Mao, Tso-Yen; Fu, Li-Lan; Wang, Jong-Shyan

    2011-08-01

    Despite enhancing cardiopulmonary and muscular fitness, the effect of hypoxic exercise training (HE) on hemorheological regulation remains unclear. This study investigates how HE modulates erythrocyte rheological properties and further explores the underlying mechanisms in the hemorheological alterations. Twenty-four sedentary males were randomly divided into hypoxic (HE; n = 12) and normoxic (NE; n = 12) exercise training groups. The subjects were trained on 60% of maximum work rate under 15% (HE) or 21% (NE) O(2) condition for 30 min daily, 5 days weekly for 5 wk. The results demonstrated that HE 1) downregulated CD47 and CD147 expressions on erythrocytes, 2) decreased actin and spectrin contents in erythrocytes, 3) reduced erythrocyte deformability under shear flow, and 4) diminished erythrocyte volume changed by hypotonic stress. Treatment of erythrocytes with H(2)O(2) that mimicked in vivo prooxidative status resulted in the cell shrinkage, rigidity, and phosphatidylserine exposure, whereas HE enhanced the eryptotic responses to H(2)O(2). However, HE decreased the degrees of clotrimazole to blunt ionomycin-induced shrinkage, rigidity, and cytoskeleton breakdown of erythrocytes, referred to as Gardos effects. Reduced erythrocyte deformability by H(2)O(2) was inversely related to the erythrocyte Gardos effect on the rheological function. Conversely, NE intervention did not significantly change resting and exercise erythrocyte rheological properties. Therefore, we conclude that HE rather than NE reduces erythrocyte deformability and volume regulation, accompanied by an increase in the eryptotic response to oxidative stress. Simultaneously, this intervention depresses Gardos channel-modulated erythrocyte rheological functions. Results of this study provide further insight into erythrocyte senescence induced by HE.

  1. Comparison of tai chi vs. strength training for fall prevention among female cancer survivors: study protocol for the GET FIT trial

    PubMed Central

    2012-01-01

    Background Women with cancer are significantly more likely to fall than women without cancer placing them at higher risk of fall-related fractures, other injuries and disability. Currently, no evidence-based fall prevention strategies exist that specifically target female cancer survivors. The purpose of the GET FIT (Group Exercise Training for Functional Improvement after Treatment) trial is to compare the efficacy of two distinct types of exercise, tai chi versus strength training, to prevent falls in women who have completed treatment for cancer. The specific aims of this study are to: 1) Determine and compare the efficacy of both tai chi training and strength training to reduce falls in older female cancer survivors, 2) Determine the mechanism(s) by which tai chi and strength training each reduces falls and, 3) Determine whether or not the benefits of each intervention last after structured training stops. Methods/Design We will conduct a three-group, single-blind, parallel design, randomized controlled trial in women, aged 50–75 years old, who have completed chemotherapy for cancer comparing 1) tai chi 2) strength training and 3) a placebo control group of seated stretching exercise. Women will participate in supervised study programs twice per week for six months and will be followed for an additional six months after formal training stops. The primary outcome in this study is falls, which will be prospectively tracked by monthly self-report. Secondary outcomes are maximal leg strength measured by isokinetic dynamometry, postural stability measured by computerized dynamic posturography and physical function measured by the Physical Performance Battery, all measured at baseline, 3, 6 and 12 months. The sample for this trial (N=429, assuming 25% attrition) will provide adequate statistical power to detect at least a 47% reduction in the fall rate over 1 year by being in either of the 2 exercise groups versus the control group. Discussion The GET FIT trial will provide important new knowledge about preventing falls using accessible and implementable exercise interventions for women following chemotherapy for cancer. ClinicalTrials.gov NCT01635413 PMID:23217054

  2. The Effects of Nandrolone Decanoate Along with Prolonged Low-Intensity Exercise on Susceptibility to Ventricular Arrhythmias.

    PubMed

    Binayi, Fateme; Joukar, Siyavash; Najafipour, Hamid; Karimi, Abdolah; Karimi, Ali; Abdollahi, Farzane; Masumi, Yaser

    2016-01-01

    We examined the influence of chronic administration of nandrolone decanoate with low-intensity endurance swimming exercise on susceptibility to lethal ventricular arrhythmias in rat. The animal groups included the control group, exercise group (EX), nandrolone group (Nan), vehicle group (Arach), trained vehicle group (Arach + Ex) and trained nandrolone group (Nan + Ex) that treated for 8 weeks. Then, arrhythmia induction was performed by intravenous infusion of aconitine and electrocardiogram recorded. Then, malondialdehyde (MDA), hydroxyproline (HYP) and glutathione peroxidase of heart tissue were measured. Chronic administration of nandrolone with low-intensity endurance swimming exercise had no significant effect on blood pressure, heart rate and basal ECG parameters except RR interval that showed increase (P < 0.05). Low-intensity exercise could prevent the incremental effect of nandrolone on MDA and HYP significantly. It also increased the heart hypertrophy index (P < 0.05) and reduced the abating effect of nandrolone on animal weighting. Nandrolone along with exercise significantly increased the duration of VF (P < 0.05) and reduced the VF latency (P < 0.05). The findings suggest that chronic co-administration of nandrolone with low-intensity endurance swimming exercise to some extent facilitates the occurrence of ventricular fibrillation in rat. Complementary studies are needed to elucidate the involved mechanisms of this abnormality.

  3. Resistance exercise training restores bone mineral density in renal transplant recipients.

    PubMed

    Eatemadololama, Ali; Karimi, Mohammad Taghi; Rahnama, Nader; Rasolzadegan, Mohammad Hoseynen

    2017-01-01

    The kidneys are complex organs of human body sustain a number of vital and important functions. These organs need to be replaced in some subjects due to various diseases. Bone mineral density (BMD) of the subjects with kidney transplantation reduced as a result of poor mobility and use of especial drugs. Due to lack of information regarding the influences of weight training exercise on BMD of long bone, this research was done. 24 subjects with history of kidney transplantation were recruited in this study. They were divided into two groups who received weight training exercise and control group. The BMD of femur and lumbar spine was measured by use of dual energy X-Ray absorptiometry in both groups. The difference between BMD was evaluated by use of two sample T test. The mean values of BMD of femur were 0.679±0.09 g/cm 2 and 0.689±0.09 before and after exercise in this first group. In contrast it was 0.643±0.11 before follow-up and 0.641±0.11 g/cm 2 after follow-up in the control group. There was no difference in BMD of lumbar spine after exercise. The result of this research study showed that BMD of long bone improved follow exercise. Therefore, it was concluded that weight training exercise can be used for the subjects with kidney transplantation.

  4. Training effects on ROS production determined by electron paramagnetic resonance in master swimmers.

    PubMed

    Mrakic-Sposta, Simona; Gussoni, Maristella; Porcelli, Simone; Pugliese, Lorenzo; Pavei, Gaspare; Bellistri, Giuseppe; Montorsi, Michela; Tacchini, Philippe; Vezzoli, Alessandra

    2015-01-01

    Acute exercise induces an increase in Reactive Oxygen Species (ROS) production dependent on exercise intensity with highest ROS amount generated by strenuous exercise. However, chronic repetition of exercise, that is, exercise training, may reduce exercise-induced oxidative stress. Aim of this study was to evaluate the effects of 6-weeks high-intensity discontinuous training (HIDT), characterized by repeated variations of intensity and changes of redox potential, on ROS production and antioxidant capacity in sixteen master swimmers. Time course changes of ROS generation were assessed by Electron Paramagnetic Resonance in capillary blood by a microinvasive approach. An incremental arm-ergometer exercise (IE) until exhaustion was carried out at both before (PRE) and after (POST) training (Trg) period. A significant (P < 0.01) increase of ROS production from REST to the END of IE in PRE Trg (2.82 ± 0.66 versus 3.28 ± 0.66 µmol·min(-1)) was observed. HIDT increased peak oxygen consumption (36.1 ± 4.3 versus 40.6 ± 5.7 mL·kg(-1)·min(-1) PRE and POST Trg, resp.) and the antioxidant capacity (+13%) while it significantly decreased the ROS production both at REST (-20%) and after IE (-25%). The observed link between ROS production, adaptive antioxidant defense mechanisms, and peak oxygen consumption provides new insight into the correlation between ROS response pathways and muscle metabolic function.

  5. Exercise Training at Maximal Fat Oxidation Intensity for Older Women with Type 2 Diabetes.

    PubMed

    Tan, Sijie; Du, Ping; Zhao, Wanting; Pang, Jiaqi; Wang, Jianxiong

    2018-05-01

    The purpose of this study was to investigate the pleiotropic effects of 12 weeks of supervised exercise training at maximal fat oxidation (FATmax) intensity on body composition, lipid profile, glycemic control, insulin sensitivity and serum adipokine levels in older women with type 2 diabetes. Thirty-one women with type 2 diabetes, aged 60 to 69 years, were randomly allocated into exercise and control groups. Body composition, lipid profile, blood glucose, insulin resistance and serum leptin and adiponectin concentrations were measured before and after the intervention. Exercise group (n=16) walked at individualized FATmax intensities for 1 h/day for 3 days/week over 12 weeks. No dietary intervention was introduced during the experimental period. Maximal fat oxidation rate was 0.37±0.10 g/min, and occurred at 37.3±7.3% of the estimated VO 2 max. Within the exercise group, significant improvements were observed for most of the measured variables compared to non-exercising controls; in particular, the FATmax program reduced body fat% (p<0.001), visceral fat% (p<0.001), and insulin resistance (p<0.001). There was no significant change in daily energy intake for all participants during the intervention period. These results suggest that individualized FATmax training is an effective exercise training intensity for managing type 2 diabetes in older women. © Georg Thieme Verlag KG Stuttgart · New York.

  6. The Effect of Resistance Exercise on Inflammatory and Myogenic Markers in Patients with Chronic Kidney Disease

    PubMed Central

    Watson, Emma L.; Viana, Joao L.; Wimbury, David; Martin, Naomi; Greening, Neil J.; Barratt, Jonathan; Smith, Alice C.

    2017-01-01

    Background: Muscle wasting is a common complication of Chronic Kidney Disease (CKD) and is clinically important given its strong association with morbidity and mortality in many other chronic conditions. Exercise provides physiological benefits for CKD patients, however the molecular response to exercise remains to be fully determined. We investigated the inflammatory and molecular response to resistance exercise before and after training in these patients. Methods: This is a secondary analysis of a randomized trial that investigated the effect of 8 week progressive resistance training on muscle mass and strength compared to non-exercising controls. A sub-set of the cohort consented to vastus lateralis skeletal muscle biopsies (n = 10 exercise, n = 7 control) in which the inflammatory response (IL-6, IL-15, MCP-1 TNF-α), myogenic (MyoD, myogenin, myostatin), anabolic (P-Akt, P-eEf2) and catabolic events (MuRF-1, MAFbx, 14 kDa, ubiquitin conjugates) and overall levels of oxidative stress have been studied. Results: A large inflammatory response to unaccustomed exercise was seen with IL-6, MCP-1, and TNF-α all significantly elevated from baseline by 53-fold (P < 0.001), 25-fold (P < 0.001), and 4-fold (P < 0.001), respectively. This response was reduced following training with IL-6, MCP-1, and TNF-α elevated non-significantly by 2-fold (P = 0.46), 2.4-fold (P = 0.19), and 2.5-fold (P = 0.06), respectively. In the untrained condition, an acute bout of resistance exercise did not result in increased phosphorylation of Akt (P = 0.84), but this was restored following training (P = 0.01). Neither unaccustomed nor accustomed exercise resulted in a change in myogenin or MyoD mRNA expression (P = 0.88, P = 0.90, respectively). There was no evidence that resistance exercise training created a prolonged oxidative stress response within the muscle, or increased catabolism. Conclusions: Unaccustomed exercise creates a large inflammatory response within the muscle, which is no longer present following a period of training. This indicates that resistance exercise does not provoke a detrimental on-going inflammatory response within the muscle. PMID:28804461

  7. MILES Training and Evaluation Test, USAREUR: Battalion Command Group Training

    DTIC Science & Technology

    1980-06-01

    battle. Highly artificial limitations on the re- sources available to the commander reduce the level of stress and in- volvement of the staff and could...battle but were not simulated in the field exercise. This helped stimulate staff involve- ment in the exercise, but created artificialities in the scenario...indicators that will provide the player commander and staff the necessary intellignece to do planning and any last minute changes so they are prepared to meet

  8. Effects of exercise on c-reactive protein in healthy patients and in patients with heart disease: A meta-analysis.

    PubMed

    Hammonds, Tracy L; Gathright, Emily C; Goldstein, Carly M; Penn, Marc S; Hughes, Joel W

    2016-01-01

    Decreases in circulating hsCRP have been associated with increased physical activity and exercise training, although the ability of exercise interventions to reduce hsCRP and which individuals benefit the most remains unclear. This meta-analysis evaluates the ability of exercise to reduce hsCRP levels in healthy individuals and in individuals with heart disease. A systematic review and meta-analysis was conducted that included exercise interventions trials from 1995 to 2012. Forty-three studies were included in the final analysis for a total of 3575 participants. Exercise interventions significantly reduced hsCRP (standardized mean difference -0.53 mg/L; 95% CI, -0.74 to -0.33). Results of sub-analysis revealed no significant difference in reductions in hsCRP between healthy adults and those with heart disease (p = .20). Heterogeneity between studies could not be attributed to age, gender, intervention length, intervention type, or inclusion of diet modification. Exercise interventions reduced hsCRP levels in adults irrespective of the presence of heart disease.​. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Participation in a 9-month selected physical exercise programme enhances psychological well-being in a prison population.

    PubMed

    Battaglia, Claudia; di Cagno, Alessandra; Fiorilli, Giovanni; Giombini, Arrigo; Borrione, Paolo; Baralla, Francesca; Marchetti, Marco; Pigozzi, Fabio

    2015-12-01

    There is general population evidence that physical exercise is effective in reducing the risk of depression and has positive effects on mood. Some prisons encourage exercise, but there is no evidence specific to this group on its benefits or the relative merits of different programmes. To test the effect of physical exercise on the psychological well-being of prisoners and to determine which mental disorders are most affected by physical activity. Sixty-four participants were randomly assigned across three groups: cardiovascular plus resistance training (CRT), high-intensity strength training (HIST) and no exercise. Before and after the 9-month experimental period, all participants completed the Symptom Checklist-90-Revised. Each form of exercise significantly reduced depression scale scores compared with those in the control group, in which average depression scale scores actually increased. The CRT group also showed a significant decrease in GSI scores on the Symptom Checklist-90 and on its interpersonal sensitivity scale, whereas the HIST group also significantly improved on the anxiety, phobic anxiety and hostility scale scores. Our evidence, taken together with general population studies, supports introduction of supervised, moderately intense exercise for at least 1 h per week for men in prison. They form a high risk group for mental disorders, and such exercise reduces depression and anxiety. Minimal special equipment is needed for CRT. Further research should replicate the study in a larger, multi-centre trial, and examine impact on shorter-term and longer-term prisoners, female prisoners and effects on recidivism. Copyright © 2014 John Wiley & Sons, Ltd.

  10. Thermoregulatory adaptations associated with training and heat acclimation.

    PubMed

    Geor, R J; McCutcheon, L J

    1998-04-01

    The large metabolic heat load generated as a consequence of muscular work requires activation of thermoregulatory mechanisms in order to prevent an excessive and potentially dangerous rise in body temperature during exercise. Although the horse has highly efficient heat dissipatory mechanisms, there are a number of circumstances in which the thermoregulatory system may be overwhelmed, resulting in the development of critical hyperthermia. The risk for development of life-threatening hyperthermia is greatest when (1) the horse is inadequately conditioned for the required level of physical performance; (2) exercise is undertaken in hot and particularly, in hot and humid ambient conditions; and (3) there is an impairment to thermoregulatory mechanisms (e.g., severe dehydration, anhidrosis). Both exercise training under cool to moderate ambient conditions and a period of repeated exposure to, and exercise in, hot ambient conditions (heat acclimation) will result in a number of physiologic adaptations conferring improved thermoregulatory ability. These adaptations include an expanded plasma volume, greater stability of cardiovascular function during exercise, and an improved efficiency of evaporative heat loss as a result of alterations in the sweating response. Collectively, these adjustments serve to attenuate the rise in core body temperature in response to a given intensity of exercise. The magnitude of the physiologic adaptations occurring during exercise training and heat acclimation is a reflection of the thermal load imposed on the horse. Therefore, when compared with a period of training in cool conditions, the larger thermal stimulus associated with repeated exercise in hot ambient conditions will invoke proportionally greater thermoregulatory adaptations. Although it is not possible to eliminate the effects of adverse environmental conditions on exercise performance, it is clear that a thorough exercise training program together with a subsequent period of acclimatization will serve to ameliorate the impact of the environment. Based on our current understanding of the nature and extent of thermoregulatory adaptations in the horse, the following conclusions can be made: 1. A 2- to 3-month period of exercise training geared toward the specific athletic endeavor to be undertaken will result in substantial improvements in thermoregulatory capacity and is an absolute requirement for horses required to compete in hot ambient conditions. 2. Although physical training in a cool environment improves physiologic responses to exercise at high ambient temperatures, a 2-week period of moderate exercise training in these more adverse conditions is necessary for optimization of thermoregulatory function and physical performance. 3. Heat acclimation does not reduce the need for close monitoring of horses during training and competition in the heat. This is particularly true in hot, humid ambient conditions, where the biophysical limitations to sweat evaporation can result in development of severe hyperthermia, regardless of the state of training or heat acclimation.

  11. Cardiac and peripheral adjustments induced by early exercise training intervention were associated with autonomic improvement in infarcted rats: role in functional capacity and mortality.

    PubMed

    Jorge, Luciana; Rodrigues, Bruno; Rosa, Kaleizu Teodoro; Malfitano, Christiane; Loureiro, Tatiana Carolina Alba; Medeiros, Alessandra; Curi, Rui; Brum, Patricia Chakur; Lacchini, Silvia; Montano, Nicola; De Angelis, Kátia; Irigoyen, Maria-Cláudia

    2011-04-01

    To test the effects of early exercise training (ET) on left ventricular (LV) and autonomic functions, haemodynamics, tissues blood flows (BFs), maximal oxygen consumption (VO(2) max), and mortality after myocardial infarction (MI) in rats. Male Wistar rats were divided into: control (C), sedentary-infarcted (SI), and trained-infarcted (TI). One week after MI, TI group underwent an ET protocol (90 days, 50-70% VO(2) max). Left ventricular function was evaluated non-invasively and invasively. Baroreflex sensitivity, heart rate variability, and pulse interval were measured. Cardiac output (CO) and regional BFs were determined using coloured microspheres. Infarcted area was reduced in TI (19 ± 6%) compared with SI (34 ± 5%) after ET. Exercise training improved the LV and autonomic functions, the CO and regional BF changes induced by MI, as well as increased SERCA2 expression and mRNA vascular endothelial growth factor levels. These changes brought about by ET resulted in mortality rate reduction in the TI (13%) group compared with the SI (54%) group. Early aerobic ET reduced cardiac and peripheral dysfunctions and preserved cardiovascular autonomic control after MI in trained rats. Consequently, these ET-induced changes resulted in improved functional capacity and survival after MI.

  12. Short-term high-intensity interval training improves phosphocreatine recovery kinetics following moderate-intensity exercise in humans.

    PubMed

    Forbes, Sean C; Slade, Jill M; Meyer, Ronald A

    2008-12-01

    Previous studies have shown that high-intensity training improves biochemical markers of oxidative potential in skeletal muscle within a 2-week period. The purpose of this study was to examine the effect of short-term high-intensity interval training on the time constant () of phosphocreatine (PCr) recovery following moderate-intensity exercise, an in vivo measure of functional oxidative capacity. Seven healthy active subjects (age, 21 +/- 4 years; body mass, 69 +/- 11 kg) performed 6 sessions of 4-6 maximal-effort 30 s cycling intervals within a 2-week period, and 7 subjects (age, 24 +/- 5 years; body mass, 80 +/- 15 kg) served as controls. Prior to and following training, phosphorous-31 magnetic resonance spectroscopy (31P-MRS; GE 3T Excite System) was used to measure relative changes in high-energy phosphates and intracellular pH of the quadriceps muscles during gated dynamic leg-extension exercise (3 cycles of 90 s exercise and 5 min of rest). A monoexponential model was used to estimate the of PCr recovery. The of PCr recovery after leg-extension exercise was reduced by 14% with high-intensity interval training (pretraining, 43 +/- 14 s vs. post-training, 37 +/- 15 s; p < 0.05) with no change in the control group (44 +/- 12 s vs. 43 +/- 12 s, respectively; p > 0.05). These findings demonstrate that short-term high-intensity interval training is an effective means of increasing functional oxidative capacity in skeletal muscle.

  13. L-Arginine supplementation improves antioxidant defenses through L-arginine/nitric oxide pathways in exercised rats.

    PubMed

    Shan, Lingling; Wang, Bin; Gao, Guizhen; Cao, Wengen; Zhang, Yunkun

    2013-10-15

    l-Arginine (l-Arg) supplementation has been shown to enhance physical exercise capacity and delay onset of fatigue. This work investigated the potential beneficial mechanism(s) of l-Arg supplementation by examining its effect on the cellular oxidative and nitrosative stress pathways in the exercised rats. Forty-eight rats were randomly divided into six groups: sedentary control; sedentary control with l-Arg treatment; endurance training (daily swimming training for 8 wk) control; endurance training with l-Arg treatment; an exhaustive exercise (one time swimming to fatigue) control; and an exhaustive exercise with l-Arg treatment. l-Arg (500 mg/kg body wt) or saline was given to rats by intragastric administration 1 h before the endurance training and the exhaustive swimming test. Expression levels and activities of the l-Arg/nitric oxide (NO) pathway components and parameters of the oxidative stress and antioxidant defense capacity were investigated in l-Arg-treated and control rats. The result show that the l-Arg supplementation completely reversed the exercise-induced activation of NO synthase and superoxide dismutase, increased l-Arg transport capacity, and increased NO and anti-superoxide anion levels. These data demonstrate that l-Arg supplementation effectively reduces the exercise-induced imbalance between oxidative stress and antioxidant defense capacity, and this modulation is likely mediated through the l-Arg/NO pathways. The findings of this study improved our understanding of how l-Arg supplementation prevents elevations of reactive oxygen species and favorably enhances the antioxidant defense capacity during physical exercise.

  14. Blood Volume: Importance and Adaptations to Exercise Training, Environmental Stresses and Trauma/Sickness

    NASA Technical Reports Server (NTRS)

    Sawka, Michael N.; Convertino, Victor A.; Eichner, E. Randy; Schnieder, Suzanne M.; Young, Andrew J.

    2000-01-01

    This paper reviews the influence of several perturbations (physical exercise, heat stress, terrestrial altitude, microgravity, and trauma/sickness) on adaptations of blood volume (BV), erythrocyte volume (EV), and plasma volume (PV). Exercise training can induced BV expansion; PV expansion usually occurs immediately, but EV expansion takes weeks. EV and PV expansion contribute to aerobic power improvements associated with exercise training. Repeated heat exposure induces PV expansion but does not alter EV. PV expansion does not improve thermoregulation, but EV expansion improves thermoregulation during exercise in the heat. Dehydration decreases PV (and increases plasma tonicity) which elevates heat strain and reduces exercise performance. High altitude exposure causes rapid (hours) plasma loss. During initial weeks at altitude, EV is unaffected, but a gradual expansion occurs with extended acclimatization. BV adjustments contribute, but are not key, to altitude acclimatization. Microgravity decreases PV and EV which contribute to orthostatic intolerance and decreased exercise capacity in astronauts. PV decreases may result from lower set points for total body water and central venous pressure, which EV decrease bay result form increased erythrocyte destruction. Trauma, renal disease, and chronic diseases cause anemia from hemorrhage and immune activation, which suppressions erythropoiesis. The re-establishment of EV is associated with healing, improved life quality, and exercise capabilities for these injured/sick persons.

  15. Resistance exercise training and the orthostatic response

    NASA Technical Reports Server (NTRS)

    McCarthy, J. P.; Bamman, M. M.; Yelle, J. M.; LeBlanc, A. D.; Rowe, R. M.; Greenisen, M. C.; Lee, S. M.; Spector, E. R.; Fortney, S. M.

    1997-01-01

    Resistance exercise has been suggested to increase blood volume, increase the sensitivity of the carotid baroreceptor cardiac reflex response (BARO), and decrease leg compliance, all factors that are expected to improve orthostatic tolerance. To further test these hypotheses, cardiovascular responses to standing and to pre-syncopal limited lower body negative pressure (LBNP) were measured in two groups of sedentary men before and after a 12-week period of either exercise (n = 10) or no exercise (control, n = 9). Resistance exercise training consisted of nine isotonic exercises, four sets of each, 3 days per week, stressing all major muscle groups. After exercise training, leg muscle volumes increased (P < 0.05) by 4-14%, lean body mass increased (P = 0.00) by 2.0 (0.5) kg, leg compliance and BARO were not significantly altered, and the maximal LBNP tolerated without pre-syncope was not significantly different. Supine resting heart rate was reduced (P = 0.03) without attenuating the heart rate or blood pressure responses during the stand test or LBNP. Also, blood volume (125I and 51Cr) and red cell mass were increased (P < 0.02) by 2.8% and 3.9%, respectively. These findings indicate that intense resistance exercise increases blood volume but does not consistently improve orthostatic tolerance.

  16. Effect of inspiratory muscle training with load compared with sham training on blood pressure in individuals with hypertension: study protocol of a double-blind randomized clinical trial.

    PubMed

    Posser, Simone Regina; Callegaro, Carine Cristina; Beltrami-Moreira, Marina; Moreira, Leila Beltrami

    2016-08-02

    Hypertension is a complex chronic condition characterized by elevated arterial blood pressure. Management of hypertension includes non-pharmacologic strategies, which may include techniques that effectively reduce autonomic sympathetic activity. Respiratory exercises improve autonomic control over cardiovascular system and attenuate muscle metaboreflex. Because of these effects, respiratory exercises may be useful to lower blood pressure in subjects with hypertension. This randomized, double-blind clinical trial will test the efficacy of inspiratory muscle training in reducing blood pressure in adults with essential hypertension. Subjects are randomly allocated to intervention or control groups. Intervention consists of inspiratory muscle training loaded with 40 % of maximum inspiratory pressure, readjusted weekly. Control sham intervention consists of unloaded exercises. Systolic and diastolic blood pressures are co-primary endpoint measures assessed with 24 h ambulatory blood pressure monitoring. Secondary outcome measures include cardiovascular autonomic control, inspiratory muscle metaboreflex, cardiopulmonary capacity, and inspiratory muscle strength and endurance. Previously published work suggests that inspiratory muscle training reduces blood pressure in persons with hypertension, but the effectiveness of this intervention is yet to be established. We propose an adequately sized randomized clinical trial to test this hypothesis rigorously. If an effect is found, this study will allow for the investigation of putative mechanisms to mediate this effect, including autonomic cardiovascular control and metaboreflex. ClinicalTrials.gov NCT02275377 . Registered on 30 September 2014.

  17. Cardiorespiratory Fitness and Body Composition Responses to Different Intensities and Frequencies of Exercise Training in Colorectal Cancer Survivors.

    PubMed

    Devin, James L; Jenkins, David G; Sax, Andrew T; Hughes, Gareth I; Aitken, Joanne F; Chambers, Suzanne K; Dunn, Jeffrey C; Bolam, Kate A; Skinner, Tina L

    2018-06-01

    Deteriorations in cardiorespiratory fitness (V˙o 2peak ) and body composition are associated with poor prognosis after colorectal cancer treatment. However, the optimal intensity and frequency of aerobic exercise training to improve these outcomes in colorectal cancer survivors is unknown. This trial compared 8 weeks of moderate-intensity continuous exercise (MICE; 50 minutes; 70% peak heart rate [HR peak ]; 24 sessions), with high-intensity interval exercise (HIIE; 4 × 4 minutes; 85%-95% HR peak ) at an equivalent (HIIE; 24 sessions) and tapered frequency (HIIE-T; 16 sessions) on V˙o 2peak and on lean and fat mass, measured at baseline, 4, 8, and 12 weeks. Increases in V˙o 2peak were significantly greater after both 4 (+3.0 mL·kg -1 ·min -1 , P = .008) and 8 (+2.3 mL·kg -1 ·min -1 , P = .049) weeks of HIIE compared to MICE. After 8 weeks, there was a significantly greater reduction in fat mass after HIIE compared to MICE (-0.7 kg, P = .038). Four weeks after training, the HIIE group maintained elevated V˙o 2peak (+3.3 mL·kg -1 ·min -1 , P = .006) and reduced fat mass (-0.7 kg, P = .045) compared to the MICE group, with V˙o 2peak in the HIIE-T also being superior to the MICE group (+2.8 mL·kg -1 ·min -1 , P = .013). Compared to MICE, HIIE promotes superior improvements and short-term maintenance of V˙o 2peak and fat mass improvements. HIIE training at a reduced frequency also promotes maintainable cardiorespiratory fitness improvements. In addition to promoting accelerated and superior benefits to the current aerobic exercise guidelines, HIIE promotes clinically relevant improvements even with a substantial reduction in exercise training and for a period after withdrawal. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Telemonitoring of home exercise cycle training in patients with COPD

    PubMed Central

    Franke, Karl-Josef; Domanski, Ulrike; Schroeder, Maik; Jansen, Volker; Artmann, Frank; Weber, Uwe; Ettler, Rainer; Nilius, Georg

    2016-01-01

    Background Regular physical activity is associated with reduced mortality in patients with chronic obstructive pulmonary disease (COPD). Interventions to reduce time spent in sedentary behavior could improve outcomes. The primary purpose was to investigate the impact of telemonitoring with supportive phone calls on daily exercise times with newly established home exercise bicycle training. The secondary aim was to examine the potential improvement in health-related quality of life and physical activity compared to baseline. Methods This prospective crossover-randomized study was performed over 6 months in stable COPD patients. The intervention phase (domiciliary training with supporting telephone calls) and the control phase (training without phone calls) were randomly assigned to the first or the last 3 months. In the intervention phase, patients were called once a week if they did not achieve a real-time monitored daily cycle time of 20 minutes. Secondary aims were evaluated at baseline and after 3 and 6 months. Health-related quality of life was measured by the COPD Assessment Test (CAT), physical activity by the Godin Leisure Time Exercise Questionnaire (GLTEQ). Results Of the 53 included patients, 44 patients completed the study (forced expiratory volume in 1 second 47.5%±15.8% predicted). In the intervention phase, daily exercise time was significantly higher compared to the control phase (24.2±9.4 versus 19.6±10.3 minutes). Compared to baseline (17.6±6.1), the CAT-score improved in the intervention phase to 15.3±7.6 and in the control phase to 15.7±7.3 units. The GLTEQ-score increased from 12.2±12.1 points to 36.3±16.3 and 33.7±17.3. Conclusion Telemonitoring is a simple method to enhance home exercise training and physical activity, improving health-related quality of life. PMID:27956829

  19. Bone loss during partial weight bearing (1/6th gravity) is mitigated by resistance and aerobic exercise in mice

    NASA Astrophysics Data System (ADS)

    Boudreaux, R. D.; Metzger, C. E.; Macias, B. R.; Shirazi-Fard, Y.; Hogan, H. A.; Bloomfield, S. A.

    2014-06-01

    Astronauts on long duration missions continue to experience bone loss, as much as 1-2% each month, for up to 4.5 years after a mission. Mechanical loading of bone with exercise has been shown to increase bone formation, mass, and geometry. The aim of this study was to compare the efficacy of two exercise protocols during a period of reduced gravitational loading (1/6th body weight) in mice. Since muscle contractions via resistance exercise impart the largest physiological loads on the skeleton, we hypothesized that resistance training (via vertical tower climbing) would better protect against the deleterious musculoskeletal effects of reduced gravitational weight bearing when compared to endurance exercise (treadmill running). Young adult female BALB/cBYJ mice were randomly assigned to three groups: 1/6 g (G/6; n=6), 1/6 g with treadmill running (G/6+RUN; n=8), or 1/6 g with vertical tower climbing (G/6+CLB; n=9). Exercise was performed five times per week. Reduced weight bearing for 21 days was achieved through a novel harness suspension system. Treadmill velocity (12-20 m/min) and daily run time duration (32-51 min) increased incrementally throughout the study. Bone geometry and volumetric bone mineral density (vBMD) at proximal metaphysis and mid-diaphysis tibia were assessed by in vivo peripheral quantitative computed tomography (pQCT) on days 0 and 21 and standard dynamic histomorphometry was performed on undemineralized sections of the mid-diaphysis after tissue harvest. G/6 caused a significant decrease (P<0.001) in proximal tibia metaphysis total vBMD (-9.6%). These reductions of tibia metaphyseal vBMD in G/6 mice were mitigated in both G/6+RUN and G/6+CLB groups (P<0.05). After 21 days of G/6, we saw an absolute increase in tibia mid-diaphysis vBMD and in distal metaphysis femur vBMD in both G/6+RUN and G/6+CLB mice (P<0.05). Substantial increases in endocortical and periosteal mineralizing surface (MS/BS) at mid-diaphysis tibia in G/6+CLB demonstrate that bone formation can be increased even in the presence of reduced weight bearing. These data suggest that moderately vigorous endurance exercise and resistance training, through treadmill running or climb training mitigates decrements in vBMD during 21 days of reduced weight bearing. Consistent with our hypothesis, tower climb training, most pronounced in the tibia mid-diaphysis, provides a more potent osteogenic response compared to treadmill running.

  20. The effect of low-level laser therapy on oxidative stress and functional fitness in aged rats subjected to swimming: an aerobic exercise.

    PubMed

    Guaraldo, Simone A; Serra, Andrey Jorge; Amadio, Eliane Martins; Antônio, Ednei Luis; Silva, Flávio; Portes, Leslie Andrews; Tucci, Paulo José Ferreira; Leal-Junior, Ernesto Cesar Pinto; de Carvalho, Paulo de Tarso Camillo

    2016-07-01

    The aim of the present study was to determine whether low-level laser therapy (LLLT) in conjunction with aerobic training interferes with oxidative stress, thereby influencing the performance of old rats participating in swimming. Thirty Wistar rats (Norvegicus albinus) (24 aged and six young) were tested. The older animals were randomly divided into aged-control, aged-exercise, aged-LLLT, aged-LLLT/exercise, and young-control. Aerobic capacity (VO2max(0.75)) was analyzed before and after the training period. The exercise groups were trained for 6 weeks, and the LLLT was applied at 808 nm and 4 J energy. The rats were euthanized, and muscle tissue was collected to analyze the index of lipid peroxidation thiobarbituric acid reactive substances (TBARS), glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT) activities. VO2 (0.75)max values in the aged-LLLT/exercise group were significantly higher from those in the baseline older group (p <0.01) and the LLLT and exercise group (p <0.05). The results indicate that the activities of CAT, SOD, and GPx were higher and statistically significant (p <0.05) in the LLLT/exercise group than those in the LLLT and exercise groups. Young animals presented lesser and statistically significant activities of antioxidant enzymes compared to the aged group. The LLLT/exercise group and the LLLT and exercise group could also mitigate the concentration of TBARS (p > 0.05). Laser therapy in conjunction with aerobic training may reduce oxidative stress, as well as increase VO2 (0.75)max, indicating that an aerobic exercise such as swimming increases speed and improves performance in aged animals treated with LLLT.

  1. Reduction in trunk fat predicts cardiovascular exercise training-related reductions in C-reactive protein.

    PubMed

    Vieira, V J; Hu, L; Valentine, R J; McAuley, E; Evans, E M; Baynard, T; Woods, J A

    2009-05-01

    C-reactive protein (CRP) is an independent risk factor for cardiovascular disease. We sought to determine (1) if 10 months of cardiovascular exercise training (Cardio) reduces CRP in a group of older adults, (2) if such a reduction is related to improvements in trunk fat, fitness, and/or psychosocial variables, and (3) if the effect of Cardio on CRP differs between men and women. Community-dwelling residents (n=127; 60-83 yrs) were randomized to a Flex group (n=61) where they participated in 2-75 min supervised sessions per wk during which they performed non-cardiovascular flexibility and balance exercises or a Cardio group (n=66) where they participated in three supervised sessions per wk during which they performed cardiovascular exercises for approximately 45-60 min at 60-70% maximal oxygen uptake. The main outcome measures were serum CRP, cardiovascular fitness, total and central adiposity, and self-reported psychosocial function. Cardio experienced a reduction in CRP (-0.5mg/L), as well as improvements in fitness (+7%) and total (-1.5%) and central (i.e., trunk) (-2.5%) adiposity. These relationships were not modified by sex. Regression analyses indicated that only the reduction in trunk fat was significantly related to the reduction in CRP. Ten months of cardiovascular exercise training reduced CRP in previously sedentary older adults and this effect was partially mediated by a reduction in trunk fat.

  2. Neuromuscular Adaptations to Reduced Use

    NASA Technical Reports Server (NTRS)

    Ploutz-Snyder, Lori

    2009-01-01

    This viewgraph presentation reviews the studies done to reduce neuromuscular strength loss during unilateral lower limb suspension (ULLS). Since there are animals that undergo fairly long periods of muscular disuse without any or minimal muscular atrophy, there is an answer to that might be applicable to human in situations that require no muscular use to diminish the effects of muscular atrophy. Three sets of ULLS studies were reviewed indicated that muscle strength decreased more than the muscle mass. The study reviewed exercise countermeasures to combat the atrophy, including: ischemia maintained during Compound muscle action potential (CMAP), ischemia and low load exercise, Japanese kaatsu, and the potential for rehabilitation or situations where heavy loading is undesirable. Two forms of countermeasures to unloading have been successful, (1) high-load resistance training has maintained muscle mass and strength, and low load resistance training with blood flow restriction (LL(sub BFR)). The LL(sub BFR) has been shown to increase muscle mass and strength. There has been significant interest in Tourniquet training. An increase in Growth Hormone(GH) has been noted for LL(sub BFR) exercise. An experimental study with 16 subjects 8 of whom performed ULLS, and 8 of whom performed ULLS and LL(sub BFR) exercise three times per week during the ULLS. Charts show the results of the two groups, showing that performing LL(sub BFR) exercise during 30 days of ULLS can maintain muscle size and strength and even improve muscular endurance.

  3. An Evidence-Based Framework for Strengthening Exercises to Prevent Hamstring Injury.

    PubMed

    Bourne, Matthew N; Timmins, Ryan G; Opar, David A; Pizzari, Tania; Ruddy, Joshua D; Sims, Casey; Williams, Morgan D; Shield, Anthony J

    2018-02-01

    Strength training is a valuable component of hamstring strain injury prevention programmes; however, in recent years a significant body of work has emerged to suggest that the acute responses and chronic adaptations to training with different exercises are heterogeneous. Unfortunately, these research findings do not appear to have uniformly influenced clinical guidelines for exercise selection in hamstring injury prevention or rehabilitation programmes. The purpose of this review was to provide the practitioner with an evidence-base from which to prescribe strengthening exercises to mitigate the risk of hamstring injury. Several studies have established that eccentric knee flexor conditioning reduces the risk of hamstring strain injury when compliance is adequate. The benefits of this type of training are likely to be at least partly mediated by increases in biceps femoris long head fascicle length and improvements in eccentric knee flexor strength. Therefore, selecting exercises with a proven benefit on these variables should form the basis of effective injury prevention protocols. In addition, a growing body of work suggests that the patterns of hamstring muscle activation diverge significantly between different exercises. Typically, relatively higher levels of biceps femoris long head and semimembranosus activity have been observed during hip extension-oriented movements, whereas preferential semitendinosus and biceps femoris short head activation have been reported during knee flexion-oriented movements. These findings may have implications for targeting specific muscles in injury prevention programmes. An evidence-based approach to strength training for the prevention of hamstring strain injury should consider the impact of exercise selection on muscle activation, and the effect of training interventions on hamstring muscle architecture, morphology and function. Most importantly, practitioners should consider the effect of a strength training programme on known or proposed risk factors for hamstring injury.

  4. Fasting hyperglycaemia blunts the reversal of impaired glucose tolerance after exercise training in obese older adults.

    PubMed

    Malin, S K; Kirwan, J P

    2012-09-01

    Lifestyle modification, consisting of exercise and weight loss, delays the progression from prediabetes to type 2 diabetes (T2D). However, no study has determined the efficacy of exercise training on glucose metabolism in the different prediabetes subtypes. Seventy-six older (65.1 ± 0.6 years) obese adults with impaired fasting glucose (IFG; n = 12), impaired glucose tolerance (IGT; n = 9) and combined glucose intolerance (IFG + IGT = CGI; n = 22) were compared with normal glucose tolerant (NGT; n = 15) and T2D (n = 18) groups after 12 weeks of exercise training (60 min/day for 5 days/week at ~85% HR(max)). An oral glucose tolerance test was used to assess glucose levels. Insulin sensitivity (IS; euglycaemic hyperinsulinaemic clamp at 40 mU/m(2)/min), β-cell function (glucose-stimulated insulin secretion corrected for IS), body composition (hydrostatic weighing/computed tomography scan) and cardiovascular fitness (treadmill VO(2) max) were also assessed. Exercise training reduced weight and increased cardiovascular fitness (p < 0.05). Exercise training lowered fasting glucose levels in IFG, CGI and T2D (p < 0.05) and 2-h glucose levels in IGT, CGI and T2D (p < 0.05). However, 2-h glucose levels were not normalized in adults with CGI compared with IGT (p < 0.05). β-Cell function improved similarly across groups (p < 0.05). Although not statistically significant, IS increased approximately 40% in IFG and IGT, but only 17% in CGI. The magnitude of improvement in glucose metabolism after 12 weeks of exercise training is not uniform across the prediabetes subtypes. Given the high risk of progressing to T2D, adults with CGI may require more aggressive therapies to prevent diabetes. © 2012 Blackwell Publishing Ltd.

  5. Supplemental Oxygen During High-Intensity Exercise Training in Nonhypoxemic Chronic Obstructive Pulmonary Disease.

    PubMed

    Neunhäuserer, Daniel; Steidle-Kloc, Eva; Weiss, Gertraud; Kaiser, Bernhard; Niederseer, David; Hartl, Sylvia; Tschentscher, Marcus; Egger, Andreas; Schönfelder, Martin; Lamprecht, Bernd; Studnicka, Michael; Niebauer, Josef

    2016-11-01

    Physical exercise training is an evidence-based treatment in chronic obstructive pulmonary disease, and patients' peak work rate is associated with reduced chronic obstructive pulmonary disease mortality. We assessed whether supplemental oxygen during exercise training in nonhypoxemic patients with chronic obstructive pulmonary disease might lead to superior training outcomes, including improved peak work rate. This was a randomized, double-blind, controlled, crossover trial. Twenty-nine patients with chronic obstructive pulmonary disease (aged 63.5 ± 5.9 years; forced expiratory volume in 1 second percent predicted, 46.4 ± 8.6) completed 2 consecutive 6-week periods of endurance and strength training with progressive intensity, which was performed 3 times per week with supplemental oxygen or compressed medical air (flow via nasal cannula: 10 L/min). Each session of electrocardiography-controlled interval cycling lasted 31 minutes and consisted of a warm-up, 7 cycles of 1-minute intervals at 70% to 80% of peak work rate alternating with 2 minutes of active recovery, and final cooldown. Thereafter, patients completed 8 strength-training exercises of 1 set each with 8 to 15 repetitions to failure. Change in peak work rate was the primary study end point. The increase in peak work rate was more than twice as high when patients exercised with supplemental oxygen compared with medical air (0.16 ± 0.02 W/kg vs 0.07 ± 0.02 W/kg; P < .001), which was consistent with all other secondary study end points related to exercise capacity. The impact of oxygen on peak work rate was 39.1% of the overall training effect, whereas it had no influence on strength gain (P > .1 for all exercises). We report that supplemental oxygen in nonhypoxemic chronic obstructive pulmonary disease doubled the effect of endurance training but had no effect on strength gain. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Exercise training prevents endometrial hyperplasia and biomarkers for endometrial cancer in rat model of type 1 diabetes.

    PubMed

    Al-Jarrah, Muhammed; Matalka, Ismail; Aseri, Hasan Al; Mohtaseb, Alia; Smirnova, Irina V; Novikova, Lesya; Stehno-Bittel, Lisa; Alkhateeb, Ahed

    2010-10-11

    Endometrial cancer is one of the most common types of gynecologic cancers. The ability of exercise to reduce the risk of endometrial cancer in women with type 2 diabetes has been established, but no studies have examined this link in type 1 diabetes.A randomized, controlled animal study was designed using a standard rat model of type 1 diabetes. The goal of this study was to investigate the ability of exercise to prevent increased levels of endometrial cancer biomarkers, estrogen receptor (ERα) and p16, and endometrial hyperplasia associated with diabetes. FORTY FEMALE RATS WERE RANDOMIZED INTO FOUR GROUPS: sedentary control, exercise control, sedentary or exercised diabetic. Diabetes was induced by alloxan injection. A 4-week treadmill training program was initiated with the development of diabetes. Endometrial tissues were evaluated for hyperplasia and ERα and p16 levels and subcellular localization using microscopy. Severe diabetes lead to hyperplasia in the endometrial tissue in 70% of sedentary diabetic rats. Exercise-trained diabetic rats and the non-diabetic rats displayed no hyperplasia. The expression of ERα increased significantly (p < 0.02) while the expression level of p16 decreased significantly (p < 0.04) in the diabetic sedentary group compared to the non-diabetic groups. Exercise training led to a reversal in the percentage of p16 and ERα positive cells in diabetic rats. Severe diabetes leads to hyperplasia of the endometrial tissue and increased ERα levels and decreased p16 levels in rats, which can be prevented with aerobic exercise. Diabetes; Estrogen receptor alpha; P16; Endometrial hyperplasia; Endometrial cancer; Exercise.

  7. The effect of lifelong exercise frequency on arterial stiffness.

    PubMed

    Shibata, Shigeki; Fujimoto, Naoki; Hastings, Jeffrey L; Carrick-Ranson, Graeme; Bhella, Paul S; Hearon, Christopher; Levine, Benjamin D

    2018-05-20

    This study examined the effect of different 'doses' of lifelong (>25 years) exercise on arterial stiffening (a hallmark of vascular ageing) in older adults. There are clear dose-dependent effects of lifelong exercise training on human arterial stiffness that vary according to the site and size of the arteries. Similar to what we have observed previously with ventricular stiffening, 4-5 days week -1 of committed exercise over a lifetime are necessary to preserve 'youthful' vascular compliance, especially of the large central arteries. Casual exercise training of two to three times per week may be sufficient for middle-sized arteries like the carotid to minimize arterial stiffening with ageing. However, there is little effect of exercise training on the small-sized peripheral arteries at any dose. Central arterial stiffness increases with sedentary ageing. While near-daily, vigorous lifelong (>25 years) endurance exercise training prevents arterial stiffening with ageing, this rigorous routine of exercise training over a lifetime is impractical for most individuals. The aim was to examine whether a less frequent 'dose' of lifelong exercise training (four to five sessions per week for > 30 min) that is consistent with current physical activity recommendations elicits similar benefits on central arterial stiffening with ageing. A cross-sectional examination of 102 seniors (>60 years old) who had a consistent lifelong exercise history was performed. Subjects were stratified into four groups based on exercise frequency as an index of exercise 'dose': sedentary: fewer than two sessions per week; casual exercisers: two to three sessions per week; committed exercisers: four to five sessions per week; and Masters athletes: six to seven sessions per week plus regular competitions. Detailed measurements of arterial stiffness and left ventricular afterload were collected. Biological aortic age and central pulse wave velocity were younger in committed exercisers and Masters athletes compared to sedentary seniors. Total arterial compliance index (TACi) was lower, while carotid β-stiffness index and effective arterial elastance were higher in sedentary seniors compared to the other groups. There appeared to be a dose-response threshold for carotid β-stiffness index and TACi. Peripheral arterial stiffness was not significantly different among the groups. These data suggest that four to five weekly exercise sessions over a lifetime is associated with reduced central arterial stiffness in the elderly. A less frequent dose of lifelong exercise (two to three sessions per week) is associated with decreased ventricular afterload and peripheral resistance, while peripheral arterial stiffness is unaffected by any dose of exercise. © 2018 The Authors. The Journal of Physiology © 2018 The Physiological Society.

  8. Effects of High Intensity Interval Training and Strength Training on Metabolic, Cardiovascular and Hormonal Outcomes in Women with Polycystic Ovary Syndrome: A Pilot Study.

    PubMed

    Almenning, Ida; Rieber-Mohn, Astrid; Lundgren, Kari Margrethe; Shetelig Løvvik, Tone; Garnæs, Kirsti Krohn; Moholdt, Trine

    2015-01-01

    Polycystic ovary syndrome is a common endocrinopathy in reproductive-age women, and associates with insulin resistance. Exercise is advocated in this disorder, but little knowledge exists on the optimal exercise regimes. We assessed the effects of high intensity interval training and strength training on metabolic, cardiovascular, and hormonal outcomes in women with polycystic ovary syndrome. Three-arm parallel randomized controlled trial. Thirty-one women with polycystic ovary syndrome (age 27.2 ± 5.5 years; body mass index 26.7 ± 6.0 kg/m2) were randomly assigned to high intensity interval training, strength training, or a control group. The exercise groups exercised three times weekly for 10 weeks. The main outcome measure was change in homeostatic assessment of insulin resistance (HOMA-IR). HOMA-IR improved significantly only after high intensity interval training, by -0.83 (95% confidence interval [CI], -1.45, -0.20), equal to 17%, with between-group difference (p = 0.014). After high intensity interval training, high-density lipoprotein cholesterol increased by 0.2 (95% CI, 0.02, 0.5) mmol/L, with between group difference (p = 0.04). Endothelial function, measured as flow-mediated dilatation of the brachial artery, increased significantly after high intensity interval training, by 2.0 (95% CI, 0.1, 4.0) %, between-group difference (p = 0.08). Fat percentage decreased significantly after both exercise regimes, without changes in body weight. After strength training, anti-Müllarian hormone was significantly reduced, by -14.8 (95% CI, -21.2, -8.4) pmol/L, between-group difference (p = 0.04). There were no significant changes in high-sensitivity C-reactive protein, adiponectin or leptin in any group. High intensity interval training for ten weeks improved insulin resistance, without weight loss, in women with polycystic ovary syndrome. Body composition improved significantly after both strength training and high intensity interval training. This pilot study indicates that exercise training can improve the cardiometabolic profile in polycystic ovary syndrome in the absence of weight loss. ClinicalTrial.gov NCT01919281.

  9. Role of Parkin and endurance training on mitochondrial turnover in skeletal muscle.

    PubMed

    Chen, Chris Chin Wah; Erlich, Avigail T; Hood, David A

    2018-03-17

    Parkin is a ubiquitin ligase that is involved in the selective removal of dysfunctional mitochondria. This process is termed mitophagy and can assist in mitochondrial quality control. Endurance training can produce adaptations in skeletal muscle toward a more oxidative phenotype, an outcome of enhanced mitochondrial biogenesis. It remains unknown whether Parkin-mediated mitophagy is involved in training-induced increases in mitochondrial content and function. Our purpose was to determine a role for Parkin in maintaining mitochondrial turnover in muscle, and its requirement in mediating mitochondrial biogenesis following endurance exercise training. Wild-type and Parkin knockout (KO) mice were trained for 6 weeks and then treated with colchicine or vehicle to evaluate the role of Parkin in mediating changes in mitochondrial content, function and acute exercise-induced mitophagy flux. Our results indicate that Parkin is required for the basal maintenance of mitochondrial function. The absence of Parkin did not significantly alter mitophagy basally; however, acute exercise produced an elevation in mitophagy flux, a response that was Parkin-dependent. Mitochondrial content was increased following training in both genotypes, but this occurred without an induction of PGC-1α signaling in KO animals. Interestingly, the increased muscle mitochondrial content in response to training did not influence basal mitophagy flux, despite an enhanced expression and localization of Parkin to mitochondria in WT animals. Furthermore, exercise-induced mitophagy flux was attenuated with training in WT animals, suggesting a lower rate of mitochondrial degradation resulting from improved organelle quality with training. In contrast, training led to a higher mitochondrial content, but with persistent dysfunction, in KO animals. Thus, the lack of a rescue of mitochondrial dysfunction with training in the absence of Parkin is the likely reason for the impaired training-induced attenuation of mitophagy flux compared to WT animals. Our study demonstrates that Parkin is required for exercise-induced mitophagy flux. Exercise-induced mitophagy is reduced with training in muscle, likely due to attenuated signaling consequent to increased mitochondrial content and quality. Our data suggest that Parkin is essential for the maintenance of basal mitochondrial function, as well as for the accumulation of normally functioning mitochondria as a result of training adaptations in muscle.

  10. Differential coronary resistance microvessel remodeling between type 1 and type 2 diabetic mice: impact of exercise training.

    PubMed

    Trask, Aaron J; Delbin, Maria A; Katz, Paige S; Zanesco, Angelina; Lucchesi, Pamela A

    2012-01-01

    The goals of the present study were to compare coronary resistance microvessel (CRM) remodeling between type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM) mice, and to determine the impact of aerobic exercise training on CRM remodeling in diabetes. Eight week old male mice were divided into T1DM: control sedentary (Control-SD), T1DM sedentary (T1DM-SD) induced by streptozotocin, and T1DM exercise trained (T1DM-TR); T2DM: control sedentary (Db/db-SD), T2DM sedentary (db/db-SD), and T2DM trained (db/db-TR). Aerobic exercise training (TR) was performed on a mouse treadmill for 8weeks. CRMs were isolated and mounted on a pressure myograph to measure and record vascular remodeling and mechanics. CRM diameters, wall thickness, stress-strain, incremental modulus remained unchanged in T1DM-SD mice compared to control, and exercise training showed no effect. In contrast, CRMs isolated from db/db-SD mice exhibited decreased luminal diameter with thicker microvascular walls, which significantly increased the wall:lumen ratio (Db/db-SD: 5.8±0.3 vs. db/db-SD: 8.9±0.7, p<0.001). Compared to db/db-SD mice, coronary arterioles isolated from db/db-TR mice had similar internal diameter and wall thickness, while wall:lumen ratio (6.8±0.2, p<0.05) and growth index (db/db-SD: 16.2 vs. db/db-TR: 4.3, % over Db/db) were reduced. These data show that CRMs undergo adverse inward hypertrophic remodeling only in T2DM, but not T1DM, and that aerobic exercise training can partially mitigate this process. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Effects of Exercise on Falls, Balance, and Gait Ability in Parkinson's Disease: A Meta-analysis.

    PubMed

    Shen, Xia; Wong-Yu, Irene S K; Mak, Margaret K Y

    2016-07-01

    Postural instability and falls are complex and disabling features of Parkinson's disease (PD) and respond poorly to anti-Parkinsonian medication. There is an imperative need to evaluate the effectiveness of exercise interventions in enhancing postural stability and decreasing falls in the PD population. The objectives of our study were to determine the effects of exercise training on the enhancement of balance and gait ability and reduction in falls for people with PD and to investigate potential factors contributing to the training effects on balance and gait ability of people with PD. We included 25 randomized control trials of a moderate methodological quality in our meta-analysis. The trials examined the effects of exercise training on balance and gait ability and falls against no intervention and placebo intervention. The results showed positive effects of exercise intervention on enhancing balance and gait performance (Hedges' g = 0.303 over the short-term in 24 studies and 0.419 over the long-term in 12 studies; P < .05) and reducing the fall rate (rate ratio = 0.485 over the short-term in 4 studies and 0.413 over the long-term in 5 studies; P < .05). The longest follow-up duration was 12 months. There was no evidence that training decreased the number of fallers over the short- or long-term (P > .05). The results of our metaregression and subgroup analysis showed that facility-based training produced greater training effects on improving PD participants' balance and gait ability (P < .05). The findings support the application of exercise training to improve balance and gait ability and prevent falls in people with PD. © The Author(s) 2015.

  12. Using recovery modalities between training sessions in elite athletes: does it help?

    PubMed

    Barnett, Anthony

    2006-01-01

    Achieving an appropriate balance between training and competition stresses and recovery is important in maximising the performance of athletes. A wide range of recovery modalities are now used as integral parts of the training programmes of elite athletes to help attain this balance. This review examined the evidence available as to the efficacy of these recovery modalities in enhancing between-training session recovery in elite athletes. Recovery modalities have largely been investigated with regard to their ability to enhance the rate of blood lactate removal following high-intensity exercise or to reduce the severity and duration of exercise-induced muscle injury and delayed onset muscle soreness (DOMS). Neither of these reflects the circumstances of between-training session recovery in elite athletes. After high-intensity exercise, rest alone will return blood lactate to baseline levels well within the normal time period between the training sessions of athletes. The majority of studies examining exercise-induced muscle injury and DOMS have used untrained subjects undertaking large amounts of unfamiliar eccentric exercise. This model is unlikely to closely reflect the circumstances of elite athletes. Even without considering the above limitations, there is no substantial scientific evidence to support the use of the recovery modalities reviewed to enhance the between-training session recovery of elite athletes. Modalities reviewed were massage, active recovery, cryotherapy, contrast temperature water immersion therapy, hyperbaric oxygen therapy, nonsteroidal anti-inflammatory drugs, compression garments, stretching, electromyostimulation and combination modalities. Experimental models designed to reflect the circumstances of elite athletes are needed to further investigate the efficacy of various recovery modalities for elite athletes. Other potentially important factors associated with recovery, such as the rate of post-exercise glycogen synthesis and the role of inflammation in the recovery and adaptation process, also need to be considered in this future assessment.

  13. Interval Exercise Therapy for Type 2 Diabetes.

    PubMed

    Hamasaki, Hidetaka

    2018-01-01

    Regular exercise improves glycemic control and reduces cardiovascular risk and mortality in patients with type 2 diabetes. Continuous moderate- to high-intensity exercise has been recommended to manage type 2 diabetes; however, only approximately 30% of diabetic patients achieve the recommended levels of physical activity. The reasons for not engaging in regular exercise vary; however, one of the common reasons is lack of time. Recently, the effectiveness of shortduration interval exercise such as high-intensity interval training and interval walking has been observed. Thus, the author aimed to summarize the current knowledge and discuss recent literature regarding the effects of interval exercise therapy in type 2 diabetes. The author searched the English literature on interval training and type 2 diabetes using Pub- Med. A total of 8 studies met the criteria. Interval exercise is feasible and effective in obtaining glycemic control in patients with type 2 diabetes. It may also improve body composition, insulin sensitivity, aerobic capacity, and oxidative stress more effectively than continuous exercise. As a novel exercise therapy, interval training appears to be effective in managing type 2 diabetes. However, the safety and efficacy of this exercise modality in patients with progressed diabetic complications or a history of cardiovascular disease and in extremely older individuals remain unknown. Additionally, there is considerable heterogeneity in exercise interventions (intensity and duration) between clinical studies. Further studies are needed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Adding exercise to rosuvastatin treatment: influence on C-reactive protein, monocyte toll-like receptor 4 expression, and inflammatory monocyte (CD14+CD16+) population.

    PubMed

    Coen, Paul M; Flynn, Michael G; Markofski, Melissa M; Pence, Brandt D; Hannemann, Robert E

    2010-12-01

    Statin treatment and exercise training can reduce markers of inflammation when administered separately. The purpose of this study was to determine the effect of rosuvastatin treatment and the addition of exercise training on circulating markers of inflammation including C-reactive protein (CRP), monocyte toll-like receptor 4 (TLR4) expression, and CD14+CD16+ monocyte population size. Thirty-three hypercholesterolemic and physically inactive subjects were randomly assigned to rosuvastatin (R) or rosuvastatin/exercise (RE) groups. A third group of physically active hypercholesterolemic subjects served as a control (AC). The R and RE groups received rosuvastatin treatment (10 mg/d) for 20 weeks. From week 10 to week 20, the RE group also participated in an exercise training program (3d/wk). Measurements were made at baseline (Pre), week 10 (Mid), and week 20 (Post), and included TLR4 expression on CD14+ monocytes and CD14+CD16+ monocyte population size as determined by 3-color flow cytometry. Serum CRP was quantified by enzyme-linked immunosorbent assay. TLR4 expression on CD14+ monocytes was higher in the R group at week 20. When treatment groups (R and RE) were combined, serum CRP was lower across time. Furthermore, serum CRP and inflammatory monocyte population size were lower in the RE group compared with the R group at the Post time point. When all groups (R, RE, and AC) were combined, TLR4 expression was greater on inflammatory monocytes (CD14+CD16+) compared with classic monocytes (CD14+CD16⁻) at all time points. In conclusion, rosuvastatin may influence monocyte inflammatory response by increasing TLR4 expression on circulating monocytes. The addition of exercise training to rosuvastatin treatment further lowered CRP and reduced the size of the inflammatory monocyte population, suggesting an additive anti-inflammatory effect of exercise. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. Strength training reduces arterial blood pressure but not sympathetic neural activity in young normotensive subjects

    NASA Technical Reports Server (NTRS)

    Carter, Jason R.; Ray, Chester A.; Downs, Emily M.; Cooke, William H.

    2003-01-01

    The effects of resistance training on arterial blood pressure and muscle sympathetic nerve activity (MSNA) at rest have not been established. Although endurance training is commonly recommended to lower arterial blood pressure, it is not known whether similar adaptations occur with resistance training. Therefore, we tested the hypothesis that whole body resistance training reduces arterial blood pressure at rest, with concomitant reductions in MSNA. Twelve young [21 +/- 0.3 (SE) yr] subjects underwent a program of whole body resistance training 3 days/wk for 8 wk. Resting arterial blood pressure (n = 12; automated sphygmomanometer) and MSNA (n = 8; peroneal nerve microneurography) were measured during a 5-min period of supine rest before and after exercise training. Thirteen additional young (21 +/- 0.8 yr) subjects served as controls. Resistance training significantly increased one-repetition maximum values in all trained muscle groups (P < 0.001), and it significantly decreased systolic (130 +/- 3 to 121 +/- 2 mmHg; P = 0.01), diastolic (69 +/- 3 to 61 +/- 2 mmHg; P = 0.04), and mean (89 +/- 2 to 81 +/- 2 mmHg; P = 0.01) arterial blood pressures at rest. Resistance training did not affect MSNA or heart rate. Arterial blood pressures and MSNA were unchanged, but heart rate increased after 8 wk of relative inactivity for subjects in the control group (61 +/- 2 to 67 +/- 3 beats/min; P = 0.01). These results indicate that whole body resistance exercise training might decrease the risk for development of cardiovascular disease by lowering arterial blood pressure but that reductions of pressure are not coupled to resistance exercise-induced decreases of sympathetic tone.

  16. Novel insights into cardiac remodelling revealed by proteomic analysis of the trout heart during exercise training.

    PubMed

    Dindia, Laura A; Alderman, Sarah L; Gillis, Todd E

    2017-05-24

    The changes in the cardiac proteome of rainbow trout (Oncorhynchus mykiss) were quantified during the early phases (4, 7, and 14d) of a typical exercise-training regime to provide a comprehensive overview of the cellular changes responsible for developing a trained heart phenotype. Enhanced somatic growth during the 14d experiment was paralleled by cardiac growth to maintain relative ventricular mass. This was reflected in the cardiac proteome by the increased abundance of contractile proteins and cellular integrity proteins as early as Day 4, including a pronounced and sustained increase in blood vessel epicardial substance - an intercellular adhesion protein expressed in the vertebrate heart. An unexpected finding was that proteins involved in energy pathways, including glycolysis, β-oxidation, the TCA cycle, and the electron transport chain, were generally present at lower levels relative to Day 0 levels, suggesting a reduced investment in the maintenance of energy production pathways. However, as the fish demonstrated somatic and cardiac growth during the exercise-training program, this change did not appear to influence cardiac function. The in-depth analysis of temporal changes in the cardiac proteome of trout during the early stages of exercise training reveals novel insights into cardiac remodelling in an important model species. Rainbow trout hearts have a remarkable ability for molecular, structural, and functional plasticity, and the inherent athleticism of these fish makes them ideal models for studies in comparative exercise physiology. Indeed, several decades of research using exercise-trained trout has shown both conserved and unique aspects of cardiac plasticity induced by a sustained increase in the workload of the heart. Despite a strong appreciation for the outcome of exercise training, however, the temporal events that generate this phenotype are not known. This study interrogates the early stages of exercise training using in-depth proteomic analysis to understand the molecular pathways of cardiac remodelling. Two major and novel findings emerge: (1) structural remodelling is initiated very early in training, as evidenced by a general increase in proteins associated with muscle contraction and integrity at Day 4, and (2) the abundance of proteins directly involved in energy production are decreased during 14d of exercise training, which contrasts the general acceptance of an exercise-induced increase in aerobic capacity of muscle, and suggests that regulation of energy pathways occurs at a different biological level than protein abundance. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. MAP training: combining meditation and aerobic exercise reduces depression and rumination while enhancing synchronized brain activity

    PubMed Central

    Alderman, B L; Olson, R L; Brush, C J; Shors, T J

    2016-01-01

    Mental and physical (MAP) training is a novel clinical intervention that combines mental training through meditation and physical training through aerobic exercise. The intervention was translated from neuroscientific studies indicating that MAP training increases neurogenesis in the adult brain. Each session consisted of 30 min of focused-attention (FA) meditation and 30 min of moderate-intensity aerobic exercise. Fifty-two participants completed the 8-week intervention, which consisted of two sessions per week. Following the intervention, individuals with major depressive disorder (MDD; n=22) reported significantly less depressive symptoms and ruminative thoughts. Typical healthy individuals (n=30) also reported less depressive symptoms at follow-up. Behavioral and event-related potential indices of cognitive control were collected at baseline and follow-up during a modified flanker task. Following MAP training, N2 and P3 component amplitudes increased relative to baseline, especially among individuals with MDD. These data indicate enhanced neural responses during the detection and resolution of conflicting stimuli. Although previous research has supported the individual beneficial effects of aerobic exercise and meditation for depression, these findings indicate that a combination of the two may be particularly effective in increasing cognitive control processes and decreasing ruminative thought patterns. PMID:26836414

  18. Exercise effects on adipokines and the IGF axis in men with prostate cancer treated with androgen deprivation: A randomized study

    PubMed Central

    Mina, Daniel Santa; Connor, Michael K.; Alibhai, Shabbir M.H.; Toren, Paul; Guglietti, Crissa; Matthew, Andrew G.; Trachtenberg, John; Ritvo, Paul

    2013-01-01

    Background Androgen deprivation therapy (ADT) has significant deleterious effects on body composition that may be accompanied by unfavourable changes in adipokine levels. While exercise has been shown to improve a number of side effects associated with ADT for prostate cancer, no studies have assessed the effect of exercise on adiponectin and leptin levels, which have been shown to alter the mitogenic environment. Methods: Twenty-six men with prostate cancer treated with ADT were randomized to home-based aerobic exercise training or resistance exercise training for 24 weeks. Adiponectin, leptin, insulin-like growth factor 1 (IGF-1), insulin-like growth factor binding protein 3 (IGFBP-3) were analyzed by ELISA (enzyme-linked immunosorbent assay), in addition to physical activity volume, peak aerobic capacity, and anthropometric measurements, at baseline, 3 months and 6 months. Results: Resistance exercise significantly reduced IGF-1 after 3 months (p = 0.019); however, this change was not maintained at 6 months. At 6 months, IGFBP-3 was significantly increased compared to baseline for the resistance training group (p = 0.044). In an exploratory analysis of all exercisers, favourable changes in body composition and aerobic fitness were correlated with favourable levels of leptin, and favourable leptin:adiponectin and IGF-1:IGFBP-3 ratios at 3 and 6 months. Conclusions: Home-based exercise is correlated with positive changes in adipokine levels and the IGF-axis that may be related to healthy changes in physical fitness and body composition. While the improvements of adipokine markers appear to be more apparent with resistance training compared to aerobic exercise, these findings must be considered cautiously and require replication from larger randomized controlled trials to clarify the role of exercise on adipokines and IGF-axis proteins for men with prostate cancer. PMID:24282459

  19. The Efficacy of Exercise in Reducing Depressive Symptoms among Cancer Survivors: A Meta-Analysis

    PubMed Central

    Brown, Justin C.; Huedo-Medina, Tania B.; Pescatello, Linda S.; Ryan, Stacey M.; Pescatello, Shannon M.; Moker, Emily; LaCroix, Jessica M.; Ferrer, Rebecca A.; Johnson, Blair T.

    2012-01-01

    Introduction The purpose of this meta-analysis was to examine the efficacy of exercise to reduce depressive symptoms among cancer survivors. In addition, we examined the extent to which exercise dose and clinical characteristics of cancer survivors influence the relationship between exercise and reductions in depressive symptoms. Methods We conducted a systematic search identifying randomized controlled trials of exercise interventions among adult cancer survivors, examining depressive symptoms as an outcome. We calculated effect sizes for each study and performed weighted multiple regression moderator analysis. Results We identified 40 exercise interventions including 2,929 cancer survivors. Diverse groups of cancer survivors were examined in seven exercise interventions; breast cancer survivors were examined in 26; prostate cancer, leukemia, and lymphoma were examined in two; and colorectal cancer in one. Cancer survivors who completed an exercise intervention reduced depression more than controls, d + = −0.13 (95% CI: −0.26, −0.01). Increases in weekly volume of aerobic exercise reduced depressive symptoms in dose-response fashion (β = −0.24, p = 0.03), a pattern evident only in higher quality trials. Exercise reduced depressive symptoms most when exercise sessions were supervised (β = −0.26, p = 0.01) and when cancer survivors were between 47–62 yr (β = 0.27, p = 0.01). Conclusion Exercise training provides a small overall reduction in depressive symptoms among cancer survivors but one that increased in dose-response fashion with weekly volume of aerobic exercise in high quality trials. Depressive symptoms were reduced to the greatest degree among breast cancer survivors, among cancer survivors aged between 47–62 yr, or when exercise sessions were supervised. PMID:22303474

  20. Resistance exercise attenuates skeletal muscle oxidative stress, systemic pro-inflammatory state, and cachexia in Walker-256 tumor-bearing rats.

    PubMed

    Padilha, Camila Souza; Borges, Fernando Henrique; Costa Mendes da Silva, Lilian Eslaine; Frajacomo, Fernando Tadeu Trevisan; Jordao, Alceu Afonso; Duarte, José Alberto; Cecchini, Rubens; Guarnier, Flávia Alessandra; Deminice, Rafael

    2017-09-01

    The aim of this study was to investigate the effects of resistance exercise training (RET) on oxidative stress, systemic inflammatory markers, and muscle wasting in Walker-256 tumor-bearing rats. Male (Wistar) rats were divided into 4 groups: sedentary controls (n = 9), tumor-bearing (n = 9), exercised (n = 9), and tumor-bearing exercised (n = 10). Exercised and tumor-bearing exercised rats were exposed to resistance exercise of climbing a ladder apparatus with weights tied to their tails for 6 weeks. The physical activity of control and tumor-bearing rats was confined to the space of the cage. After this period, tumor-bearing and tumor-bearing exercised animals were inoculated subcutaneously with Walker-256 tumor cells (11.0 × 10 7 cells in 0.5 mL of phosphate-buffered saline) while control and exercised rats were injected with vehicle. Following inoculation, rats maintained resistance exercise training (exercised and tumor-bearing exercised) or sedentary behavior (control and tumor-bearing) for 12 more days, after which they were euthanized. Results showed muscle wasting in the tumor-bearing group, with body weight loss, increased systemic leukocytes, and inflammatory interleukins as well as muscular oxidative stress and reduced mTOR signaling. In contrast, RET in the tumor-bearing exercised group was able to mitigate the reduced body weight and muscle wasting with the attenuation of muscle oxidative stress and systemic inflammatory markers. RET also prevented loss of muscle strength associated with tumor development. RET, however, did not prevent the muscle proteolysis signaling via FBXO32 gene messenger RNA expression in the tumor-bearing group. In conclusion, RET performed prior tumor implantation prevents cachexia development by attenuating tumor-induced systemic pro-inflammatory condition with muscle oxidative stress and muscle damage.

  1. Exercise therapy for fibromyalgia.

    PubMed

    Busch, Angela J; Webber, Sandra C; Brachaniec, Mary; Bidonde, Julia; Bello-Haas, Vanina Dal; Danyliw, Adrienne D; Overend, Tom J; Richards, Rachel S; Sawant, Anuradha; Schachter, Candice L

    2011-10-01

    Fibromyalgia syndrome, a chronic condition typically characterized by widespread pain, nonrestorative sleep, fatigue, cognitive dysfunction, and other somatic symptoms, negatively impacts physical and emotional function and reduces quality of life. Exercise is commonly recommended in the management of people with fibromyalgia, and interest in examining exercise benefits for those with the syndrome has grown substantially over the past 25 years. Research supports aerobic and strength training to improve physical fitness and function, reduce fibromyalgia symptoms, and improve quality of life. However, other forms of exercise (e.g., tai chi, yoga, Nordic walking, vibration techniques) and lifestyle physical activity also have been investigated to determine their effects. This paper highlights findings from recent randomized controlled trials and reviews of exercise for people with fibromyalgia, and includes information regarding factors that influence response and adherence to exercise to assist clinicians with exercise and physical activity prescription decision-making to optimize health and well-being.

  2. A novel variable-gravity simulation method: potential for astronaut training.

    PubMed

    Sussingham, J C; Cocks, F H

    1995-11-01

    Zero gravity conditions for astronaut training have traditionally used neutral buoyancy tanks, and with such tanks hypogravity conditions are produced by the use of supplemental weights. This technique does not allow for the influence of water viscosity on any reduced gravity exercise regime. With a water-foam fluid produced by using a microbubble air flow together with surface active agents to prevent bubble agglomeration, it has been found possible to simulate a range of gravity conditions without the need for supplemental weights and additionally with a substantial reduction in the resulting fluid viscosity. This new technique appears to have application in improving the simulation environment for astronaut training under the reduced gravity conditions to be found on the moon or on Mars, and may have terrestrial applications in patient rehabilitation and exercise as well.

  3. [Effect of high-intensity interval training on the reduction of glycosylated hemoglobin in type-2 diabetic adult patients].

    PubMed

    Aguilera Eguía, Raúl Alberto; Russell Guzmán, Javier Antonio; Soto Muñoz, Marcelo Enrique; Villegas González, Bastián Eduardo; Poblete Aro, Carlos Emilio; Ibacache Palma, Alejandro

    2015-03-05

    Type 2 diabetes mellitus is one of the major non-communicable chronic diseases in the world. Its prevalence in Chile is significant, and complications associated with this disease involve great costs, which is why prevention and treatment of this condition are essential. Physical exercise is an effective means for prevention and treatment of type 2 diabetes mellitus. The emergence of new forms of physical training, such as "high intensity interval training", presents novel therapeutic alternatives for patients and health care professionals. To assess the validity and applicability of the results regarding the effectiveness of high intensity interval training in reducing glycosylated hemoglobin in adult patients with type 2 diabetes mellitus and answer the following question: In subjects with type 2 diabetes, can the method of high intensity interval training compared to moderate intensity exercise decrease glycosylated hemoglobin? We performed a critical analysis of the article "Feasibility and preliminary effectiveness of high intensity interval training in type 2 diabetes". We found no significant differences in the amount of glycosylated hemoglobin between groups of high intensity interval training and moderate-intensity exercise upon completion of the study (p>0.05). In adult patients with type 2 diabetes mellitus, high intensity interval training does not significantly improve glycosylated hemoglobin levels. Despite this, the high intensity interval training method shows as much improvement in body composition and physical condition as the moderate intensity exercise program.

  4. Exercise-Based Fall Prevention in the Elderly: What About Agility?

    PubMed

    Donath, Lars; van Dieën, Jaap; Faude, Oliver

    2016-02-01

    Annually, one in three seniors aged over 65 years fall. Balance and strength training can reduce neuromuscular fall risk factors and fall rates. Besides conventional balance and strength training, explosive or high-velocity strength training, eccentric exercises, perturbation-based balance training, trunk strength, and trunk control have also been emphasized. In contrast, aerobic exercise has to date not been included in fall-prevention studies. However, well-developed endurance capacity might attenuate fatigue-induced declines in postural control in sports-related or general activities of daily living. Physical performance indices, such as balance, strength, and endurance, are generally addressed independently in exercise guidelines. This approach seems time consuming and may impede integrative training of sensorimotor, neuromuscular, and cardiocirculatory functions required to deal with balance-threatening situations in the elderly. An agility-based conceptual training framework comprising perception and decision making (e.g., visual scanning, pattern recognition, anticipation) and changes of direction (e.g., sudden starts, stops and turns; reactive control; concentric and eccentric contractions) might enable an integrative neuromuscular, cardiocirculatory, and cognitive training. The present paper aims to provide a scientific sketch of how to build such an integrated modular training approach, allowing adaptation of intensity, complexity, and cognitive challenge of the agility tasks to the participant's capacity. Subsequent research should address the (1) link between agility and fall risk factors as well as fall rates, (2) benefit-risk ratios of the proposed approach, (3) psychosocial aspects of agility training (e.g., motivation), and (4) logistical requirements (e.g., equipment needed).

  5. The benefits of exercise for patients with non-alcoholic fatty liver disease.

    PubMed

    Keating, Shelley E; George, Jacob; Johnson, Nathan A

    2015-01-01

    As exercise is now an established therapy for the management of non-alcoholic fatty liver disease (NAFLD), recent investigations have sought to identify the optimal dose (type, intensity and amount) of exercise for hepatic benefit. Here, the authors discuss the following: the role of aerobic exercise for the modulation of hepatic steatosis; the limited evidence for the role of resistance training in reducing liver fat; the lack of evidence from clinical trials on the role of exercise in non-alcoholic steatohepatitis; and the benefits of exercise for patients with NAFLD, beyond steatosis. Based on current evidence, the authors provide recommendations for exercise prescription for patients with NAFLD.

  6. Role of exercise and physical activity on haemophilic arthropathy, fall prevention and osteoporosis.

    PubMed

    Forsyth, A L; Quon, D V; Konkle, B A

    2011-09-01

    In older men with haemophilia, arthropathy resulting from a lifetime of intra-articular bleeding contributes to the loss of independence and increased morbidity that occurs with age. A regular exercise programme that incorporates aerobics, strength training and balance and flexibility activities is a key component of successful ageing, helping to improve functional mobility and reduce the risk of falls, osteoporosis and osteoporotic fractures. Because of the special challenges associated with haemophilia, which include both the underlying coagulopathy and, in many cases, extensive joint damage, patients beginning an exercise regimen should be referred to appropriately trained physiotherapists (preferably someone associated with a haemophilia treatment centre) for evaluation, education and instruction and follow-up. Various assistive devices may make exercise easier to perform and more comfortable. © 2011 Blackwell Publishing Ltd.

  7. Training Performed Above Lactate Threshold Decreases p53 and Shelterin Expression in Mice.

    PubMed

    de Carvalho Cunha, Verusca Najara; Dos Santos Rosa, Thiago; Sales, Marcelo Magalhães; Sousa, Caio Victor; da Silva Aguiar, Samuel; Deus, Lysleine Alves; Simoes, Herbert Gustavo; de Andrade, Rosangela Vieira

    2018-06-26

    Telomere shortening is associated to sarcopenia leading to functional impairment during aging. There are mechanisms associated with telomere attrition, as well to its protection and repair. Physical training is a factor that attenuates telomere shortening, but little is known about the effects of different exercise intensities on telomere biology. Thus, we evaluated the effects of exercise intensity (moderate vs. high-intensity domain) on gene expression of senescence markers Checkpoint kinase 2 and tumor suppressor ( Chk2 and p53 , respectively), shelterin telomere repeat binding 1 and 2 ( Trf1 / Trf2 ), DNA repair ( Xrcc5 ), telomerase reverse transcriptase ( mTERT ) and telomere length in middle aged mice. Three groups were studied: a control group (CTL) and two groups submitted to swimming at intensities below the lactate threshold (LI group) and above the lactate threshold (HI group) for 40 and 20 min respectively, for 12 weeks. After training, the HI group showed reduction in p53 expression in the muscle, and decreased shelterin complex expression when compared to LI group. No differences were observed between groups for mTERT expression and telomere length. Thus, exercise training in high-intensity domain was more effective on reducing markers of senescence and apoptosis. The higher intensity exercise training also diminished shelterin expression, with no differences in telomere length and mTERT expression. Such results possibly indicate a more effective DNA protection for the higher-intensity exercise training. © Georg Thieme Verlag KG Stuttgart · New York.

  8. Physical Exercise on Inflammatory Markers in Type 2 Diabetes Patients: A Systematic Review of Randomized Controlled Trials

    PubMed Central

    Melo, Luciana Costa; Dativo-Medeiros, Jaime; Menezes-Silva, Carlos Eduardo; de Sousa-Rodrigues, Célio Fernando

    2017-01-01

    Background. Type 2 diabetes mellitus (T2DM) is a serious disease associated with high morbidity and mortality. Scientific findings showed that physical exercise is an option for treatment of these patients. This study's objective is to investigate the effects of supervised aerobic and/or resistance physical training on inflammatory markers in subjects with T2DM. Methods. A systematic review was conducted on four databases, MEDLINE, CENTRAL, LILACS, and Scopus, and manual search from 21 to 30 November 2016. Randomized clinical trials involving individuals diagnosed with T2DM, who have undergone supervised training protocols, were selected in this study. Results. Eleven studies were included. Studies that evaluated control group versus aerobic exercise reported controversial results about the effectiveness of physical training in modifying C-reactive protein (CRP) and cytokine levels. The only variable analyzed by the six studies in comparison to the control group versus resistance exercise was CRP. This protein showed no significant difference between groups. Between the two modes of exercise (aerobic and resistance), only one study demonstrated that aerobic exercise was more effective in reducing CRP. Conclusion. The evidence was insufficient to prove that aerobic or resistance exercise improves systemic levels of inflammatory markers in patients with T2DM. PMID:28400914

  9. Tai Chi training for patients with coronary heart disease.

    PubMed

    Lan, Ching; Chen, Ssu-Yuan; Wong, May-Kuen; Lai, Jin-Shin

    2008-01-01

    Coronary heart disease (CHD) is the leading cause of death in the developed countries and many developing countries. Exercise training is the cornerstone of cardiac rehabilitation program for patients with CHD, and exercise intensities in the 50-70% heart rate reserve have been shown to improve functional capacity. However, recent studies found exercise with lower intensity also displayed benefits to CHD patients, and increased the acceptance of exercise program, particularly unfit and elderly patients. Tai Chi Chuan (TC) is a traditional conditioning exercise in the Chinese community, and recently it has become more popular in the Western societies. The exercise intensity of TC is low to moderate, depending on the training style, posture and duration. Participants can choose to perform a complete set of TC or selected movements according to their needs. Previous research substantiates that TC enhances aerobic capacity, muscular strength, endothelial function and psychological wellbeing. In addition, TC reduces some cardiovascular risk factors, such as hypertension and dyslipidemia. Recent studies have also proved that TC is safe and effective for patients with myocardial infarction, coronary bypass surgery and heart failure. Therefore, TC may be prescribed as an alternative exercise program for selected patients with cardiovascular diseases. In conclusion, TC has potential benefits for patients with CHD, and is appropriate for implementation in the community.

  10. [Physical activity and exercise training in the prevention and therapy of type 2 diabetes mellitus].

    PubMed

    Francesconi, Claudia; Lackinger, Christian; Weitgasser, Raimund; Haber, Paul; Niebauer, Josef

    2016-04-01

    Lifestyle in general (nutrition, exercise, smoking habits), besides the genetic predisposition, is known to be a strong predictor for the development of diabetes. Exercise in particular is not only useful in improving glycaemia by lowering insulin resistance and positively affect insulin secretion, but to reduce cardiovascular risk.To gain substantial health benefits a minimum of 150 min of moderate or vigorous intense aerobic physical activity and muscle strengthening activities per week are needed. The positive effect of training correlates directly with the amount of fitness gained and lasts only as long as the fitness level is sustained. The effect of exercise is independent of age and gender. It is reversible and reproducible.Based on the large evidence of exercise referral and prescription the Austrian Diabetes Associations aims to implement the position of a "physical activity adviser" in multi-professional diabetes care.

  11. A Delphi developed syllabus for the medical specialty of sport and exercise medicine.

    PubMed

    Humphries, David; Jaques, Rod; Dijkstra, Hendrik Paulus

    2018-04-01

    Training in the medical specialty of sport and exercise medicine is now available in many, but not all countries. Lack of resources may be a barrier to the development of this important specialty field and the International Syllabus in Sport and Exercise Medicine Group was convened to reduce one potential barrier, the need to develop a syllabus. The group is composed of 17 sport and exercise medicine specialists residing in 12 countries (Australia, Canada, India, Ireland, Malaysia, the Netherlands, Qatar, South Africa, Sweden, Switzerland, the UK and USA). This paper presents the first phase of this project covering the domains and general learning areas of a specialist training syllabus in sport and exercise medicine. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. Nutritional targets to enhance exercise performance in chronic obstructive pulmonary disease.

    PubMed

    van de Bool, Coby; Steiner, Michael C; Schols, Annemie M W J

    2012-11-01

    This review presents current knowledge regarding the rationale and efficacy of nutrition as an ergogenic aid to enhance the effects of exercise and training in chronic obstructive pulmonary disease (COPD). Altered body composition and skeletal muscle dysfunction in COPD suggest that exercise capacity can be targeted via several metabolic routes. Muscle metabolic alterations in COPD include a reduced oxidative metabolism and enhanced susceptibility for oxidative stress. Muscle wasting may be associated with deficiencies of vitamin D and low branched-chain amino acid levels. Exercise training is of established benefit in COPD but clear-cut clinical trial evidence to support the performance enhancing effect of nutritional intervention is lacking. One randomized controlled trial suggested that augmentation of training with polyunsaturated fatty acids may improve exercise capacity. Conflicting results are reported on dietary creatine supplementation in patients with COPD receiving pulmonary rehabilitation and results from acute intervention studies do not directly imply long-term effects of glutamate or glutamine supplementation as an ergogenic aid in COPD. Recent data indicate that not only muscle but also visceral fat may be an important additional target for combined nutrition and exercise intervention in COPD to improve physical performance and decrease cardiometabolic risk. There is a clear need for adequately powered and controlled intervention and maintenance trials to establish the role of nutritional supplementation in the enhancement of exercise performance and training and the wider management of the systemic features of the disease.

  13. Nutrition for sports performance: issues and opportunities.

    PubMed

    Maughan, Ronald J; Shirreffs, Susan M

    2012-02-01

    Diet can significantly influence athletic performance, but recent research developments have substantially changed our understanding of sport and exercise nutrition. Athletes adopt various nutritional strategies in training and competition in the pursuit of success. The aim of training is to promote changes in the structure and function of muscle and other tissues by selective modulation of protein synthesis and breakdown in response to the training stimulus. This process is affected by the availability of essential amino acids in the post-exercise period. Athletes have been encouraged to eat diets high in carbohydrate, but low-carbohydrate diets up-regulate the capacity of muscle for fat oxidation, potentially sparing the limited carbohydrate stores. Such diets, however, do not enhance endurance performance. It is not yet known whether the increased capacity for fat oxidation that results from training in a carbohydrate-deficient state can promote loss of body fat. Preventing excessive fluid deficits will maintain exercise capacity, and ensuring adequate hydration status can also reduce subjective perception of effort. This latter effect may be important in encouraging exercise participation and promoting adherence to exercise programmes. Dietary supplement use is popular in sport, and a few supplements may improve performance in specific exercise tasks. Athletes must be cautious, however, not to contravene the doping regulations. There is an increasing recognition of the role of the brain in determining exercise performance: various nutritional strategies have been proposed, but with limited success. Nutrition strategies developed for use by athletes can also be used to achieve functional benefits in other populations.

  14. Investigating the use of pre-training measures of autonomic regulation for assessing functional overreaching in endurance athletes.

    PubMed

    Coates, Alexandra M; Hammond, Sarah; Burr, Jamie F

    2018-04-10

    The use of heart rate variability (HRV) to inform daily training prescription is becoming common in endurance sport. Few studies, however, have investigated the use of pre-training HRV to predict decreased performance or altered exercising autonomic response, typical of functional overreaching (FOR). Further, a new cardiac vagal tone (ProCVT) technology purports to eliminate some of the noise associated with daily HRV, and therefore may be better at predicting same-day performance. The purpose of this investigation was to examine if changes to resting HRV and ProCVT were associated with alterations in performance, maximal heart rate (HRmax), or heart rate recovery (HRrec) in FOR athletes. Twenty-eight recreational cyclists and triathletes were assigned to experimental/control conditions and underwent: 1 week of reduced training, 3 weeks of overload (OL) or regular training (CON), and 1 week of recovery. Testing occurred following the reduced training week (T1), post-3 weeks of training (T2), and following the recovery week (T3). Measures of resting HRV/ProCVT were collected each testing session, followed by maximal incremental exercise tests with HRrec taken 60 s post-exercise. Performance decreased from T1 to T2 in the OL group vs. CON (Δ-9 ± 12 vs. Δ9 ± 11 W, P < .001), as did HRmax (Δ-8 ± 4 vs. Δ-2 ± 4 bpm, P < .001). HRrec increased from T1 to T2 in the OL group vs. CON (Δ10 ± 9 vs. Δ2 ± 5 beats/min, P < .01). HRV and ProCVT did not change in either group. Same-day resting autonomic measures are insufficient in predicting alterations to performance or exercising HR measures following overload training.

  15. Effect of timing of protein and carbohydrate intake after resistance exercise on nitrogen balance in trained and untrained young men.

    PubMed

    Mori, Hiroyasu

    2014-08-06

    Resistance exercise alters the post-exercise response of anabolic and catabolic hormones. A previous study indicated that the turnover of muscle protein in trained individuals is reduced due to alterations in endocrine factors caused by resistance training, and that muscle protein accumulation varies between trained and untrained individuals due to differences in the timing of protein and carbohydrate intake. We investigated the effect of the timing of protein and carbohydrate intake after resistance exercise on nitrogen balance in trained and untrained young men. Subjects were 10 trained healthy men (mean age, 23 ± 4 years; height, 173.8 ± 3.1 cm; weight, 72.3 ± 4.3 kg) and 10 untrained healthy men (mean age, 23 ± 1 years; height, 171.8 ± 5.0 cm; weight, 64.5 ± 5.0 kg). All subjects performed four sets of 8 to 10 repetitions of a resistance exercise (comprising bench press, shoulder press, triceps pushdown, leg extension, leg press, leg curl, lat pulldown, rowing, and biceps curl) at 80% one-repetition maximum. After each resistance exercise session, subjects were randomly divided into two groups with respect to intake of protein (0.3 g/kg body weight) and carbohydrate (0.8 g/kg body weight) immediately after (P0) or 6 h (P6) after the session. All subjects were on an experimental diet that met their individual total energy requirement. We assessed whole-body protein metabolism by measuring nitrogen balance at P0 and P6 on the last 3 days of exercise training. The nitrogen balance was significantly lower in the trained men than in the untrained men at both P0 (P <0.05) and P6 (P <0.01). The nitrogen balance in trained men was significantly higher at P0 than at P6 (P <0.01), whereas that in the untrained men was not significantly different between the two periods. The timing of protein and carbohydrate intake after resistance exercise influences nitrogen balance differently in trained and untrained young men.

  16. Effect of timing of protein and carbohydrate intake after resistance exercise on nitrogen balance in trained and untrained young men

    PubMed Central

    2014-01-01

    Background Resistance exercise alters the post-exercise response of anabolic and catabolic hormones. A previous study indicated that the turnover of muscle protein in trained individuals is reduced due to alterations in endocrine factors caused by resistance training, and that muscle protein accumulation varies between trained and untrained individuals due to differences in the timing of protein and carbohydrate intake. We investigated the effect of the timing of protein and carbohydrate intake after resistance exercise on nitrogen balance in trained and untrained young men. Methods Subjects were 10 trained healthy men (mean age, 23 ± 4 years; height, 173.8 ± 3.1 cm; weight, 72.3 ± 4.3 kg) and 10 untrained healthy men (mean age, 23 ± 1 years; height, 171.8 ± 5.0 cm; weight, 64.5 ± 5.0 kg). All subjects performed four sets of 8 to 10 repetitions of a resistance exercise (comprising bench press, shoulder press, triceps pushdown, leg extension, leg press, leg curl, lat pulldown, rowing, and biceps curl) at 80% one-repetition maximum. After each resistance exercise session, subjects were randomly divided into two groups with respect to intake of protein (0.3 g/kg body weight) and carbohydrate (0.8 g/kg body weight) immediately after (P0) or 6 h (P6) after the session. All subjects were on an experimental diet that met their individual total energy requirement. We assessed whole-body protein metabolism by measuring nitrogen balance at P0 and P6 on the last 3 days of exercise training. Results The nitrogen balance was significantly lower in the trained men than in the untrained men at both P0 (P <0.05) and P6 (P <0.01). The nitrogen balance in trained men was significantly higher at P0 than at P6 (P <0.01), whereas that in the untrained men was not significantly different between the two periods. Conclusion The timing of protein and carbohydrate intake after resistance exercise influences nitrogen balance differently in trained and untrained young men. PMID:25096224

  17. Autogenic-Feedback Training Exercise (AFTE) Method and System

    NASA Technical Reports Server (NTRS)

    Cowings, Patricia S. (Inventor)

    1997-01-01

    The Autogenic-Feedback Training Exercise (AFTE) method of the present invention is a combined application of physiologic and perceptual training techniques. such as autogenic therapy and biofeedback. This combined therapy approach produces a methodology that is appreciably more effective than either of the individual techniques used separately. The AFTE method enables sufficient magnitude of control necessary to significantly reduce the behavioral and physiologic reactions to severe environmental stressors. It produces learned effects that are persistent over time and are resistant to extinction and it can be administered in a short period of time. The AFTE method may be used efficiently in several applications, among which are the following: to improve pilot and crew performance during emergency flying conditions; to train people to prevent the occurrence of nausea and vomiting associated with motion and sea sickness, or morning sickness in early pregnancy; as a training method for preventing or counteracting air-sickness symptoms in high-performance military aircraft; for use as a method for cardiovascular training, as well as for multiple other autonomic responses, which may contribute to the alleviation of Space Motion Sickness (SMS) in astronauts and cosmonauts; training people suffering from migraine or tension headaches to control peripheral blood flow and reduce forehead and/or trapezius muscle tension; training elderly people suffering from fecal incontinence to control their sphincter muscles; training cancer patients to reduce the nauseagenic effects of chemotherapy; and training patients with Chronic Intestinal Pseudo-obstruction (CIP).

  18. Phototherapy during treadmill training improves quadriceps performance in postmenopausal women.

    PubMed

    Paolillo, F R; Corazza, A V; Paolillo, A R; Borghi-Silva, A; Arena, R; Kurachi, C; Bagnato, V S

    2014-06-01

    To evaluate the effects of infrared-light-emitting diode (LED) during treadmill training on functional performance. Thirty postmenopausal women aged 50-60 years were randomly assigned to one of three groups and successfully completed the full study. The three groups were: (1) the LED group, which performed treadmill training associated with phototherapy (n = 10); (2) the exercise group, which carried out treadmill training only (n = 10); and (3) the sedentary group, which neither performed physical training nor underwent phototherapy (n = 10). Training was performed over a period of 6 months, twice a week for 45 min per session at 85-90% of maximal heart rate, which was obtained during progressive exercise testing. The irradiation parameters were 100 mW, 39 mW/cm(2) and 108 J/cm(2) for 45 min. Quadriceps performance was measured during isokinetic exercise testing at 60°/s and 300°/s. Peak torque did not differ amongst the groups. However, the results showed significantly higher values of power and total work for the LED group (∆ = 21 ± 6 W and ∆ = 634 ± 156 J, p < 0.05) when compared to both the exercise group (∆ = 13 ± 10 W and = 410 ± 270 J) and the sedentary group (∆ = 10 ± 9 W and ∆ = 357 ± 327 J). Fatigue was also significantly lower in the LED group (∆ = -7 ± 4%, p < 0.05) compared to both the exercise group (∆ = 3 ± 8%) and the sedentary group (∆ = -2 ± 6%). Infrared-LED during treadmill training may improve quadriceps power and reduce peripheral fatigue in postmenopausal women.

  19. Aerobic exercise prevents age-dependent cognitive decline and reduces anxiety-related behaviors in middle-aged and old rats.

    PubMed

    Pietrelli, A; Lopez-Costa, J; Goñi, R; Brusco, A; Basso, N

    2012-01-27

    Recent research involving human and animals has shown that aerobic exercise of moderate intensity produces the greatest benefit on brain health and behavior. In this study we investigated the effects on cognitive function and anxiety-related behavior in rats at different ages of aerobic exercise, performed regularly throughout life. We designed an aerobic training program with the treadmill running following the basic principles of human training, and assuming that rats have the same physiological adaptations. The intensity was gradually adjusted to the fitness level and age, and maintained at 60-70% of maximum oxygen consumption (max.VO(2)). In middle age (8 months) and old age (18 months), we studied the cognitive response with the radial maze (RM), and anxiety-related behaviors with the open field (OF) and the elevated plus maze (EPM). Aerobically trained (AT) rats had a higher cognitive performance measured in the RM, showing that exercise had a cumulative and amplifier effect on memory and learning. The analysis of age and exercise revealed that the effects of aerobic exercise were modulated by age. Middle-aged AT rats were the most successful animals; however, the old AT rats met the criteria more often than the middle-aged sedentary controls (SC), indicating that exercise could reverse the negative effects of sedentary life, partially restore the cognitive function, and protect against the deleterious effects of aging. The results in the OF and EPM showed a significant decrease in key indicators of anxiety, revealing that age affected most of the analyzed variables, and that exercise had a prominent anxiolytic effect, particularly strong in old age. In conclusion, our results indicated that regular and chronic aerobic exercise has time and dose-dependent, neuroprotective and restorative effects on physiological brain aging, and reduces anxiety-related behaviors. Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

  20. Metabolism of ketone bodies during exercise and training: physiological basis for exogenous supplementation

    PubMed Central

    Evans, Mark; Cogan, Karl E.

    2016-01-01

    Abstract Optimising training and performance through nutrition strategies is central to supporting elite sportspeople, much of which has focused on manipulating the relative intake of carbohydrate and fat and their contributions as fuels for energy provision. The ketone bodies, namely acetoacetate, acetone and β‐hydroxybutyrate (βHB), are produced in the liver during conditions of reduced carbohydrate availability and serve as an alternative fuel source for peripheral tissues including brain, heart and skeletal muscle. Ketone bodies are oxidised as a fuel source during exercise, are markedly elevated during the post‐exercise recovery period, and the ability to utilise ketone bodies is higher in exercise‐trained skeletal muscle. The metabolic actions of ketone bodies can alter fuel selection through attenuating glucose utilisation in peripheral tissues, anti‐lipolytic effects on adipose tissue, and attenuation of proteolysis in skeletal muscle. Moreover, ketone bodies can act as signalling metabolites, with βHB acting as an inhibitor of histone deacetylases, an important regulator of the adaptive response to exercise in skeletal muscle. Recent development of ketone esters facilitates acute ingestion of βHB that results in nutritional ketosis without necessitating restrictive dietary practices. Initial reports suggest this strategy alters the metabolic response to exercise and improves exercise performance, while other lines of evidence suggest roles in recovery from exercise. The present review focuses on the physiology of ketone bodies during and after exercise and in response to training, with specific interest in exploring the physiological basis for exogenous ketone supplementation and potential benefits for performance and recovery in athletes. PMID:27861911

  1. Multicomponent physical exercise with simultaneous cognitive training to enhance dual-task walking of older adults: a secondary analysis of a 6-month randomized controlled trial with 1-year follow-up.

    PubMed

    Eggenberger, Patrick; Theill, Nathan; Holenstein, Stefan; Schumacher, Vera; de Bruin, Eling D

    2015-01-01

    About one-third of people older than 65 years fall at least once a year. Physical exercise has been previously demonstrated to improve gait, enhance physical fitness, and prevent falls. Nonetheless, the addition of cognitive training components may potentially increase these effects, since cognitive impairment is related to gait irregularities and fall risk. We hypothesized that simultaneous cognitive-physical training would lead to greater improvements in dual-task (DT) gait compared to exclusive physical training. Elderly persons older than 70 years and without cognitive impairment were randomly assigned to the following groups: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Gait variables, functional fitness (Short Physical Performance Battery, 6-minute walk), and fall frequencies were assessed at baseline, after 3 months and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were carried out. Eighty-nine participants were randomized to three groups initially; 71 completed the training and 47 were available at 1-year follow-up. DANCE/MEMORY showed a significant advantage compared to PHYS in DT costs of step time variability at fast walking (P=0.044). Training-specific gait adaptations were found on comparing DANCE and MEMORY: DANCE reduced step time at fast walking (P=0.007) and MEMORY reduced gait variability in DT and DT costs at preferred walking speed (both trend P=0.062). Global linear time effects showed improved gait (P<0.05), functional fitness (P<0.05), and reduced fall frequency (-77%, P<0.001). Only single-task fast walking, gait variability at preferred walking speed, and Short Physical Performance Battery were reduced at follow-up (all P<0.05 or trend). Long-term multicomponent cognitive-physical and exclusive physical training programs demonstrated similar potential to counteract age-related decline in physical functioning.

  2. Multicomponent physical exercise with simultaneous cognitive training to enhance dual-task walking of older adults: a secondary analysis of a 6-month randomized controlled trial with 1-year follow-up

    PubMed Central

    Eggenberger, Patrick; Theill, Nathan; Holenstein, Stefan; Schumacher, Vera; de Bruin, Eling D

    2015-01-01

    Background About one-third of people older than 65 years fall at least once a year. Physical exercise has been previously demonstrated to improve gait, enhance physical fitness, and prevent falls. Nonetheless, the addition of cognitive training components may potentially increase these effects, since cognitive impairment is related to gait irregularities and fall risk. We hypothesized that simultaneous cognitive–physical training would lead to greater improvements in dual-task (DT) gait compared to exclusive physical training. Methods Elderly persons older than 70 years and without cognitive impairment were randomly assigned to the following groups: 1) virtual reality video game dancing (DANCE), 2) treadmill walking with simultaneous verbal memory training (MEMORY), or 3) treadmill walking (PHYS). Each program was complemented with strength and balance exercises. Two 1-hour training sessions per week over 6 months were applied. Gait variables, functional fitness (Short Physical Performance Battery, 6-minute walk), and fall frequencies were assessed at baseline, after 3 months and 6 months, and at 1-year follow-up. Multiple regression analyses with planned comparisons were carried out. Results Eighty-nine participants were randomized to three groups initially; 71 completed the training and 47 were available at 1-year follow-up. DANCE/MEMORY showed a significant advantage compared to PHYS in DT costs of step time variability at fast walking (P=0.044). Training-specific gait adaptations were found on comparing DANCE and MEMORY: DANCE reduced step time at fast walking (P=0.007) and MEMORY reduced gait variability in DT and DT costs at preferred walking speed (both trend P=0.062). Global linear time effects showed improved gait (P<0.05), functional fitness (P<0.05), and reduced fall frequency (−77%, P<0.001). Only single-task fast walking, gait variability at preferred walking speed, and Short Physical Performance Battery were reduced at follow-up (all P<0.05 or trend). Conclusion Long-term multicomponent cognitive–physical and exclusive physical training programs demonstrated similar potential to counteract age-related decline in physical functioning. PMID:26604719

  3. Are There Deleterious Cardiac Effects of Acute and Chronic Endurance Exercise?

    PubMed Central

    Eijsvogels, Thijs M. H.; Fernandez, Antonio B.; Thompson, Paul D.

    2015-01-01

    Multiple epidemiological studies document that habitual physical activity reduces the risk of atherosclerotic cardiovascular disease (ASCVD), and most demonstrate progressively lower rates of ASCVD with progressively more physical activity. Few studies have included individuals performing high-intensity, lifelong endurance exercise, however, and recent reports suggest that prodigious amounts of exercise may increase markers for, and even the incidence of, cardiovascular disease. This review examines the evidence that extremes of endurance exercise may increase cardiovascular disease risk by reviewing the causes and incidence of exercise-related cardiac events, and the acute effects of exercise on cardiovascular function, the effect of exercise on cardiac biomarkers, including “myocardial” creatine kinase, cardiac troponins, and cardiac natriuretic peptides. This review also examines the effect of exercise on coronary atherosclerosis and calcification, the frequency of atrial fibrillation in aging athletes, and the possibility that exercise may be deleterious in individuals genetically predisposed to such cardiac abnormalities as long QT syndrome, right ventricular cardiomyopathy, and hypertrophic cardiomyopathy. This review is to our knowledge unique because it addresses all known potentially adverse cardiovascular effects of endurance exercise. The best evidence remains that physical activity and exercise training benefit the population, but it is possible that prolonged exercise and exercise training can adversely affect cardiac function in some individuals. This hypothesis warrants further examination. PMID:26607287

  4. The Impact of Aerobic Exercise on Fronto-Parietal Network Connectivity and Its Relation to Mobility: An Exploratory Analysis of a 6-Month Randomized Controlled Trial.

    PubMed

    Hsu, Chun L; Best, John R; Wang, Shirley; Voss, Michelle W; Hsiung, Robin G Y; Munkacsy, Michelle; Cheung, Winnie; Handy, Todd C; Liu-Ambrose, Teresa

    2017-01-01

    Impaired mobility is a major concern for older adults and has significant consequences. While the widely accepted belief is that improved physical function underlies the effectiveness of targeted exercise training in improving mobility and reducing falls, recent evidence suggests cognitive and neural benefits gained through exercise may also play an important role in promoting mobility. However, the underlying neural mechanisms of this relationship are currently unclear. Thus, we hypothesize that 6 months of progressive aerobic exercise training would alter frontoparietal network (FPN) connectivity during a motor task among older adults with mild subcortical ischemic vascular cognitive impairment (SIVCI)-and exercise-induced changes in FPN connectivity would correlate with changes in mobility. We focused on the FPN as it is involved in top-down attentional control as well as motor planning and motor execution. Participants were randomized either to usual-care (CON), which included monthly educational materials about VCI and healthy diet; or thrice-weekly aerobic training (AT), which was walking outdoors with progressive intensity. Functional magnetic resonance imaging was acquired at baseline and trial completion, where the participants were instructed to perform bilateral finger tapping task. At trial completion, compared with AT, CON showed significantly increased FPN connectivity strength during right finger tapping ( p < 0.05). Across the participants, reduced FPN connectivity was associated with greater cardiovascular capacity ( p = 0.05). In the AT group, reduced FPN connectivity was significantly associated with improved mobility performance, as measured by the Timed-Up-and-Go test ( r = 0.67, p = 0.02). These results suggest progressive AT may improve mobility in older adults with SIVCI via maintaining intra-network connectivity of the FPN.

  5. The effect of combined resistance exercise training and vitamin D3 supplementation on musculoskeletal health and function in older adults: a systematic review and meta-analysis.

    PubMed

    Antoniak, Anneka Elizabeth; Greig, Carolyn A

    2017-07-20

    In older adults, there is a blunted responsiveness to resistance training and reduced muscle hypertrophy compared with younger adults. There is evidence that both exercise training and vitamin D supplementation may benefit musculoskeletal health in older adults, and it is plausible that in combination their effects may be additive. The aim of this systematic review was to evaluate the effectiveness of combined resistance exercise training and vitamin D 3 supplementation on musculoskeletal health in older adults. A comprehensive search of electronic databases, including Science Direct, Medline, PubMed, Google Scholar and Cochrane Central Register of Controlled Trials (Cochrane CENTRAL accessed by Wiley Science) was conducted. Eligible studies were randomised controlled trials including men and women (aged ≥65 years or mean age ≥65 years); enlisting resistance exercise training and vitamin D 3 supplementation; including outcomes of muscle strength, function, muscle power, body composition, serum vitamin D/calcium status or quality of life comparing results with a control group. The review was informed by a preregistered protocol (http://www.crd.york.ac.uk/PROSPERO/display_record.asp?ID=CRD42015020157). Seven studies including a total of 792 participants were identified. Studies were categorised into two groups; group 1 compared vitamin D 3 supplementation and exercise training versus exercise alone (describing the additive effect of vitamin D 3 supplementation when combined with resistance exercise training) and group 2 compared vitamin D 3 supplementation and exercise training versus vitamin D 3 supplementation alone (describing the additive effect of resistance exercise training when combined with vitamin D 3 supplementation).Meta-analyses for group 1 found muscle strength of the lower limb to be significantly improved within the intervention group (0.98, 95% CI 0.73 to 1.24, p<0.001); all other outcomes showed small but non-significant positive effects for the intervention group. The short physical performance battery (SPPB), timed up and go (TUG), muscle strength of the lower limb and femoral neck bone mineral density showed significantly greater improvements in the intervention group for group 2 comparisons. This review provides tentative support for the additive effect of resistance exercise and vitamin D 3 supplementation for the improvement of muscle strength in older adults. For other functional variables, such as SPPB and TUG, no additional benefit beyond exercise was shown. Further evidence is required to draw firm conclusions or make explicit recommendations regarding combined exercise and vitamin D 3 supplementation. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  6. Enhanced Skeletal Muscle Expression of EcSOD Mitigates Streptozotocin-Induced Diabetic Cardiomyopathy by Reducing Oxidative Stress and Aberrant Cell Signaling

    PubMed Central

    Call, Jarrod A.; Chain, Kristopher H.; Martin, Kyle S.; Lira, Vitor A.; Okutsu, Mitsuharu; Zhang, Mei; Yan, Zhen

    2015-01-01

    Background Exercise training enhances extracellular superoxide dismutase (EcSOD) expression in skeletal muscle and elicits positive health outcomes in individuals with diabetes. The goal of this study was to determine if enhanced skeletal muscle expression of EcSOD is sufficient to mitigate streptozotocin (STZ)-induced diabetic cardiomyopathy (DCM). Methods and Results Exercise training promotes EcSOD expression in skeletal muscle and provides protection against DCM; however, it is not known if enhanced EcSOD expression in skeletal muscle plays a functional role in this protection. Here, we show that skeletal muscle-specific EcSOD transgenic mice (TG) are protected from cardiac hypertrophy, fibrosis and dysfunction under the condition of type-1 diabetes induced by STZ injection. We also show that both exercise training and muscle-specific transgenic expression of EcSOD result in elevated EcSOD protein in the blood and heart without increased transcription in the heart, suggesting enhanced expression of EcSOD from skeletal muscle redistributes to the heart. Importantly, cardiac tissue in TG mice displayed significantly reduced oxidative stress, aberrant cell signaling and inflammatory cytokine expression compared with wild type mice under the same diabetic condition. Conclusions Enhanced expression of EcSOD in skeletal muscle is sufficient to mitigate STZ-induced DCM through attenuation of oxidative stress, aberrant cell signaling and inflammation, suggesting a cross-organ mechanism by which exercise training improves cardiac function in diabetes. PMID:25504759

  7. Experimental Evidences Supporting the Benefits of Exercise Training in Heart Failure.

    PubMed

    Ichige, Marcelo H A; Pereira, Marcelo G; Brum, Patrícia C; Michelini, Lisete C

    2017-01-01

    Heart Failure (HF), a common end point for many cardiovascular diseases, is a syndrome with a very poor prognosis. Although clinical trials in HF have achieved important outcomes in reducing mortality, little is known about functional mechanisms conditioning health improvement in HF patients. In parallel with clinical studies, basic science has been providing important discoveries to understand the mechanisms underlying the pathophysiology of HF, as well as to identify potential targets for the treatment of this syndrome. In spite of being the end-point of cardiovascular derangements caused by different etiologies, autonomic dysfunction, sympathetic hyperactivity, oxidative stress, inflammation and hormonal activation are common factors involved in the progression of this syndrome. Together these causal factors create a closed link between three important organs: brain, heart and the skeletal muscle. In the past few years, we and other groups have studied the beneficial effects of aerobic exercise training as a safe therapy to avoid the progression of HF. As summarized in this chapter, exercise training, a non-pharmacological tool without side effects, corrects most of the HF-induced neurohormonal and local dysfunctions within the brain, heart and skeletal muscles. These adaptive responses reverse oxidative stress, reduce inflammation, ameliorate neurohormonal control and improve both cardiovascular and skeletal muscle function, thus increasing the quality of life and reducing patients' morbimortality.

  8. The induction and decay of heat acclimatisation in trained athletes.

    PubMed

    Armstrong, L E; Maresh, C M

    1991-11-01

    Heat acclimatisation/acclimation involves a complex of adaptations which includes decreased heart rate, rectal temperature, perceived exertion as well as increased plasma volume and sweat rate. These adaptations serve to reduce physiological strain, improve an athlete's ability to exercise in a hot environment, and reduce the incidence of some forms of heat illness. Few differences exist in the ability of men and women to acclimatise to heat. Typically, older runners do not perform in the heat as well as younger runners, but physical training can negate differences between these groups. Hormonal adaptations (e.g. aldosterone, vasopressin) during heat acclimatisation encourage fluid-electrolyte retention and cardiovascular stability. Athletes with high maximal aerobic power (VO2max) acclimatise to heat faster (and lose adaptations slower when they are inactive in a cool environment) than athletes with low VO2max values. Physical training in a cool environment improves physiological responses to exercise at high ambient temperatures. In attempting to optimise heat acclimatisation, athletes should maintain fluid-electrolyte balance, exercise at intensities greater than 50% VO2max for 10 to 14 days, and avoid factors (e.g. sleep loss, infectious disease) which are known to reduce heat tolerance. Once acclimatisation has been achieved, inactivity results in a decay of favourable adaptations, after only a few days or weeks.

  9. Occupational safety and health interventions to reduce musculoskeletal symptoms in the health care sector.

    PubMed

    Tullar, Jessica M; Brewer, Shelley; Amick, Benjamin C; Irvin, Emma; Mahood, Quenby; Pompeii, Lisa A; Wang, Anna; Van Eerd, Dwayne; Gimeno, David; Evanoff, Bradley

    2010-06-01

    Health care work is dangerous and multiple interventions have been tested to reduce the occupational hazards. A systematic review of the literature used a best evidence synthesis approach to address the general question "Do occupational safety and health interventions in health care settings have an effect on musculoskeletal health status?" This was followed by an evaluation of the effectiveness of specific interventions. The initial search identified 8,465 articles, for the period 1980-2006, which were reduced to 16 studies based on content and quality. A moderate level of evidence was observed for the general question. Moderate evidence was observed for: (1) exercise interventions and (2) multi-component patient handling interventions. An updated search for the period 2006-2009 added three studies and a moderate level of evidence now indicates: (1) patient handling training alone and (2) cognitive behavior training alone have no effect on musculoskeletal health. Few high quality studies were found that examined the effects of interventions in health care settings on musculoskeletal health. The findings here echo previous systematic reviews supporting exercise as providing positive health benefits and training alone as not being effective. Given the moderate level of evidence, exercise interventions and multi-component patient handling interventions (MCPHI) were recommended as practices to consider. A multi-component intervention includes a policy that defines an organizational commitment to reducing injuries associated with patient handling, purchase of appropriate lift or transfer equipment to reduce biomechanical hazards and a broad-based ergonomics training program that includes safe patient handling and/or equipment usage. The review demonstrates MCPHI can be evaluated if the term multi-component is clearly defined and consistently applied.

  10. Resistance Exercise in Already-Active Diabetic Individuals (READI): study rationale, design and methods for a randomized controlled trial of resistance and aerobic exercise in type 1 diabetes.

    PubMed

    Yardley, Jane E; Kenny, Glen P; Perkins, Bruce A; Riddell, Michael C; Goldfield, Gary S; Donovan, Lois; Hadjiyannakis, Stasia; Wells, George A; Phillips, Penny; Sigal, Ronald J

    2015-03-01

    The Resistance Exercise in Already Active Diabetic Individuals (READI) trial aimed to examine whether adding a 6-month resistance training program would improve glycemic control (as reflected in reduced HbA₁c) in individuals with type 1 diabetes who were already engaged in aerobic exercise compared to aerobic training alone. After a 5-week run-in period including optimization of diabetes care and low-intensity exercise, 131 physically active adults with type 1 diabetes were randomized to two groups for 22weeks: resistance training three times weekly, or waiting-list control. Both groups maintained the same volume, duration and intensity of aerobic exercise throughout the study as they did at baseline. HbA₁c, body composition, frequency of hypoglycemia, lipids, blood pressure, apolipoproteins B and A-1 (ApoB and ApoA1), the ApoB-ApoA1 ratio, urinary albumin excretion, serum C-reactive protein, free fatty acids, total daily insulin dose, health-related quality of life, cardiorespiratory fitness and musculoskeletal fitness were recorded at baseline, 3 (for some variables), and 6 months. To our knowledge, READI is the only trial to date assessing the incremental health-related impact of adding resistance training for individuals with type 1 diabetes who are already aerobically active. Few exercise trials have been completed in this population, and even fewer have assessed resistance exercise. With recent improvements in the quality of diabetes care, the READI study will provide conclusive evidence to support or refute a major clinically relevant effect of exercise type in the recommendations for physical activity in patients with type 1 diabetes. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. The Health Benefits and Challenges of Exercise Training in Persons Living with Schizophrenia: A Pilot Study

    PubMed Central

    Bredin, Shannon S. D.; Warburton, Darren E. R.; Lang, Donna J.

    2013-01-01

    Background: In addition to the hallmark cognitive and functional impairments mounting evidence indicates that schizophrenia is also associated with an increased risk for the development of secondary complications, in particular cardio-metabolic disease. This is thought to be the result of various factors including physical inactivity and the metabolic side effects of psychotropic medications. Therefore, non-pharmacological approaches to improving brain health, physical health, and overall well-being have been promoted increasingly. Methods: We report on the health-related physical fitness (body composition, blood pressure, heart rate, and aerobic fitness) and lipid profile of persons living with schizophrenia and effective means to address the challenges of exercise training in this population. Results: There was a markedly increased risk for cardio-metabolic disease in 13 persons living with schizophrenia (Age = 31 ± 7 years) including low aerobic fitness (76% ± 34% of predicted), reduced HDL (60% of cohort), elevated resting heart rate (80% of cohort), hypertension (40% of cohort), overweight and obesity (69% of cohort), and abdominal obesity (54% of cohort). Individualized exercise prescription (3 times/week) was well tolerated, with no incidence of adverse exercise-related events. The exercise adherence rate was 81% ± 21% (Range 48%–100%), and 69% of the participants were able to complete the entire exercise training program. Exercise training resulted in clinically important changes in physical activity, aerobic fitness, exercise tolerance, blood pressure, and body composition. Conclusion: Persons living with schizophrenia appear to be at an increased risk for cardio-metabolic disease. An individualized exercise program has shown early promise for the treatment of schizophrenia and the various cognitive, functional, and physiological impairments that ultimately affect health and well-being. PMID:24961427

  12. Neuronal Nitric Oxide Synthase Is Dislocated in Type I Fibers of Myalgic Muscle but Can Recover with Physical Exercise Training

    PubMed Central

    Jensen, L.; Andersen, L. L.; Schrøder, H. D.; Frandsen, U.; Sjøgaard, G.

    2015-01-01

    Trapezius myalgia is the most common type of chronic neck pain. While physical exercise reduces pain and improves muscle function, the underlying mechanisms remain unclear. Nitric oxide (NO) signaling is important in modulating cellular function, and a dysfunctional neuronal NO synthase (nNOS) may contribute to an ineffective muscle function. This study investigated nNOS expression and localization in chronically painful muscle. Forty-one women clinically diagnosed with trapezius myalgia (MYA) and 18 healthy controls (CON) were included in the case-control study. Subsequently, MYA were randomly assigned to either 10 weeks of specific strength training (SST, n = 18), general fitness training (GFT, n = 15), or health information (REF, n = 8). Distribution of fiber type, cross-sectional area, and sarcolemmal nNOS expression did not differ between MYA and CON. However, MYA showed increased sarcoplasmic nNOS localization (18.8 ± 12 versus 12.8 ± 8%, P = 0.049) compared with CON. SST resulted in a decrease of sarcoplasm-localized nNOS following training (before 18.1 ± 12 versus after 12.0 ± 12%; P = 0,027). We demonstrate that myalgic muscle displays altered nNOS localization and that 10 weeks of strength training normalize these disruptions, which supports previous findings of impaired muscle oxygenation during work tasks and reduced pain following exercise. PMID:25853139

  13. Implementing an exercise-training programme to prevent lower-limb injuries: considerations for the development of a randomised controlled trial intervention delivery plan.

    PubMed

    Finch, Caroline F; White, Peta; Twomey, Dara; Ullah, Shahid

    2011-08-01

    To identify important considerations for the delivery of an exercise training intervention in a randomised controlled trial to maximise subsequent participation in that randomised controlled trial and intervention uptake. A cross-sectional survey, with a theoretical basis derived from the Health Belief Model (HBM) and the Reach, Efficacy/Effectiveness, Adoption, Implementation and Maintenance (RE-AIM) framework. 374 male senior Australian Football players, aged 17-38 years. Beliefs about lower-limb injury causation/prevention, and the relative value of exercise training for performance and injury prevention. The data are interpreted within HBM constructs and implications for subsequent intervention implementation considered within the RE-AIM framework. Ordinal logistic regression compared belief scores across player characteristics. 74.4% of players agreed that doing specific exercises during training would reduce their risk of lower-limb injury and would be willing to undertake them. However, 64.1% agreed that training should focus more on improving game performance than injury prevention. Younger players (both in terms of age and playing experience) generally had more positive views. Players were most supportive of kicking (98.9%) and ball-handling (97.0%) skills for performance and warm-up runs and cool-downs (both 91.5%) for injury prevention. Fewer than three-quarters of all players believed that balance (69.2%), landing (71.3%) or cutting/stepping (72.8) training had injury-prevention benefits. Delivery of future exercise training programmes for injury prevention aimed at these players should be implemented as part of routine football activities and integrated with those as standard practice, as a means of associating them with training benefits for this sport.

  14. Exercise training guidelines for the elderly.

    PubMed

    Evans, W J

    1999-01-01

    The capacity of older men and women to adapt to increased levels of physical activity is preserved, even in the most elderly. Aerobic exercise results in improvements in functional capacity and reduced risk of developing Type II diabetes in the elderly. High-intensity resistance training (above 60% of the one repetition maximum) has been demonstrated to cause large increases in strength in the elderly. In addition, resistance training result in significant increases in muscle size in elderly men and women. Resistance training has also been shown to significantly increase energy requirements and insulin action of the elderly. We have recently demonstrated that resistance training has a positive effect on multiple risk factors for osteoporotic fracture in previously sedentary postmenopausal women. Because the sedentary lifestyle of a long-term care facility may exacerbate losses of muscle function, we have applied this same training program to frail, institutionalized elderly men and women. In a population of 100 nursing home residents, a randomly assigned high-intensity strength-training program resulted in significant gains in strength and functional status. In addition, spontaneous activity, measured by activity monitors, increased significantly in those participating in the exercise program whereas there was no change in the sedentary control group. Before the strength training intervention, the relationship of whole body potassium and leg strength was seen to be relatively weak (r2 = 0.29, P < 0.001), indicating that in the very old, muscle mass is an important but not the only determining factor of functional status. Thus, exercise may minimize or reverse the syndrome of physical frailty, which is so prevalent among the most elderly. Because of their low functional status and high incidence of chronic disease, there is no segment of the population that can benefit more from exercise than the elderly.

  15. Specific exercise training for reducing neck and shoulder pain among military helicopter pilots and crew members: a randomized controlled trial protocol.

    PubMed

    Murray, Mike; Lange, Britt; Nørnberg, Bo Riebeling; Søgaard, Karen; Sjøgaard, Gisela

    2015-08-19

    Flight-related neck/shoulder pain is frequent among military helicopter pilots and crew members. With a lifetime prevalence of 81% for pilots and 84% for crew members, the prevalence of neck pain is considered high compared to the general population. The aim of this study was to investigate whether a specifically tailored exercise intervention would reduce the prevalence and incidence rate of neck/shoulder pain among helicopter pilots and crew members. This study used a prospective, parallel group, single blinded, randomized controlled design. Participants were military helicopter pilots and crew members recruited from the Royal Danish Air Force. Inclusion criteria were: 1) employed within the Royal Danish Air Force as a helicopter pilot or onboard crew member (technician, systems-operator, tactical helicopter observer and/or navigator), 2) maintaining operational flight status at enrollment, and 3) operational flying within the previous 6 months. Primary outcome was change in neck and shoulder pain assessed by 1) a modified version of the "Standardized Nordic questionnaire for the analysis of musculoskeletal symptoms" and by 2) pressure pain threshold measurements. Secondary outcomes included: postural balance, strength, stability, and rate of force development for neck and shoulder muscles. Measurements at baseline and follow-up were conducted at four air force bases in Denmark. Sixty-nine participants were individually randomized to either a training group (TG) or a reference group (RG). Participants in the TG performed 20-weeks of physical exercise training divided into sessions of 3 × 20 min per week. Training was completed within working hours and consisted of specific exercise training for the neck and shoulder muscles based on the principles of "Intelligent Physical Exercise Training". The RG received no training. In spite of the high prevalence of flight related neck/shoulder pain among military helicopter pilots and crew members there are currently no evidence based guidelines for the prevention or clinical handling of neck pain among these occupational groups. Results from this study may therefore be beneficial for future establishment of such guidelines. Ethical committee of Southern Denmark (S-20120121) 29 August, 2012. Clinical Trail Registration (NCT01926262) 16 August, 2013.

  16. The effect of short-term isometric training on core/torso stiffness.

    PubMed

    Lee, Benjamin; McGill, Stuart

    2017-09-01

    "Core" exercise is a basic part of many physical training regimens with goals ranging from rehabilitation of spine and knee injuries to improving athletic performance. Core stiffness has been proposed to perform several functions including reducing pain by minimising joint micro-movements, and enhancing strength and speed performance. This study probes the links between a training approach and immediate but temporary changes in stiffness. Passive and active stiffness was measured on 24 participants; 12 having little to no experience in core training (inexperienced), and the other 12 being athletes experienced to core training methods; before and after a 15 min bout of isometric core exercises. Passive stiffness was assessed on a "frictionless" bending apparatus and active stiffness assessed via a quick release mechanism. Short-term isometric core training increased passive and active stiffness in most directions for both inexperienced and experienced participants, passive left lateral bend among experienced participants being the exception (P < 0.05). There was no difference between the inexperienced and experienced groups. The results confirm that the specific isometric training exercise approach tested here can induce immediate changes in core stiffness, in this case following a single session. This may influence performance and injury resilience for a brief period.

  17. Exercise-related injuries among women: strategies for prevention from civilian and military studies.

    PubMed

    Gilchrist, J; Jones, B H; Sleet, D A; Kimsey, C D

    2000-03-31

    The numerous health benefits of physical activity have been well documented, resulting in public health support of regular physical activity and exercise. Although beneficial, exercise also has corresponding risks, including musculoskeletal injuries. The incidence and risk factors for exercise-related injury have been poorly assessed in women. Many civilian exercise activities (e.g., jogging, walking, and erobics) have corollaries in military physical training; injury incidence and risk factors associated with military physical training have been more thoroughly studied. Injury risks increase as the amount of training increases (increased xposure). The same exercise parameters that can be modified to enhance physical fitness (i.e., frequency, duration, and intensity) also influence the risk for injury in a dose-response manner. Higher levels of current physical fitness (aerobic fitness) protect the participant against future injury. A history of previous injury is a risk factor for future injury. Smoking cigarettes has been associated with increased risk for exercise-related injury. Studies conducted in military populations suggest that the most important risk factor for injuries among persons engaged in vigorous weight-bearing aerobic physical activity might be low aerobic fitness rather than female sex. Because of the limited scientific research regarding women engaging in exercise, general recommendations are provided. Women starting exercise programs should be realistic about their goals and start slowly at frequency, duration, and intensity levels commensurate with their current physical fitness condition. Women should be informed about the early indicators of potential injury. Women who have sustained an injury should take precautions to prevent reinjury (e.g., ensuring appropriate recovery and rehabilitation). In general, a combination of factors affects the risk for exercise-related injury in women. How these factors act singly and in combination to influence injury risk is not well understood. Additional research regarding exercise-related injury in women is needed to answer many of the remaining epidemiologic questions and to help develop exercise programs that improve health while reducing the risk for injury. Exercise is an important component in improving and maintaining health; however, injury is also an accompanying risk. A review of key military and civilian research studies regarding exercise-related injuries provides some clues to reducing these injuries in women. Greater adherence to exercise guidelines can help decrease these risks.

  18. Dose-response relationship of the cardiovascular adaptation to endurance training in healthy adults: how much training for what benefit?

    PubMed

    Iwasaki, Ken-Ichi; Zhang, Rong; Zuckerman, Julie H; Levine, Benjamin D

    2003-10-01

    Occupational or recreational exercise reduces mortality from cardiovascular disease. The potential mechanisms for this reduction may include changes in blood pressure (BP) and autonomic control of the circulation. Therefore, we conducted the present long-term longitudinal study to quantify the dose-response relationship between the volume and intensity of exercise training, and regulation of heart rate (HR) and BP. We measured steady-state hemodynamics and analyzed dynamic cardiovascular regulation by spectral and transfer function analysis of cardiovascular variability in 11 initially sedentary subjects during 1 yr of progressive endurance training sufficient to allow them to complete a marathon. From this, we found that 1) moderate exercise training for 3 mo decreased BP, HR, and total peripheral resistance, and increased cardiovascular variability and arterial baroreflex sensitivity; 2) more prolonged and intense training did not augment these changes further; and 3) most of these changes returned to control values at 12 mo despite markedly increased training duration and intensity equivalent to that routinely observed in competitive athletes. In conclusion, increases in R-wave-R-wave interval and cardiovascular variability indexes are consistent with an augmentation of vagal modulation of HR after exercise training. It appears that moderate doses of training for 3 mo are sufficient to achieve this response as well as a modest hypotensive effect from decreasing vascular resistance. However, more prolonged and intense training does not necessarily lead to greater enhancement of circulatory control and, therefore, may not provide an added protective benefit via autonomic mechanisms against death by cardiovascular disease.

  19. Cardiovascular Drift during Training for Fitness in Patients with Metabolic Syndrome.

    PubMed

    Morales-Palomo, Felix; Ramirez-Jimenez, Miguel; Ortega, Juan Fernando; Pallares, Jesus Garcia; Mora-Rodriguez, Ricardo

    2017-03-01

    The health benefits of a training program are largely influenced by the exercise dose and intensity. We sought to determine whether during a training bout of continuous versus interval exercise the workload needs to be reduced to maintain the prescribed target heart rate (HR). Fourteen obese (31 ± 4 kg·m) middle-age (57 ± 8 yr) individuals with metabolic syndrome, underwent two exercise training bouts matched by energy expenditure (i.e., 70 ± 5 min of continuous exercise [CE] or 45 min of interval exercise, high-intensity interval training [HIIT]). All subjects completed both trials in a randomized order. HR, power output (W), percent dehydration, intestinal and skin temperature (TINT and TSK), mean arterial pressure, cardiac output (CO), stroke volume (SV), and blood lactate concentration (La) were measured at the initial and latter stages of each trial to assess time-dependent drift. During the HIIT trial, power output was lowered by 30 ± 16 W to maintain the target HR, whereas a 10 ± 11 W reduction was needed in the CE trial (P < 0.05). Energy expenditure, CO, and SV declined with exercise time only in the HIIT trial (15%, 10%, and 13%, respectively). During HIIT, percent dehydration, TINT, and TSK increased more than during the CE trial (all P = 0.001). Mean arterial pressure and La were higher in HIIT without time drift in any trial. Our findings suggests that while CE results in mild power output reductions to maintain target HR, the increasingly popular HIIT results in marked reductions in power output, energy expenditure, and CO (21%, 15%, and 10%, respectively). HIIT based on target HR may result in lower than expected training adaptations because of workload adjustments to avoid HR drift.

  20. Metformin modifies the exercise training effects on risk factors for cardiovascular disease in impaired glucose tolerant adults

    PubMed Central

    Malin, Steven K.; Nightingale, Joy; Choi, Sung-Eun; Chipkin, Stuart R.; Braun, Barry

    2012-01-01

    Impaired glucose tolerant (IGT) adults are at elevated risk for cardiovascular disease (CVD). Exercise or metformin reduce CVD risk, but the efficacy of combining treatments is unclear. To determine the effects of exercise training plus metformin, compared to each treatment alone, on CVD risk factors in IGT adults. Subjects were assigned to: placebo (P), metformin (M), exercise plus placebo (EP), or exercise plus metformin (EM) (8/group). In a double-blind design, P or 2000mg/d of M were administered for 12 weeks and half performed aerobic and resistance training 3 days/week for approximately 60 minutes/day at 70% pre-training heart rate peak. Outcomes included: adiposity, blood pressure (BP), lipids and high sensitivity C-reactive protein (hs-CRP). Z-scores were calculated to determine metabolic syndrome severity. M and EM, but not EP, decreased body weight compared to P (p <0.05). M and EP lowered systolic BP by 6% (p < 0.05), diastolic BP by 6% (p < 0.05), and hs-CRP by 20% (M: trend p = 0.06; EP: p < 0.05) compared to P. Treatments raised HDL-cholesterol (p < 0.05; EM: trend p = 0.06) compared to P and lowered triacyglycerol (p < 0.05) and metabolic syndrome Z-score compared to baseline (EP; trend p = 0.07 and EM or M; p < 0.05). Although exercise and/or metformin improve some CVD risk factors, only training or metformin alone lowered hs-CRP and BP. Thus, metformin may attenuate the effects of training on some CVD risk factors and metabolic syndrome severity in IGT adults. PMID:23505172

  1. Physical therapies for improving balance and reducing falls risk in osteoarthritis of the knee: a systematic review.

    PubMed

    Mat, Sumaiyah; Tan, Maw Pin; Kamaruzzaman, Shahrul Bahyah; Ng, Chin Teck

    2015-01-01

    osteoarthritis (OA) of knee has been reported as a risk factor for falls and reduced balance in the elderly. This systematic review evaluated the effectiveness of physical therapies in improving balance and reducing falls risk among patients with knee OA. a computerised search was performed to identify relevant studies up to November 2013. Two investigators identified eligible studies and extracted data independently. The quality of the included studies was assessed by the PeDro score. a total of 15 randomised controlled trials involving 1482 patients were identified. The mean PeDro score was 7. The pooled standardised mean difference in balance outcome for strength training = 0.3346 (95% CI: 0.3207-0.60, P = 0.01 < 0.00001, P for heterogeneity = 0.85, I(2) = 0%). Tai Chi = 0.7597 (95% CI: 0.5130-1.2043, P<=0.0014, P for heterogeneity = 0.26, I(2) = 0%) and aerobic exercises = 0.6880 (95% CI: 0.5704-1.302, P < 0.00001, P for heterogeneity = 0.71, I(2) = 0%). While pooled results for falls risk outcomes in, strength training, Tai chi and aerobics also showed a significant reduction in reduced risk of falls significantly with pooled result 0.55 (95% CI: 0.41-0.68, P < 0.00001, P for heterogeneity = 0.39, I(2) = 6%). strength training, Tai Chi and aerobics exercises improved balance and falls risk in older individuals with knee OA, while water-based exercises and light treatment did not significantly improve balance outcomes. Strength training, Tai Chi and aerobics exercises can therefore be recommended as falls prevention strategies for individuals with OA. However, a large randomised controlled study using actual falls outcomes is recommended to determine the appropriate dosage and to measure the potential benefits in falls reduction. © The Author 2014. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Effect of Exercise Training and +Gz Acceleration Training on Men

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Simonson, Shawn R.; Stocks, Jodie M.; Evans, Joyce; Knapp, Charles F.; Cowell, Stephenie A.; Pemberton, Kendra N.; Wilson, Heather W.; Vener, Jamie M.; Evetts, Simon N.

    2001-01-01

    Countermeasures for reduction in work capacity (maximal oxygen uptake and strength) during spaceflight and enhanced orthostatic intolerance during re-entry, landing and egress from the return vehicle are continuing problems. The purpose for this study was to test the hypothesis that passive-acceleration training; supine, interval, exercise plus acceleration training and exercise combined with acceleration training would improve orthostatic tolerance in ambulatory men; and that addition of the aerobic exercise conditioning would not alter this improved tolerance from that of passive-acceleration training. Seven men (24-38 yr) underwent "Passive" training on the Ames human-powered centrifuge (HPC) for 30 min, "Exercise" training on the cycle ergometer with constant +Gz acceleration; and "Combined" exercise training at 40% to 90% of the HPC +Gz(max) exercise level. Maximal supine exercise loads increased significant (P<0.05) by 8.3% (Passive), 12.6% (Exercise), and by 15.4% (Combined) after training, but their post-training maximal oxygen uptakes and maximal heart rates were unchanged. Maximal time to fatigue (endurance) was unchanged with Passive was increased (P<0.05) with Exercise and Combined training. Thus, the exercise in the Exercise and Combined training Phases resulted in greater maximal loads and endurance without effect on maximal oxygen uptake or heart rate. There was a 4% to 6% increase (P<0.05) in all four quadriceps muscle volumes (right and left) after post-Combined training. Resting pre-tilt heart rate was elevated by 12.9% (P<0.05) only after Passive training suggesting that the exercise training attenuated the HR response. Plasma volume (% Delta) was uniformly decreased by 8% to 14% (P<0.05) at tilt-tolerance pre- vs. post-training indicating essentially no effect of training on the level of hypovolemia. Post-training tilt-tolerance time and heart rate were increased (P<0.05) only with Passive training by 37.8% and by 29.1%, respectively. Thus, addition of exercise training appeared to attenuate the increased Passive tilt-tolerance.

  3. The role of sports and exercise in allergic disease: drawbacks and benefits.

    PubMed

    Silva, Diana; Moreira, André

    2015-01-01

    Although training and exercise have several benefits, overdoing it might not necessarily be a good thing. For instance, elite athletes have an increased risk for asthma and allergy. Several mechanisms can be implicated for this risk, which include the interplay between environmental training factors and athlete's personal risk factors, such as genetic susceptibility, neurogenic-mediated inflammation, and epithelial sensitivity. However, an overwhelming amount of scientific evidence shows the positive effects of sports as part of a healthy lifestyle. Training reduces breathlessness and asthma symptoms and attenuates Th2-mediated inflammatory responses. Taken together, the benefits far outweigh the potential hazards of training. An easily administered therapeutic healthy lifestyle intervention, which could be used alongside current treatment, must be developed.

  4. Carbohydrate availability and exercise training adaptation: too much of a good thing?

    PubMed

    Bartlett, Jonathan D; Hawley, John A; Morton, James P

    2015-01-01

    Traditional nutritional approaches to endurance training have typically promoted high carbohydrate (CHO) availability before, during and after training sessions to ensure adequate muscle substrate to meet the demands of high daily training intensities and volumes. However, during the past decade, data from our laboratories and others have demonstrated that deliberately training in conditions of reduced CHO availability can promote training-induced adaptations of human skeletal muscle (i.e. increased maximal mitochondrial enzyme activities and/or mitochondrial content, increased rates of lipid oxidation and, in some instances, improved exercise capacity). Such data have led to the concept of 'training low, but competing high' whereby selected training sessions are completed in conditions of reduced CHO availability (so as to promote training adaptation), but CHO reserves are restored immediately prior to an important competition. The augmented training response observed with training-low strategies is likely regulated by enhanced activation of key cell signalling kinases (e.g. AMPK, p38MAPK), transcription factors (e.g. p53, PPARδ) and transcriptional co-activators (e.g. PGC-1α), such that a co-ordinated up-regulation of both the nuclear and mitochondrial genomes occurs. Although the optimal practical strategies to train low are not currently known, consuming additional caffeine, protein, and practising CHO mouth-rinsing before and/or during training may help to rescue the reduced training intensities that typically occur when 'training low', in addition to preventing protein breakdown and maintaining optimal immune function. Finally, athletes should practise 'train-low' workouts in conjunction with sessions undertaken with normal or high CHO availability so that their capacity to oxidise CHO is not blunted on race day.

  5. Aerobic Exercise Alters Analgesia and Neurotrophin-3 Synthesis in an Animal Model of Chronic Widespread Pain

    PubMed Central

    Ryals, Janelle M.; Gajewski, Byron J.; Wright, Douglas E.

    2010-01-01

    Background Present literature and clinical practice provide strong support for the use of aerobic exercise in reducing pain and improving function for individuals with chronic musculoskeletal pain syndromes. However, the molecular basis for the positive actions of exercise remains poorly understood. Recent studies suggest that neurotrophin-3 (NT-3) may act in an analgesic fashion in various pain states. Objective The purpose of the present study was to examine the effects of moderate-intensity aerobic exercise on pain-like behavior and NT-3 in an animal model of widespread pain. Design This was a repeated-measures, observational cross-sectional study. Methods Forty female mice were injected with either normal (pH 7.2; n=20) or acidic (pH 4.0; n=20) saline in the gastrocnemius muscle to induce widespread hyperalgesia and exercised for 3 weeks. Cutaneous (von Frey monofilament) and muscular (forceps compression) mechanical sensitivity were assessed. Neurotrophin-3 was quantified in 2 hind-limb skeletal muscles for both messenger RNA (mRNA) and protein levels after exercise training. Data were analyzed with 2-factor analysis of variance for repeated measures (group × time). Results Moderate-intensity aerobic exercise reduced cutaneous and deep tissue hyperalgesia induced by acidic saline and stimulated NT-3 synthesis in skeletal muscle. The increase in NT-3 was more pronounced at the protein level compared with mRNA expression. In addition, the increase in NT-3 protein was significant in the gastrocnemius muscle but not in the soleus muscle, suggesting that exercise can preferentially target NT-3 synthesis in specific muscle types. Limitations Results are limited to animal models and cannot be generalized to chronic pain syndromes in humans. Conclusions This is the first study demonstrating the effect of exercise on deep tissue mechanical hyperalgesia in a rodent model of pain and providing a possible molecular basis for exercise training in reducing muscular pain. PMID:20338916

  6. Effects of whole body vibration on bone mineral density and falls: results of the randomized controlled ELVIS study with postmenopausal women.

    PubMed

    von Stengel, S; Kemmler, W; Engelke, K; Kalender, W A

    2011-01-01

    We determined whether the effect of exercise on bone mineral density (BMD) and falls can be enhanced by whole body vibration (WBV). In summary, the multi-purpose exercise training was effective to increase lumbar BMD but added WBV did not enhance this effect. However, falls were lowest in the exercise program combined with WBV. WBV is a new approach to reduce the risk of osteoporotic fractures. In the "Erlangen Longitudinal Vibration Study" (ELVIS), we investigated whether WBV enhances the effect of multifunctional exercise on BMD and falls. One hundred fifty-one postmenopausal women (68.5 ± 3.1 years) were randomly assigned to a: (1) conventional training group (TG); (2) conventional training group including vibration (TGV); and (3) wellness control group (CG). TG conducted an exercise program consisting of 20 min dancing aerobics, 5 min balance training, 20 min functional gymnastics, and 15 min dynamic leg-strength training on vibration plates (without vibration) twice a week. TGV performed an identical exercise regimen with vibration (25-35 Hz) during the leg-strengthening sequence. CG performed a low-intensity wellness program. BMD was measured at the hip and lumbar spine at baseline and follow-up using the DXA method. Falls were recorded daily via the calendar method. After 18 months, an increase in BMD at the lumbar spine was observed in both training groups (TGV: +1.5% vs. TG: +2.1%). The difference between the TG and the CG (1.7%) was significant. At the hip no changes were determined in either group. The fall frequency was significantly lower in TGV (0.7 falls/person) compared with CG (1.5), whereas the difference between TG (0.96) and CG was not significant. A multifunctional training program had a positive impact on lumbar BMD. The application of vibration did not enhance these effects. However, only the training including WBV affected the number of falls significantly.

  7. Team Training for Command and Control Systems. Volume IV. Recommendations for Simulation Facility.

    DTIC Science & Technology

    1982-04-01

    free - play war gaming exercises. The tactical situation models should allow the researcher to specify certain relevant environmental conditions: weather...emphasizes dynamic free - play and task-oriented responses. The individualized CBT exercises would not necessarily replace or even reduce the amount of time...intercept exercises and bump-heads free - play , but they cannot currently be used to simulate larger-scale, two-sided, free - play engagements. 69 . All

  8. Study protocol for a randomized controlled trial: tongue strengthening exercises in head and neck cancer patients, does exercise load matter?

    PubMed

    Van Nuffelen, Gwen; Van den Steen, Leen; Vanderveken, Olivier; Specenier, Pol; Van Laer, Carl; Van Rompaey, Diane; Guns, Cindy; Mariën, Steven; Peeters, Marc; Van de Heyning, Paul; Vanderwegen, Jan; De Bodt, Marc

    2015-09-04

    Reduced tongue strength is an important factor contributing to early and late dysphagia in head and neck cancer patients previously treated with chemoradiotherapy. The evidence is growing that tongue strengthening exercises can improve tongue strength and swallowing function in both healthy and dysphagic subjects. However, little is known about the impact of specific features of an exercise protocol for tongue strength on the actual outcome (strength or swallowing function). Previous research originating in the fields of sports medicine and physical rehabilitation shows that the degree of exercise load is an influential factor for increasing muscle strength in the limb skeletal muscles. Since the tongue is considered a muscular hydrostat, it remains to be proven whether the same concepts will apply. This ongoing randomized controlled trial in chemoradiotherapy-treated patients with head and neck cancer investigates the effect of three tongue strengthening exercise protocols, with different degrees of exercise load, on tongue strength and swallowing. At enrollment, 51 patients whose dysphagia is primarily related to reduced tongue strength are randomly assigned to a training schedule of 60, 80, or 100% of their maximal tongue strength. Patients are treated three times a week for 8 weeks, executing 120 repetitions of the assigned exercise once per training day. Exercise load is progressively adjusted every 2 weeks. Patients are evaluated before, during and after treatment by means of tongue strength measurements, fiber-optic endoscopic evaluation of swallowing and quality-of-life questionnaires. This randomized controlled trial is the first to systematically investigate the effect of different exercise loads in tongue strengthening exercise protocols. The results will allow the development of more efficacious protocols. Current Controlled Trials ISRCTN14447678.

  9. Exercise Training, NADPH Oxidase p22phox Gene Polymorphisms, and Hypertension

    PubMed Central

    FEAIRHELLER, DEBORAH L.; BROWN, MICHAEL D.; PARK, JOON-YOUNG; BRINKLEY, TINA E.; BASU, SAMAR; HAGBERG, JAMES M.; FERRELL, ROBERT E.; FENTY-STEWART, NICOLA M.

    2010-01-01

    Introduction Oxidative stress that is mediated through NADPH oxidase activity plays a role in the pathology of hypertension, and aerobic exercise training reduces NADPH oxidase activity. The involvement of genetic variation in the p22phox (CYBA) subunit genes in individual oxidative stress responses to aerobic exercise training has yet to be examined in Pre and Stage 1 hypertensives. Methods Ninety-four sedentary Pre and Stage 1 hypertensive adults underwent 6 months of aerobic exercise training at a level of 70% V̇O2max to determine whether the CYBA polymorphisms, C242T and A640G, were associated with changes in urinary 8-iso-prostaglandin F2α (8-iso-PGF2α), urinary nitric oxide metabolites (NOx), and plasma total antioxidant capacity (TAC). Results Demographic and subject characteristics were similar among genotype groups for both polymorphisms. At baseline, a significant (P = 0.03) difference among the C2424T genotype groups in 8-iso-PGF2α levels was detected, with the TT homozygotes having the lowest levels and the CC homozygotes having the highest levels. However, no differences were found at baseline between the A640G genotype groups. After 6 months of aerobic exercise training, there was a significant increase in V̇O2max (P < 0.0001) in the entire study population. In addition, there were significant increases in both urinary 8-iso-PGF2α (P = 0.002) and plasma TAC (P = 0.03) levels and a significant decrease in endogenous urinary NOx (P < 0.0001). Overall, aerobic exercise training elicited no significant differences among genotype groups in either CYBA variant for any of the oxidative stress variables. Conclusions We found that compared with CYBA polymorphisms C242T and A640G, it was aerobic exercise training that had the greatest influence on the selected biomarkers; furthermore, our results suggest that the C242T CYBA variant influences baseline levels of urinary 8-iso-PGF2α but not the aerobic exercise-induced responses. PMID:19516159

  10. Preventing Australian football injuries with a targeted neuromuscular control exercise programme: comparative injury rates from a training intervention delivered in a clustered randomised controlled trial

    PubMed Central

    Twomey, Dara M; Fortington, Lauren V; Doyle, Tim L A; Elliott, Bruce C; Akram, Muhammad; Lloyd, David G

    2016-01-01

    Background Exercise-based training programmes are commonly used to prevent sports injuries but programme effectiveness within community men's team sport is largely unknown. Objective To present the intention-to-treat analysis of injury outcomes from a clustered randomised controlled trial in community Australian football. Methods Players from 18 male, non-elite, community Australian football clubs across two states were randomly allocated to either a neuromuscular control (NMC) (intervention n=679 players) or standard-practice (control n=885 players) exercise training programme delivered as part of regular team training sessions (2× weekly for 8-week preseason and 18-week regular-season). All game-related injuries and hours of game participation were recorded. Generalised estimating equations, adjusted for clustering (club unit), were used to compute injury incidence rates (IIRs) for all injuries, lower limb injuries (LLIs) and knee injuries sustained during games. The IIRs were compared across groups with cluster-adjusted Injury Rate Ratios (IRRs). Results Overall, 773 game injuries were recorded. The lower limb was the most frequent body region injured, accounting for 50% of injuries overall, 96 (12%) of which were knee injuries. The NMC players had a reduced LLI rate compared with control players (IRR: 0.78 (95% CI 0.56 to 1.08), p=0.14.) The knee IIR was also reduced for NMC compared with control players (IRR: 0.50 (95% CI 0.24 to 1.05), p=0.07). Conclusions These intention-to-treat results indicate that positive outcomes can be achieved from targeted training programmes for reducing knee and LLI injury rates in men's community sport. While not statistically significant, reducing the knee injury rate by 50% and the LLI rate by 22% is still a clinically important outcome. Further injury reductions could be achieved with improved training attendance and participation in the programme. PMID:26399611

  11. The Effects of Physical Exercise and Cognitive Training on Memory and Neurotrophic Factors.

    PubMed

    Heisz, Jennifer J; Clark, Ilana B; Bonin, Katija; Paolucci, Emily M; Michalski, Bernadeta; Becker, Suzanna; Fahnestock, Margaret

    2017-11-01

    This study examined the combined effect of physical exercise and cognitive training on memory and neurotrophic factors in healthy, young adults. Ninety-five participants completed 6 weeks of exercise training, combined exercise and cognitive training, or no training (control). Both the exercise and combined training groups improved performance on a high-interference memory task, whereas the control group did not. In contrast, neither training group improved on general recognition performance, suggesting that exercise training selectively increases high-interference memory that may be linked to hippocampal function. Individuals who experienced greater fitness improvements from the exercise training (i.e., high responders to exercise) also had greater increases in the serum neurotrophic factors brain-derived neurotrophic factor and insulin-like growth factor-1. These high responders to exercise also had better high-interference memory performance as a result of the combined exercise and cognitive training compared with exercise alone, suggesting that potential synergistic effects might depend on the availability of neurotrophic factors. These findings are especially important, as memory benefits accrued from a relatively short intervention in high-functioning young adults.

  12. Efficacy and Safety of Exercise Training in Patients With Chronic Heart Failure: HF-ACTION Randomized Controlled Trial

    PubMed Central

    O’Connor, Christopher M.; Whellan, David J.; Lee, Kerry L.; Keteyian, Steven J.; Cooper, Lawton S.; Ellis, Stephen J.; Leifer, Eric S.; Kraus, William E.; Kitzman, Dalane W.; Blumenthal, James A.; Rendall, David S.; Miller, Nancy Houston; Fleg, Jerome L.; Schulman, Kevin A.; McKelvie, Robert S.; Zannad, Faiez; Piña, Ileana L.

    2010-01-01

    Context Guidelines recommend that exercise training be considered for medically stable outpatients with heart failure. Previous studies have not had adequate statistical power to measure the effects of exercise training on clinical outcomes. Objective To test the efficacy and safety of exercise training among patients with heart failure. Design, Setting, and Patients Multicenter, randomized controlled trial among 2331 medically stable outpatients with heart failure and reduced ejection fraction. Participants in Heart Failure: A Controlled Trial Investigating Outcomes of Exercise Training (HF-ACTION) were randomized from April 2003 through February 2007 at 82 centers within the United States, Canada, and France; median follow-up was 30 months. Interventions Usual care plus aerobic exercise training, consisting of 36 supervised sessions followed by home-based training, or usual care alone. Main Outcome Measures Composite primary end point of all-cause mortality or hospitalization and prespecified secondary end points of all-cause mortality, cardiovascular mortality or cardiovascular hospitalization, and cardiovascular mortality or heart failure hospitalization. Results The median age was 59 years, 28% were women, and 37% had New York Heart Association class III or IV symptoms. Etiology was ischemic in 51%. Median left ventricular ejection fraction was 25%. Exercise adherence decreased from a median of 95 minutes per week during months 4 through 6 of follow-up to 74 minutes per week during months 10 through 12. A total of 759 (65%) patients in the exercise group died or were hospitalized, compared with 796 (68%) in the usual care group (hazard ratio [HR], 0.93; 95% confidence interval [CI], 0.84–1.02; P = .13). There were nonsignificant reductions in the exercise training group for mortality (189 [16%] in the exercise group vs 198 [17%] in the usual care group; HR, 0.96; 95% CI, 0.79–1.17; P = .70), cardiovascular mortality or cardiovascular hospitalization (632 [55%] in the exercise group vs 677 [58%] in the usual care group; HR, 0.92; 95% CI, 0.83–1.03; P = .14), and cardiovascular mortality or heart failure hospitalization (344 [30%] in the exercise group vs 393 [34%] in the usual care group; HR, 0.87; 95% CI, 0.75–1.00; P = .06). In prespecified supplementary analyses adjusting for highly prognostic baseline characteristics, the HRs were 0.89 (95% CI, 0.81–0.99; P = .03) for all-cause mortality or hospitalization, 0.91 (95% CI, 0.82–1.01; P = .09) for cardiovascular mortality or cardiovascular hospitalization, and 0.85 (95% CI, 0.74–0.99; P = .03) for cardiovascular mortality or heart failure hospitalization. Other adverse events were similar between the groups. Conclusions In the protocol-specified primary analysis, exercise training resulted in nonsignificant reductions in the primary end point of all-cause mortality or hospitalization and in key secondary clinical end points. After adjustment for highly prognostic predictors of the primary end point, exercise training was associated with modest significant reductions for both all-cause mortality or hospitalization and cardiovascular mortality or heart failure hospitalization. Trial Registration clinicaltrials.gov Identifier: NCT00047437 PMID:19351941

  13. A practical guide to exercise training for heart failure patients.

    PubMed

    Smart, Neil; Fang, Zhi You; Marwick, Thomas H

    2003-02-01

    Exercise training has been shown to improve exercise capacity in patients with heart failure. We sought to examine the optimal strategy of exercise training for patients with heart failure. Review of the published data on the characteristics of the training program, with comparison of physiologic markers of exercise capacity in heart failure patients and healthy individuals and comparison of the change in these characteristics after an exercise training program. Many factors, including the duration, supervision, and venue of exercise training; the volume of working muscle; the delivery mode (eg, continuous vs. intermittent exercise), training intensity; and the concurrent effects of medical treatments may influence the results of exercise training in heart failure. Starting in an individually prescribed and safely monitored hospital-based program, followed by progression to an ongoing and progressive home program of exercise appears to be the best solution to the barriers of anxiety, adherence, and "ease of access" encountered by the heart failure patient. Various exercise training programs have been shown to improve exercise capacity and symptom status in heart failure, but these improvements may only be preserved with an ongoing maintenance program.

  14. Effects of whole body vibration training on postural control in older individuals: a 1 year randomized controlled trial.

    PubMed

    Bogaerts, An; Verschueren, Sabine; Delecluse, Christophe; Claessens, Albrecht L; Boonen, Steven

    2007-07-01

    This randomized controlled trial investigated the effects of a 12 month whole body vibration training program on postural control in healthy older adults. Two hundred and twenty people were randomly assigned to a whole body vibration group (n=94), a fitness group (n=60) or a control group (n=66). The whole body vibration and fitness groups trained three times a week for 1 year. The vibration group performed exercises on a vibration platform and the fitness group performed cardiovascular, strength, balance and stretching exercises. Balance was measured using dynamic computerized posturography at baseline and after 6 and 12 months. Whole body vibration training was associated with reduced falls frequency on a moving platform when vision was disturbed and improvements in the response to toes down rotations at the ankle induced by the moving platform. The fitness group showed reduced falls frequency on the moving surface when vision was disturbed. Thus, whole body vibration training may improve some aspects of postural control in community dwelling older individuals.

  15. Effects of two programs of exercise on body composition of adolescents with Down syndrome

    PubMed Central

    Seron, Bruna Barboza; Silva, Renan Alvarenga C.; Greguol, Márcia

    2014-01-01

    Objective: To investigate the effects of a 12 week aerobic and resistance exercise on body composition of adolescents with Down syndrome. Methods: A quasi-experimental study with 41 adolescents with Down syndrome, aged 15.5±2.7 years, divided into three groups: Aerobic Training Group (ATG; n=16), Resisted Training Group (RTG; n=15) and Control Group (CG; n=10). There were two types of training: aerobic, with intensity of 50-70% of the heart rate reserve 3 times/week, and resisted, with intensity of 12 maximum repetitions 2 times week. Both trainings were applied during a 12-week period. The percentage of fat evaluation was performed using plethysmography with Bod Pod(r) equipment. Waist circumference (WC), body weight and height were also measured. Paired t-test was used to compare variables before and after the exercise program. Results: The percentage of body fat did not change significantly for both groups that participated in the training intervention. However, CG showed a significant increase in this variable (31.3±7.2 versus 34.0±7.9). On the other hand, body mass index (BMI) and WC were significantly reduced for ATG (BMI: 27.0±4.4 and 26.5±4.2; WC: 87.3±11.1 and 86.2±9.7), while RTG and GC showed no differences in these variables. Conclusions: The aerobic and resisted training programs maintained body fat levels. ATG significantly reduced BMI and WC measures. Individuals who did not attend the training intervention increased their percentage of fat. PMID:24676196

  16. Chronic aerobic exercise training alleviates myocardial fibrosis in aged rats through restoring bioavailability of hydrogen sulfide.

    PubMed

    Ma, Ning; Liu, Hong-Mei; Xia, Ting; Liu, Jian-Dong; Wang, Xiao-Ze

    2018-06-02

    Age-related fibrosis is attenuated by aerobic exercise; however, little is known concerning the underlying molecular mechanism. To address this question, aged rats were given moderate-intensity exercise for 12 weeks. After exercise in aged rats, hydrogen sulfide (H2S) levels in plasma and heart increased 39.8% and 90.9%, respectively. Exercise upregulated expression of cystathionine γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST) in heart of aged rats. Furthermore, aged rats were given moderate-intensity exercise for 12 weeks or treated with NaHS (intraperitoneal injection of 0.1 ml/kg/day of 0.28 mol/l NaHS). After exercise in aged rats, Masson-trichrome staining area decreased 34.8% and myocardial hydroxyproline levels decreased 29.6%. Exercise downregulated expression of collagen-I and α-SMA in heart of aged rats. Exercise in aged rats reduced malondialdehyde levels in plasma and heart and 3-nitrotyrosine in heart. Exercise in aged rats reduced mRNA and protein expression of CHOP, GRP78, and XBP1. Exercise also reduced mRNA and protein expression of IL-6 and MCP-1 and suppressed activation of JNK in aging heart. Similar effects were demonstrated in aged rats treated with NaHS. Collectively, exercise restored bioavailability of hydrogen sulfide in the heart of aged rats, which partly explained the benefits of exercise against myocardial fibrosis of aged population.

  17. Exercise associated hormonal signals as powerful determinants of an effective fat mass loss.

    PubMed

    Bajer, B; Vlcek, M; Galusova, A; Imrich, R; Penesova, A

    2015-07-01

    Obesity management for achieving an effective weight loss includes dietary modification and exercise [resistance (strength), endurance (cardiovascular) or intervals training (high-intensity intermittent exercise)]. Regular exercise acutely increases fat oxidation, which induces loss of fat mass and increases energy expenditure. Moreover, it has a positive effect on the physical (improved insulin sensitivity, lipid profile, etc.) and mental health (mood, cognition, memory, sleep, etc.). Endocrine responses to muscle actions are affected by many factors, including the exercise muscle groups (lower and upper body), load/volume, time-under tension, and rest-period intervals between sets, training status, gender, and age. The aim of this review is to summarize, evaluate, and clarify the literature data focusing on the endocrine responses to different types of exercise, including the frequency, intensity, and type of movement with regard to the fat loss strategies. Many studies have investigated anabolic [growth hormone, insulin-like growth factor-1 (IGF-1), testosterone] and gluco- and appetite- regulatory (insulin, cortisol, ghrelin) hormone responses and adaptations of skeletal muscles to exercise. Muscle tissue is a critical endocrine organ, playing important role in the regulation of several physiological and metabolic events. Moreover, we are also describing the response of some other substances to exercise, such as myokines [irisin, apelin, brain-derived neurotrophic factor (BDNF), myostatin, and fibroblast growth factor 21 (FGF21)]. It is proposed that reducing intra-abdominal fat mass and increasing cardiorespiratory fitness through improving nutritional quality, reducing sedentary behavior, and increase the participation in physical activity/exercise, might be associated with clinical benefits, sometimes even in the absence of weight loss.

  18. Muscle uncoupling protein 3 overexpression mimics endurance training and reduces circulating biomarkers of incomplete β-oxidation

    PubMed Central

    Aguer, Céline; Fiehn, Oliver; Seifert, Erin L.; Bézaire, Véronic; Meissen, John K.; Daniels, Amanda; Scott, Kyle; Renaud, Jean-Marc; Padilla, Marta; Bickel, David R.; Dysart, Michael; Adams, Sean H.; Harper, Mary-Ellen

    2013-01-01

    Exercise substantially improves metabolic health, making the elicited mechanisms important targets for novel therapeutic strategies. Uncoupling protein 3 (UCP3) is a mitochondrial inner membrane protein highly selectively expressed in skeletal muscle. Here we report that moderate UCP3 overexpression (roughly 3-fold) in muscles of UCP3 transgenic (UCP3 Tg) mice acts as an exercise mimetic in many ways. UCP3 overexpression increased spontaneous activity (∼40%) and energy expenditure (∼5–10%) and decreased oxidative stress (∼15–20%), similar to exercise training in wild-type (WT) mice. The increase in complete fatty acid oxidation (FAO; ∼30% for WT and ∼70% for UCP3 Tg) and energy expenditure (∼8% for WT and 15% for UCP3 Tg) in response to endurance training was higher in UCP3 Tg than in WT mice, showing an additive effect of UCP3 and endurance training on these two parameters. Moreover, increases in circulating short-chain acylcarnitines in response to acute exercise in untrained WT mice were absent with training or in UCP3 Tg mice. UCP3 overexpression had the same effect as training in decreasing long-chain acylcarnitines. Outcomes coincided with a reduction in muscle carnitine acetyltransferase activity that catalyzes the formation of acylcarnitines. Overall, results are consistent with the conclusions that circulating acylcarnitines could be used as a marker of incomplete muscle FAO and that UCP3 is a potential target for the treatment of prevalent metabolic diseases in which muscle FAO is affected.—Aguer, C., Fiehn, O., Seifert, E. L., Bézaire, V., Meissen, J. K., Daniels, A., Scott, K., Renaud, J.-M., Padilla, M., Bickel, D. R., Dysart, M., Adams, S. H., Harper, M.-E. Muscle uncoupling protein 3 overexpression mimics endurance training and reduces circulating biomarkers of incomplete β-oxidation. PMID:23825224

  19. High-intensity exercise training for the prevention of type 2 diabetes mellitus.

    PubMed

    Rynders, Corey A; Weltman, Arthur

    2014-02-01

    Aerobic exercise training and diet are recommended for the primary prevention of type 2 diabetes mellitus and cardiovascular disease. The American Diabetes Association (ADA) recommends that adults with prediabetes engage in ≥ 150 minutes per week of moderate activity and target a 7% weight loss. However, traditional moderate-intensity (MI) exercise training programs are often difficult to sustain for prediabetic adults; a commonly cited barrier to physical activity in this population is the "lack of time" to exercise. When matched for total energy expenditure, high-intensity (HI) exercise training has a lower overall time commitment compared with traditional low-intensity (LI) or MI exercise training. Several recent studies comparing HI exercise training with LI and MI exercise training reported that HI exercise training improves skeletal muscle metabolic control and cardiovascular function in a comparable and/or superior way relative to LI and MI exercise training. Although patients can accrue all exercise benefits by performing LI or MI activities such as walking, HI activities represent a time-efficient alternative to meeting physical activity guidelines. High-intensity exercise training is a potent tool for improving cardiometabolic risk for prediabetic patients with limited time and may be prescribed when appropriate.

  20. Water-based exercise training for chronic obstructive pulmonary disease.

    PubMed

    McNamara, Renae J; McKeough, Zoe J; McKenzie, David K; Alison, Jennifer A

    2013-12-18

    Land-based exercise training improves exercise capacity and quality of life in people with chronic obstructive pulmonary disease (COPD). Water-based exercise training is an alternative mode of physical exercise training that may appeal to the older population attending pulmonary rehabilitation programmes, those who are unable to complete land-based exercise programmes and people with COPD with comorbid physical and medical conditions. To assess the effects of water-based exercise training in people with COPD. A search of the Cochrane Airways Group Specialised Register of trials, which is derived from systematic searches of bibliographic databases, including the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL, AMED and PsycINFO, was conducted (from inception to August 2013). Handsearching was done to identify further qualifying studies from reference lists of relevant studies. Review authors included randomised or quasi-randomised controlled trials in which water-based exercise training of at least four weeks' duration was compared with no exercise training or any other form of exercise training in people with COPD. Swimming was excluded. We used standard methodological procedures expected by The Cochrane Collaboration. Five studies were included with a total of 176 participants (71 people participated in water-based exercise training and 54 in land-based exercise training; 51 completed no exercise training). All studies compared supervised water-based exercise training versus land-based exercise training and/or no exercise training in people with COPD (with average forced expiratory volume in one second (FEV1) %predicted ranging from 39% to 62%). Sample sizes ranged from 11 to 53 participants. The exercise training programmes lasted from four to 12 weeks, and the mean age of participants ranged from 57 to 73 years. A moderate risk of bias was due to lack of reporting of randomisation, allocation and blinding procedures in some studies, as well as small sample sizes.Compared with no exercise, water-based exercise training improved the six-minute walk distance (mean difference (MD) 62 metres; 95% confidence interval (CI) 44 to 80 metres; three studies; 99 participants; moderate quality evidence), the incremental shuttle walk distance (MD 50 metres; 95% CI 20 to 80 metres; one study; 30 participants; high quality evidence) and the endurance shuttle walk distance (MD 371 metres; 95% CI 121 to 621 metres; one study; 30 participants; high quality evidence). Quality of life was also improved after water-based exercise training compared with no exercise (standardised mean difference (SMD) -0.97, 95% CI -0.37 to -1.57; two studies; 49 participants; low quality evidence). Compared with land-based exercise training, water-based exercise training did not significantly change the six-minute walk distance (MD 11 metres; 95% CI -11 to 33 metres; three studies; 62 participants; moderate quality evidence) or the incremental shuttle walk distance (MD 9 metres; 95% CI -15 to 34 metres; two studies; 59 participants; low quality evidence). However, the endurance shuttle walk distance improved following water-based exercise training compared with land-based exercise training (MD 313 metres; 95% CI 232 to 394 metres; two studies; 59 participants; moderate quality evidence). No significant differences were found between water-based exercise training and land-based exercise training for quality of life, as measured by the St George's Respiratory Questionnaire or by three of four domains of the Chronic Respiratory Disease Questionnaire (CRDQ); however, the fatigue domain of the CRDQ showed a statistically significant difference in favour of water-based exercise (MD -3.00; 95% CI -5.26 to -0.74; one study; 30 participants). Only one study reported long-term outcomes after water-based exercise training for quality of life and body composition, and no significant change was observed between baseline results and six-month follow-up results. One minor adverse event was reported for water-based exercise training (based on reporting from two studies; 20 participants). Impact of disease severity could not be examined because data were insufficient. There is limited quality evidence that water-based exercise training is safe and improves exercise capacity and quality of life in people with COPD immediately after training. There is limited quality evidence that water-based exercise training offers advantages over land-based exercise training in improving endurance exercise capacity, but we remain uncertain as to whether it leads to better quality of life. Little evidence exists examining the long-term effect of water-based exercise training.

  1. Efficacy and position of endurance training as a non-drug therapy in the treatment of arterial hypertension.

    PubMed

    Ketelhut, R G; Franz, I W; Scholze, J

    1997-10-01

    Regular conditioning has been well documented to exert a beneficial effect on cardiovascular risk factors and to improve overall cardiovascular health and to reduce the incidence of coronary disease. There are conflicting results concerning the effect of physical exercise on blood pressure (BP) in hypertensive patients and its importance in the treatment of hypertension. Therefore 10 male patients with mild arterial hypertension were studied in order to define the BP response to long-term aerobic training (60 min twice a week) under resting conditions, during standardised ergometric workload, during isometric exercise, during cold pressor testing and during 24-h BP monitoring. After 18 months of regular training there were significant reductions in arterial pressures at rest, during and after standardised ergometry and during isometric and cold pressor testing when compared with pre-training. The heart rate also decreased significantly during exercise testing thus implying a decrease in myocardial oxygen consumption. After long-term training, a reduction in systolic and diastolic BP could also be shown during 24-h ambulatory BP monitoring. These results demonstrate that long-term aerobic training leads to a decrease in systolic and diastolic BP at rest, during exercise and during 24-h BP monitoring and imply a beneficial effect in the management of hypertension that is nearly comparable to that of drug therapy.

  2. Haemophilia and exercise.

    PubMed

    Souza, J C; Simoes, H G; Campbell, C S G; Pontes, F L; Boullosa, D A; Prestes, J

    2012-02-01

    One of the most important objectives of intervention programs for persons with haemophilia (PWH) is to improve their quality of life. Regular physical activity has been recommended as an adjunct to conventional treatment, with positive results in the prevention of joint problems and bleeding, in addition to the improvement in cardiovascular function, muscle strength, and body composition. The objective of the present review was to present the benefits of aerobic and resistance training programs in PWH, as well to discuss the best exercise dose-response in the different levels of disease severity. We considered randomized controlled trials, study cases and literature reviews from MEDLINE and Highwire databases. After a detailed analysis of the studies involving exercise for PWH, it can be concluded that this intervention elicits some benefits for physical fitness and blood coagulation mechanisms, suggesting the application of physical training as a non pharmacological treatment in association with conventional treatment. Adequate and periodized resistance training considering the disease severity, accompanied by physical education professionals could improve muscle strength, balance and proprioception. In addition, aerobic training could reduce the risks of obesity and several metabolic and cardiovascular diseases. Exercise can improve several outcomes of quality in PWH. © Georg Thieme Verlag KG Stuttgart · New York.

  3. Effects of exercise training and detraining on cutaneous microvascular function in man: the regulatory role of endothelium-dependent dilation in skin vasculature.

    PubMed

    Wang, Jong-Shyan

    2005-01-01

    This study investigated how exercise training and detraining affect the cutaneous microvascular function and the regulatory role of endothelium-dependent dilation in skin vasculature. Ten healthy sedentary subjects cycled on an ergometer at 50% of maximal oxygen uptake (VO(2max)) for 30 min daily, 5 days a week, for 8 weeks, and then detrained for 8 weeks. Plasma nitric oxide (NO) metabolites (nitrite plus nitrate) were measured by a microplate fluorometer. The cutaneous microvascular perfusion responses to six graded levels of iontophoretically applied 1% acetylcholine (ACh) and 1% sodium nitroprusside (SNP) in the forearm skin were determined by laser Doppler. After training, (1) resting heart rate and blood pressure were reduced, whereas VO(2max), skin blood flow and cutaneous vascular conductance to acute exercise were enhanced; (2) plasma NO metabolite levels and ACh-induced cutaneous perfusion were increased; (3) skin vascular responses to SNP did not change significantly. However, detraining reversed these effects on cutaneous microvascular function and plasma NO metabolite levels. The results suggest that endothelium-dependent dilation in skin vasculature is enhanced by moderate exercise training and reversed to the pretraining state with detraining.

  4. Interval Training.

    ERIC Educational Resources Information Center

    President's Council on Physical Fitness and Sports, Washington, DC.

    Regardless of the type of physical activity used, interval training is simply repeated periods of physical stress interspersed with recovery periods during which activity of a reduced intensity is performed. During the recovery periods, the individual usually keeps moving and does not completely recover before the next exercise interval (e.g.,…

  5. Original Research: ACE2 activator associated with physical exercise potentiates the reduction of pulmonary fibrosis

    PubMed Central

    Prata, Luana O; Rodrigues, Carolina R; Martins, Jéssica M; Vasconcelos, Paula C; Oliveira, Fabrício Marcus S; Ferreira, Anderson J; Rodrigues-Machado, Maria da Glória

    2016-01-01

    The interstitial lung diseases are poorly understood and there are currently no studies evaluating the association of physical exercise with an ACE2 activator (DIZE) as a possible treatment for this group of diseases. We evaluate the effects of pharmacological treatment with an angiotensin-converting enzyme 2 activator drug, associated with exercise, on the pulmonary lesions induced by bleomycin. From the 96 male Balb/c mice used in the experiment, only 49 received 8 U/kg of bleomycin (BLM, intratracheally). The mice were divided into control (C) and bleomycin (BLM) groups, sedentary and trained (C-SED, C-EXE, BLM-SED, BLM-EXE), control and bleomycin and also sedentary and trained treated with diminazene (C-SED/E, C-EXE/E, BLM-SED/E, BLM-EXE/E). The animals were trained five days/week, 1 h/day with 60% of the maximum load obtained in a functional capacity test, for four weeks. Diminazene groups were treated (1 mg/kg, by gavage) daily until the end of the experiment. The lungs were collected 48 h after the training program, set in buffered formalin and investigated by Gomori’s trichrome, immunohistochemistry of collagen type I, TGF-β1, beta-prolyl-4-hydroxylase, MMP-1 and -2. The BLM-EXE/E group obtained a significant increase in functional capacity, reduced amount of fibrosis and type I collagen, decreased expression of TGF-β1 and beta-prolyl-4-hydroxylase and an increase of metalloproteinase −1, −2 when compared with the other groups. The present research shows, for the first time, that exercise training associated with the activation of ACE2 potentially reduces pulmonary fibrosis. PMID:27550926

  6. Effects of endurance exercise training, metformin, and their combination on adipose tissue leptin and IL-10 secretion in OLETF rats

    PubMed Central

    Padilla, Jaume; Arce-Esquivel, Arturo A.; Bayless, David S.; Martin, Jeffrey S.; Leidy, Heather J.; Booth, Frank W.; Rector, R. Scott; Laughlin, M. Harold

    2012-01-01

    Adipose tissue inflammation plays a role in cardiovascular (CV) and metabolic diseases associated with obesity, insulin resistance, and type 2 diabetes mellitus (T2DM). The interactive effects of exercise training and metformin, two first-line T2DM treatments, on adipose tissue inflammation are not known. Using the hyperphagic, obese, insulin-resistant Otsuka Long-Evans Tokushima Fatty (OLETF) rat model, we tested the hypothesis that treadmill training, metformin, or a combination of these reduces the secretion of proinflammatory cytokines from adipose tissue. Compared with Long-Evans Tokushima Otsuka (LETO) control rats (L-Sed), sedentary OLETF (O-Sed) animals secreted significantly greater amounts of leptin from retroperitoneal adipose tissue. Conversely, secretion of interleukin (IL)-10 by O-Sed adipose tissue was lower than that in L-Sed animals. Examination of leptin and IL-10 secretion from adipose tissue in OLETF groups treated with endurance exercise training (O-EndEx), metformin treatment (O-Met), and a combination of these (O-E+M) from 20 to 32 wk of age indicated that 1) leptin secretion from adipose tissue was reduced in O-Met and O-E+M, but not O-EndEx animals; 2) adipose tissue IL-10 secretion was increased in O-EndEx and O-E+M but not in O-Met animals; and 3) only the combined treatment (O-E+M) displayed both a reduction in leptin secretion and an increase in IL-10 secretion. Leptin and IL-10 concentrations in adipose tissue–conditioned buffers were correlated with their plasma concentrations, adipocyte diameters, and total adiposity. Overall, this study indicates that exercise training and metformin have additive influences on adipose tissue secretion and plasma concentrations of leptin and IL-10. PMID:23019312

  7. Sildenafil has little influence on cardiovascular hemodynamics or 6-km time trial performance in trained men and women at simulated high altitude.

    PubMed

    Jacobs, Kevin A; Kressler, Jochen; Stoutenberg, Mark; Roos, Bernard A; Friedlander, Anne L

    2011-01-01

    Sildenafil improves maximal exercise capacity at high altitudes (∼4350-5800 m) by reducing pulmonary arterial pressure and enhancing oxygen delivery, but the effects on exercise performance at less severe altitudes are less clear. To determine the effects of sildenafil on cardiovascular hemodynamics (heart rate, stroke volume, and cardiac output), arterial oxygen saturation (SaO2), and 6-km time-trial performance of endurance-trained men and women at a simulated altitude of ∼3900 m. Twenty men and 15 women, endurance-trained, completed one experimental exercise trial (30 min at 55% of altitude-specific capacity +6-km time trial) at sea level (SL) and two trials at simulated high altitude (HA) while breathing hypoxic gas (12.8% FIo2) after ingestion of either placebo or 50 mg sildenafil in double-blind, randomized, and counterbalanced fashion. Maximal exercise capacity and SaO2 were significantly reduced at HA compared to SL (18%-23%), but sildenafil did not significantly improve cardiovascular hemodynamics or time-trial performance in either men or women compared to placebo and only improved SaO2 in women (4%). One male subject (5% of male subjects, 2.8% of all subjects) exhibited a meaningful 36-s improvement in time-trial performance with sildenafil compared to placebo. In this group of endurance trained men and women, sildenafil had very little influence on cardiovascular hemodynamics, SaO2, and 6-km time-trial performance at a simulated altitude of ∼3900 m. It appears that a very small percentage of endurance-trained men and women derive meaningful improvements in aerobic performance from sildenafil at a simulated altitude of ∼3900 m.

  8. Aerobic exercise enhances neural correlates of motor skill learning.

    PubMed

    Singh, Amaya M; Neva, Jason L; Staines, W Richard

    2016-03-15

    Repetitive, in-phase bimanual motor training tasks can expand the excitable cortical area of the trained muscles. Recent evidence suggests that an acute bout of moderate-intensity aerobic exercise can enhance the induction of rapid motor plasticity at the motor hotspot. However, these changes have not been investigated throughout the entire cortical representation. Furthermore, it is unclear how exercise-induced changes in excitability may relate to motor performance. We investigated whether aerobic exercise could enhance the neural correlates of motor learning. We hypothesized that the combination of exercise and training would increase the excitable cortical area to a greater extent than either exercise or training alone, and that the addition of exercise would enhance performance on a motor training task. 25 young, healthy, right-handed individuals were recruited and divided into two groups and three experimental conditions. The exercise group performed exercise alone (EX) and exercise followed by training (EXTR) while the training group performed training alone (TR). The combination of exercise and training increased excitability within the cortical map of the trained muscle to a greater extent than training alone. However, there was no difference in performance between the two groups. These results indicate that exercise may enhance the cortical adaptations to motor skill learning. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Recommendations for natural bodybuilding contest preparation: resistance and cardiovascular training.

    PubMed

    Helms, E R; Fitschen, P J; Aragon, A A; Cronin, J; Schoenfeld, B J

    2015-03-01

    The anabolic effect of resistance training can mitigate muscle loss during contest preparation. In reviewing relevant literature, we recommend a periodized approach be utilized. Block and undulating models show promise. Muscle groups should be trained 2 times weekly or more, although high volume training may benefit from higher frequencies to keep volume at any one session from becoming excessive. Low to high (~3-15) repetitions can be utilized but most repetitions should occur in the 6-12 range using 70-80% of 1 repetition maximum. Roughly 40-70 reps per muscle group per session should be performed, however higher volume may be appropriate for advanced bodybuilders. Traditional rest intervals of 1-3 minutes are adequate, but longer intervals can be used. Tempo should allow muscular control of the load; 1-2 s concentric and 2-3 s eccentric tempos. Training to failure should be limited when performing heavy loads on taxing exercises, and primarily relegated to single-joint exercises and higher repetitions. A core of multi-joint exercises with some single-joint exercises to address specific muscle groups as needed should be used, emphasizing full range of motion and proper form. Cardiovascular training can be used to enhance fat loss. Interference with strength training adaptations increases concomitantly with frequency and duration of cardiovascular training. Thus, the lowest frequency and duration possible while achieving sufficient fat loss should be used. Full-body modalities or cycling may reduce interference. High intensities may as well; however, require more recovery. Fasted cardiovascular training may not have benefits over fed-state and could be detrimental.

  10. Exercise training improves endothelial function in resistance arteries of young prehypertensives.

    PubMed

    Beck, D T; Martin, J S; Casey, D P; Braith, R W

    2014-05-01

    Prehypertension is associated with reduced conduit artery endothelial function and perturbation of oxidant/antioxidant status. It is unknown whether endothelial dysfunction persists to resistance arteries and whether exercise training affects oxidant/antioxidant balance in young prehypertensives. We examined resistance artery function using venous occlusion plethysmography measurement of forearm (FBF) and calf blood flow (CBF) at rest and during reactive hyperaemia (RH), as well as lipid peroxidation (8-iso-PGF2α) and antioxidant capacity (Trolox-equivalent antioxidant capacity; TEAC) before and after exercise intervention or time control. Forty-three unmedicated prehypertensive and 15 matched normotensive time controls met screening requirements and participated in the study (age: 21.1±0.8 years). Prehypertensive subjects were randomly assigned to resistance exercise training (PHRT; n=15), endurance exercise training (PHET; n=13) or time-control groups (PHTC; n=15). Treatment groups exercised 3 days per week for 8 weeks. Peak and total FBF were lower in prehypertensives than normotensives (12.7±1.2 ml min(-1) per100 ml tissue and 89.1±7.7 ml min(-1) per 100 ml tissue vs 16.3±1.0 ml min(-1) per 100 ml tissue and 123.3±6.4 ml min(-1) per 100 ml tissue, respectively; P<0.05). Peak and total CBF were lower in prehypertensives than normotensives (15.3±1.2 ml min(-1) per 100 ml tissue and 74±8.3 ml min(-1) per 100 ml tissue vs 20.9±1.4 ml min(-1) per 100 ml tissue and 107±9.2 ml min(-1) per 100 ml tissue, respectively; P<0.05). PHRT and PHET improved humoral measures of TEAC (+24 and +30%) and 8-iso-PGF2α (-43 and -40%, respectively; P < or = 0.05). This study provides evidence that young prehypertensives exhibit reduced resistance artery endothelial function and that short-term (8 weeks) resistance or endurance training are effective in improving resistance artery endothelial function and oxidant/antioxidant balance in young prehypertensives.

  11. Potential benefits of exercise on blood pressure and vascular function.

    PubMed

    Pal, Sebely; Radavelli-Bagatini, Simone; Ho, Suleen

    2013-01-01

    Physical activity seems to enhance cardiovascular fitness during the course of the lifecycle, improve blood pressure, and is associated with decreased prevalence of hypertension and coronary heart disease. It may also delay or prevent age-related increases in arterial stiffness. It is unclear if specific exercise types (aerobic, resistance, or combination) have a better effect on blood pressure and vascular function. This review was written based on previous original articles, systematic reviews, and meta-analyses indexed on PubMed from years 1975 to 2012 to identify studies on different types of exercise and the associations or effects on blood pressure and vascular function. In summary, aerobic exercise (30 to 40 minutes of training at 60% to 85% of predicted maximal heart rate, most days of the week) appears to significantly improve blood pressure and reduce augmentation index. Resistance training (three to four sets of eight to 12 repetitions at 10 repetition maximum, 3 days a week) appears to significantly improve blood pressure, whereas combination exercise training (15 minutes of aerobic and 15 minutes of resistance, 5 days a week) is beneficial to vascular function, but at a lower scale. Aerobic exercise seems to better benefit blood pressure and vascular function. Copyright © 2013 American Society of Hypertension. Published by Elsevier Inc. All rights reserved.

  12. Hydration during intense exercise training.

    PubMed

    Maughan, R J; Meyer, N L

    2013-01-01

    Hydration status has profound effects on both physical and mental performance, and sports performance is thus critically affected. Both overhydration and underhydration - if sufficiently severe - will impair performance and pose a risk to health. Athletes may begin exercise in a hypohydrated state as a result of incomplete recovery from water loss induced in order to achieve a specific body mass target or due to incomplete recovery from a previous competition or training session. Dehydration will also develop in endurance exercise where fluid intake does not match water loss. The focus has generally been on training rather than on competition, but sweat loss and fluid replacement in training may have important implications. Hypohydration may impair training quality and may also increase stress levels. It is unclear whether this will have negative effects (reduced training quality, impaired immunity) or whether it will promote a greater adaptive response. Hypohydration and the consequent hyperthermia, however, can enhance the effectiveness of a heat acclimation program, resulting in improved endurance performance in warm and temperate environments. Drinking in training may be important in enhancing tolerance of the gut when athletes plan to drink in competition. The distribution of water between body water compartments may also be important in the initiation and promotion of cellular adaptations to the training stimulus. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  13. Exercise reverses metabolic syndrome in high-fat diet-induced obese rats.

    PubMed

    Touati, Sabeur; Meziri, Fayçal; Devaux, Sylvie; Berthelot, Alain; Touyz, Rhian M; Laurant, Pascal

    2011-03-01

    Chronic consumption of a high-fat diet induces obesity. We investigated whether exercise would reverse the cardiometabolic disorders associated with obesity without it being necessary to change from a high- to normal-fat diet. Sprague-Dawley rats were placed on a high-fat (HFD) or control diet (CD) for 12 wk. HFD rats were then divided into four groups: sedentary HFD (HFD-S), exercise trained (motor treadmill for 12 wk) HFD (HFD-Ex), modified diet (HFD to CD; HF/CD-S), and exercise trained with modified diet (HF/CD-Ex). Cardiovascular risk parameters associated with metabolic syndrome were measured, and contents of aortic Akt, phospho-Akt at Ser (473), total endothelial nitric oxide synthase (eNOS), and phospho-eNOS at Ser (1177) were determined by Western blotting. Chronic consumption of HFD induced a metabolic syndrome. Exercise and dietary modifications reduced adiposity, improved glucose and insulin levels and plasma lipid profile, and exerted an antihypertensive effect. Exercise was more effective than dietary modification in improving plasma levels of thiobarbituric acid-reacting substance and in correcting the endothelium-dependent relaxation to acetylcholine and insulin. Furthermore, independent of the diet used, exercise increased Akt and eNOS phosphorylation. Metabolic syndrome induced by HFD is reversed by exercise and diet modification. It is demonstrated that exercise training induces these beneficial effects without the requirement for dietary modification, and these beneficial effects may be mediated by shear stress-induced Akt/eNOS pathway activation. Thus, exercise may be an effective strategy to reverse almost all the atherosclerotic risk factors linked to obesity, particularly in the vasculature.

  14. A Single Bout of High-Intensity Interval Training Improves Motor Skill Retention in Individuals With Stroke.

    PubMed

    Nepveu, Jean-Francois; Thiel, Alexander; Tang, Ada; Fung, Joyce; Lundbye-Jensen, Jesper; Boyd, Lara A; Roig, Marc

    2017-08-01

    One bout of high-intensity cardiovascular exercise performed immediately after practicing a motor skill promotes changes in the neuroplasticity of the motor cortex and facilitates motor learning in nondisabled individuals. To determine if a bout of exercise performed at high intensity is sufficient to induce neuroplastic changes and improve motor skill retention in patients with chronic stroke. Twenty-two patients with different levels of motor impairment were recruited. On the first session, the effects of a maximal graded exercise test on corticospinal and intracortical excitability were assessed from the affected and unaffected primary motor cortex representational area of a hand muscle with transcranial magnetic stimulation. On the second session, participants were randomly assigned to an exercise or a nonexercise control group. Immediately after practicing a motor task, the exercise group performed 15 minutes of high-intensity interval training while the control group rested. Twenty-four hours after motor practice all participants completed a test of the motor task to assess skill retention. The graded exercise test reduced interhemispheric imbalances in GABA A -mediated short-interval intracortical inhibition but changes in other markers of excitability were not statistically significant. The group that performed high-intensity interval training showed a better retention of the motor skill. The performance of a maximal graded exercise test triggers only modest neuroplastic changes in patients with chronic stroke. However, a single bout of high-intensity interval training performed immediately after motor practice improves skill retention, which could potentially accelerate motor recovery in these individuals.

  15. Beneficial effects of physical activity in an HIV-infected woman with lipodystrophy: a case report

    PubMed Central

    2011-01-01

    Introduction Lipodystrophy is common in patients infected with human immunodeficiency virus receiving highly active antiretroviral therapy, and presents with morphologic changes and metabolic alterations that are associated with depressive behavior and reduced quality of life. We examined the effects of exercise training on morphological changes, lipid profile and quality of life in a woman with human immunodeficiency virus presenting with lipodystrophy. Case presentation A 31-year-old Latin-American Caucasian woman infected with human immunodeficiency virus participated in a 12-week progressive resistance exercise training program with an aerobic component. Her weight, height, skinfold thickness, body circumferences, femur and humerus diameter, blood lipid profile, maximal oxygen uptake volume, exercise duration, strength and quality of life were assessed pre-exercise and post-exercise training. After 12 weeks, she exhibited reductions in her total subcutaneous fat (18.5%), central subcutaneous fat (21.0%), peripheral subcutaneous fat (10.7%), waist circumference (WC) (4.5%), triglycerides (9.9%), total cholesterol (12.0%) and low-density lipoprotein cholesterol (8.6%). She had increased body mass (4.6%), body mass index (4.37%), humerus and femur diameter (3.0% and 2.3%, respectively), high-density lipoprotein cholesterol (16.7%), maximal oxygen uptake volume (33.3%), exercise duration (37.5%) and strength (65.5%). Quality of life measures improved mainly for psychological and physical measures, independence and social relationships. Conclusions These findings suggest that supervised progressive resistance exercise training is a safe and effective treatment for evolving morphologic and metabolic disorders in adults infected with HIV receiving highly active antiretroviral therapy, and improves their quality of life. PMID:21892961

  16. Beneficial effects of physical activity in an HIV-infected woman with lipodystrophy: a case report.

    PubMed

    Mendes, Edmar Lacerda; Ribeiro Andaki, Alynne Christian; Brito, Ciro José; Córdova, Cláudio; Natali, Antônio José; Santos Amorim, Paulo Roberto Dos; de Oliveira, Leandro Licursi; de Paula, Sérgio Oliveira; Mutimura, Eugene

    2011-09-05

    Lipodystrophy is common in patients infected with human immunodeficiency virus receiving highly active antiretroviral therapy, and presents with morphologic changes and metabolic alterations that are associated with depressive behavior and reduced quality of life. We examined the effects of exercise training on morphological changes, lipid profile and quality of life in a woman with human immunodeficiency virus presenting with lipodystrophy. A 31-year-old Latin-American Caucasian woman infected with human immunodeficiency virus participated in a 12-week progressive resistance exercise training program with an aerobic component. Her weight, height, skinfold thickness, body circumferences, femur and humerus diameter, blood lipid profile, maximal oxygen uptake volume, exercise duration, strength and quality of life were assessed pre-exercise and post-exercise training. After 12 weeks, she exhibited reductions in her total subcutaneous fat (18.5%), central subcutaneous fat (21.0%), peripheral subcutaneous fat (10.7%), waist circumference (WC) (4.5%), triglycerides (9.9%), total cholesterol (12.0%) and low-density lipoprotein cholesterol (8.6%). She had increased body mass (4.6%), body mass index (4.37%), humerus and femur diameter (3.0% and 2.3%, respectively), high-density lipoprotein cholesterol (16.7%), maximal oxygen uptake volume (33.3%), exercise duration (37.5%) and strength (65.5%). Quality of life measures improved mainly for psychological and physical measures, independence and social relationships. These findings suggest that supervised progressive resistance exercise training is a safe and effective treatment for evolving morphologic and metabolic disorders in adults infected with HIV receiving highly active antiretroviral therapy, and improves their quality of life.

  17. New strategies in sport nutrition to increase exercise performance.

    PubMed

    Close, G L; Hamilton, D L; Philp, A; Burke, L M; Morton, J P

    2016-09-01

    Despite over 50 years of research, the field of sports nutrition continues to grow at a rapid rate. Whilst the traditional research focus was one that centred on strategies to maximise competition performance, emerging data in the last decade has demonstrated how both macronutrient and micronutrient availability can play a prominent role in regulating those cell signalling pathways that modulate skeletal muscle adaptations to endurance and resistance training. Nonetheless, in the context of exercise performance, it is clear that carbohydrate (but not fat) still remains king and that carefully chosen ergogenic aids (e.g. caffeine, creatine, sodium bicarbonate, beta-alanine, nitrates) can all promote performance in the correct exercise setting. In relation to exercise training, however, it is now thought that strategic periods of reduced carbohydrate and elevated dietary protein intake may enhance training adaptations whereas high carbohydrate availability and antioxidant supplementation may actually attenuate training adaptation. Emerging evidence also suggests that vitamin D may play a regulatory role in muscle regeneration and subsequent hypertrophy following damaging forms of exercise. Finally, novel compounds (albeit largely examined in rodent models) such as epicatechins, nicotinamide riboside, resveratrol, β-hydroxy β-methylbutyrate, phosphatidic acid and ursolic acid may also promote or attenuate skeletal muscle adaptations to endurance and strength training. When taken together, it is clear that sports nutrition is very much at the heart of the Olympic motto, Citius, Altius, Fortius (faster, higher, stronger). Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Effects of off-axis elliptical training on reducing pain and improving knee function in individuals with patellofemoral pain

    PubMed Central

    Tsai, Liang-Ching; Lee, Song Joo; Yang, Aaron J.; Ren, Yupeng; Press, Joel M.; Zhang, Li-Qun

    2014-01-01

    Objective To examine whether an off-axis elliptical training program reduces pain and improves knee function in individuals with patellofemoral pain (PFP). Design Controlled laboratory study, pre-test-post-test. Setting University rehabilitation center. Participants Twelve adult subjects with PFP. Interventions Subjects with PFP completed an exercise program consisting of 18 sessions of lower extremity off-axis training using a custom-made elliptical trainer that allows frontal-plane sliding and transverse-plane pivoting of the footplates. Main Outcome Measures Changes in knee pain and function post-training and 6 weeks following training were evaluated using the Knee Injury and Osteoarthritis Outcome Score (KOOS) and International Knee Documentation Committee (IKDC) scores. Lower extremity off-axis control was assessed by pivoting and sliding instability, calculated as the root mean square (RMS) of the footplate pivoting angle and sliding distance during elliptical exercise. Subjects’ single-leg hop distance and proprioception in detecting lower extremity pivoting motion were also evaluated. Results Subjects reported significantly greater KOOS and IKDC scores (increased by 12–18 points) and hop distance (increased by 0.2 m) following training. A significant decrease in the pivoting and sliding RMS was also observed following training. Additionally, subjects with PFP demonstrated improved pivoting proprioception when tested under a minimum-weight-bearing position. Conclusions An off-axis elliptical training program was effective in enhancing lower extremity neuromuscular control on the frontal and transverse planes, reducing pain and improving knee function in persons with PFP. PMID:25591131

  19. Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer.

    PubMed

    Mijwel, Sara; Cardinale, Daniele A; Norrbom, Jessica; Chapman, Mark; Ivarsson, Niklas; Wengström, Yvonne; Sundberg, Carl Johan; Rundqvist, Helene

    2018-05-11

    Exercise has been suggested to ameliorate the detrimental effects of chemotherapy on skeletal muscle. The aim of this study was to compare the effects of different exercise regimens with usual care on skeletal muscle morphology and mitochondrial markers in patients being treated with chemotherapy for breast cancer. Specifically, we compared moderate-intensity aerobic training combined with high-intensity interval training (AT-HIIT) and resistance training combined with high-intensity interval training (RT-HIIT) with usual care (UC). Resting skeletal muscle biopsies were obtained pre- and postintervention from 23 randomly selected women from the OptiTrain breast cancer trial who underwent RT-HIIT, AT-HIIT, or UC for 16 wk. Over the intervention, citrate synthase activity, muscle fiber cross-sectional area, capillaries per fiber, and myosin heavy chain isoform type I were reduced in UC, whereas RT-HIIT and AT-HIIT were able to counteract these declines. AT-HIIT promoted up-regulation of the electron transport chain protein levels vs. UC. RT-HIIT favored satellite cell count vs. UC and AT-HIIT. There was a significant association between change in citrate synthase activity and self-reported fatigue. AT-HIIT and RT-HIIT maintained or improved markers of skeletal muscle function compared with the declines found in the UC group, indicating a sustained trainability in addition to the preservation of skeletal muscle structural and metabolic characteristics during chemotherapy. These findings highlight the importance of supervised exercise programs for patients with breast cancer during chemotherapy.-Mijwel, S., Cardinale, D. A., Norrbom, J., Chapman, M., Ivarsson, N., Wengström, Y., Sundberg, C. J., Rundqvist, H. Exercise training during chemotherapy preserves skeletal muscle fiber area, capillarization, and mitochondrial content in patients with breast cancer.

  20. Group-based exercise combined with dual-task training improves gait but not vascular health in active older adults without dementia.

    PubMed

    Gregory, Michael A; Gill, Dawn P; Zou, Guangyong; Liu-Ambrose, Teresa; Shigematsu, Ryosuke; Fitzgerald, Clara; Hachinski, Vladimir; Shoemaker, Kevin; Petrella, Robert J

    2016-01-01

    Gait abnormalities and vascular disease risk factors are associated with cognitive impairment in aging. To determine the impact of group-based exercise and dual-task training on gait and vascular health, in active community-dwelling older adults without dementia. Participants [n=44, mean (SD) age: 73.5 (7.2) years, 68% female] were randomized to either intervention (exercise+dual-task; EDT) or control (exercise only; EO). Each week, for 26 weeks, both groups accumulated 50 or 75 min of aerobic exercise from group-based classes and 45 min of beginner-level square stepping exercise (SSE). Participants accumulating only 50 min of aerobic exercise were instructed to participate in an additional 25 min each week outside of class. The EDT group also answered cognitively challenging questions while performing SSE (i.e., dual-task training). The effect of the interventions on gait and vascular health was compared between groups using linear mixed effects models. At 26 weeks, the EDT group demonstrated increased dual-task (DT) gait velocity [difference between groups in mean change from baseline (95% CI): 0.29 m/s (0.16-0.43), p<0.001], DT step length [5.72 cm (2.19-9.24), p =0.002], and carotid intima-media thickness [0.10mm (0.003-0.20), p=0.04], as well as reduced DT stride time variability [8.31 coefficient of variation percentage points (-12.92 to -3.70), p<0.001], when compared to the EO group. Group-based exercise combined with dual-task training can improve DT gait characteristics in active older adults without dementia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Dietary thiols in exercise: oxidative stress defence, exercise performance, and adaptation.

    PubMed

    McLeay, Yanita; Stannard, Stephen; Houltham, Stuart; Starck, Carlene

    2017-01-01

    Endurance athletes are susceptible to cellular damage initiated by excessive levels of aerobic exercise-produced reactive oxygen species (ROS). Whilst ROS can contribute to the onset of fatigue, there is increasing evidence that they play a crucial role in exercise adaptations. The use of antioxidant supplements such as vitamin C and E in athletes is common; however, their ability to enhance performance and facilitate recovery is controversial, with many studies suggesting a blunting of training adaptations with supplementation. The up-regulation of endogenous antioxidant systems brought about by exercise training allows for greater tolerance to subsequent ROS, thus, athletes may benefit from increasing these systems through dietary thiol donors. Recent work has shown supplementation with a cysteine donor (N-acetylcysteine; NAC) improves antioxidant capacity by augmenting glutathione levels and reducing markers of oxidative stress, as well as ergogenic potential through association with delayed fatigue in numerous experimental models. However, the use of this, and other thiol donors may have adverse physiological effects. A recent discovery for the use of a thiol donor food source, keratin, to potentially enhance endogenous antioxidants may have important implications for endurance athletes hoping to enhance performance and recovery without blunting training adaptations.

  2. High-volume resistance training session acutely diminishes respiratory muscle strength.

    PubMed

    Hackett, Daniel A; Johnson, Nathan A; Chow, Chin-Moi

    2012-01-01

    This study investigated the effect of a high-volume compared to a low-volume resistance training session on maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP). Twenty male subjects with resistance training experience (6.2 ± 3.2 y), in a crossover trial, completed two resistance training protocols (high-volume: 5 sets per exercise; low-volume: 2 sets per exercise) and a control session (no exercise) on 3 separate occasions. MIP and MEP decreased by 13.6% (p < 0.01) and 14.7% (p < 0.01) respectively from pre-session MIP and MEP, following the high-volume session. MIP and MEP were unaffected following the low-volume or the control sessions. MIP returned to pre-session values after 40 minutes, whereas MEP remained significantly reduced after 60 minutes post-session by 9.2% compared to pre-session (p < 0.01). The findings suggest that the high-volume session significantly decreased MIP and MEP post-session, implicating a substantially increased demand on the respiratory muscles and that adequate recovery is mandatory following this mode of training. Key pointsRespiratory muscular strength performance is acutely diminished following a high-volume whole-body resistance training session.Greater ventilatory requirements and generation of IAP during the high-volume resistance training session may have contributed to the increased demand placed on the respiratory muscles.Protracted return of respiratory muscular strength performance to baseline levels may have implications for individuals prior to engaging in subsequent exercise bouts.

  3. Increases in the right dorsolateral prefrontal cortex and decreases the rostral prefrontal cortex activation after-8 weeks of focused attention based mindfulness meditation.

    PubMed

    Tomasino, Barbara; Fabbro, Franco

    2016-02-01

    Mindfulness meditation is a form of attention control training. The training exercises the ability to repeatedly focus attention. We addressed the activation changes related to an 8-weeks mindfulness-oriented focused attention meditation training on an initially naïve subject cohort. Before and after training participants underwent an fMRI experiment, thus, although not strictly a cross over design, they served as their internal own control. During fMRI they exercised focused attention on breathing and body scan as compared to resting. We found increased and decreased activation in different parts of the prefrontal cortex (PFC) by comparing pre- vs. post-mindfulness training (MT) during breathing and body scan meditation exercises that were compared against their own resting state. In the post-MT (vs. pre-MT) meditation increased activation in the right dorsolateral PFC and in the left caudate/anterior insula and decreased activation in the rostral PFC and right parietal area 3b. Thus a brief mindfulness training caused increased activation in areas involved in sustaining and monitoring the focus of attention (dorsolateral PFC), consistent with the aim of mindfulness that is exercising focused attention mechanisms, and in the left caudate/anterior insula involved in attention and corporeal awareness and decreased activation in areas part of the "default mode" network and is involved in mentalizing (rostral PFC), consistent with the ability trained by mindfulness of reducing spontaneous mind wandering. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Exercise therapy for fatigue in multiple sclerosis.

    PubMed

    Heine, Martin; van de Port, Ingrid; Rietberg, Marc B; van Wegen, Erwin E H; Kwakkel, Gert

    2015-09-11

    Multiple sclerosis (MS) is an immune-mediated disease of the central nervous system affecting an estimated 1.3 million people worldwide. It is characterised by a variety of disabling symptoms of which excessive fatigue is the most frequent. Fatigue is often reported as the most invalidating symptom in people with MS. Various mechanisms directly and indirectly related to the disease and physical inactivity have been proposed to contribute to the degree of fatigue. Exercise therapy can induce physiological and psychological changes that may counter these mechanisms and reduce fatigue in MS. To determine the effectiveness and safety of exercise therapy compared to a no-exercise control condition or another intervention on fatigue, measured with self-reported questionnaires, of people with MS. We searched the Cochrane Multiple Sclerosis and Rare Diseases of the Central Nervous System Group Trials Specialised Register, which, among other sources, contains trials from: the Cochrane Central Register of Controlled Trials (CENTRAL) (2014, Issue 10), MEDLINE (from 1966 to October 2014), EMBASE (from 1974 to October 2014), CINAHL (from 1981 to October 2014), LILACS (from 1982 to October 2014), PEDro (from 1999 to October 2014), and Clinical trials registries (October 2014). Two review authors independently screened the reference lists of identified trials and related reviews. We included randomized controlled trials (RCTs) evaluating the efficacy of exercise therapy compared to no exercise therapy or other interventions for adults with MS that included subjective fatigue as an outcome. In these trials, fatigue should have been measured using questionnaires that primarily assessed fatigue or sub-scales of questionnaires that measured fatigue or sub-scales of questionnaires not primarily designed for the assessment of fatigue but explicitly used as such. Two review authors independently selected the articles, extracted data, and determined methodological quality of the included trials. Methodological quality was determined by means of the Cochrane 'risk of bias' tool and the PEDro scale. The combined body of evidence was summarised using the GRADE approach. The results were aggregated using meta-analysis for those trials that provided sufficient data to do so. Forty-five trials, studying 69 exercise interventions, were eligible for this review, including 2250 people with MS. The prescribed exercise interventions were categorised as endurance training (23 interventions), muscle power training (nine interventions), task-oriented training (five interventions), mixed training (15 interventions), or 'other' (e.g. yoga; 17 interventions). Thirty-six included trials (1603 participants) provided sufficient data on the outcome of fatigue for meta-analysis. In general, exercise interventions were studied in mostly participants with the relapsing-remitting MS phenotype, and with an Expanded Disability Status Scale less than 6.0. Based on 26 trials that used a non-exercise control, we found a significant effect on fatigue in favour of exercise therapy (standardized mean difference (SMD) -0.53, 95% confidence interval (CI) -0.73 to -0.33; P value < 0.01). However, there was significant heterogeneity between trials (I(2) > 58%). The mean methodological quality, as well as the combined body of evidence, was moderate. When considering the different types of exercise therapy, we found a significant effect on fatigue in favour of exercise therapy compared to no exercise for endurance training (SMDfixed effect -0.43, 95% CI -0.69 to -0.17; P value < 0.01), mixed training (SMDrandom effect -0.73, 95% CI -1.23 to -0.23; P value < 0.01), and 'other' training (SMDfixed effect -0.54, 95% CI -0.79 to -0.29; P value < 0.01). Across all studies, one fall was reported. Given the number of MS relapses reported for the exercise condition (N = 25) and non-exercise control condition (N = 26), exercise does not seem to be associated with a significant risk of a MS relapse. However, in general, MS relapses were defined and reported poorly. Exercise therapy can be prescribed in people with MS without harm. Exercise therapy, and particularly endurance, mixed, or 'other' training, may reduce self reported fatigue. However, there are still some important methodological issues to overcome. Unfortunately, most trials did not explicitly include people who experienced fatigue, did not target the therapy on fatigue specifically, and did not use a validated measure of fatigue as the primary measurement of outcome.

  5. Effect of Aerobic Training on Glucose Control and Blood Pressure in T2DDM East African Males

    PubMed Central

    Prista, Antonio; Ranadive, Sushant M.; Damasceno, Albertino; Caupers, Paula; Kanaley, Jill A.; Fernhall, Bo

    2014-01-01

    Background. Exercise training intervention is underused in the management of type 2 diabetes mellitus in East Africa. Methods. 41 physically-active males with type 2 diabetes mellitus living in Mozambique were recruited and randomly assigned to 12 weeks of supervised exercise of low intensity exercise (LEX), vigorous intensity exercise (VEX), or to a control group (CON). Since there were no differences for any outcome variables between the exercise groups, VEX and LEX were combined into one exercise group (EX). Results. Age and baseline body weight were similar between EX and CON. Plasma glucose at 120 min following glucose load (Glu 120) was significantly reduced in the EX group after training (Glu 120 : 17.3 mmol/L to 15.0 mmol/L, P < 0.05), whereas Glu 120 remained unchanged in the CON (Glu 120 : 16.6 mmol/L to 18.7 mmol/L). After controlling for baseline blood pressure (BP), posttraining systolic BP and diastolic BP were lower in the EX group than in the CON group (EX: 129/77 mm Hg, CON: 152/83 mm Hg, P < 0.05). Conclusion. Adding exercise to already active African men with type 2 diabetes improved glucose control and BP levels without concomitant changes in weight. PMID:24729886

  6. The effects of Pilates exercise training on static and dynamic balance in chronic stroke patients: a randomized controlled trial

    PubMed Central

    Lim, Hee Sung; Kim, You Lim; Lee, Suk Min

    2016-01-01

    [Purpose] The purpose of this study was to analyze the effects of Pilates exercise on static and dynamic balance in chronic stroke patients. [Subjects and Methods] Nineteen individuals with unilateral chronic hemiparetic stroke (age, 64.7 ± 6.9 years; height, 161.7 ± 7.9 cm; weight, 67.0 ± 11.1 kg) were randomly allocated to either a Pilates exercise group (PG, n=10) or a control group (CG, n=9). The PG attended 24 exercise sessions conducted over an 8-week period (3 sessions/week). Center of pressure (COP) sway and COP velocity were measured one week before and after the exercise program and compared to assess training effects. [Results] Pilates exercise positively affected both static and dynamic balance in patients with chronic stroke. For static balance, COP sway and velocity in the medial-lateral (M-L) and anterior-posterior (A-P) directions were significantly decreased in the PG after training while no significant differences were found in the CG. For dynamic balance, measured during treadmill walking, the PG showed significantly reduced COP sway and velocity in the M-L and A-P directions for both the paretic and non-paretic leg. [Conclusions] The findings provide initial evidence that Pilates exercise can enhance static and dynamic balance in patients with chronic stroke. PMID:27390424

  7. [Rehabilitation in COPD].

    PubMed

    Villiger, B

    1999-03-01

    Pulmonary rehabilitation (PR) is an important tool in the treatment of COPD patients. It is now clearly established that PR improves exercise capacity, reduces symptoms and improves quality of life in COPD patients. There is further evidence that the programmes also improve survival and reduce medical consumption. Pulmonary rehabilitation programmes are multidisziplinary and consist of exercise training (endurance, power), chest physiotherapie, education, psychosocial and nutritional support. Patients with poor exercise capacity, peripheral muscle weakness, severe complaints and poor quality of life seem to profit most from in- and outpatients rehab programmes. The type of rehabilitation depends on the severity of symptoms, the competence of the rehab-team and the local possibilities.

  8. An overview of the issues: physiological effects of bed rest and restricted physical activity

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Bloomfield, S. A.; Greenleaf, J. E.

    1997-01-01

    Reduction of exercise capacity with confinement to bed rest is well recognized. Underlying physiological mechanisms include dramatic reductions in maximal stroke volume, cardiac output, and oxygen uptake. However, bed rest by itself does not appear to contribute to cardiac dysfunction. Increased muscle fatigue is associated with reduced muscle blood flow, red cell volume, capillarization and oxidative enzymes. Loss of muscle mass and bone density may be reflected by reduced muscle strength and higher risk for injury to bones and joints. The resultant deconditioning caused by bed rest can be independent of the primary disease and physically debilitating in patients who attempt to reambulate to normal active living and working. A challenge to clinicians and health care specialists has been the identification of appropriate and effective methods to restore physical capacity of patients during or after restricted physical activity associated with prolonged bed rest. The examination of physiological responses to bed rest deconditioning and exercise training in healthy subjects has provided significant information to develop effective rehabilitation treatments. The successful application of acute exercise to enhance orthostatic stability, daily endurance exercise to maintain aerobic capacity, or specific resistance exercises to maintain musculoskeletal integrity rather than the use of surgical, pharmacological, and other medical treatments for clinical conditions has been enhanced by investigation and understanding of underlying mechanisms that distinguish physical deconditioning from the disease. This symposium presents an overview of cardiovascular and musculoskeletal deconditioning associated with reduced physical work capacity following prolonged bed rest and exercise training regimens that have proven successful in ameliorating or reversing these adverse effects.

  9. Presence of Spotters Improves Bench Press Performance: A Deception Study.

    PubMed

    Sheridan, Andrew; Marchant, David C; Williams, Emily L; Jones, Hollie S; Hewitt, Phil A; Sparks, S Andy

    2017-10-24

    Sheridan, A, Marchant, DC, Williams, EL, Jones, HS, Hewitt, PA, and Sparks, SA. Presence of spotters improves bench press performance: a deception study. J Strength Cond Res XX(X): 000-000, 2017-Resistance exercise is a widely used method of physical training in both recreational exercise and athletic populations. The use of training partners and spotters during resistance exercise is widespread, but little is known about the effect of the presence of these individuals on exercise performance. The purpose of the current study was to investigate the effect of spotter presence on bench press performance. Twelve recreationally trained participants (age, 21.3 ± 0.8 years, height, 1.82 ± 0.1 m, and weight, 84.8 ± 11.1 kg) performed 2 trials of 3 sets to failure at 60% of 1 repetition maximum on separate occasions. The 2 trials consisted of spotters being explicitly present or hidden from view (deception). During the trials, total repetitions (reps), total weight lifted, ratings of perceived exertion (RPE), and self-efficacy were measured. Total reps and weight lifted were significantly greater with spotters (difference = 4.5 reps, t = 5.68, p < 0.001 and difference = 209.6 kg, t = 5.65, p < 0.001, respectively). Although RPE and local RPE were significantly elevated in the deception trials (difference = 0.78, f = 6.16, p = 0.030 and difference = 0.81, f = 5.89, p = 0.034, respectively), self-efficacy was significantly reduced (difference = 1.58, f = 26.90, p < 0.001). This study demonstrates that resistance exercise is improved by the presence of spotters, which is facilitated by reduced RPE and increased self-efficacy. This has important implications for athletes and clients, who should perform resistance exercise in the proximity of others, to maximize total work performed.

  10. Knee joint stabilization therapy in patients with osteoarthritis of the knee: a randomized, controlled trial.

    PubMed

    Knoop, J; Dekker, J; van der Leeden, M; van der Esch, M; Thorstensson, C A; Gerritsen, M; Voorneman, R E; Peter, W F; de Rooij, M; Romviel, S; Lems, W F; Roorda, L D; Steultjens, M P M

    2013-08-01

    To investigate whether an exercise program, initially focusing on knee stabilization and subsequently on muscle strength and performance of daily activities is more effective than an exercise program focusing on muscle strength and performance of daily activities only, in reducing activity limitations in patients with knee osteoarthritis (OA) and instability of the knee joint. A single-blind, randomized, controlled trial involving 159 knee OA patients with self-reported and/or biomechanically assessed knee instability, randomly assigned to two treatment groups. Both groups received a supervised exercise program for 12 weeks, consisting of muscle strengthening exercises and training of daily activities, but only in the experimental group specific knee joint stabilization training was provided. Outcome measures included activity limitations (Western Ontario and McMaster Universities Osteoarthritis Index - WOMAC physical function, primary outcome), pain, global perceived effect and knee stability. Both treatment groups demonstrated large (∼20-40%) and clinically relevant reductions in activity limitations, pain and knee instability, which were sustained 6 months post-treatment. No differences in effectiveness between experimental and control treatment were found on WOMAC physical function (B (95% confidence interval - CI) = -0.01 (-2.58 to 2.57)) or secondary outcome measures, except for a higher global perceived effect in the experimental group (P = 0.04). Both exercise programs were highly effective in reducing activity limitations and pain and restoring knee stability in knee OA patients with instability of the knee. In knee OA patients suffering from knee instability, specific knee joint stabilization training, in addition to muscle strengthening and functional exercises, does not seem to have any additional value. Dutch Trial Register (NTR) registration number: NTR1475. Copyright © 2013 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.

  11. Serum Oxidant and Antioxidant Status Following an All-Out 21-km Run in Adolescent Runners Undergoing Professional Training—A One-Year Prospective Trial

    PubMed Central

    Tong, Tom K.; Kong, Zhaowei; Lin, Hua; Lippi, Giuseppe; Zhang, Haifeng; Nie, Jinlei

    2013-01-01

    This study investigated the 1-year longitudinal effect of professional training in adolescent runners on redox balance during intense endurance exercise. Changes in selected serum oxidant and antioxidant status in response to a 21-km running time trial in 10 runners (15.5 ± 1.3 years) undergoing professional training were evaluated twice in 12 months (pre- and post-evaluation). Venous blood samples were collected immediately before and 4-h following the 21-km run for analysis of serum concentrations of thiobarbituric acid-reactive substances (TBARS), xanthine oxidase (XO), catalase (CAT), reduced glutathione (GSH), superoxide dismutase (SOD), and total antioxidant capacity (T-AOC). In pre-evaluation trial, serum TBARS and SOD decreased after the 21-km run (p < 0.05) while XO, GSH, CAT and TAOC were unchanged. In post-evaluation trial, serum TBARS and SOD decreased, whereas XO and CAT increased post-exercise (p < 0.05). Furthermore, pre-exercise serum T-AOC, post-exercise serum XO, CAT, T-AOC (p < 0.05), and GSH (p = 0.057) appeared to be higher than the corresponding pre-evaluation values. The current findings suggest that a professional training regime in adolescent runners is not likely to jeopardize the development of their antioxidant defense. However, uncertainties in the maintenance of redox balance in runners facing increased exercise-induced oxidative stress as a consequence of training-induced enhancement of exercise capacity await further elucidation. PMID:23880864

  12. The stress-buffering effect of acute exercise: Evidence for HPA axis negative feedback.

    PubMed

    Zschucke, Elisabeth; Renneberg, Babette; Dimeo, Fernando; Wüstenberg, Torsten; Ströhle, Andreas

    2015-01-01

    According to the cross-stressor adaptation hypothesis, physically trained individuals show lower physiological and psychological responses to stressors other than exercise, e.g. psychosocial stress. Reduced stress reactivity may constitute a mechanism of action for the beneficial effects of exercise in maintaining mental health. With regard to neural and psychoneuroendocrine stress responses, the acute stress-buffering effects of exercise have not been investigated yet. A sample of highly trained (HT) and sedentary (SED) young men was randomized to either exercise on a treadmill at moderate intensity (60-70% VO2max; AER) for 30 min, or to perform 30 min of "placebo" exercise (PLAC). 90 min later, an fMRI experiment was conducted using an adapted version of the Montreal Imaging Stress Task (MIST). The subjective and psychoneuroendocrine (cortisol and α-amylase) changes induced by the exercise intervention and the MIST were assessed, as well as neural activations during the MIST. Finally, associations between the different stress responses were analysed. Participants of the AER group showed a significantly reduced cortisol response to the MIST, which was inversely related to the previous exercise-induced α-amylase and cortisol fluctuations. With regard to the sustained BOLD signal, we found higher bilateral hippocampus (Hipp) activity and lower prefrontal cortex (PFC) activity in the AER group. Participants with a higher aerobic fitness showed lower cortisol responses to the MIST. As the Hipp and PFC are brain structures prominently involved in the regulation of the hypothalamus-pituitary-adrenal (HPA) axis, these findings indicate that the acute stress-buffering effect of exercise relies on negative feedback mechanisms. Positive affective changes after exercise appear as important moderators largely accounting for the effects related to physical fitness. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Effect of whole body resistance training on arterial compliance in young men.

    PubMed

    Rakobowchuk, M; McGowan, C L; de Groot, P C; Bruinsma, D; Hartman, J W; Phillips, S M; MacDonald, M J

    2005-07-01

    The effect of resistance training on arterial stiffening is controversial. We tested the hypothesis that resistance training would not alter central arterial compliance. Young healthy men (age, 23 +/- 3.9 (mean +/- s.e.m.) years; n = 28,) were whole-body resistance trained five times a week for 12 weeks, using a rotating 3-day split-body routine. Resting brachial blood pressure (BP), carotid pulse pressure, carotid cross-sectional compliance (CSC), carotid initima-media thickness (IMT) and left ventricular dimensions were evaluated before beginning exercise (PRE), after 6 weeks of exercise (MID) and at the end of 12 weeks of exercise (POST). CSC was measured using the pressure-sonography method. Results indicate reductions in brachial (61.1 +/- 1.4 versus 57.6 +/- 1.2 mmHg; P < 0.01) and carotid pulse pressure (52.2 +/- 1.9 versus 46.8 +/- 2.0 mmHg; P < 0.01) PRE to POST. In contrast, carotid CSC, beta-stiffness index, IMT and cardiac dimensions were unchanged. In young men, central arterial compliance is unaltered with 12 weeks of resistance training and the mechanisms responsible for cardiac hypertrophy and reduced arterial compliance are either not inherent to all resistance-training programmes or may require a prolonged stimulus.

  14. Design of the multicenter standardized supervised exercise training intervention for the claudication: exercise vs endoluminal revascularization (CLEVER) study.

    PubMed

    Bronas, Ulf G; Hirsch, Alan T; Murphy, Timothy; Badenhop, Dalynn; Collins, Tracie C; Ehrman, Jonathan K; Ershow, Abby G; Lewis, Beth; Treat-Jacobson, Diane J; Walsh, M Eileen; Oldenburg, Niki; Regensteiner, Judith G

    2009-11-01

    The CLaudication: Exercise Vs Endoluminal Revascularization (CLEVER) study is the first randomized, controlled, clinical, multicenter trial that is evaluating a supervised exercise program compared with revascularization procedures to treat claudication. In this report, the methods and dissemination techniques of the supervised exercise training intervention are described. A total of 217 participants are being recruited and randomized to one of three arms: (1) optimal medical care; (2) aortoiliac revascularization with stent; or (3) supervised exercise training. Of the enrolled patients, 84 will receive supervised exercise therapy. Supervised exercise will be administered according to a protocol designed by a central CLEVER exercise training committee based on validated methods previously used in single center randomized control trials. The protocol will be implemented at each site by an exercise committee member using training methods developed and standardized by the exercise training committee. The exercise training committee reviews progress and compliance with the protocol of each participant weekly. In conclusion, a multicenter approach to disseminate the supervised exercise training technique and to evaluate its efficacy, safety and cost-effectiveness for patients with claudication due to peripheral arterial disease (PAD) is being evaluated for the first time in CLEVER. The CLEVER study will further establish the role of supervised exercise training in the treatment of claudication resulting from PAD and provide standardized methods for use of supervised exercise training in future PAD clinical trials as well as in clinical practice.

  15. Resistance to Aerobic Exercise Training Causes Metabolic Dysfunction and Reveals Novel Exercise-Regulated Signaling Networks

    PubMed Central

    Lessard, Sarah J.; Rivas, Donato A.; Alves-Wagner, Ana B.; Hirshman, Michael F.; Gallagher, Iain J.; Constantin-Teodosiu, Dumitru; Atkins, Ryan; Greenhaff, Paul L.; Qi, Nathan R.; Gustafsson, Thomas; Fielding, Roger A.; Timmons, James A.; Britton, Steven L.; Koch, Lauren G.; Goodyear, Laurie J.

    2013-01-01

    Low aerobic exercise capacity is a risk factor for diabetes and a strong predictor of mortality, yet some individuals are “exercise-resistant” and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease risk, we used selective breeding for 15 generations to develop rat models of low and high aerobic response to training. Before exercise training, rats selected as low and high responders had similar exercise capacities. However, after 8 weeks of treadmill training, low responders failed to improve their exercise capacity, whereas high responders improved by 54%. Remarkably, low responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise-resistant phenotype segregates with disease risk. Low responders had impaired exercise-induced angiogenesis in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low responders. Low responders had increased stress/inflammatory signaling and altered transforming growth factor-β signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system, we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease. PMID:23610057

  16. Impact of Cardiac Rehabilitation and Exercise Training on Psychological Risk Factors and Subsequent Prognosis in Patients With Cardiovascular Disease.

    PubMed

    Lavie, Carl J; Menezes, Arthur R; De Schutter, Alban; Milani, Richard V; Blumenthal, James A

    2016-10-01

    The role of psychological risk factors has been under-recognized in most subspecialties of medicine, as well as in general medicine practices. However, considerable evidence indicates that psychosocial factors are involved in the pathogenesis and progression of cardiovascular disease (CVD). Emerging data from cardiac rehabilitation (CR) settings and CR exercise training (CRET) programs have demonstrated the value of comprehensive CRET to improve psychological functioning and reduce all-cause mortality. Recent evidence also supports the role of CRET and the added value of stress management training in the secondary prevention of CVD. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  17. What is the relationship between exercise and metabolic abnormalities? A review of the metabolic syndrome.

    PubMed

    Carroll, Sean; Dudfield, Mike

    2004-01-01

    Prevention of the metabolic syndrome and treatment of its main characteristics are now considered of utmost importance in order to combat the epidemic of type 2 diabetes mellitus and to reduce the increased risk of cardiovascular disease and all-cause mortality. Insulin resistance/hyperinsulinaemia are consistently linked with a clustering of multiple clinical and subclinical metabolic risk factors. It is now widely recognised that obesity (especially abdominal fat accumulation), hyperglycaemia, dyslipidaemia and hypertension are common metabolic traits that, concurrently, constitute the distinctive insulin resistance or metabolic syndrome. Cross-sectional and prospective data provide an emerging picture of associations of both physical activity habits and cardiorespiratory fitness with the metabolic syndrome. The metabolic syndrome, is a disorder that requires aggressive multi-factorial intervention. Recent treatment guidelines have emphasised the clinical utility of diagnosis and an important treatment role for 'therapeutic lifestyle change', incorporating moderate physical activity. Several previous narrative reviews have considered exercise training as an effective treatment for insulin resistance and other components of the syndrome. However, the evidence cited has been less consistent for exercise training effects on several metabolic syndrome variables, unless combined with appropriate dietary modifications to achieve weight loss. Recently published randomised controlled trial data concerning the effects of exercise training on separate metabolic syndrome traits are evaluated within this review. Novel systematic review and meta-analysis evidence is presented indicating that supervised, long-term, moderate to moderately vigorous intensity exercise training, in the absence of therapeutic weight loss, improves the dyslipidaemic profile by raising high density lipoprotein-cholesterol and lowering triglycerides in overweight and obese adults with characteristics of the metabolic syndrome. Lifestyle interventions, including exercise and dietary-induced weight loss may improve insulin resistance and glucose tolerance in obesity states and are highly effective in preventing or delaying the onset of type 2 diabetes in individuals with impaired glucose regulation. Randomised controlled trial evidence also indicates that exercise training decreases blood pressure in overweight/obese individuals with high normal blood pressure and hypertension. These evidence-based findings continue to support recommendations that supervised or partially supervised exercise training is an important initial adjunctive step in the treatment of individuals with the metabolic syndrome. Exercise training should be considered an essential part of 'therapeutic lifestyle change' and may concurrently improve insulin resistance and the entire cluster of metabolic risk factors. Copyright 2004 Adis Data Information BV

  18. Nutritional strategies to influence adaptations to training.

    PubMed

    Spriet, Lawrence L; Gibala, Martin J

    2004-01-01

    This article highlights new nutritional concerns or practices that may influence the adaptation to training. The discussion is based on the assumption that the adaptation to repeated bouts of training occurs during recovery periods and that if one can train harder, the adaptation will be greater. The goal is to maximize with nutrition the recovery/adaptation that occurs in all rest periods, such that recovery before the next training session is complete. Four issues have been identified where recent scientific information will force sports nutritionists to embrace new issues and reassess old issues and, ultimately, alter the nutritional recommendations they give to athletes. These are: (1) caffeine ingestion; (2) creatine ingestion; (3) the use of intramuscular triacylglycerol (IMTG) as a fuel during exercise and the nutritional effects on IMTG repletion following exercise; and (4) the role nutrition may play in regulating the expression of genes during and after exercise training sessions. Recent findings suggest that low doses of caffeine exert significant ergogenic effects by directly affecting the central nervous system during exercise. Caffeine can cross the blood-brain barrier and antagonize the effects of adenosine, resulting in higher concentrations of stimulatory neurotransmitters. These new data strengthen the case for using low doses of caffeine during training. On the other hand, the data on the role that supplemental creatine ingestion plays in augmenting the increase in skeletal muscle mass and strength during resistance training remain equivocal. Some studies are able to demonstrate increases in muscle fibre size with creatine ingestion and some are not. The final two nutritional topics are new and have not progressed to the point that we can specifically identify strategies to enhance the adaptation to training. However, it is likely that nutritional strategies will be needed to replenish the IMTG that is used during endurance exercise. It is not presently clear whether the IMTG store is chronically reduced when engaging in daily sessions of endurance training or if this impacts negatively on the ability to train. It is also likely that the increased interest in gene and protein expression measurements will lead to nutritional strategies to optimize the adaptations that occur in skeletal muscle during and after exercise training sessions. Research in these areas in the coming years will lead to strategies designed to improve the adaptive response to training.

  19. Superior Effects of High-Intensity Interval Training vs. Moderate Continuous Training on Arterial Stiffness in Episodic Migraine: A Randomized Controlled Trial.

    PubMed

    Hanssen, Henner; Minghetti, Alice; Magon, Stefano; Rossmeissl, Anja; Papadopoulou, Athina; Klenk, Christopher; Schmidt-Trucksäss, Arno; Faude, Oliver; Zahner, Lukas; Sprenger, Till; Donath, Lars

    2017-01-01

    Background: Migraine is associated with increased cardiovascular risk and vascular dysfunction. Since aerobic exercise can reduce cardiovascular risk, the present randomized controlled trail aimed at investigating the effects of high-intensity interval training (HIT) vs. moderate continuous exercise training (MCT) on arterial stiffness in migraine patients. Methods: Forty-eight episodic migraineurs were initially enrolled in the study. 37 patients [female: 30; age: 37 ( SD : 10); BMI: 23.1 (5.2); Migraine days per month: 3.7 (2.5)] completed the intervention. Central blood pressure, pulse wave reflection, and aortic pulse wave velocity (PWV) were obtained by an oscillometric monitor. Incremental treadmill exercise testing yielded maximal and submaximal fitness parameters. Participants were randomly assigned to either HIT, MCT, or a control group (CON). The intervention groups trained twice a week over a 12-week intervention period. Results: After adjustment for between-group baseline differences, a moderate meaningful overall reduction of the augmentation index at 75 min -1 heart rate (AIx@75) was observed [partial eta squared ([Formula: see text]) = 0.16; p = 0.06]. With 91% likely beneficial effects, HIT was more effective in reducing AIx@75 than MCT [HIT: pre 22.0 (9.7), post 14.9 (13.0), standardized mean difference (SMD) = 0.62; MCT: pre 16.6 (8.5), post 21.3 (10.4), SMD -0.49]. HIT induced a relevant reduction in central systolic blood pressure [cSBP: pre 118 (23) mmHg, post 110 (16) mmHg, SMD = 0.42] with a 59% possibly beneficial effect compared to CON, while MCT showed larger effects in lowering central diastolic blood pressure [pre 78 (7) mmHg, post 74 (7) mmHg, SMD = 0.61], presenting 60% possibly beneficial effects compared to CON. Central aortic PWV showed no changes in any of the three groups. Migraine days were reduced more successfully by HIT than MCT (HIT: SMD = 1.05; MCT: SMD = 0.43). Conclusion: HIT but not MCT reduces AIx@75 as a measure of pulse wave reflection and indirect marker of systemic arterial stiffness. Both exercise modalities beneficially affect central blood pressure. HIT proved to be an effective complementary treatment option to reduce vascular dysfunction and blood pressure in migraineurs.

  20. Effects of different aerobic exercise programmes with nutritional intervention in sedentary adults with overweight/obesity and hypertension: EXERDIET-HTA study.

    PubMed

    Gorostegi-Anduaga, Ilargi; Corres, Pablo; MartinezAguirre-Betolaza, Aitor; Pérez-Asenjo, Javier; Aispuru, G Rodrigo; Fryer, Simon M; Maldonado-Martín, Sara

    2018-03-01

    Background Both exercise training and diet are recommended to prevent and control hypertension and overweight/obesity. Purpose The purpose of this study was to determine the effectiveness of different 16-week aerobic exercise programmes with hypocaloric diet on blood pressure, body composition, cardiorespiratory fitness and pharmacological treatment. Methods Overweight/obese, sedentary participants ( n = 175, aged 54.0 ± 8.2 years) with hypertension were randomly assigned into an attention control group (physical activity recommendations) or one of three supervised exercise groups (2 days/week: high-volume with 45 minutes of moderate-intensity continuous training (MICT), high-volume and high-intensity interval training (HIIT), alternating high and moderate intensities, and low-volume HIIT (20 minutes)). All variables were assessed pre- and post-intervention. All participants received the same hypocaloric diet. Results Following the intervention, there was a significant reduction in blood pressure and body mass in all groups with no between-group differences for blood pressure. However, body mass was significantly less reduced in the attention control group compared with all exercise groups (attention control -6.6%, high-volume MICT -8.3%, high-volume HIIT -9.7%, low-volume HIIT -6.9%). HIIT groups had significantly higher cardiorespiratory fitness than high-volume MICT, but there were no significant between-HIIT differences (attention control 16.4%, high-volume MICT 23.6%, high-volume HIIT 36.7%, low-volume HIIT 30.5%). Medication was removed in 7.6% and reduced in 37.7% of the participants. Conclusions The combination of hypocaloric diet with supervised aerobic exercise 2 days/week offers an optimal non-pharmacological tool in the management of blood pressure, cardiorespiratory fitness and body composition in overweight/obese and sedentary individuals with hypertension. High-volume HIIT seems to be better for reducing body mass compared with low-volume HIIT. The exercise-induced improvement in cardiorespiratory fitness is intensity dependent with low-volume HIIT as a time-efficient method in this population. ClinicalTrials.gov Registration: NCT02283047.

  1. A study of intensity, fatigue and precision in two specific interval trainings in young tennis players: high-intensity interval training versus intermittent interval training

    PubMed Central

    Suárez Rodríguez, David; del Valle Soto, Miguel

    2017-01-01

    Background The aim of this study is to find the differences between two specific interval exercises. We begin with the hypothesis that the use of microintervals of work and rest allow for greater intensity of play and a reduction in fatigue. Methods Thirteen competition-level male tennis players took part in two interval training exercises comprising nine 2 min series, which consisted of hitting the ball with cross-court forehand and backhand shots, behind the service box. One was a high-intensity interval training (HIIT), made up of periods of continuous work lasting 2 min, and the other was intermittent interval training (IIT), this time with intermittent 2 min intervals, alternating periods of work with rest periods. Average heart rate (HR) and lactate levels were registered in order to observe the physiological intensity of the two exercises, along with the Borg Scale results for perceived exertion and the number of shots and errors in order to determine the intensity achieved and the degree of fatigue throughout the exercise. Results There were no significant differences in the average heart rate, lactate or the Borg Scale. Significant differences were registered, on the other hand, with a greater number of shots in the first two HIIT series (series 1 p>0.009; series 2 p>0.056), but not in the third. The number of errors was significantly lower in all the IIT series (series 1 p<0.035; series 2 p<0.010; series 3 p<0.001). Conclusion Our study suggests that high-intensity intermittent training allows for greater intensity of play in relation to the real time spent on the exercise, reduced fatigue levels and the maintaining of greater precision in specific tennis-related exercises. PMID:29021912

  2. Cardiovascular Effects of 1 Year of Progressive and Vigorous Exercise Training in Previously Sedentary Individuals Older Than 65 Years of Age

    PubMed Central

    Fujimoto, Naoki; Prasad, Anand; Hastings, Jeffrey L.; Arbab-Zadeh, Armin; Bhella, Paul S.; Shibata, Shigeki; Palmer, Dean; Levine, Benjamin D.

    2013-01-01

    Background Healthy but sedentary aging leads to cardiovascular stiffening, whereas life-long endurance training preserves left ventricular (LV) compliance. However, it is unknown whether exercise training started later in life can reverse the effects of sedentary behavior on the heart. Methods and Results Twelve sedentary seniors and 12 Masters athletes were thoroughly screened for comorbidities. Subjects underwent invasive hemodynamic measurements with pulmonary artery catheterization to define Starling and LV pressure-volume curves; secondary functional outcomes included Doppler echocardiography, magnetic resonance imaging assessment of cardiac morphology, arterial stiffness (total aortic compliance and arterial elastance), and maximal exercise testing. Nine of 12 sedentary seniors (70.6±3 years; 6 male, 3 female) completed 1 year of endurance training followed by repeat measurements. Pulmonary capillary wedge pressures and LV end-diastolic volumes were measured at baseline, during decreased cardiac filling with lower-body negative pressure, and increased filling with saline infusion. LV compliance was assessed by the slope of the pressure-volume curve. Before training, V̇O2max, LV mass, LV end-diastolic volume, and stroke volume were significantly smaller and the LV was less compliant in sedentary seniors than Masters athletes. One year of exercise training had little effect on cardiac compliance. However, it reduced arterial elastance and improved V̇O2 max by 19% (22.8±3.4 versus 27.2± 4.3 mL/kg/mL; P<0.001). LV mass increased (10%, 64.5±7.9 versus 71.2±12.3 g/m2; P=0.037) with no change in the mass-volume ratio. Conclusions Although 1 year of vigorous exercise training did not appear to favorably reverse cardiac stiffening in sedentary seniors, it nonetheless induced physiological LV remodeling and imparted favorable effects on arterial function and aerobic exercise capacity. PMID:20956204

  3. Influence of acute exercise of varying intensity and duration on postprandial oxidative stress.

    PubMed

    Canale, Robert E; Farney, Tyler M; McCarthy, Cameron G; Bloomer, Richard J

    2014-09-01

    Aerobic exercise can reduce postprandial lipemia, and possibly oxidative stress, when performed prior to a lipid-rich meal. To compare the impact of acute exercise on postprandial oxidative stress. We compared aerobic and anaerobic exercise bouts of different intensities and durations on postprandial blood triglycerides (TAG), oxidative stress biomarkers (malondialdehyde, hydrogen peroxide, advanced oxidation protein products), and antioxidant status (trolox equivalent antioxidant capacity, superoxide dismutase, catalase, glutathione peroxidase). Twelve trained men (21-35 years) underwent four conditions: (1) No exercise rest; (2) 60-min aerobic exercise at 70% heart rate reserve; (3) five 60-s sprints at 100% max capacity; and (4) ten 15-s sprints at 200% max capacity. All exercise bouts were performed on a cycle ergometer. A high-fat meal was consumed 1 h after exercise cessation. Blood samples were collected pre-meal and 2 and 4 h post-meal and analyzed for TAG, oxidative stress biomarkers, and antioxidant status. No significant interaction or condition effects were noted for any variable (p > 0.05), with acute exercise having little to no effect on the magnitude of postprandial oxidative stress. In a sample of healthy, well-trained men, neither aerobic nor anaerobic exercise attenuates postprandial oxidative stress in response to a high-fat meal.

  4. Application of a Web-Enabled Leg Training System for the Objective Monitoring and Quantitative Analysis of Exercise-Induced Fatigue

    PubMed Central

    Dedova, Irina V

    2016-01-01

    Background Sustained cardiac rehabilitation is the key intervention in the prevention and treatment of many human diseases. However, implementation of exercise programs can be challenging because of early fatigability in patients with chronic diseases, overweight individuals, and aged people. Current methods of fatigability assessment are based on subjective self-reporting such as rating of perceived exertion or require specialized laboratory conditions and sophisticated equipment. A practical approach allowing objective measurement of exercise-induced fatigue would be useful for the optimization of sustained delivery of cardiac rehabilitation to improve patient outcomes. Objectives The objective of this study is to develop and validate an innovative approach, allowing for the objective assessment of exercise-induced fatigue using the Web-enabled leg rehabilitation system. Methods MedExercise training devices were equipped with wireless temperature sensors in order to monitor their usage by temperature rise in the resistance unit (Δt°). Since Δt° correlated with the intensity and duration of exercise, this parameter was used to characterize participants’ leg work output (LWO). Personal smart devices such as laptop computers with wireless gateways and relevant software were used for monitoring of self-control training. Connection of smart devices to the Internet and cloud-based software allowed remote monitoring of LWO in participants training at home. Heart rates (HRs) were measured by fingertip pulse oximeters simultaneously with Δt° in 7 healthy volunteers. Results Exercise-induced fatigue manifested as the decline of LWO and/or rising HR, which could be observed in real-time. Conversely, training at the steady-state LWO and HR for the entire duration of exercise bout was considered as fatigue-free. The amounts of recommended daily physical activity were expressed as the individual Δt° values reached during 30-minute fatigue-free exercise of moderate intensity resulting in a mean of 8.1°C (SD 1.5°C, N=7). These Δt° values were applied as the thresholds for sending automatic notifications upon taking the personalized LWO doses by self-control training at home. While the mean time of taking LWO doses was 30.3 (SD 4.1) minutes (n=25), analysis of times required to reach the same Δt° by the same participant revealed that longer durations were due to fatigability, manifesting as reduced LWO at the later stages of training bouts. Typically, exercising in the afternoons associated with no fatigue, although longer durations of evening sessions suggested a diurnal fatigability pattern. Conclusions This pilot study demonstrated the feasibility of objective monitoring of fatigue development in real-time and online as well as retrospective fatigability quantification by the duration of training bouts to reach the same exercise dose. This simple method of leg training at home accompanied by routine fatigue monitoring might be useful for the optimization of exercise interventions in primary care and special populations. PMID:27549345

  5. Effects of exercise training on pulmonary vessel muscularization and right ventricular function in an animal model of COPD.

    PubMed

    Hassel, Erlend; Berre, Anne Marie; Skjulsvik, Anne Jarstein; Steinshamn, Sigurd

    2014-09-28

    Right ventricular dysfunction in COPD is common, even in the absence of pulmonary hypertension. The aim of the present study was to examine the effects of high intensity interval training (HIIT) on right ventricular (RV) function, as well as pulmonary blood vessel remodeling in a mouse model of COPD. 42 female A/JOlaHsd mice were randomized to exposure to either cigarette smoke or air for 6 hours/day, 5 days/week for 14 weeks. Mice from both groups were further randomized to sedentariness or HIIT for 4 weeks. Cardiac function was evaluated by echocardiography and muscularization of pulmonary vessel walls by immunohistochemistry. Smoke exposure induced RV systolic dysfunction demonstrated by reduced tricuspid annular plane systolic excursion. HIIT in smoke-exposed mice reversed RV dysfunction. There were no significant effects on the left ventricle of neither smoke exposure nor HIIT. Muscularization of the pulmonary vessels was reduced after exercise intervention, but no significant effects on muscularization were observed from smoke exposure. RV function was reduced in mice exposed to cigarette smoke. No Increase in pulmonary vessel muscularization was observed in these mice, implying that other mechanisms caused the RV dysfunction. HIIT attenuated the RV dysfunction in the smoke exposed mice. Reduced muscularization of the pulmonary vessels due to HIIT suggests that exercise training not only affects the heart muscle, but also has important effects on the pulmonary vasculature.

  6. Exercise attenuates the anti-lipolytic effect of adenosine in adipocytes isolated from miniature swine.

    PubMed

    Carey, G B; Sidmore, K A

    1994-03-01

    Four pairs of female and six pairs of male litter-mate Yucatan miniature swine (Sus scrofa) were used in this study which examined the possibility that endurance exercise training reduces the sensitivity of adipocytes to the anti-lipolytic effects of adenosine. One member of each pair was exercise-trained on a treadmill for three months while its litter-mate remained sedentary, after which time over-the-shoulder fat and left brachialis muscle were biopsied. Despite a predominance of type IIB fibres, biopsied muscle of exercised swine had 38% more citrate synthase activity than controls (P < 0.05). The average cell diameters of adipocytes isolated from exercisers were 14% smaller (P < 0.05) than those from controls. Rates of adrenaline-stimulated lipolysis expressed as nmol glycerol released/90 min incubation period per 10,000 cells failed to differ between the two groups; however, when expressed per cm2 surface area, a significant 37% increase was observed. Incubation with 1 microM adrenaline and increasing doses of phenylisopropyladenosine (PIA) caused a rightward shift in the dose-response curve of adipocytes in five of the ten exercisers compared to litter-mate controls. The concentration of PIA causing one-half inhibition of lipolysis was 64% greater in adipocytes from exercisers than controls (4.03 nM vs. 2.49 nM, n = 10, P < 0.05). These data support the hypothesis that endurance exercise-training induces a reduction in adipocyte sensitivity to adenosine, thereby facilitating fatty acid mobilization.

  7. Swimming training attenuates oxidative damage and increases enzymatic but not non-enzymatic antioxidant defenses in the rat brain.

    PubMed

    Nonato, L F; Rocha-Vieira, E; Tossige-Gomes, R; Soares, A A; Soares, B A; Freitas, D A; Oliveira, M X; Mendonça, V A; Lacerda, A C; Massensini, A R; Leite, H R

    2016-09-29

    Although it is well known that physical training ameliorates brain oxidative function after injuries by enhancing the levels of neurotrophic factors and oxidative status, there is little evidence addressing the influence of exercise training itself on brain oxidative damage and data is conflicting. This study investigated the effect of well-established swimming training protocol on lipid peroxidation and components of antioxidant system in the rat brain. Male Wistar rats were randomized into trained (5 days/week, 8 weeks, 30 min; n=8) and non-trained (n=7) groups. Forty-eight hours after the last session of exercise, animals were euthanized and the brain was collected for oxidative stress analysis. Swimming training decreased thiobarbituric acid reactive substances (TBARS) levels (P<0.05) and increased the activity of the antioxidant enzyme superoxide dismutase (SOD) (P<0.05) with no effect on brain non-enzymatic total antioxidant capacity, estimated by FRAP (ferric-reducing antioxidant power) assay (P>0.05). Moreover, the swimming training promoted metabolic adaptations, such as increased maximal workload capacity (P<0.05) and maintenance of body weight. In this context, the reduced TBARS content and increased SOD antioxidant activity induced by 8 weeks of swimming training are key factors in promoting brain resistance. In conclusion, swimming training attenuated oxidative damage and increased enzymatic antioxidant but not non-enzymatic status in the rat brain.

  8. Resistance training among young athletes: safety, efficacy and injury prevention effects.

    PubMed

    Faigenbaum, A D; Myer, G D

    2010-01-01

    A literature review was employed to evaluate the current epidemiology of injury related to the safety and efficacy of youth resistance training. Several case study reports and retrospective questionnaires regarding resistance exercise and the competitive sports of weightlifting and powerlifting reveal that injuries have occurred in young lifters, although a majority can be classified as accidental. Lack of qualified instruction that underlies poor exercise technique and inappropriate training loads could explain, at least partly, some of the reported injuries. Current research indicates that resistance training can be a safe, effective and worthwhile activity for children and adolescents provided that qualified professionals supervise all training sessions and provide age-appropriate instruction on proper lifting procedures and safe training guidelines. Regular participation in a multifaceted resistance training programme that begins during the preseason and includes instruction on movement biomechanics may reduce the risk of sports-related injuries in young athletes. Strategies for enhancing the safety of youth resistance training are discussed.

  9. Resistance training among young athletes: safety, efficacy and injury prevention effects

    PubMed Central

    Faigenbaum, A D; Myer, G D

    2012-01-01

    A literature review was employed to evaluate the current epidemiology of injury related to the safety and efficacy of youth resistance training. Several case study reports and retrospective questionnaires regarding resistance exercise and the competitive sports of weightlifting and power-lifting reveal that injuries have occurred in young lifters, although a majority can be classified as accidental. Lack of qualified instruction that underlies poor exercise technique and inappropriate training loads could explain, at least partly, some of the reported injuries. Current research indicates that resistance training can be a safe, effective and worthwhile activity for children and adolescents provided that qualified professionals supervise all training sessions and provide age-appropriate instruction on proper lifting procedures and safe training guidelines. Regular participation in a multifaceted resistance training programme that begins during the preseason and includes instruction on movement biomechanics may reduce the risk of sports-related injuries in young athletes. Strategies for enhancing the safety of youth resistance training are discussed. PMID:19945973

  10. Reduction of N terminal-pro-brain (B-type) natriuretic peptide levels with exercise-based cardiac rehabilitation in patients with left ventricular dysfunction after myocardial infarction.

    PubMed

    Giallauria, Francesco; De Lorenzo, Anna; Pilerci, Francesco; Manakos, Athanasio; Lucci, Rosa; Psaroudaki, Marianna; D'Agostino, Mariantonietta; Del Forno, Domenico; Vigorito, Carlo

    2006-08-01

    N-terminal-pro-brain (B-type) natriuretic peptide (NT-pro-BNP) is a peptide hormone released from ventricles in response to myocyte stretch. The aim of the study was to investigate the influence of exercise training on plasma NT-pro-BNP to verify if this parameter could be used as a biological marker of left ventricular remodelling in myocardial infarction patients undergoing an exercise training programme. Forty-four patients after myocardial infarction were enrolled into a cardiac rehabilitation programme, and were randomized in two groups of 22 patients each. Group A patients followed a 3-month exercise training programme, while group B patients received only routine recommendations. All patients underwent NT-pro-BNP assay, and cardiopulmonary exercise test before hospital discharge and after 3 months. In Group A, exercise training reduced NT-pro-BNP levels (from 1498+/-438 to 470+/-375 pg/ml, P=0.0026), increased maximal (VO2peak+4.3+/-2.9 ml/kg per min, P<0.001; Powermax+38+/-7, P<0.001) exercise parameters and work efficiency (Powermax/VO2peak+1.3+/-0.4 Power/ml per kg per min, P<0.001); there was also an inverse correlation between changes in NT-pro-BNP levels and in VO2peak (r=-0.72, P<0.001), E-wave (r=-0.51, P<0.001) and E/A ratio (r=0.59, P<0.001). In group B, at 3 months, no changes were observed in NT-pro-BNP levels, exercise and echocardiographic parameters. Three months exercise training in patients with moderate left ventricular systolic dysfunction after myocardial infarction induced a reduction in NT-pro-BNP levels, an improvement of exercise capacity and early left ventricular diastolic filling, without negative left ventricular remodelling. Whether the reduction of NT-pro-BNP levels could be useful as a surrogate marker of favourable left ventricular remodelling at a later follow-up remains to be further explored.

  11. CARE CR-Cardiovascular and cardiorespiratory Adaptations to Routine Exercise-based Cardiac Rehabilitation: a study protocol for a community-based controlled study with criterion methods.

    PubMed

    Nichols, Simon; Nation, Fiona; Goodman, Toni; Clark, Andrew L; Carroll, Sean; Ingle, Lee

    2018-01-27

    Cardiac rehabilitation (CR) reduces all-cause and cardiovascular mortality in patients with coronary heart disease (CHD). Much of this improvement has been attributed to the beneficial effects of structured exercise training. However, UK-based studies have not confirmed this. Improvements in survival and cardiovascular health are associated with concurrent improvements in cardiorespiratory fitness (CRF). It is therefore concerning that estimated CRF improvements resulting from UK-based CR are approximately one-third of those reported in international literature. Modest improvements in CRF suggest that UK CR exercise training programmes may require optimisation if long-term survival is to be improved. However, contemporary UK studies lack control data or use estimates of CRF change. Cardiovascular and cardiorespiratory Adaptations to Routine Exercise-based CR is a longitudinal, observational, controlled study designed to assess the short-term and long-term effect of CR on CRF, as well cardiovascular and cardiometabolic health. Patients will be recruited following referral to their local CR programme and will either participate in a routine, low-to-moderate intensity, 8-week (16 sessions) exercise-based CR programme or freely abstain from supervised exercise. Initial assessment will be conducted prior to exercise training, or approximately 2 weeks after referral to CR if exercise training is declined. Reassessment will coincide with completion of exercise training or 10 weeks after initial assessment for control participants. Participants will receive a final follow-up 12 months after recruitment. The primary outcome will be peak oxygen consumption determined using maximal cardiopulmonary exercise testing. Secondary outcomes will include changes in subclinical atherosclerosis (carotid intima-media thickness and plaque characteristics), body composition (dual X-ray absorptiometry) and cardiometabolic biomarkers. Ethical approval for this non-randomised controlled study has been obtained from the Humber Bridge NHS Research Ethics Committee-Yorkshire and the Humber on the 27th September 2013, (12/YH/0278). Results will be presented at national conferences and published in peer-reviewed journals. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. A randomized clinical trial to assess the influence of a three months training program (gym-based individualized vs. calisthenics-based non-invidualized) in COPD-patients.

    PubMed

    Greulich, Timm; Kehr, Katharina; Nell, Christoph; Koepke, Janine; Haid, Daniel; Koehler, Ulrich; Koehler, Kay; Filipovic, Silke; Kenn, Klaus; Vogelmeier, Claus; Koczulla, Andreas-Rembert

    2014-03-25

    Pulmonary rehabilitation has been demonstrated to improve exercise capacity, dyspnoea, quality of life and to reduce the adverse effects of acute exacerbations. Current guidelines recommend exercise training in patients with mild to very severe disease. However, there is insufficient data comparing the efficacy of different training approaches and intensities. Between January 2009 and December 2012, 105 COPD patients were screened to participate in the study. 61 patients were randomly assigned into an individualized training group or into a non-individualized training group. Both groups exercised once a week for 60 minutes over a time period of three months. At the beginning and after three months, the following measurements were performed: 6-minute walking test (6-MWT), health-related quality of life (St. Georges Respiratory Questionnaire; SGRQ and COPD-Assessment-Test; CAT), M. rectus femoris cross-sectional area, and inflammatory markers in peripheral blood. Only in the individualized training group we observed a significant change of the 6-MWT (increase of 32.47 m; p = 0.012) and the cross-sectional area of the M. rectus fermoris (increase of 0.57 cm2; p = 0.049), while no significant changes occurred in the non-individualized training group. Peroxisome-proliferator-activated receptor-γ coactivator 1α increased in the individualized training only after the three months training period (increase of 0.43 relative copies; p = 0.017), all other myokines and inflammatory markers were not influenced by either of the programs. The total drop-out-rate was 44.3%. A low frequency outpatient training program may induce modest improvements in exercise capacity and muscle mass only if it is performed on an individualized basis.

  13. A randomized clinical trial to assess the influence of a three months training program (Gym-based individualized vs. Calisthenics-based non-invidualized) in COPD-patients

    PubMed Central

    2014-01-01

    Introduction Pulmonary rehabilitation has been demonstrated to improve exercise capacity, dyspnoea, quality of life and to reduce the adverse effects of acute exacerbations. Current guidelines recommend exercise training in patients with mild to very severe disease. However, there is insufficient data comparing the efficacy of different training approaches and intensities. Methods Between January 2009 and December 2012, 105 COPD patients were screened to participate in the study. 61 patients were randomly assigned into an individualized training group or into a non-individualized training group. Both groups exercised once a week for 60 minutes over a time period of three months. At the beginning and after three months, the following measurements were performed: 6-minute walking test (6-MWT), health-related quality of life (St. Georges Respiratory Questionnaire; SGRQ and COPD-Assessment-Test; CAT), M. rectus femoris cross-sectional area, and inflammatory markers in peripheral blood. Results Only in the individualized training group we observed a significant change of the 6-MWT (increase of 32.47 m; p = 0.012) and the cross-sectional area of the M. rectus fermoris (increase of 0.57 cm2; p = 0.049), while no significant changes occurred in the non-individualized training group. Peroxisome-proliferator-activated receptor-γ coactivator 1α increased in the individualized training only after the three months training period (increase of 0.43 relative copies; p = 0.017), all other myokines and inflammatory markers were not influenced by either of the programs. The total drop-out-rate was 44.3%. Conclusion A low frequency outpatient training program may induce modest improvements in exercise capacity and muscle mass only if it is performed on an individualized basis. PMID:24666558

  14. High-intensity interval training (swimming) significantly improves the adverse metabolism and comorbidities in diet-induced obese mice.

    PubMed

    Motta, Victor F; Aguila, Marcia B; Mandarim-DE-Lacerda, Carlos A

    2016-05-01

    Controlling obesity and other comorbidities in the population is a challenge in modern society. High-intensity interval training (HIIT) combines short periods of high-intensity exercise with long recovery periods or a low-intensity exercise. The aim was to assess the impact of HIIT in the context of diet-induced obesity in the animal model. C57BL/6 mice were fed one of the two diets: standard chow (lean group [LE]) or a high-fat diet (obese group [OB]). After twelve weeks, the animals were divided into non-trained groups (LE-NT and OB-NT) and trained groups (LE-T and OB-T), and began an exercise protocol. For biochemical analysis of inflammatory and lipid profile, we used a colorimetric enzymatic method and an automatic spectrophotometer. One-way ANOVA was used for statistical analysis of the experimental groups with Holm-Sidak post-hoc Test. Two-way ANOVA analyzed the interactions between diet and HIIT protocol. HIIT leads to significant reductions in body mass, blood glucose, glucose tolerance and hepatic lipid profile in T-groups compared to NT-groups. HIIT was able to reduce plasma levels of inflammatory cytokines. Additionally, HIIT improves the insulin immunodensity in the islets, reduces the adiposity and the hepatic steatosis in the T-groups. HIIT improves beta-oxidation and peroxisome proliferator-activated receptor (PPAR)-alpha and reduces lipogenesis and PPAR-gamma levels in the liver. In skeletal muscle, HIIT improves PPAR-alpha and glucose transporter-4 and reduces PPAR-gamma levels. HIIT leads to attenuate the adverse effects caused by a chronic ingestion of a high-fat diet.

  15. High-intensity interval training (swimming) significantly improves the adverse metabolism and comorbidities in diet-induced obese mice.

    PubMed

    Motta, V F; Aguila, M B; Mandarim-De-Lacerda, C A

    2015-02-10

    Controlling obesity and other comorbidities in the population is a challenge in modern society. High-intensity interval training (HIIT) combines short periods of high-intensity exercise with long recovery periods or a low-intensity exercise. The aim was to assess the impact of HIIT in the context of diet-induced obesity in the animal model. C57BL/6 mice were fed one of the two diets: standard chow (Lean group - LE) or a high--fat diet (Obese group - OB). After twelve weeks, the animals were divided into non-trained groups (LE--NT and OB-NT) and trained groups (LE-T and OB--T), and began an exercise protocol. For biochemical analysis of inflammatory and lipid profile, we used a colorimetric enzymatic method and an automatic spectrophotometer. One-way ANOVA was used for statistical analysis of the experimental groups with Holm-Sidak pos hoc test. Two-way ANOVA analyzed the interactions between diet and HIIT protocol. HIIT leads to significant reductions in body mass, blood glucose, glucose tolerance and hepatic lipid profile in T-groups compared to NT-groups. HIIT was able to reduce plasma levels of inflammatory cytokines. Additionally, HIIT improves the insulin immunodensity in the islets, reduces the adiposity and the hepatic steatosis in the T-groups. HIIT improves beta--oxidation and peroxisome proliferator--activated receptor (PPAR)-alpha and reduces lipogenesis and PPAR--gamma levels in the liver. In skeletal muscle, HIIT improves PPAR--alpha and glucose transporter-4 and reduces PPAR--gamma levels. HIIT leads to attenuate the adverse effects caused by a chronic ingestion of a high-fat diet.

  16. Low-Intensity Wheelchair Training in Inactive People with Long-Term Spinal Cord Injury: A Randomized Controlled Trial on Propulsion Technique.

    PubMed

    van der Scheer, Jan W; de Groot, Sonja; Vegter, Riemer J K; Hartog, Johanneke; Tepper, Marga; Slootman, Hans; Veeger, DirkJan H E J; van der Woude, Lucas H V

    2015-11-01

    The objective of this study was to investigate the effects of a low-intensity wheelchair training on propulsion technique in inactive people with long-term spinal cord injury. Participants in this multicenter nonblinded randomized controlled trial were inactive manual wheelchair users with spinal cord injury for at least 10 yrs (N = 29), allocated to exercise (n = 14) or no exercise. The 16-wk training consisted of wheelchair treadmill propulsion at 30%-40% heart rate reserve or equivalent in rate of perceived exertion, twice a week, 30 mins per session. Propulsion technique was assessed at baseline as well as after 8, 16, and 42 wks during two submaximal treadmill-exercise blocks using a measurement wheel attached to a participant's own wheelchair. Changes over time between the groups were analyzed using Mann-Whitney U tests on difference scores (P < 0.05/3). Data of 16 participants could be analyzed (exercise: n = 8). Significant differences between the exercise and control groups were only found in peak force after 8 wks (respective medians, -20 N vs. 1 N; P = 0.01; r(u) = 0.78). Significant training effects on propulsion technique were not found in this group. Perhaps, substantial effects require a higher intensity or frequency. Investigating whether more effective and feasible interventions exist might help reduce the population's risk of upper-body joint damage during daily wheelchair propulsion.

  17. Core stability training for injury prevention.

    PubMed

    Huxel Bliven, Kellie C; Anderson, Barton E

    2013-11-01

    Enhancing core stability through exercise is common to musculoskeletal injury prevention programs. Definitive evidence demonstrating an association between core instability and injury is lacking; however, multifaceted prevention programs including core stabilization exercises appear to be effective at reducing lower extremity injury rates. PUBMED WAS SEARCHED FOR EPIDEMIOLOGIC, BIOMECHANIC, AND CLINICAL STUDIES OF CORE STABILITY FOR INJURY PREVENTION (KEYWORDS: "core OR trunk" AND "training OR prevention OR exercise OR rehabilitation" AND "risk OR prevalence") published between January 1980 and October 2012. Articles with relevance to core stability risk factors, assessment, and training were reviewed. Relevant sources from articles were also retrieved and reviewed. Stabilizer, mobilizer, and load transfer core muscles assist in understanding injury risk, assessing core muscle function, and developing injury prevention programs. Moderate evidence of alterations in core muscle recruitment and injury risk exists. Assessment tools to identify deficits in volitional muscle contraction, isometric muscle endurance, stabilization, and movement patterns are available. Exercise programs to improve core stability should focus on muscle activation, neuromuscular control, static stabilization, and dynamic stability. Core stabilization relies on instantaneous integration among passive, active, and neural control subsystems. Core muscles are often categorized functionally on the basis of stabilizing or mobilizing roles. Neuromuscular control is critical in coordinating this complex system for dynamic stabilization. Comprehensive assessment and training require a multifaceted approach to address core muscle strength, endurance, and recruitment requirements for functional demands associated with daily activities, exercise, and sport.

  18. Detraining Differentially Preserved Beneficial Effects of Exercise on Hypertension: Effects on Blood Pressure, Cardiac Function, Brain Inflammatory Cytokines and Oxidative Stress

    PubMed Central

    Agarwal, Deepmala; Dange, Rahul B.; Vila, Jorge; Otamendi, Arturo J.; Francis, Joseph

    2012-01-01

    Aims This study sought to investigate the effects of physical detraining on blood pressure (BP) and cardiac morphology and function in hypertension, and on pro- and anti-inflammatory cytokines (PICs and AIC) and oxidative stress within the brain of hypertensive rats. Methods and Results Hypertension was induced in male Sprague-Dawley rats by delivering AngiotensinII for 42 days using implanted osmotic minipumps. Rats were randomized into sedentary, trained, and detrained groups. Trained rats underwent moderate-intensity exercise (ExT) for 42 days, whereas, detrained groups underwent 28 days of exercise followed by 14 days of detraining. BP and cardiac function were evaluated by radio-telemetry and echocardiography, respectively. At the end, the paraventricular nucleus (PVN) was analyzed by Real-time RT-PCR and Western blot. ExT in AngII-infused rats caused delayed progression of hypertension, reduced cardiac hypertrophy, and improved diastolic function. These results were associated with significantly reduced PICs, increased AIC (interleukin (IL)-10), and attenuated oxidative stress in the PVN. Detraining did not abolish the exercise-induced attenuation in MAP in hypertensive rats; however, detraining failed to completely preserve exercise-mediated improvement in cardiac hypertrophy and function. Additionally, detraining did not reverse exercise-induced improvement in PICs in the PVN of hypertensive rats; however, the improvements in IL-10 were abolished. Conclusion These results indicate that although 2 weeks of detraining is not long enough to completely abolish the beneficial effects of regular exercise, continuing cessation of exercise may lead to detrimental effects. PMID:23285093

  19. Exercise and vitamin D in fall prevention among older women: a randomized clinical trial.

    PubMed

    Uusi-Rasi, Kirsti; Patil, Radhika; Karinkanta, Saija; Kannus, Pekka; Tokola, Kari; Lamberg-Allardt, Christel; Sievänen, Harri

    2015-05-01

    While vitamin D supplementation and exercise are recommended for prevention of falls for older people, results regarding these 2 factors are contradictory. To determine the effectiveness of targeted exercise training and vitamin D supplementation in reducing falls and injurious falls among older women. A 2-year randomized, double-blind, placebo-controlled vitamin D and open exercise trial conducted between April 2010 and March 2013 in Tampere, Finland. Participants were 409 home-dwelling women 70 to 80 years old. The main inclusion criteria were at least 1 fall during the previous year, no use of vitamin D supplements, and no contraindication to exercise. Four study groups, including placebo without exercise, vitamin D (800 IU/d) without exercise, placebo and exercise, and vitamin D (800 IU/d) and exercise. The primary outcome was monthly reported falls. Injurious falls and the number of fallers and injured fallers were reported as secondary outcomes. In addition, bone density, physical functioning (muscle strength, balance, and mobility), and vitamin D metabolism were assessed. Intent-to-treat analyses showed that neither vitamin D nor exercise reduced falls. Fall rates per 100 person-years were 118.2, 132.1, 120.7, and 113.1 in the placebo without exercise, vitamin D without exercise, placebo and exercise, and vitamin D and exercise study groups, respectively; however, injurious fall rates were 13.2, 12.9, 6.5, and 5.0, respectively. Hazard ratios for injured fallers were significantly lower among exercisers with vitamin D (0.38; 95% CI, 0.17-0.83) and without vitamin D (0.47; 95% CI, 0.23-0.99). Vitamin D maintained femoral neck bone mineral density and increased tibial trabecular density slightly. However, only exercise improved muscle strength and balance. Vitamin D did not enhance exercise effects on physical functioning. The rate of injurious falls and injured fallers more than halved with strength and balance training in home-dwelling older women, while neither exercise nor vitamin D affected the rate of falls. Exercise improved physical functioning. Future research is needed to determine the role of vitamin D in the enhancement of strength, balance, and mobility. clinicaltrials.gov Identifier: NCT00986466.

  20. Mini-trampoline exercise related to mechanisms of dynamic stability improves the ability to regain balance in elderly.

    PubMed

    Aragão, Fernando Amâncio; Karamanidis, Kiros; Vaz, Marco Aurélio; Arampatzis, Adamantios

    2011-06-01

    Falls have been described by several studies as the major cause of hip and femur fractures among the elderly. Therefore, interventions to reduce fall risks, improve dynamic stability and the falling recovery strategies in the elderly population are highly relevant. This study aimed at investigating the effects of a 14-week mini-trampoline exercise intervention regarding the mechanisms of dynamic stability on elderly balance ability during sudden forward falls. Twenty-two elderly subjects participated on mini-trampoline training and 12 subjects were taken as controls. The subjects of the experimental group were evaluated before and after the 14-week trampoline training (exercised group), whereas control subjects were evaluated twice in the forward fall task with a three-month interval. The applied exercise intervention increased the plantarflexors muscle strength (∼10%) as well as the ability to regain balance during the forward falls (∼35%). The 14-week mini-trampoline training intervention increased elderly abilities to recover balance during forward falls; the improvement was attributed to the higher rate of hip moment generation. Copyright © 2011 Elsevier Ltd. All rights reserved.

Top