Sample records for exert multiple toxic

  1. Arsenic toxicity in the human nerve cell line SK-N-SH in the presence of chromium and copper

    PubMed Central

    HU, LIGANG; GREER, JUSTIN B.; SOLO-GABRIELE, HELENA; FIEBER, LYNNE A.; CAI, YONG

    2013-01-01

    As, Cr, and Cu represent one potential combination of multiple metals/metalloids exposures since these three elements are simultaneously leached from chromated copper arsenate (CCA)-treated wood, a common product used for building construction, at levels that can be potentially harmful. This study investigated the neurotoxicity of As associated with CCA-treated wood when accompanied by Cr and Cu. The toxicity was evaluated on basis of a cytotoxicity model using human neuroblastoma cell line SK-N-SH. The cells were cultured with CCA-treated wood leachates or with solutions containing arsenate [As(V)], divalent copper [Cu(II)], trivalent chromium [Cr(III)] alone or in different combinations of the three elements. The toxicity was evaluated using variations in cell replication compared to controls after 96 hrs exposure. Among the three elements present in wood leachates, As played the primary role in the observed toxic effects, which exerted through multiple pathways, including the generation of oxidative stress. DOM affected the absorption of metals/metalloids into the test cells, which however did not obviously appear to impact toxicity. As toxicity was enhanced by Cu(II) and inhibited by Cr(III) at concentrations below U.S. EPA’s allowable maximum contaminant levels in drinking waters. Thus assessing As toxicity in real environments is not sufficient if based solely on the result from As. PMID:23473430

  2. Sulfur dioxide: foe or friend for life?

    PubMed

    Wang, Xin-Bao; Cui, Hong; Liu, Xiaohong; Du, Jun-Bao

    2017-12-01

    Sulfur dioxide (SO₂) is a toxic gas and air pollutant. The toxic effects of SO₂ have been extensively studied. Oxidative damage due to SO₂ can occur in multiple organs. Inhaled SO₂ can also cause chromosomal aberrations, DNA damage and gene mutations in mammals. However, SO₂ can also be generated from the sulfur-containing amino acid, L-cysteine. Recent studies have shown that SO₂ has a vasorelaxant effect, and ameliorates pulmonary hypertension and vascular remodeling. SO₂ can also reduce lung injury and myocardial injury in rats. In addition, SO₂ reduces myocardial ischemia-reperfusion injury and atherosclerotic lesions. Therefore, SO₂ exerts both detrimental and protective effects in mammals. Is SO₂ a foe or friend for life?.

  3. Predicting the synergy of multiple stress effects

    NASA Astrophysics Data System (ADS)

    Liess, Matthias; Foit, Kaarina; Knillmann, Saskia; Schäfer, Ralf B.; Liess, Hans-Dieter

    2016-09-01

    Toxicants and other, non-chemical environmental stressors contribute to the global biodiversity crisis. Examples include the loss of bees and the reduction of aquatic biodiversity. Although non-compliance with regulations might be contributing, the widespread existence of these impacts suggests that for example the current approach of pesticide risk assessment fails to protect biodiversity when multiple stressors concurrently affect organisms. To quantify such multiple stress effects, we analysed all applicable aquatic studies and found that the presence of environmental stressors increases individual sensitivity to toxicants (pesticides, trace metals) by a factor of up to 100. To predict this dependence, we developed the “Stress Addition Model” (SAM). With the SAM, we assume that each individual has a general stress capacity towards all types of specific stress that should not be exhausted. Experimental stress levels are transferred into general stress levels of the SAM using the stress-related mortality as a common link. These general stress levels of independent stressors are additive, with the sum determining the total stress exerted on a population. With this approach, we provide a tool that quantitatively predicts the highly synergistic direct effects of independent stressor combinations.

  4. Comparative Screening of Digestion Tract Toxic Genes in Proteus mirabilis

    PubMed Central

    Shi, Xiaolu; Lin, Yiman; Qiu, Yaqun; Li, Yinghui; Jiang, Min; Chen, Qiongcheng; Jiang, Yixiang; Yuan, Jianhui; Cao, Hong; Hu, Qinghua; Huang, Shenghe

    2016-01-01

    Proteus mirabilis is a common urinary tract pathogen, and may induce various inflammation symptoms. Its notorious ability to resist multiple antibiotics and to form urinary tract stones makes its treatment a long and painful process, which is further challenged by the frequent horizontal gene transferring events in P. mirabilis genomes. Three strains of P. mirabilis C02011/C04010/C04013 were isolated from a local outbreak of a food poisoning event in Shenzhen, China. Our hypothesis is that new genes may have been acquired horizontally to exert the digestion tract infection and toxicity. The functional characterization of these three genomes shows that each of them independently acquired dozens of virulent genes horizontally from the other microbial genomes. The representative strain C02011 induces the symptoms of both vomit and diarrhea, and has recently acquired a complete type IV secretion system and digestion tract toxic genes from the other bacteria. PMID:27010388

  5. Comparative Screening of Digestion Tract Toxic Genes in Proteus mirabilis.

    PubMed

    Shi, Xiaolu; Lin, Yiman; Qiu, Yaqun; Li, Yinghui; Jiang, Min; Chen, Qiongcheng; Jiang, Yixiang; Yuan, Jianhui; Cao, Hong; Hu, Qinghua; Huang, Shenghe

    2016-01-01

    Proteus mirabilis is a common urinary tract pathogen, and may induce various inflammation symptoms. Its notorious ability to resist multiple antibiotics and to form urinary tract stones makes its treatment a long and painful process, which is further challenged by the frequent horizontal gene transferring events in P. mirabilis genomes. Three strains of P. mirabilis C02011/C04010/C04013 were isolated from a local outbreak of a food poisoning event in Shenzhen, China. Our hypothesis is that new genes may have been acquired horizontally to exert the digestion tract infection and toxicity. The functional characterization of these three genomes shows that each of them independently acquired dozens of virulent genes horizontally from the other microbial genomes. The representative strain C02011 induces the symptoms of both vomit and diarrhea, and has recently acquired a complete type IV secretion system and digestion tract toxic genes from the other bacteria.

  6. The use of high-throughput screening techniques to evaluate mitochondrial toxicity.

    PubMed

    Wills, Lauren P

    2017-11-01

    Toxicologists and chemical regulators depend on accurate and effective methods to evaluate and predict the toxicity of thousands of current and future compounds. Robust high-throughput screening (HTS) experiments have the potential to efficiently test large numbers of chemical compounds for effects on biological pathways. HTS assays can be utilized to examine chemical toxicity across multiple mechanisms of action, experimental models, concentrations, and lengths of exposure. Many agricultural, industrial, and pharmaceutical chemicals classified as harmful to human and environmental health exert their effects through the mechanism of mitochondrial toxicity. Mitochondrial toxicants are compounds that cause a decrease in the number of mitochondria within a cell, and/or decrease the ability of mitochondria to perform normal functions including producing adenosine triphosphate (ATP) and maintaining cellular homeostasis. Mitochondrial dysfunction can lead to apoptosis, necrosis, altered metabolism, muscle weakness, neurodegeneration, decreased organ function, and eventually disease or death of the whole organism. The development of HTS techniques to identify mitochondrial toxicants will provide extensive databases with essential connections between mechanistic mitochondrial toxicity and chemical structure. Computational and bioinformatics approaches can be used to evaluate compound databases for specific chemical structures associated with toxicity, with the goal of developing quantitative structure-activity relationship (QSAR) models and mitochondrial toxicophores. Ultimately these predictive models will facilitate the identification of mitochondrial liabilities in consumer products, industrial compounds, pharmaceuticals and environmental hazards. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Thalidomide plus oral melphalan compared with thalidomide alone for advanced multiple myeloma.

    PubMed

    Offidani, Massimo; Corvatta, Laura; Marconi, Monica; Olivieri, Attilio; Catarini, Massimo; Mele, Anna; Brunori, Marino; Candela, Marco; Malerba, Lara; Capelli, Debora; Montanari, Mauro; Leoni, Pietro

    2004-01-01

    Thalidomide, the prototype of a new class of agents active against multiple myeloma (MM), exerts synergistic/additive effects when combined with other drugs. The aim of this study was to compare the toxicity and efficacy of thalidomide alone and in combination with oral melphalan. Patients with advanced MM received 100 mg/day oral thalidomide escalated weekly up to 600 mg/day (n=23; T group), alone or with 0.20 oral mg/kg/die melphalan administered monthly for four consecutive days (n=27; TM group). A>/=50% paraprotein reduction was observed in 59% of TM compared with 26% of T patients (P=0.009); three TM patients were found to have an absence of paraprotein by immunofixation. After a median follow-up of 13 months (range 6-32), progression-free survival (PFS) at 2 years was significantly longer in the TM group (61 versus 45%; P=0.0376), whereas overall survival did not differ significantly. Toxicity was not significantly greater with the combination therapy; although DVT was more frequent (11 versus 4%), as was grade 3 leukopenia (30 versus 13%; P=0.073), there were no cases of severe infection. Thalidomide administered with oral melphalan improved response rates and PFS in patients with advanced MM without significantly increasing severe toxicity.

  8. Graphene oxide selectively targets cancer stem cells, across multiple tumor types: Implications for non-toxic cancer treatment, via “differentiation-based nano-therapy”

    PubMed Central

    Fiorillo, Marco; Verre, Andrea F.; Iliut, Maria; Peiris-Pagés, Maria; Ozsvari, Bela; Gandara, Ricardo; Cappello, Anna Rita; Sotgia, Federica; Vijayaraghavan, Aravind; Lisanti, Michael P.

    2015-01-01

    Tumor-initiating cells (TICs), a.k.a. cancer stem cells (CSCs), are difficult to eradicate with conventional approaches to cancer treatment, such as chemo-therapy and radiation. As a consequence, the survival of residual CSCs is thought to drive the onset of tumor recurrence, distant metastasis, and drug-resistance, which is a significant clinical problem for the effective treatment of cancer. Thus, novel approaches to cancer therapy are needed urgently, to address this clinical need. Towards this end, here we have investigated the therapeutic potential of graphene oxide to target cancer stem cells. Graphene and its derivatives are well-known, relatively inert and potentially non-toxic nano-materials that form stable dispersions in a variety of solvents. Here, we show that graphene oxide (of both big and small flake sizes) can be used to selectively inhibit the proliferative expansion of cancer stem cells, across multiple tumor types. For this purpose, we employed the tumor-sphere assay, which functionally measures the clonal expansion of single cancer stem cells under anchorage-independent conditions. More specifically, we show that graphene oxide effectively inhibits tumor-sphere formation in multiple cell lines, across 6 different cancer types, including breast, ovarian, prostate, lung and pancreatic cancers, as well as glioblastoma (brain). In striking contrast, graphene oxide is non-toxic for “bulk” cancer cells (non-stem) and normal fibroblasts. Mechanistically, we present evidence that GO exerts its striking effects on CSCs by inhibiting several key signal transduction pathways (WNT, Notch and STAT-signaling) and thereby inducing CSC differentiation. Thus, graphene oxide may be an effective non-toxic therapeutic strategy for the eradication of cancer stem cells, via differentiation-based nano-therapy. PMID:25708684

  9. A systematic review on the role of environmental toxicants in stem cells aging.

    PubMed

    Hodjat, Mahshid; Rezvanfar, Mohammad Amin; Abdollahi, Mohammad

    2015-12-01

    Stem cells are an important target for environmental toxicants. As they are the main source for replenishing of organs in the body, any changes in their normal function could affect the regenerative potential of organs, leading to the appearance of age-related disease and acceleration of the aging process. Environmental toxicants could exert their adverse effect on stem cell function via multiple cellular and molecular mechanisms, resulting in changes in the stem cell differentiation fate and cell transformation, and reduced self-renewal capacity, as well as induction of stress-induced cellular senescence. The present review focuses on the effect of environmental toxicants on stem cell function associated with the aging process. We categorized environmental toxicants according to their preferred molecular mechanism of action on stem cells, including changes in genomic, epigenomic, and proteomic levels and enhancing oxidative stress. Pesticides, tobacco smoke, radiation and heavy metals are well-studied toxicants that cause stem cell dysfunction via induction of oxidative stress. Transgenerational epigenetic changes are the most important effects of a variety of toxicants on germ cells and embryos that are heritable and could affect health in the next several generations. A better understanding of the underlying mechanisms of toxicant-induced stem cell aging will help us to develop therapeutic intervention strategies against environmental aging. Meanwhile, more efforts are required to find the direct in vivo relationship between adverse effect of environmental toxicants and stem cell aging, leading to organismal aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. New perspectives of curcumin in cancer prevention

    PubMed Central

    Park, Wungki; Amin, A.R.M Ruhul; Chen, Zhuo Georgia; Shin, Dong M.

    2013-01-01

    Numerous natural compounds have been extensively investigated for their potential for cancer prevention over decades. Curcumin, from Curcuma longa, is a highly promising natural compound that can be potentially used for chemoprevention of multiple cancers. Curcumin modulates multiple molecular pathways involved in the lengthy carcinogenesis process to exert its chemopreventive effects through several mechanisms: promoting apoptosis, inhibiting survival signals, scavenging reactive oxidative species (ROS), and reducing the inflammatory cancer microenvironment. Curcumin fulfills the characteristics for an ideal chemopreventive agent with its low toxicity, affordability, and easy accessibility. Nevertheless, the clinical application of curcumin is currently compromised by its poor bioavailability. Here we review the potential of curcumin in cancer prevention, its molecular targets, and action mechanisms. Finally, we suggest specific recommendations to improve its efficacy and bioavailability for clinical applications. PMID:23466484

  11. "Non-Toxic" Proteins of the Botulinum Toxin Complex Exert In-vivo Toxicity.

    PubMed

    Miyashita, Shin-Ichiro; Sagane, Yoshimasa; Suzuki, Tomonori; Matsumoto, Takashi; Niwa, Koichi; Watanabe, Toshihiro

    2016-08-10

    The botulinum neurotoxin (BoNT) causes muscle paralysis and is the most potent toxin in nature. BoNT is associated with a complex of auxiliary "Non-Toxic" proteins, which constitute a large-sized toxin complex (L-TC). However, here we report that the "Non-Toxic" complex of serotype D botulinum L-TC, when administered to rats, exerts in-vivo toxicity on small-intestinal villi. Moreover, Serotype C and D of the "Non-Toxic" complex, but not BoNT, induced vacuole-formation in a rat intestinal epithelial cell line (IEC-6), resulting in cell death. Our results suggest that the vacuole was formed in a manner distinct from the mechanism by which Helicobacter pylori vacuolating toxin (VacA) and Vibrio cholerae haemolysin induce vacuolation. We therefore hypothesise that the serotype C and D botulinum toxin complex is a functional hybrid of the neurotoxin and vacuolating toxin (VT) which arose from horizontal gene transfer from an ancestral BoNT-producing bacterium to a hypothetical VT-producing bacterium.

  12. Analyzing Arabidopsis thaliana root proteome provides insights into the molecular bases of enantioselective imazethapyr toxicity

    PubMed Central

    Qian, Haifeng; Lu, Haiping; Ding, Haiyan; Lavoie, Michel; Li, Yali; Liu, Weiping; Fu, Zhengwei

    2015-01-01

    Imazethapyr (IM) is a widely used chiral herbicide that inhibits the synthesis of branched-chain amino acids (BCAAs). IM is thought to exert its toxic effects on amino acid synthesis mainly through inhibition of acetolactate synthase activity, but little is known about the potential effects of IM on other key biochemical pathways. Here, we exposed the model plant Arabidospsis thaliana to trace S- and R-IM enantiomer concentrations and examined IM toxicity effects on the root proteome using iTRAQ. Conventional analyses of root carbohydrates, organic acids, and enzyme activities were also performed. We discovered several previously unknown key biochemical pathways targeted by IM in Arabidospsis. 1,322 and 987 proteins were differentially expressed in response to R- and S-IM treatments, respectively. Bioinformatics and physiological analyses suggested that IM reduced the BCAA tissue content not only by strongly suppressing BCAA synthesis but also by increasing BCAA catabolism. IM also affected sugar and starch metabolism, changed the composition of root cell walls, increased citrate production and exudation, and affected the microbial community structure of the rhizosphere. The present study shed new light on the multiple toxicity mechanisms of a selective herbicide on a model plant. PMID:26153126

  13. Analyzing Arabidopsis thaliana root proteome provides insights into the molecular bases of enantioselective imazethapyr toxicity

    NASA Astrophysics Data System (ADS)

    Qian, Haifeng; Lu, Haiping; Ding, Haiyan; Lavoie, Michel; Li, Yali; Liu, Weiping; Fu, Zhengwei

    2015-07-01

    Imazethapyr (IM) is a widely used chiral herbicide that inhibits the synthesis of branched-chain amino acids (BCAAs). IM is thought to exert its toxic effects on amino acid synthesis mainly through inhibition of acetolactate synthase activity, but little is known about the potential effects of IM on other key biochemical pathways. Here, we exposed the model plant Arabidospsis thaliana to trace S- and R-IM enantiomer concentrations and examined IM toxicity effects on the root proteome using iTRAQ. Conventional analyses of root carbohydrates, organic acids, and enzyme activities were also performed. We discovered several previously unknown key biochemical pathways targeted by IM in Arabidospsis. 1,322 and 987 proteins were differentially expressed in response to R- and S-IM treatments, respectively. Bioinformatics and physiological analyses suggested that IM reduced the BCAA tissue content not only by strongly suppressing BCAA synthesis but also by increasing BCAA catabolism. IM also affected sugar and starch metabolism, changed the composition of root cell walls, increased citrate production and exudation, and affected the microbial community structure of the rhizosphere. The present study shed new light on the multiple toxicity mechanisms of a selective herbicide on a model plant.

  14. Biological activity of selenium: Revisited.

    PubMed

    Wrobel, Jagoda K; Power, Ronan; Toborek, Michal

    2016-02-01

    Selenium (Se) is an essential micronutrient that exerts multiple and complex effects on human health. Se is essential for human well-being largely due to its potent antioxidant, anti-inflammatory, and antiviral properties. The physiological functions of Se are carried out by selenoproteins, in which Se is specifically incorporated as the amino acid, selenocysteine. Importantly, both beneficial and toxic effects of Se have been reported suggesting that the mode of action of Se is strictly chemical form and concentration dependent. Additionally, there is a relatively narrow window between Se deficiency and toxicity and growing evidence suggests that Se health effects depend greatly on the baseline level of this micronutrient. Thus, Se supplementation is not an easy task and requires an individualized approach. It is essential that we continue to explore and better characterize Se containing compounds and mechanisms of action, which could be crucial for disease prevention and treatment. © 2015 International Union of Biochemistry and Molecular Biology.

  15. Photo-induced toxicity in early life stage fiddler crab (Uca longisignalis) following exposure to Deepwater Horizon oil.

    PubMed

    Damare, Leigh M; Bridges, Kristin N; Alloy, Matthew M; Curran, Thomas E; Soulen, Brianne K; Forth, Heather P; Lay, Claire R; Morris, Jeffrey M; Stoeckel, James A; Roberts, Aaron P

    2018-05-01

    The 2010 explosion of the Deepwater Horizon (DWH) oil rig led to the release of millions of barrels of oil in the Gulf of Mexico. Oil in aquatic ecosystems exerts toxicity through multiple mechanisms, including photo-induced toxicity following co-exposure with UV radiation. The timing and location of the spill coincided with both fiddler crab reproduction and peak yearly UV intensities, putting early life stage fiddler crabs at risk of injury due to photo-induced toxicity. The present study assessed sensitivity of fiddler crab larvae to photo-induced toxicity during co-exposure to a range of environmentally relevant dilutions of high-energy water accommodated fractions of DWH oil, and either <10, 50, or 100% ambient sunlight, achieved with filters that allowed for variable UV penetration. Solar exposures (duration: 7-h per day) were conducted for two consecutive days, with a dark recovery period (duration: 17-h) in between. Survival was significantly decreased in treatments the presence of >10% UV and relatively low concentrations of oil. Results of the present study indicate fiddler crab larvae are sensitive to photo-induced toxicity in the presence of DWH oil. These results are of concern, as fiddler crabs play an important role as ecosystem engineers, modulating sediment biogeochemical processes via burrowing action. Furthermore, they occupy an important place in the food web in the Gulf of Mexico.

  16. Multiple Mechanisms of Anti-Cancer Effects Exerted by Astaxanthin

    PubMed Central

    Zhang, Li; Wang, Handong

    2015-01-01

    Astaxanthin (ATX) is a xanthophyll carotenoid which has been approved by the United States Food and Drug Administration (USFDA) as food colorant in animal and fish feed. It is widely found in algae and aquatic animals and has powerful anti-oxidative activity. Previous studies have revealed that ATX, with its anti-oxidative property, is beneficial as a therapeutic agent for various diseases without any side effects or toxicity. In addition, ATX also shows preclinical anti-tumor efficacy both in vivo and in vitro in various cancer models. Several researches have deciphered that ATX exerts its anti-proliferative, anti-apoptosis and anti-invasion influence via different molecules and pathways including signal transducer and activator of transcription 3 (STAT3), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and peroxisome proliferator-activated receptor gamma (PPARγ). Hence, ATX shows great promise as chemotherapeutic agents in cancer. Here, we review the rapidly advancing field of ATX in cancer therapy as well as some molecular targets of ATX. PMID:26184238

  17. 1,4-Naphthoquinone derivatives potently suppress Candida albicans growth, inhibit formation of hyphae and show no toxicity toward zebrafish embryos.

    PubMed

    Janeczko, Monika; Kubiński, Konrad; Martyna, Aleksandra; Muzyczka, Angelika; Boguszewska-Czubara, Anna; Czernik, Sławomir; Tokarska-Rodak, Małgorzata; Chwedczuk, Marta; Demchuk, Oleg M; Golczyk, Hieronim; Masłyk, Maciej

    2018-04-01

    In this study, we applied various assays to find new activities of 1,4-naphthoquinone derivatives for potential anti-Candida albicans applications. These assays determined (a) the antimicrobial effect on growth/cell multiplication in fungal cultures, (b) the effect on formation of hyphae and biofilm, (c) the influence on cell membrane integrity, (d) the effect on cell morphology using atomic force microscopy, and (e) toxicity against zebrafish embryos. We have demonstrated the activity of these compounds against different Candida species and clinical isolates of C. albicans. 1,4-Naphthoquinones significantly affected fungal strains at 8-250 mg l -1 of MIC. Interestingly, at concentrations below MICs, the chemicals showed effectiveness in inhibition of hyphal formation and cell aggregation in Candida. Of note, atomic force microscopy (AFM) analysis revealed an influence of the compounds on cell morphological properties. However, at low concentrations (0.8-31.2 mg l -1 ), it did not exert any evident toxic effects on zebrafish embryos. Our research has evidenced the effectiveness of 1,4-naphthoquinones as potential anti-Candida agents.

  18. Polychlorinated biphenyls and links to cardiovascular disease.

    PubMed

    Perkins, Jordan T; Petriello, Michael C; Newsome, Bradley J; Hennig, Bernhard

    2016-02-01

    The pathology of cardiovascular disease is multi-faceted, with links to many modifiable and non-modifiable risk factors. Epidemiological evidence now implicates exposure to persistent organic pollutants, such as polychlorinated biphenyls (PCBs), with an increased risk of developing diabetes, hypertension, and obesity; all of which are clinically relevant to the onset and progression of cardiovascular disease. PCBs exert their cardiovascular toxicity either directly or indirectly via multiple mechanisms, which are highly dependent on the type and concentration of PCBs present. However, many PCBs may modulate cellular signaling pathways leading to common detrimental outcomes including induction of chronic oxidative stress, inflammation, and endocrine disruption. With the abundance of potential toxic pollutants increasing globally, it is critical to identify sensible means of decreasing associated disease risks. Emerging evidence now implicates a protective role of lifestyle modifications such as increased exercise and/or nutritional modulation via anti-inflammatory foods, which may help to decrease the vascular toxicity of PCBs. This review will outline the current state of knowledge linking coplanar and non-coplanar PCBs to cardiovascular disease and describe the possible molecular mechanism of this association.

  19. Exploring the potential role of tungsten carbide cobalt (WC-Co) nanoparticle internalization in observed toxicity toward lung epithelial cells in vitro.

    PubMed

    Armstead, Andrea L; Arena, Christopher B; Li, Bingyun

    2014-07-01

    Tungsten carbide cobalt (WC-Co) has been recognized as a workplace inhalation hazard in the manufacturing, mining and drilling industries by the National Institute of Occupational Safety and Health. Exposure to WC-Co is known to cause "hard metal lung disease" but the relationship between exposure, toxicity and development of disease remain poorly understood. To better understand this relationship, the present study examined the role of WC-Co particle size and internalization on toxicity using lung epithelial cells. We demonstrated that nano- and micro-WC-Co particles exerted toxicity in a dose- and time-dependent manner and that nano-WC-Co particles caused significantly greater toxicity at lower concentrations and shorter exposure times compared to micro-WC-Co particles. WC-Co particles in the nano-size range (not micron-sized) were internalized by lung epithelial cells, which suggested that internalization may play a key role in the enhanced toxicity of nano-WC-Co particles over micro-WC-Co particles. Further exploration of the internalization process indicated that there may be multiple mechanisms involved in WC-Co internalization such as actin and microtubule based cytoskeletal rearrangements. These findings support our hypothesis that WC-Co particle internalization contributes to cellular toxicity and suggest that therapeutic treatments inhibiting particle internalization may serve as prophylactic approaches for those at risk of WC-Co particle exposure. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Curcumin Attenuates Amyloid-β Aggregate Toxicity and Modulates Amyloid-β Aggregation Pathway.

    PubMed

    Thapa, Arjun; Jett, Stephen D; Chi, Eva Y

    2016-01-20

    The abnormal misfolding and aggregation of amyloid-β (Aβ) peptides into β-sheet enriched insoluble deposits initiates a cascade of events leading to pathological processes and culminating in cognitive decline in Alzheimer's disease (AD). In particular, soluble oligomeric/prefibrillar Aβ have been shown to be potent neurotoxins. The naturally occurring polyphenol curcumin has been shown to exert a neuroprotective effect against age-related neurodegenerative diseases such as AD. However, its protective mechanism remains unclear. In this study, we investigated the effects of curcumin on the aggregation of Aβ40 as well as Aβ40 aggregate induced neurotoxicity. Our results show that the curcumin does not inhibit Aβ fibril formation, but rather enriches the population of "off-pathway" soluble oligomers and prefibrillar aggregates that were nontoxic. Curcumin also exerted a nonspecific neuroprotective effect, reducing toxicities induced by a range of Aβ conformers, including monomeric, oligomeric, prefibrillar, and fibrillar Aβ. The neuroprotective effect is possibly membrane-mediated, as curcumin reduced the extent of cell membrane permeabilization induced by Aβ aggregates. Taken together, our study shows that curcumin exerts its neuroprotective effect against Aβ induced toxicity through at least two concerted pathways, modifying the Aβ aggregation pathway toward the formation of nontoxic aggregates and ameliorating Aβ-induced toxicity possibly through a nonspecific pathway.

  1. TiO2, SiO2 and ZrO2 Nanoparticles Synergistically Provoke Cellular Oxidative Damage in Freshwater Microalgae

    PubMed Central

    Liu, Yinghan; Ye, Nan; Fang, Hao; Wang, Degao

    2018-01-01

    Metal-based nanoparticles (NPs) are the most widely used engineered nanomaterials. The individual toxicities of metal-based NPs have been plentifully studied. However, the mixture toxicity of multiple NP systems (n ≥ 3) remains much less understood. Herein, the toxicity of titanium dioxide (TiO2) nanoparticles (NPs), silicon dioxide (SiO2) NPs and zirconium dioxide (ZrO2) NPs to unicellular freshwater algae Scenedesmus obliquus was investigated individually and in binary and ternary combination. Results show that the ternary combination systems of TiO2, SiO2 and ZrO2 NPs at a mixture concentration of 1 mg/L significantly enhanced mitochondrial membrane potential and intracellular reactive oxygen species level in the algae. Moreover, the ternary NP systems remarkably increased the activity of the antioxidant defense enzymes superoxide dismutase and catalase, together with an increase in lipid peroxidation products and small molecule metabolites. Furthermore, the observation of superficial structures of S. obliquus revealed obvious oxidative damage induced by the ternary mixtures. Taken together, the ternary NP systems exerted more severe oxidative stress in the algae than the individual and the binary NP systems. Thus, our findings highlight the importance of the assessment of the synergistic toxicity of multi-nanomaterial systems. PMID:29419775

  2. Substitutions of cysteine residues of Escherichia coli heat-stable enterotoxin by oligonucleotide-directed mutagenesis.

    PubMed Central

    Okamoto, K; Okamoto, K; Yukitake, J; Kawamoto, Y; Miyama, A

    1987-01-01

    The Escherichia coli 18-amino-acid, heat-stable enterotoxin STp has six cysteine residues linked intramolecularly by three disulfide bonds. These disulfide bonds are important for toxic activity, but the precise role of each bond is not clear. We substituted cysteine residues of STp in vivo by oligonucleotide-directed site-specific mutagenesis to dissociate each disulfide bond and examined the biological activities of the resulting mutants. The Cys-6----Ala and Cys-17----Ala mutations caused a complete loss of toxic activity. The Cys-5----Ala, Cys-10----Ser, and Gly-16, Cys-17----Cys-16, Gly-17 mutations caused a large decrease in toxic activity. These results mean that all three disulfide bonds formed at fixed positions are required for full expression of the biological activity of STp. However, a weak but significant toxicity still remained after three mutations, Cys-5----Ala, Cys-10----Ser, and Gly-16, Cys-17----Cys-16, Gly-17. This indicates that STp has some flexibilities in its conformation to exert toxic activity and that the role of each disulfide bond exerting toxic activity is not quite the same. Images PMID:3305364

  3. Cd²⁺-induced alteration of the global proteome of human skin fibroblast cells.

    PubMed

    Prins, John M; Fu, Lijuan; Guo, Lei; Wang, Yinsheng

    2014-03-07

    Cadmium (Cd(2+)) is a toxic heavy metal and a well-known human carcinogen. The toxic effects of Cd(2+) on biological systems are diverse and thought to be exerted through a complex array of mechanisms. Despite the large number of studies aimed to elucidate the toxic mechanisms of action of Cd(2+), few have been targeted toward investigating the ability of Cd(2+) to disrupt multiple cellular pathways simultaneously and the overall cellular responses toward Cd(2+) exposure. In this study, we employed a quantitative proteomic method, relying on stable isotope labeling by amino acids in cell culture (SILAC) and LC-MS/MS, to assess the Cd(2+)-induced simultaneous alterations of multiple cellular pathways in cultured human skin fibroblast cells. By using this approach, we were able to quantify 2931 proteins, and 400 of them displayed significantly changed expression following Cd(2+) exposure. Our results unveiled that Cd(2+) treatment led to the marked upregulation of several antioxidant enzymes (e.g., metallothionein-1G, superoxide dismutase, pyridoxal kinase, etc.), enzymes associated with glutathione biosynthesis and homeostasis (e.g., glutathione S-transferases, glutathione synthetase, glutathione peroxidase, etc.), and proteins involved in cellular energy metabolism (e.g., glycolysis, pentose phosphate pathway, and the citric acid cycle). Additionally, we found that Cd(2+) treatment resulted in the elevated expression of two isoforms of dimethylarginine dimethylaminohydrolase (DDAH I and II), enzymes known to play a key role in regulating nitric oxide biosynthesis. Consistent with these findings, we observed elevated formation of nitric oxide in human skin (GM00637) and lung (IMR-90) fibroblast cells following Cd(2+) exposure. The upregulation of DDAH I and II suggests a role of nitric oxide synthesis in Cd(2+)-induced toxicity in human cells.

  4. Commercial processed soy-based food product contains glycated and glycoxidated lunasin proteoforms.

    PubMed

    Serra, Aida; Gallart-Palau, Xavier; See-Toh, Rachel Su-En; Hemu, Xinya; Tam, James P; Sze, Siu Kwan

    2016-05-18

    Nutraceuticals have been proposed to exert positive effects on human health and confer protection against many chronic diseases. A major bioactive component of soy-based foods is lunasin peptide, which has potential to exert a major impact on the health of human consumers worldwide, but the biochemical features of dietary lunasin still remain poorly characterized. In this study, lunasin was purified from a soy-based food product via strong anion exchange solid phase extraction and then subjected to top-down mass spectrometry analysis that revealed in detail the molecular diversity of lunasin in processed soybean foods. We detected multiple glycated proteoforms together with potentially toxic advanced glycation end products (AGEs) derived from lunasin. In both cases, modification sites were Lys24 and Lys29 located at the helical region that shows structural homology with a conserved region of chromatin-binding proteins. The identified post-translational modifications may have an important repercussion on lunasin epigenetic regulatory capacity. Taking together, our results demonstrate the importance of proper chemical characterization of commercial processed food products to assess their impact on consumer's health and risk of chronic diseases.

  5. Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants.

    PubMed

    Smith, Kirk R; Jerrett, Michael; Anderson, H Ross; Burnett, Richard T; Stone, Vicki; Derwent, Richard; Atkinson, Richard W; Cohen, Aaron; Shonkoff, Seth B; Krewski, Daniel; Pope, C Arden; Thun, Michael J; Thurston, George

    2009-12-19

    In this report we review the health effects of three short-lived greenhouse pollutants-black carbon, ozone, and sulphates. We undertook new meta-analyses of existing time-series studies and an analysis of a cohort of 352,000 people in 66 US cities during 18 years of follow-up. This cohort study provides estimates of mortality effects from long-term exposure to elemental carbon, an indicator of black carbon mass, and evidence that ozone exerts an independent risk of mortality. Associations among these pollutants make drawing conclusions about their individual health effects difficult at present, but sulphate seems to have the most robust effects in multiple-pollutant models. Generally, the toxicology of the pure compounds and their epidemiology diverge because atmospheric black carbon, ozone, and sulphate are associated and could interact with related toxic species. Although sulphate is a cooling agent, black carbon and ozone could together exert nearly half as much global warming as carbon dioxide. The complexity of these health and climate effects needs to be recognised in mitigation policies. Copyright 2009 Elsevier Ltd. All rights reserved.

  6. Commercial processed soy-based food product contains glycated and glycoxidated lunasin proteoforms

    PubMed Central

    Serra, Aida; Gallart-Palau, Xavier; See-Toh, Rachel Su-En; Hemu, Xinya; Tam, James P.; Sze, Siu Kwan

    2016-01-01

    Nutraceuticals have been proposed to exert positive effects on human health and confer protection against many chronic diseases. A major bioactive component of soy-based foods is lunasin peptide, which has potential to exert a major impact on the health of human consumers worldwide, but the biochemical features of dietary lunasin still remain poorly characterized. In this study, lunasin was purified from a soy-based food product via strong anion exchange solid phase extraction and then subjected to top-down mass spectrometry analysis that revealed in detail the molecular diversity of lunasin in processed soybean foods. We detected multiple glycated proteoforms together with potentially toxic advanced glycation end products (AGEs) derived from lunasin. In both cases, modification sites were Lys24 and Lys29 located at the helical region that shows structural homology with a conserved region of chromatin-binding proteins. The identified post-translational modifications may have an important repercussion on lunasin epigenetic regulatory capacity. Taking together, our results demonstrate the importance of proper chemical characterization of commercial processed food products to assess their impact on consumer’s health and risk of chronic diseases. PMID:27189269

  7. Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants

    PubMed Central

    Smith, Kirk R.; Jerrett, Michael; Anderson, H Ross; Burnett, Richard T.; Stone, Vicki; Derwent, Richard; Atkinson, Richard W.; Cohen, Aaron; Shonkoff, Seth B.; Krewski, Daniel; Pope, C. Arden; Thun, Michael J.; Thurston, George

    2014-01-01

    In this report we review the health effects of three short-lived greenhouse pollutants—black carbon, ozone, and sulphates. We undertook new meta-analyses of existing time-series studies and an analysis of a cohort of 352 000 people in 66 US cities during 18 years of follow-up. This cohort study provides estimates of mortality effects from long-term exposure to elemental carbon, an indicator of black carbon mass, and evidence that ozone exerts an independent risk of mortality. Associations among these pollutants make drawing conclusions about their individual health effects difficult at present, but sulphate seems to have the most robust effects in multiple-pollutant models. Generally, the toxicology of the pure compounds and their epidemiology diverge because atmospheric black carbon, ozone, and sulphate are associated and could interact with related toxic species. Although sulphate is a cooling agent, black carbon and ozone could together exert nearly half as much global warming as carbon dioxide. The complexity of these health and climate effects needs to be recognised in mitigation policies. PMID:19942276

  8. Application of the Activity Framework for Assessing Aquatic Ecotoxicology Data for Organic Chemicals.

    PubMed

    Thomas, Paul; Dawick, James; Lampi, Mark; Lemaire, Philippe; Presow, Shaun; van Egmond, Roger; Arnot, Jon A; Mackay, Donald; Mayer, Philipp; Galay Burgos, Malyka

    2015-10-20

    Toxicological research in the 1930s gave the first indications of the link between narcotic toxicity and the chemical activity of organic chemicals. More recently, chemical activity has been proposed as a novel exposure parameter that describes the fraction of saturation and that quantifies the potential for partitioning and diffusive uptake. In the present study, more than 2000 acute and chronic algal, aquatic invertebrates and fish toxicity data, as well as water solubility and melting point values, were collected from a series of sources. The data were critically reviewed and grouped by mode of action (MoA). We considered 660 toxicity data to be of acceptable quality. The 328 data which applied to the 72 substances identified as MoA 1 were then evaluated within the activity-toxicity framework: EC50 and LC50 values for all three taxa correlated generally well with (subcooled) liquid solubilities. Acute toxicity was typically exerted within the chemical activity range of 0.01-0.1, whereas chronic toxicity was exerted in the range of 0.001-0.01. These results confirm that chemical activity has the potential to contribute to the determination, interpretation and prediction of toxicity to aquatic organisms. It also has the potential to enhance regulation of organic chemicals by linking results from laboratory tests, monitoring and modeling programs. The framework can provide an additional line of evidence for assessing aquatic toxicity, for improving the design of toxicity tests, reducing animal usage and addressing chemical mixtures.

  9. The present status of biological effects of toxic metals in the environment: lead, cadmium, and manganese.

    PubMed

    Shukla, G S; Singhal, R L

    1984-08-01

    The number of reports concerning the chemical toxicology of metals which are released in the environment by natural as well as anthropogenic sources, have been increasing constantly. Lead, cadmium, and manganese have found a variety of uses in industry, craft, and agriculture owing to their physical and chemical properties. The environmental burden of heavy metals has been rising substantially by smelter emission in air and waste sewage in water. Further, organic compounds of lead and manganese used as antiknock substances in gasoline are emitted into the atmosphere by automobile exhaustion. Such environmental contamination of air, water, soil, and food is a serious threat to all living kinds. Although these metals are known to produce their toxic effects on a variety of body systems, much emphasis has been placed on their effects on the nervous system owing to apparent association of relatively low or "subclinical" levels of metallic exposure with behavioral and psychological disorders. Clinical and animal data on environmental exposure show that while lead and manganese are most toxic to the nervous system, cadmium exerts profound adverse effects on kidney and the male reproductive system. It appears that the consequences of exposure to lead in adults are less severe than the types of exposure associated with hyperactivity in neonates. Except for a few reports, hyperactivity has indeed been observed in animals exposed to either of these three metals. Experimental work has also shown that these metals produce behavioral changes by altering the metabolism of brain neurotransmitters, especially catecholamines. Recently, it is hypothesized that these metals exert their toxic effect by damaging biological defences which exist in the body to serve as protective mechanisms against exogenous toxins. A voluminous publication list with diverse opinions on the biological effects of metals is available and there is an urgent need to compile assessment of the existing literature to identify the future theme of research work. The problem of metal toxicity becomes even more complex owing to simultaneous or successive exposure of the general population to different physical, chemical, biological, and psychological factors in the environment. The net toxic manifestations produced by multiple exposure should, therefore, be different from those produced by a single factor as the result of their additive, synergistic or antagonistic action. Even though a metal may not exist in sufficient amounts to cause any disability, the toxicity could result when a second factor is also present.(ABSTRACT TRUNCATED AT 400 WORDS)

  10. In vitro toxicity of different-sized ZnO nanoparticles in Caco-2 cells

    NASA Astrophysics Data System (ADS)

    Kang, Tianshu; Guan, Rongfa; Chen, Xiaoqiang; Song, Yijuan; Jiang, Han; Zhao, Jin

    2013-11-01

    There has been rapid growth in nanotechnology in both the public and private sectors worldwide, but concern about nanosafety exists. To assess size-dependent cytotoxicity on human cancer cells, we studied the cytotoxic effect of three kinds of zinc oxide nanoparticles (ZnO NPs) on human epithelial colorectal adenocarcinoma (Caco-2) cells. Nanoparticles were first characterized by size, distribution, and intensity. Multiple assays have been adopted to measure the cell activity and oxidative stress. The cytotoxicity of ZnO NPs was time dependent and dose dependent. The 24-h exposure was chosen to confirm the viability and accessibility of the cells and taken as the appropriate time for the following test system. The IC50 value was found at a low concentration. The oxidative stress elicited a significant reduction in glutathione with increase in reactive oxygen species and lactate dehydrogenase. The toxicity resulted in a deletion of cells in the G1 phase and an accumulation of cells in the S and G2/M phases. One type of metallic oxide (ZnO) exerted different cytotoxic effects according to different particle sizes. Data from the previous experiments showed that 26-nm ZnO NPs appeared to have the highest toxicity to Caco-2 cells. The study demonstrated the toxicity of ZnO NPs to Caco-2 cells and the impact of particle size, which could be useful in the medical applications.

  11. Promising Diabetes Therapy Based on the Molecular Mechanism for Glucose Toxicity: Usefulness of SGLT2 Inhibitors as well as Incretin-Related Drugs.

    PubMed

    Kaneto, Hideaki; Obata, Atsushi; Shimoda, Masashi; Kimura, Tomohiko; Hirukawa, Hidenori; Okauchi, Seizo; Matsuoka, Taka-Aki; Kaku, Kohei

    2016-01-01

    Pancreatic β-cell dysfunction and insulin resistance are the main characteristics of type 2 diabetes. Chronic exposure of β-cells to hyperglycemia leads to the deterioration of β-cell function. Such phenomena are well known as pancreatic β-cell glucose toxicity. MafA, a strong transactivator of insulin gene, is particularly important for the maintenance of mature β-cell function, but its expression level is significantly reduced under diabetic conditions which is likely associated with β-cell failure. Reduction of incretin receptor expression level in β-cells in diabetes is also likely associated with β-cell failure. On the other hand, incretin-related drugs and sodium-glucose co-transporter 2 (SGLT2) inhibitors are promising diabetes therapy based on the mechanism for pancreatic β-cell glucose toxicity. Indeed, it was shown that incretin-related drugs exerted protective effects on β-cells through the augmentation of IRS-2 expression especially in the presence of pioglitazone. It was also shown that incretin-related drug and/or pioglitazone exerted more protective effects on β-cells at the early stage of diabetes compared to the advanced stage. SGLT2 inhibitors, new hypoglycemic agents, also exert beneficial effects for the protection of pancreatic β-cells as well as for the reduction of insulin resistance in various insulin target tissues. Taken together, it is important to select appropriate therapy based on the molecular mechanism for glucose toxicity.

  12. Supraphysiological doses of performance enhancing anabolic-androgenic steroids exert direct toxic effects on neuron-like cells

    PubMed Central

    Basile, John R.; Binmadi, Nada O.; Zhou, Hua; Yang, Ying-Hua; Paoli, Antonio; Proia, Patrizia

    2013-01-01

    Anabolic-androgenic steroids (AAS) are lipophilic hormones often taken in excessive quantities by athletes and bodybuilders to enhance performance and increase muscle mass. AAS exert well known toxic effects on specific cell and tissue types and organ systems. The attention that androgen abuse has received lately should be used as an opportunity to educate both athletes and the general population regarding their adverse effects. Among numerous commercially available steroid hormones, very few have been specifically tested for direct neurotoxicity. We evaluated the effects of supraphysiological doses of methandienone and 17-α-methyltestosterone on sympathetic-like neuron cells. Vitality and apoptotic effects were analyzed, and immunofluorescence staining and western blot performed. In this study, we demonstrate that exposure of supraphysiological doses of methandienone and 17-α-methyltestosterone are toxic to the neuron-like differentiated pheochromocytoma cell line PC12, as confirmed by toxicity on neurite networks responding to nerve growth factor and the modulation of the survival and apoptosis-related proteins ERK, caspase-3, poly (ADP-ribose) polymerase and heat-shock protein 90. We observe, in contrast to some previous reports but in accordance with others, expression of the androgen receptor (AR) in neuron-like cells, which when inhibited mitigated the toxic effects of AAS tested, suggesting that the AR could be binding these steroid hormones to induce genomic effects. We also note elevated transcription of neuritin in treated cells, a neurotropic factor likely expressed in an attempt to resist neurotoxicity. Taken together, these results demonstrate that supraphysiological exposure to the AAS methandienone and 17-α-methyltestosterone exert neurotoxic effects by an increase in the activity of the intrinsic apoptotic pathway and alterations in neurite networks. PMID:23675320

  13. Cytotoxicity Mechanism of Two Naphthoquinones (Menadione and Plumbagin) in Saccharomyces cerevisiae

    PubMed Central

    Castro, Frederico Augusto Vieira; Mariani, Diana; Panek, Anita Dolly; Eleutherio, Elis Cristina Araújo; Pereira, Marcos Dias

    2008-01-01

    Background Quinones are compounds extensively used in studies of oxidative stress due to their role in plants as chemicals for defense. These compounds are of great interest for pharmacologists and scientists, in general, because several cancer chemotherapeutic agents contain the quinone nucleus. However, due to differences in structures and diverse pharmacological effects, the exact toxicity mechanisms exerted by quinones are far from elucidatation. Methodology/Principal Findings Using Saccharomyces cerevisiae, we evaluated the main mechanisms of toxicity of two naphthoquinones, menadione and plumbagin, by determining tolerance and oxidative stress biomarkers such as GSH and GSSG, lipid peroxidation levels, as well as aconitase activity. The importance of glutathione transferases (GST) in quinone detoxification was also addressed. The GSSG/GSH ratio showed that menadione seemed to exert its toxicity mainly through the generation of ROS while plumbagin acted as an electrophile reacting with GSH. However, the results showed that, even by different pathways, both drugs were capable of generating oxidative stress through their toxic effects. Our results showed that the control strain, BY4741, and the glutathione transferase deficient strains (gtt1Δ and gtt2Δ) were sensitive to both compounds. With respect to the role of GST isoforms in cellular protection against quinone toxicity, we observed that the Gtt2 deficient strain was unable to overcome lipid peroxidation, even after a plumbagin pre-treatment, indicating that this treatment did not improve tolerance when compared with the wild type strain. Cross-tolerance experiments confirmed distinct cytotoxicity mechanisms for these naphthoquinones since only a pre-treatment with menadione was able to induce acquisition of tolerance against stress with plumbagin. Conclusions/Significance These results suggest different responses to menadione and plumbagin which could be due to the fact that these compounds use different mechanisms to exert their toxicity. In addition, the Gtt2 isoform seemed to act as a general protective factor involved in quinone detoxification. PMID:19098979

  14. Molecular Mechanisms of Anticancer Effects of Phytoestrogens in Breast Cancer.

    PubMed

    Hsieh, Chia-Jung; Hsu, Ya-Ling; Huang, Ya-Fang; Tsai, Eing-Mei

    2018-01-01

    Phytoestrogens derived from plants exert estrogenic as well as antiestrogenic effects and multiple actions within breast cancer cells. Chemopreventive properties of phytoestrogens have emerged from epidemiological observations. In recent clinical research studies, phytoestrogens are safe and may even protect against breast cancer. In this brief review, the molecular mechanisms of phytoestrogens on regulation of cell cycle, apoptosis, estrogen receptors, cell signaling pathways, and epigenetic modulations in relation to breast cancer are discussed. Phytoestrogens have a preferential affinity for estrogen receptor (ER)-β, which appears to be associated with antiproliferative and anticarcinogenic effects. Moreover, while phytoestrogens not only inhibit ER-positive but also ER-negative breast cancer cells, the possibility of epigenetic modulation playing an important role is also discussed. In conclusion, as there are multiple targets and actions of phytoestrogens, extensive research is still necessary. However, due to low toxicity, low cost, and easy availability, their potent chemoprevention effects deserve further study. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  15. Evaluation of Toxic Effects of Aeration and Trichloroethylene Oxidation on Methanotrophic Bacteria Grown with Different Nitrogen Sources

    PubMed Central

    Chu, Kung-Hui; Alvarez-Cohen, Lisa

    1999-01-01

    In this study we evaluated specific and nonspecific toxic effects of aeration and trichloroethylene (TCE) oxidation on methanotrophic bacteria grown with different nitrogen sources (nitrate, ammonia, and molecular nitrogen). The specific toxic effects, exerted directly on soluble methane monooxygenase (sMMO), were evaluated by comparing changes in methane uptake rates and naphthalene oxidation rates following aeration and/or TCE oxidation. Nonspecific toxic effects, defined as general cellular damage, were examined by using a combination of epifluorescent cellular stains to measure viable cell numbers based on respiratory activity and measuring formate oxidation activities following aeration and TCE transformation. Our results suggest that aeration damages predominantly sMMO rather than other general cellular components, whereas TCE oxidation exerts a broad range of toxic effects that damage both specific and nonspecific cellular functions. TCE oxidation caused sMMO-catalyzed activity and respiratory activity to decrease linearly with the amount of substrate degraded. Severe TCE oxidation toxicity resulted in total cessation of the methane, naphthalene, and formate oxidation activities and a 95% decrease in the respiratory activity of methanotrophs. The failure of cells to recover even after 7 days of incubation with methane suggests that cellular recovery following severe TCE product toxicity is not always possible. Our evidence suggests that generation of greater amounts of sMMO per cell due to nitrogen fixation may be responsible for enhanced TCE oxidation activities of nitrogen-fixing methanotrophs rather than enzymatic protection mechanisms associated with the nitrogenase enzymes. PMID:9925614

  16. Recent advances in the study on capsaicinoids and capsinoids.

    PubMed

    Luo, Xiu-Ju; Peng, Jun; Li, Yuan-Jian

    2011-01-10

    Chili peppers are the major source of nature capsaicinoids, which consist of capsaicin, dihydrocapsaicin, nordihydrocapsaicin, homodihydrocapsaicin, and homocapsaicin, etc. Capsaicinoids are found to exert multiple pharmacological and physiological effects including the activities of analgesia, anticancer, anti-inflammation, antioxidant and anti-obesity. Therefore, capsaicinoids may have the potential value in clinic for pain relief, cancer prevention and weight loss. In addition, capsaicinoids also display the benefits on cardiovascular and gastrointestinal system. It has been shown that capsaicinoids are potential agonists of capsaicin receptor or transient receptor potential vanilloid subfamily member 1 (TRPV1). They could exert the effects not only through the receptor-dependent pathway but also through the receptor-independent one. CH-19 Sweet peppers are the source of nature capsinoids, which share similar structure with capsaicinoids and consist of capsiate, dihydrocapsiate, and nordihydrocapsiate, etc, Comparing with capsaicinoids, capsinoids are less pungent and easily broken down in the normal aqueous conditions. So far, it has been found that capsinoids possess the biological properties of antitumor, antioxidant and anti-obesity. Since capsinoids are less toxic than capsaicinoids, therefore, capsinoids may have the advantages over capsaicinoids in clinical applications such as cancer prevention and weight loss. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Assessing neurodevelopmental effects of arsenolipids in pre-differentiated human neurons.

    PubMed

    Witt, Barbara; Ebert, Franziska; Meyer, Sören; Francesconi, Kevin A; Schwerdtle, Tanja

    2017-11-01

    In the general population exposure to arsenic occurs mainly via diet. Highest arsenic concentrations are found in seafood, where arsenic is present predominantly in its organic forms including arsenolipids. Since recent studies have provided evidence that arsenolipids could reach the brain of an organism and exert toxicity in fully differentiated human neurons, this work aims to assess the neurodevelopmental toxicity of arsenolipids. Neurodevelopmental effects of three arsenic-containing hydrocarbons (AsHC), two arsenic-containing fatty acids (AsFA), arsenite and dimethylarsinic acid (DMA V ) were characterized in pre-differentiated human neurons. AsHCs and arsenite caused substantial cytotoxicity in a similar, low concentration range, whereas AsFAs and DMA V were less toxic. AsHCs were highly accessible for cells and exerted pronounced neurodevelopmental effects, with neurite outgrowth and the mitochondrial membrane potential being sensitive endpoints; arsenite did not substantially decrease those two endpoints. In fully differentiated neurons, arsenite and AsHCs caused neurite toxicity. These results indicate for a neurodevelopmental potential of AsHCs. Taken into account the possibility that AsHCs might easily reach the developing brain when exposed during early life, neurotoxicity and neurodevelopmental toxicity cannot be excluded. Further studies are needed in order to progress the urgently needed risk assessment. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Nano-sized zeolites as modulators of thiacloprid toxicity on Chironomus riparius

    PubMed Central

    Wicht, Anna-Jorina; Guluzada, Leyla; Crone, Barbara; Karst, Uwe; Lee, Hwa Jun; Triebskorn, Rita; Haderlein, Stefan B.; Huhn, Carolin; Köhler, Heinz-R.

    2017-01-01

    This study investigated whether zeolites of different size (Y30 (nano-sized) and H-Beta(OH)-III (forming large aggregates/agglomerates composed of 50 nm small primary particles)) exerted acute toxicity on larvae of the non-biting midge, Chironomus riparius, and whether such zeolites are able to modulate the toxicity of a common insecticide, thiacloprid, by means of adsorption of a dissolved toxicant. We conducted acute toxicity tests with fourth instar larvae of C. riparius. In these tests, larvae were exposed to zeolites or thiacloprid solely, or to mixtures of both compounds. The mixtures comprised 1.0 µg/L thiacloprid in addition to low (5.2 mg/L), medium (18.2 mg/L), and high (391.7 mg/L) zeolite concentrations, resulting in different adsorption rates of thiacloprid. As biological endpoints, changes in mortality rates and in behavior were monitored every 24 h over a total investigation period of 96 h. Furthermore, we conducted chemical analyses of thiacloprid in the medium and the larvae and located the zeolite particles within the larvae by LA-ICP-MS imaging techniques. Our results demonstrate that both types of zeolites did not exert acute toxicity when applied as single-substances, but led to reduced acute toxicity of thiacloprid when applied together with thiacloprid. These results are in line with the sorption properties of zeolites indicating reduced bioavailability of thiacloprid, although our data indicate that thiacloprid can desorb from zeolites to some extent. While freely dissolved (i.e., non-sorbed) fraction of thiacloprid was a good parameter to roughly estimate toxic effects, it did not correlate with measured internal thiacloprid concentrations. Moreover, it was shown that both zeolite types were ingested by the larvae, but no indication for cellular uptake of them was found. PMID:28729952

  19. Preliminary evaluation of the acute toxicity of cypermethrin and lambda-cyhalothrin to Channa Punctatus.

    PubMed

    Kumar, Amit; Sharma, Bechan; Pandey, Ravi Shankar

    2007-12-01

    In the present study, the acute toxicity of the pyrethroid pesticides, cypermethrin and lambda-cyhalothrin was conducted for a 96 h period using Channa punctatus. The LC(50) values of cypermethrin and lambda-cyhalothrin were found to be 0.4 mg/L and 7.92 mug/L, respectively. The lambda-cyhalothrin was found to be about 50 times more toxic to the fish than cypermethrin. The behavioral pattern of C. punctatus got severely altered in each group due to pesticide treatment. The results suggested that even at low concentrations, these pyrethroid compounds may exert toxic effects, markedly modifying their behavioral pattern.

  20. The obesogen tributyltin.

    PubMed

    Grün, Felix

    2014-01-01

    The obesogen hypothesis postulates the role of environmental chemical pollutants that disrupt homeostatic controls and adaptive mechanisms to promote adipose-dependent weight gain leading to obesity and metabolic syndrome complications. One of the most direct molecular mechanisms for coupling environmental chemical exposures to perturbed physiology invokes pollutants mimicking endogenous endocrine hormones or bioactive dietary signaling metabolites that serve as nuclear receptor ligands. The organotin pollutant tributyltin can exert toxicity through multiple mechanisms but most recently has been shown to bind, activate, and mediate RXR-PPARγ transcriptional regulation central to lipid metabolism and adipocyte biology. Data in support of long-term obesogenic effects on whole body adipose tissue are also reported. Organotins represent an important model test system for evaluating the impact and epidemiological significance of chemical insults as contributing factors for obesity and human metabolic health. © 2014 Elsevier Inc. All rights reserved.

  1. Elemental selenium at nano size possesses lower toxicity without compromising the fundamental effect on selenoenzymes: comparison with selenomethionine in mice.

    PubMed

    Wang, Huali; Zhang, Jinsong; Yu, Hanqing

    2007-05-15

    Glutathione peroxidase and thioredoxin reductase are major selenoenzymes through which selenium exerts powerful antioxidant effects. Selenium also elicits pro-oxidant effects at toxic levels. The antioxidant and pro-oxidant effects, or bioavailability and toxicity, of selenium depend on its chemical form. Selenomethionine is considered to be the most appropriate supplemental form due to its excellent bioavailability and lower toxicity compared to various selenium compounds. The present studies reveal that, compared with selenomethionine, elemental selenium at nano size (Nano-Se) possesses equal efficacy in increasing the activities of glutathione peroxidase and thioredoxin reductase but has much lower toxicity as indicated by median lethal dose, acute liver injury, and short-term toxicity. Our results suggest that Nano-Se can serve as an antioxidant with reduced risk of selenium toxicity.

  2. Development of an assay to assess genotoxicity by particulate matter extract

    PubMed Central

    Priftis, Alexandros; Papikinos, Konstantinos; Koukoulanaki, Marina; Kerasioti, Efthalia; Stagos, Dimitrios; Konstantinopoulos, Konstantinos; Spandidos, Demetrios A.; Kermenidou, Marianthi; Karakitsios, Spyros; Sarigiannis, Dimosthenis; Tsatsakis, Aristides M.; Kouretas, Demetrios

    2017-01-01

    The current study describes a method for assessing the oxidative potential of common environmental stressors (ambient air particulate matter), using a plasmid relaxation assay where the extract caused single-strand breaks, easily visualised through electrophoresis. This assay utilises a miniscule amount (11 µg) of particulate matter (PM) extract compared to other, cell-based methods (~3,000 µg). The negative impact of air pollution on human health has been extensively recognised. Among the air pollutants, PM plays an eminent role, as reflected in the broad scientific interest. PM toxicity highly depends on its composition (metals and organic compounds), which in turn has been linked to multiple health effects (such as cardiorespiratory diseases and cancer) through multiple toxicity mechanisms; the induction of oxidative stress is considered a major mechanism among these. In this study, the PM levels, oxidative potential, cytotoxicity and genotoxicity of PM in the region of Larissa, Greece were examined using the plasmid relaxation assay. Finally, coffee extracts from different varieties, derived from both green and roasted seeds, were examined for their ability to inhibit PM-induced DNA damage. These extracts also exerted an inhibitory effect on xanthine oxidase and catalase, but had no effect against superoxide dismutase. Overall, this study highlights the importance of assays for assessing the oxidative potential of widespread environmental stressors (PM), as well as the antioxidant capacity of beverages and food items, with the highlight being the development of a plasmid relaxation assay to assess the genotoxicity caused by PM using only a miniscule amount. PMID:28260086

  3. Oxidized starch solutions for environmentally friendly aircraft deicers.

    PubMed

    Plahuta, Joseph M; Teel, Amy L; Ahmad, Mushtaque; Beutel, Mark W; Rentz, Jeremy A; Watts, Richard J

    2011-09-01

    Deicers currently used for aircraft deicing, including ethylene glycol and propylene glycol, pose significant threats to surface waters, as a result of high biochemical oxygen demand (BOD) and toxicity to aquatic organisms. Oxidized starch may provide a less toxic deicer with lower BOD. The freezing point depression of starch formulations oxidized using hydrogen peroxide and catalysts (i.e., catalyzed hydrogen peroxide [H2O2] propagations-CHP) was 28 degrees C, and viscosities similar to those of commercial deicers were achieved after post-treatment with granular activated carbon. The most effective oxidized starch formulation exerted a 5-day BOD up to 6 times lower than glycol deicers (103 versus 400 to 800 g O2/L). Toxicity to Ceriodaphnia dubia for this formulation (48-hour lethal concentration, 50% [LC50] of 2.73 g/L) was greater than pure propylene glycol (13.1 g/ L), but lower than propylene glycol deicer formulations (1.02 g/L). Organic acids were identified by gas chromatography/mass spectrometry as the primary constituents in the oxidized starch solution. The proposed deicing system would provide effective deicing while exerting minimal environmental effects (e.g., lower toxicity to aquatic organisms and lower BOD). Furthermore, these deicers could be made from waste starch, promoting sustainability.

  4. The Evolution of Fangs, Venom, and Mimicry Systems in Blenny Fishes.

    PubMed

    Casewell, Nicholas R; Visser, Jeroen C; Baumann, Kate; Dobson, James; Han, Han; Kuruppu, Sanjaya; Morgan, Michael; Romilio, Anthony; Weisbecker, Vera; Mardon, Karine; Ali, Syed A; Debono, Jordan; Koludarov, Ivan; Que, Ivo; Bird, Gregory C; Cooke, Gavan M; Nouwens, Amanda; Hodgson, Wayne C; Wagstaff, Simon C; Cheney, Karen L; Vetter, Irina; van der Weerd, Louise; Richardson, Michael K; Fry, Bryan G

    2017-04-24

    Venom systems have evolved on multiple occasions across the animal kingdom, and they can act as key adaptations to protect animals from predators [1]. Consequently, venomous animals serve as models for a rich source of mimicry types, as non-venomous species benefit from reductions in predation risk by mimicking the coloration, body shape, and/or movement of toxic counterparts [2-5]. The frequent evolution of such deceitful imitations provides notable examples of phenotypic convergence and are often invoked as classic exemplars of evolution by natural selection. Here, we investigate the evolution of fangs, venom, and mimetic relationships in reef fishes from the tribe Nemophini (fangblennies). Comparative morphological analyses reveal that enlarged canine teeth (fangs) originated at the base of the Nemophini radiation and have enabled a micropredatory feeding strategy in non-venomous Plagiotremus spp. Subsequently, the evolution of deep anterior grooves and their coupling to venom secretory tissue provide Meiacanthus spp. with toxic venom that they effectively employ for defense. We find that fangblenny venom contains a number of toxic components that have been independently recruited into other animal venoms, some of which cause toxicity via interactions with opioid receptors, and result in a multifunctional biochemical phenotype that exerts potent hypotensive effects. The evolution of fangblenny venom has seemingly led to phenotypic convergence via the formation of a diverse array of mimetic relationships that provide protective (Batesian mimicry) and predatory (aggressive mimicry) benefits to other fishes [2, 6]. Our results further our understanding of how novel morphological and biochemical adaptations stimulate ecological interactions in the natural world. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. 41 CFR 101-42.1102-7 - Lead-containing paint and items bearing lead-containing paint.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... toxic heavy metal which, in humans, exerts its effects on the renal, hematopoietic, and nervous systems... Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS...

  6. 41 CFR 101-42.1102-7 - Lead-containing paint and items bearing lead-containing paint.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... toxic heavy metal which, in humans, exerts its effects on the renal, hematopoietic, and nervous systems... Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS UTILIZATION...

  7. 41 CFR 101-42.1102-7 - Lead-containing paint and items bearing lead-containing paint.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... toxic heavy metal which, in humans, exerts its effects on the renal, hematopoietic, and nervous systems... Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS UTILIZATION...

  8. 41 CFR 101-42.1102-7 - Lead-containing paint and items bearing lead-containing paint.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... toxic heavy metal which, in humans, exerts its effects on the renal, hematopoietic, and nervous systems... Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS UTILIZATION...

  9. 41 CFR 101-42.1102-7 - Lead-containing paint and items bearing lead-containing paint.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... toxic heavy metal which, in humans, exerts its effects on the renal, hematopoietic, and nervous systems... Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS UTILIZATION...

  10. The antinociceptive effects of a standardized ethanol extract of the Bidens odorata Cav (Asteraceae) leaves are mediated by ATP-sensitive K+ channels.

    PubMed

    Zapata-Morales, Juan Ramón; Alonso-Castro, Angel Josabad; Domínguez, Fabiola; Carranza-Álvarez, Candy; Isiordia-Espinoza, Mario; Hernández-Morales, Alejandro; Solorio-Alvarado, Cesar

    2017-07-31

    Bidens odorata Cav (Asteraceae) is used for the empirical treatment of inflammation and pain. This work evaluated the in vitro and in vivo toxicity, antioxidant activity, as well as the anti-inflammatory and antinociceptive effects of an ethanol extract from Bidens odorata leaves (BOE). The in vitro toxicity of BOE (10-1000µg/ml) was evaluated with the comet assay in PBMC. The in vivo acute toxicity of BOE (500-5000mg/kg) and the effect of BOE (10-1000µg/ml) on the level of ROS in PBMC were determined. The in vivo anti-inflammatory activity of BOE was assessed using the TPA-induced ear edema in mice. The antinociceptive activities of BOE (50-200mg/kg p.o.) were assessed using the acetic acid and formalin tests. The antinociceptive mechanism of BOE was determined using naloxone and glibenclamide. BOE lacked DNA damage, and showed low in vivo toxicity (LD 50 > 5000mg/kg p.o.). BOE inhibited ROS production (IC 50 = 252.13 ± 20.54µg/ml), and decreased inflammation by 36.1 ± 3.66%. In both antinociceptive test, BOE (200mg/kg) exerted activity with similar activity than the reference drugs. B. odorata exerts low in vitro and in vivo toxicity, antioxidant effects, moderate in vivo anti-inflammatory activity, and antinociceptive effects mediated by ATP-sensitive K + channels. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  11. Atorvastatin and Fluoxetine Prevent Oxidative Stress and Mitochondrial Dysfunction Evoked by Glutamate Toxicity in Hippocampal Slices.

    PubMed

    Ludka, Fabiana K; Dal-Cim, Tharine; Binder, Luisa Bandeira; Constantino, Leandra Celso; Massari, Caio; Tasca, Carla I

    2017-07-01

    Atorvastatin has been shown to exert a neuroprotective action by counteracting glutamatergic toxicity. Recently, we have shown atorvastatin also exerts an antidepressant-like effect that depends on both glutamatergic and serotonergic systems modulation. Excitotoxicity is involved in several brain disorders including depression; thus, it is suggested that antidepressants may target glutamatergic system as a final common pathway. In this study, a comparison of the mechanisms involved in the putative neuroprotective effect of a repetitive atorvastatin or fluoxetine treatment against glutamate toxicity in hippocampal slices was performed. Adult Swiss mice were treated with atorvastatin (10 mg/kg, p.o.) or fluoxetine (10 mg/kg, p.o.), once a day during seven consecutive days. On the eighth day, animals were killed and hippocampal slices were obtained and subjected to an in vitro protocol of glutamate toxicity. An acute treatment of atorvastatin or fluoxetine was not neuroprotective; however, the repeated atorvastatin or fluoxetine treatment prevented the decrease in cellular viability induced by glutamate in hippocampal slices. The loss of cellular viability induced by glutamate was accompanied by increased D-aspartate release, increased reactive oxygen species (ROS) and nitric oxide (NO) production, and impaired mitochondrial membrane potential. Atorvastatin or fluoxetine repeated treatment also presented an antidepressant-like effect in the tail suspension test. Atorvastatin or fluoxetine treatment was effective in protecting mice hippocampal slices from glutamate toxicity by preventing the oxidative stress and mitochondrial dysfunction.

  12. Cryptic bioactivity capacitated by synthetic hybrid plant peptides

    PubMed Central

    Hirakawa, Yuki; Shinohara, Hidefumi; Welke, Kai; Irle, Stephan; Matsubayashi, Yoshikatsu; Torii, Keiko U.; Uchida, Naoyuki

    2017-01-01

    Evolution often diversifies a peptide hormone family into multiple subfamilies, which exert distinct activities by exclusive interaction with specific receptors. Here we show that systematic swapping of pre-existing variation in a subfamily of plant CLE peptide hormones leads to a synthetic bifunctional peptide that exerts activities beyond the original subfamily by interacting with multiple receptors. This approach provides new insights into the complexity and specificity of peptide signalling. PMID:28165456

  13. Evaluation of sublethal effects of polymer-based essential oils nanoformulation on the german cockroach.

    PubMed

    González, Jorge Werdin; Yeguerman, Cristhian; Marcovecchio, Diego; Delrieux, Claudio; Ferrero, Adriana; Band, Beatriz Fernández

    2016-08-01

    The German cockroach, Blattella germanica (L.), is a serious household and public health pest worldwide. The aim of the present study was to evaluate the sublethal activity of polymer-based essential oils (EOs) nanoparticles (NPs) on adults of B. germanica. The LC50 and LC25 for contact toxicity were determined. To evaluate the repellency of EOs and NPs at LC25, a software was specially created in order to track multiple insects on just-recorded videos, and generate statistics using the obtained information. The effects of EOs and NPs at LC25 and LC50 on the nutritional physiology were also evaluated. The results showed that NPs exerted sublethal effects on the German cockroach, since these products enhance the repellent effects of the EOs and negatively affected the nutritional indices and the feeding deterrence index. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Gene expression patterns in rainbow trout, Oncorhynchus mykiss, exposed to a suite of model toxicants

    PubMed Central

    Hook, Sharon E.; Skillman, Ann D.; Small, Jack A.; Schultz, Irvin R.

    2008-01-01

    The increased availability and use of DNA microarrays has allowed the characterization of gene expression patterns associated with exposure to different toxicants. An important question is whether toxicant induced changes in gene expression in fish are sufficiently diverse to allow for identification of specific modes of action and/or specific contaminants. In theory, each class of toxicant may generate a gene expression profile unique to its mode of toxic action. In this study, isogenic (cloned) rainbow trout Oncorhynchus mykiss were exposed to sublethal levels of a series of model toxicants with varying modes of action, including ethynylestradiol (xeno-estrogen), 2,2,4,4′-tetrabromodiphenyl ether (BDE-47, thyroid active), diquat (oxidant stressor), chromium VI, and benzo[a]pyrene (BaP) for a period of 1–3 weeks. An additional experiment measured trenbolone (anabolic steroid; model androgen) induced gene expression changes in sexually mature female trout. Following exposure, fish were euthanized, livers removed and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNA’s. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a list of up- and downregulated genes, as well as to determine gene clustering patterns that can be used as “expression signatures”. The results indicate each toxicant exposure caused between 64 and 222 genes to be significantly altered in expression. Most genes exhibiting altered expression responded to only one of the toxicants and relatively few were co-expressed in multiple treatments. For example, BaP and Diquat, both of which exert toxicity via oxidative stress, upregulated 28 of the same genes, of over 100 genes altered by either treatment. Other genes associated with steroidogenesis, p450 and estrogen responsive genes appear to be useful for selectively identifying toxicant mode of action in fish, suggesting a link between gene expression profile and mode of toxicity. Our array results showed good agreement with quantitative real time polymerase chain reaction (qRT PCR), which demonstrates that the arrays are an accurate measure of gene expression. The specificity of the gene expression profile in response to a model toxicant, the link between genes with altered expression and mode of toxic action, and the consistency between array and qRT PCR results all suggest that cDNA microarrays have the potential to screen environmental contaminants for biomarkers and mode of toxic action. PMID:16488489

  15. Gene expression patterns in rainbow trout, Oncorhynchus mykiss, exposed to a suite of model toxicants.

    PubMed

    Hook, Sharon E; Skillman, Ann D; Small, Jack A; Schultz, Irvin R

    2006-05-25

    The increased availability and use of DNA microarrays has allowed the characterization of gene expression patterns associated with exposure to different toxicants. An important question is whether toxicant induced changes in gene expression in fish are sufficiently diverse to allow for identification of specific modes of action and/or specific contaminants. In theory, each class of toxicant may generate a gene expression profile unique to its mode of toxic action. In this study, isogenic (cloned) rainbow trout Oncorhynchus mykiss were exposed to sublethal levels of a series of model toxicants with varying modes of action, including ethynylestradiol (xeno-estrogen), 2,2,4,4'-tetrabromodiphenyl ether (BDE-47, thyroid active), diquat (oxidant stressor), chromium VI, and benzo[a]pyrene (BaP) for a period of 1-3 weeks. An additional experiment measured trenbolone (anabolic steroid; model androgen) induced gene expression changes in sexually mature female trout. Following exposure, fish were euthanized, livers removed and RNA extracted. Fluorescently labeled cDNA were generated and hybridized against a commercially available Atlantic Salmon/Trout array (GRASP project, University of Victoria) spotted with 16,000 cDNA's. The slides were scanned to measure abundance of a given transcript in each sample relative to controls. Data were analyzed via Genespring (Silicon Genetics) to identify a list of up- and downregulated genes, as well as to determine gene clustering patterns that can be used as "expression signatures". The results indicate each toxicant exposure caused between 64 and 222 genes to be significantly altered in expression. Most genes exhibiting altered expression responded to only one of the toxicants and relatively few were co-expressed in multiple treatments. For example, BaP and Diquat, both of which exert toxicity via oxidative stress, upregulated 28 of the same genes, of over 100 genes altered by either treatment. Other genes associated with steroidogenesis, p450 and estrogen responsive genes appear to be useful for selectively identifying toxicant mode of action in fish, suggesting a link between gene expression profile and mode of toxicity. Our array results showed good agreement with quantitative real time polymerase chain reaction (qRT PCR), which demonstrates that the arrays are an accurate measure of gene expression. The specificity of the gene expression profile in response to a model toxicant, the link between genes with altered expression and mode of toxic action, and the consistency between array and qRT PCR results all suggest that cDNA microarrays have the potential to screen environmental contaminants for biomarkers and mode of toxic action.

  16. In Vitro Activity of Manuka Honey and Polyhexamethylene Biguanide on Filamentous Fungi and Toxicity to Human Cell Lines

    PubMed Central

    Yabes, Joseph M.; White, Brian K.; Murray, Clinton K.; Sanchez, Carlos J.; Mende, Katrin; Beckius, Miriam L.; Zera, Wendy C.; Wenke, Joseph C.; Akers, Kevin S.

    2016-01-01

    Soft-tissue invasive fungal infections are increasingly recognized as significant entities directly contributing to morbidity and mortality. They complicate clinical care, requiring aggressive surgical debridement and systemic antifungal therapy. To evaluate new topical approaches to therapy, we examined the antifungal activity and cytotoxicity of Manuka Honey (MH) and polyhexamethylene biguanide (PHMB). The activities of multiple concentrations of MH (40%, 60%, 80%) and PHMB (0.01%, 0.04%, 0.1%) against 13 clinical mold isolates were evaluated using a time-kill assay between 5 min and 24 h. Concentrations were selected to represent current clinical use. Cell viability was examined in parallel for human epidermal keratinocytes, dermal fibroblasts and osteoblasts, allowing determination of the 50% viability (LD50) concentration. Antifungal activity of both agents correlated more closely with exposure time than concentration. Exophiala and Fusarium growth was completely suppressed at 5 min for all PHMB concentrations, and at 12 and 6 h, respectively, for all MH concentrations. Only Lichtheimia had persistent growth to both agents at 24 h. Viability assays displayed concentration-and time-dependent toxicity for PHMB. For MH, exposure time predicted cytotoxicity only when all cell types were analyzed in aggregate. This study demonstrates that MH and PHMB possess primarily time-dependent antifungal activity, but also exert in vitro toxicity on human cells which may limit clinical use. Further research is needed to determine ideal treatment strategies to optimize antifungal activity against molds while limiting cytotoxicity against host tissues in vivo. PMID:27601610

  17. Ameliorative effect of naringin in acetaminophen-induced hepatic and renal toxicity in laboratory rats: role of FXR and KIM-1.

    PubMed

    Adil, Mohammad; Kandhare, Amit D; Ghosh, Pinaki; Venkata, Shivakumar; Raygude, Kiran S; Bodhankar, Subhash L

    2016-07-01

    Acetaminophen (APAP) is an analgesic and antipyretic agent commonly known agent to cause hepatic and renal toxicity at a higher dose. Naringin, a bioflavonoid possesses multiple pharmacological properties such as antioxidant, anti-inflammatory, analgesic and anti-hyperlipidemic activity. To evaluate the effect of naringin against the APAP-induced hepatic and renal toxicity. Male Wistar albino rats (180-220 g) were divided into various groups, and toxicity was induced by APAP (700 mg/kg, p.o., 14 days). Naringin (20, 40 and 80 mg/kg, p.o.) or Silymarin (25 mg/kg) was administered to rats 2 h before APAP oral administration. Various biochemical, molecular and histopathological parameter were accessed in hepatic and renal tissue. Naringin pretreatment significantly decreased (p < 0.05) serum creatinine, blood urea nitrogen, bilirubin, aspartate transaminase, alanine transaminase, lactate dehydrogenase, low-density lipoprotein, very low-density lipoprotein, cholesterol and triglycerides as compared with APAP control rats. Decreased level of serum albumin, uric acid, and high-density lipoprotein were also significantly restored (p < 0.05) by naringin pretreatment. It also significantly restores (p < 0.05) the altered level of superoxide dismutase, reduced glutathione, malondialdehyde and nitric oxide in hepatic and renal tissue. Moreover, altered mRNA expression of hepatic farnesoid X receptor and renal injury molecule-1 (KIM-1) were significantly restored (p < 0.05) by naringin treatment. Naringin treatment also reduced histological alteration induced by APAP in the liver and kidney. Naringin exerts its hepato- and nephroprotective effect via modulation of oxido-nitrosative stress, FXR and KIM-1 mRNA expression.

  18. A general mechanism for intracellular toxicity of metal-containing nanoparticles

    NASA Astrophysics Data System (ADS)

    Sabella, Stefania; Carney, Randy P.; Brunetti, Virgilio; Malvindi, Maria Ada; Al-Juffali, Noura; Vecchio, Giuseppe; Janes, Sam M.; Bakr, Osman M.; Cingolani, Roberto; Stellacci, Francesco; Pompa, Pier Paolo

    2014-05-01

    The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where particles are abundantly internalized - is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a ``lysosome-enhanced Trojan horse effect'' since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments.The assessment of the risks exerted by nanoparticles is a key challenge for academic, industrial, and regulatory communities worldwide. Experimental evidence points towards significant toxicity for a range of nanoparticles both in vitro and in vivo. Worldwide efforts aim at uncovering the underlying mechanisms for this toxicity. Here, we show that the intracellular ion release elicited by the acidic conditions of the lysosomal cellular compartment - where particles are abundantly internalized - is responsible for the cascading events associated with nanoparticles-induced intracellular toxicity. We call this mechanism a ``lysosome-enhanced Trojan horse effect'' since, in the case of nanoparticles, the protective cellular machinery designed to degrade foreign objects is actually responsible for their toxicity. To test our hypothesis, we compare the toxicity of similar gold particles whose main difference is in the internalization pathways. We show that particles known to pass directly through cell membranes become more toxic when modified so as to be mostly internalized by endocytosis. Furthermore, using experiments with chelating and lysosomotropic agents, we found that the toxicity mechanism for different metal containing NPs (such as metallic, metal oxide, and semiconductor NPs) is mainly associated with the release of the corresponding toxic ions. Finally, we show that particles unable to release toxic ions (such as stably coated NPs, or diamond and silica NPs) are not harmful to intracellular environments. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr01234h

  19. Melatonin and male reproductive health: relevance of darkness and antioxidant properties.

    PubMed

    Rocha, C S; Rato, L; Martins, A D; Alves, M G; Oliveira, P F

    2015-01-01

    The pineal hormone melatonin controls several physiological functions that reach far beyond the regulation of the circadian rhythm. Moreover, it can be produced in extra-pineal organs such as reproductive organs. The role of melatonin in the mammalian seasonal and circadian rhythm is well known. Nevertheless, its overall effect in male reproductive physiology remains largely unknown. Melatonin is a very powerful endogenous antioxidant that can also be exogenously taken safely. Interestingly, its antioxidant properties have been consistently reported to improve the male reproductive dysfunctions associated with pathological conditions and also with the exposure to toxicants. Nevertheless, the exact molecular mechanisms by which melatonin exerts its action in the male reproductive system remain a matter of debate. Herein, we propose to present an up-to-date overview of the melatonin effects in the male reproductive health and debate future directions to disclose possible sites of melatonin action in male reproductive system. We will discuss not only the role of melatonin during darkness and sleep but also the importance of the antioxidant properties of this hormone to male fertility. Since melatonin readily crosses the physiological barriers, such as the blood-testis barrier, and has a very low toxicity, it appears as an excellent candidate in the prevention and/or treatment of the multiple male reproductive dysfunctions associated with various pathologies.

  20. Single and joint toxic effects of five selected pesticides on the early life stages of zebrafish (Denio rerio).

    PubMed

    Wang, Yanhua; Lv, Lu; Yu, Yijun; Yang, Guiling; Xu, Zhenlan; Wang, Qiang; Cai, Leiming

    2017-03-01

    Instead of individual ones, pesticides are usually detected in water environment as mixtures of contaminants. Laboratory tests were conducted in order to investigate the effects of individual and joint pesticides (phoxim, atrazine, chlorpyrifos, butachlor and λ-cyhalothrin) on zebrafish (Denio rerio). Results from 96-h semi-static toxicity test indicated that λ-cyhalothrin had the greatest toxicity to the three life stages (embryonic, larval and juvenile stages) of D. rerio with LC 50 values ranging from 0.0031 (0.0017-0.0042) to 0.38 (0.21-0.53) mg a.i. L -1 , followed by butachlor and chlorpyrifos with LC 50 values ranging from 0.45 (0.31-0.59) to 1.93 (1.37-3.55) and from 0.28 (0.13-0.38) to 13.03 (7.54-19.71) mg a.i. L -1 , respectively. In contrast, atrazine showed the least toxicity with LC 50 values ranging from 6.09 (3.34-8.35) to 34.19 (24.42-51.9) mg a.i. L -1 . The larval stage of D. rerio was a vulnerable period to most of the selected pesticides in the multiple life stages tested. Pesticide mixtures containing phoxim and λ-cyhalothrin exerted synergistic effects on the larvae of D. rerio. Moreover, the binary mixture of phoxim-atrazine also displayed synergistic response to zebrafish. It has been assumed that most chemicals are additive in toxicity. Therefore, it is crucial to clarify the synergistic interaction for pesticide regulators and environment managers. In the present study, our data provided a clear picture on ecological risk of these pesticide mixtures to aquatic organisms. Moreover, joint effects play a more important role than individual ones, which require more attention when defining standard for water environment quality and risk assessment protocols. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Neuroprotective actions of the synthetic estrogen 17alpha-ethynylestradiol in the hippocampus.

    PubMed

    Picazo, Ofir; Becerril-Montes, Adriana; Huidobro-Perez, Delia; Garcia-Segura, Luis M

    2010-07-01

    17alpha-ethynylestradiol (EE2), a major constituent of many oral contraceptives, is similar in structure to 17beta-estradiol, which has neuroprotective properties in several animal models. This study explored the potential neuroprotective actions of EE2 against kainic and quinolinic acid toxicity in the hippocampus of adult ovariectomized Wistar rats. A decrease in the number of Nissl-stained neurons and the induction of vimentin immunoreactivity in astrocytes was observed in the hilus of the dentate gyrus of the hippocampus after the administration of either kainic acid or quinolinic acid. EE2 prevented the neuronal loss and the induction of vimentin immunoreactivity induced by kainic acid at low (1 microg/rat) and high (10-100 microg/rat) doses and exerted a protection against quinolinic acid toxicity at a low dose (1 microg/rat) only. These observations demonstrate that EE2 exerts neuroprotective actions against excitotoxic insults. This finding is relevant for the design of new neuroprotective estrogenic compounds.

  2. Resveratrol Targets AKT and p53 in Glioblastoma and Glioblastoma Stem-like Cells to Suppress Growth and Infiltration

    PubMed Central

    Clark, Paul A.; Bhattacharya, Saswati; Elmayan, Ardem; Darjatmoko, Soesiawati R.; Thuro, Bradley A.; Yan, Michael B.; van Ginkel, Paul R.; Polans, Arthur S.; Kuo, John S.

    2016-01-01

    Object Glioblastoma multiforme (GBM) is an aggressive brain cancer with median survival of less than two years with current treatment. GBM exhibits extensive intra-tumor and inter-patient heterogeneity, suggesting that successful therapies should exert broad anti-cancer activities. Therefore, the natural non-toxic pleiotropic agent, resveratrol, was studied for anti-tumorigenic effects against GBM. Methods Resveratrol’s effects on cell proliferation, sphere-forming ability, and invasion were tested using multiple patient-derived GBM stem-like cell (GSC) lines and established U87 glioma cells, and changes in oncogenic AKT and tumor suppressive p53 were analyzed. Resveratrol was also tested in vivo against U87 glioma flank xenografts using multiple delivery methods, including direct tumor injection. Finally, resveratrol was delivered directly to brain tissue to determine toxicity and achievable drug concentrations in the brain parenchyma. Results Resveratrol significantly inhibited proliferation in U87 glioma and multiple patient-derived GSC lines, demonstrating similar inhibitory concentrations across these phenotypically heterogeneous lines. Resveratrol also inhibited the sphere-forming ability of GSCs, suggesting anti-stem cell effects. Additionally, resveratrol blocked U87 glioma and GSC invasion in an in vitro Matrigel transwell assay at doses similar to those mediating anti-proliferative effects. In U87 glioma cells and GSCs, resveratrol reduced AKT phosphorylation and induced p53 expression and activation that led to transcription of downstream p53 target genes. Resveratrol administration via oral gavage or ad libitum in the water supply significantly suppressed GBM xenograft growth; intra-tumor or peri-tumor resveratrol injection further suppressed growth and approximating tumor regression. Intracranial resveratrol injection resulted in 100-fold higher local drug concentration compared to intravenous delivery, and with no apparent toxicity. Conclusions Resveratrol potently inhibited GBM and GBM stem-like cell growth and infiltration, acting partially via AKT deactivation and p53 induction, and suppressed glioblastoma growth in vivo. The ability of resveratrol to modulate AKT and p53, as well as reportedly many other anti-tumorigenic pathways, is attractive for therapy against a genetically heterogeneous tumor such as GBM. Although resveratrol exhibits low bioavailability when administered orally or intravenously, novel delivery methods such as direct injection (i.e. convection enhanced delivery) could potentially be used to achieve and maintain therapeutic doses in brain. Resveratrol’s non-toxic nature and broad anti-GBM effects make it a compelling candidate to supplement current GBM therapies. PMID:27419830

  3. Micro magnetic tweezers for nanomanipulation inside live cells.

    PubMed

    de Vries, Anthony H B; Krenn, Bea E; van Driel, Roel; Kanger, Johannes S

    2005-03-01

    This study reports the design, realization, and characterization of a multi-pole magnetic tweezers that enables us to maneuver small magnetic probes inside living cells. So far, magnetic tweezers can be divided into two categories: I), tweezers that allow the exertion of high forces but consist of only one or two poles and therefore are capable of only exerting forces in one direction; and II), tweezers that consist of multiple poles and allow exertion of forces in multiple directions but at very low forces. The magnetic tweezers described here combines both aspects in a single apparatus: high forces in a controllable direction. To this end, micron scale magnetic structures are fabricated using cleanroom technologies. With these tweezers, magnetic flux gradients of nablaB = 8 x 10(3) T m(-1) can be achieved over the dimensions of a single cell. This allows exertion of forces up to 12 pN on paramagnetic probes with a diameter of 350 nm, enabling us to maneuver them through the cytoplasm of a living cell. It is expected that with the current tweezers, picoNewton forces can be exerted on beads as small as 100 nm.

  4. A new perspective on deoxynivalenol and growth suppression

    USDA-ARS?s Scientific Manuscript database

    Deoxynivalenol (DON) is a trichothecene produced by Fusarium species. It is found in cereal grains, feeds and foods and exerts various toxic effects in farm and laboratory animals. These include vomiting, loss of appetite, and growth suppression. Surveys have shown that DON intake by consumers, i...

  5. TOWARDS A GENERIC PBPK MODEL OF PYRETHROID PESTICIDES: MODELING DELTAMETHRIN AND PERMETHIN IN THE RAT

    EPA Science Inventory

    Pyrethroids have emerged as a major class of insecticide due to their selective potency in insects and their relatively low potency in mammalian studies. Pyrethroids exert toxicity by binding to voltage-gated sodium channels, thereby eliciting excitatory neurotoxicity. The Food...

  6. TOWARDS A GENERIC PBPK MODEL OF PYRETHROID PESTICIDES: MODELING DELTAMETHRIN AND PERMETHRIN IN THE RAT

    EPA Science Inventory

    Pyrethroids have emerged as a major class of insecticide due to their selective potency in insects and their relatively low potency in mammalian studies. Pyrethroids exert toxicity by binding to voltage-gated sodium channels, thereby eliciting excitatory neurotoxicity. The Fo...

  7. Is the structural diversity of tripeptides sufficient for developing functional food additives with satisfactory multiple bioactivities?

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Hui; Liu, Yong-Le; Ning, Jing-Heng; Yu, Jian; Li, Xiang-Hong; Wang, Fa-Xiang

    2013-05-01

    Multifunctional peptides have attracted increasing attention in the food science community because of their therapeutic potential, low toxicity and rapid intestinal absorption. However, previous study demonstrated that the limited structural variations make it difficult to optimize dipeptide molecules in a good balance between desirable and undesirable properties (F. Tian, P. Zhou, F. Lv, R. Song, Z. Li, J. Pept. Sci. 13 (2007) 549-566). In the present work, we attempt to answer whether the structural diversity is sufficient for a tripeptide to have satisfactory multiple bioactivities. Statistical test, structural examination and energetic analysis confirm that peptides of three amino acids long can bind tightly to human angiotensin converting enzyme (ACE) and thus exert significant antihypertensive efficacy. Further quantitative structure-activity relationship (QSAR) modeling and prediction of all 8000 possible tripeptides reveal that their ACE-inhibitory potency exhibits a good (positive) relationship to antioxidative activity, but has only a quite modest correlation with bitterness. This means that it is possible to find certain tripeptide entities possessing the optimal combination of strong ACE-inhibitory potency, high antioxidative activity and weak bitter taste, which are the promising candidates for developing multifunctional food additives with satisfactory multiple bioactivities. The marked difference between dipeptide and tripeptide can be attributed to the fact that the structural diversity of peptides increases dramatically with a slight change in sequence length.

  8. Bacterial Toxins—Staphylococcal Enterotoxin B

    PubMed Central

    FRIES, BETTINA C.; VARSHNEY, AVANISH K.

    2015-01-01

    Staphylococcal enterotoxin B is one of the most potent bacterial superantigens that exerts profound toxic effects upon the immune system, leading to stimulation of cytokine release and inflammation. It is associated with food poisoning, nonmenstrual toxic shock, atopic dermatitis, asthma, and nasal polyps in humans. Currently, there is no treatment or vaccine available. Passive immunotherapy using monoclonal antibodies made in several different species has shown significant inhibition in in vitro studies and reduction in staphylococcal enterotoxin B-induced lethal shock in in vivo studies. This should encourage future endeavors to develop these antibodies as therapeutic reagents. PMID:26184960

  9. Fungal phytotoxins as mediators of virulence.

    PubMed

    Möbius, Nadine; Hertweck, Christian

    2009-08-01

    Many phytopathogenic fungi exert their destructive effects by producing and secreting toxic low molecular weight compounds. In the past years a large number of novel fungal virulence factors and their modes of action have been identified. This review highlights effective phytotoxin-mediated strategies to distress, weaken or kill the plant host.

  10. CONSTRUCTION OF A PHYSIOLOGICALLY BASED PHARMACOKINETIC/PHARMACODYNAMIC (PBPK/PD) MODEL FOR CARBOFURAN USING THE EXPOSURE RELATED DOSE ESTIMATING MODEL (ERDEM)

    EPA Science Inventory

    Carbofuran, known as 2, 3-dihydro-2, 2-dimethyl-7-benzofuranyl-N-methylcarbamate, is a broad spectrum N-methyl carbamate pesticide. Carbofuran and its metabolite, 3-hydroxycarbofuran, exert their toxicity by reversibly inhibiting acetylcholinesterase (AChE). Carbofuran is widel...

  11. Chemopreventive effects of 13alpha,14alpha-epoxy-3beta-methoxyserratan-21beta-ol (PJJ-34), a serratane-type triterpenoid, in a rat multi-organ carcinogenesis bioassay.

    PubMed

    Doi, Kenichiro; Sakai, Kuniyoshi; Tanaka, Reiko; Toma, Kaori; Yamaguchi, Takashi; Wei, Min; Fukushima, Shoji; Wanibuchi, Hideki

    2010-03-28

    A novel serratane-type triterpenoid, 13alpha,14alpha-epoxy-3beta-methoxyserratan-21beta-ol (PJJ-34) derived from cuticles of Picea jezoensis Carr. var. jezoensis, has proved to be highly effective at suppressing carcinogenesis both in vitro and in vivo. To investigate possible anti-carcinogenic efficacy at the whole-body level, male Fischer 344 rats were subjected to an established rat multi-organ carcinogenesis bioassay (DMBDD model). After initiation with five carcinogens, groups 1-3 (20 in each) were intragastrically (i.g.) administered PJJ-34 dissolved in 1 ml of 0.5% CMC (5 times/week) at doses of 0, 5 and 10mg/kg body weight (b.w.), respectively, until the end of week 30. PJJ-34 did not show apparent toxicity. Incidences of adenomas (100-->75%) and carcinomas (63-->30%) in the lung were significantly decreased in the 5mg/kg b.w. group, and multiplicity of alveolar hyperplasias and total lung tumors (adenomas+carcinomas) were significantly reduced by both 5 and 10mg/kg. The incidence of colorectal tumors was also significantly decreased in the 10mg/kg group (63-->28%) along with the multiplicity. Rat liver pre-neoplastic lesions, glutathione S-transferase placental form (GST-P) foci, and tumor development in the other organs were not affected. Immunohistochemical indices for proliferating cell nuclear antigen (PCNA) and cyclin D1 in normal alveolar epithelium of the lung were significantly suppressed at both doses. In conclusion, PJJ-34 is chemopreventive against lung and colon carcinogenesis without exerting apparent toxicity, and suppression of cell proliferation could play a key role in the underlying mechanisms. Copyright 2009 Elsevier Ireland Ltd. All rights reserved.

  12. Administering multiple doses of a non N-(methylsuccinimido) anthranoyllycoctonine (MSAL)-containing tall larkspur (Delphinium occidentale) to cattle.

    PubMed

    Welch, K D; Stonecipher, C A; Green, B T; Gardner, D R; Cook, D; Pfister, J A

    2017-03-15

    Larkspurs (Delphinium spp.) are a serious toxic plant problem for cattle in western North America. There are two chemotypes of D. occidentale, a more toxic and a less toxic chemotype. The objective of this study was to evaluate the acute toxicity of the less toxic chemotype when administered in multiple doses to cattle. These results suggest that cattle could consume enough of the less toxic chemotype to be poisoned in a range setting. Published by Elsevier Ltd.

  13. Application of in Vitro Biotransformation Data and ...

    EPA Pesticide Factsheets

    The adverse biological effects of toxic substances are dependent upon the exposure concentration and the duration of exposure. Pharmacokinetic models can quantitatively relate the external concentration of a toxicant in the environment to the internal dose of the toxicant in the target tissues of an exposed organism. The exposure concentration of a toxic substance is usually not the same as the concentration of the active form of the toxicant that reaches the target tissues following absorption, distribution, and biotransformation of the parent toxicant. Biotransformation modulates the biological activity of chemicals through bioactivation and detoxication pathways. Many toxicants require biotransformation to exert their adverse biological effects. Considerable species differences in biotransformation and other pharmacokinetic processes can make extrapolation of toxicity data from laboratory animals to humans problematic. Additionally, interindividual differences in biotransformation among human populations with diverse genetics and lifestyles can lead to considerable variability in the bioactivation of toxic chemicals. Compartmental pharmacokinetic models of animals and humans are needed to understand the quantitative relationships between chemical exposure and target tissue dose as well as animal to human differences and interindividual differences in human populations. The data-based compartmental pharmacokinetic models widely used in clinical pharmacology ha

  14. Mitochondrial toxicity in human pregnancy: an update on clinical and experimental approaches in the last 10 years.

    PubMed

    Morén, Constanza; Hernández, Sandra; Guitart-Mampel, Mariona; Garrabou, Glòria

    2014-09-22

    Mitochondrial toxicity can be one of the most dreadful consequences of exposure to a wide range of external agents including pathogens, therapeutic agents, abuse drugs, toxic gases and other harmful chemical substances. However, little is known about the effects of mitochondrial toxicity on pregnant women exposed to these agents that may exert transplacental activity and condition fetal remodeling. It has been hypothesized that mitochondrial toxicity may be involved in some adverse obstetric outcomes. In the present study, we investigated the association between exposure to mitochondrial toxic agents and pathologic conditions ranging from fertility defects, detrimental fetal development and impaired newborn health due to intra-uterine exposure. We have reviewed data from studies in human subjects to propose mechanisms of mitochondrial toxicity that could be associated with the symptoms present in both exposed pregnant and fetal patients. Since some therapeutic interventions or accidental exposure cannot be avoided, further research is needed to gain insight into the molecular pathways leading to mitochondrial toxicity during pregnancy. The ultimate objective of these studies should be to reduce the mitochondrial toxicity of these agents and establish biomarkers for gestational monitoring of harmful effects.

  15. Treosulfan induces distinctive gonadal toxicity compared with busulfan

    PubMed Central

    Levi, Mattan; Stemmer, Salomon M.; Stein, Jerry; Shalgi, Ruth; Ben-Aharon, Irit

    2018-01-01

    Treosulfan (L-treitol-1,4-bis-methanesulfonate) has been increasingly incorporated as a main conditioning protocol for hematopoietic stem cell transplantation in pediatric malignant and non-malignant diseases. Treosulfan presents lower toxicity profile than other conventional alkylating agents containing myeloablative and immunosuppressive traits such as busulfan. Yet, whereas busulfan is considered highly gonadotoxic, the gonadal toxicity profile of treosulfan remains to be elucidated. To study the gonadotoxicity of treosulfan, pubertal and prepubertal male and female mice were injected with treosulfan or busulfan and sacrificed one week, one month or six months later. Testicular function was assessed by measurements of sperm properties, testes and epididymides weights as well as markers for testicular reserve, proliferation and apoptosis. Ovarian function was assessed by measurements of ovary weight and markers for ovarian reserve, proliferation and apoptosis. Treosulfan testicular toxicity was milder than that of busulfan toxicity; possibly by sparing the stem spermatogonia in the testicular sanctuary. By contrast, ovarian toxicity of both treosulfan and busulfan was severe and permanent and displayed irreversible reduction of reserve primordial follicles in the ovaries. Our data indicate that treosulfan exerts a different gonadal toxicity profile from busulfan, manifested by mild testicular toxicity and severe ovarian toxicity. PMID:29721205

  16. In vitro functional screening as a means to identify new plasticizers devoid of reproductive toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boisvert, Annie; Jones, Steven; Issop, Leeyah

    Plasticizers are indispensable additives providing flexibility and malleability to plastics. Among them, several phthalates, including di (2-ethylhexyl) phthalate (DEHP), have emerged as endocrine disruptors, leading to their restriction in consumer products and creating a need for new, safer plasticizers. The goal of this project was to use in vitro functional screening tools to select novel non-toxic plasticizers suitable for further in vivo evaluation. A panel of novel compounds with satisfactory plasticizer properties and biodegradability were tested, along with several commercial plasticizers, such as diisononyl-cyclohexane-1,2-dicarboxylate (DINCH®). MEHP, the monoester metabolite of DEHP was also included as reference compound. Because phthalates targetmore » mainly testicular function, including androgen production and spermatogenesis, we used the mouse MA-10 Leydig and C18-4 spermatogonial cell lines as surrogates to examine cell survival, proliferation, steroidogenesis and mitochondrial integrity. The most promising compounds were further assessed on organ cultures of rat fetal and neonatal testes, corresponding to sensitive developmental windows. Dose-response studies revealed the toxicity of most maleates and fumarates, while identifying several dibenzoate and succinate plasticizers as innocuous on Leydig and germ cells. Interestingly, DINCH®, a plasticizer marketed as a safe alternative to phthalates, exerted a biphasic effect on steroid production in MA-10 and fetal Leydig cells. MEHP was the only plasticizer inducing the formation of multinucleated germ cells (MNG) in organ culture. Overall, organ cultures corroborated the cell line data, identifying one dibenzoate and one succinate as the most promising candidates. The adoption of such collaborative approaches for developing new chemicals should help prevent the development of compounds potentially harmful to human health. - Highlights: • Phthalate plasticizers exert toxic effects on male reproduction. • Reproductive toxicity of new plasticizers was assessed by functional assays. • Mouse Leydig and germ cell lines, and rat perinatal testis cultures were used. • Survival, proliferation, steroidogenesis, abnormal germ cell formation were examined. • Reproductive toxic and innocuous plasticizer candidates were identified.« less

  17. Cytotoxic T cells use mechanical force to potentiate target cell killing

    PubMed Central

    Basu, Roshni; Whitlock, Benjamin M.; Husson, Julien; Le Floc’h, Audrey; Jin, Weiyang; Oyler-Yaniv, Alon; Dotiwala, Farokh; Giannone, Gregory; Hivroz, Claire; Biais, Nicolas; Lieberman, Judy; Kam, Lance C.; Huse, Morgan

    2016-01-01

    SUMMARY The immunological synapse formed between a cytotoxic T lymphocyte (CTL) and an infected or transformed target cell is a physically active structure capable of exerting mechanical force. Here, we investigated whether synaptic forces promote the destruction of target cells. CTLs kill by secreting toxic proteases and the pore forming protein perforin into the synapse. Biophysical experiments revealed a striking correlation between the magnitude of force exertion across the synapse and the speed of perforin pore formation on the target cell, implying that force potentiates cytotoxicity by enhancing perforin activity. Consistent with this interpretation, we found that increasing target cell tension augmented pore formation by perforin and killing by CTLs. Our data also indicate that CTLs coordinate perforin release and force exertion in space and time. These results reveal an unappreciated physical dimension to lymphocyte function and demonstrate that cells use mechanical forces to control the activity of outgoing chemical signals. PMID:26924577

  18. Hyperhomocysteinemia and neurologic disorders: a review.

    PubMed

    Ansari, Ramin; Mahta, Ali; Mallack, Eric; Luo, Jin Jun

    2014-10-01

    Homocysteine (Hcy) is a sulfur-containing amino acid that is generated during methionine metabolism. It has a physiologic role in DNA metabolism via methylation, a process governed by the presentation of folate, and vitamins B6 and B12. Physiologic Hcy levels are determined primarily by dietary intake and vitamin status. Elevated plasma levels of Hcy (eHcy) can be caused by deficiency of either vitamin B12 or folate, or a combination thereof. Certain genetic factors also cause eHcy, such as C667T substitution of the gene encoding methylenetetrahydrofolate reductase. eHcy has been observed in several medical conditions, such as cardiovascular disorders, atherosclerosis, myocardial infarction, stroke, minimal cognitive impairment, dementia, Parkinson's disease, multiple sclerosis, epilepsy, and eclampsia. There is evidence from laboratory and clinical studies that Hcy, and especially eHcy, exerts direct toxic effects on both the vascular and nervous systems. This article provides a review of the current literature on the possible roles of eHcy relevant to various neurologic disorders.

  19. Hyperhomocysteinemia and Neurologic Disorders: a Review

    PubMed Central

    Ansari, Ramin; Mallack, Eric; Luo, Jin Jun

    2014-01-01

    Homocysteine (Hcy) is a sulfur-containing amino acid that is generated during methionine metabolism. It has a physiologic role in DNA metabolism via methylation, a process governed by the presentation of folate, and vitamins B6 and B12. Physiologic Hcy levels are determined primarily by dietary intake and vitamin status. Elevated plasma levels of Hcy (eHcy) can be caused by deficiency of either vitamin B12 or folate, or a combination thereof. Certain genetic factors also cause eHcy, such as C667T substitution of the gene encoding methylenetetrahydrofolate reductase. eHcy has been observed in several medical conditions, such as cardiovascular disorders, atherosclerosis, myocardial infarction, stroke, minimal cognitive impairment, dementia, Parkinson's disease, multiple sclerosis, epilepsy, and eclampsia. There is evidence from laboratory and clinical studies that Hcy, and especially eHcy, exerts direct toxic effects on both the vascular and nervous systems. This article provides a review of the current literature on the possible roles of eHcy relevant to various neurologic disorders. PMID:25324876

  20. OmoMYC blunts promoter invasion by oncogenic MYC to inhibit gene expression characteristic of MYC-dependent tumors.

    PubMed

    Jung, L A; Gebhardt, A; Koelmel, W; Ade, C P; Walz, S; Kuper, J; von Eyss, B; Letschert, S; Redel, C; d'Artista, L; Biankin, A; Zender, L; Sauer, M; Wolf, E; Evan, G; Kisker, C; Eilers, M

    2017-04-06

    MYC genes have both essential roles during normal development and exert oncogenic functions during tumorigenesis. Expression of a dominant-negative allele of MYC, termed OmoMYC, can induce rapid tumor regression in mouse models with little toxicity for normal tissues. How OmoMYC discriminates between physiological and oncogenic functions of MYC is unclear. We have solved the crystal structure of OmoMYC and show that it forms a stable homodimer and as such recognizes DNA in the same manner as the MYC/MAX heterodimer. OmoMYC attenuates both MYC-dependent activation and repression by competing with MYC/MAX for binding to chromatin, effectively lowering MYC/MAX occupancy at its cognate binding sites. OmoMYC causes the largest decreases in promoter occupancy and changes in expression on genes that are invaded by oncogenic MYC levels. A signature of OmoMYC-regulated genes defines subgroups with high MYC levels in multiple tumor entities and identifies novel targets for the eradication of MYC-driven tumors.

  1. Mn2+ exerts stronger structural effects than the Mn-citrate complex on the human erythrocyte membrane and molecular models.

    PubMed

    Suwalsky, M; Villena, F; Sotomayor, C P

    2010-01-01

    While traces of manganese (Mn) take part in important and essential functions in biology, elevated exposures have been shown to cause significant toxicity. Chronic exposure to the metal leads to manganese neurotoxicity (or manganism), a brain disorder that resembles Parkinsonism. Toxic effect mechanisms of Mn is not understood, toxic concentrations of manganese are not well defined and blood manganese concentration at which neurotoxicity occurs has not been identified. There are reports indicating that the most abundant Mn-species in Mn carriers within blood is the Mn-citrate complex. Despite the well-documented information about the toxic effects of Mn, there are scarce reports concerning the effects of manganese compounds on both structure and functions of cell membranes, particularly those of human erythrocytes. With the aim to better understand the molecular mechanisms of the interaction of Mn with cell membranes, MnCl(2), and the Mn-citrate complex were incubated with intact erythrocytes, isolated unsealead human erythrocyte membranes (IUM), and molecular models of the erythrocyte membrane. These consisted in bilayers of dimyristoylphosphatidylcholine (DMPC) and dimyristoylphosphatidylethanolamine (DMPE), phospholipid classes present in the outer and inner monolayers of the erythrocyte membrane, respectively. The capacity of the Mn compounds to perturb the bilayer structures of DMPC and DMPE was evaluated by X-ray diffraction, IUM were studied by fluorescence spectroscopy, and intact human erythrocytes were observed by scanning electron microscopy (SEM). In all these systems it was found that Mn(2+) exerted considerable higher structural perturbations than the Mn-citrate complex.

  2. Vitamin A and Retinoids as Mitochondrial Toxicants

    PubMed Central

    de Oliveira, Marcos Roberto

    2015-01-01

    Vitamin A and its derivatives, the retinoids, are micronutrient necessary for the human diet in order to maintain several cellular functions from human development to adulthood and also through aging. Furthermore, vitamin A and retinoids are utilized pharmacologically in the treatment of some diseases, as, for instance, dermatological disturbances and some types of cancer. In spite of being an essential micronutrient with clinical application, vitamin A exerts several toxic effects regarding redox environment and mitochondrial function. Moreover, decreased life quality and increased mortality rates among vitamin A supplements users have been reported. However, the exact mechanism by which vitamin A elicits its deleterious effects is not clear yet. In this review, the role of mitochondrial dysfunction in the mechanism of vitamin A-induced toxicity is discussed. PMID:26078802

  3. Effects of Jatropha curcas oil in Lactuca sativa root tip bioassays.

    PubMed

    Andrade-Vieira, Larissa F; Botelho, Carolina M; Laviola, Bruno G; Palmieri, Marcel J; Praça-Fontes, Milene M

    2014-03-01

    Jatropha curcas L. (Euphorbiaceae) is important for biofuel production and as a feed ingredient for animal. However, the presence of phorbol esters in the oil and cake renders the seeds toxic. The toxicity of J. curcas oil is currently assessed by testing in animals, leading to their death. The identification of toxic and nontoxic improved varieties is important for the safe use of J. curcas seeds and byproducts to avoid their environmental toxicity. Hence, the aim of this study was to propose a short-term bioassay using a plant as a model to screen the toxicity of J. curcas oil without the need to sacrifice any animals. The toxicity of J. curcas oil was evident in germination, root elongation and chromosomal aberration tests in Lactuca sativa. It was demonstrated that J. curcas seeds contain natural compounds that exert phyto-, cyto- and genotoxic effects on lettuce, and that phorbol esters act as aneugenic agents, leading to the formation of sticky chromosomes and c-metaphase cells. In conclusion, the tests applied have shown reproducibility, which is important to verify the extent of detoxification and to determine toxic doses, thus reducing the numbers of animals that would be used for toxicity tests.

  4. In vivo investigation of hybrid Paclitaxel nanocrystals with dual fluorescent probes for cancer theranostics.

    PubMed

    Hollis, Christin P; Weiss, Heidi L; Evers, B Mark; Gemeinhart, Richard A; Li, Tonglei

    2014-06-01

    To develop novel hybrid paclitaxel (PTX) nanocrystals, in which bioactivatable (MMPSense® 750 FAST) and near infrared (Flamma Fluor® FPR-648) fluorophores are physically incorporated, and to evaluate their anticancer efficacy and diagnostic properties in breast cancer xenograft murine model. The pure and hybrid paclitaxel nanocrystals were prepared by an anti-solvent method, and their physical properties were characterized. The tumor volume change and body weight change were evaluated to assess the treatment efficacy and toxicity. Bioimaging of treated mice was obtained non-invasively in vivo. The released MMPSense molecules from the hybrid nanocrystals were activated by matrix metalloproteinases (MMPs) in vivo, similarly to the free MMPSense, demonstrating its ability to monitor cancer progression. Concurrently, the entrapped FPR-648 was imaged at a different wavelength. Furthermore, when administered at 20 mg/kg, the nanocrystal formulations exerted comparable efficacy as Taxol®, but with decreased toxicity. Hybrid nanocrystals that physically integrated two fluorophores were successfully prepared from solution. Hybrid nanocrystals were shown not only exerting antitumor activity, but also demonstrating the potential of multi-modular bioimaging for diagnostics.

  5. Involvement of ERK in NMDA receptor-independent cortical neurotoxicity of hydrogen sulfide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurokawa, Yuko; Sekiguchi, Fumiko; Kubo, Satoko

    2011-11-04

    Highlights: Black-Right-Pointing-Pointer Hydrogen sulfide causes NMDA receptor-independent neurotoxicity in mouse fetal cortical neurons. Black-Right-Pointing-Pointer Activation of ERK mediates the toxicity of hydrogen sulfide. Black-Right-Pointing-Pointer Apoptotic mechanisms are involved in the hydrogen-induced cell death. -- Abstract: Hydrogen sulfide (H{sub 2}S), a gasotransmitter, exerts both neurotoxicity and neuroprotection, and targets multiple molecules including NMDA receptors, T-type calcium channels and NO synthase (NOS) that might affect neuronal viability. Here, we determined and characterized effects of NaHS, an H{sub 2}S donor, on cell viability in the primary cultures of mouse fetal cortical neurons. NaHS caused neuronal death, as assessed by LDH release and trypanmore » blue staining, but did not significantly reduce the glutamate toxicity. The neurotoxicity of NaHS was resistant to inhibitors of NMDA receptors, T-type calcium channels and NOS, and was blocked by inhibitors of MEK, but not JNK, p38 MAP kinase, PKC and Src. NaHS caused prompt phosphorylation of ERK and upregulation of Bad, followed by translocation of Bax to mitochondria and release of mitochondrial cytochrome c, leading to the nuclear condensation/fragmentation. These effects of NaHS were suppressed by the MEK inhibitor. Our data suggest that the NMDA receptor-independent neurotoxicity of H{sub 2}S involves activation of the MEK/ERK pathway and some apoptotic mechanisms.« less

  6. In view of an optimal gut antifungal therapeutic strategy: an in vitro susceptibility and toxicity study testing a novel phyto-compound.

    PubMed

    Metugriachuk, Yussef; Kuroi, Olivia; Pavasuthipaisit, Kanok; Tsuchiya, Junji; Minelli, Emilio; Okura, Ruichi; Fesce, Edoardo; Marotta, F

    2005-01-01

    In view of the raising concern for gut fungal infection, the aim of the present research was to carry out a systematic in vitro study testing the antifungal activity and possible toxicity of a polygodyal-anethole compound (Kolorex) in several strains of Candida albicans and in other fungal pathogens. The in vitro susceptibility tests were carried out on 4 strains of C. albicans (C. krusei, C. lipolytica, C. tropicalis, C. utilis), Aspergillus flavus and A. fumigatus. Cultures were also analyzed by varying medium, pH and inoculum size, and a time-course killing test was carried out. In the present study the polygodyal-anethole compound showed remarkable in vitro activity against the most common fungi, which was significantly better than polygodyal alone. Moreover, such mixture compound was shown to exert its activity against a wide spectrum of fungi, including C. lipolytica and C. tropicalis, which required significantly higher MIC of polygodyal to be unfeasible in clinical application. The activity of the polygodyal-anethole compound was significantly better than polygodyal alone with high inoculum size and low pH. Moreover, it proved to exert a significantly faster biological activity against low inoculum. This study suggests that the mixture compound Kolorex has a very good profile of antifungal activity in terms of effectiveness and spectrum of action while being devoid of any significant toxicity.

  7. Bacterial bioluminescence response to long-term exposure to reverse osmosis treated effluents from dye industries.

    PubMed

    Ravindran, J; Manikandan, B; Shirodkar, P V; Francis, K X; Mani Murali, R; Vethamony, P

    2014-10-01

    The bacterial bioluminescence assay is one of the novel means for toxicity detection. The bioluminescence response of 2 marine bioluminescent bacteria was tested upon their long-term exposure to 9 different reverse osmosis (RO) rejects with varying chemical composition sampled from various dye industries. Bioluminescent bacteria were cultured in the RO reject samples, at different concentrations, and their growth rate and luminescence was measured for 24 h. The RO reject samples caused sublethal effects upon exposure and retarded the growth of bacteria, confirming their toxic nature. Further, continuation of the exposure showed that the initial luminescence, though reduced, recovered and increased beyond the control cultures irrespective of cell density, and finally decreased once again. The present study emphasizes the need of evolving a long-term exposure assay and shows that the method followed in this study is suitable to evaluate the toxicants that exert delayed toxicity, using lower concentrations of toxicants as well as coloured samples.

  8. The role of oxidative stress in organophosphate and nerve agent toxicity

    PubMed Central

    Pearson, Jennifer N.; Patel, Manisha

    2016-01-01

    Organophosphate nerve agents exert their toxicity through inhibition of acetylcholinesterase. The excessive stimulation of cholinergic receptors rapidly causes neuronal damage, seizures, death, and long-term neurological impairment in those that survive. Owing to the lethality of organophosphorus agents and the growing risk they pose, medical interventions that prevent organophosphate toxicity and the delayed injury response are much needed. Studies have shown that oxidative stress occurs in models of subacute, acute, and chronic exposure to organophosphate agents. Key findings of these studies include alterations in mitochondrial function and increased free radical–mediated injury, such as lipid peroxidation. This review focuses on the role of reactive oxygen species in organophosphate neurotoxicity and its dependence on seizure activity. Understanding the sources, mechanisms, and pathological consequences of organophosphate-induced oxidative stress can lead to the development of rational therapies for treating toxic exposures. PMID:27371936

  9. Potential behavioral and pro-oxidant effects of Petiveria alliacea L. extract in adult rats.

    PubMed

    de Andrade, Thaís Montenegro; de Melo, Ademar Soares; Dias, Rui Guilherme Cardoso; Varela, Everton Luís Pompeu; de Oliveira, Fábio Rodrigues; Vieira, José Luís Fernandes; de Andrade, Marcieni Ataíde; Baetas, Ana Cristina; Monteiro, Marta Chagas; Maia, Cristiane do Socorro Ferraz

    2012-09-28

    Petiveria alliacea (Phytolaccaceae) is a perennial shrub indigenous to the Amazon Rainforest and tropical areas of Central and South America, the Caribbean, and sub-Saharan Africa. In folk medicine, Petiveria alliacea has a broad range of therapeutic properties; however, it is also associated with toxic effects. The present study evaluated the putative effects of Petiveria alliacea on the central nervous system, including locomotor activity, anxiety, depression-like behavior, and memory, and oxidative stress. Two-month-old male and female Wistar rats (n=7-10 rats/group) were administered with 900 mg/kg of hydroalcoholic extracts of Petiveria alliacea L. The behavioral assays included open-field, forced swimming, and elevated T-maze tests. The oxidative stress levels were measured in rat blood samples after behavioral assays and methemoglobin levels were measured in vitro. Consistent with previous reports, Petiveria alliacea increased locomotor activity. It also exerted previously unreported anxiolytic and antidepressant effects in behavioral tests. In the oxidative stress assays, the Petiveria alliacea extract decreased Trolox equivalent antioxidant capacity levels and increased methemoglobin levels, which was related to the toxic effects. The Petiveria alliacea extract exerted motor stimulatory and anxiolytic effects in the OF test, antidepressant effects in the FS test, and elicited memory improvement in ETM. Furthermore, the Petiveria alliacea extract also exerted pro-oxidant effects in vitro and in vivo, inhibiting the antioxidant status and increasing MetHb levels in human plasma, respectively. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  10. Comparative study on the toxic effects of red tide flagellates Heterocapsa circularisquama and Chattonella marina on the short-necked clam (Ruditapes philippinarum).

    PubMed

    Kim, Daekyung; Choi, Kwang-Sik; Hong, Hyun-Ki; Jiang, Zedong; Zou, Yanan; Choi, Kyu-Sung; Yamasaki, Yasuhiro; Matsuyama, Yukihiko; Yamaguchi, Kenichi; Oda, Tatsuya

    2011-01-01

    Heterocapsa circularisquama showed much higher toxic effects on short-necked clams than Chattonella marina. Clams exposed to H. circularisquama exhibited morphological changes concomitant with an accumulation of mucus-like substances in the gills, a profound reduction in filtration activity, and lysosomal destabilization in hemocytes. Chattonella marina was less effective than H. circularisquama, and Heterocapsa triquetra was almost harmless in all these criteria. These results suggest that H. circularisquama exerted its lethal effect on short-necked clams through gill tissue damage and subsequent induction of physiological stress.

  11. Effects of the calcium channel blocker verapamil and sulphydryl reducing agent dithiothreitol on atractyloside toxicity in precision-cut rat renal cortical and liver slices.

    PubMed

    Obatomi, D K; Blackburn, R O; Bach, P H

    2001-10-01

    The effects of dithiothreitol (DTT), a sulfhydryl-containing agent and verapamil (VRP), a calcium channel blocker as possible cytoprotectants against the atractyloside-induced toxicity were characterized in rat kidney and liver slices in vitro using multiple markers of toxicity. Precision-cut slices (200 microM thick) were either incubated with atractyloside (2 mM) or initially preincubated with either DTT (5 mM) or VRP (100 microM) for 30 min followed by exposure to atractyloside (2 mM) for 3 h at 37 degrees C on a rocker platform rotated at approximately 3 rpm. All of the toxicity parameters were sensitive to exposure to atractyloside, but treatment with DTT or VRP alone did not provide any indication of damage to the tissues. Preincubation of slices containing either DTT or VRP for 30 min provided total protection against atractyloside-induced increase in LDH leakage in both kidney and liver slices. Increased induction of lipid peroxidation by atractyloside in liver slices was completely abolished by DTT and VRP. Both DTT and VRP provided partial protection against atractyloside-induced inhibition of gluconeogenesis in both kidney and liver slices. Atractyloside-induced ATP depletion in both kidney and liver slices was partially abolished by VRP but not DTT. The significant depletion of GSH in the kidney slices by atractyloside was completely reversed by DTT only, while VRP alone reversed the same process in liver slices. Decreased MTT reductive capacity and significant increase in ALT leakage caused by atractyloside in liver slices was partially reversed. Complete protection was achieved with both DTT and VRP against atractyloside-induced inhibition of PAH uptake in kidney slices. These findings suggest that both DTT and VRP exert cytoprotective effects in atractyloside-induced biochemical perturbation, effects that differ in liver and kidney. The effect of these agents on atractyloside has provided us with a further understanding of the molecular mechanism of its action.

  12. Novel Investigations of Flavonoids as Chemopreventive Agents for Hepatocellular Carcinoma

    PubMed Central

    Liao, Chen-Yi; Lee, Ching-Chang; Tsai, Chi-chang; Hsueh, Chao-Wen; Wang, Chih-Chiang; Chen, I-Hung; Tsai, Ming-Kai; Liu, Mei-Yu; Hsieh, An-Tie; Su, Kuan-Jen; Wu, Hau-Ming; Huang, Shih-Chung; Wang, Yi-Chen; Wang, Chien-Yao; Huang, Shu-Fang; Yeh, Yen-Cheng; Ben, Ren-Jy; Chien, Shang-Tao; Hsu, Chin-Wen; Kuo, Wu-Hsien

    2015-01-01

    We would like to highlight the application of natural products to hepatocellular carcinoma (HCC). We will focus on the natural products known as flavonoids, which target this disease at different stages of hepatocarcinogenesis. In spite of the use of chemotherapy and radiotherapy in treating HCC, patients with HCC still face poor prognosis because of the nature of multidrug resistance and toxicity derived from chemotherapy and radiotherapy. Flavonoids can be found in many vegetables, fruits, and herbal medicines that exert their different anticancer effects via different intracellular signaling pathways and serve as antioxidants. In this review, we will discuss seven common flavonoids that exert different biological effects against HCC via different pathways. PMID:26858957

  13. Transport of pyruvate into mitochondria is involved in methylmercury toxicity

    PubMed Central

    Lee, Jin-Yong; Ishida, Yosuke; Takahashi, Tsutomu; Naganuma, Akira; Hwang, Gi-Wook

    2016-01-01

    We have previously demonstrated that the overexpression of enzymes involved in the production of pyruvate, enolase 2 (Eno2) and D-lactate dehydrogenase (Dld3) renders yeast highly sensitive to methylmercury and that the promotion of intracellular pyruvate synthesis may be involved in intensifying the toxicity of methylmercury. In the present study, we showed that the addition of pyruvate to culture media in non-toxic concentrations significantly enhanced the sensitivity of yeast and human neuroblastoma cells to methylmercury. The results also suggested that methylmercury promoted the transport of pyruvate into mitochondria and that the increased pyruvate concentrations in mitochondria were involved in intensifying the toxicity of methylmercury without pyruvate being converted to acetyl-CoA. Furthermore, in human neuroblastoma cells, methylmercury treatment alone decreased the mitochondrial membrane potential, and the addition of pyruvate led to a further significant decrease. In addition, treatment with N-acetylcysteine (an antioxidant) significantly alleviated the toxicity of methylmercury and significantly inhibited the intensification of methylmercury toxicity by pyruvate. Based on these data, we hypothesize that methylmercury exerts its toxicity by raising the level of pyruvate in mitochondria and that mitochondrial dysfunction and increased levels of reactive oxygen species are involved in the action of pyruvate. PMID:26899208

  14. In Vivo and In Vitro Toxicity Evaluation of Hydroethanolic Extract of Kalanchoe brasiliensis (Crassulaceae) Leaves.

    PubMed

    Fonseca, Aldilane Gonçalves; Ribeiro Dantas, Luzia Leiros Sena Fernandes; Fernandes, Júlia Morais; Zucolotto, Silvana Maria; Lima, Adley Antoninni Neves; Soares, Luiz Alberto Lira; Rocha, Hugo Alexandre Oliveira; Lemos, Telma Maria Araújo Moura

    2018-01-01

    The species Kalanchoe brasiliensis , known as "Saião , " has anti-inflammatory, antimicrobial, and antihistamine activities. It also has the quercetin and kaempferol flavonoids, which exert their therapeutic activities. With extensive popular use besides the defined therapeutical properties, the study of possible side effects is indispensable. The objective of this study is to evaluate the toxicity in vitro and in vivo from the hydroethanolic extract of the leaves of K. brasiliensis . The action of the extract (concentrations from 0.1 to 1000 uL/100 uL) in normal and tumor cells was evaluated using the MTT method. Acute toxicity and subchronic toxicity were evaluated in mice with doses of 250 to 1000 mg/kg orally, following recognized protocols. The in vitro results indicated cytotoxic activity for 3T3 cell line (normal) and 786-0 (kidney carcinoma), showing the activity to be concentration-dependent, reaching 92.23% cell inhibition. In vivo , the extract showed no significant toxicity; only liver changes related to acute toxicity and some signs of liver damage, combining biochemical and histological data. In general, the extract showed low or no toxicity, introducing itself as safe for use with promising therapeutic potential.

  15. Piracetam inhibits ethanol (EtOH)-induced memory deficit by mediating multiple pathways.

    PubMed

    Yang, Yifan; Feng, Jian; Xu, Fangyuan; Wang, Jianglin

    2017-12-01

    Excessive ethanol (EtOH) intake, especially to prenatal exposure, can significantly affect cognitive function and cause permanent learning and memory injures in children. As a result, how to protect children from EtOH neurotoxicity has gained increasing attention in recent years. Piracetam (Pir) is a nootropic drug derived from c-aminobutyric acid and can manage cognition impairments in multiple neurological disorders. Studies have shown that Pir can exert therapeutic effects on EtOH-induced memory impairments, but the underlying mechanism is still unknown. In this study, we found that Pir inhibited ethanol-induced memory deficit by mediating multiple pathways. Treatment with EtOH could cause cognitive deficit in juvenile rats, and triggered the alteration of synaptic plasticity. Administration with Pir significantly increased long-term potentiation and protected hippocampus neurons from EtOH neurotoxicity. Pir intervention ameliorated EtOH-induced cell apoptosis and inhibited the activation of Caspase-3 in vitro, suggesting that Pir protected neurons by anti-apoptotic effects. Pir could decrease the expression of LC3-II and Beclin-1 induced by EtOH, and increase the phosphorylation of mTOR and reduce the phosphorylation of Akt, which suggested that the protective effect of Pir was involved in regulation of autophagic process and mTOR/Akt pathways. In conclusion, we speculate that Pir reduces EtOH-induced neuronal damage by regulation of apoptotic action and autophagic action, and our research offers preclinical evidence for the application of Pir in ethanol toxicity. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Assessment of the Toxicity of CuO Nanoparticles by Using Saccharomyces cerevisiae Mutants with Multiple Genes Deleted

    PubMed Central

    Bao, Shaopan; Lu, Qicong; Dai, Heping; Zhang, Chao

    2015-01-01

    To develop applicable and susceptible models to evaluate the toxicity of nanoparticles, the antimicrobial effects of CuO nanoparticles (CuO-NPs) on various Saccharomyces cerevisiae (S. cerevisiae) strains (wild type, single-gene-deleted mutants, and multiple-gene-deleted mutants) were determined and compared. Further experiments were also conducted to analyze the mechanisms associated with toxicity using copper salt, bulk CuO (bCuO), carbon-shelled copper nanoparticles (C/Cu-NPs), and carbon nanoparticles (C-NPs) for comparisons. The results indicated that the growth inhibition rates of CuO-NPs for the wild-type and the single-gene-deleted strains were comparable, while for the multiple-gene deletion mutant, significantly higher toxicity was observed (P < 0.05). When the toxicity of the CuO-NPs to yeast cells was compared with the toxicities of copper salt and bCuO, we concluded that the toxicity of CuO-NPs should be attributed to soluble copper rather than to the nanoparticles. The striking difference in adverse effects of C-NPs and C/Cu-NPs with equivalent surface areas also proved this. A toxicity assay revealed that the multiple-gene-deleted mutant was significantly more sensitive to CuO-NPs than the wild type. Specifically, compared with the wild-type strain, copper was readily taken up by mutant strains when cell permeability genes were knocked out, and the mutants with deletions of genes regulated under oxidative stress (OS) were likely producing more reactive oxygen species (ROS). Hence, as mechanism-based gene inactivation could increase the susceptibility of yeast, the multiple-gene-deleted mutants should be improved model organisms to investigate the toxicity of nanoparticles. PMID:26386067

  17. Modeling of Toxicity-Relevant Electrophilic Reactivity for Guanine with Epoxides: Estimating the Hard and Soft Acids and Bases (HSAB) Parameter as a Predictor.

    PubMed

    Zhang, Jing; Wang, Chenchen; Ji, Li; Liu, Weiping

    2016-05-16

    According to the electrophilic theory in toxicology, many chemical carcinogens in the environment and/or their active metabolites are electrophiles that exert their effects by forming covalent bonds with nucleophilic DNA centers. The theory of hard and soft acids and bases (HSAB), which states that a toxic electrophile reacts preferentially with a biological macromolecule that has a similar hardness or softness, clarifies the underlying chemistry involved in this critical event. Epoxides are hard electrophiles that are produced endogenously by the enzymatic oxidation of parent chemicals (e.g., alkenes and PAHs). Epoxide ring opening proceeds through a SN2-type mechanism with hard nucleophile DNA sites as the major facilitators of toxic effects. Thus, the quantitative prediction of chemical reactivity would enable a predictive assessment of the molecular potential to exert electrophile-mediated toxicity. In this study, we calculated the activation energies for reactions between epoxides and the guanine N7 site for a diverse set of epoxides, including aliphatic epoxides, substituted styrene oxides, and PAH epoxides, using a state-of-the-art density functional theory (DFT) method. It is worth noting that these activation energies for diverse epoxides can be further predicted by quantum chemically calculated nucleophilic indices from HSAB theory, which is a less computationally demanding method than the exacting procedure for locating the transition state. More importantly, the good qualitative/quantitative correlations between the chemical reactivity of epoxides and their bioactivity suggest that the developed model based on HSAB theory may aid in the predictive hazard evaluation of epoxides, enabling the early identification of mutagenicity/carcinogenicity-relevant SN2 reactivity.

  18. Toxicological interactions between mycotoxins from ubiquitous fungi: Impact on hepatic and intestinal human epithelial cells.

    PubMed

    Sobral, M Madalena C; Faria, Miguel A; Cunha, Sara C; Ferreira, Isabel M P L V O

    2018-07-01

    Aflatoxin B1 (AFB1), deoxynivalenol (DON), fumonisin B1 (FB1) and ochratoxin A (OTA) are toxic fungal metabolites co-occurring naturally in the environment. This study aimed to evaluate the toxicological interactions of these mycotoxins concerning additive, antagonistic and synergistic toxicity towards human cells. The theoretical biology-based Combination index-isobologram method was used to evaluate the individual and binary effect of these toxins and determine the type of the interaction using as models Caco-2 (intestinal) and HepG2 (hepatic) cells. Cytotoxicity was assessed using the MTT test at the concentrations of 0.625-20 μM for all the compounds. DON exerted the highest toxicity toward both cells, OTA and AFB1 also showed a dose-effect response, whereas no toxicity was verified for FB1. Synergism or antagonism effects occurred when exposing AFB1-DON and AFB1-OTA on Caco-2 cells at higher or lower concentrations, respectively; while DON-OTA showed synergism throughout all inhibition levels. Concerning HepG2, AFB1-DON exerted a strong synergism, regardless of the level; whereas AFB1-OTA had slight synergism/nearly additive effect; and, OTA-DON had a moderate antagonism/nearly additive effect. Synergistic strengths as high as a dose reduction index of 10 for AFB1-DON were observed in hepatic cells. Taken together our findings indicate that the toxicological effects differ regarding the type of mycotoxins used for combinations and the stronger synergistic effect was observed for mixtures containing DON in both cells. Therefore, even though DON has not been classified as to its carcinogenicity to humans, this mycotoxin may present a serious threat to health, mainly when co-occurring in the environment. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Cytotoxic Effects of Ochratoxin A in Neuro-2a Cells: Role of Oxidative Stress Evidenced by N-acetylcysteine.

    PubMed

    Bhat, Pratiksha V; Pandareesh; Khanum, Farhath; Tamatam, Anand

    2016-01-01

    Ochratoxin-A (OTA), is toxic secondary metabolite and is found to be a source of vast range of toxic effects like hepatotoxicity, nephrotoxicity. However, the information available currently regarding neurotoxic effects exerted by OTA is scanty. Hence, the present study was aimed to evaluate the neurotoxic effects of OTA and the possible mechanisms of toxicity as well as the role of cytotoxic oxidative stress on neuronal (Neuro-2a) cell line was evaluated in vitro. Results of the MTT and LDH assay showed that, OTA induced dose-dependent cell death in Neuro-2a cells and EC50 value was determined as 500 nM. OTA induced high levels of reactive oxygen species (ROS) and elevated levels of malondialdehyde, also loss of mitochondrial membrane potential was observed in a dose depended manner. Effects of OTA on ROS induced chromosomal DNA damage was assessed by Comet assay and plasmid DNA damage assay in which increase in DNA damage was observed in Neuro-2a cells by increasing the OTA concentration. Further western blotting analysis of OTA treated Neuro-2a cells indicated elevated expression levels of c-Jun, JNK3 and cleaved caspase-3 leading to apoptotic cell death. Other hand realtime-Q-PCR analysis clearly indicates the suppressed expression of neuronal biomarker genes including AChE, BDNF, TH and NOS2. Further N-acetylcysteine (NAC) pretreatment to Neuro-2a cells followed by OTA treatment clearly evidenced that, the significant reversal of toxic effects exerted by OTA on Neuro-2a cells. In the present study, results illustrate that ROS a principle event in oxidative stress was elevated by OTA toxicity in Neuro-2a cells. However, further in vivo, animal studies are in need to conclude the present study reports and the use of NAC as a remedy for OTA induced neuronal stress.

  20. Vaticaffinol, a resveratrol tetramer, exerts more preferable immunosuppressive activity than its precursor in vitro and in vivo through multiple aspects against activated T lymphocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Li-Li; Wu, Xue-Feng; Liu, Hai-Liang

    2013-03-01

    In the present study, we aimed to investigate the immunosuppressive activity of vaticaffinol, a resveratrol tetramer isolated from Vatica mangachapoi, on T lymphocytes both in vitro and in vivo, and further explored its potential molecular mechanism. Resveratrol had a wide spectrum of healthy beneficial effects with multiple targets. Interestingly, its tetramer, vaticaffinol, exerted more intensive immunosuppressive activity than resveratrol. Vaticaffinol significantly inhibited T cells proliferation activated by concanavalin A (Con A) or anti-CD3 plus anti-CD28 in a dose- and time-dependent manner. It also induced Con A-activated T cells undergoing apoptosis through mitochondrial pathway. Moreover, this compound prevented cells from enteringmore » S phase and G2/M phase during T cells activation. In addition, vaticaffinol inhibited ERK and AKT signaling pathways in Con A-activated T cells. Furthermore, vaticaffinol significantly ameliorated ear swelling in a mouse model of picryl chloride-induced ear contact dermatitis in vivo. In most of the aforementioned experiments, however, resveratrol had only slight effects on the inhibition of T lymphocytes compared with vaticaffinol. Taken together, our findings suggest that vaticaffinol exerts more preferable immunosuppressive activity than its precursor resveratrol both in vitro and in vivo by affecting multiple targets against activated T cells. - Graphical abstract: Vaticaffinol, a resveratrol tetramer isolated from Vatica mangachapoi, exerts more intensive immunosuppressive activity than its precursor resveratrol does in vitro and in vivo. Its mechanism may involve multiple effects against activated T cells: regulation of signalings involved in cell proliferation, G0/G1 arrest of T cells, as well as an apoptosis induction in activated effector T cells. Highlights: ► Vaticaffinol, a resveratrol tetramer, exerts more potent activity than its precursor. ► It inhibited T cells proliferation and prevented them from entering cell cycles. ► It led to apoptosis of activated T cells through mitochondrial pathway. ► It down-regulated ERK and AKT signaling pathways in Con A-activated T cells. ► It significantly ameliorated picryl chloride-induced ear swelling.« less

  1. Cytotoxic T Cells Use Mechanical Force to Potentiate Target Cell Killing.

    PubMed

    Basu, Roshni; Whitlock, Benjamin M; Husson, Julien; Le Floc'h, Audrey; Jin, Weiyang; Oyler-Yaniv, Alon; Dotiwala, Farokh; Giannone, Gregory; Hivroz, Claire; Biais, Nicolas; Lieberman, Judy; Kam, Lance C; Huse, Morgan

    2016-03-24

    The immunological synapse formed between a cytotoxic T lymphocyte (CTL) and an infected or transformed target cell is a physically active structure capable of exerting mechanical force. Here, we investigated whether synaptic forces promote the destruction of target cells. CTLs kill by secreting toxic proteases and the pore forming protein perforin into the synapse. Biophysical experiments revealed a striking correlation between the magnitude of force exertion across the synapse and the speed of perforin pore formation on the target cell, implying that force potentiates cytotoxicity by enhancing perforin activity. Consistent with this interpretation, we found that increasing target cell tension augmented pore formation by perforin and killing by CTLs. Our data also indicate that CTLs coordinate perforin release and force exertion in space and time. These results reveal an unappreciated physical dimension to lymphocyte function and demonstrate that cells use mechanical forces to control the activity of outgoing chemical signals. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Larvicidal and repellent activity of essential oils from wild and cultivated Ruta chalepensis L. (Rutaceae) against Aedes albopictus Skuse (Diptera: Culicidae), an arbovirus vector.

    PubMed

    Conti, Barbara; Leonardi, Michele; Pistelli, Luisa; Profeti, Raffaele; Ouerghemmi, Ines; Benelli, Giovanni

    2013-03-01

    Rutaceae are widely recognized for their toxic and repellent activity exerted against mosquitoes. In our research, the essential oils extracted from fresh leaves of wild and cultivated plants of Ruta chalepensis L. (Rutaceae) were evaluated for larvicidal and repellent activity against the Asian tiger mosquito, Aedes albopictus Skuse (Diptera: Culicidae), currently the most invasive mosquito worldwide. In this research, gas chromatography and gas chromatography-mass spectrometry analyses of the essential oils from wild and cultivated plants showed only quantitative differences, in particular relatively to the amounts of ketone derivatives, while the qualitative profile evidenced a similar chemical composition. Both essential oils from wild and cultivated R. chalepensis plants were able to exert a very good toxic activity against A. albopictus larvae (wild plants, LC(50) = 35.66 ppm; cultivated plants, LC(50) = 33.18 ppm), and mortality was dosage dependent. These data are the first evidence of the toxicity of R. chalepensis against mosquitoes. Furthermore, the R. chalepensis essential oil from wild plants was an effective repellent against A. albopictus, also at lower dosages: RD(50) was 0.000215 μL/cm(2) of skin, while RD(90) was 0.007613 μL/cm(2). Our results clearly evidenced that the larvicidal and repellent activity of R. chalepensis essential oil could be used for the development of new and safer products against the Asian tiger mosquito.

  3. Vasorelaxing effects and inhibition of nitric oxide in macrophages by new iron-containing carbon monoxide-releasing molecules (CO-RMs).

    PubMed

    Motterlini, Roberto; Sawle, Philip; Hammad, Jehad; Mann, Brian E; Johnson, Tony R; Green, Colin J; Foresti, Roberta

    2013-02-01

    Carbon monoxide-releasing molecules (CO-RMs) are a class of organometallo carbonyl complexes capable of delivering controlled quantities of CO gas to cells and tissues thus exerting a broad spectrum of pharmacological effects. Here we report on the chemical synthesis, CO releasing properties, cytotoxicity profile and pharmacological activities of four novel structurally related iron-allyl carbonyls. The major difference among the new CO-RMs tested was that three compounds (CORM-307, CORM-308 and CORM-314) were soluble in dimethylsulfoxide (DMSO), whereas a fourth one (CORM-319) was rendered water-soluble by reacting the iron-carbonyl with hydrogen tetrafluoroborate. We found that despite the fact all compounds liberated CO, CO-RMs soluble in DMSO caused a more pronounced toxic effect both in vascular and inflammatory cells as well as in isolated vessels. More specifically, iron carbonyls soluble in DMSO released CO with a fast kinetic and displayed a marked cytotoxic effect in smooth muscle cells and RAW 247.6 macrophages despite exerting a rapid and pronounced vasorelaxation ex vivo. In contrast, CORM-319 that is soluble in water and liberated CO with a slower rate, preserved smooth muscle cell viability, relaxed aortic tissue and exerted a significant anti-inflammatory effect in macrophages challenged with endotoxin. These data suggest that iron carbonyls can be used as scaffolds for the design and synthesis of pharmacologically active CO-RMs and indicate that increasing water solubility and controlling the rate of CO release are important parameters for limiting their potential toxic effects. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. High self-perceived exercise exertion before bedtime is associated with greater objectively assessed sleep efficiency.

    PubMed

    Brand, Serge; Kalak, Nadeem; Gerber, Markus; Kirov, Roumen; Pühse, Uwe; Holsboer-Trachsler, Edith

    2014-09-01

    To assess the association between self-perceived exercise exertion before bedtime and objectively measured sleep. Fifty-two regularly exercising young adults (mean age, 19.70 years; 54% females) underwent sleep electroencephalographic recordings 1.5 h after completing moderate to vigorous exercise in the evening. Before sleeping, participants answered questions regarding degree of exertion of the exercise undertaken. Greater self-perceived exertion before bedtime was associated with higher objectively assessed sleep efficiency (r = 0.69, P <0.001); self-perceived exertion explained 48% of the variance in sleep efficiency (R2 = 0.48). Moreover, high self-perceived exercise exertion was associated with more deep sleep, shortened sleep onset time, fewer awakenings after sleep onset, and shorter wake duration after sleep onset. Multiple linear regression analysis showed that objective sleep efficiency was predicted by increased exercise exertion, shortened sleep onset time, increased deep sleep, and decreased light sleep. Against expectations and general recommendations for sleep hygiene, high self-perceived exercise exertion before bedtime was associated with better sleep patterns in a sample of healthy young adults. Further studies should also focus on elderly adults and adults suffering from insomnia. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Therapeutic potential of monoacylglycerol lipase inhibitors.

    PubMed

    Mulvihill, Melinda M; Nomura, Daniel K

    2013-03-19

    Marijuana and aspirin have been used for millennia to treat a wide range of maladies including pain and inflammation. Both cannabinoids, like marijuana, that exert anti-inflammatory action through stimulating cannabinoid receptors, and cyclooxygenase (COX) inhibitors, like aspirin, that suppress pro-inflammatory eicosanoid production have shown beneficial outcomes in mouse models of neurodegenerative diseases and cancer. Both cannabinoids and COX inhibitors, however, have untoward effects that discourage their chronic usage, including cognitive deficits and gastrointestinal toxicity, respectively. Recent studies have uncovered that the serine hydrolase monoacylglycerol lipase (MAGL) links the endocannabinoid and eicosanoid systems together through hydrolysis of the endocannabinoid 2-arachidonoylglycerol (2-AG) to provide the major arachidonic acid (AA) precursor pools for pro-inflammatory eicosanoid synthesis in specific tissues. Studies in recent years have shown that MAGL inhibitors elicit anti-nociceptive, anxiolytic, and anti-emetic responses and attenuate precipitated withdrawal symptoms in addiction paradigms through enhancing endocannabinoid signaling. MAGL inhibitors have also been shown to exert anti-inflammatory action in the brain and protect against neurodegeneration through lowering eicosanoid production. In cancer, MAGL inhibitors have been shown to have anti-cancer properties not only through modulating the endocannabinoid-eicosanoid network, but also by controlling fatty acid release for the synthesis of protumorigenic signaling lipids. Thus, MAGL serves as a critical node in simultaneously coordinating multiple lipid signaling pathways in both physiological and disease contexts. This review will discuss the diverse (patho)physiological roles of MAGL and the therapeutic potential of MAGL inhibitors in treating a vast array of complex human diseases. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Genetic reduction of antinutrients in common bean (Phaseolus vulgaris L.) seed, increases nutrients and in vitro iron bioavailability without depressing main agronomical traits

    USDA-ARS?s Scientific Manuscript database

    In common bean, lectins, phytic acid, polyphenols and tannins exert major antinutritional effects when grains are consumed as a staple food. Reduced iron and zinc absorption, low protein digestibility and high toxicity at the intestinal level are the causes of their antinutritional effect. To improv...

  7. Poison frog colors are honest signals of toxicity, particularly for bird predators.

    PubMed

    Maan, Martine E; Cummings, Molly E

    2012-01-01

    Antipredator defenses and warning signals typically evolve in concert. However, the extensive variation across taxa in both these components of predator deterrence and the relationship between them are poorly understood. Here we test whether there is a predictive relationship between visual conspicuousness and toxicity levels across 10 populations of the color-polymorphic strawberry poison frog, Dendrobates pumilio. Using a mouse-based toxicity assay, we find extreme variation in toxicity between frog populations. This variation is significantly positively correlated with frog coloration brightness, a viewer-independent measure of visual conspicuousness (i.e., total reflectance flux). We also examine conspicuousness from the view of three potential predator taxa, as well as conspecific frogs, using taxon-specific visual detection models and three natural background substrates. We find very strong positive relationships between frog toxicity and conspicuousness for bird-specific perceptual models. Weaker but still positive correlations are found for crab and D. pumilio conspecific visual perception, while frog coloration as viewed by snakes is not related to toxicity. These results suggest that poison frog colors can be honest signals of prey unpalatability to predators and that birds in particular may exert selection on aposematic signal design. © 2011 by The University of Chicago.

  8. Royal jelly attenuates azathioprine induced toxicity in rats.

    PubMed

    Ahmed, Walaa M S; Khalaf, A A; Moselhy, Walaa A; Safwat, Ghada M

    2014-01-01

    In the present study, we investigated the potential protective effects of royal jelly against azathioprine-induced toxicity in rat. Intraperitoneal administration of azathioprine (50 mg/kgB.W.) induced a significant decrease in RBCs count, Hb concentration, PCV%, WBCs count, differential count and platelet count, hepatic antioxidant enzymes (reduced glutathione and glutathione s-transferase) and increase of serum transaminases (alanine aminotransferase and aspartate aminotransferase enzymes) activities, alkaline phosphatase and malondialdehyde formation. Azathioprine induced hepatotoxicity was reflected by marked pathological changes in the liver. Oral administration of royal jelly (200 mg/kgB.W.) was efficient in counteracting azathioprine toxicity whereas it altered the anemic condition, leucopenia and thrombocytopenia induced by azathioprine. Furthermore, royal jelly exerted significant protection against liver damage induced by azathioprine through reduction of the elevated activities of serum hepatic enzymes. Moreover, royal jelly blocked azathioprine-induced lipid peroxidation through decreasing the malondialdehyde formation. In conclusion, royal jelly possesses a capability to attenuate azathioprine-induced toxicity. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Effects of nonylphenol on early embryonic development, pigmentation and 3,5,3'-triiodothyronine-induced metamorphosis in Bombina orientalis (Amphibia: Anura).

    PubMed

    Park, Chan Jin; Kang, Han Seung; Gye, Myung Chan

    2010-11-01

    Nonylphenol (NP) is an estrogenic endocrine disruptor in many aquatic species. In an effort to highlight the developmental toxicity of NP in amphibians, we examined the effects of NP on the embryonic survival, tadpole growth, melanophore development and metamorphosis of a native Korean amphibian species, Bombina orientalis (Anura). When treated to fertilized eggs, 1 μM NP significantly decreased embryonic survival at 48 h post fertilization (p.f.), suggesting that 1 μM NP can exert systemic toxicity in B. orientalis embryos. In the surviving embryos, there were no significant differences in malformation rates between NP-treated embryos and controls at 240 h p.f., suggesting no or low teratogenicity of NP in B. orientalis embryos. Below LC(50) NP significantly decreased body growth and development of melanophores at 0.1 μM, suggesting that NP far below the LC(50) targets multiple developmental events in tadpoles of this frog species. In metamorphosis assay using the premetamorphic tadpoles (corresponding to Nieuwkoop Faber stage 53 in Xenopus laevis) exogenous 3,5,3'-triiodothyronine (T3)-induced tail resorption was significantly decreased by 1 μM NP. However, NP (0.1 and 1 μM)-only treatment did not affected total body T3 and T4 levels, suggesting that NP at tested concentrations inhibits thyroid hormones action but not the synthesis of hormones during metamorphosis. Copyright © 2010 Elsevier Ltd. All rights reserved.

  10. Community Structure of Macrobiota and Environmental Parameters in Shallow Water Hydrothermal Vents off Kueishan Island, Taiwan

    PubMed Central

    Chan, Benny Kwok Kan; Wang, Teng-Wei; Chen, Pin-Chen; Lin, Chia-Wei; Chan, Tin-Yam; Tsang, Ling Ming

    2016-01-01

    Hydrothermal vents represent a unique habitat in the marine ecosystem characterized with high water temperature and toxic acidic chemistry. Vents are distributed at depths ranging from a few meters to several thousand meters. The biological communities of shallow-water vents have, however, been insufficiently studied in most biogeographic areas. We attempted to characterize the macrofauna and macroflora community inhabiting the shallow-water vents off Kueishan Island, Taiwan, to identify the main abiotic factors shaping the community structure and the species distribution. We determined that positively buoyant vent fluid exhibits a more pronounced negative impact to species on the surface water than on the bottom layer. Species richness increased with horizontal distance from the vent, and continuing for a distance of 2000 m, indicating that the vent fluid may exert a negative impact over several kilometers. The community structure off Kueishan Island displayed numerous transitions along the horizontal gradient, which were broadly congruent with changes in environmental conditions. Combination of variation in Ca2+, Cl-, temperature, pH and depth were revealed to show the strongest correlation with the change in benthic community structure, suggesting multiple factors of vent fluid were influencing the associated fauna. Only the vent crabs of Kueishan Island may have an obligated relationship with vents and inhabit the vent mouths because other fauna found nearby are opportunistic taxa that are more tolerant to acidic and toxic environments. PMID:26849440

  11. JWH-133, a Selective Cannabinoid CB₂ Receptor Agonist, Exerts Toxic Effects on Neuroblastoma SH-SY5Y Cells.

    PubMed

    Wojcieszak, Jakub; Krzemień, Wojciech; Zawilska, Jolanta B

    2016-04-01

    Endocannabinoid system plays an important role in the regulation of diverse physiological functions. Although cannabinoid type 2 receptors (CB2) are involved in the modulation of immune system in peripheral tissues, recent findings demonstrated that they are also expressed in the central nervous system and could constitute a new target for the treatment of neurodegenerative disorders. At present, very little is known about the potential effects of CB2-mimetic drugs on neuronal cells. This study aimed to examine whether JWH-133, a selective CB2 receptor agonist, affects the survival of SH-SY5Y neuroblastoma cell line, a widely used experimental in vitro model to study mechanisms of toxicity and protection in nigral dopaminergic neurons. Cell viability was assessed using two complementary methods: MTT test measuring mitochondrial activity and LDHe test indicating disruption of cell membrane integrity. In addition, cell proliferation was measured using BrdU incorporation assay. JWH-133 (10-40 μM) induced a concentration-dependent decrease of SH-SY5Y cell viability and proliferation rate. Using AM-630, a reverse agonist of CB2 receptors, as well as Z-VAD-FMK, a pan-caspase inhibitor, we demonstrated that the cytotoxic effect of JWH-133 presumably was not mediated by activation of CB2 receptors or by caspase pathway. Results of this work suggest that agonists of CB2 receptors when administered in multiple/high doses may induce neuronal damage.

  12. PrP(C) signalling in neurons: from basics to clinical challenges.

    PubMed

    Hirsch, Théo Z; Hernandez-Rapp, Julia; Martin-Lannerée, Séverine; Launay, Jean-Marie; Mouillet-Richard, Sophie

    2014-09-01

    The cellular prion protein PrP(C) was identified over twenty-five years ago as the normal counterpart of the scrapie prion protein PrP(Sc), itself the main if not the sole component of the infectious agent at the root of Transmissible Spongiform Encephalopathies (TSEs). PrP(C) is a ubiquitous cell surface protein, abundantly expressed in neurons, which constitute the targets of PrP(Sc)-mediated toxicity. Converging evidence have highlighted that neuronal, GPI-anchored PrP(C) is absolutely required for prion-induced neuropathogenesis, which warrants investigating into the normal function exerted by PrP(C) in a neuronal context. It is now well-established that PrP(C) can serve as a cell signalling molecule, able to mobilize transduction cascades in response to interactions with partners. This function endows PrP(C) with the capacity to participate in multiple neuronal processes, ranging from survival to synaptic plasticity. A diverse array of data have allowed to shed light on how this function is corrupted by PrP(Sc). Recently, amyloid Aβ oligomers, whose accumulation is associated with Alzheimer's disease (AD), were shown to similarly instigate toxic events by deviating PrP(C)-mediated signalling. Here, we provide an overview of the various signal transduction cascades ascribed to PrP(C) in neurons, summarize how their subversion by PrP(Sc) or Aβ oligomers contributes to TSE or AD neuropathogenesis and discuss the ensuing clinical implications. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  13. Combined toxicity effects of chlorine, ammonia, and temperature on marine plankton. Progress report, February 1, 1975--September 15, 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryther, J. H.; Goldman, J. C.

    1975-10-01

    Research on the combined effects of chlorine, ammonia, and temperature on marine plankton have been carried out for 7/sup 1///sub 2/ months. Continuous-flow bioassay units have been constructed for larval species, juvenile fish, and phytoplankton. A detailed study on lobster (Homarus americanus) larvae and other studies on killifish (Fundulus heteroclitus) larvae and juveniles, and juvenile scup (Stenotomus versicolor) and winter flounder (Pseudopleuronectes americanus) have been performed. Results to date indicate that there is an apparent and, as yet undetermined, chlorine demand of seawater; there is a differential toxic effect of chlorine and chloramines--lobsters were more sensitive to chloramines, whereas themore » fish species were more affected by free chlorine; respiration results indicate that significant stress occurs at toxicant levels below the onset of mortality, thus raising questions regarding the applicability of standard bioassay data; temperature elevation exerts a strong synergistic effect on chlorine-chloramine toxicity; and effects of exposure to halogen toxicity appear irreversible as revealed by persistent reductions in metabolic activity. It appears that chlorine toxicity to marine biota can occur even though chlorine residuals cannot be detected by current analytical techniques. These results support the findings of others that chlorine toxicity is a serious environmental pollutant. (auth)« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cave, D.A.; Foster, P.M.

    Previous work has shown that m-dinitrobenzene is a testicular toxicant in rats in vivo, and in vitro produces comparable morphological changes in rat testicular Sertoli-germ cell cocultures. m-Dinitrobenzene is metabolized both in vivo and in the in vitro system to m-nitroaniline m-nitroaniline and m-nitroacetanilide. These metabolites do not provoke testicular toxicity in vivo or in vitro. We have therefore proposed a pathway for the metabolism of m-dinitrobenzene to m-nitroaniline and m-nitroacetanilide, which involved the intermediate m-nitrosonitrobenzene (1-nitroso-3-nitrobenzene, NNB). When tested, m-nitrosonitrobenzene, at equimolar doses to m-dinitrobenzene, produced similar morphological changes in the culture system to those exhibited by m-dinitrobenzene. However,more » m-nitrosonitrobenzene produced a greater toxicity than did m-dinitrobenzene (as measured by germ cell detachment). When the intracellular thiol levels were reduced in the cocultures pretreated with diethyl maleate, the toxicity of both m-dinitrobenzene and m-nitrosonitrobenzene was enhanced. In contrast, pretreatment of cocultures with agents known to increase cellular thiol (cysteamine) or scavenge reactive intermediates (cysteamine or ascorbate) reduced the toxicity of m-dinitrobenzene and m-nitrosonitrobenzene. We propose that m-dinitrobenzene requires metabolic activation before it can exert its toxicity to Sertoli cells, and it appears that the toxic species is m-nitrosonitrobenzene or a further metabolite of m-nitrosonitrobenzene.« less

  15. In Vivo and In Vitro Toxicity Evaluation of Hydroethanolic Extract of Kalanchoe brasiliensis (Crassulaceae) Leaves

    PubMed Central

    Lima, Adley Antoninni Neves; Soares, Luiz Alberto Lira

    2018-01-01

    The species Kalanchoe brasiliensis, known as “Saião,” has anti-inflammatory, antimicrobial, and antihistamine activities. It also has the quercetin and kaempferol flavonoids, which exert their therapeutic activities. With extensive popular use besides the defined therapeutical properties, the study of possible side effects is indispensable. The objective of this study is to evaluate the toxicity in vitro and in vivo from the hydroethanolic extract of the leaves of K. brasiliensis. The action of the extract (concentrations from 0.1 to 1000 uL/100 uL) in normal and tumor cells was evaluated using the MTT method. Acute toxicity and subchronic toxicity were evaluated in mice with doses of 250 to 1000 mg/kg orally, following recognized protocols. The in vitro results indicated cytotoxic activity for 3T3 cell line (normal) and 786-0 (kidney carcinoma), showing the activity to be concentration-dependent, reaching 92.23% cell inhibition. In vivo, the extract showed no significant toxicity; only liver changes related to acute toxicity and some signs of liver damage, combining biochemical and histological data. In general, the extract showed low or no toxicity, introducing itself as safe for use with promising therapeutic potential. PMID:29593788

  16. Acute toxicity and chemical evaluation of coking wastewater under biological and advanced physicochemical treatment processes.

    PubMed

    Dehua, Ma; Cong, Liu; Xiaobiao, Zhu; Rui, Liu; Lujun, Chen

    2016-09-01

    This study investigated the changes of toxic compounds in coking wastewater with biological treatment (anaerobic reactor, anoxic reactor and aerobic-membrane bioreactor, A1/A2/O-MBR) and advanced physicochemical treatment (Fenton oxidation and activated carbon adsorption) stages. As the biological treatment stages preceding, the inhibition effect of coking wastewater on the luminescence of Vibrio qinghaiensis sp. Nov. Q67 decreased. Toxic units (TU) of coking wastewater were removed by A1/A2/O-MBR treatment process, however approximately 30 % TU remained in the biologically treated effluent. There is a tendency that fewer and fewer residual organic compounds could exert equal acute toxicity during the biological treatment stages. Activated carbon adsorption further removed toxic pollutants of biologically treated effluent but the Fenton effluent increased acute toxicity. The composition of coking wastewater during the treatment was evaluated using the three-dimensional fluorescence spectra, gas chromatography-mass spectrometry (GC-MS). The organic compounds with high polarity were the main cause of acute toxicity in the coking wastewater. Aromatic protein-like matters in the coking wastewater with low biodegradability and high toxicity contributed mostly to the remaining acute toxicity of the biologically treated effluents. Chlorine generated from the oxidation process was responsible for the acute toxicity increase after Fenton oxidation. Therefore, the incorporation of appropriate advanced physicochemical treatment process, e.g., activated carbon adsorption, should be implemented following biological treatment processes to meet the stricter discharge standards and be safer to the environment.

  17. Toxicity of N-substituted aromatics to acetoclastic methanogenic activity in granular sludge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donlon, B.A.; Razo-Flores, E.; Field, J.A.

    1995-11-01

    N-substituted aromatics are important priority pollutants entering the environment primarily through anthropogenic activities associated associated with the industrial production of dyes, explosives, pestides, and pharmaceuticals. Anaerobic treatment of wastewaters discharged by these industries could potentially be problematical as a result of the high toxicity of N-substituted aromatics. The objective of this study was to examine the structure-toxicity relationship of N-substituted aromatic compounds to acetoclastic methanogenic bacteria. The toxicity was assayed to serum flasks by measuring methane production in granular sludge. Unacclimated cultures were used to minimize the biotransformation of the toxic organic chemicals during the test. The nature and themore » degree of the aromatic substitution were observed to have a profound effect on the toxicity of the test compound. Nitroaromatic compounds were, on the average, over 500-fold more toxic than their corresponding aromatic amines. Considering the facile reduction of nitro groups by anerobic microorganisms, a dramatic detoxification of nitroaromatics towards methanogens can be expected to occur during anaerobic wastewater treatment. While the toxicity exerted by the N-substituted aromatic compounds was closely correlated with compound apolarity (log P), it was observed that at any given log P, N-substituted phenols had a toxicity that was 2 orders of magnitude higher than that of chlorophenols and alkylphenols. This indicates that toxicity due to the chemical reactivity of nitroaromatics is much more important than partitioning effects in bacterial membranes. 41 refs., 3 figs., 1 tab.« less

  18. Silibinin: an old drug for hematological disorders.

    PubMed

    Zou, Hai; Zhu, Xing-Xing; Zhang, Guo-Bing; Ma, Yuan; Wu, Yi; Huang, Dong-Sheng

    2017-10-24

    Silibinin (silybin), a non-toxic natural polyphenolic flavonoid, is the principal and the most biologically active component of silymarin. It is efficient in the treatment of acute and chronic liver disorders caused by toxins, drug, alcohol, hepatitis, and gall bladder disorders. Further, in our previous studies, we explored the anti-cancer efficacy in common cancers, such as lung, prostatic, colon, breast, bladder, as well as, hepatocellular carcinoma. Interestingly, silibinin is still not solely limited to the treatment of these diseases. Recent research endeavors suggest that silibinin may function diversely and serve as a novel therapy for hematological disorders. It discovered several interesting viewpoints in the widely studied mechanisms of silibinin in the hematological disorders. In this report, we review the up-to-date findings of more potency roles of silibinin in β-thalassemia (β-TM), acute myeloid leukemia (AML), anaplastic large cell lymphoma (ALCL) and multiple myelomas (MM) therapy and attempt to clarify the mechanisms underlying its effects. There are two viewpoints: First, The functional mechanisms of silibinin in AML cells via regulating cell differentiation to exert anti-cancer effect; Second, combination treatment strategy may be a good choice.

  19. Molecular targeted therapy for the treatment of gastric cancer.

    PubMed

    Xu, Wenting; Yang, Zhen; Lu, Nonghua

    2016-01-04

    Despite the global decline in the incidence and mortality of gastric cancer, it remains one of the most common malignant tumors of the digestive system. Although surgical resection is the preferred treatment for gastric cancer, chemotherapy is the preferred treatment for recurrent and advanced gastric cancer patients who are not candidates for reoperation. The short overall survival and lack of a standard chemotherapy regimen make it important to identify novel treatment modalities for gastric cancer. Within the field of tumor biology, molecular targeted therapy has attracted substantial attention to improve the specificity of anti-cancer efficacy and significantly reduce non-selective resistance and toxicity. Multiple clinical studies have confirmed that molecular targeted therapy acts on various mechanisms of gastric cancer, such as the regulation of epidermal growth factor, angiogenesis, immuno-checkpoint blockade, the cell cycle, cell apoptosis, key enzymes, c-Met, mTOR signaling and insulin-like growth factor receptors, to exert a stronger anti-tumor effect. An in-depth understanding of the mechanisms that underlie molecular targeted therapies will provide new insights into gastric cancer treatment.

  20. Modulation of m-dinitrobenzene and m-nitrosonitrobenzene toxicity in rat Sertoli--germ cell cocultures.

    PubMed

    Cave, D A; Foster, P M

    1990-01-01

    Previous work has shown that m-dinitrobenzene is a testicular toxicant in rats in vivo, and in vitro produces comparable morphological changes in rat testicular Sertoli-germ cell cocultures. m-Dinitrobenzene is metabolized both in vivo and in the in vitro system to m-nitroaniline m-nitroaniline and m-nitroacetanilide. These metabolites do not provoke testicular toxicity in vivo or in vitro. We have therefore proposed a pathway for the metabolism of m-dinitrobenzene to m-nitroaniline and m-nitroacetanilide, which involved the intermediate m-nitrosonitrobenzene (1-nitroso-3-nitrobenzene, NNB). When tested, m-nitrosonitrobenzene, at equimolar doses to m-dinitrobenzene, produced similar morphological changes in the culture system to those exhibited by m-dinitrobenzene. However, m-nitrosonitrobenzene produced a greater toxicity than did m-dinitrobenzene (as measured by germ cell detachment). When the intracellular thiol levels were reduced in the cocultures pretreated with diethyl maleate, the toxicity of both m-dinitrobenzene and m-nitrosonitrobenzene was enhanced. In contrast, pretreatment of cocultures with agents known to increase cellular thiol (cysteamine) or scavenge reactive intermediates (cysteamine or ascorbate) reduced the toxicity of m-dinitrobenzene and m-nitrosonitrobenzene. We propose that m-dinitrobenzene requires metabolic activation before it can exert its toxicity to Sertoli cells, and it appears that the toxic species is m-nitrosonitrobenzene or a further metabolite of m-nitrosonitrobenzene.

  1. Antifungal activity and cytotoxicity of extracts and triterpenoid saponins obtained from the aerial parts of Anagallis arvensis L.

    PubMed

    Soberón, José R; Sgariglia, Melina A; Pastoriza, Ana C; Soruco, Estela M; Jäger, Sebastián N; Labadie, Guillermo R; Sampietro, Diego A; Vattuone, Marta A

    2017-05-05

    Anagallis arvensis L. (Primulaceae) is used in argentinean northwestern traditional medicine to treat fungal infections. We are reporting the isolation and identification of compounds with antifungal activity against human pathogenic yeast Candida albicans, and toxicity evaluation. to study the antifungal activity of extracts and purified compounds obtained form A. arvensis aerial parts, alone and in combinations with fluconazole (FLU), and to study the toxicity of the active compounds. Disk diffusion assays were used to perform an activity-guided isolation of antifungal compounds from the aerial parts of A. arvensis. Broth dilution checkerboard and viable cell count assays were employed to determine the effects of samples and combinations of FLU + samples against Candida albicans. The chemical structures of active compounds were elucidated by spectroscopic analysis. Genotoxic and haemolytic effects of the isolated compounds were determined. Four triterpenoid saponins (1-4) were identified. Anagallisin C (AnC), exerted the highest inhibitory activity among the assayed compounds against C. albicans reference strain (ATCC 10231), with MIC-0 =1µg/mL. The Fractional Inhibitory Concentration Index (FICI=0.129) indicated a synergistic effect between AnC (0.125µg/mL) and FLU (0.031µg/mL) against C. albicans ATCC 10231. AnC inhibited C. albicans 12-99 FLU resistant strain (MIC-0 =1µg/mL), and the FICI=0.188 indicated a synergistic effect between AnC (0.125µg/mL) and fluconazole (16µg/mL). The combination AnC+ FLU exerted fungicidal activity against both C. albicans strains. AnC exerted inhibitory activity against C. albicans ATCC 10231 sessile cells (MIC 5 0=0.5µg/mL and MIC 80 =1µg/mL) and against C. albicans 12-99 sessile cells (MIC 5 0=0.75µg/mL and MIC 80 =1.25µg/mL). AnC exerted haemolytic effect against human red blood cells at 15µg/mL and did not exerted genotoxic effect on Bacillus subtilis rec strains. The antifungal activity and lack of genotoxic effects of AnC give support to the traditional use of A. arvensis as antifungal and makes AnC a compound of interest to expand the available antifungal drugs. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  2. Management of multiple myeloma in older adults: Gaining ground with geriatric assessment.

    PubMed

    Wildes, Tanya M; Campagnaro, Erica

    2017-01-01

    Multiple myeloma increases in incidence with age. With the aging of the population, the number of cases of multiple myeloma diagnosed in older adults each year will nearly double in the next 20years. The novel therapeutic agents have significantly improved survival in older adults, but their outcomes remain poorer than in younger patients. Older adults may be more vulnerable to toxicity of therapy, resulting in decreased dose intensity and contributing to poorer outcomes. Data are beginning to emerge to aid in identifying which individuals are at greater risk for toxicity of therapy; comorbidities, functional limitations, and age over 80years are among the factors associated with greater risk. Geriatric assessment holds promise in the care of older adults with multiple myeloma, both to allow modification of treatment to prevent toxicity, and to identify vulnerabilities that may require intervention. Emerging treatments with low toxicity and attention to individualizing therapy based on geriatric assessment may aid in further improving outcomes in older adults with multiple myeloma. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Multiple Measurements Regarding the Competence of the Andragogical Learner

    ERIC Educational Resources Information Center

    Boone, Timothy Keith

    2013-01-01

    Evidence suggests that many adult learners have not developed the competencies needed to fully function effectively in today's society. Questions remain, however, on the levels of influence exerted on self-direction and motivation among this population. The purpose of this correlational study using a multiple measurements assessment approach was…

  4. Safety of multiple stereotactic radiosurgery treatments for multiple brain lesions.

    PubMed

    Hillard, Virany H; Shih, Lynn L; Chin, Shing; Moorthy, Chitti R; Benzil, Deborah L

    2003-07-01

    Stereotactic radiosurgery (SRS) is a widely used therapy for multiple brain lesions, and studies have clearly established the safety and efficacy of single-dose SRS. However, as patient survival has increased, the recurrence of tumors and the development of metastases to new sites within the brain have made it desirable to repeat treatments over time. The cumulative toxicity of multi-isocenter, multiple treatments has not been well defined. We have retrospectively studied 10 patients who received multiple SRS treatments for multiple brain lesions to assess the cumulative toxicity of these treatments. In a retrospective review of all patients treated with SRS using the X-knife (Radionics, Burlington, MA) at Westchester Medical Center/New York Medical College between December 1995 and December 2000, 10 patients were identified who received at least two treatments to at least 3 isocenters and had a minimum follow-up period of 6 months. Image fusion technique was used to determine cumulative doses to targeted lesions, whole brain and critical brain structures. Toxicities and complications were identified by chart and radiological review. The average of the maximum doses (cGy) to a point within the whole brain was 2402 (range 1617-3953); to the brainstem, 1059 (range 48-4126); to the right optic nerve, 223 (range 14-1012); to the left optic nerve, 159 (range 17-475); and to the optic chiasm, 219 (range 15-909). There were no focal neurological toxicities, including visual disturbances, cranial nerve palsies, or ataxia in any of the 10 patients. There were also no global toxicities, including cognitive decline or secondary tumors. Only one patient developed seizures that were difficult to control in association with radiation necrosis. Multiple SRS treatments at the cumulative doses used in our study are a safe therapy for patients with multiple brain lesions.

  5. Snake Venom L-Amino Acid Oxidases: Trends in Pharmacology and Biochemistry

    PubMed Central

    Izidoro, Luiz Fernando M.; Sobrinho, Juliana C.; Mendes, Mirian M.; Costa, Tássia R.; Grabner, Amy N.; Rodrigues, Veridiana M.; da Silva, Saulo L.; Zanchi, Fernando B.; Zuliani, Juliana P.; Fernandes, Carla F. C.; Calderon, Leonardo A.; Stábeli, Rodrigo G.; Soares, Andreimar M.

    2014-01-01

    L-amino acid oxidases are enzymes found in several organisms, including venoms of snakes, where they contribute to the toxicity of ophidian envenomation. Their toxicity is primarily due to enzymatic activity, but other mechanisms have been proposed recently which require further investigation. L-amino acid oxidases exert biological and pharmacological effects, including actions on platelet aggregation and the induction of apoptosis, hemorrhage, and cytotoxicity. These proteins present a high biotechnological potential for the development of antimicrobial, antitumor, and antiprotozoan agents. This review provides an overview of the biochemical properties and pharmacological effects of snake venom L-amino acid oxidases, their structure/activity relationship, and supposed mechanisms of action described so far. PMID:24738050

  6. A fatal trip with ecstasy: a case of 3,4-methylenedioxymethamphetamine/3,4- methylenedioxyamphetamine toxicity.

    PubMed Central

    Coore, J R

    1996-01-01

    Since the late 1980s there have been a number of reports about the complications associated with using the designer drug 3,4-methylenedioxymethamphetamine (MDMA) or 'ecstasy'. Although this drug has been widely abused in the past, the potentially fatal complications have arisen recently mainly due to the circumstances of its use at all-night dance sessions or 'raves'. A combination of direct toxicity and strenuous physical exertion can lead to hyperthermia and its attendant complications. The following case illustrates some of the possible consequences following ingestion of 'ecstasy', and reiterates the importance of prompt recognition and treatment in preventing the development of irreversible sequelae. PMID:8709087

  7. Hydroxylated polychlorinated biphenyls in the environment: sources, fate, and toxicities.

    PubMed

    Tehrani, Rouzbeh; Van Aken, Benoit

    2014-05-01

    Hydroxylated polychlorinated biphenyls (OH-PCBs) are produced in the environment by the oxidation of PCBs through a variety of mechanisms, including metabolic transformation in living organisms and abiotic reactions with hydroxyl radicals. As a consequence, OH-PCBs have been detected in a wide range of environmental samples, including animal tissues, water, and sediments. OH-PCBs have recently raised serious environmental concerns because they exert a variety of toxic effects at lower doses than the parent PCBs and they are disruptors of the endocrine system. Although evidence about the widespread dispersion of OH-PCBs in various compartments of the ecosystem has accumulated, little is currently known about their biodegradation and behavior in the environment. OH-PCBs are, today, increasingly considered as a new class of environmental contaminants that possess specific chemical, physical, and biological properties not shared with the parent PCBs. This article reviews recent findings regarding the sources, fate, and toxicities of OH-PCBs in the environment.

  8. Effects of Bisphenol A and its Analogs on Reproductive Health: A Mini Review.

    PubMed

    Siracusa, Jacob Steven; Yin, Lei; Measel, Emily; Liang, Shenuxan; Yu, Xiaozhong

    2018-06-17

    Known endocrine disruptor bisphenol A (BPA) has been shown to be a reproductive toxicant in animal models. Its structural analogs: bisphenol S (BPS), bisphenol F (BPF), bisphenol AF (BPAF), and tetrabromobisphenol A (TBBPA) are increasingly being used in consumer products. However, these analogs may exert similar adverse effects on the reproductive system, and their toxicological data are still limited. This mini-review examined studies on both BPA and BPA analog exposure and reproductive toxicity. It outlines the current state of knowledge on human exposure, toxicokinetics, endocrine activities, and reproductive toxicities of BPA and its analogs. BPA analogs showed similar endocrine potencies when compared to BPA, and emerging data suggest they may pose threats as reproductive hazards in animal models. While evidence based on epidemiological studies is still weak, we have utilized current studies to highlight knowledge gaps and research needs for future risk assessments. Copyright © 2018. Published by Elsevier Inc.

  9. Fungal-derived semiochemical 1-octen-3-ol disrupts dopamine packaging and causes neurodegeneration

    PubMed Central

    Inamdar, Arati A.; Hossain, Muhammad M.; Bernstein, Alison I.; Miller, Gary W.; Richardson, Jason R.; Bennett, Joan Wennstrom

    2013-01-01

    Parkinson disease (PD) is the most common movement disorder and, although the exact causes are unknown, recent epidemiological and experimental studies indicate that several environmental agents may be significant risk factors. To date, these suspected environmental risk factors have been man-made chemicals. In this report, we demonstrate via genetic, biochemical, and immunological studies that the common volatile fungal semiochemical 1-octen-3-ol reduces dopamine levels and causes dopamine neuron degeneration in Drosophila melanogaster. Overexpression of the vesicular monoamine transporter (VMAT) rescued the dopamine toxicity and neurodegeneration, whereas mutations decreasing VMAT and tyrosine hydroxylase exacerbated toxicity. Furthermore, 1-octen-3-ol also inhibited uptake of dopamine in human cell lines expressing the human plasma membrane dopamine transporter (DAT) and human VMAT ortholog, VMAT2. These data demonstrate that 1-octen-3-ol exerts toxicity via disruption of dopamine homeostasis and may represent a naturally occurring environmental agent involved in parkinsonism. PMID:24218591

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chana, L.W.; Smith, K.

    Soil from a site contaminated with heavy metals (predominantly lead) was treated using the TERRAMET{reg_sign} lead extraction process. Earthworm acute toxicity and plant seed germination/root elongation (SG/RE) bioassays were used to evaluate the toxicity of the soil before treatment (BT), after treatment (AT) and after treatment, followed by rinsing with water, intended to simulate exposure to rainfall (RT). The results showed BT and RT were not toxic to earthworms in a 14-day exposure while AT showed significant toxicity. The LC{sub 50} values for Eisenia and Lumbricus were 44.04 and 28.83 (as % AT soil/test soil mixture), respectively. The phytotoxicity datamore » indicated that all 3 test soils significantly inhibited lettuce SG/RE in a dose-related manner, with AT being the most phytotoxic. In oats, RT had no effect on SG/RE and AT was more toxic than BT. For the two local-site grass seeds tested (blue grama and sideoat grama), the AT soil was the most phytotoxic followed by BT and RT. The results suggest that the soil after this remediation process exerts significant toxicity on both plant and earthworm, but after a rain-simulating rinse, the toxicity is the same as, or less than, the toxicity before treatment. Further studies are in progress to confirm the assumption that the high salt concentrations generated by acidification during the leaching process, followed by neutralization are responsible for the increased toxicity of unrinsed soil in both plant and earthworm.« less

  11. Edaravone Protects against Methylglyoxal-Induced Barrier Damage in Human Brain Endothelial Cells

    PubMed Central

    Tóth, Andrea E.; Walter, Fruzsina R.; Bocsik, Alexandra; Sántha, Petra; Veszelka, Szilvia; Nagy, Lajos; Puskás, László G.; Couraud, Pierre-Olivier; Takata, Fuyuko; Dohgu, Shinya; Kataoka, Yasufumi; Deli, Mária A.

    2014-01-01

    Background Elevated level of reactive carbonyl species, such as methylglyoxal, triggers carbonyl stress and activates a series of inflammatory responses leading to accelerated vascular damage. Edaravone is the active substance of a Japanese medicine, which aids neurological recovery following acute brain ischemia and subsequent cerebral infarction. Our aim was to test whether edaravone can exert a protective effect on the barrier properties of human brain endothelial cells (hCMEC/D3 cell line) treated with methylglyoxal. Methodology Cell viability was monitored in real-time by impedance-based cell electronic sensing. The barrier function of the monolayer was characterized by measurement of resistance and flux of permeability markers, and visualized by immunohistochemistry for claudin-5 and β-catenin. Cell morphology was also examined by holographic phase imaging. Principal Findings Methylglyoxal exerted a time- and dose-dependent toxicity on cultured human brain endothelial cells: a concentration of 600 µM resulted in about 50% toxicity, significantly reduced the integrity and increased the permeability of the barrier. The cell morphology also changed dramatically: the area of cells decreased, their optical height significantly increased. Edaravone (3 mM) provided a complete protection against the toxic effect of methylglyoxal. Co-administration of edaravone restored cell viability, barrier integrity and functions of brain endothelial cells. Similar protection was obtained by the well-known antiglycating molecule, aminoguanidine, our reference compound. Conclusion These results indicate for the first time that edaravone is protective in carbonyl stress induced barrier damage. Our data may contribute to the development of compounds to treat brain endothelial dysfunction in carbonyl stress related diseases. PMID:25033388

  12. Quercetin Exerts Differential Neuroprotective Effects Against H2O2 and Aβ Aggregates in Hippocampal Neurons: the Role of Mitochondria.

    PubMed

    Godoy, Juan A; Lindsay, Carolina B; Quintanilla, Rodrigo A; Carvajal, Francisco J; Cerpa, Waldo; Inestrosa, Nibaldo C

    2017-11-01

    Amyloid-β peptide (Aβ) is one of the major players in the pathogenesis of Alzheimer's disease (AD). Despite numerous studies, the mechanisms by which Aβ induces neurodegeneration are not completely understood. Oxidative stress is considered a major contributor to the pathogenesis of AD, and accumulating evidence indicates that high levels of reactive oxygen species (ROS) are involved in Aβ-induced neurodegeneration. Moreover, Aβ can induce the deregulation of calcium homeostasis, which also affects mitochondrial function and triggers neuronal cell death. In the present study, we analyzed the effects of quercetin, a plant flavonoid with antioxidant properties, on oxidative stress- and Aβ-induced degeneration. Our results indicate that quercetin efficiently protected against H 2 O 2 -induced neuronal toxicity; however, this protection was only partial in rat hippocampal neurons that were treated with Aβ. Treatment with quercetin decreased ROS levels, recovered the normal morphology of mitochondria, and prevented mitochondrial dysfunction in neurons that were treated with H 2 O 2 . By contrast, quercetin treatment partially rescued hippocampal neurons from Aβ-induced mitochondrial injury. Most importantly, quercetin treatment prevented the toxic effects that are induced by H 2 O 2 in hippocampal neurons and, to a lesser extent, the Aβ-induced toxicity that is associated with the superoxide anion, which is a precursor of ROS production in mitochondria. Collectively, these results indicate that quercetin exerts differential effects on the prevention of H 2 O 2 - and Aβ-induced neurotoxicity in hippocampal neurons and may be a powerful tool for dissecting the molecular mechanisms underlying Aβ neurotoxicity.

  13. Prioritizing ToxCast Chemicals Across Multiple Sectors of Toxicity Using ToxPi

    EPA Science Inventory

    The Toxicological Prioritization Index (ToxPi™) framework was developed as a decision-support tool to aid in the rational prioritization of chemicals for integrated toxicity testing. ToxPi consolidates information from multiple domains—including ToxCast™ in vitro bioactivity prof...

  14. β-Amyloid-acetylcholine molecular interaction: new role of cholinergic mediators in anti-Alzheimer therapy?

    PubMed

    Grimaldi, Manuela; Marino, Sara Di; Florenzano, Fulvio; Ciotta, Maria Teresa; Nori, Stefania Lucia; Rodriquez, Manuela; Sorrentino, Giuseppe; D'Ursi, Anna Maria; Scrima, Mario

    2016-07-01

    For long time Alzheimer's disease has been attributed to a cholinergic deficit. More recently, it has been considered dependent on the accumulation of the amyloid beta peptide (Aβ), which promotes neuronal loss and impairs neuronal function. Results/methodology: In the present study, using biophysical and biochemical experiments we tested the hypothesis that in addition to its role as a neurotransmitter, acetylcholine may exert its action as an anti-Alzheimer agent through a direct interaction with Aβ. Our data provide evidence that acetylcholine favors the soluble peptide conformation and exerts a neuroprotective effect against the neuroinflammatory and toxic effects of Aβ. The present paper paves the way toward the development of new polyfunctional anti-Alzheimer therapeutics capable of intervening on both the cholinergic transmission and the Aβ aggregation.

  15. Lactate and pH evaluation in exhausted humans with prolonged TASER X26 exposure or continued exertion.

    PubMed

    Ho, Jeffrey D; Dawes, Donald M; Cole, Jon B; Hottinger, Julie C; Overton, Kenneth G; Miner, James R

    2009-09-10

    Safety concerns about TASER Conducted Electrical Weapon (CEW) use and media reports of deaths after exposure have been expressed. CEWs are sometimes used on exhausted subjects to end resistance. The alternative is often a continued struggle. It is unclear if CEW use is metabolically different than allowing a continued struggle. We sought to determine if CEW exposure on exhausted humans caused worsening acidosis when compared with continued exertion. This was a prospective study of human volunteers recruited during a CEW training course. Volunteers were from several different occupations and represented a wide range of ages and body mass index characteristics. Medical histories, baseline pH and lactate values were obtained. Patients were assigned to one of four groups: 2 control groups consisting of Exertion only and CEW Exposure only, and the 2 experimental groups that were Exertion plus CEW Exposure and Exertion plus additional Exertion. Blood sampling occurred after Exertion and after any CEW exposure. This was repeated every 2-min until 20 min after protocol completion. Descriptive statistics were used to compare the four groups. The experimental groups and the control groups were compared individually at each time point using Wilcoxon rank sum tests. Lactate and pH association was assessed using multiple linear regression. Forty subjects were enrolled. There were no median pH or lactate differences between CEW Exposure groups at baseline, or between Exertion protocol groups immediately after completion. The CEW Exposure only group had higher pH and lower lactate values at all time points after exposure than the Exertion only group. After completing the Exertion protocol, there was no difference in the pH or lactate values between the continued Exertion group and the CEW Exposure group at any time points. Subjects who had CEW Exposure only had higher pH and lower lactate values than subjects who completed the Exertion protocol only. CEW exposure does not appear to worsen acidosis in exhausted subjects any differently than briefly continued exertion.

  16. Cellular Protection using Flt3 and PI3Kα inhibitors demonstrates multiple mechanisms of oxidative glutamate toxicity

    PubMed Central

    Kang, Yunyi; Tiziani, Stefano; Park, Goonho; Kaul, Marcus; Paternostro, Giovanni

    2014-01-01

    Glutamate-induced oxidative stress is a major contributor to neurodegenerative diseases. Here we identify small molecule inhibitors of this process. We screen a kinase inhibitor library on neuronal cells and identify Flt3 and PI3Kα inhibitors as potent protectors against glutamate toxicity. Both inhibitors prevented reactive oxygen species (ROS) generation, mitochondrial hyperpolarization, and lipid peroxidation in neuronal cells, but they do so by distinct molecular mechanisms. The PI3Kα inhibitor protects cells by inducing partial restoration of depleted glutathione levels and accumulation of intracellular amino acids, whereas the Flt3 inhibitor prevents lipid peroxidation, a key mechanism of glutamate-mediated toxicity. We also demonstrate that glutamate toxicity involves a combination of ferroptosis, necrosis, and AIF-dependent apoptosis. We confirm the protective effect by using multiple inhibitors of these kinases and multiple cell types. Our results not only identify compounds that protect against glutamate-stimulated oxidative stress, but also provide new insights into the mechanisms of glutamate toxicity in neurons. PMID:24739485

  17. Chemical characterization, pharmacological effects, and toxicity of an ethanol extract of Celtis pallida Torr. (Cannabaceae) aerial parts.

    PubMed

    Rojas-Bedolla, Edgar Isaac; Gutiérrez-Pérez, Jorge Luis; Arenas-López, Mario Iván; González-Chávez, Marco Martin; Zapata-Morales, Juan Ramón; Mendoza-Macías, Claudia Leticia; Carranza-Álvarez, Candy; Maldonado-Miranda, Juan José; Deveze-Álvarez, Martha Alicia; Alonso-Castro, Angel Josabad

    2018-06-12

    Celtis pallida Torr (Cannabaceae) is employed as a folk medicine for the treatment of inflammation, pain, skin infections, and diarrhea, among other diseases. The purpose of this work was to assess the chemical composition, the in vitro and in vivo toxicity, the antimicrobial, anti-inflammatory, antidiarrheal, antinociceptive, locomotor, and sedative effects of an ethanolic extract obtained from Celtis pallida aerial parts (CPE). The composition of CPE was carried out by GC-MS. The in vitro and in vivo toxic activity of CPE was estimated with the comet assay (10-1000 µg/ml) for 5 h in peripheral blood mononuclear cells, and the acute toxicity test (500-5000 mg/kg p.o.), for 14 days, respectively. The antimicrobial effect of CPE was evaluated using the minimum inhibitory concentration (MIC) assay, whereas the antidiarrheal activity (10-200 mg/kg p.o.) was calculated using the castor oil test. The antinociceptive effects of CPE (50-200 mg/kg p.o.) were estimated with the acetic acid and formalin tests, as well as the hot plate test. The sedative and locomotor activities of CPE (50-200 mg/kg p.o.) were assessed with the pentobarbital-induced sleeping time test and the rotarod test, respectively. The main compound found in CPE was the triterpene ursolic acid (22% of the extract). CPE at concentrations of 100 µg/ml or higher induced genotoxicity in vitro and showed low in vivo toxicity (LD 50 > 5000 mg/kg p.o.). Additionally, CPE lacked (MIC > 400 µg/ml) antimicrobial activity but exerts antinociceptive (ED 50 = 12.5 ± 1.5 mg/kg) and antidiarrheal effects (ED 50 = 2.8 mg/kg), without inducing sedative effects or altering the locomotor activity. The antinociceptive activity of CPE suggests the participation of adrenoceptors, as well as the nitric oxide/cyclic guanosine monophosphate (cGMP) pathway. C. pallida exerts its antinociceptive effects probably mediated by the nitric oxide/cyclic guanosine monophosphate (cGMP) pathway. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Cadmium toxicity at low concentration on rabbit spermatozoa motility, morphology and membrane integrity in vitro.

    PubMed

    Roychoudhury, Shubhadeep; Massanyi, Peter; Bulla, Jozef; Choudhury, Manabendra Dutta; Lukac, Norbert; Filipejova, Terezia; Trandzik, Jozef; Toman, Robert; Almasiova, Viera

    2010-09-01

    In this study the effect of cadmium on various parameters of spermatozoa motility, morphology as well as on the spermatozoa membrane integrity in rabbits was analyzed in vitro, experimental concentrations ranging from 0.62 to 0.98 micro g CdCl(2)/mL. Pooled rabbit (n = 5) semen was cultured in vitro with cadmium and subsequently diluted to various experimental concentrations apart from control which received no cadmium exposure. Using computer assisted semen analysis method (CASA) we detected decrease of total motility with in the higher concentration range at Time 0. However, with increasing time (after 1 and 2 h of culture), cadmium exerted deleterious effect leading to significant motility reduction in comparison to control. A similar trend was exhibited in case of progressive motility, too. Most of the spermatozoa distance and velocity parameters detected no significant change in comparison to control at the beginning of culture (Time 0), although the toxic effect became significant (P < 0.05) with the passage of culture time (Times 1 and 2 h) in all concentrations. Analysis of spermatozoa morphology detected significant (P < 0.05) alterations at higher concentrations. At higher concentrations acrosomal changes, head without flagellum/separated flagellum, broken flagellum and other abnormalities were significantly higher (P < 0.05), while knob-twisted flagellum and small heads differed significantly (P < 0.05) in comparison to control at all concentrations. In regards to flagellum torso, flagellum ball and retention of cytoplasmic drop statistically higher values (P < 0.05) were noted at the maxium experimental concentration only. Annexin analysis for detection of spermatozoa with disordered membranes revealed higher occurrence of positive spermatozoa in cadmium exposed groups. Annexin-positive reactions suggested alterations in anterior part of head (acrosome) and in flagellum (mitochondrial segment) of spermatozoa. This paper underlines that cadmium is highly toxic for rabbit spermatozoa, as visualized by the toxic effects on parameters of spermatozoa motility, morphology and membrane integrity. The toxic effect is more drastic at higher concentrations. This study also indicates that cadmium requires a minimum one hour incubation time to exert its deletorious effects on various parameters of spermatozoa, particularly at low concentrations.

  19. USING DOSE ADDITION TO ESTIMATE CUMULATIVE RISKS FROM EXPOSURES TO MULTIPLE CHEMICALS

    EPA Science Inventory

    The Food Quality Protection Act (FQPA) of 1996 requires the EPA to consider the cumulative risk from exposure to multiple chemicals that have a common mechanism of toxicity. Three methods, hazard index (HI), point-of-departure index (PODI), and toxicity equivalence factor (TEF), ...

  20. Toxic trace elements at gastrointestinal level.

    PubMed

    Vázquez, M; Calatayud, M; Jadán Piedra, C; Chiocchetti, G M; Vélez, D; Devesa, V

    2015-12-01

    Many trace elements are considered essential [iron (Fe), zinc (Zn), copper (Cu)], whereas others may be harmful [lead (Pb), cadmium (Cd), mercury (Hg), arsenic (As)], depending on their concentration and chemical form. In most cases, the diet is the main pathway by which they enter our organism. The presence of toxic trace elements in food has been known for a long time, and many of the food matrices that carry them have been identified. This has led to the appearance of legislation and recommendations concerning consumption. Given that the main route of exposure is oral, passage through the gastrointestinal tract plays a fundamental role in their entry into the organism, where they exert their toxic effect. Although the digestive system can be considered to be of crucial importance in their toxicity, in most cases we do not know the events that occur during the passage of these elements through the gastrointestinal tract and of ascertaining whether they may have some kind of toxic effect on it. The aim of this review is to summarize available information on this subject, concentrating on the toxic trace elements that are of greatest interest for organizations concerned with food safety and health: Pb, Cd, Hg and As. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Sulfur Mediated Alleviation of Mn Toxicity in Polish Wheat Relates to Regulating Mn Allocation and Improving Antioxidant System

    PubMed Central

    Sheng, Huajin; Zeng, Jian; Liu, Yang; Wang, Xiaolu; Wang, Yi; Kang, Houyang; Fan, Xing; Sha, Lina; Zhang, Haiqin; Zhou, Yonghong

    2016-01-01

    Sulfur (S) is an essential macronutrient that has been proved to play an important role in regulating plant responses to various biotic and abiotic stresses. The present study was designed to investigate the effect of S status on polish wheat plant response to Mn toxicity. Results showed that Mn stress inhibited plant growth, disturbed photosynthesis and induced oxidative stress. In response to Mn stress, polish wheat plant activated several detoxification mechanisms to counteract Mn toxicity, including enhanced antioxidant defense system, increased Mn distribution in the cell wall and up-regulated genes involved in S assimilation. Moderate S application was found to alleviate Mn toxicity mainly by sequestering excess Mn into vacuoles, inhibiting Mn translocation from roots to shoots, stimulating activities of antioxidant enzymes and enhancing GSH production via up-regulating genes involved in S metabolism. However, application of high level S to Mn-stressed plants did not significantly alleviated Mn toxicity likely due to osmotic stress. In conclusion, moderate S application is beneficial to polish wheat plant against Mn toxicity, S exerts its effects via stimulating the antioxidant defense system and regulating the translocation and subcellular distribution of Mn, in which processes GSH plays an indispensable role. PMID:27695467

  2. Surfactants present complex joint effects on the toxicities of metal oxide nanoparticles.

    PubMed

    Wang, Dali; Lin, Zhifen; Yao, Zhifeng; Yu, Hongxia

    2014-08-01

    The potential toxicities of nanoparticles (NPs) have been intensively discussed over the past decade. In addition to their single toxicities, NPs can interact with other environmental chemicals and thereby exert joint effects on biological systems and the environment. The present study investigated the combined toxicities of NPs and surfactants, which are among the chemicals that most likely coexist with NPs. Photobacterium phosphoreum was employed as the model organism. The results indicate that surfactants with different ion types can alter the properties of NPs (i.e., particle size and surface charge) in different ways and present complex joint effects on NP toxicities. Mixtures of different NPs and surfactants exhibited antagonistic, synergistic, and additive effects. In particular, the toxicity of ZnO was observed to result from its dissolved Zn(2+); thus, the joint effects of the ZnO NPs and surfactants can be explained by the interactions between the Zn ions and the surfactants. Our study suggests that the potential hazards caused by mixtures of NPs and surfactants are different from those caused by single NPs. Because surfactants are extensively used in the field of nanotechnology and are likely to coexist with NPs in natural waters, the ecological risk assessments of NPs should consider the impacts of surfactants. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Dempster-Shafer theory applied to regulatory decision process for selecting safer alternatives to toxic chemicals in consumer products.

    PubMed

    Park, Sung Jin; Ogunseitan, Oladele A; Lejano, Raul P

    2014-01-01

    Regulatory agencies often face a dilemma when regulating chemicals in consumer products-namely, that of making decisions in the face of multiple, and sometimes conflicting, lines of evidence. We present an integrative approach for dealing with uncertainty and multiple pieces of evidence in toxics regulation. The integrative risk analytic framework is grounded in the Dempster-Shafer (D-S) theory that allows the analyst to combine multiple pieces of evidence and judgments from independent sources of information. We apply the integrative approach to the comparative risk assessment of bisphenol-A (BPA)-based polycarbonate and the functionally equivalent alternative, Eastman Tritan copolyester (ETC). Our results show that according to cumulative empirical evidence, the estimated probability of toxicity of BPA is 0.034, whereas the toxicity probability for ETC is 0.097. However, when we combine extant evidence with strength of confidence in the source (or expert judgment), we are guided by a richer interval measure, (Bel(t), Pl(t)). With the D-S derived measure, we arrive at various intervals for BPA, with the low-range estimate at (0.034, 0.250), and (0.097,0.688) for ETC. These new measures allow a reasonable basis for comparison and a justifiable procedure for decision making that takes advantage of multiple sources of evidence. Through the application of D-S theory to toxicity risk assessment, we show how a multiplicity of scientific evidence can be converted into a unified risk estimate, and how this information can be effectively used for comparative assessments to select potentially less toxic alternative chemicals. © 2013 SETAC.

  4. In vivo toxic effects of 4-methoxy-5-hydroxy-canthin-6-one in zebrafish embryos via copper dyshomeostasis and oxidative stress.

    PubMed

    Gong, Guiyi; Jiang, Lingling; Lin, Qinghua; Liu, Wenyuan; He, Ming-Fang; Zhang, Jie; Feng, Feng; Qu, Wei; Xie, Ning

    2018-01-01

    Dysfunction of copper homeostasis can lead to a host of disorders, which might be toxic sometimes. 4-Methoxy-5-hydroxy-canthin-6-one (CAN) is one of the major constituents from Picrasma quassioides and responsible for its therapeutic effects. In this work, we evaluated the toxic effect of CAN (7.5μM) on zebrafish embryos. CAN treatment decreased survival, delayed hatching time and induced malformations (loss of pigmentation, pericardial edema, as well as hematologic and neurologic abnormalities). Besides, exogenous copper supplementation rescued the pigmentation and cardiovascular defects in CAN-treated embryos. Further spectroscopic studies revealed a copper-chelating activity of CAN. Then its regulation on the expressions of copper homeostasis related genes also be analyzed. In addition, CAN lowered the total activity of SOD, elevated the ROS production and altered the oxidative related genes transcriptions, which led to oxidative stress. In conclusion, we demonstrated that CAN (7.5μM) might exert its toxic effects in zebrafish embryos by causing copper dyshomeostasis and oxidative stress. It will give insight into the risk assessment and prevention of CAN-mediated toxicity. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. C9ORF72 hexanucleotide repeat exerts toxicity in a stable, inducible motor neuronal cell model, which is rescued by partial depletion of Pten

    PubMed Central

    Stopford, Matthew J.; Higginbottom, Adrian; Hautbergue, Guillaume M.; Cooper-Knock, Johnathan; Mulcahy, Padraig J.; De Vos, Kurt J.; Renton, Alan E.; Pliner, Hannah; Calvo, Andrea; Chio, Adriano; Traynor, Bryan J.; Azzouz, Mimoun; Heath, Paul R.; Kirby, Janine

    2017-01-01

    Abstract Amyotrophic lateral sclerosis (ALS) is a devastating and incurable neurodegenerative disease, characterised by progressive failure of the neuromuscular system. A (G4C2)n repeat expansion in C9ORF72 is the most common genetic cause of ALS and frontotemporal dementia (FTD). To date, the balance of evidence indicates that the (G4C2)n repeat causes toxicity and neurodegeneration via a gain-of-toxic function mechanism; either through direct RNA toxicity or through the production of toxic aggregating dipeptide repeat proteins. Here, we have generated a stable and isogenic motor neuronal NSC34 cell model with inducible expression of a (G4C2)102 repeat, to investigate the gain-of-toxic function mechanisms. The expression of the (G4C2)102 repeat produces RNA foci and also undergoes RAN translation. In addition, the expression of the (G4C2)102 repeat shows cellular toxicity. Through comparison of transcriptomic data from the cellular model with laser-captured spinal motor neurons from C9ORF72-ALS cases, we also demonstrate that the PI3K/Akt cell survival signalling pathway is dysregulated in both systems. Furthermore, partial knockdown of Pten rescues the toxicity observed in the NSC34 (G4C2)102 cellular gain-of-toxic function model of C9ORF72-ALS. Our data indicate that PTEN may provide a potential therapeutic target to ameliorate toxic effects of the (G4C2)n repeat. PMID:28158451

  6. Biochemical toxicity and DNA damage of imidazolium-based ionic liquid with different anions in soil on Vicia faba seedlings.

    PubMed

    Liu, Tong; Zhu, Lusheng; Wang, Jinhua; Wang, Jun; Zhang, Jun; Sun, Xi; Zhang, Cheng

    2015-12-17

    In the present study, the toxic effects of 1-octyl-3-methylimidazolium chloride ([Omim]Cl), 1-octyl-3-methylimidazolium bromide ([Omim]Br) and 1-octyl-3-methylimidazolium tetrafluoroborate ([Omim]BF4) in soil on Vicia faba (V. faba) seedlings at 0, 100, 200, 400, 600 and 800 mg kg(-1) were assessed for the first time at the cellular and molecular level. Moreover, the toxicity of these three ionic liquids (ILs) was evaluated, and the influence of anions on the toxicity of the ILs was assessed. The results showed that even at 100 mg kg(-1), the growth of V. faba seedlings was inhibited after exposure to the three ILs, and the inhibitory effect was enhanced with increasing concentrations of the three ILs. The level of reactive oxygen species (ROS) was increased after exposure to the three ILs, which resulted in lipid peroxidation, DNA damage and oxidative damage in the cells of the V. faba seedlings. In addition, the anion structure could influence the toxicity of ILs, and toxicity of the three tested ILs decreased in the following order: [Omim]BF4 > [Omim]Br > [Omim]Cl. Moreover, oxidative damage is the primary mechanism by which ILs exert toxic effects on crops, and ILs could reduce the agricultural productivity.

  7. Impact of certain flavonoids on lipid profiles--potential action of Garcinia cambogia flavonoids.

    PubMed

    Koshy, A S; Vijayalakshmi, N R

    2001-08-01

    Flavonoids from Cocos nucifera, Myristica fragrance, Saraka asoka and Garcinia cambogia exerted hypolipidaemic activity in rats. Lipid lowering activity was maximum in rats administered flavonoids (10 mg/kg BW/day) from Garcinia cambogia. A dose response study revealed biphasic activity. Higher doses were less effective in reducing lipid levels in serum and tissues, although devoid of toxic effects. Copyright 2001 John Wiley & Sons, Ltd.

  8. Do plastic particles affect microalgal photosynthesis and growth?

    PubMed

    Sjollema, Sascha B; Redondo-Hasselerharm, Paula; Leslie, Heather A; Kraak, Michiel H S; Vethaak, A Dick

    2016-01-01

    The unbridled increase in plastic pollution of the world's oceans raises concerns about potential effects these materials may have on microalgae, which are primary producers at the basis of the food chain and a major global source of oxygen. Our current understanding about the potential modes and mechanisms of toxic action that plastic particles exert on microalgae is extremely limited. How effects might vary with particle size and the physico-chemical properties of the specific plastic material in question are equally unelucidated, but may hold clues to how toxicity, if observed, is exerted. In this study we selected polystyrene particles, both negatively charged and uncharged, and three different sizes (0.05, 0.5 and 6μm) for testing the effects of size and material properties. Microalgae were exposed to different polystyrene particle sizes and surface charges for 72h. Effects on microalgal photosynthesis and growth were determined by pulse amplitude modulation fluorometry and flow cytometry, respectively. None of the treatments tested in these experiments had an effect on microalgal photosynthesis. Microalgal growth was negatively affected (up to 45%) by uncharged polystyrene particles, but only at high concentrations (250mg/L). Additionally, these adverse effects were demonstrated to increase with decreasing particle size. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Protective effects of melittin on transforming growth factor-{beta}1 injury to hepatocytes via anti-apoptotic mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Woo-Ram; Park, Ji-Hyun; Kim, Kyung-Hyun

    Melittin is a cationic, hemolytic peptide that is the main toxic component in the venom of the honey bee (Apis mellifera). Melittin has multiple effects, including anti-bacterial, anti-viral and anti-inflammatory, in various cell types. However, the anti-apoptotic mechanisms of melittin have not been fully elucidated in hepatocytes. Apoptosis contributes to liver inflammation and fibrosis. Knowledge of the apoptotic mechanisms is important to develop new and effective therapies for treatment of cirrhosis, portal hypertension, liver cancer, and other liver diseases. In the present study, we investigated the anti-apoptotic effect of melittin on transforming growth factor (TGF)-{beta}1-induced apoptosis in hepatocytes. TGF-{beta}1-treated hepatocytesmore » were exposed to low doses (0.5 and 1 {mu}g/mL) and high dose (2 {mu}g/mL) of melittin. The low doses significantly protected these cells from DNA damage in TGF-{beta}1-induced apoptosis compared to the high dose. Also, melittin suppressed TGF-{beta}1-induced apoptotic activation of the Bcl-2 family and caspase family of proteins, which resulted in the inhibition of poly-ADP-ribose polymerase (PARP) cleavage. These results demonstrate that TGF-{beta}1 induces hepatocyte apoptosis and that an optimal dose of melittin exerts anti-apoptotic effects against TGF-{beta}1-induced injury to hepatocytes via the mitochondrial pathway. These results suggest that an optimal dose of melittin can serve to protect cells against TGF-{beta}1-mediated injury. - Highlights: > We investigated the anti-apoptotic effect of melittin on TGF-{beta}1-induced hepatocyte. > TGF-{beta}1 induces hepatocyte apoptosis. > TGF-{beta}1-treated hepatocytes were exposed to low doses and high dose of melittin. > Optimal dose of melittin exerts anti-apoptotic effects to hepatocytes.« less

  10. Identification of distinct physiochemical properties of toxic prefibrillar species formed by A{beta} peptide variants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goeransson, Anna-Lena, E-mail: anngo@ifm.liu.se; Nilsson, K. Peter R., E-mail: petni@ifm.liu.se; Kagedal, Katarina, E-mail: katarina.kagedal@liu.se

    2012-04-20

    Highlights: Black-Right-Pointing-Pointer Identification of toxic prefibrillar A{beta} species. Black-Right-Pointing-Pointer Fluorescence measurements using a combined set of fluorophores. Black-Right-Pointing-Pointer Morphology studies using transmission electron microscopy. -- Abstract: The formation of amyloid-{beta} peptide (A{beta}) aggregates at an early stage during the self-assembly process is an important factor in the development of Alzheimer's disease. The toxic effect is believed to be exerted by prefibrillar species of A{beta}. It is therefore important to identify which prefibrillar species are toxic and characterize their distinct properties. In the present study, we investigated the in vitro aggregation behavior of A{beta}-derived peptides possessing different levels of neurotoxic activity,more » using fluorescence spectroscopy in combination with transmission electron microscopy. The toxicity of various A{beta} aggregates was assessed by using cultures of human neuroblastoma cells. Through combined use of the fluorescence probe 8-anilino-1-napthalenesulfonate (ANS) and the novel luminescent probe pentamer formyl thiophene acetic acid (p-FTAA), we were able to identify those A{beta} peptide-derived prefibrillar species which exhibited cellular toxicity. In particular, species, which formed early during the aggregation process and showed strong p-FTAA and ANS fluorescence, were the species that possessed toxic activities. Moreover, by manipulating the aggregation conditions, it was possible to change the capacity of the A{beta} peptide to form nontoxic versus toxic species.« less

  11. Toxicity analysis of various Pluronic F-68-coated carbon nanotubes on mesenchymal stem cells.

    PubMed

    Yao, Meng-Zhu; Hu, Yu-Lan; Sheng, Xiao-Xia; Lin, Jun; Ling, Daishun; Gao, Jian-Qing

    2016-04-25

    Carbon nanotubes (CNTs) have poor colloid stability in biological media and exert cytotoxic effects on mesenchymal stem cells (MSCs). Modification with polymeric surfactant is a widely used strategy to enhance water dispersibility of CNTs. This study investigated the toxic effects of various Pluronic F-68 (PF68)-coated multi-walled CNTs (MWCNTs) on rat bone marrow-derived MSCs.PF68-coated MWCNTs showed favorable biocompatibility to MSCs that the cell viability, apoptosis, and reactive oxygen species (ROS) were not altered after 24 h of co-incubation. Nevertheless, significant apoptosis induction and massive ROS release were found following extended exposure (48 and 72 h), and the toxic impact was dependent on the initial surface properties of the encapsulated MWCNTs. All the types of PF68-coated MWCNTs did not affect the cell-surface markers and in vivo biodistribution of MSCs. Our results suggest that proper polymer coating can reduce the acute toxicity of MWCNTs to MSCs but without altering their biological fate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Effect of chemical treatment on the acute toxicity of two commercial textile dye carriers.

    PubMed

    Arsian-Alaton, I; Iskender, G; Ozerkan, B; Germirli Babuna, F; Okay, O

    2007-01-01

    In the present experimental study, the effect of chemical treatment (coagulation-flocculation) on the acute toxicity exerted by two commercial dye carriers (called Carrier A and B herein) often used in the textile industry was investigated. Two different test organisms were selected to elucidate the situations in activated sludge treatment systems (activated sludge microorganisms) as well as in receiving water bodies (ultimate marine discharge). According to the results of a comprehensive analysis covering COD removal efficiencies, sludge settling characteristics and operating costs involved in coagulation-flocculation, the optimum treatment conditions were defined as follows; application of 750 mg/L ferrous sulphate at a pH of 9.0 for Carrier A; and application of 550 mg/L ferrous sulphate at a pH of 9.0 for Carrier B. The acute toxicities of both dye carriers towards marine microalgea Phaeodactylum tricornutum could be reduced significantly after being subjected to coagulation-flocculation. Fair toxicity removals (towards heterotrophic mixed bacterial culture accommodated in activated sludge treatment) were obtained with coagulation-flocculation for both of the carriers under investigation.

  13. PDGF-mediated protection of SH-SY5Y cells against Tat toxin involves regulation of extracellular glutamate and intracellular calcium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu Xuhui; Department of Laboratory Medicine, Tongji Hospital and Tongji Medical College of Huazhong University of Science and Technology, Wuhan; Yao Honghong

    2009-10-15

    The human immunodeficiency virus (HIV-1) protein Tat has been implicated in mediating neuronal apoptosis, one of the hallmark features of HIV-associated dementia (HAD). Mitigation of the toxic effects of Tat could thus be a potential mechanism for reducing HIV toxicity in the brain. In this study we demonstrated that Tat-induced neurotoxicity was abolished by NMDA antagonist-MK801, suggesting the role of glutamate in this process. Furthermore, we also found that pretreatment of SH-SY5Y cells with PDGF exerted protection against Tat toxicity by decreasing extracellular glutamate levels. We also demonstrated that extracellular calcium chelator EGTA was able to abolish PDGF-mediated neuroprotection, therebymore » underscoring the role of calcium signaling in PDGF-mediated neuroprotection. We also showed that Erk signaling pathway was critical for PDGF-mediated protection of cells. Additionally, blocking calcium entry with EGTA resulted in suppression of PDGF-induced Erk activation. These findings thus underscore the role of PDGF-mediated calcium signaling and Erk phosphorylation in the protection of cells against HIV Tat toxicity.« less

  14. Boron Stress Activates the General Amino Acid Control Mechanism and Inhibits Protein Synthesis

    PubMed Central

    Uluisik, Irem; Kaya, Alaattin; Fomenko, Dmitri E.; Karakaya, Huseyin C.; Carlson, Bradley A.; Gladyshev, Vadim N.; Koc, Ahmet

    2011-01-01

    Boron is an essential micronutrient for plants, and it is beneficial for animals. However, at high concentrations boron is toxic to cells although the mechanism of this toxicity is not known. Atr1 has recently been identified as a boron efflux pump whose expression is upregulated in response to boron treatment. Here, we found that the expression of ATR1 is associated with expression of genes involved in amino acid biosynthesis. These mechanisms are strictly controlled by the transcription factor Gcn4 in response to boron treatment. Further analyses have shown that boron impaired protein synthesis by promoting phosphorylation of eIF2α in a Gcn2 kinase dependent manner. The uncharged tRNA binding domain (HisRS) of Gcn2 is necessary for the phosphorylation of eIF2α in the presence of boron. We postulate that boron exerts its toxic effect through activation of the general amino acid control system and inhibition of protein synthesis. Since the general amino acid control pathway is conserved among eukaryotes, this mechanism of boron toxicity may be of general importance. PMID:22114689

  15. Safety and feasibility of targeted agent combinations in solid tumours.

    PubMed

    Park, Sook Ryun; Davis, Myrtle; Doroshow, James H; Kummar, Shivaani

    2013-03-01

    The plethora of novel molecular-targeted agents (MTAs) has provided an opportunity to selectively target pathways involved in carcinogenesis and tumour progression. Combination strategies of MTAs are being used to inhibit multiple aberrant pathways in the hope of optimizing antitumour efficacy and to prevent development of resistance. While the selection of specific agents in a given combination has been based on biological considerations (including the role of the putative targets in cancer) and the interactions of the agents used in combination, there has been little exploration of the possible enhanced toxicity of combinations resulting from alterations in multiple signalling pathways in normal cell biology. Owing to the complex networks and crosstalk that govern normal and tumour cell proliferation, inhibiting multiple pathways with MTA combinations can result in unpredictable disturbances in normal physiology. This Review focuses on the main toxicities and the lack of tolerability of some common MTA combinations, particularly where evidence of enhanced toxicity compared to either agent alone is documented or there is development of unexpected toxicity. Toxicities caused by MTA combinations highlight the need to introduce new preclinical testing paradigms early in the drug development process for the assessment of chronic toxicities resulting from such combinations.

  16. TOXIC POLLUTANTS IN URBAN WET-WEATHER FLOWS: AN OVERVIEW OF THE MULTI-MEDIA TRANSPORT, IMPACTS, AND CONTROL MEASURES (PRESENTATION)

    EPA Science Inventory

    This paper presents an oveview of the transport of toxic pollutants through multiple media in the urban environment. Discussions include the sources of particulate-associated toxic substances and the relationship of these toxics to atmospheric deposition, overland accumulation an...

  17. The interactions of multisensory integration with endogenous and exogenous attention

    PubMed Central

    Tang, Xiaoyu; Wu, Jinglong; Shen, Yong

    2016-01-01

    Stimuli from multiple sensory organs can be integrated into a coherent representation through multiple phases of multisensory processing; this phenomenon is called multisensory integration. Multisensory integration can interact with attention. Here, we propose a framework in which attention modulates multisensory processing in both endogenous (goal-driven) and exogenous (stimulus-driven) ways. Moreover, multisensory integration exerts not only bottom-up but also top-down control over attention. Specifically, we propose the following: (1) endogenous attentional selectivity acts on multiple levels of multisensory processing to determine the extent to which simultaneous stimuli from different modalities can be integrated; (2) integrated multisensory events exert top-down control on attentional capture via multisensory search templates that are stored in the brain; (3) integrated multisensory events can capture attention efficiently, even in quite complex circumstances, due to their increased salience compared to unimodal events and can thus improve search accuracy; and (4) within a multisensory object, endogenous attention can spread from one modality to another in an exogenous manner. PMID:26546734

  18. The interactions of multisensory integration with endogenous and exogenous attention.

    PubMed

    Tang, Xiaoyu; Wu, Jinglong; Shen, Yong

    2016-02-01

    Stimuli from multiple sensory organs can be integrated into a coherent representation through multiple phases of multisensory processing; this phenomenon is called multisensory integration. Multisensory integration can interact with attention. Here, we propose a framework in which attention modulates multisensory processing in both endogenous (goal-driven) and exogenous (stimulus-driven) ways. Moreover, multisensory integration exerts not only bottom-up but also top-down control over attention. Specifically, we propose the following: (1) endogenous attentional selectivity acts on multiple levels of multisensory processing to determine the extent to which simultaneous stimuli from different modalities can be integrated; (2) integrated multisensory events exert top-down control on attentional capture via multisensory search templates that are stored in the brain; (3) integrated multisensory events can capture attention efficiently, even in quite complex circumstances, due to their increased salience compared to unimodal events and can thus improve search accuracy; and (4) within a multisensory object, endogenous attention can spread from one modality to another in an exogenous manner. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Apoptosis and gene expression in the developing mouse brain of fusarenon-X-treated pregnant mice.

    PubMed

    Sutjarit, Samak; Nakayama, Shota M M; Ikenaka, Yoshinori; Ishizuka, Mayumi; Banlunara, Wijit; Rerkamnuaychoke, Worawut; Kumagai, Susumu; Poapolathep, Amnart

    2014-08-17

    Fusarenon-X (FX), a type B trichothecene mycotoxin, is mainly produced by Fusarium crookwellense, which occurs naturally in agricultural commodities, such as wheat and barley. FX has been shown to exert a variety of toxic effects on multiple targets in vitro. However, the embryonic toxicity of FX in vivo remains unclear. In the present study, we investigated FX-induced apoptosis and the relationship between the genetic regulatory mechanisms and FX-induced apoptosis in the developing mouse brain of FX-treated pregnant mice. Pregnant mice were orally administered FX (3.5 mg/kg b.w.) and were assessed at 0, 12, 24 and 48 h after treatment (HAT). Apoptosis in the fetal brain was determined using hematoxylin and eosin staining, the TUNEL method, immunohistochemistry for PCNA and electron microscopy. Gene expressions were evaluated using microarray and real time-reverse transcription polymerase chain reaction (qRT-PCR). Histopathological changes showed that the number of apoptotic cells in the telencephalon of the mouse fetus peaked at 12 HAT and decreased at 24 and 48 HAT. FX induced the up-regulation of Bax, Trp53 and Casp9 and down-regulated Bcl2 but the expression levels of Fas and Casp8 mRNA remained unchanged. These data suggested that FX induces apoptosis in the developing mouse brain in FX-treated dams. Moreover, the genetic regulatory mechanisms of FX-induced apoptosis are regulated by Bax, Bcl2, Trp53 and Casp9 or can be defined via an intrinsic apoptotic pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Databases in the Area of Pharmacogenetics

    PubMed Central

    Sim, Sarah C.; Altman, Russ B.; Ingelman-Sundberg, Magnus

    2012-01-01

    In the area of pharmacogenetics and personalized health care it is obvious that databases, providing important information of the occurrence and consequences of variant genes encoding drug metabolizing enzymes, drug transporters, drug targets, and other proteins of importance for drug response or toxicity, are of critical value for scientists, physicians, and industry. The primary outcome of the pharmacogenomic field is the identification of biomarkers that can predict drug toxicity and drug response, thereby individualizing and improving drug treatment of patients. The drug in question and the polymorphic gene exerting the impact are the main issues to be searched for in the databases. Here, we review the databases that provide useful information in this respect, of benefit for the development of the pharmacogenomic field. PMID:21309040

  1. Wastewater toxicity of tannin- versus chromium-based leather tanneries in Marrakesh, Morocco.

    PubMed

    De Nicola, E; Meriç, S; Della Rocca, C; Gallo, M; Iaccarino, M; Manini, P; Petruzzelli, D; Belgiorno, V; Cheggour, M; Di Gennaro, A; Moukrim, A; Tünay, O; Pagano, G

    2007-10-01

    The toxicity of leather tanning wastewater from a traditional tannery (TT), which is based on vegetable tannin (VT), was compared with wastewater from a tannery combining the use of chromium-based tanning (CT) with VT-based tanning operations. Wastewater samples from a TT and a CT plant as well as from five sewer sampling points were collected in Marrakesh, Morocco, and the concentrations of VT and some selected inorganics were measured. A set of bioassays were used to test wastewater toxicity in sea urchin (Paracentrotus lividus) embryos and sperm, in Daphnia magna, and in marine microalgae (Dunaliella tertiolecta). Toxicity end points included: (1) developmental defects, embryonic mortality, sperm fertilization success, and offspring damage in sea urchins; (2) D. magna immobilization; and (3) algal growth rate inhibition. Toxicity tests on TT and CT effluents (TTE and CTE) were run at dilutions ranging from 0.1% to 2% (sea urchins and algae) or up to 12% in D. magna. Parallel bioassays were run on VT extract (VTE) at nominal tannin concentrations ranging from 0.1 to 10 mg l(-1). The results showed higher toxicity of CTE compared with TTE. CTE toxicity in sea urchins and algae showed concentration-related trends, whereas TTE exerted hormetic effects at levels of 0.1% to 0.2% and toxic effects at levels >or=1%. The same trends were observed for VTE, suggesting a prevailing role of tannin in TTE-associated effects. The moderate wastewater toxicity of VT-based tanneries might prompt interest in the VT tanning process.

  2. Potential toxicity of nonregulated asbestiform minerals: balangeroite from the western Alps. Part 3: Depletion of antioxidant defenses.

    PubMed

    Gazzano, Elena; Riganti, Chiara; Tomatis, Maura; Turci, Francesco; Bosia, Amalia; Fubini, Bice; Ghigo, Dario

    2005-01-08

    The asbestiform fibrous silicate balangeroite exhibits cytotoxic and oxidative properties similar to those exerted by crocidolite asbestos. In human lung epithelial cells A549, balangeroite, like crocidolite, inhibited the pentose phosphate pathway (PPP), one of the main antioxidant intracellular tools; this inhibition was exerted also when PPP was activated by the redox-cycling compound menadione. PPP inhibition may be accounted for by the inhibition of its rate-limiting enzyme, glucose-6-phosphate dehydrogenase (G6PD). Reduced glutathione (GSH), the most important intracellular antioxidant molecule, was decreased by both balangeroite and crocidolite incubation. This effect was not related to any increased content of oxidized glutathione, or to any enhanced efflux of glutathione, suggesting that balangeroite fibers, like crocidolite, might favor the reaction of GSH with other molecules.

  3. The effects of multiple metal contamination on ectomycorrhizal Scots pine (Pinus sylvestris) seedlings.

    PubMed

    Hartley, J; Cairney, J W; Freestone, P; Woods, C; Meharg, A A

    1999-09-01

    Experiments were conducted to investigate the effects of single and multiple metal contamination (Cd, Pb, Zn, Sb, Cu) on Scots pine seedlings colonised by ectomycorrhizal (ECM) fungi from natural soil inoculum. Seedlings were grown in either contaminated field soil from the site of a chemical accident, soils amended with five metals contaminating the site, or in soil from an uncontaminated control site. Although contaminated and metal-amended soil significantly inhibited root and shoot growth of the Scots pine seedlings, total root tip density was not affected. Of the five metals tested in amended soils, Cd was the most toxic to ECM Scots pine. Field-contaminated soil had a toxic effect on ECM fungi associated with Scots pine seedlings and caused shifts in ECM species composition on ECM seedlings. When compared to soils amended with only one metal, soils amended with a combination of all five metals tested had lower relative toxicity and less accumulation of Pb, Zn and Sb into seedlings. This would indicate that the toxicity of multiple metal contamination cannot be predicted from the individual toxicity of the metals investigated.

  4. Therapeutic Role of Bmi-1 Inhibitors in Eliminating Prostate Tumor Stem Cells

    DTIC Science & Technology

    2015-10-01

    antitumor activity in mouse xenografts did not exert toxic effects on normal tissues. BMI-1 targeted therapy when combined with taxotere resulted in...utilizing zebrafish xenografts (Sabaawy Lab) and prostate cancer cell lines (Bertino Lab), and 3) Confirmation of the antitumor activity of C-209...in mouse xenografts alone and upon combination with taxotere (Bertino Lab). The following tasks from the approved SOW were performed to achieve the

  5. Short-term mechanisms of toxic action of airborne particulates underlie dose-rate dependent health risks and support control of one-hour airborne particle levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michaels, R.A.; Kleinman, M.T.

    1999-07-01

    Twenty-four-hour airborne particle mass levels permissible under the NAAQS have been associated with mortality and morbidity in communities, motivating reconsideration of the standard. Reports of shorter-term mechanisms of toxic action exerted by airborne PM and PM constituents are emerging. The mechanisms are diverse, but have in common a short time frame of toxic action, from minutes to hours. In view of documented PM excursions also lasting minutes to hours, this study inquires whether such short-term mechanisms might contribute to explaining daily morbidity and mortality. Toxicology experiments have demonstrated the harmfulness of brief exposure to PM levels in the range ofmore » observed excursions. This suggests that toxicological processes initiated by short-term inhalation of PM may exert clinically important effects, and that weak associations of 24-hour-average particle mass with mortality and morbidity may represent artifacts of stronger, shorter-term associations whose full magnitude remains to be quantified. In one study, the area of lung surface developing lesions was elevated in rats breathing the same four-hour dose of aerosols, when the four-hour average rate of aerosol delivery included a short-term (five-minute) burst fifty percent above the average dose rate. Elevations were observed with each of two aerosols tested. The magnitude of the effect was higher with one of the two aerosols, whose dose rate included four excursions rather than just one excursion. Particulate matter inhaled or instilled intratracheally has produced morbidity in animals, including apnea and electrophysiological effects in dogs. Other studies reveal that PM can kill rats via electrophysiological and possibly other mechanisms. PM has also adversely affected asthmatic people in controlled clinical settings during exercise or, in one study, at rest.« less

  6. Eicosapentaenoic acid prevents TCDD-induced oxidative stress and inflammatory response by modulating MAP kinases and redox-sensitive transcription factors

    PubMed Central

    Palanisamy, Kalaiselvi; Krishnaswamy, Rajashree; Paramasivan, Poornima; Chih-Yang, Huang; Vishwanadha, Vijaya Padma

    2015-01-01

    Background and Purpose Oxidative stress and subsequent activation of inflammatory responses is a widely accepted consequence of exposure to environmental toxins. TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin), a well-known environmental toxin, exerts its toxicity through many signalling mechanisms, with liver being the principal organ affected. However, an effective antidote to TCDD-induced toxicity is unknown. The present study evaluated the effect of eicosapentaenoic acid (EPA), an n3 fatty acid, on TCDD-induced toxicity. Experimental Approach In cultures of HepG2 cells, the EPA/AA ratio was determined using gas chromatography, oxidative stress and inflammatory responses through reactive oxygen species (ROS) levels, antioxidant status, [Ca2+]i, nuclear migration of two redox-sensitive transcription factors, NF-κB p65 and Nrf-2, expression of MAP kinase (p-Erk, p-p38), NF-κB p65, COX-2 and Nrf-2. Cellular changes in ΔΨm, acidic vesicular organelle formation, cell cycle analysis and scanning electron microscopy analysis were performed. Key Results EPA offered significant cytoprotection by increasing EPA/AA ratios in cell membranes, inhibiting ROS generation, enhancing antioxidant status and modulating nuclear translocation of redox-sensitive transcription factors (NF-κB p65 and Nrf-2) and expression of NF-κB p65, COX-2 and Nrf-2. Furthermore, TCDD-induced upstream events of MAPK phosphorylation, the increase in [Ca2+]i levels and cell surface changes in microvilli were significantly inhibited by EPA. EPA treatment maintained ΔΨm and prevented formation of acidic vesicular organelles. Conclusion and Implications The present study demonstrates for the first time some underlying molecular mechanisms of cytoprotection exerted by EPA against TCDD-induced oxidative stress and inflammatory responses. PMID:26177858

  7. Cytotoxicity assays with fish cells as an alternative to the acute lethality test with fish.

    PubMed

    Segner, Helmut

    2004-10-01

    In ecotoxicology, in vitro assays with fish cells are currently applied for mechanistic studies, bioanalytical purposes and toxicity screening. This paper discusses the potential of cytotoxicity assays with fish cells to reduce, refine or replace acute lethality tests using fish. Basal cytotoxicity data obtained with fish cell lines or fish primary cell cultures show a reasonable to good correlation with lethality data from acute toxicity tests, with the exception of compounds that exert a specific mode of toxic action. Basal cytotoxicity data from fish cell lines also correlate well with cytotoxicity data from mammalian cell lines. However, both the piscine and mammalian in vitro assays are clearly less sensitive than the fish test. Therefore, in vivo LC50 values (concentrations of the test compounds that are lethal to 50% of the fish in the experiment within 96 hours) currently cannot be predicted from in vitro values. This in vitro-in vivo difference in sensitivity appears to be true for both fish cell lines and mammalian cell lines. Given the good in vitro-in vivo correlation in toxicity ranking, together with the clear-cut difference in sensitivity, the role of cytotoxicity assays in a tiered alternative testing strategy could be in priority setting in relation to toxic hazard and in the toxicity classification of chemicals and environmental samples.

  8. Toxic and inhibitory effects of trichloroethylene aerobic co-metabolism on phenol-grown aerobic granules.

    PubMed

    Zhang, Yi; Tay, JooHwa

    2015-04-09

    Aerobic granule, a form of microbial aggregate, exhibits good potential in degrading toxic and recalcitrant substances. In this study, the inhibitory and toxic effects of trichloroethylene (TCE), a model compound for aerobic co-metabolism, on phenol-grown aerobic granules were systematically studied, using respiratory activities after exposure to TCE as indicators. High TCE concentration did not exert positive or negative effects on the subsequent endogenous respiration rate or phenol dependent specific oxygen utilization rate (SOUR), indicating the absence of solvent stress and induction effect on phenol-hydroxylase. Phenol-grown aerobic granules exhibited a unique response to TCE transformation product toxicity, that small amount of TCE transformation enhanced the subsequent phenol SOUR. Granules that had transformed between 1.3 and 3.7 mg TCE gSS(-1) showed at most 53% increase in the subsequent phenol SOUR, and only when the transformation exceeded 6.6 mg TCE gSS(-1) did the SOUR dropped below that of the control. This enhancing effect was found to sustain throughout several phenol dosages, and TCE transformation below the toxicity threshold also lessened the granules' sensitivity to higher phenol concentration. The unique toxic effect was possibly caused by the granule's compact structure as a protection barrier against the diffusive transformation product(s) of TCE co-metabolism. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Toxicity of major geochemical ions to freshwater species

    EPA Science Inventory

    Extensive testing regarding the toxicity of major geochemical ions to Ceriodaphnia dubia, Hyalella azteca, and Pimephales promelas will be presented. For C. dubia, tests of single salts and binary mixtures in various dilution waters demonstrated multiple mechanisms of toxicity an...

  10. USE OF MERCENARIA MERCENARIA IN MULTIPLE SPECIES TESTING

    EPA Science Inventory

    The Toxicity Identification Evaluation (TIE) approach was first developed for determining the causes of toxicity in effluents discharged into the aquatic environment. Soon, TIEs were being used for assessing the causes of toxicity in sediment interstitial waters. Now, both fres...

  11. Development of Species Sensitivity Distributions for Wildlife Using Interspecies Toxicity Correlation Models

    EPA Science Inventory

    Species sensitivity distributions (SSD) are cumulative distributions of chemical toxicity of multiple species and have had limited application in wildlife risk assessment because of relatively small datasets of wildlife toxicity values. Interspecies correlation estimation (ICE) m...

  12. Silibinin: an old drug for hematological disorders

    PubMed Central

    Zou, Hai; Zhu, Xing-Xing; Zhang, Guo-Bing; Ma, Yuan; Wu, Yi; Huang, Dong-Sheng

    2017-01-01

    Introduction Silibinin (silybin), a non-toxic natural polyphenolic flavonoid, is the principal and the most biologically active component of silymarin. It is efficient in the treatment of acute and chronic liver disorders caused by toxins, drug, alcohol, hepatitis, and gall bladder disorders. Further, in our previous studies, we explored the anti-cancer efficacy in common cancers, such as lung, prostatic, colon, breast, bladder, as well as, hepatocellular carcinoma. Interestingly, silibinin is still not solely limited to the treatment of these diseases. Recent research endeavors suggest that silibinin may function diversely and serve as a novel therapy for hematological disorders. Areas covered It discovered several interesting viewpoints in the widely studied mechanisms of silibinin in the hematological disorders. Expert commentary In this report, we review the up-to-date findings of more potency roles of silibinin in β-thalassemia (β-TM), acute myeloid leukemia (AML), anaplastic large cell lymphoma (ALCL) and multiple myelomas (MM) therapy and attempt to clarify the mechanisms underlying its effects. There are two viewpoints: First, The functional mechanisms of silibinin in AML cells via regulating cell differentiation to exert anti-cancer effect; Second, combination treatment strategy may be a good choice. PMID:29179521

  13. Neuropsychiatric Effects of Antimicrobial Agents.

    PubMed

    Zareifopoulos, Nicholas; Panayiotakopoulos, George

    2017-05-01

    Antimicrobial drugs used in clinical practice are selected on the basis of their selective toxicity against bacterial cells. However, all exhibit multiple offsite interactions with eukaryotic cell structures, resulting in adverse reactions during antimicrobial pharmacotherapy. A multitude of these side effects involve the nervous system as antimicrobials at clinically relevant concentrations seem to interact with many of the same molecules usually implicated in the action of psychotropic drugs. The importance of such events cannot be overstated, as the misdiagnosis of an adverse drug reaction as a symptom of a primary psychiatric or neurological disorder entails great suffering for the patient affected as well as significant costs for the healthcare system. The neuropsychiatric effects of antimicrobial drugs are extensively documented in the literature. A number of antimicrobial drugs have the potential to exert CNS effects and many are associated with stimulant, psychotomimetic and epileptogenic properties, mediated by GABA antagonism (beta-lactams, quinolones and clarithromycin), NMDA agonism (D-cycloserine, aminoglycosides, and perhaps quinolones), MAO inhibition (linezolid, metronidazole and isoniazid weakly) as well as more exotic mechanisms, as in the case of trimethoprim, isoniazid, ethambutol, rifampicin and the tetracyclines. While those effects are generally undesirable, they may also under certain circumstances be beneficial, and further research is warranted in that direction.

  14. Graphene oxide and reduced graphene oxide induced neural pheochromocytoma-derived PC12 cell lines apoptosis and cell cycle alterations via the ERK signaling pathways.

    PubMed

    Kang, Yiyuan; Liu, Jia; Wu, Junrong; Yin, Qian; Liang, Huimin; Chen, Aijie; Shao, Longquan

    2017-01-01

    Given the novel applications of graphene materials in biomedical and electronics industry, the health hazards of these particles have attracted extensive worldwide attention. Although many studies have been performed on graphene material-induced toxic effects, toxicological data for the effect of graphene materials on the nervous system are lacking. In this study, we focused on the biological effects of graphene oxide (GO) and reduced graphene oxide (rGO) materials on PC12 cells, a type of traditional neural cell line. We found that GO and rGO exerted significant toxic effects on PC12 cells in a dose- and time-dependent manner. Moreover, apoptosis appeared to be a response to toxicity. A potent increase in the number of PC12 cells at G0/G1 phase after GO and rGO exposure was detected by cell cycle analysis. We found that phosphorylation levels of ERK signaling molecules, which are related to cell cycle regulation and apoptosis, were significantly altered after GO and rGO exposure. In conclusion, our results show that GO has more potent toxic effects than rGO and that apoptosis and cell cycle arrest are the main toxicity responses to GO and rGO treatments, which are likely due to ERK pathway regulation.

  15. Acrolein Can Cause Cardiovascular Disease: A Review.

    PubMed

    Henning, Robert J; Johnson, Giffe T; Coyle, Jayme P; Harbison, Raymond D

    2017-07-01

    Acrolein is a highly reactive unsaturated aldehyde that is formed during the burning of gasoline and diesel fuels, cigarettes, woods and plastics. In addition, acrolein is generated during the cooking or frying of food with fats or oils. Acrolein is also used in the synthesis of many organic chemicals and as a biocide in agricultural and industrial water supply systems. The total emissions of acrolein in the United States from all sources are estimated to be 62,660 tons/year. Acrolein is classified by the Environmental Protection Agency as a high-priority air and water toxicant. Acrolein can exert toxic effects following inhalation, ingestion, and dermal exposures that are dose dependent. Cardiovascular tissues are particularly sensitive to the toxic effects of acrolein based primarily on in vitro and in vivo studies. Acrolein can generate free oxygen radical stress in the heart, decrease endothelial nitric oxide synthase phosphorylation and nitric oxide formation, form cytoplasmic and nuclear protein adducts with myocyte and vascular endothelial cell proteins and cause vasospasm. In this manner, chronic exposure to acrolein can cause myocyte dysfunction, myocyte necrosis and apoptosis and ultimately lead to cardiomyopathy and cardiac failure. Epidemiological studies of acrolein exposure and toxicity should be developed and treatment strategies devised that prevent or significantly limit acrolein cardiovascular toxicity.

  16. Heavy metal concentrations and toxicity in water and sediment from stormwater ponds and sedimentation tanks.

    PubMed

    Karlsson, Kristin; Viklander, Maria; Scholes, Lian; Revitt, Mike

    2010-06-15

    Sedimentation is a widely used technique in structural best management practices to remove pollutants from stormwater. However, concerns have been expressed about the environmental impacts that may be exerted by the trapped pollutants. This study has concentrated on stormwater ponds and sedimentation tanks and reports on the accumulated metal concentrations (Cd, Cr, Ni, Pb, and Zn) and the associated toxicity to the bacteria Vibrio fischeri. The metal concentrations are compared with guidelines and the toxicity results are assessed in relation to samples for which metal concentrations either exceed or conform to these values. The water phase metal concentrations were highest in the ponds whereas the sedimentation tanks exhibited a distinct decrease towards the outlet. However, none of the water samples demonstrated toxicity even though the concentrations of Cu, Pb, and Zn exceeded the threshold values for the compared guidelines. The facilities with higher traffic intensities had elevated sediment concentrations of Cr, Cu, Ni, and Zn which increased towards the outlet for the sedimentation tanks in agreement with the highest percentage of fine particles. The sediments in both treatment facilities exhibited the expected toxic responses in line with their affinity for heavy metals but the role of organic carbon content is highlighted. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Hydroxylated Polychlorinated Biphenyls in the Environment: Sources, Fate, and Toxicities

    PubMed Central

    Tehrani, Rouzbeh; Van Aken, Benoit

    2013-01-01

    Hydroxylated polychlorinated biphenyls (OH-PCBs) are produced in the environment by the oxidation of PCBs through a variety of mechanisms, including metabolic transformation in living organisms and abiotic reactions with hydroxyl radicals. As a consequence, OH-PCBs have been detected in a wide range of environmental samples, including animal tissues, water, and sediments. OH-PCBs have recently raised serious environmental concerns because they exert a variety of toxic effects at lower doses than the parent PCBs and they are disruptors of the endocrine system. Although evidence has accumulated about the widespread dispersion of OH-PCBs in various compartments of the ecosystem, little is currently known about their biodegradation and behavior in the environment. OH-PCBs are today increasingly considered as a new class of environmental contaminants that possess specific chemical, physical, and biological properties not shared with the parent PCBs. This article reviews recent findings regarding the sources, fate, and toxicities of OH-PCBs in the environment. PMID:23636595

  18. Health risks of genetically modified foods.

    PubMed

    Dona, Artemis; Arvanitoyannis, Ioannis S

    2009-02-01

    As genetically modified (GM) foods are starting to intrude in our diet concerns have been expressed regarding GM food safety. These concerns as well as the limitations of the procedures followed in the evaluation of their safety are presented. Animal toxicity studies with certain GM foods have shown that they may toxically affect several organs and systems. The review of these studies should not be conducted separately for each GM food, but according to the effects exerted on certain organs it may help us create a better picture of the possible health effects on human beings. The results of most studies with GM foods indicate that they may cause some common toxic effects such as hepatic, pancreatic, renal, or reproductive effects and may alter the hematological, biochemical, and immunologic parameters. However, many years of research with animals and clinical trials are required for this assessment. The use of recombinant GH or its expression in animals should be re-examined since it has been shown that it increases IGF-1 which may promote cancer.

  19. Bacoside-A, an Indian Traditional-Medicine Substance, Inhibits β-Amyloid Cytotoxicity, Fibrillation, and Membrane Interactions.

    PubMed

    Malishev, Ravit; Shaham-Niv, Shira; Nandi, Sukhendu; Kolusheva, Sofiya; Gazit, Ehud; Jelinek, Raz

    2017-04-19

    Bacoside-A, a family of compounds extracted from the Bacopa monniera plant, is a folk-medicinal substance believed to exhibit therapeutic properties, particularly enhancing cognitive functions and improving memory. We show that bacoside-A exerted significant inhibitory effects upon cytotoxicity, fibrillation, and particularly membrane interactions of amyloid-beta (1-42) (Aβ42), the peptide playing a prominent role in Alzeheimer's disease progression and toxicity. Specifically, preincubation of bacoside-A with Aβ42 significantly reduced cell toxicity and inhibited fibril formation both in buffer solution and, more significantly, in the presence of membrane vesicles. In parallel, spectroscopic and microscopic analyses reveal that bacoside-A blocked membrane interactions of Aβ42, while formation of Aβ42 oligomers was not disrupted. These interesting phenomena suggest that inhibition of Aβ42 oligomer assembly into mature fibrils, and blocking membrane interactions of the oligomers are likely the underlying factors for ameliorating amyloid toxicity by bacoside-A and its putative physiological benefits.

  20. Defense mechanisms against toxic phytochemicals in the diet of domestic animals.

    PubMed

    Fink-Gremmels, Johanna

    2010-02-01

    Plant secondary metabolites (PSMs) are non-nutritional components that occur in numerous feed materials and are able to exert toxic effects in animals. The current article aims to summarize innate defense strategies developed by different animal species to avoid excessive exposure to PSMs. These mechanisms include pre-systemic degradation of PSMs by rumen microbiota, the intestinal barrier including efflux transporters of monogastric species, as well as pre-hepatic and intra-hepatic biotransformation processes. These physiological barriers determine systemic exposure and ultimately the dose-dependent adverse effects in the target animal species. Considering the large number of potentially toxic PSMs, which makes an evaluation of all individual PSMs virtually impossible, such a mechanism-oriented approach could improve the predictability of adverse effects and support the interpretation of clinical field observations. Moreover, mechanistic data related to tissue disposition and excretion pathways of PSMs for example into milk, could substantially support the assessment of the risks for consumers of foods derived from PSM-exposed animals.

  1. Eco- and genotoxicity profiling of a rapeseed biodiesel using a battery of bioassays.

    PubMed

    Eck-Varanka, Bettina; Kováts, Nora; Horváth, Eszter; Ferincz, Árpád; Kakasi, Balázs; Nagy, Szabolcs Tamás; Imre, Kornélia; Paulovits, Gábor

    2018-04-30

    Biodiesel is considered an important renewable energy source but still there is some controversy about its environmental toxicity, especially to aquatic life. In our study, the toxicity of water soluble fraction of biodiesel was evaluated in relatively low concentrations using a battery of bioassays: Vibrio fischeri bioluminescence inhibition, Sinapis alba root growth inhibition, Daphnia magna immobilization, boar semen live/dead ratio and DNA fragmentation and Unio pictorum micronucleus test. While the S. alba test indicated nutritive (stimulating) effect of the sample, the biodiesel exerted toxic effect in the aquatic tests. D. magna was the most sensitive with EC 50 value of 0.0226%. For genotoxicity assessment, the mussel micronucleus test (MNT) was applied, detecting considerable genotoxic potential of the biodiesel sample: it elucidated micronuclei formation already at low concentration of 3.3%. Although this test has never been employed in biodiesel eco/genotoxicity assessments, it seems a promising tool, based on its appropriate sensitivity, and representativity. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Degradation of roxarsone in a silt loam soil and its toxicity assessment.

    PubMed

    Liang, Tengfang; Ke, Zhengchen; Chen, Qing; Liu, Li; Chen, Guowei

    2014-10-01

    The land application of poultry or swine litter, containing large amounts of roxarsone, causes serious arsenic pollution in soil. Understanding biotransformation process of roxarsone and its potential risks favors proper disposal of roxarsone-contaminated animal litter, yet remains not achieved. We report an experimental study of biotransformation process of roxarsone in a silt loam soil under various soil moisture and temperature conditions, and the toxicity of roxarsone and its products from degradation. Results showed that soil moisture and higher temperature promoted roxarsone degradation, associating with emergent pentavalent arsenic. Analysis of fluorescein diacetate (FDA) hydrolysis activity revealed that roxarsone does not exert acute toxic on soil microbes. With the release of inorganic arsenic, FDA hydrolysis activity was inhibited gradually, as evidenced by ecotoxicological assessment using Photobacterium leiognathi. The results shade new lights on the dynamic roxarsone biotransformation processes in soil, which is important for guiding appropriate disposal of poultry or swine litter in the environment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Determinants and magnitudes of manual force strengths and joint moments during two-handed standing maximal horizontal pushing and pulling.

    PubMed

    Chow, Amy Y; Dickerson, Clark R

    2016-04-01

    Pushing and pulling are common occupational exertions that are increasingly associated with musculoskeletal complaints. This study focuses on the sensitivity of shoulder capacity to gender, handle height, exertion type (push or pull) and handle orientation for these tasks. All factors except for handle orientation influenced unilateral and total manual force strength (p < 0.01), with exertion type being the most influential. Interaction effects also existed between handle height and exertion type. Additionally, joint moments at the shoulders and low back were influenced by all factors studied (p < 0.01), with exertion type again being most influential. Knowledge of the relative influence of multiple factors on shoulder capacity can provide guidance regarding these factors when designing or evaluating occupational pushing and pulling tasks for a diverse population. Practitioner Summary: pushing and pulling comprise nearly half of all manual materials handling tasks. Practitioners often assess, design or modify these tasks while incorporating constraints, including manual force direction and handle interface. This study provides guidance to aid design of pushing and pulling tasks in the context of shoulder physical capacity.

  4. PREDICTION OF VO2PEAK USING OMNI RATINGS OF PERCEIVED EXERTION FROM A SUBMAXIMAL CYCLE EXERCISE TEST

    PubMed Central

    Mays, Ryan J.; Goss, Fredric L.; Nagle-Stilley, Elizabeth F.; Gallagher, Michael; Schafer, Mark A.; Kim, Kevin H.; Robertson, Robert J.

    2015-01-01

    Summary The primary aim of this study was to develop statistical models to predict peak oxygen consumption (VO2peak) using OMNI Ratings of Perceived Exertion measured during submaximal cycle ergometry. Men (mean ± standard error: 20.90 ± 0.42 yrs) and women (21.59 ± 0.49 yrs) participants (n = 81) completed a load-incremented maximal cycle ergometer exercise test. Simultaneous multiple linear regression was used to develop separate VO2peak statistical models using submaximal ratings of perceived exertion for the overall body, legs, and chest/breathing as predictor variables. VO2peak (L·min−1) predicted for men and women from ratings of perceived exertion for the overall body (3.02 ± 0.06; 2.03 ± 0.04), legs (3.02 ± 0.06; 2.04 ± 0.04) and chest/breathing (3.02 ± 0.05; 2.03 ± 0.03) were similar with measured VO2peak (3.02 ± 0.10; 2.03 ± 0.06, ps > .05). Statistical models based on submaximal OMNI Ratings of Perceived Exertion provide an easily administered and accurate method to predict VO2peak. PMID:25068750

  5. The concomitant effects of phrase length and informational content in sentence comprehension.

    PubMed

    Thornton, R; MacDonald, M C; Arnold, J E

    2000-03-01

    Recent evidence suggests that phrase length plays a crucial role in modification ambiguities. Using a self-paced reading task, we extended these results by examining the additional pragmatic effects that length manipulations may exert. The results demonstrate that length not only modulates modification preferences directly, but that it also necessarily changes the informational content of a sentence, which itself affects modification preferences. Our findings suggest that the same length manipulation affects multiple sources of constraints, both structural and pragmatic, which can each exert differing effects on processing.

  6. Part--Selenoproteins and Cardiovascular Stress

    PubMed Central

    Rose, Aaron H.; Hoffmann, Peter R.

    2017-01-01

    Dietary selenium (Se) is an essential micronutrient that exerts its biological effects through its incorporation into selenoproteins. This family of proteins contains several antioxidant enzymes such as the glutathione peroxidases, redox-regulating enzymes such as thioredoxin reductases, a methionine sulfoxide reductase, and others. In this review, we summarize the current understanding of the roles these selenoproteins play in protecting the cardiovascular system from different types of stress including ischemia-reperfusion, homocysteine dysregulation, myocardial hypertrophy, doxirubicin toxicity, Keshan disease, and others. PMID:25354851

  7. Dietary n-3 polyunsaturated fatty acids and the paradox of their health benefits and potential harmful effects.

    PubMed

    Serini, Simona; Fasano, Elena; Piccioni, Elisabetta; Cittadini, Achille R M; Calviello, Gabriella

    2011-12-19

    There is some evidence to support the toxicity of polyunsaturated fatty acids (PUFAs) and their oxidative products, suggesting their involvement in the pathogenesis of different chronic diseases, including cancer. It has been shown that products of PUFA oxidation may exert a carcinogenic action by forming mutagenic adducts with DNA. However, a large amount of evidence accumulated over several decades has indicated the beneficial effects of administration of n-3 PUFAs in the prevention and therapy of a series of diseases. In particular, there is much evidence that n-3 PUFAs exert anti-inflammatory and antineoplastic effects, whereas n-6 PUFAs promote inflammation and carcinogenesis. In our tissues, both of the two classes of PUFAs can be converted into bioactive products, incorporated into membrane phospholipids or bound to membrane receptors, where they may alter, often in opposite ways, transduction pathways and affect important biological processes, such as cell death and survival, inflammation, and neo-angiogenesis. In the present review, we intend to shed light on the paradox of the coexisting healthy and toxic effects of n-3 PUFAs, focusing on their possible pro-oxidant cytotoxic and carcinogenic effect, in order to understand if their increased intake, recommended by a number of health agencies worldwide and promoted by nutraceutical producers, may or may not represent a hazard to human health. © 2011 American Chemical Society

  8. Comparative proteomic analysis of 2-MCPD- and 3-MCPD-induced heart toxicity in the rat.

    PubMed

    Schultrich, Katharina; Frenzel, Falko; Oberemm, Axel; Buhrke, Thorsten; Braeuning, Albert; Lampen, Alfonso

    2017-09-01

    The chlorinated propanols 2- and 3-monochloropropanediol (MCPD), and their fatty acid esters have gained public attention due to their frequent occurrence as heat-induced food contaminants. Toxic properties of 3-MCPD in kidney and testis have extensively been characterized. Other 3-MCPD target organs include heart and liver, while 2-MCPD toxicity has been observed in striated muscle, heart, kidney, and liver. Inhibition of glycolysis appears to be important in 3-MCPD toxicity, whereas mechanisms of 2-MCPD toxicity are still unknown. It is thus not clear whether toxicity by the two isomeric compounds is dependent on similar or dissimilar modes of action. A 28-day oral feeding study in rats was conducted using daily non-toxic doses of 2-MCPD or 3-MCPD [10 mg/kg body weight], or an equimolar (53 mg/kg body weight) or a lower (13.3 mg/kg body weight) dose of 2-MCPD dipalmitate. Comprehensive comparative proteomic analyses of substance-induced alterations in the common target organ heart revealed striking similarities between effects induced by 2-MCPD and its dipalmitate ester, whereas the degree of effect overlap between 2-MCPD and 3-MCPD was much less. The present data demonstrate that even if exerting effects in the same organ and targeting similar metabolic networks, profound differences between molecular effects of 2-MCPD and 3-MCPD exist thus warranting the necessity of separate risk assessment for the two substances. This study for the first time provides molecular insight into molecular details of 2-MCPD toxicity. Furthermore, for the first time, molecular data on 3-MCPD toxicity in the heart are presented.

  9. N-ω-chloroacetyl-L-ornithine has in-vitro activity against cancer cell lines and in-vivo activity against ascitic and solid tumors.

    PubMed

    Vargas-Ramírez, Alba L; Medina-Enríquez, Miriam M; Cordero-Rodríguez, Neira I; Ruiz-Cuello, Tatiana; Aguilar-Faisal, Leopoldo; Trujillo-Ferrara, José G; Alcántara-Farfán, Verónica; Rodríguez-Páez, Lorena

    2016-07-01

    N-ω-chloroacetyl-L-ornithine (NCAO) is an ornithine decarboxylase (ODC) inhibitor that is known to exert cytotoxic and antiproliferative effects on three neoplastic human cancer cell lines (HeLa, MCF-7, and HepG2). Here, we show that NCAO has antiproliferative activity in 13 cancer cell lines, of diverse tissue origin from human and mice, and in a mouse cancer model in vivo. All cell lines were sensitive to NCAO after 72 h of treatment (the EC50 ranged from 1 to 50.6 µmol/l). The Ca Ski cell line was the most sensitive (EC50=1.18±0.07 µmol/l) and MDA-MB-231 was the least sensitive (EC50=50.6±0.3 µmol/l). This ODC inhibitor showed selectivity for cancer cells, exerting almost no cytotoxic effect on the normal Vero cell line (EC50>1000 µmol/l). NCAO induced apoptosis and inhibited tumor cell migration in vitro. Furthermore, in vivo, this compound (at 50 and 100 mg/kg, daily intraperitoneal injection for 7 days) exerted potent antitumor activity against both solid and ascitic tumors in a mouse model using the myeloma (Ag8) cell line. At these same two doses, the toxicological evaluation showed that NCAO has no obvious systemic toxicity. The current results suggest that the antitumor activity is exerted by apoptosis related not only to a local but also a systemic cytotoxic effect exerted by NCAO on tumor cells. The applications for NCAO as an antitumor agent may be extensive; however, further studies are needed to ascertain the antitumor activity on other types of tumor in vivo and to determine the precise molecular mechanism of its activity.

  10. In vitro activity of the beta-carboline alkaloids harmane, harmine, and harmaline toward parasites of the species Leishmania infantum.

    PubMed

    Di Giorgio, C; Delmas, F; Ollivier, E; Elias, R; Balansard, G; Timon-David, P

    2004-01-01

    Harmane, harmine, and harmaline were investigated for their in vitro antileishmanial activity toward parasites of the species Leishmania infantum. Harmane and Harmine displayed a moderate antiproliferative activity toward human monocytes and exerted a weak antileishmanial activity toward both the promastigote and the amastigote forms of the parasite. Their mechanism of action on the promastigote form of the parasite involved interactions with DNA metabolism leading to an accumulation of parasites in the S-G(2)M phases of the cell-cycle. Harmaline, at the contrary, was deprived from toxicity toward human cells and Leishmania promastigotes, however it exerted a strong antileishmanial activity toward the intracellular amastigote form of the parasite. This property was shown to partly result from the capacity of the molecule to prevent parasite internalization within macrophages by inhibiting Leishmania PKC activity.

  11. Role of structural changes induced in biological membranes by hydrolysable tannins from sumac leaves (Rhus typhina L.) in their antihemolytic and antibacterial effects.

    PubMed

    Olchowik-Grabarek, Ewa; Swiecicka, Izabela; Andreeva-Kovaleskaya, Zhanna; Solonin, Alexander; Bonarska-Kujawa, Dorota; Kleszczyńska, Halina; Mavlyanov, Saidmukhtar; Zamaraeva, Maria

    2014-06-01

    In this study, we found that the sumac tannins (Rhus typhina L.) exert to a various extent antihemolytic effects and antibacterial activity against Bacillus cereus and Pseudomonas aeruginosa depending on structural specificity of bacteria and different mechanisms of their toxic action. The sumac tannins exert the most expressed activity against B. cereus. The antihemolytic effect of the sumac tannins seems to be connected to a greater extent with their modifying action on the erythrocyte membrane structure. It was found that the sumac tannins are incorporated into the erythrocyte membrane, causing transformation of discocytes into echinocytes and enhancing the rigidity of the hydrophilic region of the lipid bilayer. We suggest that the embedding of sumac tannins into the membrane of erythrocytes alters their physical properties and, as a consequence, can limit their interaction with bacterial toxins.

  12. Toxicological issues associated with production and processing of meat.

    PubMed

    Püssa, Tõnu

    2013-12-01

    Meat is a very complex and continuously changing ex vivo system of various high- and low-molecular substances that can be used for satisfying needs of the human organism for metabolic energy, building material and fulfilling of the other vital functions. A great majority of these substances are useful and safe for the consumer. Yet, meat and meat products may always contain substances exerting detrimental effects to the consumer's organism. The present paper is a literature review of the most important potentially toxic substances found in meat and meat products; their classification, ways of getting into the meat or formation during meat processing, undesirable physiological outcomes and biochemical mechanisms of their toxic effects, and methods for reduction of these responses. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. α-Synuclein in Parkinson's Disease

    PubMed Central

    Stefanis, Leonidas

    2012-01-01

    α-Synuclein is a presynaptic neuronal protein that is linked genetically and neuropathologically to Parkinson's disease (PD). α-Synuclein may contribute to PD pathogenesis in a number of ways, but it is generally thought that its aberrant soluble oligomeric conformations, termed protofibrils, are the toxic species that mediate disruption of cellular homeostasis and neuronal death, through effects on various intracellular targets, including synaptic function. Furthermore, secreted α-synuclein may exert deleterious effects on neighboring cells, including seeding of aggregation, thus possibly contributing to disease propagation. Although the extent to which α-synuclein is involved in all cases of PD is not clear, targeting the toxic functions conferred by this protein when it is dysregulated may lead to novel therapeutic strategies not only in PD, but also in other neurodegenerative conditions, termed synucleinopathies. PMID:22355802

  14. Effects of calcium, magnesium, and sodium on alleviating cadmium toxicity to Hyalella azteca

    USGS Publications Warehouse

    Jackson, B.P.; Lasier, P.J.; Miller, W.P.; Winger, P.V.

    2000-01-01

    Toxicity of trace metal ions to aquatic organisms, arising through either anthropogenic inputs or acidification of surface waters, continues to be both a regulatory and environmental problem. It is generally accepted that the free metal ion is the major toxic species (Florence et a1.,1992) and that inorganic or organic complexation renders the metal ion non-bioavailable (Meador, 1991, Galvez and Wood, 1997). However, water chemistry parameters such as alkalinity, hardness, dissolved organic carbon and pH influence metal ion toxicity either directly by lowering free metal ion concentration or indirectly through synergistic or antagonistic effects. Alkalinity and salinity can affect the speciation of metal ions by increasing ion-pair formation, thus decreasing free metal ion concentration. For example, Cu was found to be less toxic to rainbow trout in waters of high alkalinity (Miller and Mackay, 1980), due to formation of CuCO3 ion pair, and corresponding reduction in free Cu2+ concentration. The influence of salinity on the toxicity of cadmium to various organisms has been demonstrated in a number of studies (Bervoets et al., 1995, Hall et al., 1995, Lin and Dunson, 1993, Blust et al., 1992). In all these studies the apparent toxicity of cadmium was lowered as salinity was increased due to increased formation of CdC1+ and CDCl2 aqueous complexes that are non-toxic or of much lower toxicity than the free Cd2+ ion. Changes in pH exert both a biological and chemical effect on metal ion toxicity (Campbell and Stokes, 1985). Low pH favors greater metal ion solubility, and, in the absence of complexing ions, reduced speciation of the metal ion, which tends to increase toxicity compared to higher pH. However, Iow pH also enhances competition between H+ and metal ion for cell surface binding sites, which tends to decrease metal ion toxicity.

  15. Human environmental and occupational exposures to boric acid: reconciliation with experimental reproductive toxicity data.

    PubMed

    Bolt, Hermann M; Başaran, Nurşen; Duydu, Yalçın

    2012-01-01

    The reproductive toxicity of boric acid and borates is a matter of current regulatory concern. Based on experimental studies in rats, no-observed-adverse-effect levels (NOAELs) were found to be 17.5 mg boron (B)/kg body weight (b.w.) for male fertility and 9.6 mg B/kg b.w. for developmental toxicity. Recently, occupational human field studies in highly exposed cohorts were reported from China and Turkey, with both studies showing negative results regarding male reproduction. A comparison of the conditions of these studies with the experimental NOAEL conditions are based on reported B blood levels, which is clearly superior to a scaling according to estimated B exposures. A comparison of estimated daily B exposure levels and measured B blood levels confirms the preference of biomonitoring data for a comparison of human field studies. In general, it appears that high environmental exposures to B are lower than possible high occupational exposures. The comparison reveals no contradiction between human and experimental reproductive toxicity data. It clearly appears that human B exposures, even in the highest exposed cohorts, are too low to reach the blood (and target tissue) concentrations that would be required to exert adverse effects on reproductive functions.

  16. Interspecies Correlation Estimation (ICE) models predict supplemental toxicity data for SSDs

    EPA Science Inventory

    Species sensitivity distributions (SSD) require a large number of toxicity values for a diversity of taxa to define a hazard level protective of multiple species. For most chemicals, measured toxicity data are limited to a few standard test species that are unlikely to adequately...

  17. Comparison of Species Sensitivity Distributions Derived from Interspecies Correlation Models to Distributions used to Derive Water Quality Criteria

    EPA Science Inventory

    Species sensitivity distributions (SSD) require a large number of measured toxicity values to define a chemical’s toxicity to multiple species. This investigation comprehensively evaluated the accuracy of SSDs generated from toxicity values predicted from interspecies correlation...

  18. Acute Toxicity of Ternary Cd-Cu-Ni and Cd-Ni-Zn Mixtures to Daphnia magna: Dominant Metal Pairs Change along a Concentration Gradient.

    PubMed

    Traudt, Elizabeth M; Ranville, James F; Meyer, Joseph S

    2017-04-18

    Multiple metals are usually present in surface waters, sometimes leading to toxicity that currently is difficult to predict due to potentially non-additive mixture toxicity. Previous toxicity tests with Daphnia magna exposed to binary mixtures of Ni combined with Cd, Cu, or Zn demonstrated that Ni and Zn strongly protect against Cd toxicity, but Cu-Ni toxicity is more than additive, and Ni-Zn toxicity is slightly less than additive. To consider multiple metal-metal interactions, we exposed D. magna neonates to Cd, Cu, Ni, or Zn alone and in ternary Cd-Cu-Ni and Cd-Ni-Zn combinations in standard 48 h lethality tests. In these ternary mixtures, two metals were held constant, while the third metal was varied through a series that ranged from nonlethal to lethal concentrations. In Cd-Cu-Ni mixtures, the toxicity was less than additive, additive, or more than additive, depending on the concentration (or ion activity) of the varied metal and the additivity model (concentration-addition or independent-action) used to predict toxicity. In Cd-Ni-Zn mixtures, the toxicity was less than additive or approximately additive, depending on the concentration (or ion activity) of the varied metal but independent of the additivity model. These results demonstrate that complex interactions of potentially competing toxicity-controlling mechanisms can occur in ternary-metal mixtures but might be predicted by mechanistic bioavailability-based toxicity models.

  19. SOCIO-ECOLOGICAL PREDICTORS OF INTERCOURSE FREQUENCY AND NUMBER OF SEXUAL PARTNERS AMONG MALE AND FEMALE AFRICAN AMERICAN ADOLESCENTS

    PubMed Central

    Ritchwood, Tiarney D.; Traylor, Amy C.; Howell, Rebecca J.; Church, Wesley T.; Bolland, John M.

    2015-01-01

    The current study examined 14 waves of data derived from a large, community-based study of the sexual behavior of impoverished youth between 12 and 17 years of age residing in the Deep South. We used multilevel linear modeling to identify ecological predictors of intercourse frequency and number of sexual partners among gender-specific subsamples. Results indicated that predictors of adolescent sexual behavior differed by both type of sexual behavior and gender. For males, age, maternal warmth, parental knowledge, curfew, self-worth, and sense of community predicted intercourse frequency, while age, parental knowledge, curfew, self-worth, friend support, and sense of community were significantly associated with having multiple sexual partners. Among females, age, curfew, and self-worth exerted significant effects on intercourse frequency, while age, parental knowledge, curfew, and self-worth exerted significant effects on having multiple sexual partners. Implications and future directions are discussed. PMID:26401060

  20. SOCIO-ECOLOGICAL PREDICTORS OF INTERCOURSE FREQUENCY AND NUMBER OF SEXUAL PARTNERS AMONG MALE AND FEMALE AFRICAN AMERICAN ADOLESCENTS.

    PubMed

    Ritchwood, Tiarney D; Traylor, Amy C; Howell, Rebecca J; Church, Wesley T; Bolland, John M

    2014-09-01

    The current study examined 14 waves of data derived from a large, community-based study of the sexual behavior of impoverished youth between 12 and 17 years of age residing in the Deep South. We used multilevel linear modeling to identify ecological predictors of intercourse frequency and number of sexual partners among gender-specific subsamples. Results indicated that predictors of adolescent sexual behavior differed by both type of sexual behavior and gender. For males, age, maternal warmth, parental knowledge, curfew, self-worth, and sense of community predicted intercourse frequency, while age, parental knowledge, curfew, self-worth, friend support, and sense of community were significantly associated with having multiple sexual partners. Among females, age, curfew, and self-worth exerted significant effects on intercourse frequency, while age, parental knowledge, curfew, and self-worth exerted significant effects on having multiple sexual partners. Implications and future directions are discussed.

  1. Fast computation of radiation pressure force exerted by multiple laser beams on red blood cell-like particles

    NASA Astrophysics Data System (ADS)

    Gou, Ming-Jiang; Yang, Ming-Lin; Sheng, Xin-Qing

    2016-10-01

    Mature red blood cells (RBC) do not contain huge complex nuclei and organelles, makes them can be approximately regarded as homogeneous medium particles. To compute the radiation pressure force (RPF) exerted by multiple laser beams on this kind of arbitrary shaped homogenous nano-particles, a fast electromagnetic optics method is demonstrated. In general, based on the Maxwell's equations, the matrix equation formed by the method of moment (MOM) has many right hand sides (RHS's) corresponding to the different laser beams. In order to accelerate computing the matrix equation, the algorithm conducts low-rank decomposition on the excitation matrix consisting of all RHS's to figure out the so-called skeleton laser beams by interpolative decomposition (ID). After the solutions corresponding to the skeletons are obtained, the desired responses can be reconstructed efficiently. Some numerical results are performed to validate the developed method.

  2. Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen (Candida albicans)

    PubMed Central

    Radhakrishnan, Venkatraman Srinivasan; Reddy Mudiam, Mohana Krishna; Kumar, Manish; Dwivedi, Surya Prakash; Singh, Surinder Pal; Prasad, Tulika

    2018-01-01

    Purpose A significant increase in the incidence of fungal infections and drug resistance has been observed in the past decades due to limited availability of broad-spectrum antifungal drugs. Nanomedicines have shown significant antimicrobial potential against various drug-resistant microbes. Silver nanoparticles (AgNps) are known for their antimicrobial properties and lower host toxicity; however, for clinical applications, evaluation of their impact at cellular and molecular levels is essential. The present study aims to understand the cellular and molecular mechanisms of AgNp-induced toxicity in a common fungal pathogen, Candida albicans. Methods AgNps were synthesized by chemical reduction method and characterized using UV–visible spectroscopy, X-ray powder diffraction, transmission electron microscopy, scanning electron microscopy–energy dispersive X-ray spectroscopy, energy dispersive X-ray fluorescence, and zeta potential. The anti-Candida activity of AgNps was assessed by broth microdilution and spot assays. Effects of AgNps on cellular and molecular targets were assessed by monitoring the intracellular reactive oxygen species (ROS) production in the absence and presence of natural antioxidant, changes in surface morphology, cellular ultrastructure, membrane microenvironment, membrane fluidity, membrane ergosterol, and fatty acids. Results Spherical AgNps (10–30 nm) showed minimum inhibitory concentration (minimum concentration required to inhibit the growth of 90% of organisms) at 40 μg/mL. Our results demonstrated that AgNps induced dose-dependent intracellular ROS which exerted antifungal effects; however, even scavenging ROS by antioxidant could not offer protection from AgNp mediated killing. Treatment with AgNps altered surface morphology, cellular ultrastructure, membrane microenvironment, membrane fluidity, ergosterol content, and fatty acid composition, especially oleic acid. Conclusion To summarize, AgNps affected multiple cellular targets crucial for drug resistance and pathogenicity in the fungal cells. The study revealed new cellular targets of AgNps which include fatty acids like oleic acid, vital for hyphal morphogenesis (a pathogenic trait of Candida). Yeast to hypha transition being pivotal for virulence and biofilm formation, targeting virulence might emerge as a new paradigm for developing nano silver-based therapy for clinical applications in fungal therapeutics. PMID:29760548

  3. New technologies and approaches in toxicity testing and risk assessment (ESOT)

    EPA Science Inventory

    The release of the National Research Council’s Report “Toxicity Testing in the 21st Century: A Vision and a Strategy” in 2007 initiated a broad-based movement in the toxicology community to re-think how toxicity testing and risk assessment are performed. Multiple efforts in the ...

  4. Web-based Interspecies Correlation Estimation (Web-ICE) for Acute Toxicity: User Manual Version 3.3

    EPA Science Inventory

    Information on the acute toxicity to multiple species is needed for the assessment of the risks to, and the protection of, individuals, populations, and ecological communities. However, toxicity data are limited for the majority of species, while standard test species are general...

  5. 20180312 - Reproducibility and variance of liver effects in subchronic and chronic repeat dose toxicity studies (SOT)

    EPA Science Inventory

    In vivo studies provide reference data to evaluate alternative methods for predicting toxicity. However, the reproducibility and variance of effects observed across multiple in vivo studies is not well understood. The US EPA’s Toxicity Reference Database (ToxRefDB) stores d...

  6. Control of aliphatic halogenated DBP precursors with multiple drinking water treatment processes: Formation potential and integrated toxicity.

    PubMed

    Zhang, Yimeng; Chu, Wenhai; Yao, Dechang; Yin, Daqiang

    2017-08-01

    The comprehensive control efficiency for the formation potentials (FPs) of a range of regulated and unregulated halogenated disinfection by-products (DBPs) (including carbonaceous DBPs (C-DBPs), nitrogenous DBPs (N-DBPs), and iodinated DBPs (I-DBPs)) with the multiple drinking water treatment processes, including pre-ozonation, conventional treatment (coagulation-sedimentation, pre-sand filtration), ozone-biological activated carbon (O 3 -BAC) advanced treatment, and post-sand filtration, was investigated. The potential toxic risks of DBPs by combing their FPs and toxicity values were also evaluated. The results showed that the multiple drinking water treatment processes had superior performance in removing organic/inorganic precursors and reducing the formation of a range of halogenated DBPs. Therein, ozonation significantly removed bromide and iodide, and thus reduced the formation of brominated and iodinated DBPs. The removal of organic carbon and nitrogen precursors by the conventional treatment processes was substantially improved by O 3 -BAC advanced treatment, and thus prevented the formation of chlorinated C-DBPs and N-DBPs. However, BAC filtration leads to the increased formation of brominated C-DBPs and N-DBPs due to the increase of bromide/DOC and bromide/DON. After the whole multiple treatment processes, the rank order for integrated toxic risk values caused by these halogenated DBPs was haloacetonitriles (HANs)≫haloacetamides (HAMs)>haloacetic acids (HAAs)>trihalomethanes (THMs)>halonitromethanes (HNMs)≫I-DBPs (I-HAMs and I-THMs). I-DBPs failed to cause high integrated toxic risk because of their very low FPs. The significant higher integrated toxic risk value caused by HANs than other halogenated DBPs cannot be ignored. Copyright © 2017. Published by Elsevier B.V.

  7. Curcumin ameliorates the tumor-enhancing effects of a high-protein diet in an azoxymethane-induced mouse model of colon carcinogenesis.

    PubMed

    Byun, So-Young; Kim, Dan-Bi; Kim, Eunjung

    2015-08-01

    An increasing number of reports suggest that a high-protein diet (HPD) is associated with an increased risk for colorectal cancer (CRC). One of the proposed mechanisms is that an HPD increases the delivery of protein to the colon and generates various toxic metabolites that contribute to colon carcinogenesis. Curcumin was shown to exert significant preventive properties against CRC. We therefore hypothesized that curcumin can reverse the tumor-enhancing effects of an HPD. This study examined the effects of curcumin on the development of azoxymethane (AOM)-induced colorectal tumors in HPD-fed mice. A total of 30 female Balb/c mice were randomly divided into 3 groups: those fed a normal diet (20% casein), those fed an HPD (HPD; 50% casein), and those fed an HPD supplemented with curcumin (HPDC; 0.02% curcumin). The mice were subjected to an AOM-dextran sodium sulfate colon carcinogenesis protocol. Mice in the HPDC group exhibited a significant (40%) reduction in colorectal tumor multiplicity when compared with those in the HPD group. The expression of colonic inflammatory proteins (cyclooxygenase-2 and inducible nitric oxide synthase), the levels of plasma inflammatory markers (nitric oxide and tumor necrosis factor-α), fecal ammonia, short- and branched-chain fatty acid levels, and the rate of colonocyte proliferation were significantly lower in the HPDC than the HPD group. In conclusion, curcumin inhibited the development of colorectal tumors in an AOM-induced mouse model of colon carcinogenesis by attenuating colonic inflammation, proliferation, and toxic metabolite production. Curcumin might be useful in the chemoprevention of CRC in individuals consuming an HPD. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Natural compounds and combination therapy in colorectal cancer treatment.

    PubMed

    Rejhová, A; Opattová, A; Čumová, A; Slíva, D; Vodička, P

    2018-01-20

    Colorectal cancer (CRC) therapy using conventional chemotherapeutics represents a considerable burden for the patient's organism because of high toxicity while the response is relatively low. Our review summarizes the findings about natural compounds as chemoprotective agents for decreasing risk of CRC. It also identifies natural compounds which possess anti-tumor effects of various characteristics, mainly in vitro on colorectal cell lines or in vivo studies on experimental models, but also in a few clinical trials. Many of natural compounds suppress proliferation by inducing cell cycle arrest or induce apoptosis of CRC cells resulting in the inhibition of tumor growth. A novel employment of natural substances is a so-called combination therapy - administration of two or more substances - conventional chemotherapeutics and a natural compound or more natural compounds at a time. Some natural compounds may sensitize to conventional cytotoxic therapy, reinforce the drug effective concentration, intensify the combined effect of both administered therapeutics or exert cytotoxic effects specifically on tumor cells. Moreover, combined therapy by targeting multiple signaling pathways, uses various mechanisms to reduce the development of resistance to antitumor drugs. The desired effect could be to diminish burden on the patient's organism by replacing part of the dose of a conventional chemotherapeutic with a natural substance with a defined effect. Many natural compounds are well tolerated by the patients and do not cause toxic effects even at high doses. Interaction of conventional chemotherapeutics with natural compounds introduces a new aspect in the research and therapy of cancer. It could be a promising approach to potentially achieve improvements, while minimizing of adverse effects associated with conventional chemotherapy. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  9. The copper spoil heap Knappenberg, Austria, as a model for metal habitats - Vegetation, substrate and contamination.

    PubMed

    Adlassnig, Wolfram; Weiss, Yasmin S; Sassmann, Stefan; Steinhauser, Georg; Hofhansl, Florian; Baumann, Nils; Lichtscheidl, Irene K; Lang, Ingeborg

    2016-09-01

    Historic mining in the Eastern Alps has left us with a legacy of numerous spoil heaps hosting specific, metal tolerant vegetation. Such habitats are characterized by elevated concentrations of toxic elements but also by high irradiation, a poorly developed substrate or extreme pH of the soil. This study investigates the distribution of vascular plants, mosses and lichens on a copper spoil heap on the ore bearing Knappenberg formed by Prebichl Layers and Werfener Schist in Lower Austria. It serves as a model for discriminating between various ecological traits and their effects on vegetation. Five distinct clusters were distinguished: (1) The bare, metal rich Central Spoil Heap was only colonised by highly resistant specialists. (2) The Northern and (3) Southern Peripheries contained less copper; the contrasting vegetation was best explained by the different microclimate. (4) A forest over acidic bedrock hosted a vegetation overlapping with the periphery of the spoil heap. (5) A forest over calcareous bedrock was similar to the spoil heap with regard to pH and humus content but hosted a vegetation differing strongly to all other habitats. Among the multiple toxic elements at the spoil heap, only Cu seems to exert a crucial influence on the vegetation pattern. Besides metal concentrations, irradiation, humidity, humus, pH and grain size distribution are important for the establishment of a metal tolerant vegetation. The difference between the species poor Northern and the diverse Southern Periphery can be explained by the microclimate rather than by the substrate. All plant species penetrating from the forest into the periphery of the spoil heap originate from the acidic but not from the calcareous bedrock. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Interesting images: Multiple coronary artery aneurysms.

    PubMed

    Howard, Jonathon M; Viswanath, Omar; Armas, Alfredo; Santana, Orlando; Rosen, Gerald P

    2017-01-01

    We present the case of a 65-year-old male who presented with stable angina and dyspnea on exertion. His initial workup yielded a positive treadmill stress test for reversible apical ischemia, and transthoracic echocardiogram demonstrated impaired systolic function. Cardiac catheterization was then performed, revealing severe atherosclerotic disease including multiple coronary artery aneurysms. As a result, the patient was advised to and subsequently underwent a coronary artery bypass graft. This case highlights the presence of multiple coronary artery aneurysms and the ability to appreciate these pathologic findings on multiple imaging modalities, including coronary angiogram, transesophageal echocardiography, and direct visualization through the surgical field.

  11. Interesting Images: Multiple Coronary Artery Aneurysms

    PubMed Central

    Howard, Jonathon M; Viswanath, Omar; Armas, Alfredo; Santana, Orlando; Rosen, Gerald P

    2017-01-01

    We present the case of a 65-year-old male who presented with stable angina and dyspnea on exertion. His initial workup yielded a positive treadmill stress test for reversible apical ischemia, and transthoracic echocardiogram demonstrated impaired systolic function. Cardiac catheterization was then performed, revealing severe atherosclerotic disease including multiple coronary artery aneurysms. As a result, the patient was advised to and subsequently underwent a coronary artery bypass graft. This case highlights the presence of multiple coronary artery aneurysms and the ability to appreciate these pathologic findings on multiple imaging modalities, including coronary angiogram, transesophageal echocardiography, and direct visualization through the surgical field. PMID:28701599

  12. Single and joint toxicity assessment of four currently used pesticides to zebrafish (Danio rerio) using traditional and molecular endpoints.

    PubMed

    Wang, Yanhua; Wu, Shenggan; Chen, Jine; Zhang, Changpeng; Xu, Zhenlan; Li, Gang; Cai, Leiming; Shen, Weifeng; Wang, Qiang

    2018-02-01

    Pesticides usually present in mixtures in surface waters, although they are traditionally regulated on an individual basis in aquatic ecosystems. In this study, we aimed to investigate the lethal and transcriptional responses of individual and combined pesticides (iprodione, pyrimethanil, pyraclostrobin and acetamiprid) on zebrafish (Danio rerio). Semi-static toxicity test indicated that the greatest toxicity to the four life stages (embryonic, larval, juvenile and adult stages) of D. rerio was detected from pyraclostrobin, followed by iprodione and pyrimethanil. In contrast, the lowest toxicity to the organisms was found from acetamiprid. Most of the selected pesticides exerted greater toxicities to D. rerio of embryonic stage compared with other life stages. Synergistic responses were observed from all binary mixtures of iprodione in combination with pyrimethanil or acetamiprid and ternary mixtures of iprodione+pyraclostrobin in combination with pyrimethanil or acetamiprid. The expressions of 16 genes related to cell apoptosis pathway, oxidative stress response, innate immunity and endocrine disruption at the mRNA level showed that zebrafish embryos were affected by the individual or combined pesticides. The expressions of P53, Tnf, TRβ, Tsh and Cyp19a exhibited greater changes upon exposure to combined pesticides compared with individual pesticides. Taken together, increased toxicity might be triggered by the simultaneous presence of several pesticides in the aquatic environment, which seriously damaged the non-target organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Toxicity of leather tanning wastewater effluents in sea urchin early development and in marine microalgae.

    PubMed

    Meriç, Süreyya; De Nicola, Elena; Iaccarino, Mario; Gallo, Marialuisa; Di Gennaro, Annamaria; Morrone, Gaetano; Warnau, Michel; Belgiorno, Vincenzo; Pagano, Giovanni

    2005-10-01

    This study was designed to investigate the composition and the toxicity of leather tanning wastewater and conditioned sludge collected at the leather tanning wastewater treatment plant (CODISO) located in Solofra, Avellino (Southern Italy). Samples were analyzed for their conventional parameters (COD, TSS, chromium and ammonia) and for metal content. Effluent samples included raw wastewater, and samples collected following coagulation/flocculation process and biological treatment. A set of toxicity endpoints were tested using sea urchin and marine microalgal bioassays by evaluating acute embryotoxicity, developmental defects, changes in sperm fertilization success and transmissible damage from sperm to the offspring, and changes in algal growth rate. Dose-related toxicity to sea urchin embryogenesis and sperm fertilization success was exerted by effluent or sludge samples according to the following rank: conditioned sludge > coagulated effluent > or = raw influent > effluent from biological treatment. Offspring quality was not affected by sperm exposure to any wastewater or to sludge samples. Algal growth was inhibited by raw or coagulated effluent to a similar extent and, again, the effluent from the biological treatment resulted in a decreased toxicity. The results suggest that coagulated effluent and conditioned sludge result in higher toxicity than raw influent in sea urchin embryos and sperm, whereas the biological wastewater treatment of coagulated effluent, in both sea urchins and algae, cause a substantial improvement of wastewater quality. Hence a final biological wastewater treatment should be operated to minimize any environmental damage from tannery wastewater.

  14. Three dimensional quantitative structure-toxicity relationship modeling and prediction of acute toxicity for organic contaminants to algae.

    PubMed

    Jin, Xiangqin; Jin, Minghao; Sheng, Lianxi

    2014-08-01

    Although numerous chemicals have been identified to have significant toxicological effect on aquatic organisms, there is still lack of a reliable, high-throughput approach to evaluate, screen and monitor the presence of organic contaminants in aquatic system. In the current study, we proposed a synthetic pipeline to automatically model and predict the acute toxicity of chemicals to algae. In the procedure, a new alignment-free three dimensional (3D) structure characterization method was described and, with this method, several 3D-quantitative structure-toxicity relationship (3D-QSTR) models were developed, from which two were found to exhibit strong internal fitting ability and high external predictive power. The best model was established by Gaussian process (GP), which was further employed to perform extrapolation on a random compound library consisting of 1014 virtually generated substituted benzenes. It was found that (i) substitution number can only exert slight influence on chemical׳s toxicity, but low-substituted benzenes seem to have higher toxicity than those of high-substituted entities, and (ii) benzenes substituted by nitro group and halogens exhibit high acute toxicity as compared to other substituents such as methyl and carboxyl groups. Subsequently, several promising candidates suggested by computational prediction were assayed by using a standard algal growth inhibition test. Consequently, four substituted benzenes, namely 2,3-dinitrophenol, 2-chloro-4-nitroaniline, 1,2,3-trinitrobenzene and 3-bromophenol, were determined to have high acute toxicity to Scenedesmus obliquus, with their EC50 values of 2.5±0.8, 10.5±2.1, 1.4±0.2 and 42.7±5.4μmol/L, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. The influence of salinity on copper accumulation and its toxic effects in estuarine animals with differing osmoregulatory strategies.

    PubMed

    Lee, Jacqueline A; Marsden, Islay D; Glover, Chris N

    2010-08-01

    Copper is an important ionoregulatory toxicant in freshwater, but its effects in marine and brackish water systems are less well characterised. The effect of salinity on short-term copper accumulation and sublethal toxicity in two estuarine animals was investigated. The osmoregulating crab Hemigrapsus crenulatus accumulated copper in a concentration-dependent, but salinity-independent manner. Branchial copper accumulation correlated positively with branchial sodium accumulation. Sublethal effects of copper were most prevalent in 125% seawater, with a significant increase in haemolymph chloride noted after 96h at exposure levels of 510 microg Cu(II) L(-1). The osmoconforming gastropod, Scutus breviculus, was highly sensitive to copper exposure, a characteristic recognised previously in related species. Toxicity, as determined by a behavioural index, was present at all salinities and was positively correlated with branchial copper accumulation. At 100% seawater, increased branchial sodium accumulation, decreased haemolymph chloride and decreased haemolymph osmolarity were observed after 48h exposure to 221 microg Cu(II) L(-1), suggesting a mechanism of toxicity related to ionoregulation. However, these effects were likely secondary to a general effect on gill barrier function, and possibly mediated by mucus secretion. Significant impacts of copper on haemocyanin were also noted in both animals, highlighting a potentially novel mechanism of copper toxicity to animals utilising this respiratory pigment. Overall these findings indicate that physiology, as opposed to water chemistry, exerts the greatest influence over copper toxicity. An understanding of the physiological limits of marine and estuarine organisms may be critical for calibration of predictive models of metal toxicity in waters of high and fluctuating salinities. Copyright 2010 Elsevier B.V. All rights reserved.

  16. Multiple myxoid cysts secondary to occupation.

    PubMed

    Connolly, M; de Berker, D A R

    2006-05-01

    We report the case of a 50-year-old woman who presented with eight digital myxoid cysts (DMCs) involving the fingers of both hands. They developed within 12 months of the patient starting a job that involved pushing a garment into an embroidery mould, thus exerting a downward force on the fingertips. The pressure exerted from this force could have potentially damaged the joint synovial capsule, leading to rupture and loss of synovial gel, thus inducing myxoid cysts. This case suggests that DMCs may be related to occupation, and to our knowledge, this is only the second reported case of occupationally induced DMCs.

  17. Molecular mechanisms of ursodeoxycholic acid toxicity & side effects: ursodeoxycholic acid freezes regeneration & induces hibernation mode.

    PubMed

    Kotb, Magd A

    2012-01-01

    Ursodeoxycholic acid (UDCA) is a steroid bile acid approved for primary biliary cirrhosis (PBC). UDCA is reported to have "hepato-protective properties". Yet, UDCA has "unanticipated" toxicity, pronounced by more than double number of deaths, and eligibility for liver transplantation compared to the control group in 28 mg/kg/day in primary sclerosing cholangitis, necessitating trial halt in North America. UDCA is associated with increase in hepatocellular carcinoma in PBC especially when it fails to achieve biochemical response (10 and 15 years incidence of 9% and 20% respectively). "Unanticipated" UDCA toxicity includes hepatitis, pruritus, cholangitis, ascites, vanishing bile duct syndrome, liver cell failure, death, severe watery diarrhea, pneumonia, dysuria, immune-suppression, mutagenic effects and withdrawal syndrome upon sudden halt. UDCA inhibits DNA repair, co-enzyme A, cyclic AMP, p53, phagocytosis, and inhibits induction of nitric oxide synthatase. It is genotoxic, exerts aneugenic activity, and arrests apoptosis even after cellular phosphatidylserine externalization. UDCA toxicity is related to its interference with drug detoxification, being hydrophilic and anti-apoptotic, has a long half-life, has transcriptional mutational abilities, down-regulates cellular functions, has a very narrow difference between the recommended (13 mg/kg/day) and toxic dose (28 mg/kg/day), and it typically transforms into lithocholic acid that induces DNA strand breakage, it is uniquely co-mutagenic, and promotes cell transformation. UDCA beyond PBC is unjustified.

  18. The use of cultured hepatocytes to investigate the metabolism of drugs and mechanisms of drug hepatotoxicity.

    PubMed

    Gómez-Lechón, M J; Ponsoda, X; Bort, R; Castell, J V

    2001-01-01

    Hepatotoxins can be classified as intrinsic when they exert their effects on all individuals in a dose-dependent manner, and as idiosyncratic when their effects are the consequence of an abnormal metabolism of the drug by susceptible individuals (metabolic idiosyncrasy) or of an immune-mediated injury to hepatocytes (allergic hepatitis). Some xenobiotics are electrophilic, and others are biotransformed by the liver into highly reactive metabolites that are usually more toxic than the parent compound. This activation process is the key to many hepatotoxic phenomena. Mitochondria are a frequent target of hepatotoxic drugs, and the alteration of their function has immediate effects on the energy balance of cells (depletion of ATP). Lipid peroxidation, oxidative stress, alteration of Ca(2+) homeostasis, and covalent binding to cell macromolecules are the molecular mechanisms that are frequently involved in the toxicity of xenobiotics. Against these potential hazards, cells have their own defence mechanisms (for example, glutathione, DNA repair, suicide inactivation). Ultimately, toxicity is the balance between bioactivation and detoxification, which determines whether a reactive metabolite elicits a toxic effect. The ultimate goal of in vitro experiments is to generate the type of scientific information needed to identify compounds that are potentially toxic to man. For this purpose, both the design of the experiments and the interpretation of the results are critical.

  19. Toxic effects of X-linked adrenoleukodystrophy-associated, very long chain fatty acids on glial cells and neurons from rat hippocampus in culture.

    PubMed

    Hein, Sabine; Schönfeld, Peter; Kahlert, Stefan; Reiser, Georg

    2008-06-15

    Saturated very long chain fatty acids (VLCFAs; > or =C22:0) accumulate in X-linked adrenoleukodystrophy (X-ALD, OMIM 300100), a severe hereditary neurodegenerative disease, due to peroxisomal impairment. Previous studies analysed the development of X-ALD in humans and gene knockout animal models. However, the toxic effect of VLCFA leading to severe symptoms with progressive and multifocal demyelination, adrenal insufficiency and inflammation still remains unclear. To understand the toxic effects of VLCFA in the brain, here we exposed neural cells to VLCFA and analysed the cellular consequences. We found that oligodendrocytes and astrocytes challenged with docosanoic- (C22:0), tetracosanoic- (C24:0) and hexacosanoic acids (C24:0) die within 24 h. VLCFA-induced depolarization of mitochondria in situ and increased intracellular Ca2+ level in all three brain cell types provides indications about the mechanism of toxicity of VLCFA. Interestingly, VLCFAs affect to the largest degree the myelin-producing oligodendrocytes. In isolated mitochondria, VLCFAs exert a detrimental effect by affecting the inner mitochondrial membrane and promoting the permeability transition. In conclusion, we suggest that there is a potent toxic activity of VLCFA due to dramatic cell physiological effects with mitochondrial dysfunction and Ca2+ deregulation. This provides the first evidence for mitochondrial-based cell death mechanisms in neurodegenerative disease with peroxisomal defects and subsequent VLCFA accumulation.

  20. Developmental phytotoxicity of metal oxide nanoparticles to Arabidopsis thaliana.

    PubMed

    Lee, Chang Woo; Mahendra, Shaily; Zodrow, Katherine; Li, Dong; Tsai, Yu-Chang; Braam, Janet; Alvarez, Pedro J J

    2010-03-01

    Phytotoxicity is an important consideration to understand the potential environmental impacts of manufactured nanomaterials. Here, we report on the effects of four metal oxide nanoparticles, aluminum oxide (nAl(2)O(3)), silicon dioxide (nSiO(2)), magnetite (nFe(3)O(4)), and zinc oxide (nZnO), on the development of Arabidopsis thaliana (Mouse-ear cress). Three toxicity indicators (seed germination, root elongation, and number of leaves) were quantified following exposure to each nanoparticle at three concentrations: 400, 2,000, and 4,000 mg/L. Among these particles, nZnO was most phytotoxic, followed by nFe(3)O(4), nSiO(2), and nAl(2)O(3), which was not toxic. Consequently, nZnO was further studied to discern the importance of particle size and zinc dissolution as toxicity determinants. Soluble zinc concentrations in nanoparticle suspensions were 33-fold lower than the minimum inhibitory concentration of dissolved zinc salt (ZnCl(2)), indicating that zinc dissolution could not solely account for the observed toxicity. Inhibition of seed germination by ZnO depended on particle size, with nanoparticles exerting higher toxicity than larger (micron-sized) particles at equivalent concentrations. Overall, this study shows that direct exposure to nanoparticles significantly contributed to phytotoxicity and underscores the need for eco-responsible disposal of wastes and sludge containing metal oxide nanoparticles.

  1. Toxicity of fungal-generated silver nanoparticles to soil-inhabiting Pseudomonas putida KT2440, a rhizospheric bacterium responsible for plant protection and bioremediation.

    PubMed

    Gupta, Indarchand R; Anderson, Anne J; Rai, Mahendra

    2015-04-09

    Silver nanoparticles have attracted considerable attention due to their beneficial properties. But toxicity issues associated with them are also rising. The reports in the past suggested health hazards of silver nanoparticles at the cellular, molecular, or whole organismal level in eukaryotes. Whereas, there is also need to examine the exposure effects of silver nanoparticle to the microbes, which are beneficial to humans as well as environment. The available literature suggests the harmful effects of physically and chemically synthesised silver nanoparticles. The toxicity of biogenically synthesized nanoparticles has been less studied than physically and chemically synthesised nanoparticles. Hence, there is a greater need to study the toxic effects of biologically synthesised silver nanoparticles in general and mycosynthesized nanoparticles in particular. In the present study, attempts have been made to assess the risk associated with the exposure of mycosynthesized silver nanoparticles on a beneficial soil microbe Pseudomonas putida. KT2440. The study demonstrates mycosynthesis of silver nanoparticles and their characterisation by UV-vis spectrophotometry, FTIR, X-ray diffraction, nanosight LM20--a particle size distribution analyzer and TEM. Silver nanoparticles obtained herein were found to exert the hazardous effect at the concentration of 0.4 μg/ml, which warrants further detailed investigations concerning toxicity. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Molecular Mechanisms of Ursodeoxycholic Acid Toxicity & Side Effects: Ursodeoxycholic Acid Freezes Regeneration & Induces Hibernation Mode

    PubMed Central

    Kotb, Magd A.

    2012-01-01

    Ursodeoxycholic acid (UDCA) is a steroid bile acid approved for primary biliary cirrhosis (PBC). UDCA is reported to have “hepato-protective properties”. Yet, UDCA has “unanticipated” toxicity, pronounced by more than double number of deaths, and eligibility for liver transplantation compared to the control group in 28 mg/kg/day in primary sclerosing cholangitis, necessitating trial halt in North America. UDCA is associated with increase in hepatocellular carcinoma in PBC especially when it fails to achieve biochemical response (10 and 15 years incidence of 9% and 20% respectively). “Unanticipated” UDCA toxicity includes hepatitis, pruritus, cholangitis, ascites, vanishing bile duct syndrome, liver cell failure, death, severe watery diarrhea, pneumonia, dysuria, immune-suppression, mutagenic effects and withdrawal syndrome upon sudden halt. UDCA inhibits DNA repair, co-enzyme A, cyclic AMP, p53, phagocytosis, and inhibits induction of nitric oxide synthatase. It is genotoxic, exerts aneugenic activity, and arrests apoptosis even after cellular phosphatidylserine externalization. UDCA toxicity is related to its interference with drug detoxification, being hydrophilic and anti-apoptotic, has a long half-life, has transcriptional mutational abilities, down-regulates cellular functions, has a very narrow difference between the recommended (13 mg/kg/day) and toxic dose (28 mg/kg/day), and it typically transforms into lithocholic acid that induces DNA strand breakage, it is uniquely co-mutagenic, and promotes cell transformation. UDCA beyond PBC is unjustified. PMID:22942741

  3. Aldehydes with high and low toxicities inactivate cells by damaging distinct cellular targets.

    PubMed

    Xie, Ming-Zhang; Shoulkamy, Mahmoud I; Salem, Amir M H; Oba, Shunya; Goda, Mizuki; Nakano, Toshiaki; Ide, Hiroshi

    2016-04-01

    Aldehydes are genotoxic and cytotoxic molecules and have received considerable attention for their associations with the pathogenesis of various human diseases. In addition, exposure to anthropogenic aldehydes increases human health risks. The general mechanism of aldehyde toxicity involves adduct formation with biomolecules such as DNA and proteins. Although the genotoxic effects of aldehydes such as mutations and chromosomal aberrations are directly related to DNA damage, the role of DNA damage in the cytotoxic effects of aldehydes is poorly understood because concurrent protein damage by aldehydes has similar effects. In this study, we have analysed how saturated and α,β-unsaturated aldehydes exert cytotoxic effects through DNA and protein damage. Interestingly, DNA repair is essential for alleviating the cytotoxic effect of weakly toxic aldehydes such as saturated aldehydes but not highly toxic aldehydes such as long α,β-unsaturated aldehydes. Thus, highly toxic aldehydes inactivate cells exclusively by protein damage. Our data suggest that DNA interstrand crosslinks, but not DNA-protein crosslinks and DNA double-strand breaks, are the critical cytotoxic DNA damage induced by aldehydes. Further, we show that the depletion of intracellular glutathione and the oxidation of thioredoxin 1 partially account for the DNA damage-independent cytotoxicity of aldehydes. On the basis of these findings, we have proposed a mechanistic model of aldehyde cytotoxicity mediated by DNA and protein damage. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Administering multiple doses of a non N-(methylsuccinimido) anthranoyllycoctonine (MSAL)-containing tall larkspur (Delphinium occidentale) to cattle

    USDA-ARS?s Scientific Manuscript database

    Larkspurs (Delphinium spp.) are a serious toxic plant problem for cattle in western North America. There are two chemotypes in the tall larkspur Delphinium occidentale, a more toxic chemotype and a less toxic chemotype. These chemotypes differ in the composition and concentrations of key alkaloids. ...

  5. The Acute Toxicity of Major Ion Salts to Ceriodaphnia Dubia. Ii. Empirical Relationships in Binary Salt Mixtures

    EPA Science Inventory

    Many human activities increase concentrations of major geochemical ions (Na+, K+, Ca+2, Mg+2, Cl, SO42, and HCO3/CO32) in fresh water systems, and can thereby adversely affect aquatic life. Such effects involve several toxicants, multiple mechanisms of toxicity, various ion inte...

  6. TOXIC POLLUTANTS IN URBAN WET-WEATHER FLOWS: AN OVERVIEW OF THE MULTI-MEDIA TRANSPORT, IMPACTS, AND CONTROL MEASURES

    EPA Science Inventory

    This paper presents an overview of the transport of toxic pollutants through multiple media and drainage systems in the urban watershed during wet-weather periods. It includes the origin of the toxic substances; their transport via atmospheric depositon, overland washoff, and urb...

  7. TOXIC POLLUTANTS IN URBAN WET-WEATHER FLOWS: AN OVERVIEW OF THE MULTI-MEDIA TRANSPORT, IMPACTS, AND CONTROL MEASURES

    EPA Science Inventory

    This paper presents an overview of the transport of toxic pollutants through multiple media and drainage systems in the urban watershed during wet-weather periods. It includes the origin of the toxic substances; their transport via atmospheric deposition, overland washoff, and ur...

  8. Understanding Genetic Toxicity Through Data Mining: The Process of Building Knowledge by Integrating Multiple Genetic Toxicity Databases

    EPA Science Inventory

    This paper demonstrates the usefulness of representing a chemical by its structural features and the use of these features to profile a battery of tests rather than relying on a single toxicity test of a given chemical. This paper presents data mining/profiling methods applied in...

  9. Environmental Determinants of Chronic Disease and Medical Approaches: Recognition, Avoidance, Supportive Therapy, and Detoxification

    PubMed Central

    Sears, Margaret E.; Genuis, Stephen J.

    2012-01-01

    The World Health Organization warns that chronic, noncommunicable diseases are rapidly becoming epidemic worldwide. Escalating rates of neurocognitive, metabolic, autoimmune and cardiovascular diseases cannot be ascribed only to genetics, lifestyle, and nutrition; early life and ongoing exposures, and bioaccumulated toxicants may also cause chronic disease. Contributors to ill health are summarized from multiple perspectives—biological effects of classes of toxicants, mechanisms of toxicity, and a synthesis of toxic contributors to major diseases. Healthcare practitioners have wide-ranging roles in addressing environmental factors in policy and public health and clinical practice. Public health initiatives include risk recognition and chemical assessment then exposure reduction, remediation, monitoring, and avoidance. The complex web of disease and environmental contributors is amenable to some straightforward clinical approaches addressing multiple toxicants. Widely applicable strategies include nutrition and supplements to counter toxic effects and to support metabolism; as well as exercise and sweating, and possibly medication to enhance excretion. Addressing environmental health and contributors to chronic disease has broad implications for society, with large potential benefits from improved health and productivity. PMID:22315626

  10. Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes.

    PubMed

    Ong, Cheryl-lynn Y; Walker, Mark J; McEwan, Alastair G

    2015-06-01

    Neutrophils release free zinc to eliminate the phagocytosed bacterial pathogen Streptococcus pyogenes (Group A Streptococcus; GAS). In this study, we investigated the mechanisms underpinning zinc toxicity towards this human pathogen, responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Using the globally-disseminated M1T1 GAS strain, we demonstrate that zinc stress impairs glucose metabolism through the inhibition of the glycolytic enzymes phosphofructokinase and glyceraldehyde-3-phosphate dehydrogenase. In the presence of zinc, a metabolic shift to the tagatose-6-phosphate pathway allows conversion of D-galactose to dihydroxyacetone phosphate and glyceraldehyde phosphate, partially bypassing impaired glycolytic enzymes to generate pyruvate. Additionally, zinc inhibition of phosphoglucomutase results in decreased capsule biosynthesis. These data indicate that zinc exerts it toxicity via mechanisms that inhibit both GAS central carbon metabolism and virulence pathways.

  11. Zinc disrupts central carbon metabolism and capsule biosynthesis in Streptococcus pyogenes

    PubMed Central

    Ong, Cheryl-lynn Y.; Walker, Mark J.; McEwan, Alastair G.

    2015-01-01

    Neutrophils release free zinc to eliminate the phagocytosed bacterial pathogen Streptococcus pyogenes (Group A Streptococcus; GAS). In this study, we investigated the mechanisms underpinning zinc toxicity towards this human pathogen, responsible for diseases ranging from pharyngitis and impetigo, to severe invasive infections. Using the globally-disseminated M1T1 GAS strain, we demonstrate that zinc stress impairs glucose metabolism through the inhibition of the glycolytic enzymes phosphofructokinase and glyceraldehyde-3-phosphate dehydrogenase. In the presence of zinc, a metabolic shift to the tagatose-6-phosphate pathway allows conversion of D-galactose to dihydroxyacetone phosphate and glyceraldehyde phosphate, partially bypassing impaired glycolytic enzymes to generate pyruvate. Additionally, zinc inhibition of phosphoglucomutase results in decreased capsule biosynthesis. These data indicate that zinc exerts it toxicity via mechanisms that inhibit both GAS central carbon metabolism and virulence pathways. PMID:26028191

  12. Effect of Boron Toxicity on Oxidative Stress and Genotoxicity in Wheat (Triticum aestivum L.).

    PubMed

    Çatav, Şükrü Serter; Genç, Tuncer Okan; Kesik Oktay, Müjgan; Küçükakyüz, Köksal

    2018-04-01

    Boron (B) toxicity, which occurs in semi-arid and arid environments, can adversely affect the growth and yield of many plants. The aim of this study was to determine the effects of different concentrations of boric acid (3, 6, 9 and 12 mM) on growth, oxidative stress and genotoxicity parameters in root and shoot tissues of wheat seedlings. Our results indicate that B stress inhibits root and shoot growth of wheat in a concentration-dependent manner, and leads to increases in TBARS and H 2 O 2 contents in shoot tissue. Moreover, our findings suggest that high concentrations of B may exert a genotoxic effect on wheat. To the best of our knowledge, this is the first report to evaluate the effect of B stress on genotoxicity in both root and shoot tissues of wheat.

  13. Comparative chronic toxicity of imidacloprid, clothianidin, and thiamethoxam to Chironomus dilutus and estimation of toxic equivalency factors.

    PubMed

    Cavallaro, Michael C; Morrissey, Christy A; Headley, John V; Peru, Kerry M; Liber, Karsten

    2017-02-01

    Nontarget aquatic insects are susceptible to chronic neonicotinoid insecticide exposure during the early stages of development from repeated runoff events and prolonged persistence of these chemicals. Investigations on the chronic toxicity of neonicotinoids to aquatic invertebrates have been limited to a few species and under different laboratory conditions that often preclude direct comparisons of the relative toxicity of different compounds. In the present study, full life-cycle toxicity tests using Chironomus dilutus were performed to compare the toxicity of 3 commonly used neonicotinoids: imidacloprid, clothianidin, and thiamethoxam. Test conditions followed a static-renewal exposure protocol in which lethal and sublethal endpoints were assessed on days 14 and 40. Reduced emergence success, advanced emergence timing, and male-biased sex ratios were sensitive responses to low-level neonicotinoid exposure. The 14-d median lethal concentrations for imidacloprid, clothianidin, and thiamethoxam were 1.52 μg/L, 2.41 μg/L, and 23.60 μg/L, respectively. The 40-d median effect concentrations (emergence) for imidacloprid, clothianidin, and thiamethoxam were 0.39 μg/L, 0.28 μg/L, and 4.13 μg/L, respectively. Toxic equivalence relative to imidacloprid was estimated through a 3-point response average of equivalencies calculated at 20%, 50%, and 90% lethal and effect concentrations. Relative to imidacloprid (toxic equivalency factor [TEF] = 1.0), chronic (lethality) 14-d TEFs for clothianidin and thiamethoxam were 1.05 and 0.14, respectively, and chronic (emergence inhibition) 40-d TEFs were 1.62 and 0.11, respectively. These population-relevant endpoints and TEFs suggest that imidacloprid and clothianidin exert comparable chronic toxicity to C. dilutus, whereas thiamethoxam induced comparable effects only at concentrations an order of magnitude higher. However, the authors caution that under field conditions, thiamethoxam readily degrades to clothianidin, thereby likely enhancing toxicity. Environ Toxicol Chem 2017;36:372-382. © 2016 SETAC. © 2016 SETAC.

  14. Epigenetic potential of resveratrol and analogs in preclinical models of prostate cancer

    USDA-ARS?s Scientific Manuscript database

    Prostate cancer is affected by lifestyle, particularly diet. Dietary polyphenols such as resveratrol possess anticancer properties and, therefore, chemopreventive and therapeutic potentials. Resveratrol has pleiotropic effect exerting its biological activity through multiple pathways and targets ass...

  15. Effect of vitamin E supplementation on arsenic induced alteration in blood biochemical profile, oxidant/antioxidant status, serum cortisol level and retention of arsenic and selenium in goats.

    PubMed

    Mohanta, Ranjan Kumar; Garg, Anil Kumar; Dass, Ram Sharan

    2015-01-01

    Arsenic (As) exerts oxidative stress with depletion of body selenium in monogastric animals. But in ruminants this fact is not yet verified. Vitamin E is an effective dietary antioxidant. Thus, in this experiment, the protective effect of vitamin E against arsenic toxicity induced by sodium arsenite (60mg As/kg diet) was investigated in goat kids. For this, 21 male kids were divided into three equal groups and fed either basal diet as such (control), or supplemented with 60mg As/kg diet and 60mg As/kg diet+250IU vitamin E/kg diet for 180 days. Vitamin E supplementation alleviated the toxic effects caused by arsenic on serum alanine aminotransferase and aspartate aminotransferase and lipid peroxidation. It also prevented the depletion of reduced glutathione content and reduction in activity of catalase, superoxide dismutase and glutathione-s-transferase in erythrocytes resulted from arsenic intoxication. The elevated levels of arsenic and reduced levels of selenium in the serum and tissues in arsenic treated animals were attenuated by vitamin E supplementation, though not completely. However, serum cortisol level was not affected by arsenic. It was concluded that arsenic exerts cortisol independent stressor mechanism and supplementation of vitamin E at a level of 250IU/kg diet was partially effective in reducing tissue accumulation of arsenic in the body and protect the kids from oxidative stress induced by arsenic. Copyright © 2014 Elsevier GmbH. All rights reserved.

  16. Mesencephalic neuron death induced by congeners of nitrogen monoxide is prevented by the lazaroid U-83836E.

    PubMed

    Grasbon-Frodl, E M; Brundin, P

    1997-01-01

    We explored the effects of congeners of nitrogen monoxide (NO) on cultured mesencephalic neurons. Sodium nitroprusside (SNP) was used as a donor of NO, the congeners of which have been found to exert either neurotoxic or neuroprotective effects depending on the surrounding redox milieu. In contrast to a previous report that suggests that the nitrosonium ion (NO+) is neuroprotective to cultured cortical neurons, we found that the nitrosonium ion reduces the survival of cultured dopamine neurons to 32% of control. There was a trend for further impairment of dopamine neuron survival, to only 7% of untreated control, when the cultures were treated with SNP plus ascorbate, i.e. when the nitric oxide radical (NO.) had presumably been formed. We also evaluated the effects of an inhibitor of lipid peroxidation, the lazaroid U-83836E, against SNP toxicity. U-83836E exerted marked neuroprotective effects in both insult models. More than twice as many dopamine neurons (75% of control) survived when the lazaroid was added to SNP-treated cultures and the survival was increased eight-fold (to 55% of control) when U-83836E was added to cultures treated with SNP plus ascorbate. We conclude that the congeners of NO released by SNP are toxic to mesencephalic neurons in vitro and that the lazaroid U-83836E significantly increases the survival of dopamine neurons in situations where congeners of NO are generated.

  17. Cerium oxide nanoparticles, combining antioxidant and UV shielding properties, prevent UV-induced cell damage and mutagenesis

    NASA Astrophysics Data System (ADS)

    Caputo, Fanny; de Nicola, Milena; Sienkiewicz, Andrzej; Giovanetti, Anna; Bejarano, Ignacio; Licoccia, Silvia; Traversa, Enrico; Ghibelli, Lina

    2015-09-01

    Efficient inorganic UV shields, mostly based on refracting TiO2 particles, have dramatically changed the sun exposure habits. Unfortunately, health concerns have emerged from the pro-oxidant photocatalytic effect of UV-irradiated TiO2, which mediates toxic effects on cells. Therefore, improvements in cosmetic solar shield technology are a strong priority. CeO2 nanoparticles are not only UV refractors but also potent biological antioxidants due to the surface 3+/4+ valency switch, which confers anti-inflammatory, anti-ageing and therapeutic properties. Herein, UV irradiation protocols were set up, allowing selective study of the extra-shielding effects of CeO2vs. TiO2 nanoparticles on reporter cells. TiO2 irradiated with UV (especially UVA) exerted strong photocatalytic effects, superimposing their pro-oxidant, cell-damaging and mutagenic action when induced by UV, thereby worsening the UV toxicity. On the contrary, irradiated CeO2 nanoparticles, via their Ce3+/Ce4+ redox couple, exerted impressive protection on UV-treated cells, by buffering oxidation, preserving viability and proliferation, reducing DNA damage and accelerating repair; strikingly, they almost eliminated mutagenesis, thus acting as an important tool to prevent skin cancer. Interestingly, CeO2 nanoparticles also protect cells from the damage induced by irradiated TiO2, suggesting that these two particles may also complement their effects in solar lotions. CeO2 nanoparticles, which intrinsically couple UV shielding with biological and genetic protection, appear to be ideal candidates for next-generation sun shields.

  18. Mechanistic studies of the toxicity of zinc gluconate in the olfactory neuronal cell line Odora

    PubMed Central

    Hsieh, Heidi; Vignesh, Kavitha Subramanian; Deepe, George S.; Choubey, Divaker; Shertzer, Howard G.; Genter, Mary Beth

    2016-01-01

    Zinc is both an essential and potentially toxic metal. It is widely believed that oral zinc supplementation can reduce the effects of the common cold; however, there is strong clinical evidence that intranasal (IN) zinc gluconate (ZG) gel treatment for this purpose causes anosmia, or the loss of the sense of smell, in humans. Using the rat olfactory neuron cell line, Odora, we investigated the molecular mechanism by which zinc exposure exerts its toxic effects on olfactory neurons. Following treatment of Odora cells with 100 and 200 μM ZG for 0-24 h, RNA-seq and in silico analyses revealed up-regulation of pathways associated with zinc metal response, oxidative stress, and ATP production. We observed that Odora cells recovered from zinc-induced oxidative stress, but ATP depletion persisted with longer exposure to ZG. ZG exposure increased levels of NLRP3 and IL-1β protein levels in a time-dependent manner, suggesting that zinc exposure may cause an inflammasome-mediated cell death, pyroptosis, in olfactory neurons. PMID:27179668

  19. Mechanistic studies of the toxicity of zinc gluconate in the olfactory neuronal cell line Odora.

    PubMed

    Hsieh, Heidi; Vignesh, Kavitha Subramanian; Deepe, George S; Choubey, Divaker; Shertzer, Howard G; Genter, Mary Beth

    2016-09-01

    Zinc is both an essential and potentially toxic metal. It is widely believed that oral zinc supplementation can reduce the effects of the common cold; however, there is strong clinical evidence that intranasal (IN) zinc gluconate (ZG) gel treatment for this purpose causes anosmia, or the loss of the sense of smell, in humans. Using the rat olfactory neuron cell line, Odora, we investigated the molecular mechanism by which zinc exposure exerts its toxic effects on olfactory neurons. Following treatment of Odora cells with 100 and 200μM ZG for 0-24h, RNA-seq and in silico analyses revealed up-regulation of pathways associated with zinc metal response, oxidative stress, and ATP production. We observed that Odora cells recovered from zinc-induced oxidative stress, but ATP depletion persisted with longer exposure to ZG. ZG exposure increased levels of NLRP3 and IL-1β protein levels in a time-dependent manner, suggesting that zinc exposure may cause an inflammasome-mediated cell death, pyroptosis, in olfactory neurons. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. The toxicity of tau in Alzheimer disease: turnover, targets and potential therapeutics.

    PubMed

    Pritchard, Susanne M; Dolan, Philip J; Vitkus, Alisa; Johnson, Gail V W

    2011-08-01

    It has been almost 25 years since the initial discovery that tau was the primary component of the neurofibrillary tangles (NFTs) in Alzheimer disease (AD) brain. Although AD is defined by both β-amyloid (Aβ) pathology (Aβ plaques) and tau pathology (NFTs), whether or not tau played a critical role in disease pathogenesis was a subject of discussion for many years. However, given the increasing evidence that pathological forms of tau can compromise neuronal function and that tau is likely an important mediator of Aβ toxicity, there is a growing awareness that tau is a central player in AD pathogenesis. In this review we begin with a brief history of tau, then provide an overview of pathological forms of tau, followed by a discussion of the differential degradation of tau by either the proteasome or autophagy and possible mechanisms by which pathological forms of tau may exert their toxicity. We conclude by discussing possible avenues for therapeutic intervention based on these emerging themes of tau's role in AD. © 2011 The Authors Journal compilation © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  1. Amelioration of ethionine toxicity in the chick.

    PubMed

    Lowry, K R; Baker, D H

    1987-06-01

    Several chick bioassays were conducted to evaluate means of ameliorating ethionine toxicity. Supplementing a corn-soy diet marginally deficient in sulfur amino acids (methionine + cystine) with .075% D,L-ethionine reduced weight gain in 8-day-old chicks by 70% compared to gains of unsupplemented controls. Dietary addition of .50% DL-methionine prevented reduction in weight gain and feed intake resulting from ethionine supplementation whereas feeding supplemental L-cystine was without effect. Supplementation of the ethionine-containing diet with either choline or betaine ameliorated the growth depression, although neither compound was able to completely overcome the toxic effects of ethionine. Dietary ethionine did not affect plasma levels of free methionine or cystine but did increase plasma free glycine 6-fold. Dietary addition of .50% DL-methionine caused normalization of plasma glycine levels whereas it elevated plasma methionine concentration. Although results suggested the possibility of ethionine-induced serine or threonine deficiency, dietary additions of .75% L-serine or .75% L-threonine failed to improve chick weight gain. These studies suggest that ethionine, in addition to affecting transsulfuration and transmethylation activity may exert specific effects on certain amino acids in tissue pools.

  2. Subacute toxicity of the mycotoxin cyclopiazonic acid.

    PubMed

    van Rensburg, S J

    1984-12-01

    Cyclopiazonic acid (CA) is known to contaminate processed foods, maize and peanuts. Since previously available toxicity data were limited to the effects of single doses, Wistar-derived rats were given weekly doses of 0, 12 or 21 mg CA/kg body weight in 1 N-sodium bicarbonate, using a dosage volume of 2.5 ml/kg body weight, and subgroups of eight were killed 1 wk after doses 2, 5, 9 and 14. Males on the highest dose level showed mild growth retardation initially and 25% died suddenly during wk 4. No abnormal signs were observed in the surviving males or in any of the females throughout the 15 wk of the experiment. CA induced mild cellular degenerative changes in the myocardium and in several other organs where ballooning of nuclei, especially in ductal epithelia, was also characteristic. The changes were only weakly related to dose level, sex and the number of doses given. The findings suggest that CA is probably a metabolic inhibitor requiring considerable concentrations to exert toxicity. The limited data currently available do not elicit concern in terms of human risk or warrant any particular control procedures.

  3. Developmental Exposure of Mice to TCDD Elicits a Similar Uterine Phenotype in Adult Animals as Observed in Women with Endometriosis

    PubMed Central

    Nayyar, Tultul; Bruner-Tran, Kaylon L.; Piestrzeniewicz-Ulanska, Dagmara; Osteen, Kevin G.

    2007-01-01

    Whether environmental toxicants impact an individual woman’s risk for developing endometriosis remains uncertain. Although the growth of endometrial glands and stroma at extra-uterine sites is associated with retrograde menstruation, our studies suggest that reduced responsiveness to progesterone may increase the invasive capacity of endometrial tissue in women with endometriosis. Interestingly, our recent studies using isolated human endometrial cells in short-term culture suggest that experimental exposure to the environmental contaminant 2,3,7,8-tetracholorodibenzo-p-dioxin (TCDD) can alter the expression of progesterone receptor isotypes. Compared to adult exposure, toxicant exposure during development can exert a significantly greater biological impact, potentially affecting the incidence of endometriosis in adults. To address this possibility, we exposed mice to TCDD at critical developmental time points and subsequently examined uterine progesterone receptor expression and steroid responsive transforming growth factor-β2 expression in adult animals. We find that the uterine phenotype of toxicant-exposed mice is markedly similarly to the endometrial phenotype of women with endometriosis. PMID:17056225

  4. Plant Essential Oils Synergize and Antagonize Toxicity of Different Conventional Insecticides against Myzus persicae (Hemiptera: Aphididae)

    PubMed Central

    Faraone, Nicoletta; Hillier, N. Kirk; Cutler, G. Christopher

    2015-01-01

    Plant-derived products can play an important role in pest management programs. Essential oils from Lavandula angustifolia (lavender) and Thymus vulgaris (thyme) and their main constituents, linalool and thymol, respectively, were evaluated for insecticidal activity and synergistic action in combination with insecticides against green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). The essential oils and their main constituents exerted similar insecticidal activity when aphids were exposed by direct sprays, but were non-toxic by exposure to treated leaf discs. In synergism experiments, the toxicity of imidacloprid was synergized 16- to 20-fold by L. angustifolia and T. vulgaris essential oils, but far less synergism occurred with linalool and thymol, indicating that secondary constituents of the oils were probably responsible for the observed synergism. In contrast to results with imidacloprid, the insecticidal activity of spirotetramat was antagonized by L. angustifolia and T. vulgaris essential oils, and linalool and thymol. Our results demonstrate the potential of plant essential oils as synergists of insecticides, but show that antagonistic action against certain insecticides may occur. PMID:26010088

  5. Analysis of Toxic Amyloid Fibril Interactions at Natively Derived Membranes by Ellipsometry

    PubMed Central

    Smith, Rachel A. S.; Nabok, Aleksey; Blakeman, Ben J. F.; Xue, Wei-Feng; Abell, Benjamin; Smith, David P.

    2015-01-01

    There is an ongoing debate regarding the culprits of cytotoxicity associated with amyloid disorders. Although small pre-fibrillar amyloid oligomers have been implicated as the primary toxic species, the fibrillar amyloid material itself can also induce cytotoxicity. To investigate membrane disruption and cytotoxic effects associated with intact and fragmented fibrils, the novel in situ spectroscopic technique of Total Internal Reflection Ellipsometry (TIRE) was used. Fibril lipid interactions were monitored using natively derived whole cell membranes as a model of the in vivo environment. We show that fragmented fibrils have an increased ability to disrupt these natively derived membranes by causing a loss of material from the deposited surface when compared with unfragmented fibrils. This effect was corroborated by observations of membrane disruption in live cells, and by dye release assay using synthetic liposomes. Through these studies we demonstrate the use of TIRE for the analysis of protein-lipid interactions on natively derived lipid surfaces, and provide an explanation on how amyloid fibrils can cause a toxic gain of function, while entangled amyloid plaques exert minimal biological activity. PMID:26172440

  6. [Microplate luminometry for toxicity bioassay of chemicals on luciferase].

    PubMed

    Ge, Hui-Lin; Liu, Shu-Shen; Chen, Fu; Luo, Jin-Hui; Lü, Dai-Zhu; Su, Bing-Xia

    2013-10-01

    A new microplate luminometry for the toxicity bioassay of chemicals on firefly luciferase, was developed using the multifunctional microplate reader (SpectraMax M5) to measure the luminous intensity of luciferase. Efects of luciferase concentration, luciferin concentration, ATP concentration, pH, temperature, and reaction time on the luminescence were systematically investigated. It was found that ATP exerted a biphasic response on the luciferase luminescence and the maximum relative light units (RLU) occurred at an ATP concentration of 1.1 x 10(-4) mol x L(-1). The method was successfully employed in the toxic effect test of NaF, NaCl, KBr and NaBF4 on luciferase. Using nonlinear least square technique, the dose-response curves (DRC) of the 4 chemicals were accurately fitted with the coefficient of determination (R2) between the fitted and observed responses being greater than 0.99. The median effective concentration (EC50) of the 4 chemicals were accurately measured from the DRC models. Compared with some literatures, the bioassay is a fast easy-operate and cost-effective method with high accuracy.

  7. Role of complex organic arsenicals in food in aggregate exposure to arsenic.

    PubMed

    Thomas, David J; Bradham, Karen

    2016-11-01

    For much of the world's population, food is the major source of exposure to arsenic. Exposure to this non-essential metalloid at relatively low levels may be linked to a wide range of adverse health effects. Thus, evaluating foods as sources of exposure to arsenic is important in assessing risk and developing strategies that protect public health. Although most emphasis has been placed on inorganic arsenic as human carcinogen and toxicant, an array of arsenic-containing species are found in plants and animals used as foods. Here, we 2evaluate the contribution of complex organic arsenicals (arsenosugars, arsenolipids, and trimethylarsonium compounds) that are found in foods and consider their origins, metabolism, and potential toxicity. Commonalities in the metabolism of arsenosugars and arsenolipids lead to the production of di-methylated arsenicals which are known to exert many toxic effects. Evaluating foods as sources of exposure to these complex organic arsenicals and understanding the formation of reactive metabolites may be critical in assessing their contribution to aggregate exposure to arsenic. Copyright © 2016. Published by Elsevier B.V.

  8. A COMPARISON OF THE LETHAL AND SUBLETHAL TOXICITY OF ORGANIC CHEMICAL MIXTURES TO THE FATHEAD MINNOW (PIMEPHALES PROMELAS)

    EPA Science Inventory

    The joint toxic effects of known binary and multiple organic chemical mixtures to the fathead minnow (Pimephales promelas) were defined at both the 96-h 50% lethal effect concentration (LC50) and sublethal (32-d growth) response levels for toxicants with a narcosis I, narcosis II...

  9. Salinity mediates the toxic effect of nano-TiO2 on the juvenile olive flounder Paralichthys olivaceus.

    PubMed

    Huang, Xizhi; Lan, Yawen; Liu, Zekang; Huang, Wei; Guo, Qindan; Liu, Liping; Hu, Menghong; Sui, Yanming; Wu, Fangli; Lu, Weiqun; Wang, Youji

    2018-06-04

    Increased production of engineered nanoparticles has raised extensive concern about the potential toxic effects on marine organisms living in estuarine and coastal environments. Meanwhile, salinity is one of the key environmental factors that may influence the physiological activities in flatfish species inhabiting in those waters due to fluctuations caused by freshwater input or rainfall. In this study, we investigated the oxidative stress and histopathological alteration of the juvenile Paralichthys olivaceus exposed to nano-TiO 2 (1 and 10 mg L -1 ) under salinities of 10 and 30 psu for 4 days. In the gills, Na + -K + -ATPase activity significantly deceased after 4 days 10 psu exposure without nano-TiO 2 compared with 1 day of acclimating the salinity from the normal salinity (30 psu) to 10 psu. Under this coastal salinity, low concentration (1 mg L -1 ) of nano-TiO 2 exerted significant impacts. In the liver, the activities of superoxide dismutase, catalase, the levels of lipid peroxide and malondialdehyde increased with nano-TiO 2 exposed under 30 psu. Such increase indicated an oxidative stress response. The result of the integrated biomarker responses showed that P. olivaceus can be adversely affected by high salinity and high concentration of nano-TiO 2 for a short-term (4 days) exposure. The histological analysis revealed the accompanying severe damages for the gill filaments. Principal component analysis further showed that the oxidative stress was associated with the nano-TiO 2 effect at normal salinity. These findings indicated that nano-TiO 2 and normal salinity exert synergistic effects on juvenile P. olivaceus, and low salinity plays a protective role in its physiological state upon short-term exposure to nano-TiO 2 . The mechanism of salinity mediating the toxic effects of NPs on estuarine fish should be further considered. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. In Silico Models for Ecotoxicity of Pharmaceuticals.

    PubMed

    Roy, Kunal; Kar, Supratik

    2016-01-01

    Pharmaceuticals and their active metabolites are one of the significantly emerging environmental toxicants. The major routes of entry of pharmaceuticals into the environment are industries, hospitals, or direct disposal of unwanted or expired drugs made by the patient. The most important and distinct features of pharmaceuticals are that they are deliberately designed to have an explicit mode of action and designed to exert an effect on humans and other living systems. This distinctive feature makes pharmaceuticals and their metabolites different from other chemicals, and this necessitates the evaluation of the direct effects of pharmaceuticals in various environmental compartments as well as to living systems. In this background, the alarming situation of ecotoxicity of diverse pharmaceuticals have forced government and nongovernment regulatory authorities to recommend the application of in silico methods to provide quick information about the risk assessment and fate properties of pharmaceuticals as well as their ecological and indirect human health effects. This chapter aims to offer information regarding occurrence of pharmaceuticals in the environment, their persistence, environmental fate, and toxicity as well as application of in silico methods to provide information about the basic risk management and fate prediction of pharmaceuticals in the environment. Brief ideas about toxicity endpoints, available ecotoxicity databases, and expert systems employed for rapid toxicity predictions of ecotoxicity of pharmaceuticals are also discussed.

  11. Benzo[a]pyrene exposure increases toxic biomarkers and morphological disorders in mouse cervix.

    PubMed

    Gao, Meili; Li, Yongfei; Sun, Ying; Shah, Walayat; Yang, Shuiyun; Wang, Yili; Long, Jiangang

    2011-11-01

    Benzo[a]pyrene (BaP) is a representative compound of polycyclic aromatic hydrocarbons exerting cytotoxicity and genotoxicity in the human liver, lung, stomach and skin. However, the toxic effect of BaP on cervical tissue remains unclear. This study was carried out to investigate the toxic effects of BaP on the cervix of ICR mice. Female mice were treated with BaP by intraperitoneal injection and oral gavage at a dose of 2.5, 5 and 10 mg/kg body-weight, twice a week for 14 weeks. BaP treatment caused a significant increase in the levels of MDA and IL-6 with significantly increased activity of CYP1A1, creatine kinase and aspartate aminotransferase (AST) and decreased activity of glutathione-S-transferase in the cervix and liver. The relative cervix weight was markedly reduced in the intraperitoneal BaP injection groups, whereas only a slight reduction was observed in the oral gavage groups. The increase in weight decreased with increasing BaP dose. Moreover, BaP treatment induced significant pathomorphological changes in the cervical tissue and increased the mortality of the mice. Taken together, these results suggest that BaP causes a certain toxic effect on cervical tissue. © 2011 The Authors. Basic & Clinical Pharmacology & Toxicology © 2011 Nordic Pharmacological Society.

  12. Plastic and Human Health: A Micro Issue?

    PubMed

    Wright, Stephanie L; Kelly, Frank J

    2017-06-20

    Microplastics are a pollutant of environmental concern. Their presence in food destined for human consumption and in air samples has been reported. Thus, microplastic exposure via diet or inhalation could occur, the human health effects of which are unknown. The current review article draws upon cross-disciplinary scientific literature to discuss and evaluate the potential human health impacts of microplastics and outlines urgent areas for future research. Key literature up to September 2016 relating to accumulation, particle toxicity, and chemical and microbial contaminants was critically examined. Although microplastics and human health is an emerging field, complementary existing fields indicate potential particle, chemical and microbial hazards. If inhaled or ingested, microplastics may accumulate and exert localized particle toxicity by inducing or enhancing an immune response. Chemical toxicity could occur due to the localized leaching of component monomers, endogenous additives, and adsorbed environmental pollutants. Chronic exposure is anticipated to be of greater concern due to the accumulative effect that could occur. This is expected to be dose-dependent, and a robust evidence-base of exposure levels is currently lacking. Although there is potential for microplastics to impact human health, assessing current exposure levels and burdens is key. This information will guide future research into the potential mechanisms of toxicity and hence therein possible health effects.

  13. Tualang Honey Protects the Rat Midbrain and Lung against Repeated Paraquat Exposure

    PubMed Central

    Sulaiman, Siti Amrah

    2017-01-01

    Paraquat (PQ) is a dopaminergic neurotoxin and a well-known pneumotoxicant that exerts its toxic effect via oxidative stress-mediated cellular injuries. This study investigated the protective effects of Tualang honey against PQ-induced toxicity in the midbrain and lungs of rats. The rats were orally treated with distilled water (2 mL/kg/day), Tualang honey (1.0 g/kg/day), or ubiquinol (0.2 g/kg/day) throughout the experimental period. Two weeks after the respective treatments, the rats were injected intraperitoneally with saline (1 mL/kg/week) or PQ (10 mg/kg/week) once per week for four consecutive weeks. After four weekly exposures to PQ, the glutathione peroxidase activity and the number of tyrosine-hydroxylase immunopositive neurons in the midbrain were significantly decreased in animals from group PQ (p < 0.05). The lungs of animals from group PQ showed significantly decreased activity of superoxide dismutase and glutathione-S-transferase. Treatment with Tualang honey ameliorated the toxic effects observed in the midbrain and lungs. The beneficial effects of Tualang honey were comparable to those of ubiquinol, which was used as a positive control. These findings suggest that treatment with Tualang honey may protect against PQ-induced toxicity in the rat midbrain and lung. PMID:28127418

  14. Enantioselective Effects of Chiral Pesticides on their Primary Targets and Secondary Targets.

    PubMed

    Yang, Ye; Zhang, Jianyun; Yao, Yijun

    2017-01-01

    Enantioselectivity has been well recognized in the environmental fate and effects of chiral pesticides. Enantiospecific action of the optical enantiomers on the biological molecules establishes the mechanistic basis for the enantioselective toxicity of chiral pesticides to both target and non-target organisms. We undertook a structured search of bibliographic databases for research literature concerning the enantioselective effects of chiral pesticides, including insecticides, herbicides and fungicides, on biomolecules in various species by using some key words. The results of the relevant literatures were reviewed in the text and summarized in tables. Pesticides generally exert their activity on the target organisms via disrupting the primary target biomolecules. In non-target species, effects of pesticides on the secondary targets distinguished from the primary ones make great contribution to their toxicity. Recent investigations have provided convincing evidence of enantioselective toxicity of chiral pesticides to both target and non-target species which is recognized to result from their enantiospecific action on the primary or secondary targets in organisms. This review confirms that chiral pesticides have enantiospecific effects on both primary and secondary target biomolecules in organisms. Future studies regarding toxicological effects of chiral pesticides should focus on the relationship between the enantiomeric difference in the compound-biomolecules interaction and the enantioselectivity in their toxicity.

  15. Vitamin E modulates reproductive toxicity of pyrethroid lambda-cyhalothrin in male rabbits.

    PubMed

    Yousef, Mokhtar I

    2010-05-01

    The objective of the current study was to analyze the reproductive toxicity caused by lambda-cyhalothrin (LCT) in male rabbits, and to evaluate the possible protective effect of vitamin E (Vit. E) as antioxidant. Animals were orally administered their respective doses of LCT every other day and given drinking water supplemented with vitamin E for 16 weeks. Results showed that semen quality was deteriorated following treatment with LCT. Also, testosterone levels, body weight (BW), feed intake (FI), and relative testes (RTW) and epididymis (REW) weights were significantly decreased. Concentrations of thiobarbituric acid-reactive substances (TBARS) were significantly increased in seminal plasma of rabbits treated with LCT compared with control. While, activities of glutathione S-transferase (GST), transaminases and acid phosphatase (AcP) were significantly decreased. Vitamin E alone significantly increased testosterone levels, BW, FI, RTW, REW, semen characteristics and seminal plasma enzymes, and decreased the levels of TBARS. Also, the present study showed that vitamin E might be effective against LCT-induced reproductive toxicity. It was suggested that LCT exerted a significant adverse effect on reproductive performance of male rabbits. Furthermore, vitamin E antagonized the toxic effects of LCT and improved semen quality of male rabbit. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  16. Tualang Honey Protects the Rat Midbrain and Lung against Repeated Paraquat Exposure.

    PubMed

    Tang, Suk Peng; Kuttulebbai Nainamohamed Salam, Sirajudeen; Jaafar, Hasnan; Gan, Siew Hua; Muzaimi, Mustapha; Sulaiman, Siti Amrah

    2017-01-01

    Paraquat (PQ) is a dopaminergic neurotoxin and a well-known pneumotoxicant that exerts its toxic effect via oxidative stress-mediated cellular injuries. This study investigated the protective effects of Tualang honey against PQ-induced toxicity in the midbrain and lungs of rats. The rats were orally treated with distilled water (2 mL/kg/day), Tualang honey (1.0 g/kg/day), or ubiquinol (0.2 g/kg/day) throughout the experimental period. Two weeks after the respective treatments, the rats were injected intraperitoneally with saline (1 mL/kg/week) or PQ (10 mg/kg/week) once per week for four consecutive weeks. After four weekly exposures to PQ, the glutathione peroxidase activity and the number of tyrosine-hydroxylase immunopositive neurons in the midbrain were significantly decreased in animals from group PQ ( p < 0.05). The lungs of animals from group PQ showed significantly decreased activity of superoxide dismutase and glutathione-S-transferase. Treatment with Tualang honey ameliorated the toxic effects observed in the midbrain and lungs. The beneficial effects of Tualang honey were comparable to those of ubiquinol, which was used as a positive control. These findings suggest that treatment with Tualang honey may protect against PQ-induced toxicity in the rat midbrain and lung.

  17. Synergistic ameliorative effects of sesame oil and alpha-lipoic acid against subacute diazinon toxicity in rats: hematological, biochemical, and antioxidant studies.

    PubMed

    Abdel-Daim, Mohamed M; Taha, Ramadan; Ghazy, Emad W; El-Sayed, Yasser S

    2016-01-01

    Diazinon (DZN) is a common organophosphorus insecticide extensively used for agriculture and veterinary purposes. DZN toxicity is not limited to insects; it also induces harmful effects in mammals and birds. Our experiment evaluated the protective and antioxidant potential of sesame oil (SO) and (or) alpha-lipoic acid (ALA) against DZN toxicity in male Wistar albino rats. DZN-treated animals exhibited macrocytic hypochromic anemia and significant increases in serum biochemical parameters related to liver injury, including aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), γ-glutamyl transferase (γGT), cholesterol, and triglycerides. They also had elevated levels of markers related to cardiac injury, such as lactate dehydrogenase (LDH) and creatine phosphokinase (CPK), and increased biomarkers of renal injury, urea and creatinine. DZN also increased hepatic, renal, and cardiac lipid peroxidation and decreased antioxidant biomarker levels. SO and (or) ALA supplementation ameliorated the deleterious effects of DZN intoxication. Treatment improved hematology and serum parameters, enhanced endogenous antioxidant status, and reduced lipid peroxidation. Importantly, they exerted synergistic hepatoprotective, nephroprotective, and cardioprotective effects. Our findings demonstrate that SO and (or) ALA supplementation can alleviate the toxic effects of DZN via their potent antioxidant and free radical-scavenging activities.

  18. Immuno-therapy of Acute Radiation Syndromes : Extracorporeal Immuno-Lympho-Plasmo-Sorption.

    NASA Astrophysics Data System (ADS)

    Popov, Dmitri; Maliev, Slava

    Methods Results Summary and conclusions Introduction: Existing Medical Management of the Acute Radiation Syndromes (ARS) does not include methods of specific immunotherapy and active detoxication. Though the Acute Radiation Syndromes were defined as an acute toxic poisonous with development of pathological processes: Systemic Inflammatory Response Syndrome (SIRS), Toxic Multiple Organ Injury (TMOI), Toxic Multiple Organ Dysfunction Syndrome(TMODS), Toxic Multiple Organ Failure (TMOF). Radiation Toxins of SRD Group play an important role as the trigger mechanisms in development of the ARS clinical symptoms. Methods: Immuno-Lympho-Plasmo-Sorption is a type of Immuno-therapy which includes prin-ciples of immunochromato-graphy, plasmopheresis, and hemodialysis. Specific Antiradiation Antitoxic Antibodies are the active pharmacological agents of immunotherapy . Antiradia-tion Antitoxic Antibodies bind selectively to Radiation Neurotoxins, Cytotoxins, Hematotox-ins and neutralize their toxic activity. We have developed the highly sensitive method and system for extracorporeal-immune-lypmh-plasmo-sorption with antigen-specific IgG which is clinically important for treatment of the toxic and immunologic phases of the ARS. The method of extracorporeal-immune-lypmh-plasmo-sorption includes Antiradiation Antitoxic Antibodies (AAA) immobilized on microporous polymeric membranes with a pore size that is capable to provide diffusion of blood-lymph plasma. Plasma of blood or lymph of irradiated mammals contains Radiation Toxins (RT) that have toxic and antigenic properties. Radiation Toxins are Antigen-specific to Antitoxic blocking antibodies (Immunoglobulin G). Plasma diffuses through membranes with immobilized AAA and AA-antibodies bind to the polysaccharide chain of tox-ins molecules and complexes of AAA-RT that are captured on membrane surfaces. RT were removed from plasma. Re-transfusion of plasma of blood and lymph had been provided. We show a statistical significant reduction in postradiation lethality.

  19. Cotton photosynthetic regulation through nutrient and water availability

    USDA-ARS?s Scientific Manuscript database

    Photosynthesis is an extremely complicated process that is fundamental to supporting plant growth. It is regulated by multiple internal and external factors. Three factors regulating photosynthesis over which cotton producers can exert some influence are the levels of nitrogen, potassium, and soil...

  20. Vinpocetine inhibits oligodendroglial precursor cell differentiation.

    PubMed

    Torres, Klintsy Julieta; Göttle, Peter; Kremer, David; Rivera, Jose Flores; Aguirre-Cruz, Lucinda; Corona, Teresa; Hartung, Hans-Peter; Küry, Patrick

    2012-01-01

    In multiple sclerosis during periods of remission a limited degree of myelin repair can be observed mediated by oligodendroglial precursor cells. Phosphodiesterase inhibitors act as anti-inflammatory agents and might hold promise for future multiple sclerosis treatment. To investigate whether phosphodiesterase inhibitors could also influence myelin repair. We stimulated primary oligodendroglial precursor cells with cilostazol, rolipram and vinpocetine and assessed their effects on repair related cellular processes. We found that vinpocetine exerted a strong negative effect on myelin expression while cilostazol and rolipram did not show such effects. In addition, vinpocetine decreased morphological complexities suggesting an overall negative impact on oligodendroglial cell maturation. We provide evidence that this is not mediated via a blockade of phosphodiesterase-1 but rather by inhibition of IĸB kinase. These findings suggest that vinpocetine via IĸB inhibition exerts a strong negative impact on oligodendroglial cell maturation and may therefore provide the rationale to restrict its application during periods of remission in multiple sclerosis patients. This is of particular interest since vinpocetine is widely used as a health supplement thought to act as a cognitive and memory enhancer for healthy people and patients with neurological or muscle diseases. Copyright © 2012 S. Karger AG, Basel.

  1. Amphibian embryos as a biological test for environmental pollutants in leachates, industrial effluents, surface and ground water

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herkovits, J.; Perez-Coll, C.S.; Herkovits, F.D.

    1995-12-31

    Test of early life stages are very sensitive to toxic effects and moreover a good predictive correlation between embryo-larval survival and independent ecological parameters such as species richness and diversity have been established. The main purpose of this preliminary study is to report that Bufo arenarum embryos are very sensitive to contaminants from a variety of sources such as leachates, industrial effluents, surface and ground water. The toxicity of 30 samples (five from each category plus controls of surface and ground water from reference places) was evaluated during a 14 day renewal toxicity test at 20 C, conducted with 10more » embryos (by triplicate) from stage 23--25 onwards using six concentrations (V/V) of each sample of Holtfreter`s solution. For industrial effluents and leachates the results range from a concentration of 0.6% resulting in 24hs LC100 up to a sample which exert 20% of lethality after 14 days of treatment. The survival of controls and in samples from reference places was over 90% for 7 days and over 80% for 14 days. The results with Bufo arenarum embryos confirm that a 7 day Short-term Chronic Toxicity Test is appropriate for toxicity screening of industrial effluents (as it was established by EPA for whole effluent toxicity test for aquatic life protection performed with other species) as well as for leachates. On the other hand, for freshwater (surface and ground), it is convenient to extend the exposure period until 14 days in order to record situations of low, but significant levels of toxicity, which could be of particular value for surface as well as ground water quality criteria.« less

  2. Chicken cathelicidin-2-derived peptides with enhanced immunomodulatory and antibacterial activities against biological warfare agents.

    PubMed

    Molhoek, E Margo; van Dijk, Albert; Veldhuizen, Edwin J A; Dijk-Knijnenburg, Helma; Mars-Groenendijk, Roos H; Boele, Linda C L; Kaman-van Zanten, Wendy E; Haagsman, Henk P; Bikker, Floris J

    2010-09-01

    Host defence peptides (HDPs) are considered to be excellent candidates for the development of novel therapeutic agents. Recently, it was demonstrated that the peptide C1-15, an N-terminal segment of chicken HDP cathelicidin-2, exhibits potent antibacterial activity while lacking cytotoxicity towards eukaryotic cells. In the present study, we report that C1-15 is active against bacteria such as Bacillus anthracis and Yersinia pestis that may potentially be used by bioterrorists. Substitution of single and multiple phenylalanine (Phe) residues to tryptophan (Trp) in C1-15 resulted in variants with improved antibacterial activity against B. anthracis and Y. pestis as well as decreased salt sensitivity. In addition, these peptides exhibited enhanced neutralisation of lipopolysaccharide (LPS)-induced release of pro-inflammatory cytokines in human peripheral blood mononuclear cells (PBMCs). The antibacterial and LPS-neutralising activities of these C1-15-derived peptides are exerted at concentrations far below the concentrations that are toxic to human PBMCs. Taken together, we show that Phe-->Trp substitutions in C1-15 variants enhances the antibacterial and LPS-neutralising activities against pathogenic bacteria, including those that may potentially be used as biological warfare agents. Copyright (c) 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.

  3. Fenbendazole improves pathological and functional recovery following traumatic spinal cord injury.

    PubMed

    Yu, C G; Singh, R; Crowdus, C; Raza, K; Kincer, J; Geddes, J W

    2014-01-03

    During a study of spinal cord injury (SCI), mice in our colony were treated with the anthelmintic fenbendazole to treat pinworms detected in other mice not involved in the study. As this was not part of the original experimental design, we subsequently compared pathological and functional outcomes of SCI in female C57BL/6 mice who received fenbendazole (150 ppm, 8 mg/kg body weight/day) for 4 weeks prior to moderate contusive SCI (50 kdyn force) as compared to mice on the same diet without added fenbendazole. The fenbendazole-treated mice exhibited improved locomotor function, determined using the Basso mouse scale, as well as improved tissue sparing following contusive SCI. Fenbendazole may exert protective effects through multiple possible mechanisms, one of which is inhibition of the proliferation of B lymphocytes, thereby reducing antibody responses. Autoantibodies produced following SCI contribute to the axon damage and locomotor deficits. Fenbendazole pretreatment reduced the injury-induced CD45R-positive B cell signal intensity and IgG immunoreactivity at the lesion epicenter 6 weeks after contusive SCI in mice, consistent with a possible effect on the immune response to the injury. Fenbendazole and related benzimadole antihelmintics are FDA approved, exhibit minimal toxicity, and represent a novel group of potential therapeutics targeting secondary mechanisms following SCI. Copyright © 2013. Published by Elsevier Ltd.

  4. Fenbendazole improves pathological and functional recovery following traumatic spinal cord injury

    PubMed Central

    Yu, Chen Guang; Singh, Ranjana; Crowdus, Carolyn; Raza, Kashif; Kincer, Jeanie; Geddes, James W.

    2014-01-01

    During a study of spinal cord injury (SCI), mice in our colony were treated with the anthelmintic fenbendazole to treat pinworms detected in other mice not involved in the study. As this was not part of the original experimental design, we subsequently compared pathological and functional outcomes of SCI in female C57BL/6 mice who received fenbendazole (150 ppm, 8 mg/kg body weight/day) for four weeks prior to moderate contusive SCI (50 kdyn force) as compared to mice on the same diet without added fenbendazole. The fenbendazole-treated mice exhibited improved locomotor function, determined using the Basso mouse scale, as well as improved tissue sparing following contusive SCI. Fenbendazole may exert protective effects through multiple possible mechanisms, one of which is inhibition of the proliferation of B lymphocytes, thereby reducing antibody responses. Autoantibodies produced following SCI contribute to the axon damage and locomotor deficits. Fenbendazole pretreatment reduced the injury-induced CD45R-positive B cell signal intensity and IgG immunoreactivity at the lesion epicenter six weeks after contusive SCI in mice, consistent with a possible effect on the immune response to the injury. Fenbendazole and related benzimadole antihelmintics are FDA approved, exhibit minimal toxicity, and represent a novel group of potential therapeutics targeting secondary mechanisms following SCI. PMID:24183965

  5. Toxicity of formulants and heavy metals in glyphosate-based herbicides and other pesticides.

    PubMed

    Defarge, N; Spiroux de Vendômois, J; Séralini, G E

    2018-01-01

    The major pesticides of the world are glyphosate-based herbicides (GBH), and their toxicity is highly debated. To understand their mode of action, the comparative herbicidal and toxicological effects of glyphosate (G) alone and 14 of its formulations were studied in this work, as a model for pesticides. GBH are mixtures of water, with commonly 36-48% G claimed as the active principle. As with other pesticides, 10-20% of GBH consist of chemical formulants. We previously identified these by mass spectrometry and found them to be mainly families of petroleum-based oxidized molecules, such as POEA, and other contaminants. We exposed plants and human cells to the components of formulations, both mixed and separately, and measured toxicity and human cellular endocrine disruption below the direct toxicity experimentally measured threshold. G was only slightly toxic on plants at the recommended dilutions in agriculture, in contrast with the general belief. In the short term, the strong herbicidal and toxic properties of its formulations were exerted by the POEA formulant family alone. The toxic effects and endocrine disrupting properties of the formulations were mostly due to the formulants and not to G. In this work, we also identified by mass spectrometry the heavy metals arsenic, chromium, cobalt, lead and nickel, which are known to be toxic and endocrine disruptors, as contaminants in 22 pesticides, including 11 G-based ones. This could also explain some of the adverse effects of the pesticides. In in vivo chronic regulatory experiments that are used to establish the acceptable daily intakes of pesticides, G or other declared active ingredients in pesticides are assessed alone, without the formulants. Considering these new data, this assessment method appears insufficient to ensure safety. These results, taken together, shed a new light on the toxicity of these major herbicides and of pesticides in general.

  6. Assessment of Jatropha curcas L. biodiesel seed cake toxicity using the zebrafish (Danio rerio) embryo toxicity (ZFET) test.

    PubMed

    Hallare, Arnold V; Ruiz, Paulo Lorenzo S; Cariño, J C Earl D

    2014-05-01

    Consequent to the growing demand for alternative sources of energy, the seeds from Jatropha curcas remain to be the favorite for biodiesel production. However, a significant volume of the residual organic mass (seed cake) is produced during the extraction process, which raises concerns on safe waste disposal. In the present study, we assessed the toxicity of J. curcas seed cake using the zebrafish (Danio rerio) embryotoxicity test. Within 1-h post-fertilization (hpf), the fertilized eggs were exposed to five mass concentrations of J. curcas seed cake and were followed through 24, 48, and 72 hpf. Toxicity was evaluated based on lethal endpoints induced on zebrafish embryos namely egg coagulation, non-formation of somites, and non-detachment of tail. The lowest concentration tested, 1 g/L, was not able to elicit toxicity on embryos whereas 100 % mortality (based also on lethal endpoints) was recorded at the highest concentration at 2.15 g/L. The computed LC50 for the J. curcas seed cake was 1.61 g/L. No further increase in mortality was observed in the succeeding time points (48 and 72 hpf) indicating that J. curcas seed cake exerted acute toxicity on zebrafish embryos. Sublethal endpoints (yolk sac and pericardial edema) were noted at 72 hpf in zebrafish embryos exposed to higher concentrations. The observed lethal endpoints induced on zebrafish embryos were discussed in relation to the active principles, notably, phorbol esters that have remained in the seed cake even after extraction.

  7. Toxicity of binary mixtures of metal oxide nanoparticles to Nitrosomonas europaea.

    PubMed

    Yu, Ran; Wu, Junkang; Liu, Meiting; Zhu, Guangcan; Chen, Lianghui; Chang, Yan; Lu, Huijie

    2016-06-01

    Although the widely used metal oxide nanoparticles (NPs) titanium dioxide NPs (n-TiO2), cerium dioxide NPs (n-CeO2), and zinc oxide NPs (n-ZnO) have been well known for their potential cytotoxicities to environmental organisms, their combined effects have seldom been investigated. In this study, the short-term binary effect of n-CeO2 and n-TiO2 or n-ZnO on a model ammonia oxidizing bacterium, Nitrosomonas europaea were evaluated based on the examinations of cells' physiological, metabolic, and transcriptional responses. The addition of n-TiO2 mitigated the negative effect of more toxic n-CeO2 and the binary toxicity (antagonistic toxicity) of n-TiO2 and n-CeO2 was generally lower than the single NPs induced one. While the n-CeO2/n-ZnO mixture exerted higher cytotoxicity (synergistic cytotoxicity) than that from single NPs. The increased addition of the less toxic n-CeO2 exaggerated the binary toxicity of n-CeO2/n-ZnO mixture although the solubility of n-ZnO was not significantly affected, which excluded the contribution of the dissolved Zn ions to the enhancement of the combined cytotoxicity. The cell membrane disturbances and NP internalizations were detected for all the NP impacted cultures and the electrostatic interactions among the two distinct NPs and the cells were expected to play a key role in mediating their direct contacts and the eventual binary nanotoxicity to the cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Asialoglycoprotein receptor mediates the toxic effects of an asialofetuin-diphtheria toxin fragment A conjugate on cultured rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cawley, D.B.; Simpson, D.L.; Herschman, H.R.

    1981-06-01

    We have constructed a toxic hybrid protein that is recognized by asialoglycoprotein (ASGP) receptors of cultured rat hepatocytes. The conjugate consists of fragment A of diphtheria toxin (DTA) linked by a disulfide bond to asialofetuin (ASF). This conjugate is highly toxic, inhibiting protein synthesis in primary rat hepatocytes at concentrations as low as 10 pM. The ASF-DTA conjugate was 600 and 1800 times as toxic as diphtheria toxin and DTA, respectively, on primary rat hepatocytes. The ASGP receptor recognizes galactose-terminated proteins. We tested a series of glycoproteins for their ability to block the action of the ASF-DTA conjugate. Fetuin andmore » orosomucoid, two glycoproteins with terminal sialic acid on their oligosaccharide chains, did not block the action of the conjugate. Their galactose-terminated asialo derivatives, ASF and asialoorosomucoid, as expected, did block the action of the conjugate. The N-acetylglucosaminyl-terminated derivative (asialoagalactoorosomucoid) had no appreciable effect on the activity of the conjugate. We tested the ASF-DTA conjugate on six cell types; except for primary rat hepatocytes, none of them were affected by a high concentration (10 nM) of ASF-DTA conjugate. A fetuin-DTA conjugate was less toxic by a factor of 300 than the ASF-DTA conjugate and exerted its effects primarily through non-receptor-mediated mechanisms. The highly toxic ASF-DTA conjugate is cell-type specific, and its action is mediated by a well-characterized receptor, whose mechanism of receptor-ligand internalization has been extensively investigated.« less

  9. Methamphetamine induces heme oxygenase-1 expression in cortical neurons and glia to prevent its toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Y.-N.; Wu, C.-H.; Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan 114

    2009-11-01

    The impairment of cognitive and motor functions in humans and animals caused by methamphetamine (METH) administration underscores the importance of METH toxicity in cortical neurons. The heme oxygenase-1 (HO-1) exerts a cytoprotective effect against various neuronal injures; however, it remains unclear whether HO-1 is involved in METH-induced toxicity. We used primary cortical neuron/glia cocultures to explore the role of HO-1 in METH-induced toxicity. Exposure of cultured cells to various concentrations of METH (0.1, 0.5, 1, 3, 5, and 10 mM) led to cytotoxicity in a concentration-dependent manner. A METH concentration of 5 mM, which caused 50% of neuronal death andmore » glial activation, was chosen for subsequent experiments. RT-PCR and Western blot analysis revealed that METH significantly induced HO-1 mRNA and protein expression, both preceded cell death. Double and triple immunofluorescence staining further identified HO-1-positive cells as activated astrocytes, microglia, and viable neurons, but not dying neurons. Inhibition of the p38 mitogen-activated protein kinase pathway significantly blocked HO-1 induction by METH and aggravated METH neurotoxicity. Inhibition of HO activity using tin protoporphyrine IX significantly reduced HO activity and exacerbated METH neurotoxicity. However, prior induction of HO-1 using cobalt protoporphyrine IX partially protected neurons from METH toxicity. Taken together, our results suggest that induction of HO-1 by METH via the p38 signaling pathway may be protective, albeit insufficient to completely protect cortical neurons from METH toxicity.« less

  10. Asialoglycoprotein receptor mediates the toxic effects of an asialofetuin-diphtheria toxin fragment A conjugate on cultured rat hepatocytes.

    PubMed Central

    Cawley, D B; Simpson, D L; Herschman, H R

    1981-01-01

    We have constructed a toxic hybrid protein that is recognized by asialoglycoprotein (ASGP) receptors of cultured rat hepatocytes. The conjugate consists of fragment A of diphtheria toxin (DTA) linked by a disulfide bond to asialofetuin (ASF). This conjugate is highly toxic, inhibiting protein synthesis in primary rat hepatocytes at concentrations as low as 10 pM. The ASF-DTA conjugate was 600 and 1800 times as toxic as diphtheria toxin and DTA, respectively, on primary rat hepatocytes. The ASGP receptor recognizes galactose-terminated proteins. We tested a series of glycoproteins for their ability to block the action of the ASF-DTA conjugate. Fetuin and orosomucoid, two glycoproteins with terminal sialic acid on their oligosaccharide chains, did not block the action of the conjugate. Their galactose-terminated asialo derivatives, ASF and asialoorosomucoid, as expected, did block the action of the conjugate. The N-acetylglucosaminyl-terminated derivative (asialogalactoorsomucoid) had no appreciable effect on the activity of the conjugate. We tested the ASF-DTA conjugate on six cell types; except for primary rat hepatocytes, none of them were affected by a high concentration (10 nM) of ASF-DTA conjugate. A fetuin-DTA conjugate was less toxic by a factor of 300 than the ASF-DTA conjugate and exerted its effects primarily through non-receptor-mediated mechanisms. The highly toxic ASF-DTA conjugate is cell-type specific, and its action is mediated by a well-characterized receptor, whose mechanism of receptor-ligand internalization has been extensively investigated. Images PMID:6167984

  11. Negundoside, an iridiod glycoside from leaves of Vitex negundo, protects human liver cells against calcium-mediated toxicity induced by carbon tetrachloride

    PubMed Central

    Tasduq, Sheikh A; Kaiser, Peerzada J; Gupta, Bishan D; Gupta, Vijay K; Johri, Rakesh K

    2008-01-01

    AIM: To evaluate the protective effect of 2'-p-hydroxybenzoylmussaenosidic acid [negundoside (NG), against carbon tetrachloride (CCl4)-induced toxicity in HuH-7 cells. METHODS: CCl4 is a well characterized hepatotoxin, and inducer of cytochrome P450 2E1 (CYP2E1)-mediated oxidative stress. In addition, lipid peroxidation and accumulation of intracellular calcium are important steps in the pathway involved in CCl4 toxicity. Liver cells (HuH-7) were treated with CCl4, and the mechanism of the cytoprotective effect of NG was assessed. Silymarin, a known hepatoprotective drug, was used as control. RESULTS: NG protected HuH-7 cells against CCl4 toxicity and loss of viability without modulating CYP2E1 activity. Prevention of CCl4 toxicity was associated with a reduction in oxidative damage as reflected by decreased generation of reactive oxygen species (ROS), a decrease in lipid peroxidation and accumulation of intracellular Ca2+ levels and maintenance of intracellular glutathione homeostasis. Decreased mitochondrial membrane potential (MMP), induction of caspases mediated DNA fragmentation and cell cycle arrest, as a result of CCl4 treatment, were also blocked by NG. The protection afforded by NG seemed to be mediated by activation of cyclic adenosine monophosphate (cAMP) synthesis and inhibition of phospholipases (cPLA2). CONCLUSION: NG exerts a protective effect on CYP2E1-dependent CCl4 toxicity via inhibition of lipid peroxidation, followed by an improved intracellular calcium homeostasis and inhibition of Ca2+-dependent proteases. PMID:18595136

  12. Nicotine, alcohol and cocaine coupling to reward processes via endogenous morphine signaling: the dopamine-morphine hypothesis.

    PubMed

    Stefano, George B; Bianchi, Enrica; Guarna, Massimo; Fricchione, Gregory L; Zhu, Wei; Cadet, Patrick; Mantione, Kirk J; Casares, Federico M; Kream, Richard M; Esch, Tobias

    2007-06-01

    Pleasure is described as a state or feeling of happiness and satisfaction resulting from an experience that one enjoys. We examine the neurobiological factors underlying reward processes and pleasure phenomena. With regard to possible negative effects of pleasure, we focus on addiction and motivational toxicity. Pleasure can serve cognition, productivity and health, but simultaneously promotes addiction and other negative behaviors. It is a complex neurobiological phenomenon, relying on reward circuitry or limbic activity. These processes involve dopaminergic signaling. Moreover, nicotine, cocaine and alcohol appear to exert their pleasure providing action via endogenous morphinergic mechanisms. Natural rewarding activities are necessary for survival and appetitive motivation, usually governing beneficial biological behaviors like eating, sex and reproduction. Social contacts can further facilitate the positive effects exerted by pleasurable experiences. However, artificial stimulants can be detrimental, since flexibility and normal control of behavior are deteriorated. Additionally, addictive drugs are capable of directly acting on reward pathways, now, in part, via endogenous morphine processes.

  13. Unconventional Secretion of Heat Shock Proteins in Cancer

    PubMed Central

    Santos, Tiago Góss; Martins, Vilma Regina; Hajj, Glaucia Noeli Maroso

    2017-01-01

    Heat shock proteins (HSPs) are abundant cellular proteins involved with protein homeostasis. They have both constitutive and inducible isoforms, whose expression levels are further increased by stress conditions, such as temperature elevation, reduced oxygen levels, infection, inflammation and exposure to toxic substances. In these situations, HSPs exert a pivotal role in offering protection, preventing cell death and promoting cell recovery. Although the majority of HSPs functions are exerted in the cytoplasm and organelles, several lines of evidence reveal that HSPs are able to induce cell responses in the extracellular milieu. HSPs do not possess secretion signal peptides, and their secretion was subject to widespread skepticism until the demonstration of the role of unconventional secretion forms such as exosomes. Secretion of HSPs may confer immune system modulation and be a cell-to-cell mediated form of increasing stress resistance. Thus, there is a wide potential for secreted HSPs in resistance of cancer therapy and in the development new therapeutic strategies. PMID:28468249

  14. Towards Reconciliation of Several Dualities in Physician Leadership

    PubMed Central

    Walker, Keith; Kraines, Gerry

    2015-01-01

    Leadership has a renewed focus in healthcare, and physicians are being increasingly involved in a range of leadership roles. The aim of this paper is to discuss several dualities that exert tensions at the systems and individual levels. Although oppositional, the common dualities of physician leadership are not mutually exclusive but represent a complex, dynamic and interdependent relationship, often coexisting with each other and exerting tensions in multiple dimensions. The authors contend that a dialectic understanding – instead of either/or or finding a middle ground – of the opposite poles of these dualities allows for generating meaningful leadership perspectives and choices. PMID:25947031

  15. The acute and chronic toxicity of major geochemical ions to Hyalella azteca Ion interactions and comparisons to other species

    EPA Science Inventory

    We have previously reported that the acute and chronic toxicities of major geochemical ions (Na, K, Ca, Mg, Cl, SO4, HCO3) to Ceriodaphnia dubia can involve multiple, independent mechanisms. The toxicities of K, Mg, and Ca salts were best related to the chemical activity of the c...

  16. Robust EM Continual Reassessment Method in Oncology Dose Finding

    PubMed Central

    Yuan, Ying; Yin, Guosheng

    2012-01-01

    The continual reassessment method (CRM) is a commonly used dose-finding design for phase I clinical trials. Practical applications of this method have been restricted by two limitations: (1) the requirement that the toxicity outcome needs to be observed shortly after the initiation of the treatment; and (2) the potential sensitivity to the prespecified toxicity probability at each dose. To overcome these limitations, we naturally treat the unobserved toxicity outcomes as missing data, and use the expectation-maximization (EM) algorithm to estimate the dose toxicity probabilities based on the incomplete data to direct dose assignment. To enhance the robustness of the design, we propose prespecifying multiple sets of toxicity probabilities, each set corresponding to an individual CRM model. We carry out these multiple CRMs in parallel, across which model selection and model averaging procedures are used to make more robust inference. We evaluate the operating characteristics of the proposed robust EM-CRM designs through simulation studies and show that the proposed methods satisfactorily resolve both limitations of the CRM. Besides improving the MTD selection percentage, the new designs dramatically shorten the duration of the trial, and are robust to the prespecification of the toxicity probabilities. PMID:22375092

  17. A systems-level approach for investigating organophosphorus pesticide toxicity.

    PubMed

    Zhu, Jingbo; Wang, Jing; Ding, Yan; Liu, Baoyue; Xiao, Wei

    2018-03-01

    The full understanding of the single and joint toxicity of a variety of organophosphorus (OP) pesticides is still unavailable, because of the extreme complex mechanism of action. This study established a systems-level approach based on systems toxicology to investigate OP pesticide toxicity by incorporating ADME/T properties, protein prediction, and network and pathway analysis. The results showed that most OP pesticides are highly toxic according to the ADME/T parameters, and can interact with significant receptor proteins to cooperatively lead to various diseases by the established OP pesticide -protein and protein-disease networks. Furthermore, the studies that multiple OP pesticides potentially act on the same receptor proteins and/or the functionally diverse proteins explained that multiple OP pesticides could mutually enhance toxicological synergy or additive on a molecular/systematic level. To the end, the integrated pathways revealed the mechanism of toxicity of the interaction of OP pesticides and elucidated the pathogenesis induced by OP pesticides. This study demonstrates a systems-level approach for investigating OP pesticide toxicity that can be further applied to risk assessments of various toxins, which is of significant interest to food security and environmental protection. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Into the world of steroids

    PubMed Central

    2010-01-01

    Evolution of steroids such as sex hormones and ecdysteroids occurred independently in the animal and plant kingdoms. Plants use phytoecdysteroids (PEs) to control defense interactions with some predators; furthermore, PEs can exert beneficial influence on many aspects of mammalian metabolism. Endocrine disrupting compounds such as the estrogen agonist bisphenol A (BPA) are widespread in the environment, posing a potential hormonal risk to animals and plants. Adverse BPA effects on reproductive development and function are coupled with other toxic effects. BPA bioremediation techniques could be developed by exploiting some tolerant plant species. PMID:20671439

  19. Elucidating the Mechanism of Gain of Toxic Function from Mutant C1 Inhibitor Proteins in Hereditary Angioedema

    DTIC Science & Technology

    2016-10-01

    this is due, at least in part, to an additional acquired GOTF defect caused by the mutant protein that interferes with the secretion of WT C1INH. Our...overall hypothesis is that mutant C1INH proteins exert a variable GOTF phenotype that inhibit secretion of WT C1INH protein and worsen disease...will assess the mechanisms of the GOTF with a hypothesis that misfolding of mutant C1INH protein in the ER causes impairment of WT C1INH secretion

  20. Indolinone based LRRK2 kinase inhibitors with a key hydrogen bond.

    PubMed

    Göring, Stefan; Taymans, Jean-Marc; Baekelandt, Veerle; Schmidt, Boris

    2014-10-01

    The most prevalent leucine-rich repeat kinase 2 (LRRK2) mutation G2019S is associated with Parkinson's disease (PD). It enhances kinase activity and has been identified in both familial and sporadic cases. Kinase activity was reported to be required for LRRK2 mutants to exert their toxic effects. Hence LRRK2 kinase inhibition may be a promising therapeutic target for PD. Here we report on the discovery and characterization of indolinone based LRRK2 inhibitors. Indolinone 15b, the most potent and selective inhibitor of the present series, is characterized by an IC50 of 15nM against wild-type LRRK2 and 10nM against the LRRK2 G2019S mutant, respectively. Compound 15b was further evaluated in a kinase panel including 46 human protein kinases and in a zebrafish embryo phenotype assay, which enabled toxicity determination in whole organisms. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Recent Progress in Functional Micellar Carriers with Intrinsic Therapeutic Activities for Anticancer Drug Delivery.

    PubMed

    Qu, Ying; Chu, BingYang; Shi, Kun; Peng, JinRong; Qian, ZhiYong

    2017-12-01

    Polymeric micelles have presented superior delivery properties for poorly water-soluble chemotherapeutic agents. However, it remains discouraging that there may be some additional short or long-term toxicities caused by the metabolites of high quantities of carriers. If carriers had simultaneous therapeutic effects with the drug, these issues would not be a concern. For this, carriers not only simply act as drug carriers, but also exert an intrinsic therapeutic effect as a therapeutic agent. The functional micellar carriers would be beneficial to maximize the anticancer effect, overcome the drug resistance and reduce the systemic toxicity. In this review, we aim to summarize the recent progress on the development of functional micellar carriers with intrinsic anticancer activities for the delivery of anticancer drugs. This review focuses on the design strategies, properties of carriers and the drug loading behavior. In addition, the combinational therapeutic effects between carriers and chemotherapeutic agents are also discussed.

  2. Natural extracellular nanovesicles and photodynamic molecules: is there a future for drug delivery?

    PubMed

    Kusuzaki, Katsuyuki; Matsubara, Takao; Murata, Hiroaki; Logozzi, Mariantonia; Iessi, Elisabetta; Di Raimo, Rossella; Carta, Fabrizio; Supuran, Claudiu T; Fais, Stefano

    2017-12-01

    Photodynamic molecules represent an alternative approach for cancer therapy for their property (i) to be photo-reactive; (ii) to be not-toxic for target cells in absence of light; (iii) to accumulate specifically into tumour tissues; (iv) to be activable by a light beam only at the tumour site and (v) to exert cytotoxic activity against tumour cells. However, to date their clinical use is limited by the side effects elicited by systemic administration. Extracellular vesicles are endogenous nanosized-carriers that have been recently introduced as a natural delivery system for therapeutic molecules. We have recently shown the ability of human exosomes to deliver photodynamic molecules. Therefore, this review focussed on extracellular vesicles as a novel strategy for the delivery of photodynamic molecules at cancer sites. This completely new approach may enhance the delivery and decrease the toxicity of photodynamic molecules, therefore, represent the future for photodynamic therapy for cancer treatment.

  3. The Effect of Ozone on Colonic Epithelial Cells.

    PubMed

    Himuro, Hidetomo

    2018-05-21

    Due to its strong oxidation activity, ozone has been well known to kill bacteria and exert toxic effects on human tissues. At the same time, ozone is being used for the treatment of diseases such as inflammatory bowel disease in some European countries. However, the use of ozone for therapeutic purposes, despite its strong toxic effects, remains largely unexplored. Interestingly, we found that intrarectal administration of ozone gas induced transient colonic epithelial cell damage characterized by the impairment of cell survival pathways involved in DNA replication, cell cycle, and mismatch repair. However, the damaged cells were rapidly extruded from the epithelial layer, and appeared to immediately stimulate turnover of the epithelial layer in the colon. Therefore, it is possible that ozone gas is able to trigger damage-induced rapid regeneration of intestinal epithelial cells, and that this explains why ozone does not cause harmful or persistent damage in the colon.

  4. Grape seed and skin extract protects kidney from doxorubicin-induced oxidative injury.

    PubMed

    Mokni, Meherzia; Hamlaoui, Sonia; Kadri, Safwen; Limam, Ferid; Amri, Mohamed; Marzouki, Lamjed; Aouani, Ezzedine

    2016-05-01

    The study investigated the protective effect of grape seed and skin extract (GSSE) against doxorubicin-induced renal toxicity in healthy rats. Animals were treated with GSSE or not (control), for 8 days, administered with doxorubicin (20mg/kg) in the 4th day, and renal function as well as oxidative stress parameters were evaluated. Data showed that doxorubicin induced renal toxicity by affecting renal architecture and plasma creatinine. Doxorubicin also induced an oxidative stress characterized by an increase in malondialdehyde (MDA), calcium and H(2)O(2) and a decrease in catalase (CAT) and superoxide dismutase (SOD). Unexpectedly doxorubicin increased peroxidase (POD) and decreased carbonyl protein and plasma urea. Treatment with GSSE counteracted almost all adverse effects induced by doxorubicin. Data suggest that doxorubicin induced an oxidative stress into rat kidney and GSSE exerted antioxidant properties, which seem to be mediated by the modulation of intracellular calcium.

  5. Using Gold Nanoparticles To Disrupt the Tumor Microenvironment: An Emerging Therapeutic Strategy.

    PubMed

    Melamed, Jilian R; Riley, Rachel S; Valcourt, Danielle M; Day, Emily S

    2016-12-27

    Gold nanoparticles have received much attention recently as carriers for anticancer drugs and therapeutic oligonucleotides, but little research has investigated their potential to act as stand-alone therapeutics. Previous studies interrogating their short- and long-term systemic toxicity have found that although gold nanoparticles accumulate within and clear slowly from the liver and spleen, they do not appear to exert toxic effects in these organs. Interestingly, gold nanoparticles innately exhibit the ability to modulate the tumor microenvironment specifically by interfering with crosstalk between tumor cells and stromal cells. In this issue of ACS Nano, Mukherjee and colleagues demonstrate that bare gold nanoparticles can disturb crosstalk between pancreatic stellate cells and pancreatic cancer cells by modulating the cellular secretome to reduce the growth of desmoplastic tissue and inhibit tumor growth. In this Perspective, we highlight opportunities for anticancer targeting within the tumor microenvironment and discuss gold nanoparticles as potential mediators of microenvironment-targeted therapy.

  6. Quantitative Predictive Models for Systemic Toxicity (SOT)

    EPA Science Inventory

    Models to identify systemic and specific target organ toxicity were developed to help transition the field of toxicology towards computational models. By leveraging multiple data sources to incorporate read-across and machine learning approaches, a quantitative model of systemic ...

  7. Comparative Metabolism of Furan in Rodent and Human Cryopreserved Hepatocytes

    PubMed Central

    Gates, Leah A.; Phillips, Martin B.; Matter, Brock A.

    2014-01-01

    Furan is a liver toxicant and carcinogen in rodents. Although humans are most likely exposed to furan through a variety of sources, the effect of furan exposure on human health is still unknown. In rodents, furan requires metabolism to exert its toxic effects. The initial product of the cytochrome P450 2E1-catalyzed oxidation is a reactive α,β-unsaturated dialdehyde, cis-2-butene-1,4-dial (BDA). BDA is toxic and mutagenic and consequently is considered responsible for the toxic effects of furan. The urinary metabolites of furan in rats are derived from the reaction of BDA with cellular nucleophiles, and precursors to these metabolites are detected in furan-exposed hepatocytes. Many of these precursors are 2-(S-glutathionyl)butanedial-amine cross-links in which the amines are amino acids and polyamines. Because these metabolites are derived from the reaction of BDA with cellular nucleophiles, their levels are a measure of the internal dose of this reactive metabolite. To compare the ability of human hepatocytes to convert furan to the same metabolites as rodent hepatocytes, furan was incubated with cryopreserved human and rodent hepatocytes. A semiquantitative liquid chromatography with tandem mass spectrometry assay was developed for a number of the previously characterized furan metabolites. Qualitative and semiquantitative analysis of the metabolites demonstrated that furan is metabolized in a similar manner in all three species. These results indicate that humans may be susceptible to the toxic effects of furan. PMID:24751574

  8. Toxicological and chemical investigation of untreated municipal wastewater: Fraction- and species-specific toxicity.

    PubMed

    Hrubik, Jelena; Glisic, Branka; Tubic, Aleksandra; Ivancev-Tumbas, Ivana; Kovacevic, Radmila; Samardzija, Dragana; Andric, Nebojsa; Kaisarevic, Sonja

    2016-05-01

    Absence of a municipal wastewater (WW) treatment plant results in the untreated WW discharge into the recipient. The present study investigated toxic effects and chemical composition of water extracts and fractions from untreated WW and recipient Danube River (DR). Samples were prepared by solid-phase extraction and silica gel fractionation and screened for EROD activity and cytotoxicity using aquatic models, comprising of fish liver cells (PLHC-1) and a model of the early development of zebrafish embryos, while rat (H4IIE) and human (HepG2) hepatoma cells served as mammalian models. Polar fraction caused cytotoxicity and increased the EROD activity in PLHC-1 cells, and increased mortality and developmental abnormalities in developing zebrafish embryos. In H4IIE, polar fraction induced inhibition of cell growth and increased EROD activity, whereas HepG2 exerted low or no response to the exposure. Non-polar and medium-polar fractions were ineffective. Tentative identification by GC/MS showed that WW is characterized by the hydrocarbons, alkylphenols, plasticizers, and a certain number of benzene derivatives and organic acids. In DR, smaller number of organic compounds was identified and toxicity was less pronounced than in WW treatments. The present study revealed the potent toxic effect of polar fraction of untreated WW, with biological responses varying in sensitivity across organisms. Obtained results confirmed that fraction- and species-specific toxicity should be considered when assessing health risk of environmental pollution. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. A hyaluronic acid nanogel for photo-chemo theranostics of lung cancer with simultaneous light-responsive controlled release of doxorubicin

    NASA Astrophysics Data System (ADS)

    Khatun, Zehedina; Nurunnabi, Md; Nafiujjaman, Md; Reeck, Gerald R.; Khan, Haseeb A.; Cho, Kwang Jae; Lee, Yong-Kyu

    2015-06-01

    The combined delivery of photo- and chemo-therapeutic agents is an emerging strategy to overcome drug resistance in treating cancer, and controlled light-responsive drug release is a proven tactic to produce a continuous therapeutic effect for a prolonged duration. Here, a combination of light-responsive graphene, chemo-agent doxorubicin and pH-sensitive disulfide-bond linked hyaluronic acid form a nanogel (called a graphene-doxorubicin conjugate in a hyaluronic acid nanogel) that exerts an activity with multiple effects: thermo and chemotherapeutic, real-time noninvasive imaging, and light-glutathione-responsive controlled drug release. The nanogel is mono-dispersed with an average diameter of 120 nm as observed by using TEM and a hydrodynamic size analyzer. It has excellent photo-luminescence properties and good stability in buffer and serum solutions. Graphene itself, being photoluminescent, can be considered an optical imaging contrast agent as well as a heat source when excited by laser irradiation. Thus the nanogel shows simultaneous thermo-chemotherapeutic effects on noninvasive optical imaging. We have also found that irradiation enhances the release of doxorubicin in a controlled manner. This release synergizes therapeutic activity of the nanogel in killing tumor cells. Our findings demonstrate that the graphene-doxorubicin conjugate in the hyaluronic acid nanogel is very effective in killing the human lung cancer cell line (A549) with limited toxicity in the non-cancerous cell line (MDCK).The combined delivery of photo- and chemo-therapeutic agents is an emerging strategy to overcome drug resistance in treating cancer, and controlled light-responsive drug release is a proven tactic to produce a continuous therapeutic effect for a prolonged duration. Here, a combination of light-responsive graphene, chemo-agent doxorubicin and pH-sensitive disulfide-bond linked hyaluronic acid form a nanogel (called a graphene-doxorubicin conjugate in a hyaluronic acid nanogel) that exerts an activity with multiple effects: thermo and chemotherapeutic, real-time noninvasive imaging, and light-glutathione-responsive controlled drug release. The nanogel is mono-dispersed with an average diameter of 120 nm as observed by using TEM and a hydrodynamic size analyzer. It has excellent photo-luminescence properties and good stability in buffer and serum solutions. Graphene itself, being photoluminescent, can be considered an optical imaging contrast agent as well as a heat source when excited by laser irradiation. Thus the nanogel shows simultaneous thermo-chemotherapeutic effects on noninvasive optical imaging. We have also found that irradiation enhances the release of doxorubicin in a controlled manner. This release synergizes therapeutic activity of the nanogel in killing tumor cells. Our findings demonstrate that the graphene-doxorubicin conjugate in the hyaluronic acid nanogel is very effective in killing the human lung cancer cell line (A549) with limited toxicity in the non-cancerous cell line (MDCK). Electronic supplementary information (ESI) available: In vitro stability study method and results, FT-IR data, optical properties and thermal stability (TGA and DTA), cell image and in vivo optical image and histological images. See DOI: 10.1039/c5nr01075f

  10. Heavy Metals Toxicity and the Environment

    PubMed Central

    Tchounwou, Paul B; Yedjou, Clement G; Patlolla, Anita K; Sutton, Dwayne J

    2013-01-01

    Heavy metals are naturally occurring elements that have a high atomic weight and a density at least 5 times greater than that of water. Their multiple industrial, domestic, agricultural, medical and technological applications have led to their wide distribution in the environment; raising concerns over their potential effects on human health and the environment. Their toxicity depends on several factors including the dose, route of exposure, and chemical species, as well as the age, gender, genetics, and nutritional status of exposed individuals. Because of their high degree of toxicity, arsenic, cadmium, chromium, lead, and mercury rank among the priority metals that are of public health significance. These metallic elements are considered systemic toxicants that are known to induce multiple organ damage, even at lower levels of exposure. They are also classified as human carcinogens (known or probable) according to the U.S. Environmental Protection Agency, and the International Agency for Research on Cancer. This review provides an analysis of their environmental occurrence, production and use, potential for human exposure, and molecular mechanisms of toxicity, genotoxicity, and carcinogenicity. PMID:22945569

  11. Executive Order 12898 and Social, Economic, and Sociopolitical Factors Influencing Toxic Release Inventory Facility Location in EPA Region 6: A Multi-Scale Spatial Assessment of Environmental Justice

    ERIC Educational Resources Information Center

    Moore, Andrea Lisa

    2013-01-01

    Toxic Release Inventory facilities are among the many environmental hazards shown to create environmental inequities in the United States. This project examined four factors associated with Toxic Release Inventory, specifically, manufacturing facility location at multiple spatial scales using spatial analysis techniques (i.e., O-ring statistic and…

  12. [Visits of patients with exertional rhabdomyolysis to the Emergency Department at Landspítali, The National University Hospital of Iceland in the years 2008-2012].

    PubMed

    Halldorsson, Arnljotur Bjorn; Benedikz, Elisabet; Olafsson, Isleifur; Mogensen, Brynjolfur

    2016-03-01

    Overexertion and too much training are among the -multiple etiologies of rhabdomyolysis. Creatine kinase (CK) and myo-globine, released from skeletal muscle cells, are useful for diagnosis and follow-up. Acute kidney injury is a serious complication of myoglobinemia. Literature on exertional rhabdomyolysis in the general population is scarce. The aim of this study was to investigate the epidemiology of exertional rhabdomyolysis among patients diagnosed at Landspítali The National University Hospital of Iceland in 2008-2012. The study was retrospective and observational. All patients presenting with muscle pain after exertion and elevated creatine kinase >1000 IU/L, during the period from 1 January 2008 to 31 December 2012, were included. Patients with CK elevations secondary to causes other than exertion were excluded. Variables included: patient number and gender, CK-levels, date of hospital admission, cause of rhabdomyolysis, location of injured muscle groups, length of hospital stay, complications and means of fluid replacement. Population figures of the capital region were gathered from Statistics Iceland and information on sport practice in the capital region from The National Olympic and Sports Association of Iceland. Exertional rhabdomyolysis was diagnosed in 54 patients, 18 females (33,3%) and 36 males (66,7%), or 8,3% of rhabdomyolysis cases from all causes in the study period (648 cases). Incidence in the capital region was 5,0/100.000 inhabitants per year in the study period. Median age was 28 years and median CK-level was 24.132 IU/L. CK-levels were higher among females but the difference between genders was not significant. Muscle groups of the upper and lower extremities were most frequently affected (89%). Thirty patients received intravenous fluids. They had significantly higher CK values than other patients. One patient developed acute kidney injury. Information on sport practice and physical training in the capital region was not available. Exertional rhabdomyolysis is uncommon but mostly affects younger people. Information on the practice of exertion among males and females is not available but CK-levels were not significantly different between genders, age groups or different muscle groups. CK-levels were high but complications uncommon. Studies of exertional rhabdomyolysis in the general population are lacking. Rhabdomyolysis, exertion, sports, physical training, CK elevation. Correspondence: Brynjolfur Mogensen, brynmog@landspitali.is.

  13. Organic Anion Transporting Polypeptide (OATP)2B1 Contributes to Gastrointestinal Toxicity of Anticancer Drug SN-38, Active Metabolite of Irinotecan Hydrochloride.

    PubMed

    Fujita, Daichi; Saito, Yoshimasa; Nakanishi, Takeo; Tamai, Ikumi

    2016-01-01

    Gastrointestinal toxicity, such as late-onset diarrhea, is a significant concern in irinotecan hydrochloride (CPT-11)-containing regimens. Prophylaxis of late-onset diarrhea has been reported with use of Japanese traditional (Kampo) medicine containing baicalin and with the antibiotic cefixime, and this has been explained in terms of inhibition of bacterial deconjugation of SN-38-glucuronide since unconjugated SN-38 (active metabolite of CPT-11) is responsible for the gastrointestinal toxicity. It is also prerequisite for SN-38 to be accumulated in intestinal tissues to exert toxicity. Based on the fact that liver-specific organic anion transporting polypeptide (OATP)1B1, a member of the same family as OATP2B1, is known to be involved in hepatic transport of SN-38, we hypothesized that intestinal transporter OATP2B1 contributes to the accumulation of SN-38 in gastrointestinal tissues, and its inhibition would help prevent associated toxicity. We found that uptake of SN-38 by OATP2B1-expressing Xenopus oocytes was significantly higher than that by control oocytes. OATP2B1-mediated uptake of SN-38 was saturable, pH dependent, and decreased in the presence of baicalin, cefixime, or fruit juices such as apple juice. In vivo gastrointestinal toxicity of SN-38 in mice caused by oral administration for consecutive 5 days was prevented by coingestion of apple juice. Thus, OATP2B1 contributes to the uptake of SN-38 by intestinal tissues, triggering gastrointestinal toxicity. So, in addition to the reported inhibition of bacterial β-glucuronidase by cefixime or baicalin, inhibition of OATP2B1 may also contribute to prevention of gastrointestinal toxicity. Apple juice may be helpful for prophylaxis of late-onset diarrhea observed in CPT-11 therapy without disturbance of the intestinal microflora. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  14. Toxicity study of a rubber antioxidant, mixture of 2-mercaptomethylbenzimidazoles, by repeated oral administration to rats.

    PubMed

    Saitoh, M; Umemura, T; Kawasaki, Y; Momma, J; Matsushima, Y; Sakemi, K; Isama, K; Kitajima, S; Ogawa, Y; Hasegawa, R; Suzuki, T; Hayashi, M; Inoue, T; Ohno, Y; Sofuni, T; Kurokawa, Y; Tsuda, M

    1999-07-01

    2-Mercaptobenzimidazole (2-MBI), a rubber antioxidant, is known to exhibit potent antithyroid toxicity in rats and is a candidate as an environmental endocrine disrupter. 2-Mercaptomethylbenzimidazoles (a 1:1 mixture of 4-methyl and 5-methyl isomers, MMBIs), are also employed industrially as rubber antioxidants and are suspected to exert antithyroid toxicity such as 2-MBI. In this investigation, acute and subacute oral toxicity studies of MMBIs in Wistar rats were conducted. The clinical signs of acute oral toxicity were observed including decreased spontaneous movement, a paralytic gait, salivation and lacrimation, and adoption of prone and lateral positions. The LD50 was estimated to be 330 mg/kg. In the subacute oral toxicity study, male and female rats were treated with MMBIs by gavage at doses of 0 (corn oil), 4, 20 and 100 mg/kg for 28 consecutive days followed by a 2-week recovery period for the control and highest dose groups. Body weight and food consumption, clinical signs, organ weights, clinical biochemistry and haematological parameters including clotting times and micronuclei induction in bone marrow erythropoeitic cells, and histopathology were examined. Relative organ weights of lung, liver and kidney, and serum cholesterol and phospholipid significantly increased in male rats treated with MMBIs at doses of 20 and 100 mg/kg. Male rats administered 100 mg/kg MMBIs exhibited a 1.8-fold increase in thyroid weight associated with histopathological changes but not altered serum thyroid hormone levels. Female rats administered 100 mg MMBIs/kg exhibited significant increases of liver and kidney but not thyroid weights, and serum cholesterol level. The antithyroid toxicity of MMBIs in rats was estimated to be one-tenth that of 2-MBI. No-observed-effect levels for male and female rats were found to be 4 and 20 mg/kg, respectively, in this subacute oral toxicity study.

  15. Vitamin E δ-tocotrienol triggers endoplasmic reticulum stress-mediated apoptosis in human melanoma cells

    PubMed Central

    Montagnani Marelli, Marina; Marzagalli, Monica; Moretti, Roberta M.; Beretta, Giangiacomo; Casati, Lavinia; Comitato, Raffaella; Gravina, Giovanni L.; Festuccia, Claudio; Limonta, Patrizia

    2016-01-01

    Malignant melanoma is the leading cause of death from skin cancer. Drug toxicity and resistance represent a serious challange for melanoma treatments. Evidence demonstrates that natural compounds may play a crucial role in cancer prevention, growth and progression. Vitamin E tocotrienols (TT) were shown to possess antitumor activity. Here, we analyzed the effects of δ-TT on melanoma cell growth and the involvement of the endoplasmic reticulum (ER) stress in this activity. The experiments were performed on human melanoma cell lines, BLM and A375. δ-TT exerted a significant proapoptotic effect on both cell lines, involving the intrinsic apoptosis pathway; importantly, this compound did not affect the viability of normal human melanocytes. In melanoma cells, δ-TT exerted its antitumor effect through activation of the PERK/p-eIF2α/ATF4/CHOP, IRE1α and caspase-4 ER stress-related branches. Salubrinal, an inhibitor of the ER stress, counteracted the cytotoxic activity of δ-TT. In vivo experiments performed in nude mice bearing A375 xenografts evidenced that δ-TT reduces tumor volume and tumor mass; importantly, tumor progression was significantly delayed by δ-TT treatment. In conclusion, δ-TT exerts a proapoptotic activity on melanoma cells, through activation of the ER stress-related pathways. δ-TT might represent an effective option for novel chemopreventive/therapeutic strategies for melanoma. PMID:27461002

  16. Protective and therapeutic effects of fucoxanthin against sunburn caused by UV irradiation.

    PubMed

    Matsui, Mio; Tanaka, Kosuke; Higashiguchi, Naoki; Okawa, Hisato; Yamada, Yoichi; Tanaka, Ken; Taira, Soichiro; Aoyama, Tomoko; Takanishi, Misaki; Natsume, Chika; Takakura, Yuuki; Fujita, Norihisa; Hashimoto, Takeshi; Fujita, Takashi

    2016-09-01

    Mild exposure to ultraviolet (UV) radiation is also harmful and hazardous to the skin and often causes a photosensitivity disorder accompanied by sunburn. To understand the action of UV on the skin we performed a microarray analysis to isolate UV-sensitive genes. We show here that UV irradiation promoted sunburn and downregulated filaggrin (Flg); fucoxanthin (FX) exerted a protective effect. In vitro analysis showed that UV irradiation of human dermal fibroblasts caused production of intracellular reactive oxygen species (ROS) without cellular toxicity. ROS production was diminished by N-acetylcysteine (NAC) or FX, but not by retinoic acid (RA). In vivo analysis showed that UV irradiation caused sunburn and Flg downregulation, and that FX, but not NAC, RA or clobetasol, exerted a protective effect. FX stimulated Flg promoter activity in a concentration-dependent manner. Flg promoter deletion and chromatin immunoprecipitation analysis showed that caudal type homeo box transcription factor 1 (Cdx1) was a key factor for Flg induction. Cdx1 was also downregulated in UV-exposed skin. Therefore, our data suggested that the protective effects of FX against UV-induced sunburn might be exerted by promotion of skin barrier formation through induction of Flg, unrelated to quenching of ROS or an RA-like action. Copyright © 2016 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  17. Antioxidant and antiradical properties of esculin, and its effect in a model of epirubicin-induced bone marrow toxicity.

    PubMed

    Biljali, Sefedin; Hadjimitova, Vera A; Topashka-Ancheva, Margarita N; Momekova, Denitsa B; Traykov, Trayko T; Karaivanova, Margarita H

    2012-01-01

    To evaluate the effect of esculin, a plant coumarin glucoside, on free radicals and against epirubicin-induced toxicity on bone marrow cells. Antioxidant activity was assessed by a luminol-dependent chemiluminescence method or NBT test in a xanthine-xanthine oxidase system, and two iron-dependent lipid peroxidation systems. In vivo experiments were carried out in epirubicin-treated mice, alone or in a combination with esculin. Genotoxicity of the anthracycline drug was assessed by cytogenetic analysis and an autoradiographic assay. Esculin inactivated superoxide anion radicals in both systems we used. It exerted SOD-mimetic effect and reduced the level of superoxide radicals generated in a xanthine-xanthine oxidase system by 30%. Esculin also showed an antioxidant effect in a model of Fe2+-induced lipid peroxidation. Cytogenetic analysis showed that epirubicin had a marked influence on the structure of metaphase chromosomes of normal bone marrow cells. Inclusion of esculin in the treatment protocol failed to ameliorate the epirubicin-induced antiproliferative effects and genotoxicity in bone marrow cells. In this study the ability of the coumarin glucoside esculin to scavenge superoxide radicals and to decrease Fe-induced lipid peroxidation was documented. However, despite the registered antioxidant effects the tested compound failed to exert cytoprotection in models of anthracycline-induced genotoxicity in bone marrow cells. The results of this study warrant for more precise further evaluation of esculin, employing different test systems and end-points and a wider range of doses to more precisely appraise its potential role as a chemoprotective/resque agent.

  18. Interacting Compasses

    ERIC Educational Resources Information Center

    Riveros, Hector G.; Betancourt, Julian

    2009-01-01

    The use of multiple compasses to map and visualize magnetic fields is well-known. The magnetic field exerts a torque on the compasses aligning them along the lines of force. Some science museums show the field of a magnet using a table with many compasses in a closely packed arrangement. However, the very interesting interactions that occur…

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng, E-mail: yinsheng.wang@ucr.edu

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 humanmore » skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA(III) perturbs Nrf2 pathway and selenoprotein synthesis.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Wei; Fu, Jianfang; Zhang, Shun

    Understanding how chemotherapeutic agents mediate testicular toxicity is crucial in light of compelling evidence that male infertility, one of the severe late side effects of intensive cancer treatment, occurs more often than they are expected to. Previous study demonstrated that bortezomib (BTZ), a 26S proteasome inhibitor used to treat refractory multiple myeloma (MM), exerts deleterious impacts on spermatogenesis in pubertal mice via unknown mechanisms. Here, we showed that intermittent treatment with BTZ resulted in fertility impairment in adult mice, evidenced by testicular atrophy, desquamation of immature germ cells and reduced caudal sperm storage. These deleterious effects may originate from themore » elevated apoptosis in distinct germ cells during the acute phase and the subsequent disruption of Sertoli–germ cell anchoring junctions (AJs) during the late recovery. Mechanistically, balance between AMP-activated protein kinase (AMPK) activation and Akt/ERK pathway appeared to be indispensable for AJ integrity during the late testicular recovery. Of particular interest, the upregulated testicular apoptosis and the following disturbance of Sertoli–germ cell interaction may both stem from the excessive oxidative stress elicited by BTZ exposure. We also provided the in vitro evidence that AMPK-dependent mechanisms counteract follicle-stimulating hormone (FSH) proliferative effects in BTZ-exposed Sertoli cells. Collectively, BTZ appeared to efficiently prevent germ cells from normal development via multiple mechanisms in adult mice. Employment of antioxidants and/or AMPK inhibitor may represent an attractive strategy of fertility preservation in male MM patients exposed to conventional BTZ therapy and warrants further investigation. - Highlights: • Intermittent treatment with BTZ caused fertility impairment in adult mice. • BTZ treatment elicited apoptosis during early phase of testicular recovery. • Up-regulation of oxidative stress by BTZ treatment disrupted AJs dynamics. • BTZ treatment stimulated AMPK activity during late phase of testicular recovery. • AMPK-dependent mechanisms counteract FSH proliferative effects in BTZ-exposed SCs.« less

  1. Microbiological and toxicological effects of Perla black bean (Phaseolus vulgaris L.) extracts: in vitro and in vivo studies.

    PubMed

    Lara-Díaz, Víctor Javier; Gaytán-Ramos, Angel A; Dávalos-Balderas, Alfredo José; Santos-Guzmán, Jesús; Mata-Cárdenas, Benito David; Vargas-Villarreal, Javier; Barbosa-Quintana, Alvaro; Sanson, Misu; López-Reyes, Alberto Gabriel; Moreno-Cuevas, Jorge E

    2009-02-01

    We investigated the microbiological and toxicological effects of three Perla black bean extracts on the growth and culture of selected pathogenic microorganisms, the toxicity over Vero cell lines and an in vivo rat model. Three different solvents were used to obtain Perla black bean extracts. All three Perla black bean extracts were tested for antibacterial and antiparasitic activity and further analysed for intrinsic cytotoxicity (IC(50)). Methanol Perla black bean extract was used for acute toxicity test in rats, with the up-and-down doping method. All Perla black bean extracts inhibited bacterial growth. Pseudomonas aeruginosa, Proteus vulgaris, Klebsiella oxytoca, Enterococcus faecalis, Staphylococcus aureus, Staphylococcus epidermidis and Listeria monocytogenes showed inhibition, while Escherichia coli and Enterobacter aerogenes did not. Acidified water and acetic acid Perla black bean extract were tested in parasites. The best IC(50) was observed for Giardia lamblia, while higher concentrations were active against Entamoeba histolytica and Trichomonas vaginalis. The Vero cells toxicity levels (IC(50)) for methanol, acidified water and acetic acid Perla black bean extract were [mean +/- S.D. (95% CI)]: 275 +/- 6.2 (267.9-282.0), 390 +/- 4.6 (384.8-395.2) and 209 +/- 3.39 (205.6-212.4) microg/ml, respectively. In vivo acute toxicity assays did not show changes in absolute organ weights, gross and histological examinations of selected tissues or functional tests. The acetic acid and methanol Perla black bean extract proved to exhibit strong antibacterial activity and the acidified water Perla black bean extract exerted parasiticidal effects against Giardia lamblia, Entamoeba hystolitica and Trichomonas vaginalis. The three Perla black bean extracts assayed over Vero cells showed very low toxicity and the methanol Perla black bean extract in vivo did not cause toxicity.

  2. Including Bioconcentration Kinetics for the Prioritization and Interpretation of Regulatory Aquatic Toxicity Tests of Highly Hydrophobic Chemicals.

    PubMed

    Kwon, Jung-Hwan; Lee, So-Young; Kang, Hyun-Joong; Mayer, Philipp; Escher, Beate I

    2016-11-01

    Worldwide, regulations of chemicals require short-term toxicity data for evaluating hazards and risks of the chemicals. Current data requirements on the registration of chemicals are primarily based on tonnage and do not yet consider properties of chemicals. For example, short-term ecotoxicity data are required for chemicals with production volume greater than 1 or 10 ton/y according to REACH, without considering chemical properties. Highly hydrophobic chemicals are characterized by low water solubility and slow bioconcentration kinetics, which may hamper the interpretation of short-term toxicity experiments. In this work, internal concentrations of highly hydrophobic chemicals were predicted for standard acute ecotoxicity tests at three trophic levels, algae, invertebrate, and fish. As demonstrated by comparison with maximum aqueous concentrations at water solubility, chemicals with an octanol-water partition coefficient (K ow ) greater than 10 6 are not expected to reach sufficiently high internal concentrations for exerting effects within the test duration of acute tests with fish and invertebrates, even though they might be intrinsically toxic. This toxicity cutoff was explained by the slow uptake, i.e., by kinetics, not by thermodynamic limitations. Predictions were confirmed by data entries of the OECD's screening information data set (SIDS) (n = 746), apart from a few exceptions concerning mainly organometallic substances and those with inconsistency between water solubility and K ow . Taking error propagation and model assumptions into account, we thus propose a revision of data requirements for highly hydrophobic chemicals with log K ow > 7.4: Short-term toxicity tests can be limited to algae that generally have the highest uptake rate constants, whereas the primary focus of the assessment should be on persistence, bioaccumulation, and long-term effects.

  3. Altered susceptibility of an obese rat model to 13-week subchronic toxicity induced by 3-monochloropropane-1,2-diol.

    PubMed

    Toyoda, Takeshi; Cho, Young-Man; Akagi, Jun-Ichi; Mizuta, Yasuko; Matsushita, Kohei; Nishikawa, Akiyoshi; Imaida, Katsumi; Ogawa, Kumiko

    2017-01-01

    3-Monochloropropane-1,2-diol (3-MCPD) is a heat-induced food contaminant that has been shown to be a nongenotoxic renal carcinogen. Although the toxicity of 3-MCPD has been widely investigated for decades, there is a further concern that 3-MCPD might exert more potent toxicity in high-risk population with underlying diseases such as hyperlipidemia associated with obesity. In the present study, we performed a 13-week subchronic toxicity study for 3-MCPD using an obesity rat model to investigate the differences in susceptibility between obese and normal individuals. Male F344 and obese Zucker (lean and fatty) rats were administered 0, 9, 28.5, 90, 285, or 900 ppm 3-MCPD in drinking water for 13 weeks. 3-MCPD treatment decreased body weight gain, increased relative kidney weights, induced anemia, and induced epithelial cell necrosis in epididymal ducts in all 3 strains. The degrees of epididymal damage were higher in F344 and lean rats than in fatty rats, while renal toxicity was most potent in F344 rats and comparable in lean and fatty rats. In contrast, the hematology data indicated that anemia was worse in fatty rats than in F344 and lean rats, and a significant decrease in hematopoietic cells in the bone marrow was observed only in fatty rats. The no-observed-adverse-effect level was estimated to be 28.5 ppm in all 3 strains for 3-MCPD. These results suggested that obese Zucker rats may be more susceptible to 3-MCPD-dependent toxicity in the hematopoietic tissues than their lean counterparts.

  4. Effect of media composition on bioavailability and toxicity of silver and silver nanoparticles in fish intestinal cells (RTgutGC).

    PubMed

    Minghetti, Matteo; Schirmer, Kristin

    2016-12-01

    To understand conditions affecting bioavailability and toxicity of citrate-coated silver nanoparticles (cit-AgNP) and dissolved silver at the luminal enterocyte interface, we exposed rainbow trout (Oncorhynchus mykiss) gut cells (RTgutGC) in media of contrasting composition: two amino acid-containing media, one of which was supplemented with proteins, as can be expected during digestion; and two protein and amino acid-free media contrasting low and high chloride content, as can be expected in the lumen of fish adapting to freshwater or seawater, respectively. Dose-response curves were generated measuring cell metabolic activity, membrane and lysosome integrity over a period of 72 hours. Then, nontoxic doses were applied and total silver accumulation, metallothionein and glutathione reductase mRNA levels were determined. The presence of proteins stabilized cit-AgNP keeping them in suspension. Conversely, in protein-free media, cit-AgNP agglomerated and settled, resulting in higher cellular accumulation of silver and toxicity. Chloride concentrations in exposure media modulated the toxicity of AgNO 3 but not of cit-AgNP. Moreover, while amino acid-containing media are protective against AgNO 3 , likely due to the formation of thiolate complexes, they are only partially protective against cit-AgNP. Viability assays indicated that lysosomes are targets of cit-AgNP, supporting the hypothesis that cit-AgNP exert toxicity intracellularly. Metallothionein, a sensor of metal bioavailability, was induced by cit-AgNP in high chloride medium but not in low chloride medium, indicating that chloride might have a role in mobilizing silver from intercellular vesicles. Overall, this study shows that AgNP bioavailability and toxicity in the intestine is linked to its luminal content.

  5. Implication of oxidative stress in size-dependent toxicity of silica nanoparticles in kidney cells.

    PubMed

    Passagne, Isabelle; Morille, Marie; Rousset, Marine; Pujalté, Igor; L'azou, Béatrice

    2012-09-28

    Silica nanoparticles (nano-SiO(2)) are one of the most popular nanomaterials used in industrial manufacturing, synthesis, engineering and medicine. While inhalation of nanoparticles causes pulmonary damage, nano-SiO(2) can be transported into the blood and deposit in target organs where they exert potential toxic effects. Kidney is considered as such a secondary target organ. However, toxicological information of their effect on renal cells and the mechanisms involved remain sparse. In the present study, the cytotoxicity of nano-SiO(2) of different sizes was investigated on two renal proximal tubular cell lines (human HK-2 and porcine LLC-PK(1)). The molecular pathways involved were studied with a focus on the involvement of oxidative stress. Nanoparticle characterization was performed (primary nanoparticle size, surface area, dispersion) in order to investigate a potential relationship between their physical properties and their toxic effects. Firstly, evidence of particle internalization was obtained by transmission electron microscopy and conventional flux cytometry techniques. The use of specific inhibitors of endocytosis pathways showed an internalization process by macropinocytosis and clathrin-mediated endocytosis for 100 nm nano-SiO(2) nanoparticles. These nanoparticles were localized in vesicles. Toxicity was size- and time-dependent (24h, 48 h, 72 h). Indeed, it increased as nanoparticles became smaller. Secondly, analysis of oxidative stress based on the assessment of ROS (reactive oxygen species) production (DHE, dihydroethidium) or lipid peroxidation (MDA, malondialdehyde) clearly demonstrated the involvement of oxidative stress in the toxicity of 20 nm nano-SiO(2). The induction of antioxidant enzymes (catalase, GSTpi, thioredoxin reductase) could explain their lesser toxicity with 100 nm nano-SiO(2). Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  6. Toxicity of medicinal plants used in traditional medicine in Northern Peru

    PubMed Central

    Bussmann, R.W.; Malca, G.; Glenn, A.; Sharon, D.; Nilsen, B.; Parris, B.; Dubose, D; Ruiz, D.; Saleda, J.; Martinez, M.; Carillo, L.; Walker, K.; Kuhlman, A.; Townesmith, A.

    2011-01-01

    Aim The plant species reported here are traditionally used in Northern Peru for a wide range of illnesses. Most remedies are prepared as ethanol or aqueous extracts and then ingested. The aim of this study was to evaluate the potential toxicity of these extracts. Materials and methods The toxicity of ethanolic and water extracts of 341 plant species was determined using a Brine-Shrimp assay. Results Overall 24% of the species in water extract and 76% of the species in alcoholic extract showed elevated toxicity levels to brine-shrimp. Although in most cases multiple extracts of the same species showed very similar toxicity values, in some cases the toxicity of different extracts of the same species varied from non-toxic to highly toxic. Conclusions Traditional preparation methods take different toxicity levels in aqueous and ethanol extracts into account when choosing the appropriate solvent for the preparation of a remedy. PMID:21575699

  7. Selenium and Human Health: Witnessing a Copernican Revolution?

    PubMed

    Jablonska, Ewa; Vinceti, Marco

    2015-01-01

    In humans, selenium was hypothesized to lower the risk of several chronic diseases, mainly due to the antioxidant activity of selenium-containing proteins. Recent epidemiologic and laboratory studies, however, are changing our perception of the biological effects of this nutritionally essential trace element. We reviewed the most recent epidemiologic and biochemical literature on selenium, synthesizing the findings from these studies into a unifying view. Randomized trials have shown that selenium did not protect against cancer and other chronic diseases, but even increased the risk of specific neoplasms such as advanced prostate cancer and skin cancer, in addition to type 2 diabetes. Biochemical studies indicate that selenium may exert a broad pattern of toxic effects at unexpectedly low concentrations. Furthermore, its upregulation of antioxidant proteins (selenium-dependent and selenium-independent) may be a manifestation of self-induced oxidative stress. In conclusion, toxic effects of selenium species occur at lower concentrations than previously believed. Those effects may include a large range of proteomic changes and adverse health effects in humans. Since the effects of environmental exposure to this element on human health still remain partially unknown, but are potentially serious, the toxicity of selenium exposure should be further investigated and considered as a public health priority.

  8. In Vitro Evaluations and In Vivo Toxicity and Efficacy Studies of MFM501 against MRSA.

    PubMed

    Johari, Saiful Azmi; Mohtar, Mastura; Syed Mohamad, Sharifah Aminah; Mohammat, Mohd Fazli; Sahdan, Rohana; Mohamed, Azman; Mohamad Ridhwan, Mohamad Jemain

    2017-01-01

    Previously we have discovered a synthetically derived pyrrolidone alkaloid, MFM501, exhibiting good inhibitory activity against 53 MRSA and MSSA isolates with low cytotoxicity against three normal cell-lines with IC 50 values at >625  µ g/ml. Time-kill assay, scanning electron microscopy (SEM) analysis, in vivo oral acute toxicity test, and mice peritonitis model were carried out in this study. In the time-kill study, MFM501 showed a less than 3 log 10 decrease in bacterial colony concentration value (CFU/ml) which represented a bacteriostatic action while displaying a time-dependent inhibitory mechanism. Following that, SEM analysis suggested that MFM501 may exert its inhibitory activity via cytoplasmic membrane disruption. Moreover, MFM501 showed no toxicity effect on treated mice at an estimated median acute lethal dose (LD 50 ) value of more than 300 mg/kg and less than 2000 mg/kg. For the efficacy test, a mean effective dose (ED 50 ) of 87.16 mg/kg was obtained via a single dose oral administration. Our data demonstrated that MFM501 has the potential to be developed further as a new, safe, and effective oral-delivered antibacterial agent against MRSA isolates.

  9. In Vitro Evaluations and In Vivo Toxicity and Efficacy Studies of MFM501 against MRSA

    PubMed Central

    Mohtar, Mastura; Syed Mohamad, Sharifah Aminah; Mohammat, Mohd Fazli; Sahdan, Rohana; Mohamed, Azman; Mohamad Ridhwan, Mohamad Jemain

    2017-01-01

    Previously we have discovered a synthetically derived pyrrolidone alkaloid, MFM501, exhibiting good inhibitory activity against 53 MRSA and MSSA isolates with low cytotoxicity against three normal cell-lines with IC50 values at >625 µg/ml. Time-kill assay, scanning electron microscopy (SEM) analysis, in vivo oral acute toxicity test, and mice peritonitis model were carried out in this study. In the time-kill study, MFM501 showed a less than 3 log10 decrease in bacterial colony concentration value (CFU/ml) which represented a bacteriostatic action while displaying a time-dependent inhibitory mechanism. Following that, SEM analysis suggested that MFM501 may exert its inhibitory activity via cytoplasmic membrane disruption. Moreover, MFM501 showed no toxicity effect on treated mice at an estimated median acute lethal dose (LD50) value of more than 300 mg/kg and less than 2000 mg/kg. For the efficacy test, a mean effective dose (ED50) of 87.16 mg/kg was obtained via a single dose oral administration. Our data demonstrated that MFM501 has the potential to be developed further as a new, safe, and effective oral-delivered antibacterial agent against MRSA isolates. PMID:28536702

  10. p-Cresyl Sulfate

    PubMed Central

    Gryp, Tessa; Vanholder, Raymond; Vaneechoutte, Mario; Glorieux, Griet

    2017-01-01

    If chronic kidney disease (CKD) is associated with an impairment of kidney function, several uremic solutes are retained. Some of these exert toxic effects, which are called uremic toxins. p-Cresyl sulfate (pCS) is a prototype protein-bound uremic toxin to which many biological and biochemical (toxic) effects have been attributed. In addition, increased levels of pCS have been associated with worsening outcomes in CKD patients. pCS finds its origin in the intestine where gut bacteria metabolize aromatic amino acids, such as tyrosine and phenylalanine, leading to phenolic end products, of which pCS is one of the components. In this review we summarize the biological effects of pCS and its metabolic origin in the intestine. It appears that, according to in vitro studies, the intestinal bacteria generating phenolic compounds mainly belong to the families Bacteroidaceae, Bifidobacteriaceae, Clostridiaceae, Enterobacteriaceae, Enterococcaceae, Eubacteriaceae, Fusobacteriaceae, Lachnospiraceae, Lactobacillaceae, Porphyromonadaceae, Staphylococcaceae, Ruminococcaceae, and Veillonellaceae. Since pCS remains difficult to remove by dialysis, the gut microbiota could be a future target to decrease pCS levels and its toxicity, even at earlier stages of CKD, aiming at slowing down the progression of the disease and decreasing the cardiovascular burden. PMID:28146081

  11. Plant phenolics are detoxified by prophenoloxidase in the insect gut

    PubMed Central

    Wu, Kai; Zhang, Jie; Zhang, Qiaoli; Zhu, Shoulin; Shao, Qimiao; Clark, Kevin D.; Liu, Yining; Ling, Erjun

    2015-01-01

    Plant phenolics are a group of important secondary metabolites that are toxic to many animals and insects if ingested at high concentrations. Because most insects consume plant phenolics daily, they have likely evolved the capacity to detoxify these compounds. Here, we used Drosophila melanogaster, Bombyx mori and Helicoverpa armigera as models to study the metabolism of plant phenolics by prophenoloxidases. We found that insect foreguts release prophenoloxidases into the lumen, and that the survival of prophenoloxidase-deletion mutants was impaired when fed several plant phenolics and tea extracts. Using l-DOPA as a model substrate, biochemical assays in large Lepidopteran insects demonstrated that low levels of l-DOPA are rapidly metabolized into intermediates by phenoloxidases. Feeding with excess l-DOPA showed that the metabolic intermediate 5,6-dihydroxyindole reached the hindgut either by passing directly through the midgut, or by transport through the hemolymph. In the hindgut, 5,6-dihydroxyindole was further oxidized by prophenoloxidases. Intermediates exerted no toxicity in the hemocoel or midgut. These results show that plant phenolics are not toxic to insects unless prophenoloxidase genes are lost or the levels of phenolics exceed the catalytic activity of the gut prophenoloxidases. PMID:26592948

  12. Photoprotection by foliar anthocyanins mitigates effects of boron toxicity in sweet basil (Ocimum basilicum).

    PubMed

    Landi, Marco; Guidi, Lucia; Pardossi, Alberto; Tattini, Massimiliano; Gould, Kevin S

    2014-11-01

    Boron (B) toxicity is an important agricultural problem in arid environments. Excess edaphic B compromises photosynthetic efficiency, limits growth and reduces crop yield. However, some purple-leafed cultivars of sweet basil (Ocimum basilicum) exhibit greater tolerance to high B concentrations than do green-leafed cultivars. We hypothesised that foliar anthocyanins protect basil leaf mesophyll from photo-oxidative stress when chloroplast function is compromised by B toxicity. Purple-leafed 'Red Rubin' and green-leafed 'Tigullio' cultivars, grown with high or negligible edaphic B, were given a photoinhibitory light treatment. Possible effects of photoabatement by anthocyanins were simulated by superimposing a purple polycarbonate filter on the green leaves. An ameliorative effect of light filtering on photosynthetic quantum yield and on photo-oxidative load was observed in B-stressed plants. In addition, when green protoplasts from both cultivars were treated with B and illuminated through a screen of anthocyanic protoplasts or a polycarbonate film which approximated cyanidin-3-O-glucoside optical properties, the degree of photoinhibition, hydrogen peroxide production, and malondialdehyde content were reduced. The data provide evidence that anthocyanins exert a photoprotective role in purple-leafed basil mesophyll cells, thereby contributing to improved tolerance to high B concentrations.

  13. Neuroprotective effect of cannabidiol, a non-psychoactive component from Cannabis sativa, on beta-amyloid-induced toxicity in PC12 cells.

    PubMed

    Iuvone, Teresa; Esposito, Giuseppe; Esposito, Ramona; Santamaria, Rita; Di Rosa, Massimo; Izzo, Angelo A

    2004-04-01

    Abstract Alzheimer's disease is widely held to be associated with oxidative stress due, in part, to the membrane action of beta-amyloid peptide aggregates. Here, we studied the effect of cannabidiol, a major non-psychoactive component of the marijuana plant (Cannabis sativa) on beta-amyloid peptide-induced toxicity in cultured rat pheocromocytoma PC12 cells. Following exposure of cells to beta-amyloid peptide (1 micro g/mL), a marked reduction in cell survival was observed. This effect was associated with increased reactive oxygen species (ROS) production and lipid peroxidation, as well as caspase 3 (a key enzyme in the apoptosis cell-signalling cascade) appearance, DNA fragmentation and increased intracellular calcium. Treatment of the cells with cannabidiol (10(-7)-10(-4)m) prior to beta-amyloid peptide exposure significantly elevated cell survival while it decreased ROS production, lipid peroxidation, caspase 3 levels, DNA fragmentation and intracellular calcium. Our results indicate that cannabidiol exerts a combination of neuroprotective, anti-oxidative and anti-apoptotic effects against beta-amyloid peptide toxicity, and that inhibition of caspase 3 appearance from its inactive precursor, pro-caspase 3, by cannabidiol is involved in the signalling pathway for this neuroprotection.

  14. Non-transferrin bound iron: a key role in iron overload and iron toxicity.

    PubMed

    Brissot, Pierre; Ropert, Martine; Le Lan, Caroline; Loréal, Olivier

    2012-03-01

    Besides transferrin iron, which represents the normal form of circulating iron, non-transferrin bound iron (NTBI) has been identified in the plasma of patients with various pathological conditions in which transferrin saturation is significantly elevated. To show that: i) NTBI is present not only during chronic iron overload disorders (hemochromatosis, transfusional iron overload) but also in miscellaneous diseases which are not primarily iron overloaded conditions; ii) this iron species represents a potentially toxic iron form due to its high propensity to induce reactive oxygen species and is responsible for cellular damage not only at the plasma membrane level but also towards different intracellular organelles; iii) the NTBI concept may be expanded to include intracytosolic iron forms which are not linked to ferritin, the major storage protein which exerts, at the cellular level, the same type of protective effect towards the intracellular environment as transferrin in the plasma. Plasma NTBI and especially labile plasma iron determinations represent a new important biological tool since elimination of this toxic iron species is a major therapeutic goal. The NTBI approach represents an important mechanistic concept for explaining cellular iron excess and toxicity and provides new important biochemical diagnostic tools. This article is part of a Special Issue entitled Transferrins: Molecular mechanisms of iron transport and disorders. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Methotrexate-induced mucositis in acute leukemia patients is not associated with the MTHFR 677T allele in Mexico.

    PubMed

    Ruiz-Argüelles, Guillermo J; Coconi-Linares, Lucia Nancy; Garcés-Eisele, Javier; Reyes-Núñez, Virginia

    2007-10-01

    Methylenetetrahydrofolate reductase (MTHFR) has two common variants with reduced activity due to polymorphisms at nucleotides 677 and 1298. Both affect folate metabolism and thus remethylation of homocysteine, but are also thought to affect nucleotide synthesis and DNA methylation. Methotrexate (MTX), which interrupts folate metabolism, is used in the treatment of a variety of diseases including acute lymphoblastic leukemia (ALL), but exerts in some patients toxic effects on fast dividing tissues such as mucosal epithelia. The enhanced toxicity may be due to cooperative effects between MTX and MTHFR variants. Accordingly, it has been reported that carrying the 677T allele of the MTHFR is a risk factor for MTX-associated mucositis. As in the Mexican population, which is characterized by a high prevalence of the 677T MTHFR variant, several of its commonly associated defects have not been observed, we investigated the relationship between MTX toxicity and the 677T allele. Out of 28 patients with ALL (CC: 2, CT: 10, TT: 16), 16 had episodes of MTX-associated mucositis (CC: 0, CT: 6, TT: 10). Neither at the gene level nor at the genotype level was a significant association with mucositis found. It may be postulated that the risk of higher MTX toxicity in patients with decreased MTHFR activity could be neutralized by the normally folate rich diet in Mexico.

  16. The Effect of Glyphosate on Human Sperm Motility and Sperm DNA Fragmentation.

    PubMed

    Anifandis, George; Katsanaki, Katerina; Lagodonti, Georgia; Messini, Christina; Simopoulou, Mara; Dafopoulos, Konstantinos; Daponte, Alexandros

    2018-05-30

    Glyphosate is the active ingredient of Roundup ® , which is one of the most popular herbicides worldwide. Although many studies have focused on the reproductive toxicity of glyphosate or glyphosate-based herbicides, the majority of them have concluded that the effect of the specific herbicide is negligible, while only a few studies indicate the male reproductive toxicity of glyphosate alone. The aim of the present study was to investigate the effect of 0.36 mg/L glyphosate on sperm motility and sperm DNA fragmentation (SDF). Thirty healthy men volunteered to undergo semen analysis for the purpose of the study. Sperm motility was calculated according to WHO 2010 guidelines at collection time (zero time) and 1 h post-treatment with glyphosate. Sperm DNA fragmentation was evaluated with Halosperm ® G2 kit for both the control and glyphosate-treated sperm samples. Sperm progressive motility of glyphosate-treated samples was significantly reduced after 1 h post-treatment in comparison to the respective controls, in contrast to the SDF of glyphosate-treated samples, which was comparable to the respective controls. Conclusively, under these in vitro conditions, at high concentrations that greatly exceed environmental exposures, glyphosate exerts toxic effects on sperm progressive motility but not on sperm DNA integrity, meaning that the toxic effect is limited only to motility, at least in the first hour.

  17. Job characteristics in relation to the prevalence of myocardial infarction in the US Health Examination Survey (HES) and the Health and Nutrition Examination Survey (HANES).

    PubMed

    Karasek, R A; Theorell, T; Schwartz, J E; Schnall, P L; Pieper, C F; Michela, J L

    1988-08-01

    Associations between psychosocial job characteristics and past myocardial infarction (MI) prevalence for employed males were tested with the Health Examination Survey (HES) 1960-61, N = 2,409, and the Health and Nutrition Examination Survey (HANES) 1971-75, N = 2,424. A new estimation method is used which imputes to census occupation codes, job characteristic information from national surveys of job characteristics (US Department of Labor, Quality of Employment Surveys). Controlling for age, we find that employed males with jobs which are simultaneously low in decision latitude and high in psychological work load (a multiplicative product term isolating 20 per cent of the population) have a higher prevalence of myocardial infarction in both data bases. In a logistic regression analysis, using job measures adjusted for demographic factors and controlling for age, race, education, systolic blood pressure, serum cholesterol, smoking (HANES only), and physical exertion, we find a low decision latitude/high psychological demand multiplicative product term associated with MI in both data bases. Additional multiple logistic regressions show that low decision latitude is associated with increased prevalence of MI in both the HES and the HANES. Psychological workload and physical exertion are significant only in the HANES.

  18. Job characteristics in relation to the prevalence of myocardial infarction in the US Health Examination Survey (HES) and the Health and Nutrition Examination Survey (HANES).

    PubMed Central

    Karasek, R A; Theorell, T; Schwartz, J E; Schnall, P L; Pieper, C F; Michela, J L

    1988-01-01

    Associations between psychosocial job characteristics and past myocardial infarction (MI) prevalence for employed males were tested with the Health Examination Survey (HES) 1960-61, N = 2,409, and the Health and Nutrition Examination Survey (HANES) 1971-75, N = 2,424. A new estimation method is used which imputes to census occupation codes, job characteristic information from national surveys of job characteristics (US Department of Labor, Quality of Employment Surveys). Controlling for age, we find that employed males with jobs which are simultaneously low in decision latitude and high in psychological work load (a multiplicative product term isolating 20 per cent of the population) have a higher prevalence of myocardial infarction in both data bases. In a logistic regression analysis, using job measures adjusted for demographic factors and controlling for age, race, education, systolic blood pressure, serum cholesterol, smoking (HANES only), and physical exertion, we find a low decision latitude/high psychological demand multiplicative product term associated with MI in both data bases. Additional multiple logistic regressions show that low decision latitude is associated with increased prevalence of MI in both the HES and the HANES. Psychological workload and physical exertion are significant only in the HANES. PMID:3389427

  19. Toxicity of Gamma Knife Radiosurgery in the Treatment of Intracranial Tumors in Patients With Collagen Vascular Diseases or Multiple Sclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowell, Dot; Tatter, Stephen B.; Bourland, J. Daniel

    Purpose: To assess toxicity in patients with either a collagen vascular disease (CVD) or multiple sclerosis (MS) treated with intracranial radiosurgery. Methods and Materials: Between January 2004 and April 2009, 6 patients with MS and 14 patients with a CVD were treated with Gamma Knife radiosurgery (GKRS) for intracranial tumors. Treated lesions included 15 total brain metastases in 7 patients, 11 benign brain tumors, 1 low grade glioma, and 1 cavernous malformation. Toxicities were graded by the Radiation Therapy Oncology Group Acute/Late Radiation Morbidity Scoring Criteria. 'Rare toxicities' were characterized as those reported in the scientific literature at an incidencemore » of <5%. Results: Median follow-up time was 16 months. Median dose to the tumor margin was 13.0 Gy (range, 12-21 Gy). Median size of tumor was 5.0 cm{sup 3} (range, 0.14-7.8 cm{sup 3}). Of the 14 patients with CVD, none experienced a Grade 3 or 4 toxicity or a toxicity characterized as rare. Of the 6 patients with MS, 3 experienced rare toxicities, and two of these were Grade 3 toxicities. Rare complications included a patient experiencing both communicating hydrocephalus and facial nerve palsy, as well as 2 additional patients with motor cranial nerve palsy. High-grade toxicities included the patient with an acoustic neuroma requiring ventriculoperitoneal shunt placement for obstructive hydrocephalus, and 1 patient with a facial nerve schwannoma who experienced permanent facial nerve palsy. Interval between radiosurgery and high-grade toxicities ranged from 1 week to 4 months. Conclusions: Our series suggests that patients with MS who receive GKRS may be at increased risk of rare and high-grade treatment-related toxicity. Given the time course of toxicity, treatment-related edema or demyelination represent potential mechanisms.« less

  20. DOSE-DEPENDENT TRANSITIONS IN MECHANISMS OF TOXICITY: CASE STUDIES

    EPA Science Inventory

    Experience with dose response and mechanisms of toxicity has shown that multiple mechanisms may exist for a single agent along the continuum of the full dose-response curve. It is highly likely that critical, limiting steps in any given mechanistic pathway may become overwhelmed ...

  1. Workplace and individual risk factors for carpal tunnel syndrome.

    PubMed

    Burt, Susan; Crombie, Ken; Jin, Yan; Wurzelbacher, Steve; Ramsey, Jessica; Deddens, James

    2011-12-01

    To quantify the relationship between workplace physical factors, particularly hand activity level (HAL) and forceful exertion and carpal tunnel syndrome (CTS), while taking into account individual factors. To compare quantitative exposure assessment measures with more practical ratings-based measures. In a group of healthcare and manufacturing workers, each study participant's job tasks were evaluated for HAL, forceful exertion and other physical stressors and videotaped for further analysis, including frequency and duration of exertion and postural deviation. Electrodiagnostic testing of median and ulnar nerves and questionnaires were administered to all participants. A CTS case required median mononeuropathy and symptoms on hand diagrams in fingers 1-3. Multiple logistic regression models were used to analyse associations between job and individual factors and CTS. Of 477 workers studied, 57 (11.9%) were dominant hand CTS cases. Peak force ≥70% maximum voluntary contraction versus <20% maximum voluntary contraction resulted in an OR of 2.74 (1.32-5.68) for CTS. Among those with a body mass index ≥30, the OR for ≥15 exertions per minute was 3.35 (1.14-9.87). Peak worker ratings of perceived exertion increased the odds for CTS by 1.14 (1.01-1.29) for each unit increase on the 10-point scale. The odds for CTS increased by 1.38 (1.05-1.81) for each unit increase on the HAL 10-point scale among men, but not women. Combined force and HAL values above the ACGIH TLV for HAL resulted in an OR of 2.96 (1.51-5.80) for CTS. Quantitative and ratings-based job exposure measures were each associated with CTS. Obesity increased the association between frequency of exertion and CTS.

  2. Exercise-associated Excessive Dynamic Airway Collapse in Military Personnel.

    PubMed

    Weinstein, Daniel J; Hull, James E; Ritchie, Brittany L; Hayes, Jackie A; Morris, Michael J

    2016-09-01

    Evaluation of military personnel for exertional dyspnea can present a diagnostic challenge, given multiple unique factors that include wide variation in military deployment. Initial consideration is given to common disorders such as asthma, exercise-induced bronchospasm, and inducible laryngeal obstruction. Excessive dynamic airway collapse has not been reported previously as a cause of dyspnea in these individuals. To describe the clinical and imaging characteristics of military personnel with exertional dyspnea who were found to have excessive dynamic collapse of large airways during exercise. After deployment to Afghanistan or Iraq, 240 active U.S. military personnel underwent a standardized evaluation to determine the etiology of persistent dyspnea on exertion. Study procedures included full pulmonary function testing, impulse oscillometry, exhaled nitric oxide measurement, methacholine challenge testing, exercise laryngoscopy, cardiopulmonary exercise testing, and fiberoptic bronchoscopy. Imaging included high-resolution computed tomography with inspiratory and expiratory views. Selected individuals underwent further imaging with dynamic computed tomography. A total of five men and one woman were identified as having exercise-associated excessive dynamic airway collapse on the basis of the following criteria: (1) exertional dyspnea without resting symptoms, (2) focal expiratory wheezing during exercise, (3) functional collapse of the large airways during bronchoscopy, (4) expiratory computed tomographic imaging showing narrowing of a large airway, and (5) absence of underlying apparent pathology in small airways or pulmonary parenchyma. Identification of focal expiratory wheezing correlated with bronchoscopic and imaging findings. Among 240 military personnel evaluated after presenting with postdeployment exertional dyspnea, a combination of symptoms, auscultatory findings, imaging, and visualization of the airways by bronchoscopy identified six individuals with excessive dynamic central airway collapse as the sole apparent cause of dyspnea. Exercise-associated excessive dynamic airway collapse should be considered in the differential diagnosis of exertional dyspnea.

  3. Cancer risks in naval divers with multiple exposures to carcinogens.

    PubMed Central

    Richter, Elihu D; Friedman, Lee S; Tamir, Yuval; Berman, Tamar; Levy, Or; Westin, Jerome B; Peretz, Tamar

    2003-01-01

    We investigated risks for cancer and the case for a cause-effect relationship in five successive cohorts of naval commando divers (n = 682) with prolonged underwater exposures (skin, gastrointestinal tract, and airways) to many toxic compounds in the Kishon River, Israel's most polluted waterway, from 1948 to 1995. Releases of industrial, ship, and agricultural effluents in the river increased substantially, fish yields decreased, and toxic damage to marine organisms increased. Among the divers (16,343 person-years follow-up from 18 years of age to year 2000), the observed/expected ratio for all tumors was 2.29 (p<0.01). Risks increased in cohorts first diving after 1960 compared to risks in earlier cohorts, notably for hematolymphopoietic, central nervous system, gastrointestinal, and skin cancer; induction periods were often brief. The findings suggest that the increases in risk for cancer and short induction periods resulted from direct contact with and absorption of multiple toxic compounds. Early toxic effects in marine life predicted later risks for cancer in divers. PMID:12676624

  4. Is the Factor-of-2 Rule Broadly Applicable for Evaluating the Prediction Accuracy of Metal-Toxicity Models?

    PubMed

    Meyer, Joseph S; Traudt, Elizabeth M; Ranville, James F

    2018-01-01

    In aquatic toxicology, a toxicity-prediction model is generally deemed acceptable if its predicted median lethal concentrations (LC50 values) or median effect concentrations (EC50 values) are within a factor of 2 of their paired, observed LC50 or EC50 values. However, that rule of thumb is based on results from only two studies: multiple LC50 values for the fathead minnow (Pimephales promelas) exposed to Cu in one type of exposure water, and multiple EC50 values for Daphnia magna exposed to Zn in another type of exposure water. We tested whether the factor-of-2 rule of thumb also is supported in a different dataset in which D. magna were exposed separately to Cd, Cu, Ni, or Zn. Overall, the factor-of-2 rule of thumb appeared to be a good guide to evaluating the acceptability of a toxicity model's underprediction or overprediction of observed LC50 or EC50 values in these acute toxicity tests.

  5. Assessment of the individual and mixture toxicity of cadmium, copper and oxytetracycline, on the embryo-larval development of the sea urchin Paracentrotus lividus.

    PubMed

    Gharred, Tahar; Jebali, Jamel; Belgacem, Mariem; Mannai, Rabeb; Achour, Sami

    2016-09-01

    Multiple pollutions by trace metals and pharmaceuticals have become one of the most important problems in marine coastal areas because of its excessive toxicity on organisms living in this area. This study aimed to assess the individual and mixture toxicity of Cu, Cd, and oxytetracycline frequently existing in the contaminated marine areas and the embryo-larval development of the sea urchin Paracentrotus lividus. The individual contamination of the spermatozoid for 1 h with the increasing concentrations of Cd, Cu, and OTC decreases the fertility rate and increases larvae anomalies in the order Cu > Cd > OTC. Moreover, the normal larva frequency and the length of spicules were more sensitive than the fertilization rate and normal gastrula frequency endpoints. The mixture toxicity assessed by multiple experimental designs showed clearly that concentrations of Cd, Cu, and OTC superior to 338 μg/L, 0.56 μg/L, and 0.83 mg/L, respectively, cause significant larva malformations.

  6. Stress and Coping with War: The Experience of Deployment and Reunion for Mortuary Affairs Units, Reserve Units, and First-Term Army Wives

    DTIC Science & Technology

    1992-08-01

    presented with multiple somatic complaints and fears of having been exposwd to toxic substances or infectious diseases (123rd ARCOM). The final...soldiers who presented with multiple somatic complaints and fears of having been exposed to toxic substances or infectious diseases while in the Gulf (the...lazy people." "Our CO complicated things by involving himself in business that he had no business being involved in." "To try to get supply was a real

  7. Developmental toxicity of orally administered sildenafil citrate (Viagra) in SWR/J mice

    PubMed Central

    Abou-Tarboush, Faisal Mohamed; Abdel-Samad, Mohamed Fathy; Al-Meteri, Mokhlid Hamed

    2010-01-01

    Normal adult inbred SWR/J mice were used to investigate the teratogenic and other possible toxic effects of various dose levels of sildenafil citrate (Viagra) on fetuses. Multiple dose levels of 6.5, 13.0, 19.5, 26.0, 32.5 or 40.0 mg of sildenafil citrate/kg body weight (which correspond to the multiples of 1, 2, 3, 4, 5 or 6 of human 50 mg Viagra, respectively) were orally administered into pregnant mice on days 7–9, 10–12 or 13–15 of gestation. On day 17 of pregnancy, all fetuses were removed and examined for toxic phenomena (embryo-fetal toxicity) and for external, internal and skeletal malformations. A total of 285 pregnant mice were used in the present study. None of the dams treated with sildenafil citrate at any of the oral dose levels used in the present study died during the experimental period and all dams treated with the drug failed to reveal overt signs of maternal toxicity. Moreover, the results of the present study clearly demonstrate that none of the multiple oral dose levels of the drug at any time interval used has induced any external, internal or skeletal malformations in the fetuses obtained from treated females. However, the dose level of 40 mg/kg body weight of sildenafil citrate has a growth suppressing effect on alive fetuses when it was administered at all the time intervals used in the present study. Furthermore, the dose levels 26.0, 32.5 and 40 mg/kg of the drug have embryo-fetal toxicity when the drug is applied on days 13–15 of gestation. The possible mechanisms involved in the embryo-fetal toxicity and fetal growth suppressing effects of sildenafil citrate were discussed. The results of this study have important implications for the widespread use of this drug. PMID:23961116

  8. Developmental toxicity of orally administered sildenafil citrate (Viagra) in SWR/J mice.

    PubMed

    Abou-Tarboush, Faisal Mohamed; Abdel-Samad, Mohamed Fathy; Al-Meteri, Mokhlid Hamed

    2011-04-01

    Normal adult inbred SWR/J mice were used to investigate the teratogenic and other possible toxic effects of various dose levels of sildenafil citrate (Viagra) on fetuses. Multiple dose levels of 6.5, 13.0, 19.5, 26.0, 32.5 or 40.0 mg of sildenafil citrate/kg body weight (which correspond to the multiples of 1, 2, 3, 4, 5 or 6 of human 50 mg Viagra, respectively) were orally administered into pregnant mice on days 7-9, 10-12 or 13-15 of gestation. On day 17 of pregnancy, all fetuses were removed and examined for toxic phenomena (embryo-fetal toxicity) and for external, internal and skeletal malformations. A total of 285 pregnant mice were used in the present study. None of the dams treated with sildenafil citrate at any of the oral dose levels used in the present study died during the experimental period and all dams treated with the drug failed to reveal overt signs of maternal toxicity. Moreover, the results of the present study clearly demonstrate that none of the multiple oral dose levels of the drug at any time interval used has induced any external, internal or skeletal malformations in the fetuses obtained from treated females. However, the dose level of 40 mg/kg body weight of sildenafil citrate has a growth suppressing effect on alive fetuses when it was administered at all the time intervals used in the present study. Furthermore, the dose levels 26.0, 32.5 and 40 mg/kg of the drug have embryo-fetal toxicity when the drug is applied on days 13-15 of gestation. The possible mechanisms involved in the embryo-fetal toxicity and fetal growth suppressing effects of sildenafil citrate were discussed. The results of this study have important implications for the widespread use of this drug.

  9. A new approach for modeling patient overall radiosensitivity and predicting multiple toxicity endpoints for breast cancer patients.

    PubMed

    Mbah, Chamberlain; De Ruyck, Kim; De Schrijver, Silke; De Sutter, Charlotte; Schiettecatte, Kimberly; Monten, Chris; Paelinck, Leen; De Neve, Wilfried; Thierens, Hubert; West, Catharine; Amorim, Gustavo; Thas, Olivier; Veldeman, Liv

    2018-05-01

    Evaluation of patient characteristics inducing toxicity in breast radiotherapy, using simultaneous modeling of multiple endpoints. In 269 early-stage breast cancer patients treated with whole-breast irradiation (WBI) after breast-conserving surgery, toxicity was scored, based on five dichotomized endpoints. Five logistic regression models were fitted, one for each endpoint and the effect sizes of all variables were estimated using maximum likelihood (MLE). The MLEs are improved with James-Stein estimates (JSEs). The method combines all the MLEs, obtained for the same variable but from different endpoints. Misclassification errors were computed using MLE- and JSE-based prediction models. For associations, p-values from the sum of squares of MLEs were compared with p-values from the Standardized Total Average Toxicity (STAT) Score. With JSEs, 19 highest ranked variables were predictive of the five different endpoints. Important variables increasing radiation-induced toxicity were chemotherapy, age, SATB2 rs2881208 SNP and nodal irradiation. Treatment position (prone position) was most protective and ranked eighth. Overall, the misclassification errors were 45% and 34% for the MLE- and JSE-based models, respectively. p-Values from the sum of squares of MLEs and p-values from STAT score led to very similar conclusions, except for the variables nodal irradiation and treatment position, for which STAT p-values suggested an association with radiosensitivity, whereas p-values from the sum of squares indicated no association. Breast volume was ranked as the most significant variable in both strategies. The James-Stein estimator was used for selecting variables that are predictive for multiple toxicity endpoints. With this estimator, 19 variables were predictive for all toxicities of which four were significantly associated with overall radiosensitivity. JSEs led to almost 25% reduction in the misclassification error rate compared to conventional MLEs. Finally, patient characteristics that are associated with radiosensitivity were identified without explicitly quantifying radiosensitivity.

  10. Petroleum hydrocarbon toxicity to corals: A review.

    PubMed

    Turner, Nicholas R; Renegar, D Abigail

    2017-06-30

    The proximity of coral reefs to coastal urban areas and shipping lanes predisposes corals to petroleum pollution from multiple sources. Previous research has evaluated petroleum toxicity to coral using a variety of methodology, including monitoring effects of acute and chronic spills, in situ exposures, and ex situ exposures with both adult and larval stage corals. Variability in toxicant, bioassay conditions, species and other methodological disparities between studies prevents comprehensive conclusions regarding the toxicity of hydrocarbons to corals. Following standardized protocols and quantifying the concentration and composition of toxicant will aid in comparison of results between studies and extrapolation to actual spills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Uhthoff`s phenomenon 125 years later - what do we know today?

    PubMed Central

    Opara, JA; Brola, W; Wylegala, AA; Wylegala, E

    2016-01-01

    125 years have passed since Wilhelm Uhthoff reported the symptoms he observed after an increased body temperature from physical exertion. Those symptoms, which might have led to the transient impairment of vision in patients with Multiple Sclerosis and also observed in optic neuritis, were later named after him "Uhthoff's phenomenon". This has defined the strategy of rehabilitation procedures in Multiple Sclerosis for more than 100 years, restricting the use of thermal treatments and the possibility of aerobic exercises. The current state of knowledge concerning the Uhthoff's phenomenon and its influence on comprehensive rehabilitation in Multiple Sclerosis were presented in the current review report. PMID:27974923

  12. In vitro and in vivo antitrypanosomal activity of Xanthium strumarium leaves.

    PubMed

    Talakal, T S; Dwivedi, S K; Sharma, S R

    1995-12-15

    Antitrypanosomal activity of crude 50% ethanolic extract of Xanthium strumarium leaves was studied in vitro and in vivo. The extract exhibited trypanocidal activity at all four concentrations tested i.e. 5, 50, 500 and 1000 micrograms/ml, in vitro. In vivo trial revealed that the extract exerted antitrypanosomal effect at dosage of 100, 300 and 1000 mg/kg, intraperitoneally. At 100 and 300 mg/kg doses the survival period of the Trypanosoma evansi infected mice was significantly prolonged. However, the extract was found to be toxic to the animals at 1000 mg/kg dose.

  13. Side effects in preventive maintenance therapy with neuroleptics with special emphasis on tardive dyskinesia.

    PubMed

    Logothetis, J; Paraschos, A; Frangos, E

    1981-01-01

    Neuroleptics induce hypersensitivity reactions, and toxic, systemic and extrapyramidal manifestations. The latter mainly include acute dystonic reactions, other early dyskinesias, akathisia, parkinsonism and TD. These drugs have been implicated for DA antagonism exerted by an adenylate cyclase inhibition. Prolonged blockade of DA receptors is considered as the motivation for a counterbalancing mechanism inducing the DA supersensitivity from which TD results. Recent reports suggest cholinergic and GABA ergic insufficiency as secondary participants. The increasing frequency of TD calls for prevention by modifying treatment practices and searching for effective measures to combat the symptoms.

  14. Toxicity bioassays with concentrated cell culture media-a methodology to overcome the chemical loss by conventional preparation of water samples.

    PubMed

    Niss, Frida; Rosenmai, Anna Kjerstine; Mandava, Geeta; Örn, Stefan; Oskarsson, Agneta; Lundqvist, Johan

    2018-04-01

    The use of in vitro bioassays for studies of toxic activity in environmental water samples is a rapidly expanding field of research. Cell-based bioassays can assess the total toxicity exerted by a water sample, regardless whether the toxicity is caused by a known or unknown agent or by a complex mixture of different agents. When using bioassays for environmental water samples, it is often necessary to concentrate the water samples before applying the sample. Commonly, water samples are concentrated 10-50 times. However, there is always a risk of losing compounds in the sample in such sample preparation. We have developed an alternative experimental design by preparing a concentrated cell culture medium which was then diluted in the environmental water sample to compose the final cell culture media for the in vitro assays. Water samples from five Swedish waste water treatment plants were analyzed for oxidative stress response, estrogen receptor (ER), and aryl hydrocarbon receptor (AhR) activity using this experimental design. We were able to detect responses equivalent to 8.8-11.3 ng/L TCCD for AhR activity and 0.4-0.9 ng/L 17β-estradiol for ER activity. We were unable to detect oxidative stress response in any of the studied water samples. In conclusion, we have developed an experimental design allowing us to examine environmental water samples in toxicity in vitro assays at a concentration factor close to 1, without the risk of losing known or unknown compounds during an extraction procedure.

  15. Ligand-Specific Transcriptional Mechanisms Underlie Aryl Hydrocarbon Receptor-Mediated Developmental Toxicity of Oxygenated PAHs

    PubMed Central

    Goodale, B. C.; La Du, J.; Tilton, S. C.; Sullivan, C. M.; Bisson, W. H.; Waters, K. M.; Tanguay, R. L.

    2015-01-01

    Polycyclic aromatic hydrocarbons (PAHs) are priority environmental contaminants that exhibit mutagenic, carcinogenic, proinflammatory, and teratogenic properties. Oxygen-substituted PAHs (OPAHs) are formed during combustion processes and via phototoxidation and biological degradation of parent (unsubstituted) PAHs. Despite their prevalence both in contaminated industrial sites and in urban air, OPAH mechanisms of action in biological systems are relatively understudied. Like parent PAHs, OPAHs exert structure-dependent mutagenic activities and activation of the aryl hydrocarbon receptor (AHR) and cytochrome p450 metabolic pathway. Four-ring OPAHs 1,9-benz-10-anthrone (BEZO) and benz(a)anthracene-7,12-dione (7,12-B[a]AQ) cause morphological aberrations and induce markers of oxidative stress in developing zebrafish with similar potency, but only 7,12-B[a]AQ induces robust Cyp1a protein expression. We investigated the role of the AHR in mediating the toxicity of BEZO and 7,12-B[a]AQ, and found that knockdown of AHR2 rescued developmental effects caused by both compounds. Using RNA-seq and molecular docking, we identified transcriptional responses that precede developmental toxicity induced via differential interaction with AHR2. Redox-homeostasis genes were affected similarly by these OPAHs, while 7,12-B[a]AQ preferentially activated phase 1 metabolism and BEZO uniquely decreased visual system genes. Analysis of biological functions and upstream regulators suggests that BEZO is a weak AHR agonist, but interacts with other transcriptional regulators to cause developmental toxicity in an AHR-dependent manner. Identifying ligand-dependent AHR interactions and signaling pathways is essential for understanding toxicity of this class of environmentally relevant compounds. PMID:26141390

  16. Potential toxicity of improperly discarded exhausted photovoltaic cells.

    PubMed

    Motta, C M; Cerciello, R; De Bonis, S; Mazzella, V; Cirino, P; Panzuto, R; Ciaravolo, M; Simoniello, P; Toscanesi, M; Trifuoggi, M; Avallone, B

    2016-09-01

    Low tech photovoltaic panels (PVPs) installed in the early '80s are now coming to the end of their life cycle and this raises the problem of their proper disposal. As panels contain potentially toxic elements, unconventional, complex and costly procedures are required to avoid environmental health risks and in countries where environmental awareness and economic resources are limited this may be especially problematic. This work was designed to investigate potential risks from improper disposal of these panels. To accomplish this aim an exhausted panel was broken into pieces and these were placed in water for 30 days. The resulting leached solution was analyzed to determine chemical release or used in toto, to determine its potential toxicity in established tests. The end points were seed germination (on Cucumis sativus and Lens culinaris) and effects on early development in three larval models: two crustaceans, Daphnia magna and Artemia salina, and the sea urchin Paracentrotus lividus. Our results show that the panels release small amounts of electrolytes (Na, Ca and Mg) into solution, along with antimony and manganese, with a concentration under the accepted maximum contaminant level, and nickel at a potentially toxic concentration. Developmental defects are seen in the plant and animal test organisms after experimental exposure to the whole solution leached from the broken panel. The toxic effects revealed in in vitro tests are sufficient to attract attention considering that they are exerted on both plants and aquatic animals and that the number of old PVPs in disposal sites will be very high. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Algal Toxins Alter Copepod Feeding Behavior

    PubMed Central

    Hong, Jiarong; Talapatra, Siddharth; Katz, Joseph; Tester, Patricia A.; Waggett, Rebecca J.; Place, Allen R.

    2012-01-01

    Using digital holographic cinematography, we quantify and compare the feeding behavior of free-swimming copepods, Acartia tonsa, on nutritional prey (Storeatula major) to that occurring during exposure to toxic and non-toxic strains of Karenia brevis and Karlodinium veneficum. These two harmful algal species produce polyketide toxins with different modes of action and potency. We distinguish between two different beating modes of the copepod’s feeding appendages–a “sampling beating” that has short durations (<100 ms) and involves little fluid entrainment and a longer duration “grazing beating” that persists up to 1200 ms and generates feeding currents. The durations of both beating modes have log-normal distributions. Without prey, A. tonsa only samples the environment at low frequency. Upon introduction of non-toxic food, it increases its sampling time moderately and the grazing period substantially. On mono algal diets for either of the toxic dinoflagellates, sampling time fraction is high but the grazing is very limited. A. tonsa demonstrates aversion to both toxic algal species. In mixtures of S. major and the neurotoxin producing K. brevis, sampling and grazing diminish rapidly, presumably due to neurological effects of consuming brevetoxins while trying to feed on S. major. In contrast, on mixtures of cytotoxin producing K. veneficum, both behavioral modes persist, indicating that intake of karlotoxins does not immediately inhibit the copepod’s grazing behavior. These findings add critical insight into how these algal toxins may influence the copepod’s feeding behavior, and suggest how some harmful algal species may alter top-down control exerted by grazers like copepods. PMID:22629336

  18. Design, synthesis, anti-lung cancer activity, and chemosensitization of tumor-selective MCACs based on ROS-mediated JNK pathway activation and NF-κB pathway inhibition.

    PubMed

    Chen, Liping; Li, Qian; Weng, Bixia; Wang, Jiabing; Zhou, Yangyang; Cheng, Dezhi; Sirirak, Thanchanok; Qiu, Peihong; Wu, Jianzhang

    2018-05-10

    EF24 and F35 both were effective monocarbonyl curcumin analogues (MCACs) with excellent anti-tumor activity, however, drug defect such as toxicity may limit their further development. To get anti-lung cancer drugs with high efficiency, low toxicity and chemosensitization, a series of analogues based on EF24 and F35 were designed and synthesized. A number of compounds were found to exhibit cytotoxic activities selectively towards lung cancer cells compared to normal cells. Among these compounds, 5B was considered as an optimal anti-tumor agent for lung cancer cells with IC 50 values ranging from 1.0 to 1.7 μM, selectivity index (SI, as a logarithm of a ratio of IC 50 value for normal and cancer cells) were all above 1.1, while the SI of EF24 and F35 were less than 0.8. Consistent with selectivity in vitro, 5B was observed to show lower toxicity in acute toxicity experiment than EF24 and F35 respectively. Further, 5B was found to exert anti-tumor effects through ROS-mediated activation of JNK pathway and inhibition of NF-κB pathway. 5B could significantly enhance the sensitivity of A549 cells to cisplatin or 5-Fu. These findings suggested that 5B was an effective and less toxic MCAC and provided a promising candidate for anti-tumor drugs. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  19. Aluminum stress signaling in plants

    PubMed Central

    Baluska, Frantisek; Matsumoto, Hideaki

    2009-01-01

    Aluminum (Al) toxicity is a major constraint for crop production in acidic soil worldwide. When the soil pH is lower than 5, Al3+ is released to the soil and enters into root tip cell ceases root development of plant. In acid soil with high mineral content, Al is the major cause of phytotoxicity. The target of Al toxicity is the root tip, in which Al exposure causes inhibition of cell elongation and cell division, leading to root stunting accompanied by reduced water and nutrient uptake. A variety of genes have been identified that are induced or repressed upon Al exposure. At tissue level, the distal part of the transition zone is the most sensitive to Al. At cellular and molecular level, many cell components are implicated in the Al toxicity including DNA in nucleus, numerous cytoplastic compounds, mitochondria, the plasma membrane and the cell wall. Although it is difficult to distinguish the primary targets from the secondary effects so far, understanding of the target sites of the Al toxicity is helpful for elucidating the mechanisms by which Al exerts its deleterious effects on root growth. To develop high tolerance against Al stress is the major goal of plant sciences. This review examines our current understanding of the Al signaling with the physiological, genetic and molecular approaches to improve the crop performance under the Al toxicity. New discoveries will open up new avenues of molecular/physiological inquiry that should greatly advance our understanding of Al tolerance mechanisms. Additionally, these breakthroughs will provide new molecular resources for improving the crop Al tolerance via molecular-assisted breeding and biotechnology. PMID:19820334

  20. Evaluation of e-liquid toxicity using an open-source high-throughput screening assay

    PubMed Central

    Keating, James E.; Zorn, Bryan T.; Kochar, Tavleen K.; Wolfgang, Matthew C.; Glish, Gary L.; Tarran, Robert

    2018-01-01

    The e-liquids used in electronic cigarettes (E-cigs) consist of propylene glycol (PG), vegetable glycerin (VG), nicotine, and chemical additives for flavoring. There are currently over 7,700 e-liquid flavors available, and while some have been tested for toxicity in the laboratory, most have not. Here, we developed a 3-phase, 384-well, plate-based, high-throughput screening (HTS) assay to rapidly triage and validate the toxicity of multiple e-liquids. Our data demonstrated that the PG/VG vehicle adversely affected cell viability and that a large number of e-liquids were more toxic than PG/VG. We also performed gas chromatography–mass spectrometry (GC-MS) analysis on all tested e-liquids. Subsequent nonmetric multidimensional scaling (NMDS) analysis revealed that e-liquids are an extremely heterogeneous group. Furthermore, these data indicated that (i) the more chemicals contained in an e-liquid, the more toxic it was likely to be and (ii) the presence of vanillin was associated with higher toxicity values. Further analysis of common constituents by electron ionization revealed that the concentration of cinnamaldehyde and vanillin, but not triacetin, correlated with toxicity. We have also developed a publicly available searchable website (www.eliquidinfo.org). Given the large numbers of available e-liquids, this website will serve as a resource to facilitate dissemination of this information. Our data suggest that an HTS approach to evaluate the toxicity of multiple e-liquids is feasible. Such an approach may serve as a roadmap to enable bodies such as the Food and Drug Administration (FDA) to better regulate e-liquid composition. PMID:29584716

  1. Supplementation of Nigella sativa fixed and essential oil mediates potassium bromate induced oxidative stress and multiple organ toxicity.

    PubMed

    Sultan, Muhammad Tauseef; Butt, Masood Sadiq; Ahmad, Rabia Shabeer; Pasha, Imran; Ahmad, Atif Nisar; Qayyum, Mir Muhammad Nasir

    2012-01-01

    The plants and their functional ingredients hold potential to cure various maladies and number of plants hold therapeutic potential. The present research was designed study the health promoting potential of black cumin (Nigella sativa) fixed oil (BCFO) and essential oil (BCEO) against oxidative stress with special reference to multiple organ toxicity. For the purpose, thirty rats (Strain: Sprague Dawley) were procured and divided into three groups (10 rats/group). The groups were fed on their respective diets i.e. D1 (control), D2 (BCFO @ 4.0%) and D3 (BCEO @ 0.30%) for a period of 56 days. Mild oxidative stress was induced with the help of potassium bromate injection @ 45 mg/Kg body weight. Furthermore, the levels of cardiac and liver enzymes were assayed. The results indicated that oxidative stress increased the activities of cardiac and liver enzymes. However, supplementation of BCFO and BCEO was effective in reducing the abnormal values of enzymes. Elevated levels of lactate dehydrogenase (LDH), CPK and CPK-MB were reduced from 456 to 231, 176 to 122 and 45 to 36mg/dL, respectively. Similarly, liver enzymes were also reduced. However, the results revealed that BCEO supplementation @ 0.30% is more effectual in ameliorating the multiple organ toxicity in oxidative stressed animal modelling. In the nutshell, it can be assumed that black cumin essential oil is more effective in reducing the extent of potassium bromate induced multiple organ toxicity (cardiac and liver enzymes imbalance) that will ultimately helpful in reducing the extent of myocardial and liver necrosis.

  2. Net carbon uptake has increased through warming-induced changes in temperate forest phenology

    Treesearch

    Trevor F. Keenan; Josh Gray; Mark A. Friedl; Michael Toomey; Gil Bohrer; David Y. Hollinger; J. William Munger; John O’Keefe; Hans Peter Schmid; Ian Sue Wing; Bai Yang; Andrew D. Richardson

    2014-01-01

    The timing of phenological events exerts a strong control over ecosystem function and leads to multiple feedbacks to the climate system1. Phenology is inherently sensitive to temperature (although the exact sensitivity is disputed2) and recent warming is reported to have led to earlier spring, later autumn3,4...

  3. Textbook Presentations of Weight: Conceptual Difficulties and Language Ambiguities

    ERIC Educational Resources Information Center

    Taibu, Rex; Rudge, David; Schuster, David

    2015-01-01

    The term "weight" has multiple related meanings in both scientific and everyday usage. Even among experts and in textbooks, weight is ambiguously defined as either the gravitational force on an object or operationally as the magnitude of the force an object exerts on a measuring scale. This poses both conceptual and language difficulties…

  4. Project Physics Tests 2, Motion in the Heavens.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Test items relating to Project Physics Unit 2 are presented in this booklet. Included are 70 multiple-choice and 22 problem-and-essay questions. Concepts of motion in the heavens are examined for planetary motions, heliocentric theory, forces exerted on the planets, Kepler's laws, gravitational force, Galileo's work, satellite orbits, Jupiter's…

  5. Competition and cooperation among similar representations: toward a unified account of facilitative and inhibitory effects of lexical neighbors.

    PubMed

    Chen, Qi; Mirman, Daniel

    2012-04-01

    One of the core principles of how the mind works is the graded, parallel activation of multiple related or similar representations. Parallel activation of multiple representations has been particularly important in the development of theories and models of language processing, where coactivated representations (neighbors) have been shown to exhibit both facilitative and inhibitory effects on word recognition and production. Researchers generally ascribe these effects to interactive activation and competition, but there is no unified explanation for why the effects are facilitative in some cases and inhibitory in others. We present a series of simulations of a simple domain-general interactive activation and competition model that is broadly consistent with more specialized domain-specific models of lexical processing. The results showed that interactive activation and competition can indeed account for the complex pattern of reversals. Critically, the simulations revealed a core computational principle that determines whether neighbor effects are facilitative or inhibitory: strongly active neighbors exert a net inhibitory effect, and weakly active neighbors exert a net facilitative effect.

  6. Involvement of the histamine H{sub 4} receptor in clozapine-induced hematopoietic toxicity: Vulnerability under granulocytic differentiation of HL-60 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goto, Aya; Mouri, Akihiro; Nagai, Tomoko

    Clozapine is an effective antipsychotic for treatment-resistant schizophrenia, but can cause fatal hematopoietic toxicity as agranulocytosis. To elucidate the mechanism of hematopoietic toxicity induced by clozapine, we developed an in vitro assay system using HL-60 cells, and investigated the effect on hematopoiesis. HL-60 cells were differentiated by all-trans retinoic acid (ATRA) into three states according to the following hematopoietic process: undifferentiated HL-60 cells, those undergoing granulocytic ATRA-differentiation, and ATRA-differentiated granulocytic cells. Hematopoietic toxicity was evaluated by analyzing cell survival, cell proliferation, granulocytic differentiation, apoptosis, and necrosis. In undifferentiated HL-60 cells and ATRA-differentiated granulocytic cells, both clozapine (50 and 100 μM)more » and doxorubicin (0.2 µM) decreased the cell survival rate, but olanzapine (1–100 µM) did not. Under granulocytic differentiation for 5 days, clozapine, even at a concentration of 25 μM, decreased survival without affecting granulocytic differentiation, increased caspase activity, and caused apoptosis rather than necrosis. Histamine H{sub 4} receptor mRNA was expressed in HL-60 cells, whereas the expression decreased under granulocytic ATRA-differentiation little by little. Both thioperamide, a histamine H{sub 4} receptor antagonist, and DEVD-FMK, a caspase-3 inhibitor, exerted protection against clozapine-induced survival rate reduction, but not of live cell counts. 4-Methylhistamine, a histamine H{sub 4} receptor agonist, decreased the survival rate and live cell counts, as did clozapine. HL-60 cells under granulocytic differentiation are vulnerable under in vitro assay conditions to hematopoietic toxicity induced by clozapine. Histamine H{sub 4} receptor is involved in the development of clozapine-induced hematopoietic toxicity through apoptosis, and may be a potential target for preventing its occurrence through granulocytic differentiation. - Highlights: • HL-60 cells under granulocytic differentiation were vulnerable for clozapine. • HL-60 cells would be in vitro assay systems for hematopoietic toxicity by clozapine. • Histamine H{sub 4} receptor was involved in hematopoietic toxicity with apoptosis. • Histamine H{sub 4} receptor may be therapeutic target to prevent hematopoietic toxicity.« less

  7. Resolving the false-negative issues of the nonpolar organic amendment in whole-sediment toxicity identification evaluations.

    PubMed

    Mehler, W Tyler; Keough, Michael J; Pettigrove, Vincent

    2018-04-01

    Three common false-negative scenarios have been encountered with amendment addition in whole-sediment toxicity identification evaluations (TIEs): dilution of toxicity by amendment addition (i.e., not toxic enough), not enough amendment present to reduce toxicity (i.e., too toxic), and the amendment itself elicits a toxic response (i.e., secondary amendment effect). One such amendment in which all 3 types of false-negatives have been observed is with the nonpolar organic amendment (activated carbon or powdered coconut charcoal). The objective of the present study was to reduce the likelihood of encountering false-negatives with this amendment and to increase the value of the whole-sediment TIE bioassay. To do this, the present study evaluated the effects of various activated carbon additions to survival, growth, emergence, and mean development rate of Chironomus tepperi. Using this information, an alternative method for this amendment was developed which utilized a combination of multiple amendment addition ratios based on wet weight (1%, lower likelihood of the secondary amendment effect; 5%, higher reduction of contaminant) and nonconventional endpoints (emergence, mean development rate). This alternative method was then validated in the laboratory (using spiked sediments) and with contaminated field sediments. Using these multiple activated carbon ratios in combination with additional endpoints (namely, emergence) reduced the likelihood of all 3 types of false-negatives and provided a more sensitive evaluation of risk. Environ Toxicol Chem 2018;37:1219-1230. © 2017 SETAC. © 2017 SETAC.

  8. An Empirical Study Analyzing Job Productivity in Toxic Workplace Environments

    PubMed Central

    Anjum, Amna; Ming, Xu; Siddiqi, Ahmed Faisal

    2018-01-01

    Purpose: This empirical study aims to determine the effects of a toxic workplace environment, which can negatively impact the job productivity of an employee. Methodology: Three hundred questionnaires were randomly distributed among the staff members of seven private universities in Pakistan with a final response rate of 89%. For analysis purposes, AMOS 22 was used to study the direct and indirect effects of the toxic workplace environment on job productivity. Confirmatory Factor Analysis (CFA) was conducted to ensure the convergent and discriminant validity of the factors, while the Hayes mediation approach was used to verify the mediating role of job burnout between the four dimensions of toxic workplace environment and job productivity. A toxic workplace with multiple dimensions, such as workplace ostracism, workplace incivility, workplace harassment, and workplace bullying, was used in this study. Findings: By using the multiple statistical tools and techniques, it has been proven that ostracism, incivility, harassment, and bullying have direct negative significant effects on job productivity, while job burnout was shown to be a statistical significant mediator between the dimensions of a toxic workplace environment and job productivity. Finally, we concluded that organizations need to eradicate the factors of toxic workplace environments to ensure their prosperity and success. Practical Implications: This study encourages managers, leaders, and top management to adopt appropriate policies for enhancing employees’ productivity. Limitations: This study was conducted by using a cross-sectional research design. Future research aims to expand the study by using a longitudinal research design. PMID:29883424

  9. An Empirical Study Analyzing Job Productivity in Toxic Workplace Environments.

    PubMed

    Anjum, Amna; Ming, Xu; Siddiqi, Ahmed Faisal; Rasool, Samma Faiz

    2018-05-21

    Purpose: This empirical study aims to determine the effects of a toxic workplace environment, which can negatively impact the job productivity of an employee. Methodology: Three hundred questionnaires were randomly distributed among the staff members of seven private universities in Pakistan with a final response rate of 89%. For analysis purposes, AMOS 22 was used to study the direct and indirect effects of the toxic workplace environment on job productivity. Confirmatory Factor Analysis (CFA) was conducted to ensure the convergent and discriminant validity of the factors, while the Hayes mediation approach was used to verify the mediating role of job burnout between the four dimensions of toxic workplace environment and job productivity. A toxic workplace with multiple dimensions, such as workplace ostracism, workplace incivility, workplace harassment, and workplace bullying, was used in this study. Findings: By using the multiple statistical tools and techniques, it has been proven that ostracism, incivility, harassment, and bullying have direct negative significant effects on job productivity, while job burnout was shown to be a statistical significant mediator between the dimensions of a toxic workplace environment and job productivity. Finally, we concluded that organizations need to eradicate the factors of toxic workplace environments to ensure their prosperity and success. Practical Implications: This study encourages managers, leaders, and top management to adopt appropriate policies for enhancing employees’ productivity. Limitations: This study was conducted by using a cross-sectional research design. Future research aims to expand the study by using a longitudinal research design.

  10. ASSESSMENT OF LAKE ECOSYSTEM RESPONSE TO TOXIC EVENTS WITH THE AQUATOX MODEL

    EPA Science Inventory

    An attack involving a toxic chemical added to a water resource could have multiple effects on the aquatic ecosystem of that resource. This is particularly significant for systems such as lakes and reservoirs, where the residence time of water is long and there is more opportunit...

  11. Taking Multiple Exposure Into Account Can Improve Assessment of Chemical Risks.

    PubMed

    Clerc, Frédéric; Bertrand, Nicolas Jean Hyacinthe; La Rocca, Bénédicte

    2017-12-15

    During work, operators may be exposed to several chemicals simultaneously. Most exposure assessment approaches only determine exposure levels for each substance individually. However, such individual-substance approaches may not correctly estimate the toxicity of 'cocktails' of chemicals, as the toxicity of a cocktail may differ from the toxicity of substances on their own. This study presents an approach that can better take into account multiple exposure when assessing chemical risks. Almost 30000 work situations, monitored between 2005 and 2014 and recorded in two French databases, were analysed using MiXie software. The algorithms employed in MiXie can identify toxicological classes associated with several substances, based on the additivity of the selected effects of each substance. The results of our retrospective analysis show that MiXie was able to identify almost 20% more potentially hazardous situations than identified using a single-substance approach. It therefore appears essential to review the ways in which multiple exposure is taken into account during risk assessment. © The Author(s) 2017. Published by Oxford University Press on behalf of the British Occupational Hygiene Society.

  12. Critique on the use of the standardized avian acute oral toxicity test for first generation anticoagulant rodenticides

    USGS Publications Warehouse

    Vyas, Nimish B.; Rattner, Barnett A.

    2012-01-01

    Avian risk assessments for rodenticides are often driven by the results of standardized acute oral toxicity tests without regards to a toxicant's mode of action and time course of adverse effects. First generation anticoagulant rodenticides (FGARs) generally require multiple feedings over several days to achieve a threshold concentration in tissue and cause adverse effects. This exposure regimen is much different than that used in the standardized acute oral toxicity test methodology. Median lethal dose values derived from standardized acute oral toxicity tests underestimate the environmental hazard and risk of FGARs. Caution is warranted when FGAR toxicity, physiological effects, and pharmacokinetics derived from standardized acute oral toxicity testing are used for forensic confirmation of the cause of death in avian mortality incidents and when characterizing FGARs' risks to free-ranging birds.

  13. Impact of hazardous events on the removal of nutrients and trace organic contaminants by an anoxic-aerobic membrane bioreactor receiving real wastewater.

    PubMed

    Phan, Hop V; Hai, Faisal I; McDonald, James A; Khan, Stuart J; van de Merwe, Jason P; Leusch, Frederic D L; Zhang, Ren; Price, William E; Broeckmann, Andreas; Nghiem, Long D

    2015-09-01

    The impacts of four simulated hazardous events, namely, aeration failure, power loss, and chemical shocks (ammonia or bleach) on the performance of an anoxic-aerobic membrane bioreactor (MBR) receiving real wastewater were investigated. Hazardous events could alter pH and/or oxidation reduction potential of the mixed liquor and inhibit biomass growth, thus affecting the removal of bulk organics, nutrients and trace organic contaminants (TrOC). Chemical shocks generally exerted greater impact on MBR performance than aeration/power failure events, with ammonia shock exerting the greatest impact. Compared to total organic carbon, nutrient removal was more severely affected. Removal of the hydrophilic TrOCs that are resistant and/or occur at high concentrations in wastewater was notably affected. The MBR effectively reduced estrogenicity and toxicity from wastewater, but chemical shocks could temporarily increase the endocrine activity of the effluent. Depending on the chemical shock-dose and the membrane flux, hazardous events can exacerbate membrane fouling. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Biological effects of aqueous extract from Turkey vulture Cathartes aura (Cathartidae) meat.

    PubMed

    Jacobo-Salcedo, Maria del Rosario; Juárez-Vázquez, Maria del Carmen; González-Espíndola, Luis Ángel; Maciel-Torres, Sandra Patricia; García-Carrancá, Alejandro; Alonso-Castro, Angel Josabad

    2013-01-30

    Cathartes aura is a bird used in the Mexican traditional medicine for the empirical treatment of cancer, injuries, infections and burns. The in vitro immunomodulatory effects of Cathartes aura extract (CAE) were evaluated estimating its effects on proliferation of human peripheral blood mononuclear cells and murine splenocytes. The effects of CAE (1-200 μg/ml) on NO production, pinocytosis and lysosomal enzyme activity were assayed in murine macrophages RAW 264.7. The cytotoxic effects of CAE (1-500 μg/ml) on tumorigenic and non tumorigenic cells were evaluated using the MTT assay. In the absence of LPS, CAE induced the proliferation of murine splenocytes (119%), enhanced the pinocytosis (113%) and lysosomal enzyme activity (141%) in murine macrophages with a similar potency than lypopolisaccharides 1 μg/ml. In addition, CAE exerted cytotoxic effects mainly on human cervical cancer cells (IC(50)=117 μg/ml) but lacked toxic effects on non tumorigenic cells (IC(50)>500 μg/ml). Cathartes aura exerts immunostimulatory and cytotoxic activities. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  15. Antimicrobial activity and cytotoxic effects of Magnolia dealbata and its active compounds.

    PubMed

    Jacobo-Salcedo, Maria del Rosario; Gonzalez-Espindola, Luis Angel; Alonso-Castro, Angel Josabad; Gonzalez-Martinez, Marisela del Rocio; Domínguez, Fabiola; Garcia-Carranca, Alejandro

    2011-08-01

    Multi-drug resistance is of great concern for public health worldwide and necessitates the search for new antimicrobials from sources such as plants. Several Magnolia (Magnoliaceae) species have been reported to exert antimicrobial effects on sensitive and multidrug-resistant microorganisms. However, the antimicrobial properties of Magnolia dealbata have not been experimentally evaluated. The antimicrobial effects of an ethanol extract of Magnolia dealbata seeds (MDE) and its active compounds honokiol (HK) and magnolol (MG) were tested against the phytopathogen Clavibacter michiganensis subsp. michiganensis and several human multi-drug resistant pathogens using the disk-diffusion assay. The effects of MDE and its active compounds on the viability of human peripheral blood mononuclear cells (PBMC) were evaluated using MTT assay. MDE and its active compounds had antimicrobial activity (inhibition zone > 10 mm) against C. michiganensis, Pseudomonas aeruginosa, Acinetobacter baumannii, Acinetobacter lwoffii, Candida albicans, Candida tropicalis and Trichosporon belgeii. The results suggest that M. dealbata and its active compounds have selective antimicrobial effects against drug-resistant fungal and Gram (-) bacteria and exert minimal toxic effects on human PMBC.

  16. Antimicrobial and cytotoxic effects of Mexican medicinal plants.

    PubMed

    Jacobo-Salcedo, Maria del Rosario; Alonso-Castro, Angel Josabad; Salazar-Olivo, Luis A; Carranza-Alvarez, Candy; González-Espíndola, Luis Angel; Domínguez, Fabiola; Maciel-Torres, Sandra Patricia; García-Lujan, Concepción; González-Martínez, Marisela del Rocio; Gómez-Sánchez, Maricela; Estrada-Castillón, Eduardo; Zapata-Bustos, Rocio; Medellin-Milán, Pedro; García-Carrancá, Alejandro

    2011-12-01

    The antimicrobial effects of the Mexican medicinal plants Guazuma ulmifolia, Justicia spicigera, Opuntia joconostle, O. leucotricha, Parkinsonia aculeata, Phoradendron longifolium, P. serotinum, Psittacanthus calyculatus, Tecoma stans and Teucrium cubense were tested against several human multi-drug resistant pathogens, including three Gram (+) and five Gram (-) bacterial species and three fungal species using the disk-diffusion assay. The cytotoxicity of plant extracts on human cancer cell lines and human normal non-cancerous cells was also evaluated using the MTT assay. Phoradendron longifolium, Teucrium cubense, Opuntia joconostle, Tecoma stans and Guazuma ulmifolia showed potent antimicrobial effects against at least one multidrug-resistant microorganism (inhibition zone > 15 mm). Only Justicia spicigera and Phoradendron serotinum extracts exerted active cytotoxic effects on human breast cancer cells (IC50 < or = 30 microg/mL). The results showed that Guazuma ulmifolia produced potent antimicrobial effects against Candida albicans and Acinetobacter lwoffii, whereas Justicia spicigera and Phoradendron serotinum exerted the highest toxic effects on MCF-7 and HeLa, respectively, which are human cancer cell lines. These three plant species may be important sources of antimicrobial and cytotoxic agents.

  17. mda-7/IL-24 induces cell death in neuroblastoma through a novel mechanism involving AIF and ATM

    PubMed Central

    Bhoopathi, Praveen; Lee, Nathaniel; Pradhan, Anjan K.; Shen, Xue-Ning; Das, Swadesh K.; Sarkar, Devanand; Emdad, Luni; Fisher, Paul B.

    2016-01-01

    Advanced stages of neuroblastoma, the most common extracranial malignant solid tumor of the central nervous system in infants and children, are refractive to therapy. Ectopic expression of melanoma differentiation associated gene-7/Interleukin-24 (mda-7/IL-24) promotes broad-spectrum antitumor activity in vitro, in vivo in pre-clinical animal models and in a Phase I clinical trial in patients with advanced cancers, without harming normal cells. mda-7/IL-24 exerts cancer-specific toxicity (apoptosis or toxic autophagy) by promoting ER stress and modulating multiple signal transduction pathways regulating cancer cell growth, invasion, metastasis, survival and angiogenesis. To enhance cancer-selective expression and targeted anti-cancer activity of mda-7/IL-24 we created a tropism-modified Cancer Terminator Virus (Ad.5/3-CTV), which selectively replicates in cancer cells producing robust expression of mda-7/IL-24. We now show that Ad.5/3-CTV induces profound neuroblastoma anti-proliferative activity and apoptosis in a caspase 3/9-independent manner both in vitro and in vivo in a tumor xenograft model. Ad.5/3-CTV promotes these effects through a unique pathway involving apoptosis inducing factor (AIF) translocation into the nucleus. Inhibiting AIF rescued neuroblastoma cells from Ad.5/3-CTV-induced cell death, whereas pan-caspase inhibition failed to promote survival. Ad.5/3-CTV infection of neuroblastoma cells increased ATM phosphorylation instigating nuclear translocation and increased γ–H2AX, triggering nuclear translocation and intensified expression of AIF. These results were validated further using two ATM small molecule inhibitors that attenuated PARP cleavage by inhibiting γ–H2AX, which in turn inhibited AIF changes in Ad.5/3-CTV-infected neuroblastoma cells. Taken together, we elucidate a novel pathway for mda-7/IL-24-induced caspase-independent apoptosis in neuroblastoma cells mediated through modulation of AIF, ATM and γ–H2AX. PMID:27197168

  18. Activity against Mycobacterium tuberculosis with concomitant induction of cellular immune responses by a tetraaza-macrocycle with acetate pendant arms.

    PubMed

    David, S; Ordway, D; Arroz, M J; Costa, J; Delgado, R

    2001-01-01

    The novel tetraaza-macrocyclic compound 3,7,11-tris(carboxymethyl)-3,7,11,17-tetraaza-bicyclo[11.3.1]heptadeca-1(17),13,15-triene, abbreviated as ac3py14, was investigated for its activity against Mycobacterium tuberculosis and for induction of protective cellular immune responses. Perspective results show that ac3py14 and its Fe3+ 1:1 complex, [Fe(ac3py14)], inhibited radiometric growth of several strains of M. tuberculosis. Inhibition with 25 microg/mL varied from 99% for H37Rv to 80% and above for multiple drug-resistant clinical isolates. The capacity of ac3py14 to elicit a beneficial immune response without cellular apoptosis was assessed and compared to the effects of virulent M. tuberculosis. The present study produces evidence that after stimulation with ac3py14 there was significant production of interferon gamma (IFN-gamma), whereas the production of interleukin-5 (IL-5) remained low, and there was development of a memory population (CD45RO). The level of binding of Annexin V, a marker of apoptosis, was not sufficient to result in toxic effects toward alphabeta and gammadelta T cells and CD14+ macrophages. This preliminary study is the first report of a compound that simultaneously exerts an inhibitory effect against M. tuberculosis and induces factors associated with protective immune responses.

  19. Treatment with anti-TNF alpha protects against the neuropathy induced by the proteasome inhibitor bortezomib in a mouse model.

    PubMed

    Alé, Albert; Bruna, Jordi; Morell, Marta; van de Velde, Helgi; Monbaliu, Johan; Navarro, Xavier; Udina, Esther

    2014-03-01

    Bortezomib (BTZ), a proteasome inhibitor, is an effective anti-neoplastic drug used in the treatment of multiple myeloma and mantle cell lymphoma. However, it can induce a reversible peripheral neuropathy that may lead to treatment discontinuation. The mechanism through which BTZ exerts toxic effects in peripheral neurons is not clear. Release of proinflammatory cytokines after nerve damage can induce neurodegeneration, but the effects of BTZ on cytokine expression in neurons are unknown, although BTZ modulates the expression of cytokines, such as TNF-α and IL-6, in tumor cells. The aim of this study was to evaluate the expression and the role of these cytokines on the course of BTZ induced neuropathy in mice. IL-6, TNF-α, TGF-β1 and IL-1β were up-regulated in dorsal root ganglia but TNF-α and IL-6 increased faster and higher. Then, we studied the potential neuroprotective effect of selective antibodies anti-TNF-α and anti-IL-6 on the evolution of the neuropathy. Treatment with anti-TNF-α but not with anti-IL-6 significantly prevented the decrease of sensory nerve action potentials amplitude and the loss of myelinated and unmyelinated fibers. We conclude that monoclonal antibodies directed against TNF-α may be a suitable neuroprotective therapy against the neurotoxicity induced by BTZ. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Mutual independence of alkaline‐ and calcium‐mediated signalling in Aspergillus fumigatus refutes the existence of a conserved druggable signalling nexus

    PubMed Central

    Loss, Omar; Bertuzzi, Margherita; Yan, Yu; Fedorova, Natalie; McCann, Bethany L.; Armstrong‐James, Darius; Espeso, Eduardo A.; Read, Nick D.; Nierman, William C.

    2017-01-01

    Summary Functional coupling of calcium‐ and alkaline responsive signalling occurs in multiple fungi to afford efficient cation homeostasis. Host microenvironments exert alkaline stress and potentially toxic concentrations of Ca2+, such that highly conserved regulators of both calcium‐ (Crz) and pH‐ (PacC/Rim101) responsive signalling are crucial for fungal pathogenicity. Drugs targeting calcineurin are potent antifungal agents but also perturb human immunity thereby negating their use as anti‐infectives, abrogation of alkaline signalling has, therefore, been postulated as an adjunctive antifungal strategy. We examined the interdependency of pH‐ and calcium‐mediated signalling in Aspergillus fumigatus and found that calcium chelation severely impedes hyphal growth indicating a critical requirement for this ion independently of ambient pH. Transcriptomic responses to alkaline pH or calcium excess exhibited minimal similarity. Mutants lacking calcineurin, or its client CrzA, displayed normal alkaline tolerance and nuclear translocation of CrzA was unaffected by ambient pH. Expression of a highly conserved, alkaline‐regulated, sodium ATPase was tolerant of genetic or chemical perturbations of calcium‐mediated signalling, but abolished in null mutants of the pH‐responsive transcription factor PacC, and PacC proteolytic processing occurred normally during calcium excess. Taken together our data demonstrate that in A. fumigatus the regulatory hierarchy governing alkaline tolerance circumvents calcineurin signalling. PMID:28922497

  1. Multiple sclerosis, brain radiotherapy, and risk of neurotoxicity: The Mayo Clinic experience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, Robert C.; Lachance, Daniel H.; Lucchinetti, Claudia F.

    2006-11-15

    Purpose: The aim of this study was a retrospective assessment of neurotoxicity in patients with multiple sclerosis (MS) receiving external beam radiotherapy (EBRT) to the brain. Methods and Materials: We studied 15 consecutively treated patients with MS who received brain EBRT. Neurologic toxicity was assessed with the Common Toxicity Criteria v.3.0. Results: Median follow-up for the 5 living patients was 6.0 years (range, 3.3-27.4 years). No exacerbation of MS occurred in any patient during EBRT. Five patients had Grade 4 neurologic toxicity and 1 had possible Grade 5 toxicity. Kaplan-Meier estimated risk of neurotoxicity greater than Grade 4 at 5more » years was 57% (95% confidence interval, 27%-82%). Toxicity occurred at 37.5 to 54.0 Gy at a median of 1.0 year (range, 0.2-4.3 years) after EBRT. Univariate analysis showed an association between opposed-field irradiation of the temporal lobes, central white matter, and brainstem and increased risk of neurotoxicity (p < 0.04). Three of 6 cases of toxicity occurred in patients treated before 1986. Conclusions: External beam radiotherapy of the brain in patients with MS may be associated with an increased risk of neurotoxicity compared with patients without demyelinating illnesses. However, this risk is associated with treatment techniques that may not be comparable to modern, conformal radiotherapy.« less

  2. Chronic Exertional Compartment Syndrome.

    PubMed

    Braver, Richard T

    2016-04-01

    Increased tissue pressure within a fascial compartment may be the result from any increase in volume within its contents, or any decrease in size of the fascial covering or its distensibility. This may lead to symptoms of leg tightness, pain or numbness brought about by exercise. There are multiple differential diagnoses of exercise induced leg pain and the proper diagnoses of chronic exertional compartment syndrome (CECS) is made by a careful history and by exclusion of other maladies and confirmed by compartment syndrome testing as detailed in this text. Surgical fasciotomies for the anterior, lateral, superficial and deep posterior compartments are described in detail along with ancillary procedures for chronic shin splints that should allow the athlete to return to competitive activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Classification and Dose-Response Characterization of ...

    EPA Pesticide Factsheets

    Thirty years and over a billion of today’s dollars worth of pesticide registration toxicity studies, historically stored as hardcopy and scanned documents, have been digitized into highly standardized and structured toxicity data, within the U.S. Environmental Protection Agency’s (EPA) Toxicity Reference Database (ToxRefDB). The source toxicity data in ToxRefDB covers multiple study types, including subchronic, developmental, reproductive, chronic, and cancer studies, resulting in a diverse set of endpoints and toxicities. Novel approaches to chemical classification are performed as a model application of ToxRefDB and as an essential need for highly detailed chemical classifications within the EPA’s ToxCast™ research program. In order to develop predictive models and biological signatures utilizing high-throughput screening (HTS) and in vitro genomic data, endpoints and toxicities must first be identified and globally characterized for ToxCast Phase I chemicals. Secondarily, dose-response characterization within and across toxicity endpoints provide insight into key precursor toxicity events and overall endpoint relevance. Toxicity-based chemical classification and dose-response characterization utilizing ToxRefDB prioritized toxicity endpoints and differentiated toxicity outcomes across a large chemical set.

  4. In silico quantitative structure-toxicity relationship study of aromatic nitro compounds.

    PubMed

    Pasha, Farhan Ahmad; Neaz, Mohammad Morshed; Cho, Seung Joo; Ansari, Mohiuddin; Mishra, Sunil Kumar; Tiwari, Sharvan

    2009-05-01

    Small molecules often have toxicities that are a function of molecular structural features. Minor variations in structural features can make large difference in such toxicity. Consequently, in silico techniques may be used to correlate such molecular toxicities with their structural features. Relative to nine different sets of aromatic nitro compounds having known observed toxicities against different targets, we developed ligand-based 2D quantitative structure-toxicity relationship models using 20 selected topological descriptors. The topological descriptors have several advantages such as conformational independency, facile and less time-consuming computation to yield good results. Multiple linear regression analysis was used to correlate variations of toxicity with molecular properties. The information index on molecular size, lopping centric index and Kier flexibility index were identified as fundamental descriptors for different kinds of toxicity, and further showed that molecular size, branching and molecular flexibility might be particularly important factors in quantitative structure-toxicity relationship analysis. This study revealed that topological descriptor-guided quantitative structure-toxicity relationship provided a very useful, cost and time-efficient, in silico tool for describing small-molecule toxicities.

  5. Multi-Toxic Endpoints of the Foodborne Mycotoxins in Nematode Caenorhabditis elegans

    PubMed Central

    Yang, Zhendong; Xue, Kathy S.; Sun, Xiulan; Tang, Lili; Wang, Jia-Sheng

    2015-01-01

    Aflatoxins B1 (AFB1), deoxynivalenol (DON), fumonisin B1 (FB1), T-2 toxin (T-2), and zearalenone (ZEA) are the major foodborne mycotoxins of public health concerns. In the present study, the multiple toxic endpoints of these naturally-occurring mycotoxins were evaluated in Caenorhabditis elegans model for their lethality, toxic effects on growth and reproduction, as well as influence on lifespan. We found that the lethality endpoint was more sensitive for T-2 toxicity with the EC50 at 1.38 mg/L, the growth endpoint was relatively sensitive for AFB1 toxic effects, and the reproduction endpoint was more sensitive for toxicities of AFB1, FB1, and ZEA. Moreover, the lifespan endpoint was sensitive to toxic effects of all five tested mycotoxins. Data obtained from this study may serve as an important contribution to knowledge on assessment of mycotoxin toxic effects, especially for assessing developmental and reproductive toxic effects, using the C. elegans model. PMID:26633509

  6. Reduced Plasma Nonesterified Fatty Acid Levels and the Advent of an Acute Lung Injury in Mice after Intravenous or Enteral Oleic Acid Administration

    PubMed Central

    Gonçalves de Albuquerque, Cassiano Felippe; Burth, Patrícia; Younes Ibrahim, Mauricio; Garcia, Diogo Gomes; Bozza, Patrícia Torres; Castro Faria Neto, Hugo Caire; Castro Faria, Mauro Velho

    2012-01-01

    Although exerting valuable functions in living organisms, nonesterified fatty acids (NEFAs) can be toxic to cells. Increased blood concentration of oleic acid (OLA) and other fatty acids is detected in many pathological conditions. In sepsis and leptospirosis, high plasma levels of NEFA and low albumin concentrations are correlated to the disease severity. Surprisingly, 24 h after intravenous or intragastric administration of OLA, main NEFA levels (OLA inclusive) were dose dependently decreased. However, lung injury was detected in intravenously treated mice, and highest dose killed all mice. When administered by the enteral route, OLA was not toxic in any tested conditions. Results indicate that OLA has important regulatory properties on fatty acid metabolism, possibly lowering circulating fatty acid through activation of peroxisome proliferator-activated receptors. The significant reduction in blood NEFA levels detected after OLA enteral administration can contribute to the already known health benefits brought about by unsaturated-fatty-acid-enriched diets. PMID:22529526

  7. Reduced plasma nonesterified fatty acid levels and the advent of an acute lung injury in mice after intravenous or enteral oleic acid administration.

    PubMed

    Gonçalves de Albuquerque, Cassiano Felippe; Burth, Patrícia; Younes Ibrahim, Mauricio; Garcia, Diogo Gomes; Bozza, Patrícia Torres; Castro Faria Neto, Hugo Caire; Castro Faria, Mauro Velho

    2012-01-01

    Although exerting valuable functions in living organisms, nonesterified fatty acids (NEFAs) can be toxic to cells. Increased blood concentration of oleic acid (OLA) and other fatty acids is detected in many pathological conditions. In sepsis and leptospirosis, high plasma levels of NEFA and low albumin concentrations are correlated to the disease severity. Surprisingly, 24 h after intravenous or intragastric administration of OLA, main NEFA levels (OLA inclusive) were dose dependently decreased. However, lung injury was detected in intravenously treated mice, and highest dose killed all mice. When administered by the enteral route, OLA was not toxic in any tested conditions. Results indicate that OLA has important regulatory properties on fatty acid metabolism, possibly lowering circulating fatty acid through activation of peroxisome proliferator-activated receptors. The significant reduction in blood NEFA levels detected after OLA enteral administration can contribute to the already known health benefits brought about by unsaturated-fatty-acid-enriched diets.

  8. Toxic effects of 1,4-dichlorobenzene on photosynthesis in Chlorella pyrenoidosa.

    PubMed

    Zhang, Jinhua; Wang, Jie; Feng, Jia; Lv, Junping; Cai, Jin; Liu, Qi; Xie, Shulian

    2016-09-01

    1,4-Dichlorobenzene (1,4-DCB) is a common organic contaminant in water. To determine the effects of this contaminant on photosynthesis in the freshwater alga Chlorella pyrenoidosa, algal cells were treated with 1,4-DCB at different concentrations for various times, and their photosynthetic pigment contents and chlorophyll fluorescence traits were analyzed. The results showed that 1,4-DCB exerted toxic effects on photosynthesis in C. pyrenoidosa, especially at concentrations exceeding 10 mg/L. The inhibitory effects of 1,4-DCB were time- and concentration-dependent. After treatment with 1,4-DCB (≥10 mg/L), the contents of photosynthetic pigments decreased significantly, the photosystem II reaction center was irreversibly damaged, and the quantum yield of photosystem II decreased significantly. Also, there were sharp decreases in the efficiency of photosynthetic electron transport and energy conversion. Photosystem II became overloaded as the amount of excitation energy distributed to it increased. All of these events weakened the photochemical reaction, and ultimately led to serious inhibition of photosynthesis.

  9. Insights into Antimicrobial Peptides from Spiders and Scorpions

    PubMed Central

    Wang, Xiuqing; Wang, Guangshun

    2015-01-01

    The venoms of spiders and scorpions contain a variety of chemical compounds. Antimicrobial peptides (AMPs) from these organisms were first discovered in the 1990s. As of May 2015, there were 42 spider’s and 63 scorpion’s AMPs in the Antimicrobial Peptide Database (http://aps.unmc.edu/AP). These peptides have demonstrated broad or narrow-spectrum activities against bacteria, fungi, viruses, and parasites. In addition, they can be toxic to cancer cells, insects and erythrocytes. To provide insight into such an activity spectrum, this article discusses the discovery, classification, structure and activity relationships, bioinformatics analysis, and potential applications of spider and scorpion AMPs. Our analysis reveals that, in the case of linear peptides, spiders use both glycine-rich and helical peptide models for defense, whereas scorpions use two distinct helical peptide models with different amino acid compositions to exert the observed antimicrobial activities and hemolytic toxicity. Our structural bioinformatics study improves the knowledge in the field and can be used to design more selective peptides to combat tumors, parasites, and viruses. PMID:27165405

  10. Cyanohepatotoxins influence on the neuroendocrine and immune systems in fish - a short review.

    PubMed

    Sieroslawska, Anna; Rymuszka, Anna

    2009-01-01

    Cyanotoxins are the metabolites of cyanobacteria, belonging to different chemical groups and of diverse mechanisms of toxicity. Generally, they are divided into hepatotoxins, neurotoxins and dermatotoxins/irritant toxins. There is a growing evidence, that besides the above mentioned toxicity, exposure to cyanotoxins may also induce other effects, among others the disruption of neuroendocrine and immune systems. The purpose of that paper is to sum up the current information obtained from the literature and from our own studies about the influence of cyanohepatotoxins on neuroendocrine and immune systems of fish. From the presented data it appears, that microcystins, nodularin and cylindrospermopsin, except for their hepatotoxic activity, are potent to exert such effects as HPI axis activation resulting in physiological and behavioural changes, disturbances in thyroid hormones release/metabolism, as well as impairment of immune responses in fish. However the studies in that area are still incomplete and many questions remain to be answered, especially what consequences for fish population health status it brings.

  11. The function of yeast CAP family proteins in lipid export, mating, and pathogen defense.

    PubMed

    Darwiche, Rabih; El Atab, Ola; Cottier, Stéphanie; Schneiter, Roger

    2018-04-01

    In their natural habitat, yeast cells are constantly challenged by changing environmental conditions and a fierce competition for limiting resources. To thrive under such conditions, cells need to adapt and divide quickly, and be able to neutralize the toxic compounds secreted by their neighbors. Proteins like the pathogen-related yeast, Pry proteins, which belong to the large CAP/SCP/TAPS superfamily, may have an important role in this function. CAP proteins are conserved from yeast to man and are characterized by a unique αβα sandwich fold. They are mostly secreted glycoproteins and have been implicated in many different physiological processes including pathogen defense, virulence, venom toxicity, and sperm maturation. Yeast members of this family bind and export sterols as well as fatty acids, and they render cells resistant to eugenol, an antimicrobial compound present in clove oil. CAP family members might thus exert their various physiological functions through binding, sequestration, and neutralization of such small hydrophobic compounds. © 2017 Federation of European Biochemical Societies.

  12. Is there a direct relationship between stress biomarkers in oysters and the amount of metals in the sediments where they inhabit?

    PubMed

    Rodriguez-Iruretagoiena, A; Rementeria, A; Zaldibar, B; de Vallejuelo, S Fdez-Ortiz; Gredilla, A; Arana, G; de Diego, A

    2016-10-15

    The effects exerted by metals in oysters are still a matter of debate and require more detailed studies. In this work we have investigated whether the health status of oysters are affected by the amount of metals present in the sediments of their habitat. Sediments and oysters were collected in the tidal part of the estuary of the Oka River (Basque Country), representative of other mesotidal, well mixed and short estuaries of the European Atlantic coast. The concentrations of 14 elements were determined in all the samples. Several biomarkers were also measured in the soft tissues of oysters. According to the concentrations found, the sediments were classified as non-toxic or slightly toxic. In good agreement, the histological alterations observed in oysters were not severe. Interestingly, in those sampling sites where the sediments showed relatively high metal concentrations, the metallic content in oysters was lower, and vice versa. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Activation of cGAS-dependent antiviral responses by DNA intercalating agents

    PubMed Central

    Pépin, Geneviève; Nejad, Charlotte; Thomas, Belinda J.; Ferrand, Jonathan; McArthur, Kate; Bardin, Philip G.; Williams, Bryan R.G.; Gantier, Michael P.

    2017-01-01

    Acridine dyes, including proflavine and acriflavine, were commonly used as antiseptics before the advent of penicillins in the mid-1940s. While their mode of action on pathogens was originally attributed to their DNA intercalating activity, work in the early 1970s suggested involvement of the host immune responses, characterized by induction of interferon (IFN)-like activities through an unknown mechanism. We demonstrate here that sub-toxic concentrations of a mixture of acriflavine and proflavine instigate a cyclic-GMP-AMP (cGAMP) synthase (cGAS)-dependent type-I IFN antiviral response. This pertains to the capacity of these compounds to induce low level DNA damage and cytoplasmic DNA leakage, resulting in cGAS-dependent cGAMP-like activity. Critically, acriflavine:proflavine pre-treatment of human primary bronchial epithelial cells significantly reduced rhinovirus infection. Collectively, our findings constitute the first evidence that non-toxic DNA binding agents have the capacity to act as indirect agonists of cGAS, to exert potent antiviral effects in mammalian cells. PMID:27694309

  14. Krebs Cycle Intermediates Protective against Oxidative Stress by Modulating the Level of Reactive Oxygen Species in Neuronal HT22 Cells.

    PubMed

    Sawa, Kenta; Uematsu, Takumi; Korenaga, Yusuke; Hirasawa, Ryuya; Kikuchi, Masatoshi; Murata, Kyohei; Zhang, Jian; Gai, Xiaoqing; Sakamoto, Kazuichi; Koyama, Tomoyuki; Satoh, Takumi

    2017-03-16

    Krebs cycle intermediates (KCIs) are reported to function as energy substrates in mitochondria and to exert antioxidants effects on the brain. The present study was designed to identify which KCIs are effective neuroprotective compounds against oxidative stress in neuronal cells. Here we found that pyruvate, oxaloacetate, and α-ketoglutarate, but not lactate, citrate, iso-citrate, succinate, fumarate, or malate, protected HT22 cells against hydrogen peroxide-mediated toxicity. These three intermediates reduced the production of hydrogen peroxide-activated reactive oxygen species, measured in terms of 2',7'-dichlorofluorescein diacetate fluorescence. In contrast, none of the KCIs-used at 1 mM-protected against cell death induced by high concentrations of glutamate-another type of oxidative stress-induced neuronal cell death. Because these protective KCIs did not have any toxic effects (at least up to 10 mM), they have potential use for therapeutic intervention against chronic neurodegenerative diseases.

  15. Two-generation reproductive toxicity study of tributyltin chloride in female rats.

    PubMed

    Ogata, R; Omura, M; Shimasaki, Y; Kubo, K; Oshima, Y; Aou, S; Inoue, N

    2001-05-25

    A two-generation reproductive toxicity study of the effects of tributyltin chloride (TBTCl) was conducted in female rats using dietary concentrations of 5, 25, and 125 ppm TBTCl. Reproductive outcomes of dams (number and body weight of pups and the percentage of live pups) and the growth of female pups (the day of eye opening and body weight gain) were significantly decreased in the 125 ppm TBTCl group. A delay in vaginal opening and impaired estrous cyclicity were also observed in the 125 ppm TBTCl group. However, an increase in anogenital distance was found in all TBTCl groups on postnatal d 1. A dose-effect relationship was observed in TBTCl-induced changes in anogenital distance. These results indicate that the whole-life exposure to TBTCl affects the sexual development and reproductive function of female rats. In addition, the TBTCl-induced increase in anogenital distance seems to suggest it may exert a masculinizing effect on female neonates. However, the concentrations of TBTCl used in this study are not environmentally relevant.

  16. Resveratrol Inhibition of Cellular Respiration: New Paradigm for an Old Mechanism

    PubMed Central

    Madrigal-Perez, Luis Alberto; Ramos-Gomez, Minerva

    2016-01-01

    Resveratrol (3,4′,5-trihydroxy-trans-stilbene, RSV) has emerged as an important molecule in the biomedical area. This is due to its antioxidant and health benefits exerted in mammals. Nonetheless, early studies have also demonstrated its toxic properties toward plant-pathogenic fungi of this phytochemical. Both effects appear to be opposed and caused by different molecular mechanisms. However, the inhibition of cellular respiration is a hypothesis that might explain both toxic and beneficial properties of resveratrol, since this phytochemical: (1) decreases the production of energy of plant-pathogenic organisms, which prevents their proliferation; (2) increases adenosine monophosphate/adenosine diphosphate (AMP/ADP) ratio that can lead to AMP protein kinase (AMPK) activation, which is related to its health effects, and (3) increases the reactive oxygen species generation by the inhibition of electron transport. This pro-oxidant effect induces expression of antioxidant enzymes as a mechanism to counteract oxidative stress. In this review, evidence is discussed that supports the hypothesis that cellular respiration is the main target of resveratrol. PMID:26999118

  17. Diffuse Scattering as an Aid to the Understanding of Polymorphism in Pharmaceuticals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Welberry, T.R.; Chan, E.J.; Goossens, D.J.

    Polymorphism occurs when the same molecular compound can crystallize in more than one distinct crystal structure. Its study is a field of great interest and activity. This is largely driven by its importance in the pharmaceutical industry, but polymorphism is also an issue in the pigments, dyes, and explosives industries. The polymorph formed by a compound generally exerts a strong influence on its solid-state properties. The polymorphic form of a drug molecule may affect the ease of manufacture and processing, shelf life, and most significantly the rate of uptake of the molecule by the human body. They can even varymore » in toxicity; one polymorph may be safe, while a second may be toxic. In this review of recently published work, we show how diffuse scattering experiments coupled with Monte Carlo (MC) computer modeling can aid in the understanding of polymorphism. Examples of the two common pharmaceuticals, benzocaine and aspirin, both of which are bimorphic, at ambient temperatures, are discussed.« less

  18. Diffuse Scattering as an Aid to the Understanding of Polymorphism in Pharmaceuticals

    NASA Astrophysics Data System (ADS)

    Welberry, T. R.; Chan, E. J.; Goossens, D. J.; Heerdegen, A. P.

    2012-05-01

    Polymorphism occurs when the same molecular compound can crystallize in more than one distinct crystal structure. Its study is a field of great interest and activity. This is largely driven by its importance in the pharmaceutical industry, but polymorphism is also an issue in the pigments, dyes, and explosives industries. The polymorph formed by a compound generally exerts a strong influence on its solid-state properties. The polymorphic form of a drug molecule may affect the ease of manufacture and processing, shelf life, and most significantly the rate of uptake of the molecule by the human body. They can even vary in toxicity; one polymorph may be safe, while a second may be toxic. In this review of recently published work, we show how diffuse scattering experiments coupled with Monte Carlo (MC) computer modeling can aid in the understanding of polymorphism. Examples of the two common pharmaceuticals, benzocaine and aspirin, both of which are bimorphic, at ambient temperatures, are discussed.

  19. The Effects of Hempseed Meal Intake and Linoleic Acid on Drosophila Models of Neurodegenerative Diseases and Hypercholesterolemia

    PubMed Central

    Lee, Min Jung; Park, Seung Hwan; Han, Ju Hua; Hong, Yoon Ki; Hwang, Soojin; Lee, Soojin; Kim, Darae; Han, Seung Yeop; Kim, Eun Soo; Cho, Kyoung Sang

    2011-01-01

    Hempseed is rich in polyunsaturated fatty acids (PUFAs), which have potential as therapeutic compounds for the treatment of neurodegenerative and cardiovascular dis-ease. However, the effect of hempseed meal (HSM) intake on the animal models of these diseases has yet to be elucidated. In this study, we assessed the effects of the intake of HSM and PUFAs on oxidative stress, cytotoxicity and neurological phenotypes, and cholesterol uptake, using Drosophila models. HSM intake was shown to reduce H2O2 toxicity markedly, indicating that HSM exerts a profound antioxidant effect. Meanwhile, intake of HSM, as well as linoleic or linolenic acids (major PUFA components of HSM) was shown to ameliorate Aβ42-induced eye degeneration, thus suggesting that these compounds exert a protective effect against Aβ42 cytotoxicity. On the contrary, locomotion and longevity in the Parkinson’s disease model andeye degeneration in the Huntington’s disease model were unaffected by HSM feeding. Additionally, intake of HSM or linoleic acid was shown to reduce cholesterol uptake significantly. Moreover, linoleic acid intake has been shown to delay pupariation, and cholesterol feeding rescued the linoleic acid-induced larval growth delay, thereby indicating that linoleic acid acts antagonistically with cholesterol during larval growth. In conclusion, our results indicate that HSM and linoleic acid exert inhibitory effects on both Aβ42 cytotoxicity and cholesterol uptake, and are potential candidates for the treatment of Alzheimer’s disease and cardiovasculardisease. PMID:21331775

  20. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qi, Xiaozhe; Yu, Tao; Zhu, Liye

    Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected inmore » the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity. - Highlights: • We studied OTA toxicities in both the rat liver and kidney for 13 weeks. • OTA exerts limited effects on oxidative stress in the rat liver and kidney. • OTA induced renal carcinogenicity resulting from cell proliferation.« less

  1. 17alpha-methyltestosterone: 28-day oral toxicity study in the rat based on the "Enhanced OECD Test Guideline 407" to detect endocrine effects.

    PubMed

    Wason, Sheila; Pohlmeyer-Esch, Gabriele; Pallen, Catherine; Palazzi, Xavier; Espuña, Gemma; Bars, Remi

    2003-11-05

    A 28-day oral gavage toxicity study in the rat with 17alpha-methyltestosterone was conducted as part of the international validation exercise on the modified Enhanced OECD Test Guideline 407 (Organisation for Economic Co-operation and Development, Paris). Special emphasis was placed on the endocrine mediated effects exerted by 17alpha-methyltestosterone, a potent androgen agonist. The test compound was administered daily by oral gavage for at least 28 days to groups of 7-week-old-Wistar rats. Dose levels were 0, 10, 40 and 200 mg/kg body weight per day for males and 0, 10, 100 and 600 mg/kg body weight per day for females. In addition, and outside the remit of the enhanced protocol, testosterone levels in males, oestradiol levels in females and luteinizing hormone (LH) levels in both sexes were measured, to provide a broader profile on the hormonally mediated effects of 17alpha-methyltestosterone. Furthermore, stage-specific quantification of Terminal deoxynucleotidyl transferase-mediated dUTP Nick-End Labeling (TUNEL)-labeled germ cells (apoptotic germ cells) in the seminiferous tubules was also performed, in an effort to demonstrate the precise stages in the spermatogenic cycle 17alpha-methyltestosterone exerts its effect. In this study, the most critical additional parameters contained in the Enhanced OECD Test Guideline 407 for the detection of endocrine disruption were considered to be the histopathological assessment and organ weight data of endocrine-related tissues. Beyond the scope of this validation exercise, an increase in apoptosis in specific germ cell types was detected using the TUNEL assay in male rats treated at 200 and 40 mg/kg.

  2. A COMPARISON OF MULTIPLE TOXICITIES FOLLOWING DEVELOPMENTAL EXPOSURE TO PESTICIDES: NEUROTOXICITY, IMMUNOTOXICITY, AND REPRODUCTIVE TOXICITY.

    EPA Science Inventory

    The NAS report (Pesticides in the Diets of Infants and Children, 1993) called for significant research effort into the long-term effects of perinatal pesticide exposure on the nervous, immune, and reproductive systems. In response, the US EPA and NIEHS collaborated on a series o...

  3. Ion toxicity and the development of a salinity toxicity relationship (STR) model for marine species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tietge, J.E.; Mount, D.R.

    1994-12-31

    Salinity in effluents can cause acute toxicity to marine organisms. The toxicity of the water can be due to an excess or deficiency of common ions, which usually are not thought of as toxicants. In order to develop an understanding of this phenomenon, laboratory toxicity tests were conducted to determine the effects of single ion deficiency, single ion excess, multiple ion deficiency, multiple ion excess, and total salinity on survival of three common marine test organisms (Mysidopsis bahia, Cyprinidon variegatus, and Menidia beryllina). The ions which were manipulated in these studies were Na{sup +}, K{sup +}, Ca{sup ++}, Mg{sup ++},more » Sr{sup ++}, Cl{sup {minus}}, Br{sup {minus}}, SO{sub 4}{sup {minus}{minus}}, HCO{sub 3}{sup {minus}}, and B{sub 4}O{sub 7}{sup {minus}{minus}}. Results indicate that Ca{sup ++} and K{sup +} are essential ions at normal salinities, since the deficiency of these two ions causes mortality. In contrast, the complete deficiency of Mg{sup ++}, Sr{sup ++}, B{sub 4}O{sub 7}{sup {minus}{minus}}, and HCO{sub 3}{sup {minus}} did not affect survival. The single ion excess studies demonstrated that K{sup +}, Ca{sup ++}, Mg{sup ++}, and B{sub 4}O{sub 7}{sup {minus}} were acutely toxic in excess at normal salinities. Total salinity studies determined the salinity tolerance range for each species, with upper and lower LC{sub 50}s for Mysidopsis bahia at 44 g/L and 8 g/L, for Cyprinidon variegatus at 73 g/L and < 0 g/L, and for Menidia beryllina at 45 g/L and < 0 g/L. These data will be used to develop a model to predict toxicity due to common ions.« less

  4. Quantitative structure-toxicity relationship (QSTR) studies on the organophosphate insecticides.

    PubMed

    Can, Alper

    2014-11-04

    Organophosphate insecticides are the most commonly used pesticides in the world. In this study, quantitative structure-toxicity relationship (QSTR) models were derived for estimating the acute oral toxicity of organophosphate insecticides to male rats. The 20 chemicals of the training set and the seven compounds of the external testing set were described by means of using descriptors. Descriptors for lipophilicity, polarity and molecular geometry, as well as quantum chemical descriptors for energy were calculated. Model development to predict toxicity of organophosphate insecticides in different matrices was carried out using multiple linear regression. The model was validated internally and externally. In the present study, QSTR model was used for the first time to understand the inherent relationships between the organophosphate insecticide molecules and their toxicity behavior. Such studies provide mechanistic insight about structure-toxicity relationship and help in the design of less toxic insecticides. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Integration of Nuclear- and Extranuclear-Initiated Estrogen Receptor Signaling in Breast Cancer Cells

    ERIC Educational Resources Information Center

    Madak Erdogan, Zeynep

    2009-01-01

    Estrogenic hormones exert their effects through binding to Estrogen Receptors (ERs), which work in concert with coregulators and extranuclear signaling pathways to control gene expression in normal as well as cancerous states, including breast tumors. In this thesis, we have used multiple genome-wide analysis tools to elucidate various ways that…

  6. The Relation between Binge Drinking and Academic Performance: Considering the Mediating Effects of Academic Involvement

    ERIC Educational Resources Information Center

    An, Brian P.; Loes, Chad N.; Trolian, Teniell L.

    2017-01-01

    Using longitudinal data from multiple institutions, we focused on the relation between binge drinking and academic performance. Binge drinking exerts a negative influence on grade point average, even after accounting for a host of precollege confounding variables. Furthermore, the number of times a student binge drinks in college is less…

  7. Whose Hand Rocks the Cradle? Parallel Discourses in the Baby Room

    ERIC Educational Resources Information Center

    Powell, Sacha; Goouch, Kathy

    2012-01-01

    This article explores the practice narratives of a group of 25 caregivers who work with babies in daycare settings in England and seeks to illustrate awareness of, resistance to and compliance with powerful discourses. It is argued that multiple voices exert an influence over baby room practice, disempowering the caregivers and reducing their…

  8. Position And Force Control For Multiple-Arm Robots

    NASA Technical Reports Server (NTRS)

    Hayati, Samad A.

    1988-01-01

    Number of arms increased without introducing undue complexity. Strategy and computer architecture developed for simultaneous control of positions of number of robot arms manipulating same object and of forces and torques that arms exert on object. Scheme enables coordinated manipulation of object, causing it to move along assigned trajectory and be subjected to assigned internal forces and torques.

  9. Greece before the Bologna Process: Confronting or Embracing Quality Assurance in Higher Education?

    ERIC Educational Resources Information Center

    Stamoulas, Aristotelis

    2006-01-01

    The globalization of education, with its multiple associations with the growth of the knowledge society, the increasing penetration of market forces in higher education and the treatment of education as an exportable good, supplied in different forms and by various providers, exerts the need for systematic quality assurance in higher education. In…

  10. The Antimicrobial Properties of Silver Nanoparticles in Bacillus subtilis Are Mediated by Released Ag+ Ions

    PubMed Central

    Hsueh, Yi-Huang; Lin, Kuen-Song; Ke, Wan-Ju; Hsieh, Chien-Te; Chiang, Chao-Lung; Tzou, Dong-Ying; Liu, Shih-Tung

    2015-01-01

    The superior antimicrobial properties of silver nanoparticles (Ag NPs) are well-documented, but the exact mechanisms underlying Ag-NP microbial toxicity remain the subject of intense debate. Here, we show that Ag-NP concentrations as low as 10 ppm exert significant toxicity against Bacillus subtilis, a beneficial bacterium ubiquitous in the soil. Growth arrest and chromosomal DNA degradation were observed, and flow cytometric quantification of propidium iodide (PI) staining also revealed that Ag-NP concentrations of 25 ppm and above increased membrane permeability. RedoxSensor content analysis and Phag-GFP expression analysis further indicated that reductase activity and cytosolic protein expression decreased in B. subtilis cells treated with 10–50 ppm of Ag NPs. We conducted X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) analyses to directly clarify the valence and fine structure of Ag atoms in B. subtilis cells placed in contact with Ag NPs. The results confirmed the Ag species in Ag NP-treated B. subtilis cells as Ag2O, indicating that Ag-NP toxicity is likely mediated by released Ag+ ions from Ag NPs, which penetrate bacterial cells and are subsequently oxidized intracellularly to Ag2O. These findings provide conclusive evidence for the role of Ag+ ions in Ag-NP microbial toxicity, and suggest that the impact of inappropriately disposed Ag NPs to soil and water ecosystems may warrant further investigation. PMID:26669836

  11. Uptake and effect of highly fluorescent silver nanoclusters on Scenedesmus obliquus.

    PubMed

    Zhang, Li; He, Yiliang; Goswami, Nirmal; Xie, Jianping; Zhang, Bo; Tao, Xianji

    2016-06-01

    The release of silver nanoparticles (Ag NPs) in aquatic environment has caused wide public concern about their effects on living organisms (e.g., algae). However, how these small NPs exert cytotoxicity in the living organisms has always been under heated debate. In this study, the uptake and toxicity effects of strongly red-emitting fluorescent silver nanoclusters (r-Ag NCs) exposed to the green algae Scenedesmus obliquus was investigated. Upon exposure to pure r-Ag NCs and r-Ag NCs containing l-cysteine, the algae growth inhibition test showed that Ag(+) ions released from r-Ag NCs played an important role in the toxicity of r-Ag NCs along with the toxicity of intact r-Ag NCs. Furthermore, no signals of intracellular reactive oxygen species (ROS) were observed indicating that r-Ag NCs or released Ag(+) ions - mediated growth inhibition of algae cells was independent of ROS production. Transmission electron microscopy (TEM) and laser scanning confocal microscopy (LSCM) were employed to study cellular uptake and cytotoxicity. Furthermore, analysis of differential expressed gene demonstrated that r-Ag NCs as well as the released Ag(+) ions can simultaneously exist inside the algae cells, and inhibit the transcriptomic process of genes by their "joint-toxicity" mechanism. Taken together, our study provides a new insight into the molecular mechanisms of r-Ag NCs and Ag(+) ions exposure to the aquatic organism and can be applied to early diagnosis of ecologic risk mediated by others metal-based NPs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Limited recovery of soil microbial activity after transient exposure to gasoline vapors.

    PubMed

    Modrzyński, Jakub J; Christensen, Jan H; Mayer, Philipp; Brandt, Kristian K

    2016-09-01

    During gasoline spills complex mixtures of toxic volatile organic compounds (VOCs) are released to terrestrial environments. Gasoline VOCs exert baseline toxicity (narcosis) and may thus broadly affect soil biota. We assessed the functional resilience (i.e. resistance and recovery of microbial functions) in soil microbial communities transiently exposed to gasoline vapors by passive dosing via headspace for 40 days followed by a recovery phase of 84 days. Chemical exposure was characterized with GC-MS, whereas microbial activity was monitored as soil respiration (CO2 release) and soil bacterial growth ([(3)H]leucine incorporation). Microbial activity was strongly stimulated and inhibited at low and high exposure levels, respectively. Microbial growth efficiency decreased with increasing exposure, but rebounded during the recovery phase for low-dose treatments. Although benzene, toluene, ethylbenzene and xylene (BTEX) concentrations decreased by 83-97% during the recovery phase, microbial activity in high-dose treatments did not recover and numbers of viable bacteria were 3-4 orders of magnitude lower than in control soil. Re-inoculation with active soil microorganisms failed to restore microbial activity indicating residual soil toxicity, which could not be attributed to BTEX, but rather to mixture toxicity of more persistent gasoline constituents or degradation products. Our results indicate a limited potential for functional recovery of soil microbial communities after transient exposure to high, but environmentally relevant, levels of gasoline VOCs which therefore may compromise ecosystem services provided by microorganisms even after extensive soil VOC dissipation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Selenium Administration Alleviates Toxicity of Chromium(VI) in the Chicken Brain.

    PubMed

    Hao, Pan; Zhu, Yiran; Wang, Shenghua; Wan, Huiyu; Chen, Peng; Wang, Yang; Cheng, Ziqiang; Liu, Yongxia; Liu, Jianzhu

    2017-07-01

    Selenium (Se) can play a protective role against heavy metal toxicity. This experiment aims to evaluate the effect of Se supplementation at different doses on the chicken brains. Oxidative stress was induced in the chicken brains by chromium(VI). A total of 105 Hyland brown male chickens were randomly divided into seven groups, including the control group, poisoned group [6%LD 50 K 2 Cr 2 O 7 body weight (B.W.)], and detoxification groups K 2 Cr 2 O 7 (6%LD 50 ) + Se (0.31, 0.63, 1.25, 2.50, and 5.00 Na 2 SeO 3 mg/kg B.W.) orally in water for 42 days. The chickens were detected by the activities of mitochondrial membrane potential, 2'-benzoyloxycinnamaldehyde, superoxide dismutase (SOD), malondialdehyde (MDA), glutathione (GSH), and Ca 2+ -ATPase. Cr(VI) administration caused histopathological damage. In addition, changes in oxidative stress indicators were observed in the chicken's brains. Se supplement increased the levels of GSH, mitochondrial membrane potential (MMP), and Ca 2+ -ATPase and reduced MDA activity in the detoxification groups. However, the high-dose Se supplementation groups of 2.50 and 5.00 mg/kg reduced the activities of GSH, MMP, and Ca 2+ -ATPase; increased the brain-body ratio; and increased SOD activity. In conclusion, Cr(VI) exposure caused oxidative stress. Se exerted a remission effect on toxic responses in the chicken brains. However, a high Se concentration was synergistic to the toxic effect of Cr(VI).

  14. Modeling life course pathways from adverse childhood experiences to adult mental health.

    PubMed

    Jones, Tiffany M; Nurius, Paula; Song, Chiho; Fleming, Christopher M

    2018-06-01

    Although the association between adverse childhood experiences (ACEs) and adult mental health is becoming well established, less is known about the complex and multiple pathways through which ACEs exert their influence. Growing evidence suggests that adversity early in life conveys not only early impacts, but also augments risk of stress-related life course cascades that continue to undermine health. The present study aims to test pathways of stress proliferation and stress embodiment processes linking ACEs to mental health impairment in adulthood. Data are from the 2011 Behavioral Risk Factor Surveillance Survey, a representative sample of Washington State adults ages 18 and over (N = 14,001). Structural equation modeling allowed for testing of direct and indirect effects from ACEs though low income status, experiences of adversity in adulthood, and social support. The model demonstrated that adult low income, social support and adult adversity are in fact conduits through which ACEs exert their influence on mental health impairment in adulthood. Significant indirect pathways through these variables supported hypotheses that the effect of ACEs is carried through these variables. This is among the first models that demonstrates multiple stress-related life course pathways through which early life adversity compromises adult mental health. Discussion elaborates multiple service system opportunities for intervention in early and later life to interrupt direct and indirect pathways of ACE effects. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Disseminated viridians streptococcus (Streptococcus mitis) infection presenting with toxic shock-like syndrome.

    PubMed

    Intalapaporn, Poj; Wongcharoen, Sunee; Chinapha, Anongnart; Jariyasethpong, Tavatchai

    2013-03-01

    The authors report a case of a 35-year-old man with no known underlying disease who presented with fever, cellulitis with hemorrhagic blebs on the left leg, monoarthricular left knee arthritis, multiple organ failure and septic shock. His clinical syndrome was compatible with toxic shock syndrome and his blood grew alpha hemolytic (viridians) Streptococcus mitis. To our knowledge, there are few reported cases of toxic shock syndrome cause by Streptococcus mitis in immune-competent adults.

  16. Soil Sorption and Plant Uptake of 2,4,6-Trinitrotoluene

    DTIC Science & Technology

    1988-09-01

    may be magnified, Toxicity of TNT wastes to duckweed ( Lemna • •r2usiAl) has been demonstrated by Schott and Worthley (1974), and depression of yields... Minor , 134 J. L.,and Helton, D. 0. 1977. "Mammalian Toxicity of Munitions Compounds Phase II: Effects of Multiple Doses, Part I TrinitroSlycerin...Schott, C. b., and Worthley, , 0, 1974, "The Toxicity of TNT and Related Wastes to an Aquatic Flowering Plant: Lemna oarpusilla Torr,," Technical

  17. Image-guided total-marrow irradiation using helical tomotherapy in patients with multiple myeloma and acute leukemia undergoing hematopoietic cell transplantation.

    PubMed

    Wong, Jeffrey Y C; Rosenthal, Joseph; Liu, An; Schultheiss, Timothy; Forman, Stephen; Somlo, George

    2009-01-01

    Total-body irradiation (TBI) has an important role in patients undergoing hematopoietic cell transplantation (HCT), but is associated with significant toxicities. Targeted TBI using helical tomotherapy results in reduced doses to normal organs, which predicts for reduced toxicities compared with standard TBI. Thirteen patients with multiple myeloma were treated in an autologous tandem transplantation Phase I trial with high-dose melphalan, followed 6 weeks later by total-marrow irradiation (TMI) to skeletal bone. Dose levels were 10, 12, 14, and 16 Gy at 2 Gy daily/twice daily. In a separate allogeneic HCT trial, 8 patients (5 with acute myelogenous leukemia, 1 with acute lymphoblastic leukemia, 1 with non-Hodgkin's lymphoma, and 1 with multiple myeloma) were treated with TMI plus total lymphoid irradiation plus splenic radiotherapy to 12 Gy (1.5 Gy twice daily) combined with fludarabine/melphalan. For the 13 patients in the tandem autologous HCT trial, median age was 54 years (range, 42-66 years). Median organ doses were 15-65% that of the gross target volume dose. Primarily Grades 1-2 acute toxicities were observed. Six patients reported no vomiting; 9 patients, no mucositis; 6 patients, no fatigue; and 8 patients, no diarrhea. For the 8 patients in the allogeneic HCT trial, median age was 52 years (range, 24-61 years). Grades 2-3 nausea, vomiting, mucositis, and diarrhea were observed. In both trials, no Grade 4 nonhematologic toxicity was observed, and all patients underwent successful engraftment. This study shows that TMI using helical tomotherapy is clinically feasible. The reduced acute toxicities observed compare favorably with those seen with standard TBI. Initial results are encouraging and warrant further evaluation as a method to dose escalate with acceptable toxicity or to offer TBI-containing regimens to patients unable to tolerate standard approaches.

  18. DOPA Decarboxylase Modulates Tau Toxicity.

    PubMed

    Kow, Rebecca L; Sikkema, Carl; Wheeler, Jeanna M; Wilkinson, Charles W; Kraemer, Brian C

    2018-03-01

    The microtubule-associated protein tau accumulates into toxic aggregates in multiple neurodegenerative diseases. We found previously that loss of D 2 -family dopamine receptors ameliorated tauopathy in multiple models including a Caenorhabditis elegans model of tauopathy. To better understand how loss of D 2 -family dopamine receptors can ameliorate tau toxicity, we screened a collection of C. elegans mutations in dopamine-related genes (n = 45) for changes in tau transgene-induced behavioral defects. These included many genes responsible for dopamine synthesis, metabolism, and signaling downstream of the D 2 receptors. We identified one dopamine synthesis gene, DOPA decarboxylase (DDC), as a suppressor of tau toxicity in tau transgenic worms. Loss of the C. elegans DDC gene, bas-1, ameliorated the behavioral deficits of tau transgenic worms, reduced phosphorylated and detergent-insoluble tau accumulation, and reduced tau-mediated neuron loss. Loss of function in other genes in the dopamine and serotonin synthesis pathways did not alter tau-induced toxicity; however, their function is required for the suppression of tau toxicity by bas-1. Additional loss of D 2 -family dopamine receptors did not synergize with bas-1 suppression of tauopathy phenotypes. Loss of the DDC bas-1 reduced tau-induced toxicity in a C. elegans model of tauopathy, while loss of no other dopamine or serotonin synthesis genes tested had this effect. Because loss of activity upstream of DDC could reduce suppression of tau by DDC, this suggests the possibility that loss of DDC suppresses tau via the combined accumulation of dopamine precursor levodopa and serotonin precursor 5-hydroxytryptophan. Published by Elsevier Inc.

  19. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis.

    PubMed

    Sawcer, Stephen; Hellenthal, Garrett; Pirinen, Matti; Spencer, Chris C A; Patsopoulos, Nikolaos A; Moutsianas, Loukas; Dilthey, Alexander; Su, Zhan; Freeman, Colin; Hunt, Sarah E; Edkins, Sarah; Gray, Emma; Booth, David R; Potter, Simon C; Goris, An; Band, Gavin; Oturai, Annette Bang; Strange, Amy; Saarela, Janna; Bellenguez, Céline; Fontaine, Bertrand; Gillman, Matthew; Hemmer, Bernhard; Gwilliam, Rhian; Zipp, Frauke; Jayakumar, Alagurevathi; Martin, Roland; Leslie, Stephen; Hawkins, Stanley; Giannoulatou, Eleni; D'alfonso, Sandra; Blackburn, Hannah; Martinelli Boneschi, Filippo; Liddle, Jennifer; Harbo, Hanne F; Perez, Marc L; Spurkland, Anne; Waller, Matthew J; Mycko, Marcin P; Ricketts, Michelle; Comabella, Manuel; Hammond, Naomi; Kockum, Ingrid; McCann, Owen T; Ban, Maria; Whittaker, Pamela; Kemppinen, Anu; Weston, Paul; Hawkins, Clive; Widaa, Sara; Zajicek, John; Dronov, Serge; Robertson, Neil; Bumpstead, Suzannah J; Barcellos, Lisa F; Ravindrarajah, Rathi; Abraham, Roby; Alfredsson, Lars; Ardlie, Kristin; Aubin, Cristin; Baker, Amie; Baker, Katharine; Baranzini, Sergio E; Bergamaschi, Laura; Bergamaschi, Roberto; Bernstein, Allan; Berthele, Achim; Boggild, Mike; Bradfield, Jonathan P; Brassat, David; Broadley, Simon A; Buck, Dorothea; Butzkueven, Helmut; Capra, Ruggero; Carroll, William M; Cavalla, Paola; Celius, Elisabeth G; Cepok, Sabine; Chiavacci, Rosetta; Clerget-Darpoux, Françoise; Clysters, Katleen; Comi, Giancarlo; Cossburn, Mark; Cournu-Rebeix, Isabelle; Cox, Mathew B; Cozen, Wendy; Cree, Bruce A C; Cross, Anne H; Cusi, Daniele; Daly, Mark J; Davis, Emma; de Bakker, Paul I W; Debouverie, Marc; D'hooghe, Marie Beatrice; Dixon, Katherine; Dobosi, Rita; Dubois, Bénédicte; Ellinghaus, David; Elovaara, Irina; Esposito, Federica; Fontenille, Claire; Foote, Simon; Franke, Andre; Galimberti, Daniela; Ghezzi, Angelo; Glessner, Joseph; Gomez, Refujia; Gout, Olivier; Graham, Colin; Grant, Struan F A; Guerini, Franca Rosa; Hakonarson, Hakon; Hall, Per; Hamsten, Anders; Hartung, Hans-Peter; Heard, Rob N; Heath, Simon; Hobart, Jeremy; Hoshi, Muna; Infante-Duarte, Carmen; Ingram, Gillian; Ingram, Wendy; Islam, Talat; Jagodic, Maja; Kabesch, Michael; Kermode, Allan G; Kilpatrick, Trevor J; Kim, Cecilia; Klopp, Norman; Koivisto, Keijo; Larsson, Malin; Lathrop, Mark; Lechner-Scott, Jeannette S; Leone, Maurizio A; Leppä, Virpi; Liljedahl, Ulrika; Bomfim, Izaura Lima; Lincoln, Robin R; Link, Jenny; Liu, Jianjun; Lorentzen, Aslaug R; Lupoli, Sara; Macciardi, Fabio; Mack, Thomas; Marriott, Mark; Martinelli, Vittorio; Mason, Deborah; McCauley, Jacob L; Mentch, Frank; Mero, Inger-Lise; Mihalova, Tania; Montalban, Xavier; Mottershead, John; Myhr, Kjell-Morten; Naldi, Paola; Ollier, William; Page, Alison; Palotie, Aarno; Pelletier, Jean; Piccio, Laura; Pickersgill, Trevor; Piehl, Fredrik; Pobywajlo, Susan; Quach, Hong L; Ramsay, Patricia P; Reunanen, Mauri; Reynolds, Richard; Rioux, John D; Rodegher, Mariaemma; Roesner, Sabine; Rubio, Justin P; Rückert, Ina-Maria; Salvetti, Marco; Salvi, Erika; Santaniello, Adam; Schaefer, Catherine A; Schreiber, Stefan; Schulze, Christian; Scott, Rodney J; Sellebjerg, Finn; Selmaj, Krzysztof W; Sexton, David; Shen, Ling; Simms-Acuna, Brigid; Skidmore, Sheila; Sleiman, Patrick M A; Smestad, Cathrine; Sørensen, Per Soelberg; Søndergaard, Helle Bach; Stankovich, Jim; Strange, Richard C; Sulonen, Anna-Maija; Sundqvist, Emilie; Syvänen, Ann-Christine; Taddeo, Francesca; Taylor, Bruce; Blackwell, Jenefer M; Tienari, Pentti; Bramon, Elvira; Tourbah, Ayman; Brown, Matthew A; Tronczynska, Ewa; Casas, Juan P; Tubridy, Niall; Corvin, Aiden; Vickery, Jane; Jankowski, Janusz; Villoslada, Pablo; Markus, Hugh S; Wang, Kai; Mathew, Christopher G; Wason, James; Palmer, Colin N A; Wichmann, H-Erich; Plomin, Robert; Willoughby, Ernest; Rautanen, Anna; Winkelmann, Juliane; Wittig, Michael; Trembath, Richard C; Yaouanq, Jacqueline; Viswanathan, Ananth C; Zhang, Haitao; Wood, Nicholas W; Zuvich, Rebecca; Deloukas, Panos; Langford, Cordelia; Duncanson, Audrey; Oksenberg, Jorge R; Pericak-Vance, Margaret A; Haines, Jonathan L; Olsson, Tomas; Hillert, Jan; Ivinson, Adrian J; De Jager, Philip L; Peltonen, Leena; Stewart, Graeme J; Hafler, David A; Hauser, Stephen L; McVean, Gil; Donnelly, Peter; Compston, Alastair

    2011-08-10

    Multiple sclerosis is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability. Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals, and systematic attempts to identify linkage in multiplex families have confirmed that variation within the major histocompatibility complex (MHC) exerts the greatest individual effect on risk. Modestly powered genome-wide association studies (GWAS) have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects have a key role in disease susceptibility. Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9,772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the HLA-DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the class I region. Immunologically relevant genes are significantly overrepresented among those mapping close to the identified loci and particularly implicate T-helper-cell differentiation in the pathogenesis of multiple sclerosis.

  20. Dynamics of vegetation autumn phenology and its response to multiple environmental factors from 1982 to 2012 on Qinghai-Tibetan Plateau in China.

    PubMed

    Li, Peng; Peng, Changhui; Wang, Meng; Luo, Yunpeng; Li, Mingxu; Zhang, Kerou; Zhang, Dingling; Zhu, Qiuan

    2018-05-11

    Autumn phenological shifts induced by environmental change have resulted in substantial impacts on ecosystem processes. However, autumn phenology and its multiple related controlling factors have not been well studied. In this study, the spatiotemporal patterns of the end date of the vegetation growing season (EGS) and their multiple controls (climate change, summer vegetation growth and human activities) over the Qinghai-Tibetan Plateau (QTP) were investigated using the satellite-derived normalized difference vegetation index (NDVI) based on GIMMS3g datasets during 1982-2012. The results showed that there was no significant temporal trend in the EGS during the period of 1982-2012. Spatially, there was a notable advancing trend in the southwest region and a delayed trend in the other regions of the QTP during 1982-2000, and this spatial trend was reversed during 2001-2012. We found average temperature, precipitation and sunshine duration of autumn exerted positive effects on EGS on the QTP, while average temperature and sunshine duration of summer exerted negative effects. Our results indicated that vegetation growth in summer tends to induce an earlier EGS in alpine vegetation, whereas summer vegetation degradation could delay the EGS on the QTP. In contrast, moderate grazing delays vegetation browning in autumn, while overgrazing leads to advancement of grass senescence. This study improves our understanding of how multiple environmental variables jointly affect autumn phenology and highlights the importance of biotic controls for autumn phenology on the QTP. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Definition of metabolism-dependent xenobiotic toxicity with co-cultures of human hepatocytes and mouse 3T3 fibroblasts in the novel integrated discrete multiple organ co-culture (IdMOC) experimental system: results with model toxicants aflatoxin B1, cyclophosphamide and tamoxifen.

    PubMed

    Li, Albert P; Uzgare, Aarti; LaForge, Yumiko S

    2012-07-30

    The integrated discrete multiple organ co-culture system (IdMOC) allows the co-culturing of multiple cell types as physically separated cells interconnected by a common overlying medium. We report here the application of IdMOC with two cell types: the metabolically competent primary human hepatocytes, and a metabolically incompetent cell line, mouse 3T3 fibroblasts, in the definition of the role of hepatic metabolism on the cytotoxicity of three model toxicants: cyclophosphamide (CPA), aflatoxin B1 (AFB) and tamoxifen (TMX). The presence of hepatic metabolism in IdMOC with human hepatocytes was demonstrated by the metabolism of the P450 isoform 3A4 substrate, luciferin-IPA. The three model toxicants showed three distinct patterns of cytotoxic profile: TMX was cytotoxic to 3T3 cells in the absence of hepatocytes, with slightly lower cytotoxicity towards both 3T3 cells and hepatocytes in the IdMOC. AFB was selective toxic towards the human hepatocytes and relatively noncytotoxic towards 3T3 cells both in the presence and absence of the hepatocytes. CPA cytotoxicity to the 3T3 cells was found to be significantly enhanced by the presence of the hepatocytes, with the cytotoxicity dependent of the number of hepatocytes, and with the cytotoxicity attenuated by the presence of a non-specific P450 inhibitor, 1-aminobenzotriazole. We propose here the following classification of toxicants based on the role of hepatic metabolism as defined by the human hepatocyte-3T3 cell IdMOC assay: type I: direct-acting cytotoxicants represented by TMX as indicated by cytotoxicity in 3T3 cells in the absence of hepatocytes; type II: metabolism-dependent cytotoxicity represented by AFB1 with effects localized within the site of metabolic activation (i. e. hepatocytes); and type III: metabolism-dependent cytotoxicity with metabolites that can diffuse out of the hepatocytes to cause toxicity in cells distal from the site of metabolism, as exemplified by CPA. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  2. Regulation of tolerance of Chlamydomonas reinhardtii to heavy metal toxicity by heme oxygenase-1 and carbon monoxide.

    PubMed

    Wei, Yuan Yuan; Zheng, Qi; Liu, Zhao Pu; Yang, Zhi Min

    2011-09-01

    Investigation of heavy metal tolerance genes in green algae is of great importance because heavy metals have become one of the major contaminants in the aquatic ecosystem. In plants, accumulation of heavy metals modifies many aspects of cellular functions. However, the mechanism by which heavy metals exert detrimental effects is poorly understood. In this study, we identified a role for HO-1 (encoding heme oxygenase-1) in regulating the response of Chlamydomonas reinhardtii, a unicellular green alga, to mercury (Hg). Transgenic algae overexpressing HO-1 showed high tolerance to Hg exposure, with a 48.2% increase in cell number over the wild type, but accumulated less Hg. Physiological analysis revealed that expression of HO-1 suppressed the Hg-induced generation of reactive oxygen species. We further identified the effect of carbon monoxide (CO), a product of HO-1-mediated heme degradation, on growth and physiological parameters. Interestingly, administration of exogenous CO at non-toxic levels also conferred the tolerance of algae to Hg exposure. The CO-mediated alleviation of Hg toxicity was closely related to the lower accumulation of Hg and free radical species. These results indicate that functional identification of HO-1 is useful for molecular breeding designed to improve plant tolerance to heavy metals and reduce heavy metal accumulation in plant cells.

  3. Co-Formulants in Glyphosate-Based Herbicides Disrupt Aromatase Activity in Human Cells below Toxic Levels

    PubMed Central

    Defarge, Nicolas; Takács, Eszter; Lozano, Verónica Laura; Mesnage, Robin; Spiroux de Vendômois, Joël; Séralini, Gilles-Eric; Székács, András

    2016-01-01

    Pesticide formulations contain declared active ingredients and co-formulants presented as inert and confidential compounds. We tested the endocrine disruption of co-formulants in six glyphosate-based herbicides (GBH), the most used pesticides worldwide. All co-formulants and formulations were comparably cytotoxic well below the agricultural dilution of 1% (18–2000 times for co-formulants, 8–141 times for formulations), and not the declared active ingredient glyphosate (G) alone. The endocrine-disrupting effects of all these compounds were measured on aromatase activity, a key enzyme in the balance of sex hormones, below the toxicity threshold. Aromatase activity was decreased both by the co-formulants alone (polyethoxylated tallow amine—POEA and alkyl polyglucoside—APG) and by the formulations, from concentrations 800 times lower than the agricultural dilutions; while G exerted an effect only at 1/3 of the agricultural dilution. It was demonstrated for the first time that endocrine disruption by GBH could not only be due to the declared active ingredient but also to co-formulants. These results could explain numerous in vivo results with GBHs not seen with G alone; moreover, they challenge the relevance of the acceptable daily intake (ADI) value for GBHs exposures, currently calculated from toxicity tests of the declared active ingredient alone. PMID:26927151

  4. Toxicity of Atorvastatin on Pancreas Mitochondria: A Justification for Increased Risk of Diabetes Mellitus.

    PubMed

    Sadighara, Melina; Amirsheardost, Zahra; Minaiyan, Mohsen; Hajhashemi, Valiollah; Naserzadeh, Parvaneh; Salimi, Ahmad; Seydi, Enayatollah; Pourahmad, Jalal

    2017-02-01

    Statins (including atorvastatin) are a widely used class of drugs, and like all medications, they have a potential for adverse effects. Recently, it has been shown that statins also exert side effects on the pancreas. In vitro studies have suggested that this class of drugs induced a reduction in insulin secretion. Also, the use of statins is associated with a raised risk of diabetes mellitus (DM), but the mechanisms underlying statin-induced diabetes are poorly known. Literature data indicate that several statins are able to induce apoptosis signalling. This study was designed to examine the mechanism of atorvastatin on mitochondria obtained from rat pancreas. In our study, mitochondria were obtained from the pancreas and then exposed to atorvastatin and vehicle to investigate probable toxic effects. The results showed that atorvastatin (25, 50, 75, 100 and 125 μM) increased reactive oxygen species (ROS) production, mitochondrial swelling, collapse of mitochondrial membrane potential and cytochrome c release, the orchestrating factor for mitochondria-mediated apoptosis signalling. Atorvastatin also reduced the ATP levels. These results propose that the toxicity of atorvastatin on pancreas mitochondria is a key point for drug-induced apoptotic cell loss in the pancreas and therefore a justification for increased risk of DM. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  5. Protective effects of agmatine on doxorubicin-induced chronic cardiotoxicity in rat.

    PubMed

    Yarmohmmadi, Fatemeh; Rahimi, Nastaran; Faghir-Ghanesefat, Hedyeh; Javadian, Nina; Abdollahi, Alireza; Pasalar, Parvin; Jazayeri, Farahnaz; Ejtemaeemehr, Shahram; Dehpour, Ahmad Reza

    2017-02-05

    The detrimental cardio-toxic effect of doxorubicin, an effective chemotherapeutic agent, limited its clinical use. It has been claimed that doxorubicin cardio-toxicity occurs through calcium ions (Ca 2+ ) overload and reactive oxygen species production. Agmatine, an endogenous imidazoline receptor agonist, induce uptake of cytosolic Ca 2+ and cause an increase in activity of calcium pumps, including Ca 2+ -ATPase. Also it shows self-scavenging effect against reactive oxygen species production. Therefore, present study was designed to investigate the effects of agmatine against chronic cardio-toxicity of doxorubicin in rats. Male wistar rats were intraperitoneally injected with doxorubicin and agmatine four times a week for a month. Agmatine significantly alleviate the adverse effect of doxorubicin on left ventricular papillary muscle stimulation threshold and contractibility. Chronic co-administration of agmatine with doxorubicin blocked electrocardiographic changes induced by doxorubicin. In addition, agmatine improved body weight and decreased the mortality rate of animals by doxorubicin. Moreover, reversing the doxorubicin induced myocardial lesions was observed in animals treated by agmatine. A significant rise in the total antioxidant capacity of rat plasma was achieved in agmatine-treated animals in comparison to doxorubicin. To conclude, agmatine may improve therapeutic outcomes of doxorubicin since it exerts protective effects against doxorubicin-induced chronic cardiotoxicity in rats. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Metabolic changes in rat serum after administration of suberoylanilide hydroxamic acid and discriminated by SVM.

    PubMed

    Yu, J; Wu, H; Lin, Z; Su, K; Zhang, J; Sun, F; Wang, X; Wen, C; Cao, H; Hu, L

    2017-12-01

    Suberoylanilide hydroxamic acid (SAHA) exerts marked anticancer effects via promotion of apoptosis, cell cycle arrest, and prevention of oncogene expression. In this study, serum metabolomics and artificial intelligence recognition were used to investigate SAHA toxicity. Forty rats (220 ± 20 g) were randomly divided into control and three SAHA groups (low, medium, and high); the experimental groups were treated with 12.3, 24.5, or 49.0 mg kg -1 SAHA once a day via intragastric administration. After 7 days, blood samples from the four groups were collected and analyzed by gas chromatography-mass spectrometry, and pathological changes in the liver were examined using microscopy. The results showed that increased levels of urea, oleic acid, and glutaconic acid were the most significant indicators of toxicity. Octadecanoic acid, pentadecanoic acid, glycerol, propanoic acid, and uric acid levels were lower in the high SAHA group. Microscopic observation revealed no obvious damage to the liver. Based on these data, a support vector machine (SVM) discrimination model was established that recognized the metabolic changes in the three SAHA groups and the control group with 100% accuracy. In conclusion, the main toxicity caused by SAHA was due to excessive metabolism of saturated fatty acids, which could be recognized by an SVM model.

  7. Estradiol uptake, toxicity, metabolism, and adverse effects on cadmium-treated amphibian embryos.

    PubMed Central

    Fridman, Osvaldo; Corró, Lucrecia; Herkovits, Jorge

    2004-01-01

    The exposure of Bufo arenarum embryos to 25 micromol/L 17beta-estradiol (E2) resulted in 100% lethality within 48 hr, whereas 10 micromol//L E2 was the no observed effect concentration value for short-term chronic (7 days) exposure. The toxicity profile curves show that lethal effects were proportional to the E2 concentration and the time of exposure. The E2 uptake resulted in 20.1 ng E2/mg embryo at 8 hr posttreatment, but 67.3% of this value was achieved during the first 30 min of incubation with this estrogen. Regarding metabolism, the embryos synthesize estrone (E1) from E2 by means of 17beta-hydroxysteroid dehydrogenase. Simultaneous treatments of Bufo arenarum embryos with 1 mg/L Cd2+ and 0.1, 1, or 10 micromol/L E2 enhanced the lethality exerted by cadmium in 76.7, 80, and 83.3% of embryos, respectively. The results indicate that estrogenic endocrine disruptors could have an adverse effect on amphibian embryos and enhance the toxic effect of Cd on amphibian embryos. This study points to the possibility of using the AMPHITOX test as a screening method for potential endocrine disruption as well as the combined effects of chemical mixtures. PMID:15175173

  8. Pharmacological reduction of ER stress protects against TDP-43 neuronal toxicity in vivo.

    PubMed

    Vaccaro, Alexandra; Patten, Shunmoogum A; Aggad, Dina; Julien, Carl; Maios, Claudia; Kabashi, Edor; Drapeau, Pierre; Parker, J Alex

    2013-07-01

    C. elegans and D. rerio expressing mutant TAR DNA Binding Protein 43 (TDP-43) are powerful in vivo animal models for the genetics and pharmacology of amyotrophic lateral sclerosis (ALS). Using these small-animal models of ALS, we previously identified methylene blue (MB) as a potent suppressor of TDP-43 toxicity. Consequently here we investigated how MB might exert its neuroprotective properties and found that it acts through reduction of the endoplasmic reticulum (ER) stress response. We tested other compounds known to be active in the ER unfolded protein response in worms and zebrafish expressing mutant human TDP-43 (mTDP-43). We identified three compounds: salubrinal, guanabenz and a new structurally related compound phenazine, which also reduced paralysis, neurodegeneration and oxidative stress in our mTDP-43 models. Using C. elegans genetics, we showed that all four compounds act as potent suppressors of mTDP-43 toxicity through reduction of the ER stress response. Interestingly, these compounds operate through different branches of the ER unfolded protein pathway to achieve a common neuroprotective action. Our results indicate that protein-folding homeostasis in the ER is an important target for therapeutic development in ALS and other TDP-43-related neurodegenerative diseases. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  9. Interactions of pesticides with membrane drug transporters: Implications for toxicokinetics and toxicity.

    PubMed

    Chedik, Lisa; Bruyere, Arnaud; Bacle, Astrid; Potin, Sophie; Le Vée, Marc; Fardel, Olivier

    2018-06-10

    Drug transporters are now recognized as major actors of pharmacokinetics. They are also likely implicated in toxicokinetics and toxicology of environmental pollutants, notably pesticides, to which humans are widely exposed and which are known to exert various deleterious effects towards health. Interactions of pesticides with drug transporters are therefore important to consider. Areas covered: This review provides an overview of the interactions of pesticides with membrane drug transporters, i.e., inhibition of their activity, regulation of their expression and handling of pesticides. Consequences for toxicokinetics and toxicity of pesticides are additionally summarized and discussed. Expert opinion: Some pesticides belonging to several chemical classes, such as organochlorine, pyrethroid and organophosphorus pesticides, have been demonstrated to interact with various uptake and efflux drug transporters, including the efflux pump P-glycoprotein and the uptake organic cation transporters (OCTs). This provides the proof of the concept that pesticide-transporter relationships merit attention. More extensive and systematic characterization of pesticide-transporter relationships, possibly through the use of in silico methods, is however likely required. In addition, consideration of transporter polymorphisms, pesticide mixture effects and realistic pesticide concentrations reached in humans, may help to better define the in vivo relevance of pesticide-transporter interactions in terms of toxicokinetics and toxicity.

  10. Identification of Bacillus thuringiensis Cry3Aa toxin domain II loop 1 as the binding site of Tenebrio molitor cadherin repeat CR12.

    PubMed

    Zúñiga-Navarrete, Fernando; Gómez, Isabel; Peña, Guadalupe; Amaro, Itzel; Ortíz, Ernesto; Becerril, Baltazar; Ibarra, Jorge E; Bravo, Alejandra; Soberón, Mario

    2015-04-01

    Bacillus thuringiensis Cry toxins exert their toxic effect by specific recognition of larval midgut proteins leading to oligomerization of the toxin, membrane insertion and pore formation. The exposed domain II loop regions of Cry toxins have been shown to be involved in receptor binding. Insect cadherins have shown to be functionally involved in toxin binding facilitating toxin oligomerization. Here, we isolated a VHH (VHHA5) antibody by phage display that binds Cry3Aa loop 1 and competed with the binding of Cry3Aa to Tenebrio molitor brush border membranes. VHHA5 also competed with the binding of Cry3Aa to a cadherin fragment (CR12) that was previously shown to be involved in binding and toxicity of Cry3Aa, indicating that Cry3Aa binds CR12 through domain II loop 1. Moreover, we show that a loop 1 mutant, previously characterized to have increased toxicity to T. molitor, displayed a correlative enhanced binding affinity to T. molitor CR12 and to VHHA5. These results show that Cry3Aa domain II loop 1 is a binding site of CR12 T. molitor cadherin. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. A new approach for the assessment of the toxicity of polyphenol-rich compounds with the use of high content screening analysis

    PubMed Central

    Golanski, Jacek; Lukasiak, Magdalena; Redzynia, Malgorzata; Dastych, Jaroslaw; Watala, Cezary

    2017-01-01

    The toxicity of in vitro tested compounds is usually evaluated based on AC50 values calculated from dose-response curves. However, there is a large group of compounds for which a standard four-parametric sigmoid curve fitting may be inappropriate for estimating AC50. In the present study, 22 polyphenol-rich compounds were prioritized from the least to the most toxic based on the total area under and over the dose-response curves (AUOC) in relation to baselines. The studied compounds were ranked across three key cell indicators (mitochondrial membrane potential, cell membrane integrity and nuclear size) in a panel of five cell lines (HepG2, Caco-2, A549, HMEC-1, and 3T3), using a high-content screening (HCS) assay. Regarding AUOC score values, naringin (negative control) was the least toxic phenolic compound. Aronox, spent hop extract and kale leaf extract had very low cytotoxicity with regard to mitochondrial membrane potential and cell membrane integrity, as well as nuclear morphology (nuclear area). Kaempferol (positive control) exerted strong cytotoxic effects on the mitochondrial and nuclear compartments. Extracts from buckthorn bark, walnut husk and hollyhock flower were highly cytotoxic with regard to the mitochondrion and cell membrane, but not the nucleus. We propose an alternative algorithm for the screening of a large number of agents and for identifying those with adverse cellular effects at an early stage of drug discovery, using high content screening analysis. This approach should be recommended for series of compounds producing a non-sigmoidal cell response, and for agents with unknown toxicity or mechanisms of action. PMID:28662177

  12. Ovario-protective effects of genistein against cyclophosphamide toxicity in rats: Role of anti-müllerian hormone and oestradiol.

    PubMed

    Saleh, Dalia O; Mansour, Dina F

    2016-10-15

    Cyclophosphamide (CP), the commonly used chemotherapeutic agent in cancer treatment, is proven to cause ovarian toxicity and infertility in women. In the present study, we investigated the protective effect of genistein (GEN), a phytoestrogen found in the soy protein, against CP-induced ovarian toxicity in rats. Forty female adult rats were allocated into five groups. A normal control group received the vehicle; another group was injected with a single acute intraperitoneal dose of CP (200mg/kg). Three other groups were pretreated with GEN (0.5, 1 or 2mg/kg; s.c.) for 14 days. Sera and ovaries were obtained 48h after CP treatment. Serum levels of anti-müllerian hormone (AMH) and oestradiol (E2) were detected as well as the ovarian level of reduced glutathione (GSH), activity of superoxide dismutase (SOD), level of malondialdehyde (MDA) and interleukin 1β (IL-1β) were evaluated. Histopathological examination and immunohistochemical detection of inducible nitric oxide synthetase (iNOS) were conducted. Results of the present study revealed that CP-induced severe ovarian toxicity via decreasing serum levels of AMH and E2 and elevating oxidative stress and inflammation in ovarian tissues. Histologically, CP caused increase in primordial follicles with less graafian follicles and corpora lutea in ovarian tissues as well as severe induction of iNOS. GEN inhibited the severe decrease in serum AMH and E2 with alleviation of oxidative stress and inflammation significantly compared to CP-treated group. GEN improved ovarian histology and immunostaining of ovarian iNOS disrupted by CP. Finally, it can be concluded that GEN exerted protective effects against CP-induced ovarian toxicity. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Ligand-specific transcriptional mechanisms underlie aryl hydrocarbon receptor-mediated developmental toxicity of oxygenated PAHs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goodale, B. C.; Geisel School of Medicine at Dartmouth, Hanover, NH; La Du, J.

    Polycyclic aromatic hydrocarbons (PAHs) are priority environmental contaminants that exhibit mutagenic, carcinogenic, proinflammatory, and teratogenic properties. Oxygen-substituted PAHs (OPAHs) are formed during combustion processes and via phototoxidation and biological degradation of parent (unsubstituted) PAHs. Despite their prevalence both in contaminated industrial sites and in urban air, OPAH mechanisms of action in biological systems are relatively understudied. Like parent PAHs, OPAHs exert structure-dependent mutagenic activities and activation of the aryl hydrocarbon receptor (AHR) and cytochrome p450 metabolic pathway. Four-ring OPAHs 1,9-benz-10-anthrone (BEZO) and benz(a)anthracene-7,12-dione (7,12-B[a]AQ) cause morphological aberrations and induce markers of oxidative stress in developing zebrafish with similar potency, butmore » only 7,12-B[a]AQ induces robust Cyp1a protein expression. We investigated the role of the AHR in mediating the toxicity of BEZO and 7,12-B[a]AQ, and found that knockdown of AHR2 rescued developmental effects caused by both compounds. Using RNA-seq and molecular docking, we identified transcriptional responses that precede developmental toxicity induced via differential interaction with AHR2. Redox-homeostasis genes were affected similarly by these OPAHs, while 7,12-B[a]AQ preferentially activated phase 1 metabolism and BEZO uniquely decreased visual system genes. Analysis of biological functions and upstream regulators suggests that BEZO is a weak AHR agonist, but interacts with other transcriptional regulators to cause developmental toxicity in an AHR-dependent manner. Furthermore, identifying ligand-dependent AHR interactions and signaling pathways is essential for understanding toxicity of this class of environmentally relevant compounds.« less

  14. Ligand-specific transcriptional mechanisms underlie aryl hydrocarbon receptor-mediated developmental toxicity of oxygenated PAHs

    DOE PAGES

    Goodale, B. C.; Geisel School of Medicine at Dartmouth, Hanover, NH; La Du, J.; ...

    2015-07-03

    Polycyclic aromatic hydrocarbons (PAHs) are priority environmental contaminants that exhibit mutagenic, carcinogenic, proinflammatory, and teratogenic properties. Oxygen-substituted PAHs (OPAHs) are formed during combustion processes and via phototoxidation and biological degradation of parent (unsubstituted) PAHs. Despite their prevalence both in contaminated industrial sites and in urban air, OPAH mechanisms of action in biological systems are relatively understudied. Like parent PAHs, OPAHs exert structure-dependent mutagenic activities and activation of the aryl hydrocarbon receptor (AHR) and cytochrome p450 metabolic pathway. Four-ring OPAHs 1,9-benz-10-anthrone (BEZO) and benz(a)anthracene-7,12-dione (7,12-B[a]AQ) cause morphological aberrations and induce markers of oxidative stress in developing zebrafish with similar potency, butmore » only 7,12-B[a]AQ induces robust Cyp1a protein expression. We investigated the role of the AHR in mediating the toxicity of BEZO and 7,12-B[a]AQ, and found that knockdown of AHR2 rescued developmental effects caused by both compounds. Using RNA-seq and molecular docking, we identified transcriptional responses that precede developmental toxicity induced via differential interaction with AHR2. Redox-homeostasis genes were affected similarly by these OPAHs, while 7,12-B[a]AQ preferentially activated phase 1 metabolism and BEZO uniquely decreased visual system genes. Analysis of biological functions and upstream regulators suggests that BEZO is a weak AHR agonist, but interacts with other transcriptional regulators to cause developmental toxicity in an AHR-dependent manner. Furthermore, identifying ligand-dependent AHR interactions and signaling pathways is essential for understanding toxicity of this class of environmentally relevant compounds.« less

  15. Ligand-Specific Transcriptional Mechanisms Underlie Aryl Hydrocarbon Receptor-Mediated Developmental Toxicity of Oxygenated PAHs.

    PubMed

    Goodale, B C; La Du, J; Tilton, S C; Sullivan, C M; Bisson, W H; Waters, K M; Tanguay, R L

    2015-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are priority environmental contaminants that exhibit mutagenic, carcinogenic, proinflammatory, and teratogenic properties. Oxygen-substituted PAHs (OPAHs) are formed during combustion processes and via phototoxidation and biological degradation of parent (unsubstituted) PAHs. Despite their prevalence both in contaminated industrial sites and in urban air, OPAH mechanisms of action in biological systems are relatively understudied. Like parent PAHs, OPAHs exert structure-dependent mutagenic activities and activation of the aryl hydrocarbon receptor (AHR) and cytochrome p450 metabolic pathway. Four-ring OPAHs 1,9-benz-10-anthrone (BEZO) and benz(a)anthracene-7,12-dione (7,12-B[a]AQ) cause morphological aberrations and induce markers of oxidative stress in developing zebrafish with similar potency, but only 7,12-B[a]AQ induces robust Cyp1a protein expression. We investigated the role of the AHR in mediating the toxicity of BEZO and 7,12-B[a]AQ, and found that knockdown of AHR2 rescued developmental effects caused by both compounds. Using RNA-seq and molecular docking, we identified transcriptional responses that precede developmental toxicity induced via differential interaction with AHR2. Redox-homeostasis genes were affected similarly by these OPAHs, while 7,12-B[a]AQ preferentially activated phase 1 metabolism and BEZO uniquely decreased visual system genes. Analysis of biological functions and upstream regulators suggests that BEZO is a weak AHR agonist, but interacts with other transcriptional regulators to cause developmental toxicity in an AHR-dependent manner. Identifying ligand-dependent AHR interactions and signaling pathways is essential for understanding toxicity of this class of environmentally relevant compounds. © The Author 2015. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Plerixafor Improves Primary Tumor Response and Reduces Metastases in Cervical Cancer Treated with Radio-Chemotherapy.

    PubMed

    Chaudary, Naz; Pintilie, Melania; Jelveh, Salomeh; Lindsay, Patricia; Hill, Richard P; Milosevic, Michael

    2017-03-01

    Purpose: There is an important need to improve the effectiveness of radio-chemotherapy (RTCT) for cervical cancer. The CXCL12/CXCR4 pathway can influence RT response by recruiting normal myeloid cells to the tumor microenvironment that in turn can exert radioprotective effects, and may promote metastases. The objective of this study was to explore the efficacy and toxicity of combining RTCT with CXCL12/CXCR4 inhibition in cervical cancer. Experimental Design: CXCR4 expression was measured in 115 patients with cervical cancer. Two primary orthotopic cervical cancer xenografts (OCICx) with different levels of CXCR4 expression were treated with RT (30 Gy: 15 daily fractions) and weekly cisplatin (4 mg/kg), with or without the CXCR4 inhibitor Plerixafor (5 mg/kg/day). The endpoints were tumor growth delay and lymph node metastases. Acute intestinal toxicity was assessed using a crypt cell assay. Results: There was a fivefold variation in CXCR4 mRNA expression in the patient samples, and good correlation between the expression in patients and in the xenografts. The combination of RTCT and Plerixafor produced substantial tumor growth delay and reduced lymph node metastases compared with RTCT alone in both of the xenograft models. There was a trend toward reduced acute intestinal toxicity with the addition of Plerixafor to RTCT. There were no changes in normal organ morphology to suggest increased late toxicity. Conclusions: This study demonstrates that the addition of Plerixafor to standard RTCT improves primary tumor response and reduces metastases in cervical cancer with no increase in toxicity. This combination warrants further investigation in phase I/II clinical trials. Clin Cancer Res; 23(5); 1242-9. ©2016 AACR . ©2016 American Association for Cancer Research.

  17. Comparative toxicity of metal oxide nanoparticles (CuO, ZnO and TiO2) to developing zebrafish embryos

    NASA Astrophysics Data System (ADS)

    Vicario-Parés, Unai; Castañaga, Luis; Lacave, Jose Maria; Oron, Miriam; Reip, Paul; Berhanu, Deborah; Valsami-Jones, Eugenia; Cajaraville, Miren P.; Orbea, Amaia

    2014-08-01

    Increasing use of nanomaterials is resulting in their release into the environment, making necessary to determine the toxicity of these materials. With this aim, the effects of CuO, ZnO and TiO2 nanoparticles (NPs) on zebrafish development were assessed in comparison with the effects caused by the ionic forms (for copper and zinc), bulk counterparts and the stabilizer used for rutile TiO2 NPs. None of the NPs caused significant embryo mortality. CuO NPs were the most toxic affecting hatching and increasing malformation prevalence (≥1 mg Cu/L), followed by ZnO NPs that affected hatching at ≥5 mg Zn/L and stabilized TiO2 NPs that caused mortality and decreased hatching at 100 mg Ti/L. Exposure to the stabilizer alone provoked the same effect. Thus, toxicity of the TiO2 NP suspension can be linked to the surfactant. For all the endpoints, the greatest effects were exerted by the ionic forms, followed by the NPs and finally by the bulk compounds. By autometallography, metal-bearing deposits were observed in embryos exposed to CuO and ZnO NPs, being more abundant in the case of embryos exposed to CuO NPs. The largest and most abundant metal-bearing deposits were detected in embryos exposed to ionic copper. In conclusion, metal oxide NPs affected zebrafish development altering hatching and increasing the prevalence of malformations. Thus, the use and release of metal oxide NPs to the environment may pose a risk to aquatic organisms as a result of the toxicity caused by NPs themselves or by the additives used in their production.

  18. Minocycline protects, rescues and prevents knockdown transgenic parkin Drosophila against paraquat/iron toxicity: Implications for autosomic recessive juvenile parkinsonism.

    PubMed

    Ortega-Arellano, Hector Flavio; Jimenez-Del-Rio, Marlene; Velez-Pardo, Carlos

    2017-05-01

    Autosomal recessive Juvenile Parkinsonism (AR-JP) is a chronic, progressive neurodegenerative disorder caused by mutation in the PARKIN gene, and invariably associated with dopaminergic (DAergic) neuronal loss and brain iron accumulation. Since current medical therapy is symptomatic and lacks significant disease-modifying effects, other treatment approaches are urgently needed it. In the present work, we investigate the role of minocycline (MC) in paraquat (PQ)/iron-induced neurotoxicity in the Drosophila TH>parkin-RNAi/+ (w[*]; UAS-parkin-RNAi; TH-GAL4) fly and have shown the following: (i) MC increased life span and restored the locomotor activity of knockdown (KD) transgenic parkin flies in comparison with the control (vehicle) group; (ii) MC at low (0.1 and 0.3mM) and middle (0.5mM) concentrations protected, rescued and prevented KD parkin Drosophila against PQ toxicity. However, MC at high (1mM) concentration aggravated the toxic effect of PQ; (iii) MC protected and rescued DAergic neurons against the PQ toxic effect according to tyrosine hydroxylase (TH)>green-fluorescent protein (GFP) reporter protein microscopy and anti-TH Western blotting analysis; (iv) MC protected DAergic neurons against PQ/iron toxicity; (v) MC significantly abridged lipid peroxidation (LPO) in the protection, rescue and prevention treatment in TH>parkin-RNAi/+ flies against PQ or iron alone or combined (PQ/iron)-induced neuronal oxidative stress (OS). Our results suggest that MC exerts neuroprotection against PQ/iron-induced OS in DAergic neurons most probably by the scavenging activity of reactive oxygen species (ROS), and by chelating iron. Therefore, MC might be a potential therapeutic drug to delay, revert, or prevent AR-JP. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Rotigotine protects against glutamate toxicity in primary dopaminergic cell culture.

    PubMed

    Oster, Sandra; Radad, Khaled; Scheller, Dieter; Hesse, Marlen; Balanzew, Wladimir; Reichmann, Heinz; Gille, Gabriele

    2014-02-05

    In Parkinson disease the degeneration of dopaminergic neurones is believed to lead to a disinhibition of the subthalamic nucleus thus increasing the firing rate of the glutamatergic excitatory projections to the substantia nigra. In consequence, excessive glutamatergic activity will cause excitotoxicity and oxidative stress. In the present study we investigated mechanisms of glutamate toxicity and the neuroprotective potential of the dopamine agonist rotigotine towards dopaminergic neurones in mouse mesencephalic primary culture. Glutamate toxicity was mediated by the N-methyl-d-aspartic acid (NMDA) receptor and accompanied by a strong calcium influx into dopaminergic neurones for which the L-type voltage-sensitive calcium channels play an important role. The rate of superoxide production in the culture was highly increased. Deleterious nitric oxide production did not participate in glutamate-mediated excitotoxicity. Pretreatment of cultures with rotigotine significantly increased the survival of dopaminergic neurones exposed to glutamate. Rotigotine exerted its protective effects via dopamine receptor stimulation (presumably via dopamine D3 receptor) and decreased significantly the production of superoxide radicals. When cultures were preincubated with Phosphoinositol 3-Kinase (PI3K) inhibitors the protective effect of rotigotine was abolished suggesting a decisive role of the PI3K/Akt pathway in rotigotine-mediated neuroprotection. Consistently, exposure to rotigotine induced the activation of Akt by phosphorylation followed by phosphorylation, and thus inactivation, of the pro-apoptotic factor glycogen synthase kinase-3-beta (GSK-3-β). Taken together, our work contributed to elucidating the mechanisms of glutamate toxicity in mesencephalic culture and unravelled the signalling pathways associated with rotigotine-induced neuroprotection against glutamate toxicity in primary dopaminergic cultures. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. The influence of a yoga exercise program for young adults with intellectual disabilities.

    PubMed

    Hawkins, Brent L; Stegall, Joanna B; Weber, Madalyn F; Ryan, Joseph B

    2012-07-01

    Individuals with intellectual disabilities (ID) have an increased risk of obesity and are significantly less likely to engage in physical activity compared to their nondisabled peers. A growing body of research supports the physical and mental health benefits of yoga. While the benefits of yoga have been studied across a host of populations with varying ages and physical disabilities, no studies could be identified investigating the benefits of yoga for young adults with ID. This study investigated the impact of participating in yoga classes on the amount of exercise behavior and perception of physical exertion when compared to non-structured exercise sessions between two young adults with ID in a post-secondary education setting. A single subject multiple baseline research design was implemented across two young adults with mild ID to determine the effects of a yoga exercise class on frequency of exercise behavior and perception of physical exertion when compared to non-structured exercise sessions. Partial interval recording, the Eston-Parfitt curvilinear rating of perceived exertion scale, and the physical activity enjoyment scale were implemented to collect data on dependent variables and consumer satisfaction during each non-structured exercise session and each yoga class. indicated that percentage of exercise behavior and perceived exertion levels during yoga group exercise sharply increased with large effect sizes when compared to non-structured exercise sessions.

  1. Chemical warfare agents. Classes and targets.

    PubMed

    Schwenk, Michael

    2018-09-01

    Synthetic toxic chemicals (toxicants) and biological poisons (toxins) have been developed as chemical warfare agents in the last century. At the time of their initial consideration as chemical weapon, only restricted knowledge existed about their mechanisms of action. There exist two different types of acute toxic action: nonspecific cytotoxic mechanisms with multiple chemo-biological interactions versus specific mechanisms that tend to have just a single or a few target biomolecules. TRPV1- and TRPA-receptors are often involved as chemosensors that induce neurogenic inflammation. The present work briefly surveys classes and toxicologically relevant features of chemical warfare agents and describes mechanisms of toxic action. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Adjudin disrupts spermatogenesis by targeting drug transporters

    PubMed Central

    Qian, Xiaojing; Cheng, Yan-ho; Jenardhanan, Pranitha; Mruk, Dolores D.; Mathur, Premendu P.; Xia, Weiliang; Silvestrini, Bruno; Cheng, C. Yan

    2013-01-01

    For non-hormonal male contraceptives that exert their effects in the testis locally instead of via the hypothalamic-pituitary-testicular axis, such as adjudin that disrupts germ cell adhesion, a major hurdle in their development is to improve their bioavailability so that they can be efficiently delivered to the seminiferous epithelium by transporting across the blood-testis barrier (BTB). If this can be done, it would widen the gap between their efficacy and general toxicity. However, Sertoli cells that constitute the BTB, peritubular myoid cells in the tunica propria, germ cells at different stages of their development, as well as endothelial cells that constitute the microvessels in the interstitium are all equipped with multiple drug transporters, most notably efflux drug transporters, such as P-glycoprotein, multidrug resistance-related protein 1 (MRP1) and breast cancer resistance protein (BCRP) that can actively prevent drugs (e.g., adjudin) from entering the seminiferous epithelium to exert their effects. Recent studies have shown that BCRP is highly expressed by endothelial cells of the microvessels in the interstitium in the testis and also peritubular myoid cells in tunica propria even though it is absent from Sertoli cells at the site of the BTB. Furthermore, BCRP is also expressed spatiotemporally by Sertoli cells and step 19 spermatids in the rat testis and stage-specifically, limiting to stage VII‒VIII of the epithelial cycle, and restricted to the apical ectoplasmic specialization [apical ES, a testis-specific F-actin-rich adherens junction (AJ)]. Interestingly, adjudin was recently shown to be capable of downregulating BCRP expression at the apical ES. In this Opinion article, we critically discuss the latest findings on BCRP; in particular, we provide some findings utilizing molecular modeling to define the interacting domains of BCRP with adjudin. Based on this information, it is hoped that the next generation of adjudin analogs to be synthesized can improve their efficacy in downregulating BCRP and perhaps other drug efflux transporters in the testis to improve their efficacy to traverse the BTB by modifying their interacting domains. PMID:23885306

  3. Hybrid Modeling Approach to Estimate Exposures of Hazardous Air Pollutants (HAPs) for the National Air Toxics Assessment (NATA).

    PubMed

    Scheffe, Richard D; Strum, Madeleine; Phillips, Sharon B; Thurman, James; Eyth, Alison; Fudge, Steve; Morris, Mark; Palma, Ted; Cook, Richard

    2016-11-15

    A hybrid air quality model has been developed and applied to estimate annual concentrations of 40 hazardous air pollutants (HAPs) across the continental United States (CONUS) to support the 2011 calendar year National Air Toxics Assessment (NATA). By combining a chemical transport model (CTM) with a Gaussian dispersion model, both reactive and nonreactive HAPs are accommodated across local to regional spatial scales, through a multiplicative technique designed to improve mass conservation relative to previous additive methods. The broad scope of multiple pollutants capturing regional to local spatial scale patterns across a vast spatial domain is precedent setting within the air toxics community. The hybrid design exhibits improved performance relative to the stand alone CTM and dispersion model. However, model performance varies widely across pollutant categories and quantifiably definitive performance assessments are hampered by a limited observation base and challenged by the multiple physical and chemical attributes of HAPs. Formaldehyde and acetaldehyde are the dominant HAP concentration and cancer risk drivers, characterized by strong regional signals associated with naturally emitted carbonyl precursors enhanced in urban transport corridors with strong mobile source sector emissions. The multiple pollutant emission characteristics of combustion dominated source sectors creates largely similar concentration patterns across the majority of HAPs. However, reactive carbonyls exhibit significantly less spatial variability relative to nonreactive HAPs across the CONUS.

  4. The Public Health Response to Toxic Shock Syndrome: A Historical Review and Lessons Learned

    ERIC Educational Resources Information Center

    Rasberry, Catherine N.

    2005-01-01

    The toxic shock syndrome (TSS) crisis is a historical public health success story from which much can be learned and applied to contemporary public health issues. Following the first reports, multiple research teams initiated studies designed to ascertain the risk factors associated with TSS. Those studies evolved over several years--each building…

  5. The development of platinum compounds and their possible combination.

    PubMed

    Pasetto, Lara Maria; D'Andrea, Mario Rosario; Brandes, Alba Ariela; Rossi, Elena; Monfardini, Silvio

    2006-10-01

    Cisplatin plays a central role in cancer chemotherapy in spite of its toxicity. To circumvent this toxicity and to enhance its therapeutic index a lot of preclinical and clinical studies have been conducted and several thousand analogues have been synthesized. Much more analysis remains to be done, but nowadays, the absence of any definitive, biologically interpretable molecular predictor of activity is consistent with the idea that platinum compounds have multiple intracellular targets and that cells can have multiple mechanisms of resistance. This review analyses a part of these platinum compounds analyzed to date, their mechanism of action, resistance and the future trends in this sector.

  6. Cardiotoxicity screening: a review of rapid-throughput in vitro approaches.

    PubMed

    Li, Xichun; Zhang, Rui; Zhao, Bin; Lossin, Christoph; Cao, Zhengyu

    2016-08-01

    Cardiac toxicity represents one of the leading causes of drug failure along different stages of drug development. Multiple very successful pharmaceuticals had to be pulled from the market or labeled with strict usage warnings due to adverse cardiac effects. In order to protect clinical trial participants and patients, the International Conference on Harmonization published guidelines to recommend that all new drugs to be tested preclinically for hERG (Kv11.1) channel sensitivity before submitting for regulatory reviews. However, extensive studies have demonstrated that measurement of hERG activity has limitations due to the multiple molecular targets of drug compound through which it may mitigate or abolish a potential arrhythmia, and therefore, a model measuring multiple ion channel effects is likely to be more predictive. Several phenotypic rapid-throughput methods have been developed to predict the potential cardiac toxic compounds in the early stages of drug development using embryonic stem cells- or human induced pluripotent stem cell-derived cardiomyocytes. These rapid-throughput methods include microelectrode array-based field potential assay, impedance-based or Ca(2+) dynamics-based cardiomyocytes contractility assays. This review aims to discuss advantages and limitations of these phenotypic assays for cardiac toxicity assessment.

  7. Integrating copper toxicity and climate change to understand extinction risk to two species of pond-breeding anurans.

    PubMed

    Weir, Scott M; Scott, David E; Salice, Christopher J; Lance, Stacey L

    2016-09-01

    Chemical contamination is often suggested as an important contributing factor to amphibian population declines, but direct links are rarely reported. Population modeling provides a quantitative method to integrate toxicity data with demographic data to understand the long-term effects of contaminants on population persistence. In this study we use laboratory-derived embryo and larval toxicity data for two anuran species to investigate the potential for toxicity to contribute to population declines. We use the southern toad (Anaxyrus terrestris) and the southern leopard frog (Lithobates sphenocephalus) as model species to investigate copper (Cu) toxicity. We use matrix models to project populations through time and quantify extinction risk (the probability of quasi-extinction in 35 yr). Life-history parameters for toads and frogs were obtained from previously published literature or unpublished data from a long-term (>35 yr) data set. In addition to Cu toxicity, we investigate the role of climate change on amphibian populations by including the probability of early pond drying that results in catastrophic reproductive failure (CRF, i.e., complete mortality of all larval individuals). Our models indicate that CRF is an important parameter for both species as both were unable to persist when CRF probability was >50% for toads or 40% for frogs. Copper toxicity alone did not result in significant effects on extinction risk unless toxicity was very high (>50% reduction in survival parameters). For toads, Cu toxicity and high probability of CRF both resulted in high extinction risk but no synergistic (or greater than additive) effects between the two stressors occurred. For leopard frogs, in the absence of CRF survival was high even under Cu toxicity, but with CRF Cu toxicity increased extinction risk. Our analyses highlight the importance of considering multiple stressors as well as species differences in response to those stressors. Our models were consistently most sensitive to juvenile and adult survival, further suggesting the importance of terrestrial stages to population persistence. Future models will incorporate multiple wetlands with different combinations of stressors to understand if our results for a single wetland result in a population sink within the landscape. © 2016 by the Ecological Society of America.

  8. [Characteristics of elderly heat illness patients in Japan--analysis from Heatstroke STUDY 2010].

    PubMed

    Miyake, Yasufumi

    2013-06-01

    Heatstroke Surveillance Committee of the Japanese Association for Acute Medicine (JAAM) collected the clinical data of 1,775 heat illness patients transported into 94 Emergency Medical Centers or Emergency Departments throughout Japan from 1 July to 31 August 2010 (Heatstroke STUDY 2010). Seven hundreds and four elderly patients' data revealed that 541 cases (80%) suffered from classical heatstroke in the ordinary life and the morbidity and mortality were much higher than those of exertional heatstroke patients. Hypertension, diabetes, heart disease and dementia were the risk factors of this disease. Forty nine patients (6.9%) were the victims of classical heatstroke and multiple organ failure include heart failure was the major cause of heat related death in acute phase after admission. No one died in exertional heatstroke group.

  9. Multiple inorganic toxic substances contaminating the groundwater of Myingyan Township, Myanmar: arsenic, manganese, fluoride, iron, and uranium.

    PubMed

    Bacquart, Thomas; Frisbie, Seth; Mitchell, Erika; Grigg, Laurie; Cole, Christopher; Small, Colleen; Sarkar, Bibudhendra

    2015-06-01

    In South Asia, the technological and societal shift from drinking surface water to groundwater has resulted in a great reduction of acute diseases due to water borne pathogens. However, arsenic and other naturally occurring inorganic toxic substances present in groundwater in the region have been linked to a variety of chronic diseases, including cancers, heart disease, and neurological problems. Due to the highly specific symptoms of chronic arsenic poisoning, arsenic was the first inorganic toxic substance to be noticed at unsafe levels in the groundwater of West Bengal, India and Bangladesh. Subsequently, other inorganic toxic substances, including manganese, uranium, and fluoride have been found at unsafe levels in groundwater in South Asia. While numerous drinking water wells throughout Myanmar have been tested for arsenic, relatively little is known about the concentrations of other inorganic toxic substances in Myanmar groundwater. In this study, we analyzed samples from 18 drinking water wells (12 in Myingyan City and 6 in nearby Tha Pyay Thar Village) and 2 locations in the Ayeyarwaddy River for arsenic, boron, barium, beryllium, cadmium, cobalt, chromium, copper, fluoride, iron, mercury, manganese, molybdenum, nickel, lead, antimony, selenium, thallium, uranium, vanadium, and zinc. Concentrations of arsenic, manganese, fluoride, iron, or uranium exceeded health-based reference values in most wells. In addition, any given well usually contained more than one toxic substance at unsafe concentrations. While water testing and well sharing could reduce health risks, none of the wells sampled provide water that is entirely safe with respect to inorganic toxic substances. It is imperative that users of these wells, and users of other wells that have not been tested for multiple inorganic toxic substances throughout the region, be informed of the need for drinking water testing and the health consequences of drinking water contaminated with inorganic toxic substances. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Irresistible ants: exposure to novel toxic prey increases consumption over multiple temporal scales.

    PubMed

    Herr, Mark W; Robbins, Travis R; Centi, Alan; Thawley, Christopher J; Langkilde, Tracy

    2016-07-01

    As species become increasingly exposed to novel challenges, it is critical to understand how evolutionary (i.e., generational) and plastic (i.e., within lifetime) responses work together to determine a species' fate or predict its distribution. The introduction of non-native species imposes novel pressures on the native species that they encounter. Understanding how native species exposed to toxic or distasteful invaders change their feeding behavior can provide insight into their ability to cope with these novel threats as well as broader questions about the evolution of this behavior. We demonstrated that native eastern fence lizards do not avoid consuming invasive fire ants following repeated exposure to this toxic prey. Rather fence lizards increased their consumption of these ants following exposure on three different temporal scales. Lizards ate more fire ants when they were exposed to this toxic prey over successive days. Lizards consumed more fire ants if they had been exposed to fire ants as juveniles 6 months earlier. Finally, lizards from populations exposed to fire ants over multiple generations consumed more fire ants than those from fire ant-free areas. These results suggest that the potentially lethal consumption of fire ants may carry benefits resulting in selection for this behavior, and learning that persists long after initial exposure. Future research on the response of native predators to venomous prey over multiple temporal scales will be valuable in determining the long-term effects of invasion by these novel threats.

  11. An unusual presentation of papillary fibroelastoma originating from right ventricular outflow tract.

    PubMed

    Erdogan, Mehmet; Guney, Murat Can; Ayhan, Hüseyin; Kasapkara, Hacı Ahmet; Uğuz, Emrah; Durmaz, Tahir; Keleş, Telat; Bozkurt, Engin

    2017-03-01

    Papillary fibroelastomas (PFEs) are primary cardiac tumors with a benign and avascular nature. Majority of the PFEs are originated from the valvular endocardium, while the most common site is aortic valve. In this case, we present a patient with multiple PFEs originating from the right ventricular outflow tract who was admitted to our clinic with exertional dyspnea. As far as we know, this is the first case of this unusual presentation of multiple PFEs and also had a history of breast cancer and permanent pacemaker reported in the literature. © 2017, Wiley Periodicals, Inc.

  12. Comparative toxicities of selected rare earth elements: Sea urchin embryogenesis and fertilization damage with redox and cytogenetic effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pagano, Giovanni, E-mail: gbpagano@tin.it; Guida, Marco; Siciliano, Antonietta

    Background: Broad-ranging adverse effects are known for rare earth elements (REE), yet only a few studies tested the toxicity of several REE, prompting studies focusing on multi-parameter REE toxicity. Methods: Trichloride salts of Y, La, Ce, Nd, Sm, Eu and Gd were tested in Paracentrotus lividus sea urchin embryos and sperm for: (1) developmental defects in either REE-exposed larvae or in the offspring of REE-exposed sperm; (2) fertilization success; (3) mitotic anomalies in REE-exposed embryos and in the offspring of REE-exposed sperm, and (4) reactive oxygen species (ROS) formation, and malondialdehyde (MDA) and nitric oxide (NO) levels. Results: REEs affectedmore » P. lividus larvae with concentration-related increase in developmental defects, 10{sup −6} to 10{sup −4} M, ranking as: Gd(III)>Y(III)>La(III)>Nd(III)≅Eu(III)>Ce(III)≅Sm(III). Nominal concentrations of REE salts were confirmed by inductively coupled plasma mass spectrometry (ICP-MS). Significant increases in MDA levels, ROS formation, and NO levels were found in REE-exposed embryos. Sperm exposure to REEs (10{sup −5} to 10{sup −4} M) resulted in concentration-related decrease in fertilization success along with increase in offspring damage. Decreased mitotic activity and increased aberration rates were detected in REE-exposed embryos and in the offspring of REE-exposed sperm. Conclusion: REE-associated toxicity affecting embryogenesis, fertilization, cytogenetic and redox endpoints showed different activities of tested REEs. Damage to early life stages, along with redox and cytogenetic anomalies should be the focus of future REE toxicity studies. - Highlights: • Seven rare earth elements exerted different effects on sea urchin early life stages. • Embryo-, spermio- and mitotoxicity, and oxidative/ nitrosative stress were found. • Nominal vs. analytical REE concentrations were checked. • Comparative toxicities were evaluated for the different REE.« less

  13. An endostatin-derived peptide orally exerts anti-fibrotic activity in a murine pulmonary fibrosis model.

    PubMed

    Nishimoto, Tetsuya; Mlakar, Logan; Takihara, Takahisa; Feghali-Bostwick, Carol

    2015-10-01

    Pulmonary fibrosis causes high morbidity and mortality in affected individuals. Recently, we showed that parenteral or intratracheal administration of a peptide derived from endostatin, called E4, prevents and ameliorates fibrosis using different models of dermal and pulmonary disease. No marketed orally delivered peptide drugs are currently available for progressive pulmonary fibrosis; however oral delivery of drugs is the preferred route for treating most chronic diseases. Thus, we investigated whether oral administration of E4 peptide exerted anti-fibrotic activity in a murine pulmonary fibrosis model. Bleomycin (1.2mU/g body weight) was intratracheally administrated to male 6-8-week-old C57BL/6J mice. E4 peptide (20, 10, 5, and 1 μg/mouse) or scrambled control peptide (20 μg/mouse) was orally administered on the same day as bleomycin. In some experiments, E4 peptide (10 and 5 μg/mouse) was orally administered three times on days 0, 3, and 6 post-bleomycin treatment. Lungs were harvested on day 21 for histological analysis and hydroxyproline assay. Histological analysis and hydroxyproline assay revealed that bleomycin successfully induced pulmonary fibrosis, and that 20 μg of oral E4 peptide ameliorated the fibrosis. The lower doses of E4 peptide (10, 5, and 1 μg) were insufficient to exert anti-fibrotic activity when given as a single dose. Multiple doses of E4 peptide efficiently exerted anti-fibrotic activity even at lower doses. E4 peptide shows oral bioavailability and exerts anti-fibrotic activity in a bleomycin-induced pulmonary fibrosis model. We suggest that E4 peptide is a novel oral drug for fibroproliferative disorders. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. An endostatin-derived peptide orally exerts anti-fibrotic activity in a murine pulmonary fibrosis model

    PubMed Central

    Nishimoto, Tetsuya; Mlakar, Logan; Takihara, Takahisa; Feghali-Bostwick, Carol

    2016-01-01

    Objective Pulmonary fibrosis causes high morbidity and mortality in affected individuals. Recently, we showed that parenteral or intratracheal administration of a peptide derived from endostatin, called E4, prevents and ameliorates fibrosis using different models of dermal and pulmonary disease. No marketed orally delivered peptide drugs are currently available for progressive pulmonary fibrosis; however oral delivery of drugs is the preferred route for treating most chronic diseases. Thus, we investigated whether oral administration of E4 peptide exerted anti-fibrotic activity in a murine pulmonary fibrosis model. Methods Bleomycin (1.2mU/g body weight) was intratracheally administrated to male 6–8-week-old C57BL/6J mice. E4 peptide (20, 10, 5, and 1 μg/mouse) or scrambled control peptide (20 μg/mouse) were orally administered on the same day as bleomycin. In some experiments, E4 peptide (10 and 5 μg/mouse) was orally administered three times on days 0, 3, and 6 post-bleomycin treatment. Lungs were harvested on day 21 for histological analysis and hydroxyproline assay. Results Histological analysis and hydroxyproline assay revealed that bleomycin successfully induced pulmonary fibrosis, and that 20μg of oral E4 peptide ameliorated the fibrosis. The lower doses of E4 peptide (10, 5, and 1 μg) were insufficient to exert anti-fibrotic activity when given as a single dose. Multiple doses of E4 peptide efficiently exerted anti-fibrotic activity even at lower doses. Conclusion E4 peptide shows oral bioavailability and exerts anti-fibrotic activity in a bleomycin-induced pulmonary fibrosis model. We suggest that E4 peptide is a novel oral drug for fibroproliferative disorders. PMID:26315492

  15. Research Advances on Pathways of Nickel-Induced Apoptosis

    PubMed Central

    Guo, Hongrui; Chen, Lian; Cui, Hengmin; Peng, Xi; Fang, Jing; Zuo, Zhicai; Deng, Junliang; Wang, Xun; Wu, Bangyuan

    2015-01-01

    High concentrations of nickel (Ni) are harmful to humans and animals. Ni targets a number of organs and produces multiple toxic effects. Apoptosis is important in Ni-induced toxicity of the kidneys, liver, nerves, and immune system. Apoptotic pathways mediated by reactive oxygen species (ROS), mitochondria, endoplasmic reticulum (ER), Fas, and c-Myc participate in Ni-induced cell apoptosis. However, the exact mechanism of apoptosis caused by Ni is still unclear. Understanding the mechanism of Ni-induced apoptosis may help in designing measures to prevent Ni toxicity. PMID:26703593

  16. Simulated Watershed Mercury and Nitrate Flux Responses to Multiple Land Cover Conversion Scenarios

    EPA Science Inventory

    Water quality and toxic exposure science is transitioning towards analysis of multiple stressors rather than one particular environmental concern (e.g., mercury) or a group of similarly reacting chemicals (e.g., nutrients). However, two of the most important water quality constit...

  17. A novel controlled release formulation of the Pin1 inhibitor ATRA to improve liver cancer therapy by simultaneously blocking multiple cancer pathways.

    PubMed

    Yang, Dayun; Luo, Wensong; Wang, Jichuang; Zheng, Min; Liao, Xin-Hua; Zhang, Nan; Lu, Wenxian; Wang, Long; Chen, Ai-Zheng; Wu, Wen-Guo; Liu, Hekun; Wang, Shi-Bin; Zhou, Xiao Zhen; Lu, Kun Ping

    2018-01-10

    Hepatocellular carcinoma (HCC) is the second leading cause of cancer deaths worldwide largely due to lack of effective targeted drugs to simultaneously block multiple cancer-driving pathways. The identification of all-trans retinoic acid (ATRA) as a potent Pin1 inhibitor provides a promising candidate for HCC targeted therapy because Pin1 is overexpressed in most HCC and activates numerous cancer-driving pathways. However, the efficacy of ATRA against solid tumors is limited due to its short half-life of 45min in humans. A slow-releasing ATRA formulation inhibits solid tumors such as HCC, but can be used only in animals. Here, we developed a one-step, cost-effective route to produce a novel biocompatible, biodegradable, and non-toxic controlled release formulation of ATRA for effective HCC therapy. We used supercritical carbon dioxide process to encapsulate ATRA in largely uniform poly L-lactic acid (PLLA) microparticles, with the efficiency of 91.4% and yield of 68.3%, and ~4-fold higher C max and AUC over the slow-releasing ATRA formulation. ATRA-PLLA microparticles had good biocompatibility, and significantly enhanced the inhibitory potency of ATRA on HCC cell growth, improving IC 50 by over 3-fold. ATRA-PLLA microparticles exerted its efficacy likely through degrading Pin1 and inhibiting multiple Pin1-regulated cancer pathways and cell cycle progression. Indeed, Pin1 knock-down abolished ATRA inhibitory effects on HCC cells and ATRA-PLLA did not inhibit normal liver cells, as expected because ATRA selectively inhibits active Pin1 in cancer cells. Moreover ATRA-PLLA microparticles significantly enhanced the efficacy of ATRA against HCC tumor growth in mice through reducing Pin1, with a better potency than the slow-releasing ATRA formulation, consistent with its improved pharmacokinetic profiles. This study illustrates an effective platform to produce controlled release formulation of anti-cancer drugs, and ATRA-PLLA microparticles might be a promising targeted drug for HCC therapy as PLLA is biocompatible, biodegradable and nontoxic to humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. A combined evaluation of the characteristics and acute toxicity of antibiotic wastewater.

    PubMed

    Yu, Xin; Zuo, Jiane; Li, Ruixia; Gan, Lili; Li, Zaixing; Zhang, Fei

    2014-08-01

    The conventional parameters and acute toxicities of antibiotic wastewater collected from each treatment unit of an antibiotic wastewater treatment plant have been investigated. The investigation of the conventional parameters indicated that the antibiotic wastewater treatment plant performed well under the significant fluctuation in influent water quality. The results of acute toxicity indicated that the toxicity of antibiotic wastewater could be reduced by 94.3 percent on average after treatment. However, treated antibiotic effluents were still toxic to Vibrio fischeri. The toxicity of antibiotic production wastewater could be attributed to the joint effects of toxic compound mixtures in wastewater. Moreover, aerobic biological treatment processes, including sequencing batch reactor (SBR) and aerobic biofilm reactor, played the most important role in reducing toxicity by 92.4 percent. Pearson׳s correlation coefficients revealed that toxicity had a strong and positive linear correlation with organic substances, nitrogenous compounds, S(2-), volatile phenol, cyanide, As, Zn, Cd, Ni and Fe. Ammonia nitrogen (NH4(+)) was the greatest contributor to toxicity according to the stepwise regression method. The multiple regression model was a good fit for [TU50-15 min] as a function of [NH₄(+)] with the determination coefficient of 0.981. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Reversible metronidazole-induced cerebellar toxicity in a multiple transplant recipient.

    PubMed

    Graves, Tracey D; Condon, Marie; Loucaidou, Marina; Perry, Richard J

    2009-10-15

    Metronidazole-induced central nervous system (CNS) toxicity causes a spectrum of neurological symptoms including ataxia, encephalopathy and peripheral neuropathy. It is associated with characteristic MRI changes of high signal intensity in the dentate nuclei. Given the increasing use of metronidazole, it is import to recognise this drug as a cause of ataxia, as it is entirely reversible on drug withdrawal.

  20. The influence of the playing surface on the exercise intensity of small-sided recreational soccer games.

    PubMed

    Brito, João; Krustrup, Peter; Rebelo, António

    2012-08-01

    This study aimed to analyze the influence of the playing surface on movement pattern, physical loading, perceived exertion, and fatigue development during small-sided recreational soccer games. Time-motion, heart rate, blood lactate, and perceived exertion were measured for 16 recreational players aged 22 (range: 19-35) yrs. During 5-a-side soccer games on 3 different field surfaces: sand, artificial turf, and asphalt. Jump and sprint tests were performed prior to and after each game. Total distance covered was higher on asphalt and turf than on sand (3.89±0.04 and 3.73±0.12 vs. 2.59±0.21 km; p<.01), and the number of high-intensity runs was higher on asphalt than on turf (55±3 vs. 43±3; p<.05), but not sand (46±6). Mean heart rate (means±SEM, 160±3 vs. 171±1 b.p.m.) and time>90% HR(max) (20.8±5.1% vs. 44.1±5.0%) were lower (p<.05) on asphalt than on turf, with intermediate values for sand. Blood lactate was lower on asphalt than on sand (2.8±0.3 vs. 4.7±0.6 mmolL(-1); p<.05). Perceived exertion was lower on asphalt than on turf and sand (VAS 0-100: 52±3 vs. 72±3 and 72±3; p<.01). After the game, squat and countermovement jump performances were lower (4.9-8.1%, and 1.9-6.4%, respectively; p<.001) for all field surfaces, but no changes were observed in 5- and 30-m sprint performance. Small-sided recreational soccer games elicit high heart rates, multiple intense actions, and decreased jump performance for all the investigated playing surfaces, suggesting that multiple fitness and health benefits can be achieved through soccer on sand, artificial turf and asphalt. Nonetheless, locomotor activities, heart rate, blood lactate levels, and perceived exertion differ between surfaces. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Objective assessment of motor fatigue in multiple sclerosis using kinematic gait analysis: a pilot study

    PubMed Central

    2011-01-01

    Background Fatigue is a frequent and serious symptom in patients with Multiple Sclerosis (MS). However, to date there are only few methods for the objective assessment of fatigue. The aim of this study was to develop a method for the objective assessment of motor fatigue using kinematic gait analysis based on treadmill walking and an infrared-guided system. Patients and methods Fourteen patients with clinically definite MS participated in this study. Fatigue was defined according to the Fatigue Scale for Motor and Cognition (FSMC). Patients underwent a physical exertion test involving walking at their pre-determined patient-specific preferred walking speed until they reached complete exhaustion. Gait was recorded using a video camera, a three line-scanning camera system with 11 infrared sensors. Step length, width and height, maximum circumduction with the right and left leg, maximum knee flexion angle of the right and left leg, and trunk sway were measured and compared using paired t-tests (α = 0.005). In addition, variability in these parameters during one-minute intervals was examined. The fatigue index was defined as the number of significant mean and SD changes from the beginning to the end of the exertion test relative to the total number of gait kinematic parameters. Results Clearly, for some patients the mean gait parameters were more affected than the variability of their movements while other patients had smaller differences in mean gait parameters with greater increases in variability. Finally, for other patients gait changes with physical exertion manifested both in changes in mean gait parameters and in altered variability. The variability and fatigue indices correlated significantly with the motoric but not with the cognitive dimension of the FSMC score (R = -0.602 and R = -0.592, respectively; P < 0.026). Conclusions Changes in gait patterns following a physical exertion test in patients with MS suffering from motor fatigue can be measured objectively. These changes in gait patterns can be described using the motor fatigue index and represent an objective measure to assess motor fatigue in MS patients. The results of this study have important implications for the assessments and treatment evaluations of fatigue in MS. PMID:22029427

  2. Pharmacogenomics of antimicrobial agents

    PubMed Central

    Aung, Ar Kar; Haas, David W; Hulgan, Todd; Phillips, Elizabeth J

    2015-01-01

    Antimicrobial efficacy and toxicity varies between individuals owing to multiple factors. Genetic variants that affect drug-metabolizing enzymes may influence antimicrobial pharmacokinetics and pharmacodynamics, thereby determining efficacy and/or toxicity. In addition, many severe immune-mediated reactions have been associated with HLA class I and class II genes. In the last two decades, understanding of pharmacogenomic factors that influence antimicrobial efficacy and toxicity has rapidly evolved, leading to translational success such as the routine use of HLA-B*57:01 screening to prevent abacavir hypersensitivity reactions. This article examines recent advances in the field of antimicrobial pharmacogenomics that potentially affect treatment efficacy and toxicity, and challenges that exist between pharmacogenomic discovery and translation into clinical use. PMID:25495412

  3. Convergence at the faces of development workings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Borisenko, A.A.

    1977-07-01

    Since 1963 we have been carrying out investigations in pits of the Pechora coalfield to establish the general laws of roof-floor convergence in the face areas of development workings and their role in gas bursts. We also considered how various methods of working on the seam influence the amount of type of convergence. The observations were made in 20 workings in five pits of Vorkutaugol Group, cut by cutter-loaders and by drilling and blasting at depths between 350 and 600 m; the cross-sectional areas of the workings ranged frm 3.7 to 12.0 m/sup 2/. The aggregated data on daily convergencemore » values was analyzed by the multiple correlation method with the aid of a computer. The aim of the analysis was to elucidate the influence of six factors on the daily convergence values: the depth below the surface, the corrected seam strength, the cross-sectional area of the working, the initial distance from the face to the measurement prop, the daily advance, and the thickness of the seam. The combined correlation coefficient was rather low - 0.49 with a reliability of 9.13. The greatest influence on the convergence values is exerted by the cross-sectional area and by the distance from the face (the partial correlation coefficients being 0.281 and 0.310, respectively), and lesser influences are exerted by the depth below the surface and by the corrected strength of the seam (partial correlationcoefficients 0.164 and 0.178); the influences of seam thickness and daily face advance are very slight. The multiple correlation results indicate that a very great influence is exerted by disregarded factors, among which the most important are undoubtedly the properties of the surrounding rocks.« less

  4. Quantifying Training Loads in Contemporary Dance.

    PubMed

    Jeffries, Annie C; Wallace, Lee; Coutts, Aaron J

    2017-07-01

    To describe the training demands of contemporary dance and determine the validity of using the session rating of perceived exertion (sRPE) to monitor exercise intensity and training load in this activity. In addition, the authors examined the contribution of training (ie, accelerometry and heart rate) and non-training-related factors (ie, sleep and wellness) to perceived exertion during dance training. Training load and ActiGraphy for 16 elite amateur contemporary dancers were collected during a 49-d period, using heart-rate monitors, accelerometry, and sRPE. Within-individual correlation analysis was used to determine relationships between sRPE and several other measures of training intensity and load. Stepwise multiple regressions were used to determine a predictive equation to estimate sRPE during dance training. Average weekly training load was 4283 ± 2442 arbitrary units (AU), monotony 2.13 ± 0.92 AU, strain 10677 ± 9438 AU, and average weekly vector magnitude load 1809,707 ± 1015,402 AU. There were large to very large within-individual correlations between training-load sRPE and various other internal and external measures of intensity and load. The stepwise multiple-regression analysis also revealed that 49.7% of the adjusted variance in training-load sRPE was explained by peak heart rate, metabolic equivalents, soreness, motivation, and sleep quality (y = -4.637 + 13.817%HR peak + 0.316 METS + 0.100 soreness + 0.116 motivation - 0.204 sleep quality). The current findings demonstrate the validity of the sRPE method for quantifying training load in dance, that dancers undertake very high training loads, and a combination of training and nontraining factors contribute to perceived exertion in dance training.

  5. Changes in bacterial community after application of three different herbicides.

    PubMed

    Moretto, Jéssica Aparecida Silva; Altarugio, Lucas Miguel; Andrade, Pedro Avelino; Fachin, Ana Lúcia; Andreote, Fernando Dini; Stehling, Eliana Guedes

    2017-07-06

    The native soil microbiota is very important to maintain the quality of that environment, but with the intensive use of agrochemicals, changes in microbial biomass and formation of large quantities of toxic waste were observed in soil, groundwater and surface water. Thereby, the goal of this study was to evaluate if the selective pressure exerted by the presence of the herbicides atrazine, diuron and 2,4-D changes the bacterial community structure of an agricultural soil, using denaturing gradient gel electrophoresis technique. According to PERMANOVA analysis, a greater effect of the herbicide persistence time in the soil, the effect of the herbicide class and the effect of interaction between these two factors (persistence time and herbicide class) were observed. In conclusion, the results showed that the selective pressure exerted by the presence of these herbicides altered the composition of the local microbiota, being atrazine and diuron that most significantly affected the bacterial community in soil, and the herbicide 2,4-D was the one that less altered the microbial community and that bacterial community was reestablished first. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Curcumin suppresses AGEs induced apoptosis in tubular epithelial cells via protective autophagy

    PubMed Central

    Wei, Ying; Gao, Jiaqi; Qin, Lingling; Xu, Yunling; Shi, Haoxia; Qu, Lingxia; Liu, Yongqiao; Xu, Tunhai; Liu, Tonghua

    2017-01-01

    Renal tubular cell apoptosis and tubular dysfunction is an important process underlying diabetic nephropathy (DN). Understanding the mechanisms underlying renal tubular epithelial cell survival is important for the prevention of kidney damage associated with glucotoxicity. Curcumin has been demonstrated to possess potent anti-apoptotic properties. However, the roles of curcumin in renal epithelial cells are yet to be defined. The present study investigated advanced glycation or glycoxidation end-product (AGE)-induced toxicity in renal tubular epithelial cells via several complementary assays, including cell viability, cell apoptosis and cell autophagy in the NRK-52E rat kidney tubular epithelial cell line. The extent of apoptosis was significantly increased in the NRK-52E cells following treatment with AGEs. The results also indicated that curcumin reversed this effect by promoting autophagy through the phosphoinositide 3-kinase/AKT serine/threonine kinase signaling pathway. These conclusions suggested that curcumin exerts a renoprotective effect in the presence of AGEs, at least in part by activating autophagy in NRK-52E cells. Collectively, these findings indicate that curcumin not only exerts renoprotective effects, however may also act as a novel therapeutic strategy for the treatment of diabetic nephropathy. PMID:29285156

  7. ToxPi Prioritization and Profiling of 1060 ToxCast Chemicals Across Multiple Sectors of Toxicological Concern

    EPA Science Inventory

    The Toxicological Prioritization Index (ToxPi™) framework was developed as a decision-support tool to aid in the prioritization of chemicals for integrated toxicity testing. ToxPi consolidates information from multiple domains - including ToxCast™ in vitro bioactivity profiles (a...

  8. Bivalent compound 17MN exerts neuroprotection through interaction at multiple sites in a cellular model of Alzheimer’s disease

    PubMed Central

    Liu, Kai; Chojnacki, Jeremy E.; Wade, Emily E.; Saathoff, John M.; Lesnefsky, Edward J.; Chen, Qun; Zhang, Shijun

    2016-01-01

    Multiple pathogenic factors have been suggested in playing a role in the development of Alzheimer’s disease (AD). The multifactorial nature of AD also suggests the potential use of compounds with polypharmacology as effective disease-modifying agents. Recently, we have developed a bivalent strategy to include cell membrane anchorage into the molecular design. Our results demonstrated that the bivalent compounds exhibited multifunctional properties and potent neuroprotection in a cellular AD model. Herein, we report the mechanistic exploration of one of the representative bivalent compounds, 17MN, in MC65 cells. Our results established that MC65 cells die through a necroptotic mechanism upon the removal of tetracycline (TC). Furthermore, we have shown that mitochondrial membrane potential (MMP) and cytosolic Ca2+ levels are increased upon removal of TC. Our bivalent compound 17MN can reverse such changes and protect MC65 cells from TC removal induced cytotoxicity. The results also suggest that 17MN may function between the Aβ species and RIPK1 in producing its neuroprotection. Colocalization studies employing a fluorescent analog of 17MN and confocal microscopy demonstrated the interactions of 17MN with both mitochondria and endoplasmic reticulum (ER), thus suggesting that 17MN exerts its neuroprotection via a multiple-site mechanism in MC65 cells. Collectively, these results strongly support our original design rationale of bivalent compounds and encourage further optimization of this bivalent strategy to develop more potent analogs as novel disease-modifying agents for AD. PMID:26401780

  9. Genetic risk and a primary role for cell-mediated immune mechanisms in multiple sclerosis

    PubMed Central

    Sawcer, Stephen; Hellenthal, Garrett; Pirinen, Matti; Spencer, Chris C.A.; Patsopoulos, Nikolaos A.; Moutsianas, Loukas; Dilthey, Alexander; Su, Zhan; Freeman, Colin; Hunt, Sarah E.; Edkins, Sarah; Gray, Emma; Booth, David R.; Potter, Simon C.; Goris, An; Band, Gavin; Oturai, Annette Bang; Strange, Amy; Saarela, Janna; Bellenguez, Céline; Fontaine, Bertrand; Gillman, Matthew; Hemmer, Bernhard; Gwilliam, Rhian; Zipp, Frauke; Jayakumar, Alagurevathi; Martin, Roland; Leslie, Stephen; Hawkins, Stanley; Giannoulatou, Eleni; D’alfonso, Sandra; Blackburn, Hannah; Boneschi, Filippo Martinelli; Liddle, Jennifer; Harbo, Hanne F.; Perez, Marc L.; Spurkland, Anne; Waller, Matthew J; Mycko, Marcin P.; Ricketts, Michelle; Comabella, Manuel; Hammond, Naomi; Kockum, Ingrid; McCann, Owen T.; Ban, Maria; Whittaker, Pamela; Kemppinen, Anu; Weston, Paul; Hawkins, Clive; Widaa, Sara; Zajicek, John; Dronov, Serge; Robertson, Neil; Bumpstead, Suzannah J.; Barcellos, Lisa F.; Ravindrarajah, Rathi; Abraham, Roby; Alfredsson, Lars; Ardlie, Kristin; Aubin, Cristin; Baker, Amie; Baker, Katharine; Baranzini, Sergio E.; Bergamaschi, Laura; Bergamaschi, Roberto; Bernstein, Allan; Berthele, Achim; Boggild, Mike; Bradfield, Jonathan P.; Brassat, David; Broadley, Simon A.; Buck, Dorothea; Butzkueven, Helmut; Capra, Ruggero; Carroll, William M.; Cavalla, Paola; Celius, Elisabeth G.; Cepok, Sabine; Chiavacci, Rosetta; Clerget-Darpoux, Françoise; Clysters, Katleen; Comi, Giancarlo; Cossburn, Mark; Cournu-Rebeix, Isabelle; Cox, Mathew B.; Cozen, Wendy; Cree, Bruce A.C.; Cross, Anne H.; Cusi, Daniele; Daly, Mark J.; Davis, Emma; de Bakker, Paul I.W.; Debouverie, Marc; D’hooghe, Marie Beatrice; Dixon, Katherine; Dobosi, Rita; Dubois, Bénédicte; Ellinghaus, David; Elovaara, Irina; Esposito, Federica; Fontenille, Claire; Foote, Simon; Franke, Andre; Galimberti, Daniela; Ghezzi, Angelo; Glessner, Joseph; Gomez, Refujia; Gout, Olivier; Graham, Colin; Grant, Struan F.A.; Guerini, Franca Rosa; Hakonarson, Hakon; Hall, Per; Hamsten, Anders; Hartung, Hans-Peter; Heard, Rob N.; Heath, Simon; Hobart, Jeremy; Hoshi, Muna; Infante-Duarte, Carmen; Ingram, Gillian; Ingram, Wendy; Islam, Talat; Jagodic, Maja; Kabesch, Michael; Kermode, Allan G.; Kilpatrick, Trevor J.; Kim, Cecilia; Klopp, Norman; Koivisto, Keijo; Larsson, Malin; Lathrop, Mark; Lechner-Scott, Jeannette S.; Leone, Maurizio A.; Leppä, Virpi; Liljedahl, Ulrika; Bomfim, Izaura Lima; Lincoln, Robin R.; Link, Jenny; Liu, Jianjun; Lorentzen, Åslaug R.; Lupoli, Sara; Macciardi, Fabio; Mack, Thomas; Marriott, Mark; Martinelli, Vittorio; Mason, Deborah; McCauley, Jacob L.; Mentch, Frank; Mero, Inger-Lise; Mihalova, Tania; Montalban, Xavier; Mottershead, John; Myhr, Kjell-Morten; Naldi, Paola; Ollier, William; Page, Alison; Palotie, Aarno; Pelletier, Jean; Piccio, Laura; Pickersgill, Trevor; Piehl, Fredrik; Pobywajlo, Susan; Quach, Hong L.; Ramsay, Patricia P.; Reunanen, Mauri; Reynolds, Richard; Rioux, John D.; Rodegher, Mariaemma; Roesner, Sabine; Rubio, Justin P.; Rückert, Ina-Maria; Salvetti, Marco; Salvi, Erika; Santaniello, Adam; Schaefer, Catherine A.; Schreiber, Stefan; Schulze, Christian; Scott, Rodney J.; Sellebjerg, Finn; Selmaj, Krzysztof W.; Sexton, David; Shen, Ling; Simms-Acuna, Brigid; Skidmore, Sheila; Sleiman, Patrick M.A.; Smestad, Cathrine; Sørensen, Per Soelberg; Søndergaard, Helle Bach; Stankovich, Jim; Strange, Richard C.; Sulonen, Anna-Maija; Sundqvist, Emilie; Syvänen, Ann-Christine; Taddeo, Francesca; Taylor, Bruce; Blackwell, Jenefer M.; Tienari, Pentti; Bramon, Elvira; Tourbah, Ayman; Brown, Matthew A.; Tronczynska, Ewa; Casas, Juan P.; Tubridy, Niall; Corvin, Aiden; Vickery, Jane; Jankowski, Janusz; Villoslada, Pablo; Markus, Hugh S.; Wang, Kai; Mathew, Christopher G.; Wason, James; Palmer, Colin N.A.; Wichmann, H-Erich; Plomin, Robert; Willoughby, Ernest; Rautanen, Anna; Winkelmann, Juliane; Wittig, Michael; Trembath, Richard C.; Yaouanq, Jacqueline; Viswanathan, Ananth C.; Zhang, Haitao; Wood, Nicholas W.; Zuvich, Rebecca; Deloukas, Panos; Langford, Cordelia; Duncanson, Audrey; Oksenberg, Jorge R.; Pericak-Vance, Margaret A.; Haines, Jonathan L.; Olsson, Tomas; Hillert, Jan; Ivinson, Adrian J.; De Jager, Philip L.; Peltonen, Leena; Stewart, Graeme J.; Hafler, David A.; Hauser, Stephen L.; McVean, Gil; Donnelly, Peter; Compston, Alastair

    2011-01-01

    Multiple sclerosis (OMIM 126200) is a common disease of the central nervous system in which the interplay between inflammatory and neurodegenerative processes typically results in intermittent neurological disturbance followed by progressive accumulation of disability.1 Epidemiological studies have shown that genetic factors are primarily responsible for the substantially increased frequency of the disease seen in the relatives of affected individuals;2,3 and systematic attempts to identify linkage in multiplex families have confirmed that variation within the Major Histocompatibility Complex (MHC) exerts the greatest individual effect on risk.4 Modestly powered Genome-Wide Association Studies (GWAS)5-10 have enabled more than 20 additional risk loci to be identified and have shown that multiple variants exerting modest individual effects play a key role in disease susceptibility.11 Most of the genetic architecture underlying susceptibility to the disease remains to be defined and is anticipated to require the analysis of sample sizes that are beyond the numbers currently available to individual research groups. In a collaborative GWAS involving 9772 cases of European descent collected by 23 research groups working in 15 different countries, we have replicated almost all of the previously suggested associations and identified at least a further 29 novel susceptibility loci. Within the MHC we have refined the identity of the DRB1 risk alleles and confirmed that variation in the HLA-A gene underlies the independent protective effect attributable to the Class I region. Immunologically relevant genes are significantly over-represented amongst those mapping close to the identified loci and particularly implicate T helper cell differentiation in the pathogenesis of multiple sclerosis. PMID:21833088

  10. Human alcohol-related neuropathology

    PubMed Central

    Kril, Jillian J.

    2015-01-01

    Alcohol-related diseases of the nervous system are caused by excessive exposures to alcohol, with or without co-existing nutritional or vitamin deficiencies. Toxic and metabolic effects of alcohol (ethanol) vary with brain region, age/developmental stage, dose, and duration of exposures. In the mature brain, heavy chronic or binge alcohol exposures can cause severe debilitating diseases of the central and peripheral nervous systems, and skeletal muscle. Most commonly, long-standing heavy alcohol abuse leads to disproportionate loss of cerebral white matter and impairments in executive function. The cerebellum (especially the vermis), cortical-limbic circuits, skeletal muscle, and peripheral nerves are also important targets of chronic alcohol-related metabolic injury and degeneration. Although all cell types within the nervous system are vulnerable to the toxic, metabolic, and degenerative effects of alcohol, astrocytes, oligodendrocytes, and synaptic terminals are major targets, accounting for the white matter atrophy, neural inflammation and toxicity, and impairments in synaptogenesis. Besides chronic degenerative neuropathology, alcoholics are predisposed to develop severe potentially life-threatening acute or subacute symmetrical hemorrhagic injury in the diencephalon and brainstem due to thiamine deficiency, which exerts toxic/metabolic effects on glia, myelin, and the microvasculature. Alcohol also has devastating neurotoxic and teratogenic effects on the developing brain in association with fetal alcohol spectrum disorder/fetal alcohol syndrome. Alcohol impairs function of neurons and glia, disrupting a broad array of functions including neuronal survival, cell migration, and glial cell (astrocytes and oligodendrocytes) differentiation. Further progress is needed to better understand the pathophysiology of this exposure-related constellation of nervous system diseases and better correlate the underlying pathology with in vivo imaging and biochemical lesions. PMID:24370929

  11. Biotransformation enzymes in the rodent nasal mucosa: the value of a histochemical approach.

    PubMed Central

    Bogdanffy, M S

    1990-01-01

    An increasing number of chemicals have been identified as being toxic to the nasal mucosa of rats. While many chemicals exert their effects only after inhalation exposure, others are toxic following systemic administration, suggesting that factors other than direct deposition on the nasal mucosa may be important in mechanisms of nasal toxicity. The mucosal lining of the nasal cavity consists of a heterogeneous population of ciliated and nonciliated cells, secretory cells, sensory cells, and glandular and other cell types. For chemicals that are metabolized in the nasal mucosa, the balance between metabolic activation and detoxication within a cell type may be a key factor in determining whether that cell type will be a target for toxicity. Recent research in the area of xenobiotic metabolism in nasal mucosa has demonstrated the presence of many enzymes previously described in other tissues. In particular, carboxylesterase, aldehyde dehydrogenase, cytochromes P-450, epoxide hydrolase, and glutathione S-transferases have been localized by histochemical techniques. The distribution of these enzymes appears to be cell-type-specific and the presence of the enzyme may predispose particular cell types to enhanced susceptibility or resistance to chemical-induced injury. This paper reviews the distribution of these enzymes within the nasal mucosa in the context of their contribution to xenobiotic metabolism. The localization of the enzymes by histochemical techniques has provided important information on the potential mechanism of action of esters, aldehydes, and cytochrome P-450 substrates known to injure the nasal mucosa. Images PLATE 1. PLATE 2. PLATE 3. PMID:2200661

  12. Dechorionation as a tool to improve the fish embryo toxicity test (FET) with the zebrafish (Danio rerio).

    PubMed

    Henn, Kirsten; Braunbeck, Thomas

    2011-01-01

    Prior to hatching, the zebrafish embryo is surrounded by an acellular envelope, the chorion. Despite repeated speculations, it could not be clarified unequivocally whether the chorion represents an effective barrier and, thus, protects the embryo from exposure to distinct chemicals. Potentially, there is a risk of generating false negative results in developmental toxicity studies due to limited permeability of the chorion for some compounds. The simplest way to exclude this is to remove the chorion and expose the "naked" embryo. In the context of ecotoxicity testing, standardized protocols do not exist for fish embryo dechorionation, and survival rates of dechorionated embryos have usually not been subjected to statistical analysis. Since reproducibly high survival rates are of fundamental importance for chemical toxicity assessment, the present study was designed to develop and optimize a dechorionation procedure. With appropriate modifications of the fish embryo test protocol, embryos can be dechorionated at 24h post-fertilization (hpf) with survival rates of ≥90%. However, for fish embryo tests with dechorionated embryos, the standard positive control test substance, 3,4-dichloroaniline, should be replaced by another compound, e.g., acetone, since 3,4-dichloroaniline exerts its effects during the first 24h of development. Dechorionation of younger stages (<24 hpf) is generally possible, however with lower survival rates. The effect of dechorionation was demonstrated with the cationic polymer Luviquat HM 552, which is blocked by the chorion non-dechorionated embryos due to its molecular weight of ~400,000 Dalton, but becomes strongly toxic after dechorionation. Copyright © 2010 Elsevier Inc. All rights reserved.

  13. Analysis of sublethal arsenic toxicity to Ceratophyllum demersum: subcellular distribution of arsenic and inhibition of chlorophyll biosynthesis

    PubMed Central

    Mishra, Seema; Alfeld, Matthias; Sobotka, Roman; Andresen, Elisa; Falkenberg, Gerald; Küpper, Hendrik

    2016-01-01

    Arsenic (As) pollution is a serious concern worldwide. Recent studies under environmentally relevant conditions revealed that, in the aquatic plant Ceratophyllum demersum, pigments are the first observable target of toxicity, prior to any effect on photosynthetic parameters or to oxidative stress. Lethal toxicity was initiated by a change of As species and their distribution pattern in various tissues. Here, the localization of As was investigated at the subcellular level through X-ray fluorescence using a submicron beam and a Maia detector. Further, it was possible to obtain useful tissue structural information from the ratio of the tomogram of photon flux behind the sample to the tomogram of Compton scattering. The micro-X-ray fluorescence tomograms showed that As predominantly accumulated in the nucleus of the epidermal cells in young mature leaves exposed to sublethal 1 µM As. This suggests that As may exert toxic effects in the nucleus, for example, by interfering with nucleic acid synthesis by replacing phosphorous with As. At higher cellular concentrations, As was mainly stored in the vacuole, particularly in mature leaves. An analysis of precursors of chlorophyll and degradation metabolites revealed that the observed decrease in chlorophyll concentration was associated with hindered biosynthesis, and was not due to degradation. Coproporphyrinogen III could not be detected after exposure to only 0.5 µM As. Levels of subsequent precursors, for example, protoporphyrin IX, Mg-protoporphyrin, Mg-protoporphyrin methyl ester, and divinyl protochlorophyllide, were significantly decreased at this concentration as well, indicating that the pathway was blocked upstream of tetrapyrrole synthesis. PMID:27340233

  14. Differential toxicity of TDP-43 isoforms depends on their sub-mitochondrial localization in neuronal cells.

    PubMed

    Salvatori, Illari; Ferri, Alberto; Scaricamazza, Silvia; Giovannelli, Ilaria; Serrano, Alessia; Rossi, Simona; D'Ambrosi, Nadia; Cozzolino, Mauro; Di Giulio, Andrea; Moreno, Sandra; Valle, Cristiana; Carrì, Maria Teresa

    2018-05-20

    TAR DNA binding protein 43 (TDP-43) is an RNA binding protein and a major component of protein aggregates found in Amyotrophic Lateral Sclerosis and several other neurodegenerative diseases. TDP-43 exists as a full length protein and as two shorter forms of 25 and 35 kDa. Full length mutant TDP-43s found in ALS patients re-localize from the nucleus to the cytoplasm and in part to mitochondria, where they exert a toxic role associated with neurodegeneration. However, induction of mitochondrial damage by TDP-43 fragments is yet to be clarified. In this work, we show that the mitochondrial 35 kDa truncated form of TDP-43 is restricted to the intermembrane space while the full length forms also localise in the mitochondrial matrix in cultured neuronal NSC-34 cells. Interestingly, the full length forms clearly affect mitochondrial metabolism and morphology, possibly via their ability to inhibit the expression of Complex I subunits encoded by the mitochondrial-transcribed mRNAs, while the 35 kDa form does not. In the light of the known differential contribution of the full length and short isoforms to generate toxic aggregates, we propose that the presence of full length TDP-43s in the matrix is a primary cause of mitochondrial damage. This in turn may cause oxidative stress inducing toxic oligomers formation, in which short TDP-43 forms play a major role. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Liver Necrosis and Lipid Peroxidation in the Rat as the Result of Paraquat and Diquat Administration

    PubMed Central

    Burk, Raymond F.; Lawrence, Richard A.; Lane, James M.

    1980-01-01

    Paraquat and diquat facilitate formation of superoxide anion in biological systems, and lipid peroxidation has been postulated to be their mechanism of toxicity. Paraquat has been shown to be more toxic to selenium-deficient mice than to controls, presumably as the result of decreased activity of the selenoenzyme glutathione peroxidase. The present study was designed to measure lipid peroxidation and to assess toxicity in control and selenium-deficient rats given paraquat and diquat. Lipid peroxidation was measured by determining ethane production rates of intact animals; toxicity was assessed by survival and by histological and serum enzyme evidence of liver and kidney necrosis. Paraquat and diquat were both much more toxic to selenium-deficient rats than to control rats. Diquat (19.5 μmol/kg) caused rapid and massive liver and kidney necrosis and very high ethane production rates in selenium-deficient rats. The effect of paraquat (78 μmol/kg) was similar to that of diquat but was not as severe. Acutely lethal doses of paraquat (390 μmol/kg) and diquat (230 μmol/kg) in control rats caused very little ethane production and no evidence of liver necrosis. These findings suggest that paraquat and diquat exert their acute toxicity largely through lipid peroxidation in selenium-deficient rats. Selenium deficiency had no effect on superoxide dismutase activity in erythrocytes or in 105,000 g supernate of liver or kidney. Glutathione peroxidase, which represents the only well-characterized biochemical function of selenium in animals, was dissociated from the protective effect of selenium against diquat-induced lipid peroxidation and toxicity by a time-course study in which selenium-deficient rats were injected with 50 μg of selenium and later given diquat (19.5 μmol/kg). Within 10 h, the selenium injection provided significant protection against diquat-induced lipid peroxidation and mortality even though this treatment resulted in no rise in glutathione peroxidase activity of liver, kidney, lung, or plasma at 10 h. This suggests that a selenium-dependent factor in addition to glutathione peroxidase exists that protects against lipid peroxidation. Images PMID:7364936

  16. Tissue distribution and acute toxicity of silver after single intravenous administration in mice: nano-specific and size-dependent effects.

    PubMed

    Recordati, Camilla; De Maglie, Marcella; Bianchessi, Silvia; Argentiere, Simona; Cella, Claudia; Mattiello, Silvana; Cubadda, Francesco; Aureli, Federica; D'Amato, Marilena; Raggi, Andrea; Lenardi, Cristina; Milani, Paolo; Scanziani, Eugenio

    2016-02-29

    Silver nanoparticles (AgNPs) are an important class of nanomaterials used as antimicrobial agents for a wide range of medical and industrial applications. However toxicity of AgNPs and impact of their physicochemical characteristics in in vivo models still need to be comprehensively characterized. The aim of this study was to investigate the effect of size and coating on tissue distribution and toxicity of AgNPs after intravenous administration in mice, and compare the results with those obtained after silver acetate administration. Male CD-1(ICR) mice were intravenously injected with AgNPs of different sizes (10 nm, 40 nm, 100 nm), citrate-or polyvinylpyrrolidone-coated, at a single dose of 10 mg/kg bw. An equivalent dose of silver ions was administered as silver acetate. Mice were euthanized 24 h after the treatment, and silver quantification by ICP-MS and histopathology were performed on spleen, liver, lungs, kidneys, brain, and blood. For all particle sizes, regardless of their coating, the highest silver concentrations were found in the spleen and liver, followed by lung, kidney, and brain. Silver concentrations were significantly higher in the spleen, lung, kidney, brain, and blood of mice treated with 10 nm AgNPs than those treated with larger particles. Relevant toxic effects (midzonal hepatocellular necrosis, gall bladder hemorrhage) were found in mice treated with 10 nm AgNPs, while in mice treated with 40 nm and 100 nm AgNPs lesions were milder or negligible, respectively. In mice treated with silver acetate, silver concentrations were significantly lower in the spleen and lung, and higher in the kidney than in mice treated with 10 nm AgNPs, and a different target organ of toxicity was identified (kidney). Administration of the smallest (10 nm) nanoparticles resulted in enhanced silver tissue distribution and overt hepatobiliary toxicity compared to larger ones (40 and 100 nm), while coating had no relevant impact. Distinct patterns of tissue distribution and toxicity were observed after silver acetate administration. It is concluded that if AgNPs become systemically available, they behave differently from ionic silver, exerting distinct and size-dependent effects, strictly related to the nanoparticulate form.

  17. Production of the First Effective Hyperimmune Equine Serum Antivenom against Africanized Bees

    PubMed Central

    Santos, Keity Souza; Stephano, Marco Antonio; Marcelino, José Roberto; Ferreira, Virginia Maria Resende; Rocha, Thalita; Caricati, Celso; Higashi, Hisako Gondo; Moro, Ana Maria; Kalil, Jorge Elias; Malaspina, Osmar; Castro, Fabio Fernandes Morato; Palma, Mário Sérgio

    2013-01-01

    Victims of massive bee attacks become extremely ill, presenting symptoms ranging from dizziness and headache to acute renal failure and multiple organ failure that can lead to death. Previous attempts to develop specific antivenom to treat these victims have been unsuccessful. We herein report a F(ab)´2-based antivenom raised in horse as a potential new treatment for victims of multiple bee stings. The final product contains high specific IgG titers and is effective in neutralizing toxic effects, such as hemolysis, cytotoxicity and myotoxicity. The assessment of neutralization was revised and hemolysis, the primary toxic effect of these stings, was fully neutralized in vivo for the first time. PMID:24236166

  18. Thalidomide, clarithromycin, lenalidomide and dexamethasone therapy in newly diagnosed, symptomatic multiple myeloma.

    PubMed

    Mark, Tomer M; Bowman, Isaac A; Rossi, Adriana C; Shah, Manan; Rodriguez, Melissa; Quinn, Ryann; Pearse, Roger N; Zafar, Faiza; Pekle, Karen; Jayabalan, David; Ely, Scott; Coleman, Morton; Chen-Kiang, Selina; Niesvizky, Ruben

    2014-12-01

    We studied T-BiRD (thalidomide [Thalomid(®)], clarithromycin [Biaxin(®)], lenalidomide [Revlimid(®)] and dexamethasone) in symptomatic, newly diagnosed multiple myeloma. In 28-day cycles, patients received dexamethasone 40 mg/day on days 1, 8, 15, 22, clarithromycin 500 mg twice daily on days 1-28; lenalidomide 25 mg/day on days 1-21; and thalidomide 100 mg/day (50 mg/day on days 1-7 of cycle 1 only) on days 1-28. Twenty-six patients received a median of 6 cycles (range 0-41). Overall response rate (ORR) was 80% for the group and 100% in 11 patients who underwent autologous stem cell transplantation as part of first-line therapy. The 4-year overall survival rate was 74.9%, and the median progression-free survival was 35.6 months. Eight patients discontinued due to regimen toxicity. Grade 3 non hematologic toxicity affected 12 patients (46.2%). T-BiRD is a highly active regimen with potential toxicity limitations. ClinicalTrials.gov identifier: NCT00538733.

  19. Obesity-related differences in neural correlates of force control.

    PubMed

    Mehta, Ranjana K; Shortz, Ashley E

    2014-01-01

    Greater body segment mass due to obesity has shown to impair gross and fine motor functions and reduce balance control. While recent studies suggest that obesity may be linked with altered brain functions involved in fine motor tasks, this association is not well investigated. The purpose of this study was to examine the neural correlates of motor performance in non-obese and obese adults during force control of two upper extremity muscles. Nine non-obese and eight obese young adults performed intermittent handgrip and elbow flexion exertions at 30% of their respective muscle strengths for 4 min. Functional near infrared spectroscopy was employed to measure neural activity in the prefrontal cortex bilaterally, joint steadiness was computed using force fluctuations, and ratings of perceived exertions (RPEs) were obtained to assess perceived effort. Obesity was associated with higher force fluctuations and lower prefrontal cortex activation during handgrip exertions, while RPE scores remained similar across both groups. No obesity-related differences in neural activity, force fluctuation, or RPE scores were observed during elbow flexion exertions. The study is one of the first to examine obesity-related differences on prefrontal cortex activation during force control of the upper extremity musculature. The study findings indicate that the neural correlates of motor activity in the obese may be muscle-specific. Future work is warranted to extend the investigation to monitoring multiple motor-function related cortical regions and examining obesity differences with different task parameters (e.g., longer duration, increased precision demands, larger muscles, etc.).

  20. Copper Ion from Cu2O Crystal Induces AMPK-Mediated Autophagy via Superoxide in Endothelial Cells

    PubMed Central

    Seo, Youngsik; Cho, Young-Sik; Huh, Young-Duk; Park, Heonyong

    2016-01-01

    Copper is an essential element required for a variety of functions exerted by cuproproteins. An alteration of the copper level is associated with multiple pathological conditions including chronic ischemia, atherosclerosis and cancers. Therefore, copper homeostasis, maintained by a combination of two copper ions (Cu+ and Cu2+), is critical for health. However, less is known about which of the two copper ions is more toxic or functional in endothelial cells. Cubic-shaped Cu2O and CuO crystals were prepared to test the role of the two different ions, Cu+ and Cu2+, respectively. The Cu2O crystal was found to have an effect on cell death in endothelial cells whereas CuO had no effect. The Cu2O crystals appeared to induce p62 degradation, LC3 processing and an elevation of LC3 puncta, important processes for autophagy, but had no effect on apoptosis and necrosis. Cu2O crystals promote endothelial cell death via autophagy, elevate the level of reactive oxygen species such as superoxide and nitric oxide, and subsequently activate AMP-activated protein kinase (AMPK) through superoxide rather than nitric oxide. Consistently, the AMPK inhibitor Compound C was found to inhibit Cu2O-induced AMPK activation, p62 degradation, and LC3 processing. This study provides insight on the pathophysiologic function of Cu+ ions in the vascular system, where Cu+ induces autophagy while Cu2+ has no detected effect. PMID:26743904

  1. Biodistribution of a High Dose of Diamond, Graphite, and Graphene Oxide Nanoparticles After Multiple Intraperitoneal Injections in Rats.

    PubMed

    Kurantowicz, Natalia; Strojny, Barbara; Sawosz, Ewa; Jaworski, Sławomir; Kutwin, Marta; Grodzik, Marta; Wierzbicki, Mateusz; Lipińska, Ludwika; Mitura, Katarzyna; Chwalibog, André

    2015-12-01

    Carbon nanoparticles have recently drawn intense attention in biomedical applications. Hence, there is a need for further in vivo investigations of their biocompatibility and biodistribution via various exposure routes. We hypothesized that intraperitoneally injected diamond, graphite, and graphene oxide nanoparticles may have different biodistribution and exert different effects on the intact organism. Forty Wistar rats were divided into four groups: the control and treated with nanoparticles by intraperitoneal injection (4 mg of nanoparticles/kg body weight) eight times during the 4-week period. Blood was collected for evaluation of blood morphology and biochemistry parameters. Photographs of the general appearance of each rat's interior were taken immediately after sacrifice. The organs were excised and their macroscopic structure was visualized using a stereomicroscope. The nanoparticles were retained in the body, mostly as agglomerates. The largest agglomerates (up to 10 mm in diameter) were seen in the proximity of the injection place in the stomach serous membrane, between the connective tissues of the abdominal skin, muscles, and peritoneum. Numerous smaller, spherical-shaped aggregates (diameter around 2 mm) were lodged among the mesentery. Moreover, in the connective and lipid tissue in the proximity of the liver and spleen serosa, small aggregates of graphite and graphene oxide nanoparticles were observed. However, all tested nanoparticles did not affect health and growth of rats. The nanoparticles had no toxic effects on blood parameters and growth of rats, suggesting their potential applicability as remedies or in drug delivery systems.

  2. Mutual independence of alkaline- and calcium-mediated signalling in Aspergillus fumigatus refutes the existence of a conserved druggable signalling nexus.

    PubMed

    Loss, Omar; Bertuzzi, Margherita; Yan, Yu; Fedorova, Natalie; McCann, Bethany L; Armstrong-James, Darius; Espeso, Eduardo A; Read, Nick D; Nierman, William C; Bignell, Elaine M

    2017-12-01

    Functional coupling of calcium- and alkaline responsive signalling occurs in multiple fungi to afford efficient cation homeostasis. Host microenvironments exert alkaline stress and potentially toxic concentrations of Ca 2+ , such that highly conserved regulators of both calcium- (Crz) and pH- (PacC/Rim101) responsive signalling are crucial for fungal pathogenicity. Drugs targeting calcineurin are potent antifungal agents but also perturb human immunity thereby negating their use as anti-infectives, abrogation of alkaline signalling has, therefore, been postulated as an adjunctive antifungal strategy. We examined the interdependency of pH- and calcium-mediated signalling in Aspergillus fumigatus and found that calcium chelation severely impedes hyphal growth indicating a critical requirement for this ion independently of ambient pH. Transcriptomic responses to alkaline pH or calcium excess exhibited minimal similarity. Mutants lacking calcineurin, or its client CrzA, displayed normal alkaline tolerance and nuclear translocation of CrzA was unaffected by ambient pH. Expression of a highly conserved, alkaline-regulated, sodium ATPase was tolerant of genetic or chemical perturbations of calcium-mediated signalling, but abolished in null mutants of the pH-responsive transcription factor PacC, and PacC proteolytic processing occurred normally during calcium excess. Taken together our data demonstrate that in A. fumigatus the regulatory hierarchy governing alkaline tolerance circumvents calcineurin signalling. © 2017 The Authors. Molecular Microbiology Published by John Wiley & Sons Ltd.

  3. Microvesicles Derived from Mesenchymal Stem Cells Enhance Survival in a Lethal Model of Acute Kidney Injury

    PubMed Central

    Bruno, Stefania; Grange, Cristina; Collino, Federica; Deregibus, Maria Chiara; Cantaluppi, Vincenzo; Biancone, Luigi; Tetta, Ciro; Camussi, Giovanni

    2012-01-01

    Several studies demonstrated that treatment with mesenchymal stem cells (MSCs) reduces cisplatin mortality in mice. Microvesicles (MVs) released from MSCs were previously shown to favor renal repair in non lethal toxic and ischemic acute renal injury (AKI). In the present study we investigated the effects of MSC-derived MVs in SCID mice survival in lethal cisplatin-induced AKI. Moreover, we evaluated in vitro the effect of MVs on cisplatin-induced apoptosis of human renal tubular epithelial cells and the molecular mechanisms involved. Two different regimens of MV injection were used. The single administration of MVs ameliorated renal function and morphology, and improved survival but did not prevent chronic tubular injury and persistent increase in BUN and creatinine. Multiple injections of MVs further decreased mortality and at day 21 surviving mice showed normal histology and renal function. The mechanism of protection was mainly ascribed to an anti-apoptotic effect of MVs. In vitro studies demonstrated that MVs up-regulated in cisplatin-treated human tubular epithelial cells anti-apoptotic genes, such as Bcl-xL, Bcl2 and BIRC8 and down-regulated genes that have a central role in the execution-phase of cell apoptosis such as Casp1, Casp8 and LTA. In conclusion, MVs released from MSCs were found to exert a pro-survival effect on renal cells in vitro and in vivo, suggesting that MVs may contribute to renal protection conferred by MSCs. PMID:22431999

  4. Anticancer Chemodiversity of Ranunculaceae Medicinal Plants: Molecular Mechanisms and Functions.

    PubMed

    Hao, Da-Cheng; He, Chun-Nian; Shen, Jie; Xiao, Pei-Gen

    2017-02-01

    The buttercup family, Ranunculaceae, comprising more than 2,200 species in at least 62 genera, mostly herbs, has long been used in folk medicine and worldwide ethnomedicine since the beginning of human civilization. Various medicinal phytometabolites have been found in Ranunculaceae plants, many of which, such as alkaloids, terpenoids, saponins, and polysaccharides, have shown anti-cancer activities in vitro and in vivo. Most concerns have been raised for two epiphany molecules, the monoterpene thymoquinone and the isoquinoline alkaloid berberine. At least 17 genera have been enriched with anti-cancer phytometabolites. Some Ranunculaceae phytometabolites induce the cell cycle arrest and apoptosis of cancer cells or enhance immune activities, while others inhibit the proliferation, invasion, angiogenesis, and metastasis, or reverse the multi-drug resistance of cancer cells thereby regulating all known hallmarks of cancer. These phytometabolites could exert their anti-cancer activities via multiple signaling pathways. In addition, absorption, distribution, metabolism, and excretion/toxicity properties and structure/activity relationships of some phytometabolites have been revealed assisting in the early drug discovery and development pipelines. However, a comprehensive review of the molecular mechanisms and functions of Ranunculaceae anti-cancer phytometabolites is lacking. Here, we summarize the recent progress of the anti-cancer chemo- and pharmacological diversity of Ranunculaceae medicinal plants, focusing on the emerging molecular machineries and functions of anti-cancer phytometabolites. Gene expression profiling and relevant omics platforms (e.g. genomics, transcriptomics, proteomics, and metabolomics) could reveal differential effects of phytometabolites on the phenotypically heterogeneous cancer cells.

  5. Anticancer Chemodiversity of Ranunculaceae Medicinal Plants: Molecular Mechanisms and Functions

    PubMed Central

    Hao, Da-Cheng; He, Chun-Nian; Shen, Jie; Xiao, Pei-Gen

    2017-01-01

    The buttercup family, Ranunculaceae, comprising more than 2,200 species in at least 62 genera, mostly herbs, has long been used in folk medicine and worldwide ethnomedicine since the beginning of human civilization. Various medicinal phytometabolites have been found in Ranunculaceae plants, many of which, such as alkaloids, terpenoids, saponins, and polysaccharides, have shown anti-cancer activities in vitro and in vivo. Most concerns have been raised for two epiphany molecules, the monoterpene thymoquinone and the isoquinoline alkaloid berberine. At least 17 genera have been enriched with anti-cancer phytometabolites. Some Ranunculaceae phytometabolites induce the cell cycle arrest and apoptosis of cancer cells or enhance immune activities, while others inhibit the proliferation, invasion, angiogenesis, and metastasis, or reverse the multi-drug resistance of cancer cells thereby regulating all known hallmarks of cancer. These phytometabolites could exert their anti-cancer activities via multiple signaling pathways. In addition, absorption, distribution, metabolism, and excretion/toxicity properties and structure/activity relationships of some phytometabolites have been revealed assisting in the early drug discovery and development pipelines. However, a comprehensive review of the molecular mechanisms and functions of Ranunculaceae anti-cancer phytometabolites is lacking. Here, we summarize the recent progress of the anti-cancer chemo- and pharmacological diversity of Ranunculaceae medicinal plants, focusing on the emerging molecular machineries and functions of anti-cancer phytometabolites. Gene expression profiling and relevant omics platforms (e.g. genomics, transcriptomics, proteomics, and metabolomics) could reveal differential effects of phytometabolites on the phenotypically heterogeneous cancer cells. PMID:28503089

  6. Legacy of top-down herbivore pressure ricochets back up multiple trophic levels in forest canopies over 30 years

    Treesearch

    Tim Nuttle; Ellen H. Yerger; Scott H. Stoleson; Todd E. Ristau

    2011-01-01

    Removal of top-down control on herbivores can result in a trophic cascade where herbivore pressure on plants results in changes in plant communities. These altered plant communities are hypothesized to exert bottom-up control on subsequent herbivory via changes in plant quality or productivity. But it remains untested whether top-down perturbation causes long term...

  7. Designing Clothes and Cars: Second Grade Students Using Multiple Forms of Literacy to Try on and Perform Identity

    ERIC Educational Resources Information Center

    O'Neil, Kathleen Ellen

    2015-01-01

    Children of elementary school age are in the process of discovering and establishing their self-identity through talk, gesture, writing, and, especially, the arts. While they can sometimes find room to exert their individuality in their daily classroom assignments, it is more often in the spaces open to social interaction in school in which this…

  8. Massive quantum regions for simulations on bio-nanomaterials: synthetic ferritin nanocages.

    PubMed

    Torras, Juan; Alemán, Carlos

    2018-02-22

    QM/MM molecular dynamics simulations on the 4His-ΔC* protein cage have been performed using multiple active zones (up to 86 quantum regions). The regulation and nanocage stability exerted by the divalent transition metal ions in the monomer-to-cage conversion have been understood by comparing high level quantum trajectories obtained using Cu 2+ and Ni 2+ coordination ions.

  9. Exercise collapse associated with sickle cell trait (ECAST): case report and literature review.

    PubMed

    Quattrone, Richard D; Eichner, E Randy; Beutler, Anthony; Adams, W Bruce; O'Connor, Francis G

    2015-01-01

    Sickle cell trait (SCT) has been associated with exertional collapse (ECAST) and exercise-related sudden death in athletes and military warfighters. The mechanisms underlying ECAST remain controversial in the sports medicine community. Multiple case presentations and anecdotal reports postulate the role of extraordinary exercise intensity, but other risk factors including dehydration, heat, previous exertional rhabdomyolysis, genetic cofactors, and dietary supplements have been cited as potential contributors. Others have hypothesized some of the aforementioned factors combining in a "perfect storm" to trigger ECAST with a resultant potentially fatal "metabolic crisis." This case report provides a brief review of SCT as it pertains to exercise in warfighters and athletes, identifies known and postulated risk factors associated with ECAST, and introduces the potential mechanistic role of the "double hit" as a contributor to ECAST.

  10. Gastrointestinal Toxicities With Combined Antiangiogenic and Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pollom, Erqi L.; Deng, Lei; Pai, Reetesh K.

    2015-07-01

    Combining the latest targeted biologic agents with the most advanced radiation technologies has been an exciting development in the treatment of cancer patients. Stereotactic body radiation therapy (SBRT) is an ablative radiation approach that has become established for the treatment of a variety of malignancies, and it has been increasingly used in combination with biologic agents, including those targeting angiogenesis-specific pathways. Multiple reports have emerged describing unanticipated toxicities arising from the combination of SBRT and angiogenesis-targeting agents, particularly of late luminal gastrointestinal toxicities. In this review, we summarize the literature describing these toxicities, explore the biological mechanism of action ofmore » toxicity with the combined use of antiangiogenic therapies, and discuss areas of future research, so that this combination of treatment modalities can continue to be used in broader clinical contexts.« less

  11. Tungsten or Wolfram: Friend or Foe?

    PubMed

    Zoroddu, Maria A; Medici, Serenella; Peana, Massimiliano; Nurchi, Valeria M; Lachowicz, Joanna I; Laulicht-Glickc, Freda; Costa, Max

    2018-01-01

    Tungsten or wolfram was regarded for many years as an enemy within the tin smelting and mining industry, because it conferred impurity or dirtiness in tin mining. However, later it was considered an amazing metal for its strength and flexibility, together with its diamond like hardness and its melting point which is the highest of any metal. It was first believed to be relatively inert and an only slightly toxic metal. Since early 2000, the risk exerted by tungsten alloys, its dusts and particulates to induce cancer and several other adverse effects in animals as well as humans has been highlighted from in vitro and in vivo experiments. Thus, it becomes necessary to take a careful look at all the most recent data reported in the scientific literature, covering the years 2001-2016. In fact, the findings indicate that much more attention should be devoted to thoroughly investigate the toxic effects of tungsten and the involved mechanisms of tungsten metal or tungsten metal ions. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  12. Activation of cGAS-dependent antiviral responses by DNA intercalating agents.

    PubMed

    Pépin, Geneviève; Nejad, Charlotte; Thomas, Belinda J; Ferrand, Jonathan; McArthur, Kate; Bardin, Philip G; Williams, Bryan R G; Gantier, Michael P

    2017-01-09

    Acridine dyes, including proflavine and acriflavine, were commonly used as antiseptics before the advent of penicillins in the mid-1940s. While their mode of action on pathogens was originally attributed to their DNA intercalating activity, work in the early 1970s suggested involvement of the host immune responses, characterized by induction of interferon (IFN)-like activities through an unknown mechanism. We demonstrate here that sub-toxic concentrations of a mixture of acriflavine and proflavine instigate a cyclic-GMP-AMP (cGAMP) synthase (cGAS)-dependent type-I IFN antiviral response. This pertains to the capacity of these compounds to induce low level DNA damage and cytoplasmic DNA leakage, resulting in cGAS-dependent cGAMP-like activity. Critically, acriflavine:proflavine pre-treatment of human primary bronchial epithelial cells significantly reduced rhinovirus infection. Collectively, our findings constitute the first evidence that non-toxic DNA binding agents have the capacity to act as indirect agonists of cGAS, to exert potent antiviral effects in mammalian cells. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. First report of toxicity of Xylopiaparviflora (A. Rich.) Benth (Annonaceae) root bark's essential oil against cowpea seed bruchid, Callososbruchus maculatus Fabricius (Coleoptera: Chrysomelidae: Bruchinae).

    PubMed

    Babarinde, Samuel Adelani; Pitan, Olufemi Olutoyin Richard; Olatunde, Ganiyu Olatunji; Ajala, Michael Oluwole

    2015-01-01

    The fumigant toxicity of Xylopia parviflora (A. Rich.) Benth (Annonaceae) root bark's essential oil (EO) against cowpea seed bruchid, Callosobruchus maculatus, was investigated in the laboratory. Dose had significant (P < 0.0001) effect on mortality at 6 hours after treatment (HAT) at a concentration of 6.25 μL/mL air which exerted 81.70% mortality, while there was no mortality in all other lower doses. At 12 HAT, 75.05% and 90.00% mortality were observed at doses of 3.15 and 6.25 μL/mL air, respectively. It was significantly (P < 0.05) higher than the mortality (50.58%) observed when 0.78 μL/mL air was applied. The lethal time for 50% of assayed adults (LT50) obtained when the bruchid was exposed to X. parviflora EO at a dose of 6.25 μL/mL air (2.71 h) was significantly lower than LT50 obtained at exposure of bruchid to other lower doses of 0.78-3.15 μL/mL air.

  14. Adhesion, Vitality and Osteogenic Differentiation Capacity of Adipose Derived Stem Cells Seeded on Nitinol Nanoparticle Coatings

    PubMed Central

    Strauß, Sarah; Neumeister, Anne; Barcikowski, Stephan; Kracht, Dietmar; Kuhbier, Jörn W.; Radtke, Christine; Reimers, Kerstin; Vogt, Peter M.

    2013-01-01

    Autologous cells can be used for a bioactivation of osteoimplants to enhance osseointegration. In this regard, adipose derived stem cells (ASCs) offer interesting perspectives in implantology because they are fast and easy to isolate. However, not all materials licensed for bone implants are equally suited for cell adhesion. Surface modifications are under investigation to promote cytocompatibility and cell growth. The presented study focused on influences of a Nitinol-nanoparticle coating on ASCs. Possible toxic effects as well as influences on the osteogenic differentiation potential of ASCs were evaluated by viability assays, scanning electron microscopy, immunofluorescence and alizarin red staining. It was previously shown that Nitinol-nanoparticles exert no cell toxic effects to ASCs either in soluble form or as surface coating. Here we could demonstrate that a Nitinol-nanoparticle surface coating enhances cell adherence and growth on Nitinol-surfaces. No negative influence on the osteogenic differentiation was observed. Nitinol-nanoparticle coatings offer new possibilities in implantology research regarding bioactivation by autologous ASCs, respectively enhancement of surface attraction to cells. PMID:23308190

  15. Effects of processing adjuvants on traditional Chinese herbs.

    PubMed

    Chen, Lin-Lin; Verpoorte, Robert; Yen, Hung-Rong; Peng, Wen-Huang; Cheng, Yung-Chi; Chao, Jung; Pao, Li-Heng

    2018-04-01

    Processing of Chinese medicines is a pharmaceutical technique that transforms medicinal raw materials into decoction pieces for use in different therapies. Various adjuvants, such as vinegar, wine, honey, and brine, are used in the processing to enhance the efficacy and reduce the toxicity of crude drugs. Proper processing is essential to ensure the quality and safety of traditional Chinese medicines (TCMs). Therefore, sound knowledge of processing principles is crucial to the standardized use of these processing adjuvants and to facilitate the production and clinical use of decoction pieces. Many scientific reports have indicated the synergistic effects of processing mechanisms on the chemistry, pharmacology, and pharmacokinetics of the active ingredients in TCMs. Under certain conditions, adjuvants change the content of active or toxic components in drugs by chemical or physical transformation, increase or decrease drug dissolution, exert their own pharmacological effects, or alter drug pharmacokinetics. This review summarizes various processing methods adopted in the last two decades, and highlights current approaches to identify the effects of processing parameters on TCMs. Copyright © 2018. Published by Elsevier B.V.

  16. Anticonvulsants

    NASA Astrophysics Data System (ADS)

    Kabra, Pokar M.; Stafford, Brian E.; McDonald, Donna M.; Marton, Laurence J.

    Until recently, it was difficult to explain why an identical drug dosage may exert a toxic effect in one patient and a therapeutic, or no, response in another patient. It has now been demonstrated that the concentration of drug at the tissue receptor site is the most important parameter for adjusting drug dosage. However, the concentration of drug at the receptor site cannot be measured directly, and must therefore be correlated with the concentration of drug in body fluids in contact with these tissue receptors. The ability to correlate plasma drug concentration with tissue concentrations and with therapeutic or toxic effects has enabled those interested in optimizing drug dosages to generate much of the information needed to make useful therapeutic decisions. The exact nature of drug-receptor interactions is not firmly established. It is, however, known that the concentration of free drug correlates best with therapeutic effect. The free drug in plasma is in equilibrium with protein-bound drug and, because of this relationship, it is important to understand to what extent a particular drug is protein-bound. Various attempts to measure free drug concentration in saliva (1) and cerebrospinal fluid (2) have been reported.

  17. Developments in drug delivery of bioactive alkaloids derived from traditional Chinese medicine.

    PubMed

    Zheng, Xiao; Wu, Fei; Lin, Xiao; Shen, Lan; Feng, Yi

    2018-11-01

    The bioactive alkaloids (e.g. vincristine, hydroxycamptothecin, ligustrazine, and so on) from traditional Chinese medicine (TCM) have exerted potent efficacies (e.g. anti-tumor, anti-inflammation, immunosuppression, etc.). However, a series of undesirable physicochemical properties (like low solubility and weak stability) and baneful pharmacokinetic (PK) profiles (e.g. low bioavailability, short half time, rapid clearance, etc.) have severely restricted their applications in clinic. In addition, some side effects (like cumulative toxicities caused by high-frequency administration and their own toxicities) have recently been reported and also confined their clinical uses. Therefore, developments in drug delivery of such alkaloids are of significance in improving their drug-like properties and, thus, treatment efficiencies in clinic. Strategies, including (i) specific delivery via liposomes; (ii) sustained delivery via nanoparticles, gels, and emulsions; and (iii) transdermal delivery via ethosomes, solid lipid nanoparticles, and penetrating enhancers, have been reported to improve the pharmacokinetic and physicochemical characters of problematic TCM alkaloids, decline their adverse effects, and thus, boost their curative efficacies. In this review, the recent reports in this field were comprehensively summarized with the aim of providing an informative reference for relevant readers.

  18. Effect of tributyltin (TBT) in the metabolic activity of TBT-resistant and sensitive estuarine bacteria.

    PubMed

    Cruz, Andreia; Oliveira, Vanessa; Baptista, Inês; Almeida, Adelaide; Cunha, Angela; Suzuki, Satoru; Mendo, Sónia

    2012-01-01

    The effect of tributyltin (TBT) on growth and metabolic activity of three estuarine bacteria with different TBT resistance profiles was investigated in an organic-rich culture medium (TSB) and in phosphate buffered saline (PBS) buffer. Exposure to TBT was assessed by determining its effect on growth (OD(600 nm) measurement), bacterial productivity (leucine incorporation), viability (CFU counts), aggregation and cell size (from Live/Dead analysis), ATP and NADH concentrations. TBT exposure resulted in decrease of bacterial density, cell size, and metabolic activity. In addition, cell aggregates were observed in the TBT-treated cultures. TBT strongly affected bacterial cell metabolism and seemed to exert an effect on its equilibrium, interfering with cell activity. Also, TBT toxicity was lower when cells were grown in TSB than in PBS, suggesting that a nutrient-rich growth medium can protect cells from TBT toxicity. This study contributes to our understanding of the TBT-resistant cell behavior reflected in its physiology and metabolic activity. This information is of utmost importance for further studies of TBT bioremediation. Copyright © 2010 Wiley Periodicals, Inc.

  19. Effect of cadmium on the bioelement composition of Nostoc UAM208: Interaction with calcium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fernandez-Pinas, F.; Mateo, P.; Bonilla, I.

    1997-04-01

    Heavy metals may cause effects on the cyanobacterial cell including possible damage to the membranes and leakage from cells resulting in the loss or reduction of essential bioelements. There are many reports in the literature concerning morphological, biochemical and physiological changes caused by cadmium in cyanobacteria, but data on the influence of cadmium on the ion balance of the cell dealing with the interactive effect of cadmium and calcium are limited. Calcium has been found to exert a protective role against heavy metal toxicity in a variety of organisms, We previously reported that calcium is able to counteract the toxicmore » effect of cadmium towards growth, photosynthesis, nitrogenase activity and pigment content of the cyanobacterium Nostoc UAM208. In the present study, we analyzed the content of essential ions, as affected by cadmium treatment, to search for possible mechanisms of heavy metal damage and toxicity in Nostoc. We also studied whether calcium enrichment (1.1 mM final concentration) has any influence on the heavy metal effect on those ionic contents. 13 refs., 2 figs.« less

  20. Current knowledge in Polypodium leucotomos effect on skin protection.

    PubMed

    Palomino, Olga María

    2015-04-01

    This article provides an overview of pharmacology, toxicity, pharmacokinetics and clinical data of Polypodium leucotomos L. (PL). PL aerial part has proven to exert antioxidant, photoprotective and immunomodulatory activities; its mechanism of action is complex and includes several activities: (1) PL diminishes the production of reactive oxygen and nitrogen species (ROS, RNS); (2) PL inhibits the photoisomerization of trans-urocanic acid (t-UCA); (3) PL inhibits apoptosis induced by ultraviolet radiation; (4) PL prevents damage to genetic material and (5) PL enhances DNA repair. PL is not mutagenic and does not induce acute or chronic toxicity. Its biological effects have been proved in cell cultures, animal models, murine models and in human beings. Photoprotective activity has been assessed in healthy volunteers as well as in patients suffering from several cutaneous diseases such as vitiligo, psoriasis, idiopathic photodermatosis or melasma. PL results to be an efficient treatment especially for sensitive cutaneous phototypes and adds extra protection when ultraviolet radiation (UVR) exposure cannot be avoided, such as wide or narrow band UVB phototherapy or treatment with psoralens plus UVA exposure radiation.

  1. Methanol extract of Bauhinia purpurea leaf possesses anti-ulcer activity.

    PubMed

    Zakaria, Z A; Abdul Hisam, E E; Norhafizah, M; Rofiee, M S; Othman, F; Hasiah, A H; Vasudevan, M

    2012-01-01

    The aim of the present study was to determine the anti-ulcer activity of a methanol extract of Bauhinia purpurea leaf (MEBP). MEBP was administered at doses of 100, 500 and 1,000 mg/kg and its effects on acute toxicity, absolute ethanol- and indomethacin-induced gastric ulceration, and pyloric ligation tests in rats were investigated. At a dose of 5,000 mg/kg, MEBP did not cause any signs of toxicity in rats when given orally. Oral administration of MEBP exerted anti-ulcer activity (p < 0.05) in all models tested. However, a dose-dependent protection was observed only in the indomethacin-induced gastric ulceration model. Histological studies supported the observed anti-ulcer activity of MEBP. In the pyloric ligation assay, MEBP significantly increased gastric wall mucus secretion (p < 0.05), but did not affect the acidity of the gastric contents. MEBP exhibited anti-ulcer activity, which could be due to the presence of flavonoids, saponins or other polyphenols, thereby validating the traditional use of B. purpurea in the treatment of ulcers. Copyright © 2012 S. Karger AG, Basel.

  2. Building a developmental toxicity ontology.

    PubMed

    Baker, Nancy; Boobis, Alan; Burgoon, Lyle; Carney, Edward; Currie, Richard; Fritsche, Ellen; Knudsen, Thomas; Laffont, Madeleine; Piersma, Aldert H; Poole, Alan; Schneider, Steffen; Daston, George

    2018-04-03

    As more information is generated about modes of action for developmental toxicity and more data are generated using high-throughput and high-content technologies, it is becoming necessary to organize that information. This report discussed the need for a systematic representation of knowledge about developmental toxicity (i.e., an ontology) and proposes a method to build one based on knowledge of developmental biology and mode of action/ adverse outcome pathways in developmental toxicity. This report is the result of a consensus working group developing a plan to create an ontology for developmental toxicity that spans multiple levels of biological organization. This report provide a description of some of the challenges in building a developmental toxicity ontology and outlines a proposed methodology to meet those challenges. As the ontology is built on currently available web-based resources, a review of these resources is provided. Case studies on one of the most well-understood morphogens and developmental toxicants, retinoic acid, are presented as examples of how such an ontology might be developed. This report outlines an approach to construct a developmental toxicity ontology. Such an ontology will facilitate computer-based prediction of substances likely to induce human developmental toxicity. © 2018 Wiley Periodicals, Inc.

  3. Integration of biological responses from a suite of bioassays for the Venice Lagoon (Italy) through sediment toxicity index - part A: development and comparison of two methodological approaches.

    PubMed

    Losso, Chiara; Novelli, Alessandra Arizzi; De Salvador, Davide; Ghetti, Pier Francesco; Ghirardini, Annamaria Volpi

    2010-12-01

    Marine and coastal quality assessment, based on test batteries involving a wide array of endpoints, organisms and test matrices, needs for setting up toxicity indices that integrate multiple toxicological measures for decision-making processes and that classify the continuous toxicity response into discrete categories according to the European Water Framework Directive. Two toxicity indices were developed for the lagoon environment such as the Venice Lagoon. Stepwise procedure included: the construction of a database that identified test-matrix pairs (indicators); the selection of a minimum number of ecotoxicological indicators, called toxicological core metrics (CMs-tox) on the basis of specific criteria; the development of toxicity scores for each CM-tox; the integration of the CMs-tox into two indices, the Toxicity Effect Index (TEI), based on the transformation of Toxic Unit (TU) data that were integrated as logarithmic sum, and the Weighted Average Toxicity Index (WATI), starting from toxicity classes integrated as weighted mean. Results from the indices are compared; advantages and drawbacks of both approaches are discussed. Copyright © 2010. Published by Elsevier Ltd.

  4. Low pH, aluminum and phosphorus coordinately regulate malate exudation through GmALMT1 to improve soybean adaptation to acid soils

    USDA-ARS?s Scientific Manuscript database

    Low pH, aluminum (Al) toxicity and low phosphorus (P) often coexist in acid soils where crops need to cope with these multiple limiting factors. In this study we found that P addition to acid soils alleviates Al toxicity and enhanced soybean adaptation to acid soils, especially for the P-efficient g...

  5. Cardiovascular toxicity of nicotine: Implications for electronic cigarette use.

    PubMed

    Benowitz, Neal L; Burbank, Andrea D

    2016-08-01

    The cardiovascular safety of nicotine is an important question in the current debate on the benefits vs. risks of electronic cigarettes and related public health policy. Nicotine exerts pharmacologic effects that could contribute to acute cardiovascular events and accelerated atherogenesis experienced by cigarette smokers. Studies of nicotine medications and smokeless tobacco indicate that the risks of nicotine without tobacco combustion products (cigarette smoke) are low compared to cigarette smoking, but are still of concern in people with cardiovascular disease. Electronic cigarettes deliver nicotine without combustion of tobacco and appear to pose low-cardiovascular risk, at least with short-term use, in healthy users. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Mechanisms of copper homeostasis in bacteria

    PubMed Central

    Argüello, José M.; Raimunda, Daniel; Padilla-Benavides, Teresita

    2013-01-01

    Copper is an important micronutrient required as a redox co-factor in the catalytic centers of enzymes. However, free copper is a potential hazard because of its high chemical reactivity. Consequently, organisms exert a tight control on Cu+ transport (entry-exit) and traffic through different compartments, ensuring the homeostasis required for cuproprotein synthesis and prevention of toxic effects. Recent studies based on biochemical, bioinformatics, and metalloproteomics approaches, reveal a highly regulated system of transcriptional regulators, soluble chaperones, membrane transporters, and target cuproproteins distributed in the various bacterial compartments. As a result, new questions have emerged regarding the diversity and apparent redundancies of these components, their irregular presence in different organisms, functional interactions, and resulting system architectures. PMID:24205499

  7. Mercury Inhibits Soil Enzyme Activity in a Lower Concentration than the Guideline Value.

    PubMed

    Mahbub, Khandaker Rayhan; Krishnan, Kannan; Megharaj, Mallavarapu; Naidu, Ravi

    2016-01-01

    Three soil types - neutral, alkaline and acidic were experimentally contaminated with nine different concentrations of inorganic mercury (0, 5, 10, 50, 100, 150, 200, 250, 300 mg/kg) to derive effective concentrations of mercury that exert toxicity on soil quality. Bioavailability of mercury in terms of water solubility was lower in acidic soil with higher organic carbon. Dehydrogenase enzyme activity and nitrification rate were chosen as indicators to assess soil quality. Inorganic mercury significantly inhibited (p < 0.001) microbial activities in the soils. The critical mercury contents (EC10) were found to be less than the available safe limits for inorganic mercury which demonstrated inadequacy of existing guideline values.

  8. Neuroprotective Properties of Endocannabinoids N-Arachidonoyl Dopamine and N-Docosahexaenoyl Dopamine Examined in Neuronal Precursors Derived from Human Pluripotent Stem Cells.

    PubMed

    Novosadova, E V; Arsenyeva, E L; Manuilova, E S; Khaspekov, L G; Bobrov, M Yu; Bezuglov, V V; Illarioshkin, S N; Grivennikov, I A

    2017-11-01

    Neuroprotective properties of endocannabinoids N-arachidonoyl dopamine (NADA) and N-docosahexaenoyl dopamine (DHDA) were examined in neuronal precursor cells differentiated from human induced pluripotent stem cells and subjected to oxidative stress. Both compounds exerted neuroprotective activity, which was enhanced by elevating the concentration of the endocannabinoids within the 0.1-10 µM range. However, both agents at 10 µM concentration showed a marked toxic effect resulting in death of ~30% of the cells. Finally, antagonists of cannabinoid receptors as well as the receptor of the TRPV1 endovanilloid system did not hamper the neuroprotective effects of these endocannabinoids.

  9. Biotransformation of phloretin by amylosucrase yields three novel dihydrochalcone glucosides.

    PubMed

    Overwin, Heike; Wray, Victor; Hofer, Bernd

    2015-10-10

    Glycosylation is one of the most important tailoring reactions for natural products. It typically exerts profound direct or indirect effects on their biological activity. The dihydrochalcone phloretin and its known sugar derivatives, particularly phlori(d)zin, have been shown to influence various cellular processes. We found that a non-Leloir glycosyltransferase, amylosucrase from Neisseria polysaccharea, is an excellent catalyst for the stereospecific glucosylation of phloretin at the 4' position. Three novel phloretin derivatives were obtained, the first ones in which the sugar-aglycone bond possesses the configuration. A first biological characterization in a cell viability assay showed that each sugar attachment reduced the compound toxicity approximately two-fold. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Study of Inhibition, Reactivation and Aging Processes of Pesticides Using Graphene Nanosheets/Gold Nanoparticles-Based Acetylcholinesterase Biosensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lin; Long, Linjuan; Zhang, Weiying

    2012-09-10

    Organophosphate (OP) and carbamate pesticides exert their toxicity via attacking the hydroxyl moiety of serine in the 'active site' of acetylcholinesterase (AChE). In this paper we developed a stable AChE biosensor based on self-assembling AChE to graphene nanosheet (GN)-gold nanoparticles (AuNPs) nanocomposite electrode for investigation of inhibition, reactivation and aging processes of different pesticides. It is confirmed that pesticides can inhibit AChE in a short time. OPs poisoning is treatable with oximes while carbarmates exposure is insensitive to oximes. The proposed electrochemical approach thus provides a new simple tool for comparison of pesticide sensitivity and guide of therapeutic intervention.

  11. Evaluation of the toxic effect of star fruit on serum biochemical parameters in rats.

    PubMed

    Khoo, Z Y; Teh, C C; Rao, N K; Chin, J H

    2010-04-01

    The objective of the present study was to evaluate the toxic effect of Averrhoa carambola (star fruit) juice at different storage conditions in Sprague Dawley (SD) rats. Twenty female rats weighing 180 +/- 20 g were randomly assigned into four groups with five rats per group (n = 5). First group served as the control group, fed with distilled water (vehicle). Second, third and fourth groups were orally treated with juice of A. carambola stored for 0, 1 and 3 h respectively for 14 days. Cage-side observations were done daily after each treatment. Body weight, food consumption and water intake were recorded on day-0, day-3, day-7 and day-14. All rats were fasted overnight prior to blood collection through cardiac puncture on day-15. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), urea and creatinine in blood serum were measured. Data were analyzed using Dunnett's test. From the results obtained, there was no lethality found and LD(50) could not be determined. Increment of ALT levels (P<0.05) was reported in those rats treated with A. carambola juice stored for 3 h. On the basis of these results, we can conclude that A. carambola juice stored for 0 hand 1 h are safe to be consumed. However, juice stored for 3 h exerts toxic effect on rat liver at hepatocellular level.

  12. Evaluation of the toxic effect of star fruit on serum biochemical parameters in rats

    PubMed Central

    Khoo, Z. Y.; Teh, C. C.; Rao, N. K.; Chin, J. H.

    2010-01-01

    The objective of the present study was to evaluate the toxic effect of Averrhoa carambola (star fruit) juice at different storage conditions in Sprague Dawley (SD) rats. Twenty female rats weighing 180 ± 20 g were randomly assigned into four groups with five rats per group (n = 5). First group served as the control group, fed with distilled water (vehicle). Second, third and fourth groups were orally treated with juice of A. carambola stored for 0, 1 and 3 h respectively for 14 days. Cage-side observations were done daily after each treatment. Body weight, food consumption and water intake were recorded on day-0, day-3, day-7 and day-14. All rats were fasted overnight prior to blood collection through cardiac puncture on day-15. The levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), urea and creatinine in blood serum were measured. Data were analyzed using Dunnett's test. From the results obtained, there was no lethality found and LD50 could not be determined. Increment of ALT levels (P<0.05) was reported in those rats treated with A. carambola juice stored for 3 h. On the basis of these results, we can conclude that A. carambola juice stored for 0 hand 1 h are safe to be consumed. However, juice stored for 3 h exerts toxic effect on rat liver at hepatocellular level. PMID:20668578

  13. Nitric oxide protects the mitochondria of anterior pituitary cells and prevents cadmium-induced cell death by reducing oxidative stress.

    PubMed

    Poliandri, Ariel H B; Machiavelli, Leticia I; Quinteros, Alnilan F; Cabilla, Jimena P; Duvilanski, Beatriz H

    2006-02-15

    Cadmium (Cd2+) is a highly toxic metal that affects the endocrine system. We have previously shown that Cd2+ induces caspase-3 activation and apoptosis of anterior pituitary cells and that endogenous nitric oxide (NO) protects these cells from Cd2+. Here we investigate the mechanisms by which NO exerts this protective role. Cd2+ (25 microM) reduced the mitochondrial membrane potential (MMP) as measured by flow cytometry. Cd2+-induced apoptosis was mitochondrial dependent since cyclosporin A protected the cells from this metal. Inhibition of NO synthesis with 0.5 mM L-NAME increased the effect of Cd2+ on MMP, whereas the NO donor DETANONOate (0.1 mM) reduced it. Cd2+ increased the production of reactive oxygen species (ROS) as measured by flow cytometry. This effect was electron-transfer-chain-dependent since it was inhibited by rotenone. In fact, rotenone reduced the cytotoxic effect of the metal. The action of Cd2+ on mitochondrial integrity was ROS dependent. Trolox, an antioxidant, inhibited the effect of the metal on the MMP. Cd2+-induced increase in ROS generation was reduced by DETANONOate. There are discrepancies concerning the role of NO in Cd2+ toxicity. Here we show that NO reduces Cd2+ toxicity by protecting the mitochondria from oxidative stress in a system where NO plays a regulatory role.

  14. Occupational exposure to pesticides as a possible risk factor for the development of chronic diseases in humans (Review).

    PubMed

    Gangemi, Silvia; Miozzi, Edoardo; Teodoro, Michele; Briguglio, Giusi; De Luca, Annamaria; Alibrando, Carmela; Polito, Irene; Libra, Massimo

    2016-11-01

    It is well known that pesticides are widely used compounds. In fact, their use in agriculture, forestry, fishery and the food industry has granted a huge improvement in terms of productive efficiency. However, a great number of epidemiological surveys have demonstrated that these toxic compounds can interact and exert negative effects not only with their targets (pests, herbs and fungi), but also with the rest of the environment, including humans. This is particularly relevant in the case of workers involved in the production, transportation, preparation and application of these toxicants. Accordingly, a growing body of evidence has demonstrated the correlation between occupational exposure to pesticides and the development of a wide spectrum of pathologies, ranging from eczema to neurological diseases and cancer. Pesticide exposure is often quite difficult to establish, as many currently used modules do not take into account all of the many variables that can occur in a diverse environment, such as the agricultural sector, and the assessment of the real risk for every single worker is problematic. Indeed, the use of personal protection equipment is necessary while handling these toxic compounds, but education of workers can be even more important: personal contamination with pesticides may occur even in apparently harmless situations. This review summarises the most recent findings describing the association between pesticide occupational exposure and the development of chronic diseases.

  15. Occupational exposure to pesticides as a possible risk factor for the development of chronic diseases in humans

    PubMed Central

    Gangemi, Silvia; Miozzi, Edoardo; Teodoro, Michele; Briguglio, Giusi; De Luca, Annamaria; Alibrando, Carmela; Polito, Irene; Libra, Massimo

    2016-01-01

    It is well known that pesticides are widely used compounds. In fact, their use in agriculture, forestry, fishery and the food industry has granted a huge improvement in terms of productive efficiency. However, a great number of epidemiological surveys have demonstrated that these toxic compounds can interact and exert negative effects not only with their targets (pests, herbs and fungi), but also with the rest of the environment, including humans. This is particularly relevant in the case of workers involved in the production, transportation, preparation and application of these toxicants. Accordingly, a growing body of evidence has demonstrated the correlation between occupational exposure to pesticides and the development of a wide spectrum of pathologies, ranging from eczema to neurological diseases and cancer. Pesticide exposure is often quite difficult to establish, as many currently used modules do not take into account all of the many variables that can occur in a diverse environment, such as the agricultural sector, and the assessment of the real risk for every single worker is problematic. Indeed, the use of personal protection equipment is necessary while handling these toxic compounds, but education of workers can be even more important: personal contamination with pesticides may occur even in apparently harmless situations. This review summarises the most recent findings describing the association between pesticide occupational exposure and the development of chronic diseases. PMID:27748877

  16. The protective effects of taurine on acute ammonia toxicity in grass carp Ctenopharynodon idellus.

    PubMed

    Xing, Xiaodan; Li, Ming; Yuan, Lixia; Song, Meize; Ren, Qianyan; Shi, Ge; Meng, Fanxing; Wang, Rixin

    2016-09-01

    The four experimental groups were carried out to test the response of grass carp Ctenopharyngodon idella to ammonia toxicity and taurine: group 1 was injected with NaCl, group 2 was injected with ammonium acetate, group 3 was injected with ammonium acetate and taurine, and group 4 was injected taurine. Fish in group 2 had the highest ammonia content in the liver and brain, and alanine, arginine, glutamine, glutamate and glycine contents in liver. Brain alanine and glutamate of fish in group 2 were significantly higher than those of fish in group 1. Malondialdehyde content of fish in group 2 was the highest, but superoxide dismutase and glutathione activities were the lowest. Although fish in group 2 had the lowest red cell count and hemoglobin, the highest alkaline phosphatase, complement C3, C4 and total immunoglobulin contents appeared in this group. In addition, superoxide dismutase and glutathione activities, red cell count and hemoglobin of fish in group 3 were significantly higher than those of fish in group 2, but malondialdehyde content is the opposite. This study indicates that ammonia exerts its toxic effects by interfering with amino acid transport, inducing reactive oxygen species generation and malondialdehyde accumulation, leading to blood deterioration and over-activation of immune response. The exogenous taurine could mitigate the adverse effect of high ammonia level on fish physiological disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Effects of medicinal compounds on the differentiation of the eukaryotic microorganism dictyostelium discoideum: can this model be used as a screening test for reproductive toxicity in humans?

    PubMed

    Dannat, K; Tillner, J; Winckler, T; Weiss, M; Eger, K; Dingermann, T

    2003-03-01

    Dictyostelium discoideum is a single-cell, eukaryotic microorganism that can undergo multicellular development in order to produce dormant spores. We investigated the capacity of D. discoideum to be used as a rapid screening system for potential developmental toxicity of compounds under development as pharmaceuticals. We used a set of four transgenic D. discoideum strains that expressed a reporter gene under the control of promoters that are active at certain time periods and in distinct cell types during D. discoideum development. We found that teratogens such as valproic acid, tretinoin, or thalidomide interfered to various extents with D. discoideum development, and had different effects on prestalk and prespore cell-specific reporter gene expression. Phenytoin was inactive in this assay, which may point to limitations in metabolization of the compound in Dictyostelium required to exert developmental toxicity. D. discoideum cell culture is cheap and easy to handle compared to mammalian cell cultures or animal teratogenicity models. Although the Dictyostelium-based assay described in this report may not securely predict the teratogenic potential of these drugs in humans, this organism may be qualified for rapid large-scale screenings of synthetic compounds under development as new pharmaceuticals for their potential to interfere with developmental processes and thus help to reduce the amount of teratogenicity tests in animal models.

  18. A fully human chimeric antigen receptor with potent activity against cancer cells but reduced risk for off-tumor toxicity

    PubMed Central

    Song, De-Gang; Ye, Qunrui; Poussin, Mathilde; Liu, Lin; Figini, Mariangela; Powell, Daniel J.

    2015-01-01

    Chimeric antigen receptors (CARs) can redirect T cells against antigen-expressing tumors in an HLA-independent manner. To date, various CARs have been constructed using mouse single chain antibody variable fragments (scFvs) of high affinity that are immunogenic in humans and have the potential to mediate “on-target” toxicity. Here, we developed and evaluated a fully human CAR comprised of the human C4 folate receptor-alpha (αFR)-specific scFv coupled to intracellular T cell signaling domains. Human T cells transduced to express the C4 CAR specifically secreted proinflammatory cytokine and exerted cytolytic functions when cultured with αFR-expressing tumors in vitro. Adoptive transfer of C4 CAR T cells mediated the regression of large, established human ovarian cancer in a xenogeneic mouse model. Relative to a murine MOv19 scFv-based αFR CAR, C4 CAR T cells mediated comparable cytotoxic tumor activity in vitro and in vivo but had lower affinity for αFR protein and exhibited reduced recognition of normal cells expressing low levels of αFR. Thus, T cells expressing a fully human CAR of intermediate affinity can efficiently kill antigen-expressing tumors in vitro and in vivo and may overcome issues of transgene immunogenicity and “on-target off-tumor” toxicity that plague trials utilizing CARs containing mouse-derived, high affinity scFvs. PMID:26101914

  19. Solubility of nano-zinc oxide in environmentally and biologically important matrices

    PubMed Central

    Reed, Robert B.; Ladner, David A.; Higgins, Christopher P.; Westerhoff, Paul; Ranville, James F.

    2011-01-01

    Increasing manufacture and use of engineered nanoparticles (NPs) is leading to a greater probability for release of ENPs into the environment and exposure to organisms. In particular, zinc oxide (ZnO) is toxic, although it is unclear whether this toxicity is due to the zinc oxide nanoparticles (ZnO), dissolution to Zn2+, or some combination thereof. The goal of this study was to determine the relative solubilites of both commercially available and in-house synthesized ZnO in matrices used for environmental fate and transport or biological toxicity studies. Dissolution of ZnO was observed in nanopure water (7.18– 7.40 mg/L dissolved Zn, as measured by filtration) and Roswell Park Memorial Institute medium (RPMI-1640) (~5 mg/L), but much more dissolution was observed in Dulbecco’s Modified Eagle’s Medium (DMEM), where the dissolved Zn concentration exceeded 34 mg/L. Moderately hard water exhibited low zinc solubility, likely due to precipitation of a zinc carbonate solid phase. Precipitation of a zinc-containing solid phase in RPMI also appeared to limit zinc solubility. Equilibrium conditions with respect to ZnO solubility were not apparent in these matrices, even after more than 1,000 h of dissolution. These results suggest that solution chemistry exerts a strong influence on ZnO dissolution and can result in limits on zinc solubility due to precipitation of less soluble solid phases. PMID:21994124

  20. The potential protective role of Physalis peruviana L. fruit in cadmium-induced hepatotoxicity and nephrotoxicity.

    PubMed

    Dkhil, Mohamed A; Al-Quraishy, Saleh; Diab, Marwa M S; Othman, Mohamed S; Aref, Ahmed M; Abdel Moneim, Ahmed E

    2014-12-01

    This study aimed to investigate the potential protective role of Physalis peruviana L. (family Solanaceae) against cadmium-induced hepatorenal toxicity in Wistar rats. Herein, cadmium chloride (CdCl2) (6.5 mg/kg bwt/day) was intraperitoneally injected for 5 days, and methanolic extract of physalis (MEPh) was pre-administered to a group of Cd-treated rats by an oral administration at a daily dose of 200 mg/kg bwt for 5 days. The findings revealed that CdCl2 injection induced significant decreases in kidney weight and kidney index. Cadmium intoxication increased the activities of liver enzymes and the bilirubin level, in addition to the levels of uric acid, urea and creatinine were increased in the serum. The pre-administration of MEPh alleviated hepatorenal toxicity in Cd-treated rats. Physalis was noted to play a good hepatorenal protective role, reducing lipid peroxidation, nitric oxide, and enhancing enzymatic activities and non-enzymatic antioxidant molecule, glutathione, in hepatic and renal tissues of Cd-treated rats. Moreover, physalis treatment was able to reverse the histopathological changes in liver and kidney tissues and also increased the expression of Bcl-2 protein in liver and kidney of rats. Overall, the results showed that MEPh can induce antioxidant and anti-apoptotic effects and also exerts beneficial effects for the treatment of Cd-induced hepatorenal toxicity. Copyright © 2014 Elsevier Ltd. All rights reserved.

Top