Effects of the homeopathic remedy arnica on attenuating symptoms of exercise-induced muscle soreness
Plezbert, Julie A.; Burke, Jeanmarie R.
2005-01-01
Abstract Objective To evaluate the clinical efficacy of Arnica at a high potency (200c), on moderating delayed onset muscle soreness and accompanying symptoms of muscle dysfunction. Methods Twenty subjects completed a maximal eccentric exercise protocol with the non-dominate elbow flexors to induce delayed onset muscle soreness. Either Arnica or placebo tablets were administered in a random, double- blinded fashion immediately after exercise and at 24 hours and 72 hours after exercise. Before exercise, immediately post-exercise, and at 24, 48, 72, and 96 hours post-exercise, assessments of delayed onset muscle soreness and muscle function included: 1) muscle soreness and functional impairment; 2) maximum voluntary contraction torque; 3) muscle swelling; and 4) range of motion tests to document spontaneous muscle shortening and muscle shortening ability. Blood samples drawn before exercise and at 24, 48, and 96 hours after exercise were used to measure muscle enzymes as indirect indices of muscle damage. Results Regardless of the intervention, the extent of delayed onset muscle soreness and elevations in muscle enzymes were similar on the days following the eccentric exercise protocol. The post-exercise time profiles of decreases in maximum voluntary contraction torque and muscle shortening ability and increases in muscle swelling and spontaneous muscle shortening were similar for each treatment intervention. Conclusions The results of this study did not substantiate the clinical efficacy of Arnica at a high potency on moderating delayed onset muscle soreness and accompanying symptoms of muscle dysfunction. Despite the findings of this study, future investigations on the clinical efficacy of homeopathic interventions should consider incorporating research strategies that emphasize differential therapeutics for each patient rather than treating a specific disease or symptom complex, such as DOMS, with a single homeopathic remedy. PMID:19674657
Exercise-Induced Skeletal Muscle Damage.
Evans, W J
1987-01-01
In brief: Delayed-onset muscle soreness is most likely caused by structural damage in skeletal muscle after eccentric exercise, in which muscles produce force while lengthening, as in running downhill. This damage may take as long as 12 weeks to repair. Therefore, athletes should allow plenty of time for recovery after events that cause extreme muscle soreness. Because prostaglandin E2 may be important in muscle repair, prostaglandin blockers, such as aspirin, may be useless or even detrimental in the treatment of delayed-onset muscle soreness. Eccentric exercise training may help prevent soreness.
Exercise-induced menstrual dysfunction.
Henley, K; Vaitukaitis, J L
1988-01-01
Menstrual cycle changes associated with vigorous exercise can range widely. They may be only subtle abnormalities, ranging from delayed onset of spontaneous menses or anovulatory cycles to loss of spontaneous menses. They may be more serious, however. Significant adverse bone mineral changes, resulting in clinically significant osteoporosis and fractures, may occur concomitantly with exercise-induced menstrual dysfunction.
Exercise-Induced Skeletal Muscle Damage.
ERIC Educational Resources Information Center
Evans, William J.
1987-01-01
Eccentric exercise, in which the muscles exert force by lengthening, is associated with delayed onset muscle soreness. How soreness occurs, how recovery proceeds, and what precautions athletes should take are described. (Author/MT)
Ra, Song-Gyu; Miyazaki, Teruo; Ishikura, Keisuke; Nagayama, Hisashi; Suzuki, Takafumi; Maeda, Seiji; Ito, Masaharu; Matsuzaki, Yasushi; Ohmori, Hajime
2013-01-01
Taurine (TAU) has a lot of the biological, physiological, and pharmocological functions including anti-inflammatory and anti-oxidative stress. Although previous studies have appreciated the effectiveness of branched-chain amino acids (BCAA) on the delayed-onset muscle soreness (DOMS), consistent finding has not still convinced. The aim of this study was to examine the additional effect of TAU with BCAA on the DOMS and muscle damages after eccentric exercise. Thirty-six untrained male volunteers were equally divided into four groups, and ingested a combination with 2.0 g TAU (or placebo) and 3.2 g BCAA (or placebo), thrice a day, 2 weeks prior to and 4 days after elbow flexion eccentric exercise. Following the period after eccentric exercise, the physiological and blood biochemical markers for DOMS and muscle damage showed improvement in the combination of TAU and BCAA supplementation rather than in the single or placebo supplementations. In conclusion, additional supplement of TAU with BCAA would be a useful way to attenuate DOMS and muscle damages induced by high-intensity exercise.
Zaretsky, Dmitry V; Kline, Hannah; Zaretskaia, Maria V; Brown, Mary Beth; Durant, Pamela J; Alves, Nathan J; Rusyniak, Daniel E
2018-06-15
Stimulants cause hyperthermia, in part, by increasing heat generation through exercise. Stimulants also delay the onset of fatigue and exhaustion allowing animals to exercise longer. If used in a warm environment, this combination (increased exercise and decreased fatigue) can cause heat stroke. The dorsomedial hypothalamus (DMH) is involved in mediating locomotion from stimulants. Furthermore, inhibiting the DMH decreases locomotion and prevents hyperthermia in rats given stimulants in a warm environment. Whether the DMH is involved in mediating exercise-induced fatigue and exhaustion is not known. We hypothesized that disinhibiting neurons in the dorsomedial hypothalamus (DMH) would delay the onset of fatigue and exhaustion in animals exercising in a warm environment. To test this hypothesis, we used automated video tracking software to measure fatigue and exhaustion. In rats, using wearable mini-pumps, we demonstrated that disinhibiting the DMH, via bicuculline perfusion (5 µM), increased the duration of exercise in a warm environment as compared to control animals (25 ± 3 min vs 15 ± 2 min). Bicuculline-perfused animals also had higher temperatures at exhaustion (41.4 ± 0.2 °C vs 40.0 ± 0.4 °C). Disinhibiting neurons in the DMH also increased the time to fatigue. Our data show that the same region of the hypothalamus that is involved in mediating locomotion to stimulants, is also involved in controlling exhaustion and fatigue. These findings have implications for understanding the cause and treatment of stimulant-induced-hyperthermia. Copyright © 2018 Elsevier B.V. All rights reserved.
MRS evidence of adequate O2 supply in human skeletal muscle at the onset of exercise
Richardson, Russell S.; Wary, Claire; Wray, D. Walter; Hoff, Jan; Rossiter, Harry; Layec, Gwenael; Carlier, Pierre G.
2015-01-01
Purpose At exercise onset, intramuscular oxidative energy production responds relatively slowly in comparison to the change in ATP demand. To determine if the slow kinetics of oxidative ATP production is due to inadequate O2 supply or metabolic inertia we studied the kinetics of intramyocellular deoxygenation (deoxy-myoglobin, Mb) and metabolism (phosphocreatine, PCr), using proton (1H) and phosphorus (31P) magnetic resonance spectroscopy (MRS) in 6 healthy subjects (33 ± 5 yrs). Methods Specifically, utilizing dynamic plantar flexion exercise, rest to exercise and recovery was assessed at both 60% of maximum work rate (WRmax) (moderate intensity) and 80% of WRmax (heavy intensity). Results At exercise onset [PCr] fell without delay and with a similar time constant (τ) at both exercise intensities (~33 s). In contrast, the increase in deoxy-Mb was delayed at exercise onset by 5–7 s, after which it increased with kinetics (moderate τ = 37 ± 9 s, and heavy τ = 29 ± 6 s) that were not different from τPCr (p > 0.05). At cessation, deoxy-Mb recovered without a time delay and more rapidly (τ ~20 s) than PCr (τ ~33 s) (p < 0.05). Conclusion using a unique combination of in vivo MRS techniques with high time-resolution, this study revealed a delay in intramuscular de-oxygenation at the onset of exercise, and rapid re-oxygenation kinetics upon cessation. Together these data imply that intramuscular substrate-enzyme interactions, and not O2 availability, determine the exercise onset kinetics of oxidative metabolism in healthy human skeletal muscle. PMID:25830362
Exercise-induced rhabdomyolysis from stationary biking: a case report.
Inklebarger, J; Galanis, N; Kirkos, J; Kapetanos, G
2010-10-01
There are several reports concerning exercise and rabdomyolysis. There has been no report in the English literature of exercise induced rabdomyolisis from a stationary bike.A 63-year-old female recreational athlete presented to our hospital seeking treatment for lower back, leg pain and stiffness after exercising on a stationary bicycle one day prior. Blood work showed a raised CK of 38,120 U/L, a myoglobin of 5330 and an AST 495 U/L with normal urea and electrolytes. Urinalysis remained negative. She was admitted for oral and intravenous hydration and fluid balance monitoringThis is a very rare case of rhabdomyolysis due to exercise. This study highlights the difficulties faced by accident and emergency teams in distinguishing delayed onset muscle soreness (DOMS) from exercise-induced rhabdomyolysis, and reinforces the concept that rhabdomyolysis can occur at any level of exercise intensity.
Candia-Luján, Ramón; De Paz Fernández, José Antonio; Costa Moreira, Osvaldo
2014-10-05
In recent years, antioxidant supplements have become popular to counter the effects of free radicals and muscle damage symptoms, including delayed onset muscle soreness (DOMS). To conduct a systematic review in different databases to determine the effects of antioxidant supplements on DOMS. We conducted a search in databases; Cochrane, Pubmed, Scopus and SportDiscus and Web of Science (WOS). The words and acronyms used were; Delayed onset muscle soreness, exercise induced muscle damage, DOMS, EIMD, antioxidant and oxidative stress. 54 articles were identified of which 48 were retreived, all in English, 17 related to vitamin C and E, supplements polyphenolic correspond to fourteen, eleven other antioxidant supplements and six to commercial supplements, all of them used to diminish the DOMS and other variables. Both vitamins and commercial supplements have low effectiveness in reducing DOMS, while polyphenols and other antioxidant supplements show moderate to good effectiveness in combating DOMS. However, most of the studies have effectiveness in reducing other symptoms of muscle damage besides helping in the post-exercise recovery. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.
Exercise-induced muscle damage and running economy in humans.
Assumpção, Cláudio de Oliveira; Lima, Leonardo Coelho Rabello; Oliveira, Felipe Bruno Dias; Greco, Camila Coelho; Denadai, Benedito Sérgio
2013-01-01
Running economy (RE), defined as the energy demand for a given velocity of submaximal running, has been identified as a critical factor of overall distance running performance. Plyometric and resistance trainings, performed during a relatively short period of time (~15-30 days), have been successfully used to improve RE in trained athletes. However, these exercise types, particularly when they are unaccustomed activities for the individuals, may cause delayed onset muscle soreness, swelling, and reduced muscle strength. Some studies have demonstrated that exercise-induced muscle damage has a negative impact on endurance running performance. Specifically, the muscular damage induced by an acute bout of downhill running has been shown to reduce RE during subsequent moderate and high-intensity exercise (>65% VO₂max). However, strength exercise (i.e., jumps, isoinertial and isokinetic eccentric exercises) seems to impair RE only for subsequent high-intensity exercise (~90% VO₂max). Finally, a single session of resistance exercise or downhill running (i.e., repeated bout effect) attenuates changes in indirect markers of muscle damage and blunts changes in RE.
Matsumura, Melissa D; Zavorsky, Gerald S; Smoliga, James M
2015-06-01
Ginger possesses analgesic and pharmacological properties mimicking non-steroidal antiinflammatory drugs. We aimed to determine if ginger supplementation is efficacious for attenuating muscle damage and delayed onset muscle soreness (DOMS) following high-intensity resistance exercise. Following a 5-day supplementation period of placebo or 4 g ginger (randomized groups), 20 non-weight trained participants performed a high-intensity elbow flexor eccentric exercise protocol to induce muscle damage. Markers associated with muscle damage and DOMS were repeatedly measured before supplementation and for 4 days following the exercise protocol. Repeated measures analysis of variance revealed one repetition maximum lift decreased significantly 24 h post-exercise in both groups (p < 0.005), improved 48 h post-exercise only in the ginger group (p = 0.002), and improved at 72 (p = 0.021) and 96 h (p = 0.044) only in the placebo group. Blood creatine kinase significantly increased for both groups (p = 0.015) but continued to increase only in the ginger group 72 (p = 0.006) and 96 h (p = 0.027) post-exercise. Visual analog scale of pain was significantly elevated following eccentric exercise (p < 0.001) and was not influenced by ginger. In conclusion, 4 g of ginger supplementation may be used to accelerate recovery of muscle strength following intense exercise but does not influence indicators of muscle damage or DOMS. Copyright © 2015 John Wiley & Sons, Ltd.
Does post-exercise massage treatment reduce delayed onset muscle soreness? A systematic review
Ernst, E.
1998-01-01
BACKGROUND: Delayed onset muscle soreness (DOMS) is a frequent problem after unaccustomed exercise. No universally accepted treatment exists. Massage therapy is often recommended for this condition but uncertainty exists about its effectiveness. AIM: To determine whether post-exercise massage alleviates the symptoms of DOMS after a bout of strenuous exercise. METHOD: Various computerised literature searches were carried out and located seven controlled trials. RESULTS: Most of the trials were burdened with serious methodological flaws, and their results are far from uniform. However, most suggest that post-exercise massage may alleviate symptoms of DOMS. CONCLUSIONS: Massage therapy may be a promising treatment for DOMS. Definitive studies are warranted. PMID:9773168
Effect of milk on team sport performance after exercise-induced muscle damage.
Cockburn, Emma; Bell, Phillip G; Stevenson, Emma
2013-08-01
Exercise-induced muscle damage (EIMD) leads to increases in intramuscular proteins observed in the blood stream and delayed onset of muscle soreness, but crucial for athletes are the decrements in muscle performance observed. Previous research has demonstrated that carbohydrate-protein supplements limit these decrements; however, they have primarily used isokinetic dynamometry, which has limited applicability to dynamic sport settings. Therefore, the aim of this study was to investigate the effects of a carbohydrate-protein milk supplement consumed after muscle-damaging exercise on performance tests specific to field-based team sports. Two independent groups of seven males consumed either 500 mL of milk or a control immediately after muscle-damaging exercise. Passive and active delayed onset of muscle soreness, creatine kinase, myoglobin, countermovement jump height, reactive strength index, 15-m sprint, and agility time were assessed before and 24, 48, and 72 h after EIMD. The Loughborough Intermittent Shuttle Test was also performed before and 48 h after EIMD. At 48 h, milk had a possible benefit for limiting increases in 10-m sprint time and a likely benefit of attenuating increases in mean 15-m sprint time during the Loughborough Intermittent Shuttle Test. At 72 h, milk had a possible benefit for limiting increases in 15-m sprint time and a likely benefit for the attenuation of increases in agility time. All other effects for measured variables were unclear. The consumption of milk limits decrements in one-off sprinting and agility performance and the ability to perform repeated sprints during the physiological simulation of field-based team sports.
Recommendations for the Avoidance of Delayed-Onset Muscle Soreness.
ERIC Educational Resources Information Center
Szymanski, David J.
2001-01-01
Describes the possible causes of delayed-onset muscle soreness (DOMS), which include buildup of lactic acid in muscle, increased intracellular calcium concentration, increased intramuscular inflammation, and muscle fiber and connective tissue damage. Proposed methods to reduce DOMS include warming up before exercise and performing repeated bouts…
Paddon-Jones, D; Muthalib, M; Jenkins, D
2000-03-01
This study examined markers of muscle damage following a repeated bout of maximal isokinetic eccentric exercise performed prior to full recovery from a previous bout. Twenty non-resistance trained volunteers were randomly assigned to a control (CON, n=10) or experimental (EXP, n=10) group. Both groups performed 36 maximal isokinetic eccentric contractions of the elbow flexors of the non-dominant arm (ECC1). The EXP group repeated the same eccentric exercise bout two days later (ECC2). Total work and peak eccentric torque were recorded during each set of ECC1 and ECC2. Isometric torque, delayed onset muscle soreness (DOMS), flexed elbow angle and plasma creatine kinase (CK) activity were measured prior to and immediately following ECC1 and ECC2. at 24h intervals for 7 days following ECC1 and finally on day 11. In both groups, all dependent variables changed significantly during the 2 days following ECC1. A further acute post-exercise impairment in isometric torque (30 +/- 5%) and flexed elbow angle (20 +/- 4%) was observed following ECC2 (p<0.05), despite EXP subjects producing uniformly lower work and peak eccentric torque values during ECC2 (p<0.05). No other significant differences between the CON and EXP groups were observed throughout the study (p>0.05). These findings suggest that when maximal isokinetic eccentric exercise is repeated two days after experiencing of contraction-induced muscle damage, the recovery time course is not significantly altered.
Effect of hydrotherapy on the signs and symptoms of delayed onset muscle soreness.
Vaile, Joanna; Halson, Shona; Gill, Nicholas; Dawson, Brian
2008-03-01
This study independently examined the effects of three hydrotherapy interventions on the physiological and functional symptoms of delayed onset muscle soreness (DOMS). Strength trained males (n = 38) completed two experimental trials separated by 8 months in a randomised crossover design; one trial involved passive recovery (PAS, control), the other a specific hydrotherapy protocol for 72 h post-exercise; either: (1) cold water immersion (CWI: n = 12), (2) hot water immersion (HWI: n = 11) or (3) contrast water therapy (CWT: n = 15). For each trial, subjects performed a DOMS-inducing leg press protocol followed by PAS or one of the hydrotherapy interventions for 14 min. Weighted squat jump, isometric squat, perceived pain, thigh girths and blood variables were measured prior to, immediately after, and at 24, 48 and 72 h post-exercise. Squat jump performance and isometric force recovery were significantly enhanced (P < 0.05) at 24, 48 and 72 h post-exercise following CWT and at 48 and 72 h post-exercise following CWI when compared to PAS. Isometric force recovery was also greater (P < 0.05) at 24, 48, and 72 h post-exercise following HWI when compared to PAS. Perceived pain improved (P < 0.01) following CWT at 24, 48 and 72 h post-exercise. Overall, CWI and CWT were found to be effective in reducing the physiological and functional deficits associated with DOMS, including improved recovery of isometric force and dynamic power and a reduction in localised oedema. While HWI was effective in the recovery of isometric force, it was ineffective for recovery of all other markers compared to PAS.
NASA Technical Reports Server (NTRS)
Evans, G. F.; Haller, R. G.; Wyrick, P. S.; Parkey, R. W.; Fleckenstein, J. L.; Blomqvist, C. G. (Principal Investigator)
1998-01-01
PURPOSE: To assess correlations between muscle edema on magnetic resonance (MR) images and clinical indexes of muscle injury in delayed-onset muscle soreness (DOMS) produced by submaximal exercise protocols. MATERIALS AND METHODS: Sixteen subjects performed 36 elbow flexions ("biceps curls") at one of two submaximal workloads that emphasized eccentric contractions. Changes in MR imaging findings, plasma levels of creatine kinase, and pain scores were correlated. RESULTS: Both exercise protocols produced DOMS in all subjects. The best correlation was between change in creatine kinase level and volume of muscle edema on MR images, regardless of the workload. Correlations tended to be better with the easier exercise protocol. CONCLUSION: Whereas many previous studies of DOMS focused on intense exercise protocols to ensure positive results, the present investigation showed that submaximal workloads are adequate to produce DOMS and that correlations between conventionally measured indexes of injury may be enhanced at lighter exercise intensities.
van Someren, Ken A; Edwards, Adam J; Howatson, Glyn
2005-08-01
This study examined the effects of beta-hydroxyl-beta-methylbutyrate (HMB) and alpha-ketoisocaproic acid (KIC) supplementation on signs and symptoms of exercise-induced muscle damage following a single bout of eccentrically biased resistance exercise. Six non-resistance trained male subjects performed an exercise protocol designed to induce muscle damage on two separate occasions, performed on the dominant or non-dominant arm in a counter-balanced crossover design. Subjects were assigned to an HMB/KIC (3 g HMB and 0.3 g alpha-ketoisocaproic acid, daily) or placebo treatment for 14 d prior to exercise in the counter-balanced crossover design. One repetition maximum (1RM), plasma creatine kinase activity (CK), delayed onset muscle soreness (DOMS), limb girth, and range of motion (ROM) were determined pre-exercise, at 1h, 24 h, 48 h, and 72 h post-exercise. DOMS and the percentage changes in 1RM, limb girth, and ROM all changed over the 72 h period (P < 0.05). HMB//IC supplementation attenuated the CK response, the percentage decrement in 1RM, and the percentage increase in limb girth (P < 0.05). In addition, DOMS was reduced at 24 h post-exercise (P < 0.05) in the HMB/KIC treatment. In conclusion, 14 d of HMB and KIC supplementation reduced signs and symptoms of exercise-induced muscle damage in non-resistance trained males following a single bout of eccentrically biased resistance exercise.
Circulating androgens in women: exercise-induced changes.
Enea, Carina; Boisseau, Nathalie; Fargeas-Gluck, Marie Agnès; Diaz, Véronique; Dugué, Benoit
2011-01-01
Physical exercise is known to strongly stimulate the endocrine system in both sexes. Among these hormones, androgens (e.g. testosterone, androstenedione, dehydroepiandrosterone) play key roles in the reproductive system, muscle growth and the prevention of bone loss. In female athletes, excessive physical exercise may lead to disorders, including delay in the onset of puberty, amenorrhoea and premature osteoporosis. The free and total fractions of circulating androgens vary in response to acute and chronic exercise/training (depending on the type), but the physiological role of these changes is not completely understood. Although it is commonly accepted that only the free fraction of steroids has a biological action, this hypothesis has recently been challenged. Indeed, a change in the total fraction of androgen concentration may have a significant impact on cells (inducing genomic or non-genomic signalling). The purpose of this review, therefore, is to visit the exercise-induced changes in androgen concentrations and emphasize their potential effects on female physiology. Despite some discrepancies in the published studies (generally due to differences in the types and intensities of the exercises studied, in the hormonal status of the group of women investigated and in the methods for androgen determination), exercise is globally able to induce an increase in circulating androgens. This can be observed after both resistance and endurance acute exercises. For chronic exercise/training, the picture is definitely less clear and there are even circumstances where exercise leads to a decrease of circulating androgens. We suggest that those changes have significant impact on female physiology and physical performance.
Haczeyni, Fahrettin; Barn, Vanessa; Mridha, Auvro R; Yeh, Matthew M; Estevez, Emma; Febbraio, Mark A; Nolan, Christopher J; Bell-Anderson, Kim S; Teoh, Narci C; Farrell, Geoffrey C
2015-09-01
Adipose inflammation and dysfunction underlie metabolic obesity. Exercise improves glycemic control and metabolic indices, but effects on adipose function and inflammation are less clear. Accordingly, it was hypothesized that exercise improves adipose morphometry to reduce adipose inflammation in hyperphagic obese mice. Alms1 mutant foz/foz mice housed in pairs were fed an atherogenic or chow diet; half the cages were fitted with a computer-monitored wheel for voluntary exercise. Insulin-induced AKT-phosphorylation, adipocyte size distribution, and inflammatory recruitment were studied in visceral versus subcutaneous depots, and severity of fatty liver disease was determined. Exercise prevented obesity and diabetes development in chow-fed foz/foz mice and delayed their onset in atherogenic-fed counterparts. Insulin-stimulated phospho-AKT levels in muscle were improved with exercise, but not in adipose or liver. Exercise suppressed adipose inflammatory recruitment, particularly in visceral adipose, associated with an increased number of small adipocyte subpopulations, and enhanced expression of beige adipocyte factor PRDM16 in subcutaneous fat. In atherogenic-fed foz/foz mice liver, exercise suppressed development of nonalcoholic steatohepatitis and related liver fibrosis. Exercise confers metabo-protective effects in atherogenic-fed hyperphagic mice by preventing early onset of obesity and diabetes in association with enhanced muscle insulin sensitivity, improved adipose morphometry, and suppressed adipose and liver inflammation. © 2015 The Obesity Society.
Deli, Chariklia K; Fatouros, Ioannis G; Paschalis, Vassilis; Georgakouli, Kalliopi; Zalavras, Athanasios; Avloniti, Alexandra; Koutedakis, Yiannis; Jamurtas, Athanasios Z
2017-08-01
Research regarding exercise-induced muscle-damage mainly focuses on adults. The present study examined exercise-induced muscle-damage responses in adults compared with children. Eleven healthy boys (10-12 y) and 15 healthy men (18-45 y) performed 5 sets of 15 maximal eccentric contractions of the knee extensors. Range of motion (ROM), delayed onset muscle soreness (DOMS) during squat and walking, and peak isometric, concentric and eccentric torque were assessed before, post, 24, 48, 72, and 96 hr postexercise. Creatine kinase (CK) activity was assessed before and 72 hr postexercise. Eccentric exercise resulted in DOMS during squat that persisted for up to 96h in men, and 48 hr in boys (p < .05), and DOMS during walking that persisted for up to 72 hr in men, and 48 hr in boys (p < .01). The ROM was lower in both age groups 48 hr postexercise (p < .001). Isometric (p < .001), concentric (p < .01) and eccentric (p < .01) force decreased post, and up to 48 hr postexercise in men. Except for a reduction in isometric force immediately after exercise, no other changes occurred in boys' isokinetic force. CK activity increased in men at 72 hr postexercise compared with pre exercise levels (p = .05). Our data provide further confirmation that children are less susceptible to exercise-induced muscle damage compared with adults.
Exercise and physical activity in mental disorders: clinical and experimental evidence.
Zschucke, Elisabeth; Gaudlitz, Katharina; Ströhle, Andreas
2013-01-01
Several epidemiological studies have shown that exercise (EX) and physical activity (PA) can prevent or delay the onset of different mental disorders, and have therapeutic benefits when used as sole or adjunct treatment in mental disorders. This review summarizes studies that used EX interventions in patients with anxiety, affective, eating, and substance use disorders, as well as schizophrenia and dementia/mild cognitive impairment. Despite several decades of clinical evidence with EX interventions, controlled studies are sparse in most disorder groups. Preliminary evidence suggests that PA/EX can induce improvements in physical, subjective and disorder-specific clinical outcomes. Potential mechanisms of action are discussed, as well as implications for psychiatric research and practice.
Cholinergic stimulation with pyridostigmine protects against exercise induced myocardial ischaemia
Castro, R R T; Porphirio, G; Serra, S M; Nóbrega, A C L
2004-01-01
Objective: To determine the acute effects of pyridostigmine bromide, a reversible cholinesterase inhibitor, during exercise in patients with coronary artery disease. Design: Double blind, randomised, placebo controlled, crossover study. Setting: Outpatients evaluated in an exercise test laboratory. Patients: 15 patients with exercise induced myocardial ischaemia. Interventions: Maximal cardiopulmonary exercise test on a treadmill according to an individualised ramp protocol on three days. The first day was used for adaptation to the equipment and to determine exercise tolerance and the presence of exercise induced ischaemia. On the other two days, the cardiopulmonary exercise test was performed two hours after oral administration of pyridostigmine (45 mg) or placebo. All patients were taking their usual medication during the experiments. Main outcome measures: Rate–pressure product and oxygen uptake during exercise. Results: Pyridostigmine inhibited the submaximum chronotropic response (p = 0.001), delaying the onset of myocardial ischaemia, which occurred at a similar rate–pressure product (mean (SE) placebo 20.55 (1.08) mm Hg × beats/min 103; pyridostigmine 19.75 (1.28) mm Hg × beats/min 103; p = 0.27) but at a higher exercise intensity (oxygen consumption: placebo 18.6 (1.7) ml/kg/min; pyridostigmine 19.6 (1.8) ml/kg/min; p = 0.03). Also, pyridostigmine increased peak oxygen consumption (placebo 23.6 (2) ml/kg/min; pyridostigmine 24.8 (2) ml/kg/min; p = 0.01) and peak oxygen pulse (placebo 12.9 (1) ml/beat; pyridostigmine 13.6 (1) ml/beat; p = 0.02). Conclusions: Pyridostigmine improved peak exercise tolerance and inhibited the chronotropic response to submaximum exercise, increasing the intensity at which myocardial ischaemia occurred. These results suggest that pyridostigmine can protect against exercise induced myocardial ischaemia. PMID:15367503
Bell, C; Paterson, D H; Kowalchuk, J M; Padilla, J; Cunningham, D A
2001-09-01
We compared estimates for the phase 2 time constant (tau) of oxygen uptake (VO2) during moderate- and heavy-intensity exercise, and the slow component of VO2 during heavy-intensity exercise using previously published exponential models. Estimates for tau and the slow component were different (P < 0.05) among models. For moderate-intensity exercise, a two-component exponential model, or a mono-exponential model fitted from 20 s to 3 min were best. For heavy-intensity exercise, a three-component model fitted throughout the entire 6 min bout of exercise, or a two-component model fitted from 20 s were best. When the time delays for the two- and three-component models were equal the best statistical fit was obtained; however, this model produced an inappropriately low DeltaVO2/DeltaWR (WR, work rate) for the projected phase 2 steady state, and the estimate of phase 2 tau was shortened compared with other models. The slow component was quantified as the difference between VO2 at end-exercise (6 min) and at 3 min (DeltaVO2 (6-3 min)); 259 ml x min(-1)), and also using the phase 3 amplitude terms (truncated to end-exercise) from exponential fits (409-833 ml x min(-1)). Onset of the slow component was identified by the phase 3 time delay parameter as being of delayed onset approximately 2 min (vs. arbitrary 3 min). Using this delay DeltaVO2 (6-2 min) was approximately 400 ml x min(-1). Use of valid consistent methods to estimate tau and the slow component in exercise are needed to advance physiological understanding.
Ra, Song-Gyu; Miyazaki, Teruo; Kojima, Ryo; Komine, Shoichi; Ishikura, Keisuke; Kawanaka, Kentaro; Honda, Akira; Matsuzaki, Yasushi; Ohmori, Hajime
2017-09-22
The aim of present study was to compare the effects of branched-chain amino acid (BCAA) supplementation taken before or after exercise on delayed onset muscle soreness (DOMS) and exercise-induced muscle damage (EIMD). Fifteen young men (aged 21.5 ± 0.4 years) were given either BCAA (9.6 g·day-1) or placebo before and after exercise (and for 3 days prior to and following the exercise day) in three independent groups: the Control group (placebo before and after exercise), the PRE group (BCAA before exercise and placebo after exercise), and the POST group (placebo before exercise and BCAA after exercise). Participants performed 30 repetitions of eccentric exercise with the non-dominant arm. DOMS, upper arm circumference (CIR), elbow range of motion (ROM), serum creatine kinase (CK), lactate dehydrogenase (LDH), and aldolase, BCAA, and Beta-hydroxy-Beta-methylbutyrate (3HMB) were measured immediately before and after the exercise and on the following 4 days. Serum BCAA and 3HMB concentrations increased significantly in the PRE group immediately after the exercise, recovering to baseline over the following days. In the days following the exercise day, DOMS, CIR, and ROM were significantly improved in the PRE group compared to the Control group, with weaker effects in the POST group. Serum activities of CK, LDH, and aldolase in the days following the exercise day were significantly suppressed in the PRE group compared to Control group. Present study confirmed that repeated BCAA supplementation before exercise had a more beneficial effect in attenuating DOMS and EIMD induced by eccentric exercise than repeated supplementation after exercise.
Michaelides, Andreas P; Liakos, Charalampos I; Vyssoulis, Gregory P; Chatzistamatiou, Evangelos I; Markou, Maria I; Tzamou, Vanessa; Stefanadis, Christodoulos I
2013-03-01
Delayed blood pressure (BP) and heart rate (HR) decline at recovery post-exercise are independent predictors of incident coronary artery disease (CAD). Delayed BP recovery and exaggerated BP response to exercise are independent predictors of future arterial hypertension (AH). This study sought to examine whether the combination of two exercise parameters provides additional prognostic value than each variable alone. A total of 830 non-CAD patients (374 normotensive) were followed for new-onset CAD and/or AH for 5 years after diagnostic exercise testing (ET). At the end of follow-up, patients without overt CAD underwent a second ET. Stress imaging modalities and coronary angiography, where appropriate, ruled out CAD. New-onset CAD was detected in 110 participants (13.3%) whereas AH was detected in 41 former normotensives (11.0%). The adjusted (for confounders) relative risk (RR) of CAD in abnormal BP and HR recovery patients was 1.95 (95% confidence interval [CI], 1.28-2.98; P=.011) compared with delayed BP and normal HR recovery patients and 1.71 (95% CI, 1.08-2.75; P=.014) compared with normal BP and delayed HR recovery patients. The adjusted RR of AH in normotensives with abnormal BP recovery and response was 2.18 (95% CI, 1.03-4.72; P=.047) compared with delayed BP recovery and normal BP response patients and 2.48 (95% CI, 1.14-4.97; P=.038) compared with normal BP recovery and exaggerated BP response individuals. In conclusion, the combination of two independent exercise predictors is an even stronger CAD/AH predictor than its components. © 2012 Wiley Periodicals, Inc.
2014-01-01
Background We examined the effects of a proprietary herbal/botanical supplement (StemSport, Stemtech, San Clemente, CA.) suggested to increase circulating stem cells, decrease inflammation, and attenuate exercise induced muscle damage on recovery from delayed onset muscle soreness (DOMS). Methods Sixteen subjects (male = 7, female = 9; age 23.8 ± 10 years; height 171.9 ± 10 cm, mass 72.2 ± 15 kg) were randomized in a crossover, double-blind, placebo controlled trial to receive a placebo or StemSport supplement (6150 mg/day) for 14 days. DOMS was induced on day 7 for both placebo and active conditions in the non-dominant elbow flexor group with repeated eccentric repetitions. Muscle swelling (biceps girth), elbow flexor isometric strength (hand held dynamometer), muscle pain/tenderness (visual analog scale), range of motion (active elbow flexion and extension), and inflammation (hsCRP, IL6, and TNF-α) were measured at baseline and at 24 h, 48 h, 72 h, and 168 h (1 week) post eccentric exercise. The crossover washout period was ≥14 days. Results No significant condition-by-time interactions between placebo and StemSport supplementation were observed with regard to measures of pain (p = 0.59), tenderness (p = 0.71), isometric strength (p = 0.32), elbow flexion (p = 0.45), muscle swelling (p = 0.90), or inflammation (p > 0.90). Decrements in elbow extension range of motion 48 h post-exercise were less after StemSport supplementation (Δ elbow extension 48 h post; StemSport, −2.0 deg; placebo, −10 deg; p = 0.003). Conclusions These data suggest that compared to placebo, StemSport supplementation does not improve outcome measures related to muscle recovery after acute upper-arm induced DOMS. PMID:24966805
Guilhem, Gaël; Hug, François; Couturier, Antoine; Regnault, Stéphanie; Bournat, Laure; Filliard, Jean-Robert; Dorel, Sylvain
2013-08-01
Localized cooling has been proposed as an effective strategy to limit the deleterious effects of exercise-induced muscle damage on neuromuscular function. However, the literature reports conflicting results. This randomized controlled trial aimed to determine the effects of a new treatment, localized air-pulsed cryotherapy (-30°C), on the recovery time-course of neuromuscular function following a strenuous eccentric exercise. Controlled laboratory study. A total of 24 participants were included in either a control group (CONT) or a cryotherapy group (CRYO). Immediately after 3 sets of 20 maximal isokinetic eccentric contractions of elbow flexors, and then 1, 2, and 3 days after exercise, the CRYO group received a cryotherapy treatment (3 × 4 minutes at -30°C separated by 1 minute). The day before and 1, 2, 3, 7, and 14 days after exercise, several parameters were quantified: maximal isometric torque and its associated maximal electromyographic activity recorded by a 64-channel electrode, delayed-onset muscle soreness (DOMS), biceps brachii transverse relaxation time (T2) measured using magnetic resonance imaging, creatine kinase activity, interleukin-6, and C-reactive protein. Maximal isometric torque decreased similarly for the CONT (-33% ± 4%) and CRYO groups (-31% ± 6%). No intergroup differences were found for DOMS, electromyographic activity, creatine kinase activity, and T2 level averaged across the whole biceps brachii. C-reactive protein significantly increased for CONT (+93% at 72 hours, P < .05) but not for CRYO. Spatial analysis showed that cryotherapy delayed the significant increase of T2 and the decrease of electromyographic activity level for CRYO compared with CONT (between day 1 and day 3) in the medio-distal part of the biceps brachii. Although some indicators of muscle damage after severe eccentric exercise were delayed (ie, local formation of edema and decrease of muscle activity) by repeated air-pulsed cryotherapy, we provide evidence that this cooling procedure failed to improve long-term recovery of muscle performance. Four applications of air-pulsed cryotherapy in the 3 days after a strenuous eccentric exercise are ineffective overall in promoting long-term muscle recovery. Further studies taking into account the amount of exercise-induced muscle damage would allow investigators to make stronger conclusions regarding the inefficiency of this recovery modality.
Delayed onset muscle soreness : treatment strategies and performance factors.
Cheung, Karoline; Hume, Patria; Maxwell, Linda
2003-01-01
Delayed onset muscle soreness (DOMS) is a familiar experience for the elite or novice athlete. Symptoms can range from muscle tenderness to severe debilitating pain. The mechanisms, treatment strategies, and impact on athletic performance remain uncertain, despite the high incidence of DOMS. DOMS is most prevalent at the beginning of the sporting season when athletes are returning to training following a period of reduced activity. DOMS is also common when athletes are first introduced to certain types of activities regardless of the time of year. Eccentric activities induce micro-injury at a greater frequency and severity than other types of muscle actions. The intensity and duration of exercise are also important factors in DOMS onset. Up to six hypothesised theories have been proposed for the mechanism of DOMS, namely: lactic acid, muscle spasm, connective tissue damage, muscle damage, inflammation and the enzyme efflux theories. However, an integration of two or more theories is likely to explain muscle soreness. DOMS can affect athletic performance by causing a reduction in joint range of motion, shock attenuation and peak torque. Alterations in muscle sequencing and recruitment patterns may also occur, causing unaccustomed stress to be placed on muscle ligaments and tendons. These compensatory mechanisms may increase the risk of further injury if a premature return to sport is attempted.A number of treatment strategies have been introduced to help alleviate the severity of DOMS and to restore the maximal function of the muscles as rapidly as possible. Nonsteroidal anti-inflammatory drugs have demonstrated dosage-dependent effects that may also be influenced by the time of administration. Similarly, massage has shown varying results that may be attributed to the time of massage application and the type of massage technique used. Cryotherapy, stretching, homeopathy, ultrasound and electrical current modalities have demonstrated no effect on the alleviation of muscle soreness or other DOMS symptoms. Exercise is the most effective means of alleviating pain during DOMS, however the analgesic effect is also temporary. Athletes who must train on a daily basis should be encouraged to reduce the intensity and duration of exercise for 1-2 days following intense DOMS-inducing exercise. Alternatively, exercises targeting less affected body parts should be encouraged in order to allow the most affected muscle groups to recover. Eccentric exercises or novel activities should be introduced progressively over a period of 1 or 2 weeks at the beginning of, or during, the sporting season in order to reduce the level of physical impairment and/or training disruption. There are still many unanswered questions relating to DOMS, and many potential areas for future research.
Croisier, J L; Camus, G; Deby-Dupont, G; Bertrand, F; Lhermerout, C; Crielaard, J M; Juchmès-Ferir, A; Deby, C; Albert, A; Lamy, M
1996-01-01
To address the question of whether delayed onset muscular soreness (DOMS) following intense eccentric muscle contraction could be due to increased production of the arachidonic acid derived product prostaglandin E2 (PGE2). 10 healthy male subjects were submitted to eccentric and concentric isokinetic exercises on a Kin Trex device at 60 degrees/s angular velocity. Exercise consisted of 8 stages of 5 maximal contractions of the knee extensor and flexor muscle groups of both legs separated by 1 min rest phases. There was an interval of at least 30 days between eccentric and concentric testing, and the order of the two exercise sessions was randomly assigned. The subjective presence and intensity of DOMS was evaluated using a visual analogue scale, immediately, following 24 h and 48 h after each test. Five blood samples were drawn from an antecubital vein: at rest before exercise, immediately after, after 30 min recovery, 24 h and 48 h after the tests. The magnitude of the acute inflammatory response to exercise was assessed by measuring plasma levels of polymorphonuclear elastase ([EL]), myeloperoxidase ([MPO]) and PGE2 ([PGE2]). Using two way analysis of variance, it appeared that only eccentric exercise significantly increased [EL] and DOMS, especially of the hamstring muscles. Furthermore, a significant decrease in eccentric peak torque of this muscle group only was observed on day 2 after eccentric work (- 21%; P < 0.002). Serum activity of creatine kinase and serum concentration of myoglobin increased significantly 24 and 48 h after both exercise tests. However, these variables reached significantly higher values following eccentric contractions 48 h after exercise. Mean [PGE2] in the two exercise modes remained unchanged over time and were practically equal at each time point. On the basis of these findings, we conclude that the magnitude of polymorphonuclear (PMN) activation, muscle damage, and DOMS are greater after eccentric than after concentric muscle contractions. However, the hypothesized interplay between muscle damage, increased PGE2 production, DOMS sensations, and reduced isokinetic muscle performance was not substantiated by the present results.
Time course of ozone-induced changes in breathing pattern in healthy exercising humans.
Schelegle, Edward S; Walby, William F; Adams, William C
2007-02-01
We examined the time course of O3-induced changes in breathing pattern in 97 healthy human subjects (70 men and 27 women). One- to five-minute averages of breathing frequency (f(B)) and minute ventilation (Ve) were used to generate plots of cumulative breaths and cumulative exposure volume vs. time and cumulative exposure volume vs. cumulative breaths. Analysis revealed a three-phase response; delay, no response detected; onset, f(B) began to increase; response, f(B) stabilized. Regression analysis was used to identify four parameters: time to onset, number of breaths at onset, cumulative inhaled dose of ozone at onset of O3-induced tachypnea, and the percent change in f(B). The effect of altering O3 concentration, Ve, atropine treatment, and indomethacin treatment were examined. We found that the lower the O3 concentration, the greater the number of breaths at onset of tachypnea at a fixed ventilation, whereas number of breaths at onset of tachypnea remains unchanged when Ve is altered and O3 concentration is fixed. The cumulative inhaled dose of O3 at onset of tachypnea remained constant and showed no relationship with the magnitude of percent change in f(B). Atropine did not affect any of the derived parameters, whereas indomethacin did not affect time to onset, number of breaths at onset, or cumulative inhaled dose of O3 at onset of tachypnea but did attenuate percent change in f(B). The results are discussed in the context of dose response and intrinsic mechanisms of action.
The Effect of Physical Exercise on Frail Older Persons: A Systematic Review.
Silva, R B; Aldoradin-Cabeza, H; Eslick, G D; Phu, S; Duque, G
2017-01-01
Physical exercise is one of the most effective non-pharmacological interventions aimed to improve mobility and independence in older persons. The effect of physical exercise and the most effective type of exercise in frail older persons remain undefined. This systematic review examines the effectiveness of physical exercise on frail older persons. Seven databases were search for randomized control trials which assessed the effect of exercise on participants who were identified as being frail using specific and validated criteria. Nine articles were reviewed from eight studies, from which seven used a validated definition of frailty. Based on the articles analyzed in our systematic review, the evidence suggests that exercise has a positive effect on various measures used to determine frailty including cognition, physical functioning, and psychological wellbeing. Some studies revealed that exercise may prevent or delay the onset of frailty which can enhance quality of life in older adults. Despite the evidence for exercise interventions in frail older adults, it appears that there is no clear guidance regarding the most effective program variables. The reviewed studies were generally long in duration (≥6 months) with sessions lasting around 60 minutes performed three or more times per week, including multicomponent exercises. In conclusion, although exercise interventions appear to be effective in managing the various components of frailty and preventing/delaying the onset of frailty, the most effective exercise program in this population remains unidentified.
Banner, N; Guz, A; Heaton, R; Innes, J A; Murphy, K; Yacoub, M
1988-01-01
1. Ventilatory and cardiovascular responses to the onset of voluntary and electrically induced leg exercise were studied in six patients following heart transplantation and five following heart-lung transplantation; the results were compared between the patient groups and also with responses from a group of normal subjects. 2. Oxygen consumption, carbon dioxide production and ventilation and its components were measured over two 30 s periods prior to, and two 30 s periods following, the onset of exercise. Relative changes in stroke volume and cardiac output were derived from ensemble-averaged Doppler measurements of ascending aortic blood velocity over the same 30 s periods. 3. None of the groups of subjects showed any significant differences in responses to voluntary exercise compared to electrically induced exercise of similar work pattern and intensity. 4. Compared to normal controls, the transplanted subjects showed higher resting heart rates which did not increase at the onset of exercise; stroke volume increased, but less than in the normal subjects. The resulting cardiac output increases in the transplanted subjects were minimal compared to the normal subjects. 5. Ventilation and oxygen uptake increased immediately and with similar magnitude in all three groups. 6. These results show that in the same individual it is possible to have an appropriate ventilatory response to the onset of exercise in the presumed absence of a normal corticospinal input to the exercising muscles (electrically induced exercise) and afferent neural information from the lungs and heart, and in the absence of a normal circulatory response to exercise. The mechanisms underlying this ventilatory response remain undetermined. PMID:3136247
High-fat foods overcome the energy expenditure induced by high-intensity cycling or running.
King, N A; Blundell, J E
1995-02-01
To examine the effects of two types of vigorous exercise [cycling (CYC) and running (RUN)] and diet composition on appetite control. Two studies using separate groups of subjects were used for the two forms of exercise. The studies used a 2 x 2 design with the factors being exercise and diet composition. Therefore both studies had four treatment conditions and used a repeated measures design. Both studies took place in the Human Appetite Research Unit at Leeds University. Twenty-four lean, healthy males were recruited from the student staff population of Leeds University. For both studies a control (no-exercise) and a vigorous exercise session (70% VO2 max) was followed by a free-selection lunch comprising high-fat/low-carbohydrate foods or low-fat/high-carbohydrate foods, during which energy and macronutrient intake was monitored. Motivation to eat was measured by visual analogue scales and by the latency to volitional onset of eating. Energy intake for the remainder of the day (outside of laboratory) was monitored by providing the subjects with airline-style food boxes. Both CYC and RUN produced similar effects on appetite responses. Both CYC and RUN induced a transitory suppression of hunger (P < 0.01 and P < 0.05) and a delay to the onset of eating (P < 0.001). Exercise (whether CYC or RUN) had no significant effect on the total amount of food eaten, but there was a significant effect of lunch type. When provided with the high-fat/low-carbohydrate foods energy intake was significantly elevated (CYC: P < 0.001; and RUN: P < 0.0001). Both types of exercise induced a short-term negative energy balance when followed by the low-fat/high-carbohydrate foods (P < 0.001), which was completely reversed (positive energy balance) when subjects ate from the high-fat/low carbohydrate foods. These results indicate that eating high-fat foods can prevent exercise inducing any (short-term) negative energy balance. Therefore, in order for exercise to have a significant impact on weight control, it is important to consider the energy density of the accompanying diet. Despite the different physiological aspects of cycling and running, they did not display different effects on appetite.
Pereira Panza, Vilma Simões; Diefenthaeler, Fernando; da Silva, Edson Luiz
2015-09-01
The purpose of this review was to critically discuss studies that investigated the effects of supplementation with dietary antioxidant phytochemicals on recovery from eccentric exercise-induced muscle damage. The performance of physical activities that involve unaccustomed eccentric muscle actions-such as lowering a weight or downhill walking-can result in muscle damage, oxidative stress, and inflammation. These events may be accompanied by muscle weakness and delayed-onset muscle soreness. According to the current evidences, supplementation with dietary antioxidant phytochemicals appears to have the potential to attenuate symptoms associated with eccentric exercise-induced muscle damage. However, there are inconsistencies regarding the relationship between muscle damage and blood markers of oxidative stress and inflammation. Furthermore, the effectiveness of strategies appear to depend on a number of aspects inherent to phytochemical compounds as well as its food matrix. Methodological issues also may interfere with the proper interpretation of supplementation effects. Thus, the study may contribute to updating professionals involved in sport nutrition as well as highlighting the interest of scientists in new perspectives that can widen dietary strategies applied to training. Copyright © 2015 Elsevier Inc. All rights reserved.
Jouris, Kelly B; McDaniel, Jennifer L; Weiss, Edward P
2011-01-01
Omega-3 fatty acids (omega-3) have anti-inflammatory properties. However, it is not known if omega-3 supplementation attenuates exercise-induced inflammation. We tested the hypothesis that omega-3 supplementation reduces inflammation that is induced by eccentric arm curl exercise. Healthy adult men and women (n=11; 35 ± 10 y) performed eccentric biceps curls on two occasions, once after 14d of dietary omega-3 restriction (control trial) and again after 7d of 3,000 mg/d omega-3 supplementation (omega-3 trial). Before and 48 h after eccentric exercise, signs of inflammation was assessed by measuring soreness ratings, swelling (arm circumference and arm volume), and temperature (infrared skin sensor). Arm soreness increased (p < 0.0001) in response to eccentric exercise; the magnitude of increase in soreness was 15% less in the omega-3 trial (p = 0.004). Arm circumference increased after eccentric exercise in the control trial (p = 0.01) but not in the omega-3 trial (p = 0.15). However, there was no difference between trials (p = 0.45). Arm volume and skin temperature did not change in response to eccentric exercise in either trial. These findings suggest that omega-3 supplementation decreases soreness, as a marker of inflammation, after eccentric exercise. Based on these findings, omega-3 supplementation could provide benefits by minimizing post-exercise soreness and thereby facilitate exercise training in individuals ranging from athletes undergoing heavy conditioning to sedentary subjects or patients who are starting exercise programs or medical treatments such as physical therapy or cardiac rehabilitation. Key pointsDietary supplementation with omega-3 fatty acids has been shown to reduce inflammation in numerous inflammatory diseases such as rheumatoid arthritis, inflammatory bowel disease, and Chrohn's disease.Although strenuous exercise is known to cause acute increases in inflammation, it is not clear if omega-3 fatty acid supplementation attenuates this adverse response to exercise.Our research demonstrates that 3000 mg·d-1 omega-3 fatty acid supplementation minimizes the severe, delayed-onset muscle soreness that results from strenuous eccentric strength exercise.This information, along with a plethora of information showing that omega-3 fatty acid supplementation has other health benefits, demonstrates that a readily available over the counter nutritional supplement (i.e. omega-3 fatty acids) reduces delayed-onset soreness caused by strenuous strength exercise.This information has obvious relevance to athletic populations but also to other groups such as physical therapy patients and newly admitted cardiac rehabilitation patients, as muscle soreness, if left unchecked, can slow the progress in adapting to a new exercise program.Furthermore, as inflammation is known to be involved in the pathogenesis if numerous diseases, including heart disease, cancer, and diabetes, it is likely prudent for individuals to use inflammation-attenuating interventions, such as omega-3 supplementation, to keep inflammatory responses to physical activity at a minimum.
Shan, Lingling; Wang, Bin; Gao, Guizhen; Cao, Wengen; Zhang, Yunkun
2013-10-15
l-Arginine (l-Arg) supplementation has been shown to enhance physical exercise capacity and delay onset of fatigue. This work investigated the potential beneficial mechanism(s) of l-Arg supplementation by examining its effect on the cellular oxidative and nitrosative stress pathways in the exercised rats. Forty-eight rats were randomly divided into six groups: sedentary control; sedentary control with l-Arg treatment; endurance training (daily swimming training for 8 wk) control; endurance training with l-Arg treatment; an exhaustive exercise (one time swimming to fatigue) control; and an exhaustive exercise with l-Arg treatment. l-Arg (500 mg/kg body wt) or saline was given to rats by intragastric administration 1 h before the endurance training and the exhaustive swimming test. Expression levels and activities of the l-Arg/nitric oxide (NO) pathway components and parameters of the oxidative stress and antioxidant defense capacity were investigated in l-Arg-treated and control rats. The result show that the l-Arg supplementation completely reversed the exercise-induced activation of NO synthase and superoxide dismutase, increased l-Arg transport capacity, and increased NO and anti-superoxide anion levels. These data demonstrate that l-Arg supplementation effectively reduces the exercise-induced imbalance between oxidative stress and antioxidant defense capacity, and this modulation is likely mediated through the l-Arg/NO pathways. The findings of this study improved our understanding of how l-Arg supplementation prevents elevations of reactive oxygen species and favorably enhances the antioxidant defense capacity during physical exercise.
The effect of contrast water therapy on symptoms of delayed onset muscle soreness.
Vaile, Joanna M; Gill, Nicholas D; Blazevich, Anthony J
2007-08-01
This study examined the effect of contrast water therapy (CWT) on the physiological and functional symptoms of delayed onset muscle soreness (DOMS) following DOMS-inducing leg press exercise. Thirteen recreational athletes performed 2 experimental trials separated by 6 weeks in a randomized crossover design. On each occasion, subjects performed a DOMS-inducing leg press protocol consisting of 5 x 10 eccentric contractions (180 seconds recovery between sets) at 140% of 1 repetition maximum (1RM). This was followed by a 15-minute recovery period incorporating either CWT or no intervention, passive recovery (PAS). Creatine kinase concentration (CK), perceived pain, thigh volume, isometric squat strength, and weighted jump squat performance were measured prior to the eccentric exercise, immediately post recovery, and 24, 48, and 72 hours post recovery. Isometric force production was not reduced below baseline measures throughout the 72-hour data collection period following CWT ( approximately 4-10%). However, following PAS, isometric force production (mean +/- SD) was 14.8 +/- 11.4% below baseline immediately post recovery (p < 0.05), 20.8 +/- 15.6% 24 hours post recovery (p < 0.05), and 22.5 +/- 12.3% 48 hours post recovery (p < 0.05). Peak power produced during the jump squat was significantly reduced (p < 0.05) following both PAS (20.9 +/- 13.4%) and CWT (12.8 +/- 8.0%), with the mean reduction in power for PAS being marginally (not significantly) greater than for CWT (effect size = 0.76). Thigh volume measured immediately following CWT was significantly less than PAS. No significant differences in the changes in CK were found; in addition, there were no significant (p > 0.01) differences in perceived pain between treatments. Contrast water therapy was associated with a smaller reduction, and faster restoration, of strength and power measured by isometric force and jump squat production following DOMS-inducing leg press exercise when compared to PAS. Therefore, CWT seems to be effective in reducing and improving the recovery of functional deficiencies that result from DOMS, as opposed to passive recovery.
Prehn, Kristin; Lesemann, Anne; Krey, Georgia; Witte, A Veronica; Köbe, Theresa; Grittner, Ulrike; Flöel, Agnes
2017-08-23
Cardiovascular fitness is thought to exert beneficial effects on brain function and might delay the onset of cognitive decline. Empirical evidence of exercise-induced cognitive enhancement, however, has not been conclusive, possibly due to short intervention times in clinical trials. Resting-state functional connectivity (RSFC) has been proposed asan early indicator for intervention-induced changes. Here, we conducted a study in which healthy older overweight subjects took either part in a moderate aerobic exercise program over 6months (AE group; n=11) or control condition of non-aerobic stretching and toning (NAE group; n=18). While cognitive and gray matter volume changes were rather small (i.e., appeared only in certain sub-scores without Bonferroni correction for multiple comparisons or using small volume correction), we found significantly increased RSFC after training between dorsolateral prefrontal cortex and superior parietal gyrus/precuneus in the AE compared to the NAE group. This intervention study demonstrates an exercise-induced modulation of RSFC between key structures of the executive control and default mode networks, which might mediate an interaction between task-positive and task-negative brain activation required for task switching. Results further emphasize the value of RSFC asa sensitive biomarker for detecting early intervention-related cognitive improvements in clinical trials. Copyright © 2017 Elsevier Inc. All rights reserved.
Uchida, Junji; Iwai, Tomoaki; Nishide, Shunji; Kabei, Kazuya; Kuwabara, Nobuyuki; Yamasaki, Takeshi; Naganuma, Toshihide; Kumada, Norihiko; Takemoto, Yoshiaki; Nakatani, Tatsuya
2017-07-25
BACKGROUND Rituximab induces long-lasting B cell depletion in the peripheral blood and increases the levels of proinflammatory cytokines associated with regulatory B cell depletion. Previous reports showed that B cell-related cytokine release after administration of rituximab may induce acute cellular rejection (ACR) and delayed-onset neutropenia. The present study was conducted to investigate the correlation between acute rejection and delayed-onset neutropenia in ABO-incompatible renal transplant recipients who underwent administration of rituximab for 1 year after transplantation. MATERIAL AND METHODS From June 2006 to July 2015, 47 patients with chronic renal failure received ABO-incompatible renal transplant with rituximab induction at Osaka City University Hospital. All 47 patients underwent plasmapheresis due to removal of anti-A/B antibodies and administration of rituximab, and their transplants were carried out successfully. We investigated the correlation between ACR and delayed-onset neutropenia in ABO-incompatible renal transplant recipients who underwent administration of rituximab for 1 year after transplantation. RESULTS Fourteen patients (29.8%) experienced ACR (group A), and 33 recipients did not develop ACR (group B). The frequency of delayed-onset neutropenia was higher in group A than in group B (p=0.0503). Multivariate logistic regression analysis revealed that the frequency of ACR correlated significantly with the prevalence of delayed-onset neutropenia. CONCLUSIONS Our results indicated that ACR in ABO-incompatible renal transplant recipients receiving rituximab was associated with delayed-onset neutropenia.
Delayed Exercise Promotes Remodeling in Sub-Rupture Fatigue Damaged Tendons
Bell, R.; Boniello, M.R.; Gendron, N.R.; Flatow, E.L.; Andarawis-Puri, N.
2015-01-01
Tendinopathy is a common musculoskeletal injury whose treatment is limited by ineffective therapeutic interventions. Previously we have shown that tendons ineffectively repair early sub-rupture fatigue damage. In contrast, physiological exercise has been shown to promote remodeling of healthy tendons but its utility as a therapeutic to promote repair of fatigue damaged tendons remains unknown. Therefore, the objective of this study was to assess the utility of exercise initiated 1 and 14 days after onset of fatigue damage to promote structural repair in fatigue damaged tendons. We hypothesized that exercise initiated 14 days after fatigue loading would promote remodeling as indicated by a decrease in area of collagen matrix damage, increased procollagen I and decorin, while decreasing proteins indicative of tendinopathy. Rats engaged in 6-week exercise for 30 min/day or 60 min/day starting 1 or 14 days after fatigue loading. Initiating exercise 1-day after onset of fatigue injury led to exacerbation of matrix damage, particularly at the tendon insertion. Initiating exercise 14 days after onset of fatigue injury led to remodeling of damaged regions in the midsubstance and collagen synthesis at the insertion. Physiological exercise applied after the initial biological response to injury has dampened can potentially promote remodeling of damaged tendons. PMID:25732052
Mechanisms mediating Nitroglycerin-induced Delayed Onset Hyperalgesia in the Rat
Ferrari, Luiz F.; Levine, Jon D.; Green, Paul G.
2016-01-01
Nitroglycerin (glycerol trinitrate, GTN) induces headache in migraineurs, an effect that has been used both diagnostically and in the study of the pathophysiology of this neurovascular pain syndrome. An important feature of this headache is a delay from the administration of GTN to headache onset that, because of GTN’s very rapid metabolism, cannot be due to its pharmacokinetic profile. It has recently been suggested that activation of perivascular mast cells, which has been implicated in the pathophysiology of migraine, may contribute to this delay. We reported that hyperalgesia induced by intradermal GTN has a delay to onset of ~30 min in male and ~45 min in female rats. This hyperalgesia was greater in females, was prevented by pretreatment with the anti-migraine drug, sumatriptan, as well as by chronic pretreatment with the mast cell degranulator, compound 48/80. The acute administration of GTN and compound 48/80 both induced hyperalgesia that was prevented by pretreatment with octoxynol-9, which attenuates endothelial function, suggesting that GTN and mast cell-mediated hyperalgesia are endothelial cell-dependent. Furthermore, A-317491, a P2X3 antagonist, which inhibits endothelial cell-dependent hyperalgesia, also prevents GTN and mast cell-mediated hyperalgesia. We conclude that delayed onset mechanical hyperalgesia induced by GTN is mediated by activation of mast cells, which in turn release mediators that stimulate endothelial cells to release ATP, to act on P2X3, a ligand-gated ion channel, in perivascular nociceptors. A role of the mast and endothelial cell in GTN-induced hyperalgesia suggest potential novel risk factors and targets for the treatment of migraine. PMID:26779834
Arousal mechanisms related to posture and locomotion: 1. Descending modulation.
Garcia-Rill, Edgar; Homma, Yutaka; Skinner, Robert D
2004-01-01
Much of the controversy surrounding the induction of locomotion following stimulation of mesopontine sites, including the pedunculopontine nucleus (PPN), appears based on procedural differences, including stimulus onset, delay preceding stepping, and frequency of stimuli. The results reviewed in this chapter address these issues and provide novel information suggesting that descending projections from the PPN may exert a frequency-dependent effect. Stimulation at approximately 60 Hz (which induces prolonged tonic firing) may exercise a "push" towards locomotion (activation of pontine interneurons) as well as a "pull" away from decreased muscle tone (inhibiting giant pontine reticulospinal cells). Higher frequencies of stimulation (> 100 Hz, which induces phasic burst-like activity) may "push" towards decreases in muscle tone, including the atonia of rapid eye movement sleep (activating giant pontine reticulospinal cells).
The Diabetes Prevention Program (DPP) was a major clinical trial, or research study, aimed at discovering whether either diet and exercise or the oral diabetes drug metformin (Glucophage) could prevent or delay the onset of type 2 diabetes in people with impaired glucose toleranc...
Matsukawa, Kanji; Ishii, Kei; Asahara, Ryota; Idesako, Mitsuhiro
2016-10-01
Our laboratory has reported that central command blunts the sensitivity of the aortic baroreceptor-heart rate (HR) reflex at the onset of voluntary static exercise in animals. We have examined whether baroreflex control of cardiac sympathetic nerve activity (CSNA) and/or cardiovagal baroreflex sensitivity are altered at the onset of spontaneously occurring motor behavior, which was monitored with tibial nerve activity in paralyzed, decerebrate cats. CSNA exhibited a peak increase (126 ± 17%) immediately after exercise onset, followed by increases in HR and mean arterial pressure (MAP). With development of the pressor response, CSNA and HR decreased near baseline, although spontaneous motor activity was not terminated. Atropine methyl nitrate (0.1-0.2 mg/kg iv) with little central influence delayed the initial increase in HR but did not alter the response magnitudes of HR and CSNA, while atropine augmented the pressor response. The baroreflex-induced decreases in CSNA and HR elicited by brief occlusion of the abdominal aorta were challenged at the onset of spontaneous motor activity. Spontaneous motor activity blunted the baroreflex reduction in HR by aortic occlusion but did not alter the baroreflex inhibition of CSNA. Similarly, atropine abolished the baroreflex reduction in HR but did not influence the baroreflex inhibition of CSNA. Thus it is likely that central command increases CSNA and decreases cardiac vagal outflow at the onset of spontaneous motor activity while preserving baroreflex control of CSNA. Accordingly, central command must attenuate cardiovagal baroreflex sensitivity against an excess rise in MAP as estimated from the effect of muscarinic blockade. Copyright © 2016 the American Physiological Society.
Wang, Fu-Wen; Zhao, Jing-Guo; Wang, Yan; Li, Jie; Hu, Zhi-Li
2011-02-01
To study the dynamic changes of serum CK, CK-MB and myocardium histomorphology in different time periods after single bout and repeated exhausted exercise in rats. The animal models of myocardial injury were established by exhausted swimming. Creatine kinase (CK), creatine kinase mass (CK-MB) activities in serum were measured immediately at 3, 6, 12, 24, 48 and 96 hours after exhausted exercise, and the dynamic changes of myocardial histopathology were examined. The CK, CK-MB activities were significantly increased immediately at 3, 6, 12 hours and peaked at 6 hours after single bout of exhausted exercise, meantime the degree of inflammatory cell infiltrate and strong acidophil staining were gradually increased in myocardium of rat, and the myocardial injury was most severe at 12 hours. After 1-week consecutive daily exhausted swimming, CK, CK-MB in serum were obviously increased immediately at, 3, 6, 12, 48 and 96 hours postexercise and peaked immediately and at 96 hours respectively postexercise. There were different degrees of myocardial injury in different time of recovery phase, and was most severe at 48 hours postexercise. The myocardial injury was induced by excessive exercise and/or exhausted exercise, and the resulting delayed-onset myocardial injury was further certified.
Dance as an eccentric form of exercise: practical implications.
Paschalis, Vassilis; Nikolaidis, Michalis G; Jamurtas, Athanasios Z; Owolabi, Emmanuel O; Kitas, George D; Wyon, Matthew A; Koutedakis, Yiannis
2012-06-01
The eccentric action is an integral part of the stretch-shortening (or eccentric-concentric) cycle of muscle movement, especially when repositioning of the centre of gravity is required. Jumps and landing tasks are examples of this cycle and are incorporated in most dance activities. However, unaccustomed eccentric muscle action can cause muscle damage, which is characterised by the development of delayed-onset muscle soreness and swelling, decline of pain-free range of motion, as well as sustained loss of muscle force and range of motion. Furthermore, unaccustomed eccentric muscle action can induce disturbances in movement economy and energy expenditure, so dancers spend more energy during a routine than usual. Such negative effects are gradually reduced and eventually disappear due to physiological adaptations to this form of muscular activity. Given that eccentric exercises also appear to induce greater muscle performance improvements than other forms of muscle conditioning, it is advised that they should be integrated into dancers' weekly schedules. The purpose of the present review is to examine the possible effects of the eccentric component of dance on the performance and health status of dancers.
Mechanisms mediating nitroglycerin-induced delayed-onset hyperalgesia in the rat.
Ferrari, L F; Levine, J D; Green, P G
2016-03-11
Nitroglycerin (glycerol trinitrate, GTN) induces headache in migraineurs, an effect that has been used both diagnostically and in the study of the pathophysiology of this neurovascular pain syndrome. An important feature of this headache is a delay from the administration of GTN to headache onset that, because of GTN's very rapid metabolism, cannot be due to its pharmacokinetic profile. It has recently been suggested that activation of perivascular mast cells, which has been implicated in the pathophysiology of migraine, may contribute to this delay. We reported that hyperalgesia induced by intradermal GTN has a delay to onset of ∼ 30 min in male and ∼ 45 min in female rats. This hyperalgesia was greater in females, was prevented by pretreatment with the anti-migraine drug, sumatriptan, as well as by chronic pretreatment with the mast cell degranulator, compound 48/80. The acute administration of GTN and compound 48/80 both induced hyperalgesia that was prevented by pretreatment with octoxynol-9, which attenuates endothelial function, suggesting that GTN and mast cell-mediated hyperalgesia are endothelial cell-dependent. Furthermore, A-317491, a P2X3 antagonist, which inhibits endothelial cell-dependent hyperalgesia, also prevents GTN and mast cell-mediated hyperalgesia. We conclude that delayed-onset mechanical hyperalgesia induced by GTN is mediated by activation of mast cells, which in turn release mediators that stimulate endothelial cells to release ATP, to act on P2X3, a ligand-gated ion channel, in perivascular nociceptors. A role of the mast and endothelial cell in GTN-induced hyperalgesia suggests potential novel risk factors and targets for the treatment of migraine. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Effect of volume of milk consumed on the attenuation of exercise-induced muscle damage.
Cockburn, Emma; Robson-Ansley, Paula; Hayes, Philip R; Stevenson, Emma
2012-09-01
Exercise-induced muscle damage (EIMD) leads to decrements in muscle performance, increases in intramuscular proteins and delayed-onset of muscle soreness (DOMS). Previous research demonstrated that one litre of milk-based protein-carbohydrate (CHO) consumed immediately following muscle damaging exercise can limit changes in markers of EIMD possibly due to attenuating protein degradation and/or increasing protein synthesis. If the attenuation of EIMD is derived from changes in protein metabolism then it can be hypothesised that consuming a smaller volume of CHO and protein will elicit similar effects. Three independent matched groups of 8 males consumed 500 mL of milk, 1,000 mL of milk or a placebo immediately following muscle damaging exercise. Passive and active DOMS, isokinetic muscle performance, creatine kinase (CK), myoglobin and interleukin-6 were assessed immediately before and 24, 48 and 72 h after EIMD. After 72 h 1,000 mL of milk had a likely benefit for limiting decrements in peak torque compared to the placebo. After 48 h, 1,000 mL of milk had a very likely benefit of limiting increases in CK in comparison to the placebo. There were no differences between consuming 500 or 1,000 mL of milk for changes in peak torque and CK. In conclusion, decrements in isokinetic muscle performance and increases in CK can be limited with the consumption of 500 mL of milk.
Streckmann, Fiona; Balke, Maryam; Lehmann, Helmar C; Rustler, Vanessa; Koliamitra, Christina; Elter, Thomas; Hallek, Michael; Leitzmann, Michael; Steinmetz, Tilman; Heinen, Petra; Baumann, Freerk T; Bloch, Wilhelm
2018-01-10
Chemotherapy-induced peripheral neuropathy (CIPN) is a common and clinically relevant side effect of chemotherapy. Approximately 50% of all leukemia, lymphoma, colorectal- and breast cancer patients are affected. CIPN is induced by neurotoxic chemotherapeutic agents and can manifest with sensory and/or motor deficits. It is associated with significant disability and poor recovery. Common symptoms include pain, altered sensation, reduced or absent reflexes, muscle weakness, reduced balance control and insecure gait. These symptoms not only affect activities of daily living, subsequently reducing patients' quality of life, they have far more become a decisive limiting factor for medical therapy, causing treatment delays, dose reductions, or even discontinuation of therapy, which can affect the outcome and compromise survival. To date, CIPN cannot be prevented and its occurrence presents a diagnostic dilemma since approved and effective treatment options are lacking. Promising results have recently been achieved with exercise. We have revealed that sensorimotor training (SMT) or whole body vibration (WBV) can reduce the symptoms of CIPN and attenuate motor and sensory deficits. We furthermore detected a tendency that it may also have a preventive effect on the onset of CIPN. We are therefore conducting a prospective, multicentre, controlled clinical trial involving 236 oncological patients receiving either oxaliplatin (N = 118) or vinca-alkaloid (N = 118) who are randomized to one of two interventions (SMT or WBV) or a treatment as usual (TAU) group. Primary endpoint is the time to incidence of neurologically confirmed CIPN. Secondary endpoints are pain, maintenance of the functionality of sensory as well as motor nerve fibres as well as the level of physical activity. The baseline assessment is performed prior to the first cycle of chemotherapy. Subsequent follow-up assessments are conducted at 12 weeks, after completion of chemotherapy, and at a 3-month follow-up. Patients who develop CIPN receive an additional assessment at this time point, as it represents the primary endpoint. We hypothesize that SMT and WBV prevent the onset or delay the progression of CIPN, decrease the likelihood of dose reductions or discontinuation of cancer treatment and improve patients' quality of life. Deutsche Register Klinischer Studien ( DRKS00006088 , registered 07.05.2014).
1993-01-01
effect of cisapride on the symptoms of unexplained upper abdominal pain, nausea, vomiting, anorexia, early satiety, bloating/ distension in patients with...for 30 minutes following eccentric exercise will less the 3 indices of delayed-onset muscle soreness (DOMS): perceived muscular soreness, reduced...post-exercise and the Talag Pain Rating Scale will be used to assess muscular soreness. Progress: No progress report was furnished by the principal
Nieman, David C; Capps, Courtney L; Capps, Christopher R; Shue, Zack L; McBride, Jennifer E
2018-05-03
This double-blind, randomized, placebo-controlled crossover trial determined if ingestion of a supplement containing a tomato complex with lycopene, phytoene, and phytofluene (T-LPP) and other compounds for 4 weeks would attenuate inflammation, muscle damage, and oxidative stress postexercise and during recovery from a 2-hr running bout that included 30 min of -10% downhill running. Study participants ingested the T-LPP supplement or placebo with the evening meal for 4 weeks prior to running 2 hr at high intensity. Blood samples and delayed onset muscle soreness ratings were taken pre- and post-4-week supplementation, and immediately following the 2-hr run, and then 1-hr, 24-hr, and 48-hr postrun. After a 2-week washout period, participants crossed over to the opposite treatment and repeated all procedures. Plasma lycopene, phytoene, and phytofluene increased significantly in T-LPP compared with placebo (p < .001 for each). Significant time effects were shown for serum creatine kinase, delayed onset muscle soreness, C-reactive protein, myoglobin, 9- and 13-hydroxyoctadecadienoic acids, ferric reducing ability of plasma, and six plasma cytokines (p < .001 for each). The pattern of increase for serum myoglobin differed between T-LPP and placebo (interaction effect, p = .016, with lower levels in T-LPP), but not for creatine kinase, delayed onset muscle soreness, C-reactive protein, the six cytokines, 9- and 13-hydroxyoctadecadienoic acids, and ferric reducing ability of plasma. No significant time or interaction effects were measured for plasma-oxidized low-density lipoprotein or serum 8-hydroxy-2'-deoxyguanosine. In summary, supplementation with T-LPP over a 4-week period increased plasma carotenoid levels 73% and attenuated postexercise increases in the muscle damage biomarker myoglobin, but not inflammation and oxidative stress.
Polotow, Tatiana G.; Vardaris, Cristina V.; Mihaliuc, Andrea R.; Gonçalves, Marina S.; Pereira, Benedito; Ganini, Douglas; Barros, Marcelo P.
2014-01-01
Astaxanthin (ASTA) is a pinkish-orange carotenoid commonly found in marine organisms, especially salmon. ASTA is a powerful antioxidant and suggested to provide benefits for human health, including the inhibition of LDL oxidation, UV-photoprotection, and prophylaxis of bacterial stomach ulcers. Exercise is associated to overproduction of free radicals in muscles and plasma, with pivotal participation of iron ions and glutathione (GSH). Thus, ASTA was studied here as an auxiliary supplement to improve antioxidant defenses in soleus muscles and plasma against oxidative damage induced by exhaustive exercise. Long-term 1 mg ASTA/kg body weight (BW) supplementation in Wistar rats (for 45 days) significantly delayed time to exhaustion by 29% in a swimming test. ASTA supplementation increased scavenging/iron-chelating capacities (TEAC/FRAP) and limited exercise-induced iron overload and its related pro-oxidant effects in plasma of exercising animals. On the other hand, ASTA induced significant mitochondrial Mn-dependent superoxide dismutase and cytosolic glutathione peroxidase antioxidant responses in soleus muscles that, in turn, increased GSH content during exercise, limited oxidative stress, and delayed exhaustion. We also provided significant discussion about a putative “mitochondrial-targeted” action of ASTA based on previous publications and on the positive results found in the highly mitochondrial populated (oxidative-type) soleus muscles here. PMID:25514562
Delaying Onset of Dementia: Are Two Languages Enough?
Freedman, Morris; Alladi, Suvarna; Chertkow, Howard; Bialystok, Ellen; Craik, Fergus I. M.; Phillips, Natalie A.; Duggirala, Vasanta; Raju, Surampudi Bapi; Bak, Thomas H.
2014-01-01
There is an emerging literature suggesting that speaking two or more languages may significantly delay the onset of dementia. Although the mechanisms are unknown, it has been suggested that these may involve cognitive reserve, a concept that has been associated with factors such as higher levels of education, occupational status, social networks, and physical exercise. In the case of bilingualism, cognitive reserve may involve reorganization and strengthening of neural networks that enhance executive control. We review evidence for protective effects of bilingualism from a multicultural perspective involving studies in Toronto and Montreal, Canada, and Hyderabad, India. Reports from Toronto and Hyderabad showed a significant effect of speaking two or more languages in delaying onset of Alzheimer's disease by up to 5 years, whereas the Montreal study showed a significant protective effect of speaking at least four languages and a protective effect of speaking at least two languages in immigrants. Although there were differences in results across studies, a common theme was the significant effect of language use history as one of the factors in determining the onset of Alzheimer's disease. Moreover, the Hyderabad study extended the findings to frontotemporal dementia and vascular dementia. PMID:24959001
Delaying onset of dementia: are two languages enough?
Freedman, Morris; Alladi, Suvarna; Chertkow, Howard; Bialystok, Ellen; Craik, Fergus I M; Phillips, Natalie A; Duggirala, Vasanta; Raju, Surampudi Bapi; Bak, Thomas H
2014-01-01
There is an emerging literature suggesting that speaking two or more languages may significantly delay the onset of dementia. Although the mechanisms are unknown, it has been suggested that these may involve cognitive reserve, a concept that has been associated with factors such as higher levels of education, occupational status, social networks, and physical exercise. In the case of bilingualism, cognitive reserve may involve reorganization and strengthening of neural networks that enhance executive control. We review evidence for protective effects of bilingualism from a multicultural perspective involving studies in Toronto and Montreal, Canada, and Hyderabad, India. Reports from Toronto and Hyderabad showed a significant effect of speaking two or more languages in delaying onset of Alzheimer's disease by up to 5 years, whereas the Montreal study showed a significant protective effect of speaking at least four languages and a protective effect of speaking at least two languages in immigrants. Although there were differences in results across studies, a common theme was the significant effect of language use history as one of the factors in determining the onset of Alzheimer's disease. Moreover, the Hyderabad study extended the findings to frontotemporal dementia and vascular dementia.
Müller, Jan; Chan, Khin; Myers, Jonathan N
2017-02-01
To address the association between exercise capacity and the onset of dementia, Alzheimer disease, and cognitive impairment. For 6104 consecutive veteran patients (mean ± SD age: 59.2±11.4 years) referred for treadmill exercise testing, the combined end point of dementia, Alzheimer disease, and cognitive impairment was abstracted from the Veterans Affairs computerized patient record system. After mean ± SD follow-up of 10.3±5.5 years, 353 patients (5.8%) developed the composite end point at a mean ± SD age of 76.7±10.3 years. After correction for confounders in multivariate Cox proportional hazards regression, higher age at exercise testing (hazard ratio [HR]=1.08; 95% CI, 1.07-1.09; P<.001), current smoking (HR=1.44; 95% CI, 1.08-1.93; P=.01), and exercise capacity (HR=0.92; 95% CI, 0.89-0.96; P<.001) emerged as predictors of cognitive impairment. Each 1-metabolic equivalent increase in exercise capacity conferred a nearly 8% reduction in the incidence of cognitive impairment. Meeting the recommendations for daily activity was not associated with a delay in onset of cognitive impairment (HR=1.07; 95% CI, 0.86-1.32; P=.55). Exercise capacity is strongly associated with cognitive function; the inverse association between fitness and cognitive impairment provides an additional impetus for health care providers to promote physical activity. Copyright © 2016 Mayo Foundation for Medical Education and Research. Published by Elsevier Inc. All rights reserved.
Using recovery modalities between training sessions in elite athletes: does it help?
Barnett, Anthony
2006-01-01
Achieving an appropriate balance between training and competition stresses and recovery is important in maximising the performance of athletes. A wide range of recovery modalities are now used as integral parts of the training programmes of elite athletes to help attain this balance. This review examined the evidence available as to the efficacy of these recovery modalities in enhancing between-training session recovery in elite athletes. Recovery modalities have largely been investigated with regard to their ability to enhance the rate of blood lactate removal following high-intensity exercise or to reduce the severity and duration of exercise-induced muscle injury and delayed onset muscle soreness (DOMS). Neither of these reflects the circumstances of between-training session recovery in elite athletes. After high-intensity exercise, rest alone will return blood lactate to baseline levels well within the normal time period between the training sessions of athletes. The majority of studies examining exercise-induced muscle injury and DOMS have used untrained subjects undertaking large amounts of unfamiliar eccentric exercise. This model is unlikely to closely reflect the circumstances of elite athletes. Even without considering the above limitations, there is no substantial scientific evidence to support the use of the recovery modalities reviewed to enhance the between-training session recovery of elite athletes. Modalities reviewed were massage, active recovery, cryotherapy, contrast temperature water immersion therapy, hyperbaric oxygen therapy, nonsteroidal anti-inflammatory drugs, compression garments, stretching, electromyostimulation and combination modalities. Experimental models designed to reflect the circumstances of elite athletes are needed to further investigate the efficacy of various recovery modalities for elite athletes. Other potentially important factors associated with recovery, such as the rate of post-exercise glycogen synthesis and the role of inflammation in the recovery and adaptation process, also need to be considered in this future assessment.
[Effects of massage on delayed-onset muscle soreness].
Bakowski, Paweł; Musielak, Bartosz; Sip, Paweł; Biegański, Grzegorz
2008-01-01
Delayed onset muscle soreness (DOMS) is the pain or discomfort often felt 12 to 24 hours after exercising and subsides generally within 4 to 6 days. Once thought to be caused by lactic acid buildup, a more recent theory is that it is caused by inflammatory process or tiny tears in the muscle fibers caused by eccentric contraction, or unaccustomed training levels. Exercises that involve many eccentric contractions will result in the most severe DOMS. Fourteen healthy men with no history of upper arm injury and no experience in resistance training were recruited. The mean age, height, and mass of the subjects were 22.8 +/- 1.2 years, 178.3 +/- 10.3 cm, and 75.0 +/- 14.2 kg, respectively. Subjects performed 8 sets of concentric and eccentric actions of the elbow flexors with each arm according to Stay protocol. One arm received 10 minutes of massage 30 minutes after exercise, the contralateral arm received no treatment. Measurements were taken at 9 assessment times: pre-exercise and postexercise at 10 min, 6, 12, 24, 36, 48, 72 and 96 hours. Dependent variables were range of motion, perceived soreness and upper arm circumference. There was noticed difference in perceived soreness across time between groups. The analysis indicated that massage resulted in a 10% to 20% decrease in the severity of soreness, but the differences were not significant. Difference in range of motion and arm circumference was not observed. Massage administered 30 minutes after exercises could have a beneficial influence on DOMS but without influence on muscle swelling and range of motion.
Asahara, Ryota; Matsukawa, Kanji; Ishii, Kei; Liang, Nan; Endo, Kana
2016-11-01
When performing exercise arbitrarily, activation of central command should start before the onset of exercise, but when exercise is forced to start with cue, activation of central command should be delayed. We examined whether the in-advance activation of central command influenced the ventilatory response and reflected in the prefrontal oxygenation, by comparing the responses during exercise with arbitrary and cued start. The breath-by-breath respiratory variables and the prefrontal oxygenated-hemoglobin concentration (Oxy-Hb) were measured during one-legged cycling. Minute ventilation (V̇e) at the onset of arbitrary one-legged cycling was augmented to a greater extent than cued cycling, while end-tidal carbon dioxide tension (ETco 2 ) decreased irrespective of arbitrary or cued start. Symmetric increase in the bilateral prefrontal Oxy-Hb occurred before and at the onset of arbitrary one-legged cycling, whereas such an increase was absent with cued start. The time course and magnitude of the increased prefrontal oxygenation were not influenced by the extent of subjective rating of perceived exertion and were the same as those of the prefrontal oxygenation during two-legged cycling previously reported. Mental imagery or passive performance of the one-legged cycling increased V̇e and decreased ETco 2 Neither intervention, however, augmented the prefrontal Oxy-Hb. The changes in ETco 2 could not explain the prefrontal oxygenation response during voluntary or passive one-legged cycling. Taken together, it is likely that the in-advance activation of central command influenced the ventilatory response by enhancing minute ventilation at the onset of one-legged cycling exercise and reflected in the preexercise increase in the prefrontal oxygenation. Copyright © 2016 the American Physiological Society.
Delayed-onset heparin-induced skin necrosis: a rare complication of perioperative heparin therapy.
Gan, Weh Kiat
2017-11-03
An uncommon case of delayed-onset dalteparin-induced skin necrosis in an 83-year-old Caucasian female patient associated with heparin-induced thrombocytopaenia (HIT) presenting on day 30 following dalteparin therapy is reported. Investigations revealed mild thrombocytopaenia with normal protein C, protein S, coagulation screen and positive test for heparin-platelet factor-4 antibody. Clinical diagnosis of heparin-induced skin necrosis with HIT was made. Dalteparin injection was discontinued promptly and substituted with fondaparinux therapy. The patient achieved good recovery following cessation of dalteparin therapy and was subsequently discharged. © BMJ Publishing Group Ltd (unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Butterfield, Timothy A; Herzog, Walter
2006-02-01
It is generally accepted that eccentric exercise, when performed by a muscle that is unaccustomed to that type of contraction, results in a delayed onset of muscle soreness (DOMS). A prolonged exposure to eccentric exercise leads to the disappearance of the signs and symptoms associated with DOMS, which has been referred to as the repeated bout effect (RBE). Although the mechanisms underlying the RBE remain unclear, several mechanisms have been proposed, including the serial sarcomere number addition following exercise induced muscle damage. In the traditional DOMS and RBE protocols, muscle injury has been treated as a global parameter, with muscle force and strain assumed to be uniform throughout the muscle. To assess the effects of muscle-tendon unit strain, fiber strain, torque and injury on serial sarcomere number adaptations, three groups of New Zealand White (NZW) rabbits were subjected to chronic repetitive eccentric exercise bouts of the ankle dorsiflexors for 6 weeks. These eccentric exercise protocols consisted of identical muscle tendon unit (MTU) strain, but other mechanical factors were systematically altered. Following chronic eccentric exercise, serial sarcomere number adaptations were not identical between the three eccentric exercise protocols, and serial sarcomere number adaptations were not uniform across all regions of the muscle. Peak torque and relaxation fiber strain were the best predictors of serial sarcomere number across all three protocols. Therefore, MTU strain does not appear to be the primary cause for sarcomerogenesis, and differential adaptations within the muscle may be explained by the nonuniform architecture of the muscle, resulting in differential local fiber strains.
Bamiou, D E; Davies, R A; McKee, M; Luxon, L M
2000-01-01
The aim of this study was to obtain a profile of disability and handicap in patients with unilateral peripheral vestibular disorders presenting to a specialist tertiary care unit. Two validated questionnaires were sent to patients who had a unilateral peripheral vestibular disorder as defined by strict criteria. Some patients still suffered moderate handicap and disability 5 years after the initial symptoms related to a unilateral vestibular disorder, although the duration of symptoms (onset to questionnaire completion) did not correlate with severity of disability and handicap, as judged by questionnaire scores. However, patients presenting to the unit within 6 months of onset of vertigo commenced balance exercises significantly earlier and had significantly lower disability scores than patients presenting later. A high proportion of non-compliance with, and delay in initiation of, vestibular rehabilitation exercises was noted in the total patient sample, while compliance with, and early initiation of, Cooksey Cawthorne exercises were significantly correlated with low disability and questionnaire scores. These findings suggest that early referral to a specialist balance unit for patients with persistent dizziness is associated with better outcome.
Jee, Haemi; Park, Jaehyun; Oh, Jae-Gun; Lee, Yoon-Hee; Shin, Kyung-A; Kim, Young-Joo
2013-06-01
The aim of this study was to observe the changes in endothelial and inflammatory markers in middle-aged male runners with exercise-induced hypertension (EIH) at baseline and at 100-km, 200-km, and 308-km checkpoints during a prolonged endurance ultramarathon. Among a total of 62 ultramarathon volunteers, 8 with systolic blood pressure higher than 210 mm Hg and 8 with normal systolic blood pressure were selected for this study. The subjects were designated to EIH and control (CON) groups. Blood was collected for the analysis of soluble vascular cell adhesion molecule-1, soluble E-selectin, leukocytes, creatine kinase, and high-sensitivity C-reactive protein. Soluble vascular cell adhesion molecule-1 showed a significantly greater increase in the EIH group than in the CON group at 100 km and 200 km. Soluble E-selectin also showed a significantly greater increase in the EIH group than in the CON group at 100 km. Leukocytes significantly increased in the EIH group than in the CON group at 308 km. Creatine kinase and high-sensitivity C-reactive protein showed no group differences. Leukocytes, creatine kinase, and high-sensitivity C-reactive protein showed delayed-onset increases in both groups. Increased exercise intensity may stimulate greater endothelial responses independent of the inflammatory markers in EIH. The loss of a protective effect may be greater in those with EIH than in CONs. Acknowledging and prescribing proper exercise intensity may be critical in preventing possible vascular-related complications in runners with EIH.
Corder, Katherine E; Newsham, Katherine R; McDaniel, Jennifer L; Ezekiel, Uthayashanker R; Weiss, Edward P
2016-03-01
The omega-3 fatty acid docosahexaenoic acid (DHA) has anti-inflammatory and anti-nociceptive (pain inhibiting) effects. Because strenuous exercise often results in local inflammation and pain, we hypothesized that DHA supplementation attenuates the rise in markers of local muscle inflammation and delayed onset muscle soreness (DOMS) that occur after eccentric strength exercise. Twenty-seven, healthy women (33 ± 2 y, BMI 23.1±1.0 kg·m(-2)) were randomized to receive 9d of 3000 mg/d DHA or placebo in a double-blind fashion. On day 7 of the supplementation period, the participants performed 4 sets of maximal-effort eccentric biceps curl exercise. Before and 48h after the eccentric exercise, markers of inflammation were measured including measures of muscle soreness (10-point visual analog pain scale, VAS), swelling (arm circumference), muscle stiffness (active and passive elbow extension), skin temperature, and salivary C-reactive protein (CRP) concentrations. As expected, muscle soreness and arm circumference increased while active and passive elbow extension decreased. The increase in soreness was 23% less in the DHA group (48h increase in VAS soreness ratings: 4.380.4 vs. 5.600.5, p=0.02). Furthermore, the number of subjects who were able to achieve full active elbow extension 48h after eccentric exercise was greater in the DHA group (71% vs. 15%, p = 0.006), indicating significantly less muscle stiffness. No between-group differences were observed for passive elbow extension (p = 0.78) or arm swelling (p = 0.75). Skin temperature and salivary CRP concentrations did not change from baseline to 48h after exercise in either group. These findings indicate that short-term DHA supplementation reduces exercise-induced muscle soreness and stiffness. Therefore, in addition to other health benefits that n-3 fatty acids have been associated with, DHA supplementation could be beneficial for improving tolerance to new and/or strenuous exercise programs and thereby might facilitate better training adaptations and exercise adherence. Key pointsSeven days of 3000 mg/day supplementation with algae-derived docosahexaenoic acid (DHA) attenuates the delayed onset muscle soreness and stiffness, and protects against the loss of joint range of motion that is caused by strenuous eccentric exercise.This benefit was observed in women, and supports the findings from other studies that were conducted on men or a combination of men and womenThe benefits from algae-derived DHA appear to be similar to those reported in other studies that used a combination of DHA and eicosapentaenoic acid (EPA) derived from fish oilThe findings of better recovery from strenuous exercise with DHA supplementation, paired with other research which demonstrated that DHA and EPA protect against chronic diseases suggest that DHA is an attractive optionThese findings have relevance to athletic populations, in that DHA would be expected to facilitate recovery and allow for better performance during training and competition. However, DHA supplementation might also benefit non-athletic populations, such as individuals starting new exercise programs and patient populations that are prone to muscle soreness (e.g. physical therapy patients).
Factors affecting onset of puberty in Denizli province in Turkey.
Semiz, Serap; Kurt, Funda; Kurt, Devrim Tanil; Zencir, Mehmet; Sevinç, Ozgür
2009-01-01
The relationship between the possible factors affecting pubertal onset and pubertal timing was investigated in the Denizli province in Turkey. A total number of 3311 subjects (1562 girls, 1749 boys) aged 6-16.5 years participated in this study. Body mass index (BMI) was calculated. Pubertal stages were assessed according to methods of Marshall and Tanner. Testicular volume was determined using Prader orchidometer. Menarcheal age was recorded. All parents and students completed different questionnaires on demographic variables affecting pubertal timing such as socioeconomic conditions, psychosocial factors, exercise, nutritional status, chronic diseases, migration and birth weight. Using distribution percentiles of pubertal stages according to age, the relation between pubertal timing and factors affecting puberty was investigated. There was no significant association between exercise, birth weight, migration, chronic disease, and socioeconomic status and age of puberty onset. Menarcheal age of overweight and obese girls was significantly lower than that of girls with normal weight. In-family stress was the cause of early puberty in girls and of delayed puberty in boys.
Physical allergies and exercise. Clinical implications for those engaged in sports activities.
Briner, W W
1993-06-01
There are several allergic responses that may occur in susceptible individuals as a result of exposure to physical stimuli. Most of these conditions are mediated by vasoactive substances and usually result in symptoms of urticaria and/or angioedema. There are 2 such conditions that may occur as a direct result from exercise. The first of these is cholinergic urticaria. Patients with cholinergic urticaria experience punctate (2 to 4mm) hives which occur reproducibly with exercise or with passive warming, such as might occur in a steam bath or hot pool. Life-threatening hypotension or angioedema usually do not occur with cholinergic urticaria. This condition usually responds well to oral hydroxyzine. Exercise-induced anaphylaxis (EIA) is a form of physical allergy that has been recognised with increasing frequency in recent years. This syndrome typically presents with generalised pruritus, a flushing sensation, a feeling of warmth and the development of conventional (10 to 15mm) urticaria in association with vigorous physical exertion only. Symptoms tend to occur variably with exposure to exercise and do not typically occur with passive warming. During symptomatic attacks, cutaneous mast cells degranulate and serum histamine levels increase. Treatment is problematic. Cessation of exercise with onset of symptoms and self-administration of epinephrine (adrenaline) are recommended. Other physical allergies that may affect exercising individuals include cold urticaria, localised heat urticaria, symptomatic dermatographism (dermographism), delayed pressure urticaria (angioedema), solar urticaria and aquagenic urticaria. Management of these conditions may include patient education, selective avoidance, antihistamines and, in some cases, induction of tolerance.
McEwen, Hayden J. L.; Inglis, Megan A.; Quennell, Janette H.; Grattan, David R.
2016-01-01
The cellular processes that cause high caloric diet (HCD)-induced infertility are poorly understood but may involve upregulation of suppressor of cytokine signaling (SOCS-3) proteins that are associated with hypothalamic leptin resistance. Deletion of SOCS-3 from brain cells is known to protect mice from diet-induced obesity, but the effects on HCD-induced infertility are unknown. We used neuron-specific SOCS3 knock-out mice to elucidate this and the effects on regional hypothalamic leptin resistance. As expected, male and female neuron-specific SOCS3 knock-out mice were protected from HCD-induced obesity. While female wild-type mice became infertile after 4 months of HCD feeding, infertility onset in knock-out females was delayed by 4 weeks. Similarly, knock-out mice had delayed leptin resistance development in the medial preoptic area and anteroventral periventricular nucleus, regions important for generation of the surge of GnRH and LH that induces ovulation. We therefore tested whether the suppressive effects of HCD on the estradiol-induced GnRH/LH surge were overcome by neuron-specific SOCS3 knock-out. Although only 20% of control HCD-mice experienced a preovulatory-like LH surge, LH surges could be induced in almost all neuron-specific SOCS3 knock-out mice on this diet. In contrast to females, HCD-fed male mice did not exhibit any fertility decline compared with low caloric diet-fed males despite their resistance to the satiety effects of leptin. These data show that deletion of SOCS3 delays the onset of leptin resistance and infertility in HCD-fed female mice, but given continued HCD feeding this state does eventually occur, presumably in response to other mechanisms inhibiting leptin signal transduction. SIGNIFICANCE STATEMENT Obesity is commonly associated with infertility in humans and other animals. Treatments for human infertility show a decreased success rate with increasing body mass index. A hallmark of obesity is an increase in circulating leptin levels; despite this, the brain responds as if there were low levels of leptin, leading to increased appetite and suppressed fertility. Here we show that leptin resistant infertility is caused in part by the leptin signaling molecule SOCS3. Deletion of SOCS3 from brain neurons delays the onset of diet-induced infertility. PMID:27383590
McEwen, Hayden J L; Inglis, Megan A; Quennell, Janette H; Grattan, David R; Anderson, Greg M
2016-07-06
The cellular processes that cause high caloric diet (HCD)-induced infertility are poorly understood but may involve upregulation of suppressor of cytokine signaling (SOCS-3) proteins that are associated with hypothalamic leptin resistance. Deletion of SOCS-3 from brain cells is known to protect mice from diet-induced obesity, but the effects on HCD-induced infertility are unknown. We used neuron-specific SOCS3 knock-out mice to elucidate this and the effects on regional hypothalamic leptin resistance. As expected, male and female neuron-specific SOCS3 knock-out mice were protected from HCD-induced obesity. While female wild-type mice became infertile after 4 months of HCD feeding, infertility onset in knock-out females was delayed by 4 weeks. Similarly, knock-out mice had delayed leptin resistance development in the medial preoptic area and anteroventral periventricular nucleus, regions important for generation of the surge of GnRH and LH that induces ovulation. We therefore tested whether the suppressive effects of HCD on the estradiol-induced GnRH/LH surge were overcome by neuron-specific SOCS3 knock-out. Although only 20% of control HCD-mice experienced a preovulatory-like LH surge, LH surges could be induced in almost all neuron-specific SOCS3 knock-out mice on this diet. In contrast to females, HCD-fed male mice did not exhibit any fertility decline compared with low caloric diet-fed males despite their resistance to the satiety effects of leptin. These data show that deletion of SOCS3 delays the onset of leptin resistance and infertility in HCD-fed female mice, but given continued HCD feeding this state does eventually occur, presumably in response to other mechanisms inhibiting leptin signal transduction. Obesity is commonly associated with infertility in humans and other animals. Treatments for human infertility show a decreased success rate with increasing body mass index. A hallmark of obesity is an increase in circulating leptin levels; despite this, the brain responds as if there were low levels of leptin, leading to increased appetite and suppressed fertility. Here we show that leptin resistant infertility is caused in part by the leptin signaling molecule SOCS3. Deletion of SOCS3 from brain neurons delays the onset of diet-induced infertility. Copyright © 2016 the authors 0270-6474/16/367142-12$15.00/0.
Hatchett, Andrew; Berry, Christopher; Oliva, Claudia; Wiley, Douglas; St. Hilaire, Jacob; LaRochelle, Alex
2016-01-01
This investigation sought to examine the effect that a chocolate milk solution (CMS) and a raw milk solution (RMS) had on lower extremity induced delayed onset of muscle soreness (DOMS). Twenty trained male participants completed a set of questionnaires, prior to completing a lower extremity DOMS protocol, to determine the level of discomfort and functional limitations. Once the DOMS protocol was completed, participants were randomly assigned to either the CM or RM group. Once assigned, participants ingested 240 mL of the respective solution and completed the same set of questionnaires immediately post, 24-, 48- and 72-h post DOMS protocol. Additionally, for 10 days post-ingestion participants were contacted to learn if any negative effects were experienced as a result of ingesting either solution. Both groups reported an increase in lower extremity discomfort at each data collection interval post-DOMS protocol (post, 24-, 48- and 72-h). Participants assigned to the RM group reported high discomfort post and a relative decline in discomfort from immediately post-DOMS protocol to 72-h post. The RMS group reported substantially less discomfort at 72-h when compared to the CMS group. Ingestion of a raw milk solution immediately post strength exercise can substantially reduce the level of self-reported discomfort associated with DOMS. PMID:29910267
Agarwal, Rajiv; Pappas, Maria K
2017-10-01
Among people treated for hypertension, the presence of elevated blood pressure (BP) out of the clinic but normal BP in the clinic is called masked uncontrolled hypertension (MUCH). What causes MUCH remains unknown. The purpose of this study was to answer the question of whether patients with MUCH have an increased hemodynamic reactivity to exercise and delayed hemodynamic recovery following exercise. Four groups were compared: controlled hypertension (CH, n = 58), MUCH (n = 34) and uncontrolled hypertension (UCH, n = 12), all of which had chronic kidney disease (CKD), and a group of healthy normal volunteers who did not have hypertension or CKD (n = 16). All participants underwent assessment of 24-h ambulatory BP monitoring, BP measurement during a graded symptom-limited exercise using a cycle ergometer and BP recovery over 7 min following exercise. Exercise-induced increase in systolic BP was similar among the four groups. When compared with healthy controls, recovery of systolic BP following termination of exercise was blunted among the CKD groups in unadjusted (P < 0.0001) and adjusted (P < 0.001) models. During recovery, the healthy control group had 5.9% decline in systolic BP per minute. In contrast, MUCH had only 3.3% per minute reduction and the UCH group had 0.3% reduction per minute. A test of linear trend was significant (P = 0.002, adjusted model). Because there was no impairment in the heart rate recovery among groups, we speculate that the parasympathetic pathway appears intact among treated hypertensives with CKD. However, the failure to withdraw sympathetic tone upon termination of exercise causes ongoing vasoconstriction and delayed systolic BP recovery providing a biological basis for MUCH. Delayed recovery from exercise-induced hypertension in those with poorly controlled BP provides potentially a new target to assure round-the-clock BP control. Published by Oxford University Press on behalf of ERA-EDTA 2016. This work is written by US Government employees and is in the public domain in the US.
Kang, Sun-Young; Jeon, Hye-Seon; Kwon, Ohyun; Cynn, Heon-Seock; Choi, Boram
2013-08-01
The direction of fiber alignment within a muscle is known to influence the effectiveness of muscle contraction. However, most of the commonly used clinical gluteus maximus (GM) exercises do not consider the direction of fiber alignment within the muscle. Therefore, the purpose of this study was to investigate the influence of hip abduction position on the EMG (electromyography) amplitude and onset time of the GM and hamstrings (HAM) during prone hip extension with knee flexion (PHEKF) exercise. Surface EMG signals were recorded from the GM and HAM during PHEKF exercise in three hip abduction positions: 0°, 15°, and 30°. Thirty healthy subjects voluntarily participated in this study. The results show that GM EMG amplitude was greatest in the 30° hip abduction position, followed by 15° and then 0° hip abduction during PHEKF exercise. On the other hand, the HAM EMG amplitude at 0° hip abduction was significantly greater than at 15° and 30° hip abduction. Additionally, GM EMG onset firing was delayed relative to that of the HAM at 0° hip abduction. On the contrary, the GM EMG onset occurred earlier than the HAM in the 15° and 30° hip abduction positions. These findings indicate that performing PHEKF exercise in the 30° hip abduction position may be recommended as an effective way to facilitate the GM muscle activity and advance the firing time of the GM muscle in asymptomatic individuals. This finding provides preliminary evidence that GM EMG amplitude and onset time can be modified by the degree of hip abduction. Copyright © 2012 Elsevier Ltd. All rights reserved.
Heiss, Rafael; Kellermann, Marion; Swoboda, Bernd; Grim, Casper; Lutter, Christoph; May, Matthias S; Wuest, Wolfgang; Uder, Michael; Nagel, Armin M; Hotfiel, Thilo
2018-06-12
Study Design Controlled laboratory study with repeated measures. Background Delayed-onset muscle soreness (DOMS) is one of the most common reasons for impaired muscle performance in sports. However, little consensus exists regarding which treatments may be most effective and the underlying mechanisms are poorly understood. Objectives To investigate the influence of compression garments on the development of DOMS, focusing on changes in muscle perfusion and muscle stiffness. Methods Muscle perfusion and stiffness, calf circumference, muscle soreness, passive ankle dorsiflexion, and creatine kinase levels were assessed on participants before (baseline) a DOMS-inducing eccentric calf exercise intervention and 60 h later (follow-up). After DOMS induction, a sports compression garment (18-21 mmHg) was worn on one randomized calf until follow-up. The contralateral calf served as an internal control. Muscle perfusion was assessed using contrast-enhanced ultrasound (peak enhancement [PE] and wash-in area under the curve [WiAUC]), while muscle stiffness was assessed using acoustic radiation force impulse (shear wave velocities [SWV]). An MRI scan of both lower legs was also performed during the follow-up testing session to characterize the extent of exercise-induced muscle damage. Comparisons were made between limbs and over time. Results SWV values of the medial gastrocnemius showed a significant interaction between time and limb (p=0.006) with the non-compressed muscle demonstrating lower muscle stiffness values at follow-up compared to baseline or the compressed muscle. No significant differences in soleus muscle stiffness were noted between limb or over time, as was the case for muscle perfusion metrics (PE and WiAUC) for the medial gastrocnemius and soleus muscles. Further, compression had no significant effect on passive ankle dorsiflexion, muscle soreness, calf circumference, or injury severity per MRI. Conclusion Continuous wearing of compression garments during the inflammation phase of DOMS may play an important role in regulating muscle stiffness; however, they have no significant effects on intramuscular perfusion or other common clinical assessments. J Orthop Sports Phys Ther, Epub 12 Jun 2018. doi:10.2519/jospt.2018.8038.
Various Treatment Techniques on Signs and Symptoms of Delayed Onset Muscle Soreness
Gulick, Dawn T.; Kimura, Iris F.; Sitler, Michael; Paolone, Albert; Kelly, John D.
1996-01-01
Eccentric activities are an important component of physical conditioning and everyday activities. Delayed onset muscle soreness (DOMS) can result from strenuous eccentric tasks and can be a limiting factor in motor performance for several days after exercise. An efficacious method of treatment for DOMS would enhance athletic performance and hasten the return to activities of daily living. The purpose of this study was to identify a treatment method which could assist in the recovery of DOMS. In the selection of treatment methods, emphasis was directed toward treatments that could be rendered independently by an individual, therefore making the treatment valuable to an athletic trainer in team setting. DOMS was induced in 70 untrained volunteers via 15 sets of 15 eccentric contractions of the forearm extensor muscles on a Lido isokinetic dynamometer. All subjects performed a pilot exercise bout for a minimum of 9 weeks before data collection to assure that DOMS would be produced. Data were collected on 15 dependent variables: active and passive wrist flexion and extension, forearm girth, limb volume, visual analogue pain scale, muscle soreness index, isometric strength, concentric and eccentric wrist total work, concentric and eccentric angle of peak torque. Data were collected on six occasions: pre- and post-induced DOMS, 20 minutes after treatment, and 24, 48, and 72 hours after treatment. Subjects were randomly assigned to 1 of 7 groups (6 treatment and 1 control). Treatments included a nonsteroidal anti-inflammatory drug, high velocity concentric muscle contractions on an upper extremity ergometer, ice massage, 10-minute static stretching, topical Amica montana ointment, and sublingual A. montana pellets. A 7 × 6 ANOVA with repeated measures on time was performed on the delta values of each of the 15 dependent variables. Significant main effects (p < .05) were found for all of the dependent variables on time only. There were no significant differences between treatments. Therefore, we conclude that none of the treatments were effective in abating the signs and symptoms of DOMS. In fact, the NSAID and A. montana treatments appeared to impede recovery of muscle function. PMID:16558388
Pumpa, Kate L; Fallon, Kieran E; Bensoussan, Alan; Papalia, Shona
2014-01-01
The aim of the study was to determine if topical Arnica is effective in reducing pain, indicators of inflammation and muscle damage, and in turn improve performance in well-trained males experiencing delayed onset muscle soreness (DOMS). Twenty well-trained males matched by maximal oxygen uptake (V̇O2 Max) completed a double-blind, randomised placebo-controlled trial. Topical Arnica was applied to the skin superficial to the quadriceps and gastrocnemius muscles immediately after a downhill running protocol designed to induce DOMS. Topical Arnica was reapplied every 4 waking hours for the duration of the study. Performance measures (peak torque, countermovement and squat jump), pain assessments (visual analogue scale (VAS) and muscle tenderness) and blood analysis (interleukin-1 beta, interleukin-6, tumour necrosis factor-alpha, C-reactive protein, myoglobin and creatine kinase) were assessed at seven time points over five days (pre-, post-, 4, 24, 48, 72 and 96 hours after the downhill run). Participants in the topical Arnica group reported less pain as assessed through muscle tenderness and VAS 72 hours post-exercise. The application of topical Arnica did not affect any performance assessments or markers of muscle damage or inflammation. Topical Arnica used immediately after intense eccentric exercise and for the following 96 hours did not have an effect on performance or blood markers. It did however demonstrate the possibility of providing pain relief three days post-eccentric exercise.
2014-01-01
Background Postnatal early overfeeding and physical inactivity are serious risk factors for obesity. Physical activity enhances energy expenditure and consumes fat stocks, thereby decreasing body weight (bw). This study aimed to examine whether low-intensity and moderate exercise training in different post-weaning stages of life is capable of modulating the autonomic nervous system (ANS) activity and inhibiting perinatal overfeeding-induced obesity in rats. Methods The obesity-promoting regimen was begun two days after birth when the litter size was adjusted to 3 pups (small litter, SL) or to 9 pups (normal litter, NL). The rats were organized into exercised groups as follows: from weaning until 90-day-old, from weaning until 50-day-old, or from 60- until 90-days-old. All experimental procedures were performed just one day after the exercise training protocol. Results The SL-no-exercised (SL-N-EXE) group exhibited excess weight and increased fat accumulation. We also observed fasting hyperglycemia and glucose intolerance in these rats. In addition, the SL-N-EXE group exhibited an increase in the vagus nerve firing rate, whereas the firing of the greater splanchnic nerve was not altered. Independent of the timing of exercise and the age of the rats, exercise training was able to significantly blocks obesity onset in the SL rats; even SL animals whose exercise training was stopped at the end of puberty, exhibited resistance to obesity progression. Fasting glycemia was maintained normal in all SL rats that underwent the exercise training, independent of the period. These results demonstrate that moderate exercise, regardless of the time of onset, is capable on improve the vagus nerves imbalanced tonus and blocks the onset of early overfeeding-induced obesity. Conclusions Low-intensity and moderate exercise training can promote the maintenance of glucose homeostasis, reduces the large fat pad stores associated to improvement of the ANS activity in adult rats that were obesity-programmed by early overfeeding. PMID:24914402
Pokorney, Sean D; Stone, Neil J; Passman, Rod; Oyer, David; Rigolin, Vera H; Bonow, Robert O
2010-12-01
Patients with obstructive hypertrophic cardiomyopathy who undergo septal myectomy are at risk for developing postoperative atrial fibrillation. Amiodarone is effective in treating this arrhythmia but is associated with multiple adverse effects, often with delayed onset. A novel case is described of a patient who developed type 2 amiodarone-induced hyperthyroidism that presented as recurrence of outflow obstruction after septal myectomy. The patient's symptoms and echocardiographic findings of outflow obstruction resolved substantially with the treatment of the amiodarone-induced hyperthyroidism. Amiodarone-induced hyperthyroidism of delayed onset can be a subtle diagnosis, requiring a high index of suspicion. In conclusion, recognition of this diagnosis in patients with recurrence of outflow obstruction by symptoms and cardiac imaging after septal myectomy may avoid unnecessary repeat surgical intervention. Copyright © 2010 Elsevier Inc. All rights reserved.
Morris, David M; Huot, Joshua R; Jetton, Adam M; Collier, Scott R; Utter, Alan C
2015-10-01
Dehydration has been shown to hinder performance of sustained exercise in the heat. Consuming fluids before exercise can result in hyperhydration, delay the onset of dehydration during exercise and improve exercise performance. However, humans normally drink only in response to thirst, which does not result in hyperhydration. Thirst and voluntary fluid consumption have been shown to increase following oral ingestion or infusion of sodium into the bloodstream. We measured the effects of acute sodium ingestion on voluntary water consumption and retention during a 2-hr hydration period before exercise. Subjects then performed a 60-min submaximal dehydration ride (DR) followed immediately by a 200 kJ performance time trial (PTT) in a warm (30 °C) environment. Water consumption and retention during the hydration period was greater following sodium ingestion (1380 ± 580 mL consumed, 821 ± 367 ml retained) compared with placebo (815 ± 483 ml consumed, 244 ± 402 mL retained) and no treatment (782 ± 454 ml consumed, 148 ± 289 mL retained). Dehydration levels following the DR were significantly less after sodium ingestion (0.7 ± 0.6%) compared with placebo (1.3 ± 0.7%) and no treatment (1.6 ± 0.4%). Time to complete the PTT was significantly less following sodium consumption (773 ± 158 s) compared with placebo (851 ± 156 s) and no treatment (872 ± 190 s). These results suggest that voluntary hyperhydration can be induced by acute consumption of sodium and has a favorable effect on hydration status and performance during subsequent exercise in the heat.
Borghi, Sergio M.; Pinho-Ribeiro, Felipe A.; Fattori, Victor; Bussmann, Allan J. C.; Vignoli, Josiane A.; Camilios-Neto, Doumit; Casagrande, Rubia; Verri, Waldiceu A.
2016-01-01
The present study aimed to evaluate the effects of the flavonoid quercetin (3,3´,4´,5,7-pentahydroxyflavone) in a mice model of intense acute swimming-induced muscle pain, which resembles delayed onset muscle soreness. Quercetin intraperitoneal (i.p.) treatment dose-dependently reduced muscle mechanical hyperalgesia. Quercetin inhibited myeloperoxidase (MPO) and N-acetyl-β-D- glucosaminidase (NAG) activities, cytokine production, oxidative stress, cyclooxygenase-2 (COX-2) and gp91phox mRNA expression and muscle injury (creatinine kinase [CK] blood levels and myoblast determination protein [MyoD] mRNA expression) as well as inhibited NFκB activation and induced Nrf2 and HO-1 mRNA expression in the soleus muscle. Beyond inhibiting those peripheral effects, quercetin also inhibited spinal cord cytokine production, oxidative stress and glial cells activation (glial fibrillary acidic protein [GFAP] and ionized calcium-binding adapter molecule 1 [Iba-1] mRNA expression). Concluding, the present data demonstrate that quercetin is a potential molecule for the treatment of muscle pain conditions related to unaccustomed exercise. PMID:27583449
O'Connell, Megan E; Dal Bello-Haas, Vanina; Crossley, Margaret; Morgan, Debra G
2015-01-01
Regular physical activity and exercise (PA&E) reduces cognitive aging, may delay dementia onset, and for persons with dementia, may slow progression and improve quality of life. Memory clinic patients and caregivers described their PA&E and completed the Older Persons' Attitudes Toward Physical Activity and Exercise Questionnaire (OPAPAEQ). Caregivers and patients differed in their PA&E attitudes: patients were less likely to believe in the importance of PA&E for health promotion. PA&E attitudes were explored as predictors of self-reported exercise habits. Belief in the importance of high intensity exercise for health maintenance was the only variable that significantly predicted engagement in regular PA&E. Moreover, caregivers' attitudes toward high intensity exercise predicted memory patients' participation in PA&E. These findings may aid in development of exercise interventions for people with memory problems, and suggest that modification of specific attitudes toward exercise is an important component to ensure maximum participation and engagement in PA&E.
King, Kathryn S; Darmani, Nissar A; Hughes, Marybeth S; Adams, Karen T; Pacak, Karel
2010-06-01
A cohort of nine patients, mostly young adults, presented with a new sign/symptom of pheochromocytoma/paraganglioma: exercise-induced nausea and vomiting. The aims of this article are to introduce this sign/symptom and offer a possible hypothesis for the observation. Following a 2000 report from a paraganglioma patient experiencing exercise-induced nausea and vomiting, we began asking patients about instances of nausea and vomiting with exercise. A total of nine patients, 4.4% of our pheochromocytoma/paraganglioma population, presented with reports of exercise-induced nausea and vomiting, initially with moderate-to-intense levels of exercise, at the first presentation of their disease. All of these patients reported a cessation of exercise-induced nausea and vomiting following the removal of their primary tumor. Two patients with metastatic disease to the lungs reported a recurrence of exercise-induced nausea and vomiting. The majority of patients studied were young adults with mean onset age of 19.4 years (range of 9-51 years) and the mean age of diagnosis being 24.1 years (range of 11-53 years). Exercise-induced nausea and vomiting should be considered a sign/symptom of pheochromocytoma/paraganglioma and should be addressed in the clinical evaluation of these patients, especially in young adults. Whether exercise-induced elevated catecholamine levels could account for the induced nausea and vomiting via activation of adrenergic receptors in the area postrema remains to be established.
Stuart, Sarah A; Butler, Paul; Munafò, Marcus R; Nutt, David J; Robinson, Emma SJ
2015-01-01
The biochemical targets for antidepressants are relatively well established, but we lack a clear understanding of how actions at these proteins translate to clinical benefits. This study used a novel rodent assay to investigate how different antidepressant drugs act to modify affective biases that have been implicated in depression. In this bowl-digging task, rats encounter two equal value learning experiences on separate days (one during an affective manipulation and the other during control conditions). This induces an affective bias that is quantified using a preference test in which both digging substrates are presented together and the individual rats’ choices recorded. The assay can be used to measure affective biases associated with learning (when the treatment is given at the time of the experience) or examine the modification of previously acquired biases (when the treatment is administered before the preference test). The rapid-onset antidepressant ketamine, but not the delayed-onset antidepressant, venlafaxine, attenuated the previously acquired FG7142-induced negative bias following systemic administration. Venlafaxine but not ketamine induced a positive bias when administered before learning. We then used local drug infusions and excitotoxic lesions to localize the effects of ketamine to the medial prefrontal cortex and venlafaxine to the amygdala. Using a modified protocol we also showed that positive and negative biases amplified further when the numbers of substrate–reinforcer associations are increased. We propose that this pattern of results could explain the delayed onset of action of venlafaxine and the rapid onset of action but lack of long-term efficacy seen with ketamine. PMID:25740288
Eccentric resistance training intensity may affect the severity of exercise induced muscle damage.
Hasenoehrl, Timothy; Wessner, Barbara; Tschan, Harald; Vidotto, Claudia; Crevenna, Richard; Csapo, Robert
2017-09-01
The aim of the present study was to assess the role of eccentric exercise intensity in the development of and recovery from delayed onset muscle soreness (DOMS). Using a cross-over study design, 15 healthy, male college students were tested on two occasions. The training stimulus consisted of an exhaustive series of eccentric muscle contractions of the elbow flexors at either 100% (high intensity) or 50% (low intensity) of the individual concentric one-repetition maximum. Blood samples were taken at baseline as well as 24, 48, 72 and 96 hours postexercise, and analyzed for creatine kinase, myoglobin, interleukin-6 and prostaglandin-2. Additionally, upper arm circumference (CIRC) and DOMS-related sensation of pain (PAIN) were measured. Following high intensity training, CIRC was significantly greater (P=0.007). Further, creatine kinase, myoglobin and interleukin-6 tended to be higher, although the main effect of the factor "intensity" just failed to reach significance (creatine kinase: P=0.056, myoglobin: P=0.064, interleukin-6: P=0.091). No differences were found for prostaglandin-2 (P=0.783) and PAIN (P=0.147). When performed at greater intensity, fatiguing eccentric resistance exercise of the elbow flexors leads to greater muscle swelling and, potentially, increases in serum markers reflecting lesions in the muscle's cellular membrane.
Park, Kyue-Nam; Kwon, Oh-Yun; Yi, Chung-Hwi; Cynn, Heon-Seock; Weon, Jong-Hyuck; Kim, Tae-Ho; Choi, Houng-Sik
2016-10-01
The purpose of this study was to investigate the effectiveness of a 6-week motor control exercise (MCE) vs stretching exercise (SE) on reducing compensatory pelvic motion during active prone knee flexion (APKF) and intensity of low back pain. Thirty-six people in the lumbar-rotation-extension subgroup were randomly assigned equally into 2 exercise groups (18 people in each an MCE or SE group). A 3-dimensional motion-analysis system was used to measure the range and onset time of pelvic motion and knee flexion during APKF. Surface electromyography was used to measure the muscle activity and onset time of the erector spinae and the hamstrings during APKF. The level of subjective low back pain was measured using a visual analog scale. The MCE group had more significant decreases in and delay of anterior pelvic tilt, pelvic rotation, and erector spinae muscle activity during APKF, as well as reduced intensity of low back pain compared with the SE group (P < .05). For rehabilitation in patients in the lumbar-rotation-extension subgroup, MCE was more effective than SE in reducing compensatory pelvic motion and muscle activity during APKF and minimizing low back pain. Copyright © 2016. Published by Elsevier Inc.
Ochi, Eisuke; Tsuchiya, Yosuke; Yanagimoto, Kenichi
2017-01-01
This study investigated the effect of supplementation with fish oil rich in eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) on the M-wave latency of biceps brachii and muscle damage after a single session of maximal elbow flexor eccentric contractions (ECC). Twenty-one men were completed the randomized, double-blind, placebo-controlled, and parallel-design study. The subjects were randomly assigned to the fish oil group ( n = 10) or control group ( n = 11). The fish oil group consumed eight 300-mg EPA-rich fish oil softgel capsules (containing, in total, 600 mg EPA and 260 mg DHA) per day for 8 weeks before the exercise, and continued this for a further 5 days. The control group consumed an equivalent number of placebo capsules. The subjects performed six sets of ten eccentric contractions of the elbow flexors using a dumbbell set at 40% of their one repetition maximum. M-wave latency was assessed as the time taken from electrical stimulation applied to Erb's point to the onset of M-wave of the biceps brachii. This was measured before and immediately after exercise, and then after 1, 2, 3, and 5 days. Changes in maximal voluntary isometric contraction (MVC) torque, range of motion (ROM), upper arm circumference, and delayed onset muscle soreness (DOMS) were assessed at the same time points. Compared with the control group, M-wave latency was significantly shorter in the fish oil group immediately after exercise ( p = 0.040), MVC torque was significantly higher at 1 day after exercise ( p = 0.049), ROM was significantly greater at post and 2 days after exercise (post; p = 0.006, day 2; p = 0.014), and there was significantly less delayed onset muscle soreness at 1 and 2 days after exercise (day 1; p = 0.049, day 2; p = 0.023). Eight weeks of EPA and DHA supplementation may play a protective role against motor nerve function and may attenuate muscle damage after eccentric contractions. This trial was registered on July 14th 2015 (https://upload.umin.ac.jp/cgi-open-bin/ctr/index.cgi).
Afroundeh, R; Arimitsu, T; Yamanaka, R; Lian, C S; Shirakawa, K; Yunoki, T; Yano, T
2014-01-01
Time delay in the mediation of ventilation (V(.)E) by arterial CO(2) pressure (PaCO(2)) was studied during recovery from short impulse-like exercises with different work loads of recovery. Subjects performed two tests including 10-s impulse like exercise with work load of 200 watts and 15-min recovery with 25 watts in test one and 50 watts in test two. V(.)E, end tidal CO(2) pressure (PETCO(2)) and heart rate (HR) were measured continuously during rest, warming up, exercise and recovery. PaCO(2) was estimated from PETCO(2) and tidal volume (V(T)). Results showed that predicted arterial CO(2) pressure (PaCO(2 pre)) increased during recovery in both tests. In both tests, V(.)E increased and peaked at the end of exercise. V(.)E decreased in the first few seconds of recovery but started to increase again. The highest correlation coefficient between PaCO(2 pre) and V(.)E was obtained in the time delay of 7 s (r=0.854) in test one and in time delays of 6 s (r=0.451) and 31 s (r=0.567) in test two. HR was significantly higher in test two than in test one. These results indicate that PaCO(2 pre) drives V(.)E with a time delay and that higher work intensity induces a shorter time delay.
Anticonvulsant activity of Cotyledon orbiculata L. (Crassulaceae) leaf extract in mice.
Amabeoku, G J; Green, I; Kabatende, J
2007-05-30
The anticonvulsant activity of Cotyledon orbiculata L. (Crassulaceae) was investigated by studying the effects of both aqueous and methanol extracts of the plant species on seizures induced by pentylenetetrazole, bicuculline, picrotoxin and N-methyl-dl-aspartic in mice. Aqueous extract of Cotyledon orbiculata (50-400mg/kg, i.p.) and methanol extract (100-400mg/kg, i.p.) significantly prolonged the onset of tonic seizures induced by pentylenetetrazole (95mg/kg, i.p.). Methanol extract (400mg/kg, i.p.) also significantly reduced the incidence of the seizures. One hundred to two hundred milligrams/kilogram (i.p.) of aqueous extract of Cotyledon orbiculata significantly delayed the onset of the tonic seizures induced by bicuculline (40mg/kg, i.p.), picrotoxin (12mg/kg, i.p.) and N-methyl-dl-aspartic acid (NMDLA, 400mg/kg, i.p.). Similarly, methanol extract (100-400mg/kg, i.p.) significantly delayed the onset of the tonic seizures induced by bicuculline (40mg/kg, i.p.) and picrotoxin (12mg/kg, i.p.) while 100mg/kg (i.p.) significantly delayed the onset of N-methyl-dl-aspartic acid (NMDLA, 400mg/kg, i.p.)-induced seizures. Methanol extract (200mg/kg, i.p.) significantly reduced the incidence of the seizures induced by bicuculline (40mg/kg, i.p.). Phenobarbitone (12mg/kg, i.p.) and diazepam (0.5mg/kg, i.p.) effectively antagonized only seizures induced by PTZ (95mg/kg, i.p.), bicuculline (40mg/kg, i.p.) and picrotoxin (12mg/kg, i.p.). Phenytoin (30mg/kg, i.p.) did not affect any of the seizures to any significant extent. The data obtained suggest that both aqueous and methanol extracts of Cotyledon orbiculata have anticonvulsant property and may probably be affecting both gabaergic and glutaminergic mechanisms to exert its effect. The phytochemical analysis carried out revealed the presence of cardiac glycosides, saponins, tannins, reducing sugar and triterpene steroids in the plant extract.
Whole-body vibration and the prevention and treatment of delayed-onset muscle soreness.
Aminian-Far, Atefeh; Hadian, Mohammad-Reza; Olyaei, Gholamreza; Talebian, Saeed; Bakhtiary, Amir Hoshang
2011-01-01
Numerous recovery strategies have been used in an attempt to minimize the symptoms of delayed-onset muscle soreness (DOMS). Whole-body vibration (WBV) has been suggested as a viable warm-up for athletes. However, scientific evidence to support the protective effects of WBV training (WBVT) on muscle damage is lacking. To investigate the acute effect of WBVT applied before eccentric exercise in the prevention of DOMS. Randomized controlled trial. University laboratory. A total of 32 healthy, untrained volunteers were randomly assigned to either the WBVT (n = 15) or control (n = 17) group. Volunteers performed 6 sets of 10 maximal isokinetic (60°/s) eccentric contractions of the dominant-limb knee extensors on a dynamometer. In the WBVT group, the training was applied using a vibratory platform (35 Hz, 5 mm peak to peak) with 100° of knee flexion for 60 seconds before eccentric exercise. No vibration was applied in the control group. Muscle soreness, thigh circumference, and pressure pain threshold were recorded at baseline and at 1, 2, 3, 4, 7, and 14 days postexercise. Maximal voluntary isometric and isokinetic knee extensor strength were assessed at baseline, immediately after exercise, and at 1, 2, 7, and 14 days postexercise. Serum creatine kinase was measured at baseline and at 1, 2, and 7 days postexercise. The WBVT group showed a reduction in DOMS symptoms in the form of less maximal isometric and isokinetic voluntary strength loss, lower creatine kinase levels, and less pressure pain threshold and muscle soreness (P < .05) compared with the control group. However, no effect on thigh circumference was evident (P < .05). Administered before eccentric exercise, WBVT may reduce DOMS via muscle function improvement. Further investigation should be undertaken to ascertain the effectiveness of WBVT in attenuating DOMS in athletes.
Delayed Onset Muscle Soreness After Inspiratory Threshold Loading in Healthy Adults
Mathur, Sunita; Sheel, A. William; Road, Jeremy D.; Reid, W. Darlene
2010-01-01
Purpose: Skeletal muscle damage occurs following high-intensity or unaccustomed exercise; however, it is difficult to monitor damage to the respiratory muscles, particularly in humans. The aim of this study was to use clinical measures to investigate the presence of skeletal muscle damage in the inspiratory muscles. Methods: Ten healthy subjects underwent 60 minutes of voluntary inspiratory threshold loading (ITL) at 70% of maximal inspiratory pressure. Maximal inspiratory and expiratory mouth pressures, delayed onset muscle soreness on a visual analogue scale and plasma creatine kinase were measured prior to ITL, and at repeated time points after ITL (4, 24 and 48 hours post-ITL). Results: Delayed onset muscle soreness was present in all subjects 24 hours following ITL (intensity = 22 ± 6 mm; significantly higher than baseline p = 0.02). Muscle soreness was reported primarily in the anterior neck region, and was correlated to the amount of work done by the inspiratory muscles during ITL (r = 0.72, p = 0.02). However, no significant change was observed in maximal inspiratory or expiratory pressures or creatine kinase. Conclusions: These findings suggest that an intense bout of ITL results in muscle soreness primarily in the accessory muscles of inspiration, however, may be insufficient to cause significant muscle damage in healthy adults. PMID:20467514
Strang, Adam J; Berg, William P; Hieronymus, Mathias
2009-08-01
Muscle fatigue has been shown to result in early onset of anticipatory postural adjustments (APAs) relative to those produced in a non-fatigued state. This adaptation is thought to reflect an attempt to preserve postural stability during a focal movement performed in a fatigued state. It remains unclear, however, whether this adaptation is of central (e.g., central nervous system motor command) or peripheral (e.g., muscle contractile properties), origin. One way to confirm that this adaptation is centrally driven is to identify fatigued-induced early APA onsets in non-fatigued muscles. In this study, APAs were obtained using a rapid bilateral reaching maneuver and recorded via surface electromyography before and after conditions of rest (n = 25) or fatigue (n = 25). Fatigue was generated using isokinetic exercise of the right leg. Results showed that fatigue-induced early APA onsets occurred in fatigued and non-fatigued muscles, confirming that fatigue-induced early APA onset is a centrally mediated adaptation.
Muscle cooling delays activation of the muscle metaboreflex in humans.
Ray, C A; Hume, K M; Gracey, K H; Mahoney, E T
1997-11-01
Elevation of muscle temperature has been shown to increase muscle sympathetic nerve activity (MSNA) during isometric exercise in humans. The purpose of the present study was to evaluate the effect of muscle cooling on MSNA responses during exercise. Eight subjects performed ischemic isometric handgrip at 30% of maximal voluntary contraction to fatigue followed by 2 min of postexercise muscle ischemia (PEMI), with and without local cooling of the forearm. Local cooling of the forearm decreased forearm muscle temperature from 31.8 +/- 0.4 to 23.1 +/- 0.8 degrees C (P = 0.001). Time to fatigue was not different during the control and cold trials (156 +/- 11 and 154 +/- 5 s, respectively). Arterial pressures and heart rate were not significantly affected by muscle cooling during exercise, although heart rate tended to be higher during the second minute of exercise (P = 0.053) during muscle cooling. Exercise-induced increases in MSNA were delayed during handgrip with local cooling compared with control. However, MSNA responses at fatigue and PEMI were not different between the two conditions. These findings suggest that muscle cooling delayed the activation of the muscle metaboreflex during ischemic isometric exercise but did not prevent its full expression during fatiguing contraction. These results support the concept that muscle temperature can play a role in the regulation of MSNA during exercise.
Ryan, Sinéad M; Kelly, Áine M
2016-05-01
It is now well established, at least in animal models, that exercise elicits potent pro-cognitive and pro-neurogenic effects. Alzheimer's disease (AD) is one of the leading causes of dementia and represents one of the greatest burdens on healthcare systems worldwide, with no effective treatment for the disease to date. Exercise presents a promising non-pharmacological option to potentially delay the onset of or slow down the progression of AD. Exercise interventions in mouse models of AD have been explored and have been found to reduce amyloid pathology and improve cognitive function. More recent studies have expanded the research question by investigating potential pro-neurogenic and anti-inflammatory effects of exercise. In this review we summarise studies that have examined exercise-mediated effects on AD pathology, cognitive function, hippocampal neurogenesis and neuroinflammation in transgenic mouse models of AD. Furthermore, we attempt to identify the optimum exercise conditions required to elicit the greatest benefits, taking into account age and pathology of the model, as well as type and duration of exercise. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Tlidi, Mustapha; Panajotov, Krassimir; Ferré, Michel; Clerc, Marcel G.
2017-11-01
Time-delayed feedback plays an important role in the dynamics of spatially extended systems. In this contribution, we consider the generic Lugiato-Lefever model with delay feedback that describes Kerr optical frequency comb in all fiber cavities. We show that the delay feedback strongly impacts the spatiotemporal dynamical behavior resulting from modulational instability by (i) reducing the threshold associated with modulational instability and by (ii) decreasing the critical frequency at the onset of this instability. We show that for moderate input intensities it is possible to generate drifting cavity solitons with an asymmetric radiation emitted from the soliton tails. Finally, we characterize the formation of rogue waves induced by the delay feedback.
Lengthening our perspective: morphological, cellular, and molecular responses to eccentric exercise.
Hyldahl, Robert D; Hubal, Monica J
2014-02-01
The response of skeletal muscle to unaccustomed eccentric exercise has been studied widely, yet it is incompletely understood. This review is intended to provide an up-to-date overview of our understanding of how skeletal muscle responds to eccentric actions, with particular emphasis on the underlying molecular and cellular mechanisms of damage and recovery. This review begins by addressing the question of whether eccentric actions result in physical damage to muscle fibers and/or connective tissue. We next review the symptomatic manifestations of eccentric exercise (i.e., indirect damage markers, such as delayed onset muscle soreness), with emphasis on their relatively poorly understood molecular underpinnings. We then highlight factors that potentially modify the muscle damage response following eccentric exercise. Finally, we explore the utility of using eccentric training to improve muscle function in populations of healthy and aging individuals, as well as those living with neuromuscular disorders. Copyright © 2013 Wiley Periodicals, Inc.
Gutmann, B; Zimmer, P; Hülsdünker, T; Lefebvre, J; Binnebößel, S; Oberste, M; Bloch, W; Strüder, H K; Mierau, A
2018-03-06
Acute physical exercise (APE) induces an increase in the individual alpha peak frequency (iAPF), a cortical parameter associated with neural information processing speed. The aim of this study was to further scrutinize the influence of different APE intensities on post-exercise iAPF as well as its time course after exercise cessation. 95 healthy young (18-35 years) subjects participated in two randomized controlled experiments (EX1 and EX2). In EX1, all participants completed a graded exercise test (GXT) until exhaustion and were randomly allocated into different delay groups (immediately 0, 30, 60 and 90 min after GXT). The iAPF was determined before, immediately after as well as after the group-specific delay following the GXT. In EX2, participants exercised for 35 min at either 45-50%, 65-70% or 85-90% of their maximum heart rate (HR max ). The iAPF was determined before, immediately after as well as 20 min after exercise cessation. In EX1, the iAPF was significantly increased immediately after the GXT in all groups. This effect was not any more detectable after 30 min following exercise cessation. In EX2, a significant increase of the iAPF was found only after high-intensity (85-90% HR max ) exercise. The results indicate intense or exhaustive physical exercise is required to induce a transient increase in the iAPF that persists about 30 min following exercise cessation. Based on these findings, further research will have to scrutinize the behavioral implications associated with iAPF modulations following exercise. Copyright © 2018. Published by Elsevier B.V.
Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1
Morland, Cecilie; Andersson, Krister A.; Haugen, Øyvind P.; Hadzic, Alena; Kleppa, Liv; Gille, Andreas; Rinholm, Johanne E.; Palibrk, Vuk; Diget, Elisabeth H.; Kennedy, Lauritz H.; Stølen, Tomas; Hennestad, Eivind; Moldestad, Olve; Cai, Yiqing; Puchades, Maja; Offermanns, Stefan; Vervaeke, Koen; Bjørås, Magnar; Wisløff, Ulrik; Storm-Mathisen, Jon; Bergersen, Linda H.
2017-01-01
Physical exercise can improve brain function and delay neurodegeneration; however, the initial signal from muscle to brain is unknown. Here we show that the lactate receptor (HCAR1) is highly enriched in pial fibroblast-like cells that line the vessels supplying blood to the brain, and in pericyte-like cells along intracerebral microvessels. Activation of HCAR1 enhances cerebral vascular endothelial growth factor A (VEGFA) and cerebral angiogenesis. High-intensity interval exercise (5 days weekly for 7 weeks), as well as L-lactate subcutaneous injection that leads to an increase in blood lactate levels similar to exercise, increases brain VEGFA protein and capillary density in wild-type mice, but not in knockout mice lacking HCAR1. In contrast, skeletal muscle shows no vascular HCAR1 expression and no HCAR1-dependent change in vascularization induced by exercise or lactate. Thus, we demonstrate that a substance released by exercising skeletal muscle induces supportive effects in brain through an identified receptor. PMID:28534495
Exercise induces cerebral VEGF and angiogenesis via the lactate receptor HCAR1.
Morland, Cecilie; Andersson, Krister A; Haugen, Øyvind P; Hadzic, Alena; Kleppa, Liv; Gille, Andreas; Rinholm, Johanne E; Palibrk, Vuk; Diget, Elisabeth H; Kennedy, Lauritz H; Stølen, Tomas; Hennestad, Eivind; Moldestad, Olve; Cai, Yiqing; Puchades, Maja; Offermanns, Stefan; Vervaeke, Koen; Bjørås, Magnar; Wisløff, Ulrik; Storm-Mathisen, Jon; Bergersen, Linda H
2017-05-23
Physical exercise can improve brain function and delay neurodegeneration; however, the initial signal from muscle to brain is unknown. Here we show that the lactate receptor (HCAR1) is highly enriched in pial fibroblast-like cells that line the vessels supplying blood to the brain, and in pericyte-like cells along intracerebral microvessels. Activation of HCAR1 enhances cerebral vascular endothelial growth factor A (VEGFA) and cerebral angiogenesis. High-intensity interval exercise (5 days weekly for 7 weeks), as well as L-lactate subcutaneous injection that leads to an increase in blood lactate levels similar to exercise, increases brain VEGFA protein and capillary density in wild-type mice, but not in knockout mice lacking HCAR1. In contrast, skeletal muscle shows no vascular HCAR1 expression and no HCAR1-dependent change in vascularization induced by exercise or lactate. Thus, we demonstrate that a substance released by exercising skeletal muscle induces supportive effects in brain through an identified receptor.
Whole-Body Vibration While Squatting and Delayed-Onset Muscle Soreness in Women.
Dabbs, Nicole C; Black, Christopher D; Garner, John
2015-12-01
Research into alleviating muscle pain and symptoms in individuals after delayed-onset muscle soreness (DOMS) has been inconsistent and unsuccessful in demonstrating a useful recovery modality. To investigate the effects of short-term whole-body vibration (WBV) on DOMS over a 72-hour period after a high-intensity exercise protocol. Randomized controlled clinical trial. University laboratory. Thirty women volunteered to participate in 4 testing sessions and were assigned randomly to a WBV group (n = 16; age = 21.0 ± 1.9 years, height = 164.86 ± 6.73 cm, mass = 58.58 ± 9.32 kg) or a control group (n = 14; age = 22.00 ± 1.97 years, height = 166.65 ± 8.04 cm, mass = 58.69 ± 12.92 kg). Participants performed 4 sets to failure of single-legged split squats with 40% of their body weight to induce muscle soreness in the quadriceps. The WBV or control treatment was administered each day after DOMS. Unilateral pressure-pain threshold (PPT), range of motion (ROM), thigh circumference, and muscle-pain ratings of the quadriceps were collected before and for 3 days after high-intensity exercise. Each day, we collected 3 sets of measures, consisting of 1 measure before the WBV or control treatment protocol (pretreatment) and 2 sets of posttreatment measures. We observed no interactions for PPT, thigh circumference, and muscle pain (P > .05). An interaction was found for active ROM (P = .01), with the baseline pretreatment measure greater than the measures at baseline posttreatment 1 through 48 hours posttreatment 2 in the WBV group. For PPT, a main effect for time was revealed (P < .05), with the measure at baseline pretreatment greater than at 24 hours pretreatment and all other time points for the vastus medialis, greater than 24 hours pretreatment through 48 hours posttreatment 2 for the vastus lateralis, and greater than 24 hours pretreatment and 48 hours pretreatment for the rectus femoris. For dynamic muscle pain, we observed a main effect for time (P < .001), with the baseline pretreatment measure less than the measures at all other time points. No main effect for time was noted for thigh circumference (P = .24). No main effect for group was found for any variable (P > .05). The WBV treatment approach studied did not aid in alleviating DOMS after high-intensity exercise. Further research is needed in various populations.
Personalising exercise recommendations for brain health: considerations and future directions.
Barha, Cindy K; Galea, Liisa A; Nagamatsu, Lindsay S; Erickson, Kirk I; Liu-Ambrose, Teresa
2017-04-01
The societal value of strategies that delay the onset and progression of dementia cannot be overstated. Physical activity-unstructured and structured-is a promising, cost-effective strategy for the promotion of brain health. However, a large degree of variation exists in its efficacy. Therefore, to increase its utility as 'medication' for healthy cognitive ageing, it is imperative to identify key moderators and mediators of the positive effects of targeted exercise training on brain health. In this commentary, we focus on the type of targeted exercise training, the determinants of individual variation, including biological sex and genotypic factors, and the mechanisms by which exercise exerts its influence on the brain. We argue that a better understanding of these factors will allow for evidence-based, personalised, tailored exercise recommendations that go beyond the one-size-fits-all approach to successfully combat dementia. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Exercise and reproductive dysfunction.
Chen, E C; Brzyski, R G
1999-01-01
To provide an overview of our current understanding of exercise-induced reproductive dysfunction and an approach to its evaluation and management. A MEDLINE search was performed to review all articles with title words related to menstrual dysfunction, amenorrhea, oligomenorrhea, exercise, and athletic activities from 1966 to 1998. The pathophysiology, proposed mechanisms, clinical manifestations, evaluation, and management of exercise-associated reproductive dysfunction were compiled. Exercise-induced menstrual irregularity appears to be multifactorial in origin and remains a diagnosis of exclusion. The underlying mechanisms are mainly speculative. Clinical manifestations range from luteal phase deficiency to anovulation, amenorrhea, and even delayed menarche. Evaluation should include a thorough history and a complete physical plus pelvic examination. Most cases are reversible with dietary and exercise modifications. Hormonal replacement in cases of a prolonged hypoestrogenic state with evidence of increased bone loss is recommended, although the long-term consequences of prolonged hormonal deficiency are ill-defined.
Bhalodia, Vidya M; Schwartz, Daniel M; Sestokas, Anthony K; Bloomgarden, Gary; Arkins, Thomas; Tomak, Patrick; Gorelick, Judith; Wijesekera, Shirvinda; Beiner, John; Goodrich, Isaac
2013-10-01
Deltoid muscle weakness due to C-5 nerve root injury following cervical spine surgery is an uncommon but potentially debilitating complication. Symptoms can manifest upon emergence from anesthesia or days to weeks following surgery. There is conflicting evidence regarding the efficacy of spontaneous electromyography (spEMG) monitoring in detecting evolving C-5 nerve root compromise. By contrast, transcranial electrical stimulation-induced motor evoked potential (tceMEP) monitoring has been shown to be highly sensitive and specific in identifying impending C-5 injury. In this study the authors sought to 1) determine the frequency of immediate versus delayed-onset C-5 nerve root injury following cervical spine surgery, 2) identify risk factors associated with the development of C-5 palsies, and 3) determine whether tceMEP and spEMG neuromonitoring can help to identify acutely evolving C-5 injury as well as predict delayed-onset deltoid muscle paresis. The authors retrospectively reviewed the neuromonitoring and surgical records of all patients who had undergone cervical spine surgery involving the C-4 and/or C-5 level in the period from 2006 to 2008. Real-time tceMEP and spEMG monitoring from the deltoid muscle was performed as part of a multimodal neuromonitoring protocol during all surgeries. Charts were reviewed to identify patients who had experienced significant changes in tceMEPs and/or episodes of neurotonic spEMG activity during surgery, as well as those who had shown new-onset deltoid weakness either immediately upon emergence from the anesthesia or in a delayed fashion. Two hundred twenty-nine patients undergoing 235 cervical spine surgeries involving the C4-5 level served as the study cohort. The overall incidence of perioperative C-5 nerve root injury was 5.1%. The incidence was greatest (50%) in cases with dual corpectomies at the C-4 and C-5 spinal levels. All patients who emerged from anesthesia with deltoid weakness had significant and unresolved changes in tceMEPs during surgery, whereas only 1 had remarkable spEMG activity. Sensitivity and specificity of tceMEP monitoring for identifying acute-onset deltoid weakness were 100% and 99%, respectively. By contrast, sensitivity and specificity for spEMG were only 20% and 92%, respectively. Neither modality was effective in identifying patients who demonstrated delayed-onset deltoid weakness. The risk of new-onset deltoid muscle weakness following cervical spine surgery is greatest for patients undergoing 2-level corpectomies involving C-4 and C-5. Transcranial electrical stimulation-induced MEP monitoring is a highly sensitive and specific technique for detecting C-5 radiculopathy that manifests immediately upon waking from anesthesia. While the absence of sustained spEMG activity does not rule out nerve root irritation, the presence of excessive neurotonic discharges serves both to alert the surgeon of such potentially injurious events and to prompt neuromonitoring personnel about the need for additional tceMEP testing. Delayed-onset C-5 nerve root injury cannot be predicted by intraoperative neuromonitoring via either modality.
Labrunée, Marc; Boned, Anne; Granger, Richard; Bousquet, Marc; Jordan, Christian; Richard, Lisa; Garrigues, Damien; Gremeaux, Vincent; Sénard, Jean-Michel; Pathak, Atul; Guiraud, Thibaut
2015-11-01
The aim of this study was to determine whether 45 mins of transcutaneous electrical nerve stimulation before exercise could delay pain onset and increase walking distance in peripheral artery disease patients. After a baseline assessment of the walking velocity that led to pain after 300 m, 15 peripheral artery disease patients underwent four exercise sessions in a random order. The patients had a 45-min transcutaneous electrical nerve stimulation session with different experimental conditions: 80 Hz, 10 Hz, sham (presence of electrodes without stimulation), or control with no electrodes, immediately followed by five walking bouts on a treadmill until pain occurred. The patients were allowed to rest for 10 mins between each bout and had no feedback concerning the walking distance achieved. Total walking distance was significantly different between T10, T80, sham, and control (P < 0.0003). No difference was observed between T10 and T80, but T10 was different from sham and control. Sham, T10, and T80 were all different from control (P < 0.001). There was no difference between each condition for heart rate and blood pressure. Transcutaneous electrical nerve stimulation immediately before walking can delay pain onset and increase walking distance in patients with class II peripheral artery disease, with transcutaneous electrical nerve stimulation of 10 Hz being the most effective.
Campos, Carlos; Rocha, Nuno Barbosa F; Lattari, Eduardo; Paes, Flávia; Nardi, António E; Machado, Sérgio
2016-06-01
Age-related neurodegenerative disorders, like Alzheimer's or Parkinson's disease, are becoming a major issue to public health care. Currently, there is no effective pharmacological treatment to address cognitive impairment in these patients. Here, we aim to explore the role of exercise-induced trophic factor enhancement in the prevention or delay of cognitive decline in patients with neurodegenerative diseases. There is a significant amount of evidence from animal and human studies that links neurodegenerative related cognitive deficits with changes on brain and peripheral trophic factor levels. Several trials with elderly individuals and patients with neurodegenerative diseases report exercise induced cognitive improvements and changes on trophic factor levels including BDNF, IGF-I, among others. Further studies with healthy aging and clinical populations are needed to understand how diverse exercise interventions produce different variations in trophic factor signaling. Genetic profiles and potential confounders regarding trophic factors should also be addressed in future trials.
Guo, Jianmin; Li, Linjin; Gong, Yuxiang; Zhu, Rong; Xu, Jiake; Zou, Jun; Chen, Xi
2017-01-01
Purpose: The purpose of this systematic review and meta-analysis was to evaluate the effects of massage on alleviating delayed onset of muscle soreness (DOMS) and muscle performance after strenuous exercise. Method: Seven databases consisting of PubMed, Embase, EBSCO, Cochrane Library, Web of Science, CNKI and Wanfang were searched up to December 2016. Randomized controlled trials (RCTs) were eligible and the outcomes of muscle soreness, performance (including muscle maximal isometric force (MIF) and peak torque) and creatine kinase (CK) were used to assess the effectiveness of massage intervention on DOMS. Results: Eleven articles with a total of 23 data points (involving 504 participants) satisfied the inclusion criteria and were pooled in the meta-analysis. The findings demonstrated that muscle soreness rating decreased significantly when the participants received massage intervention compared with no intervention at 24 h (SMD: –0.61, 95% CI: –1.17 to –0.05, P = 0.03), 48 h (SMD: –1.51, 95% CI: –2.24 to –0.77, P < 0.001), 72 h (SMD: –1.46, 95% CI: –2.59 to –0.33, P = 0.01) and in total (SMD: –1.16, 95% CI: –1.60 to –0.72, P < 0.001) after intense exercise. Additionally, massage therapy improved MIF (SMD: 0.56, 95% CI: 0.21–0.90, P = 0.002) and peak torque (SMD: 0.38, 95% CI: 0.04–0.71, P = 0.03) as total effects. Furthermore, the serum CK level was reduced when participants received massage intervention (SMD: –0.64, 95% CI: –1.04 to –0.25, P = 0.001). Conclusion: The current evidence suggests that massage therapy after strenuous exercise could be effective for alleviating DOMS and improving muscle performance. PMID:29021762
Whole-Body Vibration and the Prevention and Treatment of Delayed-Onset Muscle Soreness
Aminian-Far, Atefeh; Hadian, Mohammad-Reza; Olyaei, Gholamreza; Talebian, Saeed; Bakhtiary, Amir Hoshang
2011-01-01
Abstract Context: Numerous recovery strategies have been used in an attempt to minimize the symptoms of delayed-onset muscle soreness (DOMS). Whole-body vibration (WBV) has been suggested as a viable warm-up for athletes. However, scientific evidence to support the protective effects of WBV training (WBVT) on muscle damage is lacking. Objective: To investigate the acute effect of WBVT applied before eccentric exercise in the prevention of DOMS. Design: Randomized controlled trial. Setting: University laboratory. Patients or Other Participants: A total of 32 healthy, untrained volunteers were randomly assigned to either the WBVT (n = 15) or control (n = 17) group. Intervention(s): Volunteers performed 6 sets of 10 maximal isokinetic (60°/s) eccentric contractions of the dominant-limb knee extensors on a dynamometer. In the WBVT group, the training was applied using a vibratory platform (35 Hz, 5 mm peak to peak) with 100° of knee flexion for 60 seconds before eccentric exercise. No vibration was applied in the control group. Main Outcome Measure(s): Muscle soreness, thigh circumference, and pressure pain threshold were recorded at baseline and at 1, 2, 3, 4, 7, and 14 days postexercise. Maximal voluntary isometric and isokinetic knee extensor strength were assessed at baseline, immediately after exercise, and at 1, 2, 7, and 14 days postexercise. Serum creatine kinase was measured at baseline and at 1, 2, and 7 days postexercise. Results: The WBVT group showed a reduction in DOMS symptoms in the form of less maximal isometric and isokinetic voluntary strength loss, lower creatine kinase levels, and less pressure pain threshold and muscle soreness (P < .05) compared with the control group. However, no effect on thigh circumference was evident (P < .05). Conclusions: Administered before eccentric exercise, WBVT may reduce DOMS via muscle function improvement. Further investigation should be undertaken to ascertain the effectiveness of WBVT in attenuating DOMS in athletes. PMID:21214349
Maintained Physical Activity Induced Changes in Delay Discounting.
Sofis, Michael J; Carrillo, Ale; Jarmolowicz, David P
2017-07-01
Those who discount the subjective value of delayed rewards less steeply are more likely to engage in physical activity. There is limited research, however, showing whether physical activity can change rates of delay discounting. In a two-experiment series, treatment and maintenance effects of a novel, effort-paced physical activity intervention on delay discounting were evaluated with multiple baseline designs. Using a lap-based method, participants were instructed to exercise at individualized high and low effort levels and to track their own perceived effort. The results suggest that treatment-induced changes in discounting were maintained at follow-up for 13 of 16 participants. In Experiment 2, there were statistically significant group-level improvements in physical activity and delay discounting when comparing baseline with both treatment and maintenance phases. Percentage change in delay discounting was significantly correlated with session attendance and relative pace (min/mile) improvement over the course of the 7-week treatment. Implications for future research are discussed.
Goodwin, Laura; Jones, Margaret; Rona, Roberto J; Sundin, Josefin; Wessely, Simon; Fear, Nicola T
2012-05-01
Delayed-onset posttraumatic stress disorder (PTSD) is defined as onset at least 6 months after a traumatic event. This study investigates the prevalence of delayed-onset PTSD in 1397 participants from a two-phase prospective cohort study of UK military personnel. Delayed-onset PTSD was categorized as participants who did not meet the criteria for probable PTSD (assessed using the PTSD Checklist Civilian version) at phase 1 but met the criteria by phase 2. Of the participants, 3.5% met the criteria for delayed-onset PTSD. Subthreshold PTSD, common mental disorder (CMD), poor/fair self-reported health, and multiple physical symptoms at phase 1 and the onset of alcohol misuse or CMD between phases 1 and 2 were associated with delayed-onset PTSD. Delayed-onset PTSD exists in this UK military sample. Military personnel who developed delayed-onset PTSD were more likely to have psychological ill-health at an earlier assessment, and clinicians should be aware of the potential comorbidity in these individuals, including alcohol misuse. Leaving the military or experiencing relationship breakdown was not associated.
Role of skin blood flow and sweating rate in exercise thermoregulation after bed rest
NASA Technical Reports Server (NTRS)
Lee, Stuart M C.; Williams, W. Jon; Schneider, Suzanne M.
2002-01-01
Two potential mechanisms, reduced skin blood flow (SBF) and sweating rate (SR), may be responsible for elevated intestinal temperature (T(in)) during exercise after bed rest and spaceflight. Seven men underwent 13 days of 6 degrees head-down bed rest. Pre- and post-bed rest, subjects completed supine submaximal cycle ergometry (20 min at 40% and 20 min at 65% of pre-bed rest supine peak exercise capacity) in a thermoneutral room. After bed rest, T(in) was elevated at rest (+0.31 +/- 0.12 degrees C) and at the end of exercise (+0.33 +/- 0.07 degrees C). Percent increase in SBF during exercise was less after bed rest (211 +/- 53 vs. 96 +/- 31%; P < or = 0.05), SBF/T(in) threshold was greater (37.09 +/- 0.16 vs. 37.33 +/- 0.13 degrees C; P < or = 0.05), and slope of SBF/T(in) tended to be reduced (536 +/- 184 vs. 201 +/- 46%/ degrees C; P = 0.08). SR/T(in) threshold was delayed (37.06 +/- 0.11 vs. 37.34 +/- 0.06 degrees C; P < or = 0.05), but the slope of SR/T(in) (3.45 +/- 1.22 vs. 2.58 +/- 0.71 mg x min-1 x cm-2 x degrees C-1) and total sweat loss (0.42 +/- 0.06 vs. 0.44 +/- 0.08 kg) were not changed. The higher resting and exercise T(in) and delayed onset of SBF and SR suggest a centrally mediated elevation in the thermoregulatory set point during bed rest exposure.
Anaerobic threshold: review of the concept and directions for future research.
Davis, J A
1985-02-01
Although the term anaerobic threshold was introduced 20 years ago, the concept that an exercise-induced lactic acidosis occurs at a particular oxygen uptake which varies among subjects is over 50 years old. The surge of new interest in the parameter relates to its strong relationship to prolonged exercise performance. The average marathon running speed has been shown to be closely related to the running speed at the anaerobic threshold. Numerous studies have shown that the parameter can be validly measured during incremental exercise from the gas exchange consequences of the increased carbon dioxide and hydrogen ion levels in blood resulting from bicarbonate buffering of lactic acid. Refinement of the noninvasive detection scheme has made the parameter attractive to investigators in preventative, rehabilitative, and occupational medicine and to researchers in the exercise sciences. Controversy exists regarding the specific cause for the onset of exercise-induced metabolic acidosis. As experimentation continues to unravel the mechanisms of lactate production and ventilatory control during exercise, the anaerobic threshold concept can be further evaluated.
Cerebral responses to exercise and the influence of heat stress in human fatigue.
Robertson, Caroline V; Marino, Frank E
2017-01-01
There are a number of mechanisms thought to be responsible for the onset of fatigue during exercise-induced hyperthermia. A greater understanding of the way in which fatigue develops during exercise could be gleaned from the studies which have examined the maintenance of cerebral blood flow through the process of cerebral autoregulation. Given that cerebral blood flow is a measure of the cerebral haemodynamics, and might reflect a level of brain activation, it is useful to understand the implications of this response during exercise and in the development of fatigue. It is known that cerebral blood flow is significantly altered under certain conditions such as altitude and exacerbated during exercise induced - hyperthermia. In this brief review we consider the processes of cerebral autoregulation predominantly through the measurement of cerebral blood flow and contrast these responses between exercise undertaken in normothermic versus heat stress conditions in order to draw some conclusions about the role cerebral blood flow might play in determining fatigue. Copyright © 2016. Published by Elsevier Ltd.
Cheng, Mei; Cong, Jiyan; Wu, Yulong; Xie, Jiacun; Wang, Siyuan; Zhao, Yue; Zang, Xiaoying
2018-05-01
Exercise and low-fat diets are common lifestyle modifications used for the treatment of hypertension besides drug therapy. However, unrestrained low-fat diets may result in deficiencies of low-unsaturated fatty acids and carry contingent risks of delaying neurodevelopment. While aerobic exercise shows positive neuroprotective effects, it is still unclear whether exercise could alleviate the impairment of neurodevelopment that may be induced by certain low-fat diets. In this research, developing spontaneously hypertensive rats (SHR) were treated with chronic swimming exercise and/or a low-soybean-oil diet for 6 weeks. We found that performance in the Morris water maze was reduced and long-term potentiation in the hippocampus was suppressed by the diet, while a combination treatment of exercise and diet alleviated the impairment induced by the specific low-fat diet. Moreover, the combination treatment effectively increased the expression of brain-derived neurotrophic factor (BDNF) and N-methyl-D-aspartic acid receptor (NMDAR), which were both down-regulated by the low-soybean-oil diet in the hippocampus of developing SHR. These findings suggest that chronic swimming exercise can ameliorate the low-soybean-oil diet-induced learning and memory impairment in developing SHR through the up-regulation of BDNF and NMDAR expression.
Uzbay, Tayfun I; Kayir, Hakan; Ceyhan, Mert
2007-02-01
Depression is a common psychiatric problem in epileptic patients. Thus, it is important that an antidepressant agent has anticonvulsant activity. This study was organized to investigate the effects of tianeptine, an atypical antidepressant, on pentylenetetrazole (PTZ)-induced seizure in mice. A possible contribution of adenosine receptors was also evaluated. Adult male Swiss-Webster mice (25-35 g) were subjects. PTZ (80 mg/kg, i.p.) was injected to mice 30 min after tianeptine (2.5-80 mg/kg, i.p.) or saline administration. The onset times of 'first myoclonic jerk' (FMJ) and 'generalized clonic seizures' (GCS) were recorded. Duration of 600 s was taken as a cutoff time in calculation of the onset time of the seizures. To evaluate the contribution of adenosine receptors in the effect of tianeptine, a nonspecific adenosine receptor antagonist caffeine, a specific A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX), a specific A2A receptor antagonist 8-(3-chlorostyryl) caffeine (CSC) or their vehicles were administered to the mice 15 min before tianeptine (80 mg/kg) or saline treatments. Tianeptine (40 and 80 mg/kg) pretreatment significantly delayed the onset time of FMJ and GCS. Caffeine (10-60 mg/kg, i.p.) dose-dependently blocked the retarding effect of tianeptine (80 mg/kg) on the onset times of FMJ and GCS. DPCPX (20 mg/kg) but not CSC (1-8 mg/kg) blocked the effect of tianeptine (80 mg/kg) on FMJ. Our results suggest that tianeptine delayed the onset time of PTZ-induced seizures via adenosine A1 receptors in mice. Thus, this drug may be a useful choice for epileptic patients with depression.
Parameter estimation and order selection for an empirical model of VO2 on-kinetics.
Alata, O; Bernard, O
2007-04-27
In humans, VO2 on-kinetics are noisy numerical signals that reflect the pulmonary oxygen exchange kinetics at the onset of exercise. They are empirically modelled as a sum of an offset and delayed exponentials. The number of delayed exponentials; i.e. the order of the model, is commonly supposed to be 1 for low-intensity exercises and 2 for high-intensity exercises. As no ground truth has ever been provided to validate these postulates, physiologists still need statistical methods to verify their hypothesis about the number of exponentials of the VO2 on-kinetics especially in the case of high-intensity exercises. Our objectives are first to develop accurate methods for estimating the parameters of the model at a fixed order, and then, to propose statistical tests for selecting the appropriate order. In this paper, we provide, on simulated Data, performances of Simulated Annealing for estimating model parameters and performances of Information Criteria for selecting the order. These simulated Data are generated with both single-exponential and double-exponential models, and noised by white and Gaussian noise. The performances are given at various Signal to Noise Ratio (SNR). Considering parameter estimation, results show that the confidences of estimated parameters are improved by increasing the SNR of the response to be fitted. Considering model selection, results show that Information Criteria are adapted statistical criteria to select the number of exponentials.
Antonialli, Fernanda Colella; De Marchi, Thiago; Tomazoni, Shaiane Silva; Vanin, Adriane Aver; dos Santos Grandinetti, Vanessa; de Paiva, Paulo Roberto Vicente; Pinto, Henrique Dantas; Miranda, Eduardo Foschini; de Tarso Camillo de Carvalho, Paulo; Leal-Junior, Ernesto Cesar Pinto
2014-11-01
Recent studies with phototherapy have shown positive results in enhancement of performance and improvement of recovery when applied before exercise. However, several factors still remain unknown such as therapeutic windows, optimal treatment parameters, and effects of combination of different light sources (laser and LEDs). The aim of this study was to evaluate the effects of phototherapy with the combination of different light sources on skeletal muscle performance and post-exercise recovery, and to establish the optimal energy dose. A randomized, double-blinded, placebo-controlled trial with participation of 40 male healthy untrained volunteers was performed. A single phototherapy intervention was performed immediately after pre-exercise (baseline) maximum voluntary contraction (MVC) with a cluster of 12 diodes (4 of 905 nm lasers-0.3125 mW each, 4 of 875 nm LEDs-17.5 mW each, and 4 of 670 nm LEDs-15 mW each- manufactured by Multi Radiance Medical™) and dose of 10, 30, and 50 J or placebo in six sites of quadriceps. MVC, delayed onset muscle soreness (DOMS), and creatine kinase (CK) activity were analyzed. Assessments were performed before, 1 min, 1, 24, 48, 72, and 96 h after eccentric exercise protocol employed to induce fatigue. Phototherapy increased (p < 0.05) MVC was compared to placebo from immediately after to 96 h after exercise with 10 or 30 J doses (better results with 30 J dose). DOMS was significantly decreased compared to placebo (p < 0.05) with 30 J dose from 24 to 96 h after exercise, and with 50 J dose from immediately after to 96 h after exercise. CK activity was significantly decreased (p < 0.05) compared to placebo with all phototherapy doses from 1 to 96 h after exercise (except for 50 J dose at 96 h). Pre-exercise phototherapy with combination of low-level laser and LEDs, mainly with 30 J dose, significantly increases performance, decreases DOMS, and improves biochemical marker related to skeletal muscle damage.
Bay, Christiane; Togsverd-Bo, Katrine; Lerche, Catharina M; Haedersdal, Merete
2016-01-01
Photodynamic therapy (PDT) delays ultraviolet (UV) radiation-induced squamous cell carcinomas (SCCs) in hairless mice. Efficacy may be enhanced by combining PDT with antineoplastic or pro-differentiating agents. We investigated if pretreatment with 5-fluorouracil (5FU), imiquimod (IMIQ) or calcipotriol (CAL) before PDT further delays tumor onset. Hairless mice (n=224) were exposed 3 times weekly to 3 standard erythema doses (SED) of UV radiation. Methyl-aminolevulinate (MAL)-PDT sessions were given on days 45 and 90 before SCC development. Three applications of topical 5FU, IMIQ or CAL were given before each PDT session. Fluorescence photography quantified protoporphyrin IX (PpIX) formation. PDT delayed UV-induced SCC development by 59 days (212 days UV-MAL-PDT vs. 153 days UV-control, P<0.001). Pretreatment with 5FU, IMIQ or CAL before PDT did not further delay SCC onset compared to PDT alone (207 days UV-5FU-MAL-PDT, 215 days UV-IMIQ-MAL-PDT, 206 days UV-CAL-MAL-PDT vs. 212 days UV-MAL-PDT, P=ns). PpIX fluorescence intensified by 5FU-pretreatment (median 21,392 au UV-5FU-MAL-PDT, P=0.011), decreased after IMIQ-pretreatment (12,452 au UV-IMIQ-MAL-PDT, P<0.001), and was unaffected by CAL-pretreatment (19,567 au UV-CAL-MAL-PDT, P=ns) compared to MAL alone (18,083 au UV-MAL-PDT). Short-term three-day pretreatment with 5FU, IMIQ and CAL before PDT does not further delay tumor onset in UV-exposed hairless mice. Copyright © 2015 Elsevier B.V. All rights reserved.
O'Donnell, Sharon; McKee, Gabrielle; Mooney, Mary; O'Brien, Frances; Moser, Debra K
2014-04-01
Patient decision delay is the main reason why many patients fail to receive timely medical intervention for symptoms of acute coronary syndrome (ACS). This study examines the validity of slow-onset and fast-onset ACS presentations and their influence on ACS prehospital delay times. A fast-onset ACS presentation is characterized by sudden, continuous, and severe chest pain, and slow-onset ACS pertains to all other ACS presentations. Baseline data pertaining to medical profiles, prehospital delay times, and ACS symptoms were recorded for all ACS patients who participated in a large multisite randomized control trial (RCT) in Dublin, Ireland. Patients were interviewed 2-4 days after their ACS event, and data were gathered using the ACS Response to Symptom Index. Only baseline data from the RCT, N = 893 patients, were analyzed. A total of 65% (n = 577) of patients experienced slow-onset ACS presentation, whereas 35% (n = 316) experienced fast-onset ACS. Patients who experienced slow-onset ACS were significantly more likely to have longer prehospital delays than patients with fast-onset ACS (3.5 h vs. 2.0 h, respectively, t = -5.63, df 890, p < 0.001). A multivariate analysis of delay revealed that, in the presence of other known delay factors, the only independent predictors of delay were slow-onset and fast-onset ACS (β = -.096, p < 0.002) and other factors associated with patient behavior. Slow-onset ACS and fast-onset ACS presentations are associated with distinct behavioral patterns that significantly influence prehospital time frames. As such, slow-onset ACS and fast-onset ACS are legitimate ACS presentation phenomena that should be seriously considered when examining the factors associated with prehospital delay. Copyright © 2014 Elsevier Inc. All rights reserved.
Al-Dashti, Yousef A; Holt, Roberta R; Stebbins, Charles L; Keen, Carl L; Hackman, Robert M
2018-05-02
An individual's diet affects numerous physiological functions and can play an important role in reducing the risk of cardiovascular disease. Epidemiological and clinical studies suggest that dietary flavanols can be an important modulator of vascular risk. Diets and plant extracts rich in flavanols have been reported to lower blood pressure, especially in prehypertensive and hypertensive individuals. Flavanols may act in part through signaling pathways that affect vascular function, nitric oxide availability, and the release of endothelial-derived relaxing and constricting factors. During exercise, flavanols have been reported to modulate metabolism and respiration (e.g., maximal oxygen uptake, O 2 cost of exercise, and energy expenditure), and reduce oxidative stress and inflammation, resulting in increased skeletal muscle efficiency and endurance capacity. Flavanol-induced reductions in blood pressure during exercise may decrease the work of the heart. Collectively, these effects suggest that flavanols can act as an ergogenic aid to help delay the onset of fatigue. More research is needed to better clarify the effects of flavanols on vascular function, blood pressure regulation, and exercise performance and establish safe and effective levels of intake. Flavanol-rich foods and food products can be useful components of a healthy diet and lifestyle program for those seeking to better control their blood pressure or to enhance their physical activity. Key teaching points • Epidemiological and clinical studies indicate that dietary flavanols can reduce the risk of vascular disease. • Diets and plant extracts rich in flavanols have been reported to lower blood pressure and improve exercise performance in humans. • Mechanisms by which flavanols may reduce blood pressure function include alterations in signaling pathways that affect vascular function, nitric oxide availability, and the release of endothelial-derived relaxation and constriction factors. • Mechanisms by which flavanols may enhance exercise performance include modulation of metabolism and respiration (e.g., maximal oxygen uptake, O 2 cost of exercise, and energy expenditure) and reduction of oxidative stress and inflammation. These effects can result in increased skeletal muscle efficiency and endurance capacity. • Further research is needed to clarify the amount, timing, and frequency of flavanol intake for blood pressure regulation and exercise performance.
Malin, Steven K; Huang, Hazel; Mulya, Anny; Kashyap, Sangeeta R; Kirwan, John P
2013-09-01
Dipeptidyl peptidase-4 (DPP-4) is a circulating glycoprotein that impairs insulin-stimulated glucose uptake and is linked to obesity and metabolic syndrome. However, the effect of exercise on plasma DPP-4 in adults with metabolic syndrome is unknown. Therefore, we determined the effect of exercise on DPP-4 and its role in explaining exercise-induced improvements in insulin sensitivity. Fourteen obese adults (67.9±1.2 years, BMI: 34.2±1.1kg/m(2)) with metabolic syndrome (ATP III criteria) underwent a 12-week supervised exercise intervention (60min/day for 5 days/week at ∼85% HRmax). Plasma DPP-4 was analyzed using an enzyme-linked immunosorbent assay. Insulin sensitivity was measured using the euglycemic-hyperinsulinemic clamp (40mU/m(2)/min) and estimated by HOMA-IR. Visceral fat (computerized tomography), 2-h glucose levels (75g oral glucose tolerance), and basal fat oxidation as well as aerobic fitness (indirect calorimetry) were also determined before and after exercise. The intervention reduced visceral fat, lowered blood pressure, glucose and lipids, and increased aerobic fitness (P<0.05). Exercise improved clamp-derived insulin sensitivity by 75% (P<0.001) and decreased HOMA-IR by 15% (P<0.05). Training decreased plasma DPP-4 by 10% (421.8±30.1 vs. 378.3±32.5ng/ml; P<0.04), and the decrease in DPP-4 was associated with clamp-derived insulin sensitivity (r=-0.59; P<0.04), HOMA-IR (r=0.59; P<0.04) and fat oxidation (r=-0.54; P<0.05). Increased fat oxidation also correlated with lower 2-h glucose levels (r=-0.64; P<0.02). Exercise training reduces plasma DPP-4, which may be linked to elevated insulin sensitivity and fat oxidation. Maintaining low plasma DPP-4 concentrations is a potential mechanism whereby exercise plus weight loss prevents/delays the onset of type 2 diabetes in adults with metabolic syndrome. Copyright © 2013 Elsevier Inc. All rights reserved.
D'Andrea, Antonello; Mele, Donato; Nistri, Stefano; Riegler, Lucia; Galderisi, Maurizio; Agricola, Eustachio; Losi, Maria Angela; Ballo, Piercarlo; Mondillo, Sergio; Badano, Luigi P
2013-02-01
Asynchronous myocardial contraction adversely influences left ventricular (LV) function and is therefore associated with a poor prognosis in heart failure. Exercise-induced change in ventricular dyssynchrony may be an important determinant of dynamic changes in cardiac output and mitral regurgitation. A prospective, longitudinal study was designed with pre-defined dyssynchrony index and outcome variables to test the hypothesis that dynamic dyssynchrony is associated with worse long-term event-free survival in patients with dilated cardiomyopathy (DCM) and 'narrow' QRS complex. One-hundred eighty patients (62 ± 8 years; 110 males) with NYHA class II-III, idiopathic DCM, ejection fraction ≤35%, and QRS duration <120 ms were selected. All the patients underwent standard Doppler echo, colour tissue velocity imaging (DTI), and supine bicycle exercise stress echocardiography. Cardiac synchronicity was defined, at rest and at peak exercise, as DTI velocity opposing-wall delay (significant if ≥65 ms). Outcome was defined as freedom from death, heart transplantation, or LV-assist device implantation, over a median follow-up of 48 months, and a Cox proportional hazards model was used for survival analysis. At baseline examination, DCM patients showed a reduced LV ejection fraction (31 + 4%). A significant electromechanical delay in 58 patients (32%). At the peak of physical exercise, a significant electromechanical delay was detected in 103 patients (57%). There were 41 events during the follow-up (23%): 28 cardiac deaths, 8 heart transplantations, and 5 LV-assist device implantations over 4 years. When adjusted for confounding baseline variables, LV end-diastolic volume, restrictive mitral flow pattern, severity of mitral regurgitation, and the presence of exercise-induced intraventricular dyssynchrony were the only independent determinants of an adverse outcome. In patients with idiopathic DCM and narrow QRS, the increase in echocardiographic dyssynchrony during exercise was the strongest predictor of less favourable event-free survival.
Müller, Thomas; Welnic, Jacub; Woitalla, Dirk; Muhlack, Siegfried
2007-07-11
Acute levodopa (LD) application and exercise release human growth hormone (GH). An earlier trial showed, that combined stimulus of exercise and LD administration is the best provocative test for GH response in healthy participants. Objective was to show this combined effect of LD application and exercise on GH response and to investigate the impact on LD metabolism in 20 previously treated patients with Parkinson's disease (PD). We measured GH- and LD plasma concentrations following soluble 200 mg LD/50 mg benserazide administration during endurance exercise and rest on two separate consecutive days. GH concentrations significantly increased on both days, but GH release was significantly delayed during rest. LD metabolism was not altered due to exercise in a clinical relevant manner. Exercise induced a significant faster LD stimulated GH release in comparison with the rest condition. We did not find the supposed increase of LD induced GH release by endurance exercise. We assume, that only a limited amount of GH is available for GH release in the anterior pituitary following an acute 200 mg LD administration. GH disposal also depends on growth hormone releasing hormone (GHRH), which is secreted into hypothalamic portal capillaries. During the exercise condition, the resulting higher blood pressure supports blood flow and thus GHRH transport towards the GH producing cells in the pituitary. This might additionally have caused the significant faster GH release during exercise.
Warren, Kristi J.; Olson, Molly M.; Thompson, Nicholas J.; Cahill, Mackenzie L.; Wyatt, Todd A.; Yoon, Kyoungjin J.; Loiacono, Christina M.; Kohut, Marian L.
2015-01-01
Obesity has been associated with greater severity of influenza virus infection and impaired host defense. Exercise may confer health benefits even when weight loss is not achieved, but it has not been determined if regular exercise improves immune defense against influenza A virus (IAV) in the obese condition. In this study, diet-induced obese mice and lean control mice exercised for eight weeks followed by influenza viral infection. Exercise reduced disease severity in both obese and non-obese mice, but the mechanisms differed. Exercise reversed the obesity-associated delay in bronchoalveolar-lavage (BAL) cell infiltration, restored BAL cytokine and chemokine production, and increased ciliary beat frequency and IFNα-related gene expression. In non-obese mice, exercise treatment reduced lung viral load, increased Type-I-IFN-related gene expression early during infection, but reduced BAL inflammatory cytokines and chemokines. In both obese and non-obese mice, exercise increased serum anti-influenza virus specific IgG2c antibody, increased CD8+ T cell percentage in BAL, and reduced TNFα by influenza viral NP-peptide-responding CD8+ T cells. Overall, the results suggest that exercise “restores” the immune response of obese mice to a phenotype similar to non-obese mice by improving the delay in immune activation. In contrast, in non-obese mice exercise treatment results in an early reduction in lung viral load and limited inflammatory response. PMID:26110868
LeBlanc, P J; Parolin, M L; Jones, N L; Heigenhauser, G J F
2002-10-01
The purpose of this study was to examine the effects of respiratory alkalosis on human skeletal muscle metabolism at rest and during submaximal exercise. Subjects exercised on two occasions for 15 min at 55 % of their maximal oxygen uptake while either hyperventilating (R-Alk) or breathing normally (Con). Muscle biopsies were taken at rest and after 1 and 15 min of exercise. At rest, no effects on muscle metabolism were observed in response to R-Alk. In the first minute of exercise, there was a delayed activation of pyruvate dehydrogenase (PDH) in R-Alk compared with Con, resulting in a reduced rate of pyruvate oxidation. Also, glycogenolysis was higher in R-Alk compared with Con, which was attributed to a higher availability of the monoprotonated form of inorganic phosphate (P(i)), resulting in an elevated rate of pyruvate production. The mismatch between pyruvate production and its oxidation resulted in net lactate accumulation. These effects were not seen after 15 min of exercise, with no further differences in muscle metabolism between conditions. The results from the present study suggest that respiratory alkalosis may play an important role in lactate accumulation during the transition from rest to exercise in acute hypoxic conditions, but that other factors mediate lactate accumulation during steady-state exercise.
LeBlanc, P J; Parolin, M L; Jones, N L; Heigenhauser, G J F
2002-01-01
The purpose of this study was to examine the effects of respiratory alkalosis on human skeletal muscle metabolism at rest and during submaximal exercise. Subjects exercised on two occasions for 15 min at 55 % of their maximal oxygen uptake while either hyperventilating (R-Alk) or breathing normally (Con). Muscle biopsies were taken at rest and after 1 and 15 min of exercise. At rest, no effects on muscle metabolism were observed in response to R-Alk. In the first minute of exercise, there was a delayed activation of pyruvate dehydrogenase (PDH) in R-Alk compared with Con, resulting in a reduced rate of pyruvate oxidation. Also, glycogenolysis was higher in R-Alk compared with Con, which was attributed to a higher availability of the monoprotonated form of inorganic phosphate (Pi), resulting in an elevated rate of pyruvate production. The mismatch between pyruvate production and its oxidation resulted in net lactate accumulation. These effects were not seen after 15 min of exercise, with no further differences in muscle metabolism between conditions. The results from the present study suggest that respiratory alkalosis may play an important role in lactate accumulation during the transition from rest to exercise in acute hypoxic conditions, but that other factors mediate lactate accumulation during steady-state exercise. PMID:12356901
Self-regulation strategies may enhance the acute effect of exercise on smoking delay.
Hatzigeorgiadis, Antonis; Pappa, Vassiliki; Tsiami, Anastasia; Tzatzaki, Theodora; Georgakouli, Kalliopi; Zourbanos, Nikos; Goudas, Marios; Chatzisarantis, Nikos; Theodorakis, Yannis
2016-06-01
The present study examined the acute effect of a moderate intensity aerobic exercise session combined with self-regulation on smoking delay in physically inactive smokers. Participants were 11 adults (5 males and 6 females) that completed three experimental conditions: control, exercise, and exercise using self-regulation strategies (SR). Following the experimental treatment smoking for the two exercise conditions delayed significantly more than for the control condition; in addition exercise SR delayed smoking marginally more that the plain exercise condition. Findings supported previous research that acute exercise reduces cravings to smoke, and suggests that the use of self-regulation strategies may strengthen exercise for smoking cessation interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.
McFarlin, Brian K; Venable, Adam S; Henning, Andrea L; Sampson, Jill N Best; Pennel, Kathryn; Vingren, Jakob L; Hill, David W
2016-06-01
Exercise-Induced Muscle Damage (EIMD) and delayed onset muscle soreness (DOMS) impact subsequent training sessions and activities of daily living (ADL) even in active individuals. In sedentary or diseased individuals, EIMD and DOMS may be even more pronounced and present even in the absence of structured exercise. The purpose of this study was to determine the effects of oral curcumin supplementation (Longvida® 400 mg/days) on muscle & ADL soreness, creatine kinase (CK), and inflammatory cytokines (TNF-α, IL-6, IL-8, IL-10) following EMID (eccentric-only dual-leg press exercise). Subjects (N = 28) were randomly assigned to either curcumin (400 mg/day) or placebo (rice flour) and supplemented 2 days before to 4 days after EMID. Blood samples were collected prior to (PRE), and 1, 2, 3, and 4 days after EIMD to measure CK and inflammatory cytokines. Data were analyzed by ANOVA with P < 0.05. Curcumin supplementation resulted in significantly smaller increases in CK (- 48%), TNF-α (- 25%), and IL-8 (- 21%) following EIMD compared to placebo. We observed no significant differences in IL-6, IL-10, or quadriceps muscle soreness between conditions for this sample size. Collectively, the findings demonstrated that consumption of curcumin reduced biological inflammation, but not quadriceps muscle soreness, during recovery after EIMD. The observed improvements in biological inflammation may translate to faster recovery and improved functional capacity during subsequent exercise sessions. These findings support the use of oral curcumin supplementation to reduce the symptoms of EIMD. The next logical step is to evaluate further the efficacy of an inflammatory clinical disease model.
Hassanlouei, H; Falla, D; Arendt-Nielsen, L; Kersting, U G
2014-10-01
The aim of the study was to examine whether six weeks of endurance training minimizes the effects of fatigue on postural control during dynamic postural perturbations. Eighteen healthy volunteers were assigned to either a 6-week progressive endurance training program on a cycle ergometer or a control group. At week 0 and 7, dynamic exercise was performed on an ergometer until exhaustion and immediately after, the anterior-posterior centre of pressure (COP) sway was analyzed during full body perturbations. Maximal voluntary contractions (MVC) of the knee flexors and extensors, muscle fiber conduction velocity (MFCV) of the vastus lateralis and medialis during sustained isometric knee extension contractions, and power output were measured. Following the training protocol, maximum knee extensor and flexor force and power output increased significantly for the training group with no changes observed for the control group. Moreover, the reduction of MFCV due to fatigue changed for the training group only (from 8.6% to 3.4%). At baseline, the fatiguing exercise induced an increase in the centre of pressure sway during the perturbations in both groups (>10%). The fatiguing protocol also impaired postural control in the control group when measured at week 7. However, for the training group, sway was not altered after the fatiguing exercise when assessed at week 7. In summary, six weeks of endurance training delayed the onset of muscle fatigue and improved the ability to control balance in response to postural perturbations in the presence of muscle fatigue. Results implicate that endurance training should be included in any injury prevention program. Copyright © 2014 Elsevier Ltd. All rights reserved.
Yamanaka, Yujiro; Hashimoto, Satoko; Tanahashi, Yusuke; Nishide, Shin-Ya; Honma, Sato; Honma, Ken-Ichi
2010-03-01
Effects of timed physical exercise were examined on the reentrainment of sleep-wake cycle and circadian rhythms to an 8-h phase-advanced sleep schedule. Seventeen male adults spent 12 days in a temporal isolation facility with dim light conditions (<10 lux). The sleep schedule was phase-advanced by 8 h from their habitual sleep times for 4 days, which was followed by a free-run session for 6 days, during which the subjects were deprived of time cues. During the shift schedule, the exercise group (n = 9) performed physical exercise with a bicycle ergometer in the early and middle waking period for 2 h each. The control group (n = 8) sat on a chair at those times. Their sleep-wake cycles were monitored every day by polysomnography and/or weight sensor equipped with a bed. The circadian rhythm in plasma melatonin was measured on the baseline day before phase shift: on the 4th day of shift schedule and the 5th day of free-run. As a result, the sleep-onset on the first day of free-run in the exercise group was significantly phase-advanced from that in the control and from the baseline. On the other hand, the circadian melatonin rhythm was significantly phase-delayed in the both groups, showing internal desynchronization of the circadian rhythms. The sleep-wake cycle resynchronized to the melatonin rhythm by either phase-advance or phase-delay shifts in the free-run session. These findings indicate that the reentrainment of the sleep-wake cycle to a phase-advanced schedule occurs independent of the circadian pacemaker and is accelerated by timed physical exercise.
Irimia, Jose M.; Tagliabracci, Vincent S.; Meyer, Catalina M.; Segvich, Dyann M.; DePaoli-Roach, Anna A.; Roach, Peter J.
2015-01-01
Glycogen, the repository of glucose in many cell types, contains small amounts of covalent phosphate, of uncertain function and poorly understood metabolism. Loss-of-function mutations in the laforin gene cause the fatal neurodegenerative disorder, Lafora disease, characterized by increased glycogen phosphorylation and the formation of abnormal deposits of glycogen-like material called Lafora bodies. It is generally accepted that the phosphate is removed by the laforin phosphatase. To study the dynamics of skeletal muscle glycogen phosphorylation in vivo under physiological conditions, mice were subjected to glycogen-depleting exercise and then monitored while they resynthesized glycogen. Depletion of glycogen by exercise was associated with a substantial reduction in total glycogen phosphate and the newly resynthesized glycogen was less branched and less phosphorylated. Branching returned to normal on a time frame of days, whereas phosphorylation remained suppressed over a longer period of time. We observed no change in markers of autophagy. Exercise of 3-month-old laforin knock-out mice caused a similar depletion of glycogen but no loss of glycogen phosphate. Furthermore, remodeling of glycogen to restore the basal branching pattern was delayed in the knock-out animals. From these results, we infer that 1) laforin is responsible for glycogen dephosphorylation during exercise and acts during the cytosolic degradation of glycogen, 2) excess glycogen phosphorylation in the absence of laforin delays the normal remodeling of the branching structure, and 3) the accumulation of glycogen phosphate is a relatively slow process involving multiple cycles of glycogen synthesis-degradation, consistent with the slow onset of the symptoms of Lafora disease. PMID:26216881
Cotter, Murray A.; Thomas, Joshua; Cassidy, Pamela; Robinette, Kyle; Jenkins, Noah; Scott, R. Florell; Leachman, Sancy; Samlowski, Wolfram E.; Grossman, Douglas
2008-01-01
UV radiation is the major environmental risk factor for melanoma and a potent inducer of oxidative stress, which is implicated in the pathogenesis of several malignancies. We evaluated whether the thiol antioxidant N-acetylcysteine (NAC) could protect melanocytes from UV-induced oxidative stress/damage in vitro and from UV-induced melanoma in vivo. In melan-a cells, a mouse melanocyte line, NAC (1–10 mM) conferred protection from several UV-induced oxidative sequelae including production of intracellular peroxide, formation of the signature oxidative DNA lesion 8-oxoguanine (8-OG), and depletion of free reduced thiols (primarily glutathione). Mice transgenic for hepatocyte growth factor and Survivin, previously shown to develop melanoma following a single neonatal dose of UV irradiation, were administered NAC (7 mg/ml, mother’s drinking water) transplacentally and through nursing until two weeks after birth. Delivery of NAC in this manner reduced thiol depletion and blocked formation of 8-OG in skin following neonatal UV treatment. Mean onset of UV-induced melanocytic tumors was significantly delayed in NAC-treated compared to control mice (21 vs. 14 weeks, p=0.0003). Our data highlight the potential importance of oxidative stress in the pathogenesis of melanoma, and suggest that NAC may be useful as a chemopreventive agent. PMID:17908992
Exercise-induced menstrual cycle changes. A functional, temporary adaptation to metabolic stress.
Bonen, A
1994-06-01
Chronic exercise is now known to alter the menstrual cycle. Yet, we do not yet know the true incidence of menstrual cycle alterations in athletes, because good normative data do not exist and the metabolic cost of training has not been considered in many studies. Secondary amenorrhoea is not easily induced by exercise training alone but seems to require additional metabolic stressors. Induction of secondary amenorrhoea in prospective exercise studies has not occurred, although the onset of short luteal or inadequate luteal phase cycles may occur in women even when running distances are not extensive. Such menstrual cycles may cause infertility, but this is only a temporary phenomenon since pregnancy, if desired, will usually occur upon cessation of training. Exercise-related changes in the menstrual cycle can be viewed as a functionally adaptive rather than a maladaptive dysfunction. A strong case can be made that the changes in the menstrual cycle as a result of exercise are an energy conserving strategy to protect more important biological processes. This hypothesis is consistent with the theory of metabolic arrest that has been identified in lower organisms and hibernating mammals.
Neuromuscular Fatigue and Physiological Responses After Five Dynamic Squat Exercise Protocols.
Raeder, Christian; Wiewelhove, Thimo; Westphal-Martinez, Marc P; Fernandez-Fernandez, Jaime; de Paula Simola, Rauno A; Kellmann, Michael; Meyer, Tim; Pfeiffer, Mark; Ferrauti, Alexander
2016-04-01
This aimed to analyze neuromuscular, physiological and perceptual responses to a single bout of 5 different dynamic squat exercise protocols. In a randomized and counterbalanced order, 15 male resistance-trained athletes (mean ± SD; age: 23.1 ± 1.9 years, body mass: 77.4 ± 8.0 kg) completed traditional multiple sets (MS: 4 × 6, 85% 1 repetition maximum [RM]), drop sets (DS: 1 × 6, 85% 1RM + 3 drop sets), eccentric overload (EO: 4 × 6, 70% 1RM concentric, 100% 1RM eccentric), flywheel YoYo squat (FW: 4 × 6, all-out), and a plyometric jump protocol (PJ: 4 × 15, all-out). Blood lactate (La), ratings of perceived exertion (RPE), counter movement jump height (CMJ), multiple rebound jump (MRJ) performance, maximal voluntary isometric contraction force, serum creatine kinase (CK) and delayed onset muscle soreness were measured. Immediately post exercise, La was significantly (p < 0.001) higher in FW (mean ± 95% confidence limit; 12.2 ± 0.9 mmol·L) and lower in PJ (3.0 ± 0.8 mmol·L) compared with MS (7.7 ± 1.5 mmol·L), DS (8.5 ± 0.6 mmol·L), and EO (8.2 ± 1.6 mmol·L), accompanied by similar RPE responses. Neuromuscular performance (CMJ, MRJ) significantly remained decreased (p < 0.001) from 0.5 to 48 hours post exercise in all protocols. There was a significant time × protocol interaction (p ≤ 0.05) in MRJ with a significant lower performance in DS, EO, and FW compared with PJ (0.5 hours post exercise), and in EO compared with all other protocols (24 hours post exercise). A significant main time effect with peak values 24 hours post exercise was observed in CK serum concentrations (p < 0.001), but there was no time × protocol interaction. In conclusion, (a) metabolic and perceptual demands were higher in FW and EO compared with MS, DS and PJ, (b) neuromuscular fatigue was consistent up to 48 hours post exercise in all protocols, and (c) EO induced the greatest neuromuscular fatigue.
Robertson, D G; Mattson, A M; Bestervelt, L L; Richardson, R J; Anderson, R J
1988-01-01
Previous work in our laboratory indicated that di-n-butyl-2,2-dichlorovinyl phosphate (DBCV) produced electrophysiologic changes in hen peripheral nerve that coincided with the development of histopathologic changes and neurologic signs of peripheral neuropathy. The purpose of the present study was to follow the time course for the development of the electrophysiologic changes and to determine whether pretreatment with the phosphinate analog of DBCV (DBCV-P), a nonageable organophosphorus compound, prevented these effects. Although significant electrophysiologic deficits occurred in the tibial and sciatic nerve 24 h after DBCV treatment, the most marked changes coincided with the onset of clinical signs of organophosphorus-induced delayed neuropathy (14-21 d). The sciatic and tibial nerves were equally susceptible to DBCV in producing deficits characterized by changes in the relative refractory period and an increased strength-duration threshold. Pretreatment with DBCV-P prevented the clinical signs and also attenuated the electrophysiologic deficits induced by DBCV treatment. These data suggest that electrophysiologic deficits occur before clinical signs of organophosphorus-induced delayed neuropathy (OPIDN) and may be indicative of a link between neurotoxic esterase (NTE) inhibition and onset of overt clinical toxicity.
Watanabe, K; Deboer, T; Meijer, J H
2001-12-01
The suprachiasmatic nuclei of the hypothalamus contain the major circadian pacemaker in mammals, driving circadian rhythms in behavioral and physiological functions. This circadian pacemaker's responsiveness to light allows synchronization to the light-dark cycle. Phase shifting by light often involves several transient cycles in which the behavioral activity rhythm gradually shifts to its steady-state position. In this article, the authors investigate in Syrian hamsters whether a phase-advancing light pulse results in immediate shifts of the PRC at the next circadian cycle. In a first series of experiments, the authors aimed a light pulse at CT 19 to induce a phase advance. It appeared that the steady-state phase advances were highly correlated with activity onset in the first and second transient cycle. This enabled them to make a reliable estimate of the steady-state phase shift induced by a phase-advancing light pulse on the basis of activity onset in the first transient cycle. In the next series of experiments, they presented a light pulse at CT 19, which was followed by a second light pulse aimed at the delay zone of the PRC on the next circadian cycle. The immediate and steady-state phase delays induced by the second light pulse were compared with data from a third experiment in which animals received a phase-delaying light pulse only. The authors observed that the waveform of the phase-delay part of the PRC (CT 12-16) obtained in Experiment 2 was virtually identical to the phase-delay part of the PRC for a single light pulse (obtained in Experiment 3). This finding allowed for a quantitative assessment of the data. The analysis indicates that the delay part of the PRC-between CT 12 and CT 16-is rapidly reset following a light pulse at CT 19. These findings complement earlier findings in the hamster showing that after a light pulse at CT 19, the phase-advancing part of the PRC is immediately shifted. Together, the data indicate that the basis for phase advancing involves rapid resetting of both advance and delay components of the PRC.
Mantegazza, Valentina; Contini, Mauro; Botti, Maurizia; Ferri, Ada; Dotti, Francesca; Berardi, Pierluigi; Agostoni, Piergiuseppe
2018-01-01
Background Far-infrared-emitting garments have several biological properties including the capability to increase blood perfusion in irradiated tissues. Design The aim of the study was to evaluate whether far-infrared radiation increases exercise capacity and delays anaerobic metabolism in healthy subjects. Methods With a double-blind, crossover protocol, a maximal cardiopulmonary exercise test was performed in 20 volunteers, wearing far-infrared or common sport clothes, identical in texture and colour. Results Comparing far-infrared with placebo garments, higher oxygen uptake at peak of exercise and longer endurance time were observed (peak oxygen uptake 38.0 ± 8.9 vs. 36.2 ± 8.5 ml/kg/min, endurance time 592 ± 85 vs. 570 ± 71 seconds; P < 0.01); the anaerobic threshold was significantly delayed (anaerobic threshold time 461 ± 93 vs. 417 ± 103 seconds) and anaerobic threshold oxygen uptake and anaerobic threshold oxygen pulse were significantly higher (25.3 ± 6.4 vs. 20.9 ± 5.4 ml/kg/min and 13.3 ± 3.8 vs. 12.4 ± 3.3 ml/beat, respectively). In 10 subjects the blood lactate concentration was measured every 2 minutes during exercise and at peak; lower values were observed with far-infrared fabrics compared to placebo from the eighth minute of exercise, reaching a significant difference at 10 minutes (3.6 ± 0.83 vs. 4.4 ± 0.96 mmol/l; P = 0.02). Conclusions In healthy subjects, exercising with a far-infrared outfit is associated with an improvement in exercise performance and a delay in anaerobic metabolism. In consideration of the acknowledged non-thermic properties of functionalised clothes, these effects could be mediated by an increase in oxygen peripheral delivery secondary to muscular vasodilation. These data suggest the need for testing far-infrared-emitting garments in patients with exercise limitation or in chronic cardiovascular and respiratory patients engaged in rehabilitation programmes.
The outcome of hip exercise in patellofemoral pain: A systematic review.
Thomson, Catherine; Krouwel, Oliver; Kuisma, Raija; Hebron, Clair
2016-12-01
Patellofemoral pain (PFP) is one of the most common lower extremity conditions seen in clinical practice. Current evidence shows that there are hip strength deficits, delayed onset and shorter activation of gluteus medius in people with PFP. The aim of this review was to systematically review the literature to investigate the outcome of hip exercise in people with PFP. AMED, CINAHL, Cochrane, EMBASE, PEDro, Pubmed, Science direct and SPORTDiscus databases were searched from inception to November 2014 for RCTs, non-randomised studies and case studies. Two independent reviewers assessed each paper for inclusion and quality. Twenty one papers were identified; eighteen investigating strengthening exercise, two investigating the effect of neuromuscular exercise and one study investigated the effect of hip exercise for the prevention of PFP. Hip and knee strengthening programmes were shown to be equally effective. Limited evidence indicates that the addition of hip exercise to an exercise programme is beneficial. Limited evidence demonstrates that motor skill retraining in a participant group who displayed abnormal hip alignment in running improves pain. The evidence consistently demonstrated that both hip strengthening and neuromuscular exercise has a beneficial effect on pain and function in people with PFP. Strengthening exercise predominantly addressed abductor and external rotator muscle groups. A consensus from PFP researchers for standardisation of methodology is recommended to enable meaningful comparison between trials. Copyright © 2016 Elsevier Ltd. All rights reserved.
Krieg, Sandro M; Tarapore, Phiroz E; Picht, Thomas; Tanigawa, Noriko; Houde, John; Sollmann, Nico; Meyer, Bernhard; Vajkoczy, Peter; Berger, Mitchel S; Ringel, Florian; Nagarajan, Srikantan
2014-10-15
Within the primary motor cortex, navigated transcranial magnetic stimulation (nTMS) has been shown to yield maps strongly correlated with those generated by direct cortical stimulation (DCS). However, the stimulation parameters for repetitive nTMS (rTMS)-based language mapping are still being refined. For this purpose, the present study compares two rTMS protocols, which differ in the timing of pulse train onset relative to picture presentation onset during object naming. Results were the correlated with DCS language mapping during awake surgery. Thirty-two patients with left-sided perisylvian tumors were examined by rTMS prior to awake surgery. Twenty patients underwent rTMS pulse trains starting at 300 ms after picture presentation onset (delayed TMS), whereas another 12 patients received rTMS pulse trains starting at the picture presentation onset (ONSET TMS). These rTMS results were then evaluated for correlation with intraoperative DCS results as gold standard in terms of differential consistencies in receiver operating characteristics (ROC) statistics. Logistic regression analysis by protocols and brain regions were conducted. Within and around Broca's area, there was no difference in sensitivity (onset TMS: 100%, delayed TMS: 100%), negative predictive value (NPV) (onset TMS: 100%, delayed TMS: 100%), and positive predictive value (PPV) (onset TMS: 55%, delayed TMS: 54%) between the two protocols compared to DCS. However, specificity differed significantly (onset TMS: 67%, delayed TMS: 28%). In contrast, for posterior language regions, such as supramarginal gyrus, angular gyrus, and posterior superior temporal gyrus, early pulse train onset stimulation showed greater specificity (onset TMS: 92%, delayed TMS: 20%), NPV (onset TMS: 92%, delayed TMS: 57%) and PPV (onset TMS: 75%, delayed TMS: 30%) with comparable sensitivity (onset TMS: 75%, delayed TMS: 70%). Logistic regression analysis also confirmed the greater fit of the predictions by rTMS that had the pulse train onset coincident with the picture presentation onset when compared to the delayed stimulation. Analyses of differential disruption patterns of mapped cortical regions were further able to distinguish clusters of cortical regions standardly associated with semantic and pre-vocalization phonological networks proposed in various models of word production. Repetitive nTMS predictions by both protocols correlate well with DCS outcomes especially in Broca's region, particularly with regard to TMS negative predictions. With this study, we have demonstrated that rTMS stimulation onset coincident with picture presentation onset improves the accuracy of preoperative language maps, particularly within posterior language areas. Moreover, immediate and delayed pulse train onsets may have complementary disruption patterns that could differentially capture cortical regions causally necessary for semantic and pre-vocalization phonological networks. Published by Elsevier Inc.
Neese, Steven L.; Korol, Donna L.; Schantz, Susan L.
2013-01-01
Estrogens differentially modulate behavior in the adult female rodent. Voluntary exercise can also impact behavior, often reversing age associated decrements in memory processes. Our research group has published a series of papers reporting a deficit in the acquisition of an operant working memory task, delayed spatial alternation (DSA), following 17β-estradiol treatment to middle-aged ovariectomized (OVX) rats. The current study examined if voluntary exercise could attenuate the 17β-estradiol induced deficits on DSA performance. OVX 12-month old Long- Evans rats were implanted with a Silastic capsule containing 17β-estradiol (10% in cholesterol: low physiological range) or with a blank capsule. A subset of the 17β-estradiol and OVX untreated rats were given free access to a running wheel in their home cage. All rats were tested for 40 sessions on the DSA task. Surprisingly, we found running wheel access to impair initial acquisition of the DSA task in 17β-estradiol treated rats, an effect not seen in OVX untreated rats given running wheel access. This deficit was driven by an increase in perseverative responding on a lever no longer associated with reinforcement. We also report for the first time a 17β-estradiol induced impairment on the DSA task following a long intertrial delay (18-sec), an effect revealed following more extended testing than in our previous studies (15 additional sessions). Overall, running wheel access increased initial error rate on the DSA task in 17β-estradiol treated middle-aged OVX rats, and failed to prevent the 17β-estradiol induced deficits in performance of the operant DSA task in later testing sessions. PMID:24013039
Exercise, cognitive function, and aging
2015-01-01
Increasing the lifespan of a population is often a marker of a country's success. With the percentage of the population over 65 yr of age expanding, managing the health and independence of this population is an ongoing concern. Advancing age is associated with a decrease in cognitive function that ultimately affects quality of life. Understanding potential adverse effects of aging on brain blood flow and cognition may help to determine effective strategies to mitigate these effects on the population. Exercise may be one strategy to prevent or delay cognitive decline. This review describes how aging is associated with cardiovascular disease risks, vascular dysfunction, and increasing Alzheimer's disease pathology. It will also discuss the possible effects of aging on cerebral vascular physiology, cerebral perfusion, and brain atrophy rates. Clinically, these changes will present as reduced cognitive function, neurodegeneration, and the onset of dementia. Regular exercise has been shown to improve cognitive function, and we hypothesize that this occurs through beneficial adaptations in vascular physiology and improved neurovascular coupling. This review highlights the potential interactions and ideas of how the age-associated variables may affect cognition and may be moderated by regular exercise. PMID:26031719
Peterson, C A; Murphy, R J; Dupont-Versteegden, E E; Houlé, J D
2000-01-01
The potential of two interventions, alone or in combination, to restore chronic spinal cord transection-induced changes in skeletal muscles of adult Sprague-Dawley rats was studied. Hind limb skeletal muscles were examined in the following groups of animals: rats with a complete spinal cord transection (Tx) for 8 weeks; Tx with a 4-week delay before initiation of a 4-week motor-assisted cycling exercise (Ex) program; Tx with a 4-week delay before transplantation (Tp) of fetal spinal cord tissue into the lesion cavity; Tx with a 4-week delay before Tp and Ex; and uninjured control animals. Muscle mass, muscle to body mass ratios, and mean myofiber cross-sectional areas were significantly reduced 8 weeks after transection. Whereas transplantation of fetal spinal cord tissue did not reverse this atrophy and exercise alone had only a modest effect in restoring lost muscle mass, the combination of exercise and transplantation significantly increased muscle mass, muscle to body mass ratios, and mean myofiber cross-sectional areas in both soleus and plantaris muscles. Spinal cord injury (SCI) also caused changes in myosin heavy chain (MyHC) expression toward faster isoforms in both soleus and plantaris and increased soleus myofiber succinate dehydrogenase (SDH) activity. Combined exercise and transplantation led to a change in the expression of the fastest MyHC isoform in soleus but had no effect in the plantaris. Exercise alone and in combination with transplantation reduced SDH activity to control levels in the soleus. These results suggest a synergistic action of exercise and transplantation of fetal spinal cord tissue on skeletal muscle properties following SCI, even after an extended post-injury period before intervention.
Dietary thiols in exercise: oxidative stress defence, exercise performance, and adaptation.
McLeay, Yanita; Stannard, Stephen; Houltham, Stuart; Starck, Carlene
2017-01-01
Endurance athletes are susceptible to cellular damage initiated by excessive levels of aerobic exercise-produced reactive oxygen species (ROS). Whilst ROS can contribute to the onset of fatigue, there is increasing evidence that they play a crucial role in exercise adaptations. The use of antioxidant supplements such as vitamin C and E in athletes is common; however, their ability to enhance performance and facilitate recovery is controversial, with many studies suggesting a blunting of training adaptations with supplementation. The up-regulation of endogenous antioxidant systems brought about by exercise training allows for greater tolerance to subsequent ROS, thus, athletes may benefit from increasing these systems through dietary thiol donors. Recent work has shown supplementation with a cysteine donor (N-acetylcysteine; NAC) improves antioxidant capacity by augmenting glutathione levels and reducing markers of oxidative stress, as well as ergogenic potential through association with delayed fatigue in numerous experimental models. However, the use of this, and other thiol donors may have adverse physiological effects. A recent discovery for the use of a thiol donor food source, keratin, to potentially enhance endogenous antioxidants may have important implications for endurance athletes hoping to enhance performance and recovery without blunting training adaptations.
Pain-evoked trunk muscle activity changes during fatigue and DOMS.
Larsen, L H; Hirata, R P; Graven-Nielsen, T
2017-05-01
Muscle pain may reorganize trunk muscle activity but interactions with exercise-related muscle fatigue and delayed onset muscle soreness (DOMS) is to be clarified. In 19 healthy participants, the trunk muscle activity during 20 multi-directional unpredictable surface perturbations were recorded after bilateral isotonic saline injections (control) and during unilateral and bilateral hypertonic saline-induced low back pain (LBP) in conditions of back muscle fatigue (Day-1) and DOMS (Day-2). Pain intensity and distribution were assessed by visual analogue scale (VAS) scores and pain drawings. The degree of fatigue and DOMS were assessed by Likert scale scores. Root-mean-square electromyographic (RMS-EMG) signals were recorded post-perturbation from six bilateral trunk muscles and the difference from baseline conditions (Delta-RMS-EMG) was extracted and averaged across abdominal and back muscles. In DOMS, peak VAS scores were higher during bilateral control and bilateral saline-induced pain than fatigue (p < 0.001) and during bilateral compared with unilateral pain (p < 0.001). The saline-induced pain areas were larger during DOMS than fatigue (p < 0.01). In response to surface perturbations during fatigue and DOMS, the back muscle Delta-RMS-EMG increased during bilateral compared with unilateral pain and control injections (p < 0.001) and decreased during unilateral pain compared with control injections (p < 0.04). In DOMS compared with fatigue, the post-perturbation Delta-RMS-EMG in back muscles was higher during bilateral pain and lower during unilateral pain (p < 0.001). The abdominal Delta-RMS-EMG was not significantly affected. Facilitated and attenuated back muscle responses to surface perturbations in bilateral and unilateral LBP, respectively, was more expressed during exercise-induced back muscle soreness compared with fatigue. Back muscle activity decreased during unilateral and increased during bilateral pain after unpredictable surface perturbations during muscle fatigue and DOMS. Accumulation effects of DOMS on pain intensity and spreading and trunk muscle activity after pain-induction. © 2017 European Pain Federation - EFIC®.
Cardiac Autonomic and Blood Pressure Responses to an Acute Foam Rolling Session.
Lastova, Kevin; Nordvall, Michael; Walters-Edwards, Michelle; Allnutt, Amy; Wong, Alexei
2018-03-22
Foam Rolling (FR) is a self-myofascial release method that has become extremely popular among athletes and fitness enthusiasts for its ability to improve flexibility and range of motion and alleviate delayed onset muscle soreness. However, the cardiac autonomic modulation and blood pressure (BP) responses induced by an acute FR session are currently unknown. The present study evaluated the effects of an acute session of FR exercise on heart rate variability (HRV) and BP responses in healthy individuals. Fifteen (M=8, F=7) healthy subjects completed either a FR or non-exercise control trial in randomized order. HRV and BP measurements were collected at baseline, 10 and 30 min after each trial. There were significant increases (P < 0.01) in markers of vagal tone (nHF) for 30 min after the FR trial, while no changes from baseline were observed following control. There were also significant decreases (P < 0.05) in markers of sympathetic activity (nLF), sympathovagal balance (nLF/nHF), systolic BP and diastolic BP at 10 and 30 min after the trial KB trial while no changes from baseline were observed after the control trial. Our findings indicate that FR decreases sympathovagal balance for 30 min post-intervention which is concurrent with an important hypotensive effect. Further research is warranted to evaluate the potential cardiovascular protective effects of FR in diverse populations.
Perng, B C; Chen, M; Perng, J C; Jambazian, P
2017-01-01
Coconut oil has been widely used to improve health because there is much information available by word of mouth, in books, and on the internet. However, researchers still continue to search for the best diets to improve the quality of life, especially for people with cognitive decline. The aim of this review is to develop a novel dietary approach, the Keto-Mediet, which may help prevent the onset of Alzheimer's disease. Evidence gained through literature review from 1982 to 2015 on gene-by-diet interaction and lipid and glucose metabolism in the brains of Alzheimer's patients is converted into the new Keto-Mediet approach. The Keto-Mediet approach combines the benefits of a Ketogenic diet and a Mediterranean diet into a pyramidal model that is rich in various types of vitamins and substitutes coconuts for saturated animal fats. Limited glucose intake is intended to delay brain degeneration. A revised adult food pyramid was created to illustrate the principles of the Keto-Mediet approach. The Keto-Mediet approach represents and interprets food groups according to the revised adult food pyramid. This approach also encourages adherence to this healthy diet and lifestyle changes including exercise for people whose age ranges from 40 to 75 years. Those who comply with this approach will significantly enhance their knowledge and adopt a healthier lifestyle, as compared to those whose modern eating patterns are typically less healthy. Therefore, the Keto-Mediet approach can be applied in hopes of preventing and decreasing Alzheimer's disease in different ethnicities and cultural groups.
Creatine kinase response to high-intensity aerobic exercise in adult-onset muscular dystrophy.
Andersen, Søren P; Sveen, Marie-Louise; Hansen, Regitze S; Madsen, Karen L; Hansen, Jonas B; Madsen, Mads; Vissing, John
2013-12-01
We investigated the effect of high-intensity exercise on plasma creatine kinase (CK) in patients with muscular dystrophies. Fourteen patients with Becker (BMD), facioscapulohumeral (FSHD), or limb-girdle type 2 (LGMD2) muscular dystrophy, and 8 healthy subjects performed 5 cycling tests: an incremental max test, and tests at 65%, 75%, 85%, and 95% of maximal oxygen uptake (VO2max ). Heart rate and oxygen consumption were measured during the tests, and plasma CK was measured before, immediately after, and 24 hours after exercise. All subjects were able to perform high-intensity exercise at the different levels. In patients with LGMD2 and FSHD, CK normalized 24 hours after exercise compared with the pre-exercise value, whereas those with BMD and healthy controls had elevated CK values 24 hours after exercise. The findings suggest that high-intensity exercise is generally well tolerated in patients with LGMD2 and FSHD, whereas those with BMD may be more prone to exercise-induced damage. Copyright © 2013 Wiley Periodicals, Inc.
Opasich, C; Cobelli, F; Riccardi, G; La Rovere, M T; Calsamiglia, G; Specchia, G
1988-04-01
The anaerobic threshold (AT) has been proposed as an index to assess the functional status of patients with chronic heart failure. The focus of this report was to evaluate in post-myocardial infarction patients the utility of the AT for (a) assessing the severity of exercise-induced left ventricular impairment, (b) determining the responses obtained from different treatments and (c) prescribing exercise training. We found that the AT level was lower in patients with abnormal haemodynamic patterns during exercise. The AT was correlated to different degrees of exercise-induced left ventricular impairment. The nitrate and calcium-antagonist effects have been evaluated in patients with abnormal exercise haemodynamics. The resting and exertional results were in agreement with the vasodilator effects. Moreover, the time from onset of exercise to the appearance of the AT was significantly increased by the treatments. Thus, AT during pharmacological treatments may be a non-invasive useful parameter for assessing their haemodynamic effects. Finally, a 4-week intermittent training programme based on AT level was evaluated in patients with abnormal resting and exertional haemodynamics. The results showed an improvement of the exercise cardiovascular tolerance without negative effects on left ventricular function. Therefore, the AT seems to be useful when prescribing a rational and individualized training programme.
Zhang, Z; Guth, L; Steward, O
1998-01-01
Partial lesions of the mammalian spinal cord result in an immediate motor impairment that recovers gradually over time; however, the cellular mechanisms responsible for the transient nature of this paralysis have not been defined. A unique opportunity to identify those injury-induced cellular responses that mediate the recovery of function has arisen from the discovery of a unique mutant strain of mice in which the onset of Wallerian degeneration is dramatically delayed. In this strain of mice (designated WldS for Wallerian degeneration, slow), many of the cellular responses to spinal cord injury are also delayed. We have used this experimental animal model to evaluate possible causal relationships between these delayed cellular responses and the onset of functional recovery. For this purpose, we have compared the time course of locomotor recovery in C57BL/6 (control) mice and in WldS (mutant) mice by hemisecting the spinal cord at T8 and evaluating locomotor function at daily postoperative intervals. The time course of locomotor recovery (as determined by the Tarlov open-field walking procedure) was substantially delayed in mice carrying the WldS mutation: C57BL/6 control mice began to stand and walk within 6 days (mean Tarlov score of 4), whereas mutant mice did not exhibit comparable locomotor function until 16 days postoperatively. (a) The rapid return of locomotor function in the C57BL/6 mice suggests that the recovery resulted from processes of functional plasticity rather than from regeneration or collateral sprouting of nerve fibers. (b) The marked delay in the return of locomotor function in WldS mice indicates that the processes of neuroplasticity are induced by degenerative changes in the damaged neurons. (c) These strains of mice can be effectively used in future studies to elucidate the specific biochemical and physiological alterations responsible for inducing functional plasticity and restoring locomotor function after spinal cord injury.
Tshomba, Yamume; Psacharopulo, Daniele; Frezza, Serena; Marone, Enrico Maria; Astore, Domenico; Chiesa, Roberto
2014-04-01
The aim of this study was to determine predictors of improved quality of life and claudication in patients undergoing spinal cord stimulation (SCS) for critical lower limb ischemia. We retrospectively analyzed 101 consecutive patients with few meter claudication and nonhealing ulcer who underwent definitive SCS. These patients were selected among 274 SCS patients treated at our center from 1995 to 2012. All presented with non-reconstructable critical leg ischemia (NR-CLI) and underwent supervised exercise therapy, best medical care and regular ulcers standard or advanced medications for at least 1 month before SCS implantation. We measured self-perceived quality of life using the SF-36 questionnaire. Patients with an improved walking distance of at least 30 meters after SCS had significant improvement on SF-36 questionnaire scores. We considered 30 meters as the cut-off for clinically significant improvement in pain-free walking distance, and we defined this value as functional success. Logistic regression was applied to assess baseline and other patient variables as possible predictors of functional success. Neither perioperative mortality nor significant complications were found. At a median follow-up of 69 months (range 1-202 months), mortality, major amputation, and minor amputation were 8.9%, 5.9%, and 6.9%, respectively. Functional clinical success was reported in 25.7% of cases. Independent predictors of functional success at univariate analysis included delay between the onset of the ulcer and SCS (P < 0.001) and the pain-free walking distance before SCS (P < 0.002). The only predictive factor of functional success at multivariate analysis was the delay between the onset of ulcer and SCS (median delay in patients with and without functional success was 3 and 15 months, respectively). In particular, comparable to pain-free walking distance before SCS, the success rate decreased by 40% for each month elapsed from onset of ulcer to SCS. In our series of patients who underwent SCS, reduced delay between the onset of ulcer and SCS was associated with improved quality of life and walking distance. Larger series are required to confirm these data and to assess clinical implications. Copyright © 2014 Elsevier Inc. All rights reserved.
Adrenal hormones and liver cAMP in exercising rats--different modes of anesthesia.
Winder, W W; Fuller, E O; Conlee, R K
1983-11-01
We have compared five different modes of anesthesia (iv and ip pentobarbital sodium, ether, CO2, and cervical dislocation) with respect to their effects on liver glycogen, liver adenosine 3',5'-cyclic monophosphate (cAMP), blood glucose and lactate, plasma corticosterone, norepinephrine, and epinephrine in resting rats and in rats run on a treadmill at 26 m/min for 30 min. Ether, CO2, and cervical dislocation were found to be unsuitable due to the marked elevation in plasma catecholamines seen in both resting and exercising rats. Injection of pentobarbital sodium ip required an average of 8 min before onset of surgical anesthesia as opposed to less than 5 s for iv pentobarbital. Exercising rats anesthetized with ip pentobarbital showed markedly lower plasma catecholamines compared with rats given iv pentobarbital. Hepatic cAMP increased in response to exercise in all groups except the ip pentobarbital group. This is most likely due to the long delay between the end of the exercise and freezing of the liver in the ip pentobarbital-anesthetized animals. We conclude that iv injection of pentobarbital is the most suitable method of anesthesia for obtaining accurate measurements of plasma stress hormones, substrates, and metabolites and of hepatic cAMP and glycogen in resting and exercising rats.
Kim, Jakyung; Shin, Kyuchul; Seo, Yutaek; Cho, Seong Jun; Lee, Ju Dong
2014-07-31
This study investigates the hydrate inhibition performance of monoethylene glycol (MEG) with poly(vinylcaprolactam) (PVCap) for retarding the hydrate onset as well as preventing the agglomeration of hydrate particles. A high-pressure autoclave was used to determine the hydrate onset time, subcooling temperature, hydrate fraction in the liquid phase, and torque changes during hydrate formation in pure water, 0.2 wt % PVCap solution, and 20 and 30 wt % MEG solutions. In comparison to water with no inhibitors, the addition of PVCap delays the hydrate onset time but cannot reduce the hydrate fraction, leading to a sharp increase in torque. The 20 and 30 wt % MEG solutions also delay the hydrate onset time slightly and reduce the hydrate fraction to 0.15. The addition of 0.2 wt % PVCap to the 20 wt % MEG solution, however, delays the hydrate onset time substantially, and the hydrate fraction was less than 0.19. The torque changes were negligible during the hydrate formation, suggesting the homogeneous dispersion of hydrate particles in the liquid phase. The well-dispersed hydrate particles do not agglomerate or deposit under stirring. Moreover, when 0.2 wt % PVCap was added to the 30 wt % MEG solution, no hydrate formation was observed for at least 24 h. These results suggest that mixing of MEG with a small amount of PVCap in underinhibited conditions will induce the synergistic inhibition of hydrate by delaying the hydrate onset time as well as preventing the agglomeration and deposition of hydrate particles. Decreasing the hydrate fraction in the liquid phase might be the reason for negligible torque changes during the hydrate formation in the 0.2 wt % PVCap and 20 wt % MEG solution. Simple structure II was confirmed by in situ Raman spectroscopy for the synergistic inhibition system, while coexisting structures I and II are observed in 0.2 wt % PVCap solution.
The effect of exhausting aerobic exercise on the timing of anticipatory postural adjustments.
Strang, A J; Choi, H J; Berg, W P
2008-03-01
The aim of the study was to investigate the influence of exhausting aerobic exercise on the timing of anticipatory postural adjustments (APAs). The APAs of 12 participants were recorded at baseline, after a .VO2max running test, and again following a 45-min rest period. APAs were induced using a rapid bilateral arm-raising maneuver, and were analyzed in the rectus abdominis, hamstring group, gluteal group, and lumbar and thoracic paraspinal muscles using electromyography. Postural stability was assessed by monitoring anterior/posterior displacement of the center of pressure using a force plate. We hypothesized that APA onset would be ear lier following exhausting aerobic exercise as compared to the baseline measures, but that this effect would be transient (i.e., APA onset following the rest period would not differ from that at baseline). Exhausting aerobic exercise resulted in a significantly earlier APA in one of the 5 muscles evaluated, the thoracic paraspinal group, and this effect persisted 45-min postexercise. Exhausting aerobic exercise did not affect postural stability during the rapid arm-raising maneuver. The findings lend tentative support for the notion that earlier APAs constitute a functional adaptation by the motor system to maintain postural stability in the presence of fatigue.
Control of skeletal muscle perfusion at the onset of dynamic exercise
NASA Technical Reports Server (NTRS)
Delp, M. D.
1999-01-01
At the onset of exercise there is a rapid increase in skeletal muscle vascular conductance and blood flow. Several mechanisms involved in the regulation of muscle perfusion have been proposed to initiate this hyperemic response, including neural, metabolic, endothelial, myogenic, and muscle pump mechanisms. Investigators utilizing pharmacological blockade of cholinergic muscarinic receptors and sympathectomy have concluded that neither sympathetic cholinergic nor adrenergic neural mechanisms are involved in the initial hyperemia. Studies have also shown that the time course for vasoactive metabolite release, diffusion, accumulation, and action is too long to account for the rapid increase in vascular conductance at the initiation of exercise. Furthermore, there is little or no evidence to support an endothelium or myogenic mechanism as the initiating factor in the muscle hyperemia. Thus, the rise in muscle blood flow does not appear to be explained by known neural, metabolic, endothelial, or myogenic influences. However, the initial hyperemia is consistent with the mechanical effects of the muscle pump to increase the arteriovenous pressure gradient across muscle. Because skeletal muscle blood flow is regulated by multiple and redundant mechanisms, it is likely that neural, metabolic, and possibly endothelial factors become important modulators of mechanically induced exercise hyperemia following the first 5-10 s of exercise.
Exercise: the lifelong supplement for healthy ageing and slowing down the onset of frailty.
Viña, Jose; Rodriguez-Mañas, Leocadio; Salvador-Pascual, Andrea; Tarazona-Santabalbina, Francisco José; Gomez-Cabrera, Mari Carmen
2016-04-15
The beneficial effects of exercise have been well recognized for over half a century. Dr Jeremy Morris's pioneering studies in the fifties showed a striking difference in cardiovascular disease between the drivers and conductors on the double-decker buses in London. These studies sparked off a vast amount of research on the effects of exercise in health, and the general consensus is that exercise contributes to improved outcomes and treatment for several diseases including osteoporosis, diabetes, depression and atherosclerosis. Evidence of the beneficial effects of exercise is reviewed here. One way of highlighting the impact of exercise on disease is to consider it from the perspective of good practice. However, the intensity, duration, frequency (dosage) and counter indications of the exercise should be taken into consideration to individually tailor the exercise programme. An important case of the beneficial effect of exercise is that of ageing. Ageing is characterized by a loss of homeostatic mechanisms, on many occasions leading to the development of frailty, and hence frailty is one of the major geriatric syndromes and exercise is very useful to mitigate, or at least delay, it. Since exercise is so effective in reducing frailty, we would like to propose that exercise be considered as a supplement to other treatments. People all over the world have been taking nutritional supplements in the hopes of improving their health. We would like to think of exercise as a physiological supplement not only for treating diseases, but also for improving healthy ageing. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.
Exercise: the lifelong supplement for healthy ageing and slowing down the onset of frailty
Rodriguez‐Mañas, Leocadio; Salvador‐Pascual, Andrea; Tarazona‐Santabalbina, Francisco José; Gomez‐Cabrera, Mari Carmen
2016-01-01
Abstract The beneficial effects of exercise have been well recognized for over half a century. Dr Jeremy Morris's pioneering studies in the fifties showed a striking difference in cardiovascular disease between the drivers and conductors on the double‐decker buses in London. These studies sparked off a vast amount of research on the effects of exercise in health, and the general consensus is that exercise contributes to improved outcomes and treatment for several diseases including osteoporosis, diabetes, depression and atherosclerosis. Evidence of the beneficial effects of exercise is reviewed here. One way of highlighting the impact of exercise on disease is to consider it from the perspective of good practice. However, the intensity, duration, frequency (dosage) and counter indications of the exercise should be taken into consideration to individually tailor the exercise programme. An important case of the beneficial effect of exercise is that of ageing. Ageing is characterized by a loss of homeostatic mechanisms, on many occasions leading to the development of frailty, and hence frailty is one of the major geriatric syndromes and exercise is very useful to mitigate, or at least delay, it. Since exercise is so effective in reducing frailty, we would like to propose that exercise be considered as a supplement to other treatments. People all over the world have been taking nutritional supplements in the hopes of improving their health. We would like to think of exercise as a physiological supplement not only for treating diseases, but also for improving healthy ageing. PMID:26872560
Effects of exercise on capillaries in the white matter of transgenic AD mice
Zhang, Yi; Chao, Feng-Lei; Zhou, Chun-Ni; Jiang, Lin; Zhang, Lei; Chen, Lin-Mu; Luo, Yan-Min; Xiao, Qian; Tang, Yong
2017-01-01
Previous studies have shown that exercise can prevent white matter atrophy in APP/PS1 transgenic Alzheimer’s disease (AD) mice. However, the mechanism of this protective effect remains unknown. To further understand this issue, we investigated the effects of exercise on the blood supply of white matter in transgenic AD mice. Six-month-old male APP/PS1 mice were randomly divided into a control group and a running group, and age-matched non-transgenic littermates were used as a wild-type control group. Mice in the running group ran on a treadmill at low intensity for four months. Then, spatial learning and memory abilities, white matter and white matter capillaries were examined in all mice. The 10-month-old AD mice exhibited deficits in cognitive function, and 4 months of exercise improved these deficits. The white matter volume and the total length, total volume and total surface area of the white matter capillaries were decreased in the 10-month-old AD mice, and 4 months of exercise dramatically delayed the changes in these parameters in the AD mice. Our results demonstrate that even low-intensity running exercise can improve spatial learning and memory abilities, delay white matter atrophy and protect white matter capillaries in early-stage AD mice. Protecting capillaries might be an important structural basis for the exercise-induced protection of the structural integrity of white matter in AD. PMID:29029478
Effects of exercise on capillaries in the white matter of transgenic AD mice.
Zhang, Yi; Chao, Feng-Lei; Zhou, Chun-Ni; Jiang, Lin; Zhang, Lei; Chen, Lin-Mu; Luo, Yan-Min; Xiao, Qian; Tang, Yong
2017-09-12
Previous studies have shown that exercise can prevent white matter atrophy in APP/PS1 transgenic Alzheimer's disease (AD) mice. However, the mechanism of this protective effect remains unknown. To further understand this issue, we investigated the effects of exercise on the blood supply of white matter in transgenic AD mice. Six-month-old male APP/PS1 mice were randomly divided into a control group and a running group, and age-matched non-transgenic littermates were used as a wild-type control group. Mice in the running group ran on a treadmill at low intensity for four months. Then, spatial learning and memory abilities, white matter and white matter capillaries were examined in all mice. The 10-month-old AD mice exhibited deficits in cognitive function, and 4 months of exercise improved these deficits. The white matter volume and the total length, total volume and total surface area of the white matter capillaries were decreased in the 10-month-old AD mice, and 4 months of exercise dramatically delayed the changes in these parameters in the AD mice. Our results demonstrate that even low-intensity running exercise can improve spatial learning and memory abilities, delay white matter atrophy and protect white matter capillaries in early-stage AD mice. Protecting capillaries might be an important structural basis for the exercise-induced protection of the structural integrity of white matter in AD.
Beaudin, Andrew E; Clegg, Miriam E; Walsh, Michael L; White, Matthew D
2009-09-01
Hyperthermia-induced hyperventilation has been proposed to be a human thermolytic thermoregulatory response and to contribute to the disproportionate increase in exercise ventilation (VE) relative to metabolic needs during high-intensity exercise. In this study it was hypothesized that VE would adapt similar to human eccrine sweating (E(SW)) following a passive heat acclimation (HA). All participants performed an incremental exercise test on a cycle ergometer from rest to exhaustion before and after a 10-day passive exposure for 2 h/day to either 50 degrees C and 20% relative humidity (RH) (n = 8, Acclimation group) or 24 degrees C and 32% RH (n = 4, Control group). Attainment of HA was confirmed by a significant decrease (P = 0.025) of the esophageal temperature (T(es)) threshold for the onset of E(SW) and a significantly elevated E(SW) (P < or = 0.040) during the post-HA exercise tests. HA also gave a significant decrease in resting T(es) (P = 0.006) and a significant increase in plasma volume (P = 0.005). Ventilatory adaptations during exercise tests following HA included significantly decreased T(es) thresholds (P < or = 0.005) for the onset of increases in the ventilatory equivalents for O(2) (VE/VO(2)) and CO(2) (VE/VCO(2)) and a significantly increased VE (P < or = 0.017) at all levels of T(es). Elevated VE was a function of a significantly greater tidal volume (P = 0.003) at lower T(es) and of breathing frequency (P < or = 0.005) at higher T(es). Following HA, the ventilatory threshold was uninfluenced and the relationships between VO(2) and either VE/VO(2) or VE/VCO(2) did not explain the resulting hyperventilation. In conclusion, the results support that exercise VE following passive HA responds similarly to E(SW), and the mechanism accounting for this adaptation is independent of changes of the ventilatory threshold or relationships between VO(2) with each of VE/VO(2) and VE/VCO(2).
Yoshida, Midori; Takahashi, Miwa; Inoue, Kaoru; Hayashi, Seigo; Maekawa, Akihiko; Nishikawa, Akiyoshi
2011-08-01
Neonatal exposure to estrogenic chemicals causes irreversible complex damage to the hypothalamus-pituitary-gonadal axis and reproductive system in females. Some lesions are noted after maturation as delayed adverse effects. We investigated the characteristics and dose dependence of delayed effects using female rats neonatally exposed to diethylstilbestrol (DES). Female Donryu rats were subcutaneously injected with a single dose of DES of 0 (control), 0.15, 1.5, 15, 150, or 1,500 µg/kg bw after birth. All except the lowest dose had estrogenic activity in a uterotrophic assay. All rats at 1500 µg/kg and some at 150 µg/kg showed abnormal morphologies in the genital tract, indicating they were androgenized before maturation. Although no morphological abnormalities were noted at 15 µg/kg or lower, onset of persistent estrus was significantly accelerated in the 1.5, 15, and 150 µg/kg groups with dose dependency, and the latest onset was from seventeen to twenty-one weeks of age at 1.5 µg/kg. The neonatal exposure to DES increased uterine adenocarcinoma development only at 150 µg/kg, although uterine anomalies were detected at 1,500 µg/kg. These results indicate that neonatal exposure to DES, which exerts estrogenic activity in vivo, induces delayed adverse effects in female rats in a dose-dependent manner. Early onset of persistent estrus appears to be the most sensitive parameter.
Temporal characteristics of exercise-induced diaphragmatic fatigue.
Archiza, Bruno; Welch, Joseph F; Geary, Caitlin M; Allen, Grayson P; Borghi-Silva, Audrey; Sheel, A William
2018-04-01
There is evidence suggesting diaphragmatic fatigue (DF) occurs relatively early during high-intensity exercise; however, studies investigating the temporal characteristics of exercise-induced DF are limited by incongruent methodology. Eight healthy adult males (25 ± 5 yr) performed a maximal incremental exercise test on a cycle ergometer on day 1. A constant-load time-to-exhaustion (TTE) exercise test was conducted on day 2 at 60% delta between the calculated gas exchange threshold and peak work rate. Two additional constant-load exercise tests were performed at the same intensity on days 3 and 4 in a random order to either 50 or 75% TTE. DF was assessed on days 2, 3, and 4 by measuring transdiaphragmatic twitch pressure (P di,tw ) in response to cervical magnetic stimulation. DF was present after 75 and 100% TTE (≥20% decrease in P di,tw ). The magnitude of fatigue was 15.5 ± 5.7%, 23.6 ± 6.4%, and 35.0 ± 12.1% at 50, 75, and 100% TTE, respectively. Significant differences were found between 100 to 75 and 50% TTE (both P < 0.01), and 75 to 50% TTE ( P < 0.01). There was a significant relationship between the magnitude of fatigue and cumulative diaphragm force output ( r = 0.785; P < 0.001). Ventilation, the mechanical work of breathing (WOB), and pressure-time products were not different between trials ( P > 0.05). Our data indicate that exercise-induced DF presents a relatively late onset and is proportional to the cumulative WOB; thus the ability of the diaphragm to generate pressure progressively declines throughout exercise. NEW & NOTEWORTHY The notion that diaphragmatic fatigue (DF) occurs relatively early during exercise is equivocal. Our results indicate that DF occurs during high-intensity endurance exercise in healthy men and its magnitude is strongly related to the amount of pressure and work generated by respiratory muscles. Thus we conclude that the work of breathing is the major determinant of exercise-induced DF.
Carroll, Sean; Dudfield, Mike
2004-01-01
Prevention of the metabolic syndrome and treatment of its main characteristics are now considered of utmost importance in order to combat the epidemic of type 2 diabetes mellitus and to reduce the increased risk of cardiovascular disease and all-cause mortality. Insulin resistance/hyperinsulinaemia are consistently linked with a clustering of multiple clinical and subclinical metabolic risk factors. It is now widely recognised that obesity (especially abdominal fat accumulation), hyperglycaemia, dyslipidaemia and hypertension are common metabolic traits that, concurrently, constitute the distinctive insulin resistance or metabolic syndrome. Cross-sectional and prospective data provide an emerging picture of associations of both physical activity habits and cardiorespiratory fitness with the metabolic syndrome. The metabolic syndrome, is a disorder that requires aggressive multi-factorial intervention. Recent treatment guidelines have emphasised the clinical utility of diagnosis and an important treatment role for 'therapeutic lifestyle change', incorporating moderate physical activity. Several previous narrative reviews have considered exercise training as an effective treatment for insulin resistance and other components of the syndrome. However, the evidence cited has been less consistent for exercise training effects on several metabolic syndrome variables, unless combined with appropriate dietary modifications to achieve weight loss. Recently published randomised controlled trial data concerning the effects of exercise training on separate metabolic syndrome traits are evaluated within this review. Novel systematic review and meta-analysis evidence is presented indicating that supervised, long-term, moderate to moderately vigorous intensity exercise training, in the absence of therapeutic weight loss, improves the dyslipidaemic profile by raising high density lipoprotein-cholesterol and lowering triglycerides in overweight and obese adults with characteristics of the metabolic syndrome. Lifestyle interventions, including exercise and dietary-induced weight loss may improve insulin resistance and glucose tolerance in obesity states and are highly effective in preventing or delaying the onset of type 2 diabetes in individuals with impaired glucose regulation. Randomised controlled trial evidence also indicates that exercise training decreases blood pressure in overweight/obese individuals with high normal blood pressure and hypertension. These evidence-based findings continue to support recommendations that supervised or partially supervised exercise training is an important initial adjunctive step in the treatment of individuals with the metabolic syndrome. Exercise training should be considered an essential part of 'therapeutic lifestyle change' and may concurrently improve insulin resistance and the entire cluster of metabolic risk factors. Copyright 2004 Adis Data Information BV
Benson, Curtis; Paylor, John W; Tenorio, Gustavo; Winship, Ian; Baker, Glen; Kerr, Bradley J
2015-09-01
Multiple sclerosis (MS) is classically defined by motor deficits, but it is also associated with the secondary symptoms of pain, depression, and anxiety. Up to this point modifying these secondary symptoms has been difficult. There is evidence that both MS and the animal model experimental autoimmune encephalomyelitis (EAE), commonly used to study the pathophysiology of the disease, can be modulated by exercise. To examine whether limited voluntary wheel running could modulate EAE disease progression and the co-morbid symptoms of pain, mice with EAE were allowed access to running wheels for 1h every day. Allowing only 1h every day of voluntary running led to a significant delay in the onset of clinical signs of the disease. The development of mechanical allodynia was assessed using Von Frey hairs and indicated that wheel running had a modest positive effect on the pain hypersensitivity associated with EAE. These behavioral changes were associated with reduced numbers of cFOS and phosphorylated NR1 positive cells in the dorsal horn of the spinal cord compared to no-run EAE controls. In addition, within the dorsal horn, voluntary wheel running reduced the number of infiltrating CD3(+) T-cells and reduced the overall levels of Iba1 immunoreactivity. Using high performance liquid chromatography (HPLC), we observed that wheel-running lead to significant changes in the spinal cord levels of the antioxidant glutathione. Oxidative stress has separately been shown to contribute to EAE disease progression and neuropathic pain. Together these results indicate that in mice with EAE, voluntary motor activity can delay the onset of clinical signs and reduce pain symptoms associated with the disease. Copyright © 2015 Elsevier Inc. All rights reserved.
Effect of wheel-running during abstinence on subsequent nicotine-seeking in rats.
Sanchez, Victoria; Moore, Catherine F; Brunzell, Darlene H; Lynch, Wendy J
2013-06-01
Exercise appears to be a promising non-pharmacological treatment for nicotine addiction that may be useful for the vulnerable adolescent population. The aim of this study is to determine if wheel-running, an animal model of aerobic exercise, during an abstinence period would decrease subsequent nicotine-seeking in rats that had extended access to nicotine self-administration during adolescence. Male adolescent rats (n = 55) were trained to self-administer saline or nicotine infusions (5 or 10 μg/kg) under a fixed ratio 1 schedule with a maximum of 20 infusions/day beginning on postnatal day 30. After 5 days, access was extended to 23 h/day with unlimited infusions for a total of 10 days. After the last self-administration session, rats were moved to polycarbonate cages for a 10-day abstinence period where they either had access to a locked or unlocked running wheel for 2 h/day. Nicotine-seeking was examined following the 10th day of abstinence under a within-session extinction/cue-induced reinstatement paradigm. Intake was higher at the 10 μg/kg dose as compared to the 5 μg/kg dose; however, intake did not differ within doses prior to wheel assignment. Compared to saline controls, rats that self-administered nicotine at either dose showed a significant increase in drug-seeking during extinction, and consistent with our hypothesis, exercise during abstinence attenuated this effect. Nicotine led to modest but significant levels of cue-induced reinstatement; however, in this adolescent-onset model, levels were variable and not affected by exercise. Exercise may effectively reduce relapse vulnerability for adolescent-onset nicotine addiction.
Effect of wheel-running during abstinence on subsequent nicotine-seeking in rats
Sanchez, Victoria; Moore, Catherine F; Brunzell, Darlene H; Lynch, Wendy J
2013-01-01
Rationale Exercise appears to be a promising non-pharmacological treatment for nicotine addiction that may be useful for the vulnerable adolescent population. Objectives To determine if wheel running, an animal model of aerobic exercise, during an abstinence period would decrease subsequent nicotine-seeking in rats that had extended access to nicotine self-administration during adolescence. Methods Male adolescent rats (n = 55) were trained to self-administer saline or nicotine infusions (5 or 10 μg/kg) under a fixed ratio 1 schedule with a maximum of 20 infusions/day beginning on postnatal day 30. After 5 days, access was extended to 23-hr/day with unlimited infusions for a total of 10 days. After the last self-administration session, rats were moved to polycarbonate cages for a 10-day abstinence period where they either had access to a locked or unlocked running wheel for 2-hr/day. Nicotine-seeking was examined following the 10th day of abstinence under a within-session extinction/cue-induced reinstatement paradigm. Results Intake was higher at the 10 μg/kg dose as compared to the 5 μg/kg dose; however, intake did not differ within doses prior to wheel assignment. Compared to saline controls, rats that self-administered nicotine at either dose showed a significant increase in drug-seeking during extinction, and consistent with our hypothesis, exercise during abstinence attenuated this effect. Nicotine led to modest, but significant levels of cue-induced reinstatement; however, in this adolescent-onset model, levels were variable and not affected by exercise. Conclusions Exercise may effectively reduce relapse vulnerability for adolescent-onset nicotine addiction. PMID:23371488
USDA-ARS?s Scientific Manuscript database
We have shown that in cattle previously immunized with outer membrane proteins, infection with Anaplasma marginale induces a functionally exhausted CD4 T-cell response to the A. marginale immunogen. Furthermore, T-cell responses following infection in nonimmunized cattle had a delayed onset and were...
Does infrared or ultraviolet light damage the lens?
Söderberg, P G; Talebizadeh, N; Yu, Z; Galichanin, K
2016-01-01
In daylight, the human eye is exposed to long wavelength ultraviolet radiation (UVR), visible radiation and short wavelength infrared radiation (IRR). Almost all the UVR and a fraction of the IRR waveband, respectively, left over after attenuation in the cornea, is absorbed in the lens. The time delay between exposure and onset of biological response in the lens varies from immediate-to-short-to-late. After exposure to sunlight or artificial sources, generating irradiances of the same order of magnitude or slightly higher, biological damage may occur photochemically or thermally. Epidemiological studies suggest a dose-dependent association between short wavelength UVR and cortical cataract. Experimental data infer that repeated daily in vivo exposures to short wavelength UVR generate photochemically induced damage in the lens, and that short delay onset cataract after UVR exposure is photochemically induced. Epidemiology suggests that daily high-intensity short wavelength IRR exposure of workers, is associated with a higher prevalence of age-related cataract. It cannot be excluded that this effect is owing to a thermally induced higher denaturation rate. Recent experimental data rule out a photochemical effect of 1090 nm in the lens but other wavelengths in the near IRR should be investigated. PMID:26768915
Zhao, Zhenying; Yin, Yongqiang; Wu, Hong; Jiang, Min; Lou, Jianshi; Bai, Gang; Luo, Guo'an
2013-01-01
Arctigenin possesses biological activities, but its underlying mechanisms at the cellular and ion channel levels are not completely understood. Therefore, the present study was designed to identify the anti-arrhythmia effect of arctigenin in vivo, as well as its cellular targets and mechanisms. A rat arrhythmia model was established via continuous aconitine infusion, and the onset times of ventricular premature contraction, ventricular tachycardia and death were recorded. The Action Potential Duration (APD), sodium current (I(Na)), L-type calcium current (I(Ca, L)) and transient outward potassium current (I(to)) were measured and analysed using a patch-clamp recording technique in normal rat cardiomyocytes and myocytes of arrhythmia aconitine-induced by. Arctigenin significantly delayed the arrhythmia onset in the aconitine-induced rat model. The 50% and 90% repolarisations (APD50 and APD90) were shortened by 100 µM arctigenin; the arctigenin dose also inhibited the prolongation of APD50 and APD90 caused by 1 µM aconitine. Arctigenin inhibited I(Na) and I(Ca,L) and attenuated the aconitine-increased I(Na) and I(Ca,L) by accelerating the activation process and delaying the inactivation process. Arctigenin enhanced Ito by facilitating the activation process and delaying the inactivation process, and recoverd the decreased Ito induced by aconitine. Arctigenin has displayed anti-arrhythmia effects, both in vivo and in vitro. In the context of electrophysiology, I(Na), I(Ca, L), and I(to) may be multiple targets of arctigenin, leading to its antiarrhythmic effect. © 2013 S. Karger AG, Basel.
Marigold, Daniel S; Eng, Janice J; Dawson, Andrew S; Inglis, J Timothy; Harris, Jocelyn E; Gylfadóttir, Sif
2005-03-01
To determine the effect of two different community-based group exercise programs on functional balance, mobility, postural reflexes, and falls in older adults with chronic stroke. A randomized, clinical trial. Community center. Sixty-one community-dwelling older adults with chronic stroke. Participants were randomly assigned to an agility (n=30) or stretching/weight-shifting (n=31) exercise group. Both groups exercised three times a week for 10 weeks. Participants were assessed before, immediately after, and 1 month after the intervention for Berg Balance, Timed Up and Go, step reaction time, Activities-specific Balance Confidence, and Nottingham Health Profile. Testing of standing postural reflexes and induced falls evoked by a translating platform was also performed. In addition, falls in the community were tracked for 1 year from the start of the interventions. Although exercise led to improvements in all clinical outcome measures for both groups, the agility group demonstrated greater improvement in step reaction time and paretic rectus femoris postural reflex onset latency than the stretching/weight-shifting group. In addition, the agility group experienced fewer induced falls on the platform. Group exercise programs that include agility or stretching/weight shifting exercises improve postural reflexes, functional balance, and mobility and may lead to a reduction of falls in older adults with stroke.
Increased respiratory neural drive and work of breathing in exercise-induced laryngeal obstruction.
Walsted, Emil S; Faisal, Azmy; Jolley, Caroline J; Swanton, Laura L; Pavitt, Matthew J; Luo, Yuan-Ming; Backer, Vibeke; Polkey, Michael I; Hull, James H
2018-02-01
Exercise-induced laryngeal obstruction (EILO), a phenomenon in which the larynx closes inappropriately during physical activity, is a prevalent cause of exertional dyspnea in young individuals. The physiological ventilatory impact of EILO and its relationship to dyspnea are poorly understood. The objective of this study was to evaluate exercise-related changes in laryngeal aperture on ventilation, pulmonary mechanics, and respiratory neural drive. We prospectively evaluated 12 subjects (6 with EILO and 6 healthy age- and gender-matched controls). Subjects underwent baseline spirometry and a symptom-limited incremental exercise test with simultaneous and synchronized recording of endoscopic video and gastric, esophageal, and transdiaphragmatic pressures, diaphragm electromyography, and respiratory airflow. The EILO and control groups had similar peak work rates and minute ventilation (V̇e) (work rate: 227 ± 35 vs. 237 ± 35 W; V̇e: 103 ± 20 vs. 98 ± 23 l/min; P > 0.05). At submaximal work rates (140-240 W), subjects with EILO demonstrated increased work of breathing ( P < 0.05) and respiratory neural drive ( P < 0.05), developing in close temporal association with onset of endoscopic evidence of laryngeal closure ( P < 0.05). Unexpectedly, a ventilatory increase ( P < 0.05), driven by augmented tidal volume ( P < 0.05), was seen in subjects with EILO before the onset of laryngeal closure; there were however no differences in dyspnea intensity between groups. Using simultaneous measurements of respiratory mechanics and diaphragm electromyography with endoscopic video, we demonstrate, for the first time, increased work of breathing and respiratory neural drive in association with the development of EILO. Future detailed investigations are now needed to understand the role of upper airway closure in causing exertional dyspnea and exercise limitation. NEW & NOTEWORTHY Exercise-induced laryngeal obstruction is a prevalent cause of exertional dyspnea in young individuals; yet, how laryngeal closure affects breathing is unknown. In this study we synchronized endoscopic video with respiratory physiological measurements, thus providing the first detailed commensurate assessment of respiratory mechanics and neural drive in relation to laryngeal closure. Laryngeal closure was associated with increased work of breathing and respiratory neural drive preceded by an augmented tidal volume and a rise in minute ventilation.
Sasaki, Hiroyuki; Hattori, Yuta; Ikeda, Yuko; Kamagata, Mayo; Shibata, Shigenobu
2015-06-01
Mice that exercise after meals gain less body weight and visceral fat compared to those that exercised before meals under a one meal/exercise time per day schedule. Humans generally eat two or three meals per day, and rarely have only one meal. To extend our previous observations, we examined here whether a "two meals, two exercise sessions per day" schedule was optimal in terms of maintaining a healthy body weight. In this experiment, "morning" refers to the beginning of the active phase (the "morning" for nocturnal animals). We found that 2-h feeding before 2-h exercise in the morning and evening (F-Ex/F-Ex) resulted in greater attenuation of high fat diet (HFD)-induced weight gain compared to other combinations of feeding and exercise under two daily meals and two daily exercise periods. There were no significant differences in total food intake and total wheel counts, but feeding before exercise in the morning groups (F-Ex/F-Ex and F-Ex/Ex-F) increased the morning wheel counts. These results suggest that habitual exercise after feeding in the morning and evening is more effective for preventing HFD-induced weight gain. We also determined whether there were any correlations between food intake, wheel rotation, visceral fat volume and skeletal muscle volumes. We found positive associations between gastrocnemius muscle volumes and morning wheel counts, as well as negative associations between morning food intake volumes/body weight and morning wheel counts. These results suggest that morning exercise-induced increase of muscle volume may refer to anti-obesity. Evening exercise is negatively associated with fat volume increases, suggesting that this practice may counteract fat deposition. Our multifactorial analysis revealed that morning food intake helps to increase exercise, and that evening exercise reduced fat volumes. Thus, exercise in the morning or evening is important for preventing the onset of obesity.
Stefanko, D P; Shah, V D; Yamasaki, W K; Petzinger, G M; Jakowec, M W
2017-09-01
Depression, cognitive impairments, and other neuropsychiatric disturbances are common during the prodromal phase of Huntington's disease (HD) well before the onset of classical motor symptoms of this degenerative disorder. The purpose of this study was to examine the potential impact of physical activity in the form of exercise on a motorized treadmill on non-motor behavioral features including depression-like behavior and cognition in the CAG 140 knock-in (KI) mouse model of HD. The CAG 140 KI mouse model has a long lifespan compared to other HD rodent models with HD motor deficits emerging after 12months of age and thus provides the opportunity to investigate early life interventions such as exercise on disease progression. Motorized treadmill running was initiated at 4weeks of age (1h per session, 3 times per week) and continued for 6months. Non-motor behaviors were assessed up to 6months of age and included analysis of depression-like behavior (using the tail-suspension and forced-swim tests) and cognition (using the T-maze and object recognition tests). At both 4 and 6months of age, CAG 140 KI mice displayed significant depression-like behavior in the forced swim and tail suspension tests and cognitive impairment by deficits in reversal relearning in the T-maze test. These deficits were not evident in mice engaged in treadmill running. In addition, exercise restored striatal dopamine D2 receptor expression and dopamine neurotransmitter levels both reduced in sedentary HD mice. Finally, we examined the pattern of striatal expression of mutant huntingtin (mHTT) protein and showed that the number and intensity of immunohistochemical staining patterns of intranuclear aggregates were significantly reduced with exercise. Altogether these findings begin to address the potential impact of lifestyle and early intervention such as exercise on modifying HD progression. Copyright © 2017 Elsevier Inc. All rights reserved.
Butera, Katie A; George, Steven Z; Borsa, Paul A; Dover, Geoffrey C
2018-03-05
Transcutaneous electrical nerve stimulation (TENS) is commonly used for reducing musculoskeletal pain to improve function. However, peripheral nerve stimulation using TENS can alter muscle motor output. Few studies examine motor outcomes following TENS in a human pain model. Therefore, this study investigated the influence of TENS sensory stimulation primarily on motor output (strength) and secondarily on pain and disability following exercise-induced delayed-onset muscle soreness (DOMS). Thirty-six participants were randomized to a TENS treatment, TENS placebo, or control group after completing a standardized DOMS protocol. Measures included shoulder strength, pain, mechanical pain sensitivity, and disability. TENS treatment and TENS placebo groups received 90 minutes of active or sham treatment 24, 48, and 72 hours post-DOMS. All participants were assessed daily. A repeated measures analysis of variance and post-hoc analysis indicated that, compared to the control group, strength remained reduced in the TENS treatment group (48 hours post-DOMS, P < 0.05) and TENS placebo group (48 hours post-DOMS, P < 0.05; 72 hours post-DOMS, P < 0.05). A mixed-linear modeling analysis was conducted to examine the strength (motor) change. Randomization group explained 5.6% of between-subject strength variance (P < 0.05). Independent of randomization group, pain explained 8.9% of within-subject strength variance and disability explained 3.3% of between-subject strength variance (both P < 0.05). While active and placebo TENS resulted in prolonged strength inhibition, the results were nonsignificant for pain. Results indicated that higher pain and higher disability were independently related to decreased strength. Regardless of the impact on pain, TENS, or even the perception of TENS, may act as a nocebo for motor output. © 2018 World Institute of Pain.
Hohenauer, Erich; Clarys, Peter; Baeyens, Jean-Pierre; Clijsen, Ron
2017-01-01
Fast recovery after strenuous exercise is important in sports and is often studied via cryotherapy applications. Cryotherapy has a significant vasoconstrictive effect, which seems to be the leading factor in its effectiveness. The resulting enhanced recovery can be measured by using both objective and subjective parameters. Two commonly measured subjective characteristics of recovery are delayed-onset muscle soreness (DOMS) and ratings of perceived exertion (RPE). Two important objective recovery characteristics are countermovement jump (CMJ) performance and peak power output (PPO). Here, we provide a detailed protocol to induce muscular exhaustion of the frontal thighs with a self-paced, 3 x 30 countermovement jump protocol (30-s rest between each set). This randomized controlled trial protocol explains how to perform local cryotherapy cuff application (+ 8 °C for 20 min) and thermoneutral cuff application (+ 32 °C for 20 min) on both thighs as two possible post-exercise recovery modalities. Finally, we provide a non-invasive protocol to measure the effects of these two recovery modalities on subjective (i.e., DOMS of both frontal thighs and RPE) and objective recovery (i.e., CMJ and PPO) characteristics 24, 48, and 72 h post-application. The advantage of this method is that it provides a tool for researchers or coaches to induce muscular exhaustion, without using any expensive devices; to implement local cooling strategies; and to measure both subjective and objective recovery, without using invasive methods. Limitations of this protocol are that the 30 s rest period between sets is very short, and the cardiovascular demand is very high. Future studies may find the assessment of maximum voluntary contractions to be a more sensitive assessment of muscular exhaustion compared to CMJs. PMID:28654037
Chorna, Nataliya E.; Santos-Soto, Iván J.; Carballeira, Nestor M.; Morales, Joan L.; de la Nuez, Janneliz; Cátala-Valentin, Alma; Chornyy, Anatoliy P.; Vázquez-Montes, Adrinel; De Ortiz, Sandra Peña
2013-01-01
Voluntary running is a robust inducer of adult hippocampal neurogenesis. Given that fatty acid synthase (FASN), the key enzyme for de novo fatty acid biosynthesis, is critically involved in proliferation of embryonic and adult neural stem cells, we hypothesized that FASN could mediate both exercise-induced cell proliferation in the subgranular zone (SGZ) of the dentate gyrus (DG) and enhancement of spatial learning and memory. In 20 week-old male mice, voluntary running-induced hippocampal-specific upregulation of FASN was accompanied also by hippocampal-specific accumulation of palmitate and stearate saturated fatty acids. In experiments addressing the functional role of FASN in our experimental model, chronic intracerebroventricular (i.c.v.) microinfusions of C75, an irreversible FASN inhibitor, and significantly impaired exercise-mediated improvements in spatial learning and memory in the Barnes maze. Unlike the vehicle-injected mice, the C75 group adopted a non-spatial serial escape strategy and displayed delayed escape latencies during acquisition and memory tests. Furthermore, pharmacologic blockade of FASN function with C75 resulted in a significant reduction, compared to vehicle treated controls, of the number of proliferative cells in the DG of running mice as measured by immunoreactive to Ki-67 in the SGZ. Taken together, our data suggest that FASN plays an important role in exercise-mediated cognitive enhancement, which might be associated to its role in modulating exercise-induced stimulation of neurogenesis. PMID:24223732
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kiran, Shashi; Oddi, Vineesha; Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com
2015-02-01
Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose ofmore » doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT7 attenuated p38/JNK activation and also p53 response. • Overall, SIRT7 promoted cellular survival in conditions of genomic stress.« less
Desseille, Céline; Deforges, Séverine; Biondi, Olivier; Houdebine, Léo; D’amico, Domenico; Lamazière, Antonin; Caradeuc, Cédric; Bertho, Gildas; Bruneteau, Gaëlle; Weill, Laure; Bastin, Jean; Djouadi, Fatima; Salachas, François; Lopes, Philippe; Chanoine, Christophe; Massaad, Charbel; Charbonnier, Frédéric
2017-01-01
Amyotrophic Lateral Sclerosis is an adult-onset neurodegenerative disease characterized by the specific loss of motor neurons, leading to muscle paralysis and death. Although the cellular mechanisms underlying amyotrophic lateral sclerosis (ALS)-induced toxicity for motor neurons remain poorly understood, growing evidence suggest a defective energetic metabolism in skeletal muscles participating in ALS-induced motor neuron death ultimately destabilizing neuromuscular junctions. In the present study, we report that a specific exercise paradigm, based on a high intensity and amplitude swimming exercise, significantly improves glucose metabolism in ALS mice. Using physiological tests and a biophysics approach based on nuclear magnetic resonance (NMR), we unexpectedly found that SOD1(G93A) ALS mice suffered from severe glucose intolerance, which was counteracted by high intensity swimming but not moderate intensity running exercise. Furthermore, swimming exercise restored the highly ALS-sensitive tibialis muscle through an autophagy-linked mechanism involving the expression of key glucose transporters and metabolic enzymes, including GLUT4 and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Importantly, GLUT4 and GAPDH expression defects were also found in muscles from ALS patients. Moreover, we report that swimming exercise induced a triglyceride accumulation in ALS tibialis, likely resulting from an increase in the expression levels of lipid transporters and biosynthesis enzymes, notably DGAT1 and related proteins. All these data provide the first molecular basis for the differential effects of specific exercise type and intensity in ALS, calling for the use of physical exercise as an appropriate intervention to alleviate symptoms in this debilitating disease. PMID:29104532
Gene expression profiling in human skeletal muscle during recovery from eccentric exercise
Mohoney, D. J.; Safdar, A.; Parise, G.; Melov, S.; Fu, Minghua; MacNeil, L.; Kaczor, J.; Payne, E. T.; Tarnopolsky, M. A.
2009-01-01
We used cDNA microarrays to screen for differentially expressed genes during recovery from exercise-induced muscle damage in humans. Male subjects (n = 4) performed 300 maximal eccentric contractions, and skeletal muscle biopsy samples were analyzed at 3 h and 48 h after exercise. In total, 113 genes increased 3 h postexercise, and 34 decreased. At 48 h postexercise, 59 genes increased and 29 decreased. On the basis of these data, we chose 19 gene changes and conducted secondary analyses using real-time RT-PCR from muscle biopsy samples taken from 11 additional subjects who performed an identical bout of exercise. Real-time RT-PCR analyses confirmed that exercise-induced muscle damage led to a rapid (3 h) increase in sterol response element binding protein 2 (SREBP-2), followed by a delayed (48 h) increase in the SREBP-2 gene targets Acyl CoA:cholesterol acyltransferase (ACAT)-2 and insulin-induced gene 1 (insig-1). The expression of the IL-1 receptor, a known regulator of SREBP-2, was also elevated after exercise. Taken together, these expression changes suggest a transcriptional program for increasing cholesterol and lipid synthesis and/or modification. Additionally, damaging exercise induced the expression of protein kinase H11, capping protein Z alpha (capZα), and modulatory calcineurin-interacting protein 1 (MCIP1), as well as cardiac ankryin repeat protein 1 (CARP1), DNAJB2, c-myc, and junD, each of which are likely involved in skeletal muscle growth, remodeling, and stress management. In summary, using DNA microarrays and RT-PCR, we have identified novel genes that respond to skeletal muscle damage, which, given the known biological functions, are likely involved in recovery from and/or adaptation to damaging exercise. PMID:18321953
Delayed-onset dementia after stroke or transient ischemic attack.
Mok, Vincent C T; Lam, Bonnie Y K; Wang, Zhaolu; Liu, Wenyan; Au, Lisa; Leung, Eric Y L; Chen, Sirong; Yang, Jie; Chu, Winnie C W; Lau, Alexander Y L; Chan, Anne Y Y; Shi, Lin; Fan, Florence; Ma, Sze H; Ip, Vincent; Soo, Yannie O Y; Leung, Thomas W H; Kwok, Timothy C Y; Ho, Chi L; Wong, Lawrence K S; Wong, Adrian
2016-11-01
Patients surviving stroke without immediate dementia are at high risk of delayed-onset dementia. Mechanisms underlying delayed-onset dementia are complex and may involve vascular and/or neurodegenerative diseases. Dementia-free patients with stroke and/or transient ischemic attack (TIA; n = 919) were studied for 3 years prospectively, excluding those who developed dementia 3 to 6 months after stroke and/or TIA. Forty subjects (4.4%) developed dementia during the study period. Imaging markers of severe small vessel disease (SVD), namely presence of ≥3 lacunes and confluent white matter changes; history of hypertension and diabetes mellitus independently predicted delayed-onset dementia after adjustment for age, gender, and education. Only 6 of 31 (19.4%) subjects with delayed cognitive decline harbored Alzheimer's disease-like Pittsburg compound B (PiB) retention. Most PiB cases (16/25, 64%) had evidence of severe SVD. Severe SVD contributes importantly to delayed-onset dementia after stroke and/or TIA. Future clinical trials aiming to prevent delayed-onset dementia after stroke and/or TIA should target this high-risk group. Copyright © 2016 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Minett, Geoffrey M.; Duffield, Rob
2013-01-01
Prolonged intermittent-sprint exercise (i.e., team sports) induce disturbances in skeletal muscle structure and function that are associated with reduced contractile function, a cascade of inflammatory responses, perceptual soreness, and a delayed return to optimal physical performance. In this context, recovery from exercise-induced fatigue is traditionally treated from a peripheral viewpoint, with the regeneration of muscle physiology and other peripheral factors the target of recovery strategies. The direction of this research narrative on post-exercise recovery differs to the increasing emphasis on the complex interaction between both central and peripheral factors regulating exercise intensity during exercise performance. Given the role of the central nervous system (CNS) in motor-unit recruitment during exercise, it too may have an integral role in post-exercise recovery. Indeed, this hypothesis is indirectly supported by an apparent disconnect in time-course changes in physiological and biochemical markers resultant from exercise and the ensuing recovery of exercise performance. Equally, improvements in perceptual recovery, even withstanding the physiological state of recovery, may interact with both feed-forward/feed-back mechanisms to influence subsequent efforts. Considering the research interest afforded to recovery methodologies designed to hasten the return of homeostasis within the muscle, the limited focus on contributors to post-exercise recovery from CNS origins is somewhat surprising. Based on this context, the current review aims to outline the potential contributions of the brain to performance recovery after strenuous exercise. PMID:24550837
Gagnon, Daniel; Schlader, Zachary J; Adams, Amy; Rivas, Eric; Mulligan, Jane; Grudic, Gregory Z; Convertino, Victor A; Howard, Jeffrey T; Crandall, Craig G
2016-09-01
Compensatory reserve represents the proportion of physiological responses engaged to compensate for reductions in central blood volume before the onset of decompensation. We hypothesized that compensatory reserve would be reduced by hyperthermia and exercise-induced dehydration, conditions often encountered on the battlefield. Twenty healthy males volunteered for two separate protocols during which they underwent lower-body negative pressure (LBNP) to hemodynamic decompensation (systolic blood pressure <80 mm Hg). During protocol #1, LBNP was performed following a passive increase in core temperature of ∼1.2°C (HT) or a normothermic time-control period (NT). During protocol #2, LBNP was performed following exercise during which: fluid losses were replaced (hydrated), fluid intake was restricted and exercise ended at the same increase in core temperature as hydrated (isothermic dehydrated), or fluid intake was restricted and exercise duration was the same as hydrated (time-match dehydrated). Compensatory reserve was estimated with the compensatory reserve index (CRI), a machine-learning algorithm that extracts features from continuous photoplethysmograph signals. Prior to LBNP, CRI was reduced by passive heating [NT: 0.87 (SD 0.09) vs. HT: 0.42 (SD 0.19) units, P <0.01] and exercise-induced dehydration [hydrated: 0.67 (SD 0.19) vs. isothermic dehydrated: 0.52 (SD 0.21) vs. time-match dehydrated: 0.47 (SD 0.25) units; P <0.01 vs. hydrated]. During subsequent LBNP, CRI decreased further and its rate of change was similar between conditions. CRI values at decompensation did not differ between conditions. These results suggest that passive heating and exercise-induced dehydration limit the body's physiological reserve to compensate for further reductions in central blood volume.
Effects of treadmill exercise intensity on spatial working memory and long-term memory in rats.
Wang, Xiao-Qin; Wang, Gong-Wu
2016-03-15
Moderate exercise promotes learning and memory. Most studies mainly focused on memory exercise effects of in the ageing and patients. There is lack of quantitative research about effect of regular exercise intensity on different memory types in normal subjects. Present study investigated the effects of different intensities of treadmill exercise on working memory and long-term memory. Fifty female Wistar rats were trained by T-maze delayed spatial alternation (DSA) task with 3 delays (10s, 60s and 300s). Then they got a 30min treadmill exercise for 30days in 4 intensities (control, 0m/min; lower, 15m/min; middle, 20m/min, and higher, 30m/min). Then animals were tested in DSA, passive avoidance and Morris water maze tasks. 1. Exercise increased the neuronal density of hippocampal subregions (CA1, CA3 and dentate gyrus) vs. naïve/control. 2. In DSA task, all groups have similar baseline, lower intensity improved 10s delay accuracy vs. baseline/control; middle and higher intensities improved 300s delay accuracy vs. baseline/control. 3. In water maze learning, all groups successfully found the platform, but middle intensity improved platform field crossing times vs. control in test phase. Present results suggested that treadmill exercise can improve long-term spatial memory and working memory; lower intensity benefits to short-term delayed working memory, and middle or higher intensity benefits to long-term delayed working memory. There was an inverted U dose-effect relationship between exercise intensity and memory performance, but exercise -working memory effect was impacted by delay duration. Copyright © 2016 Elsevier Inc. All rights reserved.
Trangmar, Steven J.; Chiesa, Scott T.; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K.; Secher, Niels H.
2015-01-01
Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2. In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced O2 and glucose extraction (P < 0.05). External carotid artery flow increased for 1 h but declined before exhaustion. Fluid ingestion maintained cerebral and extracranial perfusion throughout nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2. PMID:26371170
Lin, Tzu-Wei; Shih, Yao-Hsiang; Chen, Shean-Jen; Lien, Chi-Hsiang; Chang, Chia-Yuan; Huang, Tung-Yi; Chen, Shun-Hua; Jen, Chauying J; Kuo, Yu-Min
2015-02-01
Alzheimer's disease (AD) is an age-related neurodegenerative disease. Post-mortem examination and brain imaging studies indicate that neurodegeneration is evident in the hippocampus and amygdala of very early stage AD patients. Exercise training is known to enhance hippocampus- and amygdala-associated neuronal function. Here, we investigated the effects of exercise (running) on the neuronal structure and function of the hippocampus and amygdala in APP/PS1 transgenic (Tg) mice. At 4-months-old, an age before amyloid deposition, the amygdala-associated, but not the hippocampus-associated, long-term memory was impaired in the Tg mice. The dendritic complexities of the amygdalar basolateral neurons, but not those in the hippocampal CA1 and CA3 neurons, were reduced. Furthermore, the levels of BDNF/TrkB signaling molecules (i.e. p-TrkB, p-Akt and p-PKC) were reduced in the amygdala, but not in the hippocampus of the 4-month-old Tg mice. The concentrations of Aβ40 and Aβ42 in the amygdala were higher than those in the hippocampus. Ten weeks of treadmill training (from 1.5- to 4-month-old) increased the hippocampus-associated memory and dendritic arbor of the CA1 and CA3 neurons, and also restored the amygdala-associated memory and the dendritic arbor of amygdalar basolateral neurons in the Tg mice. Similarly, exercise training also increased the levels of p-TrkB, p-AKT and p-PKC in the hippocampus and amygdala. Furthermore, exercise training reduced the levels of soluble Aβ in the amygdala and hippocampus. Exercise training did not change the levels of APP or RAGE, but significantly increased the levels of LRP-1 in both brain regions of the Tg mice. In conclusion, our results suggest that tests of amygdala function should be incorporated into subject selection for early prevention trials. Long-term exercise protects neurons in the amygdala and hippocampus against AD-related degeneration, probably via enhancements of BDNF signaling pathways and Aβ clearance. Physical exercise may serve as a means to delay the onset of AD. Copyright © 2014 Elsevier Inc. All rights reserved.
Foam Rolling for Delayed-Onset Muscle Soreness and Recovery of Dynamic Performance Measures
Pearcey, Gregory E. P.; Bradbury-Squires, David J.; Kawamoto, Jon-Erik; Drinkwater, Eric J.; Behm, David G.; Button, Duane C.
2015-01-01
Context: After an intense bout of exercise, foam rolling is thought to alleviate muscle fatigue and soreness (ie, delayed-onset muscle soreness [DOMS]) and improve muscular performance. Potentially, foam rolling may be an effective therapeutic modality to reduce DOMS while enhancing the recovery of muscular performance. Objective: To examine the effects of foam rolling as a recovery tool after an intense exercise protocol through assessment of pressure-pain threshold, sprint time, change-of-direction speed, power, and dynamic strength-endurance. Design: Controlled laboratory study. Setting: University laboratory. Patients or Other Participants: A total of 8 healthy, physically active males (age = 22.1 ± 2.5 years, height = 177.0 ± 7.5 cm, mass = 88.4 ± 11.4 kg) participated. Intervention(s): Participants performed 2 conditions, separated by 4 weeks, involving 10 sets of 10 repetitions of back squats at 60% of their 1-repetition maximum, followed by either no foam rolling or 20 minutes of foam rolling immediately, 24, and 48 hours postexercise. Main Outcome Measure(s): Pressure-pain threshold, sprint speed (30-m sprint time), power (broad-jump distance), change-of-direction speed (T-test), and dynamic strength-endurance. Results: Foam rolling substantially improved quadriceps muscle tenderness by a moderate to large amount in the days after fatigue (Cohen d range, 0.59 to 0.84). Substantial effects ranged from small to large in sprint time (Cohen d range, 0.68 to 0.77), power (Cohen d range, 0.48 to 0.87), and dynamic strength-endurance (Cohen d = 0.54). Conclusions: Foam rolling effectively reduced DOMS and associated decrements in most dynamic performance measures. PMID:25415413
Ferraresi, Cleber; Bertucci, Danilo; Schiavinato, Josiane; Reiff, Rodrigo; Araújo, Amélia; Panepucci, Rodrigo; Matheucci, Euclides; Cunha, Anderson Ferreira; Arakelian, Vivian Maria; Hamblin, Michael R; Parizotto, Nivaldo; Bagnato, Vanderlei
2016-10-01
The aim of this study was to verify how a pair of monozygotic twins would respond to light-emitting diode therapy (LEDT) or placebo combined with a strength-training program during 12 weeks. This case-control study enrolled a pair of male monozygotic twins, allocated randomly to LEDT or placebo therapies. Light-emitting diode therapy or placebo was applied from a flexible light-emitting diode array (λ = 850 nm, total energy = 75 J, t = 15 seconds) to both quadriceps femoris muscles of each twin immediately after each strength training session (3 times/wk for 12 weeks) consisting of leg press and leg extension exercises with load of 80% and 50% of the 1-repetition maximum test, respectively. Muscle biopsies, magnetic resonance imaging, maximal load, and fatigue resistance tests were conducted before and after the training program to assess gene expression, muscle hypertrophy and performance, respectively. Creatine kinase levels in blood and visual analog scale assessed muscle damage and delayed-onset muscle soreness, respectively, during the training program. Compared with placebo, LEDT increased the maximal load in exercise and reduced fatigue, creatine kinase, and visual analog scale. Gene expression analyses showed decreases in markers of inflammation (interleukin 1β) and muscle atrophy (myostatin) with LEDT. Protein synthesis (mammalian target of rapamycin) and oxidative stress defense (SOD2 [mitochondrial superoxide dismutase]) were up-regulated with LEDT, together with increases in thigh muscle hypertrophy. Light-emitting diode therapy can be useful to reduce muscle damage, pain, and atrophy, as well as to increase muscle mass, recovery, and athletic performance in rehabilitation programs and sports medicine.
Atriocaval Rupture After Right Atrial Isthmus Ablation for Atrial Flutter.
Vloka, Caroline; Nelson, Daniel W; Wetherbee, Jule
2016-06-01
A patient with symptomatic typical atrial flutter (AFL) underwent right atrial isthmus ablation with an 8-mm catheter. Eight months later, his typical AFL recurred. Ten months later, he underwent a repeat right atrial isthmus ablation with an irrigated tip catheter and an 8-mm tip catheter. Six weeks after his second procedure, while performing intense sprint intervals on a treadmill, he developed an abrupt onset of chest pain, hypotension, and cardiac tamponade. He underwent emergency surgery to repair an atriocaval rupture and has done well since. Our report suggests that an association of multiple radiofrequency ablations with increased risk for delayed atriocaval rupture occurring 1 to 3 months after ablation. In conclusion, although patients generally were advised to limit exercise for 1 to 2 weeks after AFL ablation procedures in the past, it may be prudent to avoid intense exercise for at least 3 months after procedure. Copyright © 2016 Elsevier Inc. All rights reserved.
Animal-Model Studies of Radiation-Induced Emesis and Its Control.
1982-08-01
result of 6-OHDA was similar to that of haloperidol , one action of which is catecholamine receptor neuron blocking. The fact that 6- OHDA works strictly at...minutes preexposure n = 12 Delayed onset times Haloperidol Catecholamine Reduced number of S.2w, mg/kg i.m. blocker emetic episodes 45 :iinutes
Chan, E; Evans, M G
1998-09-18
It has been shown that the application of acetylcholine activates a Ca2+-dependent K+ current in outer hair cells, and the resulting hyperpolarization is thought to be an important part of the inhibition mediated by cholinergic efferent nerve fibres to the cochlea. In order to study the kinetics of the current, flash photolysis has been used to apply a cholinergic agonist, carbachol, rapidly to isolated outer hair cells. A delay in the onset of the outward potassium current following photorelease of carbachol was consistently observed, and the activation phase of the response could be described by a sigmoidal-like function with a mean delay of 59 ms and time constant of 71 ms. The sum of these values lies within the time scale reported for the onset of the inhibition following electrical stimulation of the efferent nerves. Although a distinct current attributable to an acetylcholine receptor was not visible in these experiments, indirect evidence for a carbachol-induced influx of Ca2+ was obtained.
Locked-mode avoidance and recovery without momentum input
NASA Astrophysics Data System (ADS)
Delgado-Aparicio, L.; Rice, J. E.; Wolfe, S.; Cziegler, I.; Gao, C.; Granetz, R.; Wukitch, S.; Terry, J.; Greenwald, M.; Sugiyama, L.; Hubbard, A.; Hugges, J.; Marmar, E.; Phillips, P.; Rowan, W.
2015-11-01
Error-field-induced locked-modes (LMs) have been studied in Alcator C-Mod at ITER-Bϕ, without NBI fueling and momentum input. Delay of the mode-onset and locked-mode recovery has been successfully obtained without external momentum input using Ion Cyclotron Resonance Heating (ICRH). The use of external heating in-sync with the error-field ramp-up resulted in a successful delay of the mode-onset when PICRH > 1 MW, which demonstrates the existence of a power threshold to ``unlock'' the mode; in the presence of an error field the L-mode discharge can transition into H-mode only when PICRH > 2 MW and at high densities, avoiding also the density pump-out. The effects of ion heating observed on unlocking the core plasma may be due to ICRH induced flows in the plasma boundary, or modifications of plasma profiles that changed the underlying turbulence. This work was performed under US DoE contracts including DE-FC02-99ER54512 and others at MIT, DE-FG03-96ER-54373 at University of Texas at Austin, and DE-AC02-09CH11466 at PPPL.
Post-traumatic delayed onset pectoralis myospasm secondary to α-γ dysfunction
Barnett, Dennis L; McGhee, Klinton; Bungee, Paul
2013-01-01
A restrained motor vehicle accident victim suffered from delayed onset left pectoralis myospasms refractory to multiple treatments: behavioural, conservative, physical therapy, opiate, muscle relaxer and incomplete response to invasive pain management spinal blocks. After conduction of a literature review, several authors had noted the mechanism of α-γ loop dysfunction resulting in myospams, and also case studies which described painful postsurgical myospasms that were treated with neurectomy and/or botulinum toxin A with successful results. The patient in this case underwent an initial lidocaine injection to observe response to treatment, followed by two treatments with botulinum toxin A treatment with subsequent resolution of symptoms. Successful therapy and previous research supports that botulinum toxin A can be an effective treatment for myospasms secondary to trauma-induced α-γ dysfunction, as suggested by the cellular pathophysiology. PMID:23814192
Ma, Tao; Cao, Ying-Lin; Xu, Bei-Bei; Zhou, Xiao-Mian
2004-06-01
The effect of (3,5,6-trimethylpyrazin-2-yl)methyl 2-[4-(2-methylpropyl)phenyl]propanoate (ITE) on type II collagen (CII)-induced arthritis in mice was studied. Mice were immunized twice with CII, ITE being given orally once a day for 40 d after the 1st immunization. Clinical assessment showed that ITE had no effect on the day of onset of arthritis but did lowered the incidence rate of arthritis and the arthritis score. And ITE had a marked suppressive effect on the mouse hind paw edema induced by CII. ITE suppressed the delayed-type mouse ear skin reaction to CII but had no effect on the level of serum anti-CII antibodies. These results suggest that ITE inhibits the development of CII-induced arthritis in mice by suppressing delayed-type hypersensitivity to CII.
Greenwood, Benjamin N.; Spence, Katie G.; Crevling, Danielle M.; Clark, Peter J.; Craig, Wendy C.; Fleshner, Monika
2014-01-01
Exercise increases resistance against stress-related disorders such as anxiety and depression. Similarly, the perception of control is a powerful predictor of neurochemical and behavioral responses to stress, but whether the experience of choosing to exercise, and exerting control over that exercise, is a critical factor in producing exercise-induced stress resistance is unknown. The current studies investigated whether the protective effects of exercise against the anxiety- and depression-like consequences of stress are dependent on exercise controllability and a brain region implicated in the protective effects of controllable experiences, the medial prefrontal cortex. Adult male Fischer 344 rats remained sedentary, were forced to run on treadmills or motorised running wheels, or had voluntary access to wheels for 6 weeks. Three weeks after exercise onset, rats received sham surgery or excitotoxic lesions of the medial prefrontal cortex. Rats were exposed to home cage or uncontrollable tail shock treatment three weeks later. Shock-elicited fear conditioning and shuttle box escape testing occurred the next day. Both forced and voluntary wheel running, but not treadmill training, prevented the exaggerated fear conditioning and interference with escape learning produced by uncontrollable stress. Lesions of the medial prefrontal cortex failed to eliminate the protective effects of forced or voluntary wheel running. These data suggest that exercise controllability and the medial prefrontal cortex are not critical factors in conferring the protective effects of exercise against the affective consequences of stressor exposure, and imply that exercise perceived as forced may still benefit affect and mental health. PMID:23121339
Study protocol: EXERcise and cognition in sedentary adults with early-ONset dementia (EXERCISE-ON).
Hooghiemstra, Astrid M; Eggermont, Laura H P; Scheltens, Philip; van der Flier, Wiesje M; Bakker, Jet; de Greef, Mathieu H G; Koppe, Peter A; Scherder, Erik J A
2012-08-16
Although the development of early-onset dementia is a radical and invalidating experience for both patient and family there are hardly any non-pharmacological studies that focus on this group of patients. One type of a non-pharmacological intervention that appears to have a beneficial effect on cognition in older persons without dementia and older persons at risk for dementia is exercise. In view of their younger age early-onset dementia patients may be well able to participate in an exercise program. The main aim of the EXERCISE-ON study is to assess whether exercise slows down the progressive course of the symptoms of dementia. One hundred and fifty patients with early-onset dementia are recruited. After completion of the baseline measurements, participants living within a 50 kilometre radius to one of the rehabilitation centres are randomly assigned to either an aerobic exercise program in a rehabilitation centre or a flexibility and relaxation program in a rehabilitation centre. Both programs are applied three times a week during 3 months. Participants living outside the 50 kilometre radius are included in a feasibility study where participants join in a daily physical activity program set at home making use of pedometers. Measurements take place at baseline (entry of the study), after three months (end of the exercise program) and after six months (follow-up). Primary outcomes are cognitive functioning; psychomotor speed and executive functioning; (instrumental) activities of daily living, and quality of life. Secondary outcomes include physical, neuropsychological, and rest-activity rhythm measures. The EXERCISE-ON study is the first study to offer exercise programs to patients with early-onset dementia. We expect this study to supply evidence regarding the effects of exercise on the symptoms of early-onset dementia, influencing quality of life. The present study is registered within The Netherlands National Trial Register (ref: NTR2124).
Study protocol: EXERcise and Cognition In Sedentary adults with Early-ONset dementia (EXERCISE-ON)
2012-01-01
Background Although the development of early-onset dementia is a radical and invalidating experience for both patient and family there are hardly any non-pharmacological studies that focus on this group of patients. One type of a non-pharmacological intervention that appears to have a beneficial effect on cognition in older persons without dementia and older persons at risk for dementia is exercise. In view of their younger age early-onset dementia patients may be well able to participate in an exercise program. The main aim of the EXERCISE-ON study is to assess whether exercise slows down the progressive course of the symptoms of dementia. Methods/Design One hundred and fifty patients with early-onset dementia are recruited. After completion of the baseline measurements, participants living within a 50 kilometre radius to one of the rehabilitation centres are randomly assigned to either an aerobic exercise program in a rehabilitation centre or a flexibility and relaxation program in a rehabilitation centre. Both programs are applied three times a week during 3 months. Participants living outside the 50 kilometre radius are included in a feasibility study where participants join in a daily physical activity program set at home making use of pedometers. Measurements take place at baseline (entry of the study), after three months (end of the exercise program) and after six months (follow-up). Primary outcomes are cognitive functioning; psychomotor speed and executive functioning; (instrumental) activities of daily living, and quality of life. Secondary outcomes include physical, neuropsychological, and rest-activity rhythm measures. Discussion The EXERCISE-ON study is the first study to offer exercise programs to patients with early-onset dementia. We expect this study to supply evidence regarding the effects of exercise on the symptoms of early-onset dementia, influencing quality of life. Trial registration The present study is registered within The Netherlands National Trial Register (ref: NTR2124) PMID:22897903
All about running: synaptic plasticity, growth factors and adult hippocampal neurogenesis.
Vivar, Carmen; Potter, Michelle C; van Praag, Henriette
2013-01-01
Accumulating evidence from animal and human research shows exercise benefits learning and memory, which may reduce the risk of neurodegenerative diseases, and could delay age-related cognitive decline. Exercise-induced improvements in learning and memory are correlated with enhanced adult hippocampal neurogenesis and increased activity-dependent synaptic plasticity. In this present chapter we will highlight the effects of physical activity on cognition in rodents, as well as on dentate gyrus (DG) neurogenesis, synaptic plasticity, spine density, neurotransmission and growth factors, in particular brain-derived nerve growth factor (BDNF).
TrkB signalling pathway mediates the protective effects of exercise in the diabetic rat retina.
Allen, Rachael S; Hanif, Adam M; Gogniat, Marissa A; Prall, Brian C; Haider, Raza; Aung, Moe H; Prunty, Megan C; Mees, Lukas M; Coulter, Monica M; Motz, Cara T; Boatright, Jeffrey H; Pardue, Machelle T
2018-05-01
Diabetic retinopathy is a leading cause of vision loss. Treatment options for early retinopathy are sparse. Exercise protects dying photoreceptors in models of retinal degeneration, thereby preserving vision. We tested the protective effects of exercise on retinal and cognitive deficits in a type 1 diabetes model and determined whether the TrkB pathway mediates this effect. Hyperglycaemia was induced in Long Evans rats via streptozotocin injection (STZ; 100 mg/kg). Following confirmed hyperglycaemia, both control and diabetic rats underwent treadmill exercise for 30 min, 5 days/week at 0 m/min (inactive groups) or 15 m/min (active groups) for 8 weeks. A TrkB receptor antagonist (ANA-12), or vehicle, was injected 2.5 h before exercise training. We measured spatial frequency and contrast sensitivity using optokinetic tracking biweekly post-STZ; retinal function using electroretinography at 4 and 8 weeks; and cognitive function and exploratory behaviour using Y-maze at 8 weeks. Retinal neurotrophin-4 was measured using ELISA. Compared with non-diabetic controls, diabetic rats showed significantly reduced spatial frequency and contrast sensitivity, delayed electroretinogram oscillatory potential and flicker implicit times and reduced cognitive function and exploratory behaviour. Exercise interventions significantly delayed the appearance of all deficits, except for exploratory behaviour. Treatment with ANA-12 significantly reduced this protection, suggesting a TrkB-mediated mechanism. Despite this, no changes in retinal neurotrohin-4 were observed with diabetes or exercise. Exercise protected against early visual and cognitive dysfunction in diabetic rats, suggesting that exercise interventions started after hyperglycaemia diagnosis may be a beneficial treatment. The translational potential is high, given that exercise treatment is non-invasive, patient controlled and inexpensive. © 2018 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Sestrins: novel antioxidant and AMPK-modulating functions regulated by exercise?
Sanchis-Gomar, Fabian
2013-08-01
Oxidative stress results from damage to tissues caused by free radicals and is increased by exercise. Peroxiredoxins (PRXs) maintain the cellular reducing environment by scavenging intracellular hydrogen peroxide. It has been recently noted that physical exercise has a positive effect on the PRX system, exerting a protective effect against oxidative stress-induced damage. However, other compounds, such as sestrins (SESNs), a stress-inducible protein family with antioxidant properties, should also be considered in the function of PRXs. SESNs are clearly involved in the regeneration process of PRXs and therefore may also be modulated by physical exercise. In addition, SESNs are clearly involved in TOR, AMPK, p53, FoxO, and PRXs signaling pathways. The aforementioned pathways are implicated in aging processes by inducing an increased resistance to subsequent stress, thus delaying age-related changes, such as sarcopenia and frailty, and consequently promoting longevity. Likewise, exercise also modulates these pathways. In fact, exercise is one of the most important recommended strategies to prevent sarcopenia and frailty, increase longevity, and improve health in the elderly. Loss of SESNs can cause several chronic pathologies, such as fat accumulation, mitochondrial dysfunction, cardiac arrhythmia, and/or muscle degeneration. Accordingly, physical inactivity leads to accumulation of visceral fat and consequently the activation of a network of inflammatory pathways, which promote development of insulin resistance, atherosclerosis, neurodegeneration, and tumor growth. To date, the SESNs-exercise relationship has not been explored. However, this emerging family of stress proteins may be part of the redox-based adaptive response to exercise. Copyright © 2013 Wiley Periodicals, Inc.
Agarwal, Deepmala; Dange, Rahul B.; Vila, Jorge; Otamendi, Arturo J.; Francis, Joseph
2012-01-01
Aims This study sought to investigate the effects of physical detraining on blood pressure (BP) and cardiac morphology and function in hypertension, and on pro- and anti-inflammatory cytokines (PICs and AIC) and oxidative stress within the brain of hypertensive rats. Methods and Results Hypertension was induced in male Sprague-Dawley rats by delivering AngiotensinII for 42 days using implanted osmotic minipumps. Rats were randomized into sedentary, trained, and detrained groups. Trained rats underwent moderate-intensity exercise (ExT) for 42 days, whereas, detrained groups underwent 28 days of exercise followed by 14 days of detraining. BP and cardiac function were evaluated by radio-telemetry and echocardiography, respectively. At the end, the paraventricular nucleus (PVN) was analyzed by Real-time RT-PCR and Western blot. ExT in AngII-infused rats caused delayed progression of hypertension, reduced cardiac hypertrophy, and improved diastolic function. These results were associated with significantly reduced PICs, increased AIC (interleukin (IL)-10), and attenuated oxidative stress in the PVN. Detraining did not abolish the exercise-induced attenuation in MAP in hypertensive rats; however, detraining failed to completely preserve exercise-mediated improvement in cardiac hypertrophy and function. Additionally, detraining did not reverse exercise-induced improvement in PICs in the PVN of hypertensive rats; however, the improvements in IL-10 were abolished. Conclusion These results indicate that although 2 weeks of detraining is not long enough to completely abolish the beneficial effects of regular exercise, continuing cessation of exercise may lead to detrimental effects. PMID:23285093
Figueiro, Mariana G; Rea, Mark S
2010-01-01
Circadian timing affects sleep onset. Delayed sleep onset can reduce sleep duration in adolescents required to awake early for a fixed school schedule. The absence of short-wavelength ("blue") morning light, which helps entrain the circadian system, can hypothetically delay sleep onset and decrease sleep duration in adolescents. The goal of this study was to investigate whether removal of short-wavelength light during the morning hours delayed the onset of melatonin in young adults. Dim light melatonin onset (DLMO) was measured in eleven 8th-grade students before and after wearing orange glasses, which removed short-wavelength light, for a five-day school week. DLMO was significantly delayed (30 minutes) after the five-day intervention, demonstrating that short-wavelength light exposure during the day can be important for advancing circadian rhythms in students. Lack of short-wavelength light in the morning has been shown to delay the circadian clock in controlled laboratory conditions. The results presented here are the first to show, outside laboratory conditions, that removal of short-wavelength light in the morning hours can delay DLMO in 8th-grade students. These field data, consistent with results from controlled laboratory studies, are directly relevant to lighting practice in schools.
Ventilatory response to the onset of passive and active exercise in human subjects.
Miyamura, M; Ishida, K; Yasuda, Y
1992-01-01
Ventilatory responses at the onset of passive and active exercise with different amount of exercising muscle mass were studied in 10 healthy male subjects. Four exercise tests were performed for each subject with appropriate intervals on the same day, i.e., two voluntary exercises of one leg or both legs and two passive exercises of one leg or both legs. Inspiratory minute volume (VI), end-tidal CO2 and O2 partial pressures (PETCO2, PETO2) were measured breath-by-breath using a hot-wire flowmeter, infrared CO2 analyzer, and a rapid O2 analyzer. Average values of VI were obtained from 5 breaths at rest preceding exercise and the first and second breaths after the onset of exercise. The ventilatory response to exercise was calculated as the difference (delta) between the mean of exercise VI and mean of resting VI. In this study, the PETCO2 decreased by about 0.5 Torr in four exercise tests, though the decrement of PETCO2 was not statistically significant. The average values and standard deviation of delta VI were 4.22 +/- 1.63 l/min for the one leg and 6.46 +/- 1.80 l/min for the two legs in the active exercise, and were 2.46 +/- 1.12 l/min for the one leg and 3.44 +/- 1.55 l/min for the two legs in the passive exercise, respectively. These results suggest that in awake conditions, the ventilatory response at the onset of passive or active exercise does not increase additively with the increasing amount of muscle mass being exercised.
Delay-induced Turing-like waves for one-species reaction-diffusion model on a network
NASA Astrophysics Data System (ADS)
Petit, Julien; Carletti, Timoteo; Asllani, Malbor; Fanelli, Duccio
2015-09-01
A one-species time-delay reaction-diffusion system defined on a complex network is studied. Traveling waves are predicted to occur following a symmetry-breaking instability of a homogeneous stationary stable solution, subject to an external nonhomogeneous perturbation. These are generalized Turing-like waves that materialize in a single-species populations dynamics model, as the unexpected byproduct of the imposed delay in the diffusion part. Sufficient conditions for the onset of the instability are mathematically provided by performing a linear stability analysis adapted to time-delayed differential equations. The method here developed exploits the properties of the Lambert W-function. The prediction of the theory are confirmed by direct numerical simulation carried out for a modified version of the classical Fisher model, defined on a Watts-Strogatz network and with the inclusion of the delay.
Exercise Thermoregulation Following 13 Days of Bed Rest
NASA Technical Reports Server (NTRS)
Lee, Stuart M. C.; Williams, W. Jon; Schneider, Suzanne M.
2001-01-01
This investigation examined two potential mechanisms, altered skin blood flow (SBF) and sweating rate (SR) responses, that may be responsible for an elevated core temperature during exercise after bed rest (BR) and space flight. Seven healthy men (29 +/- 5 yr, 179.6 +/- 7.1 cm, 77.2 +/- 17.0kg; mean +/- SD) underwent 13 days of 6 deg head-down BR. Pre- and post-BR, subjects completed supine submaximal cycle ergometry (20 min at 40% and 20 min at 65% of pre-BR supine VO2pk) in a thermoneutral room (23.4 +/- 0.5 C, 56 +/- 8 %RH) during, heat production (VO2 ; indirect calorimetry), intestinal temperature (T(sub in) ; ingestible pill), SBF (laser Doppler velocimetry), local SR (dew point hygrometry), and total sweat loss (TSL; Delta body weight) were measured. Pre- and post- BR plasma volume (PV) was measured using I-125 dilution. After BR, T(sub in) was elevated at rest (36.99 +/- 0.14 vs. 37.30 +/- 0.06 C; p<_0.05) and at the end of exercise (37.57 +/- 0.13 vs. 37.90 +/- 0.09 C; P less than or equal to 0.05). However, the increase in T(sub in) from rest to the end of exercise was not different after BR (0.59 +/- 0.07 vs. 0.60 +/- 0.07 C). There was no difference in VO2 pre- to post-BR during rest (0.28 +/- 0.04 vs. 0.24 +/- 0.03 1 multiplied by min(exp -1) ) or 40% VO2pk (0.95 +/- 0.08 vs. 0.96 +/- 0.05 1 multiplied by min(exp -1)), but VO2 was significantly less at the end of the 65% VO2pk stage (1.53 +/- 0.09 vs. 1.42 +/- 0.11 1 multiplies by min(exp - 1); p less than or equal to 0.05). The percent change in SBF from rest to end of exercise was less after BR (211 +/- 53 vs. 96 +/- 31%; p less than or equal to 0.05), the threshold for the onset of SBF was greater (37.17 +/- 0.18vs. 37.51 +/- 0.17 C; p less than or equal to 0.05), and the slope of the response tended to be reduced (536 +/- 184 vs. 201 +/- 46 %A PC; p=0.08). TSL was not different after BR (0.42+0.06 vs. 0.44 +/- 0.08 kg), but the T in threshold at the onset of sweating was delayed significantly (37.06 +/- 0.1 1 vs. 37.34 +/- 0.06 C; p less than or equal to 0.05). However, the slope of SR was not changed after BR (3.45 +/- 1.22 vs. 2.58 +/- 0.71 mg multiplied by min(exp -1) multiplied by cm sq). PV was decreased by 11% after BR (3,259 +/- 177 vs. 2,894 +/- 138 ml; p less than or equal to 0.05). These results suggest that exercise SBF and SR responses after BR are altered, and heat production is unchanged or reduced, consistent with observations following space flight. The higher resting T(sub in) with a proportional increase in T(sub in) during exercise and delayed onset of SBF and SR suggest a centrally-mediated elevation in the thermoregulatory set point during microgravity exposure.
Loh, Debbie Ann; Hairi, Noran Naqiah; Choo, Wan Yuen; Mohd Hairi, Farizah; Peramalah, Devi; Kandiben, Shathanapriya; Lee, Pek Ling; Gani, Norlissa; Madzlan, Mohamed Faris; Abd Hamid, Mohd Alif Idham; Akram, Zohaib; Chu, Ai Sean; Bulgiba, Awang; Cumming, Robert G
2015-02-11
The ability of older people to function independently is crucial as physical disability and functional limitation have profound impacts on health. Interventions that either delay the onset of frailty or attenuate its severity potentially have cascading benefits for older people, their families and society. This study aims to develop and evaluate the effectiveness of a multiComponent Exercise and theRApeutic lifeStyle (CERgAS) intervention program targeted at improving physical performance and maintaining independent living as compared to general health education among older people in an urban poor setting in Malaysia. This cluster randomised controlled trial will be a 6-week community-based intervention programme for older people aged 60 years and above from urban poor settings. A minimum of 164 eligible participants will be recruited from 8 clusters (low-cost public subsidised flats) and randomised to the intervention and control arm. This study will be underpinned by the Health Belief Model with an emphasis towards self-efficacy. The intervention will comprise multicomponent group exercise sessions, nutrition education, oral care education and on-going support and counselling. These will be complemented with a kit containing practical tips on exercise, nutrition and oral care after each session. Data will be collected over four time points; at baseline, immediately post-intervention, 3-months and 6-months follow-up. Findings from this trial will potentially provide valuable evidence to improve physical function and maintain independence among older people from low-resource settings. This will inform health policies and identify locally acceptable strategies to promote healthy aging, prevent and delay functional decline among older Malaysian adults. ISRCTN22749696.
What's new since Hippocrates? Preventing type 2 diabetes by physical exercise and diet.
Hawley, J A; Gibala, M J
2012-03-01
Since the work of Eriksson and Lindgärde, published over two decades ago (Diabetologia 1991;34:891-898), we have known that type 2 diabetes can be prevented or delayed by supervised lifestyle interventions (physical exercise and diet modification) in persons at risk of the disease. Here we discuss a novel, time-efficient approach to physical exercise prescription, low-volume, high-intensity interval training (LVHIT), and its efficacy for inducing a range of health benefits in a variety of populations at risk of inactivity-related diseases. We look to the future and suggest that current guidelines for exercise may need to be revised to include different training techniques to deliver the optimum exercise prescription. Indeed, we predict that subsequent exercise guidelines will include LVHIT as part of a comprehensive 'fitness menu' that allows individuals to select the exercise regimen that best fulfils their medical needs, is suited to their lifestyle and daily time restraints, and meets their personal goals.
Trivalent Chromium has no Effect on Delaying Azoxymethane-Induced Colorectal Cancer in FVB/NJ Mice.
White, Pandora E; Deng, Ge; Kuykendall, M Kaitlyn; Tadros, Abbey M; Dyroff, Samantha L; Honan, Rachel E; Robertson, Preshus M; Vincent, John B; Rasco, Jane F
2015-11-01
As Cr(III) compounds have been shown to increase insulin sensitivity and decrease plasma cholesterol and triglycerides in rodent models of diabetes and insulin resistance and as colorectal cancer risk has been associated with insulin resistance and diabetes, the effects of the Cr(III) compound Cr3 ([Cr3O(O2CCH2CH3)6(H2O)3](+)) were investigated in male and female FVB/NJ mice with azoxymethane-induced colorectal cancer. In contrast to a previous study on the effects of Cr3 on 1,2-dimethylhydrazine-induced colorectal cancer in Sprague Dawley rats, no effects of Cr3 at daily doses of 1 and 10 mg Cr/kg body mass were observed, leaving in question whether administration of Cr(III) compounds can delay or prevent the onset of colorectal cancer.
Schroeder, Mariana; Shbiro, Liat; Gelber, Vered; Weller, Aron
2010-04-01
Given the alarming increase in childhood, adolescent and adult obesity there is an imperative need for understanding the early factors affecting obesity and for treatments that may help prevent or at least moderate it. Exercise is frequently considered as an effective treatment for obesity however the empirical literature includes many conflicting findings. In the present study, we used the OLETF rat model of early-onset hyperphagia-induced obesity to examine the influence of early exercise on peripheral adiposity-related parameters in both males and females. Rats were provided voluntary access to running wheels from postnatal day (PND) 22 until PND45. We examined fat pad weight (brown, retroperitoneal, inguinal and epididymal); inguinal adipocyte size and number; and leptin, adiponectin, corticosterone and creatinine levels. We also examined body weight, feeding efficiency and spontaneous intake. Early voluntary exercise reduced intake, adiposity and leptin in the OLETF males following a sharp reduction in adipocyte size despite a significant increase in fat cell number. Exercising males from the lean LETO control strain presented stable intake, but reduced body fat, feeding efficiency and increased plasma creatinine, suggesting an increment in muscle mass. OLETF females showed reduced feeding efficiency and liver fat, and a significant increase in brown fat. Exercising LETO control females increased intake, body weight and creatinine, but no changes in body fat. Overall, OLETF rats presented higher adiponectin levels than controls in both basal and post-exercise conditions. The results suggest an effective early time frame, when OLETF males can be successfully "re-programmed" through voluntary exercise; in OLETF females the effect is much more moderate. Findings expose sex-dependent peripheral mechanisms in coping with energy challenges. Copyright 2010 Elsevier Inc. All rights reserved.
Cattin, Marie-Elodie; Ferry, Arnaud; Vignaud, Alban; Mougenot, Nathalie; Jacquet, Adeline; Wahbi, Karim; Bertrand, Anne T; Bonne, Gisèle
2016-08-01
LMNA gene encodes lamin A/C, ubiquitous proteins of the nuclear envelope. They play crucial role in maintaining nuclear shape and stiffness. When mutated, they essentially lead to dilated cardiomyopathy with conduction defects, associated or not with muscular diseases. Excessive mechanical stress sensitivity has been involved in the pathophysiology. We have previously reported the phenotype of Lmna(delK32) mice, reproducing a mutation found in LMNA-related congenital muscular dystrophy patients. Heterozygous Lmna(delK32/+) (Het) mice develop a progressive dilated cardiomyopathy leading to death between 35 and 70 weeks of age. To investigate the sensitivity of the skeletal muscles and myocardium to chronic exercise-induced stress, Het and wild-type (Wt) mice were subjected to strenuous running treadmill exercise for 5 weeks. Before exercise, the cardiac function of Het mice was similar to Wt-littermates. After the exercise-period, Het mice showed cardiac dysfunction and dilation without visible changes in cardiac morphology, molecular remodelling or nuclear structure compared to Wt exercised and Het sedentary mice. Contrary to myocardium, skeletal muscle ex vivo contractile function remained unaffected in Het exercised mice. In conclusion, the expression of the Lmna(delK32) mutation increased the susceptibility of the myocardium to cardiac stress and led to an earlier onset of the cardiac phenotype in Het mice. Copyright © 2016 Elsevier B.V. All rights reserved.
Slow-onset myocardial infarction and its influence on help-seeking behaviors.
O'Donnell, Sharon; Moser, Debra K
2012-01-01
Patient decision delay continues to be a major factor of delay along the pathway of care for patients with myocardial infarction (MI). Although potentially modifiable, efforts to reduce these delays through educational and media interventions have been relatively unsuccessful. This failure has been due, in part, to the lack of understanding about the complex sociopsychological and clinical dimensions associated with the phenomenon of help-seeking behavior. The aims of this study were to (1) perform an in-depth analysis of patients' MI symptom experiences and (2) describe their help-seeking behavior in response to these symptom experiences. In-depth interviews were used to examine the symptom experiences and help-seeking behavior of men and women with MI. Participants (n = 42) were interviewed 2 to 4 days after their admission to 1 of 2 hospitals in Dublin, Ireland. Two new discrete MI categories emerged from the findings-slow-onset MI and fast-onset MI. Slow-onset MI is characterized by the gradual onset of mild symptoms, whereas fast-onset MI describes the sudden onset of severe chest pain. Most participants (n = 27) experienced slow-onset MI but expected the symptom presentation associated with fast-onset MI. The mismatch of expected and experienced symptoms for participants with slow-onset MI led to the mislabeling of symptoms to a noncardiac cause and protracted help-seeking delays. Participants with fast-onset MI (n = 15) quickly attributed their symptoms to a cardiac cause, which expedited appropriate help-seeking behaviors. Definitions of MI and the educational information provided to the public need to be reviewed. Slow-onset MI and fast-onset MI provide plausible definition alternatives and, possibly, a more authentic version of real MI events than what is currently used. They also provide a unique "delay" perspective, which may inform future educational initiatives targeted at decision delay reduction.
Miller, Benjamin F; Ehrlicher, Sarah E; Drake, Joshua C; Peelor, Frederick F; Biela, Laurie M; Pratt-Phillips, Shannon; Davis, Michael; Hamilton, Karyn L
2015-04-01
Canis lupus familiaris, the domesticated dog, is capable of extreme endurance performance. The ability to perform sustained aerobic exercise is dependent on a well-developed mitochondrial reticulum. In this study we examined the cumulative muscle protein and DNA synthesis in groups of athletic dogs at the onset of an exercise training program and following a strenuous exercise training program. We hypothesized that both at the onset and during an exercise training program there would be greater mitochondrial protein synthesis rates compared with sedentary control with no difference in mixed or cytoplasmic protein synthesis rates. Protein synthetic rates of three protein fractions and DNA synthesis were determined over 1 wk using (2)H2O in competitive Alaskan Huskies and Labrador Retrievers trained for explosive device detection. Both groups of dogs had very high rates of skeletal muscle protein synthesis in the sedentary state [Alaskan Huskies: Mixed = 2.28 ± 0.12, cytoplasmic (Cyto) = 2.91 ± 0.10, and mitochondrial (Mito) = 2.62 ± 0.07; Labrador Retrievers: Mixed = 3.88 ± 0.37, Cyto = 3.85 ± 0.06, and Mito = 2.92 ± 0.20%/day]. Mitochondrial (Mito) protein synthesis rates did not increase at the onset of an exercise training program. Exercise-trained dogs maintained Mito protein synthesis during exercise training when mixed (Mixed) and cytosolic (Cyto) fractions decreased, and this coincided with a decrease in p-RpS6 but also a decrease in p-ACC signaling. Contrary to our hypothesis, canines did not have large increases in mitochondrial protein synthesis at the onset or during an exercise training program. However, dogs have a high rate of protein synthesis compared with humans that perhaps does not necessitate an extra increase in protein synthesis at the onset of aerobic exercise training. Copyright © 2015 the American Physiological Society.
Ferreira, Diogo V; Gentil, Paulo; Ferreira-Junior, João B; Soares, Saulo R S; Brown, Lee E; Bottaro, Martim
2017-10-01
To evaluate the time course of peak torque and total work recovery after a resistance training session involving the bench press exercise. Repeated measures with a within subject design. Twenty-six resistance-trained men (age: 23.7±3.7years; height: 176.0±5.7cm; mass: 79.65±7.61kg) performed one session involving eight sets of the bench press exercise performed to momentary muscle failure with 2-min rest between sets. Shoulder horizontal adductors peak torque (PT), total work (TW), delayed onset muscle soreness (DOMS) and subjective physical fitness were measured pre, immediately post, 24, 48, 72 and 96h following exercise. The exercise protocol resulted in significant pectoralis major DOMS that lasted for 72h. Immediately after exercise, the reduction in shoulder horizontal adductors TW (25%) was greater than PT (17%). TW, as a percentage of baseline values, was also less than PT at 24, 48 and 96h after exercise. Additionally, PT returned to baseline at 96h, while TW did not. Resistance trained men presented dissimilar PT and TW recovery following free weight bench press exercise. This indicates that recovery of maximal voluntary contraction does not reflect the capability to perform multiple contractions. Strength and conditioning professionals should be cautious when evaluating muscle recovery by peak torque, since it can lead to the repetition of a training session sooner than recommended. Copyright © 2017. Published by Elsevier Inc.
Udani, Jay K; Singh, Betsy B; Singh, Vijay J; Sandoval, Elizabeth
2009-06-05
Delayed onset muscle soreness (DOMS) is muscle pain and discomfort experienced approximately one to three days after exercise. DOMS is thought to be a result of microscopic muscle fiber tears that occur more commonly after eccentric exercise rather than concentric exercise. This study sought to test the efficacy of a proprietary dietary supplement, BounceBack, to alleviate the severity of DOMS after standardized eccentric exercise. The study was a randomized, double-blind, placebo-controlled, crossover study. Ten healthy community-dwelling untrained subjects, ranging in age from 18-45 years, were enrolled. Mean differences within and between groups were assessed inferentially at each data collection time-point using t-tests for all outcome measures. In this controlled pilot study, intake of BounceBack capsules for 30 days resulted in a significant reduction in standardized measures of pain and tenderness post-eccentric exercise compared to the placebo group. There were trends towards reductions in plasma indicators of inflammation (high sensitivity C-reactive protein) and muscle damage (creatine phosphokinase and myoglobin). BounceBack capsules were able to significantly reduce standardized measures of pain and tenderness at several post-eccentric exercise time points in comparison to placebo. The differences in the serological markers of DOMS, while not statistically significant, appear to support the clinical findings. The product appears to have a good safety profile and further study with a larger sample size is warranted based on the current results.
Udani, Jay K; Singh, Betsy B; Singh, Vijay J; Sandoval, Elizabeth
2009-01-01
Background Delayed onset muscle soreness (DOMS) is muscle pain and discomfort experienced approximately one to three days after exercise. DOMS is thought to be a result of microscopic muscle fiber tears that occur more commonly after eccentric exercise rather than concentric exercise. This study sought to test the efficacy of a proprietary dietary supplement, BounceBack™, to alleviate the severity of DOMS after standardized eccentric exercise. Methods The study was a randomized, double-blind, placebo-controlled, crossover study. Ten healthy community-dwelling untrained subjects, ranging in age from 18–45 years, were enrolled. Mean differences within and between groups were assessed inferentially at each data collection time-point using t-tests for all outcome measures. Results In this controlled pilot study, intake of BounceBack™ capsules for 30 days resulted in a significant reduction in standardized measures of pain and tenderness post-eccentric exercise compared to the placebo group. There were trends towards reductions in plasma indicators of inflammation (high sensitivity C-reactive protein) and muscle damage (creatine phosphokinase and myoglobin). Conclusion BounceBack™ capsules were able to significantly reduce standardized measures of pain and tenderness at several post-eccentric exercise time points in comparison to placebo. The differences in the serological markers of DOMS, while not statistically significant, appear to support the clinical findings. The product appears to have a good safety profile and further study with a larger sample size is warranted based on the current results. PMID:19500355
Retamoso, Leandro T; Silveira, Mauro E P; Lima, Frederico D; Busanello, Guilherme L; Bresciani, Guilherme; Ribeiro, Leandro R; Chagas, Pietro M; Nogueira, Cristina W; Braga, Ana Claudia M; Furian, Ana Flávia; Oliveira, Mauro S; Fighera, Michele R; Royes, Luiz Fernando F
2016-05-01
It is well-known that unaccustomed exercise, especially eccentric exercise, is associated to delayed onset muscle soreness (DOMS). Whether DOMS is associated with reactive oxygen species (ROS) and the transient receptor potential vanilloid 1 (TRPV1) is still an open question. Thus, the aim of this study was to investigate the association between TRPV1 and xanthine oxidase-related ROS production in muscle and DOMS after a bout of eccentric exercise. Male Wistar rats performed a downhill running exercise on a treadmill at a -16° tilt and a constant speed for 90min (5min/bout separated by 2min of rest). Mechanical allodynia and grip force tests were performed before and 1, 3, 6, 9, 12, 24, 48 and 72h after the downhill running. Biochemical assays probing oxidative stress, purine degradation, xanthine oxidase activity, Ca(2+) ATPase activity and TRPV1 protein content were performed in gastrocnemius muscle at 12, 24, and 48h after the downhill running. Our statistical analysis showed an increase in mechanical allodynia and a loss of strength after the downhill running. Similarly, an increase in carbonyl, xanthine oxidase activity, uric acid levels and TRPV1 immunoreactivity were found 12h post-exercise. On the other hand, Ca(2+) ATPase activity decreased in all analyzed times. Our results suggest that a possible relationship between xanthine oxidase-related ROS and TRPV1 may exist during the events preceding eccentric exercise-related DOMS. Copyright © 2016 Elsevier Inc. All rights reserved.
Hung, Ching-Hsia; Chang, Nen-Chung; Cheng, Bor-Chih; Lin, Mao-Tsun
2005-05-01
Heat shock protein (HSP) 72 expression protects against arterial hypotension in rat heatstroke. HSP72 can also be induced in multiple organs, including hearts from rats with endurance exercise. We validated the hypothesis that progressive exercise preconditioning may confer cardiovascular protection during heatstroke by inducing the overexpression of HSP72 in multiple organs. To deal with the matter, we assessed the effects of heatstroke on mean arterial pressure, heart rate, cardiac output, stroke volume, total peripheral vascular resistance, colonic temperature, blood gases, and serum or tissue levels of tumor necrosis factor-alpha (TNF-alpha) in urethane-anesthetized rats pretreated without or with progressive exercise training for 1, 2, or 3 weeks. In addition, HSP72 expression in multiple organs was determined in different groups of animals. Heatstroke was induced by exposing the rats to a high blanket temperature (43 degrees C); the moment at which mean arterial pressure decreased from the peak value was taken as the time of heatstroke onset. Previous exercise training for 3 weeks, but not 1 or 2 weeks, conferred significant protection against hyperthermia, arterial hypotension, decreased cardiac output, decreased stroke volume, decreased peripheral vascular resistance, and increased levels of serum or tissue TNF-alpha during heatstroke and correlated with overexpression of HSP72 in multiple organs, including heart, liver, and adrenal gland. However, 10 days after 3 weeks of progressive exercise training, when HSP72 expression in multiple organs returned to basal values, the beneficial effects exerted by 3 weeks of exercise training were no longer observed. These results strongly suggest that HSP72 preconditioning with progressive exercise training protects against hyperthermia, circulatory shock, and TNF-alpha overproduction during heatstroke.
Haendeler, Judith; Hoffmann, Jörg; Diehl, J Florian; Vasa, Mariuca; Spyridopoulos, Ioakim; Zeiher, Andreas M; Dimmeler, Stefanie
2004-04-02
Aging is associated with a rise in intracellular reactive oxygen species (ROS) and a loss of telomerase reverse transcriptase activity. Incubation with H2O2 induced the nuclear export of telomerase reverse transcriptase (TERT) into the cytosol in a Src-family kinase-dependent manner. Therefore, we investigated the hypothesis that age-related increase in reactive oxygen species (ROS) may induce the nuclear export of TERT and contribute to endothelial cell senescence. Continuous cultivation of endothelial cells resulted in an increased endogenous formation of ROS starting after 29 population doublings (PDL). This increase was accompanied by mitochondrial DNA damage and preceded the onset of replicative senescence at PDL 37. Along with the enhanced formation of ROS, we detected an export of nuclear TERT protein from the nucleus into the cytoplasm and an activation of the Src-kinase. Moreover, the induction of premature senescence by low concentrations of H2O2 was completely blocked with the Src-family kinase inhibitor PP2, suggesting a crucial role for Src-family kinases in the induction of endothelial cell aging. Incubation with the antioxidant N-acetylcysteine, from PDL 26, reduced the intracellular ROS formation and prevented mitochondrial DNA damage. Likewise, nuclear export of TERT protein, loss in the overall TERT activity, and the onset of replicative senescence were delayed by incubation with N-acetylcysteine. Low doses of the statin, atorvastatin (0.1 micromol/L), had also effects similar to those of N-acetylcysteine. We conclude that both antioxidants and statins can delay the onset of replicative senescence by counteracting the increased ROS production linked to aging of endothelial cells.
Gender differences in muscle inflammation after eccentric exercise.
Stupka, N; Lowther, S; Chorneyko, K; Bourgeois, J M; Hogben, C; Tarnopolsky, M A
2000-12-01
Unaccustomed exercise is followed by delayed-onset muscle soreness and morphological changes in skeletal muscle. Animal studies have demonstrated that women have an attenuated response to muscle damage. We studied the effect of eccentric exercise in untrained male (n = 8) and female (n = 8) subjects using a unilateral exercise design [exercise (Ex) and control (Con) legs]. Plasma granulocyte counts [before (Pre) and 48 h after exercise (+48h)] and creatine kinase activity [Pre, 24 h after exercise (+24h), +48h, and 6 days after exercise (+6d)] were determined before (Pre) and after (+24h, +48h, +6d) exercise, with biopsies taken from the vastus lateralis of each leg at +48h for determination of muscle damage and/or inflammation. Plasma granulocyte counts increased for men and decreased for women at +48h (P < 0.05), and creatine kinase activity increased for both genders at +48h and +6d (P < 0.01). There were significantly greater areas of both focal (P < 0.001) and extensive (P < 0.01) damage in the Ex vs. Con leg for both genders, which was assessed by using toluidine blue staining. The number of leukocyte common antigen-positive cells/mm(2) tissue increased with exercise (P < 0.05), and men tended to show more in their Ex vs. Con leg compared with women (P = 0.052). Men had a greater total (Ex and Con legs) number of bcl-2-positive cells/mm(2) tissue vs. women (P < 0.05). Atrophic fibers with homogeneous bcl-2-positive staining were seen only in men (n = 3). We conclude that muscle damage is similar between genders, yet the inflammatory response is attenuated in women vs. men. Finally, exercise may stimulate the expression of proteins involved in apoptosis in skeletal muscle.
Schoeman, Jacobus C; Steyn, Stephanus F; Harvey, Brian H; Brink, Christiaan B
2017-04-14
Juvenile depression is of great concern with only limited treatment currently approved. Delayed onset of action, low remission and high relapse rates, and potential long-lasting consequences further complicates treatment and highlights the need for new treatment options. Studies reporting on long-lasting effects of early-life treatment have reported conflicting results, with the pre-adolescent period mostly overlooked. The anti-depressive effect of exercise, as a possible treatment option or augmentation strategy, is dependent on age and exercise intensity. We investigated the immediate (i.e. postnatal day 35 (PND35)) and lasting (PND60 to PND61) effects of pre-pubertal (PND21 to PND34) fluoxetine and/or exercise on bio-behavioural markers of depression and oxidative stress in stress sensitive Flinders Sensitive Line rats. Low, but not moderate, intensity exercise or 5, but not 10, mg/kg/day fluoxetine displayed anti-depressant-like properties at PND35. Pre-pubertal treatment with 5mg/kg/day fluoxetine or low intensity exercise exerted lasting anti-depressive-like effects into adulthood, whereas the combination of these two treatments did not. Furthermore, the combination of fluoxetine plus exercise reduced hippocampal BDNF levels as compared to exercise alone, which may explain the latter findings. In all treatment groups hippocampal SOD activity was significantly increased at PND61, suggesting an increased anti-oxidant capacity in adulthood. In conclusion, the data confirm the anti-depressant-like properties of both early-life fluoxetine and exercise in a genetic animal model of depression. However, optimal lasting effects of early-life interventions may require adjustment of antidepressant dose and/or exercise intensity to developmental age, and that a combination of antidepressant and exercise may not necessarily be augmentative. Copyright © 2017 Elsevier B.V. All rights reserved.
Chaos and Chaos Control of the Frenkel-Kontorova Model with Dichotomous Noise
NASA Astrophysics Data System (ADS)
Lei, Youming; Zheng, Fan; Shao, Xizhen
Chaos and chaos control of the Frenkel-Kontorova (FK) model with dichotomous noise are studied theoretically and numerically. The threshold conditions for the onset of chaos in the FK model are firstly derived by applying the random Melnikov method with a mean-square criterion to the soliton equation, which is a fundamental topological mode of the FK model and accounts for its nonlinear phenomena. We found that dichotomous noise can induce stochastic chaos in the FK model, and the threshold of noise amplitude for the onset of chaos increases with the increase of its transition rate. Then the analytical criterion of chaos control is obtained by means of the time-delay feedback method. Since the time-delay feedback control raises the threshold of noise amplitude for the onset of chaos, chaos in the FK model is effectively suppressed. Through numerical simulations including the mean top Lyapunov exponent and the safe basin, we demonstrate the validity of the analytical predictions of chaos. Furthermore, time histories and phase portraits are utilized to verify the effectiveness of the proposed control.
USDA-ARS?s Scientific Manuscript database
Isolates of several Trichoderma spp., were collected from tropical environments as potential biocontrol agents for cacao (Theobroma cacao) diseases. The diversity of isolates collected, including new species, and there endophytic nature on their host plants, led us to consider if these isolates have...
Do Deregulated Cas Proteins Induce Genomic Instability in Early-Stage Ovarian Cancer
2008-12-01
Klein-Szanto A, Litwin S, Hoelzle MK, Hensley HH, Hamilton TC, Testa JR. RAD001 (Everolimus) delays tumor onset and progression in a transgenic mouse...Mol Biol Cell 2006; 17:1204-17. 10 14. Hensley H, Quinn BA, Wolf RL, Litwin SL, Mabuchi S, Williams SJ, Williams C, Hamilton TC, Connolly DC
Garrett, C; Liu, D Y; McLachlan, R I; Baker, H W G
2005-11-01
Quantification of changes in semen may give insight into the testosterone (T)-induced disruption of spermatogenesis in man. A model analogous to flushing of sperm from the genital tract after vasectomy was used to quantify the time course of semen changes in subjects participating in male contraceptive trials using 800 mg T-implant (n = 25) or 200 mg weekly intramuscular injection (IM-T; n = 33). A modified exponential decay model allowed for delayed onset and incomplete disruption to spermatogenesis. Semen variables measured weekly during a 91-day period after initial treatment were fitted to the model. Sperm concentration, total count, motility and morphometry exhibited similar average decay rates (5 day half-life). The mean delay to onset of decline in concentration was 15 (IM-T) and 18 (T-implant) days. The significantly longer (P < 0.005) delays deduced for the commencement of fall in normal morphology (41 days), normal morphometry (40 days) and sperm viability (43 and 55 days), and the change of morphometry to smaller more compact sperm heads are consistent with sperm being progressively cleared from the genital tract rather than continued shedding of immature or abnormal sperm by the seminiferous epithelium. A significant negative relationship was found between lag time and baseline sperm concentration, consistent with longer sperm-epididymal transit times associated with lower daily production rates.
77 FR 26699 - Safety Zone; Coast Guard Exercise, Hood Canal, WA
Federal Register 2010, 2011, 2012, 2013, 2014
2012-05-07
... would be impracticable to delay this important exercise to allow for a delayed effective date...-AA00 Safety Zone; Coast Guard Exercise, Hood Canal, WA AGENCY: Coast Guard, DHS. ACTION: Temporary... a Coast Guard Ready for Operations exercise in Hood Canal, WA that will take place between May 08...
MacRae, Braid A; Rossi, Rene Michel; Psikuta, Agnes; Spengler, Christina M; Annaheim, Simon
2018-06-05
Locally increasing evaporative resistance is one mechanism by which contact skin temperature (Tsk) sensors and their attachments may disturb the temperature of the skin site being measured. We aimed to determine the extent to which an obstruction of evaporation affects local Tsk during exercise-induced sweating and how this compares to the Tsk measured using a conventional contact Tsk sensor. Twelve adult males each completed one experimental session (~24°C, ~46 % relative humidity; RH) involving seated rest and exercise (cycle ergometer). Air velocity was ~0.5 m·s-1 during rest and ~1 m·s-1 during exercise. Tsk of the right posterolateral forearm was measured using fine-wire thermocouples (0.125 mm diameter; chosen for minimal sensor-related disturbance) under two concurrent experimental conditions: uncovered or directly covered by a moisture-impermeable matte-black aluminium foil (thickness 0.08 mm, area 15 mm x 22 mm). The adjacent Tsk was also measured using an iButton attached with a nonwoven medical tape. Changes in next-to-skin absolute vapour pressure were used to estimate the onset of sweating. During exercise, covered thermocouple temperatures were consistently warmer than those uncovered. These differences were small before the onset of sweating (0.1°C, p=0.16), but increased thereafter (0.6 and 1.0°C by minutes 15 and 30 of exercise, respectively; p≤0.03). For change scores from baseline rest, the iButton-measured Tsk was as much as 0.7°C warmer than uncovered and -0.4°C cooler than covered thermocouples during sweating, but differences were not statistically supported and with wide 95% limits of agreement (up to ±3.1°C). When delineated, a small obstruction of evaporation itself caused an overestimation of Tsk during exercise although, while demonstrable, these effects were less clear in the context of using a conventional contact Tsk sensor and attachment. © 2018 Institute of Physics and Engineering in Medicine.
Siedlik, Jacob A; Deckert, Jake A; Benedict, Stephen H; Bhatta, Anuja; Dunbar, Amanda J; Vardiman, John P; Gallagher, Philip M
2017-07-01
Recent work investigating exercise induced changes in immunocompetence suggests that some of the ambiguity in the literature is resultant from different cell isolation protocols and mitogen selection. To understand this effect, we compared post-exercise measures of T cell activation and proliferation using two different stimulation methods (costimulation through CD28 or stimulation with phytohaemagglutinin [PHA]). Further, we investigated whether exercise induced changes are maintained when T cell isolation from whole blood is delayed overnight in either a room temperature or chilled (4°C) environment. As expected, an increased proliferation response was observed post-exercise in T cells isolated from whole blood of previously trained individuals immediately after blood collection. Also, cells stimulated with PHA after resting overnight in whole blood were not adversely impacted by the storage conditions. In contrast, allowing cells to rest overnight in whole blood prior to stimulation through CD28, lessened the proliferation observed by cells following exercise rendering both the room temperature and chilled samples closer to the results seen in the control condition. Changes in early markers of activation (CD25), followed a similar pattern, with activation in PHA stimulated cells remaining fairly robust after overnight storage; whereas cell activation following stimulation through CD3+CD28 was disproportionately decreased by the influence of overnight storage. These findings indicate that decisions regarding cell stimulation methods need to be paired with the timeline for T cell isolation from whole blood. These considerations will be especially important for field based studies of immunocompetence where there is a delay in getting whole blood samples to a lab for processing as well as clinical applications where a failure to isolate T cells in a timely manner may result in loss of the response of interest. Copyright © 2017 Elsevier B.V. All rights reserved.
Laser homeostatics on delayed onset muscle soreness
NASA Astrophysics Data System (ADS)
Liu, T. C. Y.; Fu, D. R.; Liu, X. G.; Tian, Z. X.
2011-01-01
Delayed onset muscle soreness (DOMS) and its photobiomodulation were reviewed from the viewpoint of function-specific homeostasis (FSH) in this paper. FSH is a negative-feedback response of a biosystem to maintain the function-specific fluctuations inside the biosystem so that the function is perfectly performed. A stressor may destroy a FSH. A stress is a response of a biosystem to a stressor and may also be in stress-specific homeostasis (StSH). A low level light (LLL) is so defined that it has no effects on a function in its FSH or a stress in its StSH, but it modulate a function far from its FSH or a stress far from its StSH. For DOMS recovery, protein metabolism in the Z-line streaming muscular cell is the essential process, but the inflammation, pain and soreness are non-essential processes. For many DOMS phenomena, protein metabolism in the Z-line streaming muscular cell is in protein metabolism-specific homeostasis (PmSH) so that there are no effects of LLL although the inflammation can be inhibited and the pain can be relieved. An athlete or animal in the dysfunctional conditions such as blood flow restriction and exercise exhaustion is far from PmSH and the protein metabolism can be improved with LLL.
Perinatal asphyxia: CNS development and deficits with delayed onset
Herrera-Marschitz, Mario; Neira-Pena, Tanya; Rojas-Mancilla, Edgardo; Espina-Marchant, Pablo; Esmar, Daniela; Perez, Ronald; Muñoz, Valentina; Gutierrez-Hernandez, Manuel; Rivera, Benjamin; Simola, Nicola; Bustamante, Diego; Morales, Paola; Gebicke-Haerter, Peter J.
2013-01-01
Perinatal asphyxia constitutes a prototype of obstetric complications occurring when pulmonary oxygenation is delayed or interrupted. The primary insult relates to the duration of the period lacking oxygenation, leading to death if not re-established. Re-oxygenation leads to a secondary insult, related to a cascade of biochemical events required for restoring proper function. Perinatal asphyxia interferes with neonatal development, resulting in long-term deficits associated to mental and neurological diseases with delayed clinical onset, by mechanisms not yet clarified. In the experimental scenario, the effects observed long after perinatal asphyxia have been explained by overexpression of sentinel proteins, such as poly(ADP-ribose) polymerase-1 (PARP-1), competing for NAD+ during re-oxygenation, leading to the idea that sentinel protein inhibition constitutes a suitable therapeutic strategy. Asphyxia induces transcriptional activation of pro-inflammatory factors, in tandem with PARP-1 overactivation, and pharmacologically induced PARP-1 inhibition also down-regulates the expression of proinflammatory cytokines. Nicotinamide has been proposed as a suitable PARP-1 inhibitor. Its effect has been studied in an experimental model of global hypoxia in rats. In that model, the insult is induced by immersing rat fetus into a water bath for various periods of time. Following asphyxia, the pups are delivered, treated, and nursed by surrogate dams, pending further experiments. Nicotinamide rapidly distributes into the brain following systemic administration, reaching steady state concentrations sufficient to inhibit PARP-1 activity for several hours, preventing several of the long-term consequences of perinatal asphyxia, supporting the idea that nicotinamide constitutes a lead for exploring compounds with similar or better pharmacological profiles. PMID:24723845
The efficacy of protein supplementation during recovery from muscle-damaging concurrent exercise.
Eddens, Lee; Browne, Sarah; Stevenson, Emma J; Sanderson, Brad; van Someren, Ken; Howatson, Glyn
2017-07-01
This study investigated the effect of protein supplementation on recovery following muscle-damaging exercise, which was induced with a concurrent exercise design. Twenty-four well-trained male cyclists were randomised to 3 independent groups receiving 20 g protein hydrolysate, iso-caloric carbohydrate, or low-calorific placebo supplementation, per serve. Supplement serves were provided twice daily, from the onset of the muscle-damaging exercise, for a total of 4 days and in addition to a controlled diet (6 g·kg -1 ·day -1 carbohydrate, 1.2 g·kg -1 ·day -1 protein, remainder from fat). Following the concurrent exercise session at time-point 0 h, comprising a simulated high-intensity road cycling trial and 100 drop-jumps, recovery of outcome measures was assessed at 24, 48, and 72 h. The concurrent exercise protocol was deemed to have caused exercise-induced muscle damage (EIMD), owing to time effects (p < 0.001), confirming decrements in maximal voluntary contraction (peaking at 15% ± 10%) and countermovement jump performance (peaking at 8% ± 7%), along with increased muscle soreness, creatine kinase, and C-reactive protein concentrations. No group or interaction effects (p > 0.05) were observed for any of the outcome measures. The present results indicate that protein supplementation does not attenuate any of the indirect indices of EIMD imposed by concurrent exercise, when employing great rigour around the provision of a quality habitual diet and the provision of appropriate supplemental controls.
Vasudevan, John M; Logan, Andrew; Shultz, Rebecca; Koval, Jeffrey J; Roh, Eugene Y; Fredericson, Michael
2016-01-01
Aim. The purpose of this pilot study is to use surface electromyography to determine an individual athlete's typical muscle onset activation sequence when performing a golf or tennis forward swing and to use the method to assess to what degree the sequence is reproduced with common conditioning exercises and a machine designed for this purpose. Methods. Data for 18 healthy male subjects were collected for 15 muscles of the trunk and lower extremities. Data were filtered and processed to determine the average onset of muscle activation for each motion. A Spearman correlation estimated congruence of activation order between the swing and each exercise. Correlations of each group were pooled with 95% confidence intervals using a random effects meta-analytic strategy. Results. The averaged sequences differed among each athlete tested, but pooled correlations demonstrated a positive association between each exercise and the participants' natural muscle onset activation sequence. Conclusion. The selected training exercises and Turning Point™ device all partially reproduced our athletes' averaged muscle onset activation sequences for both sports. The results support consideration of a larger, adequately powered study using this method to quantify to what degree each of the selected exercises is appropriate for use in both golf and tennis.
Shultz, Rebecca; Fredericson, Michael
2016-01-01
Aim. The purpose of this pilot study is to use surface electromyography to determine an individual athlete's typical muscle onset activation sequence when performing a golf or tennis forward swing and to use the method to assess to what degree the sequence is reproduced with common conditioning exercises and a machine designed for this purpose. Methods. Data for 18 healthy male subjects were collected for 15 muscles of the trunk and lower extremities. Data were filtered and processed to determine the average onset of muscle activation for each motion. A Spearman correlation estimated congruence of activation order between the swing and each exercise. Correlations of each group were pooled with 95% confidence intervals using a random effects meta-analytic strategy. Results. The averaged sequences differed among each athlete tested, but pooled correlations demonstrated a positive association between each exercise and the participants' natural muscle onset activation sequence. Conclusion. The selected training exercises and Turning Point™ device all partially reproduced our athletes' averaged muscle onset activation sequences for both sports. The results support consideration of a larger, adequately powered study using this method to quantify to what degree each of the selected exercises is appropriate for use in both golf and tennis. PMID:27403454
Delayed-onset PTSD among war veterans: the role of life events throughout the life cycle.
Horesh, Danny; Solomon, Z; Zerach, G; Ein-Dor, T
2011-09-01
The underlying mechanisms of delayed-onset PTSD are yet to be understood. This study examines the role of stressful life events throughout the life cycle in delayed-onset PTSD following combat. 675 Israeli veterans from the 1982 Lebanon War, 369 with antecedent combat stress reaction (CSR) and 306 without CSR were assessed prospectively, 1, 2 and 20 years after the war. Veterans were divided into four groups, according to the time of first PTSD onset (first onset at 1983, 1984, and 2002 and no PTSD onset). They were assessed for post-, peri- and pre-traumatic life events, as well as military and socio-demographic characteristics. Our findings indicate that shorter delays in PTSD onset were associated with a higher risk for CSR, a higher number of pre- and post-war life events, more severe subjective battle exposure, greater perceived danger during combat and a more stressful military position. CSR was found to be the most powerful predictor of PTSD onset. A recency effect was also found, with more recent life events proving to be stronger predictors of PTSD onset. First, our findings validate the existence of delayed-onset PTSD, as it was found among a substantial number of participants (16.5%). Second, post-, peri- and pre-traumatic life events are associated with the time of PTSD onset. Thus, practitioners and researchers are encouraged to examine not only the original trauma, but also the stressful experiences throughout the survivors' life cycle. In particular, identification of antecedent CSR may help mental help professionals in targeting high-risk populations.
Brand, Serge; Kalak, Nadeem; Gerber, Markus; Kirov, Roumen; Pühse, Uwe; Holsboer-Trachsler, Edith
2014-09-01
To assess the association between self-perceived exercise exertion before bedtime and objectively measured sleep. Fifty-two regularly exercising young adults (mean age, 19.70 years; 54% females) underwent sleep electroencephalographic recordings 1.5 h after completing moderate to vigorous exercise in the evening. Before sleeping, participants answered questions regarding degree of exertion of the exercise undertaken. Greater self-perceived exertion before bedtime was associated with higher objectively assessed sleep efficiency (r = 0.69, P <0.001); self-perceived exertion explained 48% of the variance in sleep efficiency (R2 = 0.48). Moreover, high self-perceived exercise exertion was associated with more deep sleep, shortened sleep onset time, fewer awakenings after sleep onset, and shorter wake duration after sleep onset. Multiple linear regression analysis showed that objective sleep efficiency was predicted by increased exercise exertion, shortened sleep onset time, increased deep sleep, and decreased light sleep. Against expectations and general recommendations for sleep hygiene, high self-perceived exercise exertion before bedtime was associated with better sleep patterns in a sample of healthy young adults. Further studies should also focus on elderly adults and adults suffering from insomnia. Copyright © 2014 Elsevier B.V. All rights reserved.
Trangmar, Steven J; Chiesa, Scott T; Llodio, Iñaki; Garcia, Benjamin; Kalsi, Kameljit K; Secher, Niels H; González-Alonso, José
2015-11-01
Dehydration hastens the decline in cerebral blood flow (CBF) during incremental exercise, whereas the cerebral metabolic rate for O2 (CMRO2 ) is preserved. It remains unknown whether CMRO2 is also maintained during prolonged exercise in the heat and whether an eventual decline in CBF is coupled to fatigue. Two studies were undertaken. In study 1, 10 male cyclists cycled in the heat for ∼2 h with (control) and without fluid replacement (dehydration) while internal and external carotid artery blood flow and core and blood temperature were obtained. Arterial and internal jugular venous blood samples were assessed with dehydration to evaluate CMRO2 . In study 2, in 8 male subjects, middle cerebral artery blood velocity was measured during prolonged exercise to exhaustion in both dehydrated and euhydrated states. After a rise at the onset of exercise, internal carotid artery flow declined to baseline with progressive dehydration (P < 0.05). However, cerebral metabolism remained stable through enhanced O2 and glucose extraction (P < 0.05). External carotid artery flow increased for 1 h but declined before exhaustion. Fluid ingestion maintained cerebral and extracranial perfusion throughout nonfatiguing exercise. During exhaustive exercise, however, euhydration delayed but did not prevent the decline in cerebral perfusion. In conclusion, during prolonged exercise in the heat, dehydration accelerates the decline in CBF without affecting CMRO2 and also restricts extracranial perfusion. Thus, fatigue is related to a reduction in CBF and extracranial perfusion rather than CMRO2 . Copyright © 2015 the American Physiological Society.
Docosahexaenoic acid affects markers of inflammation and muscle damage after eccentric exercise.
DiLorenzo, Frank M; Drager, Christopher J; Rankin, Janet W
2014-10-01
The effect of docosahexaenoic acid (DHA) on inflammatory and muscle damage response to acute eccentric exercise and to the subsequent initiation of a resistance training program was studied in 41 untrained men. Subjects consumed either 2 g·d of either DHA or placebo (PL) for 28 days before a 17-day exercise phase (day 1 to day 17) that began with an eccentric exercise bout of the elbow flexors (day 1). For analysis, the exercise period was further divided into an acute response phase (day 1-4). Isometric muscle strength (STR), range of motion (ROM), and delayed onset muscle soreness (DOMS) were measured on days 1, 2, 3, 4, 7, 12, and 17. Fasted blood was measured for interleukin 6 (IL-6), interleukin 1 receptor antagonist, C-reactive protein (CRP), and creatine kinase (CK) on days 1, 2, and 4. Serum CK and CRP were also measured in blood collected on days 7, 12, and 17. In the acute phase, DHA significantly reduced the serum CK (12.5%) and the IL-6 response (32%) but did not affect STR or DOMS. Over the entire 17-day resistance exercise period, DOMS area under the curve was 183.2 ± 96.2 for DHA and 203.2 ± 120.9 for PL (p = 0.054) and the CK response was numerically lower for DHA (p = 0.093). Docosahexaenoic acid supplementation reduced some but not all indicators of muscle damage and inflammation in the 4 days after an acute eccentric exercise bout but did not significantly affect the response to initiation of resistance exercise.
2012-01-01
Background There has been substantial increase in use of androgen deprivation therapy as adjuvant management of prostate cancer. However, this leads to a range of musculoskeletal toxicities including reduced bone mass and increased skeletal fractures compounded with rapid metabolic alterations, including increased body fat, reduced lean mass, insulin resistance and negative lipoprotein profile, increased incidence of cardiovascular and metabolic morbidity, greater distress and reduced quality of life. Numerous research studies have demonstrated certain exercise prescriptions to be effective at preventing or even reversing these treatment toxicities. However, all interventions to date have been of rehabilitative intent being implemented after a minimum of 3 months since initiation of androgen deprivation, by which time considerable physical and psychological health problems have manifested. The pressing question is whether it is more efficacious to commence exercise therapy at the same time as initiating androgen deprivation, so treatment induced adverse effects can be immediately attenuated or indeed prevented. Methods/design We are proposing a multi-site randomized controlled trial with partial crossover to examine the effects of timing of exercise implementation (immediate or delayed) on preserving long-term skeletal health, reversing short- and long-term metabolic and cardiovascular risk factors, and supporting mental health in men receiving androgen deprivation therapy. 124 men who are about to initiate androgen deprivation for prostate cancer will be randomized to immediate or delayed groups. Immediate will commence a 6-month exercise program within 7–10 days of their first dose. Delayed will receive usual care for 6 months and then commence the exercise program for 6 months (partial cross-over). Immediate will be free to adopt the lifestyle of their choosing following the initial 6-month intervention. Measurements for primary and secondary endpoints will take place at baseline, 6 months and 12 months. Discussion This project is unique as it explores a fundamental question of when exercise implementation will be of most benefit and addresses both physical and psychological consequences of androgen deprivation initiation. The final outcome may be adjunct treatment which will reduce if not prevent the toxicities of androgen deprivation, ultimately resulting in reduced morbidity and mortality for men with prostate cancer. Trial registration ACTRN12612000097842 PMID:23013489
Do baby walkers delay onset of walking in young children?
Burrows, Patricia; Griffiths, Peter
2002-11-01
Baby walkers have been a source of considerable controversy. Some people suggest developmental benefit from their use while others focus on the potential harm that stems from accidents and even suggest developmental delay. This mini-review aimed to determine if use of a baby walker delays affects the onset of walking. The Cochrane library, Embase, CINAHL and Medline were searched for randomized controlled trials (RCTs) and cohort studies, which compared the onset of walking in infants who used baby walkers with a group who did not. Two RCTs and two cohort studies were identified and available for consideration. All of the studies examined the effect of infant walkers on the onset of walking. The results of the two RCTs did not demonstrate a significant effect on the onset of walking. The cohort studies suggest that the use of infant walkers delayed the onset of walking in young children and a pooled analysis of the four studies suggested a delay of between 11 and 26 days. Although the quality of the studies was relatively poor these studies lend no support to the argument that walkers aid the development of walking. The significance of a delay of this magnitude is however unclear. Further work is required to determine whether walkers are an independent causal factor in accidents.
Saxvig, Ingvild W; Wilhelmsen-Langeland, Ane; Pallesen, Ståle; Vedaa, Oystein; Nordhus, Inger H; Sørensen, Eli; Bjorvatn, Bjørn
2013-08-01
Delayed sleep phase disorder is characterized by a delay in the timing of the major sleep period relative to conventional norms. The sleep period itself has traditionally been described as normal. Nevertheless, it is possible that sleep regulatory mechanism disturbances associated with the disorder may affect sleep duration and/or architecture. Polysomnographic data that may shed light on the issue are scarce. Hence, the aim of this study was to examine polysomnographic measures of sleep in adolescents and young adults with delayed sleep phase disorder, and to compare findings to that of healthy controls. A second aim was to estimate dim light melatonin onset as a marker of circadian rhythm and to investigate the phase angle relationship (time interval) between dim light melatonin onset and the sleep period. Data from 54 adolescents and young adults were analysed, 35 diagnosed with delayed sleep phase disorder and 19 healthy controls. Results show delayed timing of sleep in participants with delayed sleep phase disorder, but once sleep was initiated no group differences in sleep parameters were observed. Dim light melatonin onset was delayed in participants with delayed sleep phase disorder, but no difference in phase angle was observed between the groups. In conclusion, both sleep and dim light melatonin onset were delayed in participants with delayed sleep phase disorder. The sleep period appeared to occur at the same circadian phase in both groups, and once sleep was initiated no differences in sleep parameters were observed. © 2013 European Sleep Research Society.
The effects of exercise-induced weight loss on appetite-related peptides and motivation to eat.
Martins, C; Kulseng, B; King, N A; Holst, J J; Blundell, J E
2010-04-01
The magnitude of exercise-induced weight loss depends on the extent of compensatory responses. An increase in energy intake is likely to result from changes in the appetite control system toward an orexigenic environment; however, few studies have measured how exercise impacts on both orexigenic and anorexigenic peptides. The aim of the study was to investigate the effects of medium-term exercise on fasting/postprandial levels of appetite-related hormones and subjective appetite sensations in overweight/obese individuals. We conducted a longitudinal study in a university research center. Twenty-two sedentary overweight/obese individuals (age, 36.9 +/- 8.3 yr; body mass index, 31.3 +/- 3.3 kg/m(2)) took part in a 12-wk supervised exercise programme (five times per week, 75% maximal heart rate) and were requested not to change their food intake during the study. We measured changes in body weight and fasting/postprandial plasma levels of glucose, insulin, total ghrelin, acylated ghrelin (AG), peptide YY, and glucagon-like peptide-1 and feelings of appetite. Exercise resulted in a significant reduction in body weight and fasting insulin and an increase in AG plasma levels and fasting hunger sensations. A significant reduction in postprandial insulin plasma levels and a tendency toward an increase in the delayed release of glucagon-like peptide-1 (90-180 min) were also observed after exercise, as well as a significant increase (127%) in the suppression of AG postprandially. Exercise-induced weight loss is associated with physiological and biopsychological changes toward an increased drive to eat in the fasting state. However, this seems to be balanced by an improved satiety response to a meal and improved sensitivity of the appetite control system.
Allard, Joanne S; Ntekim, Oyonumo; Johnson, Steven P; Ngwa, Julius S; Bond, Vernon; Pinder, Dynell; Gillum, Richard F; Fungwe, Thomas V; Kwagyan, John; Obisesan, Thomas O
2017-01-01
Possession of the Apolipoprotein E (APOE) gene ε4 allele is the most prevalent genetic risk factor for late onset Alzheimer's disease (AD). Recent evidence suggests that APOE genotype differentially affects the expression of brain-derived neurotrophic factor (BDNF). Notably, aerobic exercise-induced upregulation of BDNF is well documented; and exercise has been shown to improve cognitive function. As BDNF is known for its role in neuroplasticity and survival, its upregulation is a proposed mechanism for the neuroprotective effects of physical exercise. In this pilot study designed to analyze exercise-induced BDNF upregulation in an understudied population, we examined the effects of APOEε4 (ε4) carrier status on changes in BDNF expression after a standardized exercise program. African Americans, age 55years and older, diagnosed with mild cognitive impairment participated in a six-month, supervised program of either stretch (control treatment) or aerobic (experimental treatment) exercise. An exercise-induced increase in VO 2 Max was detected only in male participants. BDNF levels in serum were measured using ELISA. Age, screening MMSE scores and baseline measures of BMI, VO 2 Max, and BDNF did not differ between ε4 carriers and non-ε4 carriers. A significant association between ε4 status and serum BDNF levels was detected. Non-ε4 carriers showed a significant increase in BDNF levels at the 6month time point while ε4 carriers did not. We believe we have identified a relationship between the ε4 allele and BDNF response to physiologic adaptation which likely impacts the extent of neuroprotective benefit gained from engagement in physical exercise. Replication of our results with inclusion of diverse racial cohorts, and a no-exercise control group will be necessary to determine the scope of this association in the general population. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
la Marca, Giancarlo; Canessa, Clementina; Giocaliere, Elisa; Romano, Francesca; Duse, Marzia; Malvagia, Sabrina; Lippi, Francesca; Funghini, Silvia; Bianchi, Leila; Della Bona, Maria Luisa; Valleriani, Claudia; Ombrone, Daniela; Moriondo, Maria; Villanelli, Fabio; Speckmann, Carsten; Adams, Stuart; Gaspar, Bobby H; Hershfield, Michael; Santisteban, Ines; Fairbanks, Lynette; Ragusa, Giovanni; Resti, Massimo; de Martino, Maurizio; Guerrini, Renzo; Azzari, Chiara
2013-06-01
Adenosine deaminase (ADA)-severe combined immunodeficiency (SCID) is caused by genetic variants that disrupt the function of ADA. In its early-onset form, it is rapidly fatal to infants. Delayed or late-onset ADA-SCID is characterized by insidious progressive immunodeficiency that leads to permanent organ damage or death. Quantification of T-cell receptor excision circles (TRECs) or tandem mass spectrometry (tandem-MS) analysis of dried blood spots (DBSs) collected at birth can identify newborns with early-onset ADA-SCID and are used in screening programs. However, it is not clear whether these analyses can identify newborns who will have delayed or late-onset ADA-SCID before symptoms appear. We performed a retrospective study to evaluate whether tandem-MS and quantitative TREC analyses of DBSs could identify newborns who had delayed-onset ADA-SCID later in life. We tested stored DBSs collected at birth from 3 patients with delayed-onset ADA-SCID using tandem-MS (PCT EP2010/070517) to evaluate levels of adenosine and 2'-deoxyadenosine and real-time PCR to quantify TREC levels. We also analyzed DBSs from 3 newborns with early-onset ADA-SCID and 2 healthy newborn carriers of ADA deficiency. The DBSs taken at birth from the 3 patients with delayed-onset ADA-SCID had adenosine levels of 10, 25, and 19 μmol/L (normal value, <1.5 μmol/L) and 2'-deoxyadenosine levels of 0.7, 2.7, and 2.4 μmol/L (normal value, <0.07 μmol/L); the mean levels of adenosine and 2'-deoxyadenosine were respectively 12.0- and 27.6-fold higher than normal values. DBSs taken at birth from all 3 patients with delayed-onset ADA deficiency had normal TREC levels, but TRECs were undetectable in blood samples taken from the same patients at the time of diagnosis. Tandem-MS but not TREC quantification identifies newborns with delayed- or late-onset ADA deficiency. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Short nights reduce light-induced circadian phase delays in humans.
Burgess, Helen J; Eastman, Charmane I
2006-01-01
Short sleep episodes are common in modern society. We recently demonstrated that short nights reduce phase advances to light. Here we show that short nights also reduce phase delays to light. Two weeks of 6-hour sleep episodes in the dark (short nights) and 2 weeks of long 9-hour sleep episodes (long nights) in counterbalanced order, separated by 7 days. Following each series of nights, there was a dim-light phase assessment to assess baseline phase. Three days later, subjects were exposed to a phase-delaying light stimulus for 2 days, followed by a final phase assessment. Subjects slept at home in dark bedrooms but came to the laboratory for the phase assessments and light stimulus. Seven young healthy subjects. The 3.5-hour light stimulus was four 30-minute pulses of bright light (-5000 lux) separated by 30-minute intervals of room light. The stimulus began 2.5 hours after each subject's dim-light melatonin onset, followed by a 6- or 9-hour sleep episode. On the second night, the bright light and sleep episode began 1 hour later. The dim-light melatonin onset and dimlight melatonin offset phase delayed 1.4 and 0.7 hours less in the short nights, respectively (both p < or = .015). These results indicate for the first time that short nights can reduce circadian phase delays, that long nights can increase phase delays to light, or both. People who curtail their sleep may inadvertently reduce their circadian responsiveness to evening light.
Malm, Christer; Nyberg, Pernilla; Engström, Marianne; Sjödin, Bertil; Lenkei, Rodica; Ekblom, Björn; Lundberg, Ingrid
2000-01-01
A role of the immune system in muscular adaptation to physical exercise has been suggested but data from controlled human studies are scarce. The present study investigated immunological events in human blood and skeletal muscle by immunohistochemistry and flow cytometry after eccentric cycling exercise and multiple biopsies. Immunohistochemical detection of neutrophil- (CD11b, CD15), macrophage- (CD163), satellite cell- (CD56) and IL-1β-specific antigens increased similarly in human skeletal muscle after eccentric cycling exercise together with multiple muscle biopsies, or multiple biopsies only. Changes in immunological variables in blood and muscle were related, and monocytes and natural killer (NK) cells appeared to have governing functions over immunological events in human skeletal muscle. Delayed onset muscle soreness, serum creatine kinase activity and C-reactive protein concentration were not related to leukocyte infiltration in human skeletal muscle. Eccentric cycling and/or muscle biopsies did not result in T cell infiltration in human skeletal muscle. Modes of stress other than eccentric cycling should therefore be evaluated as a myositis model in human. Based on results from the present study, and in the light of previously published data, it appears plausible that muscular adaptation to physical exercise occurs without preceding muscle inflammation. Nevertheless, leukocytes seem important for repair, regeneration and adaptation of human skeletal muscle. PMID:11080266
Dietary Approaches that Delay Age-Related Diseases
Everitt, Arthur V; Hilmer, Sarah N; Brand-Miller, Jennie C; Jamieson, Hamish A; Truswell, A Stewart; Sharma, Anita P; Mason, Rebecca S; Morris, Brian J; Le Couteur, David G
2006-01-01
Reducing food intake in lower animals such as the rat decreases body weight, retards many aging processes, delays the onset of most diseases of old age, and prolongs life. A number of clinical trials of food restriction in healthy adult human subjects running over 2–15 years show significant reductions in body weight, blood cholesterol, blood glucose, and blood pressure, which are risk factors for the development of cardiovascular disease and diabetes. Lifestyle interventions that lower energy balance by reducing body weight such as physical exercise can also delay the development of diabetes and cardiovascular disease. In general, clinical trials are suggesting that diets high in calories or fat along with overweight are associated with increased risk for cardiovascular disease, type 2 diabetes, some cancers, and dementia. There is a growing literature indicating that specific dietary constituents are able to influence the development of age-related diseases, including certain fats (trans fatty acids, saturated, and polyunsaturated fats) and cholesterol for cardiovascular disease, glycemic index and fiber for diabetes, fruits and vegetables for cardiovascular disease, and calcium and vitamin D for osteoporosis and bone fracture. In addition, there are dietary compounds from different functional foods, herbs, and neutraceuticals such as ginseng, nuts, grains, and polyphenols that may affect the development of age-related diseases. Long-term prospective clinical trials will be needed to confirm these diet—disease relationships. On the basis of current research, the best diet to delay age-related disease onset is one low in calories and saturated fat and high in wholegrain cereals, legumes, fruits and vegetables, and which maintains a lean body weight. Such a diet should become a key component of healthy aging, delaying age-related diseases and perhaps intervening in the aging process itself. Furthermore, there are studies suggesting that nutrition in childhood and even in the fetus may influence the later development of aging diseases and lifespan. PMID:18047254
Kim, Jong Whi; Chae, Junghyun; Nam, Sung Min; Kim, Yo Na; Yoo, Dae Young; Choi, Jung Hoon; Jung, Hyo Young; Song, Wook; Hwang, In Koo; Seong, Je Kyung; Yoon, Yeo Sung
2015-01-01
In the present study, we investigated the effects of treadmill exercise on lipid peroxidation and Cu,Zn-superoxide dismutase (SOD1) levels in the hippocampus of Zucker diabetic fatty (ZDF) rats and lean control rats (ZLC) during the onset of diabetes. At 7 weeks of age, ZLC and ZDF rats were either placed on a stationary treadmill or made to run for 1 h/day for 5 consecutive days at 16~22 m/min for 5 weeks. At 12 weeks of age, the ZDF rats had significantly higher blood glucose levels and body weight than the ZLC rats. In addition, malondialdehyde (MDA) levels in the hippocampus of the ZDF rats were significantly higher than those of the ZLC rats whereas SOD1 levels in the hippocampus of the ZDF rats were moderately decreased. Notably, treadmill exercise prevented the increase of blood glucose levels in ZDF rats. In addition, treadmill exercise significantly ameliorated changes in MDA and SOD1 levels in the hippocampus although SOD activity was not altered. These findings suggest that diabetes increases lipid peroxidation and decreases SOD1 levels, and treadmill exercise can mitigate diabetes-induced oxidative damage in the hippocampus.
Thomas, Claire; Bishop, David J; Lambert, Karen; Mercier, Jacques; Brooks, George A
2012-01-01
Two lactate/proton cotransporter isoforms (monocarboxylate transporters, MCT1 and MCT4) are present in the plasma (sarcolemmal) membranes of skeletal muscle. Both isoforms are symports and are involved in both muscle pH and lactate regulation. Accordingly, sarcolemmal MCT isoform expression may play an important role in exercise performance. Acute exercise alters human MCT content, within the first 24 h from the onset of exercise. The regulation of MCT protein expression is complex after acute exercise, since there is not a simple concordance between changes in mRNA abundance and protein levels. In general, exercise produces greater increases in MCT1 than in MCT4 content. Chronic exercise also affects MCT1 and MCT4 content, regardless of the initial fitness of subjects. On the basis of cross-sectional studies, intensity would appear to be the most important factor regulating exercise-induced changes in MCT content. Regulation of skeletal muscle MCT1 and MCT4 content by a variety of stimuli inducing an elevation of lactate level (exercise, hypoxia, nutrition, metabolic perturbations) has been demonstrated. Dissociation between the regulation of MCT content and lactate transport activity has been reported in a number of studies, and changes in MCT content are more common in response to contractile activity, whereas changes in lactate transport capacity typically occur in response to changes in metabolic pathways. Muscle MCT expression is involved in, but is not the sole determinant of, muscle H(+) and lactate anion exchange during physical activity.
Early Detection of Physical Activity for People With Type 1 Diabetes Mellitus.
Dasanayake, Isuru S; Bevier, Wendy C; Castorino, Kristin; Pinsker, Jordan E; Seborg, Dale E; Doyle, Francis J; Dassau, Eyal
2015-06-30
Early detection of exercise in individuals with type 1 diabetes mellitus (T1DM) may allow changes in therapy to prevent hypoglycemia. Currently there is limited experience with automated methods that detect the onset and end of exercise in this population. We sought to develop a novel method to quickly and reliably detect the onset and end of exercise in these individuals before significant changes in blood glucose (BG) occur. Sixteen adults with T1DM were studied as outpatients using a diary, accelerometer, heart rate monitor, and continuous glucose monitor for 2 days. These data were used to develop a principal component analysis based exercise detection method. Subjects also performed 60 and 30 minute exercise sessions at 30% and 50% predicted heart rate reserve (HRR), respectively. The detection method was applied to the exercise sessions to determine how quickly the detection of start and end of exercise occurred relative to change in BG. Mild 30% HRR and moderate 50% HRR exercise onset was identified in 6 ± 3 and 5 ± 2 (mean ± SD) minutes, while completion was detected in 3 ± 8 and 6 ± 5 minutes, respectively. BG change from start of exercise to detection time was 1 ± 6 and -1 ± 3 mg/dL, and, from the end of exercise to detection time was 6 ± 4 and -17 ± 13 mg/dL, respectively, for the 2 exercise sessions. False positive and negative ratios were 4 ± 2% and 21 ± 22%. The novel method for exercise detection identified the onset and end of exercise in approximately 5 minutes, with an average BG change of only -6 mg/dL. © 2015 Diabetes Technology Society.
Reconciling findings of emotion-induced memory enhancement and impairment of preceding items
Knight, Marisa; Mather, Mara
2009-01-01
A large body of work reveals that people remember emotionally arousing information better than neutral information. However, previous research reveals contradictory effects of emotional events on memory for neutral events that precede or follow them: in some studies emotionally arousing items impair memory for immediately preceding or following items and in others arousing items enhance memory for preceding items. By demonstrating both emotion-induced enhancement and impairment, Experiments 1 and 2 clarified the conditions under which these effects are likely to occur. The results suggest that emotion-induced enhancement is most likely to occur for neutral items that: (1) precede (and so are poised to predict the onset of) emotionally arousing items, (2) have high attentional weights at encoding, and (3) are tested after a delay period of a week rather than within the same experiment session. In contrast, emotion-induced impairment is most likely to occur for neutral items near the onset of emotional arousal that are overshadowed by highly activated competing items during encoding. PMID:20001121
Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging.
Simioni, Carolina; Zauli, Giorgio; Martelli, Alberto M; Vitale, Marco; Sacchetti, Gianni; Gonelli, Arianna; Neri, Luca M
2018-03-30
Physical exercise is considered to be one of the beneficial factors of a proper lifestyle and is nowadays seen as an indispensable element for good health, able to lower the risk of disorders of the cardiovascular, endocrine and osteomuscular apparatus, immune system diseases and the onset of potential neoplasms. A moderate and programmed physical exercise has often been reported to be therapeutic both in the adulthood and in aging, since capable to promote fitness. Regular exercise alleviates the negative effects caused by free radicals and offers many health benefits, including reduced risk of all-cause mortality, sarcopenia in the skeletal muscle, chronic disease, and premature death in elderly people. However, physical performance is also known to induce oxidative stress, inflammation, and muscle fatigue. Many efforts have been carried out to identify micronutrients and natural compounds, also known as nutraceuticals, able to prevent or attenuate the exercise-induced oxidative stress and inflammation. The aim of this review is to discuss the benefits deriving from a constant physical activity and by the intake of antioxidant compounds to protect the body from oxidative stress. The attention will be focused mainly on three natural antioxidants, which are quercetin, resveratrol and curcumin. Their properties and activity will be described, as well as their benefits on physical activity and on aging, which is expected to increase through the years and can get favorable benefits from a constant exercise activity.
Brooks, Cristy; Kennedy, Suzanne; Marshall, Paul W M
2012-12-01
A randomized controlled trial. To compare changes in self-rated disability, pain, and anticipatory postural adjustments between specific trunk exercise and general exercise in patients with chronic low back pain. Chronic low back pain is associated with altered motor control of the trunk muscles. The best exercise to address altered motor control is unclear. Sixty-four patients with chronic low back pain were randomly assigned to a specific trunk exercise group (SEG) that included skilled cognitive activation of the trunk muscles in addition to a number of other best practice exercises, whereas the general exercise group performed only seated cycling exercise. The training program lasted for 8 weeks. Self-rated disability and pain scores were collected before and after the training period. Electromyographic activity of various trunk muscles was recorded during performance of a rapid shoulder flexion task before and after training. Muscle onsets were calculated, and the latency time (in ms) between the onset of each trunk muscle and the anterior deltoid formed the basis of the motor control analysis. After training, disability was significantly lower in the SEG (d = 0.62, P = 0.018). Pain was reduced in both groups after training (P < 0.05), but was lower for the SEG (P < 0.05). Despite the general exercise group performing no specific trunk exercise, similar changes in trunk muscle onsets were observed in both groups after training. SEG elicited significant reductions in self-rated disability and pain, whereas similar between-group changes in trunk muscle onsets were observed. The motor control adaptation seems to reflect a strategy of improved coordination between the trunk muscles with the unilateral shoulder movement. Trunk muscle onsets during rapid limb movement do not seem to be a valid mechanism of action for specific trunk exercise rehabilitation programs.
Effects of exercise on craving and cigarette smoking in the human laboratory.
Kurti, Allison N; Dallery, Jesse
2014-06-01
Exercise is increasingly being pursued as a treatment to reduce cigarette smoking. The efficacy of clinical, exercise-based cessation interventions may be enhanced by conducting laboratory studies to determine maximally effective conditions for reducing smoking, and the mechanisms through which the effects on smoking are achieved. The main purpose of this study was to assess whether the effects of exercise on two components of craving (anticipated reward from smoking, anticipated relief from withdrawal) mediated the relationship between exercise and delay (in min) to ad libitum smoking. Experiment 1 (N=21) assessed the effects of exercise intensity (inactivity, low, moderate) on craving components up to 60 min post-exercise. Because moderate-intensity exercise most effectively reduced craving on the reward component, all participants exercised at a moderate intensity in Experiment 2. Using an ABAB within-subjects design, Experiment 2 (N=20) evaluated whether the effects of moderate-intensity exercise on reward and relief components of craving mediated the relationship between exercise and participants' delays (in min) to ad libitum smoking. Delays were significantly longer after exercise (M=21 min) versus inactivity (M=4 min), and the effects of exercise on delay were mediated through the reward component of craving. Future research should continue to explore the mechanisms through which exercise influences behavioral indices of smoking in the human laboratory. Additionally, given the benefits uniquely afforded by exercise-based cessation interventions (e.g., improving mood and other health outcomes), implementing these interventions in clinical settings may contribute substantially to improving public health. Copyright © 2014 Elsevier Ltd. All rights reserved.
Evaluation of the effect of jobelyn(®) on chemoconvulsants-induced seizure in mice.
Umukoro, Solomon; Omogbiya, Itivere Adrian; Eduviere, Anthony Taghogho
2013-01-01
Epilepsy is a common central nervous system (CNS) disorder characterized by seizures resulting from episodic neuronal discharges. The incidence of toxicity and refractoriness has compromised the clinical efficacy of the drugs currently used for the treatment of convulsions. Thus, there is a need to search for new medicines from plant origin that are readily available and safer for the control of seizures. Jobelyn(®) (JB) is a unique African polyherbal preparation used by the natives to treat seizures in children. This investigation was carried out to evaluate whether JB has anti-seizure property in mice. The animals received JB (5, 10 and 20 mg/kg, p.o) 30 min before induction of convulsions with intraperitoneal (i.p.) injection of picotoxin (6 mg/kg), strychnine (2 mg/kg) and pentylenetetrazole (85 mg/kg) respectively. Diazepam (2 mg/kg, p.o.) was used as the reference drug. Anti-seizure activities were assessed based on the ability of test drugs to prevent convulsions, death or to delay the onset of seizures in mice. JB (5, 10 and 20 mg/kg, p.o) could only delay the onset of seizures induced by pentylenetetrazole (85 mg/kg, i.p.) in mice. However, it did not did not offer any protection against seizure episodes, as it failed to prevent the animals, from exhibiting tonic-clonic convulsions caused by pentylenetetrazole (85 mg/kg, i.p.), strychnine (2 mg/kg) or picrotoxin (6 mg/kg, i.p.). On the other hand, diazepam (2 mg/kg, i.p.), offered 100% protection against convulsive seizures, induced by pentylenetetrazole (85 mg/kg, i.p.). However, it failed to prevent seizures produced by strychnine (2 mg/kg, i.p.) or picrotoxin (6 mg/kg, i.p.). Our results suggest that JB could not prevent the examined chemoconvulsants-induced convulsions. However, its ability to delay the latency to seizures induced by pentylenetetrazole suggests that JB might be effective in the control of the seizure spread in epileptic brains.
Humans Optimize Decision-Making by Delaying Decision Onset
Teichert, Tobias; Ferrera, Vincent P.; Grinband, Jack
2014-01-01
Why do humans make errors on seemingly trivial perceptual decisions? It has been shown that such errors occur in part because the decision process (evidence accumulation) is initiated before selective attention has isolated the relevant sensory information from salient distractors. Nevertheless, it is typically assumed that subjects increase accuracy by prolonging the decision process rather than delaying decision onset. To date it has not been tested whether humans can strategically delay decision onset to increase response accuracy. To address this question we measured the time course of selective attention in a motion interference task using a novel variant of the response signal paradigm. Based on these measurements we estimated time-dependent drift rate and showed that subjects should in principle be able trade speed for accuracy very effectively by delaying decision onset. Using the time-dependent estimate of drift rate we show that subjects indeed delay decision onset in addition to raising response threshold when asked to stress accuracy over speed in a free reaction version of the same motion-interference task. These findings show that decision onset is a critical aspect of the decision process that can be adjusted to effectively improve decision accuracy. PMID:24599295
Arterial Gas Embolism Induced Ageusia (Case Report)
2011-07-01
Pulmonary barotraumas are also reported in tbe literature; one case report described delayed onset pul- monary barotrauma in a diver which resolved...be rapidly fatal; it includes shock, pulmonary "chokes", and neurolog ic sequelae resembling cere- brovascular accidents due to nitrogen bubbles...pressures and may cause pneumothoraces. Air may evolve into the mediastinum (mediastinal emphysema ) or the skin (subcutaneous emphysema ). Lastly
Effect of eccentric exercise on the healing process of injured patellar tendon in rats.
Nakamura, Kenichi; Kitaoka, Katsuhiko; Tomita, Katsuro
2008-07-01
Earlier studies have reported positive results from eccentric training in patients with tendon disorders. The reasons for the beneficial clinical effects of eccentric training are not known. Vascularization followed by regression of the vasculature enhances the healing response of injured tendons. Eccentric exercise induces a more beneficial healing response than concentric exercise. Sixty rats with patellar tendon injuries were divided into three groups: nonexercise controls (group N; n = 20); concentric exercise group (group C; n = 20); eccentric exercise group (group E; n = 20). Each rat was taught to run uphill or downhill for 14 days. Patellar tendons were removed 1, 4, 7, 10, and 14 days following injury. Vascular endothelial growth factor (VEGF), angiopoietin-1, and angiopoietin-2 were measured by reverse transcription polymerase chain reaction. In group C, VEGF mRNA was increased 1 and 4 days following injury but was decreased on days 7, 10, and 14. In group E, VEGF mRNA was elevated only on day 1. In group N, VEGF mRNA remained at a low level throughout all 14 days. The angiopoietin-2/angiopoietin-1 ratio was higher for group C than for group E. In the presence of VEGF, angiopoietin-1 promotes vessel stability, whereas angiopoietin-2 has the opposite effect. Eccentric exercise contributes to stabilized angiogenesis during the early phase of tendon injury. Conversely, concentric exercise, which induces destabilized angiogenesis, leads to a delayed healing response. Initiation of eccentric exercise immediately after tendon injury may help improve healing by reducing vascularity.
Sangha, Jatinder Singh; Wally, Owen; Banskota, Arjun H; Stefanova, Roumiana; Hafting, Jeff T; Critchley, Alan T; Prithiviraj, Balakrishnan
2015-10-20
We report here the protective effects of a methanol extract from a cultivated strain of the red seaweed, Chondrus crispus, against β-amyloid-induced toxicity, in a transgenic Caenorhabditis elegans, expressing human Aβ1-42 gene. The methanol extract of C. crispus (CCE), delayed β-amyloid-induced paralysis, whereas the water extract (CCW) was not effective. The CCE treatment did not affect the transcript abundance of amy1; however, Western blot analysis revealed a significant decrease of Aβ species, as compared to untreated worms. The transcript abundance of stress response genes; sod3, hsp16.2 and skn1 increased in CCE-treated worms. Bioassay guided fractionation of the CCE yielded a fraction enriched in monogalactosyl diacylglycerols (MGDG) that significantly delayed the onset of β-amyloid-induced paralysis. Taken together, these results suggested that the cultivated strain of C. crispus, whilst providing dietary nutritional value, may also have significant protective effects against β-amyloid-induced toxicity in C. elegans, partly through reduced β-amyloid species, up-regulation of stress induced genes and reduced accumulation of reactive oxygen species (ROS).
Advanced onset of puberty after metformin therapy in swine with thrifty genotype.
Astiz, S; Gonzalez-Bulnes, A; Astiz, I; Barbero, A; Perez-Solana, M L; Garcia-Real, I
2014-09-01
The prevention and treatment of obesity in children is based on adequate nutrition and exercise plus antihyperglycaemic drugs. Currently, the incidence of childhood obesity is aggravated in ethnicities with thrifty genotype, but there is no available information on the effects of metformin therapy. The relative effects of lifestyle and metformin on patterns of growth, fattening, metabolic status and attainment of puberty were assessed in females of an obese swine model (Iberian gilts), allocated to three experimental groups (group A, obesogenic diet and scarce exercise; group DE, adequate diet and opportunity for exercise; and group DEM, adequate diet and opportunity for exercise plus metformin). Group A evidenced high weight, corpulence and adiposity, high plasma triglycerides and impairments of glucose regulation predisposing to insulin resistance. These features were favourably modulated by adequate lifestyle (group DE), and these effects were strengthened by metformin treatment (group DEM), which induced an improvement in body development by favouring muscle deposition. However, contrary to expectations, metformin advanced the onset of puberty. Metformin treatments would have positive effects on growth patterns, adiposity and metabolic features of young females from ethnicities with thrifty genotype or developing leptin resistance, but a negative effect by advancing the attainment of puberty. This study provides a warning regarding the use of metformin, without further studies, in girls from these ethnicities. © 2014 The Authors. Experimental Physiology © 2014 The Physiological Society.
Optical measurement of blood flow in exercising skeletal muscle: a pilot study
NASA Astrophysics Data System (ADS)
Wang, Detian; Baker, Wesley B.; Parthasarathy, Ashwin B.; Zhu, Liguo; Li, Zeren; Yodh, Arjun G.
2017-07-01
Blood flow monitoring during rhythm exercising is very important for sports medicine and muscle dieases. Diffuse correlation spectroscopy(DCS) is a relative new invasive way to monitor blood flow but suffering from muscle fiber motion. In this study we focus on how to remove exercise driven artifacts and obtain accurate estimates of the increase in blood flow from exercise. Using a novel fast software correlator, we measured blood flow in forearm flexor muscles of N=2 healthy adults during handgrip exercise, at a sampling rate of 20 Hz. Combining the blood flow and acceleration data, we resolved the motion artifact in the DCS signal induced by muscle fiber motion, and isolated the blood flow component of the signal from the motion artifact. The results show that muscle fiber motion strongly affects the DCS signal, and if not accounted for, will result in an overestimate of blood flow more than 1000%. Our measurements indicate rapid dilation of arterioles following exercise onset, which enabled blood flow to increase to a plateau of 200% in 10s. The blood flow also rapidly recovered to baseline following exercise in 10s. Finally, preliminary results on the dependence of blood flow from exercise intensity changes will be discussed.
Sostaric, Simon M; Skinner, Sandford L; Brown, Malcolm J; Sangkabutra, Termboon; Medved, Ivan; Medley, Tanya; Selig, Steve E; Fairweather, Ian; Rutar, Danny; McKenna, Michael J
2006-01-01
Alkalosis enhances human exercise performance, and reduces K+ loss in contracting rat muscle. We investigated alkalosis effects on K+ regulation, ionic regulation and fatigue during intense exercise in nine untrained volunteers. Concentric finger flexions were conducted at 75% peak work rate (∼3 W) until fatigue, under alkalosis (Alk, NaHCO3, 0.3 g kg−1) and control (Con, CaCO3) conditions, 1 month apart in a randomised, double-blind, crossover design. Deep antecubital venous (v) and radial arterial (a) blood was drawn at rest, during exercise and recovery, to determine arterio-venous differences for electrolytes, fluid shifts, acid–base and gas exchange. Finger flexion exercise barely perturbed arterial plasma ions and acid–base status, but induced marked arterio-venous changes. Alk elevated [HCO3−] and PCO2, and lowered [H+] (P < 0.05). Time to fatigue increased substantially during Alk (25 ± 8%, P < 0.05), whilst both [K+]a and [K+]v were reduced (P < 0.01) and [K+]a-v during exercise tended to be greater (P= 0.056, n = 8). Muscle K+ efflux at fatigue was greater in Alk (21.2 ± 7.6 µmol min−1, 32 ± 7%, P < 0.05, n = 6), but peak K+ uptake rate was elevated during recovery (15 ± 7%, P < 0.05) suggesting increased muscle Na+,K+-ATPase activity. Alk induced greater [Na+]a, [Cl−]v, muscle Cl− influx and muscle lactate concentration ([Lac−]) efflux during exercise and recovery (P < 0.05). The lower circulating [K+] and greater muscle K+ uptake, Na+ delivery and Cl− uptake with Alk, are all consistent with preservation of membrane excitability during exercise. This suggests that lesser exercise-induced membrane depolarization may be an important mechanism underlying enhanced exercise performance with Alk. Thus Alk was associated with improved regulation of K+, Na+, Cl− and Lac−. PMID:16239279
Monaco, G; Cecchini, S; Gatto, M R; Pelliccioni, G A
2017-03-01
The onset of delayed infection after lower third molar germectomy is influenced by the amount of distal space. This retrospective study aimed to determine whether the incidence of delayed onset infection is related to the space distal to the second molar. The ratio between the distal space and the crown width, measured according to the Ganss protocol on panoramic radiographs, was obtained for 218 surgical germectomies performed for orthodontic reasons in 134 patients. A delayed onset infection occurred following 20 germectomies at between 2 and 8 weeks after surgery; purulent exudates from the alveolus and swelling were present. In 16 of the 20 cases of infection, a Ganss ratio of <0.5 showed the almost complete absence of space distal to the second molar. This study found that the distal space was significantly and inversely correlated with delayed onset infection (P=0.004). From a clinical point of view, it is important for the surgeon to be aware that a higher Ganss ratio may indicate that a delayed onset infection is less likely to occur and that a lower Ganss ratio could indicate a greater likelihood of this type of infection, so that the patient can be properly informed. Copyright © 2016 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.
Yoon, Ji-yeon; Kim, Ji-won; Kang, Min-hyeok; An, Duk-hyun; Oh, Jae-seop
2015-01-01
Forward bending is frequently performed in daily activities. However, excessive lumbar flexion during forward bending has been reported as a risk factor for low back pain. Therefore, we examined the effects of an exercise strategy using a stick on the angular displacement and movement onset of lumbar and hip flexion during forward-bending exercises in patients with lumbar flexion syndrome. Eighteen volunteers with lumbar flexion syndrome were recruited in this study. Subjects performed forward-bending exercises with and without a straight stick in standing. The angular displacement and movement onset of lumbar and hip flexion during forward-bending exercises were measured by using a three dimensional motion analysis system. The significances of differences between the two conditions (with stick vs. without stick) was assessed using a one-way repeated analysis of variance. When using a stick during a forward-bending exercise, the peak angular displacement of lumbar flexion decreased significantly, and those of right and left-hip flexion increased significantly compared with those without a stick. The movement onset of lumbar flexion occurred significantly later, and the onset of right-hip flexion occurred significantly earlier with than without a stick. Based on these findings, a stick exercise was an effective method to prevent excessive lumbar flexion and more helpful in developing hip flexion during a forward-bending exercise. These findings will be useful for clinicians to teach self-exercise during forward bending in patients with lumbar flexion syndrome.
Role of beta-alanine supplementation on muscle carnosine and exercise performance.
Artioli, Guilherme Giannini; Gualano, Bruno; Smith, Abbie; Stout, Jeffrey; Lancha, Antonio Herbert
2010-06-01
In this narrative review, we present and discuss the current knowledge available on carnosine and beta-alanine metabolism as well as the effects of beta-alanine supplementation on exercise performance. Intramuscular acidosis has been attributed to be one of the main causes of fatigue during intense exercise. Carnosine has been shown to play a significant role in muscle pH regulation. Carnosine is synthesized in skeletal muscle from the amino acids l-histidine and beta-alanine. The rate-limiting factor of carnosine synthesis is beta-alanine availability. Supplementation with beta-alanine has been shown to increase muscle carnosine content and therefore total muscle buffer capacity, with the potential to elicit improvements in physical performance during high-intensity exercise. Studies on beta-alanine supplementation and exercise performance have demonstrated improvements in performance during multiple bouts of high-intensity exercise and in single bouts of exercise lasting more than 60 s. Similarly, beta-alanine supplementation has been shown to delay the onset of neuromuscular fatigue. Although beta-alanine does not improve maximal strength or VO2max, some aspects of endurance performance, such as anaerobic threshold and time to exhaustion, can be enhanced. Symptoms of paresthesia may be observed if a single dose higher than 800 mg is ingested. The symptoms, however, are transient and related to the increase in plasma concentration. They can be prevented by using controlled release capsules and smaller dosing strategies. No important side effect was related to the use of this amino acid so far. In conclusion, beta-alanine supplementation seems to be a safe nutritional strategy capable of improving high-intensity anaerobic performance.
Hunfeld, Anika; Segelcke, Daniel; Bäcker, Ingo; Mecheri, Badreddine; Hemmer, Kathrin; Dlugosch, Elisabeth; Andriske, Michael; Paris, Frank; Zhu, Xinran; Lübbert, Hermann
2015-01-01
Migraine animal models generally mimic the onset of attacks and acute treatment processes. A guinea pig model used the application of meta-chlorophenylpiperazine (mCPP) to trigger immediate dural plasma protein extravasation (PPE) mediated by 5-HT2B receptors. This model has predictive value for antimigraine drugs but cannot explain the delayed onset of efficacy of 5-HT2B receptor antagonists when clinically used for migraine prophylaxis. We found that mCPP failed to induce dural PPE in mice. Considering the role 5-HT2B receptors play in hypoxia-induced pulmonary vessel muscularization, we were encouraged to keep mice under hypoxic conditions and tested whether this treatment will render them susceptible to mCPP-induced dural PPE. Following four-week of hypoxia, PPE, associated with increased transendothelial transport, was induced by mCPP. The effect was blocked by sumatriptan. Chronic application of 5-HT2B receptor or nitric oxide synthase blockers during hypoxia prevented the development of susceptibility. Here we present a migraine model that distinguishes between a migraine-like state (hypoxic mice) and normal, normoxic mice and mimics processes that are related to chronic activation of 5-HT2B receptors under hypoxia. It seems striking, that chronic endogenous activation of 5-HT2B receptors is crucial for the sensitization since 5-HT2B receptor antagonists have strong, albeit delayed migraine prophylactic efficacy. PMID:26644235
Warkentin, Theodore E
2016-10-28
HIT is an acquired antibody-mediated disorder strongly associated with thrombosis, including microthrombosis secondary to disseminated intravascular dissemination (DIC). The clinical features of HIT are reviewed from the perspective of the 4Ts scoring system for HIT, which emphasises its characteristic timing of onset of thrombocytopenia. HIT antibodies recognize multimolecular complexes of platelet factor 4 (PF4)/heparin. However, a subset of HIT sera recognise PF4 bound to platelet chondroitin sulfate; these antibodies activate platelets in vitro and in vivo even in the absence of heparin, thus explaining: delayed-onset HIT (where HIT begins or worsens after stopping heparin); persisting HIT (where HIT takes several weeks to recover); spontaneous HIT syndrome (a disorder clinically and serologically resembling HIT but without proximate heparin exposure); and fondaparinux-associated HIT (four distinct syndromes featuring thrombocytopenia that begins or worsens during treatment with fondaparinux), with a new patient case presented with ongoing thrombocytopenia (and fatal haemorrhage) during treatment of HIT with fondaparinux, with fondaparinux-dependent platelet activation induced by patient serum ("fondaparinux cross-reactivity"). Ironically, despite existence of fondaparinux-associated HIT, this pentasaccharide anticoagulant is a frequent treatment for HIT (including one used by the author). HIT can be confused with other disorders, including those with a) timing similar to HIT (e. g. abciximab-associated thrombocytopenia of delayed-onset); b) combined thrombocytopenia/thrombosis (e. g. symmetrical peripheral gangrene secondary to acute DIC and shock liver); and c) both timing of onset and thrombosis (e. g. warfarin-associated venous limb gangrene complicating cancer-associated DIC). By understanding clinical and pathophysiological similarities and differences between HIT and non-HIT mimicking disorders, the clinician is better able to make the correct diagnosis.
Minigalin, A D; Shumakov, A R; Novozhilov, A V; Samsonova, A V; Kos'mina, E A; Kalinskiĭ, M I; Baranova, T I; Kubasov, I V; Morozov, V I
2015-01-01
The aim of this study was to examine the effect of exhaustive weightlifting exercise on electrical and biochemical variables and performance capacity in young male subjects. The onset of exercise (80-50% 1RM) was associated with a decrease in the amount of work performed, which was followed by a steady performance capacity at 40-10% 1RM. There were no significant changes of m. rectus femoris EMG maximal amplitude though it tended to be increased during the first half of exercise. A significant blood lactate concentration increase indicated that an anaerobic metabolism was a predominant mechanism of muscle contraction energy-supply. CK level in blood plasma did not change but plasma myoglobin concentration doubled immediately post-exercise. The data presented here suggest that decrease in performance capacity was likely due to progressive "refusal of work" of the fast motor units and work prolongation of weaker, intermediate and slow motor units. Unchangeable CK activity and relatively small increase in myoglobin concentration in plasma suggest that used weightlifting exercise did not induced substantial damage in myocytes' membranes in our subjects.
Nederhof, E; van Oort, F V A; Bouma, E M C; Laceulle, O M; Oldehinkel, A J; Ormel, J
2015-08-01
Hypothalamic-pituitary-adrenal axis functioning, with cortisol as its major output hormone, has been presumed to play a key role in the development of psychopathology. Predicting affective disorders from diurnal cortisol levels has been inconclusive, whereas the predictive value of stress-induced cortisol concentrations has not been studied before. The aim of this study was to predict mental disorders over a 3-year follow-up from awakening and stress-induced cortisol concentrations. Data were used from 561 TRAILS (TRacking Adolescents' Individual Lives Survey) participants, a prospective cohort study of Dutch adolescents. Saliva samples were collected at awakening and half an hour later and during a social stress test at age 16. Mental disorders were assessed 3 years later with the Composite International Diagnostic Interview (CIDI). A lower cortisol awakening response (CAR) marginally significantly predicted new disorders [odds ratio (OR) 0.77, p = 0.06]. A flat recovery slope predicted disorders with a first onset after the experimental session (OR 1.27, p = 0.04). Recovery revealed smaller, non-significant ORs when predicting new onset affective or anxiety disorders, major depressive disorder, or dependence disorders in three separate models, corrected for all other new onsets. Our results suggest that delayed recovery and possibly reduced CAR are indicators of a more general risk status and may be part of a common pathway to psychopathology. Delayed recovery suggests that individuals at risk for mental disorders perceived the social stress test as less controllable and less predictable.
Nutrition, diet and immunosenescence.
Maijó, Mònica; Clements, Sarah J; Ivory, Kamal; Nicoletti, Claudio; Carding, Simon R
2014-01-01
Ageing is characterized by immunosenescence and the progressive decline in immunity in association with an increased frequency of infections and chronic disease. This complex process affects both the innate and adaptive immune systems with a progressive decline in most immune cell populations and defects in activation resulting in loss of function. Although host genetics and environmental factors, such as stress, exercise and diet can impact on the onset or course of immunosenescence, the mechanisms involved are largely unknown. This review focusses on identifying the most significant aspects of immunosenescence and on the evidence that nutritional intervention might delay this process, and consequently improve the quality of life of the elderly. Copyright © 2014. Published by Elsevier Ireland Ltd.
Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Hasnan, Nazirah; Abdul Wahab, Ahmad Khairi; Davis, Glen M
2016-01-01
Rapid muscle fatigue during functional electrical stimulation (FES)-evoked muscle contractions in individuals with spinal cord injury (SCI) is a significant limitation to attaining health benefits of FES-exercise. Delaying the onset of muscle fatigue is often cited as an important goal linked to FES clinical efficacy. Although the basic concept of fatigue-resistance has a long history, recent advances in biomedical engineering, physiotherapy and clinical exercise science have achieved improved clinical benefits, especially for reducing muscle fatigue during FES-exercise. This review evaluated the methodological quality of strategies underlying muscle fatigue-resistance that have been used to optimize FES therapeutic approaches. The review also sought to synthesize the effectiveness of these strategies for persons with SCI in order to establish their functional impacts and clinical relevance. Published scientific literature pertaining to the reduction of FES-induced muscle fatigue was identified through searches of the following databases: Science Direct, Medline, IEEE Xplore, SpringerLink, PubMed and Nature, from the earliest returned record until June 2015. Titles and abstracts were screened to obtain 35 studies that met the inclusion criteria for this systematic review. Following the evaluation of methodological quality (mean (SD), 50 (6) %) of the reviewed studies using the Downs and Black scale, the largest treatment effects reported to reduce muscle fatigue mainly investigated isometric contractions of limited functional and clinical relevance (n = 28). Some investigations (n = 13) lacked randomisation, while others were characterised by small sample sizes with low statistical power. Nevertheless, the clinical significance of emerging trends to improve fatigue-resistance during FES included (i) optimizing electrode positioning, (ii) fine-tuning of stimulation patterns and other FES parameters, (iii) adjustments to the mode and frequency of exercise training, and (iv) biofeedback-assisted FES-exercise to promote selective recruitment of fatigue-resistant motor units. Although the need for further in-depth clinical trials (especially RCTs) was clearly warranted to establish external validity of outcomes, current evidence was sufficient to support the validity of certain techniques for rapid fatigue-reduction in order to promote FES therapy as an integral part of SCI rehabilitation. It is anticipated that this information will be valuable to clinicians and other allied health professionals administering FES as a treatment option in rehabilitation and aid the development of effective rehabilitation interventions.
Ibitoye, Morufu Olusola; Hamzaid, Nur Azah; Hasnan, Nazirah; Abdul Wahab, Ahmad Khairi; Davis, Glen M.
2016-01-01
Background Rapid muscle fatigue during functional electrical stimulation (FES)-evoked muscle contractions in individuals with spinal cord injury (SCI) is a significant limitation to attaining health benefits of FES-exercise. Delaying the onset of muscle fatigue is often cited as an important goal linked to FES clinical efficacy. Although the basic concept of fatigue-resistance has a long history, recent advances in biomedical engineering, physiotherapy and clinical exercise science have achieved improved clinical benefits, especially for reducing muscle fatigue during FES-exercise. This review evaluated the methodological quality of strategies underlying muscle fatigue-resistance that have been used to optimize FES therapeutic approaches. The review also sought to synthesize the effectiveness of these strategies for persons with SCI in order to establish their functional impacts and clinical relevance. Methods Published scientific literature pertaining to the reduction of FES-induced muscle fatigue was identified through searches of the following databases: Science Direct, Medline, IEEE Xplore, SpringerLink, PubMed and Nature, from the earliest returned record until June 2015. Titles and abstracts were screened to obtain 35 studies that met the inclusion criteria for this systematic review. Results Following the evaluation of methodological quality (mean (SD), 50 (6) %) of the reviewed studies using the Downs and Black scale, the largest treatment effects reported to reduce muscle fatigue mainly investigated isometric contractions of limited functional and clinical relevance (n = 28). Some investigations (n = 13) lacked randomisation, while others were characterised by small sample sizes with low statistical power. Nevertheless, the clinical significance of emerging trends to improve fatigue-resistance during FES included (i) optimizing electrode positioning, (ii) fine-tuning of stimulation patterns and other FES parameters, (iii) adjustments to the mode and frequency of exercise training, and (iv) biofeedback-assisted FES-exercise to promote selective recruitment of fatigue-resistant motor units. Conclusion Although the need for further in-depth clinical trials (especially RCTs) was clearly warranted to establish external validity of outcomes, current evidence was sufficient to support the validity of certain techniques for rapid fatigue-reduction in order to promote FES therapy as an integral part of SCI rehabilitation. It is anticipated that this information will be valuable to clinicians and other allied health professionals administering FES as a treatment option in rehabilitation and aid the development of effective rehabilitation interventions. PMID:26859296
[Chemotherapy-induced diarrhea].
Kobayashi, Kunihiko
2003-06-01
Chemotherapy-induced diarrhea is a well-documented side effect of many cancer treatments and is associated with increased morbidity and mortality. Chemotherapy-induced diarrhea negatively impacts patient quality of life and treatment outcome by requiring dose limitations or treatment interruption. The chemotherapeutic agent CPT-11 (irinotecan) has shown promising results as a single agent and in combination chemotherapy for the treatment of colorectal and small cell lung cancer. However, delayed onset diarrhea is considered to be its major dose-limiting toxicity. In some cases, it can be life threatening. To prevent CPT-11-induced delayed diarrhea, oral alkalization (OA) and control of defecation (CD) [Int J Cancer 92: 269-275, 2001] were developed based on fundamental studies [Int J Cancer 83: 491-496, 1999; Cancer Res 62: 179-187, 2002]. Oral administration of antibiotics [Cancer Res 56: 3752-3757, 1996; Clin Cancer Res 7: 1136-1141, 2001] or kampo medicine [Jpn J Cancer Res 86: 978-984, 1995; Jpn J Cancer Res 86: 985-989, 1995] to decrease beta-glucuronidase activity derived from bacteria in the large intestine was also reported to be successful in preventing delayed diarrhea. When CPT-11-induced delayed diarrhea occurs, the conventional treatment is loperamide [J Natl Cancer Inst 86: 446-449, 1994], and the early recognition and treatment of diarrhea with this opioid has reduced, although not entirely eliminated, patient morbidity. Other therapies are needed to treat patients with loperamide-refractory CPT-11 induced diarrhea, and the successful use of the somatostatin analogue octreotide has been reported [Support Care Cancer 9: 258-260, 2001; Ann Oncol 12: 227-229, 2001; Proc Am Soc Clin Oncol 21: 387a, 2002].
Prevention of type 2 diabetes mellitus in polycystic ovary syndrome: A review.
Anwar, Safa; Shikalgar, Nigar
2017-12-01
Polycystic ovary syndrome (PCOS) is recognized as one of the most common endocrinopathies in women of reproductive age, associated with metabolic sequelae which includes increased risk factors for impaired glucose tolerance (IGT), type 2 diabetes mellitus (DM2) and cardiovascular disease (CVD). The adverse effects of DM2 affects a woman throughout her lifespan. Health care expenditure of DM2 highlights the need for prevention through appropriate screening, diagnosis and intervention. Lifestyle modification (LSM) programs that include diet and/or physical activity are suggested for patients characterized as prediabetic to delay the onset of adult DM2. Diet (i.e. low carbohydrate), combination of aerobic and resistance exercise with high intensity interval training (HIT) 150 to 175min/week with resistance exercise 2 to 3days/week and weight loss may be valuable supporters in the fight against IR, IGT and DM2 associated with PCOS. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.
On the Behavioral Side of Procrastination: Exploring Behavioral Delay in Real-Life Settings
Svartdal, Frode; Granmo, Sjur; Færevaag, Fredrik S.
2018-01-01
This paper examines how procrastinators behave differently from non-procrastinators in implementing intended behavior. By focusing on time-related attributes of behavior, we demonstrate in five studies (aggregated N = 965) that onset delay seems to be a preferred option for procrastinators in common daily situations. Thus, when an action possibility is available for intended behavior, procrastinators tend to delay behavior onset, both in actual behavior and in onset preferences, often instigating chains of events with negative consequences. We discuss possible mechanisms responsible for such delays and explore how such mechanisms generate and sustain dilatory behavior. We conclude that a better understanding of why behavioral delays occur in early phases of action implementation is of importance in understanding and preventing procrastination. PMID:29867696
On the Behavioral Side of Procrastination: Exploring Behavioral Delay in Real-Life Settings.
Svartdal, Frode; Granmo, Sjur; Færevaag, Fredrik S
2018-01-01
This paper examines how procrastinators behave differently from non-procrastinators in implementing intended behavior. By focusing on time-related attributes of behavior, we demonstrate in five studies (aggregated N = 965) that onset delay seems to be a preferred option for procrastinators in common daily situations. Thus, when an action possibility is available for intended behavior, procrastinators tend to delay behavior onset, both in actual behavior and in onset preferences, often instigating chains of events with negative consequences. We discuss possible mechanisms responsible for such delays and explore how such mechanisms generate and sustain dilatory behavior. We conclude that a better understanding of why behavioral delays occur in early phases of action implementation is of importance in understanding and preventing procrastination.
Carbohydrate Nutrition and Team Sport Performance.
Williams, Clyde; Rollo, Ian
2015-11-01
The common pattern of play in 'team sports' is 'stop and go', i.e. where players perform repeated bouts of brief high-intensity exercise punctuated by lower intensity activity. Sprints are generally 2-4 s long and recovery between sprints is of variable length. Energy production during brief sprints is derived from the degradation of intra-muscular phosphocreatine and glycogen (anaerobic metabolism). Prolonged periods of multiple sprints drain muscle glycogen stores, leading to a decrease in power output and a reduction in general work rate during training and competition. The impact of dietary carbohydrate interventions on team sport performance have been typically assessed using intermittent variable-speed shuttle running over a distance of 20 m. This method has evolved to include specific work to rest ratios and skills specific to team sports such as soccer, rugby and basketball. Increasing liver and muscle carbohydrate stores before sports helps delay the onset of fatigue during prolonged intermittent variable-speed running. Carbohydrate intake during exercise, typically ingested as carbohydrate-electrolyte solutions, is also associated with improved performance. The mechanisms responsible are likely to be the availability of carbohydrate as a substrate for central and peripheral functions. Variable-speed running in hot environments is limited by the degree of hyperthermia before muscle glycogen availability becomes a significant contributor to the onset of fatigue. Finally, ingesting carbohydrate immediately after training and competition will rapidly recover liver and muscle glycogen stores.
Reproductive hormones and menstrual changes with exercise in female athletes.
Arena, B; Maffulli, N; Maffulli, F; Morleo, M A
1995-04-01
The endocrine equilibrium which regulates reproductive function in women can be affected by physical and psychological factors. Blood levels of hormones depend on a balance between production, metabolism and clearance rates. Intensive physical exercise may affect this balance via different mechanisms, such as stress associated with competition, dieting, reduction of body fat and body weight, production of heat or hypoxia. Women who engage in regular high intensity exercise may be at risk, as a consequence of these hormonal changes, of developing menstrual disturbances such as oligomenorrhoea, delayed menarche and amenorrhoea. Impaired production of gonadotrophins, which leads to luteal phase deficiency and anovulation, is a common hormonal finding with exercise-induced menstrual disturbances, but several other hormones may show significant alterations. In this article we have reviewed the recent literature on the effects of intensive physical exercise on the menstrual cycle, on some important physical parameters such as bone mineral density and bodyweight, and on those hormones (gonadotrophins, prolactin, melatonin, opioid peptides and steroids) which regulate, directly or indirectly, the reproductive function in women.
Protection from cyanide-induced brain injury by the Nrf2 transcriptional activator carnosic acid.
Zhang, Dongxian; Lee, Brian; Nutter, Anthony; Song, Paul; Dolatabadi, Nima; Parker, James; Sanz-Blasco, Sara; Newmeyer, Traci; Ambasudhan, Rajesh; McKercher, Scott R; Masliah, Eliezer; Lipton, Stuart A
2015-06-01
Cyanide is a life-threatening, bioterrorist agent, preventing cellular respiration by inhibiting cytochrome c oxidase, resulting in cardiopulmonary failure, hypoxic brain injury, and death within minutes. However, even after treatment with various antidotes to protect cytochrome oxidase, cyanide intoxication in humans can induce a delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Additional mechanisms are thought to underlie cyanide-induced neuronal damage, including generation of reactive oxygen species. This may account for the fact that antioxidants prevent some aspects of cyanide-induced neuronal damage. Here, as a potential preemptive countermeasure against a bioterrorist attack with cyanide, we tested the CNS protective effect of carnosic acid (CA), a pro-electrophilic compound found in the herb rosemary. CA crosses the blood-brain barrier to up-regulate endogenous antioxidant enzymes via activation of the Nrf2 transcriptional pathway. We demonstrate that CA exerts neuroprotective effects on cyanide-induced brain damage in cultured rodent and human-induced pluripotent stem cell-derived neurons in vitro, and in vivo in various brain areas of a non-Swiss albino mouse model of cyanide poisoning that simulates damage observed in the human brain. Cyanide, a potential bioterrorist agent, can produce a chronic delayed-onset neurological syndrome that includes symptoms of Parkinsonism. Here, cyanide poisoning treated with the proelectrophillic compound carnosic acid, results in reduced neuronal cell death in both in vitro and in vivo models through activation of the Nrf2/ARE transcriptional pathway. Carnosic acid is therefore a potential treatment for the toxic central nervous system (CNS) effects of cyanide poisoning. ARE, antioxidant responsive element; Nrf2 (NFE2L2, Nuclear factor (erythroid-derived 2)-like 2). © 2015 International Society for Neurochemistry.
Respiratory disorders in endurance athletes – how much do they really have to endure?
Bussotti, Maurizio; Di Marco, Silvia; Marchese, Giovanni
2014-01-01
Respiratory disorders are often a cause of morbidity in top level endurance athletes, more often compromising their performance and rarely being a cause of death. Pathophysiological events occurring during exercise, such as bronchospasm, are sometimes followed by clear pathological symptoms represented by asthma related to physical exertion or rarely by pulmonary edema induced by a strenuous effort. Both bronchospasm and the onset of interstitial edema induced by exercise cannot be considered pathological per se, but are more likely findings that occur in several healthy subjects once physical exhaustion during exertion has been reached. Consequently, we get a vision of the respiratory system perfectly tailored to meet the body’s metabolic demands under normal conditions but which is limited when challenged by strenuous exercise, in particular when it happens in an unfavorable environment. As extreme physical effort may elicit a pathological response in healthy subjects, due to the exceeding demand in a perfectly functional system, an overview of the main tools both enabling the diagnosis of respiratory impairment in endurance athletes in a clinical and preclinical phase has also been described. PMID:24744614
Rapid onset of hypoxic vasoconstriction in isolated lungs.
Jensen, K S; Micco, A J; Czartolomna, J; Latham, L; Voelkel, N F
1992-05-01
A fast-response O2 analyzer that samples air at low flow rates allows the quasi-instantaneous measurement of O2 concentration change in the airways of isolated blood-perfused rat lungs. This instrument and an oximeter were used to measure the stimulus-response delay time of hypoxic pulmonary vasoconstriction when the lungs were challenged with 10, 5, or 3% O2. The estimate for the shortest delay time between accomplished fall in airway O2 concentration and the onset of hypoxia-induced vasoconstriction was approximately 7 s. We found that the slope of pressure rise, but not the stimulus-response delay time, correlated with the magnitude of hypoxic vasoconstriction. Oscillations in pulmonary arterial pressure were observed when the lungs were challenged with 10% O2 but not when the challenge was 12, 5, or 3%, indicating perhaps that these oscillations were a threshold phenomenon. Established hypoxic vasoconstriction was sensitive to brief changes in airway O2 concentration. Vasodilation occurred when the gas mixture was switched from 3 to 21% O2 for two to five breaths, and vasoconstriction occurred when the gas was changed during a single breath from 5 to 3% O2.
Oxidative stress and inflammation: liver responses and adaptations to acute and regular exercise.
Pillon Barcelos, Rômulo; Freire Royes, Luiz Fernando; Gonzalez-Gallego, Javier; Bresciani, Guilherme
2017-02-01
The liver is remarkably important during exercise outcomes due to its contribution to detoxification, synthesis, and release of biomolecules, and energy supply to the exercising muscles. Recently, liver has been also shown to play an important role in redox status and inflammatory modulation during exercise. However, while several studies have described the adaptations of skeletal muscles to acute and chronic exercise, hepatic changes are still scarcely investigated. Indeed, acute intense exercise challenges the liver with increased reactive oxygen species (ROS) and inflammation onset, whereas regular training induces hepatic antioxidant and anti-inflammatory improvements. Acute and regular exercise protocols in combination with antioxidant and anti-inflammatory supplementation have been also tested to verify hepatic adaptations to exercise. Although positive results have been reported in some acute models, several studies have shown an increased exercise-related stress upon liver. A similar trend has been observed during training: while synergistic effects of training and antioxidant/anti-inflammatory supplementations have been occasionally found, others reported a blunting of relevant adaptations to exercise, following the patterns described in skeletal muscles. This review discusses current data regarding liver responses and adaptation to acute and regular exercise protocols alone or combined with antioxidant and anti-inflammatory supplementation. The understanding of the mechanisms behind these modulations is of interest for both exercise-related health and performance outcomes.
McCarthy, Nicola J.; Whyte, Moira K.B.; Gilbert, Christopher S.; Evan, Gerard I.
1997-01-01
There is increasing evidence for a central role in mammalian apoptosis of the interleukin-1β– converting enzyme (ICE) family of cysteine proteases, homologues of the product of the nematode “death” gene, ced-3. Ced-3 is thought to act as an executor rather than a regulator of programmed cell death in the nematode. However, it is not known whether mammalian ICE-related proteases (IRPs) are involved in the execution or the regulation of mammalian apoptosis. Moreover, an absolute requirement for one or more IRPs for mammalian apoptosis has yet to be established. We have used two cell-permeable inhibitors of IRPs, Z-Val-Ala-Asp.fluoromethylketone (ZVAD.fmk) and t-butoxy carbonyl-Asp.fluoromethylketone (BD.fmk), to demonstrate a critical role for IRPs in mammalian apoptosis induced by several disparate mechanisms (deregulated oncogene expression, ectopic expression of the Bcl-2 relative Bak, and DNA damage–induced cell death). In all instances, ZVAD.fmk and BD.fmk treatment inhibits characteristic biochemical and morphological events associated with apoptosis, including cleavage of nuclear lamins and poly-(ADP-ribose) polymerase, chromatin condensation and nucleosome laddering, and external display of phosphatidylserine. However, neither ZVAD.fmk nor BD.fmk inhibits the onset of apoptosis, as characterized by the onset of surface blebbing; rather, both act to delay completion of the program once initiated. In complete contrast, IGF-I and Bcl-2 delay the onset of apoptosis but have no effect on the kinetics of the program once initiated. Our data indicate that IRPs constitute part of the execution machinery of mammalian apoptosis induced by deregulated oncogenes, DNA damage, or Bak but that they act after the point at which cells become committed to apoptosis or can be rescued by survival factors. Moreover, all such blocked cells have lost proliferative potential and all eventually die by a process involving cytoplasmic blebbing. PMID:9008715
The relevance of stretch intensity and position—a systematic review
Apostolopoulos, Nikos; Metsios, George S.; Flouris, Andreas D.; Koutedakis, Yiannis; Wyon, Matthew A.
2015-01-01
Stretching exercises to increase the range of motion (ROM) of joints have been used by sports coaches and medical professionals for improving performance and rehabilitation. The ability of connective and muscular tissues to change their architecture in response to stretching is important for their proper function, repair, and performance. Given the dearth of relevant data in the literature, this review examined two key elements of stretching: stretch intensity and stretch position; and their significance to ROM, delayed onset muscle soreness (DOMS), and inflammation in different populations. A search of three databases, Pub-Med, Google Scholar, and Cochrane Reviews, identified 152 articles, which were subsequently categorized into four groups: athletes (24), clinical (29), elderly (12), and general population (87). The use of different populations facilitated a wider examination of the stretching components and their effects. All 152 articles incorporated information regarding duration, frequency and stretch position, whereas only 79 referred to the intensity of stretching and 22 of these 79 studies were deemed high quality. It appears that the intensity of stretching is relatively under-researched, and the importance of body position and its influence on stretch intensity, is largely unknown. In conclusion, this review has highlighted areas for future research, including stretch intensity and position and their effect on musculo-tendinous tissue, in relation to the sensation of pain, delayed onset muscle soreness, inflammation, as well as muscle health and performance. PMID:26347668
Ugrasbul, Figen; Moore, Wayne V; Tong, Pei Ying; Kover, Karen L
2008-12-01
Anti-CD25 and mycophenolate mofetil (MMF) treatment of patients with new-onset diabetes is currently being tested as one of the trials in TrialNet. We tested the effectiveness of MMF and anti-CD25 in preventing autoimmune diabetes in the diabetes-resistant biobreeding (DRBB) rat. Autoimmune diabetes in the DRBB rat was induced with a Treg cell depletion regimen starting at 24-26 d of age. Treatment was started on the first day of the depletion regimen in the following groups: (i) control (vehicle); (ii) MMF 25 mg/kg/d intramuscularly daily for 8 wk; (iii) anti-CD25 0.8 mg/kg/d intraperitoneally 5 d/wk for 3 wk; and (iv) combination of MMF and anti-CD25. In a second set of experiments, treatments were started on day 5 of the depletion regimen (delayed treatment) with groups 1, 3, and 4. Rats that had diabetes-free survival for at least 30 d after the treatment was stopped underwent a second Treg depletion (redepletion). In each of the three treatment groups (n = 10/group), onset of diabetes was delayed or prevented in 20, 40 and 80% in groups 2, 3, and 4, respectively. After redepletion, diabetes-free survival was unchanged in group 2 and decreased to 10 and 30% in groups 3 and 4, respectively. With delayed treatment, groups 3 and 4 had 33 and 50% diabetes-free survival that decreased to 0 and 33% after redepletion. MMF and anti-CD25 alone or in combination are effective in delaying and preventing diabetes in the DRBB rat especially if treatment is started before stimulation and expansion of the autoreactive T cells.
Exaggerated blood pressure response to exercise and late-onset hypertension in young adults.
Yzaguirre, Ignasi; Grazioli, Gonzalo; Domenech, Mónica; Vinuesa, Antonio; Pi, Ramon; Gutierrez, Josep; Coca, Antonio; Brugada, Josep; Sitges, Marta
2017-12-01
Exaggerated blood pressure response (EBPR) during exercise has been associated with an increased risk of incidental systemic hypertension and cardiovascular morbidity; however, there is no consensus definition of EBPR. We aimed to determine which marker best defines EBPR during exercise and to predict the long-term development of hypertension in individuals younger than 50 years. We reviewed 107 exercise tests performed in 1992, applied several reported methods to define EBPR at moderate and maximum exercise, and contacted the patients by telephone 20 years after the test to verify hypertension status. Finally, we determined which definition best predicted incidental hypertension at 20-year follow-up. The mean age of the participants at the time of exercise testing was 25.7±11.1 years. Logistic regression showed a significant association of diastolic blood pressure of more than 95 mmHg at peak exercise and systolic pressure more than 180 mmHg at moderate exercise with new-onset hypertension at 20-year follow-up [odds ratio: 6.3 (2.09-18.9) and odds ratio: 7.09 (2.31-21.7), respectively]. If EBPR was present, as defined by at least one of these parameters, the probability of incidental later onset hypertension was 70%. In our population, diastolic blood pressure of more than 95 mmHg at maximum exercise or systolic blood pressure more than 180 mmHg at moderate-intensity exercise (100 W) were the best predictors of new-onset hypertension at long-term follow-up. Individuals with EBPR according to these criteria should be monitored closely to detect the early development of hypertension.
Oxidative stress: role of physical exercise and antioxidant nutraceuticals in adulthood and aging
Simioni, Carolina; Zauli, Giorgio; Martelli, Alberto M.; Vitale, Marco; Sacchetti, Gianni; Gonelli, Arianna; Neri, Luca M.
2018-01-01
Physical exercise is considered to be one of the beneficial factors of a proper lifestyle and is nowadays seen as an indispensable element for good health, able to lower the risk of disorders of the cardiovascular, endocrine and osteomuscular apparatus, immune system diseases and the onset of potential neoplasms. A moderate and programmed physical exercise has often been reported to be therapeutic both in the adulthood and in aging, since capable to promote fitness. Regular exercise alleviates the negative effects caused by free radicals and offers many health benefits, including reduced risk of all-cause mortality, sarcopenia in the skeletal muscle, chronic disease, and premature death in elderly people. However, physical performance is also known to induce oxidative stress, inflammation, and muscle fatigue. Many efforts have been carried out to identify micronutrients and natural compounds, also known as nutraceuticals, able to prevent or attenuate the exercise-induced oxidative stress and inflammation. The aim of this review is to discuss the benefits deriving from a constant physical activity and by the intake of antioxidant compounds to protect the body from oxidative stress. The attention will be focused mainly on three natural antioxidants, which are quercetin, resveratrol and curcumin. Their properties and activity will be described, as well as their benefits on physical activity and on aging, which is expected to increase through the years and can get favorable benefits from a constant exercise activity. PMID:29682215
Exercise-associated hyponatraemia after a marathon: case series
Goudie, A M; Tunstall-Pedoe, D S; Kerins, M; Terris, J
2006-01-01
Objectives To review the presentation, treatment and response of those runners from the London Marathon who presented to St Thomas' Hospital with exercise induced hyponatraemia. Design Observational case series. Setting St Thomas' Hospital, a tertiary hospital situated near the finish line of the 2003 London Marathon. Participants All runners who presented to St Thomas' Hospital on the day of the 2003 London Marathon with altered mental state whose serum sodium concentration was less than 135 mmol/L. Main outcome measures Presenting symptoms, volume and type of fluids administered and response to treatment (biochemical and clinical). Results Fourteen patients were diagnosed with exercise associated hyponatraemia with serum sodium concentrations ranging from 116 to 133 mmol/L. Eleven presented with confusion. There were long delays between the finish time and presentation time for some runners. Anecdotal descriptions suggested some runners finished the race with normal mental state then became confused. There was no correlation between running time and serum sodium level. All patients received 0.9% saline and six received 1.8% saline. Despite this, some patients demonstrated falls in serum sodium concentrations. Thirteen to fourteen patients were symptomatically well the following morning, with the remaining patient significantly improved. Conclusion Presentation of exercise associated hyponatraemia may be delayed. Optimal treatment is controversial, but the use of isotonic saline may not result in rises of serum sodium and we would suggest the early use of hypertonic fluids in symptomatic patients. PMID:16816267
Delayed neovascularization in free skin flap transfer to irradiated beds in rats
DOE Office of Scientific and Technical Information (OSTI.GOV)
Clarke, H.M.; Howard, C.R.; Pynn, B.R.
1985-04-01
A model for the study of neovascularization with a normal epigastric free flap set into an irradiated defect in the Fischer F344 rat is presented. In this model, both the administration of radiation and the flap transfer mimic the clinical situation. Significantly less tissue survives loss of the complete vascular pedicle at the second to fourth days following flap creation in rats with an irradiated bed. Later survival is not different from controls. Delayed neovascularization is proposed as the mechanism responsible for this effect during the period corresponding to the onset of the late phase of the response to skinmore » radiation in rats. That neovascularization does occur, although delayed, suggests that the induced endarteritis may not be as important as previously suggested.« less
Factors affecting the diagnostic delay in amyotrophic lateral sclerosis.
Cellura, Eleonora; Spataro, Rossella; Taiello, Alfonsa Claudia; La Bella, Vincenzo
2012-07-01
Although amyotrophic lateral sclerosis (ALS) is a relentlessly progressive disorder, early diagnosis allows a prompt start with the specific drug riluzole and an accurate palliative care planning. ALS at onset may however mimic several disorders, some of them treatable (e.g., multifocal motor neuropathy) or epidemiologically more frequent (e.g., cervical myelopathy). To study the delay from onset to diagnosis in a cohort of ALS patients and to the variables that may affect it. We performed a retrospective analysis of the diagnostic delays in a cohort of 260 patients affected by ALS (M/F = 1.32) followed at our tertiary referral ALS Center between 2000 and 2007. The median time from onset to diagnosis was 11 months (range: 6-21) for the whole ALS cohort, 10 months (range: 6-15) in bulbar-onset (n = 65) and 12 months (range: 7-23) in spinal-onset (n = 195) patients (p = 0.3). 31.1% of patients received other diagnoses before ALS and this led to a significant delay of the correct diagnosis in this group (other diagnoses before ALS, n = 81: median delay, 15 months [9.75-24.25] vs ALS, n = 179, median delay, 9 months [6-15.25], p < 0.001). The diagnostic delay in ALS is about one year, besides the growing number of tertiary centres and the spread of information about the disease through media and internet. Cognitive errors based on an incorrect use of heuristics might represent an important contributing factor. Furthermore, the length of the differential diagnosis from other disorders and delays in referral to the neurologist seems to be positively associated with the delay in diagnosis. Copyright © 2011 Elsevier B.V. All rights reserved.
Moderate Load Eccentric Exercise; A Distinct Novel Training Modality
Hoppeler, Hans
2016-01-01
Over the last 20 years a number of studies have been published using progressive eccentric exercise protocols on motorized ergometers or similar devices that allow for controlled application of eccentric loads. Exercise protocols ramp eccentric loads over an initial 3 weeks period in order to prevent muscle damage and delayed onset muscle soreness. Final training loads reach 400–500 W in rehabilitative settings and over 1200 W in elite athletes. Training is typically carried out three times per week for durations of 20–30 min. This type of training has been characterizes as moderate load eccentric exercise. It has also been denoted RENEW (Resistance Exercise via Negative Eccentric Work by LaStayo et al., 2014). It is distinct from plyometric exercises (i.e., drop jumps) that impose muscle loads of several thousand Watts on muscles and tendons. It is also distinct from eccentric overload training whereby loads in a conventional strength training setting are increased in the eccentric phase of the movement to match concentric loads. Moderate load eccentric exercise (or RENEW) has been shown to be similarly effective as conventional strength training in increasing muscle strength and muscle volume. However, as carried out at higher angular velocities of joint movement, it reduces joint loads. A hallmark of moderate load eccentric exercise is the fact that the energy requirements are typically 4-fold smaller than in concentric exercise of the same load. This makes moderate load eccentric exercise training the tool of choice in medical conditions with limitations in muscle energy supply. The use and effectiveness of moderate load eccentric exercise has been demonstrated mostly in small scale studies for cardiorespiratory conditions, sarcopenia of old age, cancer, diabetes type 2, and neurological conditions. It has also been used effectively in the prevention and rehabilitation of injuries of the locomotor system in particular the rehabilitation after anterior cruciate ligament surgery. PMID:27899894
Brachial artery vasodilatation during prolonged lower limb exercise: role of shear rate
Padilla, Jaume; Simmons, Grant H.; Vianna, Lauro C.; Davis, Michael J.; Laughlin, M. Harold; Fadel, Paul J.
2012-01-01
We recently observed a marked increase in brachial artery (BA) diameter during prolonged leg cycling exercise. The purpose of the present study was to test the hypothesis that this increase in BA diameter during lower limb exercise is shear stress mediated. Accordingly, we determined whether recapitulation of cycling-induced BA shear rate with forearm heating, a known stimulus evoking shear-induced conduit artery dilatation, would elicit comparable profiles and magnitudes of BA vasodilatation to those observed during cycling. In 12 healthy men, BA diameter and blood velocity were measured simultaneously using Doppler ultrasonography at baseline and every 5 min during 60 min of either steady-state semi-recumbent leg cycling (120 W) or forearm heating. At the onset of cycling, the BA diameter was reduced (−3.9 ± 1.2% at 5 min; P < 0.05), but it subsequently increased throughout the remainder of the exercise bout (+15.1 ± 1.6% at 60 min; P < 0.05). The increase in BA diameter during exercise was accompanied by an approximately 2.5-fold rise in BA mean shear rate (P < 0.05). Similar increases in BA mean shear with forearm heating elicited an equivalent magnitude of BA vasodilatation to that observed during cycling (P > 0.05). Herein, we found that in the absence of exercise the extent of the BA vasodilator response was reproduced when the BA was exposed to comparable magnitudes of shear rate via forearm heating. These results are consistent with the hypothesis that shear stress plays a key role in signalling brachial artery vasodilatation during dynamic leg exercise. PMID:21784788
Intra-articular Implantation of Mesenchymal Stem Cells, Part 1
Kraeutler, Matthew J.; Mitchell, Justin J.; Chahla, Jorge; McCarty, Eric C.; Pascual-Garrido, Cecilia
2017-01-01
Osteoarthritis (OA) after a partial or total meniscectomy procedure is a common pathology. Because of the high incidence of meniscectomy in the general population, as well as the significant burden of knee OA, there is increasing interest in determining methods for delaying postmeniscectomy OA. Biological therapies, including mesenchymal stem cells (MSCs), induced pluripotent stem cells (iPSCs), and platelet-rich plasma (PRP), have been proposed as possible therapies that could delay OA in this and other settings. Several studies in various animal models have evaluated the effect of injecting MSCs into the knee joints of animals with OA induced either by meniscal excision with or without anterior cruciate ligament transection. When compared with control groups receiving injections without progenitor cells, short-term benefits in the experimental groups have been reported. In human subjects, there are limited data to determine the effect of biological therapies for use in delaying or preventing the onset of OA after a meniscectomy procedure. The purpose of this review is to highlight the findings in the presently available literature on the use of intra-articular implantation of MSCs postmeniscectomy and to offer suggestions for future research with the goal of delaying or treating early OA postmeniscectomy with MSCs. PMID:28203597
Mesos-scale modeling of irradiation in pressurized water reactor concrete biological shields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Le Pape, Yann; Huang, Hai
Neutron irradiation exposure causes aggregate expansion, namely radiation-induced volumetric expansion (RIVE). The structural significance of RIVE on a portion of a prototypical pressurized water reactor (PWR) concrete biological shield (CBS) is investigated by using a meso- scale nonlinear concrete model with inputs from an irradiation transport code and a coupled moisture transport-heat transfer code. RIVE-induced severe cracking onset appears to be triggered by the ini- tial shrinkage-induced cracking and propagates to a depth of > 10 cm at extended operation of 80 years. Relaxation of the cement paste stresses results in delaying the crack propagation by about 10 years.
Typical versus delayed speech onset influences verbal reporting of autistic interests.
Chiodo, Liliane; Majerus, Steve; Mottron, Laurent
2017-01-01
The distinction between autism and Asperger syndrome has been abandoned in the DSM-5. However, this clinical categorization largely overlaps with the presence or absence of a speech onset delay which is associated with clinical, cognitive, and neural differences. It is unknown whether these different speech development pathways and associated cognitive differences are involved in the heterogeneity of the restricted interests that characterize autistic adults. This study tested the hypothesis that speech onset delay, or conversely, early mastery of speech, orients the nature and verbal reporting of adult autistic interests. The occurrence of a priori defined descriptors for perceptual and thematic dimensions were determined, as well as the perceived function and benefits, in the response of autistic people to a semi-structured interview on their intense interests. The number of words, grammatical categories, and proportion of perceptual / thematic descriptors were computed and compared between groups by variance analyses. The participants comprised 40 autistic adults grouped according to the presence ( N = 20) or absence ( N = 20) of speech onset delay, as well as 20 non-autistic adults, also with intense interests, matched for non-verbal intelligence using Raven's Progressive Matrices. The overall nature, function, and benefit of intense interests were similar across autistic subgroups, and between autistic and non-autistic groups. However, autistic participants with a history of speech onset delay used more perceptual than thematic descriptors when talking about their interests, whereas the opposite was true for autistic individuals without speech onset delay. This finding remained significant after controlling for linguistic differences observed between the two groups. Verbal reporting, but not the nature or positive function, of intense interests differed between adult autistic individuals depending on their speech acquisition history: oral reporting of intense interests was characterized by perceptual dominance for autistic individuals with delayed speech onset and thematic dominance for those without. This may contribute to the heterogeneous presentation observed among autistic adults of normal intelligence.
Castner, Diobel M; Clark, Susan J; Judelson, Daniel A; Rubin, Daniela A
2016-01-15
Following exercise, heart rate decline is initially driven by parasympathetic reactivation and later by sympathetic withdrawal. Obesity delays endurance exercise heart rate recovery (HRR) in both children and adults. Young people with Prader-Willi Syndrome (PWS), a congenital cause for obesity, have shown a slower 60-s endurance exercise HRR compared to lean and obese children, suggesting compromised regulation. This study further evaluated effects of obesity and PWS on resistance exercise HRR at 30 and 60 s in children. PWS (8-18 years) and lean and obese controls (8-11 years) completed a weighted step-up protocol (six sets x 10 reps per leg, separated by one-minute rest), standardized using participant stature and lean body mass. HRR was evaluated by calculated HRR value (HRRV = difference between HR at test termination and 30 (HRRV30) and 60 (HRRV60) s post-exercise). PWS and obese had a smaller HRRV30 than lean ( p < 0.01 for both). Additionally, PWS had a smaller HRRV60 than lean and obese ( p = 0.01 for both). Obesity appears to delay early parasympathetic reactivation, which occurs within 30 s following resistance exercise. However, the continued HRR delay at 60 s in PWS may be explained by either blunted parasympathetic nervous system reactivation, delayed sympathetic withdrawal and/or poor cardiovascular fitness.
Bilingualism as a strategy to delay the onset of Alzheimer’s disease
Klimova, Blanka; Valis, Martin; Kuca, Kamil
2017-01-01
The purpose of this study is to explore original studies which provide evidence about the effects of bilingualism on the delay of the onset of dementia, specifically Alzheimer’s disease (AD). A literature review was conducted in the world’s acknowledged databases: Web of Science, Scopus, and MEDLINE. Altogether, 14 original studies focusing on the research topic were detected. These included six prospective cohort studies and eight retrospective studies. Both types of studies suggest different conclusions. The findings from the prospective cohort studies state that there is no association between bilingualism and the delay of the onset of AD, while the retrospective studies claim the opposite. Despite the negative results of the prospective cohort studies, more research should be conducted on bilingualism and its impact on the delay of the onset of AD, since the brain studies have brought positive findings as far as the enhancement of cognitive reserve is concerned. PMID:29089747
Bilingualism as a strategy to delay the onset of Alzheimer's disease.
Klimova, Blanka; Valis, Martin; Kuca, Kamil
2017-01-01
The purpose of this study is to explore original studies which provide evidence about the effects of bilingualism on the delay of the onset of dementia, specifically Alzheimer's disease (AD). A literature review was conducted in the world's acknowledged databases: Web of Science, Scopus, and MEDLINE. Altogether, 14 original studies focusing on the research topic were detected. These included six prospective cohort studies and eight retrospective studies. Both types of studies suggest different conclusions. The findings from the prospective cohort studies state that there is no association between bilingualism and the delay of the onset of AD, while the retrospective studies claim the opposite. Despite the negative results of the prospective cohort studies, more research should be conducted on bilingualism and its impact on the delay of the onset of AD, since the brain studies have brought positive findings as far as the enhancement of cognitive reserve is concerned.
Immunotherapy for Type 1 Diabetes: Why Do Current Protocols Not Halt the Underlying Disease Process?
Kolb, Hubert; von Herrath, Matthias
2017-02-07
T cell-directed immunosuppression only transiently delays the loss of β cell function in recent-onset type 1 diabetes. We argue here that the underlying disease process is carried by innate immune reactivity. Inducing a non-polarized functional state of local innate immunity will support regulatory T cell development and β cell proliferation. Copyright © 2017 Elsevier Inc. All rights reserved.
Dissociated time course of recovery between genders after resistance exercise.
Flores, Débora F; Gentil, Paulo; Brown, Lee E; Pinto, Ronei S; Carregaro, Rodrigo L; Bottaro, Martim
2011-11-01
Comparisons between men and women of time course responses of strength, delayed-onset muscle soreness (DOMS), and muscle swelling after a resistance training session are still controversial. Therefore, this study examined gender differences in strength loss, muscle thickness (MT), and DOMS between young men and women. Thirty apparently healthy, untrained volunteers (14 women and 16 men) participated in the study protocol. The resistance exercise session consisted of 8 sets at 10 repetition maximum load of the elbow flexor muscles of their dominant arm. Maximum isokinetic peak torque (PT), MT, and DOMS were recorded at baseline (TB), immediately after exercise (T0), and at 1 (T1), 2 (T2), 3 (T3), and 4 (T4) days after exercise. Baseline strength was expressed as 100%. There were no significant differences between the sexes for relative PT loss immediately after exercise (T0 = 74.31 ± 8.26% for men and 76.00 ± 6.31% for women). Also, PT was still significantly less than baseline from T1 to T4 for both genders. In contrast, recovery from PT was longer in women when compared with that in men. Muscle thickness responded similarly to PT in both genders. However, there was no significant difference between genders for DOMS at any time point. The time point that showed the greatest degree of mean soreness was T2 (4.94 ± 2.38 mm for men and 4.45 ± 2.07 mm for women). Our data suggest that after resistance exercise, women and men experience similar immediate strength loss; however they have dissimilar strength recovery across 4 days of recovery. Likewise, both genders experience a different time course of MT response after a traditional resistance exercise protocol. In contrast, men and women develop and dissipate muscle soreness in a similar manner.
Ishii, Kei; Matsukawa, Kanji; Liang, Nan; Endo, Kana; Idesako, Mitsuhiro; Asahara, Ryota; Kadowaki, Akito; Wakasugi, Rie; Takahashi, Makoto
2016-06-15
The purpose of this study was to examine the role of central command, generated prior to arbitrary motor execution, in cardiovascular and muscle blood flow regulation during exercise. Thirty two subjects performed 30 s of two-legged cycling or 1 min of one-legged cycling (66 ± 4% and 35% of the maximal exercise intensity, respectively), which was started arbitrarily or abruptly by a verbal cue (arbitrary vs. cued start). We measured the cardiovascular variables during both exercises and the relative changes in oxygenated-hemoglobin concentration (Oxy-Hb) of noncontracting vastus lateralis muscles as index of tissue blood flow and femoral blood flow to nonexercising leg during one-legged cycling. Two-legged cycling with arbitrary start caused a decrease in total peripheral resistance (TPR), which was smaller during the exercise with cued start. The greater reduction of TPR with arbitrary start was also recognized at the beginning of one-legged cycling. Oxy-Hb of noncontracting muscle increased by 3.6 ± 1% (P < 0.05) during one-legged cycling with arbitrary start, whereas such increase in Oxy-Hb was absent with cued start. The increases in femoral blood flow and vascular conductance of nonexercising leg were evident (P < 0.05) at 10 s from the onset of one-legged cycling with arbitrary start, whereas those were smaller or absent with cued start. It is likely that when voluntary exercise is started arbitrarily, central command is generated prior to motor execution and then contributes to muscle vasodilatation at the beginning of exercise. Such centrally induced muscle vasodilatation may be weakened and/or masked in the case of exercise with cued start. Copyright © 2016 the American Physiological Society.
Hughes, William E.; Ueda, Kenichi
2016-01-01
Aging is associated with attenuated contraction-induced rapid onset vasodilation (ROV). We sought to examine whether chronic exercise training would improve ROV in older adults. Additionally, we examined whether a relationship between cardiorespiratory fitness and ROV exists in young and older adults. Chronically exercise-trained older adults (n = 16; 66 ± 2 yr, mean ± SE) performed single muscle contractions in the forearm and leg at various intensities. Brachial and femoral artery diameter and blood velocity were measured using Doppler ultrasound. Vascular conductance (VC) was calculated as the quotient of blood flow (ml/min) and mean arterial pressure (mmHg). These data were compared with our previously published work from an identical protocol in 16 older untrained (66 ± 1 yr, mean ± SE) and 14 young (23 ± 1 yr) adults. Peak (ΔVCpeak) and total vasodilator (VCtotal) responses were greater in trained compared with untrained older adults across leg exercise intensities (P < 0.05). There were no differences in responses between trained older and young adults in the arm or leg at any exercise intensity (P > 0.05). Comparison of ΔVCpeak in a subset of subjects at an absolute workload in the leg revealed that trained older adults exhibited augmented responses relative to untrained older adults. Exercise capacity (V̇o2 peak) was associated with ΔVCpeak and VCtotal across arm (r = 0.59–0.64) and leg exercise intensities (r = 0.55–0.68, P < 0.05) in older adults. Our data demonstrate that 1) chronic exercise training improves ROV in the arm and leg of trained older adults, such that age-related differences in ROV are abolished, and 2) VO2peak is associated with ΔVCpeak responses in both limbs of older adults. PMID:27032899
Hughes, William E; Ueda, Kenichi; Casey, Darren P
2016-06-01
Aging is associated with attenuated contraction-induced rapid onset vasodilation (ROV). We sought to examine whether chronic exercise training would improve ROV in older adults. Additionally, we examined whether a relationship between cardiorespiratory fitness and ROV exists in young and older adults. Chronically exercise-trained older adults (n = 16; 66 ± 2 yr, mean ± SE) performed single muscle contractions in the forearm and leg at various intensities. Brachial and femoral artery diameter and blood velocity were measured using Doppler ultrasound. Vascular conductance (VC) was calculated as the quotient of blood flow (ml/min) and mean arterial pressure (mmHg). These data were compared with our previously published work from an identical protocol in 16 older untrained (66 ± 1 yr, mean ± SE) and 14 young (23 ± 1 yr) adults. Peak (ΔVCpeak) and total vasodilator (VCtotal) responses were greater in trained compared with untrained older adults across leg exercise intensities (P < 0.05). There were no differences in responses between trained older and young adults in the arm or leg at any exercise intensity (P > 0.05). Comparison of ΔVCpeak in a subset of subjects at an absolute workload in the leg revealed that trained older adults exhibited augmented responses relative to untrained older adults. Exercise capacity (V̇o2 peak) was associated with ΔVCpeak and VCtotal across arm (r = 0.59-0.64) and leg exercise intensities (r = 0.55-0.68, P < 0.05) in older adults. Our data demonstrate that 1) chronic exercise training improves ROV in the arm and leg of trained older adults, such that age-related differences in ROV are abolished, and 2) VO2peak is associated with ΔVCpeak responses in both limbs of older adults. Copyright © 2016 the American Physiological Society.
Walking delays anticipatory postural adjustments but not reaction times in a choice reaction task.
Haridas, C; Gordon, I T; Misiaszek, J E
2005-06-01
During standing, anticipatory postural adjustments (APAs) and focal movements are delayed while performing a choice reaction task, compared with a simple reaction task. We hypothesized that APAs and focal movements of a choice reaction task would be similarly delayed during walking. Furthermore, reaction times are delayed during walking compared with standing. We further hypothesized that APAs and focal movements would be delayed during walking, compared with standing, for both simple and choice reaction tasks. Subjects either walked or stood on a treadmill while holding on to stable handles. They were asked to push or pull on the handles in response to a visual cue. Muscle activity was recorded from muscles of the leg (APA) and arm (RT). Our results were in agreement with previous work showing APA onset was delayed in the choice reaction task compared with the simple reaction task. In addition, the interval between the onset of APA and focal movement activity increased with choice reaction tasks. The task of walking did not delay the onset of focal movement for either the simple or choice reaction tasks. Walking did delay the onset of the APA, but only during choice reaction tasks. The results suggest the added demand of walking does not significantly modify the control of focal arm movements. However, additional attentional demands while walking may compromise anticipatory postural control.
Hui, Wei; Slorach, Cameron; Dragulescu, Andreea; Mertens, Luc; Bijnens, Bart; Friedberg, Mark K
2014-07-01
Right bundle branch block and right ventricular (RV) dysfunction are common after tetralogy of Fallot repair (rTOF). We hypothesized that right bundle branch block is associated with specific RV mechanical dyssynchrony and inefficient contraction. We studied rTOF children and age-matched controls. QRS duration and morphology were assessed. RV mechanical dyssynchrony, indicated by early septal activation (right-sided septal flash), RV lateral wall prestretch/late contraction, postsystolic shortening, and intraventricular delay were analyzed using 2-dimensional strain echocardiography. Peak oxygen consumption reflected exercise capacity. Pulmonary regurgitation and RV volumes were assessed by MRI. Forty-six rTOF patients and 46 controls were studied. Ninety-three percent of rTOF patients demonstrated a right-sided septal flash with simultaneous RV basal lateral wall prestretch/late activation. The RV basal segment was the most delayed in onset (115 [0-194] versus 35 [0-96] ms) and termination (462 [369-706] versus 412 [325-529] ms) of longitudinal shortening, with postsystolic shortening. QRS duration correlated with RV basal time to onset and peak shortening (P<0.05). Intra-RV delay was higher in rTOF (P<0.05) in association with RV dilatation (r=0.33; P=0.04). In rTOF, RV mechanics were inefficient, with prestretch and postsystolic shortening comprising 15±11% and 16±9% of total shortening, respectively. A composite parameter of electric and mechanical dyssynchrony correlated with RV end-diastolic volume (r=0.39; P=0.03). Typical electromechanical dyssynchrony associated with mechanical inefficiency, regional dysfunction, and RV dilatation is common in rTOF children, possibly contributing to progressive RV dysfunction. The potential of cardiac resynchronization in appropriate patients requires further study. © 2014 American Heart Association, Inc.
Effect of aerobic recovery intensity on delayed-onset muscle soreness and strength.
Tufano, James J; Brown, Lee E; Coburn, Jared W; Tsang, Kavin K W; Cazas, Vanessa L; LaPorta, Joe W
2012-10-01
Because of the performance decrements associated with delayed-onset muscle soreness (DOMS), a treatment to alleviate its symptoms is of great interest. The purpose of this study was to investigate the effect of low vs. moderate-intensity aerobic recovery on DOMS and strength. Twenty-six women (22.11 ± 2.49 years; 60.33 ± 8.37 kg; and 163.83 ± 7.29 cm) were split into 3 different groups and performed a DOMS-inducing protocol of 60 eccentric actions of the knee extensors followed by 1 of three 20-minute recovery interventions: moderate-intensity cycling (n = 10), low-intensity cycling (LIC; n = 10), or seated rest (CON; n = 6) after the eccentric protocol. Pain scale (PS), isometric strength (ISO), and dynamic strength (PT) were recorded before (PRE), immediately post (IP), 24- (24h), 48- (48h), 72- (72h), and 96- (96h) hours after exercise. For PT, PRE, 48h, 72h, and 96h were significantly (p < 0.05) greater than IP values but not different from 24h. For PS, IP (4.83 ± 0.36) was greater than that for all other time periods, whereas 24h (2.91 ± 0.42), 48h (2.62 ± 0.53), and 72h (1.97 ± 0.49) were all greater than PRE (0.44 ± 0.19) values. Also, 24h and 48h were not different but were both greater than 72h and 96h (1.13 ± 0.32), whereas 72h was >96h. For ISO, neither CON nor LIC showed any significant difference across time. Moderate-intensity cycling showed no difference between PRE (189.88 ± 40.68), IP (193.75 ± 47.24), 24h (186.52 ± 53.55), or 48h (195.36 ± 55.06), but 72h (210.05 ± 53.57) and 96h (207.78 ± 59.99) were significantly >24h. The 72h was also greater than IP. Therefore, moderate-intensity aerobic recovery may be suggested after eccentric muscle actions.
Mostafa, Abeer F; Samir, Shereen M; Nagib, R M
2018-04-01
Exhaustive exercises can cause delayed menarche or menstrual cycle irregularities in females. Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are incorporated into a wide range of benefits in many physiological systems. Our work aimed to assess the role of ω-3 PUFA docosahexaenoic acid (DHA) on the deleterious effects of exhaustive exercise on the female reproductive system in rats. Virgin female rats were randomly divided into 4 groups (12 rats in each): control group, omega-3 group treated with DHA, exhaustive exercise group, and exhaustive exercised rats treated with DHA. Omega-3 was given orally to the rats once daily for 4 estrous cycles. Exhaustive exercises revealed lower levels in progesterone and gonadotropins together with histopathological decrease in number of growing follicles and corpora lutea. Moreover, the exercised rats showed low levels of ovarian antioxidants with high level of caspase-3 and plasma cortisol level that lead to disruption of hypothalamic-pituitary-gonadal axis. ω-3 PUFA DHA has beneficial effects on the number of newly growing follicles in both sedentary and exercised rats with decreasing the level of caspase-3 and increasing the antioxidant activity in ovaries. Exhaustive exercises can cause ovulatory problems in female rats that can be improved by ω-3 supplementation.
Co, Jayson L; Mejia, Michael Benedict A; Que, Jocelyn C; Dizon, Janine Margarita R
2016-07-01
Mucositis is a disabling effect of radiotherapy in head and neck cancers. There is no current standard on management of radiation-induced mucositis. Honey has been shown to reduce radiation-induced mucositis. A systematic review and meta-analysis were undertaken to assess the ability of honey in reducing the severity of oral mucositis, time to mucositis, weight loss, and treatment interruptions. Eight studies were included and showed that honey was significantly better in lowering the risk for treatment interruptions, weight loss, and delaying time to mucositis, but not severity of mucositis. There is current evidence that honey is beneficial for patients with head and neck cancers by decreasing treatment interruptions, weight loss, and delaying the onset of oral mucositis, but not in decreasing peak mucositis score. In light of the results, honey is a reasonable treatment for radiation-induced mucositis, but more randomized clinical trials (RCTs) should be done. © 2016 Wiley Periodicals, Inc. Head Neck 38: 1119-1128, 2016. © 2016 Wiley Periodicals, Inc.
Glucose metabolism transporters and epilepsy: only GLUT1 has an established role.
Hildebrand, Michael S; Damiano, John A; Mullen, Saul A; Bellows, Susannah T; Oliver, Karen L; Dahl, Hans-Henrik M; Scheffer, Ingrid E; Berkovic, Samuel F
2014-02-01
The availability of glucose, and its glycolytic product lactate, for cerebral energy metabolism is regulated by specific brain transporters. Inadequate energy delivery leads to neurologic impairment. Haploinsufficiency of the glucose transporter GLUT1 causes a characteristic early onset encephalopathy, and has recently emerged as an important cause of a variety of childhood or later-onset generalized epilepsies and paroxysmal exercise-induced dyskinesia. We explored whether mutations in the genes encoding the other major glucose (GLUT3) or lactate (MCT1/2/3/4) transporters involved in cerebral energy metabolism also cause generalized epilepsies. A cohort of 119 cases with myoclonic astatic epilepsy or early onset absence epilepsy was screened for nucleotide variants in these five candidate genes. No epilepsy-causing mutations were identified, indicating that of the major energetic fuel transporters in the brain, only GLUT1 is clearly associated with generalized epilepsy. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.
Zurawlew, M J; Walsh, N P; Fortes, M B; Potter, C
2016-07-01
We examined whether daily hot water immersion (HWI) after exercise in temperate conditions induces heat acclimation and improves endurance performance in temperate and hot conditions. Seventeen non-heat-acclimatized males performed a 6-day intervention involving a daily treadmill run for 40 min at 65% V̇O2max in temperate conditions (18 °C) followed immediately by either HWI (N = 10; 40 °C) or thermoneutral (CON, N = 7; 34 °C) immersion for 40 min. Before and after the 6-day intervention, participants performed a treadmill run for 40 min at 65% V̇O2max followed by a 5-km treadmill time trial (TT) in temperate (18 °C, 40% humidity) and hot (33 °C, 40% humidity) conditions. HWI induced heat acclimation demonstrated by lower resting rectal temperature (Tre , mean, -0.27 °C, P < 0.01), and final Tre during submaximal exercise in 18 °C (-0.28 °C, P < 0.01) and 33 °C (-0.36 °C, P < 0.01). Skin temperature, Tre at sweating onset and RPE were lower during submaximal exercise in 18 °C and 33 °C after 6 days in HWI (P < 0.05). Physiological strain and thermal sensation were also lower during submaximal exercise in 33 °C after 6 days in HWI (P < 0.05). HWI improved TT performance in 33 °C (4.9%, P < 0.01) but not in 18 °C. Thermoregulatory measures and performance did not change in CON. Hot water immersion after exercise on 6 days presents a simple, practical, and effective heat acclimation strategy to improve endurance performance in the heat. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Asp, Michelle L; Tian, Min; Kliewer, Kara L; Belury, Martha A
2011-12-01
Cachexia is characterized by severe weight loss, including adipose and muscle wasting, and occurs in a large percentage of cancer patients. Insulin resistance contributes to dysregulated metabolism in cachexia and occurs prior to weight loss in mice with colon-26 tumor-induced cachexia. Therefore, we hypothesized that the insulin sensitizer, rosiglitazone, would attenuate the loss of adipose and muscle to result in improved outcomes for mice with late-stage cachexia. Male CD2F1 mice were inoculated with colon-26 adenocarcinoma cells or vehicle. Treatments included vehicle, rosiglitazone (10 mg/kg body weight/day) or rosiglitazone plus pair-feeding to food intake of vehicle-treated mice with tumors. Rosiglitazone delayed weight loss onset by 2 d over the 16 d duration of this aggressive tumor model. This finding was associated, in part, with increased food intake. In addition, adipose mass, adipocyte cross-sectional area and inflammation were improved with rosiglitazone. However, at the time of necropsy 16 d after tumor inoculation rosiglitazone had no effect on retention of muscle mass, strength or proteolysis in late-stage cachexia. We did not measure stamina or endurance in this study. In early-stage cachexia, rosiglitazone normalized PDK4 and PPAR-delta mRNA in quadriceps muscle and rescued the decrease in insulin-stimulated glucose disappearance in mice with tumors. Rosiglitazone may delay weight loss onset by decreasing tumor-induced markers of metabolic change in early-stage cachexia. These changes predict for modest improvement in adipose, but no improvement in muscle strength in late-stage cachexia.
Asp, Michelle L.; Tian, Min; Kliewer, Kara L.
2011-01-01
Cachexia is characterized by severe weight loss, including adipose and muscle wasting, and occurs in a large percentage of cancer patients. Insulin resistance contributes to dysregulated metabolism in cachexia and occurs prior to weight loss in mice with colon-26 tumor-induced cachexia. Therefore, we hypothesized that the insulin sensitizer, rosiglitazone, would attenuate the loss of adipose and muscle to result in improved outcomes for mice with late-stage cachexia. Male CD2F1 mice were inoculated with colon-26 adenocarcinoma cells or vehicle. Treatments included vehicle, rosiglitazone (10 mg/kg body weight/day) or rosiglitazone plus pair-feeding to food intake of vehicle-treated mice with tumors. Rosiglitazone delayed weight loss onset by 2 d over the 16 d duration of this aggressive tumor model. This finding was associated, in part, with increased food intake. In addition, adipose mass, adipocyte cross-sectional area and inflammation were improved with rosiglitazone. However, at the time of necropsy 16 d after tumor inoculation rosiglitazone had no effect on retention of muscle mass, strength or proteolysis in late-stage cachexia. We did not measure stamina or endurance in this study. In early-stage cachexia, rosiglitazone normalized PDK4 and PPAR-delta mRNA in quadriceps muscle and rescued the decrease in insulin-stimulated glucose disappearance in mice with tumors. Rosiglitazone may delay weight loss onset by decreasing tumor-induced markers of metabolic change in early-stage cachexia. These changes predict for modest improvement in adipose, but no improvement in muscle strength in late-stage cachexia. PMID:22104958
Response of end tidal CO2 pressure to impulse exercise.
Yano, T; Afroundeh, R; Yamanak, R; Arimitsu, T; Lian, C-S; Shirkawa, K; Yunoki, T
2014-03-01
The purpose of the present study was to examine how end tidal CO(2) pressure (PETCO(2)) is controlled in impulse exercise. After pre-exercise at 25 watts for 5 min, impulse exercise for 10 sec with 200 watts followed by post exercise at 25 watts was performed. Ventilation (VE) significantly increased until the end of impulse exercise and significantly re-increased after a sudden decrease. Heart rate (HR) significantly increased until the end of impulse exercise and then decreased to the pre-exercise level. PETCO(2) remained constant during impulse exercise. PETCO(2) significantly increased momentarily after impulse exercise and then significantly decreased to the pre-exercise level. PETCO(2) showed oscillation. The average peak frequency of power spectral density in PETCO(2) appeared at 0.0078 Hz. Cross correlations were obtained after impulse exercise. The peak cross correlations between VE and PETCO(2), HR and PETCO(2), and VE and HR were 0.834 with a time delay of -7 sec, 0.813 with a time delay of 7 sec and 0.701 with a time delay of -15 sec, respectively. We demonstrated that PETCO(2) homeodynamics was interactively maintained by PETCO(2) itself, CO(2) transportation (product of cardiac output and mixed venous CO(2) content) into the lungs by heart pumping and CO(2) elimination by ventilation, and it oscillates as a result of their interactions.
Differential roles of osteopontin/Eta-1 in early and late lpr disease
Weber, G F; Cantor, H
2001-01-01
The cytokine osteopontin (Eta-1) leads to macrophage-dependent polyclonal B-cell activation and is induced early in autoimmune prone mice with the lpr mutation, suggesting a significant pathogenic role for this molecule. Indeed, C57BL/6-Faslpr/lpr mice crossed with osteopontin−/– mice display delayed onset of polyclonal B-cell activation, as judged by serum immunoglobulin levels. In contrast, they are subject to normal onset, but late exacerbation of lymphoproliferation and evidence of kidney disease. These observations define two stages of Faslpr/lpr disease with respect to osteopontin-dependent pathogenesis that should be taken into account in the design of therapeutic approaches to the clinical disease. PMID:11737079
NASA Technical Reports Server (NTRS)
Mulugeta, L.; Werner, C. R.; Pennline, J. A.
2015-01-01
During exploration class missions, such as to asteroids and Mars, astronauts will be exposed to reduced gravity for extended periods. Data has shown that astronauts lose bone mass at a rate of 1% to 2% a month in microgravity, particularly in lower extremities such as the proximal femur. Exercise countermeasures have not completely eliminated bone loss from long duration spaceflight missions, which leaves astronauts susceptible to early onset osteoporosis and greater risk of fracture. Introduction of the Advanced Resistive Exercise Device and other large exercise devices on the International Space Station (ISS), coupled with improved nutrition, has further minimized bone loss. However, unlike the ISS, exploration vehicles will have very limited volume and power available to accommodate such capabilities. Therefore, novel concepts like artificial gravity systems are being explored as a means to provide sufficient load stimulus to the musculoskeletal system to mitigate bone changes that may lead to early onset osteoporosis and increased risk of fracture. Currently, there is minimal data available to drive further research and development efforts to appropriately explore such options. Computational modeling can be leveraged to gain insight on the level of osteoprotection that may be achieved using artificial gravity produced by a spinning spacecraft or centrifuge. With this in mind, NASA's Digital Astronaut Project (DAP) has developed a bone remodeling model that has been validated for predicting volumetric bone mineral density (vBMD) changes of trabecular and cortical bone both for gravitational unloading condition and the equivalent of 1g daily load stimulus. Using this model, it is possible to simulate vBMD changes in trabecular and cortical bone under different gravity conditions. In this presentation, we will discuss our preliminary findings regarding if and how artificial gravity may be used to mitigate spaceflight induced bone loss.
Castner, Diobel M.; Clark, Susan J.; Judelson, Daniel A.; Rubin, Daniela A.
2016-01-01
Following exercise, heart rate decline is initially driven by parasympathetic reactivation and later by sympathetic withdrawal. Obesity delays endurance exercise heart rate recovery (HRR) in both children and adults. Young people with Prader-Willi Syndrome (PWS), a congenital cause for obesity, have shown a slower 60-s endurance exercise HRR compared to lean and obese children, suggesting compromised regulation. This study further evaluated effects of obesity and PWS on resistance exercise HRR at 30 and 60 s in children. PWS (8–18 years) and lean and obese controls (8–11 years) completed a weighted step-up protocol (six sets x 10 reps per leg, separated by one-minute rest), standardized using participant stature and lean body mass. HRR was evaluated by calculated HRR value (HRRV = difference between HR at test termination and 30 (HRRV30) and 60 (HRRV60) s post-exercise). PWS and obese had a smaller HRRV30 than lean (p < 0.01 for both). Additionally, PWS had a smaller HRRV60 than lean and obese (p = 0.01 for both). Obesity appears to delay early parasympathetic reactivation, which occurs within 30 s following resistance exercise. However, the continued HRR delay at 60 s in PWS may be explained by either blunted parasympathetic nervous system reactivation, delayed sympathetic withdrawal and/or poor cardiovascular fitness. PMID:28933384
Beta band oscillations in motor cortex reflect neural population signals that delay movement onset
Khanna, Preeya; Carmena, Jose M
2017-01-01
Motor cortical beta oscillations have been reported for decades, yet their behavioral correlates remain unresolved. Some studies link beta oscillations to changes in underlying neural activity, but the specific behavioral manifestations of these reported changes remain elusive. To investigate how changes in population neural activity, beta oscillations, and behavior are linked, we recorded multi-scale neural activity from motor cortex while three macaques performed a novel neurofeedback task. Subjects volitionally brought their beta oscillatory power to an instructed state and subsequently executed an arm reach. Reaches preceded by a reduction in beta power exhibited significantly faster movement onset times than reaches preceded by an increase in beta power. Further, population neural activity was found to shift farther from a movement onset state during beta oscillations that were neurofeedback-induced or naturally occurring during reaching tasks. This finding establishes a population neural basis for slowed movement onset following periods of beta oscillatory activity. DOI: http://dx.doi.org/10.7554/eLife.24573.001 PMID:28467303
Wang, HaiYang; Jo, Yu-Jin; Sun, Tian-Yi; Namgoong, Suk; Cui, Xiang-Shun; Oh, Jeong Su; Kim, Nam-Hyung
2016-12-01
To ensure accurate chromosome segregation, the spindle assembly checkpoint (SAC) delays anaphase onset by preventing the premature activation of anaphase-promoting complex/cyclosome (APC/C) until all kinetochores are attached to the spindle. Although an escape from mitosis in the presence of unsatisfied SAC has been shown in several cancer cells, it has not been reported in oocyte meiosis. Here, we show that CDK7 activity is required to prevent a bypass of SAC during meiosis I in mouse oocytes. Inhibition of CDK7 using THZ1 accelerated the first meiosis, leading to chromosome misalignment, lag of chromosomes during chromosome segregation, and a high incidence of aneuploidy. Notably, this acceleration occurred in the presence of SAC proteins including Mad2 and Bub3 at the kinetochores. However, inhibition of APC/C-mediated cyclin B degradation blocked the THZ1-induced premature polar body extrusion. Moreover, chromosomal defects mediated by THZ1 were rescued when anaphase onset was delayed. Collectively, our results show that CDK7 activity is required to prevent premature anaphase onset by suppressing the bypass of SAC, thus ensuring chromosome alignment and proper segregation. These findings reveal new roles of CDK7 in the regulation of meiosis in mammalian oocytes. Copyright © 2016 Elsevier B.V. All rights reserved.
Antioxidants for preventing and reducing muscle soreness after exercise.
Ranchordas, Mayur K; Rogerson, David; Soltani, Hora; Costello, Joseph T
2017-12-14
Muscle soreness typically occurs after intense exercise, unaccustomed exercise or actions that involve eccentric contractions where the muscle lengthens while under tension. It peaks between 24 and 72 hours after the initial bout of exercise. Many people take antioxidant supplements or antioxidant-enriched foods before and after exercise in the belief that these will prevent or reduce muscle soreness after exercise. To assess the effects (benefits and harms) of antioxidant supplements and antioxidant-enriched foods for preventing and reducing the severity and duration of delayed onset muscle soreness following exercise. We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, SPORTDiscus, trial registers, reference lists of articles and conference proceedings up to February 2017. We included randomised and quasi-randomised controlled trials investigating the effects of all forms of antioxidant supplementation including specific antioxidant supplements (e.g. tablets, powders, concentrates) and antioxidant-enriched foods or diets on preventing or reducing delayed onset muscle soreness (DOMS). We excluded studies where antioxidant supplementation was combined with another supplement. Two review authors independently screened search results, assessed risk of bias and extracted data from included trials using a pre-piloted form. Where appropriate, we pooled results of comparable trials, generally using the random-effects model. The outcomes selected for presentation in the 'Summary of findings' table were muscle soreness, collected at times up to 6 hours, 24, 48, 72 and 96 hours post-exercise, subjective recovery and adverse effects. We assessed the quality of the evidence using GRADE. Fifty randomised, placebo-controlled trials were included, 12 of which used a cross-over design. Of the 1089 participants, 961 (88.2%) were male and 128 (11.8%) were female. The age range for participants was between 16 and 55 years and training status varied from sedentary to moderately trained. The trials were heterogeneous, including the timing (pre-exercise or post-exercise), frequency, dose, duration and type of antioxidant supplementation, and the type of preceding exercise. All studies used an antioxidant dosage higher than the recommended daily amount. The majority of trials (47) had design features that carried a high risk of bias due to selective reporting and poorly described allocation concealment, potentially limiting the reliability of their findings.We tested only one comparison: antioxidant supplements versus control (placebo). No studies compared high-dose versus low-dose, where the low-dose supplementation was within normal or recommended levels for the antioxidant involved.Pooled results for muscle soreness indicated a small difference in favour of antioxidant supplementation after DOMS-inducing exercise at all main follow-ups: up to 6 hours (standardised mean difference (SMD) -0.30, 95% confidence interval (CI) -0.56 to -0.04; 525 participants, 21 studies; low-quality evidence); at 24 hours (SMD -0.13, 95% CI -0.27 to 0.00; 936 participants, 41 studies; moderate-quality evidence); at 48 hours (SMD -0.24, 95% CI -0.42 to -0.07; 1047 participants, 45 studies; low-quality evidence); at 72 hours (SMD -0.19, 95% CI -0.38 to -0.00; 657 participants, 28 studies; moderate-quality evidence), and little difference at 96 hours (SMD -0.05, 95% CI -0.29 to 0.19; 436 participants, 17 studies; low-quality evidence). When we rescaled to a 0 to 10 cm scale in order to quantify the actual difference between groups, we found that the 95% CIs for all five follow-up times were all well below the minimal important difference of 1.4 cm: up to 6 hours (MD -0.52, 95% CI -0.95 to -0.08); at 24 hours (MD -0.17, 95% CI -0.42 to 0.07); at 48 hours (MD -0.41, 95% CI -0.69 to -0.12); at 72 hours (MD -0.29, 95% CI -0.59 to 0.02); and at 96 hours (MD -0.03, 95% CI -0.43 to 0.37). Thus, the effect sizes suggesting less muscle soreness with antioxidant supplementation were very unlikely to equate to meaningful or important differences in practice. Neither of our subgroup analyses to examine for differences in effect according to type of DOMS-inducing exercise (mechanical versus whole body aerobic) or according to funding source confirmed subgroup differences. Sensitivity analyses excluding cross-over trials showed that their inclusion had no important impact on results.None of the 50 included trials measured subjective recovery (return to previous activities without signs or symptoms).There is very little evidence regarding the potential adverse effects of taking antioxidant supplements as this outcome was reported in only nine trials (216 participants). From the studies that did report adverse effects, two of the nine trials found adverse effects. All six participants in the antioxidant group of one trial had diarrhoea and four of these also had mild indigestion; these are well-known side effects of the particular antioxidant used in this trial. One of 26 participants in a second trial had mild gastrointestinal distress. There is moderate to low-quality evidence that high dose antioxidant supplementation does not result in a clinically relevant reduction of muscle soreness after exercise at up to 6 hours or at 24, 48, 72 and 96 hours after exercise. There is no evidence available on subjective recovery and only limited evidence on the adverse effects of taking antioxidant supplements. The findings of, and messages from, this review provide an opportunity for researchers and other stakeholders to come together and consider what are the priorities, and underlying justifications, for future research in this area.
Methods of Muscle Activation Onset Timing Recorded During Spinal Manipulation.
Currie, Stuart J; Myers, Casey A; Krishnamurthy, Ashok; Enebo, Brian A; Davidson, Bradley S
2016-05-01
The purpose of this study was to determine electromyographic threshold parameters that most reliably characterize the muscular response to spinal manipulation and compare 2 methods that detect muscle activity onset delay: the double-threshold method and cross-correlation method. Surface and indwelling electromyography were recorded during lumbar side-lying manipulations in 17 asymptomatic participants. Muscle activity onset delays in relation to the thrusting force were compared across methods and muscles using a generalized linear model. The threshold combinations that resulted in the lowest Detection Failures were the "8 SD-0 milliseconds" threshold (Detection Failures = 8) and the "8 SD-10 milliseconds" threshold (Detection Failures = 9). The average muscle activity onset delay for the double-threshold method across all participants was 149 ± 152 milliseconds for the multifidus and 252 ± 204 milliseconds for the erector spinae. The average onset delay for the cross-correlation method was 26 ± 101 for the multifidus and 67 ± 116 for the erector spinae. There were no statistical interactions, and a main effect of method demonstrated that the delays were higher when using the double-threshold method compared with cross-correlation. The threshold parameters that best characterized activity onset delays were an 8-SD amplitude and a 10-millisecond duration threshold. The double-threshold method correlated well with visual supervision of muscle activity. The cross-correlation method provides several advantages in signal processing; however, supervision was required for some results, negating this advantage. These results help standardize methods when recording neuromuscular responses of spinal manipulation and improve comparisons within and across investigations. Copyright © 2016 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.
Of Mice and Men: The Benefits of Caloric Restriction, Exercise, and Mimetics
Mercken, Evi M.; Carboneau, Bethany A.; Krzysik-Walker, Susan M.; de Cabo, Rafael
2012-01-01
During aging there is an increasing imbalance of energy intake and expenditure resulting in obesity, frailty, and metabolic disorders. For decades, research has shown that caloric restriction (CR) and exercise can postpone detrimental aspects of aging. These two interventions invoke a similar physiological signature involving pathways associated with stress responses and mitochondrial homeostasis. Nonetheless, CR is able to delay aging processes that result in an increase of both mean and maximum lifespan, whereas exercise primarily increases healthspan. Due to the strict dietary regime necessary to achieve the beneficial effects of CR, most studies to date have focused on rodents and non-human primates. As a consequence, there is vast interest in the development of compounds such as resveratrol, metformin and rapamycin that would activate the same metabolic- and stress-response pathways induced by these interventions without actually restricting caloric intake. Therefore the scope of this review is to (i) describe the benefits of CR and exercise in healthy individuals, (ii) discuss the role of these interventions in the diseased state, and (iii) examine some of the promising pharmacological alternatives such as CR- and exercise-mimetics. PMID:22210414
[Role of physical activity in the therapy and prevention of Type II diabetes mellitus].
Lehmann, R; Spinas, G A
1996-12-01
Increased physical activity should be part of the treatment for non insulin-dependent diabetic patients. Increased physical activity delays the onset of non insulin-dependent diabetes mellitus (NIDDM) or even prevents the disease in about 50% of susceptible individuals (positive family history of NIDDM, body-mass index > 25, hypertension or gestational diabetes). Regular exercise has been shown to lower plasma triglyceride and to increase high-density lipoprotein cholesterol levels. Exercise has also beneficial effects on hypertension, body composition and fat distribution. Improved glucose tolerance has been achieved in type II diabetic patients in as little as one week with an exercise program. The beneficial effect of regular exercise on glucose control appears to reflect the cumulative effect of transient improvement in glucose tolerance following each individual bout of exercise. Increased insulin sensitivity is lost after as little as three days of inactivity. Most studies suggest that the maximum benefit from exercise is most likely to occur in patients with mild diabetes in whom insulin resistance and hyperinsulinemia are present (i.e. patients with fasting blood glucose of < 11 mM). The recommended frequency and duration of exercise is three times per week or every other day and, as adjunct for weight reduction, five to seven times per week for 30 to 45 min. at an intensity of 50 to 70% VO2max (or 60 to 80% of maximal the heart rate). Because of the high incidence of ischemic heart disease in type II diabetic patients, patients older than 35 years of age should undergo a graded exercise stress electrocardiogram. Attention should be paid to foot-care and the use of appropriate footwear and diabetic late complications, such as autonomic and peripheral neuropathy. Older obese NIDDM patients can achieve significant metabolic benefits from low-intensity programs, such as daily walking, which can be easily incorporated into daily living. Taking the necessary precautions, most patients with diabetes can take part in a monitored exercise program safely.
2008-01-01
23, 2008) Abstract: This study evaluated the anticonvulsant effectiveness of midazolam to stop seizures elicited by the nerve agent soman when...seizure activity that was detected in the electroencephalographic record. When given immediately after seizure onset, the anticonvulsant ED 50 of...that time. At the 40-min. treatment delay, the anticonvulsant ED 50 s of intramuscular or intranasal midazolam did not differ and both were
Effects of prepubertal-onset exercise on body weight changes up to middle age in rats.
Shindo, Daisuke; Matsuura, Tomokazu; Suzuki, Masato
2014-03-15
The present study was conducted to examine whether prepubertal-onset exercise might help adults maintain long-term body weight (BW) reduction and increased energy metabolism after the cessation of exercise. Furthermore, the effects of the exercise regimen were compared with those of food restriction. Twenty-three male obese-diabetic [Otsuka Long-Evans Tokushima Fatty (OLETF)] rats were randomly assigned to prepubertal-onset exercise (Childhood-Ex), food restriction (Childhood-Diet), and sedentary control (OLETF-Sed) groups. Childhood-Ex rats exercised voluntarily every day using a rotating wheel, while the food volume of the Childhood-Diet group was restricted to achieve a BW similar to that recorded in the Childhood-Ex group. Both treatments were conducted at 5-19 wk of age; after this period, the rats were kept sedentary and allowed ad libitum food intake until 45 wk of age. BW was significantly lower, and percent lean body mass was significantly higher, in the Childhood-Ex group compared with those in the Childhood-Diet and OLETF-Sed groups throughout maturation and middle age after cessation of the interventions. The Childhood-Ex group also demonstrated higher citrate synthase, succinate dehydrogenase, and phosphofructokinase activity levels, as well as uncoupling protein-3 mRNA expression in skeletal muscle. This study revealed that inhibited BW gain in an animal model of human obese diabetes by prepubertal-onset exercise lasted for a long period after the completion of the exercise intervention. This effect may be facilitated by increased energy metabolism. However, these benefits were not found by prepubertal food restriction treatment. Importantly, to allow translation of our work, these novel insights need to be assessed in obese human individuals.
The Protective Effect of Cantonese/Mandarin Bilingualism on the Onset of Alzheimer Disease.
Zheng, Yifan; Wu, Qi; Su, Fengjuan; Fang, Yingying; Zeng, Jinsheng; Pei, Zhong
2018-06-08
Several studies have found that bilingualism can delay the age of onset of Alz-heimer disease (AD). The interpretation of these findings is that switching between two languages can enhance cognitive reserve. However, some studies have provided inconsistent results. Diverse language pairs used by the bilinguals in different studies may contribute to the discrepancies. Cantonese and Mandarin are widely used in southern China, and regarded as bilingualism. The present study aims to determine if Cantonese/Mandarin bilingualism can delay the onset of AD. The data of 129 patients diagnosed with probable AD, including 48 Cantonese monolinguals, 20 Mandarin monolinguals, and 61 Cantonese/Mandarin bilinguals were analyzed. Cantonese/Mandarin bilinguals were found to have an older age at AD onset, and older age at the first clinic visit than Mandarin monolinguals and Cantonese monolinguals. Both Mandarin monolinguals and Cantonese/Mandarin bilinguals had a higher education level and higher occupation status than the Cantonese monolinguals. Mandarin monolinguals did not differ from Cantonese/Mandarin bilinguals significantly in years of education and occupation status. The multiple linear regression analyses indicated that Cantonese/Mandarin bilingualism can delay the onset of AD independently. Constantly speaking both Cantonese and Mandarin from at least early adulthood can delay the onset of AD. © 2018 S. Karger AG, Basel.
Cardioprotection Induced by Activation of GPER in Ovariectomized Rats With Pulmonary Hypertension.
Alencar, Allan K N; Montes, Guilherme C; Costa, Daniele G; Mendes, Luiza V P; Silva, Ananssa M S; Martinez, Sabrina T; Trachez, Margarete M; Cunha, Valéria do M N; Montagnoli, Tadeu L; Fraga, Aline G M; Wang, Hao; Groban, Leanne; Fraga, Carlos A M; Sudo, Roberto T; Zapata-Sudo, Gisele
2018-05-21
Pulmonary hypertension (PH) is a disease of women (female-to-male ratio 4:1), and is associated with cardiac and skeletal muscle dysfunction. Herein, the activation of a new estrogen receptor (GPER) by the agonist G1 was evaluated in oophorectomized rats with monocrotaline (MCT)-induced PH. Depletion of estrogen was induced by bilateral oophorectomy (OVX) in Wistar rats. Experimental groups included SHAM or OVX rats that received a single intraperitoneal injection of MCT (60 mg/kg) for PH induction. Animals received s.c. injection of either vehicle or G1, a GPER agonist, (400 µg/kg/day) for 14 days after the onset of disease. Rats with PH exhibited exercise intolerance and cardiopulmonary alterations, including reduced pulmonary artery flow, biventricular remodeling, and left ventricular systolic and diastolic dysfunction. The magnitude of these PH-induced changes was significantly greater in OVX versus SHAM rats. G1 treatment reversed both cardiac and skeletal muscle functional aberrations caused by PH in OVX rats. G1 reversed PH-related cardiopulmonary dysfunction and exercise intolerance in female rats, a finding that may have important implications for the ongoing clinical evaluation of new drugs for the treatment of the disease in females after the loss of endogenous estrogens.
Zhang, Yun; Guo, Wei-ming; Chen, Su-mei; Han, Liang; Li, Zheng-ming
2007-08-01
N-acylethanolamines (NAEs) are a group of lipid mediators that play important roles in mammals, but not much is known about their precise function in plants. In this work, we analyzed the possible involvement of N-lauroylethanolamine [NAE(12:0)] in the regulation of cut-flower senescence. In cut carnation flowers of cv. Red Barbara, the pulse treatment with 5 microM NAE(12:0) slowed senescence by delaying the onset of initial wilting. Ion leakage, which is a reliable indicator of membrane integrity, was postponed in NAE(12:0)-treated flowers. The lipid peroxidation increased in carnation petals with time, in parallel to the development in activity of lipoxygenase and superoxide anion production rate, and these increases were both delayed by NAE(12:0) supplementation. The activities of four enzymes (superoxide dismutase, catalase, glutathione reductase and ascorbate peroxidase) that are implicated in antioxidant defense were also upregulated in the cut carnations that had been treated with NAE(12:0). These data indicate that NAE(12:0)-induced delays in cut-carnation senescence involve the protection of the integrity of membranes via suppressing oxidative damage and enhancing antioxidant defense. We propose that the stage from the end of blooming to the onset of wilting is a critical period for NAE(12:0) action.
Bellgowan, P. S. F.; Saad, Z. S.; Bandettini, P. A.
2003-01-01
Estimates of hemodynamic amplitude, delay, and width were combined to investigate system dynamics involved in lexical decision making. Subjects performed a lexical decision task using word and nonword stimuli rotated 0°, 60°, or 120°. Averaged hemodynamic responses to repeated stimulation were fit to a Gamma-variate function convolved with a heavyside function of varying onset and duration to estimate each voxel's activation delay and width. Consistent with prolonged reaction times for the rotated stimuli and nonwords, the motor cortex showed delayed hemodynamic onset for both conditions. Language areas such as the lingual gyrus, middle temporal gyrus, fusiform gyrus, and precuneus all showed delayed hemodynamic onsets to rotated stimuli but not to nonword stimuli. The inferior frontal gyrus showed both increased onset latency for rotated stimuli and a wider hemodynamic response to nonwords, consistent with prolonged processing in this area during the lexical decision task. Phonological processing areas such as superior temporal and angular gyrus showed no delay or width difference for rotated stimuli. These results suggest that phonological routes but not semantic routes to the lexicon can proceed regardless of stimulus orientation. This study demonstrates the utility of estimating hemodynamic delay and width in addition to amplitude allowing for more quantitative measures of brain function such as mental chronometry. PMID:12552093
Delay of behavioral estrus in hamsters and phenobarbital.
Alleva, J J
1989-01-01
The onset of behavioral estrus was used as a phase marker of the hamster timing system in SLD 16:8 (dark 20:00-04:00). TZ was injected between 11:00 of cycle day 3 and noon of cycle day 4 when onset of estrus was determined. At no time did injection of TZ cause a phase advance in SLD 16:8. Small delays of estrus resulted from 11:00-16:00 injections but marked delays began with the 17:00 injection. Phenobarbital was injected between noon and 19:30 on cycle day 3. Injections between noon and 16:00 had no effect but all later injections beginning at 17:00 delayed estrus, the 17:30 injection causing the greatest delay. Diazepam also markedly delayed estrus when tested at 17:30. These results with three drugs support results with light pulses that 18:00 in SLD 16:8 marks the same phase of the 24-h hamster timing system as the onset of wheel running does in DD, LL, and WLD. These findings with three GABA potentiators extend to SLD previous evidence based on the onset of wheel running in DD, LL and WLD that GABA may be involved in hamster timekeeping and its responses to light and drugs.
Mellano, Erin M; Nakamura, Leah Y; Choi, Judy M; Kang, Diana C; Grisales, Tamara; Raz, Shlomo; Rodriguez, Larissa V
2016-01-01
Vaginal mesh complications necessitating excision are increasingly prevalent. We aim to study whether subclinical chronically infected mesh contributes to the development of delayed-onset mesh complications or recurrent urinary tract infections (UTIs). Women undergoing mesh removal from August 2013 through May 2014 were identified by surgical code for vaginal mesh removal. Only women undergoing removal of anti-incontinence mesh were included. Exclusion criteria included any women undergoing simultaneous prolapse mesh removal. We abstracted preoperative and postoperative information from the medical record and compared mesh culture results from patients with and without mesh extrusion, de novo recurrent UTIs, and delayed-onset pain. One hundred seven women with only anti-incontinence mesh removed were included in the analysis. Onset of complications after mesh placement was within the first 6 months in 70 (65%) of 107 and delayed (≥6 months) in 37 (35%) of 107. A positive culture from the explanted mesh was obtained from 82 (77%) of 107 patients, and 40 (37%) of 107 were positive with potential pathogens. There were no significant differences in culture results when comparing patients with delayed-onset versus immediate pain, extrusion with no extrusion, and de novo recurrent UTIs with no infections. In this large cohort of patients with mesh removed for a diverse array of complications, cultures of the explanted vaginal mesh demonstrate frequent low-density bacterial colonization. We found no differences in culture results from women with delayed-onset pain versus acute pain, vaginal mesh extrusions versus no extrusions, or recurrent UTIs using standard culture methods. Chronic prosthetic infections in other areas of medicine are associated with bacterial biofilms, which are resistant to typical culture techniques. Further studies using culture-independent methods are needed to investigate the potential role of chronic bacterial infections in delayed vaginal mesh complications.
NASA Astrophysics Data System (ADS)
Das, Debanjana; Mondal, Paramita; Saha, Poulomi; Chaudhuri, Sutapa
2018-06-01
The regional features of Bay of Bengal (BOB) branch of summer monsoon (SM) are examined to identify the causes of delayed onset over Gangetic West Bengal (GWB) in the years having normal onset over Kerala coast. The normal onset over both GWB and Kerala is designated as Normal-Normal (NN) years, while delayed onset over GWB and normal onset over Kerala is termed Normal-Delayed (ND) years. The temperature gradient (TTg), winds at 850 and 150 hPa pressure levels, sea-surface temperature (SST), outgoing long wave radiation (OLR), low-level moisture convergence, instability, and rainfall rate (RR) are analyzed in this study using National Centers for Environmental Prediction and National Oceanic and Atmospheric Administration reanalysis dataset during the period from 1981 to 2015. The result shows that TTg over BOB plays a significant role in controlling the movement of BOB branch of SM. Warm SST is observed to prevail over north BOB during NN years. The divergence at 150 hPa and convergence at 850 hPa pressure levels are found to influence the propagation of BOB branch of SM during both NN and ND years. The winds at 850 hPa level converge over BOB and GWB during NN years, whereas winds converge more over eastern BOB and Indo-Chinese peninsula during ND years. Result depicts abundance of low-level (850-1000 hPa) moisture over eastern BOB and Indo-Chinese peninsula during ND years, whereas moisture is observed to converge over north and north-eastern BOB during NN years. The RR is observed to be slightly higher during NN than ND years. However, it may not be concluded from the analysis that delayed onset over GWB will be responsible for less RR over the study region.
Administration of pioglitazone alone or with alogliptin delays diabetes onset in UCD-T2DM rats
Cummings, Bethany P; Bettaieb, Ahmed; Graham, James L; Stanhope, Kimber; Haj, Fawaz G; Havel, Peter J
2015-01-01
There is a need to identify strategies for type 2 diabetes prevention. Therefore, we investigated the efficacy of pioglitazone and alogliptin alone and in combination to prevent type 2 diabetes onset in UCD-T2DM rats, a model of polygenic obese type 2 diabetes. At 2 months of age, rats were divided into four groups: control, alogliptin (20 mg/kg per day), pioglitazone (2.5 mg/kg per day), and alogliptin+pioglitazone. Non-fasting blood glucose was measured weekly to determine diabetes onset. Pioglitazone alone and in combination with alogliptin lead to a 5-month delay in diabetes onset despite promoting increased food intake and body weight (BW). Alogliptin alone did not delay diabetes onset or affect food intake or BW relative to controls. Fasting plasma glucose, insulin, and lipid concentrations were lower and adiponectin concentrations were threefold higher in groups treated with pioglitazone. All treatment groups demonstrated improvements in glucose tolerance and insulin secretion during an oral glucose tolerance test with an additive improvement observed with alogliptin+pioglitazone. Islet histology revealed an improvement of islet morphology in all treatment groups compared with control. Pioglitazone treatment also resulted in increased expression of markers of mitochondrial biogenesis in brown adipose tissue and white adipose tissue, with mild elevations observed in animals treated with alogliptin alone. Pioglitazone markedly delays the onset of type 2 diabetes in UCD-T2DM rats through improvements of glucose tolerance, insulin sensitivity, islet function, and markers of adipose mitochondrial biogenesis; however, addition of alogliptin at a dose of 20 mg/kg per day to pioglitazone treatment does not enhance the prevention/delay of diabetes onset. PMID:24627447
Carbohydrate Strategies for Injury Prevention
Schlabach, Gretchen
1994-01-01
Prevention of injury involves identifying risk factors that would predispose one to injury and developing strategies to attenuate or eliminate their presence. Because muscle glycogen depletion is associated with fatigue and injury, it should be treated as a possible risk factor. Muscle glycogen stores are derived almost entirely from carbohydrate intake. Because there is a limited capacity to store muscle glycogen, and because muscle glycogen is the predominant fuel in exercise of moderate to severe intensity, the nutritional focus should be on carbohydrate consumption. Easy-to-follow nutritional strategies should be employed that will maximize muscle glycogen stores and delay the onset of fatigue. Individuals involved in activities lasting less than 60 minutes need to consume an adequate amount of carbohydrate daily and a pre-event meal before the start of the activity. However, individuals participating in activities longer than 60 minutes or participating in activities requiring repeated bouts of high intensity exercise need to: 1) consume an adequate amount of carbohydrate daily, 2) practice carbohydrate loading, 3) consume the pre-event meal, and 4) ingest carbohydrates immediately before, during, and after the activity. PMID:16558287
The role of massage in sports performance and rehabilitation: current evidence and future direction.
Brummitt, Jason
2008-02-01
Massage is a popular treatment choice of athletes, coaches, and sports physical therapists. Despite its purported benefits and frequent use, evidence demonstrating its efficacy is scarce. To identify current literature relating to sports massage and its role in effecting an athlete's psychological readiness, in enhancing sports performance, in recovery from exercise and competition, and in the treatment of sports related musculoskeletal injuries. Electronic databases were used to identify papers relevant to this review. The following keywords were searched: massage, sports injuries, athletic injuries, physical therapy, rehabilitation, delayed onset muscle soreness, sports psychology, sports performance, sports massage, sports recovery, soft tissue mobilization, deep transverse friction massage, pre-event, and post exercise. RESEARCH STUDIES PERTAINING TO THE FOLLOWING GENERAL CATEGORIES WERE IDENTIFIED AND REVIEWED: pre-event (physiological and psychological variables), sports performance, recovery, and rehabilitation. Despite the fact clinical research has been performed, a poor appreciation exists for the appropriate clinical use of sports massage. Additional studies examining the physiological and psychological effects of sports massage are necessary in order to assist the sports physical therapist in developing and implementing clinically significant evidence based programs or treatments.
Rawashdeh, Oliver; Hudson, Randall L.; Stepien, Iwona; Dubocovich, Margarita L.
2016-01-01
Ramelteon, an MT1/MT2 melatonin receptor agonist, is used for the treatment of sleep-onset insomnia and circadian sleep disorders. Ramelteon phase shifts circadian rhythms in rodents and humans when given at the end of the subjective day; however, its efficacy at other circadian times is not known. Here, the authors determined in C3H/ HeN mice the maximal circadian sensitivity for ramelteon in vivo on the onset of circadian running-wheel activity rhythms, and in vitro on the peak of circadian rhythm of neuronal firing in suprachiasmatic nucleus (SCN) brain slices. The phase response curve (PRC) for ramelteon (90 μg/mouse, subcutaneous [sc]) on circadian wheel-activity rhythms shows maximal sensitivity during the late mid to end of the subjective day, between CT8 and CT12 (phase advance), and late subjective night and early subjective day, between CT20 and CT2 (phase delay), using a 3-day-pulse treatment regimen in C3H/HeN mice. The PRC for ramelteon resembles that for melatonin in C3H/ HeN mice, showing the same magnitude of maximal shifts at CT10 and CT2, except that the range of sensitivity for ramelteon (CT8–CT12) during the subjective day is broader. Furthermore, in SCN brain slices in vitro, ramelteon (10 pM) administered at CT10 phase advances (5.6 ± 0.29 h, n = 3) and at CT2 phase delays (−3.2 ± 0.12 h, n = 6) the peak of circadian rhythm of neuronal firing, with the shifts being significantly larger than those induced by melatonin (10 pM) at the same circadian times (CT10: 2.7 ± 0.15 h, n = 4, p < .05; CT2: −1.13 ± 0.08 h, n = 6, p < .001, respectively). The phase shifts induced by both melatonin and ramelteon in the SCN brain slice at either CT10 or CT2 corresponded with the period of sensitivity observed in vivo. In conclusion, melatonin and ramelteon showed identical periods of circadian sensitivity at CT10 (advance) and CT2 (delay) to shift the onset of circadian activity rhythms in vivo and the peak of SCN neuronal firing rhythms in vitro. PMID:21182402
Vázquez-Costa, J F; Martínez-Molina, M; Fernández-Polo, M; Fornés-Ferrer, V; Frasquet-Carrera, M; Sevilla-Mantecón, T
2018-06-11
Amyotrophic lateral sclerosis (ALS) is an insidious, clinically heterogeneous neurodegenerative disease associated with a diagnostic delay of approximately 12 months. No study conducted to date has analysed the diagnostic pathway in Spain. We gathered data on variables related to the diagnostic pathway and delay for patients diagnosed with ALS between October 2013 and July 2017. The study included 143 patients with ALS (57% men; 68% spinal onset). Patients were diagnosed in public centres in 86% of cases and in private centres in 14%.The mean diagnostic delay was 13.1 months (median 11.7). Patients were examined by neurologists a mean time of 7.9 months after symptom onset, with diagnosis being made 5.2 months later. Half of all patients underwent unnecessary diagnostic tests and multiple electrophysiological studies before diagnosis was established. Diagnostic delay was longer in cases of spinal onset (P = .008) due to onset of the disease in the lower limbs. No differences were found between the public and private healthcare systems (P = .897). The diagnostic delay in ALS in Spain is similar to that of neighboring countries and seems to depend on disease-related factors, not on the healthcare system. Patients with lower-limb onset ALS constitute the greatest diagnostic challenge. Misdiagnosis is frequent, and partly attributable to an incorrect approach or erroneous interpretation of electrophysiological studies. Specific training programmes for neurologists and general neurophysiologists and early referral to reference centers may help to reduce diagnostic delay. Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
Experimental Observations and Theoretical Modeling of VLF Scattering During LEP Events
NASA Astrophysics Data System (ADS)
Mitchell, M. F.; Moore, R. C.
2012-12-01
Recent experimental observations of very low frequency (VLF) scattering during lightning-induced election precipitation (LEP) events are presented. A spread spectrum analysis technique is applied to these observations, demonstrating a significant dependence on frequency. For LEP events, the scattered field amplitude and phase both exhibit strong frequency dependence, as do the event onset delays (relative to the causative lightning flash) and the event onset durations. The experimental observations are compared with the predictions of an Earth-ionosphere waveguide propagation and scattering model. The Long-Wave Propagation Capability (LWPC) code is used to demonstrate that the scattered field amplitude and phase depend sensitively on the electrical properties of the scattering body and the ionosphere between the scatterer and the receiver. The observed frequency-dependent onset times and durations, on the other hand, are attributed to the scattering source characteristics. These measurements can also be used to study radiation belt dynamics.
Pohlers, Dirk; Schmidt-Weber, Carsten B; Franch, Angels; Kuhlmann, Jürgen; Bräuer, Rolf; Emmrich, Frank; Kinne, Raimund W
2002-01-01
The aim of this study was to analyze the differential effects of three anti-CD4 monoclonal antibodies (mAbs) (with distinct epitope specifities) in the treatment of rat adjuvant arthritis (AA) and on T-cell function and signal transduction. Rat AA was preventively treated by intraperitoneal injection of the anti-CD4 mAbs W3/25, OX35, and RIB5/2 (on days -1, 0, 3, and 6, i.e. 1 day before AA induction, on the day of induction [day 0], and thereafter). The effects on T-cell reactivity in vivo (delayed-type hypersensitivity), ex vivo (ConA-induced proliferation), and in vitro (mixed lymphocyte culture) were assessed. The in vitro effects of anti-CD4 preincubation on T-cell receptor (TCR)/CD3-induced cytokine production and signal transduction were also analyzed. While preventive treatment with OX35 and W3/25 significantly ameliorated AA from the onset, treatment with RIB5/2 even accelerated the onset of AA by approximately 2 days (day 10), and ameliorated the arthritis only in the late phase (day 27). Differential clinical effects at the onset of AA were paralleled by a differential influence of the mAbs on T-cell functions, i.e. in comparison with OX35 and W3/25, the 'accelerating' mAb RIB5/2 failed to increase the delayed-type hypersentivity (DTH) to Mycobacterium tuberculosis, increased the in vitro tumor necrosis factor (TNF)-α secretion, and more strongly induced NF-κB binding activity after anti-CD4 preincubation and subsequent TCR/CD3-stimulation. Depending on their epitope specificity, different anti-CD4 mAbs differentially influence individual proinflammatory functions of T cells. This fine regulation may explain the differential efficacy in the treatment of AA and may contribute to the understanding of such treatments in other immunopathologies. PMID:12010568
ERIC Educational Resources Information Center
Brashear, Allison; Mink, Jonathan W.; Hill, Deborah F.; Boggs, Niki; McCall, W. Vaughn; Stacy, Mark A.; Snively, Beverly; Light, Laney S.; Sweadner, Kathleen J.; Ozelius, Laurie J.; Morrison, Leslie
2012-01-01
We report new clinical features of delayed motor development, hypotonia, and ataxia in two young children with mutations (R756H and D923N) in the "ATP1A3" gene. In adults, mutations in "ATP1A3" cause rapid-onset dystonia-Parkinsonism (RDP, DYT12) with abrupt onset of fixed dystonia. The parents and children were examined and videotaped, and…
Cicciarello, R; Russi, E; Albiero, F; Mesiti, M; Torre, E; D'Aquino, A; Raffaele, L; Bertolani, S; D'Avella, D
1990-11-01
Whole brain irradiation (WBR) can produce acute and chronic neurological adverse effects, which are usually divided into acute, early delayed and late delayed reactions according to the time of onset. To assess the impact of WBR on brain functional parameters during the early-delayed phase, we employed the [14C]-2-deoxyglucose (2-DG) and the [14C]-alfa-aminoisobutyric (AIB) acid quantitative autoradiographic techniques to study local cerebral glucose utilization and blood-brain barrier permeability, respectively. Sprague-Dowley albino rats were exposed to conventional fractionation (200 Gy/day 5 days a week) for a total dose of 4000 Gy. Experiments were made 3 weeks after completion of the radiation exposure. In comparison with control and sham-irradiated animals, cerebral metabolic activity was diffusely decreased following irradiation. As a rule, brain areas with the highest basal metabolic rates showed the highest percentage drop in glucose utilization. Changes in blood-brain barrier function, as assessed by an increased transcapillary transport of AIB, were also demonstrated in specific brain regions. This study illustrates how moderate doses of WBR induce well-defined changes in brain metabolism and BBB function, which are possibly involved in the pathogenesis of the early-delayed radiation-induced cerebral dysfunction in humans.
Garba, K; Yaro, A H; Ya'u, J
2015-08-22
Preparation of Lannea barteri is used in the treatment of epilepsy, gastritis, childhood convulsions among other uses in northern Nigeria for many years. The popularity of its efficacy is well established among the Traditional Medical Practitioners. The present study aimed at screening the ethanol stem bark extract of Lannea barteri for possible anticonvulsant action. Anticonvulsant screening was carried out using pentylenetetrazole (PTZ), strychnine (STN) and picrotoxin (PTC) induced seizures in mice while Maximal electroshock (MES) test was carried out in day old chicks. Preliminary phytochemical screening of the extract was performed on the extract. The intraperitoneal median lethal dose (LD50) was carried out in mice. The intraperitoneal (i.p.) LD50 of the extract was estimated to be 567.70 mg/kg in mice. Lannea barteri (160 mg/kg) significantly (p ≤ 0.05) delayed the mean onset of seizures induced by PTZ when compared with normal saline treated group. Similarly, the extract at 160 mg/kg significantly (p ≤ 0.05) prolonged the latency of convulsion induced by STN. Lannea barteri (40 mg/kg) significantly (p ≤ 0.05) delayed the mean onset of seizures induced by picrotoxin in mice. The extracts at all the doses tested showed no observable effect in decreasing the mean recovery time of convulsed chicks in MEST. Flavonoids, alkaloids, tannins, saponins and glycosides were found present in the stem bark extract. Our findings revealed that the ethanol stem bark extract of Lannea barteri contained bioactive constituents that may be useful in the management of petit mal epilepsy and supports the ethnomedical claim for the use of its stem bark in the management of epilepsy. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Encoding of Spatio-Temporal Input Characteristics by a CA1 Pyramidal Neuron Model
Pissadaki, Eleftheria Kyriaki; Sidiropoulou, Kyriaki; Reczko, Martin; Poirazi, Panayiota
2010-01-01
The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code. PMID:21187899
When the bell tolls on Bell's palsy: finding occult malignancy in acute-onset facial paralysis.
Quesnel, Alicia M; Lindsay, Robin W; Hadlock, Tessa A
2010-01-01
This study reports 4 cases of occult parotid malignancy presenting with sudden-onset facial paralysis to demonstrate that failure to regain tone 6 months after onset distinguishes these patients from Bell's palsy patients with delayed recovery and to propose a diagnostic algorithm for this subset of patients. A case series of 4 patients with occult parotid malignancies presenting with acute-onset unilateral facial paralysis is reported. Initial imaging on all 4 patients did not demonstrate a parotid mass. Diagnostic delays ranged from 7 to 36 months from time of onset of facial paralysis to time of diagnosis of parotid malignancy. Additional physical examination findings, especially failure to regain tone, as well as properly protocolled radiologic studies reviewed with dedicated head and neck radiologists, were helpful in arriving at the diagnosis. An algorithm to minimize diagnostic delays in this subset of acute facial paralysis patients is presented. Careful attention to facial tone, in addition to movement, is important in the diagnostic evaluation of acute-onset facial paralysis. Copyright 2010 Elsevier Inc. All rights reserved.
The Response of the North American Monsoon to Increased Greenhouse Gas Forcing
NASA Technical Reports Server (NTRS)
Cook, B. I.; Seager, R.
2013-01-01
[1] We analyze the response of the North American Monsoon (NAM) to increased greenhouse gas (GHG) forcing (emissions scenario RCP 8.5) using new simulations available through the Coupled Model Intercomparison Project version 5 (CMIP5). Changes in total monsoon season rainfall with GHG warming are small and insignificant. The models do, however, show significant declines in early monsoon season precipitation (June-July) and increases in late monsoon season (September-October) precipitation, indicating a shift in seasonality toward delayed onset and withdrawal of the monsoon. Early in the monsoon season, tropospheric warming increases vertical stability, reinforced by reductions in available surface moisture, inhibiting precipitation and delaying the onset of the monsoon. By the end of the monsoon season, moisture convergence is sufficient to overcome the warming induced stability increases, and precipitation is enhanced. Even with no change in total NAM rainfall, shifts in the seasonal distribution of precipitation within the NAM region are still likely to have significant societal and ecological consequences, reinforcing the need to not only understand the magnitude, but also the timing, of future precipitation changes.
Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise.
Youngstedt, Shawn D; Kline, Christopher E; Elliott, Jeffrey A; Zielinski, Mark R; Devlin, Tina M; Moore, Teresa A
2016-02-26
Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210-2340 h, (2) treadmill exercise alone from 2210-2340 h, or (3) bright light (2210-2340 h) followed by exercise from 0410-0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect.
The effect of hyperkalaemia on cardiac rhythm devices.
Barold, S Serge; Herweg, Bengt
2014-04-01
In patients with pacemakers, hyperkalaemia causes three important abnormalities that usually become manifest when the K level exceeds 7 mEq/L: (i) widening of the paced QRS complex from delayed intraventricular conduction velocity, (ii) Increased atrial and ventricular pacing thresholds that may cause failure to capture. In this respect, the atria are more susceptible to loss of capture than the ventricles, and (iii) Increased latency (usually with ventricular pacing) manifested by a greater delay of the interval from the pacemaker stimulus to the onset of depolarization. First-degree ventricular pacemaker exit block may progress to second-degree Wenckebach (type I) exit block characterized by gradual prolongation of the interval from the pacemaker stimulus to the onset of the paced QRS complex ultimately resulting in an ineffectual stimulus. The disturbance may then progress to 2 : 1, 3 : 1 pacemaker exit block, etc., and eventually to complete exit block with total lack of capture. Ventricular undersensing is uncommonly observed because of frequent antibradycardia pacing. During managed ventricular pacing, hyperkalaemia-induced marked first-degree atrioventricular block may induce a pacemaker syndrome. With implantable cardioverter-defibrillators (ICDs) oversensing of the paced or spontaneous T-wave may occur. The latter may cause inappropriate shocks. A raised impedance from the right ventricular coil to the superior vena cava coil may become an important sign of hyperkalaemia in the asymptomatic or the minimally symptomatic ICD patient.
Rest Interval Required for Power Training With Power Load in the Bench Press Throw Exercise.
Hernández Davó, Jose L; Solana, Rafael Sabido; Sarabia Marín, Jose M; Fernández Fernández, Jaime; Moya Ramón, Manuel
2016-05-01
This study aimed to test the influence of various rest interval (RI) durations used between sets on power output performance and physiological and perceptual variables during a strength training session using 40% of the 1 repetition maximum (1RM) in the bench press throw exercise. Thirty-one college students (18 males and 13 females) took part in the study. The experimental protocol consists of 5 sets of 8 repetitions of the bench press throw exercise with a load representing 40% of 1RM. Subjects performed the experimental protocol on 3 different occasions, differing by the RI between sets (1, 2, or 3 minutes). During the sessions, power data (mean power and peak power), physiological (lactate concentration [La]) and perceptual (rating of perceived exertion) variables were measured. In addition, delayed onset muscular soreness was reported 24 and 48 hours after the training session. One-way repeated-measures analysis of variance showed that 1-minute RI entailed higher power decreases and greater increases in values of physiological and perceptual variables compared with both 2- and 3-minute RIs. Nevertheless, no differences were found between 2- and 3-minute RIs. Therefore, this study showed that, when training with 40% of 1RM in the bench press throw exercise, a 2-minute RI between sets can be enough to avoid significant decreases in power output. Consequently, training sessions' duration could be reduced without causing excessive fatigue, allowing additional time to focus on other conditioning priorities.
Carmeli, Eli; Bar-Chad, Shmuel; Lotan, Meir; Merrick, Joav; Coleman, Raymond
2003-08-01
Incidence rates of falling increase progressively with aging. Preventing or delaying the onset of functional decline is a crucial important goal, because more individuals with intellectual disability (ID) are living well into their sixth and seventh decades. The question of whether walking and ball exercises can effect balance performance has never been reported. This pilot study was conducted to determine the effects of therapeutic training on improving balance capabilities in adults with mild ID. The study included 13 women and 4 men, aged 50-67 years (mean age 56.5 years) residing in a residential care center. Five clinical tests were used to determine the "real" picture of the locomotor function and balance before and after the training protocol. Baseline values were determined using 2 control groups of age-matched adults with and without ID. The tests included modified get-up-and-go, full turn, forward reach, sit-to-stand, and one-legged standing. Therapeutic training for 6 months included dynamic ball exercises and treadmill walking with a 2-3% positive inclination. Participants in the program showed little to no improvement in terms of their static and dynamic balance compared to their initial values. Thus, only 2 of the tests showed statistical significance. Lack of improvement was noted in both postural and balance control in adults with mild ID as a result of 6 months of intervention by means of ball exercise and treadmill training.
Factors associated with delayed diagnosis of mood and/or anxiety disorders
Ricky, Cheung; Siobhan, O’Donnell; Nawaf, Madi; Elliot M., Goldner
2017-01-01
Abstract Introduction: This study examined the association between time to diagnosis and sociodemographic and clinical characteristics as well as time to diagnosis and physical and mental health status, among Canadian adults with a self-reported mood and/or anxiety disorder diagnosis. Methods: We used data from the 2014 Survey on Living with Chronic Diseases in Canada—Mood and Anxiety Disorders Component. The study sample (n=3212) was divided into three time to diagnosis subgroups: long (> 5 years), moderate (1–5 years) and short (< 1 year). We performed descriptive and multinomial multivariate logistic regression analyses. Estimates were weighted to represent the Canadian adult household population living in the 10 provinces with diagnosed mood and/or anxiety disorders. Results: The majority (61.6%) of Canadians with a mood and/or anxiety disorder diagnosis reported having received their diagnosis more than one year after symptom onset (30.0% reported a moderate delay and 31.6% a long delay). Upon controlling for individual characteristics, we found significant associations between a moderate delay and having no or few physical comorbidities; a long delay and older age; and both moderate and long delays and early age of symptom onset. In addition, a long delay was significantly associated with “poor” or “fair” perceived mental health and the greatest number of activity limitations. Conclusion: These findings affirm that a long delay in diagnosis is associated with negative health outcomes among Canadian adults with mood and/or anxiety disorders. Time to diagnosis is particularly suboptimal among older adults and people with early symptom onset. Tailored strategies to facilitate an early diagnosis for those at greatest risk of a delayed diagnosis, especially for those with early symptom onset, are needed. PMID:28493658
Exercise-driven metabolic pathways in healthy cartilage.
Blazek, A D; Nam, J; Gupta, R; Pradhan, M; Perera, P; Weisleder, N L; Hewett, T E; Chaudhari, A M; Lee, B S; Leblebicioglu, B; Butterfield, T A; Agarwal, S
2016-07-01
Exercise is vital for maintaining cartilage integrity in healthy joints. Here we examined the exercise-driven transcriptional regulation of genes in healthy rat articular cartilage to dissect the metabolic pathways responsible for the potential benefits of exercise. Transcriptome-wide gene expression in the articular cartilage of healthy Sprague-Dawley female rats exercised daily (low intensity treadmill walking) for 2, 5, or 15 days was compared to that of non-exercised rats, using Affymetrix GeneChip arrays. Database for Annotation, Visualization and Integrated Discovery (DAVID) was used for Gene Ontology (GO)-term enrichment and Functional Annotation analysis of differentially expressed genes (DEGs). Kyoto Encyclopedia of Genes and Genome (KEGG) pathway mapper was used to identify the metabolic pathways regulated by exercise. Microarray analysis revealed that exercise-induced 644 DEGs in healthy articular cartilage. The DAVID bioinformatics tool demonstrated high prevalence of functional annotation clusters with greater enrichment scores and GO-terms associated with extracellular matrix (ECM) biosynthesis/remodeling and inflammation/immune response. The KEGG database revealed that exercise regulates 147 metabolic pathways representing molecular interaction networks for Metabolism, Genetic Information Processing, Environmental Information Processing, Cellular Processes, Organismal Systems, and Diseases. These pathways collectively supported the complex regulation of the beneficial effects of exercise on the cartilage. Overall, the findings highlight that exercise is a robust transcriptional regulator of a wide array of metabolic pathways in healthy cartilage. The major actions of exercise involve ECM biosynthesis/cartilage strengthening and attenuation of inflammatory pathways to provide prophylaxis against onset of arthritic diseases in healthy cartilage. Copyright © 2016 Osteoarthritis Research Society International. Published by Elsevier Ltd. All rights reserved.
Delay of constant light-induced persistent vaginal estrus by 24-hour time cues in rats.
Weber, A L; Adler, N T
1979-04-20
The normal ovarian cycle of female rats is typically replaced by persistent estrus when these animals are housed under constant light. Evidence presented here shows that the maintenance of periodicity in the environment can at least delay (if not prevent) the photic induction of persistent vaginal estrus. Female rats in constant light were exposed to vaginal smearing at random times or at the same time every day. In another experiment, female rats were exposed to either constant bright light, constant dim light, or a 24-hour photic cycle of bright and dim light. The onset of persistent vaginal estrus was delayed in rats exposed to 24-hour time cues even though the light intensities were the same as or greater than those for the aperiodic control groups. The results suggest that the absence of 24-hour time cues in constant light contributes to the induction of persistent estrus.
The onset of visual experience gates auditory cortex critical periods
Mowery, Todd M.; Kotak, Vibhakar C.; Sanes, Dan H.
2016-01-01
Sensory systems influence one another during development and deprivation can lead to cross-modal plasticity. As auditory function begins before vision, we investigate the effect of manipulating visual experience during auditory cortex critical periods (CPs) by assessing the influence of early, normal and delayed eyelid opening on hearing loss-induced changes to membrane and inhibitory synaptic properties. Early eyelid opening closes the auditory cortex CPs precociously and dark rearing prevents this effect. In contrast, delayed eyelid opening extends the auditory cortex CPs by several additional days. The CP for recovery from hearing loss is also closed prematurely by early eyelid opening and extended by delayed eyelid opening. Furthermore, when coupled with transient hearing loss that animals normally fully recover from, very early visual experience leads to inhibitory deficits that persist into adulthood. Finally, we demonstrate a functional projection from the visual to auditory cortex that could mediate these effects. PMID:26786281
Suelves, Nuria; Miguez, Andrés; López-Benito, Saray; Barriga, Gerardo García-Díaz; Giralt, Albert; Alvarez-Periel, Elena; Arévalo, Juan Carlos; Alberch, Jordi; Ginés, Silvia; Brito, Verónica
2018-05-27
Deficits in striatal brain-derived neurotrophic factor (BDNF) delivery and/or BDNF/tropomyosin receptor kinase B (TrkB) signaling may contribute to neurotrophic support reduction and selective early degeneration of striatal medium spiny neurons in Huntington's disease (HD). Furthermore, we and others have demonstrated that TrkB/p75 NTR imbalance in vitro increases the vulnerability of striatal neurons to excitotoxic insults and induces corticostriatal synaptic alterations. We have now expanded these studies by analyzing the consequences of BDNF/TrkB/p75 NTR imbalance in the onset of motor behavior and striatal neuropathology in HD mice. Our findings demonstrate for the first time that the onset of motor coordination abnormalities, in a full-length knock-in HD mouse model (KI), correlates with the reduction of BDNF and TrkB levels, along with an increase in p75 NTR expression. Genetic normalization of p75 NTR expression in KI mutant mice delayed the onset of motor deficits and striatal neuropathology, as shown by restored levels of striatal-enriched proteins and dendritic spine density and reduced huntingtin aggregation. We found that the BDNF/TrkB/p75 NTR imbalance led to abnormal BDNF signaling, manifested as a diminished activation of TrkB-phospholipase C-gamma pathway but upregulation of c-Jun kinase pathway. Moreover, we confirmed the contribution of the proper balance of BDNF/TrkB/p75 NTR on HD pathology by a pharmacological approach using fingolimod. We observed that chronic infusion of fingolimod normalizes p75 NTR levels, which is likely to improve motor coordination and striatal neuropathology in HD transgenic mice. We conclude that downregulation of p75 NTR expression can delay disease progression suggesting that therapeutic approaches aimed to restore the balance between BDNF, TrkB, and p75 NTR could be promising to prevent motor deficits in HD.
Observation of Long Ionospheric Recoveries from Lightning-induced Electron Precipitation Events
NASA Astrophysics Data System (ADS)
Mohammadpour Salut, M.; Cohen, M.
2015-12-01
Lightning strokes induces lower ionospheric nighttime disturbances which can be detected through Very Low Frequency (VLF) remote sensing via at least two means: (1) direct heating and ionization, known as an Early event, and (2) triggered precipitation of energetic electrons from the radiation belts, known as Lightning-induced Electron Precipitation (LEP). For each, the ionospheric recover time is typically a few minutes or less. A small class of Early events have been identified as having unusually long ionospheric recoveries (10s of minutes), with the underlying mechanism still in question. Our study shows for the first time that some LEP events also demonstrate unusually long recovery. The VLF events were detected by visual inspection of the recorded data in both the North-South and East-West magnetic fields. Data from the National Lightning Detection Network (NLDN) are used to determine the location and peak current of the lightning responsible for each lightning-associated VLF perturbation. LEP or Early VLF events are determined by measuring the time delay between the causative lightning discharges and the onset of all lightning-associated perturbations. LEP events typically possess an onset delay greater than ~ 200 msec following the causative lightning discharges, while the onset of Early VLF events is time-aligned (<20 msec) with the lightning return stroke. Nonducted LEP events are distinguished from ducted events based on the location of the causative lightning relative to the precipitation region. From 15 March to 20 April and 15 October to 15 November 2011, a total of 385 LEP events observed at Indiana, Montana, Colorado and Oklahoma VLF sites, on the NAA, NLK and NML transmitter signals. 46 of these events exhibited a long recovery. It has been found that the occurrence rate of ducted long recovery LEP events is higher than nonducted. Of the 46 long recovery LEP events, 33 events were induced by ducted whistlers, and 13 events were associated with nonducted obliquely propagating whistler waves. The occurrence of high peak current lightning strokes is a prerequisite for long recovery LEP events.
Substance p regulates puberty onset and fertility in the female mouse.
Simavli, Serap; Thompson, Iain R; Maguire, Caroline A; Gill, John C; Carroll, Rona S; Wolfe, Andrew; Kaiser, Ursula B; Navarro, Víctor M
2015-06-01
Puberty is a tightly regulated process that leads to reproductive capacity. Kiss1 neurons are crucial in this process by stimulating GnRH, yet how Kiss1 neurons are regulated remains unknown. Substance P (SP), an important neuropeptide in pain perception, induces gonadotropin release in adult mice in a kisspeptin-dependent manner. Here, we assessed whether SP, through binding to its receptor NK1R (neurokinin 1 receptor), participates in the timing of puberty onset and fertility in the mouse. We observed that 1) selective NK1R agonists induce gonadotropin release in prepubertal females; 2) the expression of Tac1 (encoding SP) and Tacr1 (NK1R) in the arcuate nucleus is maximal before puberty, suggesting increased SP tone; 3) repeated exposure to NK1R agonists prepubertally advances puberty onset; and 4) female Tac1(-/-) mice display delayed puberty; moreover, 5) SP deficiency leads to subfertility in females, showing fewer corpora lutea and antral follicles and leading to decreased litter size. Thus, our findings support a role for SP in the stimulation of gonadotropins before puberty, acting via Kiss1 neurons to stimulate GnRH release, and its involvement in the attainment of full reproductive capabilities in female mice.
Imtiyaz, Shagufta; Veqar, Zubia; Shareef, M Y
2014-01-01
To compare the effects of vibration therapy and massage in prevention of DOMS. Pre-test and Post-test Control-Group Design was used, 45 healthy female non athletic Subjects were recruited and randomly distributed to the three groups (15 subject in each group). After the subject's initial status was measured experimental groups received vibration therapy (50 Hz vibration for five minutes) or massage therapy (15 minutes) intervention and control group received no treatment, just prior to the eccentric exercise. Subjects were undergoing the following measurements to evaluate the changes in the muscle condition: muscle soreness (pain perception), Range of Motion (ROM), Maximum Isometric Force (MIF), Repetition maximum (RM), Lactate dehydrogenase (LDH) and Cretain Kinase (CK) level. All the parameters except LDH, CK and 1RM were measured before, immediately post intervention, immediately post exercise, 24 hours post exercise, 48 hours post exercise and 72 hours post exercise. LDH, CK and 1 RM were measured before and 48 hours post exercise. Muscle soreness was reported to be significantly less for experimental (vibration and massage) group (p=0.000) as compared to control group at 24, 48, and 72 hours of post-exercise. Experimental and control group did not show any significant difference in MIF immediate (p=0.2898), 24 hours (p=0.4173), 48 hours (p=0.752) and 72 hours (p=0.5297) of post-exercise. Range of motion demonstrated significant recovery in experimental groups in 48 hours (p=0.0016) and 72 hours (p=0.0463). Massage therapy showed significant recovery in 1RM (p=0.000) compared to control group and vibration therapy shows significantly less LDH level (p=0.000) 48 hours of post exercise compare to control group. CK at 48 hours of post exercise in vibration group (p=0.000) and massage group showed (p=0.002) significant difference as compared to control group. Vibration therapy and massage are equally effective in prevention of DOMS. Massage is effective in restoration of concentric strength (1 RM). Yet vibration therapy shows clinically early reduction of pain and is effective in decreasing the level of LDH in 48 hours post exercise periods.
Kulkarni, S K; Mehta, A K; Kunchandy, J
1986-02-01
Clonidine (0.1-1.0 mg/kg, i.p.) exhibited anti-inflammatory activity in carrageenan-, formalin-, 5-HT- and histamine-induced paw oedema in rats. Similarly, other two alpha 2-adrenoceptor agonists, guanfacine and B-HT 920, also displayed an anti-inflammatory action in these models. The anti-inflammatory effect of all the three alpha 2-adrenoceptor agonists was reversed by yohimbine. However, prazosin failed to block the anti-inflammatory effect of clonidine. Intracerebroventricularly administered clonidine had a delayed onset of anti-inflammatory action, starting only from 60 min post carrageenan administration. This was in contrast to the systemically administered clonidine which was effective against both phases of carrageenan-induced oedema. On the other hand, irrespective of the route of administration, i.e. peripheral or central, guanfacine and B-HT 920 were effective against the early as well as against the delayed phases of the inflammatory reaction. The studies suggest that it is not the imidazoline moiety but the activation of alpha 2-adrenoceptors which is essential for the anti-inflammatory action of these agents.
Late gestational exposure to the fungicide prochloraz delays the onset of parturition and causes reproductive malformations in male rat offspring.
Nigel C. Noriega, Joseph Ostby, Christy Lambright, Vickie S. Wilson, and L. Earl Gray Jr.,
Prochloraz (PZ) is an imidazol...
Precursors to speech in infancy: the prediction of speech and language disorders.
Oller, D K; Eilers, R E; Neal, A R; Schwartz, H K
1999-01-01
During the canonical stage of infant babbling, infants produce well-formed syllables, often in reduplicated sequences such as "bababa." Although nearly all infants with normal hearing begin the canonical stage by 10 months of age, a few are delayed, and these infants may be of special interest. Recent studies indicate that late onset of canonical babbling may be a predictor of disorders. A simple screening procedure that focuses on canonical babbling was used to evaluate over 3400 infants at risk who were about 10 months of age. Among infants who showed late onset of canonical babbling, fewer than half had been previously diagnosed as having a significant medical problem that might have accounted for the delay. A follow-up study indicated that infants with delayed canonical babbling had smaller production vocabularies at 18, 24, and 30 months than did infants in the control group. The results suggest that late onset of canonical babbling, a factor that can be monitored effectively through an interview with a parent, can predict delay in the onset of speech production.
Delayed-onset and recurrent limb weakness associated with West Nile virus infection.
Sejvar, James J; Davis, Larry E; Szabados, Erica; Jackson, Alan C
2010-02-01
Human neurologic illness following infection with West Nile virus (WNV) may include meningitis, encephalitis, and acute flaccid paralysis (AFP). Most WNV-associated AFP is due to involvement of the spinal motor neurons producing an anterior (polio)myelitis. WNV poliomyelitis is typically characterized by acute and rapidly progressing limb weakness occurring early in the course of illness, which is followed by death or clinical plateauing with subsequent improvement to varying degrees. We describe four cases of WNV poliomyelitis in which the limb weakness was characterized by an atypical temporal pattern, including one case with onset several weeks after illness onset, and three cases developing relapsing or recurrent limb weakness following a period of clinical plateauing or improvement. Delayed onset or recurrent features may be due to persistence of viral infection or delayed neuroinvasion with delayed injury by excitotoxic or other mechanisms, by immune-mediated mechanisms, or a combination thereof. Further clinical and pathogenesis studies are needed to better understand the mechanisms for these phenomena. Clinicians should be aware of these clinical patterns in patients with WNV poliomyelitis.
ERIC Educational Resources Information Center
Geisert, Rodney D.; Smith, Michael F.; Schmelzle, Amanda L.; Green, Jonathan A.
2018-01-01
In this teaching laboratory, the students are directed in an exercise that involves designing and performing an experiment to determine estrogen's role in regulating delayed implantation (diapause) in female rats. To encourage active participation by the students, a discussion question is provided before the laboratory exercise in which each…
Pump-probe imaging of laser-induced periodic surface structures after ultrafast irradiation of Si
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, Ryan D.; Torralva, Ben; Adams, David P.
2013-09-30
Ultrafast pump-probe microscopy has been used to investigate laser-induced periodic surface structure (LIPSS) formation on polished Si surfaces. A crater forms on the surface after irradiation by a 150 fs laser pulse, and a second, subsequent pulse forms LIPSS within the crater. Sequentially delayed images show that LIPSS with a periodicity slightly less than the fundamental laser wavelength of 780 nm appear on Si surfaces ∼50 ps after arrival of the second pump laser pulse, well after the onset of melting. LIPSS are observed on the same timescale as material removal, suggesting that their formation involves material ejection.
Rastle, Kathleen; Croot, Karen P; Harrington, Jonathan M; Coltheart, Max
2005-10-01
The research described in this article had 2 aims: to permit greater precision in the conduct of naming experiments and to contribute to a characterization of the motor execution stage of speech production. The authors report an exhaustive inventory of consonantal and postconsonantal influences on delayed naming latency and onset acoustic duration, derived from a hand-labeled corpus of single-syllable consonant-vowel utterances. Five talkers produced 6 repetitions each of a set of 168 prepared monosyllables, a set that comprised each of the consonantal onsets of English in 3 vowel contexts. Strong and significant effects associated with phonetic characteristics of initial and noninitial phonemes were observed on both delayed naming latency and onset acoustic duration. Results are discussed in terms of the biomechanical properties of the articulatory system that may give rise to these effects and in terms of their methodological implications for naming experiments.
LIGHT EXPOSURE AMONG ADOLESCENTS WITH DELAYED SLEEP PHASE DISORDER: A PROSPECTIVE COHORT STUDY
Auger, R. Robert; Burgess, Helen J.; Dierkhising, Ross A.; Sharma, Ruchi G.; Slocumb, Nancy L.
2012-01-01
Our study objective was to compare light exposure and sleep parameters between adolescents with delayed sleep phase disorder (n=16, 15.3 ± 1.8 years) and unaffected controls (n=22, 13.7 ± 2.4 years) using a prospective cohort design. Participants wore wrist actigraphs with photosensors for 14 days. Mean hourly lux levels from 20:00-05:00 h and 05:00-14:00 h were examined, in addition to the 9-hour intervals prior to sleep onset and after sleep offset. Sleep parameters were compared separately, and were also included as covariates within models that analyzed associations with specified light intervals. Additional covariates included group and school night status. Adolescent subjects with delayed sleep phase disorder received more evening (p<0.02, 22:00-02:00 h) and less morning light (p<0.05, 08:00-09:00 h and 10:00-12:00 h) than controls, but had less pre-sleep exposure with adjustments for the time of sleep onset (p<0.03, fifth-seventh hours prior to onset hour). No differences were identified with respect to the sleep offset interval. Increased total sleep time and later sleep offset times were associated with decreased evening (p<0.001 and p=0.02, respectively) and morning (p=0.01 and p<0.001, respectively) exposure, and later sleep onset times were associated with increased evening exposure (p<0.001). Increased total sleep time also correlated with increased exposure during the 9 hours before sleep-onset (p=0.01), and a later sleep onset time corresponded with decreased exposure during the same interval (p<0.001). Outcomes persisted regardless of school night status. In conclusion, light exposure interpretation requires adjustments for sleep timing among adolescents with delayed sleep phase disorder. Pre- and post-sleep exposure do not appear to contribute directly to phase delays. Sensitivity to morning light may be reduced among adolescents with delayed sleep phase disorder. PMID:22080736
Lateralization of noise-burst trains based on onset and ongoing interaural delays.
Freyman, Richard L; Balakrishnan, Uma; Zurek, Patrick M
2010-07-01
The lateralization of 250-ms trains of brief noise bursts was measured using an acoustic pointing technique. Stimuli were designed to assess the contribution of the interaural time delay (ITD) of the onset binaural burst relative to that of the ITDs in the ongoing part of the train. Lateralization was measured by listeners' adjustments of the ITD of a pointer stimulus, a 50-ms burst of noise, to match the lateral position of the target train. Results confirmed previous reports of lateralization dominance by the onset burst under conditions in which the train is composed of frozen tokens and the ongoing part contains multiple ambiguous interaural delays. In contrast, lateralization of ongoing trains in which fresh noise tokens were used for each set of two alternating (left-leading/right-leading) binaural pairs followed the ITD of the first pair in each set, regardless of the ITD of the onset burst of the entire stimulus and even when the onset burst was removed by gradual gating. This clear lateralization of a long-duration stimulus with ambiguous interaural delay cues suggests precedence mechanisms that involve not only the interaural cues at the beginning of a sound, but also the pattern of cues within an ongoing sound.
Setting the main circadian clock of a diurnal mammal by hypocaloric feeding
Mendoza, Jorge; Gourmelen, Sylviane; Dumont, Stephanie; Sage-Ciocca, Dominique; Pévet, Paul; Challet, Etienne
2012-01-01
Caloric restriction attenuates the onset of a number of pathologies related to ageing. In mammals, circadian rhythms, controlled by the hypothalamic suprachiasmatic (SCN) clock, are altered with ageing. Although light is the main synchronizer for the clock, a daily hypocaloric feeding (HF) may also modulate the SCN activity in nocturnal rodents. Here we report that a HF also affects behavioural, physiological and molecular circadian rhythms of the diurnal rodent Arvicanthis ansorgei. Under constant darkness HF, but not normocaloric feeding (NF), entrains circadian behaviour. Under a light–dark cycle, HF at midnight led to phase delays of the rhythms of locomotor activity and plasma corticosterone. Furthermore, Per2 and vasopressin gene oscillations in the SCN were phase delayed in HF Arvicanthis compared with animals fed ad libitum. Moreover, light-induced expression of Per genes in the SCN was modified in HF Arvicanthis, despite a non-significant effect on light-induced behavioural phase delays. Together, our data show that HF affects the circadian system of the diurnal rodent Arvicanthis ansorgei differentially from nocturnal rodents. The Arvicanthis model has relevance for the potential use of HF to manipulate circadian rhythms in diurnal species including humans. PMID:22570380
Ikegami, Daisuke; Hosono, Noboru; Mukai, Yoshihiro; Tateishi, Kosuke; Fuji, Takeshi
2017-08-01
For patients diagnosed with lumbar central canal stenosis with asymptomatic foraminal stenosis (FS), surgeons occasionally only decompress central stenosis and preserve asymptomatic FS. These surgeries have the potential risk of converting preoperative asymptomatic FS into symptomatic FS postoperatively by accelerating spinal degeneration, which requires reoperation. However, little is known about delayed-onset symptomatic FS postoperatively. This study aimed to evaluate the rate of reoperation for delayed-onset symptomatic FS after lumbar central canal decompression in patients with preoperative asymptomatic FS, and determine the predictive risk factors of those reoperations. This study is a retrospective cohort study. Two hundred eight consecutive patients undergoing posterior central decompression for lumbar canal stenosis between January 2009 and June 2014 were included in this study. The number of patients who had preoperative FS and the reoperation rate for delayed-onset symptomatic FS at the index levels were the outcome measures. Patients were divided into two groups with and without preoperative asymptomatic FS at the decompressed levels. The baseline characteristics and revision rates for delayed-onset symptomatic FS were compared between the two groups. Predictive risk factors for such reoperations were determined using multivariate logistic regression and receiver operating characteristics analyses. Preoperatively, 118 patients (56.7%) had asymptomatic FS. Of those, 18 patients (15.3%) underwent reoperation for delayed-onset symptomatic FS at a mean of 1.9 years after the initial surgery. Posterior slip in neutral position and posterior extension-neutral translation were significant risk factors for reoperation due to FS. The optimal cutoff values of posterior slip in neutral position and posterior extension-neutral translation for predicting the occurrence of such reoperations were both 1 mm; 66.7% of patients who met both of these cutoff values had undergone reoperation. This study demonstrated that 15.3% of patients with preoperative asymptomatic FS underwent reoperation for delayed-onset symptomatic FS at the index levels at a mean of 1.9 years after central decompression, and preoperative retrolisthesis was a predictive risk factor for such a reoperation. These findings are valuable for establishing standards of appropriate treatment strategies in patients with lumbar central canal stenosis with asymptomatic FS. Copyright © 2017 Elsevier Inc. All rights reserved.
Cao, Lei; Tan, Lan; Jiang, Teng; Zhu, Xi-Chen; Yu, Jin-Tai
2015-08-01
Although most neurodegenerative diseases have been closely related to aberrant accumulation of aggregation-prone proteins in neurons, understanding their pathogenesis remains incomplete, and there is no treatment to delay the onset or slow the progression of many neurodegenerative diseases. The availability of induced pluripotent stem cells (iPSCs) in recapitulating the phenotypes of several late-onset neurodegenerative diseases marks the new era in in vitro modeling. The iPSC collection represents a unique and well-characterized resource to elucidate disease mechanisms in these diseases and provides a novel human stem cell platform for screening new candidate therapeutics. Modeling human diseases using iPSCs has created novel opportunities for both mechanistic studies as well as for the discovery of new disease therapies. In this review, we introduce iPSC-based disease modeling in neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. In addition, we discuss the implementation of iPSCs in drug discovery associated with some new techniques.
Dehydration-induced drinking in humans
NASA Technical Reports Server (NTRS)
Greenleaf, J. E.
1982-01-01
The human tendency to experience a delay in rehydration (involuntary dehydration) after fluid loss is considered. The two primary factors contributing to involuntary dehydration are probably upright posture, and extracellular fluid and electrolyte loss by sweating from exercise and heat exposure. First, as the plasma sodium and osmotic concentrations remain virtually unchanged for supine to upright postural changes, the major stimuli for drinking appear to be associated with the hypovolemia and increase in the renin-angiotension system. Second, voluntary drinking during the heat experiments was 146% greater than in cool experiments; drinking increased by 109% with prior dehydration as opposed to normal hydration conditions; and drinking was increased by 41% after exercise as compared with the resting condition. Finally, it is concluded that the rate of sweating and the rate of voluntary fluid intake are highly correlated, and that the dispogenic factors of plasma volume, osmolality, and plasma renin activity are unrelated to sweat rate, but are likely to induce drinking in humans.
Chen, Li-Jung; Fox, Kenneth R; Ku, Po-Wen; Chang, Yi-Wen
2016-08-01
Exercise has been found to be associated with improved sleep quality. However, most of the evidence is based on resistance exercise, walking, or gym-based aerobic activity. This study aimed to examine the effects of an 8-week aquatic exercise program on objectively measured sleep parameters among older adults with mild sleep impairment. A total of 67 eligible older adults with sleep impairment were selected and randomized to exercise and control groups, and 63 participants completed the study. The program involved 2 × 60-min sessions of aquatic exercise for 8 weeks. Participants wore wrist actigraphs to assess seven parameters of sleep for 1 week before and after the intervention. Mixed-design analysis of variance (ANOVA) was used to assess the differences between groups in each of the sleep parameters. No significant group differences on demographic variables, life satisfaction, percentage of body fat, fitness, seated blood pressure, and any parameter of sleep were found at baseline. Significant group × time interaction effects were found in sleep onset latency, F(1,58) = 6.921, p = .011, partial eta squared = .011, and in sleep efficiency, F(1, 61) = 16.909, p < 0.001, partial eta squared = .217. The exercise group reported significantly less time on sleep onset latency (mean difference = 7.9 min) and greater sleep efficiency (mean difference = 5.9 %) than the control group at posttest. There was no significant difference between groups in change of total sleep time, wake after sleep onset, activity counts, or number and length of awakenings. An 8-week aquatic exercise has significant benefits on some sleep parameters, including less time for sleep onset latency and better sleep efficiency in older adults with mild sleep impairment.
Stroke Volume During Concomitant Apnea and Exercise: Influence of Gravity and Venous Return
NASA Astrophysics Data System (ADS)
Hoffmann, Uwe; Drager, Tobias; Steegmanns, Ansgar; Koesterer, Thomas; Linnarsson, Dag
2008-06-01
The responses of the cardiovascular system to intensive exercise (hiP) and combined stimuli by hiP and breath-hold (hiP-BH) for 20 s were examined during changing gravity (parabolic flight) and constant gravity (1g). The basic response to microgravity (μg) during low-intensity exercise was an increase in cardiac output (CO) and stroke volume (SV) as a result of augmented venous return. When onset of hiP was superimposed, the initial augmentation of CO and SV were increased further. In contrast, when BH was added, the increases of CO and SV were slowed. We propose that this was due to a transient increase of the pulmonary blood volume with the combination of μg and BH at large lung volume, creating a temporary imbalance between right ventricular input and left ventricular output. In addition, the BH- induced relative bradycardia may have contributed to a prolongation of the right-to- left indirect ventricular interdependence.
Young girl presenting with exercise-induced myoglobinuria.
Krishnaiah, Balaji; Lee, Jennifer Jheesoo; Wicklund, Matthew Paul; Kaur, Divpreet
2016-06-01
The sarcoglycanopathies are a heterogeneous group of autosomal recessive limb-girdle muscular dystrophies that cause varying degrees of progressive proximal muscle weakness. We describe the case of a Caucasian girl who presented with exercise intolerance, myalgia, and dark urine. Onset of symptoms was at age 4, and she had myalgia with physical activity throughout childhood. Creatine kinase levels were as high as 18,000. Immunostaining of a muscle biopsy showed mildly diminished alpha sarcoglycan staining, and SGCA gene sequencing revealed n.C229T; p.Arg77Cys (R77C) and n.C850T; p.Arg284Cys (R284C), which is associated with alpha sarcoglycanopathy. This patient presented with exercise intolerance, myoglobinuria, and almost normal muscle strength into adolescence, which is uncommon in sarcoglycanopathies. This uncommon presentation should be kept in mind, so that early recognition and intervention may prevent future comorbidities and help preserve the quality of life. Muscle Nerve 54: 161-164, 2016. © 2016 Wiley Periodicals, Inc.
Mela, Virginia; Jimenez, Sara; Freire-Regatillo, Alejandra; Barrios, Vicente; Marco, Eva-María; Lopez-Rodriguez, Ana-Belén; Argente, Jesús; Viveros, María-Paz; Chowen, Julie A
2016-12-01
The neonatal leptin surge, occurring from postnatal day (PND) 5 to 13 and peaking at PND9 in rodents, is important for the development of neuroendocrine circuits involved in metabolic control and reproductive function. We previously demonstrated that treatment with a leptin antagonist from PND 5 to 9, coincident with peak leptin levels in the neonatal surge, modified trophic factors and markers of cell turnover and neuronal maturation in the hypothalamus of peri-pubertal rats. The kisspeptin system and metabolic neuropeptide and hormone levels were also modified. Here our aim was to investigate if the timing of pubertal onset is altered by neonatal leptin antagonism and if the previously observed peripubertal modifications in hormones and neuropeptides persist into adulthood and affect male sexual behavior. To this end, male Wistar rats were treated with a pegylated super leptin antagonist (5mg/kg, s.c.) from PND 5 to 9 and killed at PND102-103. The appearance of external signs of pubertal onset was delayed. Hypothalamic kiss1 mRNA levels were decreased in adult animals, but sexual behavior was not significantly modified. Although there was no effect on body weight or food intake, circulating leptin, insulin and triglyceride levels were increased, while hypothalamic leptin receptor, POMC and AgRP mRNA levels were decreased. In conclusion, alteration of the neonatal leptin surge can modify the timing of pubertal onset and have long-term effects on hypothalamic expression of reproductive and metabolic neuropeptides. Copyright © 2016 Elsevier Inc. All rights reserved.
Circadian Phase-Shifting Effects of Bright Light, Exercise, and Bright Light + Exercise
Kline, Christopher E.; Elliott, Jeffrey A.; Zielinski, Mark R.; Devlin, Tina M.; Moore, Teresa A.
2016-01-01
Limited research has compared the circadian phase-shifting effects of bright light and exercise and additive effects of these stimuli. The aim of this study was to compare the phase-delaying effects of late night bright light, late night exercise, and late evening bright light followed by early morning exercise. In a within-subjects, counterbalanced design, 6 young adults completed each of three 2.5-day protocols. Participants followed a 3-h ultra-short sleep-wake cycle, involving wakefulness in dim light for 2h, followed by attempted sleep in darkness for 1 h, repeated throughout each protocol. On night 2 of each protocol, participants received either (1) bright light alone (5,000 lux) from 2210–2340 h, (2) treadmill exercise alone from 2210–2340 h, or (3) bright light (2210–2340 h) followed by exercise from 0410–0540 h. Urine was collected every 90 min. Shifts in the 6-sulphatoxymelatonin (aMT6s) cosine acrophase from baseline to post-treatment were compared between treatments. Analyses revealed a significant additive phase-delaying effect of bright light + exercise (80.8 ± 11.6 [SD] min) compared with exercise alone (47.3 ± 21.6 min), and a similar phase delay following bright light alone (56.6 ± 15.2 min) and exercise alone administered for the same duration and at the same time of night. Thus, the data suggest that late night bright light followed by early morning exercise can have an additive circadian phase-shifting effect. PMID:27103935
Tanaka, Shinya; Masuda, Takashi; Kamada, Yumi; Hamazaki, Nobuaki; Kamiya, Kentaro; Ogura, Misao N; Maekawa, Emi; Noda, Chiharu; Yamaoka-Tojo, Minako; Ako, Junya
2018-06-01
Hypertensive patients show an excessive elevation of SBP during exercise, although optimal blood pressure (BP) control is required to prevent development of left ventricular hypertrophy (LVH). This study examined whether excessive SBP elevation during moderate exercise is associated with new-onset LVH in these patients. A total of 143 hypertensive patients without LVH whose BP had been maintained below 140/90 mmHg with antihypertensives performed cycle ergometer exercise test at moderate intensity to assess SBP elevation during exercise (ΔSBP). Left ventricular mass index (LVMI) was assessed by echocardiography once a year to identify new-onset LVH. Patients were divided into three groups according to tertiles of ΔSBP. We examined the associations between ΔSBP and new-onset LVH using the Kaplan-Meier method, log-rank test, and Cox regression analysis. The patients (100 men, 65.3 ± 9.1 years) had resting BP of 126 ± 16/75 ± 11 mmHg. New-onset LVH developed in 47 patients (32.9%) within a follow-up period of 2.5 ± 1.6 years. Higher ΔSBP was significantly associated with higher incidence of LVH (P < 0.001): 12.8, 27.1, and 58.3% in the lowest, middle, and highest tertiles, respectively. In multivariate analysis, ΔSBP was a significant independent determinant of new-onset LVH (hazard ratio for 10 mmHg increase in ΔSBP, 1.45; 95% CI 1.22-1.73; P < 0.001). In comparison with the lowest tertile, the hazard ratios of the middle and highest tertiles for incidence of LVH were 3.16 (95% CI 1.07-9.32) and 6.43 (95% CI 2.35-17.62), respectively. Excessive SBP elevation during moderate exercise can be used to identify hypertensive patients at high risk of developing LVH.
On the secular change of spring onset at Stockholm
NASA Astrophysics Data System (ADS)
Qian, Cheng; Fu, Congbin; Wu, Zhaohua; Yan, Zhongwei
2009-06-01
A newly developed method, the Ensemble Empirical Mode Decomposition, was applied to adaptively determine the timing of climatic spring onset from the daily temperature records at Stockholm during 1756-2000. Secular variations of spring onset and its relationships to the North Atlantic Oscillation (NAO) and to the temperature variability were analyzed. A clear turning point of secular trend in spring onset around 1884/1885, from delaying to advancing, was found. The delaying trend of spring onset (6.9 days/century) during 1757-1884 and the advancing one (-7 days/century) during 1885-1999 were both significant. The winter NAO indices were found to be correlated with the spring onset at Stockholm at an inter-annual timescale only for some decades, but unable to explain the change of the long-term trends. The secular change from cooling to warming around the 1880s, especially in terms of spring temperature, might have led to the secular change of spring onset.
Cold-water immersion (cryotherapy) for preventing and treating muscle soreness after exercise.
Bleakley, Chris; McDonough, Suzanne; Gardner, Evie; Baxter, G David; Hopkins, J Ty; Davison, Gareth W
2012-02-15
Many strategies are in use with the intention of preventing or minimising delayed onset muscle soreness and fatigue after exercise. Cold-water immersion, in water temperatures of less than 15°C, is currently one of the most popular interventional strategies used after exercise. To determine the effects of cold-water immersion in the management of muscle soreness after exercise. In February 2010, we searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials (The Cochrane Library (2010, Issue 1), MEDLINE, EMBASE, Cumulative Index to Nursing and Allied Health (CINAHL), British Nursing Index and archive (BNI), and the Physiotherapy Evidence Database (PEDro). We also searched the reference lists of articles, handsearched journals and conference proceedings and contacted experts.In November 2011, we updated the searches of CENTRAL (2011, Issue 4), MEDLINE (up to November Week 3 2011), EMBASE (to 2011 Week 46) and CINAHL (to 28 November 2011) to check for more recent publications. Randomised and quasi-randomised trials comparing the effect of using cold-water immersion after exercise with: passive intervention (rest/no intervention), contrast immersion, warm-water immersion, active recovery, compression, or a different duration/dosage of cold-water immersion. Primary outcomes were pain (muscle soreness) or tenderness (pain on palpation), and subjective recovery (return to previous activities without signs or symptoms). Three authors independently evaluated study quality and extracted data. Some of the data were obtained following author correspondence or extracted from graphs in the trial reports. Where possible, data were pooled using the fixed-effect model. Seventeen small trials were included, involving a total of 366 participants. Study quality was low. The temperature, duration and frequency of cold-water immersion varied between the different trials as did the exercises and settings. The majority of studies failed to report active surveillance of pre-defined adverse events.Fourteen studies compared cold-water immersion with passive intervention. Pooled results for muscle soreness showed statistically significant effects in favour of cold-water immersion after exercise at 24 hour (standardised mean difference (SMD) -0.55, 95% CI -0.84 to -0.27; 10 trials), 48 hour (SMD -0.66, 95% CI -0.97 to -0.35; 8 trials), 72 hour (SMD -0.93; 95% CI -1.36 to -0.51; 4 trials) and 96 hour (SMD -0.58; 95% CI -1.00 to -0.16; 5 trials) follow-ups. These results were heterogeneous. Exploratory subgroup analyses showed that studies using cross-over designs or running based exercises showed significantly larger effects in favour of cold-water immersion. Pooled results from two studies found cold-water immersion groups had significantly lower ratings of fatigue (MD -1.70; 95% CI -2.49 to -0.90; 10 units scale, best to worst), and potentially improved ratings of physical recovery (MD 0.97; 95% CI -0.10 to 2.05; 10 units scale, worst to best) immediately after the end of cold-water immersion.Five studies compared cold-water with contrast immersion. Pooled data for pain showed no evidence of differences between the two groups at four follow-up times (immediately, 24, 48 and 72 hours after treatment). Similar findings for pooled analyses at 24, 48 and 72 hour follow-ups applied to the four studies comparing cold-water with warm-water immersion. Single trials only compared cold-water immersion with respectively active recovery, compression and a second dose of cold-water immersion at 24 hours. There was some evidence that cold-water immersion reduces delayed onset muscle soreness after exercise compared with passive interventions involving rest or no intervention. There was insufficient evidence to conclude on other outcomes or for other comparisons. The majority of trials did not undertake active surveillance of pre-defined adverse events. High quality, well reported research in this area is required.
Leptin Signaling in AgRP Neurons Modulates Puberty Onset and Adult Fertility in Mice.
Egan, Olivia K; Inglis, Megan A; Anderson, Greg M
2017-04-05
The hormone leptin indirectly communicates metabolic information to brain neurons that control reproduction, using GABAergic circuitry. Agouti-related peptide (AgRP) neurons in the arcuate nucleus are GABAergic, express leptin receptors (LepR), and are known to influence reproduction. This study tested whether leptin actions on AgRP neurons are required and sufficient for puberty onset and subsequent fertility. First, Agrp- Cre and Lepr- flox mice were used to target deletion of LepR to AgRP neurons. AgRP-LepR knock-out female mice exhibited mild obesity and adiposity as described previously, as well as a significant delay in the pubertal onset of estrous cycles compared with control animals. No significant differences in male puberty onset or adult fecundity in either sex were observed. Next, mice with a floxed polyadenylation signal causing premature transcriptional termination of the Lepr gene were crossed with AgRP-Cre mice to generate mice with AgRP neuron-specific rescue of LepR. Lepr-null control males and females were morbidly obese and exhibited delayed puberty onset, no evidence of estrous cycles, and minimal fecundity. Remarkably, AgRP-LepR rescue partially or fully restored all of these reproductive attributes to levels similar to those of LepR-intact controls despite minimal rescue of metabolic function. These results indicate that leptin signaling in AgRP neurons is sufficient for puberty onset and normal adult fecundity in both sexes when leptin signaling is absent in all other cells and that in females, the absence of AgRP neuron leptin signaling delays puberty. These actions appear to be independent of leptin's metabolic effects. SIGNIFICANCE STATEMENT Sexual maturation and fertility are dispensable at the individual level but critical for species survival. Conditions such as nutritional imbalance may therefore suppress puberty onset and fertility in an individual. In societies characterized by widespread obesity, the sensitivity of reproduction to metabolic imbalance has significant public health implications. Deficient leptin signaling attributable to diet-induced leptin resistance is associated with infertility in humans and rodents, and treatments for human infertility show a decreased success rate with increasing body mass index. Here we show that the transmission of metabolic information to the hypothalamo-pituitary-gonadal axis is mediated by leptin receptors on AgRP neurons. These results provide conclusive new insights into the mechanisms that cause infertility attributable to malnourishment. Copyright © 2017 the authors 0270-6474/17/373875-12$15.00/0.
Varga, Kata; Nagy, Péter; Arsikin Csordás, Katarina; Kovács, Attila L; Hegedűs, Krisztina; Juhász, Gábor
2016-10-06
Autophagy defects lead to the buildup of damaged proteins and organelles, reduced survival during starvation and infections, hypersensitivity to stress and toxic substances, and progressive neurodegeneration. Here we show that, surprisingly, Drosophila mutants lacking the core autophagy gene Atg16 are not only defective in autophagy but also exhibit increased resistance to the sedative effects of ethanol, unlike Atg7 or Atg3 null mutant flies. This mutant phenotype is rescued by the re-expression of Atg16 in Corazonin (Crz)-producing neurosecretory cells that are known to promote the sedation response during ethanol exposure, and RNAi knockdown of Atg16 specifically in these cells also delays the onset of ethanol-induced coma. We find that Atg16 and Crz colocalize within these neurosecretory cells, and both Crz protein and mRNA levels are decreased in Atg16 mutant flies. Thus, Atg16 promotes Crz production to ensure a proper organismal sedation response to ethanol.
NASA Astrophysics Data System (ADS)
Baum, K.; Essfeld, D.; Stegemann, J.
To investigate the effect of μg-induced peripheral extracellular fluid reductions on heart rate and blood pressure during isometric exercise, six healthy male subjects performed three calf ergometer test with different extracellular volumes of working muscles. In all tests, body positions during exercise were identical (supine with the knee joint flexed to 900). After a pre-exercise period of 25 min, during which calf volumes were manipulated, subjects had to counteract an external force of 180 N for 5 min. During the pre-exercise period three different protocols were applied. Test A: Subjects rested in the exercise position; test B: Body position was the same as in A but calf volume was increased by venous congestion (cuffs inflated to 80 mm Hg); test C: Calf volumes were decreased by a negative hydrostatic pressure (calves about 40 cm above heart level with the subjects supine). To clamp the changed calf volumes in tests B and C, cuffs were inflated to 300 mm Hg 5 min before the onset of exercise. This occlusion was maintained until termination of exercise. Compared to tests A and B, the reduced volume of test C led to significant increases in heart rate and blood pressure during exercise. Oxygen uptake did not exceed resting levels in B and C until cuffs were deflated, indicating that exclusively calf muscles contributed to the neurogenic peripheral drive. It is concluded that changes in extracellular muscle volume have to be taken into account when comparing heart rate and blood pressure during lg- and μg- exercise.
Effectiveness of Ivabradine in Treating Stable Angina Pectoris.
Ye, Liwen; Ke, Dazhi; Chen, Qingwei; Li, Guiqiong; Deng, Wei; Wu, Zhiqin
2016-04-01
Many studies show that ivabradine is effective for stable angina.This meta-analysis was performed to determine the effect of treatment duration and control group type on ivabradine efficacy in stable angina pectoris.Relevant articles in the English language in the PUBMED and EMBASE databases and related websites were identified by using the search terms "ivabradine," "angina," "randomized controlled trials," and "Iva." The final search date was November 2, 2015.Articles were included if they were published randomized controlled trials that related to ivabradine treatment of stable angina pectoris.Patients with stable angina pectoris were included.The patients were classified according to treatment duration (<3 vs ≥3 months) or type of control group (placebo vs beta-receptor blocker). Angina outcomes were heart rate at rest or peak, exercise duration, and time to angina onset.Seven articles were selected. There were 3747 patients: 2100 and 1647 were in the ivabradine and control groups, respectively. The ivabradine group had significantly longer exercise duration when they had been treated for at least 3 months, but not when treatment time was less than 3 months. Ivabradine significantly improved time to angina onset regardless of treatment duration. Control group type did not influence the effect of exercise duration (significant) or time to angina onset (significant).Compared with beta-blocker and placebo, ivabradine improved exercise duration and time to onset of angina in patients with stable angina. However, its ability to improve exercise duration only became significant after at least 3 months of treatment.
Kuwada, S; Yin, T C
1983-10-01
Detailed, quantitative studies were made of the interaural phase sensitivity of 197 neurons with low best frequency in the inferior colliculus (IC) of the barbiturate-anesthetized cat. We analyzed the responses of single cells to interaural delays in which tone bursts were delivered to the two ears via sealed earphones and the onset of the tone to one ear with respect to the other was varied. For most (80%) cells the discharge rate is a cyclic function of interaural delay at a period corresponding to that of the stimulating frequency. The cyclic nature of the interaural delay curve indicates that these cells are sensitive to the interaural phase difference. These cells are distributed throughout the low-frequency zone of the IC, but they are less numerous in the medial and caudal zones. Cells with a wide variety of response patterns will exhibit interaural phase sensitivities at stimulating frequencies up to 3,100 Hz, although above 2,500 Hz the number of such cells decrease markedly. Using dichotic stimuli we could study the cell's sensitivity to the onset delay and interaural phase independently. The large majority of IC cells respond only to changes in interaural phase, with no sensitivity to the onset delay. However, a small number (7%) of cells exhibit a sensitivity to the onset delay as well as to the interaural phase disparity, and most of these cells show an onset response. The effects of changing the stimulus intensity equally to both ears or of changing the interaural intensity difference on the mean interaural phase were studied. While some neurons are not affected by level changes, others exhibit systematic phase shifts for both average and interaural intensity variations, and there is a continuous distribution of sensitivities between these extremes. A few cells also showed systematic changes in the shape of the interaural delay curves as a function of interaural intensity difference, especially at very long delays. These shifts can be interpreted as a form of time-intensity trading. A few cells demonstrated orderly changes in the interaural delay curve as the repetition rate of the stimulus was varied. Some of these changes are consonant with an inhibitory effect that occurs at stimulus offset. The responses of the neurons show a strong bias for stimuli that would originate from he contralateral sound field; 77% of the responses display mean interaural phase angles that are less than 0.5 of a cycle, which are delays to the ipsilateral tone.(ABSTRACT TRUNCATED AT 400 WORDS)
Effects of exercise intensity and duration on nocturnal heart rate variability and sleep quality.
Myllymäki, Tero; Rusko, Heikki; Syväoja, Heidi; Juuti, Tanja; Kinnunen, Marja-Liisa; Kyröläinen, Heikki
2012-03-01
Acute physical exercise may affect cardiac autonomic modulation hours or even days during the recovery phase. Although sleep is an essential recovery period, the information on nocturnal autonomic modulation indicated by heart rate variability (HRV) after different exercises is mostly lacking. Therefore, this study investigated the effects of exercise intensity and duration on nocturnal HR, HRV, HR, and HRV-based relaxation, as well as on actigraphic and subjective sleep quality. Fourteen healthy male subjects (age 36 ± 4 years, maximal oxygen uptake 49 ± 4 ml/kg/min) performed five different running exercises on separate occasions starting at 6 p.m. with HR guidance at home. The effect of intensity was studied with 30 min of exercises at intensities corresponding to HR level at 45% (easy), 60% (moderate) and 75% (vigorous) of their maximal oxygen uptake. The effect of duration was studied with 30, 60, and 90 min of moderate exercises. Increased exercise intensity elevated nocturnal HR compared to control day (p < 0.001), but it did not affect nocturnal HRV. Nocturnal HR was greater after the day with 90- than 30- or 60-min exercises (p < 0.01) or control day (p < 0.001). Nocturnal HRV was lower after the 90-min exercise day compared to control day (p < 0.01). Neither exercise intensity nor duration had any impact on actigraphic or subjective sleep quality. The results suggest that increased exercise intensity and/or duration cause delayed recovery of nocturnal cardiac autonomic modulation, although long exercise duration was needed to induce changes in nocturnal HRV. Increased exercise intensity or duration does not seem to disrupt sleep quality.
Short-term and long-term memory in early temporal lobe dysfunction.
Hershey, T; Craft, S; Glauser, T A; Hale, S
1998-01-01
Following medial temporal damage, mature humans are impaired in retaining new information over long delays but not short delays. The question of whether a similar dissociation occurs in children was addressed by testing children (ages 7-16) with unilateral temporal lobe epilepsy (TLE) and controls on short- and long-term memory tasks, including a spatial delayed response task (SDR). Early-onset TLE did not affect performance on short delays on SDR, but it did impair performance at the longest delay (60 s), similar to adults with unilateral medial temporal damage. In addition, early-onset TLE affected performance on pattern recall, spatial span, and verbal span with rehearsal interference. No differences were found on story recall or on a response inhibition task.
Spring, Jérôme Nicolas; Place, Nicolas; Borrani, Fabio; Kayser, Bengt; Barral, Jérôme
2016-01-01
Exercise-induced fatigue affects the motor control and the ability to generate a given force or power. Surface electroencephalography allows researchers to investigate movement-related cortical potentials (MRCP), which reflect preparatory brain activity 1.5 s before movement onset. Although the MRCP amplitude appears to increase after repetitive single-joint contractions, the effects of large-muscle group dynamic exercise on such pre-motor potential remain to be described. Sixteen volunteers exercised 30 min at 60% of the maximal aerobic power on a cycle ergometer, followed by a 10-km all-out time trial. Before and after each of these tasks, knee extensor neuromuscular function was investigated using maximal voluntary contractions (MVC) combined with electrical stimulations of the femoral nerve. MRCP was recorded during 60 knee extensions after each neuromuscular sequence. The exercise resulted in a significant decrease in the knee extensor MVC force after the 30-min exercise (−10 ± 8%) and the time trial (−21 ± 9%). The voluntary activation level (VAL; −6 ± 8 and −12 ± 10%), peak twitch (Pt; −21 ± 16 and −32 ± 17%), and paired stimuli (P100 Hz; −7 ± 11 and −12 ± 13%) were also significantly reduced after the 30-min exercise and the time trial. The first exercise was followed by a decrease in the MRCP, mainly above the mean activity measured at electrodes FC1-FC2, whereas the reduction observed after the time trial was related to the FC1-FC2 and C2 electrodes. After both exercises, the reduction in the late MRCP component above FC1-FC2 was significantly correlated with the reduction in P100 Hz (r = 0.61), and the reduction in the same component above C2 was significantly correlated with the reduction in VAL (r = 0.64). In conclusion, large-muscle group exercise induced a reduction in pre-motor potential, which was related to muscle alterations and resulted in the inability to produce a maximal voluntary contraction. PMID:27313522
Fukuoka, Yoshiyuki; Poole, David C; Barstow, Thomas J; Kondo, Narihiko; Nishiwaki, Masato; Okushima, Dai; Koga, Shunsaku
2015-01-01
Novel time-resolved near-infrared spectroscopy (TR-NIRS), with adipose tissue thickness correction, was used to test the hypotheses that heavy priming exercise reduces the V̇O2 slow component (V̇O2SC) (1) by elevating microvascular [Hb] volume at multiple sites within the quadriceps femoris (2) rather than reducing the heterogeneity of muscle deoxygenation kinetics. Twelve subjects completed two 6-min bouts of heavy work rate exercise, separated by 6 min of unloaded cycling. Priming exercise induced faster overall V̇O2 kinetics consequent to a substantial reduction in the V̇O2SC (0.27 ± 0.12 vs. 0.11 ± 0.09 L·min−1, P < 0.05) with an unchanged primary V̇O2 time constant. An increased baseline for the primed bout [total (Hb + Mb)] (197.5 ± 21.6 vs. 210.7 ± 22.5 μmol L−1, P < 0.01), reflecting increased microvascular [Hb] volume, correlated significantly with the V̇O2SC reduction. At multiple sites within the quadriceps femoris, priming exercise reduced the baseline and slowed the increase in [deoxy (Hb + Mb)]. Changes in the intersite coefficient of variation in the time delay and time constant of [deoxy (Hb + Mb)] during the second bout were not correlated with the V̇O2SC reduction. These results support a mechanistic link between priming exercise-induced increase in muscle [Hb] volume and the reduced V̇O2SC that serves to speed overall V̇O2 kinetics. However, reduction in the heterogeneity of muscle deoxygenation kinetics does not appear to be an obligatory feature of the priming response. PMID:26109190
Neuroprotective effect of lithium after pilocarpine-induced status epilepticus in mice.
Hong, Namgue; Choi, Yun-Sik; Kim, Seong Yun; Kim, Hee Jung
2017-01-01
Status epilepticus is the most common serious neurological condition triggered by abnormal electrical activity, leading to severe and widespread cell loss in the brain. Lithium has been one of the main drugs used for the treatment of bipolar disorder for decades, and its anticonvulsant and neuroprotective properties have been described in several neurological disease models. However, the therapeutic mechanisms underlying lithium's actions remain poorly understood. The muscarinic receptor agonist pilocarpine is used to induce status epilepticus, which is followed by hippocampal damage. The present study was designed to investigate the effects of lithium post-treatment on seizure susceptibility and hippocampal neuropathological changes following pilocarpine-induced status epilepticus. Status epilepticus was induced by administration of pilocarpine hydrochloride (320 mg/kg, i.p.) in C57BL/6 mice at 8 weeks of age. Lithium (80 mg/kg, i.p.) was administered 15 minutes after the pilocarpine injection. After the lithium injection, status epilepticus onset time and mortality were recorded. Lithium significantly delayed the onset time of status epilepticus and reduced mortality compared to the vehicle-treated group. Moreover, lithium effectively blocked pilocarpine-induced neuronal death in the hippocampus as estimated by cresyl violet and Fluoro-Jade B staining. However, lithium did not reduce glial activation following pilocarpine-induced status epilepticus. These results suggest that lithium has a neuroprotective effect and would be useful in the treatment of neurological disorders, in particular status epilepticus.
Cano-Montoya, Johnattan; Álvarez, Cristian; Martínez, Cristian; Salas, Andrés; Sade, Farid; Ramírez-Campillo, Rodrigo
2016-09-01
Despite the evidence supporting metabolic benefits of high intensity interval exercise (HIIT), there is little information about the cardiovascular response to this type of exercise in patients with type 2 diabetes (T2D) and hypertension (HTA). To analyze the changes in heart rate at rest, at the onset and at the end of each interval of training, after twelve weeks of a HIIT program in T2D and HTA patients. Twenty-three participants with T2D and HTA (20 women) participated in a controlled HIIT program. Fourteen participants attended 90% of more session of exercise and were considered as adherent. Adherent and non-adherent participants had similar body mass index (BMI), and blood pressure. A 1x2x10 (work: rest-time: intervals) HIIT exercise protocol was used both as a test and as training method during twelve weeks. The initial and finishing heart rate (HR) of each of the ten intervals before and after the intervention were measured. After twelve weeks of HIIT intervention, adherent participants had a significant reduction in the heart rate at the onset of exercise, and during intervals 4, 5, 8 and 10. A reduction in the final heart rate was observed during intervals 8 and 10. In the same participants the greatest magnitude of reduction, at the onset or end of exercise was approximately 10 beats/min. No significant changes in BMI, resting heart rate and blood pressure were observed. A HIIT program reduces the cardiovascular effort to a given work-load and improves cardiovascular recovery after exercise.
ERIC Educational Resources Information Center
Kangas, Brian D.; Branch, Marc N.
2012-01-01
The effects of cocaine were examined under a titrating-delay matching-to-sample procedure. In this procedure, the delay between sample stimulus offset and comparison stimuli onset adjusts as a function of the subject's performance. Specifically, matches increase the delay and mismatches decrease the delay. Titrated delay values served as the…
Interleukin-6 and Delayed Onset Muscle Soreness Do Not Vary during the Menstrual Cycle
ERIC Educational Resources Information Center
Chaffin, Morgan E.; Berg, Kris E.; Meendering, Jessica R.; Llewellyn, Tamra L.; French, Jeffrey A.; Davis, Jeremy E.
2011-01-01
The purpose of this study was to determine if a difference in interleukin-6 (IL-6) and delayed onset muscles soreness (DOMS) exists in two different phases of the menstrual cycle. Nine runners performed one 75-min high-intensity interval running session during the early follicular (EF) phase and once during the midluteal (ML) phase of the…
Bilingualism, dementia, cognitive and neural reserve.
Perani, Daniela; Abutalebi, Jubin
2015-12-01
We discuss the role of bilingualism as a source of cognitive reserve and we propose the putative neural mechanisms through which lifelong bilingualism leads to a neural reserve that delays the onset of dementia. Recent findings highlight that the use of more than one language affects the human brain in terms of anatomo-structural changes. It is noteworthy that recent evidence from different places and cultures throughout the world points to a significant delay of dementia onset in bilingual/multilingual individuals. This delay has been reported not only for Alzheimer's dementia and its prodromal mild cognitive impairment phase, but also for other dementias such as vascular and fronto-temporal dementia, and was found to be independent of literacy, education and immigrant status. Lifelong bilingualism represents a powerful cognitive reserve delaying the onset of dementia by approximately 4 years. As to the causal mechanism, because speaking more than one language heavily relies upon executive control and attention, brain systems handling these functions are more developed in bilinguals resulting in increases of gray and white matter densities that may help protect from dementia onset. These neurocognitive benefits are even more prominent when second language proficiency and exposure are kept high throughout life.
Taming stochastic bifurcations in fractional-order systems via noise and delayed feedback
NASA Astrophysics Data System (ADS)
Sun, Zhongkui; Zhang, Jintian; Yang, Xiaoli; Xu, Wei
2017-08-01
The dynamics in fractional-order systems have been widely studied during the past decade due to the potential applications in new materials and anomalous diffusions, but the investigations have been so far restricted to a fractional-order system without time delay(s). In this paper, we report the first study of random responses of fractional-order system coupled with noise and delayed feedback. Stochastic averaging method has been utilized to determine the stationary probability density functions (PDFs) by means of the principle of minimum mean-square error, based on which stochastic bifurcations could be identified through recognizing the shape of the PDFs. It has been found that by changing the fractional order the shape of the PDFs can switch from unimodal distribution to bimodal one, or from bimodal distribution to unimodal one, thus announcing the onset of stochastic bifurcation. Further, we have demonstrated that by merely modulating the time delay, the feedback strengths, or the noise intensity, the shapes of PDFs can transit between a single peak and a double peak. Therefore, it provides an efficient candidate to control, say, induce or suppress, the stochastic bifurcations in fractional-order systems.
Zhou, Kai; Xie, Cuicui; Wickström, Malin; Dolga, Amalia M; Zhang, Yaodong; Li, Tao; Xu, Yiran; Culmsee, Carsten; Kogner, Per; Zhu, Changlian; Blomgren, Klas
2017-05-23
Cranial radiotherapy in children typically causes delayed and progressive cognitive dysfunction and there is no effective preventive strategy for radiation-induced cognitive impairments. Here we show that lithium treatment reduced irradiation-induced progenitor cell death in the subgranular zone of the hippocampus, and subsequently ameliorated irradiation-reduced neurogenesis and astrogenesis in the juvenile rat brain. Irradiation-induced memory impairment, motor hyperactivity and anxiety-like behaviour were normalized by lithium treatment. Late-onset irradiation-induced hypopituitarism was prevented by lithium treatment. Additionally, lithium appeared relatively toxic to multiple cultured tumour cell lines, and did not improve viability of radiated DAOY cells in vitro. In summary, our findings demonstrate that lithium can be safely administered to prevent both short- and long-term injury to the juvenile brain caused by ionizing radiation.
Zhou, Kai; Xie, Cuicui; Wickström, Malin; Dolga, Amalia M.; Zhang, Yaodong; Li, Tao; Xu, Yiran; Culmsee, Carsten; Kogner, Per
2017-01-01
Cranial radiotherapy in children typically causes delayed and progressive cognitive dysfunction and there is no effective preventive strategy for radiation-induced cognitive impairments. Here we show that lithium treatment reduced irradiation-induced progenitor cell death in the subgranular zone of the hippocampus, and subsequently ameliorated irradiation-reduced neurogenesis and astrogenesis in the juvenile rat brain. Irradiation-induced memory impairment, motor hyperactivity and anxiety-like behaviour were normalized by lithium treatment. Late-onset irradiation-induced hypopituitarism was prevented by lithium treatment. Additionally, lithium appeared relatively toxic to multiple cultured tumour cell lines, and did not improve viability of radiated DAOY cells in vitro. In summary, our findings demonstrate that lithium can be safely administered to prevent both short- and long-term injury to the juvenile brain caused by ionizing radiation. PMID:28415806
Autonomic Recovery Is Delayed in Chinese Compared with Caucasian following Treadmill Exercise.
Sun, Peng; Yan, Huimin; Ranadive, Sushant M; Lane, Abbi D; Kappus, Rebecca M; Bunsawat, Kanokwan; Baynard, Tracy; Hu, Min; Li, Shichang; Fernhall, Bo
2016-01-01
Caucasian populations have a higher prevalence of cardiovascular disease (CVD) when compared with their Chinese counterparts and CVD is associated with autonomic function. It is unknown whether autonomic function during exercise recovery differs between Caucasians and Chinese. The present study investigated autonomic recovery following an acute bout of treadmill exercise in healthy Caucasians and Chinese. Sixty-two participants (30 Caucasian and 32 Chinese, 50% male) performed an acute bout of treadmill exercise at 70% of heart rate reserve. Heart rate variability (HRV) and baroreflex sensitivity (BRS) were obtained during 5-min epochs at pre-exercise, 30-min, and 60-min post-exercise. HRV was assessed using frequency [natural logarithm of high (LnHF) and low frequency (LnLF) powers, normalized high (nHF) and low frequency (nLF) powers, and LF/HF ratio] and time domains [Root mean square of successive differences (RMSSD), natural logarithm of RMSSD (LnRMSSD) and R-R interval (RRI)]. Spontaneous BRS included both up-up and down-down sequences. At pre-exercise, no group differences were observed for any HR, HRV and BRS parameters. During exercise recovery, significant race-by-time interactions were observed for LnHF, nHF, nLF, LF/HF, LnRMSSD, RRI, HR, and BRS (up-up). The declines in LnHF, nHF, RMSSD, RRI and BRS (up-up) and the increases in LF/HF, nLF and HR were blunted in Chinese when compared to Caucasians from pre-exercise to 30-min to 60-min post-exercise. Chinese exhibited delayed autonomic recovery following an acute bout of treadmill exercise. This delayed autonomic recovery may result from greater sympathetic dominance and extended vagal withdrawal in Chinese. Chinese Clinical Trial Register ChiCTR-IPR-15006684.
Autonomic Recovery Is Delayed in Chinese Compared with Caucasian following Treadmill Exercise
Sun, Peng; Yan, Huimin; Ranadive, Sushant M.; Lane, Abbi D.; Kappus, Rebecca M.; Bunsawat, Kanokwan; Baynard, Tracy; Hu, Min; Li, Shichang; Fernhall, Bo
2016-01-01
Caucasian populations have a higher prevalence of cardiovascular disease (CVD) when compared with their Chinese counterparts and CVD is associated with autonomic function. It is unknown whether autonomic function during exercise recovery differs between Caucasians and Chinese. The present study investigated autonomic recovery following an acute bout of treadmill exercise in healthy Caucasians and Chinese. Sixty-two participants (30 Caucasian and 32 Chinese, 50% male) performed an acute bout of treadmill exercise at 70% of heart rate reserve. Heart rate variability (HRV) and baroreflex sensitivity (BRS) were obtained during 5-min epochs at pre-exercise, 30-min, and 60-min post-exercise. HRV was assessed using frequency [natural logarithm of high (LnHF) and low frequency (LnLF) powers, normalized high (nHF) and low frequency (nLF) powers, and LF/HF ratio] and time domains [Root mean square of successive differences (RMSSD), natural logarithm of RMSSD (LnRMSSD) and R–R interval (RRI)]. Spontaneous BRS included both up-up and down-down sequences. At pre-exercise, no group differences were observed for any HR, HRV and BRS parameters. During exercise recovery, significant race-by-time interactions were observed for LnHF, nHF, nLF, LF/HF, LnRMSSD, RRI, HR, and BRS (up-up). The declines in LnHF, nHF, RMSSD, RRI and BRS (up-up) and the increases in LF/HF, nLF and HR were blunted in Chinese when compared to Caucasians from pre-exercise to 30-min to 60-min post-exercise. Chinese exhibited delayed autonomic recovery following an acute bout of treadmill exercise. This delayed autonomic recovery may result from greater sympathetic dominance and extended vagal withdrawal in Chinese. Trial Registration: Chinese Clinical Trial Register ChiCTR-IPR-15006684 PMID:26784109
Exercise training and muscle microvascular oxygenation: functional role of nitric oxide
Hirai, Daniel M.; Copp, Steven W.; Ferguson, Scott K.; Holdsworth, Clark T.; McCullough, Danielle J.; Behnke, Bradley J.; Musch, Timothy I.
2012-01-01
Exercise training induces multiple adaptations within skeletal muscle that may improve local O2 delivery-utilization matching (i.e., Po2mv). We tested the hypothesis that increased nitric oxide (NO) function is intrinsic to improved muscle Po2mv kinetics from rest to contractions after exercise training. Healthy young Sprague-Dawley rats were assigned to sedentary (n = 18) or progressive treadmill exercise training (n = 10; 5 days/wk, 6–8 wk, final workload of 60 min/day at 35 m/min, −14% grade) groups. Po2mv was measured via phosphorescence quenching in the spinotrapezius muscle at rest and during 1-Hz twitch contractions under control (Krebs-Henseleit solution), sodium nitroprusside (SNP, NO donor; 300 μM), and NG-nitro-l-arginine methyl ester (l-NAME, nonspecific NO synthase blockade; 1.5 mM) superfusion conditions. Exercise-trained rats had greater peak oxygen uptake (V̇o2peak) than their sedentary counterparts (81 ± 1 vs. 72 ± 2 ml·kg−1·min−1, respectively; P < 0.05). Exercise-trained rats had significantly slower Po2mv fall throughout contractions (τ1; time constant for the first component) during control (sedentary: 8.1 ± 0.6; trained: 15.2 ± 2.8 s). Compared with control, SNP slowed τ1 to a greater extent in sedentary rats (sedentary: 38.7 ± 5.6; trained: 26.8 ± 4.1 s; P > 0.05) whereas l-NAME abolished the differences in τ1 between sedentary and trained rats (sedentary: 12.0 ± 1.7; trained: 11.2 ± 1.4 s; P < 0.05). Our results indicate that endurance exercise training leads to greater muscle microvascular oxygenation across the metabolic transient following the onset of contractions (i.e., slower Po2mv kinetics) partly via increased NO-mediated function, which likely constitutes an important mechanism for training-induced metabolic adaptations. PMID:22678970
van Selm, M J; Gibson, W I; Travers, M J; Moseley, G L; Hince, D; Wand, B M
2018-04-20
Visualizing one's own painful body part appears to have an effect on reported pain intensity. Furthermore, it seems that manipulating the size of the viewed image can determine the direction and extent of this phenomenon. When visual distortion has been applied to clinical populations, the analgesic effects have been in opposition to those observed in some experimental pain models. To help resolve this problem, we explored the effect of visualisation and magnification of the visual image on reported pain using a delayed onset muscle soreness (DOMS) pain model. We induced DOMS in the quadriceps of 20 healthy volunteers. Forty-eight hours later, participants performed a series of painful contractions of the DOMS-affected muscle under four randomised conditions: (1) Viewing the injured thigh; (2) Viewing the contralateral thigh; (3) Viewing a neutral object; and (4) Viewing the injured thigh through magnifying glasses. For each condition, participants rated their pain intensity during a series of painful contractions. We observed that direct visualisation of the injured thigh had no effect on pain intensity when compared to viewing the contralateral thigh or neutral object. However, magnification of the DOMS-affected leg during the performance of painful contractions caused participants to report more pain than when viewing the injured thigh normally. These results further demonstrate that the effect of visualisation varies between different pain conditions. These results may have implications for the integration of visual feedback into clinical practice. We present delayed onset muscle soreness as a model for exploring visually induced analgesia. Our findings suggest that this phenomenon is expressed differently in exogenous and endogenous experimental pain models. Further exploration may offer a potential pathway for the integration of visual analgesia into the management of clinical pain. © 2018 European Pain Federation - EFIC®.
Clinical and diagnostic features of delayed hypoxic leukoencephalopathy.
Shprecher, David R; Flanigan, Kevin M; Smith, A Gordon; Smith, Shawn M; Schenkenberg, Thomas; Steffens, John
2008-01-01
Delayed hypoxic leukoencephalopathy is an underrecognized syndrome of delayed demyelination, which is important to consider when delayed onset of neuropsychiatric symptoms follows a hypoxic event. The authors describe clinical and diagnostic features of three such cases, review the pathophysiology of delayed hypoxic leukoencephalopathy, and discuss features which may help distinguish it from toxic leukoencephalopathy.
The Role of Massage in Sports Performance and Rehabilitation: Current Evidence and Future Direction
2008-01-01
Background Massage is a popular treatment choice of athletes, coaches, and sports physical therapists. Despite its purported benefits and frequent use, evidence demonstrating its efficacy is scarce. Purpose To identify current literature relating to sports massage and its role in effecting an athlete's psychological readiness, in enhancing sports performance, in recovery from exercise and competition, and in the treatment of sports related musculoskeletal injuries. Methods Electronic databases were used to identify papers relevant to this review. The following keywords were searched: massage, sports injuries, athletic injuries, physical therapy, rehabilitation, delayed onset muscle soreness, sports psychology, sports performance, sports massage, sports recovery, soft tissue mobilization, deep transverse friction massage, pre-event, and post exercise. Results Research studies pertaining to the following general categories were identified and reviewed: pre-event (physiological and psychological variables), sports performance, recovery, and rehabilitation. Discussion Despite the fact clinical research has been performed, a poor appreciation exists for the appropriate clinical use of sports massage. Conclusion Additional studies examining the physiological and psychological effects of sports massage are necessary in order to assist the sports physical therapist in developing and implementing clinically significant evidence based programs or treatments. PMID:21509135
Carbohydrate Dependence During Prolonged, Intense Endurance Exercise.
Hawley, John A; Leckey, Jill J
2015-11-01
A major goal of training to improve the performance of prolonged, continuous, endurance events lasting up to 3 h is to promote a range of physiological and metabolic adaptations that permit an athlete to work at both higher absolute and relative power outputs/speeds and delay the onset of fatigue (i.e., a decline in exercise intensity). To meet these goals, competitive endurance athletes undertake a prodigious volume of training, with a large proportion performed at intensities that are close to or faster than race pace and highly dependent on carbohydrate (CHO)-based fuels to sustain rates of muscle energy production [i.e., match rates of adenosine triphosphate (ATP) hydrolysis with rates of resynthesis]. Consequently, to sustain muscle energy reserves and meet the daily demands of training sessions, competitive athletes freely select CHO-rich diets. Despite renewed interest in high-fat, low-CHO diets for endurance sport, fat-rich diets do not improve training capacity or performance, but directly impair rates of muscle glycogenolysis and energy flux, limiting high-intensity ATP production. When highly trained athletes compete in endurance events lasting up to 3 h, CHO-, not fat-based fuels are the predominant fuel for the working muscles and CHO, not fat, availability becomes rate limiting for performance.
Prevention of organophosphate-induced chronic epilepsy by early benzodiazepine treatment.
Shrot, Shai; Ramaty, Erez; Biala, Yoav; Bar-Klein, Guy; Daninos, Moshe; Kamintsky, Lyn; Makarovsky, Igor; Statlender, Liran; Rosman, Yossi; Krivoy, Amir; Lavon, Ophir; Kassirer, Michael; Friedman, Alon; Yaari, Yoel
2014-09-02
Poisoning with organophosphates (OPs) may induce status epilepticus (SE), leading to severe brain damage. Our objectives were to investigate whether OP-induced SE leads to the emergence of spontaneous recurrent seizures (SRSs), the hallmark of chronic epilepsy, and if so, to assess the efficacy of benzodiazepine therapy following SE onset in preventing the epileptogenesis. We also explored early changes in hippocampal pyramidal cells excitability in this model. Adult rats were poisoned with the paraoxon (450μg/kg) and immediately treated with atropine (3mg/kg) and obidoxime (20mg/kg) to reduce acute mortality due to peripheral acetylcholinesterase inhibition. Electrical brain activity was assessed for two weeks during weeks 4-6 after poisoning using telemetric electrocorticographic intracranial recordings. All OP-poisoned animals developed SE, which could be suppressed by midazolam. Most (88%) rats which were not treated with midazolam developed SRSs, indicating that they have become chronically epileptic. Application of midazolam 1min following SE onset had a significant antiepileptogenic effect (only 11% of the rats became epileptic; p=0.001 compared to non-midazolam-treated rats). Applying midazolam 30min after SE onset did not significantly prevent chronic epilepsy. The electrophysiological properties of CA1 pyramidal cells, assessed electrophysiologically in hippocampal slices, were not altered by OP-induced SE. Thus we show for the first time that a single episode of OP-induced SE in rats leads to the acquisition of chronic epilepsy, and that this epileptogenic outcome can be largely prevented by immediate, but not delayed, administration of midazolam. Extrapolating these results to humans would suggest that midazolam should be provided together with atropine and an oxime in the immediate pharmacological treatment of OP poisoning. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Adolescent TBI-induced hypopituitarism causes sexual dysfunction in adult male rats.
Greco, Tiffany; Hovda, David A; Prins, Mayumi L
2015-02-01
Adolescents are at greatest risk for traumatic brain injury (TBI) and repeat TBI (RTBI). TBI-induced hypopituitarism has been documented in both adults and juveniles and despite the necessity of pituitary function for normal physical and brain development, it is still unrecognized and untreated in adolescents following TBI. TBI induced hormonal dysfunction during a critical developmental window has the potential to cause long-term cognitive and behavioral deficits and the topic currently remains unaddressed. The purpose of this study was to determine if four mild TBIs delivered to adolescent male rats disrupts testosterone production and adult behavioral outcomes. Plasma testosterone was quantified from 72 hrs preinjury to 3 months postinjury and pubertal onset, reproductive organ growth, erectile function and reproductive behaviors were assessed at 1 and 2 months postinjury. RTBI resulted in both acute and chronic decreases in testosterone production and delayed onset of puberty. Significant deficits were observed in reproductive organ growth, erectile function and reproductive behaviors in adult rats at both 1 and 2 months postinjury. These data suggest adolescent RTBI-induced hypopituitarism underlies abnormal behavioral changes observed during adulthood. The impact of undiagnosed hypopituitarism following RTBI in adolescence has significance not only for growth and puberty, but also for brain development and neurobehavioral function as adults. © 2014 Wiley Periodicals, Inc.
Ko, Hyun-Ja; Kinkel, Sarah A; Hubert, François-Xavier; Nasa, Zeyad; Chan, James; Siatskas, Christopher; Hirubalan, Premila; Toh, Ban-Hock; Scott, Hamish S; Alderuccio, Frank
2010-12-01
The autoimmune regulator (AIRE) promotes "promiscuous" expression of tissue-restricted antigens (TRA) in thymic medullary epithelial cells to facilitate thymic deletion of autoreactive T-cells. Here, we show that AIRE-deficient mice showed an earlier development of myelin oligonucleotide glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE). To determine the outcome of ectopic Aire expression, we used a retroviral transduction system to over-express Aire in vitro, in cell lines and in bone marrow (BM). In the cell lines that included those of thymic medullary and dendritic cell origin, ectopically expressed Aire variably promoted expression of TRA including Mog and Ins2 (proII) autoantigens associated, respectively, with the autoimmune diseases multiple sclerosis and type 1 diabetes. BM chimeras generated from BM transduced with a retrovirus encoding Aire displayed elevated levels of Mog and Ins2 expression in thymus and spleen. Following induction of EAE with MOG(35-55), transplanted mice displayed significant delay in the onset of EAE compared with control mice. To our knowledge, this is the first example showing that in vivo ectopic expression of AIRE can modulate TRA expression and alter autoimmune disease development. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Takasuna, K; Hagiwara, T; Watanabe, K; Onose, S; Yoshida, S; Kumazawa, E; Nagai, E; Kamataki, T
2006-10-01
An antitumor camptothecin derivative CPT-11 has proven a broad spectrum of solid tumor malignancy, but its severe diarrhea has often limited its more widespread use. We have demonstrated from a rat model that intestinal beta-glucuronidase may play a key role in the development of CPT-11-induced delayed diarrhea by the deconjugation of the luminal SN-38 glucuronide, and the elimination of the intestinal microflora by antibiotics or dosing of TJ-14, a Kampo medicine that contains beta-glucuronidase inhibitor baicalin, exerted a protective effect. In the present study, we assessed the efficacy of several potential treatments in our rat model to clarify which is the most promising treatment for CPT-11-induced delayed diarrhea. Oral dosing (twice daily from days -1 to 4) of streptomycin 20 mg/kg and penicillin 10 mg/kg (Str/Pen), neomycin 20 mg/kg and bacitracin 10 mg/kg (Neo/Bac), both of which inhibited almost completely the fecal beta-glucuronidase activity, or TJ-14 1,000 mg/kg improved the decrease in body weight and the delayed diarrhea symptoms induced by CPT-11 (60 mg/kg i.v. from days 1 to 4) to a similar extent. The efficacy was less but significant in activated charcoal (1,000 mg/kg p.o. twice daily from days -1 to 4). In a separate experiment using rats bearing breast cancer (Walker 256-TC), TJ-14, Neo/Bac, and charcoal at the same dose regimen improved CPT-11-induced intestinal toxicity without reducing CPT-11's antitumor activity. In contrast, oral dosing (twice a day) of cyclosporin A (50 mg/kg), a P-glycoprotein and cMOAT/MRP2 inhibitor or valproic acid (200 mg/kg), a UDP-glucuronosyltranferase inhibitor, exacerbated the intestinal toxicity without modifying CPT-11's antitumor activity. The result clearly demonstrated the ability of Neo/Bac, Str/Pen, and TJ-14, less but significant ability of activated charcoal, to ameliorate CPT-11-induced delayed-onset diarrhea, suggesting the treatments decreasing the exposure of the intestines to the luminal SN-38 are valuable for improvement of CPT-11-induced intestinal toxicity. In contrast, the treatments affecting the biliary excretion of CPT-11 and its metabolites might have undesirable results.
Pharmacogenetics and Predictive Testing of Drug Hypersensitivity Reactions.
Böhm, Ruwen; Cascorbi, Ingolf
2016-01-01
Adverse drug reactions adverse drug reaction (ADR) occur in approximately 17% of patients. Avoiding ADR is thus mandatory from both an ethical and an economic point of view. Whereas, pharmacogenetics changes of the pharmacokinetics may contribute to the explanation of some type A reactions, strong relationships of genetic markers has also been shown for drug hypersensitivity belonging to type B reactions. We present the classifications of ADR, discuss genetic influences and focus on delayed-onset hypersensitivity reactions, i.e., drug-induced liver injury, drug-induced agranulocytosis, and severe cutaneous ADR. A guidance how to read and interpret the contingency table is provided as well as an algorithm whether and how a test for a pharmacogenetic biomarker should be conducted.
Passive Heating Attenuates Post-exercise Cardiac Autonomic Recovery in Healthy Young Males
Peçanha, Tiago; Forjaz, Cláudia L. de Moraes; Low, David A.
2017-01-01
Post-exercise heart rate (HR) recovery (HRR) presents a biphasic pattern, which is mediated by parasympathetic reactivation and sympathetic withdrawal. Several mechanisms regulate these post-exercise autonomic responses and thermoregulation has been proposed to play an important role. The aim of this study was to test the effects of heat stress on HRR and HR variability (HRV) after aerobic exercise in healthy subjects. Twelve healthy males (25 ± 1 years, 23.8 ± 0.5 kg/m2) performed 14 min of moderate-intensity cycling exercise (40–60% HRreserve) followed by 5 min of loadless active recovery in two conditions: heat stress (HS) and normothermia (NT). In HS, subjects dressed in a whole-body water-perfused tube-lined suit to increase internal temperature (Tc) by ~1°C. In NT, subjects did not wear the suit. HR, core and skin temperatures (Tc and Tsk), mean arterial pressure (MAP) skin blood flow (SKBF), and cutaneous vascular conductance (CVC) were measured throughout and analyzed during post-exercise recovery. HRR was assessed through calculations of HR decay after 60 and 300 s of recovery (HRR60s and HRR300s), and the short- and long-term time constants of HRR (T30 and HRRt). Post-exercise HRV was examined via calculations of RMSSD (root mean square of successive RR intervals) and RMS (root mean square residual of RR intervals). The HS protocol promoted significant thermal stress and hemodynamic adjustments during the recovery (HS-NT differences: Tc = +0.7 ± 0.3°C; Tsk = +3.2 ± 1.5°C; MAP = −12 ± 14 mmHg; SKBF = +90 ± 80 a.u; CVC = +1.5 ± 1.3 a.u./mmHg). HRR and post-exercise HRV were significantly delayed in HS (e.g., HRR60s = 27 ± 9 vs. 44 ± 12 bpm, P < 0.01; HRR300s = 39 ± 12 vs. 59 ± 16 bpm, P < 0.01). The effects of heat stress (e.g., the HS-NT differences) on HRR were associated with its effects on thermal and hemodynamic responses. In conclusion, heat stress delays HRR, and this effect seems to be mediated by an attenuated parasympathetic reactivation and sympathetic withdrawal after exercise. In addition, the impact of heat stress on HRR is related to the magnitude of the heat stress-induced thermal stress and hemodynamic changes. PMID:29311799
Early onset marijuana use is associated with learning inefficiencies.
Schuster, Randi Melissa; Hoeppner, Susanne S; Evins, A Eden; Gilman, Jodi M
2016-05-01
Verbal memory difficulties are the most widely reported and persistent cognitive deficit associated with early onset marijuana use. Yet, it is not known what memory stages are most impaired in those with early marijuana use. Forty-eight young adults, aged 18-25, who used marijuana at least once per week and 48 matched nonusing controls (CON) completed the California Verbal Learning Test, Second Edition (CVLT-II). Marijuana users were stratified by age of initial use: early onset users (EMJ), who started using marijuana at or before age 16 (n = 27), and late onset marijuana user group (LMJ), who started using marijuana after age 16 (n = 21). Outcome variables included trial immediate recall, total learning, clustering strategies (semantic clustering, serial clustering, ratio of semantic to serial clustering, and total number of strategies used), delayed recall, and percent retention. Learning improved with repetition, with no group effect on the learning slope. EMJ learned fewer words overall than LMJ or CON. There was no difference between LMJ and CON in total number of words learned. Reduced overall learning mediated the effect on reduced delayed recall among EMJ, but not CON or LMJ. Learning improved with greater use of semantic versus serial encoding, but this did not vary between groups. EMJ was not related to delayed recall after adjusting for encoding. Young adults reporting early onset marijuana use had learning weaknesses, which accounted for the association between early onset marijuana use and delayed recall. No amnestic effect of marijuana use was observed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Substance P Regulates Puberty Onset and Fertility in the Female Mouse
Simavli, Serap; Thompson, Iain R.; Maguire, Caroline A.; Gill, John C.; Carroll, Rona S.; Wolfe, Andrew; Kaiser, Ursula B.
2015-01-01
Puberty is a tightly regulated process that leads to reproductive capacity. Kiss1 neurons are crucial in this process by stimulating GnRH, yet how Kiss1 neurons are regulated remains unknown. Substance P (SP), an important neuropeptide in pain perception, induces gonadotropin release in adult mice in a kisspeptin-dependent manner. Here, we assessed whether SP, through binding to its receptor NK1R (neurokinin 1 receptor), participates in the timing of puberty onset and fertility in the mouse. We observed that 1) selective NK1R agonists induce gonadotropin release in prepubertal females; 2) the expression of Tac1 (encoding SP) and Tacr1 (NK1R) in the arcuate nucleus is maximal before puberty, suggesting increased SP tone; 3) repeated exposure to NK1R agonists prepubertally advances puberty onset; and 4) female Tac1−/− mice display delayed puberty; moreover, 5) SP deficiency leads to subfertility in females, showing fewer corpora lutea and antral follicles and leading to decreased litter size. Thus, our findings support a role for SP in the stimulation of gonadotropins before puberty, acting via Kiss1 neurons to stimulate GnRH release, and its involvement in the attainment of full reproductive capabilities in female mice. PMID:25856429
Function of human eccrine sweat glands during dynamic exercise and passive heat stress
NASA Technical Reports Server (NTRS)
Kondo, N.; Shibasaki, M.; Aoki, K.; Koga, S.; Inoue, Y.; Crandall, C. G.
2001-01-01
The purpose of this study was to identify the pattern of change in the density of activated sweat glands (ASG) and sweat output per gland (SGO) during dynamic constant-workload exercise and passive heat stress. Eight male subjects (22.8 +/- 0.9 yr) exercised at a constant workload (117.5 +/- 4.8 W) and were also passively heated by lower-leg immersion into hot water of 42 degrees C under an ambient temperature of 25 degrees C and relative humidity of 50%. Esophageal temperature, mean skin temperature, sweating rate (SR), and heart rate were measured continuously during both trials. The number of ASG was determined every 4 min after the onset of sweating, whereas SGO was calculated by dividing SR by ASG. During both exercise and passive heating, SR increased abruptly during the first 8 min after onset of sweating, followed by a slower increase. Similarly for both protocols, the number of ASG increased rapidly during the first 8 min after the onset of sweating and then ceased to increase further (P > 0.05). Conversely, SGO increased linearly throughout both perturbations. Our results suggest that changes in forearm sweating rate rely on both ASG and SGO during the initial period of exercise and passive heating, whereas further increases in SR are dependent on increases in SGO.
The effects of physical activity on sleep: a meta-analytic review.
Kredlow, M Alexandra; Capozzoli, Michelle C; Hearon, Bridget A; Calkins, Amanda W; Otto, Michael W
2015-06-01
A significant body of research has investigated the effects of physical activity on sleep, yet this research has not been systematically aggregated in over a decade. As a result, the magnitude and moderators of these effects are unclear. This meta-analytical review examines the effects of acute and regular exercise on sleep, incorporating a range of outcome and moderator variables. PubMed and PsycINFO were used to identify 66 studies for inclusion in the analysis that were published through May 2013. Analyses reveal that acute exercise has small beneficial effects on total sleep time, sleep onset latency, sleep efficiency, stage 1 sleep, and slow wave sleep, a moderate beneficial effect on wake time after sleep onset, and a small effect on rapid eye movement sleep. Regular exercise has small beneficial effects on total sleep time and sleep efficiency, small-to-medium beneficial effects on sleep onset latency, and moderate beneficial effects on sleep quality. Effects were moderated by sex, age, baseline physical activity level of participants, as well as exercise type, time of day, duration, and adherence. Significant moderation was not found for exercise intensity, aerobic/anaerobic classification, or publication date. Results were discussed with regards to future avenues of research and clinical application to the treatment of insomnia.
Welsh, John P.; Oristaglio, Jeffrey T.
2016-01-01
Changes in the timing performance of conditioned responses (CRs) acquired during trace and delay eyeblink conditioning (EBC) are presented for diagnostic subgroups of children having autism spectrum disorder (ASD) aged 6–15 years. Children diagnosed with autistic disorder (AD) were analyzed separately from children diagnosed with either Asperger’s syndrome or Pervasive developmental disorder (Asp/PDD) not otherwise specified and compared to an age- and IQ-matched group of children who were typically developing (TD). Within-subject and between-groups contrasts in CR performance on sequential exposure to trace and delay EBC were analyzed to determine whether any differences would expose underlying functional heterogeneities of the cerebral and cerebellar systems, in ASD subgroups. The EBC parameters measured were percentage CRs, CR onset latency, and CR peak latency. Neither AD nor Asp/PDD groups were impaired in CR acquisition during trace or delay EBC. Both AD and Asp/PDD altered CR timing, but not always in the same way. Although the AD group showed normal CR timing during trace EBC, the Asp/PDD group showed a significant 27 and 28 ms increase in CR onset and peak latency, respectively, during trace EBC. In contrast, the direction of the timing change was opposite during delay EBC, during which the Asp/PDD group showed a significant 29 ms decrease in CR onset latency and the AD group showed a larger 77 ms decrease in CR onset latency. Only the AD group showed a decrease in CR peak latency during delay EBC, demonstrating another difference between AD and Asp/PDD. The difference in CR onset latency during delay EBC for both AD and Asp/PDD was due to an abnormal prevalence of early onset CRs that were intermixed with CRs having normal timing, as observed both in CR onset histograms and mean CR waveforms. In conclusion, significant heterogeneity in EBC performance was apparent between diagnostic groups, and this may indicate that EBC performance can report the heterogeneity in the neurobiological predispositions for ASD. The findings will inform further explorations with larger cohorts, different sensory modalities, and different EBC paradigms and provide a reference set for future EBC studies of children having ASD and non-human models. PMID:27563293
... flow of urine. For more information, see “Kegel Exercises for Your Pelvic Muscles.” Delay urination: Some people who have urge ... Info Sugar and Sugar Substitutes Exercise and Fitness Exercise Basics ... and Teens Pregnancy and Childbirth Women Men Seniors Your Health Resources ...
Effectiveness of Ivabradine in Treating Stable Angina Pectoris
Ye, Liwen; Ke, Dazhi; Chen, Qingwei; Li, Guiqiong; Deng, Wei; Wu, Zhiqin
2016-01-01
Abstract Many studies show that ivabradine is effective for stable angina. This meta-analysis was performed to determine the effect of treatment duration and control group type on ivabradine efficacy in stable angina pectoris. Relevant articles in the English language in the PUBMED and EMBASE databases and related websites were identified by using the search terms “ivabradine,” “angina,” “randomized controlled trials,” and “Iva.” The final search date was November 2, 2015. Articles were included if they were published randomized controlled trials that related to ivabradine treatment of stable angina pectoris. Patients with stable angina pectoris were included. The patients were classified according to treatment duration (<3 vs ≥3 months) or type of control group (placebo vs beta-receptor blocker). Angina outcomes were heart rate at rest or peak, exercise duration, and time to angina onset. Seven articles were selected. There were 3747 patients: 2100 and 1647 were in the ivabradine and control groups, respectively. The ivabradine group had significantly longer exercise duration when they had been treated for at least 3 months, but not when treatment time was less than 3 months. Ivabradine significantly improved time to angina onset regardless of treatment duration. Control group type did not influence the effect of exercise duration (significant) or time to angina onset (significant). Compared with beta-blocker and placebo, ivabradine improved exercise duration and time to onset of angina in patients with stable angina. However, its ability to improve exercise duration only became significant after at least 3 months of treatment. PMID:27057864
Sollars, Patricia J; Weiser, Michael J; Kudwa, Andrea E; Bramley, Jayne R; Ogilvie, Malcolm D; Spencer, Robert L; Handa, Robert J; Pickard, Gary E
2014-01-01
The suprachiasmatic nucleus (SCN) is a circadian oscillator entrained to the day/night cycle via input from the retina. Serotonin (5-HT) afferents to the SCN modulate retinal signals via activation of 5-HT1B receptors, decreasing responsiveness to light. Consequently, 5-HT1B receptor knockout (KO) mice entrain to the day/night cycle with delayed activity onsets. Since circulating corticosterone levels exhibit a robust daily rhythm peaking around activity onset, we asked whether delayed entrainment of activity onsets affects rhythmic corticosterone secretion. Wheel-running activity and plasma corticosterone were monitored in mice housed under several different lighting regimens. Both duration of the light:dark cycle (T cycle) and the duration of light within that cycle was altered. 5-HT1B KO mice that entrained to a 9.5L:13.5D (short day in a T = 23 h) cycle with activity onsets delayed more than 4 h after light offset exhibited a corticosterone rhythm in phase with activity rhythms but reduced 50% in amplitude compared to animals that initiated daily activity <4 h after light offset. Wild type mice in 8L:14D (short day in a T = 22 h) conditions with highly delayed activity onsets also exhibited a 50% reduction in peak plasma corticosterone levels. Exogenous adrenocorticotropin (ACTH) stimulation in animals exhibiting highly delayed entrainment suggested that the endogenous rhythm of adrenal responsiveness to ACTH remained aligned with SCN-driven behavioral activity. Circadian clock gene expression in the adrenal cortex of these same animals suggested that the adrenal circadian clock was also aligned with SCN-driven behavior. Under T cycles <24 h, altered circadian entrainment to short day (winter-like) conditions, manifest as long delays in activity onset after light offset, severely reduces the amplitude of the diurnal rhythm of plasma corticosterone. Such a pronounced reduction in the glucocorticoid rhythm may alter rhythmic gene expression in the central nervous system and in peripheral organs contributing to an array of potential pathophysiologies.
Sollars, Patricia J.; Weiser, Michael J.; Kudwa, Andrea E.; Bramley, Jayne R.; Ogilvie, Malcolm D.; Spencer, Robert L.; Handa, Robert J.; Pickard, Gary E.
2014-01-01
The suprachiasmatic nucleus (SCN) is a circadian oscillator entrained to the day/night cycle via input from the retina. Serotonin (5-HT) afferents to the SCN modulate retinal signals via activation of 5-HT1B receptors, decreasing responsiveness to light. Consequently, 5-HT1B receptor knockout (KO) mice entrain to the day/night cycle with delayed activity onsets. Since circulating corticosterone levels exhibit a robust daily rhythm peaking around activity onset, we asked whether delayed entrainment of activity onsets affects rhythmic corticosterone secretion. Wheel-running activity and plasma corticosterone were monitored in mice housed under several different lighting regimens. Both duration of the light∶dark cycle (T cycle) and the duration of light within that cycle was altered. 5-HT1B KO mice that entrained to a 9.5L:13.5D (short day in a T = 23 h) cycle with activity onsets delayed more than 4 h after light offset exhibited a corticosterone rhythm in phase with activity rhythms but reduced 50% in amplitude compared to animals that initiated daily activity <4 h after light offset. Wild type mice in 8L:14D (short day in a T = 22 h) conditions with highly delayed activity onsets also exhibited a 50% reduction in peak plasma corticosterone levels. Exogenous adrenocorticotropin (ACTH) stimulation in animals exhibiting highly delayed entrainment suggested that the endogenous rhythm of adrenal responsiveness to ACTH remained aligned with SCN-driven behavioral activity. Circadian clock gene expression in the adrenal cortex of these same animals suggested that the adrenal circadian clock was also aligned with SCN-driven behavior. Under T cycles <24 h, altered circadian entrainment to short day (winter-like) conditions, manifest as long delays in activity onset after light offset, severely reduces the amplitude of the diurnal rhythm of plasma corticosterone. Such a pronounced reduction in the glucocorticoid rhythm may alter rhythmic gene expression in the central nervous system and in peripheral organs contributing to an array of potential pathophysiologies. PMID:25365210
Bilingualism delays the onset of behavioral but not aphasic forms of frontotemporal dementia.
Alladi, Suvarna; Bak, Thomas H; Shailaja, Mekala; Gollahalli, Divyaraj; Rajan, Amulya; Surampudi, Bapiraju; Hornberger, Michael; Duggirala, Vasanta; Chaudhuri, Jaydip Ray; Kaul, Subhash
2017-05-01
Bilingualism has been found to delay onset of dementia and this has been attributed to an advantage in executive control in bilinguals. However, the relationship between bilingualism and cognition is complex, with costs as well as benefits to language functions. To further explore the cognitive consequences of bilingualism, the study used Frontotemporal dementia (FTD) syndromes, to examine whether bilingualism modifies the age at onset of behavioral and language variants of Frontotemporal dementia (FTD) differently. Case records of 193 patients presenting with FTD (121 of them bilingual) were examined and the age at onset of the first symptoms were compared between monolinguals and bilinguals. A significant effect of bilingualism delaying the age at onset of dementia was found in behavioral variant FTD (5.7 years) but not in progressive nonfluent aphasia (0.7 years), semantic dementia (0.5 years), corticobasal syndrome (0.4 years), progressive supranuclear palsy (4.3 years) and FTD-motor neuron disease (3 years). On dividing all patients predominantly behavioral and predominantly aphasic groups, age at onset in the bilingual behavioral group (62.6) was over 6 years higher than in the monolingual patients (56.5, p=0.006), while there was no difference in the aphasic FTD group (60.9 vs. 60.6 years, p=0.851). The bilingual effect on age of bvFTD onset was shown independently of other potential confounding factors such as education, gender, occupation, and urban vs rural dwelling of subjects. To conclude, bilingualism delays the age at onset in the behavioral but not in the aphasic variants of FTD. The results are in line with similar findings based on research in stroke and with the current views of the interaction between bilingualism and cognition, pointing to advantages in executive functions and disadvantages in lexical tasks. Copyright © 2017 Elsevier Ltd. All rights reserved.
Allen, Alicia; Carlson, Samantha C; Bosch, Tyler A; Eberly, Lynn E; Okuyemi, Kola; Nair, Uma; Gordon, Judith S
2018-05-14
While exercise significantly reduces craving for cigarettes, the effect of exercise on self-initiation of quit attempts is less known. Therefore, this randomized pilot study explored the effect of starting an exercise program on self-initiated quit attempts, and also the feasibility and acceptability of a novel exercise intervention, high-intensity interval training (HIIT), as compared with a more traditional continuous aerobic (CA) exercise intervention. Participants smoked (≥5 cigarettes/d), were aged 18 to 40 years, and wanted to increase their exercise. Participants were randomized into 1 of 3 groups: HIIT, CA, and delayed control. All participants attended follow-up visits at weeks 4, 8, and 12. Outcomes included measures of feasibility (eg, visit attendance) and acceptability (eg, satisfaction), and also changes in smoking behavior (eg, quit attempts during follow-up) and proxies to quit attempts (eg, positive affect). Overall, there were no differences in terms of feasibility and acceptability between the HITT (n = 12) and CA (n = 9) groups. Based on both self-report and objective measurement, the exercise groups (HIIT and CA) increased their physical activity as compared with the delayed treatment group (n = 11). Compared with HIIT and delayed control, CA (n = 9) had significant favorable changes in positive affect (eg, at week 8, HIIT: +0.25 ± 2.21, delayed control: -5.11 ± 2.23, CA: +5.50 ± 2.23; P = 0.0153). These observations suggest that HIIT is as feasible and acceptable as CA, though CA may have a more favorable effect on proxies to quit attempts (eg, positive affect). Fully powered studies are needed to examine the effect of HIIT versus CA on quit attempts.
Crawford, Scott K.; Haas, Caroline; Wang, Qian; Zhang, Xiaoli; Zhao, Yi; Best, Thomas M.
2014-01-01
Background This study compared immediate versus delayed massage-like compressive loading on skeletal muscle viscoelastic properties following eccentric exercise. Methods Eighteen rabbits were surgically instrumented with peroneal nerve cuffs for stimulation of the tibialis anterior muscle. Rabbits were randomly assigned to a massage loading protocol applied immediately post exercise (n=6), commencing 48 hours post exercise (n=6), or exercised no-massage control (n=6). Viscoelastic properties were evaluated in vivo by performing a stress-relaxation test pre- and post-exercise and daily pre- and post-massage for four consecutive days of massage loading. A quasi-linear viscoelastic approach modeled the instantaneous elastic response (AG0), fast ( g1p) and slow ( g2p) relaxation coefficients, and the corresponding relaxation time constants τ1 and τ2. Findings Exercise increased AG0 in all groups (P<0.05). After adjusting for the three multiple comparisons, recovery of AG0 was not significant in the immediate (P=0.021) or delayed (P=0.048) groups compared to the control group following four days of massage. However, within-day (pre- to post-massage) analysis revealed a decrease in AG0 in both massage groups. Following exercise, g1p increased and g2p and τ1 decreased for all groups (P<0.05). Exercise had no effect on τ2 (P>0.05). After four days of massage, there was no significant recovery of the relaxation parameters for either massage loading group compared to the control group. Interpretation Our findings suggest that massage loading following eccentric exercise has a greater effect on reducing muscle stiffness, estimated by AG0, within-day rather than affecting recovery over multiple days. Massage loading also has little effect on the relaxation response. PMID:24861827
Circulating cell-free DNA: an up-coming molecular marker in exercise physiology.
Breitbach, Sarah; Tug, Suzan; Simon, Perikles
2012-07-01
The phenomenon of circulating cell-free DNA (cfDNA) concentrations is of importance for many biomedical disciplines including the field of exercise physiology. Increases of cfDNA due to exercise are described to be a potential hallmark for the overtraining syndrome and might be related to, or trigger adaptations of, immune function induced by strenuous exercise. At the same time, exercise provides a practicable model for studying the phenomenon of cfDNA that is described to be of pathophysiological relevance for different topics in clinical medicine like autoimmune diseases and cancer. In this review, we are summarizing the current knowledge of exercise-based acute and chronic alterations in cfDNA levels and their physiological significance. The effects of acute exercise on cfDNA concentrations have been investigated in resistance exercises and in continuous, stepwise and interval endurance exercises of different durations. cfDNA concentrations peaked immediately after acute exercise and showed a rapid return to baseline levels. Typical markers of skeletal muscle damage (creatine kinase, uric acid, C-reactive protein) show delayed kinetics compared with the cfDNA peak response. Exercise parameters such as intensity, duration or average energy expenditure do not explain the extent of increasing cfDNA concentrations after strenuous exercise. This could be due to complex processes inside the human organism during and after physical activity. Therefore, we hypothesize composite effects of different physiological stress parameters that come along with exercise to be responsible for increasing cfDNA concentrations. We suggest that due to acute stress, cfDNA levels increase rapidly by a spontaneous active or passive release mechanism that is not yet known. As a result of the rapid and parallel increase of cfDNA and lactate in an incremental treadmill test leading to exhaustion within 15-20 minutes, it is unlikely that cfDNA is released into the plasma by typical necrosis or apoptosis of cells in acute exercise settings. Recently, rapid DNA release mechanisms of activated immune-competent cells like NETosis (pathogen-induced cell death including the release of neutrophil extracellular traps [NETs]) have been discovered. cfDNA accumulations might comprise a similar kind of cell death including trap formation or an active release of cfDNA. Just like chronic diseases, chronic high-intensity resistance training protocols induced persistent increases of cfDNA levels. Chronic, strenuous exercise protocols, either long-duration endurance exercise or regular high-intensity workouts, induce chronic inflammation that might lead to a slow, constant release of DNA. This could be due to mechanisms of cell death like apoptosis or necrosis. Yet, it has neither been implicated nor proven sufficiently whether cfDNA can serve as a marker for overtraining. The relevance of cfDNA with regard to overtraining status, performance level, and the degree of physical exhaustion still remains unclear. Longitudinal studies are required that take into account standardized and controlled exercise, serial blood sampling, and large and homogeneous cohorts of different athletic achievement. Furthermore, it is important to establish standardized laboratory procedures for the measurement of genomic cfDNA concentrations by quantitative real-time polymerase chain reaction (PCR). We introduce a new hypothesis based on acute exercise and chronic exposure to stress, and rapid active and passive chronic release of cfDNA fragments into the circulation.
Claerhout, Sofie; Decraene, David; Van Laethem, An; Van Kelst, Sofie; Agostinis, Patrizia; Garmyn, Marjan
2007-02-01
Upon irradiation with a high dose of UVB, keratinocytes undergo apoptosis as a protective mechanism. In previous work, we demonstrated the existence of an early-activated UVB-induced apoptotic pathway in growth factor-depleted human keratinocytes, which can be substantially delayed by the exclusive supplementation of IGF-1. We now show that in human keratinocytes, IGF-1 inhibits the onset of UVB-triggered apoptosis through a transcriptional independent, AKT-mediated mechanism, involving BAD serine 136 phosphorylation. Our results show that the early UVB-induced apoptosis in growth factor-depleted human keratinocytes is exclusively triggered through the mitochondrial pathway. It is accompanied by BAX translocation, cytochrome c release, and procaspase-9 cleavage, but not by procaspase-8 or BID cleavage. In human keratinocytes, IGF-1 supplementation inhibits these events in a transcription-independent manner. Both IGF-1 supplementation and the transduction of a membrane-targeted form of AKT result in a shift of the BH3-only protein BAD from the mitochondria to the cytoplasm, paralleled by an increase of AKT-specific Ser136 phospho-BAD bound to 14-3-3zeta protein. These data indicate that AKT-induced BAD phosphorylation and its subsequent cytoplasmic sequestration by 14-3-3zeta is a major mechanism responsible for the postponement of UVB-induced apoptosis in human keratinocytes.
Wang, Xiaoyun; Wang, Youzhi
2016-02-01
Freeze-drying is one of the most effective methods to preserve fungi for an extended period. However, it is associated with a loss of viability and shortened storage time in some fungi. This study evaluated the stresses that led to the death of freeze-dried Mucor rouxii by using cell apoptotic methods. The results showed there were apoptosis-inducing stresses, such as the generation of obvious intracellular reactive oxygen species (ROS) and metacaspase activation. Moreover, nuclear condensation and a delayed cell death peak were determined after rehydration and 24 h incubation in freeze-dried M. rouxii via a propidium iodide (PI) assay, which is similar to the phenomenon of cryopreservation-induced delayed-onset cell death (CIDOCD). Then, several protective agents were tested to decrease the apoptosis-inducing stresses and to improve the viability. Finally, it was found that 1.6 mM L-proline can effectively decrease the nuclear condensation rate and increase the survival rate in freeze-dried M. rouxii. (1) apoptosis-inducing factors occur in freeze-dried M. rouxii. (2) ROS and activated metacaspases lead to death in freeze-dried M. rouxii. (3)L-proline increases the survival rate of freeze-dried M. rouxii. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Kudo, Nobuki; Yamamoto, Masaya
2011-09-01
It is known that use of a contrast agents in echocardiography increases the probability of generation of premature ventricular contractions (PVCs). As a basic study to elucidate the mechanisms and to reduce adverse effects, the generation of PVCs was investigated using cultured cardiac myocytes instead of the intact heart in vivo. Cardiac myocytes were isolated from neonatal rats and cultured on a cover slip. The myocyte sample was exposed to pulsed ultrasound with microbubbles adjacent to the myocytes, and generation of PVCs was examined with ultrasound exposure at various delay times after onset of myocyte contraction. The experimental results showed that generation of PVCs had a stable threshold delay time and that PVCs were generated only when myocytes were exposed to ultrasound with delay times longer than the threshold. The results indicate that the model used in this study is useful for revealing the mechanisms by which PVCs are induced by ultrasound exposure.
... Videos for Educators Search English Español Exercise-Induced Asthma KidsHealth / For Parents / Exercise-Induced Asthma What's in ... Exercise-Induced Asthma Print What Is Exercise-Induced Asthma? Most kids and teens with asthma have symptoms ...
Strange, Geoff; Gabbay, Eli; Kermeen, Fiona; Williams, Trevor; Carrington, Melinda; Stewart, Simon; Keogh, Anne
2013-01-01
Survival rates for patients with idiopathic pulmonary arterial hypertension (IPAH) have improved with the introduction of PAH-specific therapies. However, the time between patient-reported onset of symptoms and a definitive diagnosis of IPAH is consistently delayed. We conducted a retrospective, multi-center, descriptive investigation in order to (a) understand what factors contribute to persistent diagnostic delays, and (b) examine the time from initial symptom onset to a definitive diagnosis of IPAH. Between January 2007 and December 2008, we enrolled consecutively diagnosed adults with IPAH from four tertiary referral centers in Australia. Screening of patient records and “one-on-one” interviews were used to determine the time from patient-described initial symptoms to a diagnosis of IPAH, confirmed by right heart catheterization (RHC). Thirty-two participants (69% female) were studied. Mean age at symptom onset was 56 ± 16.4 years and 96% reported exertional dyspnea. Mean time from symptom onset to diagnosis was 47 ± 34 months with patients subsequently aged 60 ± 17.3 years. Patients reported 5.3 ± 3.8 GP visits and 3.0 ± 2.1 specialist reviews before being seen at a pulmonary hypertension (PH) center. Advanced age, number of general practitioner (GP) visits, heart rate, and systolic blood pressure at the time of diagnosis were significantly associated with the observed delay. We found a significant delay of 3.9 years from symptom onset to a diagnosis of IPAH in Australia. Exertional dyspnea is the most common presenting symptom. Current practice within Australia does not appear to have the specific capacity for timely, multi-factorial evaluation of breathlessness and potential IPAH. PMID:23662179
Meyer, Celine; Weinmann, Pierre
2017-08-01
Cadmium-zinc-telluride (CZT) cameras allow to decrease significantly the acquisition time of myocardial perfusion imaging (MPI), but the duration of the examination is still long. Therefore, this study was performed to test the feasibility of early imaging following injection of Tc-99 m sestamibi using a CZT camera. Seventy patients underwent both an early and a delayed image acquisition after exercise stress test (n = 30), dipyridamole stress test (n = 20), and at rest (n = 20). After injection of Tc-99 m sestamibi, the early image acquisition started on average within 5 minutes for the exercise and rest groups, and 3 minutes 30 seconds for the dipyridamole group. Two independent observers evaluated image quality and extracardiac uptake on four-point scales. The difference between early and later images for each patient was scored on a five-point scale. The image quality and extracardiac uptake of early and delayed image acquisitions were not different for the three groups (P > .05). There was no significant difference between early and delayed image acquisitions in the exercise, dipyridamole, and rest groups, respectively, in 63%, 40%, and 80% of cases. In the exercise group and rest group, a defect was only present in early MPI, respectively, in 13% and 20% of cases. A defect was only present in delayed images in 10% of cases in the exercise group and in 45% of cases in the dipyridamole group. There was no difference between early and later image acquisitions in terms of quality. This protocol reduces the length of the procedure for the patient. Beginning with early image acquisitions may help to overcome the artifacts that are observed at the delayed time.
NASA Astrophysics Data System (ADS)
Zhu, T.; Cai, X.
2013-12-01
Delay in onset of Indian summer monsoon becomes increasingly frequent. Delayed monsoon and occasional monsoon failures seriously affect agricultural production in the northeast as well as other parts of India. In the Vaishali district of the Bihar State, Monsoon rainfall is very skewed and erratic, often concentrating in shorter durations. Farmers in Vaishali reported that delayed Monsoon affected paddy planting and, consequently delayed cropping cycle, putting crops under the risks of 'terminal heat.' Canal system in the district does not function due to lack of maintenance; irrigation relies almost entirely on groundwater. Many small farmers choose not to irrigate when monsoon onset is delayed due to high diesel price, leading to reduced production or even crop failure. Some farmers adapt to delayed onset of Monsoon by planting short-duration rice, which gives the flexibility for planting the next season crops. Other sporadic autonomous adaptation activities were observed as well, with various levels of success. Adaptation recommendations and effective policy interventions are much needed. To explore robust options to adapt to the changing Monsoon regime, we build a stochastic programming model to optimize revenues of farmer groups categorized by landholding size, subject to stochastic Monsoon onset and rainfall amount. Imperfect probabilistic long-range forecast is used to inform the model onset and rainfall amount probabilities; the 'skill' of the forecasting is measured using probabilities of correctly predicting events in the past derived through hindcasting. Crop production functions are determined using self-calibrating Positive Mathematical Programming approach. The stochastic programming model aims to emulate decision-making behaviors of representative farmer agents through making choices in adaptation, including crop mix, planting dates, irrigation, and use of weather information. A set of technological and policy intervention scenarios are tested, including irrigation subsidies, drought and heat-tolerant crop varieties, and enhancing agricultural extension. A portfolio of prioritized adaption options are recommended for the study area.
Den Hartigh, Laura J.; Omer, Mohamed; Goodspeed, Leela; Wang, Shari; Wietecha, Tomasz; O’Brien, Kevin D.; Han, Chang Yeop
2017-01-01
Objective Obesity is associated with insulin resistance and adipose tissue inflammation. Reactive oxygen species (ROS) increase in adipose tissue during the development of obesity. We previously showed that in response to excess nutrients like glucose and palmitate, adipocytes generated ROS via NADPH oxidase (NOX) 4, the major adipocyte isoform, instead of using mitochondrial oxidation. However, the role of NOX4-derived ROS in the development of whole body insulin resistance, adipocyte inflammation, and recruitment of macrophages to adipose tissue during the development of obesity is unknown. Approach and Results In this study, control C57BL/6 mice and mice in which NOX4 has been deleted specifically in adipocytes were fed a high fat, high sucrose (HFHS) diet. During the development of obesity in control mice, adipocyte NOX4 and PPP activity were transiently increased. Primary adipocytes differentiated form mice with adipocytes deficient in NOX4 showed resistance against high glucose or palmitate-induced adipocyte inflammation. Mice with adipocytes deficient in NOX4 showed a delayed onset of insulin resistance during the development of obesity, with an initial reduction in adipose tissue inflammation that normalized with prolonged HFHS feeding. Conclusions These findings imply that NOX4-derived ROS may play a role in the onset of insulin resistance and adipose tissue inflammation. As such, therapeutics targeting NOX4-mediated ROS production could be effective in preventing obesity-associated conditions such as insulin resistance. PMID:28062496
Den Hartigh, Laura J; Omer, Mohamed; Goodspeed, Leela; Wang, Shari; Wietecha, Tomasz; O'Brien, Kevin D; Han, Chang Yeop
2017-03-01
Obesity is associated with insulin resistance and adipose tissue inflammation. Reactive oxygen species (ROS) increase in adipose tissue during the development of obesity. We previously showed that in response to excess nutrients like glucose and palmitate, adipocytes generated ROS via NADPH oxidase (NOX) 4, the major adipocyte isoform, instead of using mitochondrial oxidation. However, the role of NOX4-derived ROS in the development of whole body insulin resistance, adipocyte inflammation, and recruitment of macrophages to adipose tissue during the development of obesity is unknown. In this study, control C57BL/6 mice and mice in which NOX4 has been deleted specifically in adipocytes were fed a high-fat, high-sucrose diet. During the development of obesity in control mice, adipocyte NOX4 and pentose phosphate pathway activity were transiently increased. Primary adipocytes differentiated from mice with adipocytes deficient in NOX4 showed resistance against high glucose or palmitate-induced adipocyte inflammation. Mice with adipocytes deficient in NOX4 showed a delayed onset of insulin resistance during the development of obesity, with an initial reduction in adipose tissue inflammation that normalized with prolonged high-fat, high-sucrose feeding. These findings imply that NOX4-derived ROS may play a role in the onset of insulin resistance and adipose tissue inflammation. As such, therapeutics targeting NOX4-mediated ROS production could be effective in preventing obesity-associated conditions, such as insulin resistance. © 2016 American Heart Association, Inc.
Smith, Cory M; Housh, Terry J; Hill, Ethan C; Johnson, Glen O; Schmidt, Richard J
2017-04-01
This study used a combined electromyographic, mechanomyographic, and force approach to identify electromechanical delay (EMD) from the onsets of the electromyographic to force signals (EMD E-F ), onsets of the electromyographic to mechanomyogrpahic signals (EMD E-M ), and onsets of mechanomyographic to force signals (EMD M-F ). The purposes of the current study were to examine: (1) the differences in EMD E-F , EMD E-M , and EMD M-F from the vastus lateralis during maximal, voluntary dynamic (1 repetition maximum [1-RM]) and isometric (maximal voluntary isometric contraction [MVIC]) muscle actions; and (2) the effects of fatigue on EMD E-F , EMD M-F , and EMD E-M . Ten men performed pretest and posttest 1-RM and MVIC leg extension muscle actions. The fatiguing workbout consisted of 70% 1-RM dynamic constant external resistance leg extension muscle actions to failure. The results indicated that there were no significant differences between 1-RM and MVIC EMD E-F , EMD E-M , or EMD M-F. There were, however, significant fatigue-induced increases in EMD E-F (94% and 63%), EMD E-M (107%), and EMD M-F (63%) for both the 1-RM and MVIC measurements. Therefore, these findings demonstrated the effects of fatigue on EMD measures and supported comparisons among studies which examined dynamic or isometric EMD measures from the vastus lateralis using a combined electromyographic, mechanomyographic, and force approach. Copyright © 2017 Elsevier Ltd. All rights reserved.
Barbosa, Luis F; Denadai, Benedito S; Greco, Camila C
2016-01-01
Slow component of oxygen uptake (VO 2 SC) kinetics and maximal oxygen uptake (VO 2 max) attainment seem to influence endurance performance during constant-work rate exercise (CWR) performed within the severe intensity domain. In this study, it was hypothesized that delaying the attainment of VO 2 max by reducing the rates at which VO 2 increases with time (VO 2 SC kinetics) would improve the endurance performance during severe-intensity intermittent exercise performed with different work:recovery duration and recovery type in active individuals. After the estimation of the parameters of the VO 2 SC kinetics during CWR exercise, 18 males were divided into two groups (Passive and Active recovery) and performed at different days, two intermittent exercises to exhaustion (at 95% IVO 2 max, with work: recovery ratio of 2:1) with the duration of the repetitions calculated from the onset of the exercise to the beginning of the VO 2 SC (Short) or to the half duration of the VO 2 SC (Long). The active recovery was performed at 50% IVO 2 max. The endurance performance during intermittent exercises for the Passive (Short = 1523 ± 411; Long = 984 ± 260 s) and Active (Short = 902 ± 239; Long = 886 ± 254 s) groups was improved compared with CWR condition (Passive = 540 ± 116; Active = 489 ± 84 s). For Passive group, the endurance performance was significantly higher for Short than Long condition. However, no significant difference between Short and Long conditions was found for Active group. Additionally, the endurance performance during Short condition was higher for Passive than Active group. The VO 2 SC kinetics was significantly increased for CWR (Passive = 0.16 ± 0.04; Active = 0.16 ± 0.04 L.min -2 ) compared with Short (Passive = 0.01 ± 0.01; Active = 0.03 ± 0.04 L.min -2 ) and Long (Passive = 0.02 ± 0.01; Active = 0.01 ± 0.01 L.min -2 ) intermittent exercise conditions. No significant difference was found among the intermittent exercises. It can be concluded that the endurance performance is negatively influenced by active recovery only during shorter high-intensity intermittent exercise. Moreover, the improvement in endurance performance seems not be explained by differences in the VO 2 SC kinetics, since its values were similar among all intermittent exercise conditions.
Dynamics of landslide model with time delay and periodic parameter perturbations
NASA Astrophysics Data System (ADS)
Kostić, Srđan; Vasović, Nebojša; Franović, Igor; Jevremović, Dragutin; Mitrinovic, David; Todorović, Kristina
2014-09-01
In present paper, we analyze the dynamics of a single-block model on an inclined slope with Dieterich-Ruina friction law under the variation of two new introduced parameters: time delay Td and initial shear stress μ. It is assumed that this phenomenological model qualitatively simulates the motion along the infinite creeping slope. The introduction of time delay is proposed to mimic the memory effect of the sliding surface and it is generally considered as a function of history of sliding. On the other hand, periodic perturbation of initial shear stress emulates external triggering effect of long-distant earthquakes or some non-natural vibration source. The effects of variation of a single observed parameter, Td or μ, as well as their co-action, are estimated for three different sliding regimes: β < 1, β = 1 and β > 1, where β stands for the ratio of long-term to short-term stress changes. The results of standard local bifurcation analysis indicate the onset of complex dynamics for very low values of time delay. On the other side, numerical approach confirms an additional complexity that was not observed by local analysis, due to the possible effect of global bifurcations. The most complex dynamics is detected for β < 1, with a complete Ruelle-Takens-Newhouse route to chaos under the variation of Td, or the co-action of both parameters Td and μ. These results correspond well with the previous experimental observations on clay and siltstone with low clay fraction. In the same regime, the perturbation of only a single parameter, μ, renders the oscillatory motion of the block. Within the velocity-independent regime, β = 1, the inclusion and variation of Td generates a transition to equilibrium state, whereas the small oscillations of μ induce oscillatory motion with decreasing amplitude. The co-action of both parameters, in the same regime, causes the decrease of block's velocity. As for β > 1, highly-frequent, limit-amplitude oscillations of initial stress give rise to oscillatory motion. Also for β > 1, in case of perturbing only the initial shear stress, with smaller amplitude, velocity of the block changes exponentially fast. If the time delay is introduced, besides the stress perturbation, within the same regime, the co-action of Td (Td < 0.1) and small oscillations of μ induce the onset of deterministic chaos.
Wiewelhove, Thimo; Raeder, Christian; Meyer, Tim; Kellmann, Michael; Pfeiffer, Mark; Ferrauti, Alexander
2016-11-01
To investigate the effect of repeated use of active recovery during a 4-d shock microcycle with 7 high-intensity interval-training (HIT) sessions on markers of fatigue. Eight elite male junior tennis players (age 15.1 ± 1.4 y) with an international ranking between 59 and 907 (International Tennis Federation) participated in this study. After each training session, they completed 15 min of either moderate jogging (active recovery [ACT]) or passive recovery (PAS) with a crossover design, which was interrupted by a 4-mo washout period. Countermovement-jump (CMJ) height, serum concentration of creatine kinase (CK), delayed-onset muscle soreness (DOMS), and perceived recovery and stress (Short Recovery and Stress Scale) were measured 24 h before and 24 h after the training program. The HIT shock microcycle induced a large decrease in CMJ performance (ACT: effect size [ES] = -1.39, P < .05; PAS: ES = -1.42, P < .05) and perceived recovery (ACT: ES = -1.79, P < .05; PAS: ES = -2.39, P < .05), as well as a moderate to large increase in CK levels (ACT: ES = 0.76, P > .05; PAS: ES = 0.81, P >.05), DOMS (ACT: ES = 2.02, P < .05; PAS: ES = 2.17, P < .05), and perceived stress (ACT: ES = 1.98, P < .05; PAS: ES = 3.06, P < .05), compared with the values before the intervention. However, no significant recovery intervention × time interactions or meaningful differences in changes were noted in any of the markers between ACT and PAS. Repeated use of individualized ACT, consisting of 15 min of moderate jogging, after finishing each training session during an HIT shock microcycle did not affect exercise-induced fatigue.
Ba, Abdoulaye; Delliaux, Stephane; Bregeon, Fabienne; Levy, Samuel; Jammes, Yves
2009-01-01
Because blood acidosis and arterial oxygenation (PaO(2)) play key roles in the chemoreflex control of cardiac activity, we hypothesized that heart rate (HR) decay rate after maximal exercise may be linked to post-exercise increase in blood lactate (LA) level and/or the resting PaO(2). Twenty healthy subjects and thirty five patients at risks of cardiovascular diseases (20 obeses; 15 patients with chronic obstructive pulmonary disease, COPD) performed a maximal cycling exercise. During the recovery period, HR was continuously measured for consecutive 10-s epochs allowing to compute linear or second order polynomial equations and to calculate every minute HR variations compared to peak HR value (DeltaHR). PaO(2) was measured at rest and post-exercise maximal LA level was determined. A second order polynomial equation (y = a(2) x (2) + b(2) x + c) best fitted the post-exercise HR decay rate. The a(2) and b(2) coefficients and DeltaHR did not depend on age, sex, and body mass index. Despite a large scattering of HR decay rate, even present in healthy subjects, a(2) and DeltaHR were significantly lower in obeses and COPDs. In the whole population, both a(2) coefficient and DeltaHR were negatively correlated with maximal post-exercise LA level. DeltaHR was lowered in hypoxemic patients. Thus, the slowest post-exercise HR decay rate was measured in subjects having the highest peak LA increase or hypoxemia. Thus, even in healthy subjects, the post-exercise HR decay rate is lowered in individuals having an accentuated exercise-induced LA increase and/or hypoxemia. The mechanisms of delayed post-exercise HR recovery are only suspected because significant correlations cannot assess cause-to-effect relationships.
Fragasso, G; Benti, R; Sciammarella, M; Rossetti, E; Savi, A; Gerundini, P; Chierchia, S L
1991-05-01
Exercise stress testing is routinely used for the noninvasive assessment of coronary artery disease and is considered a safe procedure. However, the provocation of severe ischemia might potentially cause delayed recovery of myocardial function. To investigate the possibility that maximal exercise testing could induce prolonged impairment of left ventricular function, 15 patients with angiographically proved coronary disease and 9 age-matched control subjects with atypical chest pain and normal coronary arteries were studied. Radionuclide ventriculography was performed at rest, at peak exercise, during recovery and 2 and 7 days after exercise. Ejection fraction, peak filling and peak emptying rates and left ventricular wall motion were analyzed. All control subjects had a normal exercise test at maximal work loads and improved left ventricular function on exercise. Patients developed 1 mm ST depression at 217 +/- 161 s at a work load of 70 +/- 30 W and a rate-pressure product of 18,530 +/- 4,465 mm Hg x beats/min. Although exercise was discontinued when angina or equivalent symptoms occurred, in all patients diagnostic ST depression (greater than or equal to 1 mm) developed much earlier than symptoms. Predictably, at peak exercise patients showed a decrease in ejection fraction and peak emptying and filling rates. Ejection fraction and peak emptying rate normalized within the recovery period, whereas peak filling rate remained depressed throughout recovery (p less than 0.002) and was still reduced 2 days after exercise (p less than 0.02). In conclusion, in patients with severe impairement of coronary flow reserve, maximal exercise may cause sustained impairement of diastolic function.(ABSTRACT TRUNCATED AT 250 WORDS)
Photoallergic contact dermatitis to oxybenzone.
Collins, P; Ferguson, J
1994-07-01
A 21-year-old woman developed an erythematous papulovesicular eruption of photo-exposed sites, following the use of an oxybenzone-containing sunscreen. Patch testing, photopatch testing, phototesting, and histology produced findings strongly suggestive of oxybenzone photoallergy. Photopatch testing with a monochromator source showed abnormal UVA responses, with evidence of immediate urticaria, and delayed-onset dermatitis. Sun-barrier use is associated with a risk of the development of contact or photocontact allergic reactions. The benzophenones are frequently used in high-protection factor sun-barrier preparations, and appear to have a particular ability to induce such responses.
Saliba, Alexandra; Du, Yunpeng; Liu, Haitao; Patel, Shyam; Roberts, Robin; Berkowitz, Bruce A; Kern, Timothy S
2015-01-01
Daily application of far-red light from the onset of diabetes mitigated diabetes-induced abnormalities in retinas of albino rats. Here, we test the hypothesis that photobiomodulation (PBM) is effective in diabetic, pigmented mice, even when delayed until weeks after onset of diabetes. Direct and indirect effects of PBM on the retina also were studied. Diabetes was induced in C57Bl/6J mice using streptozotocin. Some diabetics were exposed to PBM therapy (4 min/day; 670 nm) daily. In one study, mice were diabetic for 4 weeks before initiation of PBM for an additional 10 weeks. Retinal oxidative stress, inflammation, and retinal function were measured. In some mice, heads were covered with a lead shield during PBM to prevent direct illumination of the eye, or animals were treated with an inhibitor of heme oxygenase-1. In a second study, PBM was initiated immediately after onset of diabetes, and administered daily for 2 months. These mice were examined using manganese-enhanced MRI to assess effects of PBM on transretinal calcium channel function in vivo. PBM intervention improved diabetes-induced changes in superoxide generation, leukostasis, expression of ICAM-1, and visual performance. PBM acted in part remotely from the retina because the beneficial effects were achieved even with the head shielded from the light therapy, and because leukocyte-mediated cytotoxicity of retinal endothelial cells was less in diabetics treated with PBM. SnPP+PBM significantly reduced iNOS expression compared to PBM alone, but significantly exacerbated leukostasis. In study 2, PBM largely mitigated diabetes-induced retinal calcium channel dysfunction in all retinal layers. PBM induces retinal protection against abnormalities induced by diabetes in pigmented animals, and even as an intervention. Beneficial effects on the retina likely are mediated by both direct and indirect mechanisms. PBM is a novel non-pharmacologic treatment strategy to inhibit early changes of diabetic retinopathy.
Constantino, Jason; Hu, Yuxuan; Lardo, Albert C.
2013-01-01
In addition to the left bundle branch block type of electrical activation, there are further remodeling aspects associated with dyssynchronous heart failure (HF) that affect the electromechanical behavior of the heart. Among the most important are altered ventricular structure (both geometry and fiber/sheet orientation), abnormal Ca2+ handling, slowed conduction, and reduced wall stiffness. In dyssynchronous HF, the electromechanical delay (EMD), the time interval between local myocyte depolarization and myofiber shortening onset, is prolonged. However, the contributions of the four major HF remodeling aspects in extending EMD in the dyssynchronous failing heart remain unknown. The goal of this study was to determine the individual and combined contributions of HF-induced remodeling aspects to EMD prolongation. We used MRI-based models of dyssynchronous nonfailing and HF canine electromechanics and constructed additional models in which varying combinations of the four remodeling aspects were represented. A left bundle branch block electrical activation sequence was simulated in all models. The simulation results revealed that deranged Ca2+ handling is the primary culprit in extending EMD in dyssynchronous HF, with the other aspects of remodeling contributing insignificantly. Mechanistically, we found that abnormal Ca2+ handling in dyssynchronous HF slows myofiber shortening velocity at the early-activated septum and depresses both myofiber shortening and stretch rate at the late-activated lateral wall. These changes in myofiber dynamics delay the onset of myofiber shortening, thus giving rise to prolonged EMD in dyssynchronous HF. PMID:23934857
Exercise and type 2 diabetes: new prescription for an old problem.
Bird, Stephen R; Hawley, John A
2012-08-01
During the past 50 years, the prevalence of a cluster of chronic, inactivity-related diseases including obesity, insulin resistance and type 2 diabetes mellitus (T2DM), collectively referred to as 'metabolic syndrome' (MetS) has reached global epidemic proportions. Appropriate exercise training is a clinically proven, cost-effective, primary intervention that delays and in many cases prevents the health burdens associated with MetS. Indeed, there is no single intervention with greater efficacy than physical exercise to reduce the risk of virtually all chronic diseases simultaneously. However compliance to National guidelines for physical activity remains low, with "a lack of time" the most frequently cited barrier to exercise participation by adults, irrespective of age, sex and ethnic background. Part of the growing apathy to modify lifestyle habits is that current public health recommendations may be unrealistic and unattainable for the majority of the populace. Hence, there is an urgent need for innovations in exercise prescription that can be incorporated into daily living and induce clinically beneficial health outcomes. Here we focus attention on a novel form of exercise prescription, high-intensity interval training (HIT), and provide evidence that HIT is a time-efficient and well-tolerated therapeutic intervention to improve cardio-metabolic health in a number of pre-clinical and clinical populations. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Nucleation in the presence of long-range interactions. [performed on ferroelectric barium titanate
NASA Technical Reports Server (NTRS)
Chandra, P.
1989-01-01
Unlike droplet nucleation near a liquid-gas critical point, the decay of metastable phases in crystalline materials is strongly affected by the presence of long-range forces. Field quench experiments performed on the ferroelectric barium titanate indicate that nucleation in this material is markedly different from that observed in liquids. In this paper, a theory for nucleation at a first-order phase transition in which the mediating forces are long range is presented. It is found that the long-range force induces cooperative nucleation and growth processes, and that this feedback mechanism produces a well-defined delay time with a sharp onset in the transformation to the stable phase. Closed-form expressions for the characteristic onset time and width of the transition are developed, in good agreement with numerical and experimental results.
Clinical efficacy of dim light melatonin onset testing in diagnosing delayed sleep phase syndrome.
Rahman, Shadab A; Kayumov, Leonid; Tchmoutina, Ekaterina A; Shapiro, Colin M
2009-05-01
Delayed Sleep Phase Syndrome (DSPS) arises from biological clock desynchrony and accounts for 10% of chronic insomnia patients. Currently DSPS is diagnosed based on sleep/wake cycle disruptions rather than examining the underlying biological clock alterations. The objective of the study was to determine the sensitivity and specificity of the Dim Light Melatonin Onset (DLMO) Test in diagnosing DSPS in a clinical setting. Fifty-six patients (mean age 28 years) symptomatic of DSPS participated in the study. Following an initial assessment of DSPS using sleep diaries, participants underwent two consecutive nights of polysomnography (PSG), with an imposed sleep period on the second night to demonstrate the delay in the timing of habitual sleep period and to thereby confirm DSPS. Circadian phase delays were also measured using melatonin secretion profiles, and the efficacy of diagnosing DSPS using DLMO was compared to using sleep diaries and PSG. Melatonin secretion was assayed for each individual by ELISA using saliva samples. Main outcome measures included the time of melatonin secretion onset, clinical sensitivity and specificity of the DLMO test. The time of melatonin secretion onset was significantly delayed in DSPS patients. Clinical sensitivity and specificity of the DLMO test in diagnosing DSPS were 90.3% and 84.0%, respectively. The DLMO test is an accurate tool for differentiating between sleep disorder patients with or without underlying circadian rhythm disruption. It is effective for phase typing DSPS patients in a clinical setting.
Effect of pre-treatment with lysine acetyl salicylate on suxamethonium-induced myalgia.
Naguib, M; Farag, H; Magbagbeola, J A
1987-05-01
The hypothesis that prostaglandin inhibitors might reduce the incidence and severity of suxamethonium-induced myalgia was investigated using lysine acetyl salicylate (LAS) 13 mg kg-1 i.v. 3 min before the administration of suxamethonium in 20 patients. A comparison was made with atracurium 0.09 mg kg-1 (and placebo) in a double-blind prospective randomized trial. LAS and atracurium were effective in reducing the incidence and severity of postsuxamethonium myalgia and the increases in serum potassium concentration. There were no appreciable changes in serum calcium, sodium, chloride, phosphate, magnesium, creatinine, creatine phosphokinase concentrations or plasmacholinesterase activity. Atracurium caused a delay in the onset of action and a decrease in the intensity of suxamethonium-induced neuromuscular block. It is concluded that LAS pretreatment might have a place in suitable patients in the prevention of suxamethonium-induced myalgia and increases in serum potassium concentration.
A girl with early-onset epileptic encephalopathy associated with microdeletion involving CDKL5.
Saitsu, Hirotomo; Osaka, Hitoshi; Nishiyama, Kiyomi; Tsurusaki, Yoshinori; Doi, Hiroshi; Miyake, Noriko; Matsumoto, Naomichi
2012-05-01
Recent studies have shown that aberrations of CDKL5 in female patients cause early-onset intractable seizures, severe developmental delay or regression, and Rett syndrome-like features. We report on a Japanese girl with early-onset epileptic encephalopathy, hypotonia, developmental regression, and Rett syndrome-like features. The patient showed generalized tonic seizures, and later, massive myoclonus induced by phone and light stimuli. Brain magnetic resonance imaging showed no structural brain anomalies but cerebral atrophy. Electroencephalogram showed frontal dominant diffuse poly spikes and waves. Through copy number analysis by genomic microarray, we found a microdeletion at Xp22.13. A de novo 137-kb deletion, involving exons 5-21 of CDKL5, RS1, and part of PPEF1 gene, was confirmed by quantitative PCR and breakpoint specific PCR analyses. Our report suggests that the clinical features associated with CDKL5 deletions could be implicated in Japanese patients, and that genetic testing of CDKL5, including both sequencing and deletion analyses, should be considered in girls with early-onset epileptic encephalopathy and RTT-like features. Copyright © 2011 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Exercise improves cardiac autonomic function in obesity and diabetes.
Voulgari, Christina; Pagoni, Stamatina; Vinik, Aaron; Poirier, Paul
2013-05-01
Physical activity is a key element in the prevention and management of obesity and diabetes. Regular physical activity efficiently supports diet-induced weight loss, improves glycemic control, and can prevent or delay type 2 diabetes diagnosis. Furthermore, physical activity positively affects lipid profile, blood pressure, reduces the rate of cardiovascular events and associated mortality, and restores the quality of life in type 2 diabetes. However, recent studies have documented that a high percentage of the cardiovascular benefits of exercise cannot be attributed solely to enhanced cardiovascular risk factor modulation. Obesity in concert with diabetes is characterized by sympathetic overactivity and the progressive loss of cardiac parasympathetic influx. These are manifested via different pathogenetic mechanisms, including hyperinsulinemia, visceral obesity, subclinical inflammation and increased thrombosis. Cardiac autonomic neuropathy is an underestimated risk factor for the increased cardiovascular morbidity and mortality associated with obesity and diabetes. The same is true for the role of physical exercise in the restoration of the heart cardioprotective autonomic modulation in these individuals. This review addresses the interplay of cardiac autonomic function in obesity and diabetes, and focuses on the importance of exercise in improving cardiac autonomic dysfunction. Copyright © 2013 Elsevier Inc. All rights reserved.
Blockade of HERG human K+ channel and IKr of guinea pig cardiomyocytes by prochlorperazine.
Kim, Moon-Doo; Eun, Su-Yong; Jo, Su-Hyun
2006-08-21
Prochlorperazine, a drug for the symptomatic control of nausea, vomiting and psychiatric disorders, can induce prolonged QT, torsades de pointes and sudden death. We studied the effects of prochlorperazine on human ether-a-go-go-related gene (HERG) channels expressed in Xenopus oocytes and also in the delayed rectifier K+ current of guinea pig cardiomyocytes. Prochlorperazine induced a concentration-dependent decrease in current amplitudes at the end of the voltage steps and tail currents of HERG. The IC50 for a prochlorperazine block of HERG current in Xenopus oocytes progressively decreased relative to the degree of depolarization, from 42.1 microM at -40 mV to 37.4 microM at 0 mV to 22.6 microM at +40 mV. The block of HERG by prochlorperazine was use-dependent, exhibiting a more rapid onset and a greater steady-state block at higher frequencies of activation, while there was partial relief of the block with reduced frequencies. In guinea pig ventricular myocytes, bath applications of 0.5 and 1 muM prochlorperazine at 36 degrees C blocked rapidly activating delayed rectifier K+ current by 38.9% and 76.5%, respectively, but did not significantly block slowly activating delayed rectifier K+ current. Our findings suggest that the arrhythmogenic side effects of prochlorperazine are caused by a blockade of HERG and the rapid component of the delayed rectifier K+ current rather than by a blockade of the slow component.
Impact of age on exercise-induced ATP supply during supramaximal plantar flexion in humans
Trinity, Joel D.; Hart, Corey R.; Kim, Seong-Eun; Groot, H. Jonathan; Fur, Yann Le; Sorensen, Jacob R.; Jeong, Eun-Kee; Richardson, Russell S.
2015-01-01
Currently, the physiological factors responsible for exercise intolerance and bioenergetic alterations with age are poorly understood due, at least in art, to the confounding effect of reduced physical activity in the elderly. Thus, in 40 healthy young (22 ± 2 yr) and old (74 ± 8 yr) activity-matched subjects, we assessed the impact of age on: 1) the relative contribution of the three major pathways of ATP synthesis (oxidative ATP synthesis, glycolysis, and the creatine kinase reaction) and 2) the ATP cost of contraction during high-intensity exercise. Specifically, during supramaximal plantar flexion (120% of maximal aerobic power), to stress the functional limits of the skeletal muscle energy systems, we used 31P-labeled magnetic resonance spectroscopy to assess metabolism. Although glycolytic activation was delayed in the old, ATP synthesis from the main energy pathways was not significantly different between groups. Similarly, the inferred peak rate of mitochondrial ATP synthesis was not significantly different between the young (25 ± 8 mM/min) and old (24 ± 6 mM/min). In contrast, the ATP cost of contraction was significantly elevated in the old compared with the young (5.1 ± 2.0 and 3.7 ± 1.7 mM·min−1·W−1, respectively; P < 0.05). Overall, these findings suggest that, when young and old subjects are activity matched, there is no evidence of age-related mitochondrial and glycolytic dysfunction. However, this study does confirm an abnormal elevation in exercise-induced skeletal muscle metabolic demand in the old that may contribute to the decline in exercise capacity with advancing age. PMID:26041112
[The modern principles of management of intermittent claudication].
Gamzatov, T H; Svetlikov, A V
2016-01-01
Number of patients with peripheral arterial disease, despite various national public health programs, remains high and has no steady downward trend over the past few decades. Despite recent advances in drug therapy, сonservative approach in the management of peripheral arterial disease is often neglected by vascular surgeons. However, vast majority of patients with intermittent claudication, who receive comprehensive conservative treatment, including risk factor modification, exercise and drug therapy, may get significant improvement in quality of life by partial or complete relief of symptoms related to the disease. Patients strictly adhering to medical recommendations has favorable prognosis and progression of disease to the stage of critical limb ischemia is very unlikely. Noncompliant patients and those who continue smoking in particular, often experience progression of symptoms related to the disease. That may result in the need for surgical intervention aiming to prevent or delay the onset of critical limb ischemia.
NASA Astrophysics Data System (ADS)
Pal, J.; Chaudhuri, S.; Mukherjee, S.; Chowdhury, A. Roy
2017-10-01
Inter-annual variability in the onset of monsoon over Kerala (MOK), India, is investigated using daily temperature; mean sea level pressure; winds at 850, 500 and 200 hPa pressure levels; outgoing longwave radiation (OLR); sea surface temperature (SST) and vertically integrated moisture content anomaly with 32 years (1981-2013) observation. The MOK is classified as early, delayed, or normal by considering the mean monsoon onset date over Kerala to be the 1st of June with a standard deviation of 8 days. The objective of the study is to identify the synoptic setup during MOK and comparison with climatology to estimate the predictability of the onset type (early, normal, or delayed) with 5, 10, and 15 days lead time. The study reveals that an enhanced convection observed over the Bay of Bengal during early MOK is found to shift over the Arabian Sea during delayed MOK. An intense high-pressure zone observed over the western south Indian Ocean during early MOK shifts to the east during delayed MOK. Higher tropospheric temperature (TT) over the western Equatorial Ocean during early MOK and lower TT over the Indian subcontinent intensify the land-ocean thermal contrast that leads to early MOK. The sea surface temperature (SST) over the Arabian Sea is observed to be warmer during delayed than early MOK. During early MOK, the source of 850 hPa southwesterly wind shifts to the west equatorial zone while a COL region has been found during delayed MOK at that level. The study further reveals that the wind speed anomaly at the 200-hPa pressure level coincides inversely with the anomaly of tropospheric temperature.
5 CFR 9701.512 - Conferring on procedures for the exercise of management rights.
Code of Federal Regulations, 2014 CFR
2014-01-01
... 5 Administrative Personnel 3 2014-01-01 2014-01-01 false Conferring on procedures for the exercise... Conferring on procedures for the exercise of management rights. (a) As provided by § 9701.511(c), management... this section will delay the exercise of a management right under § 9701.511(a)(1) and (2). (d...
5 CFR 9701.512 - Conferring on procedures for the exercise of management rights.
Code of Federal Regulations, 2011 CFR
2011-01-01
... 5 Administrative Personnel 3 2011-01-01 2011-01-01 false Conferring on procedures for the exercise... Conferring on procedures for the exercise of management rights. (a) As provided by § 9701.511(c), management... this section will delay the exercise of a management right under § 9701.511(a)(1) and (2). (d...
5 CFR 9701.512 - Conferring on procedures for the exercise of management rights.
Code of Federal Regulations, 2012 CFR
2012-01-01
... 5 Administrative Personnel 3 2012-01-01 2012-01-01 false Conferring on procedures for the exercise... Conferring on procedures for the exercise of management rights. (a) As provided by § 9701.511(c), management... this section will delay the exercise of a management right under § 9701.511(a)(1) and (2). (d...
5 CFR 9701.512 - Conferring on procedures for the exercise of management rights.
Code of Federal Regulations, 2013 CFR
2013-01-01
... 5 Administrative Personnel 3 2013-01-01 2013-01-01 false Conferring on procedures for the exercise... Conferring on procedures for the exercise of management rights. (a) As provided by § 9701.511(c), management... this section will delay the exercise of a management right under § 9701.511(a)(1) and (2). (d...
Lillis, Teresa A; Hamilton, Nancy A; Pressman, Sarah D; Khou, Christina S
2016-10-19
This study investigated the relationship of daytime maternal napping, exercise, caffeine, and alcohol intake to objective and subjective sleep indices. Sixty healthy, nondepressed, first-time mothers between 3 and 6 months postpartum. Seven consecutive days of online behavior diaries, sleep diaries, and wrist actigraphy, collecting Total Sleep Time (TST), Sleep Onset Latency (SOL), and Wake After Sleep Onset (WASO). After controlling for infant age, employment status, infant feeding method, and infant sleeping location, mixed linear models showed that longer average exercise durations were associated with longer average TST, and longer average nap durations were associated with longer average WASO durations. Significant within-person differences in TST and SOL were also observed, such that, on days when participants exercised and napped longer than average, their respective TST and SOL durations that night were longer. Shorter nap durations and longer exercise durations were associated with longer TST, shorter SOL, and reduced WASO. Even small changes in daily exercise and napping behaviors could lead to reliable improvements in postpartum maternal sleep.
Exercise-Induced Bronchoconstriction Quiz
... navigation Home ▸ Conditions & Treatments ▸ Asthma ▸ EIB Quiz Share | Exercise-Induced Bronchoconstriction or Exercise-Induced Asthma Quiz Exercise-Induced Bronchoconstriction (also called ...
The impact of tobacco prices on smoking onset in Vietnam: duration analyses of retrospective data.
Guindon, G Emmanuel
2014-01-01
The benefits of preventing smoking onset are well known, and even just delaying smoking onset conveys benefits. Tobacco control policies are of critical importance to low-income countries with high smoking rates such as Vietnam where smoking prevalence is greater than 55 % in young men between the ages of 25 and 45. Using a survey of teens and young adults, I conducted duration analyses to explore the impact of tobacco price on smoking onset. The results suggest that tobacco prices in Vietnam have a statistically significant and fairly substantial effect on the onset of smoking. Increases in average tobacco prices, measured by an index of tobacco prices and by the prices of two popular brands, are found to delay smoking onset. Of particular interest is the finding that Vietnamese youth are more sensitive to changes in prices of a popular international brand that has had favourable tax treatment since the late 1990s.
Onset of Hyperventilation during Incremental Exercise: A Brief Review.
ERIC Educational Resources Information Center
Powers, Scott K.; Beadle, Ralph E.
1985-01-01
This review discussed the various mechanisms that have been proposed to be causative of the hyperventilation that occurs during heavy exercise. The humoral hypothesis and nonhumoral hypothesis and secondary factors are reviewed. (MT)
Dewan, Karuna; Benloucif, Susan; Reid, Kathryn; Wolfe, Lisa F.; Zee, Phyllis C.
2011-01-01
Study Objectives: To evaluate the effect of increasing the intensity and/or duration of exposure on light-induced changes in the timing of the circadian clock of humans. Design: Multifactorial randomized controlled trial, between and within subject design Setting: General Clinical Research Center (GCRC) of an academic medical center Participants: 56 healthy young subjects (20-40 years of age) Interventions: Research subjects were admitted for 2 independent stays of 4 nights/3 days for treatment with bright or dim-light (randomized order) at a time known to induce phase delays in circadian timing. The intensity and duration of the bright light were determined by random assignment to one of 9 treatment conditions (duration of 1, 2, or 3 hours at 2000, 4000, or 8000 lux). Measurements and Results: Treatment-induced changes in the dim light melatonin onset (DLMO) and dim light melatonin offset (DLMOff) were measured from blood samples collected every 20-30 min throughout baseline and post-treatment nights. Comparison by multi-factor analysis of variance (ANOVA) of light-induced changes in the time of the circadian melatonin rhythm for the 9 conditions revealed that changing the duration of the light exposure from 1 to 3 h increased the magnitude of light-induced delays. In contrast, increasing from moderate (2,000 lux) to high (8,000 lux) intensity light did not alter the magnitude of phase delays of the circadian melatonin rhythm. Conclusions: Results from the present study suggest that for phototherapy of circadian rhythm sleep disorders in humans, a longer period of moderate intensity light may be more effective than a shorter exposure period of high intensity light. Citation: Dewan K; Benloucif S; Reid K; Wolfe LF; Zee PC. Light-induced changes of the circadian clock of humans: increasing duration is more effective than increasing light intensity. SLEEP 2011;34(5):593-599. PMID:21532952
Dietary Supplements for Health, Adaptation, and Recovery in Athletes.
Rawson, Eric S; Miles, Mary P; Larson-Meyer, D Enette
2018-03-01
Some dietary supplements are recommended to athletes based on data that supports improved exercise performance. Other dietary supplements are not ergogenic per se, but may improve health, adaptation to exercise, or recovery from injury, and so could help athletes to train and/or compete more effectively. In this review, we describe several dietary supplements that may improve health, exercise adaptation, or recovery. Creatine monohydrate may improve recovery from and adaptation to intense training, recovery from periods of injury with extreme inactivity, cognitive processing, and reduce severity of or enhance recovery from mild traumatic brain injury (mTBI). Omega 3-fatty acid supplementation may also reduce severity of or enhance recovery from mTBI. Replenishment of vitamin D insufficiency or deficiency will likely improve some aspects of immune, bone, and muscle health. Probiotic supplementation can reduce the incidence, duration, and severity of upper respiratory tract infection, which may indirectly improve training or competitive performance. Preliminary data show that gelatin and/or collagen may improve connective tissue health. Some anti-inflammatory supplements, such as curcumin or tart cherry juice, may reduce inflammation and possibly delayed onset muscle soreness (DOMS). Beta-hydroxy beta-methylbutyrate (HMB) does not consistently increase strength and/or lean mass or reduce markers of muscle damage, but more research on recovery from injury that includes periods of extreme inactivity is needed. Several dietary supplements, including creatine monohydrate, omega 3-fatty acids, vitamin D, probiotics, gelatin, and curcumin/tart cherry juice could help athletes train and/or compete more effectively.
Loturco, I; Abad, CCC; Nakamura, FY; Ramos, SP; Kobal, R; Gil, S; Pereira, LA; Burini, FHP; Roschel, H; Ugrinowitsch, C; Tricoli, V
2016-01-01
The aim was to investigate the effects of far infrared (FIR) ray emitting clothes on indirect markers of exercise-induced muscle damage and physical performance recovery after a plyometric bout applied to soccer players. Twenty-one male players (18.9±0.6 years; 70.8±5.01 kg; 178.3±0.06 cm) performed 100 drop-jumps. Six hours after the bout, athletes put on FIR clothes (FIR) (density of 225 g·m-2, 88% far infrared rays emitting polyamide 66 Emana yarn (PA66) fibre, 12% Spandex, emissivity of 0.88 and power emitted of 341 W/m2µm at 37°C in the 5-20 µm wavelength range, patent WO 2009/077834 A2) (N = 10) or placebo clothes (PLA) (N = 11). Mid-thigh circumferences, creatine kinase (CK), and delayed-onset muscle soreness (DOMS) were assessed before, immediately after and 24, 48, and 72 h after the bout. Squat (SJ) and countermovement jump (CMJ) heights were measured before and at 24, 48, and 72 h after, while 1RM leg press (maximum strength) was measured before and at 72 h after the plyometrics. No differences between groups were found in mid-thigh circumferences, SJ, CMJ or 1RM. CK increased significantly 24 h after the plyometrics in comparison to before (p < 0.05) in both groups. PLA showed significant DOMS increases at 24, 48, and 72 h, while FIR showed significant increases at 24 and 48 h (p < 0.05). DOMS effect sizes were greater in FIR (moderate at 48 h, ES = 0.737 and large at 72 h, ES = 0.844), suggesting that FIR clothes may reduce perceived DOMS after an intense plyometric session performed by soccer players. PMID:27601783
Dupuy, Olivier; Douzi, Wafa; Theurot, Dimitri; Bosquet, Laurent; Dugué, Benoit
2018-01-01
Introduction: The aim of the present work was to perform a meta-analysis evaluating the impact of recovery techniques on delayed onset muscle soreness (DOMS), perceived fatigue, muscle damage, and inflammatory markers after physical exercise. Method: Three databases including PubMed, Embase, and Web-of-Science were searched using the following terms: (“recovery” or “active recovery” or “cooling” or “massage” or “compression garment” or “electrostimulation” or “stretching” or “immersion” or “cryotherapy”) and (“DOMS” or “perceived fatigue” or “CK” or “CRP” or “IL-6”) and (“after exercise” or “post-exercise”) for randomized controlled trials, crossover trials, and repeated-measure studies. Overall, 99 studies were included. Results: Active recovery, massage, compression garments, immersion, contrast water therapy, and cryotherapy induced a small to large decrease (−2.26 < g < −0.40) in the magnitude of DOMS, while there was no change for the other methods. Massage was found to be the most powerful technique for recovering from DOMS and fatigue. In terms of muscle damage and inflammatory markers, we observed an overall moderate decrease in creatine kinase [SMD (95% CI) = −0.37 (−0.58 to −0.16), I2 = 40.15%] and overall small decreases in interleukin-6 [SMD (95% CI) = −0.36 (−0.60 to −0.12), I2 = 0%] and C-reactive protein [SMD (95% CI) = −0.38 (−0.59 to−0.14), I2 = 39%]. The most powerful techniques for reducing inflammation were massage and cold exposure. Conclusion: Massage seems to be the most effective method for reducing DOMS and perceived fatigue. Perceived fatigue can be effectively managed using compression techniques, such as compression garments, massage, or water immersion. PMID:29755363
Association of Crossword Puzzle Participation with Memory Decline in Persons Who Develop Dementia
Pillai, Jagan A.; Hall, Charles B.; Dickson, Dennis W.; Buschke, Herman; Lipton, Richard B.; Verghese, Joe
2013-01-01
Participation in cognitively stimulating leisure activities such as crossword puzzles may delay onset of the memory decline in the preclinical stages of dementia, possibly via its effect on improving cognitive reserve. We followed 488 initially cognitively intact community residing individuals with clinical and cognitive assessments every 12–18 months in the Bronx Aging Study. We assessed the influence of crossword puzzle participation on the onset of accelerated memory decline as measured by the Buschke Selective Reminding Test in 101 individuals who developed incident dementia using a change point model. Crossword puzzle participation at baseline delayed onset of accelerated memory decline by 2.54 years. Inclusion of education or participation in other cognitively stimulating activities did not significantly add to the fit of the model beyond the effect of puzzles. Our findings show that late life crossword puzzle participation, independent of education, was associated with delayed onset of memory decline in persons who developed dementia. Given the wide availability and accessibility of crossword puzzles, their role in preventing cognitive decline should be validated in future clinical trials. PMID:22040899
Neuromuscular dysfunction that may predict ACL injury risk: a case report.
Saunders, Natalie; McLean, Scott G; Fox, Aaron S; Otago, Leonie
2014-06-01
This case report examined the neuromuscular function of a competitive female netball player six days prior to an incident where she sustained an acute anterior cruciate ligament injury during normal sports activity. Electromyography was used to examine activation onsets of four lower limb muscles (rectus femoris, biceps femoris, medial hamstrings and gluteus medius) relative to initial contact (IC) during netball-specific landings of varying complexity. The results of the injured participant were compared to the remaining participants in the study (n=8), and the injured participant's injured limb was compared to the contralateral limb. The injured participant was the only player to record delayed pre-injury muscle onsets after IC for all muscles tested in the injured limb, while her non-injured limb was comparable to the other participants tested. Furthermore, delayed muscle onset after IC occurred more frequently as landing complexity increased. This case report suggests that delayed muscle activity onset after IC during landing may be an important risk factor for ACL injury. Copyright © 2014 Elsevier B.V. All rights reserved.
Delayed onset of weanling diarrhoea associated with high breast milk intake.
Watkinson, M
1981-01-01
In a West African community where breast feeding was practised universally for 18 to 24 months infants with the higher breast milk intakes were given supplementary foods later than others. Although 66% of infants had diarrhoea before the introduction of these foods, it was generally mild and only 12% suffered diarrhoea-induced weight loss in this pre-weaning period. By the end of infancy, all children had had diarrhoea and 89% had suffered weight loss in one or more attacks. As the bulk of diarrhoeal morbidity occurred after weaning had started, children with the higher breast milk intakes tended to be older before losing weight with diarrhoea. By one year, children with a higher than average breast milk intake and with no diarrhoea-induced weight loss in the first half of infancy weighed an average of 1 kg more than those with low breast milk intakes and early weight loss with diarrhoea. Interventions which improve or maintain maternal lactation performance should not only increase the nutrient intake of an infant, but also delay the almost inevitable weight loss of weanling diarrhoea.
Atypical onset of bicalutamide-induced liver injury.
Yun, Gee Young; Kim, Seok Hyun; Kim, Seok Won; Joo, Jong Seok; Kim, Ju Seok; Lee, Eaum Seok; Lee, Byung Seok; Kang, Sun Hyoung; Moon, Hee Seok; Sung, Jae Kyu; Lee, Heon Young; Kim, Kyung Hee
2016-04-21
Anti-androgen therapy is the leading treatment for advanced prostate cancer and is commonly used for neoadjuvant or adjuvant treatment. Bicalutamide is a non-steroidal anti-androgen, used during the initiation of androgen deprivation therapy along with a luteinizing hormone-releasing hormone agonist to reduce the symptoms of tumor-related flares in patients with advanced prostate cancer. As side effects, bicalutamide can cause fatigue, gynecomastia, and decreased libido through competitive androgen receptor blockade. Additionally, although not as common, drug-induced liver injury has also been reported. Herein, we report a case of hepatotoxicity secondary to bicalutamide use. Typically, bicalutamide-induced hepatotoxicity develops after a few days; however, in this case, hepatic injury occurred 5 mo after treatment initiation. Based on this rare case of delayed liver injury, we recommend careful monitoring of liver function throughout bicalutamide treatment for prostate cancer.
Bupivacaine drug-induced liver injury: a case series and brief review of the literature.
Chintamaneni, Preethi; Stevenson, Heather L; Malik, Shahid M
2016-08-01
Bupivacaine is an established and efficacious anesthetic that has become increasingly popular in postoperative pain management. However, there is limited literature regarding the potential for bupivacaine-induced delayed liver toxicity. Describe cholestasis as a potential adverse reaction of bupivacaine infusion into a surgical wound. Retrospective review of patients' medical records. We report the cases of 3 patients with new onset of cholestatic injury after receiving bupivacaine infusion for postoperative herniorrhaphy pain management. All patients had negative serologic workups for other causes of liver injury. All patients achieved eventual resolution of their liver injury. Bupivacaine-induced liver injury should be on the differential of individuals presenting with jaundice and cholestasis within a month of infusion via a surgically placed catheter of this commonly used anesthetic. Copyright © 2016 Elsevier Inc. All rights reserved.
Bilingualism delays age at onset of dementia, independent of education and immigration status.
Mortimer, James A
2014-05-27
Editors' Note: Mortimer argues that important confounding variables may have biased the conclusion by Alladi et al. on the role of bilingualism in delaying the onset of dementia. Following Mortimer’s comments, Alladi et al. conducted additional analysis of their data to support their conclusion. The attitude of "close enough" is not appropriate when determining brain death. Stadlan comments and supports Frank’s call for action regarding this sensitive issue.
Veatch, Olivia J; Pendergast, Julie S; Allen, Melissa J; Leu, Roberta M; Johnson, Carl Hirschie; Elsea, Sarah H; Malow, Beth A
2015-01-01
Sleep disruption is common in individuals with autism spectrum disorder (ASD). Genes whose products regulate endogenous melatonin modify sleep patterns and have been implicated in ASD. Genetic factors likely contribute to comorbid expression of sleep disorders in ASD. We studied a clinically unique ASD subgroup, consisting solely of children with comorbid expression of sleep onset delay. We evaluated variation in two melatonin pathway genes, acetylserotonin O-methyltransferase (ASMT) and cytochrome P450 1A2 (CYP1A2). We observed higher frequencies than currently reported (p < 0.04) for variants evidenced to decrease ASMT expression and related to decreased CYP1A2 enzyme activity (p ≤ 0.0007). We detected a relationship between genotypes in ASMT and CYP1A2 (r(2) = 0.63). Our results indicate that expression of sleep onset delay relates to melatonin pathway genes.
King, Laurie A; Horak, Fay B
2009-01-01
This article introduces a new framework for therapists to develop an exercise program to delay mobility disability in people with Parkinson disease (PD). Mobility, or the ability to efficiently navigate and function in a variety of environments, requires balance, agility, and flexibility, all of which are affected by PD. This article summarizes recent research identifying how constraints on mobility specific to PD, such as rigidity, bradykinesia, freezing, poor sensory integration, inflexible program selection, and impaired cognitive processing, limit mobility in people with PD. Based on these constraints, a conceptual framework for exercises to maintain and improve mobility is presented. An example of a constraint-focused agility exercise program, incorporating movement principles from tai chi, kayaking, boxing, lunges, agility training, and Pilates exercises, is presented. This new constraint-focused agility exercise program is based on a strong scientific framework and includes progressive levels of sensorimotor, resistance, and coordination challenges that can be customized for each patient while maintaining fidelity. Principles for improving mobility presented here can be incorporated into an ongoing or long-term exercise program for people with PD. PMID:19228832
King, Laurie A; Horak, Fay B
2009-04-01
This article introduces a new framework for therapists to develop an exercise program to delay mobility disability in people with Parkinson disease (PD). Mobility, or the ability to efficiently navigate and function in a variety of environments, requires balance, agility, and flexibility, all of which are affected by PD. This article summarizes recent research identifying how constraints on mobility specific to PD, such as rigidity, bradykinesia, freezing, poor sensory integration, inflexible program selection, and impaired cognitive processing, limit mobility in people with PD. Based on these constraints, a conceptual framework for exercises to maintain and improve mobility is presented. An example of a constraint-focused agility exercise program, incorporating movement principles from tai chi, kayaking, boxing, lunges, agility training, and Pilates exercises, is presented. This new constraint-focused agility exercise program is based on a strong scientific framework and includes progressive levels of sensorimotor, resistance, and coordination challenges that can be customized for each patient while maintaining fidelity. Principles for improving mobility presented here can be incorporated into an ongoing or long-term exercise program for people with PD.
Hui, John
2016-02-01
This is the case of a 71-year-old man with Asian ancestry who had myelodysplastic syndrome admitted for allogeneic hematopoietic stem cell transplant. This case suggests that voriconazole-induced confusion is probably dose-independent and reversible with no residual symptoms after discontinuation of voriconazole. Patient can experience confusion even voriconazole is ordered according to package insert and serum voriconazole level is within therapeutic range (1-6 µg/mL). The onset of confusion can be delayed and sudden after seven days of voriconazole therapy. Genotyping of CYP2C19 can be tested for Asian populations since 15-20% of them could be poor metabolizers of voriconazole. © The Author(s) 2014.
Chen, Shengyun; Sun, Haixin; Zhao, Xingquan; Fu, Paul; Yan, Wang; Yilong, Wang; Hongyan, Jia; Yan, Zhang; Wenzhi, Wang
2013-06-01
Studies have shown that awareness of early stroke symptoms and the use of ambulances are two important factors in decreasing pre-hospital stroke delay. The purpose of this study is to evaluate a comprehensive educational stroke protocol in improving stroke response times. Two urban communities in Beijing (population ≍50 000), matched in economic status and geography, were enrolled in this study. A comprehensive educational protocol, which included public lectures and distribution of instructive material for the community and its medical staff, was implemented from August 2008 to December 2010. Surveillance of new onset stroke in both communities was carried out during the same period. Pre-hospital delay time and percentage of patients using emergency medical services (EMS) were compared between the two communities. After comprehensive educational protocol, we found that: (i) pre-hospital delay (time from stroke symptom onset to hospital arrival) decreased from 180 to 79 minutes, (ii) the proportion of patients arriving within three hours of stroke onset increased from 55·8% to 80·4%, (iii) pre-hospital delay of stroke patients with symptoms of paralysis, numbness, and speech impediments was decreased, and (iv) the proportion of stroke patients calling for EMS increased from 50·4% to 60·7%. The comprehensive educational stroke protocol was significantly effective in decreasing pre-hospital stroke delay.
de Oliveira, Daniel Maia Nogueira; Batista-Lima, Francisco José; de Carvalho, Emanuella Feitosa; Havt, Alexandre; da Silva, Moisés Tolentino Bento; Dos Santos, Armênio Aguiar; Magalhães, Pedro Jorge Caldas
2017-12-01
What is the central question of this study? Acute acidosis that results from short-term exercise is involved in delayed gastric emptying in rats and the lower responsiveness of gastric fundus strips to carbachol. Does extracellular acidosis decrease responsiveness to carbachol in tissues of sedentary rats? How? What is the main finding and its importance? Extracellular acidosis inhibits cholinergic signalling in the rat gastric fundus by selectively influencing the G q/11 protein signalling pathway. Acute acidosis that results from short-term exercise delays gastric emptying in rats and decreases the responsiveness to carbachol in gastric fundus strips. The regulation of cytosolic Ca 2+ concentrations appears to be a mechanism of action of acidosis. The present study investigated the way in which acidosis interferes with gastric smooth muscle contractions. Rat gastric fundus isolated strips at pH 6.0 presented a lower magnitude of carbachol-induced contractions compared with preparations at pH 7.4. This lower magnitude was absent in carbachol-stimulated duodenum and KCl-stimulated gastric fundus strips. In Ca 2+ -free conditions, repeated contractions that were induced by carbachol progressively decreased, with no influence of extracellular pH. In fundus strips, CaCl 2 -induced contractions were lower at pH 6.0 than at pH 7.4 but only when stimulated in the combined presence of carbachol and verapamil. In contrast, verapamil-sensitive contractions that were induced by CaCl 2 in the presence of KCl did not change with pH acidification. In Ca 2+ store-depleted preparations that were treated with thapsigargin, the contractions that were induced by extracellular Ca 2+ restoration were smaller at pH 6.0 than at pH 7.4, but relaxation that was induced by SKF-96365 (an inhibitor of store-operated Ca 2+ entry) was unaltered by extracellular acidification. At pH 6.0, the phospholipase C inhibitor U-73122 relaxed carbachol-induced contractions less than at pH 7.4, and this phenomenon was absent in tissue that was treated with the RhoA kinase blocker Y-27632. Thus, extracellular acidosis inhibited pharmacomechanical coupling in gastric fundus by selectively inhibiting the G q/11 protein signalling pathway, whereas electromechanical coupling remained functionally preserved. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.
Crescimanno, G; Modica, R; Lo Mauro, R; Musumeci, O; Toscano, A; Marrone, O
2015-07-01
In patients with late-onset Pompe disease, we explored the role of the Cardiopulmonary Exercise Test (CPET) and the Six-Minute Walking Test (6MWT) in the assessment of exercise capacity and in the evaluation of the effects of enzyme replacement therapy (ERT). Eight patients affected by late-onset Pompe disease, followed up at the Centre for Neuromuscular Diseases and treated with ERT, underwent a baseline evaluation with a spirometry, a CPET and a 6MWT. Four of them were restudied after 36 months of treatment. Three patients showed a reduction in exercise capacity as evaluated by peak oxygen uptake (VO2) measured at the CPET and Distance Walked (DW) measured at the 6MWT (median % predicted: 67.1 [range 54.3-99.6] and 67.3 [56.6-82.6], respectively). Cardiac and respiratory limitations revealed by the CPET were correlated to peak VO2, but not to the DW. Nevertheless, percent of predicted values of peak VO2 and DW were strongly correlated (rho = 0.85, p = 0.006), and close to identity. In the longitudinal evaluation forced vital capacity decreased, while peak VO2 and DW showed a trend to a parallel improvement. We concluded that although only the CPET revealed causes of exercise limitation, which partially differed among patients, CPET and 6MWT showed a similar overall degree of exercise impairment. That held true in the longitudinal assessment during ERT, where both tests demonstrated similar small improvements, occurring despite deterioration in forced vital capacity. Copyright © 2015 Elsevier B.V. All rights reserved.
Izawa, Kazuhiro P; Watanabe, Satoshi; Omiya, Kazuto; Hirano, Yasuyuki; Oka, Koichiro; Osada, Naohiko; Iijima, Setsu
2005-05-01
To evaluate the effect of the self-monitoring approach (SMA) on self-efficacy for physical activity (SEPA), exercise maintenance, and objective physical activity level over a 6-mo period after a supervised 6-mo cardiac rehabilitation (CR) program. We conducted a randomized, controlled trial with 45 myocardial infarction patients (38 men, seven women; mean age, 64.2 yrs) recruited after completion of an acute-phase, exercise-based CR program. Patients were randomly assigned to an SMA group (n = 24) or control group (n = 21). Along with CR, the subjects in the SMA group self-monitored their weight and physical activity for 6 mos. The SMA used in this study was based on Bandura's self-efficacy theory and was designed to enhance confidence for exercise maintenance. The control group participated in CR only. All patients were evaluated with the SEPA assessment tool. Exercise maintenance, SEPA scores, and objective physical activity (average steps per week) as a caloric expenditure were assessed at baseline and during a 6-mo period after the supervised CR program. Mean period from myocardial infarction onset did not differ significantly between the SMA and control groups (12.1 +/- 1.3 vs. 12.2 +/- 1.2 mos, P = 0.692). All patients maintained their exercise routine in the SMA group. Mean SEPA score (90.5 vs. 72.7 points, P < 0.001) and mean objective physical activity (10,458.7 vs. 6922.5 steps/wk, P < 0.001) at 12 mos after myocardial infarction onset were significantly higher in the SMA than control group. SEPA showed significant positive correlation with objective physical activity (r = 0.642, P < 0.001). SMA during supervised CR may effectively increase exercise maintenance, SEPA, and objective physical activity at 12 mos after myocardial infarction onset.
Waldron, Mark; Ralph, Cameron; Jeffries, Owen; Tallent, Jamie; Theis, Nicola; Patterson, Stephen David
2018-05-16
This study investigated the effects of leucine or leucine + glutamine supplementation on recovery from eccentric exercise. In a double-blind independent groups design, 23 men were randomly assigned to a leucine (0.087 g/kg; n = 8), leucine + glutamine (0.087 g/kg + glutamine 0.3 g/kg; n = 8) or placebo (0.3 g/kg maltodextrin; n = 7) group. Participants performed 5 sets of drop jumps, with each set comprising 20 repetitions. Isometric knee-extensor strength, counter-movement jump (CMJ) height, delayed-onset muscle soreness (DOMS) and creatine kinase (CK) were measured at baseline, 1, 24, 48 h and 72 h post-exercise. There was a time × group interaction for isometric strength, CMJ and CK (P < 0.05), with differences between the leucine + glutamine and placebo group at 48 h and 72 h for strength (P = 0.013; d = 1.43 and P < 0.001; d = 2.06), CMJ (P = 0.008; d = 0.87 and P = 0.019; d = 1.17) and CK at 24 h (P = 0.012; d = 0.54) and 48 h (P = 0.010; d = 1.37). The leucine group produced higher strength at 72 h compared to placebo (P = 0.007; d = 1.65) and lower CK at 24 h (P = 0.039; d = 0.63) and 48 h (P = 0.022; d = 1.03). Oral leucine or leucine + glutamine increased the rate of recovery compared to placebo after eccentric exercise. These findings highlight potential benefits of co-ingesting these amino acids to ameliorate recovery.
Papp, H; Sarusi, A; Farkas, A S; Takacs, H; Kui, P; Vincze, D; Ivany, E; Varro, A; Papp, J G; Forster, T; Farkas, A
2016-10-01
Hyperventilation reduces partial pressure of CO 2 (PCO 2 ) in the blood, which results in hypokalaemia. Hypokalaemia helps the development of the life-threatening torsades de pointes type ventricular arrhythmia (TdP) evoked by repolarization delaying drugs. This implies that hyperventilation may assist the development of proarrhythmic events. Therefore, this study experimentally investigated the effect of hyperventilation on proarrhythmia development during delayed repolarization. Phenylephrine (an α 1 -adrenoceptor agonist) and clofilium (as a representative repolarization delaying agent inhibiting the rapid component of the delayed rectifier potassium current, I Kr ) were administered intravenously to pentobarbital-anaesthetized, mechanically ventilated, open chest rabbits. ECG was recorded, and the onset times and incidences of the arrhythmias were determined. Serum K + , pH and PCO 2 were measured in arterial blood samples. Clofilium prolonged the rate corrected QT interval. TdP occurred in 15 animals (TdP+ group), and did not occur in 14 animals (TdP- group). We found a strong, positive, linear correlation between serum K + and PCO 2 . There was no relationship between the occurrence of TdP and the baseline K + and PCO 2 values. However, a positive, linear correlation was found between the onset time of the first arrhythmias and the K + and PCO 2 values. The regression lines describing the relationship between PCO 2 and onset time of first arrhythmias were parallel in the TdP+ and TdP- groups, but the same PCO 2 resulted in earlier arrhythmia onset in the TdP+ group than in the TdP- group. We conclude that hyperventilation and hypocapnia with the resultant hypokalaemia assist the multifactorial process of proarrhythmia development during delayed repolarization. This implies that PCO 2 and serum K + should be controlled tightly during mechanical ventilation in experimental investigations and clinical settings when repolarization-delaying drugs are applied.
Factors associated with treatment delays in pediatric refractory convulsive status epilepticus.
Sánchez Fernández, I; Gaínza-Lein, M; Abend, N S; Anderson, A E; Arya, R; Brenton, J N; Carpenter, J L; Chapman, K E; Clark, J; Gaillard, W D; Glauser, T A; Goldstein, J L; Goodkin, H P; Helseth, A R; Jackson, M C; Kapur, K; Lai, Y-C; McDonough, T L; Mikati, M A; Nayak, A; Peariso, K; Riviello, J J; Tasker, R C; Tchapyjnikov, D; Topjian, A A; Wainwright, M S; Wilfong, A; Williams, K; Loddenkemper, T
2018-05-08
To identify factors associated with treatment delays in pediatric patients with convulsive refractory status epilepticus (rSE). This prospective, observational study was performed from June 2011 to March 2017 on pediatric patients (1 month to 21 years of age) with rSE. We evaluated potential factors associated with increased treatment delays in a Cox proportional hazards model. We studied 219 patients (53% males) with a median (25th-75th percentiles [p 25 -p 75 ]) age of 3.9 (1.2-9.5) years in whom rSE started out of hospital (141 [64.4%]) or in hospital (78 [35.6%]). The median (p 25 -p 75 ) time from seizure onset to treatment was 16 (5-45) minutes to first benzodiazepine (BZD), 63 (33-146) minutes to first non-BZD antiepileptic drug (AED), and 170 (107-539) minutes to first continuous infusion. Factors associated with more delays to administration of the first BZD were intermittent rSE (hazard ratio [HR] 1.54, 95% confidence interval [CI] 1.14-2.09; p = 0.0467) and out-of-hospital rSE onset (HR 1.5, 95% CI 1.11-2.04; p = 0.0467). Factors associated with more delays to administration of the first non-BZD AED were intermittent rSE (HR 1.78, 95% CI 1.32-2.4; p = 0.001) and out-of-hospital rSE onset (HR 2.25, 95% CI 1.67-3.02; p < 0.0001). None of the studied factors were associated with a delayed administration of continuous infusion. Intermittent rSE and out-of-hospital rSE onset are independently associated with longer delays to administration of the first BZD and the first non-BZD AED in pediatric rSE. These factors identify potential targets for intervention to reduce time to treatment. © 2018 American Academy of Neurology.
Factors controlling the Indian summer monsoon onset in a coupled model
NASA Astrophysics Data System (ADS)
Prodhomme, Chloé; Terray, Pascal; Masson, Sébastien; Izumo, Takeshi
2013-04-01
The observed Indian Summer Monsoon (ISM) onset occurs around 30 May and 2 June, with a standard deviation of 8 to 9 days, according to the estimates. The relationship between interannual variability of the ISM onset and SSTs (Sea Surface Temperature) remains controversial. The role of Indian Ocean SSTs remain unclear, some studies have shown a driving role while other suggests a passive relation between Indian Ocean SSTs and ISM. The intrinsic impact of ENSO (El Nino-Southern Oscillation) is also difficult to estimate from observations alone. Finally, the predictability of the ISM onset remains drastically limited by the inability of both forced and coupled model to reproduce a realistic onset date. In order to measure objectively the ISM onset, different methods have been developed based on rainfall or dynamical indices (Ananthakrishnan and Soman, 1988 ; Wang and Ho 2002 ; Joseph et al. 2006). In the study we use the Tropospheric Temperature Gradient (TTG), which is the difference between the tropospheric temperature in a northern and a southern box in the Indian areas (Xavier et al. 2007). This index measures the dynamical strength of the monsoon and provides a stable and precise onset date consistent with rainfall estimates. In the SINTEX-F2 coupled model, the ISM onset measured with the TTG is delayed of approximately 10 days and is in advance of 6 days in the atmosphere-only (ECHAM) model. The 16 days lag between atmospheric-only and coupled runs suggests a crucial role of the coupling, especially SST biases on the delayed onset. With the help of several sensitivity experiments, this study tries to identify the keys regions influencing the ISM onset. Many studies have shown a strong impact of the Arabian Sea and Indian Ocean SST on the ISM onset. Nevertheless, the correction of the SSTs, based on AVHRR, in the tropical Indian Ocean only slightly corrects the delayed onset in the coupled model, which suggests an impact of SST in others regions on the ISM onset. During May and June, the main tropical SST biases in the coupled model are a strong warm bias in the Atlantic Ocean and a warm bias in the tropical Pacific Ocean, except along the equator around 140°W-100°W, where there is a cold tongue bias. The correction of the warm bias in the Atlantic Ocean slightly improves the onset date. Conversely, the correction of SST biases in the tropical and equatorial Pacific Oceans advances the onset date of 12 and 10 days, respectively, compared to the control coupled run. This result suggests that, at least in this model, the ISM onset is mainly control by the Pacific Ocean SSTs. Even if ENSO has an impact on the onset date it does not explain the delay, which is related to the biased SST mean state in the Pacific Ocean.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-07
... marine mammal is likely to travel during the time associated with the TDFD's time delay, and that... Navy provided the approximate distance that an animal would typically travel within a given time-delay... Speed and Length of Time-Delay Potential distance Species group Swim speed Time-delay traveled Delphinid...
Chen, Liuji; Hambright, William Sealy; Na, Ren; Ran, Qitao
2015-11-20
Glutathione peroxidase 4 (GPX4), an antioxidant defense enzyme active in repairing oxidative damage to lipids, is a key inhibitor of ferroptosis, a non-apoptotic form of cell death involving lipid reactive oxygen species. Here we show that GPX4 is essential for motor neuron health and survival in vivo. Conditional ablation of Gpx4 in neurons of adult mice resulted in rapid onset and progression of paralysis and death. Pathological inspection revealed that the paralyzed mice had a dramatic degeneration of motor neurons in the spinal cord but had no overt neuron degeneration in the cerebral cortex. Consistent with the role of GPX4 as a ferroptosis inhibitor, spinal motor neuron degeneration induced by Gpx4 ablation exhibited features of ferroptosis, including no caspase-3 activation, no TUNEL staining, activation of ERKs, and elevated spinal inflammation. Supplementation with vitamin E, another inhibitor of ferroptosis, delayed the onset of paralysis and death induced by Gpx4 ablation. Also, lipid peroxidation and mitochondrial dysfunction appeared to be involved in ferroptosis of motor neurons induced by Gpx4 ablation. Taken together, the dramatic motor neuron degeneration and paralysis induced by Gpx4 ablation suggest that ferroptosis inhibition by GPX4 is essential for motor neuron health and survival in vivo. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.
Santhanam, Abirami; Peng, Wen-Hsin; Yu, Ya-Ting; Sang, Tzu-Kang
2014-01-01
The rapid removal of larval midgut is a critical developmental process directed by molting hormone ecdysone during Drosophila metamorphosis. To date, it remains unclear how the stepwise events can link the onset of ecdysone signaling to the destruction of larval midgut. This study investigated whether ecdysone-induced expression of receptor protein tyrosine phosphatase PTP52F regulates this process. The mutation of the Ptp52F gene caused significant delay in larval midgut degradation. Transitional endoplasmic reticulum ATPase (TER94), a regulator of ubiquitin proteasome system, was identified as a substrate and downstream effector of PTP52F in the ecdysone signaling. The inducible expression of PTP52F at the puparium formation stage resulted in dephosphorylation of TER94 on its Y800 residue, ensuring the rapid degradation of ubiquitylated proteins. One of the proteins targeted by dephosphorylated TER94 was found to be Drosophila inhibitor of apoptosis 1 (DIAP1), which was rapidly proteolyzed in cells with significant expression of PTP52F. Importantly, the reduced level of DIAP1 in response to inducible PTP52F was essential not only for the onset of apoptosis but also for the initiation of autophagy. This study demonstrates a novel function of PTP52F in regulating ecdysone-directed metamorphosis via enhancement of autophagic and apoptotic cell death in doomed Drosophila midguts. PMID:24550005
Jeon, Hyuk-Joon; You, Seung Yeop; Kim, Dong Hyun; Jeon, Hong Bae; Oh, Jeong Su
2017-08-01
Following ovulation, oocytes undergo a time-dependent deterioration in quality referred to as post-ovulatory ageing. Although various factors influence the post-ovulatory ageing of oocytes, oxidative stress is a key factor involved in deterioration of oocyte quality. Artemisia asiatica Nakai ex Pamp. has been widely used in East Asia as a food ingredient and traditional medicine for the treatment of inflammation, cancer, and microbial infections. Recent studies have shown that A. asiatica exhibits antioxidative effects. In this study, we investigated whether A. asiatica has the potential to attenuate deterioration in oocyte quality during post-ovulatory ageing. Freshly ovulated mouse oocytes were cultured with 0, 50, 100 or 200 μg/ml ethanol extracts of A. asiatica Nakai ex Pamp. After culture for up to 24 h, various ageing-induced oocyte abnormalities, including morphological changes, reactive oxygen species (ROS) accumulation, apoptosis, chromosome and spindle defects, and mitochondrial aggregation were determined. Treatment of oocytes with A. asiatica extracts reduced ageing-induced morphological changes. Moreover, A. asiatica extracts decreased ROS generation and the onset of apoptosis by preventing elevation of the Bax/Bcl-2 expression ratio during post-ovulatory ageing. Furthermore, A. asiatica extracts attenuated the ageing-induced abnormalities including spindle defects, chromosome misalignment and mitochondrial aggregation. Our results demonstrate that A. asiatica can relieve deterioration in oocyte quality and delay the onset of apoptosis during post-ovulatory ageing.
Thompson, Richard B; Pagano, Joseph J; Mathewson, Kory W; Paterson, Ian; Dyck, Jason R; Kitzman, Dalane W; Haykowsky, Mark J
2016-01-01
The goals of the current study were to compare leg blood flow, oxygen extraction and oxygen uptake (VO2) after constant load sub-maximal unilateral knee extension (ULKE) exercise in patients with heart failure with reduced ejection fraction (HFrEF) compared to those with preserved ejection fraction (HFpEF). Previously, it has been shown that prolonged whole body VO2 recovery kinetics are directly related to disease severity and all-cause mortality in HFrEF patients. To date, no study has simultaneously measured muscle-specific blood flow and oxygen extraction post exercise recovery kinetics in HFrEF or HFpEF patients; therefore it is unknown if muscle VO2 recovery kinetics, and more specifically, the recovery kinetics of blood flow and oxygen extraction at the level of the muscle, differ between HF phenotypes. Ten older (68±10yrs) HFrEF (n = 5) and HFpEF (n = 5) patients performed sub-maximal (85% of maximal weight lifted during an incremental test) ULKE exercise for 4 minutes. Femoral venous blood flow and venous O2 saturation were measured continuously from the onset of end-exercise, using a novel MRI method, to determine off-kinetics (mean response times, MRT) for leg VO2 and its determinants. HFpEF and HFrEF patients had similar end-exercise leg blood flow (1.1±0.6 vs. 1.2±0.6 L/min, p>0.05), venous saturation (42±12 vs. 41±11%, p>0.05) and VO2 (0.13±0.08 vs. 0.11±0.05 L/min, p>0.05); however HFrEF had significantly delayed recovery MRT for flow (292±135sec. vs 105±63sec., p = 0.004) and VO2 (95±37sec. vs. 47±15sec., p = 0.005) compared to HFpEF. Impaired muscle VO2 recovery kinetics following ULKE exercise differentiated HFrEF from HFpEF patients and suggests distinct underlying pathology and potential therapeutic approaches in these populations.
Stack, Rebecca J; Mallen, Christian D; Deighton, Chris; Kiely, Patrick; Shaw, Karen L; Booth, Alison; Kumar, Kanta; Thomas, Susan; Rowan, Ian; Horne, Rob; Nightingale, Peter; Herron-Marx, Sandy; Jinks, Clare; Raza, Karim
2015-12-01
Early treatment for rheumatoid arthritis (RA) is vital. However, people often delay in seeking help at symptom onset. An assessment of the reasons behind patient delay is necessary to develop interventions to promote rapid consultation. Using a mixed methods design, we aimed to develop and test a questionnaire to assess the barriers to help seeking at RA onset. Questionnaire items were extracted from previous qualitative studies. Fifteen people with a lived experience of arthritis participated in focus groups to enhance the questionnaire's face validity. The questionnaire was also reviewed by groups of multidisciplinary health-care professionals. A test-retest survey of 41 patients with newly presenting RA or unclassified arthritis assessed the questionnaire items' intraclass correlations. During focus groups, participants rephrased questions, added questions and deleted items not relevant to the questionnaire's aims. Participants organized items into themes: early symptom experience, initial reactions to symptoms, self-management behaviours, causal beliefs, involvement of significant others, pre-diagnosis knowledge about RA, direct barriers to seeking help and relationship with GP. The test-retest survey identified seven items (out of 79) with low intraclass correlations which were removed from the final questionnaire. The involvement of people with a lived experience of arthritis and multidisciplinary health-care professionals in the preliminary validation of the DELAY (delays in evaluating arthritis early) questionnaire has enriched its development. Preliminary assessment established its reliability. The DELAY questionnaire provides a tool for researchers to evaluate individual, cultural and health service barriers to help-seeking behaviour at RA onset. © 2014 John Wiley & Sons Ltd.
Suppressing effect of low-dose gamma-ray irradiation on collagen-induced arthritis.
Nakatsukasa, Hiroko; Tsukimoto, Mitsutoshi; Ohshima, Yasuhiro; Tago, Fumitoshi; Masada, Ayako; Kojima, Shuji
2008-07-01
We previously reported attenuation of autoimmune disease by low-dose gamma-ray irradiation in MRL-lpr/lpr mice. Here, we studied the effect of low-dose gamma-ray irradiation on collagen-induced arthritis (CIA) in DBA/1J mice. Mice were immunized with type II collagen, and exposed to low-dose gamma-rays (0.5 Gy per week for 5 weeks). Paw swelling, redness, and bone degradation were suppressed by irradiation, which also delayed the onset of pathological change and reduced the severity of the arthritis. Production of tumor necrosis factor-alpha, interferon-gamma, and interleukin-6, which play important roles in the onset of CIA, was suppressed by the irradiation. The level of anti-type II collagen antibody, which is essential for the onset of CIA, was also lower in irradiated CIA mice. The population of plasma cells was increased in CIA mice, but irradiation blocked this increase. Since regulatory T cells are known to be involved in suppression of autoimmune disease, the population of CD4(+)CD25(+)Foxp3(+) regulatory T cells was measured. Intriguingly, a significant increase of these regulatory T cells was found in irradiated CIA mice. Overall, our data suggest that low-dose gamma-ray irradiation could attenuate CIA through suppression of pro-inflammatory cytokines and autoantibody production, and induction of regulatory T cells.
Palmisano, Pietro; Dell'Era, Gabriele; Russo, Vincenzo; Zaccaria, Maria; Mangia, Rolando; Bortnik, Miriam; De Vecchi, Federica; Giubertoni, Ailia; Patti, Fabiana; Magnani, Andrea; Nigro, Gerardo; Rago, Anna; Occhetta, Eraldo; Accogli, Michele
2018-05-01
Closed-loop stimulation (CLS) seemed promising in preventing the recurrence of vasovagal syncope (VVS) in patients with a cardioinhibitory response to head-up tilt test (HUTT) compared with conventional pacing. We hypothesized that the better results of this algorithm are due to its quick reaction in high-rate pacing delivered in the early phase of vasovagal reflex, which increase the cardiac output and the blood pressure preventing loss of consciousness. This prospective, randomized, single-blind, multicentre study was designed as an intra-patient comparison and enrolled 30 patients (age 62.2 ± 13.5 years, males 60.0%) with cardioinhibitory VVS, carrying a dual-chamber pacemaker incorporating CLS algorithm. Two HUTTs were performed one week apart: one during DDD-CLS 60-130/min pacing and the other during DDD 60/min pacing; patients were randomly and blindly assigned to two groups: in one the first HUTT was performed in DDD-CLS (n = 15), in the other in DDD (n = 15). Occurrence of syncope and haemodynamic variations induced by HUTT was recorded during the tests. Compared with DDD, DDD-CLS significantly reduced the occurrence of syncope induced by HUTT (30.0% vs. 76.7%; P < 0.001). In the patients who had syncope in both DDD and DDD-CLS mode, DDD-CLS significantly delayed the onset of syncope during HUTT (from 20.8 ± 3.9 to 24.8 ± 0.9 min; P = 0.032). The maximum fall in systolic blood pressure recorded during HUTT was significantly lower in DDD-CLS compared with DDD (43.2 ± 30.3 vs. 65.1 ± 25.8 mmHg; P = 0.004). In patients with cardioinhibitory VVS, CLS reduces the occurrence of syncope induced by HUTT, compared with DDD pacing. When CLS is not able to abort the vasovagal reflex, it seems to delay the onset of syncope.
FRET analysis demonstrates a rapid activating of caspase-3 during PDT-induced apoptosis
NASA Astrophysics Data System (ADS)
Wu, Yunxia; Chen, Qun
2006-09-01
Apoptosis is a very important cellular event that plays a key role in pathogeny and therapy of many diseases. In this study, a recombinant caspase-3 substrate was used as a fluorescence resonance energy transfer (FRET) probe to detect the activation of caspase-3, and to monitor apoptosis in human lung adenocarcinoma (ASTC-a- 1) cells. With laser scanning confocal microscopy, we found that Photofrin were localized primarily in mitochondria, the primary targets of Photofrin-PDT. By analyzing the dynamic changes of FRET fluorescence, the results indicate that the onset and completion of caspase-3 activation induced by PDT is more rapidly than that by tumor necrosis factor-α (TNF-α). The activation of caspase-3 by PDT started 20 minutes after treatment and completed in about 15 minutes. In comparison, the onset of caspase-3 activation by TNF-a was delayed by 3 hours and the completion of caspase-3 activation required a significantly longer time (approximately 90 minutes). These results indicated that the initiation and process of caspase-3 activation are different corresponding to different treatment methods. Our data suggest that caspase-3 activation mediated by the cell surface death receptors is slower than that of the mitochondrial pathway and the mitochondria is an efficient target to induce apoptosis.
Cabral-Santos, C; Giacon, T R; Campos, E Z; Gerosa-Neto, J; Rodrigues, B; Vanderlei, L C M; Lira, F S
2016-06-01
The aim of this study was to compare heart rate variability (HRV) recovery after two iso-volume (5 km) exercises performed at different intensities. 14 subjects volunteered (25.17±5.08 years; 74.7±6.28 kg; 175±0.05 cm; 59.56±5.15 mL·kg(-1)·min(-1)) and after determination of peak oxygen uptake (VO2Peak) and the speed associated with VO2Peak (sVO2Peak), the subjects completed 2 random experimental trials: high-intensity exercise (HIE - 1:1 at 100% sVO2Peak), and moderate-intensity continuous exercise (MIE - 70% sVO2Peak). HRV and RR intervals were monitored before, during and after the exercise sessions together with, the HRV analysis in the frequency domains (high-frequency - HF: 0.15 to 0.4 Hz and low-frequency - LF: 0.04 to 0.15 Hz components) and the ratio between them (LF/HF). Statistical analysis comparisons between moments and between HIE and MIE were performed using a mixed model. Both exercise sessions modified LFlog, HFlog, and LF/HF (F=16.54, F=19.32 and F=5.17, p<0.05, respectively). A group effect was also found for LFlog (F=23.91, p<0.05), and HFlog (F=57.55, p< 0.05). LF/HF returned to resting value 15 min after MIE exercise and 20 min after HIE exercise. This means that the heavy domain (aerobic and anaerobic threshold) induces dissimilar autonomic modification in physically active subjects. Both HIE and MIE modify HRV, and generally HIE delays parasympathetic autonomic modulation recovery after iso-volume exercise. © Georg Thieme Verlag KG Stuttgart · New York.
Chao, Fenglei; Jiang, Lin; Zhang, Yi; Zhou, Chunni; Zhang, Lei; Tang, Jing; Liang, Xin; Qi, Yingqiang; Zhu, Yanqing; Ma, Jing; Tang, Yong
2018-01-01
The risk of cognitive decline during Alzheimer's disease (AD) can be reduced if physical activity is maintained; however, the specific neural events underlying this beneficial effect are still uncertain. To quantitatively investigate the neural events underlying the effect of running exercise on middle-aged AD subjects, 12-month-old male APP/PS1 mice were randomly assigned to a control group or running group, and age-matched non-transgenic littermates were used as a wild-type group. AD running group mice were subjected to a treadmill running protocol (regular and moderate intensity) for four months. Spatial learning and memory abilities were assessed using the Morris water maze. Hippocampal amyloid plaques were observed using Thioflavin S staining and immunohistochemistry. Hippocampal volume, number of neurons, and number of newborn cells (BrdU+ cells) in the hippocampus were estimated using stereological techniques, and newborn neurons were observed using double-labelling immunofluorescence. Marked neuronal loss in both the CA1 field and dentate gyrus (DG) and deficits in both the neurogenesis and survival of new neurons in the DG of middle-aged APP/PS1 mice were observed. Running exercise could improve the spatial learning and memory abilities, reduce amyloid plaques in the hippocampi, delay neuronal loss, induce neurogenesis, and promote the survival of newborn neurons in the DG of middle-aged APP/PS1 mice. Exercise-induced protection of neurons and adult neurogenesis within the DG might be part of the important structural basis of the improved spatial learning and memory abilities observed in AD mice.
Zozulya, Alla L.; Ortler, Sonja; Lee, JangEun; Weidenfeller, Christian; Sandor, Matyas; Wiendl, Heinz; Fabry, Zsuzsanna
2010-01-01
Dendritic cells (DCs) appear in higher numbers within the CNS as a consequence of inflammation associated with autoimmune disorders, such as multiple sclerosis (MS), but the contribution of these cells to the outcome of disease is not yet clear. Here we show that stimulatory or tolerogenic functional states of intracerebral DCs regulate the systemic activation of neuroantigen-specific T cells, the recruitment of these cells into the CNS and the onset and progression of experimental autoimmune encephalomyelitis (EAE). Intracerebral microinjection of stimulatory DCs exacerbated the onset and clinical course of EAE, accompanied with an early T-cell infiltration and a decreased proportion of regulatory FoxP3-expressing cells in the brain. In contrast, the intracerebral microinjection of DCs modified by tumor necrosis factor alpha (TNF-α) induced their tolerogenic functional state and delayed or prevented EAE onset. This triggered the generation of interleukin 10 (IL-10)-producing neuroantigen-specific lymphocytes in the periphery and restricted IL-17 production in the CNS. Our findings suggest that DCs are a rate-limiting factor for neuroinflammation. PMID:19129392
Food-dependent, exercise-induced gastrointestinal distress.
de Oliveira, Erick Prado; Burini, Roberto Carlos
2011-09-28
Among athletes strenuous exercise, dehydration and gastric emptying (GE) delay are the main causes of gastrointestinal (GI) complaints, whereas gut ischemia is the main cause of their nausea, vomiting, abdominal pain and (blood) diarrhea. Additionally any factor that limits sweat evaporation, such as a hot and humid environment and/or body dehydration, has profound effects on muscle glycogen depletion and risk for heat illness. A serious underperfusion of the gut often leads to mucosal damage and enhanced permeability so as to hide blood loss, microbiota invasion (or endotoxemia) and food-born allergen absorption (with anaphylaxis). The goal of exercise rehydration is to intake more fluid orally than what is being lost in sweat. Sports drinks provide the addition of sodium and carbohydrates to assist with intestinal absorption of water and muscle-glycogen replenishment, respectively. However GE is proportionally slowed by carbohydrate-rich (hyperosmolar) solutions. On the other hand, in order to prevent hyponatremia, avoiding overhydration is recommended. Caregiver's responsibility would be to inform athletes about potential dangers of drinking too much water and also advise them to refrain from using hypertonic fluid replacements.
Food-dependent, exercise-induced gastrointestinal distress
2011-01-01
Among athletes strenuous exercise, dehydration and gastric emptying (GE) delay are the main causes of gastrointestinal (GI) complaints, whereas gut ischemia is the main cause of their nausea, vomiting, abdominal pain and (blood) diarrhea. Additionally any factor that limits sweat evaporation, such as a hot and humid environment and/or body dehydration, has profound effects on muscle glycogen depletion and risk for heat illness. A serious underperfusion of the gut often leads to mucosal damage and enhanced permeability so as to hide blood loss, microbiota invasion (or endotoxemia) and food-born allergen absorption (with anaphylaxis). The goal of exercise rehydration is to intake more fluid orally than what is being lost in sweat. Sports drinks provide the addition of sodium and carbohydrates to assist with intestinal absorption of water and muscle-glycogen replenishment, respectively. However GE is proportionally slowed by carbohydrate-rich (hyperosmolar) solutions. On the other hand, in order to prevent hyponatremia, avoiding overhydration is recommended. Caregiver's responsibility would be to inform athletes about potential dangers of drinking too much water and also advise them to refrain from using hypertonic fluid replacements. PMID:21955383
Dorandeu, Frederic; Baille, Valerie; Mikler, John; Testylier, Guy; Lallement, Guy; Sawyer, Thomas; Carpentier, Pierre
2007-05-20
Soman poisoning is known to induce full-blown tonic-clonic seizures, status epilepticus (SE), seizure-related brain damage (SRBD) and lethality. Previous studies in guinea-pigs have shown that racemic ketamine (KET), with atropine sulfate (AS), is very effective in preventing death, stopping seizures and protecting sensitive brain areas when given up to 1h after a supra-lethal challenge of soman. The active ketamine isomer, S(+) ketamine (S-KET), is more potent than the racemic mixture and it also induces less side-effects. To confirm the efficacy of KET and to evaluate the potential of S-KET for delayed medical treatment of soman-induced SE, we studied different S-KET dose regimens using the same paradigm used with KET. Guinea-pigs received pyridostigmine (26 microg/kg, IM) 30min before soman (62 microg/kg, 2 LD(50), IM), followed by therapy consisting of atropine methyl nitrate (AMN) (4 mg/kg, IM) 1min following soman exposure. S-KET, with AS (10mg/kg), was then administered IM at different times after the onset of seizures, starting at 1h post-soman exposure. The protective efficacy of S-KET proved to be comparable to KET against lethality and SRBD, but at doses two to three times lower. As with KET, delaying treatment by 2h post-poisoning greatly reduced efficacy. Conditions that may have led to an increased S-KET brain concentration (increased doses or number of injections, adjunct treatment with the oxime HI-6) did not prove to be beneficial. In summary, these observations confirm that ketamine, either racemic or S-KET, in association with AS and possibly other drugs, could be highly effective in the delayed treatment of severe soman intoxication.
Satyam, Shakta Mani; Bairy, Laxminaryana Kurady; Pirasanthan, Rajadurai; Vaishnav, Rajdip Lalit
2015-05-01
Prevention of hyperglycemia and enhancement of antioxidant defense mechanisms remain major goals in the treatment of diabetic cataract. Earlier, we reported strong anti-hyperglycemic and in vitro antioxidant potential of the combined formulation of grape seed extract and Zincovit tablets. Therefore, the current study was designed to investigate effects of combined formulation of grape seed extract and Zincovit tablets against streptozocin-induced diabetic cataract in Wistar rats. Adult Wistar rats were selected and diabetes was induced by streptozocin (35 mg/kg, i.p) and divided into four groups (group II-V). The normal control (group I) and streptozocin-induced diabetic cataract control rats received only vehicle. Groups III, IV and V animals received orally 40, 80 and 160 mg/kg of combined formulation of Zincovit tablets with grape seed extract respectively for a period of 150 days. The biochemical pathways involved in the pathogenesis of cataract such as oxidative stress, polyol pathway and alterations in adenosine triphosphate, glucose-6-phosphate dehydrogenase and blood glucose were investigated, to understand the possible mechanism of action of combined formulation of grape seed extract and Zincovit tablets. Rats treated with combined formulation of grape seed extract and Zincovit tablets delayed the progression of diabetic cataract as well as it showed significant alterations in oxidative stress markers along with blood glucose, aldose reductase, glucose-6-phosphate dehydrogenase and adenosine triphosphate level in lens. Over all, the results suggest that single combined formulation of grape seed extract and Zincovit tablets may be of great value in delaying diabetic cataract of human subjects as nutritional food supplement.
KIM, YOUNG-GIUN; LIM, HYUNG-HO; LEE, SUH-HA; SHIN, MAL-SOON; KIM, CHANG-JU; YANG, HYEON JEONG
2015-01-01
Diabetic retinopathy is a severe microvascular complication amongst patients with diabetes, and is the primary cause of visual loss through neovascularization. Betaine is one of the components of Fructus Lycii. In the present study, the effects of betaine on the expression levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF)-1α in association with the Akt pathway were investigated in the retinas of streptozotocin (STZ)-induced diabetic rats using western blot and immunohistochemical analyses. The results of the present study revealed that the expression levels of VEGF, HIF-1α, and Akt were increased in the retinas of the STZ-induced diabetic rats. Betaine treatment attenuated this increase in VEGF and HIF-1α expression via suppression of diabetes-induced Akt activation in the retinas of the diabetic rats. The results suggested that betaine may potentially be used to delay the onset of complications associated with diabetic retinopathy via inhibition of retinal neovascularization in patients with diabetes. PMID:25891515
Jensen, Dennis; Alsuhail, Abdullah; Viola, Raymond; Dudgeon, Deborah J; Webb, Katherine A; O'Donnell, Denis E
2012-04-01
Activity limitation and dyspnea are the dominant symptoms of chronic obstructive pulmonary disease (COPD). Traditionally, efforts to alleviate these symptoms have focused on improving ventilatory mechanics, reducing ventilatory demand, or both of these in combination. Nevertheless, many patients with COPD remain incapacitated by dyspnea and exercise intolerance despite optimal therapy. To determine the effect of single-dose inhalation of nebulized fentanyl citrate (a μ-opioid agonist drug) on exercise tolerance and dyspnea in COPD. In a randomized, double-blind, placebo-controlled, crossover study, 12 stable patients with COPD (mean ± standard error of the mean post-β(2)-agonist forced expiratory volume in one second [FEV(1)] and FEV(1) to forced vital capacity ratio of 69% ± 4% predicted and 49% ± 3%, respectively) received either nebulized fentanyl citrate (50 mcg) or placebo on two separate days. After each treatment, patients performed pulmonary function tests and a symptom-limited constant work rate cycle exercise test at 75% of their maximum incremental work rate. There were no significant postdose differences in spirometric parameters or plethysmographic lung volumes. Neither the intensity nor the unpleasantness of perceived dyspnea was, on average, significantly different at isotime (5.0 ± 0.6 minutes) or at peak exercise after treatment with fentanyl citrate vs. placebo. Compared with placebo, fentanyl citrate was associated with 1) increased exercise endurance time by 1.30 ± 0.43 minutes or 25% ± 8% (P=0.01); 2) small but consistent increases in dynamic inspiratory capacity by ∼0.10 L at isotime and at peak exercise (both P≤0.03); and 3) no concomitant change in ventilatory demand, breathing pattern, pulmonary gas exchange, and/or cardiometabolic function during exercise. The mean rate of increase in dyspnea intensity (1.2 ± 0.3 vs. 2.9 ± 0.8 Borg units/minute, P=0.03) and unpleasantness ratings (0.5 ± 0.2 vs. 2.9 ± 1.3 Borg units/minute, P=0.06) between isotime and peak exercise was less after treatment with fentanyl citrate vs. placebo. Single-dose inhalation of fentanyl citrate was associated with significant and potentially clinically important improvements in exercise tolerance in COPD. These improvements were accompanied by a delay in the onset of intolerable dyspnea during exercise near the limits of tolerance. Copyright © 2012 U.S. Cancer Pain Relief Committee. Published by Elsevier Inc. All rights reserved.
Mickleborough, Timothy D; Sinex, Jacob A; Platt, David; Chapman, Robert F; Hirt, Molly
2015-01-01
The purpose of the present study was to evaluate the effects of PCSO-524®, a marine oil lipid and n-3 LC PUFA blend, derived from New Zealand green- lipped mussel (Perna canaliculus), on markers of muscle damage and inflammation following muscle damaging exercise in untrained men. Thirty two untrained male subjects were randomly assigned to consume 1200 mg/d of PCSO- 524® (a green-lipped mussel oil blend) or placebo for 26 d prior to muscle damaging exercise (downhill running), and continued for 96 h following the muscle damaging exercise bout. Blood markers of muscle damage (skeletal muscle slow troponin I, sTnI; myoglobin, Mb; creatine kinase, CK), and inflammation (tumor necrosis factor, TNF-α), and functional measures of muscle damage (delayed onset muscle soreness, DOMS; pressure pain threshold, PPT; knee extensor joint range of motion, ROM; isometric torque, MVC) were assessed pre- supplementation (baseline), and multiple time points post-supplementation (before and after muscle damaging exercise). At baseline and 24 h following muscle damaging exercise peripheral fatigue was assessed via changes in potentiated quadriceps twitch force (∆Qtw,pot) from pre- to post-exhaustive cycling ergometer test in response to supra-maximal femoral nerve stimulation. Compared to placebo, supplementation with the green-lipped mussel oil blend significantly attenuated (p < 0.05) sTnI and TNF-α at 2, 24, 48, 72 and 96 h., Mb at 24, 48, 72, 96 h., and CK-MM at all-time points following muscle damaging exercise, significantly reduced (p < 0.05) DOMS at 72 and 96 h post-muscle damaging exercise, and resulted in significantly less strength loss (MVC) and provided a protective effect against joint ROM loss at 96 h post- muscle damaging exercise. At 24 h after muscle damaging exercise perceived pain was significantly greater (p < 0.05) compared to baseline in the placebo group only. Following muscle damaging exercise ∆Qtw,pot was significantly less (p < 0.05) on the green-lipped mussel oil blend compared to placebo. Supplementation with a marine oil lipid and n-3 LC PUFA blend (PCSO-524®), derived from the New Zealand green lipped mussel, may represent a useful therapeutic agent for attenuating muscle damage and inflammation following muscle damaging exercise.
Passive Heating Attenuates Post-exercise Cardiac Autonomic Recovery in Healthy Young Males.
Peçanha, Tiago; Forjaz, Cláudia L de Moraes; Low, David A
2017-01-01
Post-exercise heart rate (HR) recovery (HRR) presents a biphasic pattern, which is mediated by parasympathetic reactivation and sympathetic withdrawal. Several mechanisms regulate these post-exercise autonomic responses and thermoregulation has been proposed to play an important role. The aim of this study was to test the effects of heat stress on HRR and HR variability (HRV) after aerobic exercise in healthy subjects. Twelve healthy males (25 ± 1 years, 23.8 ± 0.5 kg/m 2 ) performed 14 min of moderate-intensity cycling exercise (40-60% HR reserve ) followed by 5 min of loadless active recovery in two conditions: heat stress (HS) and normothermia (NT). In HS, subjects dressed in a whole-body water-perfused tube-lined suit to increase internal temperature (T c ) by ~1°C. In NT, subjects did not wear the suit. HR, core and skin temperatures (T c and T sk ), mean arterial pressure (MAP) skin blood flow (SKBF), and cutaneous vascular conductance (CVC) were measured throughout and analyzed during post-exercise recovery. HRR was assessed through calculations of HR decay after 60 and 300 s of recovery (HRR60s and HRR300s), and the short- and long-term time constants of HRR (T30 and HRRt). Post-exercise HRV was examined via calculations of RMSSD (root mean square of successive RR intervals) and RMS (root mean square residual of RR intervals). The HS protocol promoted significant thermal stress and hemodynamic adjustments during the recovery (HS-NT differences: T c = +0.7 ± 0.3°C; T sk = +3.2 ± 1.5°C; MAP = -12 ± 14 mmHg; SKBF = +90 ± 80 a.u; CVC = +1.5 ± 1.3 a.u./mmHg). HRR and post-exercise HRV were significantly delayed in HS (e.g., HRR60s = 27 ± 9 vs. 44 ± 12 bpm, P < 0.01; HRR300s = 39 ± 12 vs. 59 ± 16 bpm, P < 0.01). The effects of heat stress (e.g., the HS-NT differences) on HRR were associated with its effects on thermal and hemodynamic responses. In conclusion, heat stress delays HRR, and this effect seems to be mediated by an attenuated parasympathetic reactivation and sympathetic withdrawal after exercise. In addition, the impact of heat stress on HRR is related to the magnitude of the heat stress-induced thermal stress and hemodynamic changes.
He, Biao; Fang, Penghua; Guo, Lili; Shi, Mingyi; Zhu, Yan; Xu, Bo; Bo, Ping; Zhang, Zhenwen
2017-04-01
Galanin is a versatile neuropeptide that is distinctly upregulated by exercise in exercise-related tissues. Although benefits from exercise-induced upregulation of this peptide have been identified, many issues require additional exploration. This Review summarizes the information currently available on the relationship between galanin and exercise-induced physical and psychological damage. On the one hand, body movement, exercise damage, and exercise-induced stress and pain significantly increase local and circulatory galanin levels. On the other hand, galanin plays an exercise-protective role to inhibit the flexor reflex and prevent excessive movement of skeletal muscles through enhancing response threshold and reducing acetylcholine release. Additionally, elevated galanin levels can boost repair of the exercise-induced damage in exercise-related tissues, including peripheral nerve, skeletal muscle, blood vessel, skin, bone, articulation, and ligament. Moreover, elevated galanin levels may serve as effective signals to buffer sport-induced stress and pain via inhibiting nociceptive signal transmission and enhancing pain threshold. This Review deepens our understanding of the profitable roles of galanin in exercise protection, exercise injury repair, and exercise-induced stress and pain. Galanin and its agonists may be used to develop a novel preventive and therapeutic strategy to prevent and treat exercise-induced somatic and psychological trauma. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Pyrogenicity of polyadenylic.polyuridylic acid in rabbits.
Won, S J; Lin, M T
1991-05-01
Polyadenylic.polyuridylic acid injected intravenously into rabbits produced a rapid-onset, monophasic fever. Pyrogenic tolerance occurred in rabbits following daily injections of polyadenylic.polyuridylic acid. However, direct injection of the agent into the preoptic anterior hypothalamic region of rabbit's brain produced a markedly different fever. After an intrahypothalamic injection of polyadenylic.polyuridylic acid, fever was delayed in onset and persisted for a longer period. At room temperature, the fever was due to both increased metabolism and cutaneous vasoconstriction. In a colder atmosphere the fever was due solely to increased metabolism, whereas in the heat the fever was due to reduction in cutaneous blood flow and respiratory evaporative heat loss. In addition, the fever induced by intravenous polyadenylic.polyuridylic acid injection was reversed by a cyclooxygenase inhibitor, but not by a protein synthesis inhibitor. Polyadenylic.polyuridylic acid was shown to stimulate PGE2 production from rabbit's hypothalamus in vitro. The results reveal that this agent is a prostaglandin-dependent pyrogen.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Applefeld, M.M.; Slawson, R.G.; Spicer, K.M.
1982-04-01
The long-term cardiac effects of anterior-weighted thoracic mantle field radiotherapy were assessed in 25 patients treated for Hodgkin's disease. These patients underwent an evaluation that included a careful history and physical examination, ECG, M-mode echocardiogram, exercise ECG-gated radionuclide ventriculography, and cardiac catheterization. In these 25 patients evaluated 37-144 months (median, 96) after completion of thoracic mantle radiotherapy, eight had constrictive pericarditis; eight had occult constrictive pericarditis; three had an abnormal response to fluid challenge; three had suspected or proven occlusive coronary artery disease; and one each had a cardiomyopathy and diminished functional capacity on exercise testing. Only one patient appearsmore » to be normal after evaluation. The clinical spectrum of delayed-appearing radiation-induced cardiac disease in patients treated by anterior-weighted thoracic mantle fields and our suggestions for its treatment are discussed.« less
Bijlenga, Denise; Van Someren, Eus J W; Gruber, Reut; Bron, Tannetje I; Kruithof, I Femke; Spanbroek, Elise C A; Kooij, J J Sandra
2013-12-01
Irregular sleep-wake patterns and delayed sleep times are common in adults with attention-deficit/hyperactivity disorder, but mechanisms underlying these problems are unknown. The present case-control study examined whether circadian abnormalities underlie these sleep problems in a naturalistic home setting. We included 12 medication-naïve patients with attention-deficit/hyperactivity disorder and delayed sleep phase syndrome, and 12 matched healthy controls. We examined associations between sleep/wake rhythm in attention-deficit/hyperactivity disorder and circadian parameters (i.e. salivary melatonin concentrations, core and skin temperatures, and activity patterns) of the patients and controls during five consecutive days and nights. Daily bedtimes were more variable within patients compared with controls (F = 8.19, P < 0.001), but melatonin profiles were equally stable within individuals. Dim-light melatonin onset was about 1.5 h later in the patient group (U = 771, Z = -4.63, P < 0.001). Patients slept about 1 h less on nights before work days compared with controls (F = 11.21, P = 0.002). The interval between dim-light melatonin onset and sleep onset was on average 1 h longer in patients compared with controls (U = 1117, Z = -2.62, P = 0.009). This interval was even longer in patients with extremely late chronotype. Melatonin, activity and body temperatures were delayed to comparable degrees in patients. Overall temperatures were lower in patients than controls. Sleep-onset difficulties correlated with greater distal-proximal temperature gradient (DPG; i.e. colder hands, r(2) = -0.32, P = 0.028) in patients. Observed day-to-day bedtime variability of individuals with attention-deficit/hyperactivity disorder and delayed sleep phase syndrome were not reflected in their melatonin profiles. Irregular sleep-wake patterns and delayed sleep in individuals with attention-deficit/hyperactivity disorder and delayed sleep phase syndrome are associated with delays and dysregulations of the core and skin temperatures. © 2013 European Sleep Research Society.
Chowdhury, Indrajit; Branch, Alicia; Olatinwo, Moshood; Thomas, Kelwyn; Matthews, Roland; Thompson, Winston E
2011-08-29
Ceramide is a key factor in inducing germ cell apoptosis by translocating from cumulus cells into the adjacent oocyte and lipid rafts through gap junctions. Therefore studies designed to elucidate the mechanistic pathways in ceramide induced granulosa cell (GC) apoptosis and follicular atresia may potentially lead to the development of novel lipid-based therapeutic strategies that will prevent infertility and premature menopause associated with chemo and/or radiation therapy in female cancer patients. Our previous studies have shown that Prohibitin (PHB) is intimately involved in GCs differentiation, atresia, and luteolysis. In the present study, we have examined the functional effects of loss-/gain-of-function of PHB using adenoviral technology in delaying apoptosis induced by the physiological ligand ceramide in rat GCs. Under these experimental conditions, exogenous ceramide C-8 (50 μM) augmented the expression of mitochondrial PHB and subsequently cause the physical destruction of GC by the release of mitochondrial cytochrome c and activation of caspase-3. In further studies, silencing of PHB expression by adenoviral small interfering RNA (shRNA) sensitized GCs to ceramide C8-induce apoptosis. In contrast, adenovirus (Ad) directed overexpression of PHB in GCs resulted in increased PHB content in mitochondria and delayed the onset of ceramide induced apoptosis in the infected GCs. Taken together, these results provide novel evidences that a critical level of PHB expression within the mitochondria plays a key intra-molecular role in GC fate by mediating the inhibition of apoptosis and may therefore, contribute significantly to ceramide induced follicular atresia. Copyright © 2011 Elsevier Inc. All rights reserved.
Photobiomodulation in human muscle tissue: an advantage in sports performance?
Ferraresi, Cleber; Huang, Ying-Ying; Hamblin, Michael R.
2016-01-01
Photobiomodulation (PBM) describes the use of red or near-infrared (NIR) light to vstimulate, heal, and regenerate damaged tissue. Both pre-conditioning (light delivered to muscles before exercise) and PBM applied after exercise can increase sports performance in athletes. This review covers the effects of PBM on human muscle tissue in clinical trials in volunteers related to sports performance and in athletes. The parameters used were categorized into those with positive effects or no effects on muscle performance and recovery. Randomized controlled trials and case-control studies in both healthy trained and untrained participants, and elite athletes were retrieved from MEDLINE up to 2016. Performance metrics included fatigue, number of repetitions, torque, hypertrophy; measures of muscle damage and recovery such as creatine kinase and delayed onset muscle soreness. Searches retrieved 533 studies, of which 46 were included in the review (n=1045 participants). Studies used single laser probes, cluster of laser-diodes, LED-clusters, mixed clusters (lasers and LEDs), and flexible LED arrays. Both red, NIR, and red/NIR mixtures were used. PBM can increase muscle mass gained after training, and decrease inflammation and oxidative stress in muscle biopsies. We raise the question of whether PBM should be permitted in athletic competition by international regulatory authorities. PMID:27874264
Zurawlew, Michael J; Mee, Jessica A; Walsh, Neil P
2018-05-10
Recommendations state that to acquire the greatest benefit from heat acclimation the clock-time of heat acclimation sessions should match the clock-time of expected exercise-heat stress. It remains unknown if adaptations by post-exercise hot water immersion (HWI) demonstrate time of day dependent adaptations. Thus, we examined whether adaptations following post-exercise HWI completed in the morning were present during morning and afternoon exercise-heat stress. Ten males completed an exercise-heat stress test commencing in the morning (0945-h: AM) and afternoon (1445-h: PM; 40 min; 65% V̇O 2max treadmill run) before (PRE) and after (POST) heat acclimation. The 6-day heat acclimation intervention involved a daily, 40 min treadmill-run (65% V̇O 2max ) in temperate conditions followed by ≤ 40 min HWI (40°C; 0630-1100-h). Adaptations by 6-day post-exercise HWI in the morning were similar in the morning and afternoon. Reductions in resting rectal temperature (T re ; AM; -0.34 ± 0.24°C, PM; -0.27 ± 0.23°C; P = 0.002), T re at sweating onset (AM; -0.34 ± 0.24°C, PM; -0.31 ± 0.25°C; P = 0.001), and end-exercise T re (AM; -0.47 ± 0.33°C, PM; -0.43 ± 0.29°C; P = 0.001), heart rate (AM; -14 ± 7 beats∙min -1 , PM; -13 ± 6 beats∙min -1 ; P < 0.01), rating of perceived exertion (P = 0.01), and thermal sensation (P = 0.005) were not different in the morning compared to the afternoon. Morning heat acclimation by post-exercise hot water immersion induced adaptions at rest and during exercise-heat stress in the morning and mid-afternoon.
Exercise to improve sleep in insomnia: exploration of the bidirectional effects.
Baron, Kelly Glazer; Reid, Kathryn J; Zee, Phyllis C
2013-08-15
Exercise improves sleep quality, mood, and quality of life among older adults with insomnia. The purpose of the study was to evaluate the daily bidirectional relationships between exercise and sleep in a sample of women with insomnia. Participants included 11 women (age M = 61.27, SD 4.15) with insomnia who engaged in 30 min of aerobic exercise 3 times per week. Self-reported sleep quality was assessed at baseline and at 16 weeks. Sleep and exercise logs and wrist activity were collected continuously. Sleep variables included subjective sleep quality and objective measures recorded via wrist actigraphy (sleep onset latency [SOL], total sleep time [TST], sleep efficiency [SE], wake after sleep onset [WASO], and fragmentation index [FI]). Age, subjective sleep quality, TST, SOL, and physical fitness at baseline were tested as moderators of the daily effects. TST, SE, and self-reported global sleep quality improved from baseline to 16 weeks (p values < 0.05). Baseline ratings of sleepiness were negatively correlated with exercise session duration (p < 0.05). Daily exercise was not associated with subjective or objective sleep variables during the corresponding night. However, participants had shorter exercise duration following nights with longer SOL (p < 0.05). TST at baseline moderated the daily relationship between TST and next day exercise duration (p < 0.05). The relationship between shorter TST and shorter next day exercise was stronger in participants who had shorter TST at baseline. Results suggest that sleep influences next day exercise rather than exercise influencing sleep. The relationship between TST and next day exercise was stronger for those with shorter TST at baseline. These results suggest that improving sleep may encourage exercise participation.
Influence of Passive Muscle Tension on Electromechanical Delay in Humans
Lacourpaille, Lilian; Hug, François; Nordez, Antoine
2013-01-01
Background Electromechanical delay is the time lag between onsets of muscle activation and muscle force production and reflects both electro-chemical processes and mechanical processes. The aims of the present study were two-fold: to experimentally determine the slack length of each head of the biceps brachii using elastography and to determine the influence of the length of biceps brachii on electromechanical delay and its electro-chemical/mechanical processes using very high frame rate ultrasound. Methods/Results First, 12 participants performed two passive stretches to evaluate the change in passive tension for each head of the biceps brachii. Then, they underwent two electrically evoked contractions from 120 to 20° of elbow flexion (0°: full extension), with the echographic probe maintained over the muscle belly and the myotendinous junction of biceps brachii. The slack length was found to occur at 95.5 ± 6.3° and 95.3 ± 8.2° of the elbow joint angle for the long and short heads of the biceps brachii, respectively. The electromechanical delay was significantly longer at 120° (16.9 ± 3.1 ms; p<0.001), 110° (15.0 ± 3.1 ms; p<0.001) and 100° (12.7 ± 2.5 ms; p = 0.01) of elbow joint angle compared to 90° (11.1 ± 1.7 ms). However, the delay between the onset of electrical stimulation and the onset of both muscle fascicles (3.9 ± 0.2 ms) and myotendinous junction (3.7 ± 0.3 ms) motion was not significantly affected by the joint angle (p>0.95). Conclusion In contrast to previous observations on gastrocnemius medialis, the onset of muscle motion and the onset of myotendinous junction motion occurred simultaneously regardless of the length of the biceps brachii. That suggests that the between-muscles differences reported in the literature cannot be explained by different muscle passive tension but instead may be attributable to muscle architectural differences. PMID:23308153
Delayed-onset endophthalmitis associated with corneal suture infections.
Henry, Christopher R; Flynn, Harry W; Miller, Darlene; Schefler, Amy C; Forster, Richard K; Alfonso, Eduardo C
2013-06-11
The purpose of the current study was to report the microbiology, risk factors, and treatment outcomes in patients with delayed-onset endophthalmitis associated with corneal suture infections. For this retrospective consecutive case series, a search of the ocular microbiology department database was performed to identify all patients with positive corneal and intraocular cultures (anterior chamber and/or vitreous) between 01 January 1995 and 01 January 2010. A subset of patients with a history of corneal suture infections and delayed-onset endophthalmitis was identified. Over the 15-year period of the study, 68 patients were identified to have both positive corneal and intraocular cultures. Among them, six patients were identified to have a culture-proven, delayed-onset endophthalmitis that developed from a culture-positive corneal suture infection. All of the patients in the current study were using topical corticosteroids at the time of diagnosis. In four of six patients, there was documented manipulation of a suture before the development of endophthalmitis. Streptoccocus was identified as the causative organism in five of six patients in the current study. All of the Streptoccocus isolates were sensitive to vancomycin. The single case of Serratia marcescens endophthalmitis was sensitive to amikacin, ceftazidime, ciprofloxacin, gentamicin, and tobramycin. Treatment modalities varied and were guided by the attending ophthalmologist depending upon clinical presentation. One patient with severe Streptococcus pyogenes keratitis and endophthalmitis underwent a primary enucleation after developing a wound dehiscence. Of the remaining five patients, all received topical and intravitreal antibiotics. Therapeutic penetrating keratoplasty was performed in three patients. Pars plana vitrectomy was performed in two patients. Visual acuity outcomes ranged from 20/150 to no light perception. In the current study, Streptococcus was isolated in nearly all patients with delayed-onset endophthalmitis associated with corneal suture infections. Topical steroid use and suture manipulation were identified as associated factors for developing endophthalmitis. Visual acuity outcomes were poor despite the prompt recognition of endophthalmitis and appropriate antibiotic therapy.