Science.gov

Sample records for exercise-induced cardiac hypertrophy

  1. Syndecan-4 Signaling Is Required for Exercise-Induced Cardiac Hypertrophy

    PubMed Central

    Xie, Jun; He, Guixin; Chen, Qinhua; Sun, Jiayin; Dai, Qin; Lu, Jianrong; Li, Guannan; Wu, Han; Li, Ran; Chen, Jianzhou; Xu, Wei; Xu, Biao

    2016-01-01

    Cardiac hypertrophy can be broadly classified as either physiological or pathological. Physiological stimuli such as exercise cause adaptive cardiac hypertrophy and normal heart function. Pathological stimuli including hypertension and aortic valvular stenosis cause maladaptive cardiac remodeling and ultimately heart failure. Syndecan-4 (synd4) is a transmembrane proteoglycan identified as being involved in cardiac adaptation after injury, but whether it takes part in physiological cardiac hypertrophy is unclear. We observed upregulation of synd4 in exercise-induced hypertrophic myocardium. To evaluate the role of synd4 in the physiological form of cardiac hypertrophy, mice lacking synd4 (synd4–/–) were exercised by swimming for 4 wks. Ultrasonic cardiogram (UCG) and histological analysis revealed that swimming induced the hypertrophic phenotype but was blunted in synd4–/– compared with wild-type (WT) mice. The swimming-induced activation of Akt, a key molecule in physiological hypertrophy was also more decreased than in WT controls. In cultured cardiomyocytes, synd4 overexpression could induce cell enlargement, protein synthesis and distinct physiological molecular alternation. Akt activation also was observed in synd4-overexpressed cardiomyocytes. Furthermore, inhibition of protein kinase C (PKC) prevented the synd4-induced hypertrophic phenotype and Akt phosphorylation. This study identified an essential role of synd4 in mediation of physiological cardiac hypertrophy. PMID:26835698

  2. Comparison of Nigella sativa- and exercise-induced models of cardiac hypertrophy: structural and electrophysiological features.

    PubMed

    Al-Asoom, Lubna Ibrahim; Al-Shaikh, Basil Abdulrahman; Bamosa, Abdullah Omar; El-Bahai, Mohammad Nabil

    2014-09-01

    Exercise training is employed as supplementary therapeutic intervention for heart failure, due to its ability to induce physiological cardiac hypertrophy. In parallel, supplementation with Nigella sativa (N. sativa) was found to enhance myocardial function and induce cardiac hypertrophy. In this study, we aim to compare the morphological and electrophysiological changes associated with these patterns of cardiac hypertrophy and the possible changes upon administration of N. sativa to exercise-trained animals. Fifty-six adult Wistar rats were divided into: control, Nigella-treated (N), exercise-trained (E), and Nigella-treated-exercise-trained (NE) rats. Daily 800 mg/kg N. sativa was administered orally to N and NE. E and NE ran on treadmill, 2 h/day. At the end of 8 weeks ECG, body weight (BW), heart weight (HW), and left ventricular weight (LVW) were recorded. Hematoxylin and Eosin and periodic acid-Schiff sections were prepared to study the histology of left ventricles and to measure diameter of cardiomyocytes (Cdia). HW/BW, LVW/BW, and mean Cdia were significantly higher in all experimental animals compared to the controls. Histology showed normal cardiomyocytes with no fibrosis. ECG showed significantly lower heart rates, higher QRS amplitude, and ventricular specific potential in NE group compared to control group. Supplementation of N. sativa demonstrated a synergistic effect with exercise training as Nigella-exercise-induced cardiac hypertrophy had lower heart rate and well-matched electrical activity of the heart to its mass. Therefore, this model of cardiac hypertrophy might be introduced as a new therapeutic strategy for treatment for heart failure with superior advantages to exercise training.

  3. Adipose Tissue Lipolysis Promotes Exercise-induced Cardiac Hypertrophy Involving the Lipokine C16:1n7-Palmitoleate*

    PubMed Central

    Foryst-Ludwig, Anna; Kreissl, Michael C.; Benz, Verena; Brix, Sarah; Smeir, Elia; Ban, Zsofia; Januszewicz, Elżbieta; Salatzki, Janek; Grune, Jana; Schwanstecher, Anne-Kathrin; Blumrich, Annelie; Schirbel, Andreas; Klopfleisch, Robert; Rothe, Michael; Blume, Katharina; Halle, Martin; Wolfarth, Bernd; Kershaw, Erin E.; Kintscher, Ulrich

    2015-01-01

    Endurance exercise training induces substantial adaptive cardiac modifications such as left ventricular hypertrophy (LVH). Simultaneously to the development of LVH, adipose tissue (AT) lipolysis becomes elevated upon endurance training to cope with enhanced energy demands. In this study, we investigated the impact of adipose tissue lipolysis on the development of exercise-induced cardiac hypertrophy. Mice deficient for adipose triglyceride lipase (Atgl) in AT (atATGL-KO) were challenged with chronic treadmill running. Exercise-induced AT lipolytic activity was significantly reduced in atATGL-KO mice accompanied by the absence of a plasma fatty acid (FA) increase. These processes were directly associated with a prominent attenuation of myocardial FA uptake in atATGL-KO and a significant reduction of the cardiac hypertrophic response to exercise. FA serum profiling revealed palmitoleic acid (C16:1n7) as a new molecular co-mediator of exercise-induced cardiac hypertrophy by inducing nonproliferative cardiomyocyte growth. In parallel, serum FA analysis and echocardiography were performed in 25 endurance athletes. In consonance, the serum C16:1n7 palmitoleate level exhibited a significantly positive correlation with diastolic interventricular septum thickness in those athletes. No correlation existed between linoleic acid (18:2n6) and diastolic interventricular septum thickness. Collectively, our data provide the first evidence that adipose tissue lipolysis directly promotes the development of exercise-induced cardiac hypertrophy involving the lipokine C16:1n7 palmitoleate as a molecular co-mediator. The identification of a lipokine involved in physiological cardiac growth may help to develop future lipid-based therapies for pathological LVH or heart failure. PMID:26260790

  4. Rat model of exercise-induced cardiac hypertrophy: hemodynamic characterization using left ventricular pressure-volume analysis.

    PubMed

    Radovits, Tamás; Oláh, Attila; Lux, Árpád; Németh, Balázs Tamás; Hidi, László; Birtalan, Ede; Kellermayer, Dalma; Mátyás, Csaba; Szabó, Gábor; Merkely, Béla

    2013-07-01

    Long-term exercise training is associated with characteristic structural and functional changes of the myocardium, termed athlete's heart. Several research groups investigated exercise training-induced left ventricular (LV) hypertrophy in animal models; however, only sporadic data exist about detailed hemodynamics. We aimed to provide functional characterization of exercise-induced cardiac hypertrophy in a rat model using the in vivo method of LV pressure-volume (P-V) analysis. After inducing LV hypertrophy by swim training, we assessed LV morphometry by echocardiography and performed LV P-V analysis using a pressure-conductance microcatheter to investigate in vivo cardiac function. Echocardiography showed LV hypertrophy (LV mass index: 2.41 ± 0.09 vs. 2.03 ± 0.08 g/kg, P < 0.01), which was confirmed by heart weight data and histomorphometry. Invasive hemodynamic measurements showed unaltered heart rate, arterial pressure, and LV end-diastolic volume along with decreased LV end-systolic volume, thus increased stroke volume and ejection fraction (73.7 ± 0.8 vs. 64.1 ± 1.5%, P < 0.01) in trained versus untrained control rats. The P-V loop-derived sensitive, load-independent contractility indexes, such as slope of end-systolic P-V relationship or preload recruitable stroke work (77.0 ± 6.8 vs. 54.3 ± 4.8 mmHg, P = 0.01) were found to be significantly increased. The observed improvement of ventriculoarterial coupling (0.37 ± 0.02 vs. 0.65 ± 0.08, P < 0.01), along with increased LV stroke work and mechanical efficiency, reflects improved mechanoenergetics of exercise-induced cardiac hypertrophy. Despite the significant hypertrophy, we observed unaltered LV stiffness (slope of end-diastolic P-V relationship: 0.043 ± 0.007 vs. 0.040 ± 0.006 mmHg/μl) and improved LV active relaxation (τ: 10.1 ± 0.6 vs. 11.9 ± 0.2 ms, P < 0.01). According to our knowledge, this is the first study that provides characterization of functional changes and hemodynamic relations in

  5. Telocytes in exercise-induced cardiac growth.

    PubMed

    Xiao, Junjie; Chen, Ping; Qu, Yi; Yu, Pujiao; Yao, Jianhua; Wang, Hongbao; Fu, Siyi; Bei, Yihua; Chen, Yan; Che, Lin; Xu, Jiahong

    2016-05-01

    Exercise can induce physiological cardiac growth, which is featured by enlarged cardiomyocyte cell size and formation of new cardiomyocytes. Telocytes (TCs) are a recently identified distinct interstitial cell type, existing in many tissues and organs including heart. TCs have been shown to form a tandem with cardiac stem/progenitor cells in cardiac stem cell niches, participating in cardiac regeneration and repair. Although exercise-induced cardiac growth has been confirmed as an important way to promote cardiac regeneration and repair, the response of cardiac TCs to exercise is still unclear. In this study, 4 weeks of swimming training was used to induce robust healthy cardiac growth. Exercise can induce an increase in cardiomyocyte cell size and formation of new cardiomyocytes as determined by Wheat Germ Lectin and EdU staining respectively. TCs were identified by three immunofluorescence stainings including double labelling for CD34/vimentin, CD34/platelet-derived growth factor (PDGF) receptor-α and CD34/PDGF receptor-β. We found that cardiac TCs were significantly increased in exercised heart, suggesting that TCs might help control the activity of cardiac stem/progenitor cells, cardiomyocytes or endothelial cells. Adding cardiac TCs might help promote cardiac regeneration and renewal. PMID:26987685

  6. Glucose metabolism and cardiac hypertrophy

    PubMed Central

    Kolwicz, Stephen C.; Tian, Rong

    2011-01-01

    The most notable change in the metabolic profile of hypertrophied hearts is an increased reliance on glucose with an overall reduced oxidative metabolism, i.e. a reappearance of the foetal metabolic pattern. In animal models, this change is attributed to the down-regulation of the transcriptional cascades promoting gene expression for fatty acid oxidation and mitochondrial oxidative phosphorylation in adult hearts. Impaired myocardial energetics in cardiac hypertrophy also triggers AMP-activated protein kinase (AMPK), leading to increased glucose uptake and glycolysis. Aside from increased reliance on glucose as an energy source, changes in other glucose metabolism pathways, e.g. the pentose phosphate pathway, the glucosamine biosynthesis pathway, and anaplerosis, are also noted in the hypertrophied hearts. Studies using transgenic mouse models and pharmacological compounds to mimic or counter the switch of substrate preference in cardiac hypertrophy have demonstrated that increased glucose metabolism in adult heart is not harmful and can be beneficial when it provides sufficient fuel for oxidative metabolism. However, improvement in the oxidative capacity and efficiency rather than the selection of the substrate is likely the ultimate goal for metabolic therapies. PMID:21502371

  7. Protein kinase cascades in the regulation of cardiac hypertrophy

    PubMed Central

    Dorn, Gerald W.; Force, Thomas

    2005-01-01

    In broad terms, there are 3 types of cardiac hypertrophy: normal growth, growth induced by physical conditioning (i.e., physiologic hypertrophy), and growth induced by pathologic stimuli. Recent evidence suggests that normal and exercise-induced cardiac growth are regulated in large part by the growth hormone/IGF axis via signaling through the PI3K/Akt pathway. In contrast, pathological or reactive cardiac growth is triggered by autocrine and paracrine neurohormonal factors released during biomechanical stress that signal through the Gq/phospholipase C pathway, leading to an increase in cytosolic calcium and activation of PKC. Here we review recent developments in the area of these cardiotrophic kinases, highlighting the utility of animal models that are helping to identify molecular targets in the human condition. PMID:15765134

  8. The role of autophagy in cardiac hypertrophy.

    PubMed

    Li, Lanfang; Xu, Jin; He, Lu; Peng, Lijun; Zhong, Qiaoqing; Chen, Linxi; Jiang, Zhisheng

    2016-06-01

    Autophagy is conserved in nature from lower eukaryotes to mammals and is an important self-cannibalizing, degradative process that contributes to the elimination of superfluous materials. Cardiac hypertrophy is primarily characterized by excess protein synthesis, increased cardiomyocyte size, and thickened ventricular walls and is a major risk factor that promotes arrhythmia and heart failure. In recent years, cardiomyocyte autophagy has been considered to play a role in controlling the hypertrophic response. However, the beneficial or aggravating role of cardiomyocyte autophagy in cardiac hypertrophy remains controversial. The exact mechanism of cardiomyocyte autophagy in cardiac hypertrophy requires further study. In this review, we summarize the controversies associated with autophagy in cardiac hypertrophy and provide insights into the role of autophagy in the development of cardiac hypertrophy. We conclude that future studies should emphasize the relationship between autophagy and the different stages of cardiac hypertrophy, as well as the autophagic flux and selective autophagy. Autophagy will be a potential therapeutic target for cardiac hypertrophy. PMID:27084518

  9. Regression of altitude-produced cardiac hypertrophy.

    NASA Technical Reports Server (NTRS)

    Sizemore, D. A.; Mcintyre, T. W.; Van Liere, E. J.; Wilson , M. F.

    1973-01-01

    The rate of regression of cardiac hypertrophy with time has been determined in adult male albino rats. The hypertrophy was induced by intermittent exposure to simulated high altitude. The percentage hypertrophy was much greater (46%) in the right ventricle than in the left (16%). The regression could be adequately fitted to a single exponential function with a half-time of 6.73 plus or minus 0.71 days (90% CI). There was no significant difference in the rates of regression for the two ventricles.

  10. Tripartite motif 32 prevents pathological cardiac hypertrophy

    PubMed Central

    Huang, Jia; Ji, Yanxiao; Zhang, Xiaojing; Wang, Pixiao; Deng, Keqiong; Jiang, Xi; Ma, Genshan

    2016-01-01

    TRIM32 (tripartite motif 32) is widely accepted to be an E3 ligase that interacts with and eventually ubiquitylates multiple substrates. TRIM32 mutants have been associated with LGMD-2H (limb girdle muscular dystrophy 2H). However, whether TRIM32 is involved in cardiac hypertrophy induced by biomechanical stresses and neurohumoral mediators remains unclear. We generated mice and isolated NRCMs (neonatal rat cardiomyocytes) that overexpressed or were deficient in TRIM32 to investigate the effect of TRIM32 on AB (aortic banding) or AngII (angiotensin II)-mediated cardiac hypertrophy. Echocardiography and both pathological and molecular analyses were used to determine the extent of cardiac hypertrophy and subsequent fibrosis. Our results showed that overexpression of TRIM32 in the heart significantly alleviated the hypertrophic response induced by pressure overload, whereas TRIM32 deficiency dramatically aggravated pathological cardiac remodelling. Similar results were also found in cultured NRCMs incubated with AngII. Mechanistically, the present study suggests that TRIM32 exerts cardioprotective action by interruption of Akt- but not MAPK (mitogen-dependent protein kinase)-dependent signalling pathways. Additionally, inactivation of Akt by LY294002 offset the exacerbated hypertrophic response induced by AB in TRIM32-deficient mice. In conclusion, the present study indicates that TRIM32 plays a protective role in AB-induced pathological cardiac remodelling by blocking Akt-dependent signalling. Therefore TRIM32 could be a novel therapeutic target for the prevention of cardiac hypertrophy and heart failure. PMID:26884348

  11. Exercise Induced Cardiac Fatigue Following Prolonged Exercise in Road Cyclists

    ERIC Educational Resources Information Center

    Wyatt, Frank; Pawar, Ganesh; Kilgore, Lon

    2011-01-01

    The purpose of this study was to examine cardiac function following a 100-mile ride in high ambient temperatures by healthy, competitive cyclists. Methods: Subjects were six (n=6) competitive cyclists racing in a 100-mile road race. Measures (pre/post) included: body mass (kg); E:A ratio (ventricular compliance); stroke volume (ml); ejection…

  12. The effect of inter-set rest intervals on resistance exercise-induced muscle hypertrophy.

    PubMed

    Henselmans, Menno; Schoenfeld, Brad J

    2014-12-01

    Due to a scarcity of longitudinal trials directly measuring changes in muscle girth, previous recommendations for inter-set rest intervals in resistance training programs designed to stimulate muscular hypertrophy were primarily based on the post-exercise endocrinological response and other mechanisms theoretically related to muscle growth. New research regarding the effects of inter-set rest interval manipulation on resistance training-induced muscular hypertrophy is reviewed here to evaluate current practices and provide directions for future research. Of the studies measuring long-term muscle hypertrophy in groups employing different rest intervals, none have found superior muscle growth in the shorter compared with the longer rest interval group and one study has found the opposite. Rest intervals less than 1 minute can result in acute increases in serum growth hormone levels and these rest intervals also decrease the serum testosterone to cortisol ratio. Long-term adaptations may abate the post-exercise endocrinological response and the relationship between the transient change in hormonal production and chronic muscular hypertrophy is highly contentious and appears to be weak. The relationship between the rest interval-mediated effect on immune system response, muscle damage, metabolic stress, or energy production capacity and muscle hypertrophy is still ambiguous and largely theoretical. In conclusion, the literature does not support the hypothesis that training for muscle hypertrophy requires shorter rest intervals than training for strength development or that predetermined rest intervals are preferable to auto-regulated rest periods in this regard.

  13. Effect of Antioxidant Supplementation on Exercise-Induced Cardiac Troponin Release in Cyclists: A Randomized Trial

    PubMed Central

    Haenen, Guido R.; Bast, Aalt; van Loon, Luc J. C.; van Dieijen-Visser, Marja P.; Meex, Steven J.R.

    2013-01-01

    Background Cardiac troponin is the biochemical gold standard to diagnose acute myocardial infarction. Interestingly however, elevated cardiac troponin concentrations are also frequently observed during and after endurance-type exercise. Oxidative stress associated with prolonged exercise has been proposed to contribute to cardiac troponin release. Therefore, the aim of this study was to assess the effect of 4 week astaxanthin supplementation (a potent cartenoid antioxidant) on antioxidant capacity and exercise-induced cardiac troponin release in cyclists. Methods Thirty-two well-trained male cyclists (age 25±5, weight 73±7 kg, maximum O2 uptake 60±5 mL·kg−1·min−1, Wmax 5.4±0.5 W·kg−1; mean ± SD) were repeatedly subjected to a laboratory based standardized exercise protocol before and after 4 weeks of astaxanthin (20 mg/day), or placebo supplementation in a double-blind randomized manner. Blood samples were obtained at baseline, at 60 min of cycling and immediately post-exercise (≈ 120 min). Results The pre-supplementation cycling trial induced a significant rise of median cardiac troponin T concentrations from 3.2 (IQR 3.0–4.2) to 4.7 ng/L (IQR 3.7–6.7), immediately post-exercise (p<0.001). Four weeks of astaxanthin supplementation significantly increased mean basal plasma astaxanthin concentrations from non-detectable values to 175±86 µg·kg−1. However, daily astaxanthin supplementation had no effect on exercise-induced cardiac troponin T release (p = 0.24), as measured by the incremental area under the curve. Furthermore, the elevation in basal plasma astaxanthin concentrations was not reflected in changes in antioxidant capacity markers (trolox equivalent antioxidant capacity, uric acid, and malondialdehyde). Markers of inflammation (high-sensitivity C-reactive protein) and exercise-induced skeletal muscle damage (creatine kinase) were equally unaffected by astaxanthin supplementation. Conclusion Despite substantial increases in

  14. Glucose Transporters in Cardiac Metabolism and Hypertrophy

    PubMed Central

    Shao, Dan; Tian, Rong

    2016-01-01

    The heart is adapted to utilize all classes of substrates to meet the high-energy demand, and it tightly regulates its substrate utilization in response to environmental changes. Although fatty acids are known as the predominant fuel for the adult heart at resting stage, the heart switches its substrate preference toward glucose during stress conditions such as ischemia and pathological hypertrophy. Notably, increasing evidence suggests that the loss of metabolic flexibility associated with increased reliance on glucose utilization contribute to the development of cardiac dysfunction. The changes in glucose metabolism in hypertrophied hearts include altered glucose transport and increased glycolysis. Despite the role of glucose as an energy source, changes in other nonenergy producing pathways related to glucose metabolism, such as hexosamine biosynthetic pathway and pentose phosphate pathway, are also observed in the diseased hearts. This article summarizes the current knowledge regarding the regulation of glucose transporter expression and translocation in the heart during physiological and pathological conditions. It also discusses the signaling mechanisms governing glucose uptake in cardiomyocytes, as well as the changes of cardiac glucose metabolism under disease conditions. PMID:26756635

  15. A brief review of critical processes in exercise-induced muscular hypertrophy.

    PubMed

    Phillips, Stuart M

    2014-05-01

    With regular practice, resistance exercise can lead to gains in skeletal muscle mass by means of hypertrophy. The process of skeletal muscle fiber hypertrophy comes about as a result of the confluence of positive muscle protein balance and satellite cell addition to muscle fibers. Positive muscle protein balance is achieved when the rate of new muscle protein synthesis (MPS) exceeds that of muscle protein breakdown (MPB). While resistance exercise and postprandial hyperaminoacidemia both stimulate MPS, it is through the synergistic effects of these two stimuli that a net gain in muscle proteins occurs and muscle fiber hypertrophy takes place. Current evidence favors the post-exercise period as a time when rapid hyperaminoacidemia promotes a marked rise in the rate of MPS. Dietary proteins with a full complement of essential amino acids and high leucine contents that are rapidly digested are more likely to be efficacious in this regard. Various other compounds have been added to complete proteins, including carbohydrate, arginine and glutamine, in an attempt to augment the effectiveness of the protein in stimulating MPS (or suppressing MPB), but none has proved particularly effective. Evidence points to a higher protein intake in combination with resistance exercise as being efficacious in allowing preservation, and on occasion increases, in skeletal muscle mass with dietary energy restriction aimed at the promotion of weight loss. The goal of this review is to examine practices of protein ingestion in combination with resistance exercise that have some evidence for efficacy and to highlight future areas for investigation. PMID:24791918

  16. Regression of Pathological Cardiac Hypertrophy: Signaling Pathways and Therapeutic Targets

    PubMed Central

    Hou, Jianglong; Kang, Y. James

    2012-01-01

    Pathological cardiac hypertrophy is a key risk factor for heart failure. It is associated with increased interstitial fibrosis, cell death and cardiac dysfunction. The progression of pathological cardiac hypertrophy has long been considered as irreversible. However, recent clinical observations and experimental studies have produced evidence showing the reversal of pathological cardiac hypertrophy. Left ventricle assist devices used in heart failure patients for bridging to transplantation not only improve peripheral circulation but also often cause reverse remodeling of the geometry and recovery of the function of the heart. Dietary supplementation with physiologically relevant levels of copper can reverse pathological cardiac hypertrophy in mice. Angiogenesis is essential and vascular endothelial growth factor (VEGF) is a constitutive factor for the regression. The action of VEGF is mediated by VEGF receptor-1, whose activation is linked to cyclic GMP-dependent protein kinase-1 (PKG-1) signaling pathways, and inhibition of cyclic GMP degradation leads to regression of pathological cardiac hypertrophy. Most of these pathways are regulated by hypoxia-inducible factor. Potential therapeutic targets for promoting the regression include: promotion of angiogenesis, selective enhancement of VEGF receptor-1 signaling pathways, stimulation of PKG-1 pathways, and sustention of hypoxia-inducible factor transcriptional activity. More exciting insights into the regression of pathological cardiac hypertrophy are emerging. The time of translating the concept of regression of pathological cardiac hypertrophy to clinical practice is coming. PMID:22750195

  17. Cardiac hypertrophy in mice expressing unphosphorylatable phospholemman

    PubMed Central

    Boguslavskyi, Andrii; Pavlovic, Davor; Aughton, Karen; Clark, James E.; Howie, Jacqueline; Fuller, William; Shattock, Michael J.

    2014-01-01

    Aims Elevation of intracellular Na in the failing myocardium contributes to contractile dysfunction, the negative force–frequency relationship, and arrhythmias. Although phospholemman (PLM) is recognized to form the link between signalling pathways and Na/K pump activity, the possibility that defects in its regulation contribute to elevation of intracellular Na has not been investigated. Our aim was to test the hypothesis that the prevention of PLM phosphorylation in a PLM3SA knock-in mouse (in which PLM has been rendered unphosphorylatable) will exacerbate cardiac hypertrophy and cellular Na overload. Testing this hypothesis should determine whether changes in PLM phosphorylation are simply bystander effects or are causally involved in disease progression. Methods and results In wild-type (WT) mice, aortic constriction resulted in hypophosphorylation of PLM with no change in Na/K pump expression. This under-phosphorylation of PLM occurred at 3 days post-banding and was associated with a progressive decline in Na/K pump current and elevation of [Na]i. Echocardiography, morphometry, and pressure-volume (PV) catheterization confirmed remodelling, dilation, and contractile dysfunction, respectively. In PLM3SA mice, expression of Na/K ATPase was increased and PLM decreased such that net Na/K pump current under quiescent conditions was unchanged (cf. WT myocytes); [Na+]i was increased and forward-mode Na/Ca exchanger was reduced in paced PLM3SA myocytes. Cardiac hypertrophy and Na/K pump inhibition were significantly exacerbated in banded PLM3SA mice compared with banded WT. Conclusions Decreased phosphorylation of PLM reduces Na/K pump activity and exacerbates Na overload, contractile dysfunction, and adverse remodelling following aortic constriction in mice. This suggests a novel therapeutic target for the treatment of heart failure. PMID:25103111

  18. Raf-mediated cardiac hypertrophy in adult Drosophila

    PubMed Central

    Yu, Lin; Daniels, Joseph; Glaser, Alex E.; Wolf, Matthew J.

    2013-01-01

    SUMMARY In response to stress and extracellular signals, the heart undergoes a process called cardiac hypertrophy during which cardiomyocytes increase in size. If untreated, cardiac hypertrophy can progress to overt heart failure that causes significant morbidity and mortality. The identification of molecular signals that cause or modify cardiomyopathies is necessary to understand how the normal heart progresses to cardiac hypertrophy and heart failure. Receptor tyrosine kinase (RTK) signaling is essential for normal human cardiac function, and the inhibition of RTKs can cause dilated cardiomyopathies. However, neither investigations of activated RTK signaling pathways nor the characterization of hypertrophic cardiomyopathy in the adult fly heart has been previously described. Therefore, we developed strategies using Drosophila as a model to circumvent some of the complexities associated with mammalian models of cardiovascular disease. Transgenes encoding activated EGFRA887T, Ras85DV12 and Ras85DV12S35, which preferentially signal to Raf, or constitutively active human or fly Raf caused hypertrophic cardiomyopathy as determined by decreased end diastolic lumen dimensions, abnormal cardiomyocyte fiber morphology and increased heart wall thicknesses. There were no changes in cardiomyocyte cell numbers. Additionally, activated Raf also induced an increase in cardiomyocyte ploidy compared with control hearts. However, preventing increases in cardiomyocyte ploidy using fizzy-related (Fzr) RNAi did not rescue Raf-mediated cardiac hypertrophy, suggesting that Raf-mediated polyploidization is not required for cardiac hypertrophy. Similar to mammals, the cardiac-specific expression of RNAi directed against MEK or ERK rescued Raf-mediated cardiac hypertrophy. However, the cardiac-specific expression of activated ERKD334N, which promotes hyperplasia in non-cardiac tissues, did not cause myocyte hypertrophy. These results suggest that ERK is necessary, but not sufficient, for

  19. Overexpression of microRNA-99a Attenuates Cardiac Hypertrophy

    PubMed Central

    Li, Ran; Bai, Jian; Ding, Liang; Gu, Rong; Wang, Lian; Xu, Biao

    2016-01-01

    Pathological cardiomyocyte hypertrophy is associated with significantly increased risk of heart failure, one of the leading medical causes of mortality worldwide. MicroRNAs are known to be involved in pathological cardiac remodeling. However, whether miR-99a participates in the signaling cascade leading to cardiac hypertrophy is unknown. To evaluate the role of miR-99a in cardiac hypertrophy, we assessed the expression of miR-99a in hypertrophic cardiomyocytes induced by isoprenaline (ISO)/angiotensin-II (Ang II) and in mice model of cardiac hypertrophy induced by transverse aortic constriction (TAC). Expression of miR-99a was evaluated in these hypertrophic cells and hearts. We also found that miR-99a expression was highly correlated with cardiac function of mice with heart failure (8 weeks after TAC surgery). Overexpression of miR-99a attenuated cardiac hypertrophy in TAC mice and cellular hypertrophy in stimuli treated cardiomyocytes through down-regulation of expression of mammalian target of rapamycin (mTOR). These results indicate that miR-99a negatively regulates physiological hypertrophy through mTOR signaling pathway, which may provide a new therapeutic approach for pressure-overload heart failure. PMID:26914935

  20. Phosphatidic acid enhances mTOR signaling and resistance exercise induced hypertrophy

    PubMed Central

    2014-01-01

    Introduction The lipid messenger phosphatidic acid (PA) plays a critical role in the stimulation of mTOR signaling. However, the mechanism by which PA stimulates mTOR is currently unknown. Therefore, the purpose of this study was to compare the effects of various PA precursors and phospholipids on their ability to stimulate mTOR signaling and its ability to augment resistance training-induced changes in body composition and performance. Methods In phase one, C2C12 myoblasts cells were stimulated with different phospholipids and phospholipid precursors derived from soy and egg sources. The ratio of phosphorylated p70 (P-p70-389) to total p70 was then used as readout for mTOR signaling. In phase two, resistance trained subjects (n = 28, 21 ± 3 years, 77 ± 4 kg, 176 ± 9 cm) consumed either 750 mg PA daily or placebo and each took part in an 8 week periodized resistance training program. Results In phase one, soy-phosphatidylserine, soy-Lyso-PA, egg-PA, and soy-PA stimulated mTOR signaling, and the effects of soy-PA (+636%) were significantly greater than egg-PA (+221%). In phase two, PA significantly increased lean body mass (+2.4 kg), cross sectional area (+1.0 cm), and leg press strength (+51.9 kg) over placebo. Conclusion PA significantly activates mTOR and significantly improved responses in skeletal muscle hypertrophy, lean body mass, and maximal strength to resistance exercise. PMID:24959196

  1. Adipocyte-specific loss of PPARγ attenuates cardiac hypertrophy

    PubMed Central

    Fang, Xi; Stroud, Matthew J.; Ouyang, Kunfu; Fang, Li; Zhang, Jianlin; Dalton, Nancy D.; Gu, Yusu; Wu, Tongbin; Peterson, Kirk L.; Huang, Hsien-Da; Wang, Nanping

    2016-01-01

    Adipose tissue is a key endocrine organ that governs systemic homeostasis. PPARγ is a master regulator of adipose tissue signaling that plays an essential role in insulin sensitivity, making it an important therapeutic target. The selective PPARγ agonist rosiglitazone (RSG) has been used to treat diabetes. However, adverse cardiovascular effects have seriously hindered its clinical application. Experimental models have revealed that PPARγ activation increases cardiac hypertrophy. RSG stimulates cardiac hypertrophy and oxidative stress in cardiomyocyte-specific PPARγ knockout mice, implying that RSG might stimulate cardiac hypertrophy independently of cardiomyocyte PPARγ. However, candidate cell types responsible for RSG-induced cardiomyocyte hypertrophy remain unexplored. Utilizing cocultures of adipocytes and cardiomyocytes, we found that stimulation of PPARγ signaling in adipocytes increased miR-200a expression and secretion. Delivery of miR-200a in adipocyte-derived exosomes to cardiomyocytes resulted in decreased TSC1 and subsequent mTOR activation, leading to cardiomyocyte hypertrophy. Treatment with an antagomir to miR-200a blunted this hypertrophic response in cardiomyocytes. In vivo, specific ablation of PPARγ in adipocytes was sufficient to blunt hypertrophy induced by RSG treatment. By delineating mechanisms by which RSG elicits cardiac hypertrophy, we have identified pathways that mediate the crosstalk between adipocytes and cardiomyocytes to regulate cardiac remodeling. PMID:27734035

  2. Novel EGFR inhibitors attenuate cardiac hypertrophy induced by angiotensin II.

    PubMed

    Peng, Kesong; Tian, Xinqiao; Qian, Yuanyuan; Skibba, Melissa; Zou, Chunpeng; Liu, Zhiguo; Wang, Jingying; Xu, Zheng; Li, Xiaokun; Liang, Guang

    2016-03-01

    Cardiac hypertrophy is an important risk factor for heart failure. Epidermal growth factor receptor (EGFR) has been found to play a role in the pathogenesis of various cardiovascular diseases. The aim of this current study was to examine the role of EGFR in angiotensin II (Ang II)-induced cardiac hypertrophy and identify the underlying molecular mechanisms. In this study, we observed that both Ang II and EGF could increase the phospohorylation of EGFR and protein kinase B (AKT)/extracellular signal-regulated kinase (ERK), and then induce cell hypertrophy in H9c2 cells. Both pharmacological inhibitors and genetic silencing significantly reduced Ang II-induced EGFR signalling pathway activation, hypertrophic marker overexpression, and cell hypertrophy. In addition, our results showed that Ang II-induced EGFR activation is mediated by c-Src phosphorylation. In vivo, Ang II treatment significantly led to cardiac remodelling including cardiac hypertrophy, disorganization and fibrosis, accompanied by the activation of EGFR signalling pathway in the heart tissues, while all these molecular and pathological alterations were attenuated by the oral administration with EGFR inhibitors. In conclusion, the c-Src-dependent EGFR activation may play an important role in Ang II-induced cardiac hypertrophy, and inhibition of EGFR by specific molecules may be an effective strategy for the treatment of Ang II-associated cardiac diseases. PMID:26762600

  3. Cardiac Hypertrophy: An Introduction to Molecular and Cellular Basis

    PubMed Central

    Samak, Mostafa; Fatullayev, Javid; Sabashnikov, Anton; Zeriouh, Mohamed; Schmack, Bastian; Farag, Mina; Popov, Aron-Frederik; Dohmen, Pascal M.; Choi, Yeong-Hoon; Wahlers, Thorsten; Weymann, Alexander

    2016-01-01

    Ventricular hypertrophy is an ominous escalation of hemodynamically stressful conditions such as hypertension and valve disease. The pathophysiology of hypertrophy is complex and multifactorial, as it touches on several cellular and molecular systems. Understanding the molecular background of cardiac hypertrophy is essential in order to protect the myocardium from pathological remodeling, or slow down the destined progression to heart failure. In this review we highlight the most important molecular aspects of cardiac hypertrophic growth in light of the currently available published research data. PMID:27450399

  4. Carboxyl terminus of Hsp70-interacting protein (CHIP) is required to modulate cardiac hypertrophy and attenuate autophagy during exercise.

    PubMed

    Willis, Monte S; Min, Jin-Na; Wang, Shaobin; McDonough, Holly; Lockyer, Pamela; Wadosky, Kristine M; Patterson, Cam

    2013-12-01

    The carboxyl terminus of Hsp70-interacting protein (CHIP) is a ubiquitin ligase/cochaperone critical for the maintenance of cardiac function. Mice lacking CHIP (CHIP-/-) suffer decreased survival, enhanced myocardial injury and increased arrhythmias compared with wild-type controls following challenge with cardiac ischaemia reperfusion injury. Recent evidence implicates a role for CHIP in chaperone-assisted selective autophagy, a process that is associated with exercise-induced cardioprotection. To determine whether CHIP is involved in cardiac autophagy, we challenged CHIP-/- mice with voluntary exercise. CHIP-/- mice respond to exercise with an enhanced autophagic response that is associated with an exaggerated cardiac hypertrophy phenotype. No impairment of function was identified in the CHIP-/- mice by serial echocardiography over the 5 weeks of running, indicating that the cardiac hypertrophy was physiologic not pathologic in nature. It was further determined that CHIP plays a role in inhibiting Akt signalling and autophagy determined by autophagic flux in cardiomyocytes and in the intact heart. Taken together, cardiac CHIP appears to play a role in regulating autophagy during the development of cardiac hypertrophy, possibly by its role in supporting Akt signalling, induced by voluntary running in vivo.

  5. Shensongyangxin protects against pressure overload‑induced cardiac hypertrophy.

    PubMed

    Shen, Di-Fei; Wu, Qing-Qing; Ni, Jian; Deng, Wei; Wei, Cong; Jia, Zhen-Hua; Zhou, Heng; Zhou, Meng-Qiao; Bian, Zhou-Yan; Tang, Qi-Zhu

    2016-01-01

    Shensongyangxin (SSYX) is a medicinal herb, which has long been used in traditional Chinese medicine. Various pharmacological activities of SSYX have been identified. However, the role of SSYX in cardiac hypertrophy remains to be fully elucidated. In present study, aortic banding (AB) was performed to induce cardiac hypertrophy in mice. SSYX (520 mg/kg) was administered by daily gavage between 1 and 8 weeks following surgery. The extent of cardiac hypertrophy was then evaluated by pathological and molecular analyses of heart tissue samples. In addition, in vitro experiments were performed to confirm the in vivo results. The data of the present study demonstrated that SSYX prevented the cardiac hypertrophy and fibrosis induced by AB, as assessed by measurements of heart weight and gross heart size, hematoxylin and eosin staining, cross‑sectional cardiomyocyte area and the mRNA expression levels of hypertrophic markers. SSYX also inhibited collagen deposition and suppressed the expression of transforming growth factor β (TGFβ), connective tissue growth factor, fibronectin, collagen Ⅰα and collagen Ⅲα, which was mediated by the inhibition of the TGFβ/small mothers against decapentaplegic (Smad) signaling pathway. The inhibitory action of SSYX on cardiac hypertrophy was mediated by the inhibition of Akt signaling. In vitro investigations in the rat H9c2 cardiac cells also demonstrated that SSYX attenuated angiotensin II‑induced cardiomyocyte hypertrophy. These findings suggested that SSYX attenuated cardiac hypertrophy and fibrosis in the pressure overloaded mouse heart. Therefore, the cardioprotective effect of SSYX is associated with inhibition of the Akt and TGFβ/Smad signaling pathways. PMID:26648261

  6. Serotonin aggravates exercise-induced cardiac ischemia in the dog: effect of serotonin receptor antagonists.

    PubMed

    Guilbert, Frédérique; Lainée, Pierre; Dubreuil, Brigitte; McCort, Gary; O'Connor, Stephen E; Janiak, Philip; Herbert, Jean-Marc

    2004-08-16

    We investigated the effects of serotonin (5-HT), SL65.0472 (7-fluoro-2-oxo-4-[2-[4-thieno[3,2-c]pyridine-4-yl)piperazin-1-yl]ethyl]-1,2-dihydroquinoline-1-acetamide, a 5-HT(1B)/5-HT(2A) receptor antagonist) and ketanserin (a 5-HT(2A) receptor antagonist) during exercise-induced cardiac ischemia in conscious dogs. Dogs were administered a hypercholesterolemic diet and an inhibitor of nitric oxide synthetase to produce chronic endothelial dysfunction. Myocardial ischemia was induced by a treadmill exercise test associated with limitation of left anterior descending coronary blood flow. Infusion of serotonin during exercise produced dose-related cardiovascular changes (after 10 microg/kg/min; heart rate +27+/-6 bpm, systolic blood pressure +18+/-3 mm Hg, left circumflex coronary blood flow +64+/-8 ml/min, myocardial segment length shortening in the ischemic zone -5.9+/-1.9%, P<0.05). SL65.0472 blocked serotonin-induced increases in blood pressure, rate pressure product and circumflex coronary artery flow (100 microg/kg i.v., P<0.05) and reduced serotonin-induced ischemic myocardial segment length shortening (300 microg/kg i.v., P<0.05). Ketanserin (30-300 microg/kg i.v.) had no significant effect on any serotonin-induced changes during exercise. Thus, SL65.0472 opposes serotonin-induced myocardial dysfunction in a dog model of exercise-induced ischemia.

  7. The transcription factor GATA-6 regulates pathological cardiac hypertrophy

    PubMed Central

    van Berlo, Jop H.; Elrod, John W.; van den Hoogenhof, Maarten M.G.; York, Allen J.; Aronow, Bruce J.; Duncan, Stephen A.; Molkentin, Jeffery D.

    2010-01-01

    Rationale The transcriptional code that programs maladaptive cardiac hypertrophy involves the zinc finger-containing DNA binding factor GATA-4. The highly related transcription factor GATA-6 is also expressed in the adult heart, although its role in controlling the hypertrophic program is unknown. Objective To determine the role of GATA-6 in cardiac hypertrophy and homeostasis. Methods and Results Here we performed a cardiomyocyte-specific conditional gene targeting approach for Gata6, as well as a transgenic approach to overexpress GATA-6 in the mouse heart. Deletion of Gata6-loxP with Nkx2.5-cre produced late embryonic lethality with heart defects, while deletion with β-myosin heavy chain-cre (βMHC-cre) produced viable adults with greater than 95% loss of GATA-6 protein in the heart. These later mice were subjected to pressure overload induced hypertrophy for 2 and 6 weeks, which showed a significant reduction in cardiac hypertrophy similar to that observed Gata4 heart-specific deleted mice. Gata6-deleted mice subjected to pressure overload also developed heart failure while control mice maintained proper cardiac function. Gata6-deleted mice also developed less cardiac hypertrophy following 2 weeks of angiotensin II/phenylephrine infusion. Controlled GATA-6 overexpression in the heart induced hypertrophy with aging and predisposed to greater hypertrophy with pressure overload stimulation. Combinatorial deletion of Gata4 and Gata6 from the adult heart resulted in dilated cardiomyopathy and lethality by 16 weeks of age. Mechanistically, deletion of Gata6 from the heart resulted in fundamental changes in the levels of key regulatory genes and myocyte differentiation-specific genes. Conclusions These results indicate that GATA-6 is both necessary and sufficient for regulating the cardiac hypertrophic response and differentiated gene expression, both alone and in coordination with GATA-4. PMID:20705924

  8. A novel mutation (Arg169Gln) of the cardiac ryanodine receptor gene causing exercise-induced bidirectional ventricular tachycardia.

    PubMed

    Hsueh, Chia-Hsiang; Weng, Yi-Chun; Chen, Chao-Yu; Lin, Tin-Kwang; Lin, Yen-Hung; Lai, Ling-Ping; Lin, Jiunn-Lee

    2006-04-01

    An 18-year-old woman presented with exercise induced sudden collapse. Series of cardiac work up revealed no structural cardiac abnormalities. Bidirectional ventricular tachycardia occurred during a treadmill exercise test. Under the impression of catecholaminergic polymorphic ventricular tachycardia, we screened the cardiac ryanodine receptor gene for mutation. We identified a novel heterozygous mutation at the 169th amino acid (Arg169Gln). This amino acid is highly conserved among many species and this mutation was not present in 50 normal control subjects. This patient was treated with a beta-block with good response. PMID:16517285

  9. Investigating the Mechanism of Hyperglycemia-Induced Fetal Cardiac Hypertrophy.

    PubMed

    Han, Sha-sha; Wang, Guang; Jin, Ya; Ma, Zheng-lai; Jia, Wei-jing; Wu, Xia; Wang, Xiao-yu; He, Mei-yao; Cheng, Xin; Li, Wei-jing; Yang, Xuesong; Liu, Guo-sheng

    2015-01-01

    Hyperglycemia in diabetic mothers enhances the risk of fetal cardiac hypertrophy during gestation. However, the mechanism of high-glucose-induced cardiac hypertrophy is not largely understood. In this study, we first demonstrated that the incidence rate of cardiac hypertrophy dramatically increased in fetuses of diabetic mothers using color ultrasound examination. In addition, human fetal cardiac hypertrophy was successfully mimicked in a streptozotocin (STZ)-induced diabetes mouse model, in which mouse cardiac hypertrophy was diagnosed using type-M ultrasound and a histological assay. PH3 immunofluorescent staining of mouse fetal hearts and in vitro-cultured H9c2 cells indicated that cell proliferation decreased in E18.5, E15.5 and E13.5 mice, and cell apoptosis in H9c2 cells increased in the presence of high glucose in a dose-dependent manner. Next, we found that the individual cardiomyocyte size increased in pre-gestational diabetes mellitus mice and in response to high glucose exposure. Meanwhile, the expression of β-MHC and BMP-10 was up-regulated. Nkx2.5 immunofluorescent staining showed that the expression of Nkx2.5, a crucial cardiac transcription factor, was suppressed in the ventricular septum, left ventricular wall and right ventricular wall of E18.5, E15.5 and E13.5 mouse hearts. However, cardiac hypertrophy did not morphologically occur in E13.5 mouse hearts. In cultured H9c2 cells exposed to high glucose, Nkx2.5 expression decreased, as detected by both immunostaining and western blotting, and the expression of KCNE1 and Cx43 was also restricted. Taken together, alterations in cell size rather than cell proliferation or apoptosis are responsible for hyperglycemia-induced fetal cardiac hypertrophy. The aberrant expression of Nkx2.5 and its regulatory target genes in the presence of high glucose could be a principal component of pathogenesis in the development of fetal cardiac hypertrophy. PMID:26418041

  10. AVE 0991 attenuates cardiac hypertrophy through reducing oxidative stress.

    PubMed

    Ma, Yuedong; Huang, Huiling; Jiang, Jingzhou; Wu, Lingling; Lin, Chunxi; Tang, Anli; Dai, Gang; He, Jiangui; Chen, Yili

    2016-06-10

    AVE 0991, the nonpeptide angiotensin-(1-7) (Ang-(1-7)) analog, is recognized as having beneficial cardiovascular effects. However, the mechanisms have not been fully elucidated. This study was designed to investigate the effects of AVE 0991 on cardiac hypertrophy and the mechanisms involved. Mice were underwent aortic banding to induce cardiac hypertrophy followed by the administration of AVE 0991 (20 mg kg·day (-1)) for 4 weeks. It was shown that AVE 0991 reduced left ventricular hypertrophy and improved heart function, characterized by decreases in left ventricular weight and left ventricular end-diastolic diameter, and increases in ejection fraction. Moreover, AVE 0991 significantly down-regulated mean myocyte diameter and attenuate the gene expression of the hypertrophic markers. Furthermore, AVE 0991 inhibited the expression of NOX 2 and NOX 4, meaning that AVE 0991 reduced oxidative stress of cardiac hypertrophy mice. Our data showed that AVE 0991 treatment could attenuate cardiac hypertrophy and improve heart function, which may be due to reduce oxidative stress. PMID:26403967

  11. Supra-physiological dose of testosterone induces pathological cardiac hypertrophy.

    PubMed

    Pirompol, Prapawadee; Teekabut, Vassana; Weerachatyanukul, Wattana; Bupha-Intr, Tepmanas; Wattanapermpool, Jonggonnee

    2016-04-01

    Testosterone and androgenic anabolic steroids have been misused for enhancement of physical performance despite many reports on cardiac sudden death. Although physiological level of testosterone provided many regulatory benefits to human health, including the cardiovascular function, supra-physiological levels of the hormone induce hypertrophy of the heart with unclear contractile activation. In this study, dose- and time-dependent effects of high-testosterone treatment on cardiac structure and function were evaluated. Adult male rats were divided into four groups of testosterone treatment for 0, 5, 10, and 20 mg/kg BW for 4, 8, or 12 weeks. Increases in both percentage heart:body weight ratio and cardiomyocyte cross-sectional area in representing hypertrophy of the heart were significantly shown in all testosterone-treated groups to the same degree. In 4-week-treated rats, physiological cardiac hypertrophy was apparent with an upregulation of α-MHC without any change in myofilament contractile activation. In contrast, pathological cardiac hypertrophy was observed in 8- and 12-week testosterone-treated groups, as indicated by suppression of myofilament activation and myocardial collagen deposition without transition of MHC isoforms. Only in 12-week testosterone-treated group, eccentric cardiac hypertrophy was demonstrated with unaltered myocardial stiffness, but significant reductions in the phosphorylation signals of ERK1/2 and mTOR. Results of our study suggest that the outcome of testosterone-induced cardiac hypertrophy is not dose dependent but is rather relied on the factor of exposure to duration in inducing maladaptive responses of the heart. PMID:26850730

  12. Cardiomyocyte specific deletion of PP2A causes cardiac hypertrophy

    PubMed Central

    Li, Lei; Fang, Chao; Xu, Di; Xu, Yidan; Fu, Heling; Li, Jianmin

    2016-01-01

    Cardiac hypertrophy is a common pathological alteration in heart disease, which has been reported to be connected with serine/threonine protein phosphatases that control the dephosphorylation of a variety of cardiac proteins. Herein, we generated protein phosphatase type 2A knockout expressing a tamoxifen-inducible Cre recombinase protein fused to two mutant estrogen-receptor ligand-binding domains (MerCreMer) under the control of the a-myosin heavy chain promoter. Cardiac function of mice was determined by echocardiography. Decrease in PP2A activity leads to increased cardiomyocyte hypertrophy and fibrosis. Loss of PP2ACα leads to the heart failure, including the changes of EF, FS, LV, ANP and BNP. On the molecular level, knockout mice shows increased expression of B55a and B56e at 60 days after tamoxifen injection. Additionally, the regulation of the Akt/GSK3β/β-catenin pathway is severely disturbed in knockout mice. In conclusion, cardiomyocyte specific deletion of PP2A gene causes the cardiac hypertrophy. We will use the knockout mice to generate a type of cardiomyocyte hypertrophy mouse model with myocardial fibrosis. PMID:27186301

  13. Dance band on the Titanic: biomechanical signaling in cardiac hypertrophy.

    PubMed

    Sussman, Mark A; McCulloch, Andrew; Borg, Thomas K

    2002-11-15

    Biomechanical signaling is a complex interaction of both intracellular and extracellular components. Both passive and active components are involved in the extracellular environment to signal through specific receptors to multiple signaling pathways. This review provides an overview of extracellular matrix, specific receptors, and signaling pathways for biomechanical stimulation in cardiac hypertrophy.

  14. Genistein prevents isoproterenol-induced cardiac hypertrophy in rats.

    PubMed

    Maulik, Subir Kumar; Prabhakar, Pankaj; Dinda, Amit Kumar; Seth, Sandeep

    2012-08-01

    Genistein, an isoflavone and a rich constituent of soy, possesses important regulatory effects on nitric oxide (NO) synthesis and oxidative stress. Transient and low release of NO by endothelial nitric oxide synthase (eNOS) has been shown to be beneficial, while high and sustained release by inducible nitric oxide synthase (iNOS) may be detrimental in pathological cardiac hypertrophy. The present study was designed to evaluate whether genistein could prevent isoproterenol-induced cardiac hypertrophy in male Wistar rats (150-200 g, 10-12 weeks old) rats. Isoproterenol (5 mg·(kg body weight)(-1)) was injected subcutaneously once daily for 14 days to induced cardiac hypertrophy. Genistein (0.1 and 0.2 mg·kg(-1), subcutaneous injection once daily) was administered along with isoproterenol. Heart tissue was studied for myocyte size and fibrosis. Myocardial thiobarbituric acid reactive substances (TBARS), glutathione (GSH), superoxide dismutase (SOD), catalase levels, and 1-OH proline (collagen content) were also estimated. Genistein significantly prevented any isoproterenol-induced increase in heart weight to body weight ratio, left ventricular mass (echocardiographic), myocardial 1-OH proline, fibrosis, myocyte size and myocardial oxidative stress. These beneficial effects of genistein were blocked by a nonselective NOS inhibitor (L-NAME), but not by a selective iNOS inhibitor (aminoguanidine). Thus, the present study suggests that the salutary effects of genistein on isoproterenol-induced cardiac hypertrophy may be mediated through inhibition of iNOS and potentiation of eNOS activities. PMID:22808991

  15. Cytoskeletal mechanics in pressure-overload cardiac hypertrophy

    NASA Technical Reports Server (NTRS)

    Tagawa, H.; Wang, N.; Narishige, T.; Ingber, D. E.; Zile, M. R.; Cooper, G. 4th

    1997-01-01

    We have shown that the cellular contractile dysfunction characteristic of pressure-overload cardiac hypertrophy results not from an abnormality intrinsic to the myofilament portion of the cardiocyte cytoskeleton but rather from an increased density of the microtubule component of the extramyofilament portion of the cardiocyte cytoskeleton. To determine how, in physical terms, this increased microtubule density mechanically overloads the contractile apparatus at the cellular level, we measured cytoskeletal stiffness and apparent viscosity in isolated cardiocytes via magnetic twisting cytometry, a technique by which magnetically induced force is applied directly to the cytoskeleton through integrin-coupled ferromagnetic beads coated with Arg-Gly-Asp (RGD) peptide. Measurements were made in two groups of cardiocytes from cats with right ventricular (RV) hypertrophy induced by pulmonary artery banding: (1) those from the pressure-overloaded RV and (2) those from the normally loaded same-animal control left ventricle (LV). Cytoskeletal stiffness increased almost twofold, from 8.53 +/- 0.77 dyne/cm2 in the normally loaded LV cardiocytes to 16.46 +/- 1.32 dyne/cm2 in the hypertrophied RV cardiocytes. Cytoskeletal apparent viscosity increased almost fourfold, from 20.97 +/- 1.92 poise in the normally loaded LV cardiocytes to 87.85 +/- 6.95 poise in the hypertrophied RV cardiocytes. In addition to these baseline data showing differing stiffness and, especially, apparent viscosity in the two groups of cardiocytes, microtubule depolymerization by colchicine was found to return both the stiffness and the apparent viscosity of the pressure overload-hypertrophied RV cells fully to normal. Conversely, microtubule hyperpolymerization by taxol increased the stiffness and apparent viscosity values of normally loaded LV cardiocytes to the abnormal values given above for pressure-hypertrophied RV cardiocytes. Thus, increased microtubule density constitutes primarily a viscous load on

  16. Speckle Tracking Based Strain Analysis Is Sensitive for Early Detection of Pathological Cardiac Hypertrophy

    PubMed Central

    An, Xiangbo; Wang, Jingjing; Li, Hao; Lu, Zhizhen; Bai, Yan; Xiao, Han; Zhang, Youyi; Song, Yao

    2016-01-01

    Cardiac hypertrophy is a key pathological process of many cardiac diseases. However, early detection of cardiac hypertrophy is difficult by the currently used non-invasive method and new approaches are in urgent need for efficient diagnosis of cardiac malfunction. Here we report that speckle tracking-based strain analysis is more sensitive than conventional echocardiography for early detection of pathological cardiac hypertrophy in the isoproterenol (ISO) mouse model. Pathological hypertrophy was induced by a single subcutaneous injection of ISO. Physiological cardiac hypertrophy was established by daily treadmill exercise for six weeks. Strain analysis, including radial strain (RS), radial strain rate (RSR) and longitudinal strain (LS), showed marked decrease as early as 3 days after ISO injection. Moreover, unlike the regional changes in cardiac infarction, strain analysis revealed global cardiac dysfunction that affects the entire heart in ISO-induced hypertrophy. In contrast, conventional echocardiography, only detected altered E/E’, an index reflecting cardiac diastolic function, at 7 days after ISO injection. No change was detected on fractional shortening (FS), E/A and E’/A’ at 3 days or 7 days after ISO injection. Interestingly, strain analysis revealed cardiac dysfunction only in ISO-induced pathological hypertrophy but not the physiological hypertrophy induced by exercise. Taken together, our study indicates that strain analysis offers a more sensitive approach for early detection of cardiac dysfunction than conventional echocardiography. Moreover, multiple strain readouts distinguish pathological cardiac hypertrophy from physiological hypertrophy. PMID:26871457

  17. Speckle Tracking Based Strain Analysis Is Sensitive for Early Detection of Pathological Cardiac Hypertrophy.

    PubMed

    An, Xiangbo; Wang, Jingjing; Li, Hao; Lu, Zhizhen; Bai, Yan; Xiao, Han; Zhang, Youyi; Song, Yao

    2016-01-01

    Cardiac hypertrophy is a key pathological process of many cardiac diseases. However, early detection of cardiac hypertrophy is difficult by the currently used non-invasive method and new approaches are in urgent need for efficient diagnosis of cardiac malfunction. Here we report that speckle tracking-based strain analysis is more sensitive than conventional echocardiography for early detection of pathological cardiac hypertrophy in the isoproterenol (ISO) mouse model. Pathological hypertrophy was induced by a single subcutaneous injection of ISO. Physiological cardiac hypertrophy was established by daily treadmill exercise for six weeks. Strain analysis, including radial strain (RS), radial strain rate (RSR) and longitudinal strain (LS), showed marked decrease as early as 3 days after ISO injection. Moreover, unlike the regional changes in cardiac infarction, strain analysis revealed global cardiac dysfunction that affects the entire heart in ISO-induced hypertrophy. In contrast, conventional echocardiography, only detected altered E/E', an index reflecting cardiac diastolic function, at 7 days after ISO injection. No change was detected on fractional shortening (FS), E/A and E'/A' at 3 days or 7 days after ISO injection. Interestingly, strain analysis revealed cardiac dysfunction only in ISO-induced pathological hypertrophy but not the physiological hypertrophy induced by exercise. Taken together, our study indicates that strain analysis offers a more sensitive approach for early detection of cardiac dysfunction than conventional echocardiography. Moreover, multiple strain readouts distinguish pathological cardiac hypertrophy from physiological hypertrophy.

  18. Resistance training and cardiac hypertrophy: unravelling the training effect.

    PubMed

    Haykowsky, Mark J; Dressendorfer, Rudolph; Taylor, Dylan; Mandic, Sandra; Humen, Dennis

    2002-01-01

    Resistance training (RT) is a popular method of conditioning to enhance sport performance as well as an effective form of exercise to attenuate the age-mediated decline in muscle strength and mass. Although the benefits of RT on skeletal muscle morphology and function are well established, its effect on left ventricular (LV) morphology remains equivocal. Some investigations have found that RT is associated with an obligatory increase in LV wall thickness and mass with minimal alteration in LV internal cavity dimension, an effect called concentric hypertrophy. However, others report that short- (<5 years) to long-term (>18 years) RT does not alter LV morphology, arguing that concentric hypertrophy is not an obligatory adaptation secondary to this form of exertion. This disparity between studies on whether RT consistently results in cardiac hypertrophy could be caused by: (i) acute cardiopulmonary mechanisms that minimise the increase in transmural pressure (i.e. ventricular pressure minus intrathoracic pressure) and LV wall stress during exercise; (ii) the underlying use of anabolic steroids by the athletes; or (iii) the specific type of RT performed. We propose that when LV geometry is altered after RT, the pattern is usually concentric hypertrophy in Olympic weightlifters. However, the pattern of eccentric hypertrophy (increased LV mass secondary to an increase in diastolic internal cavity dimension and wall thickness) is not uncommon in bodybuilders. Of particular interest, nearly 40% of all RT athletes have normal LV geometry, and these athletes are typically powerlifters. RT athletes who use anabolic steroids have been shown to have significantly higher LV mass compared with drug-free sport-matched athletes. This brief review will sort out some of the factors that may affect the acute and chronic outcome of RT on LV morphology. In addition, a conceptual framework is offered to help explain why cardiac hypertrophy is not always found in RT athletes. PMID

  19. Connective tissue growth factor induces cardiac hypertrophy through Akt signaling

    SciTech Connect

    Hayata, Nozomi; Fujio, Yasushi; Yamamoto, Yasuhiro; Iwakura, Tomohiko; Obana, Masanori; Takai, Mika; Mohri, Tomomi; Nonen, Shinpei; Maeda, Makiko; Azuma, Junichi

    2008-05-30

    In the process of cardiac remodeling, connective tissue growth factor (CTGF/CCN2) is secreted from cardiac myocytes. Though CTGF is well known to promote fibroblast proliferation, its pathophysiological effects in cardiac myocytes remain to be elucidated. In this study, we examined the biological effects of CTGF in rat neonatal cardiomyocytes. Cardiac myocytes stimulated with full length CTGF and its C-terminal region peptide showed the increase in cell surface area. Similar to hypertrophic ligands for G-protein coupled receptors, such as endothelin-1, CTGF activated amino acid uptake; however, CTGF-induced hypertrophy is not associated with the increased expression of skeletal actin or BNP, analyzed by Northern-blotting. CTGF treatment activated ERK1/2, p38 MAPK, JNK and Akt. The inhibition of Akt by transducing dominant-negative Akt abrogated CTGF-mediated increase in cell size, while the inhibition of MAP kinases did not affect the cardiac hypertrophy. These findings indicate that CTGF is a novel hypertrophic factor in cardiac myocytes.

  20. Exercise-induced expression of cardiac ATP-sensitive potassium channels promotes action potential shortening and energy conservation.

    PubMed

    Zingman, Leonid V; Zhu, Zhiyong; Sierra, Ana; Stepniak, Elizabeth; Burnett, Colin M-L; Maksymov, Gennadiy; Anderson, Mark E; Coetzee, William A; Hodgson-Zingman, Denice M

    2011-07-01

    Physical activity is one of the most important determinants of cardiac function. The ability of the heart to increase delivery of oxygen and metabolic fuels relies on an array of adaptive responses necessary to match bodily demand while avoiding exhaustion of cardiac resources. The ATP-sensitive potassium (K(ATP)) channel has the unique ability to adjust cardiac membrane excitability in accordance with ATP and ADP levels, and up-regulation of its expression that occurs in response to exercise could represent a critical element of this adaption. However, the mechanism by which K(ATP) channel expression changes result in a beneficial effect on cardiac excitability and function remains to be established. Here, we demonstrate that an exercise-induced rise in K(ATP) channel expression enhanced the rate and magnitude of action potential shortening in response to heart rate acceleration. This adaptation in membrane excitability promoted significant reduction in cardiac energy consumption under escalating workloads. Genetic disruption of normal K(ATP) channel pore function abolished the exercise-related changes in action potential duration adjustment and caused increased cardiac energy consumption. Thus, an expression-driven enhancement in the K(ATP) channel-dependent membrane response to alterations in cardiac workload represents a previously unrecognized mechanism for adaptation to physical activity and a potential target for cardioprotection.

  1. Ubiquitin-specific protease 14 regulates cardiac hypertrophy progression by increasing GSK-3β phosphorylation.

    PubMed

    Liu, Ningning; Chai, Renjie; Liu, Bin; Zhang, Zhenhui; Zhang, Shuangwei; Zhang, Jingzhi; Liao, Yuning; Cai, Jianyu; Xia, Xiaohong; Li, Aiqun; Liu, Jinbao; Huang, Hongbiao; Liu, Shiming

    2016-09-23

    Cardiac hypertrophy, a compensatory response to various stimuli in the heart, independently predicts cardiovascular ailments and related deaths. Increasing evidence indicates ubiquitin-proteasome signaling contributes to cardiac hypertrophy regulation. Here, we identified ubiquitin-specific protease 14 (USP14), a 19S proteasome associated deubiquitinase (DUB), as a novel target for cardiac hypertrophy therapy via inhibition of the GSK-3β pathway. Indeed, USP14 expression was increased in an animal model of abdominal aorta constriction. In an angiotensin II (AngII) induced primary neonatal rat cardiomyocyte hypertrophy model, USP14 expression was increased in a time-dependent manner, and reduced USP14 deubiquitinase activity or USP14 knockdown resulted in lower expression levels of the myocardial hypertrophy specific marker β-MHC, and subsequent decreased GSK-3β phosphorylation. In conclusion, USP14 mediates the development of cardiac hypertrophy by promoting GSK-3β phosphorylation, suggesting that USP14 might represent a novel therapeutic target for cardiac hypertrophy treatment.

  2. Selumetinib, an Oral Anti-Neoplastic Drug, May Attenuate Cardiac Hypertrophy via Targeting the ERK Pathway

    PubMed Central

    Yang, Hao; Luo, Fangbo; Chen, Lihong; Cai, Huawei; Li, Yajiao; You, Guiying; Long, Dan; Li, Shengfu; Zhang, Qiuping; Rao, Li

    2016-01-01

    Aims Although extracellular-regulated kinases (ERK) are a well-known central mediator in cardiac hypertrophy, no clinically available ERK antagonist has been tested for preventing cardiac hypertrophy. Selumetinib is a novel oral MEK inhibitor that is currently under Phase II and Phase III clinical investigation for advanced solid tumors. In this study, we investigated whether Selumetinib could inhibit the aberrant ERK activation of the heart in response to stress as well as prevent cardiac hypertrophy. Methods and Results In an in vitro model of PE-induced cardiac hypertrophy, Selumetinib significantly inhibited the ERK activation and prevented enlargement of cardiomyocytes or reactivation of certain fetal genes. In the pathologic cardiac hypertrophy model of ascending aortic constriction, Selumetinib provided significant ERK inhibition in the stressed heart but not in the other organs. This selective ERK inhibition prevented left ventricular (LV) wall thickening, LV mass increase, fetal gene reactivation and cardiac fibrosis. In another distinct physiologic cardiac hypertrophy model of a swimming rat, Selumetinib provided a similar anti-hypertrophy effect, except that no significant fetal gene reactivation or cardiac fibrosis was observed. Conclusions Selumetinib, a novel oral anti-cancer drug with good safety records in a number of Phase II clinical trials, can inhibit ERK activity in the heart and prevent cardiac hypertrophy. These promising results indicate that Selumetinib could potentially be used to treat cardiac hypertrophy. However, this hypothesis needs to be validated in human clinical trials. PMID:27438013

  3. Exercise-induced pulmonary artery hypertension in a patient with compensated cardiac disease: hemodynamic and functional response to sildenafil therapy.

    PubMed

    Nikolaidis, Lazaros; Memon, Nabeel; O'Murchu, Brian

    2015-02-01

    We describe the case of a 54-year-old man who presented with exertional dyspnea and fatigue that had worsened over the preceding 2 years, despite a normally functioning bioprosthetic aortic valve and stable, mild left ventricular dysfunction (left ventricular ejection fraction, 0.45). His symptoms could not be explained by physical examination, an extensive biochemical profile, or multiple cardiac and pulmonary investigations. However, abnormal cardiopulmonary exercise test results and a right heart catheterization-combined with the use of a symptom-limited, bedside bicycle ergometer-revealed that the patient's exercise-induced pulmonary artery hypertension was out of proportion to his compensated left heart disease. A trial of sildenafil therapy resulted in objective improvements in hemodynamic values and functional class.

  4. Immediate effects of a single exercise bout on protein O-GlcNAcylation and chromatin regulation of cardiac hypertrophy

    PubMed Central

    Medford, Heidi M.; Porter, Karen

    2013-01-01

    Cardiac hypertrophy induced by pathological stimuli is regulated by a complex formed by the repressor element 1-silencing transcription factor (REST) and its corepressor mSin3A. We previously reported that hypertrophic signaling is blunted by O-linked attachment of β-N-acetylglucosamine (O-GlcNAc) to proteins. Regular exercise induces a physiological hypertrophic phenotype in the heart that is associated with decreased O-GlcNAc levels, but a link between O-GlcNAc, the REST complex, and initiation of exercise-induced cardiac hypertrophy is not known. Therefore, mice underwent a single 15- or 30-min bout of moderate- to high-intensity treadmill running, and hearts were harvested immediately and compared with sedentary controls. Cytosolic O-GlcNAc was lower (P < 0.05) following 15 min exercise with no differences in nuclear levels (P > 0.05). There were no differences in cytosolic or nuclear O-GlcNAc levels in hearts after 30 min exercise (P > 0.05). Cellular compartment levels of O-GlcNAc transferase (OGT, the enzyme that removes the O-GlcNAc moiety from proteins), REST, mSin3A, and histone deacetylases (HDACs) 1, 2, 3, 4, and 5 were not changed with exercise. Immunoprecipitation revealed O-GlcNAcylation of OGT and HDACs 1, 2, 4, and 5 that was not changed with acute exercise; however, exercised hearts did exhibit lower interactions between OGT and REST (P < 0.05) but not between OGT and mSin3A. These data suggest that hypertrophic signaling in the heart may be initiated by as little as 15 min of exercise via intracellular changes in protein O-GlcNAcylation distribution and reduced interactions between OGT and the REST chromatin repressor. PMID:23624624

  5. The role of frataxin in doxorubicin-mediated cardiac hypertrophy.

    PubMed

    Mouli, Shravanthi; Nanayakkara, Gayani; AlAlasmari, Abdullah; Eldoumani, Haitham; Fu, Xiaoyu; Berlin, Avery; Lohani, Madhukar; Nie, Ben; Arnold, Robert D; Kavazis, Andreas; Smith, Forrest; Beyers, Ronald; Denney, Thomas; Dhanasekaran, Muralikrishnan; Zhong, Juming; Quindry, John; Amin, Rajesh

    2015-09-01

    Doxorubicin (DOX) is a highly effective anti-neoplastic agent; however, its cumulative dosing schedules are clinically limited by the development of cardiotoxicity. Previous studies have attributed the cause of DOX-mediated cardiotoxicity to mitochondrial iron accumulation and the ensuing reactive oxygen species (ROS) formation. The present study investigates the role of frataxin (FXN), a mitochondrial iron-sulfur biogenesis protein, and its role in development of DOX-mediated mitochondrial dysfunction. Athymic mice treated with DOX (5 mg/kg, 1 dose/wk with treatments, followed by 2-wk recovery) displayed left ventricular hypertrophy, as observed by impaired cardiac hemodynamic performance parameters. Furthermore, we also observed significant reduction in FXN expression in DOX-treated animals and H9C2 cardiomyoblast cell lines, resulting in increased mitochondrial iron accumulation and the ensuing ROS formation. This observation was paralleled in DOX-treated H9C2 cells by a significant reduction in the mitochondrial bioenergetics, as observed by the reduction of myocardial energy regulation. Surprisingly, similar results were observed in our FXN knockdown stable cell lines constructed by lentiviral technology using short hairpin RNA. To better understand the cardioprotective role of FXN against DOX, we constructed FXN overexpressing cardiomyoblasts, which displayed cardioprotection against mitochondrial iron accumulation, ROS formation, and reduction of mitochondrial bioenergetics. Lastly, our FXN overexpressing cardiomyoblasts were protected from DOX-mediated cardiac hypertrophy. Together, our findings reveal novel insights into the development of DOX-mediated cardiomyopathy. PMID:26209053

  6. Catecholamine-sensitive right ventricular tachycardia in the absence of structural heart disease: a mechanism of exercise-induced cardiac arrest.

    PubMed

    Wesley, R C; Taylor, R; Nadamanee, K

    1991-01-01

    A case of exercise-induced cardiac arrest secondary to catecholamine-sensitive right ventricular tachycardia in the absence of apparent structural heart disease is presented. Amiodarone therapy prevented tachycardia induction, symptoms and clinical events despite a return to vigorous exercise.

  7. Ultrastructural features of degenerated cardiac muscle cells in patients with cardiac hypertrophy.

    PubMed Central

    Maron, B. J.; Ferrans, V. J.; Roberts, W. C.

    1975-01-01

    Degenerated cardiac muscle cells were present in hypertrophied ventricular muscle obtained at operation from 12 (38%) of 32 patients with asymmetric septal hypertrophy (hypertrophic cardiomyopathy) or aortic valvular disease. Degenerated cells demonstrated a wide variety of ultrastructural alterations. Mildly altered cells were normal-sized or hypertrophied and showed focal changes, including preferential loss of thick (myosin) filaments, streaming and clumping of Z band material, and proliferation of the tubules of sarcoplasmic reticulum. Moderately and severely degenerated cells were normal-sized or atrophic and showed additional changes, including extensive myofibrillar lysis and loss of T tubules. The appearance of the most severely degenerated cells usually reflected the cytoplasmic organelle (sarcoplasmic reticulum, glycogen, or mitochondria) which underwent proliferation and filled the myofibril-free areas of these cells. Moderately and severely degenerated cells were present in areas of fibrosis, had thickened basement membranes, and had lost their intercellular connections. These observations suggest that degenerated cardiac muscle cells have poor contractile function and may be responsible for impaired cardiac performance in some patients with chronic ventricular hypertrophy. Images Fig 1 Fig 2 Fig 3 Figs 4-6 Figs 7-8 Fig 9 Fig 10 Fig 11 Figs 12-15 Fig 16 Fig 17 Figs 18-21 Figs 22-23 Fig 24 Fig 25 Fig 26 Fig 27 Figs 28-29 Fig 30 Figs 31-32 Fig 33 PMID:124533

  8. Acetyl salicylic acid attenuates cardiac hypertrophy through Wnt signaling.

    PubMed

    Gitau, Samuel Chege; Li, Xuelian; Zhao, Dandan; Guo, Zhenfeng; Liang, Haihai; Qian, Ming; Lv, Lifang; Li, Tianshi; Xu, Bozhi; Wang, Zhiguo; Zhang, Yong; Xu, Chaoqian; Lu, Yanjie; Du, Zhiming; Shan, Hongli; Yang, Baofeng

    2015-12-01

    Ventricular hypertrophy is a powerful and independent predictor of cardiovascular morbid events. The vascular properties of low-dose acetyl salicylic acid (aspirin) provide cardiovascular benefits through the irreversible inhibition of platelet cyclooxygenase 1; however, the possible anti-hypertrophic properties and potential mechanism of aspirin have not been investigated in detail. In this study, healthy wild-type male mice were randomly divided into three groups and subjected to transverse aortic constriction (TAC) or sham operation. The TAC-operated mice were treated with the human equivalent of low-dose aspirin (10 mg·kg(-1)·d(-1)); the remaining mice received an equal amount of phosphate buffered saline with 0.65% ethanol, which was used as a vehicle. A cardiomyocyte hypertrophy model induced by angiotensin II (10 nmol·L(-1)) was treated with the human equivalent of low (10 or 100 μmol·L(-1)) and high (1000 μmol·L(-1)) aspirin concentrations in plasma. Changes in the cardiac structure and function were assessed through echocardiography and transmission electron microscopy. Gene expression was determined through RT-PCR and western blot analysis. Results indicated that aspirin treatment abrogated the increased thickness of the left ventricular anterior and posterior walls, the swelling of mitochondria, and the increased surface area in in vivo and in vitro hypertrophy models. Aspirin also normalized the upregulated hypertrophic biomarkers, β-myosin heavy chain (β-MHC), atrial natriuretic peptide (ANP), and b-type natriuretic peptide (BNP). Aspirin efficiently reversed the upregulation of β-catenin and P-Akt expression and the TAC- or ANG II-induced downregulation of GSK-3β. Therefore, low-dose aspirin possesses significant anti-hypertrophic properties at clinically relevant concentrations for anti-thrombotic therapy. The downregulation of β-catenin and Akt may be the underlying signaling mechanism of the effects of aspirin. PMID:26626190

  9. Acetyl salicylic acid attenuates cardiac hypertrophy through Wnt signaling.

    PubMed

    Gitau, Samuel Chege; Li, Xuelian; Zhao, Dandan; Guo, Zhenfeng; Liang, Haihai; Qian, Ming; Lv, Lifang; Li, Tianshi; Xu, Bozhi; Wang, Zhiguo; Zhang, Yong; Xu, Chaoqian; Lu, Yanjie; Du, Zhiming; Shan, Hongli; Yang, Baofeng

    2015-12-01

    Ventricular hypertrophy is a powerful and independent predictor of cardiovascular morbid events. The vascular properties of low-dose acetyl salicylic acid (aspirin) provide cardiovascular benefits through the irreversible inhibition of platelet cyclooxygenase 1; however, the possible anti-hypertrophic properties and potential mechanism of aspirin have not been investigated in detail. In this study, healthy wild-type male mice were randomly divided into three groups and subjected to transverse aortic constriction (TAC) or sham operation. The TAC-operated mice were treated with the human equivalent of low-dose aspirin (10 mg·kg(-1)·d(-1)); the remaining mice received an equal amount of phosphate buffered saline with 0.65% ethanol, which was used as a vehicle. A cardiomyocyte hypertrophy model induced by angiotensin II (10 nmol·L(-1)) was treated with the human equivalent of low (10 or 100 μmol·L(-1)) and high (1000 μmol·L(-1)) aspirin concentrations in plasma. Changes in the cardiac structure and function were assessed through echocardiography and transmission electron microscopy. Gene expression was determined through RT-PCR and western blot analysis. Results indicated that aspirin treatment abrogated the increased thickness of the left ventricular anterior and posterior walls, the swelling of mitochondria, and the increased surface area in in vivo and in vitro hypertrophy models. Aspirin also normalized the upregulated hypertrophic biomarkers, β-myosin heavy chain (β-MHC), atrial natriuretic peptide (ANP), and b-type natriuretic peptide (BNP). Aspirin efficiently reversed the upregulation of β-catenin and P-Akt expression and the TAC- or ANG II-induced downregulation of GSK-3β. Therefore, low-dose aspirin possesses significant anti-hypertrophic properties at clinically relevant concentrations for anti-thrombotic therapy. The downregulation of β-catenin and Akt may be the underlying signaling mechanism of the effects of aspirin.

  10. Molecular switches under TGFβ signalling during progression from cardiac hypertrophy to heart failure.

    PubMed

    Heger, J; Schulz, R; Euler, G

    2016-01-01

    Cardiac hypertrophy is a mechanism to compensate for increased cardiac work load, that is, after myocardial infarction or upon pressure overload. However, in the long run cardiac hypertrophy is a prevailing risk factor for the development of heart failure. During pathological remodelling processes leading to heart failure, decompensated hypertrophy, death of cardiomyocytes by apoptosis or necroptosis and fibrosis as well as a progressive dysfunction of cardiomyocytes are apparent. Interestingly, the induction of hypertrophy, cell death or fibrosis is mediated by similar signalling pathways. Therefore, tiny changes in the signalling cascade are able to switch physiological cardiac remodelling to the development of heart failure. In the present review, we will describe examples of these molecular switches that change compensated hypertrophy to the development of heart failure and will focus on the importance of the signalling cascades of the TGFβ superfamily in this process. In this context, potential therapeutic targets for pharmacological interventions that could attenuate the progression of heart failure will be discussed.

  11. BMP type I receptor ALK2 is required for angiotensin II-induced cardiac hypertrophy.

    PubMed

    Shahid, Mohd; Spagnolli, Ester; Ernande, Laura; Thoonen, Robrecht; Kolodziej, Starsha A; Leyton, Patricio A; Cheng, Juan; Tainsh, Robert E T; Mayeur, Claire; Rhee, David K; Wu, Mei X; Scherrer-Crosbie, Marielle; Buys, Emmanuel S; Zapol, Warren M; Bloch, Kenneth D; Bloch, Donald B

    2016-04-15

    Bone morphogenetic protein (BMP) signaling contributes to the development of cardiac hypertrophy. However, the identity of the BMP type I receptor involved in cardiac hypertrophy and the underlying molecular mechanisms are poorly understood. By using quantitative PCR and immunoblotting, we demonstrated that BMP signaling increased during phenylephrine-induced hypertrophy in cultured neonatal rat cardiomyocytes (NRCs), as evidenced by increased phosphorylation of Smads 1 and 5 and induction of Id1 gene expression. Inhibition of BMP signaling with LDN193189 or noggin, and silencing of Smad 1 or 4 using small interfering RNA diminished the ability of phenylephrine to induce hypertrophy in NRCs. Conversely, activation of BMP signaling with BMP2 or BMP4 induced hypertrophy in NRCs. Luciferase reporter assay further showed that BMP2 or BMP4 treatment of NRCs repressed atrogin-1 gene expression concomitant with an increase in calcineurin protein levels and enhanced activity of nuclear factor of activated T cells, providing a mechanism by which BMP signaling contributes to cardiac hypertrophy. In a model of cardiac hypertrophy, C57BL/6 mice treated with angiotensin II (A2) had increased BMP signaling in the left ventricle. Treatment with LDN193189 attenuated A2-induced cardiac hypertrophy and collagen deposition in left ventricles. Cardiomyocyte-specific deletion of BMP type I receptor ALK2 (activin-like kinase 2), but not ALK1 or ALK3, inhibited BMP signaling and mitigated A2-induced cardiac hypertrophy and left ventricular fibrosis in mice. The results suggest that BMP signaling upregulates the calcineurin/nuclear factor of activated T cell pathway via BMP type I receptor ALK2, contributing to cardiac hypertrophy and fibrosis. PMID:26873969

  12. PTRF/Cavin-1 Deficiency Causes Cardiac Dysfunction Accompanied by Cardiomyocyte Hypertrophy and Cardiac Fibrosis.

    PubMed

    Taniguchi, Takuya; Maruyama, Naoki; Ogata, Takehiro; Kasahara, Takeru; Nakanishi, Naohiko; Miyagawa, Kotaro; Naito, Daisuke; Hamaoka, Tetsuro; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2016-01-01

    Mutations in the PTRF/Cavin-1 gene cause congenital generalized lipodystrophy type 4 (CGL4) associated with myopathy. Additionally, long-QT syndrome and fatal cardiac arrhythmia are observed in patients with CGL4 who have homozygous PTRF/Cavin-1 mutations. PTRF/Cavin-1 deficiency shows reductions of caveolae and caveolin-3 (Cav3) protein expression in skeletal muscle, and Cav3 deficiency in the heart causes cardiac hypertrophy with loss of caveolae. However, it remains unknown how loss of PTRF/Cavin-1 affects cardiac morphology and function. Here, we present a characterization of the hearts of PTRF/Cavin-1-null (PTRF-/-) mice. Electron microscopy revealed the reduction of caveolae in cardiomyocytes of PTRF-/- mice. PTRF-/- mice at 16 weeks of age developed a progressive cardiomyopathic phenotype with wall thickening of left ventricles and reduced fractional shortening evaluated by echocardiography. Electrocardiography revealed that PTRF-/- mice at 24 weeks of age had low voltages and wide QRS complexes in limb leads. Histological analysis showed cardiomyocyte hypertrophy accompanied by progressive interstitial/perivascular fibrosis. Hypertrophy-related fetal gene expression was also induced in PTRF-/- hearts. Western blotting analysis and quantitative RT-PCR revealed that Cav3 expression was suppressed in PTRF-/- hearts compared with that in wild-type (WT) ones. ERK1/2 was activated in PTRF-/- hearts compared with that in WT ones. These results suggest that loss of PTRF/Cavin-1 protein expression is sufficient to induce a molecular program leading to cardiomyocyte hypertrophy and cardiomyopathy, which is partly attributable to Cav3 reduction in the heart. PMID:27612189

  13. PTRF/Cavin-1 Deficiency Causes Cardiac Dysfunction Accompanied by Cardiomyocyte Hypertrophy and Cardiac Fibrosis

    PubMed Central

    Ogata, Takehiro; Kasahara, Takeru; Nakanishi, Naohiko; Miyagawa, Kotaro; Naito, Daisuke; Hamaoka, Tetsuro; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2016-01-01

    Mutations in the PTRF/Cavin-1 gene cause congenital generalized lipodystrophy type 4 (CGL4) associated with myopathy. Additionally, long-QT syndrome and fatal cardiac arrhythmia are observed in patients with CGL4 who have homozygous PTRF/Cavin-1 mutations. PTRF/Cavin-1 deficiency shows reductions of caveolae and caveolin-3 (Cav3) protein expression in skeletal muscle, and Cav3 deficiency in the heart causes cardiac hypertrophy with loss of caveolae. However, it remains unknown how loss of PTRF/Cavin-1 affects cardiac morphology and function. Here, we present a characterization of the hearts of PTRF/Cavin-1-null (PTRF−/−) mice. Electron microscopy revealed the reduction of caveolae in cardiomyocytes of PTRF−/− mice. PTRF−/− mice at 16 weeks of age developed a progressive cardiomyopathic phenotype with wall thickening of left ventricles and reduced fractional shortening evaluated by echocardiography. Electrocardiography revealed that PTRF−/− mice at 24 weeks of age had low voltages and wide QRS complexes in limb leads. Histological analysis showed cardiomyocyte hypertrophy accompanied by progressive interstitial/perivascular fibrosis. Hypertrophy-related fetal gene expression was also induced in PTRF−/− hearts. Western blotting analysis and quantitative RT-PCR revealed that Cav3 expression was suppressed in PTRF−/− hearts compared with that in wild-type (WT) ones. ERK1/2 was activated in PTRF−/− hearts compared with that in WT ones. These results suggest that loss of PTRF/Cavin-1 protein expression is sufficient to induce a molecular program leading to cardiomyocyte hypertrophy and cardiomyopathy, which is partly attributable to Cav3 reduction in the heart. PMID:27612189

  14. The power of exercise-induced T-wave alternans to predict ventricular arrhythmias in patients with implanted cardiac defibrillator.

    PubMed

    Burattini, Laura; Man, Sumche; Sweene, Cees A

    2013-01-01

    The power of exercise-induced T-wave alternans (TWA) to predict the occurrence of ventricular arrhythmias was evaluated in 67 patients with an implanted cardiac defibrillator (ICD). During the 4-year follow-up, electrocardiographic (ECG) tracings were recorded in a bicycle ergometer test with increasing workload ranging from zero (NoWL) to the patient's maximal capacity (MaxWL). After the follow-up, patients were classified as either ICD_Cases (n = 29), if developed ventricular tachycardia/fibrillation, or ICD_Controls (n = 38). TWA was quantified using our heart-rate adaptive match filter. Compared to NoWL, MaxWL was characterized by faster heart rates and higher TWA in both ICD_Cases (12-18 μ V vs. 20-39 μ V; P < 0.05) and ICD_Controls (9-15 μ V vs. 20-32 μ V; P < 0.05). Still, TWA was able to discriminate the two ICD groups during NoWL (sensitivity = 59-83%, specificity = 53-84%) but not MaxWL (sensitivity = 55-69%, specificity = 39-74%). Thus, this retrospective observational case-control study suggests that TWA's predictive power for the occurrence of ventricular arrhythmias could increase at low heart rates.

  15. Proteasome inhibitors attenuated cholesterol-induced cardiac hypertrophy in H9c2 cells.

    PubMed

    Lee, Hyunjung; Park, Jinyoung; Kim, Eunice EunKyeong; Yoo, Young Sook; Song, Eun Joo

    2016-05-01

    The Ubiquitin proteasome system (UPS) plays roles in protein degradation, cell cycle control, and growth and inflammatory cell signaling. Dysfunction of UPS in cardiac diseases has been seen in many studies. Cholesterol acts as an inducer of cardiac hypertrophy. In this study, the effect of proteasome inhibitors on the cholesterol-induced hypertrophic growth in H9c2 cells is examined in order to observe whether UPS is involved in cardiac hypertrophy. The treatment of proteasome inhibitors MG132 and Bortezomib markedly reduced cellular surface area and mRNA expression of β-MHC in cholesterol-induced cardiac hypertrophy. In addition, activated AKT and ERK were significantly attenuated by MG132 and Bortezomib in cholesterol- induced cardiac hypertrophy. We demonstrated that cholesterol- induced cardiac hypertrophy was suppressed by proteasome inhibitors. Thus, regulatory mechanism of cholesterol- induced cardiac hypertrophy by proteasome inhibitors may provide a new therapeutic strategy to prevent the progression of heart failure. [BMB Reports 2016; 49(5): 270-275]. PMID:26592933

  16. Proteasome inhibitors attenuated cholesterol-induced cardiac hypertrophy in H9c2 cells

    PubMed Central

    Lee, Hyunjung; Park, Jinyoung; Kim, Eunice EunKyeong; Yoo, Young Sook; Song, Eun Joo

    2016-01-01

    The Ubiquitin proteasome system (UPS) plays roles in protein degradation, cell cycle control, and growth and inflammatory cell signaling. Dysfunction of UPS in cardiac diseases has been seen in many studies. Cholesterol acts as an inducer of cardiac hypertrophy. In this study, the effect of proteasome inhibitors on the cholesterol-induced hypertrophic growth in H9c2 cells is examined in order to observe whether UPS is involved in cardiac hypertrophy. The treatment of proteasome inhibitors MG132 and Bortezomib markedly reduced cellular surface area and mRNA expression of β-MHC in cholesterol-induced cardiac hypertrophy. In addition, activated AKT and ERK were significantly attenuated by MG132 and Bortezomib in cholesterol-induced cardiac hypertrophy. We demonstrated that cholesterol-induced cardiac hypertrophy was suppressed by proteasome inhibitors. Thus, regulatory mechanism of cholesterol-induced cardiac hypertrophy by proteasome inhibitors may provide a new therapeutic strategy to prevent the progression of heart failure. [BMB Reports 2016; 49(5): 270-275] PMID:26592933

  17. Kallikrein-related peptidase 8 is expressed in myocardium and induces cardiac hypertrophy

    PubMed Central

    Cao, Buqing; Yu, Qing; Zhao, Wei; Tang, Zhiping; Cong, Binghai; Du, Jiankui; Lu, Jianqiang; Zhu, Xiaoyan; Ni, Xin

    2016-01-01

    The tissue kallikrein-related peptidase family (KLK) is a group of trypsin- and chymotrypsin-like serine proteases that share a similar homology to parent tissue kallikrein (KLK1). KLK1 is identified in heart and has anti-hypertrophic effects. However, whether other KLK family members play a role in regulating cardiac function remains unknown. In the present study, we demonstrated for the first time that KLK8 was expressed in myocardium. KLK8 expression was upregulated in left ventricle of cardiac hypertrophy models. Both intra-cardiac adenovirus-mediated and transgenic-mediated KLK8 overexpression led to cardiac hypertrophy in vivo. In primary neonatal rat cardiomyocytes, KLK8 knockdown inhibited phenylephrine (PE)-induced cardiomyocyte hypertrophy, whereas KLK8 overexpression promoted cardiomyocyte hypertrophy via a serine protease activity-dependent but kinin receptor-independent pathway. KLK8 overexpression increased epidermal growth factor (EGF) production, which was blocked by the inhibitors of serine protease. EGF receptor (EGFR) antagonist and EGFR knockdown reversed the hypertrophy induced by KLK8 overexpression. KLK8-induced cardiomyocyte hypertrophy was also significantly decreased by blocking the protease-activated receptor 1 (PAR1) or PAR2 pathway. Our data suggest that KLK8 may promote cardiomyocyte hypertrophy through EGF signaling- and PARs-dependent but a kinin receptor-independent pathway. It is implied that different KLK family members can subtly regulate cardiac function and remodeling. PMID:26823023

  18. Ubiquitin-Specific Protease 4 Is an Endogenous Negative Regulator of Pathological Cardiac Hypertrophy.

    PubMed

    He, Ben; Zhao, Yi-Chao; Gao, Ling-Chen; Ying, Xiao-Ying; Xu, Long-Wei; Su, Yuan-Yuan; Ji, Qing-Qi; Lin, Nan; Pu, Jun

    2016-06-01

    Dysregulation of the ubiquitin proteasome system components ubiquitin ligases and proteasome plays an important role in the pathogenesis of cardiac hypertrophy. However, little is known about the role of another ubiquitin proteasome system component, the deubiquitinating enzymes, in cardiac hypertrophy. Here, we revealed a crucial role of ubiquitin specific protease 4 (USP4), a deubiquitinating enzyme prominently expressed in the heart, in attenuating pathological cardiac hypertrophy and dysfunction. USP4 levels were consistently decreased in human failing hearts and in murine hypertrophied hearts. Adenovirus-mediated gain- and loss-of-function approaches indicated that deficiency of endogenous USP4 promoted myocyte hypertrophy induced by angiotensin II in vitro, whereas restoration of USP4 significantly attenuated the prohypertrophic effect of angiotensin II. To corroborate the role of USP4 in vivo, we generated USP4 global knockout mice and mice with cardiac-specific overexpression of USP4. Consistent with the in vitro study, USP4 depletion exacerbated the hypertrophic phenotype and cardiac dysfunction in mice subjected to pressure overload, whereas USP4 transgenic mice presented ameliorated pathological cardiac hypertrophy compared with their control littermates. Molecular analysis revealed that USP4 deficiency augmented the activation of the transforming growth factor β-activated kinase 1 (TAK1)-(JNK1/2)/P38 signaling in response to hypertrophic stress, and blockage of TAK1 activation abolished the pathological effects of USP4 deficiency in vivo. These findings provide the first evidence for the involvement of USP4 in cardiac hypertrophy, and shed light on the therapeutic potential of targeting USP4 in the treatment of cardiac hypertrophy.

  19. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure

    PubMed Central

    Nagai-Okatani, Chiaki; Minamino, Naoto

    2016-01-01

    Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl) diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl) diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases. PMID:27281159

  20. Aberrant Glycosylation in the Left Ventricle and Plasma of Rats with Cardiac Hypertrophy and Heart Failure.

    PubMed

    Nagai-Okatani, Chiaki; Minamino, Naoto

    2016-01-01

    Targeted proteomics focusing on post-translational modifications, including glycosylation, is a useful strategy for discovering novel biomarkers. To apply this strategy effectively to cardiac hypertrophy and resultant heart failure, we aimed to characterize glycosylation profiles in the left ventricle and plasma of rats with cardiac hypertrophy. Dahl salt-sensitive hypertensive rats, a model of hypertension-induced cardiac hypertrophy, were fed a high-salt (8% NaCl) diet starting at 6 weeks. As a result, they exhibited cardiac hypertrophy at 12 weeks and partially impaired cardiac function at 16 weeks compared with control rats fed a low-salt (0.3% NaCl) diet. Gene expression analysis revealed significant changes in the expression of genes encoding glycosyltransferases and glycosidases. Glycoproteome profiling using lectin microarrays indicated upregulation of mucin-type O-glycosylation, especially disialyl-T, and downregulation of core fucosylation on N-glycans, detected by specific interactions with Amaranthus caudatus and Aspergillus oryzae lectins, respectively. Upregulation of plasma α-l-fucosidase activity was identified as a biomarker candidate for cardiac hypertrophy, which is expected to support the existing marker, atrial natriuretic peptide and its related peptides. Proteomic analysis identified cysteine and glycine-rich protein 3, a master regulator of cardiac muscle function, as an O-glycosylated protein with altered glycosylation in the rats with cardiac hypertrophy, suggesting that alternations in O-glycosylation affect its oligomerization and function. In conclusion, our data provide evidence of significant changes in glycosylation pattern, specifically mucin-type O-glycosylation and core defucosylation, in the pathogenesis of cardiac hypertrophy and heart failure, suggesting that they are potential biomarkers for these diseases. PMID:27281159

  1. Integrin activation and focal complex formation in cardiac hypertrophy

    NASA Technical Reports Server (NTRS)

    Laser, M.; Willey, C. D.; Jiang, W.; Cooper, G. 4th; Menick, D. R.; Zile, M. R.; Kuppuswamy, D.

    2000-01-01

    Cardiac hypertrophy is characterized by both remodeling of the extracellular matrix (ECM) and hypertrophic growth of the cardiocytes. Here we show increased expression and cytoskeletal association of the ECM proteins fibronectin and vitronectin in pressure-overloaded feline myocardium. These changes are accompanied by cytoskeletal binding and phosphorylation of focal adhesion kinase (FAK) at Tyr-397 and Tyr-925, c-Src at Tyr-416, recruitment of the adapter proteins p130(Cas), Shc, and Nck, and activation of the extracellular-regulated kinases ERK1/2. A synthetic peptide containing the Arg-Gly-Asp (RGD) motif of fibronectin and vitronectin was used to stimulate adult feline cardiomyocytes cultured on laminin or within a type-I collagen matrix. Whereas cardiocytes under both conditions showed RGD-stimulated ERK1/2 activation, only collagen-embedded cells exhibited cytoskeletal assembly of FAK, c-Src, Nck, and Shc. In RGD-stimulated collagen-embedded cells, FAK was phosphorylated only at Tyr-397 and c-Src association occurred without Tyr-416 phosphorylation and p130(Cas) association. Therefore, c-Src activation is not required for its cytoskeletal binding but may be important for additional phosphorylation of FAK. Overall, our study suggests that multiple signaling pathways originate in pressure-overloaded heart following integrin engagement with ECM proteins, including focal complex formation and ERK1/2 activation, and many of these pathways can be activated in cardiomyocytes via RGD-stimulated integrin activation.

  2. Ghrelin and its promoter variant associated with cardiac hypertrophy.

    PubMed

    Ukkola, O; Pääkkö, T; Kesäniemi, Y A

    2012-07-01

    The roles of ghrelin, a peptide hormone that has a role in regulating food intake and energy homeostasis, in the cardiovascular system have not yet been unambiguously established. We evaluated the association between plasma ghrelin concentrations and -501A>C single-nucleotide polymorphism (SNP) in the ghrelin gene 5' flanking area and echocardiographic measurements in 1037 middle-aged subjects. Left ventricular mass index (LVMI) was calculated according to Devereux's method. The ambulatory blood pressure (BP) was recorded using the fully automatic SpaceLabs 90207 oscillometric unit. Results suggested that plasma ghrelin was not related to mean ambulatory BP values. However, the highest plasma ghrelin tertile was associated with increased intraventricular septum (P=0.043) and posterior ventricular wall (P=0.002) thicknesses as well as left ventricular mass (P=0.05). After adjustment for age, sex, body mass index and systolic BP, the association persisted between ghrelin tertiles and intraventricular septum (P=0.05) and posterior ventricular wall (P=0.001) thicknesses. The SNP -501A>C polymorphism was associated with LVMI after adjustments for age, sex and systolic BP. In conclusion, ghrelin and its promoter variant are associated with cardiac hypertrophy indexes independent of BP. Positive correlation between ghrelin levels and increased wall thickness parameters may reflect compensatory up-regulation of ghrelin concentrations or direct effects of ghrelin on myocardium. The effects of the SNP seem not to be mediated through its effects on ghrelin plasma levels. PMID:21614024

  3. Exercise-Induced Bronchoconstriction

    MedlinePlus

    ... Conditions & Treatments ▸ Conditions Dictionary ▸ Exercise-Induced Bronchoconstriction Share | Exercise-Induced Bronchoconstriction (EIB) « Back to A to Z Listing Exercise-Induced Bronchoconstriction, (EIB), often known as exercise-induced ...

  4. Identification of genes regulated during mechanical load-induced cardiac hypertrophy

    NASA Technical Reports Server (NTRS)

    Johnatty, S. E.; Dyck, J. R.; Michael, L. H.; Olson, E. N.; Abdellatif, M.; Schneider, M. (Principal Investigator)

    2000-01-01

    Cardiac hypertrophy is associated with both adaptive and adverse changes in gene expression. To identify genes regulated by pressure overload, we performed suppressive subtractive hybridization between cDNA from the hearts of aortic-banded (7-day) and sham-operated mice. In parallel, we performed a subtraction between an adult and a neonatal heart, for the purpose of comparing different forms of cardiac hypertrophy. Sequencing more than 100 clones led to the identification of an array of functionally known (70%) and unknown genes (30%) that are upregulated during cardiac growth. At least nine of those genes were preferentially expressed in both the neonatal and pressure over-load hearts alike. Using Northern blot analysis to investigate whether some of the identified genes were upregulated in the load-independent calcineurin-induced cardiac hypertrophy mouse model, revealed its incomplete similarity with the former models of cardiac growth. Copyright 2000 Academic Press.

  5. Reduction of blood oxygen levels enhances postprandial cardiac hypertrophy in Burmese python (Python bivittatus).

    PubMed

    Slay, Christopher E; Enok, Sanne; Hicks, James W; Wang, Tobias

    2014-05-15

    Physiological cardiac hypertrophy is characterized by reversible enlargement of cardiomyocytes and changes in chamber architecture, which increase stroke volume and via augmented convective oxygen transport. Cardiac hypertrophy is known to occur in response to repeated elevations of O2 demand and/or reduced O2 supply in several species of vertebrate ectotherms, including postprandial Burmese pythons (Python bivittatus). Recent data suggest postprandial cardiac hypertrophy in P. bivittatus is a facultative rather than obligatory response to digestion, though the triggers of this response are unknown. Here, we hypothesized that an O2 supply-demand mismatch stimulates postprandial cardiac enlargement in Burmese pythons. To test this hypothesis, we rendered animals anemic prior to feeding, essentially halving blood oxygen content during the postprandial period. Fed anemic animals had heart rates 126% higher than those of fasted controls, which, coupled with a 71% increase in mean arterial pressure, suggests fed anemic animals were experiencing significantly elevated cardiac work. We found significant cardiac hypertrophy in fed anemic animals, which exhibited ventricles 39% larger than those of fasted controls and 28% larger than in fed controls. These findings support our hypothesis that those animals with a greater magnitude of O2 supply-demand mismatch exhibit the largest hearts. The 'low O2 signal' stimulating postprandial cardiac hypertrophy is likely mediated by elevated ventricular wall stress associated with postprandial hemodynamics.

  6. Cardiac Biomarkers and Left Ventricular Hypertrophy in Asymptomatic Hemodialysis Patients

    PubMed Central

    Koycheva, Reneta Yovcheva; Cholakov, Vasil; Andreev, Jivko; Penev, Margarit; Iliev, Rosen; Nancheva, Krasimira; Tsoneva, Vanya

    2016-01-01

    BACKGROUND: Cardiac biomarkers are often elevated in dialysis patients showing the presence of left ventricular dysfunction. The aim of the study is to establish the plasma levels of high-sensitivity cardiac troponin T (hs TnT), precursor of B-natriuretic peptide (NT-proBNP) and high sensitivity C-reactive protein (hs CRP) and their relation to the presence of left ventricular hypertrophy (LVH) in patients undergoing hemodialysis without signs of acute coronary syndrome or heart failure. MATERIAL AND METHODS: We studied 48 patients - 26 men and 22 women. Pre and postdialysis levels of hs cTnT, NT-proBNP and hs CRP were measured at week interim procedure. Patients were divided in two groups according to the presence of echocardiographic evidence of LVH - gr A - 40 patients (with LVH), and gr B - 8 patients (without LVH). RESULTS: In the whole group of patients was found elevated predialysis levels of all three biomarkers with significant increase (p < 0.05) after dialysis with low-flux dialyzers. Predialysis values of NT-proBNP show moderate positive correlation with hs cTnT (r = 0.47) and weaker with hs CRP (r = 0.163). Such dependence is observed in postdialysis values of these biomarkers. There is a strong positive correlation between the pre and postdialysis levels: for hs cTnT (r = 0.966), for NT-proBNP (r = 0.918) and for hs CRP (r = 0.859). It was found a significant difference in the mean values of hs cTnT in gr. A and gr. B (0.07 ± 0.01 versus 0.03 ± 0.01 ng/mL, p < 0.05) and NT-proBNP (15,605.8 ± 2,072.5 versus 2,745.5 ± 533.55 pg/mL, p < 0.05). Not find a significant difference in hs CRP in both groups. CONCLUSIONS: The results indicate the relationship of the studied cardiac biomarkers with LVH in asymptomatic patients undergoing hemodialysis treatment. PMID:27275331

  7. The mechanosensitive APJ internalization via clathrin-mediated endocytosis: A new molecular mechanism of cardiac hypertrophy.

    PubMed

    He, Lu; Chen, Linxi; Li, Lanfang

    2016-05-01

    The G protein-coupled receptor APJ elicits cellular response to diverse extracellular stimulus. Accumulating evidence reveals that APJ receptor plays a prominent role in the cardiomyocyte adapting to hypertrophic stimulation. At present, it remains obscure that the regulatory mechanism of APJ receptor in myocardial hypertrophy. The natural endogenous ligands apelin and Elabela as well as agonists maintain high affinity for the APJ receptor and drive its internalization. Ligand-activated receptor internalization is mainly performed by clathrin-mediated endocytic pathway. Simultaneously, clathrin-mediated endocytosis takes participate in the occurrence and development of cardiac hypertrophy. In this study, we hypothesize that natural ligands and agonists induce the mechanosensitive APJ internalization via clathrin-mediated endocytosis. APJ internalization may contribute to the development of cardiac hypertrophy. The mechanosensitive APJ internalization via clathrin-mediated endocytosis may be a new molecular mechanism of cardiac hypertrophy. PMID:27063076

  8. Improved bioavailability of targeted Curcumin delivery efficiently regressed cardiac hypertrophy by modulating apoptotic load within cardiac microenvironment.

    PubMed

    Ray, Aramita; Rana, Santanu; Banerjee, Durba; Mitra, Arkadeep; Datta, Ritwik; Naskar, Shaon; Sarkar, Sagartirtha

    2016-01-01

    Cardiomyocyte apoptosis acts as a prime modulator of cardiac hypertrophy leading to heart failure, a major cause of human mortality worldwide. Recent therapeutic interventions have focussed on translational applications of diverse pharmaceutical regimes among which, Curcumin (from Curcuma longa) is known to have an anti-hypertrophic potential but with limited pharmacological efficacies due to low aqueous solubility and poor bioavailability. In this study, Curcumin encapsulated by carboxymethyl chitosan (CMC) nanoparticle conjugated to a myocyte specific homing peptide was successfully delivered in bioactive form to pathological myocardium for effective regression of cardiac hypertrophy in a rat (Rattus norvegicus) model. Targeted nanotization showed higher cardiac bioavailability of Curcumin at a low dose of 5 mg/kg body weight compared to free Curcumin at 35 mg/kg body weight. Moreover, Curcumin/CMC-peptide treatment during hypertrophy significantly improved cardiac function by downregulating expression of hypertrophy marker genes (ANF, β-MHC), apoptotic mediators (Bax, Cytochrome-c) and activity of apoptotic markers (Caspase 3 and PARP); whereas free Curcumin in much higher dose showed minimal improvement during compromised cardiac function. Targeted Curcumin treatment significantly lowered p53 expression and activation in diseased myocardium via inhibited interaction of p53 with p300-HAT. Thus attenuated acetylation of p53 facilitated p53 ubiquitination and reduced the apoptotic load in hypertrophied cardiomyocytes; thereby limiting cardiomyocytes' need to enter the regeneration cycle during hypertrophy. This study elucidates for the first time an efficient targeted delivery regimen for Curcumin and also attributes towards probable mechanistic insight into its therapeutic potential as a cardio-protective agent for regression of cardiac hypertrophy.

  9. Improved bioavailability of targeted Curcumin delivery efficiently regressed cardiac hypertrophy by modulating apoptotic load within cardiac microenvironment.

    PubMed

    Ray, Aramita; Rana, Santanu; Banerjee, Durba; Mitra, Arkadeep; Datta, Ritwik; Naskar, Shaon; Sarkar, Sagartirtha

    2016-01-01

    Cardiomyocyte apoptosis acts as a prime modulator of cardiac hypertrophy leading to heart failure, a major cause of human mortality worldwide. Recent therapeutic interventions have focussed on translational applications of diverse pharmaceutical regimes among which, Curcumin (from Curcuma longa) is known to have an anti-hypertrophic potential but with limited pharmacological efficacies due to low aqueous solubility and poor bioavailability. In this study, Curcumin encapsulated by carboxymethyl chitosan (CMC) nanoparticle conjugated to a myocyte specific homing peptide was successfully delivered in bioactive form to pathological myocardium for effective regression of cardiac hypertrophy in a rat (Rattus norvegicus) model. Targeted nanotization showed higher cardiac bioavailability of Curcumin at a low dose of 5 mg/kg body weight compared to free Curcumin at 35 mg/kg body weight. Moreover, Curcumin/CMC-peptide treatment during hypertrophy significantly improved cardiac function by downregulating expression of hypertrophy marker genes (ANF, β-MHC), apoptotic mediators (Bax, Cytochrome-c) and activity of apoptotic markers (Caspase 3 and PARP); whereas free Curcumin in much higher dose showed minimal improvement during compromised cardiac function. Targeted Curcumin treatment significantly lowered p53 expression and activation in diseased myocardium via inhibited interaction of p53 with p300-HAT. Thus attenuated acetylation of p53 facilitated p53 ubiquitination and reduced the apoptotic load in hypertrophied cardiomyocytes; thereby limiting cardiomyocytes' need to enter the regeneration cycle during hypertrophy. This study elucidates for the first time an efficient targeted delivery regimen for Curcumin and also attributes towards probable mechanistic insight into its therapeutic potential as a cardio-protective agent for regression of cardiac hypertrophy. PMID:26612707

  10. Mechanisms of cardiac hypertrophy in canine volume overload

    NASA Technical Reports Server (NTRS)

    Matsuo, T.; Carabello, B. A.; Nagatomo, Y.; Koide, M.; Hamawaki, M.; Zile, M. R.; McDermott, P. J.

    1998-01-01

    This study tested whether the modest hypertrophy that develops in dogs in response to mitral regurgitation is due to a relatively small change in the rate of protein synthesis or, alternatively, is due to a decreased rate of protein degradation. After 3 mo of severe experimental mitral regurgitation, the left ventricular (LV) mass-to-body weight ratio increased by 23% compared with baseline values. This increase in LV mass occurred with a small, but not statistically significant, increase in the fractional rate of myosin heavy chain (MHC) synthesis (Ks), as measured using continuous infusion with [3H]leucine in dogs at 2 wk, 4 wk, and 3 mo after creation of severe mitral regurgitation. Translational efficiency was unaffected by mitral regurgitation as measured by the distribution of MHC mRNA in polysome gradients. Furthermore, there was no detectable increase in translational capacity as measured by either total RNA content or the rate of ribosome formation. These data indicate that translational mechanisms that accelerate the rate of cardiac protein synthesis are not responsive to the stimulus of mitral regurgitation. Most of the growth after mitral regurgitation was accounted for by a decrease in the fractional rate of protein degradation, calculated by subtracting fractional rates of protein accumulation at each time point from the corresponding Ks values. We conclude that 1) volume overload produced by severe mitral regurgitation does not trigger substantial increases in the rate of protein synthesis and 2) the modest increase in LV mass results primarily from a decrease in the rate of protein degradation.

  11. Global microRNA profiles and signaling pathways in the development of cardiac hypertrophy.

    PubMed

    Feng, H J; Ouyang, W; Liu, J H; Sun, Y G; Hu, R; Huang, L H; Xian, J L; Jing, C F; Zhou, M J

    2014-05-01

    Hypertrophy is a major predictor of progressive heart disease and has an adverse prognosis. MicroRNAs (miRNAs) that accumulate during the course of cardiac hypertrophy may participate in the process. However, the nature of any interaction between a hypertrophy-specific signaling pathway and aberrant expression of miRNAs remains unclear. In this study, Spague Dawley male rats were treated with transverse aortic constriction (TAC) surgery to mimic pathological hypertrophy. Hearts were isolated from TAC and sham operated rats (n=5 for each group at 5, 10, 15, and 20 days after surgery) for miRNA microarray assay. The miRNAs dysexpressed during hypertrophy were further analyzed using a combination of bioinformatics algorithms in order to predict possible targets. Increased expression of the target genes identified in diverse signaling pathways was also analyzed. Two sets of miRNAs were identified, showing different expression patterns during hypertrophy. Bioinformatics analysis suggested the miRNAs may regulate multiple hypertrophy-specific signaling pathways by targeting the member genes and the interaction of miRNA and mRNA might form a network that leads to cardiac hypertrophy. In addition, the multifold changes in several miRNAs suggested that upregulation of rno-miR-331*, rno-miR-3596b, rno-miR-3557-5p and downregulation of rno-miR-10a, miR-221, miR-190, miR-451 could be seen as biomarkers of prognosis in clinical therapy of heart failure. This study described, for the first time, a potential mechanism of cardiac hypertrophy involving multiple signaling pathways that control up- and downregulation of miRNAs. It represents a first step in the systematic discovery of miRNA function in cardiovascular hypertrophy.

  12. Taxifolin protects against cardiac hypertrophy and fibrosis during biomechanical stress of pressure overload

    SciTech Connect

    Guo, Haipeng; Zhang, Xin; Cui, Yuqian; Zhou, Heng; Xu, Dachun; Shan, Tichao; Zhang, Fan; Guo, Yuan; Chen, Yuguo; Wu, Dawei

    2015-09-01

    Cardiac hypertrophy is a key pathophysiological component to biomechanical stress, which has been considered to be an independent and predictive risk factor for adverse cardiovascular events. Taxifolin (TAX) is a typical plant flavonoid, which has long been used clinically for treatment of cardiovascular and cerebrovascular diseases. However, very little is known about whether TAX can influence the development of cardiac hypertrophy. In vitro studies, we found that TAX concentration-dependently inhibited angiotensin II (Ang II) induced hypertrophy and protein synthesis in cardiac myocytes. Then we established a mouse model by transverse aortic constriction (TAC) to further confirm our findings. It was demonstrated that TAX prevented pressure overload induced cardiac hypertrophy in mice, as assessed by ventricular mass/body weight, echocardiographic parameters, myocyte cross-sectional area, and the expression of ANP, BNP and β-MHC. The excess production of reactive oxygen species (ROS) played critical role in the development of cardiac hypertrophy. TAX arrested oxidative stress and decreased the expression of 4-HNE induced by pressure overload. Moreover, TAX negatively modulated TAC-induced phosphorylation of ERK1/2 and JNK1/2. Further studies showed that TAX significantly attenuated left ventricular fibrosis and collagen synthesis through abrogating the phosphorylation of Smad2 and Smad2/3 nuclear translocation. These results demonstrated that TAX could inhibit cardiac hypertrophy and attenuate ventricular fibrosis after pressure overload. These beneficial effects were at least through the inhibition of the excess production of ROS, ERK1/2, JNK1/2 and Smad signaling pathways. Therefore, TAX might be a potential candidate for the treatment of cardiac hypertrophy and fibrosis. - Highlights: • We focus on the protective effect of taxifolin on cardiac remodeling. • Taxifolin inhibited cardiac hypertrophy and attenuated ventricular fibrosis. • Taxifolin

  13. The plasma membrane calcium ATPase 4 signalling in cardiac fibroblasts mediates cardiomyocyte hypertrophy

    PubMed Central

    Mohamed, Tamer M. A.; Abou-Leisa, Riham; Stafford, Nicholas; Maqsood, Arfa; Zi, Min; Prehar, Sukhpal; Baudoin-Stanley, Florence; Wang, Xin; Neyses, Ludwig; Cartwright, Elizabeth J.; Oceandy, Delvac

    2016-01-01

    The heart responds to pathological overload through myocyte hypertrophy. Here we show that this response is regulated by cardiac fibroblasts via a paracrine mechanism involving plasma membrane calcium ATPase 4 (PMCA4). Pmca4 deletion in mice, both systemically and specifically in fibroblasts, reduces the hypertrophic response to pressure overload; however, knocking out Pmca4 specifically in cardiomyocytes does not produce this effect. Mechanistically, cardiac fibroblasts lacking PMCA4 produce higher levels of secreted frizzled related protein 2 (sFRP2), which inhibits the hypertrophic response in neighbouring cardiomyocytes. Furthermore, we show that treatment with the PMCA4 inhibitor aurintricarboxylic acid (ATA) inhibits and reverses cardiac hypertrophy induced by pressure overload in mice. Our results reveal that PMCA4 regulates the development of cardiac hypertrophy and provide proof of principle for a therapeutic approach to treat this condition. PMID:27020607

  14. Negative feedback regulation of Homer 1a on norepinephrine-dependent cardiac hypertrophy

    SciTech Connect

    Chiarello, Carmelina; Bortoloso, Elena; Carpi, Andrea; Furlan, Sandra; Volpe, Pompeo

    2013-07-15

    Homers are scaffolding proteins that modulate diverse cell functions being able to assemble signalling complexes. In this study, the presence, sub-cellular distribution and function of Homer 1 was investigated. Homer 1a and Homer 1b/c are constitutively expressed in cardiac muscle of both mouse and rat and in HL-1 cells, a cardiac cell line. As judged by confocal immunofluorescence microscopy, Homer 1a displays sarcomeric and peri-nuclear localization. In cardiomyocytes and cultured HL-1 cells, the hypertrophic agonist norepinephrine (NE) induces α{sub 1}-adrenergic specific Homer 1a over-expression, with a two-to-three-fold increase within 1 h, and no up-regulation of Homer 1b/c, as judged by Western blot and qPCR. In HL-1 cells, plasmid-driven over-expression of Homer 1a partially antagonizes activation of ERK phosphorylation and ANF up-regulation, two well-established, early markers of hypertrophy. At the morphometric level, NE-induced increase of cell size is likewise and partially counteracted by exogenous Homer 1a. Under the same experimental conditions, Homer 1b/c does not have any effect on ANF up-regulation nor on cell hypertrophy. Thus, Homer 1a up-regulation is associated to early stages of cardiac hypertrophy and appears to play a negative feedback regulation on molecular transducers of hypertrophy. -- Highlights: • Homer 1a is constitutively expressed in cardiac tissue. • In HL-1 cells, norepinephrine activates signaling pathways leading to hypertrophy. • Homer 1a up-regulation is an early event of norepinephrine-induced hypertrophy. • Homer 1a plays a negative feedback regulation modulating pathological hypertrophy. • Over-expression of Homer 1a per se does not induce hypertrophy.

  15. Myocardial stress and hypertrophy: a complex interface between biophysics and cardiac remodeling.

    PubMed

    Grossman, William; Paulus, Walter J

    2013-09-01

    Pressure and volume overload results in concentric and eccentric hypertrophy of cardiac ventricular chambers with, respectively, parallel and series replication of sarcomeres. These divergent patterns of hypertrophy were related 40 years ago to disparate wall stresses in both conditions, with systolic wall stress eliciting parallel replication of sarcomeres and diastolic wall stress, series replication. These observations are relevant to clinical practice, as they relate to the excessive hypertrophy and contractile dysfunction regularly observed in patients with aortic stenosis. Stress-sensing mechanisms in cardiomyocytes and activation of cardiomyocyte death by elevated wall stress continue to intrigue cardiovascular scientists.

  16. Acute Targeting of General Transcription Factor IIB Restricts Cardiac Hypertrophy via Selective Inhibition of Gene Transcription

    PubMed Central

    Sayed, Danish; Yang, Zhi; He, Minzhen; Pfleger, Jessica M.; Abdellatif, Maha

    2014-01-01

    Background We previously reported that specialized and housekeeping genes are differentially regulated via de novo recruitment and pause-release of RNA polymerase II (pol II), respectively, during cardiac hypertrophy. However, the significance of this finding remains to be examined. Therefore, the purpose of this study was to determine the mechanisms that differentially regulate these gene groups and exploit them for therapeutic targeting. Methods and Results Here we show that general transcription factor IIB (TFIIB) and cyclin-dependent kinase 9 are upregulated during hypertrophy, both targeted by miR-1, and play preferential roles in regulating those two groups of genes. Chromatin immunoprecipitation-sequencing reveals that TFIIB is constitutively bound to all paused, housekeeping, promoters, whereas, de novo recruitment of TFIIB and pol II is required for specialized genes that are induced during hypertrophy. We exploited this dichotomy to acutely inhibit induction of the latter set, which encompasses cardiomyopathy, immune reaction, and extracellular matrix genes, using locked nucleic acid (LNA)-modified antisense TFIIB oligonucleotide treatment. This resulted in suppression of all specialized genes, while sparing the housekeeping ones, and, thus, attenuated pathological hypertrophy. Conclusions The data for the first time reveal distinct general transcription factor IIB dynamics that regulate specialized vs. housekeeping genes during cardiac hypertrophy. Thus, by acutely targeting TFIIB we were able to selectively inhibit the former set of genes and ameliorate pressure overload hypertrophy. We also demonstrate the feasibility of acutely and reversibly targeting cardiac mRNA for therapeutic purposes using LNA-modified antisense oligonucleotides. PMID:25398966

  17. Suppressor of IKKɛ is an essential negative regulator of pathological cardiac hypertrophy

    PubMed Central

    Deng, Ke-Qiong; Wang, Aibing; Ji, Yan-Xiao; Zhang, Xiao-Jing; Fang, Jing; Zhang, Yan; Zhang, Peng; Jiang, Xi; Gao, Lu; Zhu, Xue-Yong; Zhao, Yichao; Gao, Lingchen; Yang, Qinglin; Zhu, Xue-Hai; Wei, Xiang; Pu, Jun; Li, Hongliang

    2016-01-01

    Although pathological cardiac hypertrophy represents a leading cause of morbidity and mortality worldwide, our understanding of the molecular mechanisms underlying this disease is still poor. Here, we demonstrate that suppressor of IKKɛ (SIKE), a negative regulator of the interferon pathway, attenuates pathological cardiac hypertrophy in rodents and non-human primates in a TANK-binding kinase 1 (TBK1)/AKT-dependent manner. Sike-deficient mice develop cardiac hypertrophy and heart failure, whereas Sike-overexpressing transgenic (Sike-TG) mice are protected from hypertrophic stimuli. Mechanistically, SIKE directly interacts with TBK1 to inhibit the TBK1-AKT signalling pathway, thereby achieving its anti-hypertrophic action. The suppression of cardiac remodelling by SIKE is further validated in rats and monkeys. Collectively, these findings identify SIKE as a negative regulator of cardiac remodelling in multiple animal species due to its inhibitory regulation of the TBK1/AKT axis, suggesting that SIKE may represent a therapeutic target for the treatment of cardiac hypertrophy and heart failure. PMID:27249321

  18. Neuroglobin protects cardiomyocytes against apoptosis and cardiac hypertrophy induced by isoproterenol in rats.

    PubMed

    Liu, Zhen-Fang; Zhang, Xiao; Qiao, Yan-Xiang; Xu, Wan-Qun; Ma, Cheng-Tai; Gu, Hua-Li; Zhou, Xiu-Mei; Shi, Lei; Cui, Chang-Xing; Xia, Di; Chen, Yu-Guo

    2015-01-01

    Neuroglobin (Ngb) is well known as a physiological role in oxygen homeostasis of neurons and perhaps a protective role against hypoxia and oxidative stress. In this study, we found that Ngb is expressed in rat heart tissues and it is related to isoproterenol induced cardiac hypertrophy. Moreover, overexpression or knock-down of Ngb influences the expression of hypertrophic markers ANP and BNP and the ratio of hypertrophic cells in rat H9c2 myoblasts when isoproterenol treatment. The Annexin V-FITC/PI Staining, Western blot and qPCR analysis showed that the involvement in p53-mediated apoptosis of cardiomyocytes of Ngb is might be the mechanism. This protein could prevent the cells against ROS and POS-induced apoptosis not only in nervous systems but also in cardiomyocytes. From the results, it is concluded that Ngb is a promising protectant in the cardiac hypertrophy, it may be a candidate target to cardiac hypertrophy for clinic treatment. PMID:26131111

  19. Phenanthrene exposure induces cardiac hypertrophy via reducing miR-133a expression by DNA methylation.

    PubMed

    Huang, Lixing; Xi, Zhihui; Wang, Chonggang; Zhang, Youyu; Yang, Zhibing; Zhang, Shiqi; Chen, Yixin; Zuo, Zhenghong

    2016-01-01

    Growing evidence indicates that there is an emerging link between environmental pollution and cardiac hypertrophy, while the mechanism is unclear. The objective of this study was to examine whether phenanthrene (Phe) could cause cardiac hypertrophy, and elucidate the molecular mechanisms involved. We found that: 1) Phe exposure increased the heart weight and cardiomyocyte size of rats; 2) Phe exposure led to enlarged cell size, and increased protein synthesis in H9C2 cells; 3) Phe exposure induced important markers of cardiac hypertrophy, such as atrial natriuretic peptide, B-type natriuretic peptide, and c-Myc in H9C2 cells and rat hearts; 4) Phe exposure perturbed miR-133a, CdC42 and RhoA, which were key regulators of cardiac hypertrophy, in H9C2 cells and rat hearts; 5) Phe exposure induced DNA methyltransferases (DNMTs) in H9C2 cells and rat hearts; 6) Phe exposure led to methylation of CpG sites within the miR-133a locus and reduced miR-133a expression in H9C2 cells; 7) DNMT inhibition and miR-133a overexpression could both alleviate the enlargement of cell size and perturbation of CdC42 and RhoA caused by Phe exposure. These results indicated that Phe could induce cardiomyocyte hypertrophy in the rat and H9C2 cells. The mechanism might involve reducing miR-133a expression by DNA methylation. PMID:26830171

  20. Phenanthrene exposure induces cardiac hypertrophy via reducing miR-133a expression by DNA methylation

    PubMed Central

    Huang, Lixing; Xi, Zhihui; Wang, Chonggang; Zhang, Youyu; Yang, Zhibing; Zhang, Shiqi; Chen, Yixin; Zuo, Zhenghong

    2016-01-01

    Growing evidence indicates that there is an emerging link between environmental pollution and cardiac hypertrophy, while the mechanism is unclear. The objective of this study was to examine whether phenanthrene (Phe) could cause cardiac hypertrophy, and elucidate the molecular mechanisms involved. We found that: 1) Phe exposure increased the heart weight and cardiomyocyte size of rats; 2) Phe exposure led to enlarged cell size, and increased protein synthesis in H9C2 cells; 3) Phe exposure induced important markers of cardiac hypertrophy, such as atrial natriuretic peptide, B-type natriuretic peptide, and c-Myc in H9C2 cells and rat hearts; 4) Phe exposure perturbed miR-133a, CdC42 and RhoA, which were key regulators of cardiac hypertrophy, in H9C2 cells and rat hearts; 5) Phe exposure induced DNA methyltransferases (DNMTs) in H9C2 cells and rat hearts; 6) Phe exposure led to methylation of CpG sites within the miR-133a locus and reduced miR-133a expression in H9C2 cells; 7) DNMT inhibition and miR-133a overexpression could both alleviate the enlargement of cell size and perturbation of CdC42 and RhoA caused by Phe exposure. These results indicated that Phe could induce cardiomyocyte hypertrophy in the rat and H9C2 cells. The mechanism might involve reducing miR-133a expression by DNA methylation. PMID:26830171

  1. Angiotensin II type 1a receptor signalling directly contributes to the increased arrhythmogenicity in cardiac hypertrophy

    PubMed Central

    Yasuno, Shinji; Kuwahara, Koichiro; Kinoshita, Hideyuki; Yamada, Chinatsu; Nakagawa, Yasuaki; Usami, Satoru; Kuwabara, Yoshihiro; Ueshima, Kenji; Harada, Masaki; Nishikimi, Toshio; Nakao, Kazuwa

    2013-01-01

    BACKGROUND AND PURPOSE Angiotensin II has been implicated in the development of various cardiovascular ailments, including cardiac hypertrophy and heart failure. The fact that inhibiting its signalling reduced the incidences of both sudden cardiac death and heart failure in several large-scale clinical trials suggests that angiotensin II is involved in increased cardiac arrhythmogenicity during the development of heart failure. However, because angiotensin II also promotes structural remodelling, including cardiomyocyte hypertrophy and cardiac fibrosis, it has been difficult to assess its direct contribution to cardiac arrhythmogenicity independently of the structural effects. EXPERIMENTAL APPROACH We induced cardiac hypertrophy in wild-type (WT) and angiotensin II type 1a receptor knockout (AT1aR-KO) mice by transverse aortic constriction (TAC). The susceptibility to ventricular tachycardia (VT) assessed in an in vivo electrophysiological study was compared in the two genotypes. The effect of acute pharmacological blockade of AT1R on the incidences of arrhythmias was also assessed. KEY RESULTS As described previously, WT and AT1aR-KO mice with TAC developed cardiac hypertrophy to the same degree, but the incidence of VT was much lower in the latter. Moreover, although TAC induced an increase in tyrosine phosphorylation of connexin 43, a critical component of gap junctional channels, and a reduction in ventricular levels of connexin 43 protein in both genotypes, the effect was significantly ameliorated in AT1aR-KO mice. Acute pharmacological blockade of AT1R also reduced the incidence of arrhythmias. CONCLUSIONS AND IMPLICATIONS Our findings demonstrate that AT1aR-mediated signalling makes a direct contribution to the increase in arrhythmogenicity in hypertrophied hearts independently of structural remodelling. PMID:23937445

  2. The ubiquitin E3 ligase TRAF6 exacerbates pathological cardiac hypertrophy via TAK1-dependent signalling

    PubMed Central

    Ji, Yan-Xiao; Zhang, Peng; Zhang, Xiao-Jing; Zhao, Yi-Chao; Deng, Ke-Qiong; Jiang, Xi; Wang, Pi-Xiao; Huang, Zan; Li, Hongliang

    2016-01-01

    Tumour necrosis factor receptor-associated factor 6 (TRAF6) is a ubiquitin E3 ligase that regulates important biological processes. However, the role of TRAF6 in cardiac hypertrophy remains unknown. Here, we show that TRAF6 levels are increased in human and murine hypertrophied hearts, which is regulated by reactive oxygen species (ROS) production. Cardiac-specific Traf6 overexpression exacerbates cardiac hypertrophy in response to pressure overload or angiotensin II (Ang II) challenge, whereas Traf6 deficiency causes an alleviated hypertrophic phenotype in mice. Mechanistically, we show that ROS, generated during hypertrophic progression, triggers TRAF6 auto-ubiquitination that facilitates recruitment of TAB2 and its binding to transforming growth factor beta-activated kinase 1 (TAK1), which, in turn, enables the direct TRAF6–TAK1 interaction and promotes TAK1 ubiquitination. The binding of TRAF6 to TAK1 and the induction of TAK1 ubiquitination and activation are indispensable for TRAF6-regulated cardiac remodelling. Taken together, we define TRAF6 as an essential molecular switch leading to cardiac hypertrophy in a TAK1-dependent manner. PMID:27249171

  3. Asiatic Acid Protects against Cardiac Hypertrophy through Activating AMPKα Signalling Pathway

    PubMed Central

    Ma, Zhen-Guo; Dai, Jia; Wei, Wen-Ying; Zhang, Wen-Bin; Xu, Si-Chi; Liao, Hai-Han; Yang, Zheng; Tang, Qi-Zhu

    2016-01-01

    Background: AMPactivated protein kinase α (AMPKα) is closely involved in the process of cardiac hypertrophy. Asiatic acid (AA), a pentacyclic triterpene, was found to activate AMPKα in our preliminary experiment. However, its effects on the development of cardiac hypertrophy remain unclear. The present study was to determine whether AA could protect against cardiac hypertrophy. Methods: Mice subjected to aortic banding were orally given AA (10 or 30mg/kg) for 7 weeks. In the inhibitory experiment, Compound C was intraperitoneally injected for 3 weeks after surgery. Results: Our results showed that AA markedly inhibited hypertrophic responses induced by pressure overload or angiotensin II. AA also suppressed cardiac fibrosis in vivo and accumulation of collagen in vitro. The protective effects of AA were mediated by activation of AMPKα and inhibition of the mammalian target of rapamycin (mTOR) pathway and extracellular signal-regulated kinase (ERK) in vivo and in vitro. However, AA lost the protective effects after AMPKα inhibition or gene deficiency. Conclusions: AA protects against cardiac hypertrophy by activating AMPKα, and has the potential to be used for the treatment of heart failure. PMID:27313499

  4. Flavonoids Extraction from Propolis Attenuates Pathological Cardiac Hypertrophy through PI3K/AKT Signaling Pathway

    PubMed Central

    Sun, Guang-wei; Qiu, Zhi-dong; Wang, Wei-nan; Sui, Xin

    2016-01-01

    Propolis, a traditional medicine, has been widely used for a thousand years as an anti-inflammatory and antioxidant drug. The flavonoid fraction is the main active component of propolis, which possesses a wide range of biological activities, including activities related to heart disease. However, the role of the flavonoids extraction from propolis (FP) in heart disease remains unknown. This study shows that FP could attenuate ISO-induced pathological cardiac hypertrophy (PCH) and heart failure in mice. The effect of the two fetal cardiac genes, atrial natriuretic factor (ANF) and β-myosin heavy chain (β-MHC), on PCH was reversed by FP. Echocardiography analysis revealed cardiac ventricular dilation and contractile dysfunction in ISO-treated mice. This finding is consistent with the increased heart weight and cardiac ANF protein levels, massive replacement fibrosis, and myocardial apoptosis. However, pretreatment of mice with FP could attenuate cardiac dysfunction and hypertrophy in vivo. Furthermore, the cardiac protection of FP was suppressed by the pan-PI3K inhibitor wortmannin. FP is a novel cardioprotective agent that can attenuate adverse cardiac dysfunction, hypertrophy, and associated disorder, such as fibrosis. The effects may be closely correlated with PI3K/AKT signaling. FP may be clinically used to inhibit PCH progression and heart failure. PMID:27213000

  5. Gram-negative endotoxin lipopolysaccharide induces cardiac hypertrophy: detrimental role of Na(+)-Ca(2+) exchanger.

    PubMed

    Magi, Simona; Nasti, Annamaria Assunta; Gratteri, Santo; Castaldo, Pasqualina; Bompadre, Stefano; Amoroso, Salvatore; Lariccia, Vincenzo

    2015-01-01

    Several molecular pathways involved in the development of cardiac hypertrophy are triggered by perturbation of intracellular Ca(2+) homeostasis. Within the heart, Na(+)/Ca(2+) exchanger 1 (NCX1) is one of the main determinant in controlling Ca(2+) homeostasis. In cardiac hypertrophy and heart failure NCX1 expression and activity have been reported to be altered. It has been shown that chronic bacterial infections (sepsis, endocarditis, and myocarditis) can promote cardiac hypertrophy. Bacterial stressors, such as the Gram-negative endotoxin lipopolysaccharide (LPS), can directly or indirectly affect intracellular Ca(2+) homeostasis in the heart and induce the development of cardiac hypertrophy. The present study aimed at evaluating the potential link between the signal pathways activated in LPS-exposed myocytes and NCX1. In the whole rat heart, LPS perfusion induced an early hypertrophy response during which NCX1 expression significantly increased. Notably, all these changes were completely prevented by the NCX inhibitor SN-6. We further dissect the role of NCX1 in the LPS-induced hypertrophic response in an in vitro cardiac model based on two H9c2 cardiomyoblast clones, namely H9c2-WT (lacking endogenous NCX1 expression) and H9c2-NCX1 (stably transfected with a functional NCX1). H9c2-NCX1 were more susceptible than H9c2-WT to develop a hypertrophic phenotype, and they displayed a significant increase in NCX1 expression and function after LPS treatment. SN-6 completely counteracted both hypertrophic response and exchanger alterations induced by LPS in H9c2-NCX1 cells, but it had no effects on H9c2-WT. Collectively, our results suggest that NCX1 plays a critical role in promoting myocardial hypertrophy triggered by LPS. PMID:25445045

  6. Rapamycin Inhibits Cardiac Hypertrophy by Promoting Autophagy via the MEK/ERK/Beclin-1 Pathway

    PubMed Central

    Gu, Jun; Hu, Wei; Song, Zhi-Ping; Chen, Yue-Guang; Zhang, Da-Dong; Wang, Chang-Qian

    2016-01-01

    Rapamycin, also known as sirolimus, is an antifungal agent and immunosuppressant drug used to prevent organ rejection in transplantation. However, little is known about the role of rapamycin in cardiac hypertrophy and the signaling pathways involved. Here, the effect of rapamycin was examined using phenylephrine (PE) induced cardiomyocyte hypertrophy in vitro and in a rat model of aortic banding (AB) - induced hypertrophy in vivo. Inhibition of MEK/ERK signaling reversed the effect of rapamycin on the up-regulation of LC3-II, Beclin-1 and Noxa, and the down-regulation of Mcl-1 and p62. Silencing of Noxa or Beclin-1 suppressed rapamycin-induced autophagy, and co-immunoprecipitation experiments showed that Noxa abolishes the inhibitory effect of Mcl-1 on Beclin-1, promoting autophagy. In vivo experiments showed that rapamycin decreased AB-induced cardiac hypertrophy in a MEK/ERK dependent manner. Taken together, our results indicate that rapamycin attenuates cardiac hypertrophy by promoting autophagy through a mechanism involving the modulation of Noxa and Beclin-1 expression by the MEK/ERK signaling pathway. PMID:27047390

  7. Stargazing microRNA maps a new miR-21 star for cardiac hypertrophy

    PubMed Central

    Indolfi, Ciro; Curcio, Antonio

    2014-01-01

    Left ventricular hypertrophy is an initial compensatory mechanism in response to cardiac stress that can degenerate into heart failure and sudden cardiac death. Recent studies have shown that microRNAs (miRs) regulate several aspects of cardiovascular diseases. In this issue of the JCI, Bang and colleagues identified an exosome-mediated communication mechanism between cardiac fibroblasts and cardiomyocytes. Specifically, cardiac fibroblasts secrete miR-enriched exosomes, which are subsequently taken up by cardiomyocytes, in which they alter gene expression. In particular, a passenger strand miR, miR-21*, was identified as a potent paracrine factor that induces cardiomyocyte hypertrophy when shuttled through exosomes. These advanced comprehensive analyses represent a major step forward in our understanding of cardiovascular physiopathology, providing a promising adjunctive target for possible therapeutic approaches, namely the miR-mediated paracrine signaling network. PMID:24743143

  8. Stargazing microRNA maps a new miR-21 star for cardiac hypertrophy.

    PubMed

    Indolfi, Ciro; Curcio, Antonio

    2014-05-01

    Left ventricular hypertrophy is an initial compensatory mechanism in response to cardiac stress that can degenerate into heart failure and sudden cardiac death. Recent studies have shown that microRNAs (miRs) regulate several aspects of cardiovascular diseases. In this issue of the JCI, Bang and colleagues identified an exosome-mediated communication mechanism between cardiac fibroblasts and cardiomyocytes. Specifically, cardiac fibroblasts secrete miR-enriched exosomes, which are subsequently taken up by cardiomyocytes, in which they alter gene expression. In particular, a passenger strand miR, miR-21*, was identified as a potent paracrine factor that induces cardiomyocyte hypertrophy when shuttled through exosomes. These advanced comprehensive analyses represent a major step forward in our understanding of cardiovascular physiopathology, providing a promising adjunctive target for possible therapeutic approaches, namely the miR-mediated paracrine signaling network. PMID:24743143

  9. SWI/SNF chromatin remodeling enzymes are associated with cardiac hypertrophy in a genetic rat model of hypertension.

    PubMed

    Mehrotra, Aanchal; Joe, Bina; de la Serna, Ivana L

    2013-12-01

    Pathological cardiac hypertrophy is characterized by a sustained increase in cardiomyocyte size and re-activation of the fetal cardiac gene program. Previous studies implicated SWI/SNF chromatin remodeling enzymes as regulators of the fetal cardiac gene program in surgical models of cardiac hypertrophy. Although hypertension is a common risk factor for developing cardiac hypertrophy, there has not yet been any investigation into the role of SWI/SNF enzymes in cardiac hypertrophy using genetic models of hypertension. In this study, we tested the hypothesis that components of the SWI/SNF complex are activated and recruited to promoters that regulate the fetal cardiac gene program in hearts that become hypertrophic as a result of salt induced hypertension. Utilizing the Dahl salt-sensitive (S) rat model, we found that the protein levels of several SWI/SNF subunits required for heart development, Brg1, Baf180, and Baf60c, are elevated in hypertrophic hearts from S rats fed a high salt diet compared with normotensive hearts from Dahl salt-resistant (R) rats fed the same diet. Furthermore, we detected significantly higher levels of SWI/SNF subunit enrichment as well as evidence of more accessible chromatin structure on two fetal cardiac gene promoters in hearts from S rats compared with R rats. Our data implicate SWI/SNF chromatin remodeling enzymes as regulators of gene expression in cardiac hypertrophy resulting from salt induced hypertension. Thus we provide novel insights into the epigenetic mechanisms by which salt induced hypertension leads to cardiac hypertrophy.

  10. Three 4-Letter Words of Hypertension-Related Cardiac Hypertrophy: TRPC, mTOR, and HDAC

    PubMed Central

    Kurdi, Mazen; Booz, George W.

    2011-01-01

    Left ventricular hypertrophy due to hypertension represents a major risk factor for adverse cardiovascular events and death. In recent years, the prevalence of cardiac hypertrophy has increased due to obesity and an aging population. Notably, a significant number of individuals have persistent cardiac hypertrophy in the face of blood pressure that is normalized by drug treatment. Thus, a better understanding of the processes underlying the cardiac remodeling events that are set into play by hypertension is needed. At the level of the cardiac myocytes, hypertrophic growth is often described as physiological, as occurs with exercise, or pathological, as seen with hypertension. Here we discuss recent developments in three areas that are fundamental to pathological hypertrophic growth of cardiac myocytes. These areas are the transient receptor potential canonical (TRPC) channels, mammalian target of rapamycin (mTOR) complexes, and histone deacetylase (HDAC) enzymes. In the last several years, studies in each of these areas have yielded new and exciting discoveries into the genesis of pathological growth of cardiac myocytes. The phosphoinositide 3-kinase – Akt signaling network may be the common denominator that links these areas together. Defining the interrelationship among TRPC channels, mTOR signaling, and HDAC enzymes is a promising, but challenging area of research. Such knowledge will undoubtedly lead to new drugs that better prevent or reverse left ventricular hypertension. PMID:21320507

  11. Polydatin prevents angiotensin II-induced cardiac hypertrophy and myocardial superoxide generation

    PubMed Central

    Tan, Yingying; Zhang, Nan; Yao, Fanrong

    2015-01-01

    Our studies and others recently demonstrate that polydatin, a resveratrol glucoside, has antioxidative and cardioprotective effects. This study aims to investigate the direct effects of polydatin on Ang II-induced cardiac hypertrophy to explore the potential role of polydatin in cardioprotection. Our results showed that in primary cultured cardiomyocytes, polydatin blocked Ang II-induced cardiac hypertrophy in a dose-dependent manner, which were associated with reduction in the cell surface area and [3H]leucine incorporation, as well as attenuation of the mRNA expressions of atrial natriuretic factor and β-myosin heavy chain. Furthermore, polydatin prevented rat cardiac hypertrophy induced by Ang II infusion, as assessed by heart weight-to-body weight ratio, cross-sectional area of cardiomyocyte, and gene expression of hypertrophic markers. Further investigation demonstrated that polydatin attenuated the Ang II-induced increase in the reactive oxygen species levels and NADPH oxidase activity in vivo and in vitro. Polydatin also blocked the Ang II-stimulated increases of Nox4 and Nox2 expression in cultured cardiomyocytes and the hearts of Ang II-infused rats. Our results indicate that polydatin has the potential to protect against Ang II-mediated cardiac hypertrophy through suppression of NADPH oxidase activity and superoxide production. These observations may shed new light on the understanding of the cardioprotective effect of polydatin. PMID:25488910

  12. Evidence of exercise-induced cardiac dysfunction and elevated cTnT in separate cohorts competing in an ultra-endurance mountain marathon race.

    PubMed

    Shave, R E; Dawson, E; Whyte, G; George, K; Ball, D; Gaze, D C; Collinson, P O

    2002-10-01

    Cardiac damage has recently been implicated in the aetiology of "exercise induced cardiac dysfunction". The humoral markers of cardiac damage that have been utilised to date are not sufficiently cardio-specific to investigate this hypothesis. The aim of the present study was to examine cardiac function following prolonged exercise, and investigate the contention of cardiac damage utilising a new highly cardio-specific marker. Thirty-seven competitors in the 2-day Lowe Alpine Mountain Marathon 2000 volunteered for the study. Competitors were sub-divided into 2 groups. Group 1 (n = 11) were examined using echocardiography pre and post the event, examining left ventricular diastolic and systolic function. Group 2 (n = 26) had venous blood samples drawn prior to the event and immediately following day-1 and day-2. Blood samples were analysed for total creatine kinase activity (CK), creatine kinase isoenzyme MB(mass) (CK-MB(mass)), and cardiac troponin T. Echocardiographic results indicated left ventricular diastolic and systolic dysfunction following cessation of exercise. CK and CK-MB(mass) were both elevated following day-1, and immediately following race completion. Cardiac troponin T levels were below the 99th percentile (0.01 microg/L) in all subjects prior to the event, following day-1 cTnT was elevated above 0.01 microg/L in 13 subjects, but returned to below 0.01 microg/L following race completion on day-2. However, no individual data reached clinical cut-off levels for acute myocardial infarction (AMI) (0.1 microg/L). Two days arduous exercise over mountainous terrain resulted in cardiac dysfunction, and significant skeletal muscular degradation. The elevation of cTnT above the 99th percentile in the present study is suggestive of minimal myocardial damage. The clinical significance of and exact mechanism responsible for such damage remains to be elucidated.

  13. Chronic cardiac pressure overload induces adrenal medulla hypertrophy and increased catecholamine synthesis.

    PubMed

    Schneider, Johanna; Lother, Achim; Hein, Lutz; Gilsbach, Ralf

    2011-06-01

    Increased activity of the sympathetic system is an important feature contributing to the pathogenesis and progression of chronic heart failure. While the mechanisms and consequences of enhanced norepinephrine release from sympathetic nerves have been intensely studied, the role of the adrenal gland in the development of cardiac hypertrophy and progression of heart failure is less well known. Thus, the aim of the present study was to determine the effect of chronic cardiac pressure overload in mice on adrenal medulla structure and function. Cardiac hypertrophy was induced in wild-type mice by transverse aortic constriction (TAC) for 8 weeks. After TAC, the degree of cardiac hypertrophy correlated significantly with adrenal weight and adrenal catecholamine storage. In the medulla, TAC caused an increase in chromaffin cell size but did not result in chromaffin cell proliferation. Ablation of chromaffin α(2C)-adrenoceptors did not affect adrenal weight or epinephrine synthesis. However, unilateral denervation of the adrenal gland completely prevented adrenal hypertrophy and increased catecholamine synthesis. Transcriptome analysis of microdissected adrenal medulla identified 483 up- and 231 downregulated, well-annotated genes after TAC. Among these genes, G protein-coupled receptor kinases 2 (Grk2) and 6 and phenylethanolamine N-methyltransferase (Pnmt) were significantly upregulated by TAC. In vitro, acetylcholine-induced Pnmt and Grk2 expression as well as enhanced epinephrine content was prevented by inhibition of nicotinic acetylcholine receptors and Ca(2+)/calmodulin-dependent signaling. Thus, activation of preganglionic sympathetic nerves innervating the adrenal medulla plays an essential role in inducing adrenal hypertrophy, enhanced catecholamine synthesis and induction of Grk2 expression after cardiac pressure overload.

  14. Integrating GRK2 and NFkappaB in the Pathophysiology of Cardiac Hypertrophy.

    PubMed

    Sorriento, Daniela; Santulli, Gaetano; Franco, Antonietta; Cipolletta, Ersilia; Napolitano, Luigi; Gambardella, Jessica; Gomez-Monterrey, Isabel; Campiglia, Pietro; Trimarco, Bruno; Iaccarino, Guido; Ciccarelli, Michele

    2015-11-01

    G protein coupled receptor kinase type 2 (GRK2) plays an important role in the development and maintenance of cardiac hypertrophy and heart failure even if its exact role is still unknown. In this study, we assessed the effect of GRK2 on the regulation of cardiac hypertrophy. In H9C2 cells, GRK2 overexpression increased atrial natriuretic factor (ANF) activity and enhanced phenylephrine-induced ANF response, and this is associated with an increase of NFκB transcriptional activity. The kinase dead mutant and a synthetic inhibitor of GRK2 activity exerted the opposite effect, suggesting that GRK2 regulates hypertrophy through upregulation of NFκB activity in a phosphorylation-dependent manner. In two different in vivo models of left ventricle hypertrophy (LVH), the selective inhibition of GRK2 activity prevented hypertrophy and reduced NFκB transcription activity. Our results suggest a previously undisclosed role for GRK2 in the regulation of hypertrophic responses and propose GRK2 as potential therapeutic target for limiting LVH. PMID:26224342

  15. Genetic manipulation of periostin expression reveals a role in cardiac hypertrophy and ventricular remodeling.

    PubMed

    Oka, Toru; Xu, Jian; Kaiser, Robert A; Melendez, Jaime; Hambleton, Michael; Sargent, Michelle A; Lorts, Angela; Brunskill, Eric W; Dorn, Gerald W; Conway, Simon J; Aronow, Bruce J; Robbins, Jeffrey; Molkentin, Jeffery D

    2007-08-01

    The cardiac extracellular matrix is a dynamic structural support network that is both influenced by, and a regulator of, pathological remodeling and hypertrophic growth. In response to pathologic insults, the adult heart reexpresses the secreted extracellular matrix protein periostin (Pn). Here we show that Pn is critically involved in regulating the cardiac hypertrophic response, interstitial fibrosis, and ventricular remodeling following long-term pressure overload stimulation and myocardial infarction. Mice lacking the gene encoding Pn (Postn) were more prone to ventricular rupture in the first 10 days after a myocardial infarction, but surviving mice showed less fibrosis and better ventricular performance. Pn(-/-) mice also showed less fibrosis and hypertrophy following long-term pressure overload, suggesting an intimate relationship between Pn and the regulation of cardiac remodeling. In contrast, inducible overexpression of Pn in the heart protected mice from rupture following myocardial infarction and induced spontaneous hypertrophy with aging. With respect to a mechanism underlying these alterations, Pn(-/-) hearts showed an altered molecular program in fibroblast function. Indeed, fibroblasts isolated from Pn(-/-) hearts were less effective in adherence to cardiac myocytes and were characterized by a dramatic alteration in global gene expression (7% of all genes). These are the first genetic data detailing the function of Pn in the adult heart as a regulator of cardiac remodeling and hypertrophy. PMID:17569887

  16. Dominant negative Ras attenuates pathological ventricular remodeling in pressure overload cardiac hypertrophy

    PubMed Central

    Ramos-Kuri, Manuel; Rapti, Kleopatra; Mehel, Hind; Zhang, Shihong; Dhandapany, Perundurai S.; Liang, Lifan; García-Carrancá, Alejandro; Bobe, Regis; Fischmeister, Rodolphe; Adnot, Serge; Lebeche, Djamel; Hajjar, Roger J.; Lipskaia, Larissa; Chemaly, Elie R.

    2015-01-01

    The importance of the oncogene Ras in cardiac hypertrophy is well appreciated. The hypertrophic effects of the constitutively active mutant Ras-Val12 are revealed by clinical syndromes due to the Ras mutations and experimental studies. We examined the possible anti-hypertrophic effect of Ras inhibition in vitro using rat neonatal cardiomyocytes (NRCM) and in vivo in the setting of pressure-overload left ventricular (LV) hypertrophy (POH) in rats. Ras functions were modulated via adenovirus directed gene transfer of active mutant Ras-Val12 or dominant negative mutant N17-DN-Ras (DN-Ras). Ras-Val12 expression in vitro activates NFAT resulting in pro-hypertrophic and cardio-toxic effects on NRCM beating and Z-line organization. In contrast, the DN-Ras was antihypertrophic on NRCM, inhibited NFAT and exerted cardio-protective effects attested by preserved NRCM beating and Z line structure. Additional experiments with silencing H-Ras gene strategy corroborated the antihypertrophic effects of siRNA-H-Ras on NRCM. In vivo, with the POH model, both Ras mutants were associated with similar hypertrophy two weeks after simultaneous induction of POH and Ras-mutant gene transfer. However, LV diameters were higher and LV fractional shortening lower in the Ras-Val12 group compared to control and DN-Ras. Moreover, DN-Ras reduced the cross-sectional area of cardiomyocytes in vivo, and decreased the expression of markers of pathologic cardiac hypertrophy. In isolated adult cardiomyocytes after 2 weeks of POH and Ras-mutant gene transfer, DN-Ras improved sarcomere shortening and calcium transients compared to Ras-Val12. Overall, DN-Ras promotes a more physiological form of hypertrophy, suggesting an interesting therapeutic target for pathological cardiac hypertrophy. PMID:26260012

  17. Dominant negative Ras attenuates pathological ventricular remodeling in pressure overload cardiac hypertrophy.

    PubMed

    Ramos-Kuri, Manuel; Rapti, Kleopatra; Mehel, Hind; Zhang, Shihong; Dhandapany, Perundurai S; Liang, Lifan; García-Carrancá, Alejandro; Bobe, Regis; Fischmeister, Rodolphe; Adnot, Serge; Lebeche, Djamel; Hajjar, Roger J; Lipskaia, Larissa; Chemaly, Elie R

    2015-11-01

    The importance of the oncogene Ras in cardiac hypertrophy is well appreciated. The hypertrophic effects of the constitutively active mutant Ras-Val12 are revealed by clinical syndromes due to the Ras mutations and experimental studies. We examined the possible anti-hypertrophic effect of Ras inhibition in vitro using rat neonatal cardiomyocytes (NRCM) and in vivo in the setting of pressure-overload left ventricular (LV) hypertrophy (POH) in rats. Ras functions were modulated via adenovirus directed gene transfer of active mutant Ras-Val12 or dominant negative mutant N17-DN-Ras (DN-Ras). Ras-Val12 expression in vitro activates NFAT resulting in pro-hypertrophic and cardio-toxic effects on NRCM beating and Z-line organization. In contrast, the DN-Ras was antihypertrophic on NRCM, inhibited NFAT and exerted cardio-protective effects attested by preserved NRCM beating and Z line structure. Additional experiments with silencing H-Ras gene strategy corroborated the antihypertrophic effects of siRNA-H-Ras on NRCM. In vivo, with the POH model, both Ras mutants were associated with similar hypertrophy two weeks after simultaneous induction of POH and Ras-mutant gene transfer. However, LV diameters were higher and LV fractional shortening lower in the Ras-Val12 group compared to control and DN-Ras. Moreover, DN-Ras reduced the cross-sectional area of cardiomyocytes in vivo, and decreased the expression of markers of pathologic cardiac hypertrophy. In isolated adult cardiomyocytes after 2 weeks of POH and Ras-mutant gene transfer, DN-Ras improved sarcomere shortening and calcium transients compared to Ras-Val12. Overall, DN-Ras promotes a more physiological form of hypertrophy, suggesting an interesting therapeutic target for pathological cardiac hypertrophy.

  18. Cardiac hypertrophy, arrhythmogenicity and the new myocardial phenotype. II. The cellular adaptational process.

    PubMed

    Swynghedauw, B; Chevalier, B; Charlemagne, D; Mansier, P; Carré, F

    1997-07-01

    Ventricular fibrosis is not the only structural determinant of arrhythmias in left ventricular hypertrophy. In an experimental model of compensatory cardiac hypertrophy (CCH) the degree of cardiac hypertrophy is also independently linked to ventricular arrhythmias. Cardiac hypertrophy reflects the level of adaptation, and matches the adaptational modifications of the myocardial phenotype. We suggest that these modifications have detrimental aspects. The increased action potential (AP) and QT duration and the prolonged calcium transient both favour spontaneous calcium oscillations, and both are potentially arrhythmogenic and linked to phenotypic changes in membrane proteins. To date, only two ionic currents have been studied in detail: Ito is depressed (likely the main determinant in AP durations), and If, the pacemaker current, is induced in the overloaded ventricular myocytes. In rat CCH, the two components of the sarcoplasmic reticulum, namely Ca(2+)-ATPase and ryanodine receptors, are down-regulated in parallel. Nevertheless, while the inward calcium current is unchanged, the functionally linked duo composed of the Na+/Ca2+ exchanged and (Na+, K+)-ATPase, is less active. Such an imbalance may explain the prolonged calcium transient. The changes in heart rate variability provide information about the state of the autonomic nervous system and has prognostic value even in CCH. Transgenic studies have demonstrated that the myocardial adrenergic and muscarinic receptor content is also a determining factor. During CCH, several phenotypic membrane changes participate in the slowing of contraction velocity and are thus adaptational. They also have a detrimental counterpart and, together with fibrosis, favour arrhythmias. PMID:9302342

  19. The therapeutic potential of miRNAs regulated in settings of physiological cardiac hypertrophy.

    PubMed

    Ooi, Jenny Y Y; Bernardo, Bianca C; McMullen, Julie R

    2014-02-01

    Cardiac hypertrophy is broadly defined as an increase in heart mass. Heart enlargement in a setting of cardiac disease is referred to as pathological hypertrophy and often progresses to heart failure. Physiological hypertrophy refers to heart growth in response to postnatal development, exercise training and pregnancy, and is an adaptive response associated with the activation of cardioprotective signaling cascades. miRNAs have emerged as novel therapeutic targets for numerous pathologies, and miRNA-based therapies have already entered clinical trials. The identification of miRNAs differentially regulated during physiological growth may open up new therapeutic approaches for heart failure. In this review, we present information on miRNAs regulated in models of physiological hypertrophy, describe preclinical cardiac disease studies that have successfully targeted miRNAs regulated in settings of physiological growth (miR-34, miR-15, miR-199b, miR-208a and miR-378), and discuss challenges to overcome for the safe entry of miRNA-based therapies into the clinic for heart failure patients. PMID:24467244

  20. Simvastatin prevents isoproterenol-induced cardiac hypertrophy through modulation of the JAK/STAT pathway

    PubMed Central

    Al-rasheed, Nouf M; Al-Oteibi, Maha M; Al-Manee, Reem Z; Al-shareef, Sarah A; Al-Rasheed, Nawal M; Hasan, Iman H; Mohamad, Raeesa A; Mahmoud, Ayman M

    2015-01-01

    Simvastatin (SIM) is a lipid-soluble inhibitor of hydroxy-3-methylglutaryl coenzyme A reductase with multiple reported therapeutic benefits. The present study was designed to investigate the effect of pretreatment with SIM on isoproterenol (ISO)-induced cardiac hypertrophy in rats. Twenty-four male albino Wistar rats weighing 180–200 g were divided into four groups. Groups I and III received normal saline while groups II and IV received SIM (10 mg/kg body weight) for 30 days per gavage. In the last 7 days, rats of groups III and IV were administered ISO (5 mg/kg) intraperitoneally to induce cardiac hypertrophy. Administration of ISO induced an increase in heart-to-body weight (HW/BW) ratio, an increase in serum interleukin-6, and elevated systolic and diastolic blood pressure. Serum levels of lipids, cardiovascular risk indices, and cardiac troponin I and creatine phosphokinase-MB showed significant increase in ISO-induced hypertrophic rats. Histopathological examination of heart tissue revealed focal areas of subendocardium degeneration, mononuclear cellular infiltrations, fibrous tissue deposition, and increased thickness of the myocardium of left ventricle. In addition, ISO-administered rats exhibited significant upregulation of cardiac Janus kinase, phosphorylated signal transducer and activator of transcription, and nuclear factor-kappa B. Pretreatment with SIM significantly prevented ISO-induced cardiac hypertrophy, alleviated the altered biochemical parameters, and improved the heart architecture. In conclusion, our study provides evidence that SIM prevented the development of cardiac hypertrophy via modulation of the Janus kinase/signal transducer and activator of transcription-signaling pathway in the heart of ISO-administered animals. PMID:26150695

  1. Developmental SHP2 dysfunction underlies cardiac hypertrophy in Noonan syndrome with multiple lentigines

    PubMed Central

    Lauriol, Jessica; Cabrera, Janel R.; Roy, Ashbeel; Keith, Kimberly; Hough, Sara M.; Damilano, Federico; Wang, Bonnie; Segarra, Gabriel C.; Flessa, Meaghan E.; Miller, Lauren E.; Das, Saumya; Bronson, Roderick; Lee, Kyu-Ho; Kontaridis, Maria I.

    2016-01-01

    Hypertrophic cardiomyopathy is a common cause of mortality in congenital heart disease (CHD). Many gene abnormalities are associated with cardiac hypertrophy, but their function in cardiac development is not well understood. Loss-of-function mutations in PTPN11, which encodes the protein tyrosine phosphatase (PTP) SHP2, are implicated in CHD and cause Noonan syndrome with multiple lentigines (NSML), a condition that often presents with cardiac hypertrophic defects. Here, we found that NSML-associated hypertrophy stems from aberrant signaling mechanisms originating in developing endocardium. Trabeculation and valvular hyperplasia were diminished in hearts of embryonic mice expressing a human NSML-associated variant of SHP2, and these defects were recapitulated in mice expressing NSML-associated SHP2 specifically in endothelial, but not myocardial or neural crest, cells. In contrast, mice with myocardial- but not endothelial-specific NSML SHP2 expression developed ventricular septal defects, suggesting that NSML-associated mutations have both cell-autonomous and nonautonomous functions in cardiac development. However, only endothelial-specific expression of NSML-associated SHP2 induced adult-onset cardiac hypertrophy. Further, embryos expressing the NSML-associated SHP2 mutation exhibited aberrant AKT activity and decreased downstream forkhead box P1 (FOXP1)/FGF and NOTCH1/EPHB2 signaling, indicating that SHP2 is required for regulating reciprocal crosstalk between developing endocardium and myocardium. Together, our data provide functional and disease-based evidence that aberrant SHP2 signaling during cardiac development leads to CHD and adult-onset heart hypertrophy. PMID:27348588

  2. Impact of L-NAME on the cardiopulmonary reflex in cardiac hypertrophy.

    PubMed

    Buckley, Maria M; Johns, Edward J

    2011-11-01

    There is evidence that in cardiac failure, there is defective baroreceptor reflex control of sympathetic nerve activity. Often, cardiac failure is preceded by a state of cardiac hypertrophy in which there may be enhanced performance of the heart. This study investigated whether in two different models of cardiac hypertrophy, there was an increased contribution of nitric oxide (NO) to the low-pressure baroreceptor regulation of renal sympathetic nerve activity (RSNA) and nerve-dependent excretory function. Administration of a volume load, 0.25* body wt/min saline for 30 min, in normal rats decreased RSNA by 40* and increased urine flow by some 9-fold. Following nitro-L-arginine methyl ester (L-NAME) administration, 10 μg·kg(-1)·min(-1) for 60 min, which had no effect on blood pressure, heart rate, or RSNA, the volume load-induced renal sympathoinhibitory and excretory responses were markedly enhanced. In cardiac hypertrophy states induced by 2 wk of isoprenaline/caffeine or 1 wk thyroxine administration, the volume challenge failed to suppress RSNA, and there were blunted increases in urine flow in the innervated kidneys, but following L-NAME infusion, the volume load decreased RSNA by 30-40* and increased urine flow by some 20-fold in the innervated kidneys, roughly to the same extent as observed in normal rats. These findings suggest that the blunted renal sympathoinhibition and nerve-dependent diuresis to the volume load in cardiac hypertrophy are related to a heightened production or activity of NO within either the afferent or central arms of the reflex. PMID:21865544

  3. Developmental SHP2 dysfunction underlies cardiac hypertrophy in Noonan syndrome with multiple lentigines.

    PubMed

    Lauriol, Jessica; Cabrera, Janel R; Roy, Ashbeel; Keith, Kimberly; Hough, Sara M; Damilano, Federico; Wang, Bonnie; Segarra, Gabriel C; Flessa, Meaghan E; Miller, Lauren E; Das, Saumya; Bronson, Roderick; Lee, Kyu-Ho; Kontaridis, Maria I

    2016-08-01

    Hypertrophic cardiomyopathy is a common cause of mortality in congenital heart disease (CHD). Many gene abnormalities are associated with cardiac hypertrophy, but their function in cardiac development is not well understood. Loss-of-function mutations in PTPN11, which encodes the protein tyrosine phosphatase (PTP) SHP2, are implicated in CHD and cause Noonan syndrome with multiple lentigines (NSML), a condition that often presents with cardiac hypertrophic defects. Here, we found that NSML-associated hypertrophy stems from aberrant signaling mechanisms originating in developing endocardium. Trabeculation and valvular hyperplasia were diminished in hearts of embryonic mice expressing a human NSML-associated variant of SHP2, and these defects were recapitulated in mice expressing NSML-associated SHP2 specifically in endothelial, but not myocardial or neural crest, cells. In contrast, mice with myocardial- but not endothelial-specific NSML SHP2 expression developed ventricular septal defects, suggesting that NSML-associated mutations have both cell-autonomous and nonautonomous functions in cardiac development. However, only endothelial-specific expression of NSML-associated SHP2 induced adult-onset cardiac hypertrophy. Further, embryos expressing the NSML-associated SHP2 mutation exhibited aberrant AKT activity and decreased downstream forkhead box P1 (FOXP1)/FGF and NOTCH1/EPHB2 signaling, indicating that SHP2 is required for regulating reciprocal crosstalk between developing endocardium and myocardium. Together, our data provide functional and disease-based evidence that aberrant SHP2 signaling during cardiac development leads to CHD and adult-onset heart hypertrophy. PMID:27348588

  4. Construction and analysis of cardiac hypertrophy-associated lncRNA-mRNA network based on competitive endogenous RNA reveal functional lncRNAs in cardiac hypertrophy

    PubMed Central

    Liu, Yan; Pan, Hao; Qi, Han-ping; Cao, Yong-gang; Zhao, Jian-mei; Li, Shang; Guo, Jing; Sun, Hong-li; Li, Chun-quan

    2016-01-01

    Cardiac hypertrophy (CH) could increase cardiac after-load and lead to heart failure. Recent studies have suggested that long non-coding RNA (lncRNA) played a crucial role in the process of the cardiac hypertrophy, such as Mhrt, TERMINATOR. Some studies have further found a new interacting mechanism, competitive endogenous RNA (ceRNA), of which lncRNA could interact with micro-RNAs (miRNA) and indirectly interact with mRNAs through competing interactions. However, the mechanism of ceRNA regulated by lncRNA in the CH remained unclear. In our study, we generated a global triple network containing mRNA, miRNA and lncRNA, and extracted a CH related lncRNA-mRNA network (CHLMN) through integrating the data from starbase, miRanda database and gene expression profile. Based on the ceRNA mechanism, we analyzed the characters of CHLMN and found that 3 lncRNAs (SLC26A4-AS1, RP11-344E13.3 and MAGI1-IT1) were high related to CH. We further performed cluster module analysis and random walk with restart for the CHLMN, finally 14 lncRNAs had been discovered as the potential CH related disease genes. Our results showed that lncRNA played an important role in the CH and could shed new light to the understanding underlying mechanisms of the CH. PMID:26872060

  5. Repression of Cardiac Hypertrophy by KLF15: Underlying Mechanisms and Therapeutic Implications

    PubMed Central

    Leenders, Joost J.; Wijnen, Wino J.; van der Made, Ingeborg; Hiller, Monika; Swinnen, Melissa; Vandendriessche, Thierry; Chuah, Marinee; Pinto, Yigal M.; Creemers, Esther E.

    2012-01-01

    The Kruppel-like factor (KLF) family of transcription factors regulates diverse cell biological processes including proliferation, differentiation, survival and growth. Previous studies have shown that KLF15 inhibits cardiac hypertrophy by repressing the activity of pivotal cardiac transcription factors such as GATA4, MEF2 and myocardin. We set out this study to characterize the interaction of KLF15 with putative other transcription factors. We first show that KLF15 interacts with myocardin-related transcription factors (MRTFs) and strongly represses the transcriptional activity of MRTF-A and MRTF-B. Second, we identified a region within the C-terminal zinc fingers of KLF15 that contains the nuclear localization signal. Third, we investigated whether overexpression of KLF15 in the heart would have therapeutic potential. Using recombinant adeno-associated viruses (rAAV) we have overexpressed KLF15 specifically in the mouse heart and provide the first evidence that elevation of cardiac KLF15 levels prevents the development of cardiac hypertrophy in a model of Angiotensin II induced hypertrophy. PMID:22586493

  6. Myeloid Mineralocorticoid Receptor Deficiency Inhibits Aortic Constriction-Induced Cardiac Hypertrophy in Mice

    PubMed Central

    Zheng, Xiao Jun; Zhang, Wu Chang; Sun, Xue Nan; Yang, Qing Zhen; Ma, Shu Min; Huang, Baozhuan; Berger, Stefan; Wang, Wang; Wu, Yong; Yu, Ying; Duan, Sheng Zhong; Mortensen, Richard M.

    2014-01-01

    Mineralocorticoid receptor (MR) blockade has been shown to suppress cardiac hypertrophy and remodeling in animal models of pressure overload (POL). This study aims to determine whether MR deficiency in myeloid cells modulates aortic constriction-induced cardiovascular injuries. Myeloid MR knockout (MMRKO) mice and littermate control mice were subjected to abdominal aortic constriction (AAC) or sham operation. We found that AAC-induced cardiac hypertrophy and fibrosis were significantly attenuated in MMRKO mice. Expression of genes important in generating reactive oxygen species was decreased in MMRKO mice, while that of manganese superoxide dismutase increased. Furthermore, expression of genes important in cardiac metabolism was increased in MMRKO hearts. Macrophage infiltration in the heart was inhibited and expression of inflammatory genes was decreased in MMRKO mice. In addition, aortic fibrosis and inflammation were attenuated in MMRKO mice. Taken together, our data indicated that MR deficiency in myeloid cells effectively attenuated aortic constriction-induced cardiac hypertrophy and fibrosis, as well as aortic fibrosis and inflammation. PMID:25354087

  7. Suppression of calcium-sensing receptor ameliorates cardiac hypertrophy through inhibition of autophagy

    PubMed Central

    LIU, LEI; WANG, CHAO; LIN, YAN; XI, YUHUI; LI, HONG; SHI, SA; LI, HONGZHU; ZHANG, WEIHUA; ZHAO, YAJUN; TIAN, YE; XU, CHANGQING; WANG, LINA

    2016-01-01

    The calcium-sensing receptor (CaSR) releases intracellular calcium ([Ca2+]i) by accumulating inositol phosphate. Changes in [Ca2+]i initiate myocardial hypertrophy. Furthermore, autophagy associated with [Ca2+]i. Autophagy has previously been demonstrated to participate in the hypertrophic process. The current study investigated whether suppression of CaSR affects the hypertrophic response via modulating autophagy. Isoproterenol (ISO) was used to induce cardiac hypertrophy in Wistar rats. Hypertrophic status was determined by echocardiographic assessment, hematoxylin and eosin, and Masson's staining. The protein expression levels of CaSR and autophagy level were observed. Changes of hypertrophy and autophagy indicators were observed following intravenous injection of a CaSR inhibitor. An ISO-induced cardiomyocyte hypertrophy model was established and used determine the involvement of GdCl3. [Ca2+]i was determined using Fluo-4/AM dye followed by confocal microscopy. The expression levels of various active proteins were analyzed by western blotting. The size of the heart, expression levels of CaSR and autophagy level were markedly increased in hypertrophic myocardium. In addition, the present study demonstrated that the indicators of hypertrophy and autophagy were effectively suppressed by CaSR inhibitor. Furthermore, similar effects were demonstrated in neonatal rat hypertrophic cardiomyocytes treated with ISO. It was also observed that CaSR regulates the Ca2+/calmodulin-dependent protein kinase kinase β (CaMKKβ)-AMP-activated protein kinase (AMPK)-mammalian target of rapamycin (mTOR) signaling pathway induced by ISO in cardiomyocytes. Furthermore, the AMPK inhibition significantly reduced the autophagy level following CaSR stimulation (P<0.05). The results of the present demonstrated that inhibition of CaSR may ameliorate cardiac hypertrophy induced by ISO and the effect may be associated with the inhibition of autophagy and suppression of the Ca

  8. Endogenous antioxidant defense induction by melon superoxide dismutase reduces cardiac hypertrophy in spontaneously hypertensive rats.

    PubMed

    Carillon, Julie; Rugale, Caroline; Rouanet, Jean-Max; Cristol, Jean-Paul; Lacan, Dominique; Jover, Bernard

    2014-08-01

    We assessed the influence of SODB, a melon superoxide dismutase (SOD), on left ventricular (LV) hypertrophy in SHR. SODB (4 or 40U SOD) was given orally for 4 or 28 days to SHR. For each treatment period, LV weight index (LVWI) and cardiomyocytes size were measured. SOD, glutathione peroxidase (GPx) and catalase expressions, and LV production and presence of superoxide anion were determined. Pro-inflammatory markers were also measured. SODB reduced LVWI and cardiomyocytes size after 4 or 28 days. Cardiac SOD and GPx increased by 30-40% with SODB. The presence but not production of superoxide anion was significantly reduced by SODB. No effect of SODB was detected on inflammatory status in any group. The beneficial effect of SODB on cardiac hypertrophy seems to be related to the stimulation of endogenous antioxidant defense, suggesting that SODB may be of interest as a dietary supplementation during conventional antihypertensive therapy.

  9. Upregulation of M3 muscarinic receptor inhibits cardiac hypertrophy induced by angiotensin II

    PubMed Central

    2013-01-01

    Background M3 muscarinic acetylcholine receptor (M3-mAChR) is stably expressed in the myocardium, but its pathophysiological role remains largely undefined. This study aimed to investigate the role of M3-mAChR in cardiac hypertrophy induced by angiotensin II (Ang II) and elucidate the underlying mechanisms. Methods Cardiac-specific M3-mAChR overexpression transgenic (TG) mice and rat H9c2 cardiomyoblasts with ectopic expression of M3-mAChR were established. Models of cardiac hypertrophy were induced by transverse aortic constriction (TAC) or Ang II infusion in the mice in vivo, and by isoproterenol (ISO) or Ang II treatment of H9c2 cells in vitro. Cardiac hypertrophy was evaluated by electrocardiography (ECG) measurement, hemodynamic measurement and histological analysis. mRNA and protein expression were detected by real-time RT-PCR and Western blot analysis. Results M3-mAChR was upregulated in hypertrophic heart, while M2-mAChR expression did not change significantly. M3-mAChR overexpression significantly attenuated the increased expression of atrial natriuretic peptide and β-myosin heavy chain induced by Ang II both in vivo and in vitro. In addition, M3-mAChR overexpression downregulated AT1 receptor expression and inhibited the activation of MAPK signaling in the heart. Conclusion The upregulation of M3-mAChR during myocardial hypertrophy could relieve the hypertrophic response provoked by Ang II, and the mechanism may involve the inhibition of MAPK signaling through the downregulation of AT1 receptor. PMID:24028210

  10. DIOL Triterpenes Block Profibrotic Effects of Angiotensin II and Protect from Cardiac Hypertrophy

    PubMed Central

    Jurado-López, Raquel; Martínez-Martínez, Ernesto; Gómez-Hurtado, Nieves; Delgado, Carmen; Visitación Bartolomé, Maria; San Román, José Alberto; Cordova, Claudia; Lahera, Vicente; Nieto, Maria Luisa; Cachofeiro, Victoria

    2012-01-01

    Background The natural triterpenes, erythrodiol and uvaol, exert anti-inflammatory, vasorelaxing and anti-proliferative effects. Angiotensin II is a well-known profibrotic and proliferative agent that participates in the cardiac remodeling associated with different pathological situations through the stimulation and proliferation of cardiac fibroblasts. Therefore, the aim of the study was to investigate the preventive effects of the natural triterpenes erythrodiol and uvaol on the proliferation and collagen production induced by angiotensin II in cardiac myofibroblasts. Their actions on cardiac hypertrophy triggered by angiotensin II were also studied. Methodology/Principal Findings The effect of erythrodiol and uvaol on angiotensin II-induced proliferation was evaluated in cardiac myofibroblasts from adult rats in the presence or the absence of the inhibitors of PPAR-γ, GW9662 or JNK, SP600125. The effect on collagen levels induced by angiotensin II was evaluated in cardiac myofibroblasts and mouse heart. The presence of low doses of both triterpenes reduced the proliferation of cardiac myofibroblasts induced by angiotensin II. Pretreatment with GW9662 reversed the effect elicited by both triterpenes while SP600125 did not modify it. Both triterpenes at high doses produced an increase in annexing-V binding in the presence or absence of angiotensin II, which was reduced by either SP600125 or GW9662. Erythrodiol and uvaol decreased collagen I and galectin 3 levels induced by angiotensin II in cardiac myofribroblasts. Finally, cardiac hypertrophy, ventricular remodeling, fibrosis, and increases in myocyte area and brain natriuretic peptide levels observed in angiotensin II-infused mice were reduced in triterpene-treated animals. Conclusions/Significance Erythrodiol and uvaol reduce cardiac hypertrophy and left ventricle remodeling induced by angiotensin II in mice by diminishing fibrosis and myocyte area. They also modulate growth and survival of cardiac

  11. Cardiac hypertrophy in chick embryos induced by hypothermia

    SciTech Connect

    Boehm, C.; Johnson, T.R.; Caston, J.D.; Przybylski, R.J.

    1987-01-01

    A decrease in incubation temperature from 38 to 32/sup 0/C elicits a decrease in chicken embryo size and weight with concomitant heart enlargement if done after day 10 of incubation. When assayed at day 18 of incubation with the hypothermia started on day 11 or 14, evidence is presented that the heart enlargement is an hypertrophy with no detectable hyperplasia. Supporting data are presented for various physical parameters showing increases in heart wet and dry weight, volume, area, wall thickness, and cell size. There was little difference in DNA content and nuclear (/sup 3/H)thymidine labeling index between hearts of control and hypothermic embryos. Hearts of hypothermic embryos showed a slight increase in water content and considerable increases in RNA, protein, and glycogen content per unit DNA. The average size of polysomes isolated from hypothermic hearts was larger than that of polysomes isolated from controls. Microscopic studies showed no obvious increase in amount of capillary beds, connective tissue, and myocardial cells. Annulate lamellae were found only in myocardial cells of hypothermic embryos in sparse amounts and low frequency but always associated with large deposits of glycogen.

  12. Polydatin attenuates cardiac hypertrophy through modulation of cardiac Ca2+ handling and calcineurin-NFAT signaling pathway.

    PubMed

    Ding, Wenwen; Dong, Ming; Deng, Jianxin; Yan, Dewen; Liu, Yun; Xu, Teng; Liu, Jie

    2014-09-01

    Polydatin (PD), a resveratrol glucoside extracted from the perennial herbage Polygonum cuspidatum, has been suggested to have wide cardioprotective effects. This study aimed to explore the direct antihypertrophic role of PD in cultured neonatal rat ventricular myocytes (NRVMs) and its therapeutic effects against pressure overload (PO)-induced hypertrophic remodeling and heart failure. Furthermore, we investigated the mechanisms underlying the actions of PD. Treatment of NRVMs with phenylephrine for 72 h induced myocyte hypertrophy, where the cell surface area and protein levels of atrial natriuretic peptide and β-myosin heavy chain (β-MHC) were significantly increased. The amplitude of systolic Ca(2+) transient was increased, and sarcoplasmic reticulum Ca(2+) recycling was prolonged. Concomitantly, calcineurin activity was increased and NFAT protein was imported into the nucleus. PD treatment restored Ca(2+) handling and inhibited calcineurin-NFAT signaling, thus attenuating the hypertrophic remodeling in NRVMs. PO-induced cardiac hypertrophy was produced by transverse aortic constriction (TAC) in C57BL/6 mice, where the left ventricular posterior wall thickness and heart-to-body weight ratio were significantly increased. The cardiac function was increased at 5 wk of TAC, but significantly decreased at 13 wk of TAC. The amplitude of Ca(2+) transient and calcineurin activity were increased at 5 wk of TAC. PD treatment largely abolished TAC-induced hypertrophic remodeling by inhibiting the Ca(2+)-calcineurin pathway. Surprisingly, PD did not inhibit myocyte contractility despite that the amplitude of Ca(2+) transient was decreased. The cardiac function remained intact at 13 wk of TAC. In conclusion, PD is beneficial against PO-induced cardiac hypertrophy and heart failure largely through inhibiting the Ca(2+)-calcineurin pathway without compromising cardiac contractility. PMID:25015961

  13. Activation of Hypoxia‐Inducible Factor‐2 in Adipocytes Results in Pathological Cardiac Hypertrophy

    PubMed Central

    Lin, Qun; Huang, Yan; Booth, Carmen J.; Haase, Volker H.; Johnson, Randall S.; Celeste Simon, M.; Giordano, Frank J.; Yun, Zhong

    2013-01-01

    Background Obesity can cause structural and functional abnormalities of the heart via complex but largely undefined mechanisms. Emerging evidence has shown that obesity results in reduced oxygen concentrations, or hypoxia, in adipose tissue. We hypothesized that the adipocyte hypoxia‐signaling pathway plays an essential role in the development of obesity‐associated cardiomyopathy. Methods and Results Using a mouse model in which the hypoxia‐inducible factor (HIF) pathway is activated by deletion of the von Hippel–Lindau gene specifically in adipocytes, we found that mice with adipocyte–von Hippel–Lindau deletion developed lethal cardiac hypertrophy. HIF activation in adipocytes results in overexpression of key cardiomyopathy‐associated genes in adipose tissue, increased serum levels of several proinflammatory cytokines including interleukin‐1β and monocyte chemotactic protein‐1, and activation of nuclear factor–κB and nuclear factor of activated T cells in the heart. Interestingly, genetic deletion of Hif2a, but not Hif1a, was able to rescue cardiac hypertrophy and abrogate adipose inflammation. Conclusion We have discovered a previously uncharacterized mechanism underlying a critical and direct role of the adipocyte HIF‐2 transcription factor in the development of adipose inflammation and pathological cardiac hypertrophy. PMID:24326162

  14. Pioglitazone Protected against Cardiac Hypertrophy via Inhibiting AKT/GSK3β and MAPK Signaling Pathways

    PubMed Central

    Wei, Wen-Ying; Ma, Zhen-Guo; Xu, Si-Chi; Zhang, Ning; Tang, Qi-Zhu

    2016-01-01

    Peroxisome proliferator activated receptor γ (PPARγ) has been closely involved in the process of cardiovascular diseases. This study was to investigate whether pioglitazone (PIO), a PPARγ agonist, could protect against pressure overload-induced cardiac hypertrophy. Mice were orally given PIO (2.5 mg/kg) from 1 week after aortic banding and continuing for 7 weeks. The morphological examination and biochemical analysis were used to evaluate the effects of PIO. Neonatal rat ventricular cardiomyocytes were also used to verify the protection of PIO against hypertrophy in vitro. The results in our study demonstrated that PIO remarkably inhibited hypertrophic response induced by aortic banding in vivo. Besides, PIO also suppressed cardiac fibrosis in vivo. PIO treatment also inhibited the activation of protein kinase B (AKT)/glycogen synthase kinase-3β (GSK3β) and mitogen-activated protein kinase (MAPK) in the heart. In addition, PIO alleviated angiotensin II-induced hypertrophic response in vitro. In conclusion, PIO could inhibit cardiac hypertrophy via attenuation of AKT/GSK3β and MAPK pathways. PMID:27110236

  15. Diuretics Prevent Thiazolidinedione-Induced Cardiac Hypertrophy without Compromising Insulin-Sensitizing Effects in Mice

    PubMed Central

    Chang, Cherng-Shyang; Tsai, Pei-Jane; Sung, Junne-Ming; Chen, Ju-Yi; Ho, Li-Chun; Pandya, Kumar; Maeda, Nobuyo; Tsai, Yau-Sheng

    2015-01-01

    Much concern has arisen regarding critical adverse effects of thiazolidinediones (TZDs), including rosiglitazone and pioglitazone, on cardiac tissue. Although TZD-induced cardiac hypertrophy (CH) has been attributed to an increase in plasma volume or a change in cardiac nutrient preference, causative roles have not been established. To test the hypothesis that volume expansion directly mediates rosiglitazone-induced CH, mice were fed a high-fat diet with rosiglitazone, and cardiac and metabolic consequences were examined. Rosiglitazone treatment induced volume expansion and CH in wild-type and PPARγ heterozygous knockout (Pparg+/−) mice, but not in mice defective for ligand binding (PpargP465L/+). Cotreatment with the diuretic furosemide in wild-type mice attenuated rosiglitazone-induced CH, hypertrophic gene reprogramming, cardiomyocyte apoptosis, hypertrophy-related signal activation, and left ventricular dysfunction. Similar changes were observed in mice treated with pioglitazone. The diuretics spironolactone and trichlormethiazide, but not amiloride, attenuated rosiglitazone effects on volume expansion and CH. Interestingly, expression of glucose and lipid metabolism genes in the heart was altered by rosiglitazone, but these changes were not attenuated by furosemide cotreatment. Importantly, rosiglitazone-mediated whole-body metabolic improvements were not affected by furosemide cotreatment. We conclude that releasing plasma volume reduces adverse effects of TZD-induced volume expansion and cardiac events without compromising TZD actions in metabolic switch in the heart and whole-body insulin sensitivity. PMID:24287404

  16. AMP-Activated Protein Kinase Signalling in Cancer and Cardiac Hypertrophy

    PubMed Central

    Lipovka, Yulia; Konhilas, John P

    2015-01-01

    The AMP-protein kinase (AMPK) pathway is very versatile as it regulates cellular energetic homeostasis in many different tissue types. An appreciation for the importance of AMPK signalling and regulation in cardiovascular and tumor biology is increasing. Recently, a link has been established between anti-cancer therapy and susceptibility to cardiac disease. It has been shown that some anti-cancer drugs lead to an increased risk of cardiac disease, underlined by de-regulation of AMPK signalling. This review explores the AMPK signalling axis in both cardiac and tumor metabolism. We then examine off-target AMPK inhibition by cancer drugs and how this may translate into increased risk of cardiovascular disease. Finally, we discuss the implication of deregulated AMPK signalling during different stages of cardiac hypertrophy. Better understanding of the molecular pathways behind pathological processes will lead to the development of more effective therapeutics for cancer and cardiovascular diseases. PMID:26798768

  17. Influence of natriuretic peptide receptor-1 on survival and cardiac hypertrophy during development

    PubMed Central

    Scott, Nicola J.A.; Ellmers, Leigh. J.; Lainchbury, John G.; Maeda, Nobuyo; Smithies, Oliver; Richards, A. Mark; Cameron, Vicky A.

    2010-01-01

    The heart adapts to an increased workload through the activation of a hypertrophic response within the cardiac ventricles. This response is characterized by both an increase in the size of the individual cardiomyocytes and an induction of a panel of genes normally expressed in the embryonic and neonatal ventricle, such as atrial natriuretic peptide (ANP). ANP and brain natriuretic peptide (BNP) exert their biological actions through activation of the natriuretic peptide receptor-1 (Npr1). The current study examined mice lacking Npr1 (Npr1−/−) activity and investigated the effects of the absence of Npr1 signaling during cardiac development on embryo viability, cardiac structure and gene and protein expression. Npr1−/−embryos were collected at embryonic day (ED) 12.5, 15.5 and neonatal day 1 (ND 1). Npr1−/−embryos occurred at the expected Mendelian frequency at ED 12.5, but knockout numbers were significantly decreased at ED 15.5 and ND 1. There was no indication of cardiac structural abnormalities in surviving embryos. However, Npr1−/−embryos exhibited cardiac enlargement (without fibrosis) from ED 15.5 as well as significantly increased ANP mRNA and protein expression compared to wild-type (WT) mice, but no concomitant increase in expression of the hypertrophy-related transcription factors, Mef2A, Mef2C, GATA-4, GATA-6 or serum response factor (SRF). However, there was a significant decrease in Connexin-43 (Cx43) gene and protein expression at mid-gestation in Npr1−/−embryos. Our findings suggest that the mechanism by which natriuretic peptide signaling influences cardiac development in Npr1−/− mice is distinct from that seen during the development of pathological cardiac hypertrophy and fibrosis. The decreased viability of Npr1−/−embryos may result from a combination of cardiomegaly and dysregulated Cx43 protein affecting cardiac contractility. PMID:19782130

  18. Role of Oxidative Stress in Thyroid Hormone-Induced Cardiomyocyte Hypertrophy and Associated Cardiac Dysfunction: An Undisclosed Story.

    PubMed

    Elnakish, Mohammad T; Ahmed, Amany A E; Mohler, Peter J; Janssen, Paul M L

    2015-01-01

    Cardiac hypertrophy is the most documented cardiomyopathy following hyperthyroidism in experimental animals. Thyroid hormone-induced cardiac hypertrophy is described as a relative ventricular hypertrophy that encompasses the whole heart and is linked with contractile abnormalities in both right and left ventricles. The increase in oxidative stress that takes place in experimental hyperthyroidism proposes that reactive oxygen species are key players in the cardiomyopathy frequently reported in this endocrine disorder. The goal of this review is to shed light on the effects of thyroid hormones on the development of oxidative stress in the heart along with the subsequent cellular and molecular changes. In particular, we will review the role of thyroid hormone-induced oxidative stress in the development of cardiomyocyte hypertrophy and associated cardiac dysfunction, as well as the potential effectiveness of antioxidant treatments in attenuating these hyperthyroidism-induced abnormalities in experimental animal models. PMID:26146529

  19. Role of Oxidative Stress in Thyroid Hormone-Induced Cardiomyocyte Hypertrophy and Associated Cardiac Dysfunction: An Undisclosed Story

    PubMed Central

    Elnakish, Mohammad T.; Ahmed, Amany A. E.; Mohler, Peter J.; Janssen, Paul M. L.

    2015-01-01

    Cardiac hypertrophy is the most documented cardiomyopathy following hyperthyroidism in experimental animals. Thyroid hormone-induced cardiac hypertrophy is described as a relative ventricular hypertrophy that encompasses the whole heart and is linked with contractile abnormalities in both right and left ventricles. The increase in oxidative stress that takes place in experimental hyperthyroidism proposes that reactive oxygen species are key players in the cardiomyopathy frequently reported in this endocrine disorder. The goal of this review is to shed light on the effects of thyroid hormones on the development of oxidative stress in the heart along with the subsequent cellular and molecular changes. In particular, we will review the role of thyroid hormone-induced oxidative stress in the development of cardiomyocyte hypertrophy and associated cardiac dysfunction, as well as the potential effectiveness of antioxidant treatments in attenuating these hyperthyroidism-induced abnormalities in experimental animal models. PMID:26146529

  20. NMNAT3 is involved in the protective effect of SIRT3 in Ang II-induced cardiac hypertrophy.

    PubMed

    Yue, Zhongbao; Ma, Yunzi; You, Jia; Li, Zhuoming; Ding, Yanqing; He, Ping; Lu, Xia; Jiang, Jianmin; Chen, Shaorui; Liu, Peiqing

    2016-10-01

    Pathological cardiac hypertrophy is a maladaptive response in a variety of organic heart disease (OHD), which is characterized by mitochondrial dysfunction that results from disturbed energy metabolism. SIRT3, a mitochondria-localized sirtuin, regulates global mitochondrial lysine acetylation and preserves mitochondrial function. However, the mechanisms by which SIRT3 regulates cardiac hypertrophy remains to be further elucidated. In this study, we firstly demonstrated that expression of SIRT3 was decreased in Angiotension II (Ang II)-treated cardiomyocytes and in hearts of Ang II-induced cardiac hypertrophic mice. In addition, SIRT3 overexpression protected myocytes from hypertrophy, whereas SIRT3 silencing exacerbated Ang II-induced cardiomyocyte hypertrophy. In particular, SIRT3-KO mice exhibited significant cardiac hypertrophy. Mechanistically, we identified NMNAT3 (nicotinamide mononucleotide adenylyltransferase 3), the rate-limiting enzyme for mitochondrial NAD biosynthesis, as a new target and binding partner of SIRT3. Specifically, SIRT3 physically interacts with and deacetylates NMNAT3, thereby enhancing the enzyme activity of NMNAT3 and contributing to SIRT3-mediated anti-hypertrophic effects. Moreover, NMNAT3 regulates the activity of SIRT3 via synthesis of mitochondria NAD. Taken together, these findings provide mechanistic insights into the negative regulatory role of SIRT3 in cardiac hypertrophy.

  1. Puerarin prevents cardiac hypertrophy induced by pressure overload through activation of autophagy.

    PubMed

    Liu, Bei; Wu, Zhiye; Li, Yunpeng; Ou, Caiwen; Huang, Zhenjun; Zhang, Jianwu; Liu, Peng; Luo, Chengfeng; Chen, Minsheng

    2015-08-28

    This study aimed to explore the effects of puerarin on autophagy in cardiac hypertrophy. Decreased 5'-adenosine monophosphate kinase (AMPK) activity alone with inhibited autophagy could be detected in rats within 3 weeks after aortic banding (AB). Puerarin treatment for 3 weeks in AB rats significantly restored autophagy. Administration of puerarin for 6 weeks effectively restricted cardiomyocyte hypertrophy and apoptosis. In an in vitro study, similar anti-hypertrophy and anti-apoptosis effects of puerarin on isoprenaline-induced H9c2 cells were also observed. After inhibition of autophagy by pretreatment with 3-methyladenine, the protective effects of puerarin were blocked. Further in vivo study demonstrated that puerarin significantly enabled phosphorylation of 5'-AMPK to be activated, subsequently inhibiting expression of the mammalian target of rapamycin (mTOR) target proteins S6 ribosomal protein and 4E-binding protein 1. All these data indicate that puerarin exerts protective effects against cardiomyocyte hypertrophy and apoptosis, partly by restoration of autophagy through AMPK/mTOR-mediated signaling. PMID:26188094

  2. The hearts of competitive athletes: an up-to-date overview of exercise-induced cardiac adaptations.

    PubMed

    Dores, Hélder; Freitas, António; Malhotra, Aneil; Mendes, Miguel; Sharma, Sanjay

    2015-01-01

    Intense and regular physical exercise is responsible for various cardiac changes (electrical, structural and functional) that represent physiological adaptation to exercise training. This remodeling, commonly referred to as 'athlete's heart', can overlap with several pathological entities, in which sudden cardiac death may be the first clinical presentation. Although pre-competitive screening can identify athletes with life-threatening cardiovascular abnormalities, there are no widely used standardized pre-participation programs and those currently implemented are controversial. Data from personal and family history, features of physical examination and changes in the 12-lead electrocardiogram can raise the suspicion of cardiac disease and lead to early detection of entities such as hypertrophic cardiomyopathy. However, interpreting the electrocardiogram is often challenging, because some changes are considered physiological in athletes. Thus, clinical decision-making in such cases can prove difficult: missing a condition associated with an increased risk of life-threatening events, or conversely, mislabeling an athlete with a disease that leads to unnecessary disqualification, are both situations to avoid. This paper provides an up-to-date review of the physiological cardiac effects of exercise training and highlights key points that should be taken into consideration in the assessment of young competitive athletes.

  3. Macrophage migration inhibitory factor deletion exacerbates pressure overload-induced cardiac hypertrophy through mitigating autophagy.

    PubMed

    Xu, Xihui; Hua, Yinan; Nair, Sreejayan; Bucala, Richard; Ren, Jun

    2014-03-01

    The proinflammatory cytokine macrophage migration inhibitory factor (MIF) has been shown to be cardioprotective under various pathological conditions. However, the underlying mechanisms still remain elusive. In this study, we revealed that MIF deficiency overtly exacerbated abdominal aorta constriction-induced cardiac hypertrophy and contractile anomalies. MIF deficiency interrupted myocardial autophagy in hypertrophied hearts. Rapamycin administration mitigated the exacerbated hypertrophic responses in MIF(-/-) mice. Using the phenylephrine-induced hypertrophy in vitro model in H9C2 myoblasts, we confirmed that MIF governed the activation of AMP-activated protein kinase-mammalian target of rapamycin-autophagy cascade. Confocal microscopic examination demonstrated that MIF depletion prevented phenylephrine-induced mitophagy in H9C2 myoblasts. Myocardial Parkin, an E3 ubiquitin ligase and a marker for mitophagy, was significantly upregulated after sustained pressure overload, the effect of which was prevented by MIF knockout. Furthermore, our data exhibited that levels of MIF, AMP-activated protein kinase activation, and autophagy were elevated concurrently in human failing hearts. These data indicate that endogenous MIF regulates the mammalian target of rapamycin signaling to activate autophagy to preserve cardiac geometry and protect against hypertrophic responses. PMID:24366076

  4. Whole transcriptome microarrays identify long non-coding RNAs associated with cardiac hypertrophy

    PubMed Central

    Zhang, Lu; Hamad, Eman A.; Vausort, Mélanie; Funakoshi, Hajime; Nicot, Nathalie; Nazarov, Petr V.; Vallar, Laurent; Feldman, Arthur M.; Wagner, Daniel R.; Devaux, Yvan

    2015-01-01

    Long non-coding RNAs (lncRNAs) have recently emerged as a novel group of non-coding RNAs able to regulate gene expression. While their role in cardiac disease is only starting to be understood, their involvement in cardiac hypertrophy is poorly known. We studied the association between lncRNAs and left ventricular hypertrophy using whole transcriptome microarrays. Wild-type mice and mice overexpressing the adenosine A2A receptor were subjected to transverse aortic constriction (TAC) to induce left ventricular hypertrophy. Expression profiles of lncRNAs in the heart were characterized using genome-wide microarrays. An analytical pipeline was specifically developed to extract lncRNA data from microarrays. We identified 2 lncRNAs up-regulated and 3 lncRNAs down-regulated in the hearts of A2A-receptor overexpressing-mice subjected to TAC compared to wild-type mice. Differential expression of these 2 lncRNAs was validated by quantitative PCR. Complete microarray dataset is available at Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE45423. Here, we describe in details the experimental design, microarray performance and analysis. PMID:26484228

  5. Whole transcriptome microarrays identify long non-coding RNAs associated with cardiac hypertrophy.

    PubMed

    Zhang, Lu; Hamad, Eman A; Vausort, Mélanie; Funakoshi, Hajime; Nicot, Nathalie; Nazarov, Petr V; Vallar, Laurent; Feldman, Arthur M; Wagner, Daniel R; Devaux, Yvan

    2015-09-01

    Long non-coding RNAs (lncRNAs) have recently emerged as a novel group of non-coding RNAs able to regulate gene expression. While their role in cardiac disease is only starting to be understood, their involvement in cardiac hypertrophy is poorly known. We studied the association between lncRNAs and left ventricular hypertrophy using whole transcriptome microarrays. Wild-type mice and mice overexpressing the adenosine A2A receptor were subjected to transverse aortic constriction (TAC) to induce left ventricular hypertrophy. Expression profiles of lncRNAs in the heart were characterized using genome-wide microarrays. An analytical pipeline was specifically developed to extract lncRNA data from microarrays. We identified 2 lncRNAs up-regulated and 3 lncRNAs down-regulated in the hearts of A2A-receptor overexpressing-mice subjected to TAC compared to wild-type mice. Differential expression of these 2 lncRNAs was validated by quantitative PCR. Complete microarray dataset is available at Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) under the accession number GSE45423. Here, we describe in details the experimental design, microarray performance and analysis. PMID:26484228

  6. Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function.

    PubMed

    McDermott-Roe, Chris; Ye, Junmei; Ahmed, Rizwan; Sun, Xi-Ming; Serafín, Anna; Ware, James; Bottolo, Leonardo; Muckett, Phil; Cañas, Xavier; Zhang, Jisheng; Rowe, Glenn C; Buchan, Rachel; Lu, Han; Braithwaite, Adam; Mancini, Massimiliano; Hauton, David; Martí, Ramon; García-Arumí, Elena; Hubner, Norbert; Jacob, Howard; Serikawa, Tadao; Zidek, Vaclav; Papousek, Frantisek; Kolar, Frantisek; Cardona, Maria; Ruiz-Meana, Marisol; García-Dorado, David; Comella, Joan X; Felkin, Leanne E; Barton, Paul J R; Arany, Zoltan; Pravenec, Michal; Petretto, Enrico; Sanchis, Daniel; Cook, Stuart A

    2011-10-05

    Left ventricular mass (LVM) is a highly heritable trait and an independent risk factor for all-cause mortality. So far, genome-wide association studies have not identified the genetic factors that underlie LVM variation, and the regulatory mechanisms for blood-pressure-independent cardiac hypertrophy remain poorly understood. Unbiased systems genetics approaches in the rat now provide a powerful complementary tool to genome-wide association studies, and we applied integrative genomics to dissect a highly replicated, blood-pressure-independent LVM locus on rat chromosome 3p. Here we identified endonuclease G (Endog), which previously was implicated in apoptosis but not hypertrophy, as the gene at the locus, and we found a loss-of-function mutation in Endog that is associated with increased LVM and impaired cardiac function. Inhibition of Endog in cultured cardiomyocytes resulted in an increase in cell size and hypertrophic biomarkers in the absence of pro-hypertrophic stimulation. Genome-wide network analysis unexpectedly implicated ENDOG in fundamental mitochondrial processes that are unrelated to apoptosis. We showed direct regulation of ENDOG by ERR-α and PGC1α (which are master regulators of mitochondrial and cardiac function), interaction of ENDOG with the mitochondrial genome and ENDOG-mediated regulation of mitochondrial mass. At baseline, the Endog-deleted mouse heart had depleted mitochondria, mitochondrial dysfunction and elevated levels of reactive oxygen species, which were associated with enlarged and steatotic cardiomyocytes. Our study has further established the link between mitochondrial dysfunction, reactive oxygen species and heart disease and has uncovered a role for Endog in maladaptive cardiac hypertrophy.

  7. Reversible cardiac hypertrophy induced by PEG-coated gold nanoparticles in mice

    PubMed Central

    Yang, Chengzhi; Tian, Aiju; Li, Zijian

    2016-01-01

    Gold nanoparticles (GNPs) are attracting more and more attention for their great potential value in biomedical application. Currently, no study has been reported on the chronic cardiac toxicity of GNPs after repeated administration. Here we carried out a comprehensive evaluation of the chronic cardiac toxicity of GNPs to the heart. Polyethylene glycol (PEG) -coated GNPs at three different sizes (10, 30 and 50 nm) or PBS was administrated to mice via tail vein for 14 consecutive days. Then the mice were euthanized at 2 weeks, 4 weeks or 12 weeks after the first injection. The accumulation of GNPs in the mouse heart and their effects on cardiac function, structure, fibrosis and inflammation were analysized. GNPs with smaller size showed higher accumulation and faster elimination. None of the three sizes of GNPs affected cardiac systolic function. The LVIDd (left ventricular end-diastolicinner-dimension), LVMass (left ventricular mass) and HW/BW (heart weight/body weight) were significantly increased in the mice receiving 10 nm PEG-GNPs for 2 weeks, but not for 4 weeks or 12 weeks. These results indicated that the accumulation of small size GNPs can induce reversible cardiac hypertrophy. Our results provide the basis for the further biomedical applications of GNPs in cardiac diseases. PMID:26830764

  8. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats

    PubMed Central

    Lee, Eunjo; Song, Min-ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung

    2016-01-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

  9. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats

    PubMed Central

    Lee, Eunjo; Song, Min-ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung

    2016-01-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats. PMID:27610034

  10. Histone deacetylase inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats.

    PubMed

    Lee, Eunjo; Song, Min-Ji; Lee, Hae-Ahm; Kang, Seol-Hee; Kim, Mina; Yang, Eun Kyoung; Lee, Do Young; Ro, Seonggu; Cho, Joong Myung; Kim, Inkyeom

    2016-09-01

    CG200745 is a novel inhibitor of histone deacetylases (HDACs), initially developed for treatment of various hematological and solid cancers. Because it is water-soluble, it can be administered orally. We hypothesized that the HDAC inhibitor, CG200745, attenuates cardiac hypertrophy and fibrosis in deoxycorticosterone acetate (DOCA)-induced hypertensive rats. For establishment of hypertension, 40 mg/kg of DOCA was subcutaneously injected four times weekly into Sprague-Dawley rats. All the rats used in this study including those in the sham group had been unilaterally nephrectomized and allowed free access to drinking water containing 1% NaCl. Systolic blood pressure was measured by the tail-cuff method. Blood chemistry including sodium, potassium, glucose, triglyceride, and cholesterol levels was analyzed. Sections of the heart were visualized after trichrome and hematoxylin and eosin stain. The expression of hypertrophic genes such as atrial natriuretic peptide A (Nppa) and atrial natriuretic peptide B (Nppb) in addition to fibrotic genes such as Collagen-1, Collagen-3, connective tissue growth factor (Ctgf), and Fibronectin were measured by quantitative real-time PCR (qRT-PCR). Injection of DOCA increased systolic blood pressure, heart weight, and cardiac fibrosis, which was attenuated by CG200745. Neither DOCA nor CG200745 affected body weight, vascular contraction and relaxation responses, and blood chemistry. Injection of DOCA increased expression of both hypertrophic and fibrotic genes, which was abrogated by CG200745. These results indicate that CG200745 attenuates cardiac hypertrophy and fibrosis in DOCA-induced hypertensive rats. PMID:27610034

  11. Abnormal interactions of calsequestrin with the ryanodine receptor calcium release channel complex linked to exercise-induced sudden cardiac death.

    PubMed

    Terentyev, Dmitry; Nori, Alessandra; Santoro, Massimo; Viatchenko-Karpinski, Serge; Kubalova, Zuzana; Gyorke, Inna; Terentyeva, Radmila; Vedamoorthyrao, Srikanth; Blom, Nico A; Valle, Giorgia; Napolitano, Carlo; Williams, Simon C; Volpe, Pompeo; Priori, Silvia G; Gyorke, Sandor

    2006-05-12

    Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a familial arrhythmogenic disorder associated with mutations in the cardiac ryanodine receptor (RyR2) and cardiac calsequestrin (CASQ2) genes. Previous in vitro studies suggested that RyR2 and CASQ2 interact as parts of a multimolecular Ca(2+)-signaling complex; however, direct evidence for such interactions and their potential significance to myocardial function remain to be determined. We identified a novel CASQ2 mutation in a young female with a structurally normal heart and unexplained syncopal episodes. This mutation results in the nonconservative substitution of glutamine for arginine at amino acid 33 of CASQ2 (R33Q). Adenoviral-mediated expression of CASQ2(R33Q) in adult rat myocytes led to an increase in excitation-contraction coupling gain and to more frequent occurrences of spontaneous propagating (Ca2+ waves) and local Ca2+ signals (sparks) with respect to control cells expressing wild-type CASQ2 (CASQ2WT). As revealed by a Ca2+ indicator entrapped inside the sarcoplasmic reticulum (SR) of permeabilized myocytes, the increased occurrence of spontaneous Ca2+ sparks and waves was associated with a dramatic decrease in intra-SR [Ca2+]. Recombinant CASQ2WT and CASQ2R33Q exhibited similar Ca(2+)-binding capacities in vitro; however, the mutant protein lacked the ability of its WT counterpart to inhibit RyR2 activity at low luminal [Ca2+] in planar lipid bilayers. We conclude that the R33Q mutation disrupts interactions of CASQ2 with the RyR2 channel complex and impairs regulation of RyR2 by luminal Ca2+. These results show that intracellular Ca2+ cycling in normal heart relies on an intricate interplay of CASQ2 with the proteins of the RyR2 channel complex and that disruption of these interactions can lead to cardiac arrhythmia. PMID:16601229

  12. Resistance to pathologic cardiac hypertrophy and reduced expression of CaV1.2 in Trpc3-depleted mice.

    PubMed

    Han, Jung Woo; Lee, Young Ho; Yoen, Su-In; Abramowitz, Joel; Birnbaumer, Lutz; Lee, Min Goo; Kim, Joo Young

    2016-10-01

    Sustained elevation of intracellular Ca(2+) concentration ([Ca(2+)]i) reprograms cardiovascular cell fate, leading to cellular hypertrophy via Ca(2+)-calmodulin/calcineurin (Cn)/NFAT activation. Accumulating evidence suggests that transient receptor potential canonical (Trpc) channels play important roles in the development of pathologic cardiac hypertrophy. Here, we demonstrated that Trpc3 mediates pathologic cardiac hypertrophy in neurohumoral elevation via direct regulation of CaV1.2 expressions. Elevated PE (phenylephrine) was maintained in mice by continuous infusion using an osmotic pump. Wild-type (WT) mice, but not Trpc3 (-/-) showed a sudden decrease in blood pressure (BP) or death following elevation of BP under conditions of elevated PE. Trpc3 (-/-) mesenteric artery showed decreased PE-stimulated vasoconstriction. Analysis of morphology, function, and pathologic marker expression revealed that PE elevation caused pathologic cardiac hypertrophy in WT mice, which was prevented by deletion of Trpc3. Interestingly, protection by Trpc3 deletion seemed to be a result of reduced cardiac CaV1.2 expressions. Basal and PE induced increased expression of protein and mRNA of CaV1.2 was decreased in Trpc3 (-/-) heart. Accordingly, altered expression of CaV1.2 was observed by knockdown or stimulation of Trpc3 in cardiomyocytes. These findings suggest that Trpc3 is a mediator of pathologic cardiac hypertrophy not only through mediating part of the Ca(2+) influx, but also through control of CaV1.2 expressions.

  13. Improved intervention of atherosclerosis and cardiac hypertrophy through biodegradable polymer-encapsulated delivery of glycosphingolipid inhibitor.

    PubMed

    Mishra, S; Bedja, D; Amuzie, C; Foss, C A; Pomper, M G; Bhattacharya, R; Yarema, K J; Chatterjee, S

    2015-09-01

    D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), a glycosphingolipid synthesis inhibitor, holds promise for the treatment of atherosclerosis and cardiac hypertrophy but rapid in vivo clearance has severely hindered translation to the clinic. To overcome this impediment, we used a materials-based delivery strategy wherein D-PDMP was encapsulated within a biodegradable polymer composed of poly ethylene glycol (PEG) and sebacic acid (SA). PEG-SA was formulated into nanoparticles that were doped with (125)I-labeled PEG to allow in vivo bio-distribution and release kinetics of D-PDMP to be determined by using γ-scintigraphy and subsequently, by mass spectrometry. Polymer-encapsulation increased the residence time of D-PDMP in the body of a treated mouse from less than one hour to at least four hours (and up to 48 h or longer). This substantially increased in vivo longevity provided by polymer encapsulation resulted in an order of magnitude gain in efficacy for interfering with atherosclerosis and cardiac hypertrophy in apoE-/- mice fed a high fat and high cholesterol (HFHC) diet. These results establish that D-PDMP encapsulated in a biodegradable polymer provides a superior mode of delivery compared to unconjugated D-PDMP by way of increased gastrointestinal absorption and increased residence time thus providing this otherwise rapidly cleared compound with therapeutic relevance in interfering with atherosclerosis, cardiac hypertrophy, and probably other diseases associated with the deleterious effects of abnormally high glycosphingolipid biosynthesis or deficient catabolism.

  14. Overexpression of ornithine decarboxylase decreases ventricular systolic function during induction of cardiac hypertrophy.

    PubMed

    Giordano, Emanuele; Hillary, Rebecca A; Vary, Thomas C; Pegg, Anthony E; Sumner, Andrew D; Caldarera, Claudio M; Zhang, Xue-Qian; Song, Jianliang; Wang, JuFang; Cheung, Joseph Y; Shantz, Lisa M

    2012-02-01

    Ornithine decarboxylase (ODC), the first enzyme of polyamine metabolism, is rapidly upregulated in response to agents that induce a pathological cardiac hypertrophy. Transgenic mice overexpressing ODC in the heart (MHC-ODC mice) experience a much more dramatic left ventricular hypertrophy in response to β-adrenergic stimulation with isoproterenol (ISO) compared to wild-type (WT) controls. ISO also induced arginase activity in transgenic hearts but not in controls. The current work studies the cooperation between the cardiac polyamines and L-arginine (L-Arg) availability in MHC-ODC mice. Although ISO-induced hypertrophy is well-compensated, MHC-ODC mice administered L-Arg along with ISO showed a rapid onset of systolic dysfunction and died within 48 h. Myocytes isolated from MHC-ODC mice administered L-Arg/ISO exhibited reduced contractility and altered calcium transients, suggesting an alteration in [Ca(2+)] homeostasis, and abbreviated action potential duration, which may contribute to arrhythmogenesis. The already elevated levels of spermidine and spermine were not further altered in MHC-ODC hearts by L-Arg/ISO treatment, suggesting alternative L-Arg utilization pathways lead to dysregulation of intracellular calcium. MHC-ODC mice administered an arginase inhibitor (Nor-NOHA) along with ISO died almost as rapidly as L-Arg/ISO-treated mice, while the iNOS inhibitor S-methyl-isothiourea (SMT) was strongly protective against L-Arg/ISO. These results point to the induction of arginase as a protective response to β-adrenergic stimulation in the setting of high polyamines. Further, NO generated by exogenously supplied L-Arg may contribute to the lethal consequences of L-Arg/ISO treatment. Since considerable variations in human cardiac polyamine and L-Arg content are likely, it is possible that alterations in these factors may influence myocyte contractility.

  15. Improved intervention of atherosclerosis and cardiac hypertrophy through biodegradable polymer-encapsulated delivery of glycosphingolipid inhibitor

    PubMed Central

    Foss, C.A.; Pomper, M.G.; Bhattacharya, R.; Yarema, K.J.; Chatterjee, S.

    2015-01-01

    D-Threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), a glycosphingolipid synthesis inhibitor, holds promise for the treatment of atherosclerosis and cardiac hypertrophy but rapid in vivo clearance has severely hindered translation to the clinic. To overcome this impediment, we used a materials-based delivery strategy wherein D-PDMP was encapsulated within a biodegradable polymer composed of poly ethylene glycol (PEG) and sebacic acid (SA). PEG-SA was formulated into nanoparticles that were doped with 125I-labeled PEG to allow in vivo bio-distribution and release kinetics of D-PDMP to be determined by using γ-scintigraphy and subsequently, by mass spectrometry. Polymer-encapsulation increased the residence time of D-PDMP in the body of a treated mouse from less than one hour to at least four hours (and up to 48 h or longer). This substantially increased in vivo longevity provided by polymer encapsulation resulted in an order of magnitude gain in efficacy for interfering with atherosclerosis and cardiac hypertrophy in apoE−/− mice fed a high fat and high cholesterol (HFHC) diet. These results establish that D-PDMP encapsulated in a biodegradable polymer provides a superior mode of delivery compared to unconjugated D-PDMP by way of increased gastrointestinal absorption and increased residence time thus providing this otherwise rapidly cleared compound with therapeutic relevance in interfering with atherosclerosis, cardiac hypertrophy, and probably other diseases associated with the deleterious effects of abnormally high glycosphingolipid biosynthesis or deficient catabolism. PMID:26111596

  16. Aging reduces the efficacy of estrogen substitution to attenuate cardiac hypertrophy in female spontaneously hypertensive rats.

    PubMed

    Jazbutyte, Virginija; Hu, Kai; Kruchten, Patricia; Bey, Emmanuel; Maier, Sebastian K G; Fritzemeier, Karl-Heinrich; Prelle, Katja; Hegele-Hartung, Christa; Hartmann, Rolf W; Neyses, Ludwig; Ertl, Georg; Pelzer, Theo

    2006-10-01

    Clinical trials failed to show a beneficial effect of postmenopausal hormone replacement therapy, whereas experimental studies in young animals reported a protective function of estrogen replacement in cardiovascular disease. Because these diverging results could in part be explained by aging effects, we compared the efficacy of estrogen substitution to modulate cardiac hypertrophy and cardiac gene expression among young (age 3 months) and senescent (age 24 months) spontaneously hypertensive rats (SHRs), which were sham operated or ovariectomized and injected with placebo or identical doses of 17beta-estradiol (E2; 2 microg/kg body weight per day) for 6 weeks (n=10/group). Blood pressure was comparable among sham-operated senescent and young SHRs and not altered by ovariectomy or E2 treatment among young or among senescent rats. Estrogen substitution inhibited uterus atrophy and gain of body weight in young and senescent ovariectomized SHRs, but cardiac hypertrophy was attenuated only in young rats. Cardiac estrogen receptor-alpha expression was lower in intact and in ovariectomized senescent compared with young SHRs and increased with estradiol substitution in aged rats. Plasma estradiol and estrone levels were lower not only in sham-operated but surprisingly also in E2-substituted senescent SHRs and associated with a reduction of hepatic 17beta-hydroxysteroid dehydrogenase type 1 enzyme activity, which converts weak (ie, estrone) into potent estrogens, such as E2. Aging attenuates the antihypertrophic effect of estradiol in female SHRs and is associated with profound alterations in cardiac estrogen receptor-alpha expression and estradiol metabolism. These observations contribute to explain the lower efficiency of estrogen substitution in senescent SHRs.

  17. Cardiac effects of anabolic steroids: hypertrophy, ischemia and electrical remodelling as potential triggers of sudden death.

    PubMed

    Nascimento, J H M; Medei, E

    2011-05-01

    Anabolic-androgenic steroids (AAS) are synthetic testosterone derivatives developed to maximise anabolic activity and minimise androgenic activity. AAS abuse is widespread among both athletes and non-athletes at fitness centres and is becoming a public health issue. In addition to their atherogenic, thrombogenic and spastic effects, AAS have direct cardiotoxic effects by causing hypertrophy, electrical and structural remodelling, and contractile dysfunction and by increasing the susceptibility to ischemic injuries. All of these factors contribute to an increased risk of ventricular arrhythmias and sudden cardiac death.

  18. MITF interacts with the SWI/SNF subunit, BRG1, to promote GATA4 expression in cardiac hypertrophy.

    PubMed

    Mehta, Gaurav; Kumarasamy, Sivarajan; Wu, Jian; Walsh, Aaron; Liu, Lijun; Williams, Kandace; Joe, Bina; de la Serna, Ivana L

    2015-11-01

    The transcriptional regulation of pathological cardiac hypertrophy involves the interplay of transcription factors and chromatin remodeling enzymes. The Microphthalmia-Associated Transcription Factor (MITF) is highly expressed in cardiomyocytes and is required for cardiac hypertrophy. However, the transcriptional mechanisms by which MITF promotes cardiac hypertrophy have not been elucidated. In this study, we tested the hypothesis that MITF promotes cardiac hypertrophy by activating transcription of pro-hypertrophy genes through interactions with the SWI/SNF chromatin remodeling complex. In an in vivo model of cardiac hypertrophy, expression of MITF and the BRG1 subunit of the SWI/SNF complex increased coordinately in response to pressure overload. Expression of MITF and BRG1 also increased in vitro when cardiomyocytes were stimulated with angiotensin II or a β-adrenergic agonist. Both MITF and BRG1 were required to increase cardiomyocyte size and activate expression of hypertrophy markers in response to β-adrenergic stimulation. We detected physical interactions between MITF and BRG1 in cardiomyocytes and found that they cooperate to regulate expression of a pro-hypertrophic transcription factor, GATA4. Our data show that MITF binds to the E box element in the GATA4 promoter and facilitates recruitment of BRG1. This is associated with enhanced expression of the GATA4 gene as evidenced by increased Histone3 lysine4 tri-methylation (H3K4me3) on the GATA4 promoter. Thus, in hypertrophic cardiomyoctes, MITF is a key transcriptional activator of a pro-hypertrophic gene, GATA4, and this regulation is dependent upon the BRG1 component of the SWI/SNF complex. PMID:26388265

  19. Hypertrophy of Neurons Within Cardiac Ganglia in Human, Canine, and Rat Heart Failure: The Potential Role of Nerve Growth Factor

    PubMed Central

    Singh, Sanjay; Sayers, Scott; Walter, James S.; Thomas, Donald; Dieter, Robert S.; Nee, Lisa M.; Wurster, Robert D.

    2013-01-01

    Background Autonomic imbalances including parasympathetic withdrawal and sympathetic overactivity are cardinal features of heart failure regardless of etiology; however, mechanisms underlying these imbalances remain unknown. Animal model studies of heart and visceral organ hypertrophy predict that nerve growth factor levels should be elevated in heart failure; whether this is so in human heart failure, though, remains unclear. We tested the hypotheses that neurons in cardiac ganglia are hypertrophied in human, canine, and rat heart failure and that nerve growth factor, which we hypothesize is elevated in the failing heart, contributes to this neuronal hypertrophy. Methods and Results Somal morphology of neurons from human (579.54±14.34 versus 327.45±9.17 μm2; P<0.01) and canine hearts (767.80±18.37 versus 650.23±9.84 μm2; P<0.01) failing secondary to ischemia and neurons from spontaneously hypertensive rat hearts (327.98±3.15 versus 271.29±2.79 μm2; P<0.01) failing secondary to hypertension reveal significant hypertrophy of neurons in cardiac ganglia compared with controls. Western blot analysis shows that nerve growth factor levels in the explanted, failing human heart are 250% greater than levels in healthy donor hearts. Neurons from cardiac ganglia cultured with nerve growth factor are significantly larger and have greater dendritic arborization than neurons in control cultures. Conclusions Hypertrophied neurons are significantly less excitable than smaller ones; thus, hypertrophy of vagal postganglionic neurons in cardiac ganglia would help to explain the parasympathetic withdrawal that accompanies heart failure. Furthermore, our observations suggest that nerve growth factor, which is elevated in the failing human heart, causes hypertrophy of neurons in cardiac ganglia. PMID:23959444

  20. MITF interacts with the SWI/SNF subunit, BRG1, to promote GATA4 expression in cardiac hypertrophy.

    PubMed

    Mehta, Gaurav; Kumarasamy, Sivarajan; Wu, Jian; Walsh, Aaron; Liu, Lijun; Williams, Kandace; Joe, Bina; de la Serna, Ivana L

    2015-11-01

    The transcriptional regulation of pathological cardiac hypertrophy involves the interplay of transcription factors and chromatin remodeling enzymes. The Microphthalmia-Associated Transcription Factor (MITF) is highly expressed in cardiomyocytes and is required for cardiac hypertrophy. However, the transcriptional mechanisms by which MITF promotes cardiac hypertrophy have not been elucidated. In this study, we tested the hypothesis that MITF promotes cardiac hypertrophy by activating transcription of pro-hypertrophy genes through interactions with the SWI/SNF chromatin remodeling complex. In an in vivo model of cardiac hypertrophy, expression of MITF and the BRG1 subunit of the SWI/SNF complex increased coordinately in response to pressure overload. Expression of MITF and BRG1 also increased in vitro when cardiomyocytes were stimulated with angiotensin II or a β-adrenergic agonist. Both MITF and BRG1 were required to increase cardiomyocyte size and activate expression of hypertrophy markers in response to β-adrenergic stimulation. We detected physical interactions between MITF and BRG1 in cardiomyocytes and found that they cooperate to regulate expression of a pro-hypertrophic transcription factor, GATA4. Our data show that MITF binds to the E box element in the GATA4 promoter and facilitates recruitment of BRG1. This is associated with enhanced expression of the GATA4 gene as evidenced by increased Histone3 lysine4 tri-methylation (H3K4me3) on the GATA4 promoter. Thus, in hypertrophic cardiomyoctes, MITF is a key transcriptional activator of a pro-hypertrophic gene, GATA4, and this regulation is dependent upon the BRG1 component of the SWI/SNF complex.

  1. Cardiac hypertrophy and failure--a disease of adaptation. Modifications in membrane proteins provide a molecular basis for arrhythmogenicity.

    PubMed

    Moalic, J M; Charlemagne, D; Mansier, P; Chevalier, B; Swynghedauw, B

    1993-05-01

    Cardiac hypertrophy is the physiological adaptation of the heart to chronic mechanical overload. Cardiac failure indicates the limits of the process. Cardiac hypertrophy is only one example of biological adaptation and results from the induction of several changes in gene expression, mostly of the fetal type, including those coding for the myosin heavy chain or the alpha-subunit of the Na+,K(+)-ATPase. From a thermodynamic point of view, the decrease in Vmax allows the heart to produce a normal tension at a lower cost. This process results from changes both in the sarcomere and in the expression of certain membrane proteins. The decrease in calcium transient is determined by several changes in membrane proteins that result in a rather fragile equilibrium in terms of calcium homeostasis. Any abnormal input in calcium will have exaggerated detrimental consequences on a hypertrophied myocyte and may cause automaticity and arrhythmias or an exaggerated response to anoxia in terms of compliance. PMID:8485830

  2. The effects of 17-methoxyl-7-hydroxy-benzene-furanchalcone on the pressure overload-induced progression of cardiac hypertrophy to cardiac failure.

    PubMed

    Huang, Jianchun; Tang, XiaoJun; Liang, Xingmei; Wen, Qingwei; Zhang, Shijun; Xuan, Feifei; Jian, Jie; Lin, Xing; Huang, Renbin

    2014-01-01

    We investigated the effects of 17-methoxyl-7-hydroxy-benzene-furanchalcone (MHBFC), which was isolated from the roots of Millettia pulchra (Benth.) Kurz var. Laxior (Dunn) Z.Wei (Papilionaceae) (MKL), on the progression of cardiac hypertrophy to failure in a rat model of abdominal aortic banding (AAB)-induced pressure overloading. Endothelial dysfunction is central to pressure overload-induced cardiac hypertrophy and failure. It would be useful to clarify whether MHBFC could prevent this dysfunction. The effects of pressure overload were assessed in male Sprague-Dawley rats 6 weeks after AAB using the progression of cardiac hypertrophy to heart failure as the endpoint. The AAB-treated rats exhibited a greater progression to heart failure and had significantly elevated blood pressure, systolic and diastolic cardiac dysfunction, and evidence of left ventricular hypertrophy (LVH). LVH was characterized by increases in the ratios of heart and left ventricular weights to body weight, increased myocyte cross-sectional areas, myocardial and perivascular fibrosis, and elevated cardiac hydroxyproline. These symptoms could be prevented by treatment with MHBFC at daily oral doses of 6 and 12 mg/kg for 6 weeks. The progression to cardiac failure, which was demonstrated by increases in relative lung and right ventricular weights, cardiac function disorders and overexpression of atrial natriuretic peptide (ANP) mRNA, could also be prevented. Furthermore, MHBFC partialy rescued the downregulated nitric oxide signaling system, whereas inhibited the upregulated endothelin signaling system, normalizing the balance between these two systems. MHBFC protected the endothelium and prevented the pressure overload-induced progression of cardiac hypertrophy to cardiac failure. PMID:24622486

  3. The Effects of 17-Methoxyl-7-Hydroxy-Benzene-Furanchalcone on the Pressure Overload-Induced Progression of Cardiac Hypertrophy to Cardiac Failure

    PubMed Central

    Liang, Xingmei; Wen, Qingwei; Zhang, Shijun; Xuan, Feifei; Jian, Jie; Lin, Xing; Huang, Renbin

    2014-01-01

    We investigated the effects of 17-methoxyl-7-hydroxy-benzene-furanchalcone (MHBFC), which was isolated from the roots of Millettia pulchra (Benth.) Kurz var. Laxior (Dunn) Z.Wei (Papilionaceae) (MKL), on the progression of cardiac hypertrophy to failure in a rat model of abdominal aortic banding (AAB)-induced pressure overloading. Endothelial dysfunction is central to pressure overload-induced cardiac hypertrophy and failure. It would be useful to clarify whether MHBFC could prevent this dysfunction. The effects of pressure overload were assessed in male Sprague–Dawley rats 6 weeks after AAB using the progression of cardiac hypertrophy to heart failure as the endpoint. The AAB-treated rats exhibited a greater progression to heart failure and had significantly elevated blood pressure, systolic and diastolic cardiac dysfunction, and evidence of left ventricular hypertrophy (LVH). LVH was characterized by increases in the ratios of heart and left ventricular weights to body weight, increased myocyte cross-sectional areas, myocardial and perivascular fibrosis, and elevated cardiac hydroxyproline. These symptoms could be prevented by treatment with MHBFC at daily oral doses of 6 and 12 mg/kg for 6 weeks. The progression to cardiac failure, which was demonstrated by increases in relative lung and right ventricular weights, cardiac function disorders and overexpression of atrial natriuretic peptide (ANP) mRNA, could also be prevented. Furthermore, MHBFC partialy rescued the downregulated nitric oxide signaling system, whereas inhibited the upregulated endothelin signaling system, normalizing the balance between these two systems. MHBFC protected the endothelium and prevented the pressure overload-induced progression of cardiac hypertrophy to cardiac failure. PMID:24622486

  4. Deficiency of cardiac Acyl-CoA synthetase-1 induces diastolic dysfunction, but pathologic hypertrophy is reversed by rapamycin.

    PubMed

    Paul, David S; Grevengoed, Trisha J; Pascual, Florencia; Ellis, Jessica M; Willis, Monte S; Coleman, Rosalind A

    2014-06-01

    In mice with temporally-induced cardiac-specific deficiency of acyl-CoA synthetase-1 (Acsl1(H-/-)), the heart is unable to oxidize long-chain fatty acids and relies primarily on glucose for energy. These metabolic changes result in the development of both a spontaneous cardiac hypertrophy and increased phosphorylated S6 kinase (S6K), a substrate of the mechanistic target of rapamycin, mTOR. Doppler echocardiography revealed evidence of significant diastolic dysfunction, indicated by a reduced E/A ratio and increased mean performance index, although the deceleration time and the expression of sarco/endoplasmic reticulum calcium ATPase and phospholamban showed no difference between genotypes. To determine the role of mTOR in the development of cardiac hypertrophy, we treated Acsl1(H-/-) mice with rapamycin. Six to eight week old Acsl1(H-/-) mice and their littermate controls were given i.p. tamoxifen to eliminate cardiac Acsl1, then concomitantly treated for 10weeks with i.p. rapamycin or vehicle alone. Rapamycin completely blocked the enhanced ventricular S6K phosphorylation and cardiac hypertrophy and attenuated the expression of hypertrophy-associated fetal genes, including α-skeletal actin and B-type natriuretic peptide. mTOR activation of the related Acsl3 gene, usually associated with pathologic hypertrophy, was also attenuated in the Acsl1(H-/-) hearts, indicating that alternative pathways of fatty acid activation did not compensate for the loss of Acsl1. Compared to controls, Acsl1(H-/-) hearts exhibited an 8-fold higher uptake of 2-deoxy[1-(14)C]glucose and a 35% lower uptake of the fatty acid analog 2-bromo[1-(14)C]palmitate. These data indicate that Acsl1-deficiency causes diastolic dysfunction and that mTOR activation is linked to the development of cardiac hypertrophy in Acsl1(H-/-) mice. PMID:24631848

  5. The effects of compensated cardiac hypertrophy on dihydropyridine and ryanodine receptors in rat, ferret and guinea-pig hearts.

    PubMed

    Rannou, F; Sainte-Beuve, C; Oliviero, P; Do, E; Trouvé, P; Charlemagne, D

    1995-05-01

    The number of dihydropyridine and ryanodine receptors (DHP-R and RyR) has been measured in control and hypertrophied ventricles from rats, guinea pigs and ferrets to determine whether these two channels contribute to the alterations in excitation-contraction coupling (ECC), and in Ca2+ transient during compensated cardiac hypertrophy. We found that ventricular hypertrophy did not change the density of DHP-R. Mild hypertrophy did not alter the density of RyR in the rat but decreased it in the guinea-pig and in the ferret (30% and 36%, respectively). Severe hypertrophy decreased the density of RyR by 20% in the rat and by 34% in the guinea-pig. Therefore, the decrease is greater in ferret and guinea-pig hearts than in rat heart. We conclude that the sarcoplasmic reticulum (SR) Ca2+ release channels but not the L-type Ca2+ channels could contribute to the slowing of intracellular Ca2+ movements and to the reduced velocity of shortening of the hypertrophied hearts. We suggest that, in the guinea pig and ferret hearts which express only the beta myosin heavy chain (MHC) isoform, the reduced velocity of shortening during hypertrophy is related to the decrease in RyR density, whereas in the rat, it is regulated primarily via a shift in the MHC isoform, except in severe hypertrophy in which the moderate decrease in RyR would also be involved. PMID:7473781

  6. Integrated glycoprotein immobilization method for glycopeptide and glycan analysis of cardiac hypertrophy.

    PubMed

    Yang, Shuang; Mishra, Sumita; Chen, Lijun; Zhou, Jian-Ying; Chan, Daniel W; Chatterjee, Subroto; Zhang, Hui

    2015-10-01

    Post-translational modifications of proteins can have a major role in disease initiation and progression. Incredible efforts have recently been made to study the regulation of glycoproteins for disease prognosis and diagnosis. It is essential to elucidate glycans and intact glycoproteins to understand the role of glycosylation in diseases. Sialylated N-glycans play crucial roles in physiological and pathological processes; however, it is laborious to study sialylated glycoproteins due to the labile nature of sialic acid residues. In this study, an integrated platform is developed for the analysis of intact glycoproteins and glycans using a chemoenzymatic approach for immobilization and derivatization of sialic acids. N-Glycans, deglycosylated proteins, and intact glycoproteins from heart tissues of wild type (WT) and transverse aortic constriction (TAC) mouse models were analyzed. We identified 291 unique glycopeptides from 195 glycoproteins; the comparative studies between WT and TAC mice indicate the overexpression of extracellular proteins for heart matrix remodeling and the down-regulation of proteins associated with energy metabolism in cardiac hypertrophy. The integrated platform is a powerful tool for the analysis of glycans and glycoproteins in the discovery of potential cardiac hypertrophy biomarkers.

  7. Endothelial cell dysfunction and cardiac hypertrophy in the STOX1 model of preeclampsia

    PubMed Central

    Ducat, Aurélien; Doridot, Ludivine; Calicchio, Rosamaria; Méhats, Celine; Vilotte, Jean-Luc; Castille, Johann; Barbaux, Sandrine; Couderc, Betty; Jacques, Sébastien; Letourneur, Franck; Buffat, Christophe; Le Grand, Fabien; Laissue, Paul; Miralles, Francisco; Vaiman, Daniel

    2016-01-01

    Preeclampsia is a disease of pregnancy involving systemic endothelial dysfunction. However, cardiovascular consequences of preeclampsia are difficult to analyze in humans. The objective of the present study is to evaluate the cardiovascular dysfunction induced by preeclampsia by examining the endothelium of mice suffering of severe preeclampsia induced by STOX1 overexpression. Using Next Generation Sequencing on endothelial cells of mice carrying either transgenic or control embryos, we discovered significant alterations of gene networks involved in inflammation, cell cycle, and cardiac hypertrophy. In addition, the heart of the preeclamptic mice revealed cardiac hypertrophy associated with histological anomalies. Bioinformatics comparison of the networks of modified genes in the endothelial cells of the preeclamptic mice and HUVECs exposed to plasma from preeclamptic women identified striking similarities. The cardiovascular alterations in the pregnant mice are comparable to those endured by the cardiovascular system of preeclamptic women. The STOX1 mice could help to better understand the endothelial dysfunction in the context of preeclampsia, and guide the search for efficient therapies able to protect the maternal endothelium during the disease and its aftermath. PMID:26758611

  8. Endothelial Nogo-B regulates sphingolipid biosynthesis to promote pathological cardiac hypertrophy during chronic pressure overload

    PubMed Central

    Zhang, Yi; Huang, Yan; Cantalupo, Anna; Azevedo, Paula S.; Siragusa, Mauro; Bielawski, Jacek; Giordano, Frank J.; Di Lorenzo, Annarita

    2016-01-01

    We recently discovered that endothelial Nogo-B, a membrane protein of the ER, regulates vascular function by inhibiting the rate-limiting enzyme, serine palmitoyltransferase (SPT), in de novo sphingolipid biosynthesis. Here, we show that endothelium-derived sphingolipids, particularly sphingosine-1-phosphate (S1P), protect the heart from inflammation, fibrosis, and dysfunction following pressure overload and that Nogo-B regulates this paracrine process. SPT activity is upregulated in banded hearts in vivo as well as in TNF-α–activated endothelium in vitro, and loss of Nogo removes the brake on SPT, increasing local S1P production. Hence, mice lacking Nogo-B, systemically or specifically in the endothelium, are resistant to the onset of pathological cardiac hypertrophy. Furthermore, pharmacological inhibition of SPT with myriocin restores permeability, inflammation, and heart dysfunction in Nogo-A/B–deficient mice to WT levels, whereas SEW2871, an S1P1 receptor agonist, prevents myocardial permeability, inflammation, and dysfunction in WT banded mice. Our study identifies a critical role of endothelial sphingolipid biosynthesis and its regulation by Nogo-B in the development of pathological cardiac hypertrophy and proposes a potential therapeutic target for the attenuation or reversal of this clinical condition. PMID:27158676

  9. Activation of Cardiac Fibroblast Growth Factor Receptor 4 Causes Left Ventricular Hypertrophy.

    PubMed

    Grabner, Alexander; Amaral, Ansel P; Schramm, Karla; Singh, Saurav; Sloan, Alexis; Yanucil, Christopher; Li, Jihe; Shehadeh, Lina A; Hare, Joshua M; David, Valentin; Martin, Aline; Fornoni, Alessia; Di Marco, Giovana Seno; Kentrup, Dominik; Reuter, Stefan; Mayer, Anna B; Pavenstädt, Hermann; Stypmann, Jörg; Kuhn, Christian; Hille, Susanne; Frey, Norbert; Leifheit-Nestler, Maren; Richter, Beatrice; Haffner, Dieter; Abraham, Reimar; Bange, Johannes; Sperl, Bianca; Ullrich, Axel; Brand, Marcus; Wolf, Myles; Faul, Christian

    2015-12-01

    Chronic kidney disease (CKD) is a worldwide public health threat that increases risk of death due to cardiovascular complications, including left ventricular hypertrophy (LVH). Novel therapeutic targets are needed to design treatments to alleviate the cardiovascular burden of CKD. Previously, we demonstrated that circulating concentrations of fibroblast growth factor (FGF) 23 rise progressively in CKD and induce LVH through an unknown FGF receptor (FGFR)-dependent mechanism. Here, we report that FGF23 exclusively activates FGFR4 on cardiac myocytes to stimulate phospholipase Cγ/calcineurin/nuclear factor of activated T cell signaling. A specific FGFR4-blocking antibody inhibits FGF23-induced hypertrophy of isolated cardiac myocytes and attenuates LVH in rats with CKD. Mice lacking FGFR4 do not develop LVH in response to elevated FGF23, whereas knockin mice carrying an FGFR4 gain-of-function mutation spontaneously develop LVH. Thus, FGF23 promotes LVH by activating FGFR4, thereby establishing FGFR4 as a pharmacological target for reducing cardiovascular risk in CKD.

  10. Exercise-induced anaphylaxis.

    PubMed

    Sheffer, A L; Austen, K F

    1980-08-01

    Sixteen patients were seen because of possibly life-threatening exercise-associated symptoms similar to anaphylactic reactions. Asthma attacks, cholinergic urticaria and angioedema, and cardiac arrythmias are recognized as exertion-related phenomena in predisposed patients but are distinct from the syndrome described here. A syndrome characterized by the exertion-related onset of cutaneous pruritus and warmth, the development of generalized urticaria, and the appearance of such additional manifestations as collapse in 12 patients, gastrointestinal tract symptoms in five patients, and upper respiratory distress in 10 patients has been designated exercise-induced anaphylaxis, because of the striking similarity of this symptom complex to the anaphylactic syndrome elicited by ingestion or injection of a foreign antigenic substance. There is a family history of atopic desease for 11 patients and cold urticaria for two others and a personal history of atopy in six. The size of the wheals, the failure to develop an attack with a warm bath or shower or a fever, and the prominence of syncope rule against the diagnosis of conventional cholinergic urticaria. There is no history or evidence of an encounter with an environmental source of antigen during the exercise period. PMID:7400473

  11. C-Myc induced compensated cardiac hypertrophy increases free fatty acid utilization for the citric acid cycle.

    PubMed

    Olson, Aaron K; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly Priddy, Colleen; Isern, Nancy; Portman, Michael A

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam) injections. Isolated working hearts and (13)Carbon ((13)C)-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing (13)C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (Cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was assessed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contributions in NTG. Substrate utilization was not significantly altered in 3dMyc versus Cont. The free fatty acid FC was significantly greater in 7dMyc versus Cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to Cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes for the citric acid cycle did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the

  12. Chronic intermittent hypoxia induces cardiac hypertrophy by impairing autophagy through the adenosine 5'-monophosphate-activated protein kinase pathway.

    PubMed

    Xie, Sheng; Deng, Yan; Pan, Yue-Ying; Ren, Jie; Jin, Meng; Wang, Yu; Wang, Zhi-Hua; Zhu, Die; Guo, Xue-Ling; Yuan, Xiao; Shang, Jin; Liu, Hui-Guo

    2016-09-15

    Autophagy is tightly regulated to maintain cardiac homeostasis. Impaired autophagy is closely associated with pathological cardiac hypertrophy. However, the relationship between autophagy and cardiac hypertrophy induced by chronic intermittent hypoxia (CIH) is not known. In the present study, we measured autophagy-related genes and autophagosomes during 10 weeks of CIH in rats, and 6 days in H9C2 cardiomyocytes, and showed that autophagy was impaired. This conclusion was confirmed by the autophagy flux assay. We detected significant hypertrophic changes in myocardium with impaired autophagy. Rapamycin, an autophagy enhancer, attenuated the cardiac hypertrophy induced by CIH. Moreover, silencing autophagy-related gene 5 (ATG5) exerted the opposite effect. The role of adenosine monophosphate-activated protein kinase (AMPK) in regulating autophagy under CIH was confirmed using AICAR to upregulate this enzyme and restore autophagy flux. Restoring autophagy by AICAR or rapamycin significantly reversed the hypertrophic changes in cardiomyocytes. To investigate the mechanism of autophagy impairment, we compared phospho (p)-AMPK, p-Akt, cathepsin D, and NFAT3 levels, along with calcineurin activity, between sham and CIH groups. CIH activated calcineurin, and inhibited AMPK and AMPK-mediated autophagy in an Akt- and NFAT3-independent manner. Collectively, these data demonstrated that impaired autophagy induced by CIH through the AMPK pathway contributed to cardiac hypertrophy. PMID:27412517

  13. Chronic intermittent hypoxia induces cardiac hypertrophy by impairing autophagy through the adenosine 5'-monophosphate-activated protein kinase pathway.

    PubMed

    Xie, Sheng; Deng, Yan; Pan, Yue-Ying; Ren, Jie; Jin, Meng; Wang, Yu; Wang, Zhi-Hua; Zhu, Die; Guo, Xue-Ling; Yuan, Xiao; Shang, Jin; Liu, Hui-Guo

    2016-09-15

    Autophagy is tightly regulated to maintain cardiac homeostasis. Impaired autophagy is closely associated with pathological cardiac hypertrophy. However, the relationship between autophagy and cardiac hypertrophy induced by chronic intermittent hypoxia (CIH) is not known. In the present study, we measured autophagy-related genes and autophagosomes during 10 weeks of CIH in rats, and 6 days in H9C2 cardiomyocytes, and showed that autophagy was impaired. This conclusion was confirmed by the autophagy flux assay. We detected significant hypertrophic changes in myocardium with impaired autophagy. Rapamycin, an autophagy enhancer, attenuated the cardiac hypertrophy induced by CIH. Moreover, silencing autophagy-related gene 5 (ATG5) exerted the opposite effect. The role of adenosine monophosphate-activated protein kinase (AMPK) in regulating autophagy under CIH was confirmed using AICAR to upregulate this enzyme and restore autophagy flux. Restoring autophagy by AICAR or rapamycin significantly reversed the hypertrophic changes in cardiomyocytes. To investigate the mechanism of autophagy impairment, we compared phospho (p)-AMPK, p-Akt, cathepsin D, and NFAT3 levels, along with calcineurin activity, between sham and CIH groups. CIH activated calcineurin, and inhibited AMPK and AMPK-mediated autophagy in an Akt- and NFAT3-independent manner. Collectively, these data demonstrated that impaired autophagy induced by CIH through the AMPK pathway contributed to cardiac hypertrophy.

  14. Honokiol blocks and reverses cardiac hypertrophy in mice by activating mitochondrial SIRT3

    PubMed Central

    Pillai, Vinodkumar B.; Samant, Sadhana; Sundaresan, Nagalingam R.; Raghuraman, Hariharasundaram; Kim, Gene; Bonner, Michael Y.; Arbiser, Jack L.; Walker, Douglas I.; Jones, Dean P.; Gius, David; Gupta, Mahesh P.

    2015-01-01

    Honokiol (HKL) is a natural biphenolic compound derived from the bark of magnolia trees with anti-inflammatory, anti-oxidative, anti-tumor and neuroprotective properties. Here we show that HKL blocks agonist-induced and pressure overload-mediated, cardiac hypertrophic responses, and ameliorates pre-existing cardiac hypertrophy, in mice. Our data suggest that the anti-hypertrophic effects of HKL depend on activation of the deacetylase SIRT3. We demonstrate that HKL is present in mitochondria, enhances SIRT3 expression nearly two-fold and suggest that HKL may bind to SIRT3 to further increase its activity. Increased SIRT3 activity is associated with reduced acetylation of mitochondrial SIRT3 substrates, MnSOD and OSCP. HKL-treatment increases mitochondrial rate of oxygen consumption and reduces ROS synthesis in wild-type, but not in SIRT3-KO cells. Moreover, HKL-treatment blocks cardiac fibroblast proliferation and differentiation to myofibroblasts in SIRT3-dependent manner. These results suggest that HKL is a pharmacological activator of SIRT3 capable of blocking, and even reversing, the cardiac hypertrophic response. PMID:25871545

  15. Integration of cardiac myofilament activity and regulation with pathways signaling hypertrophy and failure.

    PubMed

    de Tombe, P P; Solaro, R J

    2000-08-01

    The syndrome of congestive heart failure (CHF) is an entity of ever increasing clinical significance. CHF is characterized by a steady decrease in cardiac pump function, which is eventually lethal. The mechanisms that underlie the decline in cardiac function are incompletely understood. A central theme in solving the mystery of heart failure is the identification of mechanisms by which the myofilament contractile machine of the myocardium is altered in CHF and how these alterations act in concert with pathways that signal cell growth and death. The cardiac myofilaments are a point of confluence of signals that promote the hypertrophic/failure process. Our hypothesis is that a prevailing hemodynamic stress leads to an increased strain on the myocardium. The increased strain in turn leads to miscues of the normal physiological pathway by which heart cells are signaled to match and adapt the intensity and dynamics of their mechanical activity to prevailing hemodynamic demands. These miscues result in a maladaptation to the stressor and failure of the heart to respond to hemodynamic loads at optimal end diastolic volumes. The result is a vicious cycle exacerbating the failure. Cardiac myofilament activity, the ultimate determinant of cellular dynamics and force, is a central player in the integration and regulation of pathways that signal hypertrophy and failure.

  16. Cardiac hypertrophy associated with myeloproliferative neoplasms in JAK2V617F transgenic mice

    PubMed Central

    2014-01-01

    Background Myeloproliferative neoplasms (MPNs) are blood malignancies manifested in increased production of red blood cells, white blood cells, and/or platelets. A major molecular lesion associated with the diseases is JAK2V617F, an activation mutation form of tyrosine kinase JAK2. Cardiovascular events represent the leading cause of morbidity and mortality associated MPNs, but the underlying mechanism is not well understood. Methods Previously, we generated JAK2V617F transgenic mice which displayed MPN-like phenotypes. In the present study, we further characterized these mice by analyzing the time course of MPN phenotype development and associated cardiac abnormalities. We performed detailed histochemical staining of cardiac sections. Results JAK2V617F transgenic mice developed cardiomegaly as a subsequent event of increased blood cell production during the course of MPN phenotype development. The cardiomegaly is manifested in increased ventricular wall thickness and enlarged cardiomyocytes. Trichrome and reticulin staining revealed extensive collagen fibrosis in the heart of JAK2V617F transgenic mice. Thrombosis in the coronary artery and inflammatory cell infiltration into cardiac muscle were also observed in JAK2V617F transgenic mice, and the latter event was accompanied by fibrosis. Conclusion JAK2V617F-induced blood disorders have a major impact on heart function and lead to cardiac hypertrophy. JAK2V617F transgenic mice represent an excellent model system to study both hematological malignancies and cardiovascular diseases. PMID:24646493

  17. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure

    PubMed Central

    van Rooij, Eva; Sutherland, Lillian B.; Liu, Ning; Williams, Andrew H.; McAnally, John; Gerard, Robert D.; Richardson, James A.; Olson, Eric N.

    2006-01-01

    Diverse forms of injury and stress evoke a hypertrophic growth response in adult cardiac myocytes, which is characterized by an increase in cell size, enhanced protein synthesis, assembly of sarcomeres, and reactivation of fetal genes, often culminating in heart failure and sudden death. Given the emerging roles of microRNAs (miRNAs) in modulation of cellular phenotypes, we searched for miRNAs that were regulated during cardiac hypertrophy and heart failure. We describe >12 miRNAs that are up- or down-regulated in cardiac tissue from mice in response to transverse aortic constriction or expression of activated calcineurin, stimuli that induce pathological cardiac remodeling. Many of these miRNAs were similarly regulated in failing human hearts. Forced overexpression of stress-inducible miRNAs was sufficient to induce hypertrophy in cultured cardiomyocytes. Similarly, cardiac overexpression of miR-195, which was up-regulated during cardiac hypertrophy, resulted in pathological cardiac growth and heart failure in transgenic mice. These findings reveal an important role for specific miRNAs in the control of hypertrophic growth and chamber remodeling of the heart in response to pathological signaling and point to miRNAs as potential therapeutic targets in heart disease. PMID:17108080

  18. Effects of pressure- or volume-overload hypertrophy on passive stiffness in isolated adult cardiac muscle cells

    NASA Technical Reports Server (NTRS)

    Kato, S.; Koide, M.; Cooper, G. 4th; Zile, M. R.

    1996-01-01

    It has been hypothesized that the changes in myocardial stiffness induced by chronic hemodynamic overloading are dependent on changes in the passive stiffness of the cardiac muscle cell (cardiocyte). However, no previous studies have examined the passive constitutive properties of cardiocytes isolated from animals with myocardial hypertrophy. Accordingly, changes in relative passive stiffness of cardiocytes isolated from animals with chronic pressure- or volume-overload hypertrophy were determined by examining the effects of anisosmotic stress on cardiocyte size. Anisosmotic stress was produced by altering superfusate osmolarity. Hypertrophied cardiocytes were enzymatically isolated from 16 adult cats with right ventricular (RV) pressure-overload hypertrophy induced by pulmonary artery banding (PAB) and from 6 adult cats with RV volume-overload hypertrophy induced by creating an atrial septal defect (ASD). Left ventricular (LV) cardiocytes from each cat served as nonhypertrophied, normally loaded, same-animal controls. Superfusate osmolarity was decreased from 305 +/- 3 to 135 +/- 5 mosM and increased to 645 +/- 4 mosM. During anisosmotic stress, there were no significant differences between hypertrophied RV and normal LV cardiocytes in pressure overload PAB cats with respect to percent change in cardiocyte area (47 +/- 2% in RV vs. 48 +/- 2% in LV), diameter (46 +/- 3% in RV vs. 48 +/- 2% in LV), or length (2.4 +/- 0.2% in RV vs. 2.0 +/- 0.3% in LV), or sarcomere length (1.5 +/- 0.1% in RV vs. 1.3 +/- 0.3% in LV). Likewise, there were no significant differences in cardiocyte strain between hypertrophied RV and normal LV cardiocytes from ASD cats. In conclusion, chronic pressure-overload hypertrophy and chronic volume-overload hypertrophy did not alter the cardiocyte response to anisosmotic stress. Thus chronic overload hypertrophy did not alter relative passive cardiocyte stiffness.

  19. C-Myc Induced Compensated Cardiac Hypertrophy Increases Free Fatty Acid Utilization for the Citric Acid Cycle

    SciTech Connect

    Olson, Aaron; Ledee, Dolena; Iwamoto, Kate; Kajimoto, Masaki; O'Kelly-Priddy, Colleen M.; Isern, Nancy G.; Portman, Michael A.

    2013-02-01

    The protooncogene C-Myc (Myc) regulates cardiac hypertrophy. Myc promotes compensated cardiac function, suggesting that the operative mechanisms differ from those leading to heart failure. Myc regulation of substrate metabolism is a reasonable target, as Myc alters metabolism in other tissues. We hypothesize that Myc-induced shifts in substrate utilization signal and promote compensated hypertrophy. We used cardiac specific Myc-inducible C57/BL6 male mice between 4-6 months old that develop hypertrophy with tamoxifen (tam). Isolated working hearts and 13Carbon (13C )-NMR were used to measure function and fractional contributions (Fc) to the citric acid cycle by using perfusate containing 13C-labeled free fatty acids, acetoacetate, lactate, unlabeled glucose and insulin. Studies were performed at pre-hypertrophy (3-days tam, 3dMyc), established hypertrophy (7-days tam, 7dMyc) or vehicle control (cont). Non-transgenic siblings (NTG) received 7-days tam or vehicle to assess drug effect. Hypertrophy was confirmed by echocardiograms and heart weights. Western blots were performed on key metabolic enzymes. Hypertrophy occurred in 7dMyc only. Cardiac function did not differ between groups. Tam alone did not affect substrate contribution in NTG. Substrate utilization was not significantly altered in 3dMyc versus cont. The free fatty acid FC was significantly greater in 7dMyc vs cont with decreased unlabeled Fc, which is predominately exogenous glucose. Free fatty acid flux to the citric acid cycle increased while lactate flux was diminished in 7dMyc compared to cont. Total protein levels of a panel of key metabolic enzymes were unchanged; however total protein O-GlcNAcylation was increased in 7dMyc. Substrate utilization changes did not precede hypertrophy; therefore they are not the primary signal for cardiac growth in this model. Free fatty acid utilization and oxidation increase at established hypertrophy. Understanding the mechanisms whereby this change maintained

  20. Severe Left Ventricular Hypertrophy, Small Pericardial Effusion, and Diffuse Late Gadolinium Enhancement by Cardiac Magnetic Resonance Suspecting Cardiac Amyloidosis: Endomyocardial Biopsy Reveals an Unexpected Diagnosis

    PubMed Central

    Hofmann, Nina P.; Giusca, Sorin; Klingel, Karin; Nunninger, Peter; Korosoglou, Grigorios

    2016-01-01

    Left ventricular (LV) hypertrophy can be related to a multitude of cardiac disorders, such as hypertrophic cardiomyopathy (HCM), cardiac amyloidosis, and hypertensive heart disease. Although the presence of LV hypertrophy is generally associated with poorer cardiac outcomes, the early differentiation between these pathologies is crucial due to the presence of specific treatment options. The diagnostic process with LV hypertrophy requires the integration of clinical evaluation, electrocardiography (ECG), echocardiography, biochemical markers, and if required CMR and endomyocardial biopsy in order to reach the correct diagnosis. Here, we present a case of a patient with severe LV hypertrophy (septal wall thickness of 23 mm, LV mass of 264 g, and LV mass index of 147 g/m2), severely impaired longitudinal function, and preserved radial contractility (ejection fraction = 55%), accompanied by small pericardial effusion and diffuse late gadolinium enhancement (LGE) by cardiac magnetic resonance (CMR). Due to the imaging findings, an infiltrative cardiomyopathy, such as cardiac amyloidosis, was suspected. However, amyloid accumulation was excluded by endomyocardial biopsy, which revealed the presence of diffuse myocardial fibrosis in an advanced hypertensive heart disease. PMID:27247807

  1. Postnatal ablation of Foxm1 from cardiomyocytes causes late onset cardiac hypertrophy and fibrosis without exacerbating pressure overload-induced cardiac remodeling.

    PubMed

    Bolte, Craig; Zhang, Yufang; York, Allen; Kalin, Tanya V; Schultz, Jo El J; Molkentin, Jeffery D; Kalinichenko, Vladimir V

    2012-01-01

    Heart disease remains a leading cause of morbidity and mortality in the industrialized world. Hypertrophic cardiomyopathy is the most common genetic cardiovascular disorder and the most common cause of sudden cardiac death. Foxm1 transcription factor (also known as HFH-11B, Trident, Win or MPP2) plays an important role in the pathogenesis of various cancers and is a critical mediator of post-injury repair in multiple organs. Foxm1 has been previously shown to be essential for heart development and proliferation of embryonic cardiomyocytes. However, the role of Foxm1 in postnatal heart development and in cardiac injury has not been evaluated. To delete Foxm1 in postnatal cardiomyocytes, αMHC-Cre/Foxm1(fl/fl) mice were generated. Surprisingly, αMHC-Cre/Foxm1(fl/fl) mice exhibited normal cardiomyocyte proliferation at postnatal day seven and had no defects in cardiac structure or function but developed cardiac hypertrophy and fibrosis late in life. The development of cardiomyocyte hypertrophy and cardiac fibrosis in aged Foxm1-deficient mice was associated with reduced expression of Hey2, an important regulator of cardiac homeostasis, and increased expression of genes critical for cardiac remodeling, including MMP9, αSMA, fibronectin and vimentin. We also found that following aortic constriction Foxm1 mRNA and protein were induced in cardiomyocytes. However, Foxm1 deletion did not exacerbate cardiac hypertrophy or fibrosis following chronic pressure overload. Our results demonstrate that Foxm1 regulates genes critical for age-induced cardiomyocyte hypertrophy and cardiac fibrosis.

  2. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure.

    PubMed

    Gao, Chen; Ren, Shuxun; Lee, Jae-Hyung; Qiu, Jinsong; Chapski, Douglas J; Rau, Christoph D; Zhou, Yu; Abdellatif, Maha; Nakano, Astushi; Vondriska, Thomas M; Xiao, Xinshu; Fu, Xiang-Dong; Chen, Jau-Nian; Wang, Yibin

    2016-01-01

    RNA splicing is a major contributor to total transcriptome complexity; however, the functional role and regulation of splicing in heart failure remain poorly understood. Here, we used a total transcriptome profiling and bioinformatic analysis approach and identified a muscle-specific isoform of an RNA splicing regulator, RBFox1 (also known as A2BP1), as a prominent regulator of alternative RNA splicing during heart failure. Evaluation of developing murine and zebrafish hearts revealed that RBFox1 is induced during postnatal cardiac maturation. However, we found that RBFox1 is markedly diminished in failing human and mouse hearts. In a mouse model, RBFox1 deficiency in the heart promoted pressure overload-induced heart failure. We determined that RBFox1 is a potent regulator of RNA splicing and is required for a conserved splicing process of transcription factor MEF2 family members that yields different MEF2 isoforms with differential effects on cardiac hypertrophic gene expression. Finally, induction of RBFox1 expression in murine pressure overload models substantially attenuated cardiac hypertrophy and pathological manifestations. Together, this study identifies regulation of RNA splicing by RBFox1 as an important player in transcriptome reprogramming during heart failure that influence pathogenesis of the disease.

  3. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure

    PubMed Central

    Gao, Chen; Ren, Shuxun; Lee, Jae-Hyung; Qiu, Jinsong; Chapski, Douglas J.; Rau, Christoph D.; Zhou, Yu; Abdellatif, Maha; Nakano, Astushi; Vondriska, Thomas M.; Xiao, Xinshu; Fu, Xiang-Dong; Chen, Jau-Nian; Wang, Yibin

    2015-01-01

    RNA splicing is a major contributor to total transcriptome complexity; however, the functional role and regulation of splicing in heart failure remain poorly understood. Here, we used a total transcriptome profiling and bioinformatic analysis approach and identified a muscle-specific isoform of an RNA splicing regulator, RBFox1 (also known as A2BP1), as a prominent regulator of alternative RNA splicing during heart failure. Evaluation of developing murine and zebrafish hearts revealed that RBFox1 is induced during postnatal cardiac maturation. However, we found that RBFox1 is markedly diminished in failing human and mouse hearts. In a mouse model, RBFox1 deficiency in the heart promoted pressure overload–induced heart failure. We determined that RBFox1 is a potent regulator of RNA splicing and is required for a conserved splicing process of transcription factor MEF2 family members that yields different MEF2 isoforms with differential effects on cardiac hypertrophic gene expression. Finally, induction of RBFox1 expression in murine pressure overload models substantially attenuated cardiac hypertrophy and pathological manifestations. Together, this study identifies regulation of RNA splicing by RBFox1 as an important player in transcriptome reprogramming during heart failure that influence pathogenesis of the disease. PMID:26619120

  4. Pressure overload-induced cardiac hypertrophy response requires janus kinase 2-histone deacetylase 2 signaling.

    PubMed

    Ying, Huang; Xu, Mao-Chun; Tan, Jing-Hua; Shen, Jing-Hua; Wang, Hao; Zhang, Dai-Fu

    2014-01-01

    Pressure overload induces cardiac hypertrophy through activation of Janus kinase 2 (Jak2), however, the underlying mechanisms remain largely unknown. In the current study, we tested whether histone deacetylase 2 (HDAC2) was involved in the process. We found that angiotensin II (Ang-II)-induced re-expression of fetal genes (Atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP)) in cultured cardiomyocytes was prevented by the Jak2 inhibitor AG-490 and HDAC2 inhibitor Trichostatin-A (TSA), or by Jak2/HDAC2 siRNA knockdown. On the other hand, myocardial cells with Jak2 or HDAC2 over-expression were hyper-sensitive to Ang-II. In vivo, pressure overload by transverse aorta binding (AB) induced a significant cardiac hypertrophic response as well as re-expression of ANP and BNP in mice heart, which were markedly reduced by AG-490 and TSA. Significantly, AG-490, the Jak2 inhibitor, largely suppressed pressure overload-/Ang-II-induced HDAC2 nuclear exportation in vivo and in vitro. Meanwhile, TSA or HDAC2 siRNA knockdown reduced Ang-II-induced ANP/BNP expression in Jak2 over-expressed H9c2 cardiomyocytes. Together, these results suggest that HDAC2 might be a downstream effector of Jak2 to mediate cardiac hypertrophic response by pressure overload or Ang-II. PMID:25380525

  5. Gestational hypertension and the developmental origins of cardiac hypertrophy and diastolic dysfunction.

    PubMed

    Armstrong, David W J; Tse, M Yat; Wong, Philip G; Ventura, Nicole M; Meens, Jalna A; Johri, Amer M; Matangi, Murray F; Pang, Stephen C

    2014-06-01

    The developmental origins of health and disease refer to the theory that adverse maternal environments influence fetal development and the risk of cardiovascular disease in adulthood. We used the chronically hypertensive atrial natriuretic peptide knockout (ANP-/-) mouse as a model of gestational hypertension, and attempted to determine the effect of gestational hypertension on left ventricular (LV) structure and function in adult offspring. We crossed normotensive ANP+/+ females with ANP-/- males (yielding ANP+/-(WT) offspring) and hypertensive ANP-/- females with ANP+/+ males (yielding ANP+/-(KO) offspring). Cardiac gene expression was measured using real-time quantitative PCR. Cardiac function was assessed using echocardiography. Daily injections of isoproterenol (ISO) were used to induce cardiac stress. Collagen deposition was assessed using picrosirius red staining. All mice were 10 weeks of age. Gestational hypertension resulted in significant LV hypertrophy in offspring, with no change in LV function. Treatment with ISO resulted in significant LV diastolic dysfunction with a restrictive filling pattern (increased E/A ratio and E/e') and interstitial myocardial fibrosis only in ANP+/-(KO) and not ANP+/-(WT) offspring. Gestational hypertension programs adverse LV structural and functional remodeling in offspring. These data suggest that adverse maternal environments may increase the risk of heart failure in offspring later in life.

  6. RBFox1-mediated RNA splicing regulates cardiac hypertrophy and heart failure.

    PubMed

    Gao, Chen; Ren, Shuxun; Lee, Jae-Hyung; Qiu, Jinsong; Chapski, Douglas J; Rau, Christoph D; Zhou, Yu; Abdellatif, Maha; Nakano, Astushi; Vondriska, Thomas M; Xiao, Xinshu; Fu, Xiang-Dong; Chen, Jau-Nian; Wang, Yibin

    2016-01-01

    RNA splicing is a major contributor to total transcriptome complexity; however, the functional role and regulation of splicing in heart failure remain poorly understood. Here, we used a total transcriptome profiling and bioinformatic analysis approach and identified a muscle-specific isoform of an RNA splicing regulator, RBFox1 (also known as A2BP1), as a prominent regulator of alternative RNA splicing during heart failure. Evaluation of developing murine and zebrafish hearts revealed that RBFox1 is induced during postnatal cardiac maturation. However, we found that RBFox1 is markedly diminished in failing human and mouse hearts. In a mouse model, RBFox1 deficiency in the heart promoted pressure overload-induced heart failure. We determined that RBFox1 is a potent regulator of RNA splicing and is required for a conserved splicing process of transcription factor MEF2 family members that yields different MEF2 isoforms with differential effects on cardiac hypertrophic gene expression. Finally, induction of RBFox1 expression in murine pressure overload models substantially attenuated cardiac hypertrophy and pathological manifestations. Together, this study identifies regulation of RNA splicing by RBFox1 as an important player in transcriptome reprogramming during heart failure that influence pathogenesis of the disease. PMID:26619120

  7. Exercise-induced asthma

    MedlinePlus

    Wheezing - exercise-induced; Reactive airway disease - exercise ... Having asthma symptoms when you exercise does not mean you cannot or should not exercise. But be aware of your EIA triggers. Cold or dry air may ...

  8. miR-155 functions downstream of angiotensin II receptor subtype 1 and calcineurin to regulate cardiac hypertrophy

    PubMed Central

    Yang, Yong; Zhou, Yong; Cao, Zheng; Tong, Xin Zhu; Xie, Hua Qiang; Luo, Tao; Hua, Xian Ping; Wang, Han Qin

    2016-01-01

    Cardiac hypertrophy is characterized by maladaptive tissue remodeling that may lead to heart failure or sudden death. MicroRNAs (miRs) are negative regulators of angiotensin II and the angiotensin II receptor subtype 1 (AGTR1), which are two components involved in cardiac hypertrophy. In the present study, the interaction between angiotensin II receptor subtype 1 (AGTR1) signaling and miR-155 was investigated. Rat H9C2 (2–1) cardiomyocytes were transfected with miR-155 analogues or inhibitors, then stimulated with angiotensin II to induce cardiac hypertrophy. miR-155 expression was revealed to be altered following transfection with chemically-modified miR-155 analogues and inhibitors in rat cardiomyocytes. In cell cardiac hypertrophy models, the cell surface area, AGTR1, atrial natriuretic peptide and myosin heavy chain-β mRNA expression levels were revealed to be lower in cells stimulated with miR-155 analogue-transfected cells treated with angiotensin II compared with cells stimulated with angiotensin alone (P<0.05), as determined using reverse transcription-polymerase chain reaction (PCR), quantitative PCR and western blot analyses. Furthermore, calcineurin mRNA and protein, intracellular free calcium and nuclear factor of activated T-cells-4 proteins were downregulated in miR-155 analogue-transfected cells treated with angiotensin II, as compared with cells stimulated with angiotensin II alone (P<0.05). In conclusion, the current study indicates that miR-155 may improve cardiac hypertrophy by downregulating AGTR1 and suppressing the calcium signaling pathways activated by AGTR1. PMID:27588076

  9. Perinatal DDT Exposure Induces Hypertension and Cardiac Hypertrophy in Adult Mice

    PubMed Central

    La Merrill, Michele A.; Sethi, Sunjay; Benard, Ludovic; Moshier, Erin; Haraldsson, Borje; Buettner, Christoph

    2016-01-01

    Background: Dichlorodiphenyltrichloroethane (DDT) was used extensively to control malaria, typhus, body lice, and bubonic plague worldwide, until countries began restricting its use in the 1970s. However, the use of DDT to control vector-borne diseases continues in developing countries. Prenatal DDT exposure is associated with elevated blood pressure in humans. Objective: We hypothesized that perinatal DDT exposure causes hypertension in adult mice. Methods: DDT was administered to C57BL/6J dams from gestational day 11.5 to postnatal day 5. Blood pressure (BP) and myocardial wall thickness were measured in male and female adult offspring. Adult mice were treated with an angiotensin converting enzyme (ACE) inhibitor, captopril, to evaluate sensitivity to amelioration of DDT-associated hypertension by ACE inhibition. We further assessed the influence of DDT exposure on the expression of mRNAs that regulate BP through renal ion transport. Results: Adult mice perinatally exposed to DDT exhibited chronically increased systolic BP, increased myocardial wall thickness, and elevated expression of mRNAs of several renal ion transporters. Captopril completely reversed hypertension in mice perinatally exposed to DDT. Conclusions: These data demonstrate that perinatal exposure to DDT causes hypertension and cardiac hypertrophy in adult offspring. A key mechanism underpinning this hypertension is an overactivated renin angiotensin system because ACE inhibition reverses the hypertension induced by perinatal DDT exposure. Citation: La Merrill M, Sethi S, Benard L, Moshier E, Haraldsson B, Buettner C. 2016. Perinatal DDT exposure induces hypertension and cardiac hypertrophy in adult mice. Environ Health Perspect 124:1722–1727; http://dx.doi.org/10.1289/EHP164 PMID:27325568

  10. Phosphorylation of the chromatin remodeling factor DPF3a induces cardiac hypertrophy through releasing HEY repressors from DNA

    PubMed Central

    Cui, Huanhuan; Schlesinger, Jenny; Schoenhals, Sophia; Tönjes, Martje; Dunkel, Ilona; Meierhofer, David; Cano, Elena; Schulz, Kerstin; Berger, Michael F.; Haack, Timm; Abdelilah-Seyfried, Salim; Bulyk, Martha L.; Sauer, Sascha; Sperling, Silke R.

    2016-01-01

    DPF3 (BAF45c) is a member of the BAF chromatin remodeling complex. Two isoforms have been described, namely DPF3a and DPF3b. The latter binds to acetylated and methylated lysine residues of histones. Here, we elaborate on the role of DPF3a and describe a novel pathway of cardiac gene transcription leading to pathological cardiac hypertrophy. Upon hypertrophic stimuli, casein kinase 2 phosphorylates DPF3a at serine 348. This initiates the interaction of DPF3a with the transcriptional repressors HEY, followed by the release of HEY from the DNA. Moreover, BRG1 is bound by DPF3a, and is thus recruited to HEY genomic targets upon interaction of the two components. Consequently, the transcription of downstream targets such as NPPA and GATA4 is initiated and pathological cardiac hypertrophy is established. In human, DPF3a is significantly up-regulated in hypertrophic hearts of patients with hypertrophic cardiomyopathy or aortic stenosis. Taken together, we show that activation of DPF3a upon hypertrophic stimuli switches cardiac fetal gene expression from being silenced by HEY to being activated by BRG1. Thus, we present a novel pathway for pathological cardiac hypertrophy, whose inhibition is a long-term therapeutic goal for the treatment of the course of heart failure. PMID:26582913

  11. Lovastatin prevents angiotensin II-induced cardiac hypertrophy in cultured neonatal rat heart cells.

    PubMed

    Oi, S; Haneda, T; Osaki, J; Kashiwagi, Y; Nakamura, Y; Kawabe, J; Kikuchi, K

    1999-07-01

    Angiotensin II activates p21ras, and mediates cardiac hypertrophic growth through the type 1 angiotensin II receptor in cardiac myocytes. An inhibitor of 3-hydroxy-3-methyglutaryl-coenzyme A (HMG-CoA) reductase has been shown to block the post-translational farnesylation of p21ras and inhibit protein synthesis in several cell types. Primary cultures of neonatal cardiac myocytes were used to determine whether HMG-CoA reductase inhibitors, lovastatin, simvastatin and pravastatin inhibit the angiotensin II-induced hypertrophic growth. Angiotensin II (10(-6) M) significantly increased protein-DNA ratio, RNA-DNA ratio, ratios of protein synthesis and mitogen-activated protein (MAP) kinase activity. Lipid-soluble HMG-CoA reductase inhibitors, lovastatin (10(-6) M) and simvastatin (10(-6) M) partially and significantly inhibited the angiotensin II-induced increases in these parameters, but a water-soluble HMG-CoA reductase inhibitor, pravastatin (10(-6) M) did not. Mevalonate (10(-4) M) overcame the inhibitory effects of lovastatin and simvastatin on angiotensin II-induced increases in these parameters. A selective protein kinase C inhibitor, calphostin C (10(-6) M) partially and significantly prevented angiotensin II-induced increases in these parameters, and treatment with both lovastatin and calphostin C inhibited completely. Angiotensin II increased p21ras activity and membrane association, and lovastatin inhibited them. These studies demonstrate that a lipid-soluble HMG-CoA reductase inhibitor, lovastatin, may prevent angiotensin II-induced cardiac hypertrophy, at least in part, through p21ras/MAP kinase pathway, which is linked to mevalonate metabolism.

  12. Inhibition of cardiac hypertrophy by probiotic-fermented purple sweet potato yogurt in spontaneously hypertensive rat hearts.

    PubMed

    Lin, Pei-Pei; Hsieh, You-Miin; Kuo, Wei-Wen; Lin, Chien-Chung; Tsai, Fuu-Jen; Tsai, Chang-Hai; Huang, Chih-Yang; Tsai, Cheng-Chih

    2012-12-01

    Cardiovascular hypertrophy is a common feature of hypertension and an important risk factor for heart damage. The regression of cardiovascular hypertrophy is currently considered an important therapeutic target in reducing the omplications of hypertension. The aim of this study was to investigate the inhibition of cardiac hypertrophy by probiotic-fermented purple sweet potato yogurt (PSPY) with high γ-aminobutyric acid (GABA) content in spontaneously hypertensive rat (SHR) hearts. Six-week-old male SHRs were separated randomly and equally into 4 experimental groups: sterile water, captopril and 2 PSPY groups with different doses (10 and 100%) for 8 weeks. The changes in myocardial architecture and key molecules of the hypertrophy-related pathway in the excised left ventricle from these rats were determined by histopathological analysis, hematoxylin and eosin staining and western blot analysis. Abnormal myocardial architecture and enlarged interstitial spaces observed in the SHRs were significantly decreased in the captopril and PSPY groups compared with the sterile water group. Moreover, the increases in atrial natriuretic peptide, B-type natriuretic peptide, phosphorilated protein kinase Cα and calmodulin-dependent protein kinase II levels in the left ventricle were accompanied by hypertension and increases in phosphorylated extracellular signal-regulated kinase 5 activities with enhanced cardiac hypertrophy. However, the protein levels of the hypertrophic-related pathways were completely reversed by the administration of PSPY. PSPY may repress the activation of ANP and BNP which subsequently inhibit the dephosphorylation of the nuclear factor of activated T-cells, cytoplasmic 3 and ultimately prevent the progression of cardiac hypertrophy.

  13. Regulation of cardiac hypertrophy in vivo by the stress-activated protein kinases/c-Jun NH2-terminal kinases

    PubMed Central

    Choukroun, Gabriel; Hajjar, Roger; Fry, Stefanie; del Monte, Federica; Haq, Syed; Guerrero, J. Luis; Picard, Michael; Rosenzweig, Anthony; Force, Thomas

    1999-01-01

    Cardiac hypertrophy often presages the development of heart failure. Numerous cytosolic signaling pathways have been implicated in the hypertrophic response in cardiomyocytes in culture, but their roles in the hypertrophic response to physiologically relevant stimuli in vivo is unclear. We previously reported that adenovirus-mediated gene transfer of SEK-1(KR), a dominant inhibitory mutant of the immediate upstream activator of the stress-activated protein kinases (SAPKs), abrogates the hypertrophic response of neonatal rat cardiomyocytes to endothelin-1 in culture. We now report that gene transfer of SEK-1(KR) to the adult rat heart blocks SAPK activation by pressure overload, demonstrating that the activity of cytosolic signaling pathways can be inhibited by gene transfer of loss-of-function mutants in vivo. Furthermore, gene transfer of SEK-1(KR) inhibited pressure overload–induced cardiac hypertrophy, as determined by echocardiography and several postmortem measures including left ventricular (LV) wall thickness, the ratio of LV weight to body weight, cardiomyocyte diameter, and inhibition of atrial natriuretic factor expression. Our data suggest that the SAPKs are critical regulators of cardiac hypertrophy in vivo, and therefore may serve as novel drug targets in the treatment of hypertrophy and heart failure. J. Clin. Invest. 104:391–398 (1999). PMID:10449431

  14. Serine 105 phosphorylation of transcription factor GATA4 is necessary for stress-induced cardiac hypertrophy in vivo.

    PubMed

    van Berlo, Jop H; Elrod, John W; Aronow, Bruce J; Pu, William T; Molkentin, Jeffery D

    2011-07-26

    Cardiac hypertrophy is an adaptive growth process that occurs in response to stress stimulation or injury wherein multiple signal transduction pathways are induced, culminating in transcription factor activation and the reprogramming of gene expression. GATA4 is a critical transcription factor in the heart that is known to induce/regulate the hypertrophic program, in part, by receiving signals from MAPKs. Here we generated knock-in mice in which a known MAPK phosphorylation site at serine 105 (S105) in Gata4 that augments activity was mutated to alanine. Homozygous Gata4-S105A mutant mice were viable as adults, although they showed a compromised stress response of the myocardium. For example, cardiac hypertrophy in response to phenylephrine agonist infusion for 2 wk was largely blunted in Gata4-S105A mice, as was the hypertrophic response to pressure overload at 1 and 2 wk of applied stimulation. Gata4-S105A mice were also more susceptible to heart failure and cardiac dilation after 2 wk of pressure overload. With respect to the upstream pathway, hearts from Gata4-S105A mice did not efficiently hypertrophy following direct ERK1/2 activation using an activated MEK1 transgene in vivo. Mechanistically, GATA4 mutant protein from these hearts failed to show enhanced DNA binding in response to hypertrophic stimulation. Moreover, hearts from Gata4-S105A mice had significant changes in the expression of hypertrophy-inducible, fetal, and remodeling-related genes.

  15. Sex Hormones Promote Opposite Effects on ACE and ACE2 Activity, Hypertrophy and Cardiac Contractility in Spontaneously Hypertensive Rats

    PubMed Central

    Dalpiaz, P. L. M.; Lamas, A. Z.; Caliman, I. F.; Ribeiro, R. F.; Abreu, G. R.; Moyses, M. R.; Andrade, T. U.; Gouvea, S. A.; Alves, M. F.; Carmona, A. K.; Bissoli, N. S.

    2015-01-01

    Background There is growing interest in sex differences and RAS components. However, whether gender influences cardiac angiotensin I-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) activity is still unknown. In the present work, we determined the relationship between ACE and ACE2 activity, left ventricular function and gender in spontaneously hypertensive rats (SHRs). Methodology / Principal Findings Twelve-week-old female (F) and male (M) SHRs were divided into 2 experimental groups (n = 7 in each group): sham (S) and gonadectomized (G). Fifty days after gonadectomy, we measured positive and negative first derivatives (dP/dt maximum left ventricle (LV) and dP/dt minimum LV, respectively), hypertrophy (morphometric analysis) and ACE and ACE2 catalytic activity (fluorimetrically). Expression of calcium handling proteins was measured by western blot. Male rats exhibited higher cardiac ACE and ACE2 activity as well as hypertrophy compared to female rats. Orchiectomy decreased the activity of these enzymes and hypertrophy, while ovariectomy increased hypertrophy and ACE2, but did not change ACE activity. For cardiac function, the male sham group had a lower +dP/dt than the female sham group. After gonadectomy, the +dP/dt increased in males and reduced in females. The male sham group had a lower -dP/dt than the female group. After gonadectomy, the -dP/dt increased in the male and decreased in the female groups when compared to the sham group. No difference was observed among the groups in SERCA2a protein expression. Gonadectomy increased protein expression of PLB (phospholamban) and the PLB to SERCA2a ratio in female rats, but did not change in male rats. Conclusion Ovariectomy leads to increased cardiac hypertrophy, ACE2 activity, PLB expression and PLB to SERCA2a ratio, and worsening of hemodynamic variables, whereas in males the removal of testosterone has the opposite effects on RAS components. PMID:26010093

  16. Doppler estimation of reduced coronary flow reserve in mice with pressure overload cardiac hypertrophy

    PubMed Central

    Hartley, Craig J.; Reddy, Anilkumar K.; Madala, Sridhar; Michael, Lloyd H.; Entman, Mark L.; Taffet, George E.

    2008-01-01

    Aortic banding produces pressure overload cardiac hypertrophy in mice leading to decompensated heart failure in 4–8 wks, but the effects on coronary blood flow velocity and reserve are unknown. To determine whether coronary flow reserve (CFR) was reduced, we used noninvasive 20 MHz Doppler ultrasound to measure left main coronary flow velocity at baseline (B) and at hyperemia (H) induced by low (1%) and high (2.5%) concentrations of isoflurane gas anesthesia. Ten mice were studied before (Pre) and at 1d, 7d, 14d, and 21d after constricting the aortic arch to 0.4 mm diameter distal to the innominate artery. We also measured cardiac inflow and outflow velocities at the mitral and aortic valves and velocity at the jet distal to the aortic constriction. The pressure drop as estimated by 4V2 at the jet was 51 ± 5.1 (mean ± SE) mmHg at 1d increasing progressively to 74 ± 5.2 mmHg at 21d. Aortic and mitral blood velocities were not significantly different after banding (p = NS), but CFR, as estimated by H/B, dropped progressively from 3.2 ± 0.3 before banding to 2.2 ± 0.4, 1.7 ± 0.3, 1.4 ± 0.2, and 1.1 ± 0.1 at 1d, 7d, 14d, and 21d respectively (all P < 0.01 vs Pre). There was also a significant and progressive increase the systolic/diastolic velocity ratio (0.17 Pre to 0.92 at 21d, all P < 0.01 vs Pre) suggesting a redistribution of perfusion from subendocardium to subepicardium. We show for the first time that CFR, as estimated by the hyperemic response to isoflurane and measured by Doppler ultrasound, can be measured serially in mice and conclude that CFR is virtually eliminated in banded mice after 21 days of remodeling and hypertrophy. These results demonstrate that CFR is reduced in mice as in humans with cardiac disease but before the onset of decompensated heart failure. PMID:18255218

  17. [Exercise-induced asthma].

    PubMed

    Dinh Xuan, A T; Marsac, J; Lockhart, A

    1988-12-10

    Exercise-induced asthma only differs from common asthma in its causative factor. It is a typical asthmatic attack which follows a strenuous and continuous physical exercise lasting 5 to 10 minutes, most often in cold and dry weather. The prevalence of exercise-induced asthma has not yet been firmly established; its pathophysiological mechanisms are still debated, and the respective roles of heat and water losses by the airways are not clearly defined. However, the influence of the type of exercise as a precipitating factor of exercise-induced asthma is now well-known. All things being equal, swimming generates less asthma than running and cycling. This enables the subjects to be directed towards the most suitable sports and encouraged to improve their physical fitness. Drug treatment of exercise-induced asthma must preferentially be preventive; it relies on cromoglycate and beta-2 adrenergic agonists, the latter being also capable of treating acute exercise-induced bronchial obstruction. Education of the patients and their family is also important.

  18. Knockout of Toll-Like Receptors 2 and 4 Prevents Renal Ischemia-Reperfusion-Induced Cardiac Hypertrophy in Mice

    PubMed Central

    Trentin-Sonoda, Mayra; da Silva, Rogério Cirino; Kmit, Fernanda Vieira; Abrahão, Mariana Vieira; Monnerat Cahli, Gustavo; Brasil, Guilherme Visconde; Muzi-Filho, Humberto; Silva, Paulo André; Tovar-Moll, Fernanda Freire; Vieyra, Adalberto; Medei, Emiliano; Carneiro-Ramos, Marcela Sorelli

    2015-01-01

    We investigated whether the pathways linked to Toll-like receptors 2 and 4 (TLRs) are involved in renal ischemia-reperfusion (I/R)-induced cardiac hypertrophy. Wild type (WT) C57BL/6J, TLR2-/- and TLR4-/- mice were subjected to left kidney ischemia for 60 min followed by reperfusion for 5, 8, 12 and 15 days. Proton density magnetic resonance showed alterations in the injured kidney from WT mice, together with signs of parenchymal edema and higher levels of vimentin mRNA, accompanied by: (i) small, but significant, increase in serum urea after 24 h, (ii) 100% increase in serum creatinine at 24 h. A serum peak of inflammatory cytokines occurred after 5 days of reperfusion. Heart weight/body weight and heart weight/tibia length ratios increased after 12 and 15 days of reperfusion, respectively. Cardiac hypertrophy markers, B-type natriuretic peptide (BNP) and α-actin, left ventricle mass, cardiac wall thickness and myocyte width increased after 15 days of reperfusion, together with longer QTc and action potential duration. Cardiac TLRs, MyD88, HSP60 and HSP70 mRNA levels also increased. After 15 days of reperfusion, absence of TLRs prevented cardiac hypertrophy, as reflected by similar values of left ventricular cardiac mass and heart weight/body weight ratio compared to the transgenic Sham. Renal tissular injury also ameliorated in both knockout mice, as revealed by the comparison of their vimentin mRNA levels with those found in the WT on the same day after I/R. The I/R TLR2-/- group had TNF-α, IFN-γ and IL-1β levels similar to the non-I/R group, whereas the TLR4-/- group conserved the p-NF-κB/NF- κB ratio contrasting with that found in TLR2-/-. We conclude: (i) TLRs are involved in renal I/R-induced cardiac hypertrophy; (ii) absence of TLRs prevents I/R-induced cardiac hypertrophy, despite renal lesions seeming to evolve towards those of chronic disease; (iii) TLR2 and TLR4 selectively regulate the systemic inflammatory profile and NF- κB activation. PMID

  19. GATA4-mediated cardiac hypertrophy induced by D-myo-inositol 1,4,5-tris-phosphate

    SciTech Connect

    Zhu Zhiming . E-mail: zhuzming@mail.dph-fsi.com; Zhu Shanjun; Liu Daoyan; Yu Zengping; Yang Yongjian; Giet, Markus van der; Tepel, Martin . E-mail: Martin.Tepel@charite.de

    2005-12-16

    We evaluated the effects of D-myo-inositol 1,4,5-tris-phosphate on cardiac hypertrophy. D-myo-inositol 1,4,5-tris-phosphate augmented cardiac hypertrophy as evidenced by its effects on DNA synthesis, protein synthesis, and expression of immediate-early genes c-myc and c-fos, {beta}-myosin heavy chain, and {alpha}-actin. The administration of D-myo-inositol 1,4,5-tris-phosphate increased the expression of nuclear factor of activated T-cells and cardiac-restricted zinc finger transcription factor (GATA4). Real-time quantitative RT-PCR showed that D-myo-inositol 1,4,5-tris-phosphate-induced GATA4 mRNA was significantly enhanced even in the presence of the calcineurin inhibitor, cyclosporine A. The effect of D-myo-inositol 1,4,5-tris-phosphate was blocked after inhibition of inositol-trisphosphate receptors but not after inhibition of c-Raf/mitogen-activated protein kinase kinase (MEK)/mitogen-activated protein kinase (ERK) or p38 mitogen-activated protein kinase pathways. The study shows that D-myo-inositol 1,4,5-tris-phosphate-induced cardiac hypertrophy is mediated by GATA4 but independent from the calcineurin pathway.

  20. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure.

    PubMed

    Cauley, Edmund; Wang, Xin; Dyavanapalli, Jhansi; Sun, Ke; Garrott, Kara; Kuzmiak-Glancy, Sarah; Kay, Matthew W; Mendelowitz, David

    2015-10-01

    Hypertension, cardiac hypertrophy, and heart failure (HF) are widespread and debilitating cardiovascular diseases that affect nearly 23 million people worldwide. A distinctive hallmark of these cardiovascular diseases is autonomic imbalance, with increased sympathetic activity and decreased parasympathetic vagal tone. Recent device-based approaches, such as implantable vagal stimulators that stimulate a multitude of visceral sensory and motor fibers in the vagus nerve, are being evaluated as new therapeutic approaches for these and other diseases. However, little is known about how parasympathetic activity to the heart is altered with these diseases, and this lack of knowledge is an obstacle in the goal of devising selective interventions that can target and selectively restore parasympathetic activity to the heart. To identify the changes that occur within the brain stem to diminish the parasympathetic cardiac activity, left ventricular hypertrophy was elicited in rats by aortic pressure overload using a transaortic constriction approach. Cardiac vagal neurons (CVNs) in the brain stem that generate parasympathetic activity to the heart were identified with a retrograde tracer and studied using patch-clamp electrophysiological recordings in vitro. Animals with left cardiac hypertrophy had diminished excitation of CVNs, which was mediated both by an augmented frequency of spontaneous inhibitory GABAergic neurotransmission (with no alteration of inhibitory glycinergic activity) as well as a diminished amplitude and frequency of excitatory neurotransmission to CVNs. Opportunities to alter these network pathways and neurotransmitter receptors provide future targets of intervention in the goal to restore parasympathetic activity and autonomic balance to the heart in cardiac hypertrophy and other cardiovascular diseases. PMID:26371169

  1. Neurotransmission to parasympathetic cardiac vagal neurons in the brain stem is altered with left ventricular hypertrophy-induced heart failure.

    PubMed

    Cauley, Edmund; Wang, Xin; Dyavanapalli, Jhansi; Sun, Ke; Garrott, Kara; Kuzmiak-Glancy, Sarah; Kay, Matthew W; Mendelowitz, David

    2015-10-01

    Hypertension, cardiac hypertrophy, and heart failure (HF) are widespread and debilitating cardiovascular diseases that affect nearly 23 million people worldwide. A distinctive hallmark of these cardiovascular diseases is autonomic imbalance, with increased sympathetic activity and decreased parasympathetic vagal tone. Recent device-based approaches, such as implantable vagal stimulators that stimulate a multitude of visceral sensory and motor fibers in the vagus nerve, are being evaluated as new therapeutic approaches for these and other diseases. However, little is known about how parasympathetic activity to the heart is altered with these diseases, and this lack of knowledge is an obstacle in the goal of devising selective interventions that can target and selectively restore parasympathetic activity to the heart. To identify the changes that occur within the brain stem to diminish the parasympathetic cardiac activity, left ventricular hypertrophy was elicited in rats by aortic pressure overload using a transaortic constriction approach. Cardiac vagal neurons (CVNs) in the brain stem that generate parasympathetic activity to the heart were identified with a retrograde tracer and studied using patch-clamp electrophysiological recordings in vitro. Animals with left cardiac hypertrophy had diminished excitation of CVNs, which was mediated both by an augmented frequency of spontaneous inhibitory GABAergic neurotransmission (with no alteration of inhibitory glycinergic activity) as well as a diminished amplitude and frequency of excitatory neurotransmission to CVNs. Opportunities to alter these network pathways and neurotransmitter receptors provide future targets of intervention in the goal to restore parasympathetic activity and autonomic balance to the heart in cardiac hypertrophy and other cardiovascular diseases.

  2. Do big athletes have big hearts? Impact of extreme anthropometry upon cardiac hypertrophy in professional male athletes

    PubMed Central

    Riding, Nathan R; Salah, Othman; Sharma, Sanjay; Carré, François; O'Hanlon, Rory; George, Keith P; Hamilton, Bruce; Chalabi, Hakim; Whyte, Gregory P; Wilson, Mathew G

    2012-01-01

    Aim Differentiating physiological cardiac hypertrophy from pathology is challenging when the athlete presents with extreme anthropometry. While upper normal limits exist for maximal left ventricular (LV) wall thickness (14 mm) and LV internal diameter in diastole (LVIDd, 65 mm), it is unknown if these limits are applicable to athletes with a body surface area (BSA) >2.3 m2. Purpose To investigate cardiac structure in professional male athletes with a BSA>2.3 m2, and to assess the validity of established upper normal limits for physiological cardiac hypertrophy. Methods 836 asymptomatic athletes without a family history of sudden death underwent ECG and echocardiographic screening. Athletes were grouped according to BSA (Group 1, BSA>2.3 m2, n=100; Group 2, 2–2.29 m2, n=244; Group 3, <1.99 m2, n=492). Results There was strong linear relationship between BSA and LV dimensions; yet no athlete with a normal ECG presented a maximal wall thickness and LVIDd greater than 13 and 65 mm, respectively. In Group 3 athletes, Black African ethnicity was associated with larger cardiac dimensions than either Caucasian or West Asian ethnicity. Three athletes were diagnosed with a cardiomyopathy (0.4% prevalence); with two athletes presenting a maximal wall thickness >13 mm, but in combination with an abnormal ECG suspicious of an inherited cardiac disease. Conclusion Regardless of extreme anthropometry, established upper limits for physiological cardiac hypertrophy of 14 mm for maximal wall thickness and 65 mm for LVIDd are clinically appropriate for all athletes. However, the abnormal ECG is key to diagnosis and guides follow-up, particularly when cardiac dimensions are within accepted limits. PMID:23097487

  3. Trpm4 Gene Invalidation Leads to Cardiac Hypertrophy and Electrophysiological Alterations

    PubMed Central

    Gueffier, Mélanie; Finan, Amanda; Khoueiry, Ziad; Cassan, Cécile; Serafini, Nicolas; Aimond, Franck; Granier, Mathieu; Pasquié, Jean-Luc; Launay, Pierre; Richard, Sylvain

    2014-01-01

    Rationale TRPM4 is a non-selective Ca2+-activated cation channel expressed in the heart, particularly in the atria or conduction tissue. Mutations in the Trpm4 gene were recently associated with several human conduction disorders such as Brugada syndrome. TRPM4 channel has also been implicated at the ventricular level, in inotropism or in arrhythmia genesis due to stresses such as ß-adrenergic stimulation, ischemia-reperfusion, and hypoxia re-oxygenation. However, the physiological role of the TRPM4 channel in the healthy heart remains unclear. Objectives We aimed to investigate the role of the TRPM4 channel on whole cardiac function with a Trpm4 gene knock-out mouse (Trpm4-/-) model. Methods and Results Morpho-functional analysis revealed left ventricular (LV) eccentric hypertrophy in Trpm4-/- mice, with an increase in both wall thickness and chamber size in the adult mouse (aged 32 weeks) when compared to Trpm4+/+ littermate controls. Immunofluorescence on frozen heart cryosections and qPCR analysis showed no fibrosis or cellular hypertrophy. Instead, cardiomyocytes in Trpm4-/- mice were smaller than Trpm4+/+with a higher density. Immunofluorescent labeling for phospho-histone H3, a mitosis marker, showed that the number of mitotic myocytes was increased 3-fold in the Trpm4-/-neonatal stage, suggesting hyperplasia. Adult Trpm4-/- mice presented multilevel conduction blocks, as attested by PR and QRS lengthening in surface ECGs and confirmed by intracardiac exploration. Trpm4-/-mice also exhibited Luciani-Wenckebach atrioventricular blocks, which were reduced following atropine infusion, suggesting paroxysmal parasympathetic overdrive. In addition, Trpm4-/- mice exhibited shorter action potentials in atrial cells. This shortening was unrelated to modifications of the voltage-gated Ca2+ or K+ currents involved in the repolarizing phase. Conclusions TRPM4 has pleiotropic roles in the heart, including the regulation of conduction and cellular electrical activity

  4. Exercise-induced rhabdomyolysis.

    PubMed

    Hutton, Joseph; Wellington, Daniel; Miller, Steven

    2016-01-01

    We report the case of a 34 year-old man who developed exercise-induced rhabdomyolysis after unaccustomed high-intensity exercise. Subclinical rhabdomyolysis is common after heavy exercise, yet it is uncommon for patients to seek medical advice. The presentation is variable and despite potentially life-threatening complications the diagnosis may be easily missed by patients and healthcare professionals. A high-index of suspicion is critical to avoid missing the diagnosis. We summarise the current knowledge, clinical course, complications and management of exercise-induced rhabdomyolysis. PMID:27657164

  5. Cardiac Hypertrophy in Mice with Long-Chain Acyl-CoA Dehydrogenase (LCAD) or Very Long-Chain Acyl-CoA Dehydrogenase (VLCAD) Deficiency

    PubMed Central

    Cox, Keith B.; Liu, Jian; Tian, Liqun; Barnes, Stephen; Yang, Qinglin; Wood, Philip A.

    2009-01-01

    Cardiac hypertrophy is a common finding in human patients with inborn errors of long-chain fatty acid oxidation. Mice with either very long-chain acyl-CoA dehydrogenase deficiency (VLCAD−/−) or long-chain acyl-CoA dehydrogenase deficiency (LCAD−/−) develop cardiac hypertrophy. Cardiac hypertrophy, initially measured using heart/body weight ratios, was manifested most severely in LCAD−/− male mice. VLCAD−/− mice, as a group, showed a mild increase in normalized cardiac mass (8.8% hypertrophy compared to all wild-type [WT] mice). In contrast, LCAD−/− mice as a group showed more severe cardiac hypertrophy (32.2% increase compared to all WT mice). Based on a clear male predilection, we investigated the role of dietary plant estrogenic compounds commonly found in mouse diets due to soy or alfalfa components providing natural phytoestrogens or isoflavones in cardioprotection of LCAD−/− mice. Male LCAD−/− mice fed an isoflavone-free test diet had more severe cardiac hypertrophy (58.1% hypertrophy compared to WT mice fed the same diet. There were no significant differences in the female groups fed any of the diets. Echocardiography measurement performed on male LCAD deficient mice fed a standard diet at ~3 months of age confirmed the substantial cardiac hypertrophy in these mice compared with WT controls. Left ventricular wall thickness of interventricular septum and posterior wall was remarkably increased in LCAD−/− mice compared with that of WT controls. Accordingly, the calculated LV mass after normalization to body weight was increased about 40% in the LCAD−/− mice compared with WT mice. In summary, we found that metabolic cardiomyopathy, expressed as hypertrophy, developed in mice due to either VLCAD deficiency or LCAD deficiency; however, LCAD deficiency was the most profound and appeared to be attenuated either by endogenous estrogen in females or phytoestrogens in the diet as isoflavones in males. PMID:19736549

  6. Carnitine Palmitoyltransferase-1b (CPT1b) Deficiency Aggravates Pressure-Overload-Induced Cardiac Hypertrophy due to Lipotoxicity

    PubMed Central

    He, Lan; Kim, Teayoun; Long, Qinqiang; Liu, Jian; Wang, Peiyong; Zhou, Yiqun; Ding, Yishu; Prasain, Jeevan; Wood, Philip A.; Yang, Qinglin

    2012-01-01

    Background Carnitine palmitoyltransferase 1(CPT1) is a rate-limiting step of mitochondrial β-oxidation by controlling the mitochondrial uptake of long-chain acyl-CoAs. The muscle isoform, CPT1b, is the predominant isoform expressed in the heart. It has been suggested that inhibiting CPT-1 activity by specific CPT-1 inhibitors exerts protective effects against cardiac hypertrophy and heart failure. However, clinical and animal studies have shown mixed results, thereby posting concerns on the safety of this class of drugs. Preclinical studies using genetically modified animal models should provide a better understanding of targeting CPT1 in order to evaluate it as a safe and effective therapeutic approach. Methods and Results Heterozygous CPT1b knockout mice (CPT1b+/−) were subjected to transverse aorta constriction (TAC)-induced pressure-overload. These mice showed overtly normal cardiac structure/function under the basal condition. Under a severe pressure-overload condition induced by two weeks of transverse aorta constriction (TAC), CPT1b+/− mice were susceptible to premature death with congestive heart failure. Under a milder pressure-overload condition, CPT1b+/− mice exhibited exacerbated cardiac hypertrophy and remodeling compared with that in wild-type littermates. There were more pronounced impairments of cardiac contraction with greater eccentric cardiac hypertrophy in CPT1b+/− than in controlled mice. Moreover, the CPT1b+/− heart exhibited exacerbated mitochondrial abnormalities and myocardial lipid accumulation with elevated triglycerides and ceramide content, leading to greater cardiomyocytes apoptosis. Conclusions We conclude that CPT1b deficiency can cause lipotoxicity in the heart under pathological stress, leading to exacerbation of cardiac pathology. Therefore, caution should be applied in the clinical use of CPT-1 inhibitors. PMID:22932257

  7. Angiotensin type 1 (AT1) and type 2 (AT2) receptors mediate the increase in TGF-beta1 in thyroid hormone-induced cardiac hypertrophy.

    PubMed

    Diniz, G P; Carneiro-Ramos, M S; Barreto-Chaves, M L M

    2007-04-01

    Increased thyroid hormone (TH) levels are known to induce cardiac hypertrophy. Some studies have provided evidence for a functional link between angiotensin II (ANG II) and transforming growth factor beta1 (TGF-beta1) in the heart, both being able to also induce cardiac hypertrophy. However, the contribution of this growth factor activated directly by TH or indirectly by ANG II in cardiac hypertrophy development remains unknown. To analyze the possible role of TGF-beta1 in cardiac hypertrophy induced by TH and also to evaluate if the TGF-beta1 effect is mediated by ANG II receptors, we employed Wistar rats separated into control, hypothyroid (hypo) and hyperthyroid (T4 - 10) groups combined or not with ANG II receptor blockers (losartan or PD123319). Serum levels of T3 and T4, systolic pressure and heart rate confirmed the thyroid state of the groups. The T4 - 10 group presented a significant increase in cardiac TGF-beta1 levels; however, TGF-beta1 levels in the hypo group did not change in relation to the control. Inhibition of the increase in cardiac TGF-beta1 levels was observed in the groups treated with T4 in association with losartan or PD123319 when compared to the T4 - 10 group. These results demonstrate for the first time the TH-modulated induction of cardiac TGF-beta1 in cardiac hypertrophy, and that this effect is mediated by ANG II receptors. PMID:17206447

  8. Concerted Regulation of cGMP and cAMP Phosphodiesterases in Early Cardiac Hypertrophy Induced by Angiotensin II

    PubMed Central

    Mokni, Walid; Keravis, Thérèse; Etienne-Selloum, Nelly; Walter, Alison; Kane, Modou O.; Schini-Kerth, Valérie B.; Lugnier, Claire

    2010-01-01

    Left ventricular hypertrophy leads to heart failure and represents a high risk leading to premature death. Cyclic nucleotides (cAMP and cGMP) play a major role in heart contractility and cyclic nucleotide phosphodiesterases (PDEs) are involved in different stages of advanced cardiac diseases. We have investigated their contributions in the very initial stages of left ventricular hypertrophy development. Wistar male rats were treated over two weeks by chronic infusion of angiotensin II using osmotic mini-pumps. Left cardiac ventricles were used as total homogenates for analysis. PDE1 to PDE5 specific activities and protein and mRNA expressions were explored. Rats developed arterial hypertension associated with a slight cardiac hypertrophy (+24%). cAMP-PDE4 activity was specifically increased while cGMP-PDE activities were broadly increased (+130% for PDE1; +76% for PDE2; +113% for PDE5) and associated with increased expressions for PDE1A, PDE1C and PDE5A. The cGMP-PDE1 activation by Ca2+/CaM was reduced. BNP expression was increased by 3.5-fold, while NOX2 expression was reduced by 66% and AMP kinase activation was increased by 64%. In early cardiac hypertrophy induced by angiotensin II, all specific PDE activities in left cardiac ventricles were increased, favoring an increase in cGMP hydrolysis by PDE1, PDE2 and PDE5. Increased cAMP hydrolysis was related to PDE4. We observed the establishment of two cardioprotective mechanisms and we suggest that these mechanisms could lead to increase intracellular cGMP: i) increased expression of BNP could increase “particulate” cGMP pool; ii) increased activation of AMPK, subsequent to increase in PDE4 activity and 5′AMP generation, could elevate “soluble” cGMP pool by enhancing NO bioavailability through NOX2 down-regulation. More studies are needed to support these assumptions. Nevertheless, our results suggest a potential link between PDE4 and AMPK/NOX2 and they point out that cGMP-PDEs, especially PDE1 and PDE2

  9. MicroRNA-26a protects against cardiac hypertrophy via inhibiting GATA4 in rat model and cultured cardiomyocytes.

    PubMed

    Liu, Yan; Wang, Zhiqian; Xiao, Wenliang

    2016-09-01

    Pathological cardiac hypertrophy is characterized by deleterious changes developed in cardiovascular diseases, whereas microRNAs (miRNAs) are involved in the mediation of cardiac hypertrophy. To investigate the role of microRNA-26a (miR-26a) in regulating cardiac hypertrophy and its functioning mechanisms, overexpression and suppression of miR‑26a via its mimic and inhibitor in a transverse abdominal aortic constriction (TAAC)-induced rat model and in angiotensin II (Ang II)-induced cardiomyocytes (CMs) was performed. In the rat model, the heart weight (HW) compared with the body weight (BW), the CM area, and expression of the hypertrophy‑associated factors, atrial natriuretic factor (ANF) and β‑myosin heavy chain (β‑MHC), were assessed. In CMs, the protein synthesis rate was determined using a leucine incorporation assay. Mutation of the GATA‑binding protein 4 (GATA4) 3'‑untranslated region (UTR) and overexpression of GATA4 were performed to confirm whether GATA4 is the target of miR‑26a. The results indicated that miR-26a was significantly downregulated in the heart tissue of the rat model, as well as in Ang II‑induced CMs (P<0.05). The TAAC-induced rat model exhibited a higher HW/BW ratio, a larger CM area, and higher expression levels of ANF and β‑MHC. CMs, upon Ang II treatment, also demonstrated a larger CM area, higher levels of ANF and β‑MHC, as well as accelerated protein synthesis. miR‑26a was not able to regulate GATA4 with mutations in the 3'‑UTR, indicating that GATA4 was the direct target of miR‑26a. Overexpression of GATA4 abrogated the inhibitory functions of miR‑26a in cardiac hypertrophy. Taken together, the present study suggested an anti‑hypertrophic role of miR‑26a in cardiac hypertrophy, possibly via inhibition of GATA4. These findings may be useful in terms of facilitating cardiac treatment, with potential therapeutic targets and strategies. PMID:27485101

  10. HAND1 and HAND2 are expressed in the adult-rodent heart and are modulated during cardiac hypertrophy.

    PubMed

    Thattaliyath, Bijoy D; Livi, Carolina B; Steinhelper, Mark E; Toney, Glenn M; Firulli, Anthony B

    2002-10-01

    The HAND basic Helix-Loop-Helix (bHLH) transcription factors are essential for normal cardiac and extraembryonic development. Although highly evolutionarily conserved genes, HAND cardiac expression patterns differ across species. Mouse expression of HAND1 and HAND2 was reported absent in the adult heart. Human HAND genes are expressed in the adult heart and HAND1 expression is downregulated in cardiomyopathies. As rodent and human expression profiles are inconsistent, we re-examined expression of HAND1 and HAND2 in adult-rodent hearts. HAND1 and HAND2 are expressed in adult-rodent hearts and HAND2 is expressed in the atria. Induction of cardiac hypertrophy shows modulation of HAND expression, corresponding with observations in human cardiomyopathy. The downregulation of HAND expression observed in rodent hypertrophy and human cardiomyopathy may reflect a permissive role allowing, cardiomyocytes to reinitiate the fetal gene program and initiate the adaptive physiological changes that allow the heart to compensate (hypertrophy) for the increase in afterload.

  11. Puerarin Attenuates Cardiac Hypertrophy Partly Through Increasing Mir-15b/195 Expression and Suppressing Non-Canonical Transforming Growth Factor Beta (Tgfβ) Signal Pathway

    PubMed Central

    Zhang, Xiuzhou; Liu, Yuxiang; Han, Qingliang

    2016-01-01

    Background Previous studies demonstrated that puerarin has therapeutic effects on cardiac hypertrophy. This study aimed to explore whether the effect of puerarin on attenuating cardiac hypertrophy is related to regulation of microRNAs (miRNAs) and the transforming growth factor beta (TGFβ) signal pathway. Material/Methods The therapeutic effect of puerarin was assessed using an angiotensin (Ang) II-induced heart hypertrophy model in mice. The primary cardiomyocytes were used as an in vitro model. MiR-15 family expression was quantified using qRT-PCR analysis. The expression of the genes involved in canonical and non-canonical TGFβ signal pathways was measured using qRT-PCR and Western blot analysis. In vitro cardiac hypertrophic features were assessed by quantifying cardiac hypertrophic genes and measurement of cell surface, protein synthesis, and total protein content. Results Puerarin attenuated cardiac hypertrophy and increased miR-15b and miR-195 expression in the mouse cardiac hypertrophy model and in primary cardiomyocytes. It suppressed both canonical and non-canonical TGFβ signal pathways, partially through miR-15b and miR-195. Puerarin reduced mRNA expression of cardiac hypertrophic genes, reduced cell surface area, and lowered the rate of protein synthesis and the total protein content induced by Ang II. Knockdown of endogenous miR-15b and miR-195 partly abrogated these effects. Knockdown of endogenous p38, but not Smad2/3/4, presented similar effects as miR-15b. Conclusions Puerarin administration enhances miR-15b and miR-195 expression in an Ang II-induced cardiac hypertrophy model, through which it suppresses both canonical and non-canonical TGFβ signal pathways at the same time. However, the effect of puerarin on attenuating cardiac hypertrophy is mainly through the non-canonical TGFβ pathway. PMID:27145790

  12. Oxidative stress and redox signalling in cardiac hypertrophy and heart failure

    PubMed Central

    Seddon, Mike; Looi, Yee H; Shah, Ajay M

    2007-01-01

    Substantial evidence suggests the involvement of oxidative stress in the pathophysiology of congestive heart failure and its antecedent conditions such as cardiac hypertrophy and adverse remodelling after MI. Oxidative stress describes an imbalance between antioxidant defences and the production of reactive oxygen species (ROS), which at high levels cause cell damage but at lower levels induce subtle changes in intracellular signalling pathways (termed redox signalling). ROS are derived from many sources including mitochondria, xanthine oxidase, uncoupled nitric oxide synthases and NADPH oxidases. The latter enzymes are especially important in redox signalling, being implicated in the pathophysiology of hypertension and atherosclerosis, and activated by diverse pathologically relevant stimuli. We review the contribution of ROS to heart failure pathophysiology and discuss potential therapies that may specifically target detrimental redox signalling. Indeed, drugs such as ACE inhibitors and statins may act in part through such mechanisms. A better understanding of redox signalling mechanisms may enable the development of new targeted therapeutic strategies rather than the non‐specific antioxidant approaches that have to date been disappointing in clinical trials. PMID:16670100

  13. Overview of MicroRNAs in Cardiac Hypertrophy, Fibrosis, and Apoptosis

    PubMed Central

    Wang, Juan; Liew, Oi Wah; Richards, Arthur Mark; Chen, Yei-Tsung

    2016-01-01

    MicroRNAs (miRNAs) are non-coding RNAs that play essential roles in modulating the gene expression in almost all biological events. In the past decade, the involvement of miRNAs in various cardiovascular disorders has been explored in numerous in vitro and in vivo studies. In this paper, studies focused upon the discovery of miRNAs, their target genes, and functionality are reviewed. The selected miRNAs discussed herein have regulatory effects on target gene expression as demonstrated by miRNA/3′ end untranslated region (3′UTR) interaction assay and/or gain/loss-of-function approaches. The listed miRNA entities are categorized according to the biological relevance of their target genes in relation to three cardiovascular pathologies, namely cardiac hypertrophy, fibrosis, and apoptosis. Furthermore, comparison across 86 studies identified several candidate miRNAs that might be of particular importance in the ontogenesis of cardiovascular diseases as they modulate the expression of clusters of target genes involved in the progression of multiple adverse cardiovascular events. This review illustrates the involvement of miRNAs in diverse biological signaling pathways and provides an overview of current understanding of, and progress of research into, of the roles of miRNAs in cardiovascular health and disease. PMID:27213331

  14. Inhibition of class I histone deacetylases blunts cardiac hypertrophy through TSC2-dependent mTOR repression

    PubMed Central

    Morales, Cyndi R.; Li, Dan L.; Pedrozo, Zully; May, Herman I.; Jiang, Nan; Kyrychenko, Viktoriia; Cho, Geoffrey; Kim, Soo Young; Wang, Zhao V.; Rotter, David; Rothermel, Beverly A.; Schneider, Jay W.; Lavandero, Sergio; Gillette, Thomas G.; Hill, Joseph A.

    2016-01-01

    Altering chromatin structure through histone posttranslational modifications has emerged as a key driver of transcriptional responses in cells. Modulation of these transcriptional responses by pharmacological inhibition of class I histone deacetylases (HDACs), a group of chromatin remodeling enzymes, has been successful in blocking the growth of some cancer cell types. These inhibitors also attenuate the pathogenesis of pathological cardiac remodeling by blunting and even reversing pathological hypertrophy. The mechanistic target of rapamycin (mTOR) is a critical sensor and regulator of cell growth that as part of mTOR complex I (mTORC1) drives changes in protein synthesis and metabolism in both pathological and physiological hypertrophy. Here, we demonstrated through pharmacological and genetic methods that inhibition of class I HDACs suppressed pathological cardiac hypertrophy through inhibition of mTOR activity. Mice genetically silenced for HDAC1 and HDAC2 had a reduced hypertrophic response to TAC and showed reduced mTOR activity. We determined that the abundance of tuberous sclerosis complex 2 (TSC2), an mTOR inhibitor, was increased through a transcriptional mechanism in cardiomyocytes when class I HDACs were inhibited. In neonatal rat cardiomyocytes, loss of TSC2 abolished HDAC-dependent inhibition of mTOR activity, and increased expression of TSC2 was sufficient to reduce hypertrophy in response to phenylephrine. These findings point to mTOR and TSC2-dependent control of mTOR as critical components of the mechanism by which HDAC inhibitors blunt pathological cardiac growth. These results also suggest a strategy to modulate mTOR activity and facilitate the translational exploitation of HDAC inhibitors in heart disease. PMID:27048565

  15. Intermittent cardiac overload results in adaptive hypertrophy and provides protection against left ventricular acute pressure overload insult.

    PubMed

    Moreira-Gonçalves, Daniel; Henriques-Coelho, Tiago; Fonseca, Hélder; Ferreira, Rita; Padrão, Ana Isabel; Santa, Cátia; Vieira, Sara; Silva, Ana Filipa; Amado, Francisco; Leite-Moreira, Adelino; Duarte, José Alberto

    2015-09-01

    The present study aimed to test whether a chronic intermittent workload could induce an adaptive cardiac phenotype Chronic intermittent workload induced features of adaptive hypertrophy This was paralleled by protection against acute pressure overload insult The heart may adapt favourably to balanced demands, regardless of the nature of the stimuli. The present study aimed to test whether submitting the healthy heart to intermittent and tolerable amounts of workload, independently of its nature, could result in an adaptive cardiac phenotype. Male Wistar rats were subjected to treadmill running (Ex) (n = 20), intermittent cardiac overload with dobutamine (ITO) (2 mg kg(-1) , s.c.; n = 20) or placebo administration (Cont) (n = 20) for 5 days week(-1) for 8 weeks. Animals were then killed for histological and biochemical analysis or subjected to left ventricular haemodynamic evaluation under baseline conditions, in response to isovolumetric contractions and to sustained LV acute pressure overload (35% increase in peak systolic pressure maintained for 2 h). Baseline cardiac function was enhanced only in Ex, whereas the response to isovolumetric heartbeats was improved in both ITO and Ex. By contrast to the Cont group, in which rats developed diastolic dysfunction with sustained acute pressure overload, ITO and Ex showed increased tolerance to this stress test. Both ITO and Ex developed cardiomyocyte hypertrophy without fibrosis, no overexpression of osteopontin-1 or β-myosin heavy chain, and increased expression of sarcoplasmic reticulum Ca(2+) protein. Regarding hypertrophic pathways, ITO and Ex showed activation of the protein kinase B/mammalian target of rapamycin pathway but not calcineurin. Mitochondrial complex IV and V activities were also increased in ITO and Ex. Chronic submission to controlled intermittent cardiac overload, independently of its nature, results in an adaptive cardiac phenotype. Features of the cardiac overload, such as the duration and

  16. Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy

    PubMed Central

    Seo, Kinya; Rainer, Peter P.; Shalkey Hahn, Virginia; Lee, Dong-ik; Jo, Su-Hyun; Andersen, Asger; Liu, Ting; Xu, Xiaoping; Willette, Robert N.; Lepore, John J.; Marino, Joseph P.; Birnbaumer, Lutz; Schnackenberg, Christine G.; Kass, David A.

    2014-01-01

    Chronic neurohormonal and mechanical stresses are central features of heart disease. Increasing evidence supports a role for the transient receptor potential canonical channels TRPC3 and TRPC6 in this pathophysiology. Channel expression for both is normally very low but is increased by cardiac disease, and genetic gain- or loss-of-function studies support contributions to hypertrophy and dysfunction. Selective small-molecule inhibitors remain scarce, and none target both channels, which may be useful given the high homology among them and evidence of redundant signaling. Here we tested selective TRPC3/6 antagonists (GSK2332255B and GSK2833503A; IC50, 3–21 nM against TRPC3 and TRPC6) and found dose-dependent blockade of cell hypertrophy signaling triggered by angiotensin II or endothelin-1 in HEK293T cells as well as in neonatal and adult cardiac myocytes. In vivo efficacy in mice and rats was greatly limited by rapid metabolism and high protein binding, although antifibrotic effects with pressure overload were observed. Intriguingly, although gene deletion of TRPC3 or TRPC6 alone did not protect against hypertrophy or dysfunction from pressure overload, combined deletion was protective, supporting the value of dual inhibition. Further development of this pharmaceutical class may yield a useful therapeutic agent for heart disease management. PMID:24453217

  17. Combined TRPC3 and TRPC6 blockade by selective small-molecule or genetic deletion inhibits pathological cardiac hypertrophy.

    PubMed

    Seo, Kinya; Rainer, Peter P; Shalkey Hahn, Virginia; Lee, Dong-Ik; Jo, Su-Hyun; Andersen, Asger; Liu, Ting; Xu, Xiaoping; Willette, Robert N; Lepore, John J; Marino, Joseph P; Birnbaumer, Lutz; Schnackenberg, Christine G; Kass, David A

    2014-01-28

    Chronic neurohormonal and mechanical stresses are central features of heart disease. Increasing evidence supports a role for the transient receptor potential canonical channels TRPC3 and TRPC6 in this pathophysiology. Channel expression for both is normally very low but is increased by cardiac disease, and genetic gain- or loss-of-function studies support contributions to hypertrophy and dysfunction. Selective small-molecule inhibitors remain scarce, and none target both channels, which may be useful given the high homology among them and evidence of redundant signaling. Here we tested selective TRPC3/6 antagonists (GSK2332255B and GSK2833503A; IC50, 3-21 nM against TRPC3 and TRPC6) and found dose-dependent blockade of cell hypertrophy signaling triggered by angiotensin II or endothelin-1 in HEK293T cells as well as in neonatal and adult cardiac myocytes. In vivo efficacy in mice and rats was greatly limited by rapid metabolism and high protein binding, although antifibrotic effects with pressure overload were observed. Intriguingly, although gene deletion of TRPC3 or TRPC6 alone did not protect against hypertrophy or dysfunction from pressure overload, combined deletion was protective, supporting the value of dual inhibition. Further development of this pharmaceutical class may yield a useful therapeutic agent for heart disease management.

  18. CYP2J2 and its metabolites (epoxyeicosatrienoic acids) attenuate cardiac hypertrophy by activating AMPKα2 and enhancing nuclear translocation of Akt1.

    PubMed

    Wang, Bei; Zeng, Hesong; Wen, Zheng; Chen, Chen; Wang, Dao Wen

    2016-10-01

    Cytochrome P450 epoyxgenase 2J2 and epoxyeicosatrienoic acids (EETs) are known to protect against cardiac hypertrophy and heart failure, which involve the activation of 5'-AMP-activated protein kinase (AMPK) and Akt. Although the functional roles of AMPK and Akt are well established, the significance of cross talk between them in the development of cardiac hypertrophy and antihypertrophy of CYP2J2 and EETs remains unclear. We investigated whether CYP2J2 and its metabolites EETs protected against cardiac hypertrophy by activating AMPKα2 and Akt1. Moreover, we tested whether EETs enhanced cross talk between AMPKα2 and phosphorylated Akt1 (p-Akt1), and stimulated nuclear translocation of p-Akt1, to exert their antihypertrophic effects. AMPKα2(-/-) mice that overexpressed CYP2J2 in heart were treated with Ang II for 2 weeks. Interestingly, overexpression of CYP2J2 suppressed cardiac hypertrophy and increased levels of atrial natriuretic peptide (ANP) in the heart tissue and plasma of wild-type mice but not AMPKα2(-/-) mice. The CYP2J2 metabolites, 11,12-EET, activated AMPKα2 to induce nuclear translocation of p-Akt1 selectively, which increased the production of ANP and therefore inhibited the development of cardiac hypertrophy. Furthermore, by co-immunoprecipitation analysis, we found that AMPKα2β2γ1 and p-Akt1 interact through the direct binding of the AMPKγ1 subunit to the Akt1 protein kinase domain. This interaction was enhanced by 11,12-EET. Our studies reveal a novel mechanism in which CYP2J2 and EETs enhanced Akt1 nuclear translocation through interaction with AMPKα2β2γ1 and protect against cardiac hypertrophy and suggest that overexpression of CYP2J2 might have clinical potential to suppress cardiac hypertrophy and heart failure.

  19. Caveolin-3 Overexpression Attenuates Cardiac Hypertrophy via Inhibition of T-type Ca2+ Current Modulated by Protein Kinase Cα in Cardiomyocytes*

    PubMed Central

    Markandeya, Yogananda S.; Phelan, Laura J.; Woon, Marites T.; Keefe, Alexis M.; Reynolds, Courtney R.; August, Benjamin K.; Hacker, Timothy A.; Roth, David M.; Patel, Hemal H.; Balijepalli, Ravi C.

    2015-01-01

    Pathological cardiac hypertrophy is characterized by subcellular remodeling of the ventricular myocyte with a reduction in the scaffolding protein caveolin-3 (Cav-3), altered Ca2+ cycling, increased protein kinase C expression, and hyperactivation of calcineurin/nuclear factor of activated T cell (NFAT) signaling. However, the precise role of Cav-3 in the regulation of local Ca2+ signaling in pathological cardiac hypertrophy is unclear. We used cardiac-specific Cav-3-overexpressing mice and in vivo and in vitro cardiac hypertrophy models to determine the essential requirement for Cav-3 expression in protection against pharmacologically and pressure overload-induced cardiac hypertrophy. Transverse aortic constriction and angiotensin-II (Ang-II) infusion in wild type (WT) mice resulted in cardiac hypertrophy characterized by significant reduction in fractional shortening, ejection fraction, and a reduced expression of Cav-3. In addition, association of PKCα and angiotensin-II receptor, type 1, with Cav-3 was disrupted in the hypertrophic ventricular myocytes. Whole cell patch clamp analysis demonstrated increased expression of T-type Ca2+ current (ICa, T) in hypertrophic ventricular myocytes. In contrast, the Cav-3-overexpressing mice demonstrated protection from transverse aortic constriction or Ang-II-induced pathological hypertrophy with inhibition of ICa, T and intact Cav-3-associated macromolecular signaling complexes. siRNA-mediated knockdown of Cav-3 in the neonatal cardiomyocytes resulted in enhanced Ang-II stimulation of ICa, T mediated by PKCα, which caused nuclear translocation of NFAT. Overexpression of Cav-3 in neonatal myocytes prevented a PKCα-mediated increase in ICa, T and nuclear translocation of NFAT. In conclusion, we show that stable Cav-3 expression is essential for protecting the signaling mechanisms in pharmacologically and pressure overload-induced cardiac hypertrophy. PMID:26170457

  20. Gallic acid prevents isoproterenol-induced cardiac hypertrophy and fibrosis through regulation of JNK2 signaling and Smad3 binding activity

    PubMed Central

    Ryu, Yuhee; Jin, Li; Kee, Hae Jin; Piao, Zhe Hao; Cho, Jae Yeong; Kim, Gwi Ran; Choi, Sin Young; Lin, Ming Quan; Jeong, Myung Ho

    2016-01-01

    Gallic acid, a type of phenolic acid, has been shown to have beneficial effects in inflammation, vascular calcification, and metabolic diseases. The present study was aimed at determining the effect and regulatory mechanism of gallic acid in cardiac hypertrophy and fibrosis. Cardiac hypertrophy was induced by isoproterenol (ISP) in mice and primary neonatal cardiomyocytes. Gallic acid pretreatment attenuated concentric cardiac hypertrophy. It downregulated the expression of atrial natriuretic peptide, brain natriuretic peptide, and beta-myosin heavy chain in vivo and in vitro. Moreover, it prevented interstitial collagen deposition and expression of fibrosis-associated genes. Upregulation of collagen type I by Smad3 overexpression was observed in cardiac myoblast H9c2 cells but not in cardiac fibroblasts. Gallic acid reduced the DNA binding activity of phosphorylated Smad3 in Smad binding sites of collagen type I promoter in rat cardiac fibroblasts. Furthermore, it decreased the ISP-induced phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal regulated kinase (ERK) protein in mice. JNK2 overexpression reduced collagen type I and Smad3 expression as well as GATA4 expression in H9c2 cells and cardiac fibroblasts. Gallic acid might be a novel therapeutic agent for the prevention of cardiac hypertrophy and fibrosis by regulating the JNK2 and Smad3 signaling pathway. PMID:27703224

  1. Cardiac-specific deletion of acetyl CoA carboxylase 2 (ACC2) prevents metabolic remodeling during pressure-overload hypertrophy

    PubMed Central

    Kolwicz, Stephen C.; Olson, David P.; Marney, Luke C.; Garcia-Menendez, Lorena; Synovec, Robert E.; Tian, Rong

    2012-01-01

    Rationale Decreased fatty acid oxidation (FAO) with increased reliance on glucose are hallmarks of metabolic remodeling that occurs in pathological cardiac hypertrophy and is associated with decreased myocardial energetics and impaired cardiac function. To date, it has not been tested whether prevention of the metabolic switch that occurs during the development of cardiac hypertrophy has unequivocal benefits on cardiac function and energetics. Objectives Since malonyl CoA production via acetyl CoA carboxylase 2 (ACC2) inhibits mitochondrial fatty acid transport, we hypothesized that mice with a cardiac-specific deletion of ACC2 (ACC2H−/−) would maintain cardiac fatty acid oxidation (FAO) and improve function and energetics during the development of pressure-overload hypertrophy. Methods and Results ACC2 deletion led to a significant reduction in cardiac malonyl CoA levels. In isolated perfused heart experiments, left ventricular (LV) function and oxygen consumption were similiar in ACC2H−/− mice despite an ~60% increase in FAO compared to controls (CON). After 8 weeks of pressure-overload via transverse aortic constriction (TAC), ACC2H−/− mice exhibited a substrate utilization profile similar to sham animals while CON-TAC hearts had decreased FAO with increased glycolysis and anaplerosis. Myocardial energetics, assessed by 31P NMR spectroscopy, and cardiac function were maintained in ACC2H−/− after 8 weeks of TAC. Furthermore, ACC2H−/−-TAC demonstrated an attenuation of cardiac hypertrophy with a significant reduction in fibrosis relative to CON-TAC. Conclusions These data suggest that reversion to the fetal metabolic profile in chronic pathological hypertrophy is associated with impaired myocardial function and energetics and maintenance of the inherent cardiac metabolic profile and mitochondrial oxidative capacity is a viable therapeutic strategy. PMID:22730442

  2. Exercise-induced anaphylaxis.

    PubMed

    Shimizu, Taro; Tokuda, Yasuharu

    2012-01-01

    A 23-year-old man presented with acute flushing, pruritus and warmth followed by collapse after vigorous exercise in a gymnasium. After resting for 30 min and receiving a rapid infusion of 0.9% sodium chloride, he was finally stable. He admitted that he had a similar experience 5 years earlier during exercise. Based on the patient's history, his symptoms were attributed to exercise-induced anaphylaxis. None of his episodes was associated with any suspicious co-triggers of anaphylaxis. He was successfully discharged from hospital without any complications after receiving guidance on how to prevent this condition. PMID:22669856

  3. Exercise-induced anaphylaxis.

    PubMed

    Shimizu, Taro; Tokuda, Yasuharu

    2012-01-01

    A 23-year-old man presented with acute flushing, pruritus and warmth followed by collapse after vigorous exercise in a gymnasium. After resting for 30 min and receiving a rapid infusion of 0.9% sodium chloride, he was finally stable. He admitted that he had a similar experience 5 years earlier during exercise. Based on the patient's history, his symptoms were attributed to exercise-induced anaphylaxis. None of his episodes was associated with any suspicious co-triggers of anaphylaxis. He was successfully discharged from hospital without any complications after receiving guidance on how to prevent this condition.

  4. Bi-modal dose-dependent cardiac response to tetrahydrobiopterin in pressure-overload induced hypertrophy and heart failure.

    PubMed

    Moens, An L; Ketner, Elizabeth A; Takimoto, Eiki; Schmidt, Tim S; O'Neill, Charles A; Wolin, Michael S; Alp, Nicholas J; Channon, Keith M; Kass, David A

    2011-10-01

    The exogenous administration of tetrahydrobiopterin (BH4), an essential cofactor of nitric oxide synthase (NOS), has been shown to reduce left ventricular hypertrophy, fibrosis, and cardiac dysfunction in mice with pre-established heart disease induced by pressure-overload. In this setting, BH4 re-coupled endothelial NOS (eNOS), with subsequent reduction of NOS-dependent oxidative stress and reversal of maladaptive remodeling. However, recent studies suggest the effective BH4 dosing may be narrower than previously thought, potentially due to its oxidation upon oral consumption. Accordingly, we assessed the dose response of daily oral synthetic sapropterin dihydrochloride (6-R-l-erythro-5,6,7,8-tetrahydrobiopterin, 6R-BH4) on pre-established pressure-overload cardiac disease. Mice (n=64) were administered 0-400mg/kg/d BH4 by ingesting small pre-made pellets (consumed over 15-30 min). In a dose range of 36-200mg/kg/d, 6R-BH4 suppressed cardiac chamber remodeling, hypertrophy, fibrosis, and oxidative stress with pressure-overload. However, at both lower and higher doses, BH4 had less or no ameliorative effects. The effective doses correlated with a higher myocardial BH4/BH2 ratio. However, BH2 rose linearly with dose, and at the 400mg/kg/d, this lowered the BH4/BH2 ratio back toward control. These results expose a potential limitation for the clinical use of BH4, as variability of cellular redox and perhaps heart disease could produce a variable therapeutic window among individuals. This article is part of a special issue entitled ''Key Signaling Molecules in Hypertrophy and Heart Failure.'' PMID:21645517

  5. Vigabatrin Therapy for Infantile Spasms in a Case of Cardiofaciocutaneous Syndrome with Cardiac Hypertrophy Developing during Adrenocorticotropic Hormone Treatment.

    PubMed

    Hatori, Takayuki; Sugiyama, Yohei; Yamashita, Shinichiro; Hirakubo, Yuka; Nonaka, Kazuhito; Ichihashi, Ko

    2016-01-01

    In a patient with cardiofaciocutaneous syndrome complicated by intractable infantile spasms (West syndrome), cardiac hypertrophy developed during adrenocorticotropic hormone treatment. Various types of antiepileptic drugs, intravenous immunoglobulin, thyrotropin releasing hormone, and a ketogenic diet were ineffective in this case. However, vigabatrin both decreased clinical seizures and improved electroencephalogram findings. Although vigabatrin has not been approved for use in Japan, the results in the present case suggest that this drug should be considered as an alternative therapy for cases of infantile spasms associated with syndromes involving cardiomyopathy or its potential risk factors, such as cardiofaciocutaneous syndrome. PMID:27680485

  6. Cyclin D2 induces proliferation of cardiac myocytes and represses hypertrophy

    SciTech Connect

    Busk, Peter K. . E-mail: pkbu@novonordisk.com; Hinrichsen, Rebecca; Bartkova, Jirina; Hansen, Ane H.; Christoffersen, Tue E.H.; Bartek, Jiri; Haunso, Stig

    2005-03-10

    The myocytes of the adult mammalian heart are considered unable to divide. Instead, mitogens induce cardiomyocyte hypertrophy. We have investigated the effect of adenoviral overexpression of cyclin D2 on myocyte proliferation and morphology. Cardiomyocytes in culture were identified by established markers. Cyclin D2 induced DNA synthesis and proliferation of cardiomyocytes and impaired hypertrophy induced by angiotensin II and serum. At the molecular level, cyclin D2 activated CDK4/6 and lead to pRB phosphorylation and downregulation of the cell cycle inhibitors p21{sup Waf1/Cip1} and p27{sup Kip1}. Expression of the CDK4/6 inhibitor p16 inhibited proliferation and cyclin D2 overexpressing myocytes became hypertrophic under such conditions. Inhibition of hypertrophy by cyclin D2 correlated with downregulation of p27{sup Kip1}. These data show that hypertrophy and proliferation are highly related processes and suggest that cardiomyocyte hypertrophy is due to low amounts of cell cycle activators unable to overcome the block imposed by cell cycle inhibitors. Cell cycle entry upon hypertrophy may be converted to cell division by increased expression of activators such as cyclin D2.

  7. Role of α-crystallin B as a regulatory switch in modulating cardiomyocyte apoptosis by mitochondria or endoplasmic reticulum during cardiac hypertrophy and myocardial infarction.

    PubMed

    Mitra, A; Basak, T; Datta, K; Naskar, S; Sengupta, S; Sarkar, S

    2013-04-04

    Cardiac hypertrophy and myocardial infarction (MI) are two major causes of heart failure with different etiologies. However, the molecular mechanisms associated with these two diseases are not yet fully understood. So, this study was designed to decipher the process of cardiomyocyte apoptosis during cardiac hypertrophy and MI in vivo. Our study revealed that mitochondrial outer membrane channel protein voltage-dependent anion channel-1 (VDAC1) was upregulated exclusively during cardiac hypertrophy, whereas 78 kDa glucose-regulated protein (GRP78) was exclusively upregulated during MI, which is an important upstream regulator of the endoplasmic reticulum (ER) stress pathway. Further downstream analysis revealed that mitochondrial pathway of apoptosis is instrumental in case of hypertrophy, whereas ER stress-induced apoptosis is predominant during MI, which was confirmed by treatment with either siRNA against VDAC1 or ER stress inhibitor tauroursodeoxycholic acid (TUDCA). Very interestingly, our data also showed that the expression and interaction of small heat-shock protein α-crystallin B (CRYAB) with VDAC1 was much more pronounced during MI compared with either hypertrophy or control. The study demonstrated for the first time that two different organelles--mitochondria and ER have predominant roles in mediating cardiomyocyte death signaling during hypertrophy and MI, respectively, and activation of CRYAB acts as a molecular switch in bypassing mitochondrial pathway of apoptosis during MI.

  8. Insulin over expression induces heart abnormalities via reactive oxygen species regulation, might be step towards cardiac hypertrophy.

    PubMed

    Mushtaq, S; Ali, T; Gul, M; Javed, Q; Emanueli, C; Murtaza, I

    2015-01-01

    Insulin is known to regulate blood—glucose level and promote its utilization as an energy source in cardiac tissues under normal physiological conditions as well as stimulates signaling pathways that involved cell growth and proliferation. Although recently insulin generated free radicals via NAD(P)H has been documented but the molecular mechanism is still under investigation. The aim of present study is to elucidate the reactive oxygen species (ROS) dependent possible role of insulin in cardiac abnormalities, including hypertrophy by regulation of antioxidants enzyme (SOD) activity. In the current study, 60 cardiac patients and 50 healthy individuals as well as the rat model with insulin administration were under investigation. Oxidant, anti—oxidant biochemical assays, hypertrophic marker expression via immunobloting and histopathology were performed. We observed statistically significant elevation of the reactive oxygen species level in the serum of patients as well as in the insulin administrated rat model, a mild expression of cardiac marker in experimental models along with abnormal histopathology of hearts. However, super oxide dismutase free radical scavenger activity was down regulated upon insulin treatment compared to control rats. Conclusively, the present study showed that over expression of insulin might stimulate cardiac hypertrophic signal via up regulation of free radicals and down regulation of antioxidants enzymes including SOD activity.

  9. Genetic background influences adaptation to cardiac hypertrophy and Ca(2+) handling gene expression.

    PubMed

    Waters, Steve B; Diak, Douglass M; Zuckermann, Matthew; Goldspink, Paul H; Leoni, Lara; Roman, Brian B

    2013-01-01

    Genetic variability has a profound effect on the development of cardiac hypertrophy in response to stress. Consequently, using a variety of inbred mouse strains with known genetic profiles may be powerful models for studying the response to cardiovascular stress. To explore this approach we looked at male C57BL/6J and 129/SvJ mice. Hemodynamic analyses of left ventricular pressures (LVPs) indicated significant differences in 129/SvJ and C57BL/6J mice that implied altered Ca(2+) handling. Specifically, 129/SvJ mice demonstrated reduced rates of relaxation and insensitivity to dobutamine (Db). We hypothesized that altered expression of genes controlling the influx and efflux of Ca(2+) from the sarcoplasmic reticulum (SR) was responsible and investigated the expression of several genes involved in maintaining the intracellular and sarcoluminal Ca(2+) concentration using quantitative real-time PCR analyses (qRT-PCR). We observed significant differences in baseline gene expression as well as different responses in expression to isoproterenol (ISO) challenge. In untreated control animals, 129/SvJ mice expressed 1.68× more ryanodine receptor 2(Ryr2) mRNA than C57BL/6J mice but only 0.37× as much calsequestrin 2 (Casq2). After treatment with ISO, sarco(endo)plasmic reticulum Ca(2+)-ATPase(Serca2) expression was reduced nearly two-fold in 129/SvJ while expression in C57BL/6J was stable. Interestingly, β (1) adrenergic receptor(Adrb1) expression was lower in 129/SvJ compared to C57BL/6J at baseline and lower in both strains after treatment. Metabolically, the brain isoform of creatine kinase (Ckb) was up-regulated in response to ISO in C57BL/6J but not in 129/SvJ. These data suggest that the two strains of mice regulate Ca(2+) homeostasis via different mechanisms and may be useful in developing personalized therapies in human patients.

  10. New Approaches to Prevent LEOPARD Syndrome-associated Cardiac Hypertrophy by Specifically Targeting Shp2-dependent Signaling*

    PubMed Central

    Schramm, Christine; Edwards, Michelle A.; Krenz, Maike

    2013-01-01

    In LEOPARD syndrome (LS) patients, mutations in the protein tyrosine phosphatase Shp2 cause hypertrophic cardiomyopathy. The prohypertrophic effects of mutant Shp2 are mediated downstream by hyperactivation of mammalian target of rapamycin. Our goal was to further define the signaling cascade that is essential for the underlying pathomechanism, thus expanding the list of potential future therapeutic targets. Using cultured neonatal rat cardiomyocytes with adenoviral gene delivery and pharmacological inhibitors, we found that hypertrophy induced by a particularly aggressive LS mutation in Shp2 depends on hyperactivation of Akt and focal adhesion kinase as well as mammalian target of rapamycin. Dissecting domain-specific functions of Shp2 using double and truncation mutants, we determined that the hypertrophic effects of mutant Shp2 depend on the two SH2 domains and on an intact catalytic center. The latter finding prompted us to test the efficacy of a Shp2 inhibitor targeted directly at the catalytic pocket. This compound, PHPS1, effectively prevented mutant Shp2-induced hypertrophy. In summary, we identified three novel targets for pharmacological therapy of LS-associated cardiac hypertrophy. Of particular importance is the finding that intervention directly at the mutant Shp2 protein is effective because this would facilitate custom-tailored therapeutic approaches for patients carrying LS mutations in Shp2. PMID:23673659

  11. VCP746, a novel A1 adenosine receptor biased agonist, reduces hypertrophy in a rat neonatal cardiac myocyte model.

    PubMed

    Chuo, Chung H; Devine, Shane M; Scammells, Peter J; Krum, Henry; Christopoulos, Arthur; May, Lauren T; White, Paul J; Wang, Bing H

    2016-10-01

    VCP746 is a novel A1 adenosine receptor (A1 AR) biased agonist previously shown to be cytoprotective with no effect on heart rate. The aim of this study was to investigate the potential anti-hypertrophic effect of VCP746 in neonatal rat cardiac myocytes (NCM). NCM hypertrophy was stimulated with interleukin (IL)-1β (10 ng/mL), tumour necrosis factor (TNF)-α (10 ng/mL) or Ang II (100 nmol/L) and was assessed by (3) H-leucine incorporation assay. VCP746 significantly inhibited IL-1β-, TNF-α- and Ang II-stimulated NCM hypertrophy as determined by (3) H-leucine incorporation. The anti-hypertrophic effect of VCP746 was also more potent than that of the prototypical A1 AR agonist, N(6) -cyclopentyladenosine (CPA). Further investigation with the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell viability assay showed that neither CPA nor VCP746 had any effect on cell viability, confirming that the reduction in (3) H-leucine incorporation mediated by CPA and VCP746 was not due to a reduction in cell viability. IL-1β, TNF-α and Ang II were also shown to increase the mRNA expression of hypertrophy biomarkers, ANP, β-MHC and α-SKA in NCM. Treatment with VCP746 at concentrations as low as 1 nmol/L suppressed mRNA expression of ANP, β-MHC and α-SKA stimulated by IL-1β, TNF-α or Ang II, demonstrating the broad mechanistic basis of the potent anti-hypertrophic effect of VCP746. This study has shown that the novel A1 AR agonist, VCP746, is able to attenuate cardiac myocyte hypertrophy. As such, VCP746 is potentially useful as a pharmacological agent in attenuating cardiac remodelling, especially in the post-myocardial infarction setting, given its previously established cytoprotective properties.

  12. Cardiomyocyte-Specific Deletion of Endothelin Receptor A Rescues Ageing-Associated Cardiac Hypertrophy and Contractile Dysfunction: Role of Autophagy

    PubMed Central

    Ceylan-Isik, Asli F.; Dong, Maolong; Zhang, Yingmei; Dong, Feng; Turdi, Subat; Nair, Sreejayan; Yanagisawa, Masashi; Ren, Jun

    2013-01-01

    Cardiac ageing is manifested as cardiac remodeling and contractile dysfunction although precise mechanisms remain elusive. This study was designed to examine the role of endothelin-1 (ET-1) in ageing-associated myocardial morphological and contractile defects. Echocardiographic and cardiomyocyte contractile properties were evaluated in young (5–6 mo) and old (26–28 mo) C57BL/6 wild-type and cardiomyocyte-specific ETA receptor knockout (ETAKO) mice. Cardiac ROS production and histology were examined. Our data revealed that ETAKO mice displayed an improved survival. Ageing increased plasma levels of ET-1 and Ang II, compromised cardiac function (fractional shortening, cardiomyocyte peak shortening, maximal velocity of shortening/ relengthening and prolonged relengthening) and intracellular Ca2+ handling (reduced intracellular Ca2+ release and decay), the effects of which with the exception of ET-1 and Ang II levels was improved by ETAKO. Histological examination displayed cardiomyocyte hypertrophy and interstitial fibrosis associated with cardiac remodeling in aged C57 mice, which were alleviated in ETAKO mice. Ageing promoted ROS generation, protein damage, ER stress, upregulated GATA4, ANP, NFATc3, and the autophagosome cargo protein p62, downregulated intracellular Ca2+ regulatory proteins SERCA2a and phospholamban as well as the autophagic markers Beclin-1, Atg7, Atg5 and LC3BII, which were ablated by ETAKO. ET-1 triggered a decrease in autophagy and increased hypertrophic markers in vitrothe effect of which were reversed by the ETA receptor antagonist BQ123 and the autophagy inducer rapamycin. Antagonism of ETA but not ETB receptor rescued cardiac ageing, which was negated by autophagy inhibition. Taken together, our data suggest that cardiac ETA receptor ablation protects against ageing-associated myocardial remodeling and contractile dysfunction possibly through autophagy regulation. PMID:23381122

  13. Genome-Wide Gene Expression Analysis Shows AKAP13-Mediated PKD1 Signaling Regulates the Transcriptional Response to Cardiac Hypertrophy

    PubMed Central

    Johnson, Keven R.; Nicodemus-Johnson, Jessie; Spindler, Mathew J.

    2015-01-01

    In the heart, scaffolding proteins such as A-Kinase Anchoring Proteins (AKAPs) play a crucial role in normal cellular function by serving as a signaling hub for multiple protein kinases including protein kinase D1 (PKD1). Under cardiac hypertrophic conditions AKAP13 anchored PKD1 activates the transcription factor MEF2 leading to subsequent fetal gene activation and hypertrophic response. We used an expression microarray to identify the global transcriptional response in the hearts of wild-type mice expressing the native form of AKAP13 compared to a gene-trap mouse model expressing a truncated form of AKAP13 that is unable to bind PKD1 (AKAP13-ΔPKD1). Microarray analysis showed that AKAP13-ΔPKD1 mice broadly failed to exhibit the transcriptional profile normally associated with compensatory cardiac hypertrophy following trans-aortic constriction (TAC). The identified differentially expressed genes in WT and AKAP13-ΔPKD1 hearts are vital for the compensatory hypertrophic response to pressure-overload and include myofilament, apoptotic, and cell growth/differentiation genes in addition to genes not previously identified as affected by AKAP13-anchored PKD1. Our results show that AKAP13-PKD1 signaling is critical for transcriptional regulation of key contractile, cell death, and metabolic pathways during the development of compensatory hypertrophy in vivo. PMID:26192751

  14. Characterizing the role of endothelin-1 in the progression of cardiac hypertrophy in aryl hydrocarbon receptor (AhR) null mice

    SciTech Connect

    Lund, Amie K.; Goens, M. Beth; Nunez, Bethany A.; Walker, Mary K. . E-mail: mkwalker@unm.edu

    2006-04-15

    The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor characterized to play a role in detection and adaptation to environmental stimuli. Genetic deletion of AhR results in hypertension, and cardiac hypertrophy and fibrosis, associated with elevated plasma angiotensin II (Ang II) and endothelin-1 (ET-1), thus AhR appears to contribute to cardiovascular homeostasis. In these studies, we tested the hypothesis that ET-1 mediates cardiovascular pathology in AhR null mice via ET{sub A} receptor activation. First, we determine the time courses of cardiac hypertrophy, and of plasma and tissue ET-1 expression in AhR wildtype and null mice. AhR null mice exhibited increases in heart-to-body weight ratio and age-related expression of cardiac hypertrophy markers, {beta}-myosin heavy chain ({beta}-MHC), and atrial natriuretic factor (ANF), which were significant at 2 months. Similarly, plasma and tissue ET-1 expression was significantly elevated at 2 months and increased further with age. Second, AhR null mice were treated with ET{sub A} receptor antagonist, BQ-123 (100 nmol/kg/day), for 7, 28, or 58 days and blood pressure, cardiac fibrosis, and cardiac hypertrophy assessed, respectively. BQ-123 for 7 days significantly reduced mean arterial pressure in conscious, catheterized mice. BQ-123 for 28 days significantly reduced the histological appearance of cardiac fibrosis. Treatment for 58 days significantly reduced cardiac mass, assessed by heart weight, echocardiography, and {beta}-MHC and ANF expression; and reduced cardiac fibrosis as determined by osteopontin and collagen I mRNA expression. These findings establish ET-1 and the ET{sub A} receptor as primary determinants of hypertension and cardiac pathology in AhR null mice.

  15. HIF-1α and PPARγ during physiological cardiac hypertrophy induced by pregnancy: Transcriptional activities and effects on target genes.

    PubMed

    Soñanez-Organis, José G; Godoy-Lugo, José A; Hernández-Palomares, Magally L E; Rodríguez-Martínez, Daniel; Rosas-Rodríguez, Jesús A; González-Ochoa, Guadalupe; Virgen-Ortiz, Adolfo; Ortiz, Rudy M

    2016-10-15

    Hypoxia inducible factor 1-α (HIF-1α) and peroxisome proliferator-activated receptor γ (PPARγ) are transcription factors that activate genes involved in cellular metabolism. Physiological cardiac hypertrophy induced by pregnancy initiates compensatory changes in metabolism. However, the contributions of HIF-1α and PPARγ to this physiological status and to its reversible, metabolic process (postpartum) in the heart are not well-defined. Therefore, the aim of the present study was to evaluate the transcriptional activities of HIF-1α and PPARγ in the left ventricle of rats before, during, and after pregnancy. Furthermore, the effects of pregnancy on target genes of glycolysis and glycerol-lipid biosynthesis, key regulatory enzymes, and metabolic intermediates were evaluated. The activities of HIF-1α and PPARγ increased 1.2- and 1.6-fold, respectively, during pregnancy, and decreased to basal levels during postpartum. Expressions of mRNA for glucose transport 1 (GLUT1), enzymes of glycolysis (HK2, PFKM, and GAPDH) and glycerol-lipid biosynthesis (GPAT and GPD1) increased 1.6- to 14-fold during pregnancy and returned to basal levels postpartum. The increase in GPD1 expression translated to an increase in its activity, but such was not the case for GAPDH suggesting that post-translational regulation of these proteins is differential during pregnancy. Glycolytic (glucose, lactate, and DHAP) and glycerol-lipid biosynthesis (G3P and FFA) intermediates increased with pregnancy and were maintained postpartum. The results demonstrate that pregnancy-induced, physiological cardiac hypertrophy activates the expression of genes involved in glycolytic and glycerol-lipid biosynthesis suggesting that the shift in cardiac metabolism is mediated by the activation of HIF-1α and PPARγ.

  16. Low carbohydrate/high-fat diet attenuates cardiac hypertrophy, remodeling, and altered gene expression in hypertension

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effects of dietary fat intake on the development of left ventricular hypertrophy and accompanying structural and molecular remodeling in response to hypertension are not understood. The present study compared the effects of a high-fat versus a low-fat diet on development of left ventricular hype...

  17. Olmesartan Inhibits Cardiac Hypertrophy in Mice Overexpressing Renin Independently of Blood Pressure: Its Beneficial Effects on ACE2/Ang(1-7)/Mas Axis and NADPH Oxidase Expression.

    PubMed

    Tanno, Tomohiro; Tomita, Hirofumi; Narita, Ikuyo; Kinjo, Takahiko; Nishizaki, Kimitaka; Ichikawa, Hiroaki; Kimura, Yoshihiro; Tanaka, Makoto; Osanai, Tomohiro; Okumura, Ken

    2016-06-01

    Enhanced renin-angiotensin activity causes hypertension and cardiac hypertrophy. The angiotensin (Ang)-converting enzyme (ACE)2/Ang(1-7)/Mas axis pathway functions against Ang II type 1 receptor (AT1R) signaling. We investigated whether olmesartan (Olm), an AT1R blocker, inhibits cardiac hypertrophy independently of blood pressure, and evaluated the potential mechanisms. The 3- to 4-month-old male mice overexpressing renin in the liver (Ren-Tg) were given Olm (5 mg/kg/d) and hydralazine (Hyd) (3.5 mg/kg/d) orally for 2 months. Systolic blood pressure was higher in the Ren-Tg mice than in wild-type littermates. Olm and Hyd treatments lowered systolic blood pressure to the same degree. However, cardiac hypertrophy, evaluated by echocardiography, heart weight, cross-sectional area of cardiomyocytes, and gene expression, was inhibited by only Olm treatment, but not by Hyd. Olm treatment reversed decreased gene expressions of ACE2 and Mas receptor of Ren-Tg mice and inhibited enhanced NADPH oxidase (Nox)4 expression and reactive oxygen species, whereas Hyd treatment had no influence on them. These findings indicate that Olm treatment inhibits cardiac hypertrophy independently of blood pressure, not only through its original AT1R blockade but partly through enhancement of ACE2/Ang(1-7)/Mas axis and suppression of Nox4 expression. PMID:26886190

  18. A peptide of the RGS domain of GRK2 binds and inhibits Gαq to suppress pathological cardiac hypertrophy and dysfunction

    PubMed Central

    Schumacher, Sarah M.; Gao, Erhe; Cohen, Maya; Lieu, Melissa; Chuprun, J. Kurt; Koch, Walter J.

    2016-01-01

    G protein–coupled receptor (GPCR) kinases (GRKs) play a critical role in cardiac function by regulating GPCR activity. GRK2 suppresses GPCR signaling by phosphorylating and desensitizing active GPCRs, and through protein-protein interactions that uncouple GPCRs from their downstream effectors. Several GRK2 interacting partners, including Gαq, promote maladaptive cardiac hypertrophy, which leads to heart failure, a leading cause of mortality worldwide. The regulator of G protein signaling (RGS) domain of GRK2 interacts with and inhibits Gαq in vitro. We generated TgβARKrgs mice with cardiac-specific expression of the RGS domain of GRK2 and subjected these mice to pressure overload to trigger adaptive changes that lead to heart failure. Unlike their nontransgenic littermate controls, the TgβARKrgs mice exhibited less hypertrophy as indicated by reduced left ventricular wall thickness, decreased expression of genes linked to cardiac hypertrophy, and less adverse structural remodeling. The βARKrgs peptide, but not endogenous GRK2, interacted with Gαq and interfered with signaling through this G protein. These data support the development of GRK2-based therapeutic approaches to prevent hypertrophy and heart failure. PMID:27016525

  19. Molecular changes in the early phase of renin-dependent cardiac hypertrophy in hypertensive cyp1a1ren-2 transgenic rats.

    PubMed

    Kunert-Keil, Christiane; Landsberger, Martin; Jantzen, Franziska; Niessner, Felix; Kroemer, Heyo K; Felix, Stephan B; Brinkmeier, Heinrich; Peters, Jörg

    2013-03-01

    An early response to high arterial pressure is the development of cardiac hypertrophy. Functional and transcriptional regulation of ion channels and Ca(2+) handling proteins are involved in this process but the relative contribution of each is unclear. In this study, we investigated the expression of genes involved in action potential generation and Ca(2+) homeostasis of cardiomyocytes in hypertensive cyp1a1ren-2 transgenic rats. In this model, the transgene prorenin was induced by indole-3-carbinol for 2 weeks allowing the induction of hypertension. Electrophysiological recordings from cardiomyocytes of hypertensive rats revealed a slight increase in membrane capacitance consistent with cellular hypertrophy. L-type calcium current density was reduced by 30%. Left ventricles of hypertensive rats showed a significant increase in transcript and protein levels of the cation channel TRPC6 and FK506-binding protein, whereas levels of SERCA2 and voltage-dependent potassium channels K(v)4.2 and K(v)4.3 were found to be decreased. Further, a marked nuclear localization of the transcription factors GATA4 and NFATC4 was observed in cardiac tissue of hypertensive rats. The cyp1a1ren-2 transgenic rat thus appears to be a valid model to investigate early changes in cardiac hypertrophy. This study points to roles for TRPC6, FK506BP, SERCA2, K(v)4.2, and K(v)4.3 in the development of cardiac hypertrophy. PMID:23060473

  20. Hypertrophy, gene expression, and beating of neonatal cardiac myocytes are affected by microdomain heterogeneity in 3D

    PubMed Central

    Curtis, Matthew W.; Sharma, Sadhana; Desai, Tejal A.

    2011-01-01

    Cardiac myocytes are known to be influenced by the rigidity and topography of their physical microenvironment. It was hypothesized that 3D heterogeneity introduced by purely physical microdomains regulates cardiac myocyte size and contraction. This was tested in vitro using polymeric microstructures (G′=1.66 GPa) suspended with random orientation in 3D by a soft Matrigel matrix (G′=22.9 Pa). After 10 days of culture, the presence of 100 μm-long microstructures in 3D gels induced fold increases in neonatal rat ventricular myocyte size (1.61±0.06, p<0.01) and total protein/cell ratios (1.43± 0.08, p<0.05) that were comparable to those induced chemically by 50 μM phenylephrine treatment. Upon attachment to microstructures, individual myocytes also had larger cross-sectional areas (1.57±0.05, p<0.01) and higher average rates of spontaneous contraction (2.01±0.08, p<0.01) than unattached myocytes. Furthermore, the inclusion of microstructures in myocyte-seeded gels caused significant increases in the expression of beta-1 adrenergic receptor (β1-AR, 1.19±0.01), cardiac ankyrin repeat protein (CARP, 1.26±0.02), and sarcoplasmic reticulum calcium-ATPase (SERCA2, 1.59±0.12, p<0.05), genes implicated in hypertrophy and contractile activity. Together, the results demonstrate that cardiac myocyte behavior can be controlled through local 3D microdomains alone. This approach of defining physical cues as independent features may help to advance the elemental design considerations for scaffolds in cardiac tissue engineering and therapeutic microdevices. PMID:20668947

  1. Pressure overload stimulated cardiac hypertrophy leads to a rapid decrease in the mRNA for creatine kinase

    SciTech Connect

    Boheler, K.; Popovich, B.; Dillmann, W.H.

    1987-05-01

    Cardiac hypertrophy (CH) leads to a decrease in creatine kinase (CK) enzymatic activity. To determine if the mRNA for CK also decreases with CH, they performed the following studies. Cardiac RNA was isolated from rats subjected to either abdominal aortic stenosis (AS) or sham surgery. Through Northern blot analysis, total cardiac RNA was quantitated with a CK specific /sup 32/P-labelled cDNA clone. At 3 and 8 days post-constriction, the mRNA for CK decreases by 54.6 +/- 7% and 65.3 +/- 18% respectively, whereas the heart weight increases by 19% and 37% relative to controls. Further studies indicate that CK mRNA also decreases by 41.8% in hypothyroid rats (Tx) but decreases by a total of 68.1% in Tx rats subjected to 8 days of AS. Pressure overload stimulated CH leads to a rapid decrease in CK mRNA in normal and Tx rats. This CK mRNA decrease may account for the decreased efficiency of contraction seen in CH.

  2. Mitogen-activated protein kinases (p38 and c-Jun NH2-terminal kinase) are differentially regulated during cardiac volume and pressure overload hypertrophy.

    PubMed

    Sopontammarak, Somkiat; Aliharoob, Assad; Ocampo, Catherina; Arcilla, Rene A; Gupta, Mahesh P; Gupta, Madhu

    2005-01-01

    -MHC expression was downregulated in PO but remained unchanged in VO hypertrophy hearts. Thus, these results demonstrate differential activation of MAPKs in two types of cardiac hypertrophy and this, in part, may contribute to differential expression of cardiac muscle gene expression, giving rise to unique cardiac phenotype associated with different hemodynamic overloads.

  3. Deletion of Kvβ1.1 subunit leads to electrical and haemodynamic changes causing cardiac hypertrophy in female murine hearts

    PubMed Central

    Tur, Jared; Chapalamadugu, Kalyan C.; Padawer, Timothy; Badole, Sachin L.; Kilfoil, Peter J.; Bhatnagar, Aruni; Tipparaju, Srinivas M.

    2016-01-01

    Cardiovascular disease is the leading cause of death and debility in women in the USA, and cardiac arrhythmias are a major concern. Voltage-gated potassium (Kv) channels along with the binding partners; Kvβ subunits are major regulators of the action potential (AP) shape and duration (APD). The regulation of Kv channels by the Kvβ1 subunit is unknown in female hearts. In the present study, we hypothesized that the Kvβ1 subunit is an important regulator of female cardiac physiology. To test this hypothesis, we ablated (knocked out; KO) the KCNAB1 isoform 1 (Kvβ1.1) subunit in mice and evaluated cardiac function and electrical activity by using ECG, monophasic action potential recordings and echocardiography. Our results showed that the female Kvβ1.1 KO mice developed cardiac hypertrophy, and the hearts were structurally different, with enlargement and increased area. The electrical derangements caused by Kvβ1.1 KO in female mice included long QTc and QRS intervals along with increased APD (APD20–90% repolarization). The male Kvβ1.1 KO mice did not develop cardiac hypertrophy, but they showed long QTc and prolonged APD. Molecular analysis showed that several genes that support cardiac hypertrophy were significantly altered in Kvβ1.1 KO female hearts. In particular, myosin heavy chain αexpression was significantly elevated in Kvβ1.1 KO mouse heart. Using a small interfering RNA strategy, we identified that knockdown of Kvβ1 increases myosin heavy chain αexpression in H9C2 cells. Collectively, changes in molecular and cell signalling pathways clearly point towards a distinct electrical and structural remodelling consistent with cardiac hypertrophy in the Kvβ1.1 KO female mice. PMID:27038296

  4. Establishment of a prediction model of changing trends in cardiac hypertrophy disease based on microarray data screening

    PubMed Central

    MA, CAIYAN; YING, YONGJUN; ZHANG, TIANJIE; ZHANG, WEI; PENG, HUI; CHENG, XUFENG; XU, LIN; TONG, HONG

    2016-01-01

    The aim of the present study was to construct a mathematical model to predict the changing trends of cardiac hypertrophy at gene level. Microarray data were downloaded from Gene Expression Omnibus database (accession, GSE21600), which included 35 samples harvested from the heart of Wistar rats on postoperative days 1 (D1 group), 6 (D6 group) and 42 (D42 group) following aorta ligation and sham operated Wistar rats, respectively. Each group contained six samples, with the exception of the samples harvested from the aorta ligated group after 6 days, where n=5. Differentially expressed genes (DEGs) were identified using a Limma package in R. Hierarchical clustering analysis was performed on common DEGs in order to construct a linear equation between the D1 and D42 groups, using linear discriminant analysis. Subsequent verification was performed using receiver operating characteristic (ROC) curve and the measurement data at day 42. A total of 319, 44 and 57 DEGs were detected in D1, D6 and D42 sample groups, respectively. AKIP1, ANKRD23, LTBP2, TGF-β2 and TNFRSF12A were identified as common DEGs in all groups. The predicted linear equation between D1 and D42 group was calculated to be y=1.526×-186.671. Assessment of the ROC curve demonstrated that the area under the curve was 0.831, with a specificity and sensitivity of 0.8. As compared with the predictive and measurement data at day 42, the consistency of the two sets of data was 76.5%. In conclusion, the present model may contribute to the early prediction of changing trends in cardiac hypertrophy disease at gene level. PMID:27168795

  5. Adiponectin ameliorates hyperglycemia-induced cardiac hypertrophy and dysfunction by concomitantly activating Nrf2 and Brg1.

    PubMed

    Li, Haobo; Yao, Weifeng; Irwin, Michael G; Wang, Tingting; Wang, Shuang; Zhang, Liangqing; Xia, Zhengyuan

    2015-07-01

    Hyperglycemia-induced oxidative stress is implicated in the development of cardiomyopathy in diabetes that is associated with reduced adiponectin (APN) and heme oxygenase-1 (HO-1). Brahma-related gene 1 (Brg1) assists nuclear factor-erythroid-2-related factor-2 (Nrf2) to activate HO-1 to increase myocardial antioxidant capacity in response to oxidative stress. We hypothesized that reduced adiponectin (APN) impairs HO-1 induction which contributes to the development of diabetic cardiomyopathy, and that supplementation of APN may ameliorate diabetic cardiomyopathy by activating HO-1 through Nrf2 and Brg1 in diabetes. Control (C) and streptozotocin-induced diabetic (D) rats were untreated or treated with APN adenovirus (1×10(9) pfu) 3 weeks after diabetes induction and examined and terminated 1 week afterward. Rat left ventricular functions were assessed by a pressure-volume conductance system, before the rat hearts were removed to perform histological and biochemical assays. Four weeks after diabetes induction, D rats developed cardiac hypertrophy evidenced as increased ratio of heart weight to body weight, elevated myocardial collagen I content, and larger cardiomyocyte cross-sectional area (all P<0.05 vs C). Diabetes elevated cardiac oxidative stress (increased 15-F2t-isoprostane, 4-hydroxynonenal generation, 8-hydroxy-2'-deoxyguanosine, and superoxide anion generation), increased myocardial apoptosis, and impaired cardiac function (all P<0.05 vs C). In D rats, myocardial HO-1 mRNA and protein expression were reduced which was associated with reduced Brg1 and nuclear Nrf2 protein expression. All these changes were either attenuated or prevented by APN. In primarily cultured cardiomyocytes (CMs) isolated from D rats or in the embryonic rat cardiomyocytes cell line H9C2 cells incubated with high glucose (HG, 25 mM), supplementation of recombined globular APN (gAd, 2μg/mL) reversed HG-induced reductions of HO-1, Brg1, and nuclear Nrf2 protein expression and

  6. Increased rat cardiac angiotensin converting enzyme activity and mRNA expression in pressure overload left ventricular hypertrophy. Effects on coronary resistance, contractility, and relaxation.

    PubMed Central

    Schunkert, H; Dzau, V J; Tang, S S; Hirsch, A T; Apstein, C S; Lorell, B H

    1990-01-01

    We compared the activity and physiologic effects of cardiac angiotensin converting enzyme (ACE) using isovolumic hearts from male Wistar rats with left ventricular hypertrophy due to chronic experimental aortic stenosis and from control rats. In response to the infusion of 3.5 X 10(-8) M angiotensin I in the isolated buffer perfused beating hearts, the intracardiac fractional conversion to angiotensin II was higher in the hypertrophied hearts compared with the controls (17.3 +/- 4.1% vs 6.8 +/- 1.3%, P less than 0.01). ACE activity was also significantly increased in the free wall, septum, and apex of the hypertrophied left ventricle, whereas ACE activity from the nonhypertrophied right ventricle of the aortic stenosis rats was not different from that of the control rats. Northern blot analyses of poly(A)+ purified RNA demonstrated the expression of ACE mRNA, which was increased fourfold in left ventricular tissue obtained from the hearts with left ventricular hypertrophy compared with the controls. In both groups, the intracardiac conversion of angiotensin I to angiotensin II caused a comparable dose-dependent increase in coronary resistance. In the control hearts, angiotensin II activation had no significant effect on systolic or diastolic function; however, it was associated with a dose-dependent depression of left ventricular diastolic relaxation in the hypertrophied hearts. These novel observations suggest that cardiac ACE is induced in hearts with left ventricular hypertrophy, and that the resultant intracardiac activation of angiotensin II may have differential effects on myocardial relaxation in hypertrophied hearts relative to controls. Images PMID:2174912

  7. PULMONARY ARTERIAL DISEASE ASSOCIATED WITH RIGHT-SIDED CARDIAC HYPERTROPHY AND CONGESTIVE HEART FAILURE IN ZOO MAMMALS HOUSED AT 2,100 M ABOVE SEA LEVEL.

    PubMed

    Juan-Sallés, Carles; Martínez, Liliana Sofía; Rosas-Rosas, Arely G; Parás, Alberto; Martínez, Osvaldo; Hernández, Alejandra; Garner, Michael M

    2015-12-01

    Subacute and chronic mountain sickness of humans and the related brisket disease of cattle are characterized by right-sided congestive heart failure in individuals living at high altitudes as a result of sustained hypoxic pulmonary hypertension. Adaptations to high altitude and disease resistance vary among species, breeds, and individuals. The authors conducted a retrospective survey of right-sided cardiac hypertrophy associated with pulmonary arterial hypertrophy or arteriosclerosis in zoo mammals housed at Africam Safari (Puebla, México), which is located at 2,100 m above sea level. Seventeen animals with detailed pathology records matched the study criterion. Included were 10 maras (Dolichotis patagonum), 2 cotton-top tamarins (Saguinus oedipus oedipus), 2 capybaras (Hydrochaeris hydrochaeris), and 1 case each of Bennet's wallaby (Macropus rufogriseus), nilgai antelope (Boselaphus tragocamelus), and scimitar-horned oryx (Oryx dammah). All had right-sided cardiac hypertrophy and a variety of arterial lesions restricted to the pulmonary circulation and causing arterial thickening with narrowing of the arterial lumen. Arterial lesions most often consisted of medial hypertrophy or hyperplasia of small and medium-sized pulmonary arteries. All maras also had single or multiple elevated plaques in the pulmonary arterial trunk consisting of fibrosis, accompanied by chondroid metaplasia in some cases. Both antelopes were juvenile and died with right-sided congestive heart failure associated with severe pulmonary arterial lesions. To the authors' knowledge, this is the first description of cardiac and pulmonary arterial disease in zoo mammals housed at high altitudes.

  8. PULMONARY ARTERIAL DISEASE ASSOCIATED WITH RIGHT-SIDED CARDIAC HYPERTROPHY AND CONGESTIVE HEART FAILURE IN ZOO MAMMALS HOUSED AT 2,100 M ABOVE SEA LEVEL.

    PubMed

    Juan-Sallés, Carles; Martínez, Liliana Sofía; Rosas-Rosas, Arely G; Parás, Alberto; Martínez, Osvaldo; Hernández, Alejandra; Garner, Michael M

    2015-12-01

    Subacute and chronic mountain sickness of humans and the related brisket disease of cattle are characterized by right-sided congestive heart failure in individuals living at high altitudes as a result of sustained hypoxic pulmonary hypertension. Adaptations to high altitude and disease resistance vary among species, breeds, and individuals. The authors conducted a retrospective survey of right-sided cardiac hypertrophy associated with pulmonary arterial hypertrophy or arteriosclerosis in zoo mammals housed at Africam Safari (Puebla, México), which is located at 2,100 m above sea level. Seventeen animals with detailed pathology records matched the study criterion. Included were 10 maras (Dolichotis patagonum), 2 cotton-top tamarins (Saguinus oedipus oedipus), 2 capybaras (Hydrochaeris hydrochaeris), and 1 case each of Bennet's wallaby (Macropus rufogriseus), nilgai antelope (Boselaphus tragocamelus), and scimitar-horned oryx (Oryx dammah). All had right-sided cardiac hypertrophy and a variety of arterial lesions restricted to the pulmonary circulation and causing arterial thickening with narrowing of the arterial lumen. Arterial lesions most often consisted of medial hypertrophy or hyperplasia of small and medium-sized pulmonary arteries. All maras also had single or multiple elevated plaques in the pulmonary arterial trunk consisting of fibrosis, accompanied by chondroid metaplasia in some cases. Both antelopes were juvenile and died with right-sided congestive heart failure associated with severe pulmonary arterial lesions. To the authors' knowledge, this is the first description of cardiac and pulmonary arterial disease in zoo mammals housed at high altitudes. PMID:26667539

  9. p21(CIP1/WAF1)-dependent inhibition of cardiac hypertrophy in response to Angiotensin II involves Akt/Myc and pRb signaling.

    PubMed

    Hauck, Ludger; Grothe, Daniela; Billia, Filio

    2016-09-01

    The cyclin-dependent kinase inhibitor p21(CIP1/WAF1) (p21) is highly expressed in the adult heart. However, in response to stress, its expression is downregulated. Therefore, we investigated the role of p21 in the regulation of cardiac hypertrophic growth. At 2 months of age, p21 knockout mice (p21KO) lack an overt cardiac phenotype. In contrast, by 10 months of age, p21KO developed age-dependent cardiac hypertrophy and heart failure. After 3 weeks of trans-aortic banding (TAB), the heart/body weight ratio in 11 week old p21KO mice increased by 57%, as compared to 42% in wild type mice indicating that p21KO have a higher susceptibility to pressure overload-induced cardiac hypertrophy. We then chronically infused 8 week old wild type mice with Angiotensin II (2.0mg/kg/min) or saline subcutaneously by osmotic pumps for 14 days. Recombinant TAT conjugated p21 protein variants (10mg/kg body weight) or saline were intraperitoneally injected once daily for 14 days into Angiotensin II and saline-infused animals. Angiotensin II treated mice developed pathological cardiac hypertrophy with an average increase of 38% in heart/body weight ratios, as compared to saline-treated controls. Reconstitution of p21 function by TAT.p21 protein transduction prevented Angiotensin II-dependent development of cardiac hypertrophy and failure. Taken together, our genetic and biochemical data show an important function of p21 in the regulation of growth-related processes in the heart. PMID:27486069

  10. p21(CIP1/WAF1)-dependent inhibition of cardiac hypertrophy in response to Angiotensin II involves Akt/Myc and pRb signaling.

    PubMed

    Hauck, Ludger; Grothe, Daniela; Billia, Filio

    2016-09-01

    The cyclin-dependent kinase inhibitor p21(CIP1/WAF1) (p21) is highly expressed in the adult heart. However, in response to stress, its expression is downregulated. Therefore, we investigated the role of p21 in the regulation of cardiac hypertrophic growth. At 2 months of age, p21 knockout mice (p21KO) lack an overt cardiac phenotype. In contrast, by 10 months of age, p21KO developed age-dependent cardiac hypertrophy and heart failure. After 3 weeks of trans-aortic banding (TAB), the heart/body weight ratio in 11 week old p21KO mice increased by 57%, as compared to 42% in wild type mice indicating that p21KO have a higher susceptibility to pressure overload-induced cardiac hypertrophy. We then chronically infused 8 week old wild type mice with Angiotensin II (2.0mg/kg/min) or saline subcutaneously by osmotic pumps for 14 days. Recombinant TAT conjugated p21 protein variants (10mg/kg body weight) or saline were intraperitoneally injected once daily for 14 days into Angiotensin II and saline-infused animals. Angiotensin II treated mice developed pathological cardiac hypertrophy with an average increase of 38% in heart/body weight ratios, as compared to saline-treated controls. Reconstitution of p21 function by TAT.p21 protein transduction prevented Angiotensin II-dependent development of cardiac hypertrophy and failure. Taken together, our genetic and biochemical data show an important function of p21 in the regulation of growth-related processes in the heart.

  11. Global Transcriptomic Profiling of Cardiac Hypertrophy and Fatty Heart Induced by Long-Term High-Energy Diet in Bama Miniature Pigs

    PubMed Central

    Xia, Jihan; Zhang, Yuanyuan; Xin, Leilei; Kong, Siyuan; Chen, Yaoxing; Yang, Shulin; Li, Kui

    2015-01-01

    A long-term high-energy diet affects human health and leads to obesity and metabolic syndrome in addition to cardiac steatosis and hypertrophy. Ectopic fat accumulation in the heart has been demonstrated to be a risk factor for heart disorders, but the molecular mechanism of heart disease remains largely unknown. Bama miniature pigs were fed a high-fat, high-sucrose diet (HFHSD) for 23 months. These pigs developed symptoms of metabolic syndrome and showed cardiac steatosis and hypertrophy with a greatly increased body weight (2.73-fold, P<0.01), insulin level (4.60-fold, P<0.01), heart weight (1.82-fold, P<0.05) and heart volume (1.60-fold, P<0.05) compared with the control pigs. To understand the molecular mechanisms of cardiac steatosis and hypertrophy, nine pig heart cRNA samples were hybridized to porcine GeneChips. Microarray analyses revealed that 1,022 genes were significantly differentially expressed (P<0.05, ≥1.5-fold change), including 591 up-regulated and 431 down-regulated genes in the HFHSD group relative to the control group. KEGG analysis indicated that the observed heart disorder involved the signal transduction-related MAPK, cytokine, and PPAR signaling pathways, energy metabolism-related fatty acid and oxidative phosphorylation signaling pathways, heart function signaling-related focal adhesion, axon guidance, hypertrophic cardiomyopathy and actin cytoskeleton signaling pathways, inflammation and apoptosis pathways, and others. Quantitative RT-PCR assays identified several important differentially expressed heart-related genes, including STAT3, ACSL4, ATF4, FADD, PPP3CA, CD74, SLA-8, VCL, ACTN2 and FGFR1, which may be targets of further research. This study shows that a long-term, high-energy diet induces obesity, cardiac steatosis, and hypertrophy and provides insights into the molecular mechanisms of hypertrophy and fatty heart to facilitate further research. PMID:26161779

  12. Prostaglandin E Receptor Subtype 4 Signaling in the Heart: Role in Ischemia/Reperfusion Injury and Cardiac Hypertrophy

    PubMed Central

    Cai, Yin; Tang, Eva Hoi Ching; Ma, Haichun

    2016-01-01

    Prostaglandin E2 (PGE2) is an endogenous lipid mediator, produced from the metabolism of arachidonic acids, upon the sequential actions of phospholipase A2, cyclooxygenases, and prostaglandin E synthases. The various biological functions governed by PGE2 are mediated through its four distinct prostaglandin E receptors (EPs), designated as EP1, EP2, EP3, and EP4, among which the EP4 receptor is the one most widely distributed in the heart. The availability of global or cardiac-specific EP4 knockout mice and the development of selective EP4 agonists/antagonists have provided substantial evidence to support the role of EP4 receptor in the heart. However, like any good drama, activation of PGE2-EP4 signaling exerts both protective and detrimental effects in the ischemic heart disease. Thus, the primary object of this review is to provide a comprehensive overview of the current progress of the PGE2-EP4 signaling in ischemic heart diseases, including cardiac hypertrophy and myocardial ischemia/reperfusion injury. A better understanding of PGE2-EP4 signaling should promote the development of more effective therapeutic approaches to treat the ischemic heart diseases without triggering unwanted side effects. PMID:27190998

  13. Chronic high fat diet induces cardiac hypertrophy and fibrosis in mice

    PubMed Central

    Wang, Zhi; Li, Liaoliao; Zhao, Huijuan; Peng, Shuling; Zuo, Zhiyi

    2015-01-01

    Background Obesity can cause pathological changes in organs. We determined the effects of chronic high fat diet (HFD) and intermittent fasting, a paradigm providing organ protection, on mouse heart. Methods Seven-week old CD1 male mice were randomly assigned to control, HFD and intermittent fasting groups. Control mice had free access to regular diet (RD). RD was provided every other day to mice in the intermittent fasting group. Mice in HFD group had free access to HFD. Their left ventricles were harvested 11 months after they had been on these diet regimens. Results HFD increased cardiomyocyte cross-section area and fibrosis. HFD decreased active caspase 3, an apoptosis marker, and the ratio of microtubule-associated protein 1A/1B-light chain 3 (LC3) II/LC3 I, an autophagy marker. HFD increased the phospho-glycogen synthase kinase-3β (GSK-3β) at Ser9, a sign of GSK-3β inhibition. Nuclear GATA binding protein 4 and yes-associated protein, two GSK-3β targeting transcription factors that can induce hypertrophy-related gene expression, were increased in HFD-fed mice. Mice on intermittent fasting did not have these changes except for the increased active caspase 3 and decreased ratio of LC3II/LC3I. Conclusions These results suggest that chronic HFD induces myocardial hypertrophy and fibrosis, which may be mediated by GSK-3β inhibition. PMID:25982698

  14. Cell contact as an independent factor modulating cardiac myocyte hypertrophy and survival in long-term primary culture

    NASA Technical Reports Server (NTRS)

    Clark, W. A.; Decker, M. L.; Behnke-Barclay, M.; Janes, D. M.; Decker, R. S.

    1998-01-01

    Cardiac myocytes maintained in cell culture develop hypertrophy both in response to mechanical loading as well as to receptor-mediated signaling mechanisms. However, it has been shown that the hypertrophic response to these stimuli may be modulated through effects of intercellular contact achieved by maintaining cells at different plating densities. In this study, we show that the myocyte plating density affects not only the hypertrophic response and features of the differentiated phenotype of isolated adult myocytes, but also plays a significant role influencing myocyte survival in vitro. The native rod-shaped phenotype of freshly isolated adult myocytes persists in an environment which minimizes myocyte attachment and spreading on the substratum. However, these conditions are not optimal for long-term maintenance of cultured adult cardiac myocytes. Conditions which promote myocyte attachment and spreading on the substratum, on the other hand, also promote the re-establishment of new intercellular contacts between myocytes. These contacts appear to play a significant role in the development of spontaneous activity, which enhances the redevelopment of highly differentiated contractile, junctional, and sarcoplasmic reticulum structures in the cultured adult cardiomyocyte. Although it has previously been shown that adult cardiac myocytes are typically quiescent in culture, the addition of beta-adrenergic agonists stimulates beating and myocyte hypertrophy, and thereby serves to increase the level of intercellular contact as well. However, in densely-plated cultures with intrinsically high levels of intercellular contact, spontaneous contractile activity develops without the addition of beta-adrenergic agonists. In this study, we compare the function, morphology, and natural history of adult feline cardiomyocytes which have been maintained in cultures with different levels of intercellular contact, with and without the addition of beta-adrenergic agonists

  15. Cardiac hypertrophy as a result of long-term thyroxine therapy and thyrotoxicosis.

    PubMed Central

    Ching, G. W.; Franklyn, J. A.; Stallard, T. J.; Daykin, J.; Sheppard, M. C.; Gammage, M. D.

    1996-01-01

    OBJECTIVES: To define the effects of long-term thyroxine treatment upon heart rate, blood pressure, left ventricular systolic function, and left ventricular size, as well as indices of autonomic function, and to compare findings with those in patients with thyrotoxicosis before and during treatment. DESIGN: Cross sectional study of patients prescribed thyroxine long term (n = 11), patients with thyrotoxicosis studied at presentation (n = 23), compared with controls (n = 25); longitudinal study of patients with thyrotoxicosis studied at presentation and serially after beginning antithyroid drug treatment (n = 23). METHODS: 24 h ambulatory monitoring of pulse and blood pressure, echocardiography, forearm plethysmography, and autonomic function tests. RESULTS: Long-term thyroxine treatment in doses that reduced serum thyrotrophin to below normal had no effect on blood pressure, heart rate, left ventricular systolic function or stroke volume index, but was associated with an 18.4% increase in left ventricular mass index (mean (SEM) 101.9 (3.09) g/m2 v controls 86.1 (4.61), P < 0.01). Thryoxine treatment, like thyrotoxicosis, had no effect on tests of autonomic function. Untreated thyrotoxicosis resulted in pronounced changes in systolic and diastolic blood pressure and an increase in heart rate during waking and sleep. Patients with thyrotoxicosis at presentation had an increase in left ventricular systolic function (ejection fraction 70.5 (1.66)% v 65.4 (1.79), P < 0.01; fractional shortening 40.4 (1.54)% v 35.6 (1.46), P < 0.01), increased stroke volume index (45.9 (2.4) ml/m2 v 36.6 (1.7), P < 0.001), and an increase in forearm blood flow, and decrease in vascular resistance. They had a similar degree of left ventricular hypertrophy to that associated with thyroxine treatment (99.3 (4.03) g/m2); all changes were corrected within 2 months by antithyroid drugs. CONCLUSIONS: The development of left ventricular hypertrophy in patients receiving thyroxine in the absence

  16. New gender-specific partition values for ECG criteria of left ventricular hypertrophy: recalibration against cardiac MRI.

    PubMed

    Alfakih, Khaled; Walters, Kevin; Jones, Tim; Ridgway, John; Hall, Alistair S; Sivananthan, Mohan

    2004-08-01

    ECG criteria for left ventricular hypertrophy (LVH) were mostly validated using left ventricular mass (LVM) as measured by M-mode echocardiography. LVM as measured by cardiac MRI has been demonstrated to be much more accurate and reproducible. We reevaluated the sensitivity and specificity of 4 ECG criteria of LVH against LVM as measured by cardiac MRI. Patients with systemic hypertension (n=288) and 60 normal volunteers had their LVM measured using a 1.5-Tesla MRI system. A 12-lead ECG was recorded, and 4 ECG criteria were evaluated: Sokolow-Lyon voltage, Cornell voltage, Cornell product, and Sokolow-Lyon product. Based on a cardiac MRI normal range, 39.9% of the hypertensive males and 36.7% of the hypertensive females had elevated LVM index. At a specificity of 95%, the Sokolow-Lyon product criterion had the highest sensitivity in females (26.2%), the Cornell criterion had the highest sensitivity in males (26.2%), and the Cornell product criteria had a relatively high sensitivity in both males and females (25.0% and 23.8%). Receiver operating characteristic curves showed the Cornell and Cornell product criteria to be superior for males whereas the Sokolow-Lyon product criterion was superior for females. Comparing the mean LVM index values of the subjects who were ECG LVH positive to the normal volunteers indicated that the ECG LVH criteria detect individuals with an LVM index substantially above the normal range. We have redefined the partition values for 4 different ECG LVH criteria, according to gender, and found that they detect subjects with markedly elevated LVM index.

  17. Astragalus polysaccharide inhibits isoprenaline-induced cardiac hypertrophy via suppressing Ca²⁺-mediated calcineurin/NFATc3 and CaMKII signaling cascades.

    PubMed

    Dai, Hongliang; Jia, Guizhi; Liu, Xin; Liu, Zhining; Wang, Hongxin

    2014-07-01

    Pathological cardiac hypertrophy induced by increased sympathetic drive can subsequently lead to congestive heart failure, which represents the major cause of morbidity and mortality worldwide. Astragalus polysaccharide (APS) is an active compound extracted from Chinese herb Astragalus membranaceus (AM), a frequently used "Qi-invigorating" herbal medicine in traditional medicine broadly used for the treatment of cardiovascular and other diseases. Currently, little is known about the effect of APS on cardiac hypertrophy. In the present study, we aimed to investigate its effect on cardiac hypertrophy and to clarify its possible mechanisms. In vitro cardiac hypertrophic model induced by isoprenaline (ISO) was employed to explore the anti-hypertrophic action of APS. We found that 10 μM ISO treatment for 48 h caused cultured cardiomyocytes to undergo significant increases in cell surface area, total protein content, protein synthesis as well as the expression of hypertrophic markers, including atrial natriuretic peptide (ANP) and B-type natriuretic peptide (BNP), which were effectively inhibited by APS in a dose dependent manner. Moreover, we found that APS pretreatment alleviated the augment of intracellular free calcium during cardiac hypertrophy induced by ISO. Our further study revealed that the upregulated expression of calcineurin, translocation of nuclear factor of activated T cells, cytoplasmic 3 (NFATc3) into nucleus and activation of calmodulin kinase II (reflected by p-CaMKII) were dose dependently suppressed by the application of APS. According to this research, APS exerted its anti-hypertrophic action via inhibiting Ca(2+)-mediated calcineurin/NFATc3 and CaMKII signaling cascades, which provided new insights into the application of APS to the therapy of heart diseases.

  18. Dipyridamole-thallium tests are predictive of severe cardiac arrhythmias in patients with left ventricular hypertrophy

    SciTech Connect

    Saragoca, M.A.; Canziani, M.E.; Gil, M.A.; Castiglioni, M.L.; Cassiolato, J.L.; Barbieri, A.; Lima, V.C.; Draibe, S.A.; Martinez, E.E. )

    1991-01-01

    In a population of patients with chronic renal failure (CRF) and a high prevalence of left ventricular hypertrophy (LVH) undergoing chronic hemodialysis, the authors investigated the association between the results of dipyridamole-thallium tests (DTTs) and the occurrence of ventricular arrhythmias. They observed a positive significant association between positive DTTs and the occurrence of severe forms of ventricular arrhythmias. A significant association was also observed between the presence of severe LVH and the occurrence of severe ventricular arrhythmias. However, no association was found between the presence of LVH and the positivity of the DTT. As most of their patients with positive DTTs had unimpaired coronary circulations, they conclude that positive DTTs, although falsely indicative of impaired myocardial blood supply, does have an important clinical relevance, indicating increased risk of morbidity (and, possibly, mortality) due to ventricular arrhythmias in a population of CRF patients submitted to chronic renal function replacement program.

  19. Assessment of cardiac function and rheumatic heart disease in children with adenotonsillar hypertrophy.

    PubMed Central

    Odemis, Ender; Catal, Ferhat; Karadag, Ahmet; Kurtaran, Hanifi; Ark, Nebil; Mete, Emin

    2006-01-01

    Our aim was to evaluate whether adenotonsillar hypertrophy (ATH) is associated with rheumatic heart disease (RHD) in children. Fifty-three patients with ATH and 50 healthy children as a control group were enrolled in the study. Medical history and clinical findings were investigated, and echocardiographies were done by researchers who were unaware of the diagnosis. The two groups were compared. Valvular findings suggesting RHD were encountered in four patients (7.5%) in the ATH group and in two children (4%) in the control group. This difference was not statistically significant (p = 0.098); however, we found physiological mitral regurgitation to be significantly more frequent in the ATH group than in the control group (p = 0.023). ATH did not increase the risk of valvulitis related to RHD regardless of adenoid size and frequency of the infection. To preclude the misdiagnosis of mitral regurgitation that results from RHD, diagnostic criteria for pathological mitral regurgitation should be carefully applied. PMID:17225844

  20. Cardiac energetics in short and long term hypertrophy induced by aortic coarctation.

    PubMed

    Coughlin, P; Gibbs, C L

    1981-11-01

    Hypertrophy was induced in rats by constriction of the abdominal aorta proximal to the coeliac trunk. The effects of both short-term, STH. (2 to 4 days) and long term, LTH (40 to 55 days) hypertrophy were studied by mechanical and myothermic measurements on papillary muscles from the left ventricle. In agreement with other studies aortic coarctation increased the left ventricle to body weight ratio. In isometric experiments it was shown that peak stress development was enhanced in the STH group compared with the control and LTH groups. Active heat production was related to active stress development by linear regression in the control and pressure overload groups. There was no significant difference between the mean slopes of the groups but there was a significant increase in the intercept in the STH group and a decrease in the LTH group. This intercept corresponds to the tension-independent heat component. In isotonic experiments load enthalpy relationships were determined for the different groups and the data for each group were pooled. In the LTH group there was a 19% fall in work output per contraction and a 20% fall in total enthalpy. In the STH group there was a 31% increase in work output and a 39% rise in total enthalpy. Because of the parallel changes in work and enthalpy there was no significant change in the mechanical efficiency of the two groups as compared to the controls. The simplest interpretation of the results is that in STH the intracellular free calcium level is raised whereas in LTH it is lowered.

  1. microRNA-340-5p Functions Downstream of Cardiotrophin-1 to Regulate Cardiac Eccentric Hypertrophy and Heart Failure via Target Gene Dystrophin.

    PubMed

    Zhou, Jian; Gao, Jie; Zhang, Xiaoya; Liu, Yan; Gu, Song; Zhang, Xitao; An, Xiangguang; Yan, Jun; Xin, Yue; Su, Pixiong

    2015-01-01

    Pathological cardiac hypertrophy inevitably leads to the unfavorable outcomes of heart failure (HF) or even sudden death. microRNAs are key regulation factors participating in many pathophysiological processes. Recently, we observed upregulation of microRNA-340-5p (miR-340) in failing human hearts because of dilated cardiomyopathy, but the functional consequence of miR-340 remains to be clarified.We transfected neonatal cardiomyocytes with miR-340 and found fetal gene expression including Nppa, Nppb and Myh7. We also observed eccentric hypertrophy development upon treatment which was analogous to the phenotype after cardiotrophin-1 (CT-1) stimulation. As a potent inducer of cardiac eccentric hypertrophy, treatment by IL-6 family members CT-1 and leukemia inhibitory factor (LIF) led to the elevation of miR-340. Knockdown of miR-340 using antagomir attenuated fetal gene expression and hypertrophy formation, which means miR-340 could convey the hypertrophic signal of CT-1. To demonstrate the initial factor of miR-340 activation, we constructed a volume overloaded abdominal aorta-inferior vena cava fistula rat HF model. miR-340 and CT-1 were found to be up-regulated in the left ventricle. Dystrophin (DMD), a putative target gene of miR-340 which is eccentric hypertrophy-susceptible, was decreased in this HF model upon Western blotting and immunohistochemistry tests. Luciferase assay constructed in two seed sequence of DMD gene 3'UTR showed decreased luciferase activities, and miR-340 transfected cells resulted in the degradation of DMD.miR-340 is a pro-eccentric hypertrophy miRNA, and its expression is dependent on volume overload and cytokine CT-1 activation. Cardiomyocyte structure protein DMD is a target of miR-340.

  2. Nutritional Support for Exercise-Induced Injuries.

    PubMed

    Tipton, Kevin D

    2015-11-01

    Nutrition is one method to counter the negative impact of an exercise-induced injury. Deficiencies of energy, protein and other nutrients should be avoided. Claims for the effectiveness of many other nutrients following injuries are rampant, but the evidence is equivocal. The results of an exercise-induced injury may vary widely depending on the nature of the injury and severity. Injuries typically result in cessation, or at least a reduction, in participation in sport and decreased physical activity. Limb immobility may be necessary with some injuries, contributing to reduced activity and training. Following an injury, an inflammatory response is initiated and while excess inflammation may be harmful, given the importance of the inflammatory process for wound healing, attempting to drastically reduce inflammation may not be ideal for optimal recovery. Injuries severe enough for immobilization of a limb result in loss of muscle mass and reduced muscle strength and function. Loss of muscle results from reductions in basal muscle protein synthesis and the resistance of muscle to anabolic stimulation. Energy balance is critical. Higher protein intakes (2-2.5 g/kg/day) seem to be warranted during immobilization. At the very least, care should be taken not to reduce the absolute amount of protein intake when energy intake is reduced. There is promising, albeit preliminary, evidence for the use of omega-3 fatty acids and creatine to counter muscle loss and enhance hypertrophy, respectively. The overriding nutritional recommendation for injured exercisers should be to consume a well-balanced diet based on whole, minimally processed foods or ingredients made from whole foods. The diet composition should be carefully assessed and changes considered as the injury heals and activity patterns change. PMID:26553492

  3. Zinc deficiency exacerbates while zinc supplement attenuates cardiac hypertrophy in high-fat diet-induced obese mice through modulating p38 MAPK-dependent signaling.

    PubMed

    Wang, Shudong; Luo, Manyu; Zhang, Zhiguo; Gu, Junlian; Chen, Jing; Payne, Kristen McClung; Tan, Yi; Wang, Yuehui; Yin, Xia; Zhang, Xiang; Liu, Gilbert C; Wintergerst, Kupper; Liu, Quan; Zheng, Yang; Cai, Lu

    2016-09-01

    Childhood obesity often leads to cardiovascular diseases, such as obesity-related cardiac hypertrophy (ORCH), in adulthood, due to chronic cardiac inflammation. Zinc is structurally and functionally essential for many transcription factors; however, its role in ORCH and underlying mechanism(s) remain unclear and were explored here in mice with obesity induced with high-fat diet (HFD). Four week old mice were fed on either HFD (60%kcal fat) or normal diet (ND, 10% kcal fat) for 3 or 6 months, respectively. Either diet contained one of three different zinc quantities: deficiency (ZD, 10mg zinc per 4057kcal), normal (ZN, 30mg zinc per 4057kcal) or supplement (ZS, 90mg zinc per 4057kcal). HFD induced a time-dependent obesity and ORCH, which was accompanied by increased cardiac inflammation and p38 MAPK activation. These effects were worsened by ZD in HFD/ZD mice and attenuated by ZS in HFD/ZS group, respectively. Also, administration of a p38 MAPK specific inhibitor in HFD mice for 3 months did not affect HFD-induced obesity, but completely abolished HFD-induced, and zinc deficiency-worsened, ORCH and cardiac inflammation. In vitro exposure of adult cardiomyocytes to palmitate induced cell hypertrophy accompanied by increased p38 MAPK activation, which was heightened by zinc depletion with its chelator TPEN. Inhibition of p38 MAPK with its specific siRNA also prevented the effects of palmitate on cardiomyocytes. These findings demonstrate that ZS alleviates but ZD heightens cardiac hypertrophy in HFD-induced obese mice through suppressing p38 MAPK-dependent cardiac inflammatory and hypertrophic pathways.

  4. Zinc deficiency exacerbates while zinc supplement attenuates cardiac hypertrophy in high-fat diet-induced obese mice through modulating p38 MAPK-dependent signaling.

    PubMed

    Wang, Shudong; Luo, Manyu; Zhang, Zhiguo; Gu, Junlian; Chen, Jing; Payne, Kristen McClung; Tan, Yi; Wang, Yuehui; Yin, Xia; Zhang, Xiang; Liu, Gilbert C; Wintergerst, Kupper; Liu, Quan; Zheng, Yang; Cai, Lu

    2016-09-01

    Childhood obesity often leads to cardiovascular diseases, such as obesity-related cardiac hypertrophy (ORCH), in adulthood, due to chronic cardiac inflammation. Zinc is structurally and functionally essential for many transcription factors; however, its role in ORCH and underlying mechanism(s) remain unclear and were explored here in mice with obesity induced with high-fat diet (HFD). Four week old mice were fed on either HFD (60%kcal fat) or normal diet (ND, 10% kcal fat) for 3 or 6 months, respectively. Either diet contained one of three different zinc quantities: deficiency (ZD, 10mg zinc per 4057kcal), normal (ZN, 30mg zinc per 4057kcal) or supplement (ZS, 90mg zinc per 4057kcal). HFD induced a time-dependent obesity and ORCH, which was accompanied by increased cardiac inflammation and p38 MAPK activation. These effects were worsened by ZD in HFD/ZD mice and attenuated by ZS in HFD/ZS group, respectively. Also, administration of a p38 MAPK specific inhibitor in HFD mice for 3 months did not affect HFD-induced obesity, but completely abolished HFD-induced, and zinc deficiency-worsened, ORCH and cardiac inflammation. In vitro exposure of adult cardiomyocytes to palmitate induced cell hypertrophy accompanied by increased p38 MAPK activation, which was heightened by zinc depletion with its chelator TPEN. Inhibition of p38 MAPK with its specific siRNA also prevented the effects of palmitate on cardiomyocytes. These findings demonstrate that ZS alleviates but ZD heightens cardiac hypertrophy in HFD-induced obese mice through suppressing p38 MAPK-dependent cardiac inflammatory and hypertrophic pathways. PMID:27346292

  5. Dual Activation of TRIF and MyD88 Adaptor Proteins by Angiotensin II Evokes Opposing Effects on Pressure, Cardiac Hypertrophy and Inflammatory Gene Expression

    PubMed Central

    Singh, Madhu V.; Cicha, Michael Z.; Meyerholz, David K.; Chapleau, Mark W.; Abboud, François M.

    2015-01-01

    Hypertension is recognized as an immune disorder whereby immune cells play a defining role in the genesis and progression of the disease. The innate immune system and its component toll-like receptors (TLRs) are key determinants of the immunological outcome through their pro-inflammatory response. TLR activated signaling pathways utilize several adaptor proteins of which adaptor proteins MyD88 and TRIF define two major inflammatory pathways. In this study, we compared the contributions of MyD88 and TRIF adaptor proteins to angiotensin II (Ang II)-induced hypertension and cardiac hypertrophy in mice. Deletion of MyD88 did not prevent cardiac hypertrophy and the pressor response to Ang II tended to increase. Moreover, the increase in inflammatory gene expression (Tnfa, Nox4 and Agtr1a) was significantly greater in the heart and kidney of MyD88-deficient mice compared with wild type mice. Thus, pathways involving MyD88 may actually restrain the inflammatory responses. On the other hand, in mice with non-functional TRIF (Trifmut mice), Ang II induced hypertension and cardiac hypertrophy were abrogated, and pro-inflammatory gene expression in heart and kidneys was unchanged or decreased. Our results indicate that Ang II induces activation of a pro-inflammatory innate immune response, causing hypertension, and cardiac hypertrophy. These effects require functional adaptor protein TRIF-mediated pathways. However, the common MyD88 dependent signaling pathway, which is also activated simultaneously by Ang II, paradoxically exerts a negative regulatory influence on these responses. PMID:26195481

  6. 3,3'-Diindolylmethane attenuates cardiac H9c2 cell hypertrophy through 5'-adenosine monophosphate-activated protein kinase-α.

    PubMed

    Zong, Jing; Wu, Qing-Qing; Zhou, Heng; Zhang, Jie-Yu; Yuan, Yuan; Bian, Zhou-Yan; Deng, Wei; Dai, Jia; Li, Fang-Fang; Xu, Man; Fang, Yi; Tang, Qi-Zhu

    2015-07-01

    3,3'-Diindolylmethane (DIM) is the major product of the acid-catalyzed condensation of indole-3-carbinol (I3C), a component of extracts of Brassica food plants. Numerous studies have suggested that DIM has several beneficial biological activities, including elimination of free radicals, antioxidant and anti-angiogenic effects and activation of apoptosis of various tumor cells. In the present study, an in vitro model was established, using 1 µM angiotensin II (Ang II) in cultured rat cardiac H9c2 cells, to observe the effects of DIM on cardiac hypertrophy. Following 24 h stimulation with DIM (1, 5, and 10 µM) with or without Ang II, cells were characterized by immunofluorescence to analyze cardiac α-actinin expression. Cardiomyocyte hypertrophy and molecular markers of cardiac hypertrophy were assessed by quantitative polymerase chain reaction. Atrial natriuretic peptide, brain natriuretic peptide and myosin heavy chain β mRNA expression were induced by Ang II in H9c2 cells treated with the optimal concentration of DIM for 6, 12, and 24 h. The levels of phosphorylated and total proteins of the 5' AMP-activated protein kinase α (AMPKα)/mitogen-activated protein kinase (MAPK)/mechanistic target of rapamycin (mTOR) signaling pathways in H9c2 cells treated with DIM for 0, 15, 30, and 60 min induced by Ang II were determined by western blot analysis. The results showed that DIM attenuated cellular hypertrophy in vitro, enhanced the phosphorylation of AMPKα and inhibited the MAPK‑mTOR signaling pathway in response to hypertrophic stimuli. PMID:25816057

  7. The right heart in athletes. Evidence for exercise-induced arrhythmogenic right ventricular cardiomyopathy.

    PubMed

    Heidbüchel, H; La Gerche, A

    2012-06-01

    Although 'athlete's heart' usually constitutes a balanced dilation and hypertrophy of all four chambers, there is increasing evidence that intense endurance activity may particularly tax the right ventricle (RV), both acutely and chronically. We review the evidence that the high wall stress of the RV during intense sports may explain observed B-type natriuretic peptide (BNP) elevations immediately after a race, may lead to cellular disruption and leaking of cardiac enzymes, and may even result in transient RV dilatation and dysfunction. Over time, this could lead to chronic remodelling and a pro-arrhythmic state resembling arrhythmogenic RV cardiomyopathy (ARVC) in some cases. ARVC in high-endurance athletes most often develops in the absence of underlying desmosomal abnormalities, probably only as a result of excessive RV wall stress during exercise. Therefore, we have labelled this syndrome 'exercise-induced ARVC'. Sports cardiologists should be aware that excessive sports activity can lead to cardiac sports injuries in some individuals, just like orthopaedic specialists are familiar with musculoskeletal sports injuries. This does not negate the fact that moderate exercise has positive cardiovascular effects and should be encouraged. PMID:22782727

  8. Endothelial nitric oxide synthase haplotypes associated with hypertension do not predispose to cardiac hypertrophy.

    PubMed

    Vasconcellos, Vivian; Lacchini, Riccardo; Jacob-Ferreira, Anna L B; Sales, Maria L; Ferreira-Sae, Maria C; Schreiber, Roberto; Nadruz, Wilson; Tanus-Santos, Jose E

    2010-04-01

    Left ventricular hypertrophy (LVH) is a complication that may result from chronic hypertension. While nitric oxide (NO) deficiency has been associated with LVH, inconsistent results have been reported with regards to the association of endothelial NO synthase (eNOS) polymorphisms and LVH in hypertensive patients. This study aims to assess whether eNOS haplotypes are associated with LVH in hypertensive patients. This study included 101 healthy controls and 173 hypertensive patients submitted to echocardiography examination. Genotypes for three eNOS polymorphisms were determined: a single-nucleotide polymorphism in the promoter region (T-786C) and in exon 7 (Glu298Asp), and variable number of tandem repeats in intron 4. We found no significant association between eNOS genotypes and hypertension or with LVH (all p > 0.05). However, while we found two eNOS haplotypes associated with variable risk of hypertension (all p < 0.05), we found no significant associations between eNOS haplotypes and LVH (all p > 0.05), even after adjustment in multiple linear regression analysis. These findings suggest that eNOS haplotypes that have been associated with variable susceptibility to hypertension were not associated with LVH in hypertensive patients. Further studies are necessary to examine whether other genes downstream may interact with eNOS polymorphisms and predispose to LVH in hypertensive patients. PMID:20070154

  9. Adolescents and Exercise Induced Asthma

    ERIC Educational Resources Information Center

    Hansen, Pamela; Bickanse, Shanna; Bogenreif, Mike; VanSickle, Kyle

    2008-01-01

    This article defines asthma and exercise induced asthma, and provides information on the triggers, signs, and symptoms of an attack. It also gives treatments for these conditions, along with prevention guidelines on how to handle an attack in the classroom or on the practice field. (Contains 2 tables and 1 figure.)

  10. Targeted disruption of the heat shock protein 20–phosphodiesterase 4D (PDE4D) interaction protects against pathological cardiac remodelling in a mouse model of hypertrophy

    PubMed Central

    Martin, Tamara P.; Hortigon-Vinagre, Maria P.; Findlay, Jane E.; Elliott, Christina; Currie, Susan; Baillie, George S.

    2014-01-01

    Phosphorylated heat shock protein 20 (HSP20) is cardioprotective. Using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and a mouse model of pressure overload mediated hypertrophy, we show that peptide disruption of the HSP20–phosphodiesterase 4D (PDE4D) complex results in attenuation of action potential prolongation and protection against adverse cardiac remodelling. The later was evidenced by improved contractility, decreased heart weight to body weight ratio, and reduced interstitial and perivascular fibrosis. This study demonstrates that disruption of the specific HSP20–PDE4D interaction leads to attenuation of pathological cardiac remodelling. PMID:25426411

  11. Nicotinic Acid Adenine Dinucleotide Phosphate (NAADP) and Cyclic ADP-Ribose (cADPR) Mediate Ca2+ Signaling in Cardiac Hypertrophy Induced by β-Adrenergic Stimulation

    PubMed Central

    Shawl, Asif Iqbal; Im, Soo-Yeul; Nam, Tae-Sik; Lee, Sun-Hwa; Ko, Jae-Ki; Jang, Kyu Yoon; Kim, Donghee; Kim, Uh-Hyun

    2016-01-01

    Ca2+ signaling plays a fundamental role in cardiac hypertrophic remodeling, but the underlying mechanisms remain poorly understood. We investigated the role of Ca2+-mobilizing second messengers, NAADP and cADPR, in the cardiac hypertrophy induced by β-adrenergic stimulation by isoproterenol. Isoproterenol induced an initial Ca2+ transients followed by sustained Ca2+ rises. Inhibition of the cADPR pathway with 8-Br-cADPR abolished only the sustained Ca2+ increase, whereas inhibition of the NAADP pathway with bafilomycin-A1 abolished both rapid and sustained phases of the isoproterenol-mediated signal, indicating that the Ca2+ signal is mediated by a sequential action of NAADP and cADPR. The sequential production of NAADP and cADPR was confirmed biochemically. The isoproterenol-mediated Ca2+ increase and cADPR production, but not NAADP production, were markedly reduced in cardiomyocytes obtained from CD38 knockout mice. CD38 knockout mice were rescued from chronic isoproterenol infusion-induced myocardial hypertrophy, interstitial fibrosis, and decrease in fractional shortening and ejection fraction. Thus, our findings indicate that β-adrenergic stimulation contributes to the development of maladaptive cardiac hypertrophy via Ca2+ signaling mediated by NAADP-synthesizing enzyme and CD38 that produce NAADP and cADPR, respectively. PMID:26959359

  12. Achievement of a target dose of bisoprolol may not be a preferred option for attenuating pressure overload-induced cardiac hypertrophy and fibrosis

    PubMed Central

    Xiang, Shizhao; Zhang, Ning; Yang, Zheng; Bian, Zhouyan; Yuan, Yuan; Tang, Qizhu

    2016-01-01

    Bisoprolol is a drug that acts via the mechanism of specifically and selectively inhibiting the β1-adrenoreceptor in cardiac myocytes, and provides a pure reduction of heart rate without changing other cardiac parameters. It has long been clinically used to treat cerebrovascular and cardiovascular illnesses. However, there is little information available on whether the role of bisoprolol in the attenuation of ventricular remodeling is dependent upon the achievement of a target dose, and whether it must be used as a preferred option. The aim of the present study was to clarify the underlying benefits of bisoprolol in the attenuation of pressure overload-induced cardiac hypertrophy and fibrosis at different doses. C57BL/6J male mice, aged 6–8 weeks, were treated with saline or one of three different doses of bisoprolol (Biso: 2.5, 5 or 10 mg/kg/day) for 8 weeks from day 1 after aortic banding (AB). A number of mice underwent sham surgery and were treated with saline or bisoprolol. The mice were randomly assigned into the sham (n=24) and AB (n=62) groups. The results revealed that bisoprolol had a protective role against the cardiac hypertrophy, fibrosis and dysfunction caused by AB. This was determined on the basis of heart/body and lung/body weight ratios and heart weight/tibia length ratios, as well as echocardiographic and hemodynamic parameters, histological analysis, and the gene expression levels of hypertrophic and fibrotic markers. The present study revealed that administration of bisoprolol for a long time period may enhance its role in the prevention of cardiac hypertrophy and fibrosis induced by AB, whereas no statistically significant difference was observed between the middle- and high-doses. These observations indicated that the function of bisoprolol in protecting against cardiac hypertrophy, fibrosis and dysfunction is time-dependent. Furthermore, it is proposed that a middle dose of bisoprolol may be a better option for patients with

  13. Achievement of a target dose of bisoprolol may not be a preferred option for attenuating pressure overload-induced cardiac hypertrophy and fibrosis

    PubMed Central

    Xiang, Shizhao; Zhang, Ning; Yang, Zheng; Bian, Zhouyan; Yuan, Yuan; Tang, Qizhu

    2016-01-01

    Bisoprolol is a drug that acts via the mechanism of specifically and selectively inhibiting the β1-adrenoreceptor in cardiac myocytes, and provides a pure reduction of heart rate without changing other cardiac parameters. It has long been clinically used to treat cerebrovascular and cardiovascular illnesses. However, there is little information available on whether the role of bisoprolol in the attenuation of ventricular remodeling is dependent upon the achievement of a target dose, and whether it must be used as a preferred option. The aim of the present study was to clarify the underlying benefits of bisoprolol in the attenuation of pressure overload-induced cardiac hypertrophy and fibrosis at different doses. C57BL/6J male mice, aged 6–8 weeks, were treated with saline or one of three different doses of bisoprolol (Biso: 2.5, 5 or 10 mg/kg/day) for 8 weeks from day 1 after aortic banding (AB). A number of mice underwent sham surgery and were treated with saline or bisoprolol. The mice were randomly assigned into the sham (n=24) and AB (n=62) groups. The results revealed that bisoprolol had a protective role against the cardiac hypertrophy, fibrosis and dysfunction caused by AB. This was determined on the basis of heart/body and lung/body weight ratios and heart weight/tibia length ratios, as well as echocardiographic and hemodynamic parameters, histological analysis, and the gene expression levels of hypertrophic and fibrotic markers. The present study revealed that administration of bisoprolol for a long time period may enhance its role in the prevention of cardiac hypertrophy and fibrosis induced by AB, whereas no statistically significant difference was observed between the middle- and high-doses. These observations indicated that the function of bisoprolol in protecting against cardiac hypertrophy, fibrosis and dysfunction is time-dependent. Furthermore, it is proposed that a middle dose of bisoprolol may be a better option for patients with

  14. Cardiac-specific genetic inhibition of nuclear factor-κB prevents right ventricular hypertrophy induced by monocrotaline.

    PubMed

    Kumar, Sandeep; Wei, Chuanyu; Thomas, Candice M; Kim, Il-Kwon; Seqqat, Rachid; Kumar, Rajesh; Baker, Kenneth M; Jones, W Keith; Gupta, Sudhiranjan

    2012-04-15

    Uncontrolled pulmonary arterial hypertension (PAH) results in right ventricular (RV) hypertrophy (RVH), progressive RV failure, and low cardiac output leading to increased morbidity and mortality (McLaughlin VV, Archer SL, Badesch DB, Barst RJ, Farber HW, Lindner JR, Mathier MA, McGoon MD, Park MH, Rosenson RS, Rubin LJ, Tapson VF, Varga J. J Am Coll Cardiol 53: 1573-1619, 2009). Although the exact figures of its prevalence are difficult to obtain because of the diversity of identifiable causes, it is estimated that the incidence of pulmonary hypertension is seven to nine cases per million persons in the general population and is most prevalent in the age group of 20-40, occurring more commonly in women than in men (ratio: 1.7 to 1; Rubin LJ. N Engl J Med 336: 111-117, 1997). PAH is characterized by dyspnea, chest pain, and syncope. Unfortunately, there is no cure for this disease and medical regimens are limited (Simon MA. Curr Opin Crit Care 16: 237-243, 2010). PAH leads to adverse remodeling that results in RVH, progressive right heart failure, low cardiac output, and ultimately death if left untreated (Humbert M, Morrell NW, Archer SL, Stenmark KR, MacLean MR, Lang IM, Christman BW, Weir EK, Eickelberg O, Voelkel NF, Rabinovitch M. J Am Coll Cardiol 43: 13S-24S, 2004; Humbert M, Sitbon O, Simonneau G. N Engl J Med 351: 1425-1436, 2004. LaRaia AV, Waxman AB. South Med J 100: 393-399, 2007). As there are no direct tools to assess the onset and progression of PAH and RVH, the disease is often detected in later stages marked by full-blown RVH, with the outcome predominantly determined by the level of increased afterload (D'Alonzo GE, Barst RJ, Ayres SM, Bergofsky EH, Brundage BH, Detre KM, Fishman AP, Goldring RM, Groves BM, Kernis JT, et al. Ann Intern Med 115: 343-349, 1991; Sandoval J, Bauerle O, Palomar A, Gomez A, Martinez-Guerra ML, Beltran M, Guerrero ML. Validation of a prognostic equation Circulation 89: 1733-1744, 1994). Various studies have been

  15. Enhanced cardiac Akt/protein kinase B signaling contributes to pathological cardiac hypertrophy in part by impairing mitochondrial function via transcriptional repression of mitochondrion-targeted nuclear genes.

    PubMed

    Wende, Adam R; O'Neill, Brian T; Bugger, Heiko; Riehle, Christian; Tuinei, Joseph; Buchanan, Jonathan; Tsushima, Kensuke; Wang, Li; Caro, Pilar; Guo, Aili; Sloan, Crystal; Kim, Bum Jun; Wang, Xiaohui; Pereira, Renata O; McCrory, Mark A; Nye, Brenna G; Benavides, Gloria A; Darley-Usmar, Victor M; Shioi, Tetsuo; Weimer, Bart C; Abel, E Dale

    2015-03-01

    Sustained Akt activation induces cardiac hypertrophy (LVH), which may lead to heart failure. This study tested the hypothesis that Akt activation contributes to mitochondrial dysfunction in pathological LVH. Akt activation induced LVH and progressive repression of mitochondrial fatty acid oxidation (FAO) pathways. Preventing LVH by inhibiting mTOR failed to prevent the decline in mitochondrial function, but glucose utilization was maintained. Akt activation represses expression of mitochondrial regulatory, FAO, and oxidative phosphorylation genes in vivo that correlate with the duration of Akt activation in part by reducing FOXO-mediated transcriptional activation of mitochondrion-targeted nuclear genes in concert with reduced signaling via peroxisome proliferator-activated receptor α (PPARα)/PGC-1α and other transcriptional regulators. In cultured myocytes, Akt activation disrupted mitochondrial bioenergetics, which could be partially reversed by maintaining nuclear FOXO but not by increasing PGC-1α. Thus, although short-term Akt activation may be cardioprotective during ischemia by reducing mitochondrial metabolism and increasing glycolysis, long-term Akt activation in the adult heart contributes to pathological LVH in part by reducing mitochondrial oxidative capacity.

  16. Enhanced Cardiac Akt/Protein Kinase B Signaling Contributes to Pathological Cardiac Hypertrophy in Part by Impairing Mitochondrial Function via Transcriptional Repression of Mitochondrion-Targeted Nuclear Genes

    PubMed Central

    Wende, Adam R.; O'Neill, Brian T.; Bugger, Heiko; Riehle, Christian; Tuinei, Joseph; Buchanan, Jonathan; Tsushima, Kensuke; Wang, Li; Caro, Pilar; Guo, Aili; Sloan, Crystal; Kim, Bum Jun; Wang, Xiaohui; Pereira, Renata O.; McCrory, Mark A.; Nye, Brenna G.; Benavides, Gloria A.; Darley-Usmar, Victor M.; Shioi, Tetsuo; Weimer, Bart C.

    2014-01-01

    Sustained Akt activation induces cardiac hypertrophy (LVH), which may lead to heart failure. This study tested the hypothesis that Akt activation contributes to mitochondrial dysfunction in pathological LVH. Akt activation induced LVH and progressive repression of mitochondrial fatty acid oxidation (FAO) pathways. Preventing LVH by inhibiting mTOR failed to prevent the decline in mitochondrial function, but glucose utilization was maintained. Akt activation represses expression of mitochondrial regulatory, FAO, and oxidative phosphorylation genes in vivo that correlate with the duration of Akt activation in part by reducing FOXO-mediated transcriptional activation of mitochondrion-targeted nuclear genes in concert with reduced signaling via peroxisome proliferator-activated receptor α (PPARα)/PGC-1α and other transcriptional regulators. In cultured myocytes, Akt activation disrupted mitochondrial bioenergetics, which could be partially reversed by maintaining nuclear FOXO but not by increasing PGC-1α. Thus, although short-term Akt activation may be cardioprotective during ischemia by reducing mitochondrial metabolism and increasing glycolysis, long-term Akt activation in the adult heart contributes to pathological LVH in part by reducing mitochondrial oxidative capacity. PMID:25535334

  17. CB1 cannabinoid receptor antagonist attenuates left ventricular hypertrophy and Akt-mediated cardiac fibrosis in experimental uremia.

    PubMed

    Lin, Chih-Yuan; Hsu, Yu-Juei; Hsu, Shih-Che; Chen, Ying; Lee, Herng-Sheng; Lin, Shih-Hua; Huang, Shih-Ming; Tsai, Chien-Sung; Shih, Chun-Che

    2015-08-01

    Cannabinoid receptor type 1 (CB1R) plays an important role in the development of myocardial hypertrophy and fibrosis-2 pathological features of uremic cardiomyopathy. However, it remains unknown whether CB1R is involved in the pathogenesis of uremic cardiomyopathy. Here, we aimed to elucidate the role of CB1R in the development of uremic cardiomyopathy via modulation of Akt signalling. The heart size and myocardial fibrosis were evaluated by echocardiography and immunohistochemical staining, respectively, in 5/6 nephrectomy chronic kidney disease (CKD) mice treated with a CB1R antagonist. CB1R and fibrosis marker expression levels were determined by immunoblotting in H9c2 cells exposed to the uremic toxin indoxyl sulfate (IS), with an organic anion transporter 1 inhibitor or a CB1R antagonist or agonist. Akt phosphorylation was also assessed to examine the signaling pathways downstream of CB1R activation induced by IS in H9c2 cells. CKD mice exhibited marked left ventricular hypertrophy and myocardial fibrosis, which were reversed by treatment with the CB1R antagonist. CB1R, collagen I, transforming growth factor (TGF)-β, and α-smooth muscle actin (SMA) expression showed time- and dose-dependent upregulation in H9c2 cells treated with IS. The inhibition of CB1R by either CB1R antagonist or small interfering RNA-mediated knockdown attenuated the expression of collagen I, TGF-β, and α-SMA in IS-treated H9c2 cells, while Akt phosphorylation was enhanced by CB1R agonist and abrogated by CB1R antagonist in these cells. In summary, we conclude that CB1R blockade attenuates LVH and Akt-mediated cardiac fibrosis in a CKD mouse model. Uremic toxin IS stimulates the expression of CB1R and fibrotic markers and CB1R inhibition exerts anti-fibrotic effects via modulation of Akt signaling in H9c2 myofibroblasts. Therefore, the development of drugs targeting CB1R may have therapeutic potential in the treatment of uremic cardiomyopathy. PMID:26093151

  18. Inhibition of NF-κB activity in the hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by modulating cytokines and attenuating oxidative stress

    SciTech Connect

    Yu, Xiao-Jing; Zhang, Dong-Mei; Jia, Lin-Lin; Qi, Jie; Song, Xin-Ai; Tan, Hong; Cui, Wei; Chen, Wensheng; Zhu, Guo-Qing; Qin, Da-Nian; Kang, Yu-Ming

    2015-05-01

    We hypothesized that chronic inhibition of NF-κB activity in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), attenuating nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase in the PVN of young spontaneously hypertensive rats (SHR). Young normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusions with NF–κB inhibitor pyrrolidine dithiocarbamate (PDTC) or vehicle for 4 weeks. SHR rats had higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, cardiomyocyte diameters of the left cardiac ventricle, and mRNA expressions of cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC). These SHR rats had higher PVN levels of proinflammatory cytokines (PICs), reactive oxygen species (ROS), the chemokine monocyte chemoattractant protein-1 (MCP-1), NAD(P)H oxidase activity, mRNA expression of NOX-2 and NOX-4, and lower PVN IL-10, and higher plasma levels of PICs and NE, and lower plasma IL-10. PVN infusion of NF-κB inhibitor PDTC attenuated all these changes. These findings suggest that NF-κB activation in the PVN increases sympathoexcitation and hypertensive response, which are associated with the increases of PICs and oxidative stress in the PVN; PVN inhibition of NF-κB activity attenuates PICs and oxidative stress in the PVN, thereby attenuates hypertension and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of NF-κB attenuates hypertension-induced cardiac hypertrophy. • PVN inhibition of NF-κB attenuates hypertension-induced neurohormonal excitation. • PVN inhibition of NF-κB attenuates hypertension-induced imbalance of cytokines

  19. miR-30c and miR-181a synergistically modulate p53-p21 pathway in diabetes induced cardiac hypertrophy.

    PubMed

    Raut, Satish K; Singh, Gurinder B; Rastogi, Bhawna; Saikia, Uma Nahar; Mittal, Anupam; Dogra, Nilambra; Singh, Sandeep; Prasad, Rishikesh; Khullar, Madhu

    2016-06-01

    p53-p21 pathway mediates cardiomyocyte hypertrophy and apoptosis and is upregulated in diabetic cardiomyopathy (DbCM). We investigated role of microRNAs in regulating p53-p21 pathway in high glucose (HG)-induced cardiomyocyte hypertrophy and apoptosis. miR-30c and miR-181a were identified to target p53. Cardiac expression of microRNAs was measured in diabetic patients, diabetic rats, and in HG-treated cardiomyocytes. Effect of microRNAs over-expression and inhibition on HG-induced cardiomyocyte hypertrophy and apoptosis was examined. Myocardial expression of p53 and p21 genes was increased and expression of miR-30c and miR-181a was significantly decreased in diabetic patients, DbCM rats, and in HG-treated cardiomyocytes. Luciferase assay confirmed p53 as target of miR-30c and miR-181a. Over-expression of miR-30c or miR-181a decreased expression of p53, p21, ANP, cardiomyocyte cell size, and apoptosis in HG-treated cardiomyocytes. Concurrent over-expression of these microRNAs resulted in greater decrease in cardiomyocyte hypertrophy and apoptosis, suggesting a synergistic effect of these microRNAs. Our results suggest that dysregulation of miR-30c and miR-181a may be involved in upregulation of p53-p21 pathway in DbCM. PMID:27221738

  20. High glucose induces Smad activation via the transcriptional coregulator p300 and contributes to cardiac fibrosis and hypertrophy

    PubMed Central

    2014-01-01

    Background Despite advances in the treatment of heart failure, mortality remains high, particularly in individuals with diabetes. Activated transforming growth factor beta (TGF-β) contributes to the pathogenesis of the fibrotic interstitium observed in diabetic cardiomyopathy. We hypothesized that high glucose enhances the activity of the transcriptional co-activator p300, leading to the activation of TGF-β via acetylation of Smad2; and that by inhibiting p300, TGF-β activity will be reduced and heart failure prevented in a clinically relevant animal model of diabetic cardiomyopathy. Methods p300 activity was assessed in H9c2 cardiomyoblasts under normal glucose (5.6 mmol/L—NG) and high glucose (25 mmol/L—HG) conditions. 3H-proline incorporation in cardiac fibroblasts was also assessed as a marker of collagen synthesis. The role of p300 activity in modifying TGF-β activity was investigated with a known p300 inhibitor, curcumin or p300 siRNA in vitro, and the functional effects of p300 inhibition were assessed using curcumin in a hemodynamically validated model of diabetic cardiomyopathy – the diabetic TG m(Ren-2)27 rat. Results In vitro, H9c2 cells exposed to HG demonstrated increased p300 activity, Smad2 acetylation and increased TGF-β activity as assessed by Smad7 induction (all p < 0.05 c/w NG). Furthermore, HG induced 3H-proline incorporation as a marker of collagen synthesis (p < 0.05 c/w NG). p300 inhibition, using either siRNA or curcumin reduced p300 activity, Smad acetylation and TGF-β activity (all p < 0.05 c/w vehicle or scrambled siRNA). Furthermore, curcumin therapy reduced 3H-proline incorporation in HG and TGF-β stimulated fibroblasts (p < 0.05 c/w NG). To determine the functional significance of p300 inhibition, diabetic Ren-2 rats were randomized to receive curcumin or vehicle for 6 weeks. Curcumin treatment reduced cardiac hypertrophy, improved diastolic function and reduced extracellular matrix production, without

  1. Left ventricular diastolic dysfunction in Nrf2 knock out mice is associated with cardiac hypertrophy, decreased expression of SERCA2a, and preserved endothelial function.

    PubMed

    Erkens, Ralf; Kramer, Christian M; Lückstädt, Wiebke; Panknin, Christina; Krause, Lisann; Weidenbach, Mathias; Dirzka, Jennifer; Krenz, Thomas; Mergia, Evanthia; Suvorava, Tatsiana; Kelm, Malte; Cortese-Krott, Miriam M

    2015-12-01

    Increased production of reactive oxygen species and failure of the antioxidant defense system are considered to play a central role in the pathogenesis of cardiovascular disease. The transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key master switch controlling the expression of antioxidant and protective enzymes, and was proposed to participate in protection of vascular and cardiac function. This study was undertaken to analyze cardiac and vascular phenotype of mice lacking Nrf2. We found that Nrf2 knock out (Nrf2 KO) mice have a left ventricular (LV) diastolic dysfunction, characterized by prolonged E wave deceleration time, relaxation time and total diastolic time, increased E/A ratio and myocardial performance index, as assessed by echocardiography. LV dysfunction in Nrf2 KO mice was associated with cardiac hypertrophy, and a downregulation of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2a) in the myocardium. Accordingly, cardiac relaxation was impaired, as demonstrated by decreased responses to β-adrenergic stimulation by isoproterenol ex vivo, and to the cardiac glycoside ouabain in vivo. Surprisingly, we found that vascular endothelial function and endothelial nitric oxide synthase (eNOS)-mediated vascular responses were fully preserved, blood pressure was decreased, and eNOS was upregulated in the aorta and the heart of Nrf2 KO mice. Taken together, these results show that LV dysfunction in Nrf2 KO mice is mainly associated with cardiac hypertrophy and downregulation of SERCA2a, and is independent from changes in coronary vascular function or systemic hemodynamics, which are preserved by a compensatory upregulation of eNOS. These data provide new insights into how Nrf2 expression/function impacts the cardiovascular system.

  2. Inhibition of TNF-α in hypothalamic paraventricular nucleus attenuates hypertension and cardiac hypertrophy by inhibiting neurohormonal excitation in spontaneously hypertensive rats

    SciTech Connect

    Song, Xin-Ai; Jia, Lin-Lin; Cui, Wei; Zhang, Meng; Chen, Wensheng; Yuan, Zu-Yi; Guo, Jing; Li, Hui-Hua; Zhu, Guo-Qing; Liu, Hao; Kang, Yu-Ming

    2014-11-15

    We hypothesized that chronic inhibition of tumor necrosis factor-alpha (TNF-α) in the hypothalamic paraventricular nucleus (PVN) delays the progression of hypertension and attenuates cardiac hypertrophy by up-regulating anti-inflammatory cytokines, reducing pro-inflammatory cytokines (PICs), decreasing nuclear factor-κB (NF-κB) p65 and NAD(P)H oxidase activities, as well as restoring the neurotransmitters balance in the PVN of spontaneously hypertensive rats (SHR). Adult normotensive Wistar–Kyoto (WKY) and SHR rats received bilateral PVN infusion of a TNF-α blocker (pentoxifylline or etanercept) or vehicle for 4 weeks. SHR rats showed higher mean arterial pressure and cardiac hypertrophy compared with WKY rats, as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and cardiac atrial natriuretic peptide (ANP) and beta-myosin heavy chain (β-MHC) mRNA expressions. Compared with WKY rats, SHR rats had higher PVN levels of tyrosine hydroxylase, PICs, the chemokine monocyte chemoattractant protein-1 (MCP-1), NF-κB p65 activity, mRNA expressions of NOX-2 and NOX-4, and lower PVN levels of IL-10 and 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma norepinephrine. PVN infusion of pentoxifylline or etanercept attenuated all these changes in SHR rats. These findings suggest that SHR rats have an imbalance between excitatory and inhibitory neurotransmitters, as well as an imbalance between pro- and anti-inflammatory cytokines in the PVN; and chronic inhibition of TNF-α in the PVN delays the progression of hypertension by restoring the balances of neurotransmitters and cytokines in the PVN, and attenuating PVN NF-κB p65 activity and oxidative stress, thereby attenuating hypertension-induced sympathetic hyperactivity and cardiac hypertrophy. - Highlights: • Spontaneously hypertensive rats exhibit neurohormonal excitation in the PVN. • PVN inhibition of

  3. Chronic infusion of enalaprilat into hypothalamic paraventricular nucleus attenuates angiotensin II-induced hypertension and cardiac hypertrophy by restoring neurotransmitters and cytokines

    SciTech Connect

    Kang, Yu-Ming; Zhang, Dong-Mei; Yu, Xiao-Jing; Yang, Qing; Qi, Jie; Su, Qing; Suo, Yu-Ping; Yue, Li-Ying; Zhu, Guo-Qing; Qin, Da-Nian

    2014-02-01

    The renin–angiotensin system (RAS) in the brain is involved in the pathogenesis of hypertension. We hypothesized that inhibition of angiotensin-converting enzyme (ACE) in the hypothalamic paraventricular nucleus (PVN) attenuates angiotensin II (ANG II)-induced hypertension via restoring neurotransmitters and cytokines. Rats underwent subcutaneous infusions of ANG II or saline and bilateral PVN infusions of ACE inhibitor enalaprilat (ENL, 2.5 μg/h) or vehicle for 4 weeks. ANG II infusion resulted in higher mean arterial pressure and cardiac hypertrophy as indicated by increased whole heart weight/body weight ratio, whole heart weight/tibia length ratio, left ventricular weight/tibia length ratio, and mRNA expressions of cardiac atrial natriuretic peptide and beta-myosin heavy chain. These ANG II-infused rats had higher PVN levels of glutamate, norepinephrine, tyrosine hydroxylase, pro-inflammatory cytokines (PICs) and the chemokine monocyte chemoattractant protein-1, and lower PVN levels of gamma-aminobutyric acid, interleukin (IL)-10 and the 67-kDa isoform of glutamate decarboxylase (GAD67), and higher plasma levels of PICs, norepinephrine and aldosterone, and lower plasma IL-10, and higher renal sympathetic nerve activity. However, PVN treatment with ENL attenuated these changes. PVN microinjection of ANG II induced increases in IL-1β and IL-6, and a decrease in IL-10 in the PVN, and pretreatment with angiotensin II type 1 receptor (AT1-R) antagonist losartan attenuated these changes. These findings suggest that ANG II infusion induces an imbalance between excitatory and inhibitory neurotransmitters and an imbalance between pro- and anti-inflammatory cytokines in the PVN, and PVN inhibition of the RAS restores neurotransmitters and cytokines in the PVN, thereby attenuating ANG II-induced hypertension and cardiac hypertrophy. - Highlights: • Chronic ANG II infusion results in sympathetic hyperactivity and cardiac hypertrophy. • PVN inhibition of ACE

  4. Idiopathic left ventricular hypertrophy in an infant.

    PubMed

    Bhardwaj, Rajeev; Bhardwaj, Praveen

    2011-01-01

    Cardiac hypertrophy in infancy has been a subject of considerable interest. We present a case of significant left ventricular hypertrophy without any associated cause, presenting in infancy. PMID:23550435

  5. Reduced expression of adherens and gap junction proteins can have a fundamental role in the development of heart failure following cardiac hypertrophy in rats.

    PubMed

    dos Santos, Daniele O; Blefari, Valdecir; Prado, Fernanda P; Silva, Carlos A; Fazan, Rubens; Salgado, Helio C; Ramos, Simone G; Prado, Cibele M

    2016-02-01

    Hypertension causes cardiac hypertrophy, cardiac dysfunction and heart failure (HF). The mechanisms implicated in the transition from compensated to decompensated cardiac hypertrophy are not fully understood. This study was aimed to investigate whether alterations in the expression of intercalated disk proteins could contribute to the transition of compensated cardiac hypertrophy to dilated heart development that culminates in HF. Male rats were submitted to abdominal aortic constriction and at 90 days post surgery (dps), three groups were observed: sham-operated animals (controls), animals with hypertrophic hearts (HH) and animals with hypertrophic + dilated hearts (HD). Blood pressure was evaluated. The hearts were collected and Western blot and immunofluorescence were performed to desmoglein-2, desmocollin-2, N-cadherin, plakoglobin, Bcatenin, and connexin-43. Cardiac systolic function was evaluated using the Vevo 2100 ultrasound system. Data were considered significant when p b 0.05. Seventy percent of the animals presented with HH and 30% were HD at 90 dps. The blood pressure increased in both groups. The amount of desmoglein-2 and desmocollin-2 expression was increased in both groups and no difference was observed in either group. The expression of N-cadherin, plakoglobin and B-catenin increased in the HHgroup and decreased in the HDgroup; and connexin-43 decreased only in theHDgroup. Therewas no difference between the ejection fraction and fractional shortening at 30 and 60 dps; however, they were decreased in the HD group at 90 dps. We found that while some proteins have increased expression accompanied by the increase in the cell volume associated with preserved systolic cardiac function in theHHgroup, these same proteins had decreased expression evenwithout significant reduction in the cell volume associated with decreased systolic cardiac function in HD group. The increased expression of desmoglein-2 and desmocollin-2 in both the HH and HD groups could

  6. Hexabromocyclododecane exposure induces cardiac hypertrophy and arrhythmia by inhibiting miR-1 expression via up-regulation of the homeobox gene Nkx2.5.

    PubMed

    Wu, Meifang; Wu, Di; Wang, Chonggang; Guo, Zhizhun; Li, Bowen; Zuo, Zhenghong

    2016-01-25

    Hexabromocyclododecane (HBCD) is one of the most widely used brominated flame retardants. Although studies have reported that HBCD can cause a wide range of toxic effects on animals including humans, limited information can be found about its cardiac toxicity. In the present study, zebrafish embryos were exposed to HBCD at low concentrations of 0, 2, 20 and 200 nM. The results showed that HBCD exposure could induce cardiac hypertrophy and increased deposition of collagen. In addition, disordered calcium (Ca(2+)) handling was observed in H9C2 rat cardiomyocyte cells exposed to HBCD. Using small RNA sequencing and real-time quantitative PCR, HBCD exposure was shown to induce significant changes in the miRNA expression profile associated with the cardiovascular system. Further findings indicated that miR-1, which was depressed by Nkx2.5, might play a fundamental role in mediating cardiac hypertrophy and arrhythmia via its target genes Mef2a and Irx5 after HBCD treatment. HBCD exposure induced an arrhythmogenic disorder, which was triggered by the imbalance of Ryr2, Serca2a and Ncx1 expression, inducing Ca(2+) overload in the sarcoplasmic reticulum and high Ca(2+)-ATPase activities in the H9C2 cells. PMID:26476318

  7. Lack of Salt-Inducible Kinase 2 (SIK2) Prevents the Development of Cardiac Hypertrophy in Response to Chronic High-Salt Intake

    PubMed Central

    Tokudome, Takeshi; Mao, Yuanjie; Otani, Kentaro; Mochizuki, Naoki; Pires, Nuno; Pinho, Maria João; Franco-Cereceda, Anders; Torielli, Lucia; Ferrandi, Mara; Hamsten, Anders; Soares-da-Silva, Patricio; Eriksson, Per; Brion, Laura

    2014-01-01

    Cardiac left ventricle hypertrophy (LVH) constitutes a major risk factor for heart failure. Although LVH is most commonly caused by chronic elevation in arterial blood pressure, reduction of blood pressure to normal levels does not always result in regression of LVH, suggesting that additional factors contribute to the development of this pathology. We tested whether genetic preconditions associated with the imbalance in sodium homeostasis could trigger the development of LVH without concomitant increases in blood pressure. The results showed that the presence of a hypertensive variant of α-adducin gene in Milan rats (before they become hypertensive) resulted in elevated expression of genes associated with LVH, and of salt-inducible kinase 2 (SIK2) in the left ventricle (LV). Moreover, the mRNA expression levels of SIK2, α-adducin, and several markers of cardiac hypertrophy were positively correlated in tissue biopsies obtained from human hearts. In addition, we found in cardiac myocytes that α-adducin regulates the expression of SIK2, which in turn mediates the effects of adducin on hypertrophy markers gene activation. Furthermore, evidence that SIK2 is critical for the development of LVH in response to chronic high salt diet (HS) was obtained in mice with ablation of the sik2 gene. Increases in the expression of genes associated with LVH, as well as increases in LV wall thickness upon HS, occurred only in sik2+/+ but not in sik2−/− mice. Thus LVH triggered by HS or the presence of a genetic variant of α-adducin requires SIK2 and is independent of elevated blood pressure. Inhibitors of SIK2 may constitute part of a novel therapeutic regimen aimed at prevention/regression of LVH. PMID:24752134

  8. HSF1 and NF-κB p65 participate in the process of exercise preconditioning attenuating pressure overload-induced pathological cardiac hypertrophy

    SciTech Connect

    Xu, Tongyi; Zhang, Ben; Yang, Fan; Cai, Chengliang; Wang, Guokun; Han, Qingqi; Zou, Liangjian

    2015-05-08

    Pathological cardiac hypertrophy, often accompanied by hypertension, aortic stenosis and valvular defects, is typically associated with myocyte remodeling and cardiac dysfunction. Exercise preconditioning (EP) has been proven to enhance the tolerance of the myocardium to cardiac ischemia-reperfusion injury. However, the effects of EP in pathological cardiac hypertrophy are rarely reported. 10-wk-old male Sprague–Dawley rats (n = 80) were randomly divided into four groups: sham, TAC, EP + sham and EP + TAC. Two EP groups were subjected to 4 weeks of treadmill training, and the EP + TAC and TAC groups were followed by TAC operations. The sham and EP + sham groups underwent the same operation without aortic constriction. Eight weeks after the surgery, we evaluated the effects of EP by echocardiography, morphology, and histology and observed the expressions of the associated proteins. Compared with the respective control groups, hypertrophy-related indicators were significantly increased in the TAC and EP + TAC groups (p < 0.05). However, between the TAC and EP + TAC groups, all of these changes were effectively inhibited by EP treatment (p < 0.05). Furthermore, EP treatment upregulated the expression of HSF1 and HSP70, increased the HSF1 levels in the nuclear fraction, inhibited the expression of the NF-κB p65 subunit, decreased the NF-κB p65 subunit levels in the nuclear fraction, and reduced the IL2 levels in the myocardia of rats. EP could effectively reduce the cardiac hypertrophic responses induced by TAC and may play a protective role by upregulating the expressions of HSF1 and HSP70, activating HSF1 and then inhibiting the expression of NF-κB p65 and nuclear translocation. - Highlights: • EP could effectively reduce the cardiac hypertrophic responses induced by TAC. • EP may play a protective role by upregulating the expressions of HSF1 and HSP70 and then activating HSF1. • EP may play a protective role by inhibiting the expression

  9. Apolipoprotein A-I Mimetic Peptide D-4F Reduces Cardiac Hypertrophy and Improves Apolipoprotein A-I-Mediated Reverse Cholesterol Transport From Cardiac Tissue in LDL Receptor-null Mice Fed a Western Diet.

    PubMed

    Han, Jie; Zhang, Song; Ye, Ping; Liu, Yong-Xue; Qin, Yan-Wen; Miao, Dong-Mei

    2016-05-01

    Epidemiological studies have suggested that hypercholesterolemia is an independent determinant of increased left ventricular (LV) mass. Because high-density lipoprotein and its major protein apolipoprotein A-I (apoA-I) mediate reverse cholesterol transport (RCT) and have cardiac protective effects, we hypothesized that the apoA-I mimetic peptide D-4F could promote RCT in cardiac tissue and decrease cardiac hypertrophy induced by hypercholesterolemia. Low-density lipoprotein receptor-null mice were fed by a Western diet for 18 weeks and then randomized to receive water, or D-4F 0.3 mg/mL, or D-4F 0.5 mg/mL added to drinking water for 6 weeks. After D-4F administration, an increase in high-density lipoprotein cholesterol and a decrease in low-density lipoprotein cholesterol, total cholesterol, and triglyceride in a trend toward dose-responsivity were found in cardiac tissue. Ultrasound biomicroscopy revealed a reduction in LV posterior wall end-diastolic dimension, and an increase in mitral valve E/A ratio and LV ejection fraction. Hematoxylin-eosin staining showed reduced LV wall thickness and myocardial cell diameter. The protein levels of ABCA1 and LXRα were elevated in cardiac tissue of D-4F treated mice compared with the controls (P < 0.05). These results demonstrated that D-4F treatment reduced cardiac hypertrophy, and improved cardiac performance in low-density lipoprotein receptor-null mice fed a Western diet, presumably through the LXRα-ABCA1 pathway associated with enhanced myocardial RCT.

  10. Changes in Cx43 and NaV1.5 expression precede the occurrence of substantial fibrosis in calcineurin-induced murine cardiac hypertrophy.

    PubMed

    Fontes, Magda S C; Raaijmakers, Antonia J A; van Doorn, Tessa; Kok, Bart; Nieuwenhuis, Sylvia; van der Nagel, Roel; Vos, Marc A; de Boer, Teun P; van Rijen, Harold V M; Bierhuizen, Marti F A

    2014-01-01

    In mice, the calcium-dependent phosphatase calcineurin A (CnA) induces a transcriptional pathway leading to pathological cardiac hypertrophy. Interestingly, induction of CnA has been frequently noticed in human hypertrophic and failing hearts. Independently, the arrhythmia vulnerability of such hearts has been regularly associated with remodeling of parameters determining electrical conduction (expression level of connexin43 (Cx43) and NaV1.5, connective tissue architecture), for which the precise molecular basis and sequence of events is still unknown. Recently, we observed reduced Cx43 and NaV1.5 expression in 4-week old mouse hearts, overexpressing a constitutively active form of CnA (MHC-CnA model), but the order of events is still unknown. Therefore, three key parameters of conduction (Cx43, NaV1.5 and connective tissue expression) were characterized in MHC-CnA ventricles versus wild-type (WT) during postnatal development on a weekly basis. At postnatal week 1, CnA overexpression induced cardiac hypertrophy in MHC-CnA. Moreover, protein and RNA levels of both Cx43 and NaV1.5 were reduced by at least 50% as compared to WT. Cx43 immunoreactive signal was reduced at week 2 in MHC-CnA. At postnatal week 3, Cx43 was less phosphorylated and RNA level of Cx43 normalized to WT values, although the protein level was still reduced. Additionally, MHC-CnA hearts displayed substantial fibrosis relative to WT, which was accompanied by increased RNA levels for genes previously associated with fibrosis such as Col1a1, Col1a2, Col3a1, Tgfb1, Ctgf, Timp1 and microRNA miR-21. In MHC-CnA, reduction in Cx43 and NaV1.5 expression thus coincided with overexpression of CnA and hypertrophy development and preceded significant presence of fibrosis. At postnatal week 4 the alterations in conductional parameters observed in the MHC-CnA model lead to abnormal conduction and arrhythmias, similar to those observed in cardiac remodeling in heart failure patients. The MHC-CnA model, therefore

  11. Deregulation of XBP1 expression contributes to myocardial vascular endothelial growth factor-A expression and angiogenesis during cardiac hypertrophy in vivo.

    PubMed

    Duan, Quanlu; Ni, Li; Wang, Peihua; Chen, Chen; Yang, Lei; Ma, Ben; Gong, Wei; Cai, Zhejun; Zou, Ming-Hui; Wang, Dao Wen

    2016-08-01

    Endoplasmic reticulum (ER) stress has been reported to be involved in many cardiovascular diseases such as atherosclerosis, diabetes, myocardial ischemia, and hypertension that ultimately result in heart failure. XBP1 is a key ER stress signal transducer and an important pro-survival factor of the unfolded protein response (UPR) in mammalian cells. The aim of this study was to establish a role for XBP1 in the deregulation of pro-angiogenic factor VEGF expression and potential regulatory mechanisms in hypertrophic and failing heart. Western blots showed that myocardial XBP1s protein was significantly increased in both isoproterenol (ISO)-induced and pressure-overload-induced hypertrophic and failing heart compared to normal control. Furthermore, XBP1 silencing exacerbates ISO-induced cardiac dysfunction along with a reduction of myocardial capillary density and cardiac expression of pro-angiogenic factor VEGF-A in vivo. Consistently, experiments in cultured cardiomyocytes H9c2 (2-1) cells showed that UPR-induced VEGF-A upregulation was determined by XBP1 expression level. Importantly, VEGF-A expression was increased in failing human heart tissue and blood samples and was correlated with the levels of XBP1. These results suggest that XBP1 regulates VEGF-mediated cardiac angiogenesis, which contributes to the progression of adaptive hypertrophy, and might provide novel targets for prevention and treatment of heart failure. PMID:27133203

  12. Hypertension, Cardiac Hypertrophy, and Impaired Vascular Relaxation Induced by 2,3,7,8-Tetrachlorodibenzo-p-Dioxin are Associated with Increased Superoxide

    PubMed Central

    Kopf, Phillip G.; Huwe, Janice K.

    2009-01-01

    The mechanisms by which 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) increases the incidence of human cardiovascular disease are not known. We investigated the degree to which cardiovascular disease develops in mice following subchronic TCDD exposure. Adult male C57BL/6 mice were dosed with vehicle or 300 ng TCDD/kg by oral gavage three times per week for 60 days. Blood pressure was recorded by radiotelemetry and aortic endothelial function was assessed by acetylcholine-induced vasorelaxation. Mean arterial pressure of TCDD-exposed mice was increased significantly by day 4 and between days 7–10, 25–35, and 45–60 with two periods of normalization on days 11–24 and days 36–39. Consistent with a prolonged period of systemic hypertension, heart weight was increased and was associated with concentric left ventricular hypertrophy. Significant increases in superoxide production also were observed in the kidney, heart, and aorta of TCDD-exposed mice. Furthermore, increased aortic superoxide resulted in endothelial dysfunction as demonstrated by significant impairment of acetylcholine-induced vasorelaxation in TCDD-exposed mice, which was restored by tempol, a superoxide dismutase (SOD) mimetic. Our model is the first to definitely demonstrate that sustained AhR activation by TCDD increases blood pressure and induces cardiac hypertrophy, which may be mediated, in part, by increased superoxide. PMID:18850075

  13. Aberrant Splicing Promotes Proteasomal Degradation of L-type CaV1.2 Calcium Channels by Competitive Binding for CaVβ Subunits in Cardiac Hypertrophy

    PubMed Central

    Hu, Zhenyu; Wang, Jiong-Wei; Yu, Dejie; Soon, Jia Lin; de Kleijn, Dominique P. V.; Foo, Roger; Liao, Ping; Colecraft, Henry M.; Soong, Tuck Wah

    2016-01-01

    Decreased expression and activity of CaV1.2 calcium channels has been reported in pressure overload-induced cardiac hypertrophy and heart failure. However, the underlying mechanisms remain unknown. Here we identified in rodents a splice variant of CaV1.2 channel, named CaV1.2e21+22, that contained the pair of mutually exclusive exons 21 and 22. This variant was highly expressed in neonatal hearts. The abundance of this variant was gradually increased by 12.5-folds within 14 days of transverse aortic banding that induced cardiac hypertrophy in adult mouse hearts and was also elevated in left ventricles from patients with dilated cardiomyopathy. Although this variant did not conduct Ca2+ ions, it reduced the cell-surface expression of wild-type CaV1.2 channels and consequently decreased the whole-cell Ca2+ influx via the CaV1.2 channels. In addition, the CaV1.2e21+22 variant interacted with CaVβ subunits significantly more than wild-type CaV1.2 channels, and competition of CaVβ subunits by CaV1.2e21+22 consequently enhanced ubiquitination and subsequent proteasomal degradation of the wild-type CaV1.2 channels. Our findings show that the resurgence of a specific neonatal splice variant of CaV1.2 channels in adult heart under stress may contribute to heart failure. PMID:27731386

  14. EGFR trans-activation by urotensin II receptor is mediated by β-arrestin recruitment and confers cardioprotection in pressure overload-induced cardiac hypertrophy.

    PubMed

    Esposito, Giovanni; Perrino, Cinzia; Cannavo, Alessandro; Schiattarella, Gabriele G; Borgia, Francesco; Sannino, Anna; Pironti, Gianluigi; Gargiulo, Giuseppe; Di Serafino, Luigi; Franzone, Anna; Scudiero, Laura; Grieco, Paolo; Indolfi, Ciro; Chiariello, Massimo

    2011-06-01

    Urotensin II (UTII) and its seven trans-membrane receptor (UTR) are up-regulated in the heart under pathological conditions. Previous in vitro studies have shown that UTII trans-activates the epidermal growth factor receptor (EGFR), however, the role of such novel signalling pathway stimulated by UTII is currently unknown. In this study, we hypothesized that EGFR trans-activation by UTII might exert a protective effect in the overloaded heart. To test this hypothesis, we induced cardiac hypertrophy by transverse aortic constriction (TAC) in wild-type mice, and tested the effects of the UTII antagonist Urantide (UR) on cardiac function, structure, and EGFR trans-activation. After 7 days of pressure overload, UR treatment induced a rapid and significant impairment of cardiac function compared to vehicle. In UR-treated TAC mice, cardiac dysfunction was associated with reduced phosphorylation levels of the EGFR and extracellular-regulated kinase (ERK), increased apoptotic cell death and fibrosis. In vitro UTR stimulation induced membrane translocation of β-arrestin 1/2, EGFR phosphorylation/internalization, and ERK activation in HEK293 cells. Furthermore, UTII administration lowered apoptotic cell death induced by serum deprivation, as shown by reduced TUNEL/Annexin V staining and caspase 3 activation. Interestingly, UTII-mediated EGFR trans-activation could be prevented by UR treatment or knockdown of β-arrestin 1/2. Our data show, for the first time in vivo, a new UTR signalling pathway which is mediated by EGFR trans-activation, dependent by β-arrestin 1/2, promoting cell survival and cardioprotection.

  15. Inducible Conditional Vascular-Specific Overexpression of Peroxisome Proliferator-Activated Receptor Beta/Delta Leads to Rapid Cardiac Hypertrophy

    PubMed Central

    Wagner, Kay-Dietrich; Vukolic, Ana; Baudouy, Delphine; Michiels, Jean-François

    2016-01-01

    Peroxisome proliferator-activated receptors are nuclear receptors which function as ligand-activated transcription factors. Among them, peroxisome proliferator-activated receptor beta/delta (PPARβ/δ) is highly expressed in the heart and thought to have cardioprotective functions due to its beneficial effects in metabolic syndrome. As we already showed that PPARβ/δ activation resulted in an enhanced cardiac angiogenesis and growth without impairment of heart function, we were interested to determine the effects of a specific activation of PPARβ/δ in the vasculature on cardiac performance under normal and in chronic ischemic heart disease conditions. We analyzed the effects of a specific PPARβ/δ overexpression in endothelial cells on the heart using an inducible conditional vascular-specific mouse model. We demonstrate that vessel-specific overexpression of PPARβ/δ induces rapid cardiac angiogenesis and growth with an increase in cardiomyocyte size. Upon myocardial infarction, vascular overexpression of PPARβ/δ, despite the enhanced cardiac vessel formation, does not protect against chronic ischemic injury. Our results suggest that the proper balance of PPARβ/δ activation in the different cardiac cell types is required to obtain beneficial effects on the outcome in chronic ischemic heart disease. PMID:27057154

  16. Trophic effect of human pericardial fluid on adult cardiac myocytes. Differential role of fibroblast growth factor-2 and factors related to ventricular hypertrophy.

    PubMed

    Corda, S; Mebazaa, A; Gandolfini, M P; Fitting, C; Marotte, F; Peynet, J; Charlemagne, D; Cavaillon, J M; Payen, D; Rappaport, L; Samuel, J L

    1997-11-01

    Pericardial fluid (PF) may contain myocardial growth factors that exert paracrine actions on cardiac myocytes. The aims of this study were (1) to investigate the effects of human PF and serum, collected from patients undergoing cardiac surgery, on the growth of cultured adult rat cardiac myocytes and (2) to relate the growth activity of both fluids to the adaptive changes in overloaded human hearts. Both PF and serum increased the rate of protein synthesis, measured by [14C]phenylalanine incorporation in adult rat cardiomyocytes (PF, +71.9 +/- 8.2% [n = 17]; serum, +14.9 +/- 6.5% [n = 13]; both P < .01 versus control medium). The effects of both PF and serum on cardiomyocyte growth correlated positively with the respective left ventricular (LV) mass. However, the magnitude of change with PF was 3-fold greater than with serum (P < .01). These trophic effects of PF were mimicked by exogenous basic fibroblast growth factor (FGF2) and inhibited by anti-FGF2 antibodies and transforming growth factor-beta (TGF-beta), suggesting a relationship to FGF2. In addition, FGF2 concentration in PF was 20 times greater than in serum. On the other hand, the LV mass-dependent trophic effect, present in both fluids, was independent of FGF2 concentration or other factors, such as angiotensin II, atrial natriuretic factor, and TGF-beta. These data suggest that FGF2 in human PF is a major determining factor in normal myocyte growth, whereas unidentified LV mass-dependent factor(s), present in both PF and serum, participates in the development of ventricular hypertrophy. PMID:9351441

  17. Cardiomyocyte VEGFR-1 activation by VEGF-B induces compensatory hypertrophy and preserves cardiac function after myocardial infarction.

    PubMed

    Zentilin, Lorena; Puligadda, Uday; Lionetti, Vincenzo; Zacchigna, Serena; Collesi, Chiara; Pattarini, Lucia; Ruozi, Giulia; Camporesi, Silvia; Sinagra, Gianfranco; Pepe, Martino; Recchia, Fabio A; Giacca, Mauro

    2010-05-01

    Mounting evidence indicates that the function of members of the vascular endothelial growth factor (VEGF) family extends beyond blood vessel formation. Here, we show that the prolonged intramyocardial expression of VEGF-A(165) and VEGF-B(167) on adeno-associated virus-mediated gene delivery determined a marked improvement in cardiac function after myocardial infarction in rats, by promoting cardiac contractility, preserving viable cardiac tissue, and preventing remodeling of the left ventricle (LV) over time. Consistent with this functional outcome, animals treated with both factors showed diminished fibrosis and increased contractile myocardium, which were more pronounced after expression of the selective VEGF receptor-1 (VEGFR-1) ligand VEGF-B, in the absence of significant induction of angiogenesis. We found that cardiomyocytes expressed VEGFR-1, VEGFR-2, and neuropilin-1 and that, in particular, VEGFR-1 was specifically up-regulated in hypoxia and on exposure to oxidative stress. VEGF-B exerted powerful antiapoptotic effect in both cultured cardiomyocytes and after myocardial infarction in vivo. Finally, VEGFR-1 activation by VEGF-B was found to elicit a peculiar gene expression profile proper of the compensatory, hypertrophic response, consisting in activation of alphaMHC and repression of betaMHC and skeletal alpha-actin, and an increase in SERCA2a, RYR, PGC1alpha, and cardiac natriuretic peptide transcripts, both in cultured cardiomyocytes and in infarcted hearts. The finding that VEGFR-1 activation by VEGF-B prevents loss of cardiac mass and promotes maintenance of cardiac contractility over time has obvious therapeutic implications.

  18. A 24-HOUR AMBULATORY ECG MONITORING IN ASSESSMENT OF QT INTERVAL DURATION AND DISPERSION IN ROWERS WITH PHYSIOLOGICAL MYOCARDIAL HYPERTROPHY

    PubMed Central

    Kim, Z.F.; Bilalova, R.R.; Tsibulkin, N.A.; Almetova, R.R.; Mudarisova, R.R.; Ahmetov, I.I.

    2013-01-01

    Myocardial hypertrophy (MH) due to cardiac pathology is characterized by an increase in QT interval duration and dispersion, while the findings for exercise-induced myocardial hypertrophy are contradictory. The majority of published research findings have not explored this relationship, but there have only been a few conducted studies using 24-hour ECG monitoring. The aim of the study was to determine the QT interval duration and dispersion in short-term and 24-hour ECG in endurance athletes with myocardial hypertrophy and without it. Methods: A total of 26 well-trained rowers underwent a resting 12-lead ECG, 24-hour ECG monitoring and echocardiography. Results: Athletes with MH (n = 7) at rest did not show any increase in QTc interval duration and dispersion, or mean and maximal QTc duration in Holter monitoring compared to athletes without MH (n = 19). Left ventricular mass was not significantly correlated with any QTc characteristics. Furthermore, athletes with MH had significantly longer mean QT (P = 0.01) and maximal QT (P = 0.018) intervals in Holter monitoring and higher 24-hour heart rate variability indexes due to stronger vagal effects. Conclusions: The present study demonstrated that athlete's heart syndrome with myocardial hypertrophy as a benign phenomenon does not lead to an increase in QT interval duration, or increases in maximal and mean duration in a 24-hour ECG. An increase in QT interval duration in athletes may have an autonomic nature. PMID:24744494

  19. Exercise-induced asthma: an overview.

    PubMed

    Cummiskey, J

    2001-10-01

    Asthmatic attack in exercise-induced asthma is brought about by hyperventilation (not necessarily to exercise), cold air, and low humidity of the air breathed. The effects are an increase in airway resistance, damage to bronchial mucosa, and an increase in bronchovascular permeability. The mechanism of these changes is the release of mediators such as histamine, leukotrienes, nitric oxide, sensory neuropeptides, the inhibition of neuronal activity, and bronchovascular permeability. The cause of asthma and exercise-induced asthma is unknown. It is probably an abnormality of vascular control in the peribronchium and/or an alteration in local adrenergic function. The importance of exercise-induced asthma definition and the use of stimulants in sport and antidoping in sport are discussed. PMID:11678516

  20. Ventricular hypertrophy--physiological mechanisms.

    PubMed

    Vaughan Williams, E M

    1986-01-01

    Adult cardiac myocytes are incapable of mitosis. Dead cells are replaced by connective tissue so that after myocardial infarction (MI), function can only be restored by compensatory hypertrophy of the surviving myocardium. In physiological hypertrophy in response to exercise, high altitude, or mild hypertension, additional myoplasm expands cell diameter in an orderly fashion; Z-lines are in register and the normal ratio of volume densities of contractile elements, mitochondria, and capillaries is conserved. In hypertrophy induced by aortic or pulmonary artery banding or by experimental or congenital hypertension, the borderline between physiological and pathological hypertrophy may be crossed, causing disorganization of fibers and an unfavourable contractile element to capillary ratio. There was, therefore, a need for a graded model of hypertrophy, which involves simulating an altitude of 6,000 m at sea level by supplying rabbits with appropriate nitrogen/oxygen mixtures. In this environment, 50% right ventricular hypertrophy can be achieved without alteration of left ventricular weight or hematocrit. Longer exposures produced 100% right ventricular hypertrophy, with only moderate increases in hematocrit and left ventricular weight. It is well known that adrenergic stimulation causes cardiac hypertrophy, and it has been suggested that release of a trophic factor from sympathetic nerves, either noradrenaline or a protein, might be a necessary stimulus for growth. If so, long-term treatment of post-MI patients with beta-adrenergic blocking agents could inhibit a desirable compensatory hypertrophy of the surviving myocardium. In the above model it has been found, however, that neither beta-blockade nor chemical sympathectomy with guanethidine or 6-hydroxydopamine had any effect on the hypertrophy, nor did treatment with verapamil or nifedipine.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Chronic cardiac reactions. I. Assessment of ventricular and myocardial work capacity in the hypertrophied and dilated ventricle.

    PubMed

    Jacob, R; Vogt, M; Noma, K

    1987-01-01

    The end-systolic and end-diastolic pressure-volume or stress-length curves define the margins of the various conceivable courses of pressure-volume or stress-length loops. Although the end-systolic pressure-volume and stress-length relations of isovolumetric and afterloaded contractions are not entirely identical, the area between isovolumetric maxima- and end-diastolic minima curves in the pressure-volume or stress-length diagram can be taken as a measure of potential ventricular and myocardial work under different yet defined mechanical conditions. The normalized stress-length area, as derived from the left ventricular pressure-volume diagram and myocardial mass, renders a rational basis for global quantitative evaluation of myocardial work capacity. The area obtained is independent of ventricular mass and size and as such is invaluable for assessing hypertrophied and/or dilated hearts, and thus interindividual comparison of myocardial contractile capability based on physical principles. However, this measure should be supplemented by considering time dependent parameters (e.g. maximum rate of stress development as a function of end-diastolic stress). The principle set here for evaluating ventricular and myocardial performance should always be borne in mind, especially when referring to more empirical parameters.

  2. The β-arrestin-biased ligand TRV120023 inhibits angiotensin II-induced cardiac hypertrophy while preserving enhanced myofilament response to calcium.

    PubMed

    Monasky, Michelle M; Taglieri, Domenico M; Henze, Marcus; Warren, Chad M; Utter, Megan S; Soergel, David G; Violin, Jonathan D; Solaro, R John

    2013-09-15

    In the present study, we compared the cardioprotective effects of TRV120023, a novel angiotensin II (ANG II) type 1 receptor (AT1R) ligand, which blocks G protein coupling but stimulates β-arrestin signaling, against treatment with losartan, a conventional AT1R blocker in the treatment of cardiac hypertrophy and regulation of myofilament activity and phosphorylation. Rats were subjected to 3 wk of treatment with saline, ANG II, ANG II + losartan, ANG II + TRV120023, or TRV120023 alone. ANG II induced increased left ventricular mass compared with rats that received ANG II + losartan or ANG II + TRV120023. Compared with saline controls, ANG II induced a significant increase in pCa50 and maximum Ca(2+)-activated myofilament tension but reduced the Hill coefficient (nH). TRV120023 increased maximum tension and pCa50, although to lesser extent than ANG II. In contrast to ANG II, TRV120023 increased nH. Losartan blocked the effects of ANG II on pCa50 and nH and reduced maximum tension below that of saline controls. ANG II + TRV120023 showed responses similar to those of TRV120023 alone; compared with ANG II + losartan, ANG II + TRV120023 preserved maximum tension and increased both pCa50 and cooperativity. Tropomyosin phosphorylation was lower in myofilaments from saline-treated hearts compared with the other groups. Phosphorylation of cardiac troponin I was significantly reduced in ANG II + TRV120023 and TRV120023 groups versus saline controls, and myosin-binding protein C phosphorylation at Ser(282) was unaffected by ANG II or losartan but significantly reduced with TRV120023 treatment compared with all other groups. Our data indicate that TRV120023-related promotion of β-arrestin signaling and enhanced contractility involves a mechanism promoting the myofilament response to Ca(2+) via altered protein phosphorylation. Selective activation of β-arrestin-dependent pathways may provide advantages over conventional AT1R blockers.

  3. Prevention of exercised induced cardiomyopathy following Pip-PMO treatment in dystrophic mdx mice

    PubMed Central

    Betts, Corinne A.; Saleh, Amer F.; Carr, Carolyn A.; Hammond, Suzan M.; Coenen-Stass, Anna M. L.; Godfrey, Caroline; McClorey, Graham; Varela, Miguel A.; Roberts, Thomas C.; Clarke, Kieran; Gait, Michael J.; Wood, Matthew J. A.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder caused by mutations in the Dmd gene. In addition to skeletal muscle wasting, DMD patients develop cardiomyopathy, which significantly contributes to mortality. Antisense oligonucleotides (AOs) are a promising DMD therapy, restoring functional dystrophin protein by exon skipping. However, a major limitation with current AOs is the absence of dystrophin correction in heart. Pip peptide-AOs demonstrate high activity in cardiac muscle. To determine their therapeutic value, dystrophic mdx mice were subject to forced exercise to model the DMD cardiac phenotype. Repeated peptide-AO treatments resulted in high levels of cardiac dystrophin protein, which prevented the exercised induced progression of cardiomyopathy, normalising heart size as well as stabilising other cardiac parameters. Treated mice also exhibited significantly reduced cardiac fibrosis and improved sarcolemmal integrity. This work demonstrates that high levels of cardiac dystrophin restored by Pip peptide-AOs prevents further deterioration of cardiomyopathy and pathology following exercise in dystrophic DMD mice. PMID:25758104

  4. Exercise-induced bronchospasm in children.

    PubMed

    Holbreich, M

    1981-03-01

    Exercise-induced bronchospasm (EIB) is common among asthmatic children. After vigorous exercise, about 80 percent of childhood asthmatics develop significant bronchoconstriction. The mechanism is probably related to heat loss from the respiratory tract during exercise. Jogging, soccer and basketball are the activities most often implicated. Adequate bronchodilator therapy can prevent most EIB episodes. Recognition and treatment of EIB will allow full participation in sports.

  5. Exendin-4 therapy still offered an additional benefit on reducing transverse aortic constriction-induced cardiac hypertrophy-caused myocardial damage in DPP-4 deficient rats.

    PubMed

    Lu, Hung-I; Chung, Sheng-Ying; Chen, Yi-Ling; Huang, Tein-Hung; Zhen, Yen-Yi; Liu, Chu-Feng; Chang, Meng-Wei; Chen, Yung-Lung; Sheu, Jiunn-Jye; Chua, Sarah; Yip, Hon-Kan; Lee, Fan-Yen

    2016-01-01

    Inhibition of dipeptidyl peptidase-IV (DPP-4) enzyme activity has been revealed to protect myocardium from ischemia-reperfusion through enhancing the endogenous glucagon-like peptide-1 (GLP-1) level. However, whether exogenous supply of exendin-4, an analogue of GLP-1, would still offer benefit for protecting myocardial damage from trans-aortic constriction (TAC)-induced hypertrophic cardiomyopathy in preexistence of DPP-4 deficiency (DPP-4(D)) remained unclear. Male-adult (DPP-4(D)) rats (n = 32) were randomized into group 1 [sham control (SC)], group 2 (DPP-4(D) + TAC), group 3 [DPP-4(D) + TAC + exendin-4 10 µg/day], and group 4 [DPP-4(D) + TAC + exendin-4 10 µg + exendin-9-39 10 µg/day]. The rats were sacrificed by day 60 after last echocardiographic examination. By day 60 after TAC, left ventricular ejection fraction (LVEF) (%) was highest in group 1 and lowest in group 2, and significantly lower in group 4 than that in group 3 (all p < 0.001). The protein expressions of oxidative stress (oxidized protein, NOX-1, NOX-2), inflammatory (MMP-9, TNF-α, NF-κB), apoptotic (Bax, cleaved caspase 3 and PARP), fibrotic (TGF-β, Smad3), heart failure (BNP, β-MHC), DNA damaged (γ-H2AX) and ischemic stress (p-P38, p-Akt, p53, ATM) biomarkers showed an opposite pattern of LVEF among the four groups (all p < 0.03). Fibrotic area (by Masson's trichrome, Sirius red), and cellular expressions of DNA-damaged markers (Ki-67+, γ-H2AX+, CD90+/53BP1+) displayed an identical pattern, whereas cellular expressions of angiogenesis (CD31+, α-SMA+) and sarcomere length exhibited an opposite pattern compared to that of oxidative stress among the four groups (all p < 0.001). Take altogether, Exendin-4 effectively suppressed TAC-induced pathological cardiac hypertrophy in DPP-4(D) rat.

  6. Effects of taurine on myocardial cGMP/cAMP ratio, antioxidant ability, and ultrastructure in cardiac hypertrophy rats induced by isoproterenol.

    PubMed

    Yang, Qunhui; Yang, Jiancheng; Wu, Gaofeng; Feng, Ying; Lv, Qiufeng; Lin, Shumei; Hu, Jianmin

    2013-01-01

    Taurine is the most abundant free amino acid in the human body and accounts for more than 50% of the total amino acid pool in the mammalian heart. To investigate the preventive effects of taurine on cardiac hypertrophy in rats, myocardial injury was established by hypodermic injection of isoprenaline (ISO) (10 mg/kg d) for 7 days. The preventive effects of taurine (100 mg/kg d, 200 mg/kg d, and 300 mg/kg d, i.p) on heart coefficient; ultrastructure of cardiac muscle; the levels of creatine kinase heart isoenzyme (CK-MB), cAMP, and cGMP; and antioxidant ability were investigated. The results showed that taurine could significantly prevent the increase of heart coefficient induced by ISO. Compared with the model group, 100 mg/kg and 200 mg/kg taurine significantly decrease the levels of cAMP and cGMP, while 300 mg/kg taurine could significantly decrease the levels of cAMP in myocardium, and all the three concentrations of taurine could significantly increase the ratio of cGMP/cAMP. The level of serum CK-MB was significantly increased by ISO; 200 mg/kg taurine could significantly decrease it, but 100 mg/kg and 300 mg/kg taurine had no significant effect. As for the antioxidant ability, ISO administration could significantly increase the myocardial level of MDA but had no significant effects on the myocardial levels of SOD, GSH, GSH-Px, and T-AOC. However, taurine administration could significantly decrease the myocardial level of MDA and increase the levels of GSH and T-AOC compared with the model group. The serum levels of SOD, GSH-Px, GSH, and T-AOC were significantly reduced by ISO administration, but the level of MDA showed no significant changes compared with the control group. Taurine administration could significantly increase the serum levels of SOD, GSH-Px, GSH, and T-AOC and decrease the level of MDA compared with the model group. All the results indicated that 200 mg/kg taurine had better effects. The ultrastructure of cardiomyocytes showed that taurine

  7. Imitators of exercise-induced bronchoconstriction

    PubMed Central

    2009-01-01

    Exercise-induced bronchoconstriction (EIB) is described by transient narrowing of the airways after exercise. It occurs in approximately 10% of the general population, while athletes may show a higher prevalence, especially in cold weather and ice rink athletes. Diagnosis of EIB is often made on the basis of self-reported symptoms without objective lung function tests, however, the presence of EIB can not be accurately determined on the basis of symptoms and may be under-, over-, or misdiagnosed. The goal of this review is to describe other clinical entities that mimic asthma or EIB symptoms and can be confused with EIB. PMID:20016690

  8. Determinants of discrepancies in detection and comparison of the prognostic significance of left ventricular hypertrophy by electrocardiogram and cardiac magnetic resonance imaging.

    PubMed

    Bacharova, Ljuba; Chen, Haiying; Estes, E Harvey; Mateasik, Anton; Bluemke, David A; Lima, Joao A C; Burke, Gregory L; Soliman, Elsayed Z

    2015-02-15

    Despite the low sensitivity of the electrocardiogram (ECG) in detecting left ventricular hypertrophy (LVH), ECG-LVH is known to be a strong predictor of cardiovascular risk. Understanding reasons for the discrepancies in detection of LVH by ECG versus imaging could help improve the diagnostic ability of ECG. We examined factors associated with false-positive and false-negative ECG-LVH, using cardiac magnetic resonance imaging (MRI) as the gold standard. We also compared the prognostic significance of ECG-LVH and MRI-LVH as predictors of cardiovascular events. This analysis included 4,748 participants (mean age 61.9 years, 53.5% females, 61.7% nonwhites). Logistic regression with stepwise selection was used to identify factors associated with false-positive (n = 208) and false-negative (n = 387), compared with true-positive (n = 208) and true-negative (n = 4,041) ECG-LVH, respectively. A false-negative ECG-LVH status was associated with increased odds of Hispanic race/ethnicity, current smoking, hypertension, increased systolic blood pressure, prolongation of QRS duration, and higher body mass index and with lower odds of increased ejection fraction (model-generalized R(2) = 0.20). A false-positive ECG-LVH status was associated with lower odds of black race, Hispanic race/ethnicity, minor ST-T abnormalities, increased systolic blood pressure, and presence of any major electrocardiographic abnormalities (model-generalized R(2) = 0.29). Both ECG-LVH and MRI-LVH were associated with an increased risk of cardiovascular disease events (hazard ratio 1.51, 95% confidence interval 1.03 to 2.20 and hazard ratio 1.81, 95% confidence interval 1.33 to 2.46, respectively). In conclusion, discrepancy in LVH detection by ECG and MRI can be relatively improved by considering certain participant characteristics. Discrepancy in diagnostic performance, yet agreement on predictive ability, suggests that LVH by ECG and LVH by imaging are likely to be two distinct but somehow related

  9. Exercise-induced anaphylaxis: A clinical view

    PubMed Central

    2012-01-01

    Exercise-induced anaphylaxis (EIA) is a distinct form of physical allergy. The development of anaphylaxis during exertion often requires the concomitant exposure to triggering factors such as intake of foods (food dependent exercise-induced anaphylaxis) or drugs prior to exercise, extreme environmental conditions. EIA is a rare, but serious disorder, which is often undetected or inadequately treated. This article summarizes current evidences on pathophysiology, diagnosis and management. We reviewed recent advances in factors triggering the release of mediators from mast cells which seems to play a pathogenetic role. A correct diagnosis is essential to avoid unnecessary restricted diet, to allow physical activity in subjects with EIA dependent from triggering factors such as food, and to manage attacks. An algorithm for diagnosing EIA based on medical history, IgE tests and exercise challenge test has been provided. In the long-term management of EIA, there is a need for educating patients and care-givers to avoid exposure to precipitating factors and to recognize and treat episodes. Future researches on existing questions are discussed. PMID:22980517

  10. Potential Markers in Cardiac Hypertrophy?

    PubMed Central

    Fulgheri, Gabriele; Wicinski, Michal; Grzesk, Elzbieta; Odrowaz-Sypniewska, Grazyna; Grześk, Grzegorz; Darwish, Nasser

    2012-01-01

    Cardiomyopathies are diagnosed based on medical history of patient (symptoms and family history), physical examination, results of echocardiogram and in some situations additionally ECG or chest-X-ray results. Currently used non-invasive diagnostic methods, could be complemented by biochemical tests. In this review some emerging potential biomarkers such as: osteopontin, ST-2 receptor, osteoprotegerin, neopterin, urocortins, growth differentiation factor 15 and urotensin II are described. In current article human and non human investigations have been reviewed, since rat is most commonly used model in experimental cardiology and gives important foundations to clinical knowledge.

  11. Exercise-induced anaphylaxis and antileukotriene montelukast

    PubMed Central

    Gajbhiye, Sapna; Agrawal, Rajendra Prasad; Atal, Shubham; Tiwari, Vikalp; Phadnis, Pradeep

    2015-01-01

    We report a rare case of exercise-induced anaphylaxis (EIA), occurring exclusively with exercise, without any other associated trigger, detected in the prodromal phase, and prevented from additional anaphylaxis episodes by treatment with cetirizine and 10 mg daily of antileukotriene montelukast to date. EIA is a syndrome in which patients experience a spectrum of the symptoms of anaphylaxis ranging from mild cutaneous signs to severe systemic manifestations such as hypotension, syncope, and even death after increased physical activity. Many people have triggers, such as, a variety of foods, various medications, alcohol, cold weather, humidity, and seasonal and hormonal changes along with exercise that cause the symptoms. Typically, either exercise or the specific trigger alone will rarely cause symptoms. It is differentiated from cholinergic urticaria by the absence of response to passive body warming and emotional stress. PMID:26312002

  12. Exercise-induced anaphylaxis and antileukotriene montelukast.

    PubMed

    Gajbhiye, Sapna; Agrawal, Rajendra Prasad; Atal, Shubham; Tiwari, Vikalp; Phadnis, Pradeep

    2015-01-01

    We report a rare case of exercise-induced anaphylaxis (EIA), occurring exclusively with exercise, without any other associated trigger, detected in the prodromal phase, and prevented from additional anaphylaxis episodes by treatment with cetirizine and 10 mg daily of antileukotriene montelukast to date. EIA is a syndrome in which patients experience a spectrum of the symptoms of anaphylaxis ranging from mild cutaneous signs to severe systemic manifestations such as hypotension, syncope, and even death after increased physical activity. Many people have triggers, such as, a variety of foods, various medications, alcohol, cold weather, humidity, and seasonal and hormonal changes along with exercise that cause the symptoms. Typically, either exercise or the specific trigger alone will rarely cause symptoms. It is differentiated from cholinergic urticaria by the absence of response to passive body warming and emotional stress. PMID:26312002

  13. Exercise-induced compartment syndrome: case report.

    PubMed

    Klodell, C T; Pokorny, R; Carrillo, E H; Heniford, B T

    1996-06-01

    Exercise-induced rhabdomyolysis is a frequent event occurring after severe forms of exercise. This is usually a short-lived, uncomplicated phenomenon that is seldom of any clinical significance. The rare progression of this muscle injury to compartment syndrome is, however, a limb- and life-threatening condition that typically presents in the anterior compartment of the lower leg. A case is reported of a young man who participated in physical activity well beyond his normal level of exertion and subsequently developed bilateral lower extremity compartment syndrome requiring surgical decompression. To our knowledge, this is the only description of this complication occurring in a multicompartment, bilateral distribution. The combination of the rarity and morbidity of this condition, as well as the multitude of very common benign injuries that present in the same manner as the problem discussed, make this insult especially dangerous.

  14. Exercise-Induced Systemic Venous Hypertension in the Fontan Circulation.

    PubMed

    Navaratnam, Devaraj; Fitzsimmons, Samantha; Grocott, Michael; Rossiter, Harry B; Emmanuel, Yaso; Diller, Gerard-Paul; Gordon-Walker, Timothy; Jack, Sandy; Sheron, Nick; Pappachan, John; Pratap, Jayant Nick; Vettukattil, Joseph J; Veldtman, Gruschen

    2016-05-15

    Increasingly end-organ injury is being demonstrated late after institution of the Fontan circulation, particularly liver fibrosis and cirrhosis. The exact mechanisms for these late phenomena remain largely elusive. Hypothesizing that exercise induces precipitous systemic venous hypertension and insufficient cardiac output for the exercise demand, that is, a possible mechanism for end-organ injury, we sought to demonstrate the dynamic exercise responses in systemic venous perfusion (SVP) and concurrent end-organ perfusion. Ten stable Fontan patients and 9 control subjects underwent incremental cycle ergometry-based cardiopulmonary exercise testing. SVP was monitored in the right upper limb, and regional tissue oxygen saturation was monitored in the brain and kidney using near-infrared spectroscopy. SVP rose profoundly in concert with workload in the Fontan group, described by the regression equation 15.97 + 0.073 watts per mm Hg. In contrast, SVP did not change in healthy controls. Regional renal (p <0.01) and cerebral tissue saturations (p <0.001) were significantly lower and decrease more rapidly in Fontan patients. We conclude that in a stable group of adult patients with Fontan circulation, high-intensity exercise was associated with systemic venous hypertension and reduced systemic oxygen delivery. This physiological substrate has the potential to contribute to end-organ injury.

  15. Cytoskeletal Role in the Contractile Dysfunction of Hypertrophied Myocardium

    NASA Astrophysics Data System (ADS)

    Tsutsui, Hiroyuki; Ishihara, Kazuaki; Cooper, George

    1993-04-01

    Cardiac hypertrophy in response to systolic pressure loading frequently results in contractile dysfunction of unknown cause. In the present study, pressure loading increased the microtubule component of the cardiac muscle cell cytoskeleton, which was responsible for the cellular contractile dysfunction observed. The linked microtubule and contractile abnormalities were persistent and thus may have significance for the deterioration of initially compensatory cardiac hypertrophy into congestive heart failure.

  16. Hemodynamic effects of high intensity interval training in COPD patients exhibiting exercise-induced dynamic hyperinflation.

    PubMed

    Nasis, I; Kortianou, E; Vasilopoulou, Μ; Spetsioti, S; Louvaris, Z; Kaltsakas, G; Davos, C H; Zakynthinos, S; Koulouris, N G; Vogiatzis, I

    2015-10-01

    Dynamic hyperinflation (DH) has a significant adverse effect on cardiovascular function during exercise in COPD patients. COPD patients with (n = 25) and without (n = 11) exercise-induced DH undertook an incremental (IET) and a constant-load exercise test (CLET) sustained at 75% peak work (WRpeak) prior to and following an interval cycling exercise training regime (set at 100% WRpeak with 30-s work/30-s rest intervals) lasting for 12 weeks. Cardiac output (Q) was assessed by cardio-bio-impedance (PhysioFlow, enduro, PF-O7) to determine Q mean response time (QMRT) at onset (QMRT(ON)) and offset (QMRT(OFF)) of CLET. Post-rehabilitation only those patients exhibiting exercise-induced DH demonstrated significant reductions in QMRT(ON) (from 82.2 ± 4.3 to 61.7 ± 4.2 s) and QMRT(OFF) (from 80.5 ± 3.8 to 57.2 ± 4.9 s ). These post-rehabilitation adaptations were associated with improvements in inspiratory capacity, thereby suggesting that mitigation of the degree of exercise-induced DH improves central hemodynamic responses in COPD patients.

  17. Prevalence and Associated Clinical Characteristics of Exercise-Induced ST-Segment Elevation in Lead aVR

    PubMed Central

    Pitcher, Ian; Fordyce, Christopher B.; Yousefi, Masoud; Yeo, Tee Joo; Ignaszewski, Andrew; Isserow, Saul; Chan, Sammy; Ramanathan, Krishnan; Taylor, Carolyn M.

    2016-01-01

    Background Exercise-induced ST-segment elevation (STE) in lead aVR may be an important indicator of prognostically important coronary artery disease (CAD). However, the prevalence and associated clinical features of exercise-induced STE in lead aVR among consecutive patients referred for exercise stress electrocardiography (ExECG) is unknown. Methods All consecutive patients receiving a Bruce protocol ExECG for the diagnosis of CAD at a tertiary care academic center were included over a two-year period. Clinical characteristics, including results of coronary angiography, were compared between patients with and without exercise-induced STE in lead aVR. Results Among 2227 patients undergoing ExECG, exercise-induced STE ≥1.0mm in lead aVR occurred in 3.4% of patients. Patients with STE in lead aVR had significantly lower Duke Treadmill Scores (DTS) (-0.5 vs. 7.0, p<0.01) and a higher frequency of positive test results (60.2% vs. 7.3%, p<0.01). Furthermore, patients with STE in lead aVR were more likely to undergo subsequent cardiac catheterization than those without STE in lead aVR (p<0.01, odds ratio = 4.2). Conclusions Among patients referred for ExECG for suspected CAD, exercise-induced STE in lead aVR was associated with a higher risk DTS, an increased likelihood of a positive ExECG, and referral for subsequent coronary angiography. These results suggest that exercise-induced STE in lead aVR may represent a useful ECG feature among patients undergoing ExECG in the risk stratification of patients. PMID:27467388

  18. Exercise induced compartment syndrome in a professional footballer.

    PubMed

    Cetinus, E; Uzel, M; Bilgiç, E; Karaoguz, A; Herdem, M

    2004-04-01

    Recurrent pain in the lower leg caused by exercise is a common problem in athletes. The main causes are exercise induced compartment syndrome, periostitis of the tibia, stress fracture, venous diseases, obliterative arterial diseases, and shin splints. Exercise induced compartment syndrome is the least common. A recurrent tightening or tense sensation and aching in anatomically defined compartments is pathognomonic. The symptoms are caused by abnormally high pressure in compartments of the leg during and after exercise. In this report, a case of exercise induced compartment syndrome in a professional footballer is described.

  19. Wheat-dependent exercise-induced anaphylaxis.

    PubMed

    Scherf, K A; Brockow, K; Biedermann, T; Koehler, P; Wieser, H

    2016-01-01

    Wheat-dependent exercise-induced anaphylaxis (WDEIA) is a rare, but potentially severe food allergy exclusively occurring when wheat ingestion is accompanied by augmenting cofactors. It is clinically characterized by anaphylactic reactions ranging from urticaria and angioedema to dyspnoea, hypotension, collapse, and shock. WDEIA usually develops after ingestion of wheat products followed by physical exercise. Other cofactors are acetylsalicylic acid and other non-steroidal anti-inflammatory drugs, alcohol, and infections. The precise mechanisms of WDEIA remain unclear; exercise and other cofactors might increase gastrointestinal allergen permeability and osmolality, redistribute blood flow, or lower the threshold for IgE-mediated mast cell degranulation. Among wheat proteins, ω5-gliadin and high-molecular-weight glutenin subunits have been reported to be the major allergens. In some patients, WDEIA has been discussed to be caused by epicutaneous sensitization with hydrolysed wheat gluten included in cosmetics. Diagnosis is made based on the patient's history in combination with allergy skin testing, determination of wheat-specific IgE serum antibodies, basophil activation test, histamine release test, and/or exercise challenge test. Acute treatment includes application of adrenaline or antihistamines. The most reliable prophylaxis of WDEIA is a gluten-free diet. In less severe cases, a strict limitation of wheat ingestion before exercise and avoidance of other cofactors may be sufficient.

  20. [Cereal-dependent exercise-induced anaphylaxis].

    PubMed

    Seoane-Rodríguez, Marta; Caralli, María Elisa; Morales-Cabeza, Cristina; Micozzi, Sarah; De Barrio-Fernández, Manuel; Rojas Pérez-Ezquerra, Patricia

    2016-01-01

    Wheat-dependent exercise-induced anaphylaxis (WDEIA) is increasing. In vitro test such as omega-5-gliadin levels are useful in the diagnosis, while oral single blind challenge tests (OCT) with wheat plus exercise continuous being the gold standard diagnostic method. This paper reports the case of a 38-year-old woman, with several episodes of anaphylaxis after eating different foods and doing exercise after ingestion. An allergy study was performed with positive skin prick tests for wheat, barley and rye. Total IgE 238.0KU/L, positive specific IgE (>100KU/L) to wheat, barley and rye, and negative to rTri-a-19 omega-5 gliadin. OCT with bread and exercise was positive. In this case of wheat-dependent exerciseinduced anaphylaxis (WDEIA) with negative serum specific IgE to omega-5-gliadin, negative results with gamma, alpha, bheta y omega-gliadin doesn't exclude the diagnosis of WDEIA. PMID:26943835

  1. [Cereal-dependent exercise-induced anaphylaxis].

    PubMed

    Seoane-Rodríguez, Marta; Caralli, María Elisa; Morales-Cabeza, Cristina; Micozzi, Sarah; De Barrio-Fernández, Manuel; Rojas Pérez-Ezquerra, Patricia

    2016-01-01

    Wheat-dependent exercise-induced anaphylaxis (WDEIA) is increasing. In vitro test such as omega-5-gliadin levels are useful in the diagnosis, while oral single blind challenge tests (OCT) with wheat plus exercise continuous being the gold standard diagnostic method. This paper reports the case of a 38-year-old woman, with several episodes of anaphylaxis after eating different foods and doing exercise after ingestion. An allergy study was performed with positive skin prick tests for wheat, barley and rye. Total IgE 238.0KU/L, positive specific IgE (>100KU/L) to wheat, barley and rye, and negative to rTri-a-19 omega-5 gliadin. OCT with bread and exercise was positive. In this case of wheat-dependent exerciseinduced anaphylaxis (WDEIA) with negative serum specific IgE to omega-5-gliadin, negative results with gamma, alpha, bheta y omega-gliadin doesn't exclude the diagnosis of WDEIA.

  2. Asthma Bronchiale and Exercise-Induced Bronchoconstriction.

    PubMed

    Jayasinghe, Harshani; Kopsaftis, Zoe; Carson, Kristin

    2015-01-01

    Exercising regularly has a wide range of beneficial health effects; in particular, it has been well documented to help in the management of chronic illnesses including asthma. However, in some individuals, exertion can also trigger an exacerbation of asthmatic episodes and subsequent acute attacks of breathlessness, coughing, tightness of the chest and wheezing. This physiological process is called exercise-induced bronchoconstriction (EIB) whereby post-exercise forced expiratory volume in 1 s is reduced by 10-15% from baseline. While EIB is highly prevalent in asthmatics and presents with similar respiratory symptoms, asthma and EIB are not mutually exclusive. The aim of this review is to present a broad overview of both conditions in order to enhance the understanding of the similarities and differences distinguishing them as two separate entities. The pathophysiology and mechanisms underlying asthma are well described with research now focussing on defining phenotypes for targeted management strategies. Conversely, the mechanistic understanding of EIB remains largely under-described. Diagnostic pathways for both are established and similar, as are pharmacologic and non-pharmacologic treatments and management approaches, which have enhanced success with early detection. Given the potential for exacerbation of asthma, exercise avoidance is common but counterproductive as current evidence indicates that it is well tolerated and improves quality of life. Literature supporting the benefit of exercise for EIB sufferers is at present favourable, yet extremely limited; therefore, future research should be directed in this area as well as towards further developing the understanding of the pathophysiology and mechanisms underpinning both EIB and asthma.

  3. O-GlcNAc signaling is essential for NFAT-mediated transcriptional reprogramming during cardiomyocyte hypertrophy.

    PubMed

    Facundo, Heberty T; Brainard, Robert E; Watson, Lewis J; Ngoh, Gladys A; Hamid, Tariq; Prabhu, Sumanth D; Jones, Steven P

    2012-05-15

    The regulation of cardiomyocyte hypertrophy is a complex interplay among many known and unknown processes. One specific pathway involves the phosphatase calcineurin, which regulates nuclear translocation of the essential cardiac hypertrophy transcription factor, nuclear factor of activated T-cells (NFAT). Although metabolic dysregulation is frequently described during cardiac hypertrophy, limited insights exist regarding various accessory pathways. One metabolically derived signal, beta-O-linked N-acetylglucosamine (O-GlcNAc), has emerged as a highly dynamic posttranslational modification of serine and threonine residues regulating physiological and stress processes. Given the metabolic dysregulation during hypertrophy, we hypothesized that NFAT activation is dependent on O-GlcNAc signaling. Pressure overload-induced hypertrophy (via transverse aortic constriction) in mice or treatment of neonatal rat cardiac myocytes with phenylephrine significantly enhanced global O-GlcNAc signaling. NFAT-luciferase reporter activity revealed O-GlcNAc-dependent NFAT activation during hypertrophy. Reversal of enhanced O-GlcNAc signaling blunted cardiomyocyte NFAT-induced changes during hypertrophy. Taken together, these results demonstrate a critical role of O-GlcNAc signaling in NFAT activation during hypertrophy and provide evidence that O-GlcNAc signaling is coordinated with the onset and progression of cardiac hypertrophy. This represents a potentially significant and novel mechanism of cardiac hypertrophy, which may be of particular interest in future in vivo studies of hypertrophy.

  4. MicroRNA-96 promotes myocardial hypertrophy by targeting mTOR

    PubMed Central

    Sun, Xuemei; Zhang, Chunlai

    2015-01-01

    As a main cause of cardiac hypertrophy, myocardial hypertrophy includes the proliferation and enlongation of myocardial cell, resulting in abnormally cardiac enlargement. However, the pathogenesis and the molecular mechanism that regulate gene expression of myocardial hypertrophy remain incompletely understood. MiRNAs were deemed as an important molecules involved in a variety of pathological processes. MiR-96 has been reported being associated with the tumor proliferation, but whether miR-96 is involved in cardiac hypertrophy remains uncertain. In this study, we have confirmed that, as the myocardial hypertrophy gene, mTOR was a target gene of miR-96, who would promote the occurrence of myocardial hypertrophy. Thus, we got the conclusion that miR-96 could promote myocardial hypertrophy by inhibiting mTOR, miR-96 and mTOR were negatively correlated. PMID:26823769

  5. Using OPLS-DA to find new hypotheses in vast amounts of gene expression data - studying the progression of cardiac hypertrophy in the heart of aorta ligated rat.

    PubMed

    Gennebäck, Nina; Malm, Linus; Hellman, Urban; Waldenström, Anders; Mörner, Stellan

    2013-06-10

    One of the great problems facing science today lies in data mining of the vast amount of data. In this study we explore a new way of using orthogonal partial least squares-discrimination analysis (OPLS-DA) to analyze multidimensional data. Myocardial tissues from aorta ligated and control rats (sacrificed at the acute, the adaptive and the stable phases of hypertrophy) were analyzed with whole genome microarray and OPLS-DA. Five functional gene transcript groups were found to show interesting clusters associated with the aorta ligated or the control animals. Clustering of "ECM and adhesion molecules" confirmed previous results found with traditional statistics. The clustering of "Fatty acid metabolism", "Glucose metabolism", "Mitochondria" and "Atherosclerosis" which are new results is hard to interpret, thereby being possible subject to new hypothesis formation. We propose that OPLS-DA is very useful in finding new results not found with traditional statistics, thereby presenting an easy way of creating new hypotheses. PMID:23523859

  6. Exercise-induced bronchoconstriction in Tunisian elite athletes is underdiagnosed

    PubMed Central

    Sallaoui, Ridha; Zendah², Ines; Ghedira², Habib; Belhaouz³, Mohcine; Ghrairi³, Mourad; Amri³, Mohamed

    2011-01-01

    Many studies have shown an increased risk of developing exercise-induced bronchoconstriction among the athletic population, particularly at the elite level. Subjective methods for assessing exercise-induced bronchoconstriction such as surveys and questionnaires have been used but have resulted in an underestimation of the prevalence of airway dysfunction when compared with objective measurements. The aim of the present study was to compare the prevalence of exercise-induced bronchoconstriction among Tunisian elite athletes obtained using an objective method with that using a subjective method, and to discuss the possible causes and implications of the observed discrepancy. As the objective method we used spirometry before and after exercise and for the subjective approach we used a medical history questionnaire. All of the recruited 107 elite athletes responded to the questionnaire about respiratory symptoms and medical history and underwent a resting spirometry testing before and after exercise. Post-exercise spirometry revealed the presence of exercise-induced bronchoconstriction in 14 (13%) of the elite athletes, while only 1.8% reported having previously been diagnosed with asthma. In conclusion, our findings indicate that medical history-based diagnoses of exercise-induced bronchoconstriction lead to underestimations of true sufferers. PMID:24198569

  7. Specific LPA receptor subtype mediation of LPA-induced hypertrophy of cardiac myocytes and involvement of Akt and NFkappaB signal pathways.

    PubMed

    Chen, Jinghai; Chen, Yuefeng; Zhu, Weiquan; Han, Yu; Han, Bianmei; Xu, Ruixia; Deng, Linzi; Cai, Yan; Cong, Xiangfeng; Yang, Yuejing; Hu, Shengshou; Chen, Xi

    2008-04-15

    Lysophosphatidic acid (LPA) is a bioactive phospholipid with diverse functions mediated via G-protein-coupled receptors (GPCRs). In view of the elevated levels of LPA in acute myocardial infarction (MI) patients we have conducted studies aimed at identifying specific LPA receptor subtypes and signaling events that may mediate its actions in hypertrophic remodeling. Experiments were carried out in cultured neonatal rat cardiomyocytes (NRCMs) exposed to LPA and in a rat MI model. In NRCMs, LPA-induced hypertrophic growth was completely abrogated by DGPP, an LPA1/LPA3 antagonist. The LPA3 agonist OMPT, but not the LPA2 agonist dodecylphosphate, promoted hypertrophy as examined by 3[H]-Leucine incorporation, ANF-luciferase expression and cell area. In in vivo experiments, LPA1, LPA2 and LPA3 mRNA levels as well as LPA1 and LPA3 protein levels increased together with left ventricular remodeling (LVRM) after MI. In addition, LPA stimulated the phosphorylation of Akt and p65 protein and activated NF-kappaB-luciferase expression. Inhibitors of PI3K (wortmannin), mTOR (rapamycin), and NF-kappaB (PDTC or SN50) effectively prevented LPA-induced 3[H]-Leucine incorporation and ANF-luciferase expression. Furthermore, ERK inhibitors (U0126 and PD98059) suppressed LPA-stimulated activation of NF-kappaB and p65 phosphorylation whereas wortmannin showed no effect on NF-kappaB activation. Our findings indicate that LPA3 and/or LPA1 mediate LPA-induced hypertrophy of NRCMs and that LPA1 and LPA3 may be involved in LVRM of MI rats. Moreover, Akt and NF-kappaB signaling pathways independently implicate in LPA-stimulated myocardial hypertrophic growth. PMID:17891781

  8. Accelerated Development of Pressure Overload-Induced Cardiac Hypertrophy and Dysfunction in a RyR2-R176Q Knockin Mouse Model

    PubMed Central

    van Oort, Ralph J.; Respress, Jonathan L.; Li, Na; Reynolds, Corey; De Almeida, Angela C.; Skapura, Darlene G.; De Windt, Leon J.; Wehrens, Xander H.T.

    2010-01-01

    In response to chronic hypertension, the heart compensates by hypertrophic growth, which frequently progresses to heart failure. Although Ca2+ has a central role in hypertrophic signaling pathways, the Ca2+ source for activating these pathways remains elusive. We hypothesized that pathological sarcoplasmic reticulum Ca2+ leak through defective cardiac intracellular Ca2+ release channels/ ryanodine receptors (RyR2) accelerates heart failure development by stimulating Ca2+-dependent hypertrophic signaling. Mice heterozygous for the gain-of-function mutation R176Q/+ in RyR2 and wildtype (WT) mice were subjected to transverse aortic constriction (TAC). Cardiac function was significantly lower, and cardiac dimensions were larger at 8 weeks after TAC in R176Q/+ compared with WT mice. R176Q/+ mice displayed an enhanced hypertrophic response compared to WT mice as assessed by heart weight to body weight ratios and cardiomyocyte cross sectional areas after TAC. Quantitative PCR revealed increased transcriptional activation of cardiac stress genes in R176Q/+ mice after TAC. Moreover, pressure overload resulted in an increased SR Ca2+ leak, associated with higher expression levels of the exon 4 splice form of regulator of calcineurin-1 (RCAN1-4), and a decrease in nuclear factor of activated T-cells (NFAT) phosphorylation in R176Q/+ mice compared to WT. Taken together, our results suggest that RyR2-dependent SR Ca2+ leak activates the pro-hypertrophic calcineurin/NFAT pathway under conditions of pressure overload. PMID:20157052

  9. Loss of functional endothelial connexin40 results in exercise-induced hypertension in mice.

    PubMed

    Morton, Susan K; Chaston, Daniel J; Howitt, Lauren; Heisler, Jillian; Nicholson, Bruce J; Fairweather, Stephen; Bröer, Stefan; Ashton, Anthony W; Matthaei, Klaus I; Hill, Caryl E

    2015-03-01

    During activity, coordinated vasodilation of microcirculatory networks with upstream supply vessels increases blood flow to skeletal and cardiac muscles and reduces peripheral resistance. Endothelial dysfunction in humans attenuates activity-dependent vasodilation, resulting in exercise-induced hypertension in otherwise normotensive individuals. Underpinning activity-dependent hyperemia is an ascending vasodilation in which the endothelial gap junction protein, connexin (Cx)40, plays an essential role. Because exercise-induced hypertension is proposed as a forerunner to clinical hypertension, we hypothesized that endothelial disruption of Cx40 function in mice may create an animal model of this condition. To this end, we created mice in which a mutant Cx40T152A was expressed alongside wildtype Cx40 selectively in the endothelium. Expression of the Cx40T152A transgene in Xenopus oocytes and mouse coronary endothelial cells in vitro impaired both electric and chemical conductance and acted as a dominant-negative against wildtype Cx40, Cx43, and Cx45, but not Cx37. Endothelial expression of Cx40T152A in Cx40T152ATg mice attenuated ascending vasodilation, without effect on radial coupling through myoendothelial gap junctions. Using radiotelemetry, Cx40T152ATg mice showed an activity-dependent increase in blood pressure, which was significantly greater than in wildtype mice, but significantly less than in chronically hypertensive, Cx40knockout mice. The increase in heart rate with activity was also greater than in wildtype or Cx40knockout mice. We conclude that the endothelial Cx40T152A mutation attenuates activity-dependent vasodilation, producing a model of exercise-induced hypertension. These data highlight the importance of endothelial coupling through Cx40 in regulating blood pressure during activity.

  10. Regression of Copper-Deficient Heart Hypertrophy: Reduction in the Size of Hypertrophic Cardiomyocytes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary copper deficiency causes cardiac hypertrophy and its transition to heart failure in a mouse model. Copper repletion results in a rapid regression of cardiac hypertrophy and prevention of heart failure. The present study was undertaken to understand dynamic changes of cardiomyocytes in the hy...

  11. Rosa rugosa Aqueous Extract Alleviates Endurance Exercise-Induced Stress.

    PubMed

    Seo, Eunjin; You, Yanghee; Yoon, Ho-Geun; Kim, Boemjeong; Kim, Kyungmi; Lee, Yoo-Hyun; Lee, Jeongmin; Chung, Jin Woong; Shim, Sangin; Jun, Woojin

    2015-06-01

    This study was performed to investigate the effect of water extract from Rosa rugosa (RRW) on endurance exercise-induced stress in mice. The mice were orally administered with distilled water or RRW, respectively. The endurance capacity was evaluated by exhaustive swimming using an adjustable-current water pool. Mice administered RRW swam longer before becoming exhausted. Also, RRW administration resulted in less lipid peroxidation, lower muscular antioxidant enzyme activities, and lower cortisol level. The results suggest that RRW can prevent exercise-induced stress by decreasing oxidative stress levels.

  12. EXERCISE-INDUCED PULMONARY HEMORRHAGE AFTER RUNNING A MARATHON

    EPA Science Inventory

    We report on a healthy 26-year-old male who had an exercise-induced pulmonary hemorrhage (EIPH) within 24 hours of running a marathon. There were no symptoms, abnormalities on exam, or radiographic infiltrates. He routinely participated in bronchoscopy research and the EIPH was e...

  13. Exercise-induced asthma. What family physicians should do.

    PubMed Central

    D'Urzo, A.

    1995-01-01

    Exercise-induced asthma is described as a transitory increase in airway resistance during or after vigorous exercise. Nearly 90% of patients with chronic asthma and 40% of allergic nonasthmatic patients have the condition. Family physicians should try to educate patients about their asthma and, barring contraindications, encourage them to participate in regular physical activity. PMID:8563507

  14. Coping with Exercise-Induced Asthma in Sports.

    ERIC Educational Resources Information Center

    Katz, Roger M.

    1987-01-01

    This article reviews the history of research on exercise-induced asthma (EIA) and the pathophysiology of the condition, including its development and influencing factors. Four groups of drugs that are effective against EIA--theopyhlline, beta-adrenergic agents, cromolyn sodium, and anticholinergics--are discussed. (Author/CB)

  15. Left ventricular hypertrophy index based on a combination of frontal and transverse planes in the ECG and VCG: Diagnostic utility of cardiac vectors

    NASA Astrophysics Data System (ADS)

    Bonomini, Maria Paula; Juan Ingallina, Fernando; Barone, Valeria; Antonucci, Ricardo; Valentinuzzi, Max; Arini, Pedro David

    2016-04-01

    The changes that left ventricular hypertrophy (LVH) induces in depolarization and repolarization vectors are well known. We analyzed the performance of the electrocardiographic and vectorcardiographic transverse planes (TP in the ECG and XZ in the VCG) and frontal planes (FP in the ECG and XY in the VCG) to discriminate LVH patients from control subjects. In an age-balanced set of 58 patients, the directions and amplitudes of QRS-complexes and T-wave vectors were studied. The repolarization vector significantly decreased in modulus from controls to LVH in the transverse plane (TP: 0.45±0.17mV vs. 0.24±0.13mV, p<0.0005 XZ: 0.43±0.16mV vs. 0.26±0.11mV, p<0.005) while the depolarization vector significantly changed in angle in the electrocardiographic frontal plane (Controls vs. LVH, FP: 48.24±33.66° vs. 46.84±35.44°, p<0.005, XY: 20.28±35.20° vs. 19.35±12.31°, NS). Several LVH indexes were proposed combining such information in both ECG and VCG spaces. A subset of all those indexes with AUC values greater than 0.7 was further studied. This subset comprised four indexes, with three of them belonging to the ECG space. Two out of the four indexes presented the best ROC curves (AUC values: 0.78 and 0.75, respectively). One index belonged to the ECG space and the other one to the VCG space. Both indexes showed a sensitivity of 86% and a specificity of 70%. In conclusion, the proposed indexes can favorably complement LVH diagnosis

  16. Splice-variant changes of the CaV3.2 T-type calcium channel mediate voltage-dependent facilitation and associate with cardiac hypertrophy and development

    PubMed Central

    David, Laurence S; Garcia, Esperanza; Cain, Stuart M; Thau, Elana M; Tyson, John R

    2010-01-01

    Low voltage-activated T-type calcium (Ca) channels contribute to the normal development of the heart and are also implicated in pathophysiological states such as cardiac hypertrophy. Functionally distinct T-type Ca channel isoforms can be generated by alternative splicing from each of three different T-type genes (CaV3.1, CaV3.2, CaV3.3), although it remains to be described whether specific splice variants are associated with developmental states and pathological conditions. We aimed to identify and functionally characterize CaV3.2 T-type Ca channel alternatively spliced variants from newborn animals and to compare with adult normotensive and spontaneously hypertensive rats (SHR). DNA sequence analysis of full-length CaV3.2 cDNA generated from newborn heart tissue identified ten major regions of alternative splicing, the more common variants of which were analyzed by quantitative real-time PCR (qRT-PCR) and also subject to functional examination by whole-cell patch clamp. The main findings are that: (1) cardiac CaV3.2 T-type Ca channels are subject to considerable alternative splicing, (2) there is preferential expression of CaV3.2(−25) splice variant channels in newborn rat heart with a developmental shift in adult heart that results in approximately equal levels of expression of both (+25) and (−25) exon variants, (3) in the adult stage of hypertensive rats there is both an increase in overall CaV3.2 expression and a shift towards expression of CaV3.2(+25) containing channels as the predominant form and (4) alternative splicing confers a variant-specific voltage-dependent facilitation of CaV3.2 channels. We conclude that CaV3.2 alternative splicing generates significant T-type Ca channel structural and functional diversity with potential implications relevant to cardiac developmental and pathophysiological states. PMID:20699644

  17. Strenuous exercise induces a hyperreactive rebalanced haemostatic state that is more pronounced in men.

    PubMed

    Huskens, Dana; Roest, Mark; Remijn, Jasper A; Konings, Joke; Kremers, Romy M W; Bloemen, Saartje; Schurgers, Evelien; Selmeczi, Anna; Kelchtermans, Hilde; van Meel, Rinaldo; Meex, Steven J; Kleinegris, Marie-Claire; de Groot, Philip G; Urbanus, Rolf T; Ninivaggi, Marisa; de Laat, Bas

    2016-06-01

    Physical exercise is recommended for a healthy lifestyle. Strenuous exercise, however, may trigger the haemostatic system, increasing the risk of vascular thrombotic events and the incidence of primary cardiac arrest. Our goal was to study the effects of strenuous exercise on risk factors of cardiovascular disease. Blood was collected from 92 healthy volunteers who participated in the amateur version of the pro-tour Amstel Gold cycling race, before and directly after the race. Thrombin generation showed a shortening of the lag time and time to peak and an increase of the velocity index. Interestingly, the endogenous thrombin potential measured in plasma decreased due to reduced prothrombin conversion. Platelet reactivity increased and this effect was stronger in men than in women. Lower fibrinogen and higher D-dimer levels after exercise indicated higher fibrin formation. On the other hand, fibrinolysis was also elevated as indicated by a shortening of the clot lysis time. Exercise activated the endothelium (von Willebrand factor (VWF) and active VWF levels were elevated) and the immune system (concentrations IL-6, IL-8, MCP-1, RANTES and PDGF increased). Additionally, an increased cardiac troponin T level was measured post-exercise. Strenuous exercise induces a temporary hyperreactive state in the body with enhanced pro- and anticoagulant responses. As strenuous exercise has a more pronounced effect on platelet function in male subjects, this gives a possible explanation for the higher incidence of sudden cardiac death during exercise compared to women. This trial is registered at www.clinicaltrials.gov as NCT02048462. PMID:26864794

  18. Telmisartan regresses left ventricular hypertrophy in caveolin-1 deficient mice

    PubMed Central

    Kreiger, Marta H; Di Lorenzo, Annarita; Teutsch, Christine; Kauser, Katalin; Sessa, William C.

    2011-01-01

    The role of angiotensin II (Ang II) in promoting cardiac hypertrophy is well known, however the role of the Ang II in a spontaneous model of hypertrophy in mice lacking the protein caveolin-1 (Cav- KO) has not been explored. In this study, WT and Cav-1 KO mice were treated with angiotensin receptor blocker (ARB), telmisartan, and cardiac function assessed by echocardiography. Treatment of Cav-1 KO mice with telmisartan significantly improved cardiac function compared to age-matched, vehicle treated Cav-1 KO mice, while telmisartan did not affected cardiac function in WT mice. Both left ventricular (LV) weight to body weight ratios and LV to tibial length ratios were also reverted by telmisartan in Cav-1 KO but not WT mice. LV hypertrophy was associated with increased expression of natriuretic peptides-A and –B, β-myosin heavy chain and TGF-β and telmisartan treatment normalized the expression of these genes. Telmisartan reduced the expression of collagen genes (Col1A and Col3A) and associated perivascular fibrosis in intramyocardial vessels in Cav-1 KO mice. In conclusion, telmisartan treatment reduces indexes of cardiac hypertrophy in this unique genetic model of spontaneous LV hypertrophy. PMID:20585312

  19. Telmisartan regresses left ventricular hypertrophy in caveolin-1-deficient mice.

    PubMed

    Krieger, Marta H; Di Lorenzo, Annarita; Teutsch, Christine; Kauser, Katalin; Sessa, William C

    2010-11-01

    The role of angiotensin II (Ang II) in promoting cardiac hypertrophy is well known; however, its role in a spontaneous model of hypertrophy in mice lacking the protein caveolin-1 (Cav-1 KO) has not been explored. In this study, WT and Cav-1 KO mice were treated with angiotensin receptor blocker (ARB), telmisartan (Telm), and cardiac function was assessed by echocardiography. Treatment of Cav-1 KO mice with Telm significantly improved cardiac function compared with age-matched vehicle-treated Cav-1 KO mice, whereas Telm did not affect cardiac function in WT mice. Both left ventricular (LV) weight to body weight ratios and LV to tibial length ratios were also reverted by Telm in Cav-1 KO but not in WT mice. LV hypertrophy was associated with increased expression of natriuretic peptides A and B, β-myosin heavy chain and TGF-β, and Telm treatment normalized the expression of these genes. Telm reduced the expression of collagen genes (Col1A and Col3A) and associated perivascular fibrosis in intramyocardial vessels in Cav-1 KO mice. In conclusion, Telm treatment reduces indexes of cardiac hypertrophy in this unique genetic model of spontaneous LV hypertrophy. PMID:20585312

  20. Coronary haemodynamics in left ventricular hypertrophy.

    PubMed Central

    Wallbridge, D. R.; Cobbe, S. M.

    1996-01-01

    BACKGROUND: Left ventricular hypertrophy is associated with an increased risk of cardiovascular morbidity and mortality. Previous studies have shown that patients with left ventricular hypertrophy develop electrocardiographic changes and left ventricular dysfunction during acute hypotension, and suggest that the lower end of autoregulation may be shifted upwards. AIM: To measure coronary blood flow (velocity) and flow reserve during acute hypotension in patients with left ventricular hypertrophy. PATIENTS: Eight patients with atypical chest pain and seven with hypertensive left ventricular hypertrophy; all with angiographically normal epicardial vessels. SETTING: Tertiary referral centre. METHODS: The physiological range of blood pressure was determined by previous ambulatory monitoring. Left ventricular mass was determined by echocardiography. At cardiac catheterisation, left coronary blood flow velocity was measured using a Judkins style Doppler tipped catheter. During acute hypotension with sodium nitroprusside, coronary blood flow velocity was recorded at rest and during maximal hyperaemia induced by intracoronary injection of adenosine. Quantitative coronary angiography was performed manually. RESULTS: For both groups coronary blood flow velocity remained relatively constant over a range of physiological diastolic blood pressures and showed a steep relation with diastolic blood pressure during maximal hyperaemia with intracoronary adenosine. Absolute coronary blood flow (calculated from quantitative angiographic data), standardised for left ventricular mass, showed reduced flow in the hypertensive group at rest and during maximal vasodilatation. CONCLUSION: The results are consistent with an inadequate blood supply to the hypertrophied heart, but no upward shift of the lower end of the autoregulatory range was observed. PMID:8705764

  1. The effect of loratadine in exercise-induced asthma

    PubMed Central

    Baki, A; Orhan, F

    2002-01-01

    Aims: To assess the effect of loratadine in exercise induced asthma. Methods: Randomised, double blind, placebo controlled study of 10 mg oral loratadine, once daily for three days in 11 children. At the end of the treatment period FEV1 was measured, and patients were exercised on a treadmill. FEV1 measurements were repeated at intervals after exercise. Results: Loratadine significantly reduced the decrease in FEV1 after exercise at two, five, 10, 15, and 30 minutes, compared with placebo (p < 0.05). However, the mean decrease in FEV1 at five minutes was more than 15% of baseline in the loratadine group. Conclusions: Loratadine reduces, but does not prevent, exercise induced asthma in children. PMID:11806881

  2. Recognition and management of exercise-induced bronchospasm.

    PubMed

    Sinha, Taru; David, Alan K

    2003-02-15

    Exercise-induced bronchospasm is an obstruction of transient airflow that usually occurs five to 15 minutes after physical exertion. Although this condition is highly preventable, it is still underrecognized and affects aerobic fitness and quality of life. Diagnosis is based on the results of a detailed history, including assessment of asthma triggers, symptoms suggestive of exercise-induced bronchoconstriction, and a normal forced expiratory volume at one second at rest. A trial of therapy with an inhaled beta agonist may be instituted, with the subsequent addition of inhaled anti-inflammatory agents or ipratropium bromide. Nonpharmacologic measures, such as increased physical conditioning, warm-up exercises, and covering the mouth and nose, should be instituted. If symptoms persist, pulmonary function testing is warranted to rule out underlying lung disease. PMID:12613731

  3. Exercise-Induced Cognitive Plasticity, Implications for Mild Cognitive Impairment and Alzheimer’s Disease

    PubMed Central

    Foster, Philip P.; Rosenblatt, Kevin P.; Kuljiš, Rodrigo O.

    2011-01-01

    Lifestyle factors such as intellectual stimulation, cognitive and social engagement, nutrition, and various types of exercise appear to reduce the risk for common age-associated disorders such as Alzheimer’s disease (AD) and vascular dementia. In fact, many studies have suggested that promoting physical activity can have a protective effect against cognitive deterioration later in life. Slowing or a deterioration of walking speed is associated with a poor performance in tests assessing psychomotor speed and verbal fluency in elderly individuals. Fitness training influences a wide range of cognitive processes, and the largest positive impact observed is for executive (a.k.a. frontal lobe) functions. Studies show that exercise improves additional cognitive functions such as tasks mediated by the hippocampus, and result in major changes in plasticity in the hippocampus. Interestingly, this exercise-induced plasticity is also pronounced in APOE ε4 carriers who express a risk factor for late-onset AD that may modulate the effect of treatments. Based on AD staging by Braak and Braak (1991) and Braak et al. (1993) we propose that the effects of exercise occur in two temporo-spatial continua of events. The “inward” continuum from isocortex (neocortex) to entorhinal cortex/hippocampus for amyloidosis and a reciprocal “outward” continuum for neurofibrillary alterations. The exercise-induced hypertrophy of the hippocampus at the core of these continua is evaluated in terms of potential for prevention to stave off neuronal degeneration. Exercise-induced production of growth factors such as the brain-derived neurotrophic factor (BDNF) has been shown to enhance neurogenesis and to play a key role in positive cognitive effects. Insulin-like growth factor (IGF-1) may mediate the exercise-induced response to exercise on BDNF, neurogenesis, and cognitive performance. It is also postulated to regulate brain amyloid β (Aβ) levels by increased clearance via the choroid

  4. Exercise-induced anaphylaxis related to specific foods.

    PubMed

    Tilles, S; Schocket, A; Milgrom, H

    1995-10-01

    We describe the case, documented by challenge results, of a 16-year-old girl with exercise-induced anaphylaxis associated with eating pizza and a cheese sandwich. Patients in whom a specific coprecipitating food has been identified should avoid it for at least 12 hours before exercise. All patients should be instructed to avoid eating 6 to 8 hours before exercise, discontinue exercise at the first sign of symptoms, and exercise only with a companion prepared to administer epinephrine.

  5. Exercise induces autophagy in peripheral tissues and in the brain.

    PubMed

    He, Congcong; Sumpter, Rhea; Levine, Beth

    2012-10-01

    We recently identified physical exercise as a newly defined inducer of autophagy in vivo. Exercise induced autophagy in multiple organs involved in metabolic regulation, such as muscle, liver, pancreas and adipose tissue. To study the physiological role of exercise-induced autophagy, we generated mice with a knock-in nonphosphorylatable mutation in BCL2 (Thr69Ala, Ser70Ala and Ser84Ala) (BCL2 AAA) that are defective in exercise- and starvation-induced autophagy but not in basal autophagy. We found that BCL2 AAA mice could not run on a treadmill as long as wild-type mice, and did not undergo exercise-mediated increases in skeletal glucose muscle uptake. Unlike wild-type mice, the BCL2 AAA mice failed to reverse high-fat diet-induced glucose intolerance after 8 weeks of exercise training, possibly due to defects in signaling pathways that regulate muscle glucose uptake and metabolism during exercise. Together, these findings suggested a hitherto unknown important role of autophagy in mediating exercise-induced metabolic benefits. In the present addendum, we show that treadmill exercise also induces autophagy in the cerebral cortex of adult mice. This observation raises the intriguing question of whether autophagy may in part mediate the beneficial effects of exercise in neurodegeneration, adult neurogenesis and improved cognitive function.

  6. Cardiac effect of thyrotoxicosis in acromegaly.

    PubMed

    Marzullo, P; Cuocolo, A; Ferone, D; Pivonello, R; Salvatore, M; Lombardi, G; Colao, A

    2000-04-01

    Cardiac structure and function are affected both by acromegaly and hyperthyroidism. Whereas the former is mainly characterized by ventricular hypertrophy as well as diastolic and systolic impairment, the latter frequently leads to increased heart rate and enhancement of contractility and cardiac output. To further investigate this issue, we designed this two-arm study. In the first cross-sectional study, we compared echocardiography and radionuclide angiography results obtained in eight hyperthyroid acromegalic patients, eight hyperthyroid nonacromegalic patients, and eight healthy subjects. All acromegalic patients were receiving treatment for acromegaly at the onset of hyperthyroidism. In the second longitudinal study, performed in the group of acromegalic patients, we compared the cardiovascular results obtained during hyperthyroidism with the retrospective data obtained at the initial diagnosis of acromegaly and after 1-yr treatment for this disease and those prospective data obtained during the remission of hyperthyroidism. In the cross-sectional study, hyperthyroid acromegalic patients showed an increase in the left ventricular (LV) mass index (LVMi) compared to healthy and hyperthyroid controls (P < 0.05), with evidence of LVMi hypertrophy in five of them (62.5%). A significant correlation was found between LVMi and GH levels (r = 0.785; P < 0.05). The LV ejection fraction (LVEF) at rest was higher in the control hyperthyroid population than in healthy controls (P < 0.05), whereas the LVEF response to exercise was reduced in acromegalic patients (P < 0.05 vs. healthy controls). In acromegalics, the exercise-induced change in LVEF was significantly reduced compared to that in healthy controls (P < 0.001), but not to that in hyperthyroid controls (P < 0.07), being abnormal (<5% increase vs. baseline values) in six patients. Four of these six patients (66%) had elevated GH and insulin-like growth factor I levels during the treatment of acromegaly. An inverse

  7. Attenuated exercise induced hyperaemia with age: mechanistic insight from passive limb movement

    PubMed Central

    McDaniel, John; Hayman, Melissa A; Ives, Steve; Fjeldstad, Anette S; Trinity, Joel D; Wray, D Walter; Richardson, Russell S

    2010-01-01

    The influence of age on the central and peripheral contributors to exercise-induced hyperaemia is unclear. Utilizing a reductionist approach, we compared the peripheral and central haemodynamic responses to passive limb movement (exercise without an increase in metabolism) in 11 old (71 ± 9 years of age s.d.) and 11 young (24 ± 2 years of age) healthy subjects. Cardiac output (CO), heart rate (HR), stroke volume (SV), mean arterial pressure (MAP), and femoral blood flow of the passively moved and control legs were evaluated second-by-second during 2 min of passive knee extension at a rate of 1 Hz. Compared to the young, the old group exhibited a significantly attenuated increase in HR (7 ± 4%vs. 13 ± 7%s.d.), CO (10 ± 6%vs. 18 ± 8%) and femoral blood flow in the passively moved (123 ± 55%vs. 194 ± 57%) and control legs (47 ± 43%vs. 77 ± 96%). In addition, the change in vascular conductance in the passively moving limb was also significantly attenuated in the old (2.4 ± 1.2 ml min−1 mmHg−1) compared to the young (4.3 ± 1.7 ml min−1 mmHg−1). In both groups all main central and peripheral changes that occurred at the onset of passive knee extension were transient, lasting only 45 s. In a paradigm where metabolism does not play a role, these data reveal that both central and peripheral haemodynamic mechanisms are likely to be responsible for the 30% reduction in exercise-induced hyperaemia with age. PMID:20876201

  8. Benign masseter muscle hypertrophy.

    PubMed

    Rispoli, Daniel Zeni; Camargo, Paulo M; Pires, José L; Fonseca, Vinicius R; Mandelli, Karina K; Pereira, Marcela A C

    2008-01-01

    Idiopathic hypertrophy of the masseter muscle is a rare disorder of unknown cause. Some authors associate it with the habit of chewing gum, temporo-mandibular joint disorder, congenital and functional hypertrophies, and emotional disorders (stress and nervousness). Most patients complain of the cosmetic change caused by facial asymmetry, also called square face, however, symptoms such as trismus, protrusion and bruxism may also occur. The goals of the present investigation were: to report a case of idiopathic masseter hypertrophy, describe its symptoms and treatment. The patient reported bilateral bulging in the region of the mandible angle, of slow and progressive evolution. He did not complain of pain or discomfort, however there was bilateral otalgia, nighttime trismus and stress. In his physical exam we noticed bilateral masseter hypertrophy without local inflammatory alterations. We indicated surgical treatment with an extraoral approach. Complementary tests are indicated when there is diagnostic doubts. Treatment varies from conservative to surgical, and the later depends on surgeon skill and experience.

  9. Sinusitis and chronic progressive exercise-induced cough and dyspnea.

    PubMed

    Williams, Adam N; Simon, Ronald A; Woessner, Katharine M

    2008-01-01

    We present the case of a 47-year-old man with exercise-induced dyspnea, cough, chest tightness, and recalcitrant chronic rhinosinusitis. Evaluation revealed IgE sensitization to grass, tree, and weed pollen, no evidence of obstruction on spirometry, and a negative methacholine challenge. Diagnostic considerations included allergic and nonallergic rhinitis, asthma, aspirin-exacerbated respiratory disease, vocal cord dysfunction, extra-esophageal manifestations of acid reflux, and vasculitits. Further evaluation with sinus imaging, laryngoscopy, ambulatory pharyngeal pH testing, upper endoscopy, and bronchoscopy led to a diagnosis. Key issues surrounding the diagnostic and therapeutic approaches to this patient's condition are reviewed.

  10. Pathophysiology of Acute Exercise-Induced Muscular Injury: Clinical Implications

    PubMed Central

    Page, Phillip

    1995-01-01

    Acute muscular injury is the most common injury affecting athletes and those participating in exercise. Nearly everyone has experienced soreness after unaccustomed or intense exercise. Clinically, acute strains and delayed-onset muscle soreness are very similar. The purpose of this paper is to review the predisposing factors, mechanisms of injury, structural changes, and biochemical changes associated with these injuries. Laboratory and clinical findings are discussed to help athletic trainers differentiate between the two conditions and to provide a background knowledge for evaluation, prevention, and treatment of exercise-induced muscular injury. PMID:16558305

  11. The Curious Question of Exercise-Induced Pulmonary Edema

    PubMed Central

    Bates, Melissa L.; Farrell, Emily T.; Eldridge, Marlowe W.

    2011-01-01

    The question of whether pulmonary edema develops during exercise on land is controversial. Yet, the development of pulmonary edema during swimming and diving is well established. This paper addresses the current controversies that exist in the field of exercise-induced pulmonary edema on land and with water immersion. It also discusses the mechanisms by which pulmonary edema can develop during land exercise, swimming, and diving and the current gaps in knowledge that exist. Finally, this paper discusses how these fields can continue to advance and the areas where clinical knowledge is lacking. PMID:21660232

  12. Exercise-induced anaphylactic reaction to grain flours.

    PubMed

    Armentia, A; Martin-Santos, J M; Blanco, M; Carretero, L; Puyo, M; Barber, D

    1990-08-01

    On rare occasions, reproducible exercise-induced anaphylactic reactions (EIA) occur in some patients only after certain foods have been eaten before exercise, yet eating these foods alone or exercising alone causes no symptoms. This special response has been evident sometimes with shellfish, nuts, and wheat. We describe a patient in whom grain flour was a triggering factor for EIA. Skin tests and RAST were positive for grain flours. Normally, the patient tolerated grain flours without symptoms and IgE mechanisms had not been suspected. Testing for food hypersensitivity may be important in patients with EIA.

  13. Beat‐to‐Beat Spatiotemporal Variability in the T Vector Is Associated With Sudden Cardiac Death in Participants Without Left Ventricular Hypertrophy: The Atherosclerosis Risk in Communities (ARIC) Study

    PubMed Central

    Waks, Jonathan W.; Soliman, Elsayed Z.; Henrikson, Charles A.; Sotoodehnia, Nona; Han, Lichy; Agarwal, Sunil K.; Arking, Dan E.; Siscovick, David S.; Solomon, Scott D.; Post, Wendy S.; Josephson, Mark E.; Coresh, Josef; Tereshchenko, Larisa G.

    2015-01-01

    Background Despite advances in prevention and treatment of cardiovascular disease, sudden cardiac death (SCD) remains a clinical challenge. Risk stratification in the general population is needed. Methods and Results Beat‐to‐beat spatiotemporal variability in the T vector was measured as the mean angle between consecutive T‐wave vectors (mean TT′ angle) on standard 12‐lead ECGs in 14 024 participants in the Atherosclerosis Risk in Communities (ARIC) study. Subjects with left ventricular hypertrophy, atrial arrhythmias, frequent ectopy, ventricular pacing, or QRS duration ≥120 ms were excluded. The mean spatial TT′ angle was 5.21±3.55°. During a median of 14 years of follow‐up, 235 SCDs occurred (1.24 per 1000 person‐years). After adjustment for demographics, coronary heart disease risk factors, and known ECG markers for SCD, mean TT′ angle was independently associated with SCD (hazard ratio 1.089; 95% CI 1.044 to 1.137; P<0.0001). A mean TT′ angle >90th percentile (>9.57°) was associated with a 2‐fold increase in the hazard for SCD (hazard ratio 2.01; 95% CI 1.28 to 3.16; P=0.002). In a subgroup of patients with T‐vector amplitude ≥0.2 mV, the association with SCD was almost twice as strong (hazard ratio 3.92; 95% CI 1.91 to 8.05; P<0.0001). A significant interaction between mean TT′ angle and age was found: TT′ angle was associated with SCD in participants aged <55 years (hazard ratio 1.096; 95% CI 0.043 to 1.152; P<0.0001) but not in participants aged ≥55 years (Pinteraction=0.009). Conclusions In a large, prospective, community‐based cohort of left ventricular hypertrophy–free participants, increased beat‐to‐beat spatiotemporal variability in the T vector, as assessed by increasing TT′ angle, was associated with SCD. PMID:25600143

  14. Exercise-Induced Oxidative Stress and Dietary Antioxidants

    PubMed Central

    Yavari, Abbas; Javadi, Maryam; Mirmiran, Parvin; Bahadoran, Zahra

    2015-01-01

    Context: Overproduction of reactive oxygen and nitrogen species during physical exercise, exercise induced oxidative stress and antioxidant supplementation is interesting and controversial concepts that have been considered during the past decades. Evidence Acquisition: In this review, we aimed to summarize current evidence in relation to antioxidant supplementation outcomes during exercise and physical activity. For this aim, we obtained relevant articles through searches of the Medline and PubMed databases between 1980 to 2013. Although major studies have indicated that antioxidants could attenuate biomarkers of exercise-induced oxidative stress and the use of antioxidant supplement is a common phenomenon among athletes and physically active people, there are some doubts regarding the benefits of these. Results: It seems that the best recommendations regarding antioxidants and exercise are having a balanced diet rich in natural antioxidants and phytochemicals. Conclusions: Regular consumption of various fresh fruits and vegetables, whole grains, legumes and beans, sprouts and seeds is an effective and safe way to meet all antioxidant requirements in physically active persons and athletes. PMID:25883776

  15. Laser acupuncture in children and adolescents with exercise induced asthma

    PubMed Central

    Gruber, W; Eber, E; Malle-Scheid, D; Pfleger, A; Weinhandl, E; Dorfer, L; Zach, M

    2002-01-01

    Background: Laser acupuncture, a painless technique, is a widely used alternative treatment method for childhood asthma, although its efficacy has not been proved in controlled clinical studies. Methods: A double blind, placebo controlled, crossover study was performed to investigate the possible protective effect of a single laser acupuncture treatment on cold dry air hyperventilation induced bronchoconstriction in 44 children and adolescents of mean age 11.9 years (range 7.5–16.7) with exercise induced asthma. Laser acupuncture was performed on real and placebo points in random order on two consecutive days. Lung function was measured before laser acupuncture, immediately after laser acupuncture (just before cold dry air challenge (CACh)), and 3 and 15 minutes after CACh. CACh consisted of a 4 minute isocapnic hyperventilation of –10°C absolute dry air. Results: Comparison of real acupuncture with placebo acupuncture showed no significant differences in the mean maximum CACh induced decrease in forced expiratory volume in 1 second (27.2 (18.2)% v 23.8 (16.2)%) and maximal expiratory flow at 25% remaining vital capacity (51.6 (20.8)% v 44.4 (22.3)%). Conclusions: A single laser acupuncture treatment offers no protection against exercise induced bronchoconstriction in paediatric and adolescent patients. PMID:11867825

  16. Food-dependent exercise-induced anaphylaxis: is wheat unique?

    PubMed

    Wong, Gabriel K; Krishna, Mamidipudi T

    2013-12-01

    This review draws comparisons between wheat-dependent exercise-induced anaphylaxis (WDEIA) and other food-dependent exercise-induced anaphylaxis (FDEIAs) and discusses the importance of co-factors in its pathophysiology. FDEIA remains an enigmatic condition since it was first described 30 years ago. The sporadic and unpredictable nature of its reactions has puzzled clinicians and scientists for decades, but recent studies on WDEIA have enlightened us about the pathophysiology of this condition. The identification of defined allergic epitopes such as Tri a 19, α-gliadin, β-gliadin and γ-gliadin in WDEIA enables it to become the perfect model for studying FDEIA, but WDEIA is by no means a unique condition. On a larger scale, FDEIA represents a crucial link between IgE-mediated and anaphylactoid reactions and provides supportive evidence for the concept of 'summation anaphylaxis' and the need to overcome the 'allergen threshold'. Future work should focus on identifying more of the FDEIA epitopes and understanding their distinct molecular properties. The development of a biomarker in order to identify patients susceptible to co-factor influences would be invaluable.

  17. Effect of simulated weightlessness on exercise-induced anaerobic threshold

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Karst, G. M.; Kirby, C. R.; Goldwater, D. J.

    1986-01-01

    The effect of simulated weightlessness, induced by ten days of continuous bedrest (BR) in the -6 deg head-down position, on the exercise-induced anaerobic threshold (AT) was determined by comparing specific ventilatory and gas-exchange measurements during an incremental ergometer test performed before and after BR. The primary index for determining the exercise-induced AT values of each subject was visual identification of the workrate or oxygen uptake (VO2) at which the ratio of the expired minute ventilation volume (VE) to VO2 exhibited a systematic increase without a concomitant increase in the VE/VCO2 value. Following BR, the mean VO2max of the subjects decreased by 7.0 percent, and the AT decreased from a mean of 1.26 L/min VO2 before BR to 0.95 L/min VO2 after BR. The decrease in AT was manifested by a decrease in both absolute and relative workrates. The change in AT correlated significantly with the change in plasma volume but not with the change in VO2max. The results suggest that the reduction in AT cannot be completely explained by the reduction in VO2, and that the AT decrease is associated with the reduction in intravascular fluid volume.

  18. Acute exercise-induced bilateral thigh compartment syndrome.

    PubMed

    Boland, Michael R; Heck, Chris

    2009-03-01

    Acute compartment syndrome of the thigh is rare due to the space's ability to accommodate large volumes of fluid and, with the exception of the lateral septum, its thin compliant linings. This article describes a case of bilateral exercise-induced severe compartment syndrome treated with anterior and posterior fasciotomies. A 29-year-old man was admitted to intensive care with myoglobinuria. His left thigh was evaluated 18 hours later for compartment syndrome. The patient reported that 14 hours prior to initial presentation, he had participated in a 1-hour session of vigorous basketball. He gradually developed bilateral moderately severe thigh pain and tea-colored urine. Physical examination revealed pain secondary to passive stretch of both knees at 20 degrees flexion, plus firm anterior and posterior compartments to palpation. A handheld pressure monitor revealed the following compartment pressures: left anterior 80 mm Hg; left posterior 75 mm Hg; right anterior 45 mm Hg; and right posterior 50 mm Hg. Bilateral emergent anterior and posterior compartment fasciotomies were performed. The patient developed a significant severe distal motor and sensory neurological deficit on the left side, which recovered to 3/5 motor strength and protective sensation. At 6-month follow-up, he ambulated with the assistance of a left ankle foot orthosis. Acute severe compartment syndrome can occur following vigorous exercise. We recommend fasciotomies after exercise-induced acute compartment syndrome rather than initial observation because of the severity of morbidity associated with undertreated compartment syndrome.

  19. Does Resistance Training Stimulate Cardiac Muscle Hypertrophy?

    ERIC Educational Resources Information Center

    Bloomer, Richard J.

    2003-01-01

    Reviews the literature on the left ventricular structural adaptations induced by resistance/strength exercise, focusing on human work, particularly well-trained strength athletes engaged in regular, moderate- to high-intensity resistance training (RT). The article discusses both genders and examines the use of anabolic-androgenic steroids in…

  20. Exercise-induced endobronchial hemorrhage: a rare clinical presentation.

    PubMed

    Kruavit, Anuk; Jain, Mukesh; Fielding, David; Heraganahally, Subash

    2016-07-01

    The phenomenon of exercise-induced hemoptysis is still relatively underrecognised in humans. We report a case of recurrent hemoptysis brought on by vigorous exercise. A 33-year-old male presented with several episodes of intermittent fresh small-volume hemoptysis reproducible on vigorous exercise. There was no other significant medical history other than a past history of testicular tumor, treated with orchidectomy and adjuvant Bleomycin-based chemotherapy 1 year prior to onset of symptoms. Computed tomography scan showed no major abnormalities other than few small bilateral non-specific nodules. Computed tomography aortogram and pulmonary angiogram, ventilation/perfusion scan, and echocardiography yielded no significant abnormalities. Infectious, autoimmune disease, coagulopathy, vasculitis, and malignant causes were excluded. Bronchoscopy showed possible endobronchial bleeding. This phenomenon is thought to be due to vulnerability of pulmonary capillaries to stress or mechanical failure during strenuous exercise at high cardiorespiratory workload. PMID:27512564

  1. Identification of exercise-induced asthma among intercollegiate athletes.

    PubMed

    Rice, S G; Bierman, C W; Shapiro, G G; Furukawa, C T; Pierson, W E

    1985-12-01

    Nine hundred eight-three new intercollegiate athletes were evaluated to estimate the frequency of exercise-induced asthma (EIA). Medical history was obtained using a specifically structured interview. Athletes were selected for exercise testing based on positive responses to questions regarding symptoms of respiratory distress after strenuous exercise. Exercise testing was performed in a controlled laboratory setting using a standard exercise protocol. A laboratory diagnosis of EIA was made if the forced expiratory volume in one second (FEV1) fell greater than or equal to 10%, forced expiratory flow at 25% to 75% of vital capacity (FEF25-75%) fell greater than or equal to 20%, and/or peak expiratory flow rate (PEFR) fell greater than or equal to 12.5% after exercise. The frequency of EIA was 2.8%; only nine of the 28 athletes with EIA were detected prior to arrival at college.

  2. Exercise-induced mitochondrial dysfunction: a myth or reality?

    PubMed

    Ostojic, Sergej M

    2016-08-01

    Beneficial effects of physical activity on mitochondrial health are well substantiated in the scientific literature, with regular exercise improving mitochondrial quality and quantity in normal healthy population, and in cardiometabolic and neurodegenerative disorders and aging. However, several recent studies questioned this paradigm, suggesting that extremely heavy or exhaustive exercise fosters mitochondrial disturbances that could permanently damage its function in health and disease. Exercise-induced mitochondrial dysfunction (EIMD) might be a key proxy for negative outcomes of exhaustive exercise, being a pathophysiological substrate of heart abnormalities, chronic fatigue syndrome (CFS) or muscle degeneration. Here, we overview possible factors that mediate negative effects of exhaustive exercise on mitochondrial function and structure, and put forward alternative solutions for the management of EIMD. PMID:27389587

  3. Familial Paroxysmal Exercise-Induced Dystonia: Atypical Presentation of Autosomal Dominant GTP-Cyclohydrolase 1 Deficiency

    ERIC Educational Resources Information Center

    Dale, Russell C.; Melchers, Anna; Fung, Victor S. C.; Grattan-Smith, Padraic; Houlden, Henry; Earl, John

    2010-01-01

    Paroxysmal exercise-induced dystonia (PED) is one of the rarer forms of paroxysmal dyskinesia, and can occur in sporadic or familial forms. We report a family (male index case, mother and maternal grandfather) with autosomal dominant inheritance of paroxysmal exercise-induced dystonia. The dystonia began in childhood and was only ever induced…

  4. Exploring the Relationship between Exercise-Induced Arousal and Cognition Using Fractionated Response Time

    ERIC Educational Resources Information Center

    Chang, Yu-Kai; Etnier, Jennifer L.; Barella, Lisa A.

    2009-01-01

    Although a generally positive effect of acute exercise on cognitive performance has been demonstrated, the specific nature of the relationship between exercise-induced arousal and cognitive performance remains unclear. This study was designed to identify the relationship between exercise-induced arousal and cognitive performance for the central…

  5. The inflammatory basis of exercise-induced bronchoconstriction.

    PubMed

    Brannan, John D; Turton, James A

    2010-12-01

    Exercise-induced bronchoconstriction (EIB) is common in individuals with asthma, and may be observed even in the absence of a clinical diagnosis of asthma. Exercise-induced bronchoconstriction can be diagnosed via standardized exercise protocols, and anti-inflammatory therapy with inhaled corticosteroids (ICS) is often warranted. Exercise-related symptoms are commonly reported in primary care; however, access to standardized exercise protocols to assess EIB are often restricted because of the need for specialized equipment, as well as time constraints. Symptoms and lung function remain the most accessible indicators of EIB, yet these are poor predictors of its presence and severity. Evidence suggests that exercise causes the airways to narrow as a result of the osmotic and thermal consequences of respiratory water loss. The increase in airway osmolarity leads to the release of bronchoconstricting mediators (eg, histamine, prostaglandins, leukotrienes) from inflammatory cells (eg, mast cells and eosinophils). The objective assessment of EIB suggests the presence of airway inflammation, which is sensitive to ICS in association with a responsive airway smooth muscle. Surrogate tests for EIB, such as eucapnic voluntary hyperpnea or the osmotic challenge tests, cause airway narrowing via a similar mechanism, and a response indicates likely benefit from ICS therapy. The complete inhibition of EIB with ICS therapy in individuals with asthma may be a useful marker of control of airway pathology. Furthermore, inhibition of EIB provides additional, useful information regarding the identification of clinical control based on symptoms and lung function. This article explores the inflammatory basis of EIB in asthma as well as the effect of ICS on the pathophysiology of EIB.

  6. Exercise-induced muscle cramp. Proposed mechanisms and management.

    PubMed

    Bentley, S

    1996-06-01

    Muscle cramp is a common, painful, physiological disturbance of skeletal muscle. Many athletes are regularly frustrated by exercise-induced muscle cramp yet the pathogenesis remains speculative with little scientific research on the subject. This has resulted in a perpetuation of myths as to the cause and treatment of it. There is a need for scientifically based protocols for the management of athletes who suffer exercise-related muscle cramp. This article reviews the literature and neurophysiology of muscle cramp occurring during exercise. Disturbances at various levels of the central and peripheral nervous system and skeletal muscle are likely to be involved in the mechanism of cramp and may explain the diverse range of conditions in which cramp occurs. The activity of the motor neuron is subject to a multitude of influences including peripheral receptor sensory input, spinal reflexes, inhibitory interneurons in the spinal cord, synaptic and neurotransmitter modulation and descending CNS input. The muscle spindle and golgi tendon organ proprioceptors are fundamental to the control of muscle length and tone and the maintenance of posture. Disturbance in the activity of these receptors may occur through faulty posture, shortened muscle length, intense exercise and exercise to fatigue, resulting in increased motor neuron activity and motor unit recruitment. The relaxation phase of muscle contraction is prolonged in a fatigued muscle, raising the likelihood of fused summation of action potentials if motor neuron activity delivers a sustained high firing frequency. Treatment of cramp is directed at reducing muscle spindle and motor neuron activity by reflex inhibition and afferent stimulation. There are no proven strategies for the prevention of exercise-induced muscle cramp but regular muscle stretching using post-isometric relaxation techniques, correction of muscle balance and posture, adequate conditioning for the activity, mental preparation for competition and

  7. ED 07-4 IS EXERCISE-INDUCED HYPERTENSION ASSOCIATED WITH ADVERSE CARDIOVASCULAR OUTCOMES?

    PubMed

    Sharman, James

    2016-09-01

    Millions of clinical exercise stress tests are conducted annually worldwide. The fundamental rationale underlying the conduct of these tests is that cardiovascular irregularities may be revealed during an exercise bout that would otherwise remain unnoticed if testing was only conducted under resting conditions. In order to reveal electrocardiographic abnormalities indicative of cardiac disease, maximal intensity exercise may need to be undertaken, whereas the presence of hypertension can be revealed by the blood pressure response at low to moderate intensity exercise. Therefore, exercise blood pressure measured carefully under standardised conditions should be a useful tool to identify individuals at increased cardiovascular risk. Independent investigators have consistently shown that exercise blood pressure at low to moderate intensities predicts adverse cardiovascular outcomes independent from resting blood pressure and conventional cardiovascular risk factors. This talk will present evidence in support of exercise-induced hypertension as a clinical observation requiring additional follow up care. Future needs in terms of better understanding the mechanisms of exercise hypertension and determination of exercise hypertension thresholds will also be detailed. PMID:27642909

  8. Vascular and central hemodynamic changes following exercise-induced heat stress.

    PubMed

    Lefferts, Wesley K; Heffernan, Kevin S; Hultquist, Eric M; Fehling, Patricia C; Smith, Denise L

    2015-06-01

    This study examined the effects of moderate exercise-induced heat stress (EIHS) on vascular function, central hemodynamic load and indices of coronary perfusion. Vascular-hemodynamic measures were collected in 12 healthy men (aged 22±3 years) pre and post 100 minutes of moderate, intermittent exercise in two randomized conditions: heat stress (HS; wearing firefighter personal protective equipment (PPE)), and no heat stress (NHS; wearing a cooling shirt and equivalent PPE weight). Aortic blood pressure, reflected wave pressure (Pb), systolic (SPTI) and diastolic pressure time-integral (DPTI), and aortic stiffness were assessed before and after each condition. SPTI was significantly greater, and DPTI and Pb were significantly lower for HS-post compared to NHS-post (p<0.05). Pulse wave velocity was not different between conditions. In conclusion, EIHS does not affect aortic stiffness, but increases indices of myocardial work and reduces indices of coronary perfusion which may be related to chronotropic responses to EIHS. The mismatch between oxygen demand and oxygen supply may increase cardiac vulnerability to ischemia during strenuous work in the heat. PMID:25939655

  9. Endothelial Bmx tyrosine kinase activity is essential for myocardial hypertrophy and remodeling.

    PubMed

    Holopainen, Tanja; Räsänen, Markus; Anisimov, Andrey; Tuomainen, Tomi; Zheng, Wei; Tvorogov, Denis; Hulmi, Juha J; Andersson, Leif C; Cenni, Bruno; Tavi, Pasi; Mervaala, Eero; Kivelä, Riikka; Alitalo, Kari

    2015-10-20

    Cardiac hypertrophy accompanies many forms of heart disease, including ischemic disease, hypertension, heart failure, and valvular disease, and it is a strong predictor of increased cardiovascular morbidity and mortality. Deletion of bone marrow kinase in chromosome X (Bmx), an arterial nonreceptor tyrosine kinase, has been shown to inhibit cardiac hypertrophy in mice. This finding raised the possibility of therapeutic use of Bmx tyrosine kinase inhibitors, which we have addressed here by analyzing cardiac hypertrophy in gene-targeted mice deficient in Bmx tyrosine kinase activity. We found that angiotensin II (Ang II)-induced cardiac hypertrophy is significantly reduced in mice deficient in Bmx and in mice with inactivated Bmx tyrosine kinase compared with WT mice. Genome-wide transcriptomic profiling showed that Bmx inactivation suppresses myocardial expression of genes related to Ang II-induced inflammatory and extracellular matrix responses whereas expression of RNAs encoding mitochondrial proteins after Ang II administration was maintained in Bmx-inactivated hearts. Very little or no Bmx mRNA was expressed in human cardiomyocytes whereas human cardiac endothelial cells expressed abundant amounts. Ang II stimulation of endothelial cells increased Bmx phosphorylation, and Bmx gene silencing inhibited downstream STAT3 signaling, which has been implicated in cardiac hypertrophy. Furthermore, activation of the mechanistic target of rapamycin complex 1 pathway by Ang II treatment was decreased in the Bmx-deficient hearts. Our results demonstrate that inhibition of the cross-talk between endothelial cells and cardiomyocytes by Bmx inactivation suppresses Ang II-induced signals for cardiac hypertrophy. These results suggest that the endothelial Bmx tyrosine kinase could provide a target to attenuate the development of cardiac hypertrophy. PMID:26430242

  10. Endothelial Bmx tyrosine kinase activity is essential for myocardial hypertrophy and remodeling

    PubMed Central

    Holopainen, Tanja; Räsänen, Markus; Anisimov, Andrey; Tuomainen, Tomi; Zheng, Wei; Tvorogov, Denis; Hulmi, Juha J.; Andersson, Leif C.; Cenni, Bruno; Tavi, Pasi; Mervaala, Eero; Kivelä, Riikka; Alitalo, Kari

    2015-01-01

    Cardiac hypertrophy accompanies many forms of heart disease, including ischemic disease, hypertension, heart failure, and valvular disease, and it is a strong predictor of increased cardiovascular morbidity and mortality. Deletion of bone marrow kinase in chromosome X (Bmx), an arterial nonreceptor tyrosine kinase, has been shown to inhibit cardiac hypertrophy in mice. This finding raised the possibility of therapeutic use of Bmx tyrosine kinase inhibitors, which we have addressed here by analyzing cardiac hypertrophy in gene-targeted mice deficient in Bmx tyrosine kinase activity. We found that angiotensin II (Ang II)-induced cardiac hypertrophy is significantly reduced in mice deficient in Bmx and in mice with inactivated Bmx tyrosine kinase compared with WT mice. Genome-wide transcriptomic profiling showed that Bmx inactivation suppresses myocardial expression of genes related to Ang II-induced inflammatory and extracellular matrix responses whereas expression of RNAs encoding mitochondrial proteins after Ang II administration was maintained in Bmx-inactivated hearts. Very little or no Bmx mRNA was expressed in human cardiomyocytes whereas human cardiac endothelial cells expressed abundant amounts. Ang II stimulation of endothelial cells increased Bmx phosphorylation, and Bmx gene silencing inhibited downstream STAT3 signaling, which has been implicated in cardiac hypertrophy. Furthermore, activation of the mechanistic target of rapamycin complex 1 pathway by Ang II treatment was decreased in the Bmx-deficient hearts. Our results demonstrate that inhibition of the cross-talk between endothelial cells and cardiomyocytes by Bmx inactivation suppresses Ang II-induced signals for cardiac hypertrophy. These results suggest that the endothelial Bmx tyrosine kinase could provide a target to attenuate the development of cardiac hypertrophy. PMID:26430242

  11. Role of Histone Demethylases in Cardiomyocytes Induced to Hypertrophy

    PubMed Central

    Carulla, Juan; García, Jeison

    2016-01-01

    Epigenetic changes induced by histone demethylases play an important role in differentiation and pathological changes in cardiac cells. However, the role of the jumonji family of demethylases in the development of cardiac hypertrophy remains elusive. In this study, the presence of different histone demethylases in cardiac cells was evaluated after hypertrophy was induced with neurohormones. A cell line from rat cardiomyocytes was used as a biological model. The phenotypic profiles of the cells, as well as the expression of histone demethylases, were studied through immunofluorescence, transient transfection, western blot, and qRT-PCR analysis after inducing hypertrophy by angiotensin II and endothelin-1. An increase in fetal gene expression (ANP, BNP, and β-MHC) was observed in cardiomyocytes after treatment with angiotensin II and endothelin-1. A significant increase in JMJD2A expression, but not in UTX or JMJD2C expression, was observed. When JMJD2A was overexpressed in cardiomyocytes through transient transfection, the effect of neurohormones on fetal cardiac gene expression was increased. We conclude that JMJD2A plays a principal role in the regulation of fetal cardiac genes, which increase in expression during the pathological hypertrophic process. PMID:27722168

  12. Prevalence and prognostic significance of exercise-induced silent myocardial ischemia detected by thallium scintigraphy and electrocardiography in asymptomatic volunteers

    SciTech Connect

    Fleg, J.L.; Gerstenblith, G.; Zonderman, A.B.; Becker, L.C.; Weisfeldt, M.L.; Costa, P.T. Jr.; Lakatta, E.G. )

    1990-02-01

    Although a silent ischemic electrocardiographic response to treadmill exercise in clinically healthy populations is associated with an increased likelihood of future coronary events (i.e., angina pectoris, myocardial infarction, or cardiac death), such a response has a low predictive value for future events because of the low prevalence of disease in asymptomatic populations. To examine whether detection of reduced regional perfusion by thallium scintigraphy improved the predictive value of exercise-induced ST segment depression, we performed maximal treadmill exercise electrocardiography (ECG) and thallium scintigraphy (201Tl) in 407 asymptomatic volunteers 40-96 years of age (mean = 60) from the Baltimore Longitudinal Study on Aging. The prevalence of exercise-induced silent ischemia, defined by concordant ST segment depression and a thallium perfusion defect, increased more than sevenfold from 2% in the fifth and sixth decades to 15% in the ninth decade. Over a mean follow-up period of 4.6 years, cardiac events developed in 9.8% of subjects and consisted of 20 cases of new angina pectoris, 13 myocardial infarctions, and seven deaths. Events occurred in 7% of individuals with both negative 201Tl and ECG, 8% of those with either test positive, and 48% of those in whom both tests were positive (p less than 0.001). By proportional hazards analysis, age, hypertension, exercise duration, and a concordant positive ECG and 201Tl result were independent predictors of coronary events. Furthermore, those with positive ECG and 201Tl had a 3.6-fold relative risk for subsequent coronary events, independent of conventional risk factors.

  13. [Coronary effects of left ventricular hypertrophy associated with hypertension].

    PubMed

    Trimarco, B; de Luca, N; Ricciardelli, B; Rosiello, G; Lembo, G; Rendina, V; Raponi, M; Marchegiano, R; Volpe, M

    1990-12-01

    Left ventricular hypertrophy secondary to hypertension has been associated with a reduction of maximum coronary flow per unit mass as shown by the increase in the minimal threshold of coronary vascular resistance per gramme. This phenomenon has usually been attributed to an increase in muscle mass with absent or inadequate vascular compensation. However, chronic hypertension may induce a function reduction in coronary flow. In particular, it has been recently shown that coronary vascular resistances are influenced by a cardio-cardiac reflex involving the baroreceptor response. Left ventricular hypertrophy could alter the function of the ventricular receptors and favourise myocardial ischemia by preventing the adaptation of coronary flow to myocardial metabolic demands.

  14. Aerobic exercise training promotes physiological cardiac remodeling involving a set of microRNAs

    PubMed Central

    Fernandes, Tiago; Baraúna, Valério G.; Negrão, Carlos E.; Phillips, M. Ian

    2015-01-01

    Left ventricular (LV) hypertrophy is an important physiological compensatory mechanism in response to chronic increase in hemodynamic overload. There are two different forms of LV hypertrophy, one physiological and another pathological. Aerobic exercise induces beneficial physiological LV remodeling. The molecular/cellular mechanisms for this effect are not totally known, and here we review various mechanisms including the role of microRNA (miRNA). Studies in the heart, have identified antihypertrophic miRNA-1, -133, -26, -9, -98, -29, -378, and -145 and prohypertrophic miRNA-143, -103, -130a, -146a, -21, -210, -221, -222, -27a/b, -199a/b, -208, -195, -499, -34a/b/c, -497, -23a, and -15a/b. Four miRNAs are recognized as cardiac-specific: miRNA-1, -133a/b, -208a/b, and -499 and called myomiRs. In our studies we have shown that miRNAs respond to swimming aerobic exercise by 1) decreasing cardiac fibrosis through miRNA-29 increasing and inhibiting collagen, 2) increasing angiogenesis through miRNA-126 by inhibiting negative regulators of the VEGF pathway, and 3) modulating the renin-angiotensin system through the miRNAs-27a/b and -143. Exercise training also increases cardiomyocyte growth and survival by swimming-regulated miRNA-1, -21, -27a/b, -29a/c, -30e, -99b, -100, -124, -126, -133a/b, -143, -144, -145, -208a, and -222 and running-regulated miRNA-1, -26, -27a, -133, -143, -150, and -222, which influence genes associated with the heart remodeling and angiogenesis. We conclude that there is a potential role of these miRNAs in promoting cardioprotective effects on physiological growth. PMID:26071549

  15. Myostatin dysfunction impairs force generation in extensor digitorum longus muscle and increases exercise-induced protein efflux from extensor digitorum longus and soleus muscles.

    PubMed

    Baltusnikas, Juozas; Kilikevicius, Audrius; Venckunas, Tomas; Fokin, Andrej; Bünger, Lutz; Lionikas, Arimantas; Ratkevicius, Aivaras

    2015-08-01

    Myostatin dysfunction promotes muscle hypertrophy, which can complicate assessment of muscle properties. We examined force generating capacity and creatine kinase (CK) efflux from skeletal muscles of young mice before they reach adult body and muscle size. Isolated soleus (SOL) and extensor digitorum longus (EDL) muscles of Berlin high (BEH) mice with dysfunctional myostatin, i.e., homozygous for inactivating myostatin mutation, and with a wild-type myostatin (BEH+/+) were studied. The muscles of BEH mice showed faster (P < 0.01) twitch and tetanus contraction times compared with BEH+/+ mice, but only EDL displayed lower (P < 0.05) specific force. SOL and EDL of age-matched but not younger BEH mice showed greater exercise-induced CK efflux compared with BEH+/+ mice. In summary, myostatin dysfunction leads to impairment in muscle force generating capacity in EDL and increases susceptibility of SOL and EDL to protein loss after exercise.

  16. Genetic epidemiology of left ventricular hypertrophy

    PubMed Central

    Bella, Jonathan N; Göring, Harald HH

    2012-01-01

    Left ventricular (LV) hypertrophy is a strong independent predictor of increased cardiovascular morbidity and mortality in clinical and population-based samples. Clinical and hemodynamic stimuli to LV hypertrophy induce not only an increase in cardiac mass and wall thickness but also a fundamental reconfiguration of the protein, cellular and molecular components of the myocardium. Several studies have indicated that LV mass is influenced by genetic factors. The substantial heritability (h2) for LV mass in population-based samples of varying ethnicity indicates robust genetic influences on LV hypertrophy. Genome-wide linkage and association studies in diverse populations have been performed to identify genes influencing LV mass, and although several chromosomal regions have been found to be significantly associated with LV mass, the specific genes and functional variants contained in these chromosomal regions have yet to be identified. In addition, multiple studies have tried to link single-nucleotide polymorphisms (SNPs) in regulatory and pathway genes with common forms of LV hypertrophy, but there is little evidence that these genetic variations are functional. Up to this point in time, the results obtained in genetic studies are of limited clinical value. Much of the heritability remains unexplained, the identity of the underlying gene pathways, genes, and functional variants remains unknown, and the promise of genetically-based risk prediction and personalized medicine remain unfulfilled. However, molecular biological technologies continue to improve rapidly, and the long-term potential of sophisticated genetic investigations using these modern genomic technologies, coupled with smart study designs, remains intact. Ultimately, genetic investigations offer much promise for future prevention, early intervention and treatment of this major public health issue. PMID:23173100

  17. Exercise-Induced Muscle Damage and Running Economy in Humans

    PubMed Central

    Assumpção, Cláudio de Oliveira; Lima, Leonardo Coelho Rabello; Oliveira, Felipe Bruno Dias; Greco, Camila Coelho; Denadai, Benedito Sérgio

    2013-01-01

    Running economy (RE), defined as the energy demand for a given velocity of submaximal running, has been identified as a critical factor of overall distance running performance. Plyometric and resistance trainings, performed during a relatively short period of time (~15–30 days), have been successfully used to improve RE in trained athletes. However, these exercise types, particularly when they are unaccustomed activities for the individuals, may cause delayed onset muscle soreness, swelling, and reduced muscle strength. Some studies have demonstrated that exercise-induced muscle damage has a negative impact on endurance running performance. Specifically, the muscular damage induced by an acute bout of downhill running has been shown to reduce RE during subsequent moderate and high-intensity exercise (>65% VO2max). However, strength exercise (i.e., jumps, isoinertial and isokinetic eccentric exercises) seems to impair RE only for subsequent high-intensity exercise (~90% VO2max). Finally, a single session of resistance exercise or downhill running (i.e., repeated bout effect) attenuates changes in indirect markers of muscle damage and blunts changes in RE. PMID:23431253

  18. Exercise-induced effects on a gym atmosphere.

    PubMed

    Žitnik, M; Bučar, K; Hiti, B; Barba, Ž; Rupnik, Z; Založnik, A; Žitnik, E; Rodrìguez, L; Mihevc, I; Žibert, J

    2016-06-01

    We report results of analysis of a month-long measurement of indoor air and environment quality parameters in one gym during sporting activities such as football, basketball, volleyball, badminton, boxing, and fitness. We have determined an average single person's contribution to the increase of temperature, humidity, and dust concentration in the gym air volume of 12500 m(3) : during 90-min exercise performed at an average heart rate of 143 ± 10 bpm, a single person evaporated 0.94 kg of water into the air by sweating, contributed 0.03 K to the air temperature rise and added 1.5 μg/m(3) and 5 ng/m(3) to the indoor concentration of inhalable particles (PM10 ) and Ca concentration, respectively. As the breathing at the observed exercise intensity was about three times faster with respect to the resting condition and as the exercise-induced PM10 concentration was about two times larger than outdoors, a sportsman in the gym would receive about a sixfold higher dose of PM10 inside than he/she would have received at rest outside. PMID:26095910

  19. Exercise-Induced Pulmonary Edema in a Triathlon.

    PubMed

    Yamanashi, Hirotomo; Koyamatsu, Jun; Nobuyoshi, Masaharu; Murase, Kunihiko; Maeda, Takahiro

    2015-01-01

    Introduction. Family physicians have more opportunities to attend athletic competitions as medical staff at first-aid centers because of the increasing popularity of endurance sports. Case. A 38-year-old man who participated in a triathlon race experienced difficulty in breathing after swimming and was moved to a first-aid center. His initial oxygen saturation was 82% and a thoracic computed tomography scan showed bilateral ground glass opacity in the peripheral lungs. His diagnosis was noncardiogenic pulmonary edema associated with exercise or swimming: exercise-induced pulmonary edema (EIPE) or swimming-induced pulmonary edema (SIPE). Treatment with furosemide and corticosteroid relieved his symptoms of pulmonary edema. Discussion. Noncardiogenic pulmonary edema associated with endurance sports is not common, but knowledge about EIPE/SIPE or neurogenic pulmonary edema associated with hyponatremia, which is called Ayus-Arieff syndrome, is crucial. Knowledge and caution for possible risk factors, such as exposure to cold water or overhydration, are essential for both medical staff and endurance athletes. Conclusion. To determine the presence of pulmonary edema associated with strenuous exercise, oxygen saturation should be used as a screening tool at a first-aid center. To avoid risks for EIPE/SIPE, knowledge about these diseases is essential for medical staff and for athletes who perform extreme exercise.

  20. [Exercise-induced urticaria and angioedema - case report].

    PubMed

    Stelmach, Iwona; Sztafińska, Anna; Lechańka, Joanna; Balcerak, Joanna; Jerzyńska, Joanna

    2014-01-01

    Urticaria is a heterogeneous group of disorders, with various clinical manifestations and intensity of symptoms. Urticaria can be induced with a wide variety of environmental stimuli, such as cold, pressure, vibration, sunlight, exercise, temperature changes, heat, and water. In a select group of patients, exercise can induce a spectrum of urticaria symptoms, ranging from cutaneous pruritus and warmth, generalised urticaria, angioedema, and the appearance of such additional manifestations as collapse, upper respiratory distress, and anaphylaxis. Specific provocation tests should be carried out on an individual basis to investigate the suspected cause and proper diagnosis. Modification of activities and behaviour is the mainstay of treatment in patients with physical urticaria. The aim of this study was to emphasise that primary care paediatricians should be able to recognise physical urticaria, supply a patient with rescue medications, and refer him/her to a specialist. In the article, the authors present a 13-year-old girl with typical urticaria lesions and angioedema after exercise. According to the history, physical examination, and provocation test, exercise-induced urticaria and angioedema were diagnosed. PMID:25133816

  1. Resistance to exercise-induced weight loss: compensatory behavioral adaptations.

    PubMed

    Melanson, Edward L; Keadle, Sarah Kozey; Donnelly, Joseph E; Braun, Barry; King, Neil A

    2013-08-01

    In many interventions that are based on an exercise program intended to induce weight loss, the mean weight loss observed is modest and sometimes far less than what the individual expected. The individual responses are also widely variable, with some individuals losing a substantial amount of weight, others maintaining weight, and a few actually gaining weight. The media have focused on the subpopulation that loses little weight, contributing to a public perception that exercise has limited utility to cause weight loss. The purpose of the symposium was to present recent, novel data that help explain how compensatory behaviors contribute to a wide discrepancy in exercise-induced weight loss. The presentations provide evidence that some individuals adopt compensatory behaviors, that is, increased energy intake and/or reduced activity, that offset the exercise energy expenditure and limit weight loss. The challenge for both scientists and clinicians is to develop effective tools to identify which individuals are susceptible to such behaviors and to develop strategies to minimize their effect. PMID:23470300

  2. [Exercise-induced urticaria and angioedema - case report].

    PubMed

    Stelmach, Iwona; Sztafińska, Anna; Lechańka, Joanna; Balcerak, Joanna; Jerzyńska, Joanna

    2014-01-01

    Urticaria is a heterogeneous group of disorders, with various clinical manifestations and intensity of symptoms. Urticaria can be induced with a wide variety of environmental stimuli, such as cold, pressure, vibration, sunlight, exercise, temperature changes, heat, and water. In a select group of patients, exercise can induce a spectrum of urticaria symptoms, ranging from cutaneous pruritus and warmth, generalised urticaria, angioedema, and the appearance of such additional manifestations as collapse, upper respiratory distress, and anaphylaxis. Specific provocation tests should be carried out on an individual basis to investigate the suspected cause and proper diagnosis. Modification of activities and behaviour is the mainstay of treatment in patients with physical urticaria. The aim of this study was to emphasise that primary care paediatricians should be able to recognise physical urticaria, supply a patient with rescue medications, and refer him/her to a specialist. In the article, the authors present a 13-year-old girl with typical urticaria lesions and angioedema after exercise. According to the history, physical examination, and provocation test, exercise-induced urticaria and angioedema were diagnosed.

  3. Exercise-induced effects on a gym atmosphere.

    PubMed

    Žitnik, M; Bučar, K; Hiti, B; Barba, Ž; Rupnik, Z; Založnik, A; Žitnik, E; Rodrìguez, L; Mihevc, I; Žibert, J

    2016-06-01

    We report results of analysis of a month-long measurement of indoor air and environment quality parameters in one gym during sporting activities such as football, basketball, volleyball, badminton, boxing, and fitness. We have determined an average single person's contribution to the increase of temperature, humidity, and dust concentration in the gym air volume of 12500 m(3) : during 90-min exercise performed at an average heart rate of 143 ± 10 bpm, a single person evaporated 0.94 kg of water into the air by sweating, contributed 0.03 K to the air temperature rise and added 1.5 μg/m(3) and 5 ng/m(3) to the indoor concentration of inhalable particles (PM10 ) and Ca concentration, respectively. As the breathing at the observed exercise intensity was about three times faster with respect to the resting condition and as the exercise-induced PM10 concentration was about two times larger than outdoors, a sportsman in the gym would receive about a sixfold higher dose of PM10 inside than he/she would have received at rest outside.

  4. Exercise-Induced Pulmonary Edema in a Triathlon

    PubMed Central

    Yamanashi, Hirotomo; Koyamatsu, Jun; Nobuyoshi, Masaharu; Murase, Kunihiko; Maeda, Takahiro

    2015-01-01

    Introduction. Family physicians have more opportunities to attend athletic competitions as medical staff at first-aid centers because of the increasing popularity of endurance sports. Case. A 38-year-old man who participated in a triathlon race experienced difficulty in breathing after swimming and was moved to a first-aid center. His initial oxygen saturation was 82% and a thoracic computed tomography scan showed bilateral ground glass opacity in the peripheral lungs. His diagnosis was noncardiogenic pulmonary edema associated with exercise or swimming: exercise-induced pulmonary edema (EIPE) or swimming-induced pulmonary edema (SIPE). Treatment with furosemide and corticosteroid relieved his symptoms of pulmonary edema. Discussion. Noncardiogenic pulmonary edema associated with endurance sports is not common, but knowledge about EIPE/SIPE or neurogenic pulmonary edema associated with hyponatremia, which is called Ayus-Arieff syndrome, is crucial. Knowledge and caution for possible risk factors, such as exposure to cold water or overhydration, are essential for both medical staff and endurance athletes. Conclusion. To determine the presence of pulmonary edema associated with strenuous exercise, oxygen saturation should be used as a screening tool at a first-aid center. To avoid risks for EIPE/SIPE, knowledge about these diseases is essential for medical staff and for athletes who perform extreme exercise. PMID:26229538

  5. Inhibition of Receptor Interacting Protein Kinases Attenuates Cardiomyocyte Hypertrophy Induced by Palmitic Acid.

    PubMed

    Zhao, Mingyue; Lu, Lihui; Lei, Song; Chai, Hua; Wu, Siyuan; Tang, Xiaoju; Bao, Qinxue; Chen, Li; Wu, Wenchao; Liu, Xiaojing

    2016-01-01

    Palmitic acid (PA) is known to cause cardiomyocyte dysfunction. Cardiac hypertrophy is one of the important pathological features of PA-induced lipotoxicity, but the mechanism by which PA induces cardiomyocyte hypertrophy is still unclear. Therefore, our study was to test whether necroptosis, a receptor interacting protein kinase 1 and 3 (RIPK1 and RIPK3-) dependent programmed necrosis, was involved in the PA-induced cardiomyocyte hypertrophy. We used the PA-treated primary neonatal rat cardiac myocytes (NCMs) or H9c2 cells to study lipotoxicity. Our results demonstrated that cardiomyocyte hypertrophy was induced by PA treatment, determined by upregulation of hypertrophic marker genes and cell surface area enlargement. Upon PA treatment, the expression of RIPK1 and RIPK3 was increased. Pretreatment with the RIPK1 inhibitor necrostatin-1 (Nec-1), the PA-induced cardiomyocyte hypertrophy, was attenuated. Knockdown of RIPK1 or RIPK3 by siRNA suppressed the PA-induced myocardial hypertrophy. Moreover, a crosstalk between necroptosis and endoplasmic reticulum (ER) stress was observed in PA-treated cardiomyocytes. Inhibition of RIPK1 with Nec-1, phosphorylation level of AKT (Ser473), and mTOR (Ser2481) was significantly reduced in PA-treated cardiomyocytes. In conclusion, RIPKs-dependent necroptosis might be crucial in PA-induced myocardial hypertrophy. Activation of mTOR may mediate the effect of necroptosis in cardiomyocyte hypertrophy induced by PA. PMID:27057269

  6. Role of diacylglycerol kinase in cellular regulatory processes: a new regulator for cardiomyocyte hypertrophy.

    PubMed

    Takeishi, Yasuchika; Goto, Kaoru; Kubota, Isao

    2007-09-01

    Diacylglycerol (DAG) kinase (DGK) phosphorylates and converts DAG to phosphatidic acid. DGK regulates cellular DAG levels and attenuates DAG signaling. The 10 mammalian DGK isoforms have been identified to date. In cardiac myocytes, DGKalpha, epsilon, and zeta are expressed, and DGKzeta is the predominant isoform. DGKzeta inhibits protein kinase C (PKC) activation and subsequent hypertrophic programs in response to endothelin-1 (ET-1) in neonatal rat cardiomyocytes. DGKzeta blocks cardiac hypertrophy induced by G protein-coupled receptor agonists and pressure overload in vivo. DGKzeta attenuates ventricular remodeling and improves survival after myocardial infarction. These data provide a novel insight for subcellular mechanisms of cardiac hypertrophy and heart failure, and DGKzeta may be a new therapeutic target to prevent cardiac hypertrophy and progression to heart failure. PMID:17659347

  7. Cardiac Imaging In Athletes.

    PubMed

    Khan, Asaad A; Safi, Lucy; Wood, Malissa

    2016-01-01

    Athletic heart syndrome refers to the physiological and morphological changes that occur in a human heart after repetitive strenuous physical exercise. Examples of exercise-induced changes in the heart include increases in heart cavity dimensions, augmentation of cardiac output, and increases in heart muscle mass. These cardiac adaptations vary based on the type of exercise performed and are often referred to as sport-specific cardiac remodeling. The hemodynamic effects of endurance and strength training exercise lead to these adaptations. Any abnormalities in chamber dilatation and left ventricular function usually normalize with cessation of exercise. Athletic heart syndrome is rare and should be differentiated from pathologic conditions such as hypertrophic cardiomyopathy, left ventricular noncompaction, and arrhythmogenic right ventricular dysplasia when assessing a patient for athletic heart syndrome. This paper describes specific adaptations that occur in athletic heart syndrome and tools to distinguish between healthy alterations versus underlying pathology. PMID:27486490

  8. Cardiac Imaging In Athletes

    PubMed Central

    Khan, Asaad A.; Safi, Lucy; Wood, Malissa

    2016-01-01

    Athletic heart syndrome refers to the physiological and morphological changes that occur in a human heart after repetitive strenuous physical exercise. Examples of exercise-induced changes in the heart include increases in heart cavity dimensions, augmentation of cardiac output, and increases in heart muscle mass. These cardiac adaptations vary based on the type of exercise performed and are often referred to as sport-specific cardiac remodeling. The hemodynamic effects of endurance and strength training exercise lead to these adaptations. Any abnormalities in chamber dilatation and left ventricular function usually normalize with cessation of exercise. Athletic heart syndrome is rare and should be differentiated from pathologic conditions such as hypertrophic cardiomyopathy, left ventricular noncompaction, and arrhythmogenic right ventricular dysplasia when assessing a patient for athletic heart syndrome. This paper describes specific adaptations that occur in athletic heart syndrome and tools to distinguish between healthy alterations versus underlying pathology. PMID:27486490

  9. Copper reverses cardiomyocyte hypertrophy through vascular endothelial growth factor-mediated reduction in the cell size.

    PubMed

    Zhou, Yang; Jiang, Youchun; Kang, Y James

    2008-07-01

    Previous studies have shown that dietary copper supplementation reversed heart hypertrophy induced by pressure overload in a mouse model. The present study was undertaken to understand the cellular basis of copper-induced regression of cardiac hypertrophy. Primary cultures of neonatal rat cardiomyocytes were treated with phenylephrine (PE) at a final concentration of 100 microM in cultures for 48 h to induce cellular hypertrophy. The hypertrophied cardiomyocytes were exposed to copper sulfate at a final concentration of 5 microM in cultures for additional 24 h. This copper treatment reduced the size of the hypertrophied cardiomyocytes, as measured by flow cytometry, protein content in cells, cell volume and cardiomyocyte hypertrophy markers including beta-myosin heavy chain protein, skeletal alpha-actin, and atrial natriuretic peptide. Cell cycle analysis and cell sorting of p-histone-3 labeled cardiomyocytes indicated that cell division was not involved in the copper-induced regression of cardiomyocyte hypertrophy. Copper also inhibited PE-induced apoptosis, determined by a TUNEL assay. Because copper stimulates vascular endothelial growth factor (VEGF) production through activation of hypoxia-inducible transcription factor, an anti-VEGF antibody at a final concentration of 2 ng/ml in cultures was used and shown to blunt copper-induced regression of cell hypertrophy. Conversely, VEGF alone at a final concentration of 0.2 microg/ml reversed cell hypertrophy as the same as copper did. This study demonstrates that both copper and VEGF reduce the size of hypertrophied cardiomyocytes, and copper regression of cardiac hypertrophy is VEGF-dependent. PMID:18495151

  10. Telomere dynamics during aging in polygenic left ventricular hypertrophy.

    PubMed

    Marques, Francine Z; Booth, Scott A; Prestes, Priscilla R; Curl, Claire L; Delbridge, Lea M D; Lewandowski, Paul; Harrap, Stephen B; Charchar, Fadi J

    2016-01-01

    Short telomeres are associated with increased risk of cardiovascular disease. Here we studied cardiomyocyte telomere length at key ages during the ontogeny of cardiac hypertrophy and failure in the hypertrophic heart rat (HHR) and compared these with the normal heart rat (NHR) control strain. Key ages corresponded with the pathophysiological sequence beginning with fewer cardiomyocytes (2 days), leading to left ventricular hypertrophy (LVH) (13 wk) and subsequently progression to heart failure (38 wk). We measured telomere length, tissue activity of telomerase, mRNA levels of telomerase reverse transcriptase (Tert) and telomerase RNA component (Terc), and expression of the telomeric regulator microRNA miR-34a. Cardiac telomere length was longer in the HHR compared with the control strain at 2 days and 38 wk, but shorter at 13 wk. Neonatal HHR had higher cardiac telomerase activity and expression of Tert and miR-34a. Telomerase activity was not different at 13 or 38 wk. Tert mRNA and Terc RNA were overexpressed at 38 wk, while miR-34a was overexpressed at 13 wk but downregulated at 38 wk. Circulating leukocytes were strongly correlated with cardiac telomere length in the HHR only. The longer neonatal telomeres in HHR are likely to reflect fewer fetal and early postnatal cardiomyocyte cell divisions and explain the reduced total cardiomyocyte complement that predisposes to later hypertrophy and failure. Although shorter telomeres were a feature of cardiac hypertrophy at 13 wk, they were not present at the progression to heart failure at 38 wk.

  11. Exercise-induced hypoalgesia - interval versus continuous mode.

    PubMed

    Kodesh, Einat; Weissman-Fogel, Irit

    2014-07-01

    Aerobic exercise at approximately 70% of maximal aerobic capacity moderately reduces pain sensitivity and attenuates pain, even after a single session. If the analgesic effects depend on exercise intensity, then high-intensity interval exercise at 85% of maximal aerobic capacity should further reduce pain. The aim of this study was to explore the exercise-induced analgesic effects of high-intensity interval aerobic exercise and to compare them with the analgesic effects of moderate continuous aerobic exercise. Twenty-nine young untrained healthy males were randomly assigned to aerobic-continuous (70% heart rate reserve (HRR)) and interval (4 × 4 min at 85% HRR and 2 min at 60% HRR between cycles) exercise modes, each lasting 30 min. Psychophysical pain tests, pressure and heat pain thresholds (HPT), and tonic heat pain (THP) were conducted before and after exercise sessions. Repeated measures ANOVA was used for data analysis. HPT increased (p = 0.056) and THP decreased (p = 0.013) following exercise unrelated to exercise type. However, the main time effect (pre-/postexercise) was a trend of increased HPT (45.6 ± 1.9 °C to 46.2 ± 1.8 °C; p = 0.082) and a significant reduction in THP (from 50.7 ± 25 to 45.9 ± 25.4 numeric pain scale; p = 0.043) following interval exercise. No significant change was found for the pressure pain threshold following either exercise type. In conclusion, interval exercise (85% HRR) has analgesic effects on experimental pain perception. This, in addition to its cardiovascular, muscular, and metabolic advantages may promote its inclusion in pain management programs. PMID:24773287

  12. Air quality and temperature effects on exercise-induced bronchoconstriction.

    PubMed

    Rundell, Kenneth W; Anderson, Sandra D; Sue-Chu, Malcolm; Bougault, Valerie; Boulet, Louis-Philippe

    2015-04-01

    Exercise-induced bronchoconstriction (EIB) is exaggerated constriction of the airways usually soon after cessation of exercise. This is most often a response to airway dehydration in the presence of airway inflammation in a person with a responsive bronchial smooth muscle. Severity is related to water content of inspired air and level of ventilation achieved and sustained. Repetitive hyperpnea of dry air during training is associated with airway inflammatory changes and remodeling. A response during exercise that is related to pollution or allergen is considered EIB. Ozone and particulate matter are the most widespread pollutants of concern for the exercising population; chronic exposure can lead to new-onset asthma and EIB. Freshly generated emissions particulate matter less than 100 nm is most harmful. Evidence for acute and long-term effects from exercise while inhaling high levels of ozone and/or particulate matter exists. Much evidence supports a relationship between development of airway disorders and exercise in the chlorinated pool. Swimmers typically do not respond in the pool; however, a large percentage responds to a dry air exercise challenge. Studies support oxidative stress mediated pathology for pollutants and a more severe acute response occurs in the asthmatic. Winter sport athletes and swimmers have a higher prevalence of EIB, asthma and airway remodeling than other athletes and the general population. Because of fossil fuel powered ice resurfacers in ice rinks, ice rink athletes have shown high rates of EIB and asthma. For the athlete training in the urban environment, training during low traffic hours and in low traffic areas is suggested. PMID:25880506

  13. Supraglottoplasty as treatment of exercise induced laryngeal obstruction (EILO).

    PubMed

    Mehlum, Camilla Slot; Walsted, Emil Schwarz; Godballe, Christian; Backer, Vibeke

    2016-04-01

    Breathing difficulties during exertion may be caused by exercise-induced laryngeal obstruction (EILO). The diagnosis depends on visualization of the larynx during exercise, i.e. by continuous laryngoscopic exercise (CLE) test. In case of severe supraglottic collapse and pronounced symptoms during strenuous exertion, surgical treatment (supraglottoplasty) has been suggested. The aims of this study were to evaluate outcome and patient satisfaction after supraglottoplasty for EILO and to compare our results with previously reported data. During the period December 2010 to October 2013, 17 patients diagnosed with moderate to severe supraglottic EILO were treated by supraglottoplasty with microlaryngoscopic laser technique at our institutions. The severity of patients symptoms (VAS score) and CLE scores was evaluated pre- and postoperatively. We found a decrease in patients symptoms from median 80 points VAS score preoperatively to 20 points postoperatively (p < 0.001) and a decrease in CLE sum score from median 4.0 points to 2.5 points (p < 0.05). Several previous studies have recommended surgery for selected patients with supraglottic involvement, but these have mainly been based on case reports or on very few patients. This study is the second larger-scale study that documents the positive effect of supraglottoplasty as treatment of EILO in terms of reduced respiratory symptoms and decreased laryngeal obstruction assessed by post-operative CLE test. We suggest that surgery is a well-tolerated and effective treatment option for selected EILO patients with moderate to severe supraglottic obstruction during exercise and a high level of physical activity. PMID:26541712

  14. Circulating androgens in women: exercise-induced changes.

    PubMed

    Enea, Carina; Boisseau, Nathalie; Fargeas-Gluck, Marie Agnès; Diaz, Véronique; Dugué, Benoit

    2011-01-01

    Physical exercise is known to strongly stimulate the endocrine system in both sexes. Among these hormones, androgens (e.g. testosterone, androstenedione, dehydroepiandrosterone) play key roles in the reproductive system, muscle growth and the prevention of bone loss. In female athletes, excessive physical exercise may lead to disorders, including delay in the onset of puberty, amenorrhoea and premature osteoporosis. The free and total fractions of circulating androgens vary in response to acute and chronic exercise/training (depending on the type), but the physiological role of these changes is not completely understood. Although it is commonly accepted that only the free fraction of steroids has a biological action, this hypothesis has recently been challenged. Indeed, a change in the total fraction of androgen concentration may have a significant impact on cells (inducing genomic or non-genomic signalling). The purpose of this review, therefore, is to visit the exercise-induced changes in androgen concentrations and emphasize their potential effects on female physiology. Despite some discrepancies in the published studies (generally due to differences in the types and intensities of the exercises studied, in the hormonal status of the group of women investigated and in the methods for androgen determination), exercise is globally able to induce an increase in circulating androgens. This can be observed after both resistance and endurance acute exercises. For chronic exercise/training, the picture is definitely less clear and there are even circumstances where exercise leads to a decrease of circulating androgens. We suggest that those changes have significant impact on female physiology and physical performance. PMID:21142281

  15. Alveolar epithelial integrity in athletes with exercise-induced hypoxemia.

    PubMed

    Edwards, M R; Hunte, G S; Belzberg, A S; Sheel, A W; Worsley, D F; McKenzie, D C

    2000-10-01

    The effect of incremental exercise to exhaustion on the change in pulmonary clearance rate (k) of aerosolized (99m)Tc-labeled diethylenetriaminepentaacetic acid ((99m)Tc-DTPA) and the relationship between k and arterial PO(2) (Pa(O(2))) during heavy work were investigated. Ten male cyclists (age = 25 +/- 2 yr, height = 180.9 +/- 4.0 cm, mass = 80.1 +/- 9.5 kg, maximal O(2) uptake = 5. 25 +/- 0.35 l/min, mean +/- SD) completed a pulmonary clearance test shortly (39 +/- 8 min) after a maximal O(2) uptake test. Resting pulmonary clearance was completed >/=24 h before or after the exercise test. Arterial blood was sampled at rest and at 1-min intervals during exercise. Minimum Pa(O(2)) values and maximum alveolar-arterial PO(2) difference ranged from 73 to 92 Torr and from 30 to 55 Torr, respectively. No significant difference between resting k and postexercise k for the total lung (0.55 +/- 0.20 vs. 0. 57 +/- 0.17 %/min, P > 0.05) was observed. Pearson product-moment correlation indicated no significant linear relationship between change in k for the total lung and minimum Pa(O(2)) (r = -0.26, P > 0.05). These results indicate that, averaged over subjects, pulmonary clearance of (99m)Tc-DTPA after incremental maximal exercise to exhaustion in highly trained male cyclists is unchanged, although the sampling time may have eliminated a transient effect. Lack of a linear relationship between k and minimum Pa(O(2)) during exercise suggests that exercise-induced hypoxemia occurs despite maintenance of alveolar epithelial integrity.

  16. Exercise-induced albuminuria is related to metabolic syndrome.

    PubMed

    Greenberg, Sharon; Shenhar-Tsarfaty, Shani; Rogowski, Ori; Shapira, Itzhak; Zeltser, David; Weinstein, Talia; Lahav, Dror; Vered, Jaffa; Tovia-Brodie, Oholi; Arbel, Yaron; Berliner, Shlomo; Milwidsky, Assi

    2016-06-01

    Microalbuminuria (MA) is a known marker for endothelial dysfunction and future cardiovascular events. Exercise-induced albuminuria (EiA) may precede the appearance of MA. Associations between EiA and metabolic syndrome (MS) have not been assessed so far. Our aim was to investigate this association in a large sample of apparently healthy individuals with no baseline albuminuria. This was a cross-sectional study of 2,027 adults with no overt cardiovascular diseases who took part in a health survey program and had no baseline MA. Diagnosis of MS was based on harmonized criteria. All patients underwent an exercise test (Bruce protocol), and urinary albumin was measured before and after the examination. Urinary albumin-to-creatinine ratio (ACR) values before and after exercise were 0.40 (0.21-0.89) and 1.06 (0.43-2.69) mg/g for median (interquartile range) respectively. A total of 394 (20%) subjects had EiA; ACR rose from normal rest values (0.79 mg/g) to 52.28 mg/g after exercise (P < 0.001); this effect was not shown for the rest of the study population. EiA was related to higher prevalence of MS (13.8% vs. 27.1%, P < 0.001), higher metabolic equivalents (P < 0.001), higher baseline blood pressure (P < 0.001), and higher levels of fasting plasma glucose, triglycerides, and body mass index (P < 0.001). Multivariate binary logistic regression model showed that subjects with MS were 98% more likely to have EiA (95% confidence interval: 1.13-3.46, P = 0.016). In conclusion, EiA in the absence of baseline MA is independently related to MS.

  17. Air quality and temperature effects on exercise-induced bronchoconstriction.

    PubMed

    Rundell, Kenneth W; Anderson, Sandra D; Sue-Chu, Malcolm; Bougault, Valerie; Boulet, Louis-Philippe

    2015-04-01

    Exercise-induced bronchoconstriction (EIB) is exaggerated constriction of the airways usually soon after cessation of exercise. This is most often a response to airway dehydration in the presence of airway inflammation in a person with a responsive bronchial smooth muscle. Severity is related to water content of inspired air and level of ventilation achieved and sustained. Repetitive hyperpnea of dry air during training is associated with airway inflammatory changes and remodeling. A response during exercise that is related to pollution or allergen is considered EIB. Ozone and particulate matter are the most widespread pollutants of concern for the exercising population; chronic exposure can lead to new-onset asthma and EIB. Freshly generated emissions particulate matter less than 100 nm is most harmful. Evidence for acute and long-term effects from exercise while inhaling high levels of ozone and/or particulate matter exists. Much evidence supports a relationship between development of airway disorders and exercise in the chlorinated pool. Swimmers typically do not respond in the pool; however, a large percentage responds to a dry air exercise challenge. Studies support oxidative stress mediated pathology for pollutants and a more severe acute response occurs in the asthmatic. Winter sport athletes and swimmers have a higher prevalence of EIB, asthma and airway remodeling than other athletes and the general population. Because of fossil fuel powered ice resurfacers in ice rinks, ice rink athletes have shown high rates of EIB and asthma. For the athlete training in the urban environment, training during low traffic hours and in low traffic areas is suggested.

  18. C-Myc regulates substrate oxidation patterns during early pressure-overload hypertrophy

    SciTech Connect

    Ledee, Dolena R.; Smith, Lincoln; Kajimoto, Masaki; Bruce, Margaret; Isern, Nancy G.; Xu, Chun; Portman, Michael A.; Olson, Aaron

    2013-11-26

    Pressure overload cardiac hypertrophy alters substrate metabolism. Prior work showed that myocardial inactivation of c-Myc (Myc) attenuated hypertrophy and decreased expression of glycolytic genes after aortic constriction. Accordingly, we hypothesize that Myc regulates substrate preferences for the citric acid cycle during pressure overload hypertrophy from transverse aortic constriction (TAC) and that these metabolic changes impact cardiac function and growth. To test this hypothesis, we subjected FVB mice with cardiac specific, inducible Myc inactivation (MycKO-TAC) and non-transgenic littermates (Cont-TAC) to transverse aortic constriction (n=7/group). A separate group underwent sham surgery (Sham, n=5). After two weeks, function was measured in isolated working hearts along with substrate fractional contributions to the citric acid cycle by using perfusate with 13C labeled mixed fatty acids, lactate, ketones and unlabeled glucose and insulin. Western blots were used to evaluate metabolic enzymes. Cardiac function was similar between groups after TAC although +dP/dT and -dP/dT trended towards improvement in MycKO-TAC versus Cont-TAC. Compared to Sham, Cont-TAC had increased free fatty acid fractional contribution with a concurrent decrease in unlabeled (presumably glucose) contribution. Myc inactivation (MycKO-TAC) inhibited these metabolic changes. Hypertrophy in general increased protein levels of PKM2; however this change was not linked to Myc status. Protein post-translation modification by O-GlcNAc was significantly greater in Cont-TAC versus both Sham and MycKO-TAC. In conclusion, Myc regulates substrate utilization during early pressure overload hypertrophy. Our results show that the metabolic switch during hypertrophy is not necessary to maintain cardiac function, but it may be important mechanism to promote cardiomyocyte growth. Myc also regulates protein O-GlcNAcylation during hypertrophy.

  19. Short and longer-term effects of creatine supplementation on exercise induced muscle damage

    PubMed Central

    Rosene, John; Matthews, Tracey; Ryan, Christine; Belmore, Keith; Bergsten, Alisa; Blaisdell, Jill; Gaylord, James; Love, Rebecca; Marrone, Michael; Ward, Kristine; Wilson, Eric

    2009-01-01

    The purpose of this investigation was to determine if creatine supplementation assisted with reducing the amount of exercise induced muscle damage and if creatine supplementation aided in recovery from exercise induced muscle damage. Two groups of subjects (group 1 = creatine; group 2 = placebo) participated in an eccentric exercise protocol following 7 and 30 days of creatine or placebo supplementation (20 g.d-1 for 7 d followed by 6g.d-1 for 23 d = 30 d). Prior to the supplementation period, measurements were obtained for maximal dynamic strength, maximal isometric force, knee range of motion, muscle soreness, and serum levels of creatine kinase (CK) and lactate dehydrogenase (LDH). Following 7 days of creatine supplementation, on day 8, subjects began consuming 6 g.d-1 of creatine for 23 days. Additionally on days 8 and 31, subjects performed an eccentric exercise protocol using the knee extensors to induce muscle damage. Indirect markers of muscle damage, including maximal isometric force, knee range of motion, muscle soreness, and serum levels of CK and LDH, were collected at 12, 24, and 48 hours following each exercise bout. The results indicated that acute bouts of creatine have no effect on indirect markers of muscle damage for the acute (7 days) bout. However, maximal isometric force was greater for the creatine group versus placebo for the chronic (30 days) bout. This suggests that the ergogenic effect of creatine following 30 days of supplementation may have a positive impact on exercise induced muscle damage. Key points Eccentric muscle actions highly associated with exercise induced muscle damage. Creatine supplementation has ergogenic effect to increase protein synthesis. Creatine supplementation does not attenuate exercise induced muscle damage with short term supplementation (7 days). Increased maximal isometric force seen with creatine supplementation after 30 days following exercise induced muscle damage. Ergogenic effect of creatine

  20. Myoglobin A79G polymorphism association with exercise-induced skeletal muscle damage.

    PubMed

    Cui, T; Jiang, M S

    2016-01-01

    We assessed the role of A79G, a polymorphism of the myoglobin gene (MB), in susceptibility to exercise-induced skeletal muscle damage. Between January 2012 and December 2014, a total of 166 cases with exercise-induced skeletal muscle damage and 166 controls were recruited into our study. Genotyping of MB A79G was carried out using polymerase chain reaction coupled with restriction fragment length polymorphism. Using unconditional logistic regression analysis, we found that the GG genotype of MB A79G was associated with higher risk of exercise-induced muscle damage compared with the wild-type genotype, and the OR (95%CI) was 2.91 (1.20-7.59). Compared with the AA genotype, the AG+GG genotype was associated with a significantly increased risk of exercise-induced muscle damage for those with blood lactic acid ≥1.80 mM (OR = 2.05; 95%CI = 1.09-3.88). In conclusion, we found that the A79G polymorphism of the MB gene plays an important role in influencing the development of exercise-induced skeletal muscle damage. PMID:27323063

  1. Regulation of Cardiac Remodeling by Cardiac Na+/K+-ATPase Isoforms

    PubMed Central

    Liu, Lijun; Wu, Jian; Kennedy, David J.

    2016-01-01

    Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1–3). The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1) the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2) the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling. PMID:27667975

  2. Regulation of Cardiac Remodeling by Cardiac Na+/K+-ATPase Isoforms

    PubMed Central

    Liu, Lijun; Wu, Jian; Kennedy, David J.

    2016-01-01

    Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na+/K+-ATPase has multiple α isoforms (1–3). The expression of the α subunit of the Na+/K+-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na+/K+-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na+/K+-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na+/K+-ATPase regulates intracellular Ca2+ signaling, contractility and pathological hypertrophy. The α3 isoform of the Na+/K+-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na+/K+-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1) the distribution and function of isoform specific Na+/K+-ATPase in the cardiomyocytes. (2) the role of cardiac Na+/K+-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na+/K+-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  3. Regulation of Cardiac Remodeling by Cardiac Na(+)/K(+)-ATPase Isoforms.

    PubMed

    Liu, Lijun; Wu, Jian; Kennedy, David J

    2016-01-01

    Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na(+)/K(+)-ATPase has multiple α isoforms (1-3). The expression of the α subunit of the Na(+)/K(+)-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na(+)/K(+)-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na(+)/K(+)-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na(+)/K(+)-ATPase regulates intracellular Ca(2+) signaling, contractility and pathological hypertrophy. The α3 isoform of the Na(+)/K(+)-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na(+)/K(+)-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1) the distribution and function of isoform specific Na(+)/K(+)-ATPase in the cardiomyocytes. (2) the role of cardiac Na(+)/K(+)-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na(+)/K(+)-ATPase isoform may offer a new target for the prevention of cardiac remodeling. PMID:27667975

  4. Regulation of Cardiac Remodeling by Cardiac Na(+)/K(+)-ATPase Isoforms.

    PubMed

    Liu, Lijun; Wu, Jian; Kennedy, David J

    2016-01-01

    Cardiac remodeling occurs after cardiac pressure/volume overload or myocardial injury during the development of heart failure and is a determinant of heart failure. Preventing or reversing remodeling is a goal of heart failure therapy. Human cardiomyocyte Na(+)/K(+)-ATPase has multiple α isoforms (1-3). The expression of the α subunit of the Na(+)/K(+)-ATPase is often altered in hypertrophic and failing hearts. The mechanisms are unclear. There are limited data from human cardiomyocytes. Abundant evidences from rodents show that Na(+)/K(+)-ATPase regulates cardiac contractility, cell signaling, hypertrophy and fibrosis. The α1 isoform of the Na(+)/K(+)-ATPase is the ubiquitous isoform and possesses both pumping and signaling functions. The α2 isoform of the Na(+)/K(+)-ATPase regulates intracellular Ca(2+) signaling, contractility and pathological hypertrophy. The α3 isoform of the Na(+)/K(+)-ATPase may also be a target for cardiac hypertrophy. Restoration of cardiac Na(+)/K(+)-ATPase expression may be an effective approach for prevention of cardiac remodeling. In this article, we will overview: (1) the distribution and function of isoform specific Na(+)/K(+)-ATPase in the cardiomyocytes. (2) the role of cardiac Na(+)/K(+)-ATPase in the regulation of cell signaling, contractility, cardiac hypertrophy and fibrosis in vitro and in vivo. Selective targeting of cardiac Na(+)/K(+)-ATPase isoform may offer a new target for the prevention of cardiac remodeling.

  5. Role of microtubules in the contractile dysfunction of hypertrophied myocardium

    NASA Technical Reports Server (NTRS)

    Zile, M. R.; Koide, M.; Sato, H.; Ishiguro, Y.; Conrad, C. H.; Buckley, J. M.; Morgan, J. P.; Cooper, G. 4th

    1999-01-01

    OBJECTIVES: We sought to determine whether the ameliorative effects of microtubule depolymerization on cellular contractile dysfunction in pressure overload cardiac hypertrophy apply at the tissue level. BACKGROUND: A selective and persistent increase in microtubule density causes decreased contractile function of cardiocytes from cats with hypertrophy produced by chronic right ventricular (RV) pressure overloading. Microtubule depolymerization by colchicine normalizes contractility in these isolated cardiocytes. However, whether these changes in cellular function might contribute to changes in function at the more highly integrated and complex cardiac tissue level was unknown. METHODS: Accordingly, RV papillary muscles were isolated from 25 cats with RV pressure overload hypertrophy induced by pulmonary artery banding (PAB) for 4 weeks and 25 control cats. Contractile state was measured using physiologically sequenced contractions before and 90 min after treatment with 10(-5) mol/liter colchicine. RESULTS: The PAB significantly increased RV systolic pressure and the RV weight/body weight ratio in PAB; it significantly decreased developed tension from 59+/-3 mN/mm2 in control to 25+/-4 mN/mm2 in PAB, shortening extent from 0.21+/-0.01 muscle lengths (ML) in control to 0.12+/-0.01 ML in PAB, and shortening rate from 1.12+/-0.07 ML/s in control to 0.55+/-0.03 ML/s in PAB. Indirect immunofluorescence confocal microscopy showed that PAB muscles had a selective increase in microtubule density and that colchicine caused complete microtubule depolymerization in both control and PAB papillary muscles. Microtubule depolymerization normalized myocardial contractility in papillary muscles of PAB cats but did not alter contractility in control muscles. CONCLUSIONS: Excess microtubule density, therefore, is equally important to both cellular and to myocardial contractile dysfunction caused by chronic, severe pressure-overload cardiac hypertrophy.

  6. Mechanisms Involved in Exercise-Induced Cardioprotection: A Systematic Review

    PubMed Central

    Borges, Juliana Pereira; Lessa, Marcos Adriano

    2015-01-01

    Background Acute myocardial infarction is the leading cause of morbidity and mortality worldwide. Furthermore, research has shown that exercise, in addition to reducing cardiovascular risk factors, can also protect the heart against injury due to ischemia and reperfusion through a direct effect on the myocardium. However, the specific mechanism involved in exerciseinduced cardiac preconditioning is still under debate. Objective To perform a systematic review of the studies that have addressed the mechanisms by which aerobic exercise promotes direct cardioprotection against ischemia and reperfusion injury. Methods A search was conducted using MEDLINE, Literatura Latino-Americana e do Caribe de Informação em Ciências da Saúde, and Scientific Electronic Library Online databases. Data were extracted in a standardized manner by two independent researchers, who were responsible for assessing the methodological quality of the studies. Results The search retrieved 78 studies; after evaluating the abstracts, 30 studies were excluded. The manuscripts of the remaining 48 studies were completely read and, of these, 20 were excluded. Finally, 28 studies were included in this systematic review. Conclusion On the basis of the selected studies, the following are potentially involved in the cardioprotective response to exercise: increased heat shock protein production, nitric oxide pathway involvement, increased cardiac antioxidant capacity, improvement in ATP-dependent potassium channel function, and opioid system activation. Despite all the previous investigations, further research is still necessary to obtain more consistent conclusions. PMID:25830711

  7. Cardiac catheterization

    MedlinePlus

    Catheterization - cardiac; Heart catheterization; Angina - cardiac catheterization; CAD - cardiac catheterization; Coronary artery disease - cardiac catheterization; Heart valve - cardiac catheterization; Heart failure - ...

  8. Signal-dependent repression of DUSP5 by class I HDACs controls nuclear ERK activity and cardiomyocyte hypertrophy.

    PubMed

    Ferguson, Bradley S; Harrison, Brooke C; Jeong, Mark Y; Reid, Brian G; Wempe, Michael F; Wagner, Florence F; Holson, Edward B; McKinsey, Timothy A

    2013-06-11

    Cardiac hypertrophy is a strong predictor of morbidity and mortality in patients with heart failure. Small molecule histone deacetylase (HDAC) inhibitors have been shown to suppress cardiac hypertrophy through mechanisms that remain poorly understood. We report that class I HDACs function as signal-dependent repressors of cardiac hypertrophy via inhibition of the gene encoding dual-specificity phosphatase 5 (DUSP5) DUSP5, a nuclear phosphatase that negatively regulates prohypertrophic signaling by ERK1/2. Inhibition of DUSP5 by class I HDACs requires activity of the ERK kinase, mitogen-activated protein kinase kinase (MEK), revealing a self-reinforcing mechanism for promotion of cardiac ERK signaling. In cardiac myocytes treated with highly selective class I HDAC inhibitors, nuclear ERK1/2 signaling is suppressed in a manner that is absolutely dependent on DUSP5. In contrast, cytosolic ERK1/2 activation is maintained under these same conditions. Ectopic expression of DUSP5 in cardiomyocytes results in potent inhibition of agonist-dependent hypertrophy through a mechanism involving suppression of the gene program for hypertrophic growth. These findings define unique roles for class I HDACs and DUSP5 as integral components of a regulatory signaling circuit that controls cardiac hypertrophy.

  9. Exercise training and immune crosstalk in breast cancer microenvironment: exploring the paradigms of exercise-induced immune modulation and exercise-induced myokines

    PubMed Central

    Goh, Jorming; Niksirat, Negin; Campbell, Kristin L

    2014-01-01

    Observational research suggests that exercise may reduce the risk of breast cancer and improve survival. One proposed mechanism for the protective effect of aerobic exercise related to cancer risk and outcomes, but has not been examined definitively, is the immune response to aerobic exercise. Two prevailing paradigms are proposed. The first considers the host immune response as modifiable by aerobic exercise training. This exercise-modulated immune-tumor crosstalk in the mammary microenvironment may alter the balance between tumor initiation and progression versus tumor suppression. The second paradigm considers the beneficial role of exercise-induced, skeletal muscle-derived cytokines, termed “myokines”. These myokines exert endocrine-like effects on multiple organs, including the mammary glands. In this systematic review, we i) define the role of macrophages and T-cells in breast cancer initiation and progression; ii) address the two paradigms that support exercise-induced immunomodulation; iii) systematically assessed the literature for exercise intervention that assessed biomarkers relevant to both paradigms in human intervention trials of aerobic exercise training, in healthy women and women with breast cancer; iv) incorporated pre-clinical animal studies and non-RCTs for background discussion of putative mechanisms, through which aerobic exercise training modulates the immunological crosstalk, or the myokine-tumor interaction in the tumor microenvironment; and v) speculated on the potential biomarkers and mechanisms that define an exercise-induced, anti-tumor “signature”, with a view toward developing relevant biomarkers for future aerobic exercise intervention trials. PMID:25360210

  10. Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart.

    PubMed

    Young, M E; Laws, F A; Goodwin, G W; Taegtmeyer, H

    2001-11-30

    In pressure overload-induced hypertrophy, the heart increases its reliance on glucose as a fuel while decreasing fatty acid oxidation. A key regulator of this substrate switching in the hypertrophied heart is peroxisome proliferator-activated receptor alpha (PPARalpha). We tested the hypothesis that down-regulation of PPARalpha is an essential component of cardiac hypertrophy at the levels of increased mass, gene expression, and metabolism by pharmacologically reactivating PPARalpha. Pressure overload (induced by constriction of the ascending aorta for 7 days in rats) resulted in cardiac hypertrophy, increased expression of fetal genes (atrial natriuretic factor and skeletal alpha-actin), decreased expression of PPARalpha and PPARalpha-regulated genes (medium chain acyl-CoA dehydrogenase and pyruvate dehydrogenase kinase 4), and caused substrate switching (measured ex vivo in the isolated working heart preparation). Treatment of rats with the specific PPARalpha agonist WY-14,643 (8 days) did not affect the trophic response or atrial natriuretic factor induction to pressure overload. However, PPARalpha activation blocked skeletal alpha-actin induction, reversed the down-regulation of measured PPARalpha-regulated genes in the hypertrophied heart, and prevented substrate switching. This PPARalpha reactivation concomitantly resulted in severe depression of cardiac power and efficiency in the hypertrophied heart (measured ex vivo). Thus, PPARalpha down-regulation is essential for the maintenance of contractile function of the hypertrophied heart. PMID:11574533

  11. Cardiac effects of noncardiac neoplasms

    SciTech Connect

    Schoen, F.J.; Berger, B.M.; Guerina, N.G.

    1984-11-01

    Clinically significant cardiovascular abnormalities may occur as secondary manifestations of noncardiac neoplasms. The principal cardiac effects of noncardiac tumors include the direct results of metastases to the heart or lungs, the indirect effects of circulating tumor products (causing nonbacterial thrombotic endocarditis, myeloma-associated amyloidosis, pheochromocytoma-associated cardiac hypertrophy and myofibrillar degeneration, and carcinoid heart disease), and the undesired cardiotoxicities of chemotherapy and radiotherapy. 89 references.

  12. Physiological activation of Akt by PHLPP1 deletion protects against pathological hypertrophy

    PubMed Central

    Moc, Courtney; Taylor, Amy E.; Chesini, Gino P.; Zambrano, Cristina M.; Barlow, Melissa S.; Zhang, Xiaoxue; Gustafsson, Åsa B.; Purcell, Nicole H.

    2015-01-01

    Aims To examine the role of physiological Akt signalling in pathological hypertrophy through analysis of PHLPP1 (PH domain leucine-rich repeat protein phosphatase) knock-out (KO) mice. Methods and results To investigate the in vivo requirement for ‘physiological’ control of Akt activation in cardiac growth, we examined the effect of deleting the Akt phosphatase, PHLPP, on the induction of cardiac hypertrophy. Basal Akt phosphorylation increased nearly two-fold in the cardiomyocytes from PHLPP1 KO mice and physiological hypertrophy induced by swimming exercise was accentuated as assessed by increased heart size and myocyte cell area. In contrast, the development of pathophysiological hypertrophy induced by pressure overload and assessed by increases in heart size, myocyte cell area, and hypertrophic gene expression was attenuated. This attenuation coincided with decreased fibrosis and cell death in the KO mice. Cast moulding revealed increased capillary density basally in the KO hearts, which was further elevated relative to wild-type mouse hearts in response to pressure overload. In vitro studies with isolated myocytes in co-culture also demonstrated that PHLPP1 deletion in cardiomyocytes can enhance endothelial tube formation. Expression of the pro-angiogenic factor VEGF was also elevated basally and accentuated in response to transverse aortic constriction in hearts from KO mice. Conclusion Our data suggest that enhancing Akt activity by inhibiting its PHLPP1-mediated dephosphorylation promotes processes associated with physiological hypertrophy that may be beneficial in attenuating the development of pathological hypertrophy. PMID:25411382

  13. Protein kinase Cα inhibits myocardin-induced cardiomyocyte hypertrophy through the promotion of myocardin phosphorylation.

    PubMed

    Li, Weizong; Wang, Nan; Li, Man; Gong, Huiqin; Liao, Xinghua; Yang, Xiaolong; Zhang, Tongcun

    2015-09-01

    Myocardin plays a key role in the development of cardiac hypertrophy. However, the upstream signals that control the stability and transactivity of myocardin remain to be fully understood. The expression of protein kinase Cα (PKCα) also induces cardiac hypertrophy. An essential downstream molecule of PKCα, extracellular signal-regulated kinase 1/2, was reported to negatively regulate the activities of myocardin. But, the effect of cooperation between PKCα and myocardin and the potential molecular mechanism by which PKCα regulates myocardin-mediated cardiac hypertrophy are unclear. In this study, a luciferase assay was performed using H9C2 cells transfected with expression plasmids for PKCα and myocardin. Surprisingly, the results showed that PKCα inhibited the transcriptional activity of myocardin. PKCα inhibited myocardin-induced cardiomyocyte hypertrophy, demonstrated by the decrease in cell surface area and fetal gene expression, in cardiomyocyte cells overexpressing PKCα and myocardin. The potential mechanism underlying the inhibition effect of PKCα on the function of myocardin is further explored. PKCα directly promoted the basal phosphorylation of endogenous myocardin at serine and threonine residues. In myocardin-overexpressing cardiomyocyte cells, PKCα induced the excessive phosphorylation of myocardin, resulting in the degradation of myocardin and a transcriptional suppression of hypertrophic genes. These results demonstrated that PKCα inhibits myocardin-induced cardiomyocyte hypertrophy through the promotion of myocardin phosphorylation. PMID:26206583

  14. FSTL1 as a Potential Mediator of Exercise-Induced Cardioprotection in Post-Myocardial Infarction Rats.

    PubMed

    Xi, Yue; Gong, Da-Wei; Tian, Zhenjun

    2016-08-26

    Exercise training has been reported to ameliorate heart dysfunction in both humans and animals after myocardial infarction (MI), but the underlying mechanisms are poorly understood. Follistatin-like1 (FSTL1) is a cardioprotective factor against ischemic injury and is induced in cardiomyocytes and skeletal muscle in ischemic and hypoxic conditions. To test the hypothesis that FSTL1 may be a molecular link between exercise and improved heart function post MI, we subjected MI-rats, induced by left coronary artery ligation, to two modes of exercise: intermittent aerobic exercise (IAE) or mechanical vibration training (MVT), for four weeks and examined the relevance of FSTL1 to exercise-mediated cardiac effects. Exercise improved the functional performance, reduced fibrosis of MI-hearts and induced FSTL1 expression, the TGFβ-Smad2/3 signaling and angiogenesis in myocardium. In gastrocnemius, exercise increased the cross-sectional area of myocytes and FSTL1 expression. Importantly, exercise increased circulating FSTL1 levels, which were positively correlated with the skeletal muscle FSTL1 expression and negatively correlated with heart fibrosis. Overall, the IAE was more effective than that of MVT in cardioprotection. Finally, exogenous FSTL1 administration directly improved angiogenesis as well as functionality of post-MI hearts. Taken together, we have demonstrated that FSTL1 is a potential mediator of exercise-induced cardioprotection in post-MI rats.

  15. FSTL1 as a Potential Mediator of Exercise-Induced Cardioprotection in Post-Myocardial Infarction Rats

    PubMed Central

    Xi, Yue; Gong, Da-Wei; Tian, Zhenjun

    2016-01-01

    Exercise training has been reported to ameliorate heart dysfunction in both humans and animals after myocardial infarction (MI), but the underlying mechanisms are poorly understood. Follistatin-like1 (FSTL1) is a cardioprotective factor against ischemic injury and is induced in cardiomyocytes and skeletal muscle in ischemic and hypoxic conditions. To test the hypothesis that FSTL1 may be a molecular link between exercise and improved heart function post MI, we subjected MI-rats, induced by left coronary artery ligation, to two modes of exercise: intermittent aerobic exercise (IAE) or mechanical vibration training (MVT), for four weeks and examined the relevance of FSTL1 to exercise-mediated cardiac effects. Exercise improved the functional performance, reduced fibrosis of MI-hearts and induced FSTL1 expression, the TGFβ-Smad2/3 signaling and angiogenesis in myocardium. In gastrocnemius, exercise increased the cross-sectional area of myocytes and FSTL1 expression. Importantly, exercise increased circulating FSTL1 levels, which were positively correlated with the skeletal muscle FSTL1 expression and negatively correlated with heart fibrosis. Overall, the IAE was more effective than that of MVT in cardioprotection. Finally, exogenous FSTL1 administration directly improved angiogenesis as well as functionality of post-MI hearts. Taken together, we have demonstrated that FSTL1 is a potential mediator of exercise-induced cardioprotection in post-MI rats. PMID:27561749

  16. FSTL1 as a Potential Mediator of Exercise-Induced Cardioprotection in Post-Myocardial Infarction Rats.

    PubMed

    Xi, Yue; Gong, Da-Wei; Tian, Zhenjun

    2016-01-01

    Exercise training has been reported to ameliorate heart dysfunction in both humans and animals after myocardial infarction (MI), but the underlying mechanisms are poorly understood. Follistatin-like1 (FSTL1) is a cardioprotective factor against ischemic injury and is induced in cardiomyocytes and skeletal muscle in ischemic and hypoxic conditions. To test the hypothesis that FSTL1 may be a molecular link between exercise and improved heart function post MI, we subjected MI-rats, induced by left coronary artery ligation, to two modes of exercise: intermittent aerobic exercise (IAE) or mechanical vibration training (MVT), for four weeks and examined the relevance of FSTL1 to exercise-mediated cardiac effects. Exercise improved the functional performance, reduced fibrosis of MI-hearts and induced FSTL1 expression, the TGFβ-Smad2/3 signaling and angiogenesis in myocardium. In gastrocnemius, exercise increased the cross-sectional area of myocytes and FSTL1 expression. Importantly, exercise increased circulating FSTL1 levels, which were positively correlated with the skeletal muscle FSTL1 expression and negatively correlated with heart fibrosis. Overall, the IAE was more effective than that of MVT in cardioprotection. Finally, exogenous FSTL1 administration directly improved angiogenesis as well as functionality of post-MI hearts. Taken together, we have demonstrated that FSTL1 is a potential mediator of exercise-induced cardioprotection in post-MI rats. PMID:27561749

  17. Evaluation of docosahexaenoic acid in a dog model of hypertension induced left ventricular hypertrophy.

    PubMed

    Stanley, William C; Cox, James W; Asemu, Girma; O'Connell, Kelly A; Dabkowski, Erinne R; Xu, Wenhong; Ribeiro, Rogerio F; Shekar, Kadambari C; Hoag, Stephen W; Rastogi, Sharad; Sabbah, Hani N; Daneault, Caroline; des Rosiers, Christine

    2013-12-01

    Marine n-3 polyunsaturated fatty acids alter cardiac phospholipids and prevent cardiac pathology in rodents subjected to pressure overload. This approach has not been evaluated in humans or large animals with hypertension-induced pathological hypertrophy. We evaluated docosahexaenoic acid (DHA) in old female dogs with hypertension caused by 16 weeks of aldosterone infusion. Aldosterone-induced hypertension resulted in concentric left ventricular (LV) hypertrophy and impaired diastolic function in placebo-treated dogs. DHA supplementation increased DHA and depleted arachidonic acid in cardiac phospholipids, but did not improve LV parameters compared to placebo. Surprisingly, DHA significantly increased serum aldosterone concentration and blood pressure compared to placebo. Cardiac mitochondrial yield was decreased in placebo-treated hypertensive dogs compared to normal animals, which was prevented by DHA. Extensive analysis of mitochondrial function found no differences between DHA and placebo groups. In conclusion, DHA did not favorably impact mitochondrial or LV function in aldosterone hypertensive dogs.

  18. Coronary arteriography and left ventriculography during spontaneous and exercise-induced ST segment elevation in patients with variant angina

    SciTech Connect

    Matsuda, Y.; Ozaki, M.; Ogawa, H.; Naito, H.; Yoshino, F.; Katayama, K.; Fujii, T.; Matsuzaki, M.; Kusukawa, R.

    1983-09-01

    The present study is an angiographic demonstration of coronary artery spasm during both spontaneous and exercise-induced angina in three patients with variant angina. In each case, clinical, ECG, coronary angiographic, and left ventriculographic observations were made at rest, during spontaneous angina, and during exercise-induced angina. The character of chest pain was similar during spontaneous and exercise-induced episodes. ST segment elevation was present in the anterior ECG leads during both episodes. The left anterior descending coronary artery became partially or totally obstructed during both types of attacks. When coronary spasm was demonstrated during both types of attacks, left ventriculography disclosed akinetic or dyskinetic wall motion in the area supplied by the involved artery. In those patients with reproducible exercise-induced ST segment elevation and chest pain, thallium-201 scintigraphy showed areas of reversible anteroseptal hypoperfusion. Thus in selected patients exercise-induced attacks of angina were similar to spontaneous episodes.

  19. Cardiopulmonary exercise testing in children and adolescents with asthma who report symptoms of exercise-induced bronchoconstriction.

    PubMed

    Joyner, Benny L; Fiorino, Elizabeth K; Matta-Arroyo, Esther; Needleman, Joshua P

    2006-11-01

    Patients with asthma often report symptoms of exercise-induced bronchoconstriction. We performed cardiopulmonary exercise testing to establish the cause of exercise limitation in patients with asthma, under treatment, who reported symptoms of exercise-induced bronchoconstriction. Ten of the 42 patients meeting criteria for inclusion in our study (24%) developed exercise-induced bronchoconstriction. Exercise limitation without exercise-induced bronchoconstriction was found in both obese and non-obese patients, suggesting that poor fitness is a problem independent of body habitus. Including cardiopulmonary exercise testing in the management of children with suspected exercise-induced bronchoconstriction would provide a better understanding of the etiology of their symptoms and facilitate more appropriate treatment.

  20. Unusual Case of Exercise-Induced ST Segment Elevation Alternans: Successful Treatment with Transluminal Angioplasty

    PubMed Central

    Mammen, George; Krajcer, Zvonimir; Leachman, Robert D.

    1983-01-01

    Alternans of the ST segment is sometimes observed in experimental studies but is rarely seen in the clinical setting. Described is a case of exercise-induced ST segment elevation alternans that was successfully treated with transluminal coronary artery angioplasty. Theories regarding the cause and mechanism of this phenomenon are discussed. Images PMID:15227140

  1. Thyroid hormone and estrogen regulate exercise-induced growth hormone release.

    PubMed

    Ignacio, Daniele Leão; da S Silvestre, Diego H; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Louzada, Ruy Andrade; Carvalho, Denise P; Werneck-de-Castro, João Pedro

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60%) in sham-operated animals and GH was higher (~6-fold) 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU) injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response. PMID:25874614

  2. The Effects of Creatine Supplementation on Exercise-Induced Muscle Damage.

    ERIC Educational Resources Information Center

    Rawson, Eric S.; Gunn, Bridget; Clarkson, Priscilla M.

    2001-01-01

    Investigated the effects of oral creatine (Cr) supplementation on markers of exercise-induced muscle damage following high-force eccentric exercise in men randomly administered Cr or placebo. Results indicated that 5 days of Cr supplementation did not reduce indirect makers of muscle damage or enhance recovery from high-force eccentric exercise.…

  3. Influence of artistic gymnastics on iron nutritional status and exercise-induced hemolysis in female athletes.

    PubMed

    Sureira, Thaiz Mattos; Amancio, Olga Silverio; Pellegrini Braga, Josefina Aparecida

    2012-08-01

    This study evaluates the relationship between body iron losses and gains in artistic gymnastics female athletes. It shows that despite the low iron intake and exercise-induced hemolysis, iron deficiency or iron-deficiency anemia does not occur, but partial changes in the hematological profile do. The hypothesis that gymnasts' nutritional behavior contributes to anemia, which may be aggravated by exercise-induced hemolysis, led to this cross-sectional study, conducted with 43 female artistic gymnasts 6-16 yr old. The control group was formed by 40 nontraining girls, paired by age. Hemogram, serum iron, ferritin, soluble transferrin receptor, haptoglobin, total and fractional bilirubin, Type I urine, and parasitologic and occult fecal blood tests were evaluated. The athletes presented mean hematimetric and serum iron values (p = .020) higher than those of the control group. The bilirubin result discarded any hemolytic alteration in both groups. The haptoglobin results were lower in the athlete group (p = .002), confirming the incidence of exercise-induced hemolysis. Both groups presented low iron intake. The results suggest that artistic gymnastics practice leads to exercise-induced hemolysis and partially changes the hematological profile, although not causing iron deficiency or iron-deficiency anemia, even in the presence of low iron intake. PMID:22645172

  4. Influence of artistic gymnastics on iron nutritional status and exercise-induced hemolysis in female athletes.

    PubMed

    Sureira, Thaiz Mattos; Amancio, Olga Silverio; Pellegrini Braga, Josefina Aparecida

    2012-08-01

    This study evaluates the relationship between body iron losses and gains in artistic gymnastics female athletes. It shows that despite the low iron intake and exercise-induced hemolysis, iron deficiency or iron-deficiency anemia does not occur, but partial changes in the hematological profile do. The hypothesis that gymnasts' nutritional behavior contributes to anemia, which may be aggravated by exercise-induced hemolysis, led to this cross-sectional study, conducted with 43 female artistic gymnasts 6-16 yr old. The control group was formed by 40 nontraining girls, paired by age. Hemogram, serum iron, ferritin, soluble transferrin receptor, haptoglobin, total and fractional bilirubin, Type I urine, and parasitologic and occult fecal blood tests were evaluated. The athletes presented mean hematimetric and serum iron values (p = .020) higher than those of the control group. The bilirubin result discarded any hemolytic alteration in both groups. The haptoglobin results were lower in the athlete group (p = .002), confirming the incidence of exercise-induced hemolysis. Both groups presented low iron intake. The results suggest that artistic gymnastics practice leads to exercise-induced hemolysis and partially changes the hematological profile, although not causing iron deficiency or iron-deficiency anemia, even in the presence of low iron intake.

  5. Green Tea Catechin Consumption Enhances Exercise-Induced Abdominal Fat Loss

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aim: This study evaluated the influence of a green tea catechin beverage on body composition and fat distribution in overweight and obese adults during exercised-induced weight loss. Methods: Participants (N=132) were randomly assigned to receive a 500 mL beverage containing approximately 625 mg of...

  6. High protein diet maintains glucose production during exercise-induced energy deficit: a controlled trial

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Inadequate energy intake induces changes in endogenous glucose production (GP) to preserve muscle mass. Whether addition provision of dietary protein modulates GP response to energy deficit is unclear. The objective was to determine whether exercise-induced energy deficit effects on glucose metaboli...

  7. Thyroid Hormone and Estrogen Regulate Exercise-Induced Growth Hormone Release

    PubMed Central

    Ignacio, Daniele Leão; da S. Silvestre, Diego H.; Cavalcanti-de-Albuquerque, João Paulo Albuquerque; Louzada, Ruy Andrade

    2015-01-01

    Growth hormone (GH) regulates whole body metabolism, and physical exercise is the most potent stimulus to induce its secretion in humans. The mechanisms underlying GH secretion after exercise remain to be defined. The aim of this study was to elucidate the role of estrogen and pituitary type 1 deiodinase (D1) activation on exercise-induced GH secretion. Ten days after bilateral ovariectomy, animals were submitted to 20 min of treadmill exercise at 75% of maximum aerobic capacity and tissues were harvested immediately or 30 min after exercise. Non-exercised animals were used as controls. A significant increase in D1 activity occurred immediately after exercise (~60%) in sham-operated animals and GH was higher (~6-fold) 30 min after exercise. Estrogen deficient rats exhibited basal levels of GH and D1 activity comparable to those found in control rats. However, after exercise both D1 activity and serum GH levels were blunted compared to sedentary rats. To understand the potential cause-effect of D1 activation in exercise-induced GH release, we pharmacologically blocked D1 activity by propylthiouracil (PTU) injection into intact rats and submitted them to the acute exercise session. D1 inhibition blocked exercise-induced GH secretion, although basal levels were unaltered. In conclusion, estrogen deficiency impairs the induction of thyroid hormone activating enzyme D1 in the pituitary, and GH release by acute exercise. Also, acute D1 activation is essential for exercise-induced GH response. PMID:25874614

  8. Kshara application for turbinate hypertrophy

    PubMed Central

    Kotrannavar, Vijay Kumar S.; Angadi, Savita S.

    2013-01-01

    Nasapratinaha (nasal obstruction) is a commonly encountered disease in clinical practice. It is one of the nasal disorders, explained in Ayurveda, having nasal obstruction leading to difficulty in breathing as the main cardinal feature. In contemporary science, this condition can be correlated with various diseases such as turbinate hypertrophy, deviated nasal septum, nasal mass, mucosal congestion, allergic rhinitis, and others; among which turbinate hypertrophy is a common cause. Turbinate hypertrophy can be treated with surgical and medical methods. The medical treatment has limitation for prolonged use because of health purpose, surgical approaches too have failed to achieve desired results in turbinate hypertrophy due to complications and high recurrence rate. The medical and surgical managements have their own limitations, merits, and demerits like synechiae formation, rhinitis sicca, severe bleeding, or osteonecrosis of the turbinate bone A parasurgical treatment explained in Ayurveda, known as kshara pratisarana, which is a minimal invasive and precise procedure for this ailment, tried to overcome this problem. ‘Kshara Karma’ is a popular treatment modality in Ayurveda, which has been advocated in disorders of nose like arbuda (tumor) and adhimamsa (muscular growth). Clinical observation has shown its effectiveness in the management of turbinate hypertrophy. A case report of 45-year-old male who presented with complaints of frequent nasal obstruction, nasal discharge, discomfort in nose, and headache; and diagnosed as turbinate hypertrophy has been presented here. The patient was treated with one application of Kshara over the turbinates. The treatment was effective and no recurrence was noticed in the follow up. PMID:24459392

  9. EGCG Blocked Phenylephrin-Induced Hypertrophy in H9C2 Cardiomyocytes, by Activating AMPK-Dependent Pathway.

    PubMed

    Cai, Yi; Zhao, Li; Qin, Yuan; Wu, Xiao-Qian

    2015-05-01

    AMP-activated protein kinase (AMPK) is a key regulator of energy metabolism. Previous studies have shown that activation of AMPK results in suppression of cardiac myocyte hypertrophy via inhibition of the p70S6 kinase (p70S6K) and eukaryotic elongation factor-2 (eEF2) signaling pathways. Epigallocatechin-3-gallate (EGCG), the major polyphenol found in green tea, possesses multiple protective effects on the cardiovascular system including cardiac hypertrophy. However, the molecular mechanisms has not been well investigated. In this study, we found that EGCG could significantly reduce natriuretic peptides type A (Nppa), brain natriuretic polypeptide (BNP) mRNA expression and decrease cell surface area in H9C2 cardiomyocytes stimulated with phenylephrine (PE). Moreover, we showed that AMPK is activated in H9C2 cardiomyocytes by EGCG, and AMPK-dependent pathway participates in the inhibitory effects of EGCG on cardiac hypertrophy. Taken together, our findings provide the first evidence that the effect of EGCG against cardiac hypertrophy may be attributed to its activation on AMPK-dependent signaling pathway, suggesting the therapeutic potential of EGCG on the prevention of cardiac remodeling in patients with pressure overload hypertrophy. PMID:25954124

  10. Tumor suppressor gene ING3 induces cardiomyocyte hypertrophy via inhibition of AMPK and activation of p38 MAPK signaling.

    PubMed

    Wang, Jiaojiao; Liu, Zhiping; Feng, Xiaojun; Gao, Si; Xu, Suowen; Liu, Peiqing

    2014-11-15

    Cardiac hypertrophy, an adaptive growth process that occurs in response to various pathophysiological stimuli, constitutes an important risk factor for the development of heart failure. However, the molecular mechanisms that regulate this cardiac growth response are not completely understood. Here we revealed that ING3 (inhibitor of growth family, member 3), a type II tumor suppressor, plays a critical role in the regulation of cardiac hypertrophy. ING3 expression was present in relatively high abundance in the heart, and was prominently upregulated in hypertrophic agonists angiotensin II (Ang II), phenylephrine (PE), or isoproterenol (ISO)-stimulated cardiomyocytes and in hearts of rat undergoing abdominal aortic constriction (AAC) surgery. In cardiomyocytes, overexpression of ING3 caused an increase in ANP, BNP and β-MHC mRNA levels and cell surface area, while depletion of ING3 attenuated PE-induced cardiomyocyte hypertrophy. Mechanistically, we have demonstrated that overexpression of ING3 could inactivate the AMPK and activate the canonical p38 MAPK signaling. Remarkably, AMPK agonist AICAR or p38 MAPK inhibitor SB203580 abrogated ING3-induced hypertrophic response in cardiomyocytes. In summary, our data disclose a novel role of ING3 as an inducer of pathological cardiac hypertrophy, suggesting that silencing of ING3 may be explored as a potential therapeutic target in preventing cardiac hypertrophy.

  11. Pathophysiologic assessment of left ventricular hypertrophy and strain in asymptomatic patients with essential hypertension

    SciTech Connect

    Pringle, S.D.; Macfarlane, P.W.; McKillop, J.H.; Lorimer, A.R.; Dunn, F.G.

    1989-05-01

    To investigate the significance of the electrocardiographic (ECG) pattern of left ventricular hypertrophy and strain, two groups of asymptomatic patients with essential hypertension were compared. The patients were similar in terms of age, smoking habit, serum cholesterol and blood pressure levels, but differed in the presence (Group I, n = 23) or absence (Group II, n = 23) of the ECG pattern of left ventricular hypertrophy and strain. Group I patients had significantly more episodes of exercise-induced ST segment depression (14 versus 4, p less than 0.05) and reversible thallium perfusion abnormalities (11 of 23 versus 3 of 23, p less than 0.05) despite similar exercise capacity and absence of chest pain. Nonsustained ventricular tachycardia was detected on 24 h ambulatory ECG monitoring in two patients in Group I, but no patient in Group II. Coronary arteriography performed in 20 Group I patients demonstrated significant coronary artery disease in 8 patients. This study has shown that there is a subgroup of hypertensive patients with ECG left ventricular hypertrophy and strain who have covert coronary artery disease. This can be detected by thallium perfusion scintigraphy, and may contribute to the increased risk known to be associated with this ECG abnormality.

  12. Ca²⁺ signal-induced cardiomyocyte hypertrophy through activation of myocardin.

    PubMed

    Li, Man; Wang, Nan; Gong, Hui-Qin; Li, Wei-Zong; Liao, Xing-Hua; Yang, Xiao-Long; He, Hong-Peng; Cao, Dong-Sun; Zhang, Tong-Cun

    2015-02-15

    Hypertrophic growth of cardiomyocytes in response to pressure overload is an important stage during the development of many cardiac diseases. Ca(2+) overload as well as subsequent activation of Ca(2+) signaling pathways has been reported to induce cardiac hypertrophy. Myocardin, a transcription cofactor of serum response factor (SRF), is a key transducer of hypertrophic signals. However, the direct role of myocardin in Ca(2+) signal-induced cardiomyocyte hypertrophy has not been explained clearly. In the present study, we discovered that embryonic rat heart-derived H9c2 cells responded to the stimulation of calcium ionophore A23187 with a cell surface area enlargement and an increased expression of cardiac hypertrophy marker genes. Increased Ca(2+) also induces an organization of sarcomeres in neonatal rat cardiomyocytes, as revealed by α-actinin staining. Increased Ca(2+) could upregulate the expression of myocardin. Knockdown of myocardin by shRNA attenuates hypertrophic responses triggered by increased intracellular Ca(2+), suggesting that Ca(2+) signals induce cardiomyocyte hypertrophy partly through activation of myocardin. Furthermore, A23187 treatment directly activates myocardin promoter, chelation of Ca(2+) by EGTA inhibits this activation and knockdown of myocardin expression using shRNA also abrogates A23187-induced ANF and SK-α-actin promoter activity. CSA (calcineurin inhibitor) and KN93 (CaMKII inhibitor) inhibit A23187-induced the increase in myocardin expression. These results suggest that myocardin plays a critical role in Ca(2+) signal-induced cardiomyocyte hypertrophy, which may serve as a novel mechanism that is important for cardiac hypertrophy.

  13. Ca²⁺ signal-induced cardiomyocyte hypertrophy through activation of myocardin.

    PubMed

    Li, Man; Wang, Nan; Gong, Hui-Qin; Li, Wei-Zong; Liao, Xing-Hua; Yang, Xiao-Long; He, Hong-Peng; Cao, Dong-Sun; Zhang, Tong-Cun

    2015-02-15

    Hypertrophic growth of cardiomyocytes in response to pressure overload is an important stage during the development of many cardiac diseases. Ca(2+) overload as well as subsequent activation of Ca(2+) signaling pathways has been reported to induce cardiac hypertrophy. Myocardin, a transcription cofactor of serum response factor (SRF), is a key transducer of hypertrophic signals. However, the direct role of myocardin in Ca(2+) signal-induced cardiomyocyte hypertrophy has not been explained clearly. In the present study, we discovered that embryonic rat heart-derived H9c2 cells responded to the stimulation of calcium ionophore A23187 with a cell surface area enlargement and an increased expression of cardiac hypertrophy marker genes. Increased Ca(2+) also induces an organization of sarcomeres in neonatal rat cardiomyocytes, as revealed by α-actinin staining. Increased Ca(2+) could upregulate the expression of myocardin. Knockdown of myocardin by shRNA attenuates hypertrophic responses triggered by increased intracellular Ca(2+), suggesting that Ca(2+) signals induce cardiomyocyte hypertrophy partly through activation of myocardin. Furthermore, A23187 treatment directly activates myocardin promoter, chelation of Ca(2+) by EGTA inhibits this activation and knockdown of myocardin expression using shRNA also abrogates A23187-induced ANF and SK-α-actin promoter activity. CSA (calcineurin inhibitor) and KN93 (CaMKII inhibitor) inhibit A23187-induced the increase in myocardin expression. These results suggest that myocardin plays a critical role in Ca(2+) signal-induced cardiomyocyte hypertrophy, which may serve as a novel mechanism that is important for cardiac hypertrophy. PMID:25485719

  14. Short term exercise induces PGC-1α, ameliorates inflammation and increases mitochondrial membrane proteins but fails to increase respiratory enzymes in aging diabetic hearts.

    PubMed

    Botta, Amy; Laher, Ismail; Beam, Julianne; Decoffe, Daniella; Brown, Kirsty; Halder, Swagata; Devlin, Angela; Gibson, Deanna L; Ghosh, Sanjoy

    2013-01-01

    PGC-1α, a transcriptional coactivator, controls inflammation and mitochondrial gene expression in insulin-sensitive tissues following exercise intervention. However, attributing such effects to PGC-1α is counfounded by exercise-induced fluctuations in blood glucose, insulin or bodyweight in diabetic patients. The goal of this study was to investigate the role of PGC-1α on inflammation and mitochondrial protein expressions in aging db/db mice hearts, independent of changes in glycemic parameters. In 8-month-old db/db mice hearts with diabetes lasting over 22 weeks, short-term, moderate-intensity exercise upregulated PGC-1α without altering body weight or glycemic parameters. Nonetheless, such a regimen lowered both cardiac (macrophage infiltration, iNOS and TNFα) and systemic (circulating chemokines and cytokines) inflammation. Curiously, such an anti-inflammatory effect was also linked to attenuated expression of downstream transcription factors of PGC-1α such as NRF-1 and several respiratory genes. Such mismatch between PGC-1α and its downstream targets was associated with elevated mitochondrial membrane proteins like Tom70 but a concurrent reduction in oxidative phosphorylation protein expressions in exercised db/db hearts. As mitochondrial oxidative stress was predominant in these hearts, in support of our in vivo data, increasing concentrations of H2O2 dose-dependently increased PGC-1α expression while inhibiting expression of inflammatory genes and downstream transcription factors in H9c2 cardiomyocytes in vitro. We conclude that short-term exercise-induced oxidative stress may be key in attenuating cardiac inflammatory genes and impairing PGC-1α mediated gene transcription of downstream transcription factors in type 2 diabetic hearts at an advanced age.

  15. Compensatory Hypertrophy of Skeletal Muscle: Contractile Characteristics

    ERIC Educational Resources Information Center

    Ianuzzo, C. D.; Chen, V.

    1977-01-01

    Describes an experiment using rats that demonstrates contractile characteristics of normal and hypertrophied muscle. Compensatory hypertrophy of the plantaris muscle is induced by surgical removal of the synergistic gastrocnemium muscle. Includes methods for determination of contractile properties of normal and hypertrophied muscle and…

  16. Association between routine and standardized blood pressure measurements and left ventricular hypertrophy among patients on hemodialysis

    PubMed Central

    2010-01-01

    Background Left ventricular (LV) hypertrophy is common among patients on hemodialysis. While a relationship between blood pressure (BP) and LV hypertrophy has been established, it is unclear which BP measurement method is the strongest correlate of LV hypertrophy. We sought to determine agreement between various blood pressure measurement methods, as well as identify which method was the strongest correlate of LV hypertrophy among patients on hemodialysis. Methods This was a post-hoc analysis of data from a randomized controlled trial. We evaluated the agreement between seven BP measurement methods: standardized measurement at baseline; single pre- and post-dialysis, as well as mean intra-dialytic measurement at baseline; and cumulative pre-, intra- and post-dialysis readings (an average of 12 monthly readings based on a single day per month). Agreement was assessed using Lin's concordance correlation coefficient (CCC) and the Bland Altman method. Association between BP measurement method and LV hypertrophy on baseline cardiac MRI was determined using receiver operating characteristic curves and area under the curve (AUC). Results Agreement between BP measurement methods in the 39 patients on hemodialysis varied considerably, from a CCC of 0.35 to 0.94, with overlapping 95% confidence intervals. Pre-dialysis measurements were the weakest predictors of LV hypertrophy while standardized, post- and inter-dialytic measurements had similar and strong (AUC 0.79 to 0.80) predictive power for LV hypertrophy. Conclusions A single standardized BP has strong predictive power for LV hypertrophy and performs just as well as more resource intensive cumulative measurements, whereas pre-dialysis blood pressure measurements have the weakest predictive power for LV hypertrophy. Current guidelines, which recommend using pre-dialysis measurements, should be revisited to confirm these results. PMID:20576127

  17. Follistatin like 1 Regulates Hypertrophy in Heart Failure with Preserved Ejection Fraction

    PubMed Central

    Wilson, Richard M.; Essick, Eric E.; Fowler, Conor T.; Nakamura, Kazuto; van den Hoff, Maurice; Ouchi, Noriyuki; Sam, Flora

    2016-01-01

    Objective We sought to determine whether Fstl1 plays a role in the regulation of cardiac hypertrophy in HFpEF. Background Heart failure (HF) with preserved ejection fraction (HFpEF), accounts for ~50% of all clinical presentations of HF and its prevalence is expected to increase. However, there are no evidence-based therapies for HFpEF; thus, HFpEF represents a major unmet need. Although hypertension is the single most important risk factor for HFpEF, with a prevalence of 60-89% from clinical trials and human HF registries, blood pressure therapy alone is insufficient to prevent and treat HFpEF. Follistatin like 1 (Fstl1), a divergent member of the follistatin family of extracellular glycoproteins, has previously been shown to be elevated in HF with reduced ejection fraction (HFrEF) and associated with increased left ventricular mass. Methods and Results In this study, blood levels of Fstl1 were increased in humans with HFpEF. This increase was also evident in mice with hypertension-induced HFpEF and adult rat ventricular myocytes stimulated with aldosterone. Treatment with recombinant Fstl1 abrogated aldosterone-induced cardiac myocyte hypertrophy, suggesting a role for Fstl1 in the regulation of hypertrophy in HFpEF. There was also a reduction in the E/A ratio, a measure of diastolic dysfunction. Furthermore, HFpEF induced in a mouse model that specifically ablates Fstl1 in cardiac myocytes (cFstl1-KO), showed exacerbation of HFpEF with worsened diastolic dysfunction. In addition, cFstl1-KO-HFpEF mice demonstrated more marked cardiac myocyte hypertrophy with increased molecular markers of anp and bnp expression. Conclusions These findings indicate that Fstl1exerts therapeutic effects by modulating cardiac hypertrophy in HFpEF. PMID:27430031

  18. Na+/H+ exchanger isoform 1 induced cardiomyocyte hypertrophy involves activation of p90 ribosomal s6 kinase.

    PubMed

    Jaballah, Maiy; Mohamed, Iman A; Alemrayat, Bayan; Al-Sulaiti, Fatima; Mlih, Mohamed; Mraiche, Fatima

    2015-01-01

    Studies using pharmacological and genetic approaches have shown that increased activity/expression of the Na+/H+ exchanger isoform 1 (NHE1) play a critical role in the pathogenesis of cardiac hypertrophy. Despite the importance of NHE1 in cardiac hypertrophy, severe cerebrovascular side effects were associated with the use of NHE1 inhibitors when administered to patients with myocardial infarctions. p90 ribosomal S6 Kinase (RSK), a downstream regulator of the mitogen-activated protein kinase pathway, has also been implicated in cardiac hypertrophy. We hypothesized that RSK plays a role in the NHE1 induced cardiomyocyte hypertrophic response. Infection of H9c2 cardiomyoblasts with the active form of the NHE1 adenovirus induced hypertrophy and was associated with an increase in the phosphorylation of RSK (P<0.05). Parameters of hypertrophy such as cell area, protein content and atrial natriuretic mRNA expression were significantly reduced in H9c2 cardiomyoblasts infected with active NHE1 in the presence of dominant negative RSK (DN-RSK) (P<0.05). These results confirm that NHE1 lies upstream of RSK. Increased phosphorylation and activation of GATA4 at Ser261 was correlated with increased RSK phosphorylation. This increase was reversed upon inhibition of RSK or NHE1. These findings demonstrate for the first time that the NHE1 mediated hypertrophy is accounted for by increased activation and phosphorylation of RSK, which subsequently increased the phosphorylation of GATA4; eventually activating fetal gene transcriptional machinery. PMID:25830299

  19. Alpinate Oxyphyllae Fructus Inhibits IGFII-Related Signaling Pathway to Attenuate Ang II-Induced Pathological Hypertrophy in H9c2 Cardiomyoblasts.

    PubMed

    Tsai, Chuan-Te; Chang, Yung-Ming; Lin, Shu-Luan; Chen, Yueh-Sheng; Yeh, Yu-Lan; Padma, Viswanadha Vijaya; Tsai, Chin-Chuan; Chen, Ray-Jade; Ho, Tsung-Jung; Huang, Chih-Yang

    2016-03-01

    Angiotensin II (Ang II) is a very important cardiovascular disease inducer and may cause cardiac pathological hypertrophy and remodeling. We evaluated a Chinese traditional medicine, alpinate oxyphyllae fructus (AOF), for therapeutic efficacy for treating Ang II-induced cardiac hypertrophy. AOF has been used to treat patients with various symptoms accompanying hypertension and cerebrovascular disorders in Korea. We investigated its protective effect against Ang II-induced cytoskeletal change and hypertrophy in H9c2 cells. The results showed that treating cells with Ang II resulted in pathological hypertrophy, such as increased expression of transcription factors NFAT-3/p-NFAT-3, hypertrophic response genes (atrial natriuretic peptide [ANP] and b-type natriuretic peptide [BNP]), and Gαq down-stream effectors (PLCβ3 and calcineurin). Pretreatment with AOF (60-100 μg/mL) led to significantly reduced hypertrophy. We also found that AOF pretreatment significantly suppressed the cardiac remodeling proteins, metalloproteinase (MMP9 and MMP2), and tissue plasminogen activator (tPA), induced by Ang II challenge. In conclusion, we provide evidence that AOF protects against Ang II-induced pathological hypertrophy by specifically inhibiting the insulin-like growth factor (IGF) II/IIR-related signaling pathway in H9c2 cells. AOF might be a candidate for cardiac hypertrophy and ventricular remodeling prevention in chronic cardiovascular diseases. PMID:26987022

  20. Exercise-induced neuroprotective effects on neurodegenerative diseases: the key role of trophic factors.

    PubMed

    Campos, Carlos; Rocha, Nuno Barbosa F; Lattari, Eduardo; Paes, Flávia; Nardi, António E; Machado, Sérgio

    2016-06-01

    Age-related neurodegenerative disorders, like Alzheimer's or Parkinson's disease, are becoming a major issue to public health care. Currently, there is no effective pharmacological treatment to address cognitive impairment in these patients. Here, we aim to explore the role of exercise-induced trophic factor enhancement in the prevention or delay of cognitive decline in patients with neurodegenerative diseases. There is a significant amount of evidence from animal and human studies that links neurodegenerative related cognitive deficits with changes on brain and peripheral trophic factor levels. Several trials with elderly individuals and patients with neurodegenerative diseases report exercise induced cognitive improvements and changes on trophic factor levels including BDNF, IGF-I, among others. Further studies with healthy aging and clinical populations are needed to understand how diverse exercise interventions produce different variations in trophic factor signaling. Genetic profiles and potential confounders regarding trophic factors should also be addressed in future trials. PMID:27086703

  1. Exercise-induced central fatigue: a review of the literature with implications for dance science research.

    PubMed

    Batson, Glenna

    2013-01-01

    The complex interplay between cortical and subcortical networks essential to motor performance is altered when muscles fatigue. The construct of exercise-induced human muscle fatigue has been attributed largely to the loss of a peripheral muscle's ability to produce force. Far less understood is "central fatigue," the result of alterations in central nervous system function. Central fatigue manifests as inadequate motor drive to the muscles and can occur even at sub-maximal levels of voluntary force. This study reviews the literature on exercise-induced central fatigue and its impact on motor performance. In reviewing conditions that may contributed to central fatigue, it addresses perceived exertion and repetitive strain and their relationship to central fatigue. Evidence supporting possible training protocols designed to offset central fatigue, while speculative, will be cited as potential areas of investigation for dance scientists.

  2. Polyphenols in Exercise Performance and Prevention of Exercise-Induced Muscle Damage

    PubMed Central

    Hrelia, Silvana

    2013-01-01

    Although moderate physical exercise is considered an essential component of a healthy lifestyle that leads the organism to adapt itself to different stresses, exercise, especially when exhaustive, is also known to induce oxidative stress, inflammation, and muscle damage. Many efforts have been carried out to identify dietary strategies or micronutrients able to prevent or at least attenuate the exercise-induced muscle damage and stress. Unfortunately most studies have failed to show protection, and at the present time data supporting the protective effect of micronutrients, as antioxidant vitamins, are weak and trivial. This review focuses on those polyphenols, present in the plant kingdom, that have been recently suggested to exert some positive effects on exercise-induced muscle damage and oxidative stress. In the last decade flavonoids as quercetin, catechins, and other polyphenols as resveratrol have caught the scientists attention. However, at the present time drawing a clear and definitive conclusion seems to be untimely. PMID:23983900

  3. Myostatin represses physiological hypertrophy of the heart and excitation–contraction coupling

    PubMed Central

    Rodgers, Buel D; Interlichia, Jillian P; Garikipati, Dilip K; Mamidi, Ranganath; Chandra, Murali; Nelson, O Lynne; Murry, Charles E; Santana, Luis F

    2009-01-01

    Although myostatin negatively regulates skeletal muscle growth, its function in heart is virtually unknown. Herein we demonstrate that it inhibits basal and IGF-stimulated proliferation and differentiation and also modulates cardiac excitation–contraction (EC) coupling. Loss of myostatin induced eccentric hypertrophy and enhanced cardiac responsiveness to β-adrenergic stimulation in vivo. This was due to myostatin null ventricular myocytes having larger [Ca2+]i transients and contractions and responding more strongly to β-adrenergic stimulation than wild-type cells. Enhanced cardiac output and β-adrenergic responsiveness of myostatin null mice was therefore due to increased SR Ca2+ release during EC coupling and to physiological hypertrophy, but not to enhanced myofilament function as determined by simultaneous measurement of force and ATPase activity. Our studies support the novel concept that myostatin is a repressor of physiological cardiac muscle growth and function. Thus, the controlled inhibition of myostatin action could potentially help repair damaged cardiac muscle by inducing physiological hypertrophy. PMID:19736304

  4. Impact of Metformin on Exercise-Induced Metabolic Adaptations to Lower Type 2 Diabetes Risk.

    PubMed

    Malin, Steven K; Braun, Barry

    2016-01-01

    Combining metformin with exercise has been proposed to improve glucose homeostasis. However, we primarily discuss evidence suggesting that metformin and other pharmacological agents/dietary supplements (e.g., statins, resveratol, or antioxidants) may in fact oppose exercise-induced benefits on insulin sensitivity and cardiometabolic health. We explore the novel hypothesis that attenuation of oxidative stress from exercise by these exogenous compounds blunts metabolic adaptation. PMID:26583801

  5. The influence of β-alanine supplementation on markers of exercise-induced oxidative stress.

    PubMed

    Smith-Ryan, Abbie E; Fukuda, David H; Stout, Jeffrey R; Kendall, Kristina L

    2014-01-01

    β-Alanine (BA) has been linked with oxidative protection. This study evaluated antioxidant properties of BA. Twenty-five men consumed BA or placebo for 4 weeks, and completed a 40-min run to induce oxidative stress. Blood draws were taken to measure 8-isoprostane, total antioxidant capacity, superoxide dismutase, and glutathione. BA had no significant influence on reducing exercise-induced oxidative stress. Confidence intervals suggest a reduction in lipid peroxidation. BA supplementation may have little influence as an antioxidant.

  6. The Role of Exercise-Induced Cardiovascular Adaptation in Brain Health.

    PubMed

    Tarumi, Takashi; Zhang, Rong

    2015-10-01

    Regular aerobic exercise improves brain health; however, a potential dose-response relationship and the underling physiological mechanisms remain unclear. Existing data support the following hypotheses: 1) exercise-induced cardiovascular adaptation plays an important role in improving brain perfusion, structure, and function, and 2) a hormetic relation seems to exist between the intensity of exercise and brain health, which needs to be further elucidated.

  7. Nedocromil sodium in the treatment of exercise-induced asthma: a meta-analysis.

    PubMed

    Spooner, C; Rowe, B H; Saunders, L D

    2000-07-01

    Exercise-induced asthma (or bronchoconstriction) afflicts millions of people worldwide. While generally self-limiting, it can hinder performance and reduce activity levels, thus it is an important condition to diagnose and treat. The objective of this review was to assess the prophylactic effect of a single dose of nedocromil sodium on exercise-induced asthma. The Cochrane Airways Group trials register, the Cochrane Controlled Trials Register, Current Contents, reference lists of relevant articles, review articles and textbooks were searched for randomized trials comparing a single dose of nedocromil to placebo to prevent exercise-induced asthma in people >6 yrs of age. Authors and the drug manufacturer were contacted for additional trials. Trial quality assessments and data extraction were conducted independently by two reviewers. Authors were contacted when possible. Twenty trials were included. All were rated as having good methodological quality. Nedocromil inhibited bronchoconstriction in all age groups. The pooled weighted mean difference for the maximum percentage fall in forced expiratory volume in one second was 15.6%, (95% confidence interval (95% CI): 13.2-18.1) and for the peak expiratory flow was 15.0% (95% CI: 8.3-21.6). These differences are both statistically and clinically significant. After nedocromil the time to recover normal lung function was <10 min compared to >30 min with placebo. Nedocromil had a greater effect on people with a fall in lung function of >30% from baseline. There were no significant adverse effects reported with this short-term use. In conclusion, Nedocromil taken before exercise appears to reduce the severity and duration of exercise-induced bronchoconstriction. This effect appears to be more pronounced as severity increases.

  8. Suppression of exercise-induced angina by magnesium sulfate in patients with variant angina

    SciTech Connect

    Kugiyama, K.; Yasue, H.; Okumura, K.; Goto, K.; Minoda, K.; Miyagi, H.; Matsuyama, K.; Kojima, A.; Koga, Y.; Takahashi, M.

    1988-11-01

    The effects of intravenous magnesium on exercise-induced angina were examined in 15 patients with variant angina and in 13 patients with stable effort angina and were compared with those of placebo. Symptom-limited bicycle exercise and thallium-201 myocardial scintigraphy were performed after intravenous administration of 0.27 mmol/kg body weight of magnesium sulfate and after placebo on different days. In all patients, serum magnesium levels after administration of magnesium sulfate were about twofold higher than levels after placebo. Exercise-induced angina associated with transient ST segment elevation occurred in 11 patients with variant angina receiving placebo and in only 2 of these patients receiving magnesium (p less than 0.005). On the other hand, exercise-induced angina was not suppressed by magnesium in any patient with stable effort angina. In these patients there was no significant difference in exercise duration after administration of placebo versus after administration of magnesium. The size of the perfusion defect as measured by thallium-201 scintigraphy was significantly less in patients with variant angina receiving magnesium than that in those receiving placebo (p less than 0.001), whereas it was not significantly different in patients with stable effort angina receiving placebo versus magnesium. In conclusion, exercise-induced angina is suppressed by intravenous magnesium in patients with variant angina but not in patients with stable effort angina. This beneficial effect of magnesium in patients with variant angina is most likely due to improvement of regional myocardial blood flow by suppression of coronary artery spasm.

  9. H2O 2 induces myocardial hypertrophy in H9c2 cells: a potential role of Ube3a.

    PubMed

    Song, Rui; Zhang, Jie; Zhang, Lijuan; Wang, Guanghua; Wo, Da; Feng, Jian; Li, Xucheng; Li, Jue

    2015-01-01

    Myocardial hypertrophy that often leads to eventual heart failure is a leading cause of mortality worldwide. While both apoptosis and cell proliferation have been reported to play an important part in heart failure, its exact triggering mechanism is still unclear. Reports have shown that low concentrations of H2O2 (10-30 µM) can induce myocardial hypertrophy without affecting survival. The ubiquitin ligase Ube3a has been reported to have a close affiliation with Angelman syndrome; but many ubiquitin ligases have been reported in a variety of cardiovascular conditions including myocardial hypertrophy. However, the relationship between Ube3a and myocardial hypertrophy has never been reported in literature. The rat cardiac myoblast cell line H9c2 and primary neonatal cardiomyocytes showed similar hypertrophic responses in vitro. In this report, we utilized H2O2 treatment on H9c2 cells to induce myocardial hypertrophy and determined the relationship between Ube3a and myocardial hypertrophy. Our results showed that 10-20 μM H2O2 can induce myocardial hypertrophy without affecting cell viability and inducing cell apoptosis, while the corresponding transcription and translation levels of Ube3a are significantly increased during the process. Therefore, these findings underline that Ube3a may play an important role in myocardial hypertrophy. PMID:24917194

  10. Myocardial phenotypic changes in Na+, K+ ATPase in left ventricular hypertrophy: pharmacological consequences.

    PubMed

    Charlemagne, D; Swynghedauw, B

    1995-05-01

    Cardiac adaptation to permanent overload induces several phenotypic changes which finally result in a system which works more economically, together with a slower Vmax. The molecular target of digitalis is the NA+, K+ ATPase, which is a polymorphic molecule. We have recently demonstrated that during cardiac hypertrophy this target is modified and that a shift occurs in the alpha 1 subunit, from the normally present alpha 2 isosubunit to alpha 3, which is a fetal isoform with a lower affinity for sodium and a higher affinity for ouabain. Such a shift explains why, in rat cardiac hypertrophy ouabain is less toxic than normal and is released from its target more slowly. It may also explain at least in part the discrepancies observed in clinical trials on the efficacy of digitalis. PMID:7556267

  11. Primary renal magnesium wasting: an unusual clinical picture of exercise-induced symptoms.

    PubMed

    Stark, Christopher M; Nylund, Cade M; Gorman, Gregory H; Lechner, Brent L

    2016-04-01

    Magnesium is one of the most abundant cations in the human body and plays a key role as a metabolic enzyme cofactor and regulatory ion for neurons and cardiomyocytes. Hypomagnesemia due to isolated primary renal magnesium wasting is a rare clinical condition typically associated with neurological hyperexcitability. Exercise-related gastrointestinal symptoms are caused by ischemic, mechanical, or neurohormonal changes. The role of hypomagnesemia in gastrointestinal symptoms is not well understood. We present a case of a 15-year-old male who presented with exercise-induced abdominal pain, nausea, and vomiting, who was found to have profound hypomagnesemia and inappropriately elevated fractional excretion of magnesium (FEMg). Testing for multiple intrinsic and extrinsic etiologies of renal magnesium wasting was inconclusive. He was diagnosed with primary renal magnesium wasting and his symptoms resolved acutely with intravenous magnesium sulfate and with long-term oral magnesium chloride. Primary renal magnesium wasting is a rare clinical entity that can cause extreme hypomagnesemia. It has not been associated previously with exercise-induced gastrointestinal symptoms. The effects of hypomagnesemia on the human gastrointestinal tract are not well established. This case offers unique insights into the importance of magnesium homeostasis in the gastrointestinal tract. Exercise-induced splanchnic hypoperfusion may contribute to gastrointestinal symptoms observed in this chronically hypomagnesemic patient. PMID:27117800

  12. The 5-HT3 receptor is essential for exercise-induced hippocampal neurogenesis and antidepressant effects.

    PubMed

    Kondo, M; Nakamura, Y; Ishida, Y; Shimada, S

    2015-11-01

    Exercise has a variety of beneficial effects on brain structure and function, such as hippocampal neurogenesis, mood and memory. Previous studies have shown that exercise enhances hippocampal neurogenesis, induces antidepressant effects and improves learning behavior. Brain serotonin (5-hydroxytryptamine, 5-HT) levels increase following exercise, and the 5-HT system has been suggested to have an important role in these exercise-induced neuronal effects. However, the precise mechanism remains unclear. In this study, analysis of the 5-HT type 3A receptor subunit-deficient (htr3a(-/-)) mice revealed that lack of the 5-HT type 3 (5-HT3) receptor resulted in loss of exercise-induced hippocampal neurogenesis and antidepressant effects, but not of learning enhancement. Furthermore, stimulation of the 5-HT3 receptor promoted neurogenesis. These findings demonstrate that the 5-HT3 receptor is the critical target of 5-HT action in the brain following exercise, and is indispensable for hippocampal neurogenesis and antidepressant effects induced by exercise. This is the first report of a pivotal 5-HT receptor subtype that has a fundamental role in exercise-induced morphological changes and psychological effects.

  13. Food-dependent exercise-induced anaphylaxis due to wheat in a young woman.

    PubMed

    Ahanchian, Hamid; Farid, Reza; Ansari, Elham; Kianifar, Hamid Reza; Jabbari Azad, Farahzad; Jafari, Seyed Ali; Purreza, Reza; Noorizadeh, Shadi

    2013-03-01

    Food Dependent Exercise-Induced Allergy is a rare condition. However, the occurrence of anaphylaxis is increasing especially in young people. The diagnosis of anaphylaxis is based on clinical criteria and can be supported by laboratory tests such as serum tryptase and positive skin test results for specific IgE to potential triggering allergens. Anaphylaxis prevention needs strict avoidance of confirmed relevant allergen. Food-exercise challenge test may be an acceptable method for diagnosis of Food Dependent Exercise-Induced Allergy and dietary elimination of food is recommended to manage it. In this study, a 32 year-old woman visited the allergy clinic with a history of several episodes of hives since 11 years ago and 3 life-threatening attacks of anaphylaxis during the previous 6 months. The onsets of majority of these attacks were due to physical activity after breakfast. On Blood RAST test, the panel of common food Allergens was used and she had positive test only to wheat flour. On skin prick tests for common food allergens she showed a 6 millimeter wheal with 14 mm flare to Wheat Extract. The rest of allergens were negative.The patient was diagnosed as wheat-dependent exercise-induced, and all foods containing wheat were omitted from her diet. In this report we emphasized on the importance of careful history taking in anaphylaxis diagnosis.

  14. The basic chemistry of exercise-induced DNA oxidation: oxidative damage, redox signaling, and their interplay

    PubMed Central

    Cobley, James N.; Margaritelis, Nikos V.; Morton, James P.; Close, Graeme L.; Nikolaidis, Michalis G.; Malone, John K.

    2015-01-01

    Acute exercise increases reactive oxygen and nitrogen species generation. This phenomenon is associated with two major outcomes: (1) redox signaling and (2) macromolecule damage. Mechanistic knowledge of how exercise-induced redox signaling and macromolecule damage are interlinked is limited. This review focuses on the interplay between exercise-induced redox signaling and DNA damage, using hydroxyl radical (·OH) and hydrogen peroxide (H2O2) as exemplars. It is postulated that the biological fate of H2O2 links the two processes and thus represents a bifurcation point between redox signaling and damage. Indeed, H2O2 can participate in two electron signaling reactions but its diffusion and chemical properties permit DNA oxidation following reaction with transition metals and ·OH generation. It is also considered that the sensing of DNA oxidation by repair proteins constitutes a non-canonical redox signaling mechanism. Further layers of interaction are provided by the redox regulation of DNA repair proteins and their capacity to modulate intracellular H2O2 levels. Overall, exercise-induced redox signaling and DNA damage may be interlinked to a greater extent than was previously thought but this requires further investigation. PMID:26136689

  15. The U.S. Olympic Committee experience with exercise-induced bronchospasm, 1984.

    PubMed

    Voy, R O

    1986-06-01

    Exercise-induced bronchospasm is a medical deterrent to an athlete's natural ability to perform. The U.S. Olympic Committee has met the challenge of recognizing and dealing with this common yet unappreciated medical complication aggravated by athletic exertion. Prior to the 1984 Los Angeles Olympic Games the U.S. Olympic Committee developed a screening program to identify members of its Olympic team who suffered from asthma or exercise-induced bronchospasm. The screening identified 67 of 597 Olympic athletes with asthma or exercise-induced bronchospasm. Coordination of medical care by contact between members of the American Academy of Allergy and Immunology, the U.S. Olympic Committee Chief Medical Officer, the athlete's personal physician, and the athlete was done. Medications approved for use in these conditions by the International Olympic Committee Medical Commission policies were prescribed. Forty-one medals were won by this group of handicapped athletes. Their example will raise the hopes and aspirations of countless young allergic and asthmatic children who dream of the thrills and health benefits of physical performance at almost any level of competition. PMID:3088378

  16. Acute exercise induces biphasic increase in respiratory mRNA in skeletal muscle

    SciTech Connect

    Ikeda, Shin-ichi; Kizaki, Takako; Haga, Shukoh; Ohno, Hideki; Takemasa, Tohru

    2008-04-04

    Peroxisome proliferator-activated receptor {gamma} coactivator-1{alpha} (PGC-1{alpha}) promotes the expression of oxidative enzymes in skeletal muscle. We hypothesized that activation of the p38 MAPK (mitogen-activated protein kinase) in response to exercise was associated with exercise-induced PGC-1{alpha} and respiratory enzymes expression and aimed to demonstrate this under the physiological level. We subjected mice to a single bout of treadmill running and found that the exercise induced a biphasic increase in the expression of respiratory enzymes mRNA. The second phase of the increase was accompanied by an increase in PGC-1{alpha} protein, but the other was not. Administration of SB203580 (SB), an inhibitor of p38 MAPK, suppressed the increase in PGC-1{alpha} expression and respiratory enzymes mRNA in both phases. These data suggest that p38 MAPK is associated with the exercise-induced expression of PGC-1{alpha} and biphasic increase in respiratory enzyme mRNAs in mouse skeletal muscle under physiological conditions.

  17. [Exercise-induced asthma in children and oral terbutaline. A dose-response relationship study].

    PubMed

    Hertz, B; Fuglsang, G; Holm, E B

    1994-09-26

    We wanted to assess the protective effects on exercise-induced asthma as well as the clinical efficacy and safety of increasing doses of a new sustained-release formulation of terbutaline sulphate in 17 asthmatic children aged 6-12 years (mean 9 years). Placebo, 2, 4, and 6 mg terbutaline were given b.i.d. for 14 days in a randomized, double-blind, cross-over design. At the end of each two week period, an exercise test was performed and plasma terbutaline was measured. Compared with placebo, no significant effect was seen on asthma symptoms monitored at home, or on exercise-induced asthma. The percentage falls in FEV1 after the exercise test were 36, 35, 27 and 28%, after placebo, 4, 8 and 12 mg terbutaline/day, respectively. A small but statistically significant dose-related increase was seen in morning and evening peak expiratory flow (PEF) recordings. It is concluded that continuous treatment, even with high doses or oral terbutaline, does not offer clinically useful protection against exercise-induced asthma. PMID:7985255

  18. Contribution of endothelium-derived hyperpolarizing factor to exercise-induced vasodilation in health and hypercholesterolemia.

    PubMed

    Ozkor, Muhiddin A; Hayek, Salim S; Rahman, Ayaz M; Murrow, Jonathan R; Kavtaradze, Nino; Lin, Ji; Manatunga, Amita; Quyyumi, Arshed A

    2015-02-01

    The role of endothelium-derived hyperpolarizing factor (EDHF) in either the healthy circulation or in those with hypercholesterolemia is unknown. In healthy and hypercholesterolemic subjects, we measured forearm blood flow (FBF) using strain-gauge plethysmography at rest, during graded handgrip exercise, and after sodium nitroprusside infusion. Measurements were repeated after l-NMMA, tetraethylammonium (TEA), and combined infusions. At rest, l-NMMA infusion reduced FBF in healthy but not hypercholesterolemic subjects. At peak exercise, vasodilation was lower in hypercholesterolemic compared to healthy subjects (274% vs 438% increase in FBF, p=0.017). TEA infusion reduced exercise-induced vasodilation in both healthy and hypercholesterolemic subjects (27%, p<0.0001 and -20%, p<0.0001, respectively). The addition of l-NMMA to TEA further reduced FBF in healthy (-14%, p=0.012) but not in hypercholesterolemic subjects, indicating a reduced nitric oxide and greater EDHF-mediated contribution to exercise-induced vasodilation in hypercholesterolemia. In conclusion, exercise-induced vasodilation is impaired and predominantly mediated by EDHF in hypercholesterolemic subjects. CLINICAL TRIAL REGISTRATION IDENTIFIER NCT00166166: PMID:25648989

  19. The transcriptional coactivator PGC-1alpha mediates exercise-induced angiogenesis in skeletal muscle.

    PubMed

    Chinsomboon, Jessica; Ruas, Jorge; Gupta, Rana K; Thom, Robyn; Shoag, Jonathan; Rowe, Glenn C; Sawada, Naoki; Raghuram, Srilatha; Arany, Zoltan

    2009-12-15

    Peripheral arterial disease (PAD) affects 5 million people in the US and is the primary cause of limb amputations. Exercise remains the single best intervention for PAD, in part thought to be mediated by increases in capillary density. How exercise triggers angiogenesis is not known. PPARgamma coactivator (PGC)-1alpha is a potent transcriptional co-activator that regulates oxidative metabolism in a variety of tissues. We show here that PGC-1alpha mediates exercise-induced angiogenesis. Voluntary exercise induced robust angiogenesis in mouse skeletal muscle. Mice lacking PGC-1alpha in skeletal muscle failed to increase capillary density in response to exercise. Exercise strongly induced expression of PGC-1alpha from an alternate promoter. The induction of PGC-1alpha depended on beta-adrenergic signaling. beta-adrenergic stimulation also induced a broad program of angiogenic factors, including vascular endothelial growth factor (VEGF). This induction required PGC-1alpha. The orphan nuclear receptor ERRalpha mediated the induction of VEGF by PGC-1alpha, and mice lacking ERRalpha also failed to increase vascular density after exercise. These data demonstrate that beta-adrenergic stimulation of a PGC-1alpha/ERRalpha/VEGF axis mediates exercise-induced angiogenesis in skeletal muscle.

  20. Atrial Fibrillation in Hypertrophic Cardiomyopathy: Is the Extent of Septal Hypertrophy Important?

    PubMed Central

    Kim, Eun Kyoung; Lee, Sang-chol; Park, Seung-jung; Kim, June Soo; On, Young Keun

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a cardiac disease associated with a high incidence of atrial fibrillation (AF). Recent studies have suggested that interventricular septum thickness may influence the risk stratification of patients with AF. We evaluated the effects of septal hypertrophy on morbidity and mortality in patients with HCM. Patients were followed for a median of 6.1 years and were divided into two groups according to the extent of septal hypertrophy. A total of 1,360 HCM patients were enrolled: 482 (33%) apical or apicoseptal, 415 (28%) asymmetric septal, 388 (27%) basal septal, 38 (2.6%) concentric, and 37 (2.5%) diffuse and mixed type. Ninety-two all-cause deaths and 21 cardiac deaths occurred. The total event rates were significantly higher for patients with HCM with more extensive septal hypertrophy (group A) compared to those with HCM ± focal septal hypertrophy (group B), regardless of type (p<0.001). Arrhythmias occurred in 502 patients, with a significantly higher incidence in group A than in group B (p<0.001). Among patients with arrhythmias, the incidence of AF was significantly higher in group A than group B (p<0.001). In univariate Cox analysis, a greater extent of septal hypertrophy (p<0.001), E/E´ ratio (p = 0.011), and mitral regurgitation grade (p = 0.003) were significantly associated with developing AF. In multivariate Cox analyses, a greater extent of septal hypertrophy [odds ratio (OR) 5.44 (2.29–12.92), p<0.001] in patients with HCM was significantly associated with developing AF. In conclusion, a greater extent of septal hypertrophy is an independent predictor of progression to AF in patients with HCM. PMID:27258035

  1. Caffeine induces cardiomyocyte hypertrophy via p300 and CaMKII pathways.

    PubMed

    Shi, Liang; Xu, Hao; Wei, Jinhong; Ma, Xingfeng; Zhang, Jianbao

    2014-09-25

    Caffeine is commonly utilized to trigger intracellular calcium in cardiomyocyte. It is well accepted that caffeine could induce cardiac arrhythmia, but it is not clear with regard of its impacts on the cardiac function. This article presents a recent study concerning the effects of caffeine on the cardiomyocyte hypertrophy and the associated signal pathway. The experimental results showed that the total protein contents, the surface area of cardiomyocyte and β-myosin heavy chain (β-MHC) expression increased in ventricular myocytes of neonatal Sprague-Dawley (SD) rats after 24h caffeine incubation. It is also observed that the basal intracellular calcium (Ca(2+)) level has increased, while the amplitude of Ca(2+) oscillation and Ca(2+) content have decreased in sarcoplasmic reticulum (SR). The caffeine-induced myocyte enhancer factor-2 (MEF2) expression and hypertrophy can be completely abolished by the inhibition of cardiac ryanodine receptor (RyR2), as well as KN93 and curcumin treatments. Meanwhile, the amplitude of Ca(2+) oscillation and the Ca(2+) content of SR in the completely-inhibited group have reached the physiological level. These results suggest that the caffeine-induced cardiomyocyte hypertrophy established the connection between Ca(2+) release from SR and cytosol that activates CaMKII and p300, which in turn enhances the expression of MEF2 that promotes cardiomyocyte hypertrophy.

  2. Understanding exercise-induced hyperemia: central and peripheral hemodynamic responses to passive limb movement in heart transplant recipients

    PubMed Central

    Hayman, Melissa A.; Nativi, Jose N.; Stehlik, Josef; McDaniel, John; Fjeldstad, Anette S.; Ives, Stephen J.; Walter Wray, D.; Bader, Feras; Gilbert, Edward M.

    2010-01-01

    To better characterize the contribution of both central and peripheral mechanisms to passive limb movement-induced hyperemia, we studied nine recent (<2 yr) heart transplant (HTx) recipients (56 ± 4 yr) and nine healthy controls (58 ± 5 yr). Measurements of heart rate (HR), stroke volume (SV), cardiac output (CO), and femoral artery blood flow were recorded during passive knee extension. Peripheral vascular function was assessed using brachial artery flow-mediated dilation (FMD). During passive limb movement, the HTx recipients lacked an HR response (0 ± 0 beats/min, Δ0%) but displayed a significant increase in CO (0.4 ± 0.1 l/min, Δ5%) although attenuated compared with controls (1.0 ± 0.2 l/min, Δ18%). Therefore, the rise in CO in the HTx recipients was solely dependent on increased SV (5 ± 1 ml, Δ5%) in contrast with the controls who displayed significant increases in both HR (6 ± 2 beats/min, Δ11%) and SV (5 ± 2 ml, Δ7%). The transient increase in femoral blood volume entering the leg during the first 40 s of passive movement was attenuated in the HTx recipients (24 ± 8 ml) compared with controls (93 ± 7 ml), whereas peripheral vascular function (FMD) appeared similar between HTx recipients (8 ± 2%) and controls (6 ± 1%). These data reveal that the absence of an HR increase in HTx recipients significantly impacts the peripheral vascular response to passive movement in this population and supports the concept that an increase in CO is a major contributor to exercise-induced hyperemia. PMID:20833963

  3. Activation of HuR downstream of p38 MAPK promotes cardiomyocyte hypertrophy.

    PubMed

    Slone, Samuel; Anthony, Sarah R; Wu, Xiaoqing; Benoit, Joshua B; Aube, Jeffrey; Xu, Liang; Tranter, Michael

    2016-11-01

    The RNA binding protein Human antigen R (HuR) interacts with specific AU-rich domains in target mRNAs and is highly expressed in many cell types, including cardiomyocytes. However, the role of HuR in cardiac physiology is largely unknown. Our results show that HuR undergoes cytoplasmic translocation, indicative of its activation, in hypertrophic cardiac myocytes. Specifically, HuR cytoplasmic translocation is significantly increased in NRVMs (neonatal rat ventricular myocytes) following treatment with phenylephrine or angiotensin II, agonists of two independent Gαq-coupled GPCRs known to induce hypertrophy. This Gq-mediated HuR activation is dependent on p38 MAP kinase, but not canonical Gq-PKC signaling. Furthermore, we show that HuR activation is necessary for Gq-mediated hypertrophic growth of NRVMs as siRNA-mediated knockdown of HuR inhibits hypertrophy as measured by cell size and expression of ANF (atrial natriuretic factor). Additionally, HuR overexpression is sufficient to induce hypertrophic cell growth. To decipher the downstream mechanisms by which HuR translocation promotes cardiomyocyte hypertrophy, we assessed the role of HuR in the transcriptional activity of NFAT (nuclear factor of activated T cells), the activation of which is a hallmark of cardiac hypertrophy. Using an NFAT-luciferase reporter assay, we show an acute inhibition of NFAT transcriptional activity following pharmacological inhibition of HuR. In conclusion, our results identify HuR as a novel mediator of cardiac hypertrophy downstream of the Gq-p38 MAPK pathway, and suggest modulation of NFAT activity as a potential mechanism.

  4. Neurogenic muscle hypertrophy: a case report

    PubMed Central

    Shin, Hyun Ho; Jeon, Young Hoon; Jang, Seung Won

    2016-01-01

    Muscular hypertrophy is caused mainly due to myopathic disorder. But, it is also rarely produced by neurogenic disorder. A 74-year-old woman complained of right calf pain with hypertrophy for several years. Recent lumbar spine magnetic resonance imaging (MRI) showed central and lateral canal narrowing at the L4-L5 intervertebral space. Lower extremity MRI revealed fatty change of right medial head of the gastrocnemius and soleus, causing right calf hypertrophy. Electrodiagnostic examinations including electromyography and nerve conduction velocity testing demonstrated 5th lumbar and 1st sacral polyradiculopathy. Integrating all the results, the diagnosis was neurogenic muscle hypertrophy. Neurogenic muscle hypertrophy is very rare, but we recommend that clinicians consider this problem when a patient complains of lower limb hypertrophy and pain. PMID:27738507

  5. Aldosterone Inhibits the Fetal Program and Increases Hypertrophy in the Heart of Hypertensive Mice

    PubMed Central

    Azibani, Feriel; Devaux, Yvan; Coutance, Guillaume; Schlossarek, Saskia; Polidano, Evelyne; Fazal, Loubina; Merval, Regine; Carrier, Lucie; Solal, Alain Cohen; Chatziantoniou, Christos; Launay, Jean-Marie; Samuel, Jane-Lise; Delcayre, Claude

    2012-01-01

    Background Arterial hypertension (AH) induces cardiac hypertrophy and reactivation of “fetal” gene expression. In rodent heart, alpha-Myosin Heavy Chain (MyHC) and its micro-RNA miR-208a regulate the expression of beta-MyHC and of its intronic miR-208b. However, the role of aldosterone in these processes remains unclear. Methodology/Principal Findings RT-PCR and western-blot were used to investigate the genes modulated by arterial hypertension and cardiac hyperaldosteronism. We developed a model of double-transgenic mice (AS-Ren) with cardiac hyperaldosteronism (AS mice) and systemic hypertension (Ren). AS-Ren mice had increased (x2) angiotensin II in plasma and increased (x2) aldosterone in heart. Ren and AS-Ren mice had a robust and similar hypertension (+70%) versus their controls. Anatomical data and echocardiography showed a worsening of cardiac hypertrophy (+41%) in AS-Ren mice (P<0.05 vs Ren). The increase of ANP (x 2.5; P<0.01) mRNA observed in Ren mice was blunted in AS-Ren mice. This non-induction of antitrophic natriuretic peptides may be involved in the higher trophic cardiac response in AS-Ren mice, as indicated by the markedly reduced cardiac hypertrophy in ANP-infused AS-Ren mice for one month. Besides, the AH-induced increase of ßMyHC and its intronic miRNA-208b was prevented in AS-Ren. The inhibition of miR 208a (−75%, p<0.001) in AS-Ren mice compared to AS was associated with increased Sox 6 mRNA (x 1.34; p<0.05), an inhibitor of ßMyHC transcription. Eplerenone prevented all aldosterone-dependent effects. Conclusions/Significance Our results indicate that increased aldosterone in heart inhibits the induction of atrial natriuretic peptide expression, via the mineralocorticoid receptor. This worsens cardiac hypertrophy without changing blood pressure. Moreover, this work reveals an original aldosterone-dependent inhibition of miR-208a in hypertension, resulting in the inhibition of β-myosin heavy chain expression through the induction of

  6. Mouse SIRT3 Attenuates Hypertrophy-Related Lipid Accumulation in the Heart through the Deacetylation of LCAD

    PubMed Central

    Chen, Tongshuai; Liu, Junni; Li, Na; Wang, Shujian; Liu, Hui; Li, Jingyuan; Zhang, Yun; Bu, Peili

    2015-01-01

    Cardiac hypertrophy is an adaptive response to pressure, volume stress, and loss of contractile mass from prior infarction. Metabolic changes in cardiac hypertrophy include suppression of fatty acid oxidation and enhancement of glucose utilization, which could result in lipid accumulation in the heart. SIRT3, a mitochondrial NAD+-dependent deacetylase, has been demonstrated to play a crucial role in controlling the acetylation status of many enzymes participating in energy metabolism. However, the role of SIRT3 in the pathogenesis of hypertrophy-related lipid accumulation remains unclear. In this study, hypertrophy-related lipid accumulation was investigated using a mouse cardiac hypertrophy model induced by transverse aortic constriction (TAC). We showed that mice developed heart failure six weeks after TAC. Furthermore, abnormal lipid accumulation and decreased palmitate oxidation rates were observed in the hypertrophic hearts, and these changes were particularly significant in SIRT3-KO mice. We also demonstrated that the short form of SIRT3 was downregulated in wild-type (WT) hypertrophic hearts and that this change was accompanied by a higher acetylation level of long-chain acyl CoA dehydrogenase (LCAD), which is a key enzyme participating in fatty acid oxidation. In addition, SIRT3 may play an essential role in attenuating lipid accumulation in the heart through the deacetylation of LCAD. PMID:25748450

  7. Longitudinal strain bull's eye plot patterns in patients with cardiomyopathy and concentric left ventricular hypertrophy.

    PubMed

    Liu, Dan; Hu, Kai; Nordbeck, Peter; Ertl, Georg; Störk, Stefan; Weidemann, Frank

    2016-05-10

    Despite substantial advances in the imaging techniques and pathophysiological understanding over the last decades, identification of the underlying causes of left ventricular hypertrophy by means of echocardiographic examination remains a challenge in current clinical practice. The longitudinal strain bull's eye plot derived from 2D speckle tracking imaging offers an intuitive visual overview of the global and regional left ventricular myocardial function in a single diagram. The bull's eye mapping is clinically feasible and the plot patterns could provide clues to the etiology of cardiomyopathies. The present review summarizes the longitudinal strain, bull's eye plot features in patients with various cardiomyopathies and concentric left ventricular hypertrophy and the bull's eye plot features might serve as one of the cardiac workup steps on evaluating patients with left ventricular hypertrophy.

  8. Essential role of STIM1 in the development of cardiomyocyte hypertrophy

    SciTech Connect

    Ohba, Takayoshi; Watanabe, Hiroyuki; Murakami, Manabu; Sato, Takako; Ono, Kyoichi; Ito, Hiroshi

    2009-11-06

    Store-operated Ca{sup 2+} entry (SOCE) through transient receptor potential (TRP) channels is important in the development of cardiac hypertrophy. Recently, stromal interaction molecule 1 (STIM1) was identified as a key regulator of SOCE. In this study, we examined whether STIM1 is involved in the development of cardiomyocyte hypertrophy. RT-PCR showed that cultured rat cardiomyocytes constitutively expressed STIM1. Endothelin-1 (ET-1) treatment for 48 h enhanced TRPC1 expression, SOCE, and nuclear factor of activated T cells activation without upregulating STIM1. However, the knockdown of STIM1 suppressed these effects, thereby preventing a hypertrophic response. These results suggest that STIM1 plays an essential role in the development of cardiomyocyte hypertrophy.

  9. Biology of the cardiac myocyte in heart disease

    PubMed Central

    Peter, Angela K.; Bjerke, Maureen A.; Leinwand, Leslie A.

    2016-01-01

    Cardiac hypertrophy is a major risk factor for heart failure, and it has been shown that this increase in size occurs at the level of the cardiac myocyte. Cardiac myocyte model systems have been developed to study this process. Here we focus on cell culture tools, including primary cells, immortalized cell lines, human stem cells, and their morphological and molecular responses to patholo