Science.gov

Sample records for exhaust gas emission

  1. Reducing exhaust gas emissions from Citydiesel busses

    NASA Astrophysics Data System (ADS)

    Mikkonen, Seppo

    The effect of fuel composition and exhaust gas aftertreatment on the emissions was measured from truck and bus engines. Possibilities to measure unregulated emissions (aldehydes, polyaromatic hydrocarbons, mutagenicity) were built. A reformulated diesel fuel 'Citydiesel' was developed. Citydiesel was able to reduce emissions compared to standard diesel fuel as follows: particulates by 10 to 30%, nitrogen oxides by 2 to 10%, sulphur dioxide by 97%, polyaromatic hydrocarbons (PAH) over 50%, mutagenicity of the exhaust particulates clearly, odor of the exhaust, and smoke after a cold start. The use of Citydiesel fuel reduces emissions of the existing vehicles immediately which is a remarkable benefit. The very low sulphur content (below 50 ppm) makes it possible to use oxidation. catalytic converters to reduce emissions of diesel vehicles. The new Euro 2 exhaust regulations coming into force during 1996 can be met with a modern diesel engine, Citydiesel fuel, and exhaust gas aftertreatment. Properties of Citydiesel fuel were verified in a three year field test with 140 city buses. Experience was good; e.g., engine oil change interval could be lengthened. Total value of the exhaust was estimated with different fuels and aftertreatment device in order to find out cheap ways to reduce emissions.

  2. Particulate exhaust emissions from an experimental combustor. [gas turbine engine

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Ingebo, R. D.

    1975-01-01

    The concentration of dry particulates (carbon) in the exhaust of an experimental gas turbine combustor was measured at simulated takeoff operating conditions and correlated with the standard smoke-number measurement. Carbon was determined quantitatively from a sample collected on a fiberglass filter by converting the carbon in the smoke sample to carbon dioxide and then measuring the volume of carbon dioxide formed by gas chromatography. At a smoke of 25 (threshold of visibility of the smoke plume for large turbojets) the carbon concentration was 2.8 mg carbon/cu m exhaust gas, which is equivalent to an emission index of 0.17 g carbon/kg fuel.

  3. Real-time exhaust gas modular flowmeter and emissions reporting system for mobile apparatus

    NASA Technical Reports Server (NTRS)

    Breton, Leo Alphonse Gerard (Inventor)

    2002-01-01

    A real-time emissions reporting system includes an instrument module adapted to be detachably connected to the exhaust pipe of a combustion engine to provide for flow of exhaust gas therethrough. The instrument module includes a differential pressure probe which allows for determination of flow rate of the exhaust gas and a gas sampling tube for continuously feeding a sample of the exhaust gas to a gas analyzer or a mounting location for a non-sampling gas analyzer. In addition to the module, the emissions reporting system also includes an elastomeric boot for detachably connecting the module to the exhaust pipe of the combustion engine, a gas analyzer for receiving and analyzing gases sampled within the module and a computer for calculating pollutant mass flow rates based on concentrations detected by the gas analyzer and the detected flowrate of the exhaust gas. The system may also include a particulate matter detector with a second gas sampling tube feeding same mounted within the instrument module.

  4. Exhaust Gas Emissions from a Rotating Detonation-wave Engine

    NASA Astrophysics Data System (ADS)

    Kailasanath, Kazhikathra; Schwer, Douglas

    2015-11-01

    Rotating detonation-wave engines (RDE) are a form of continuous detonation-wave engines. They potentially provide further gains in performance than an intermittent or pulsed detonation-wave engine (PDE). The overall flow field in an idealized RDE, primarily consisting of two concentric cylinders, has been discussed in previous meetings. Because of the high pressures involved and the lack of adequate reaction mechanisms for this regime, previous simulations have typically used simplified chemistry models. However, understanding the exhaust species concentrations in propulsion devices is important for both performance considerations as well as estimating pollutant emissions. Progress towards addressing this need will be discussed in this talk. In this approach, an induction parameter model is used for simulating the detonation but a more detailed finite-chemistry model including NOx chemistry is used in the expansion flow region, where the pressures are lower and the uncertainties in the chemistry model are greatly reduced. Results show that overall radical concentrations in the exhaust flow are substantially lower than from earlier predictions with simplified models. The performance of a baseline hydrogen/air RDE increased from 4940 s to 5000 s with the expansion flow chemistry, due to recombination of radicals and more production of H2O, resulting in additional heat release. Work sponsored by the Office of Naval Research.

  5. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family...

  6. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family...

  7. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family...

  8. An assessment of consistence of exhaust gas emission test results obtained under controlled NEDC conditions

    NASA Astrophysics Data System (ADS)

    Balawender, K.; Jaworski, A.; Kuszewski, H.; Lejda, K.; Ustrzycki, A.

    2016-09-01

    Measurements concerning emissions of pollutants contained in automobile combustion engine exhaust gases is of primary importance in view of their harmful impact on the natural environment. This paper presents results of tests aimed at determining exhaust gas pollutant emissions from a passenger car engine obtained under repeatable conditions on a chassis dynamometer. The test set-up was installed in a controlled climate chamber allowing to maintain the temperature conditions within the range from -20°C to +30°C. The analysis covered emissions of such components as CO, CO2, NOx, CH4, THC, and NMHC. The purpose of the study was to assess repeatability of results obtained in a number of tests performed as per NEDC test plan. The study is an introductory stage of a wider research project concerning the effect of climate conditions and fuel type on emission of pollutants contained in exhaust gases generated by automotive vehicles.

  9. Diesel emission reduction using internal exhaust gas recirculation

    DOEpatents

    He, Xin [Denver, CO; Durrett, Russell P [Bloomfield Hills, MI

    2012-01-24

    A method for controlling combustion in a direct-injection diesel engine includes monitoring a crankshaft rotational position of a cylinder of the engine, monitoring an engine load, determining an intake stroke within the cylinder based upon the crankshaft rotational position, and when the engine load is less than a threshold engine load, opening an exhaust valve for the cylinder during a portion of the intake stroke.

  10. Turbine engine exhaust gas measurements using in-situ FT-IR emission/transmission spectroscopy

    NASA Astrophysics Data System (ADS)

    Marran, David F.; Cosgrove, Joseph E.; Neira, Jorge; Markham, James R.; Rutka, Ronald; Strange, Richard R.

    2001-02-01

    12 An advanced multiple gas analyzer based on in-situ Fourier transform infrared spectroscopy has been used to successfully measure the exhaust plume composition and temperature of an operating gas turbine engine at a jet engine test stand. The sensor, which was optically coupled to the test cell using novel broadband hollow glass waveguides, performed well in this harsh environment (high acoustical noise and vibration, considerable temperature swings in the ambient with engine operation), providing quantitative gas phase information. Measurements were made through the diameter of the engine's one meter exhaust plume, about 0.7 meters downstream of the engine exit plane. The sensor performed near simultaneous infrared transmission and infrared emission measurements through the centerline of the plume. Automated analysis of the emission and transmission spectra provided the temperature and concentration information needed for engine tuning and control that will ensure optimal engine operation and reduced emissions. As a demonstration of the utility and accuracy of the technique, carbon monoxide, nitric oxide, water, and carbon dioxide were quantified in spite of significant variations in the exhaust gas temperature. At some conditions, unburned fuel, particulates (soot/fuel droplets), methane, ethylene and aldehydes were identified, but not yet quantified.

  11. Evaluating tractor performance and exhaust gas emissions using biodiesel from cotton seed oil

    NASA Astrophysics Data System (ADS)

    Al-lwayzy, Saddam H.; Yusaf, Talal; Jensen, Troy

    2012-09-01

    Alternative fuels for diesel engines, such as biodiesel, have attracted much attention recently due to increasing fuel prices and the imperative to reduce emissions. The exhaust gas emissions from tractors and other agricultural machinery make a significant contribution to these emissions. The use of biodiesel in internal combustion engines (ICE) has been reported to give comparable performance to conventional diesel (CD), but with generally lower emissions. There is however, contradictory evidence of NO emissions being both higher and lower from the use of biodiesel. In this work, agriculture tractor engine performance and its emission using both CD and biodiesel from cotton seed oil (CSO-B20) mixed at a 20% blend ration has been evaluated and compared. The PTO test results showed comparable exhaust emissions between CD and CSO-B20. However, the use of CSO-B20 led to reductions in the thermal efficiency and exhaust temperature and an increase in the brake specific fuel consumption (BSFC), when compared to CD.

  12. Accounting for exhaust gas transport dynamics in instantaneous emission models via smooth transition regression.

    PubMed

    Kamarianakis, Yiannis; Gao, H Oliver

    2010-02-15

    Collecting and analyzing high frequency emission measurements has become very usual during the past decade as significantly more information with respect to formation conditions can be collected than from regulated bag measurements. A challenging issue for researchers is the accurate time-alignment between tailpipe measurements and engine operating variables. An alignment procedure should take into account both the reaction time of the analyzers and the dynamics of gas transport in the exhaust and measurement systems. This paper discusses a statistical modeling framework that compensates for variable exhaust transport delay while relating tailpipe measurements with engine operating covariates. Specifically it is shown that some variants of the smooth transition regression model allow for transport delays that vary smoothly as functions of the exhaust flow rate. These functions are characterized by a pair of coefficients that can be estimated via a least-squares procedure. The proposed models can be adapted to encompass inherent nonlinearities that were implicit in previous instantaneous emissions modeling efforts. This article describes the methodology and presents an illustrative application which uses data collected from a diesel bus under real-world driving conditions.

  13. 4-Nitrophenol, 1-nitropyrene, and 9-nitroanthracene emissions in exhaust particles from diesel vehicles with different exhaust gas treatments

    NASA Astrophysics Data System (ADS)

    Inomata, Satoshi; Fushimi, Akihiro; Sato, Kei; Fujitani, Yuji; Yamada, Hiroyuki

    2015-06-01

    The dependence of nitro-organic compound emissions in automotive exhaust particles on the type of aftertreatment used was investigated. Three diesel vehicles with different aftertreatment systems (an oxidation catalyst, vehicle-DOC; a particulate matter and NOx reduction system, vehicle-DPNR; and a urea-based selective catalytic reduction system, vehicle-SCR) and a gasoline car with a three-way catalyst were tested. Nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) and nitrophenols in the particles emitted were analyzed by thermal desorption gas chromatography/mass spectrometry and liquid chromatography/mass spectrometry. The secondary production of nitro-organic compounds on the filters used to collect particles and the adsorption of gaseous nitro-organic compounds by the filters were evaluated. Emissions of 1-nitropyrene, 9-nitroanthracene, and 4-nitrophenol in the diesel exhaust particles were then quantified. The NOx reduction process in vehicle-DPNR appeared to remove nitro-hydrocarbons efficiently but not to remove nitro-oxygenated hydrocarbons efficiently. The nitro-PAH emission factors were lower for vehicle-DOC when it was not fitted with a catalyst than when it was fitted with a catalyst. The 4-nitrophenol emission factors were also lower for vehicle-DOC with a catalyst than vehicle-DOC without a catalyst, suggesting that the oxidation catalyst was a source of both nitro-PAHs and 4-nitrophenol. The time-resolved aerosol mass spectrometry data suggested that nitro-organic compounds are mainly produced when an engine is working under load. The presence of 4-nitrophenol in the particles was not confirmed statistically because of interference from gaseous 4-nitrophenol. Systematic errors in the estimated amounts of gaseous 1-nitropyrene and 9-nitroanthracene adsorbed onto the filters and the estimated amounts of volatile nitro-organic compounds that evaporated during sampling and during post-sampling conditioning could not be excluded. An analytical method

  14. Exhaust gas ignition

    SciTech Connect

    1996-04-01

    This article describes a system developed for rapid light-off of underbody catalysts that has shown potential to meet Euro Stage III emissions targets and to be more cost-effective than some alternatives. Future emissions legislation will require SI engine aftertreatment systems to approach full operating efficiency within the first few seconds after starting to reduce the high total-emissions fraction currently contributed by the cold phase of driving. A reduction of cold-start emissions during Phase 1 (Euro) or Bag 1 (FTP), which in many cases can be as much as 80% of the total for the cycle, has been achieved by electrical heating of the catalytic converter. But electrically heated catalyst (EHC) systems require high currents (100--200 A) to heat the metallic substrate to light-off temperatures over the first 15--20 seconds. Other viable approaches to reducing cold-start emissions include use of a fuel-powered burner upstream of the catalyst. However, as with EHC, the complexity of parts and the introduction of raw fuel into the exhaust system make this device unsatisfactory. Still another approach, an exhaust gas ignition (EGI) system, was first demonstrated in 1991. The operation of a system developed by engineers at Ford Motor Co., Ltd., Cambustion Ltd., and Tickford Ltd. is described here.

  15. Effect of operating conditions on the exhaust emissions from a gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Briehl, D.; Papathakos, L.; Strancar, R. J.

    1972-01-01

    Exhaust concentrations of total unburned hydrocarbons, carbon monoxide, and nitric oxide were measured from a single J-57 combustor liner installed in a 30 diameter test section. Tests were conducted over a range of inlet total pressures from 1 to 20 atmospheres, inlet total temperatures from 310 to 590 K, reference velocities from 8 to m/sec, and fuel-air ratios from 0.004 to 0.015. Most of the data were obtained using ASTM A-1 fuel; however, a limited number of tests was performed with natural gas fuel. Combustion efficiency and emission levels are correlated with operating conditions. Sampling error at operating conditions for which combustion efficiency was below about 90 percent resulted in abnormally low readings for hydrocarbon emissions.

  16. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974,...

  17. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974,...

  18. 14 CFR 34.21 - Standards for exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.21 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured on or after February 1,...

  19. 77 FR 76842 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-31

    ... action revises the standards for oxides of nitrogen and test procedures for exhaust emissions based on... Environmental Protection Agency (EPA) proposed new aircraft engine emission standards for oxides of nitrogen (NO... Protection (CAEP) of ICAO uses to differentiate the CAEP work cycles that produce new standards. For...

  20. 40 CFR 87.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF...

  1. 40 CFR 87.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF...

  2. Exhaust emission control and diagnostics

    DOEpatents

    Mazur, Christopher John; Upadhyay, Devesh

    2006-11-14

    A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.

  3. A Gas Chromatograph/Mass Spectrometer System for UltraLow-Emission Combustor Exhaust Studies

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Wey, Chowen Chou

    1996-01-01

    A gas chromatograph (GC)/mass spectrometer (MS) system that allows the speciation of unburnt hydrocarbons in the combustor exhaust has been developed at the NASA Lewis Research Center. Combustion gas samples are withdrawn through a water-cooled sampling probe which, when not in use, is protected from contamination by a high-pressure nitrogen purge. The sample line and its connecting lines, filters, and valves are all ultraclean and are heated to avoid condensation. The system has resolution to the parts-per-billion (ppb) level.

  4. The impact of using biodiesel/marine gas oil blends on exhaust emissions from a stationary diesel engine.

    PubMed

    Karavalakis, G; Tzirakis, E; Mattheou, L; Stournas, S; Zannikos, F; Karonis, D

    2008-12-01

    The purpose of this work was to investigate the impact of marine gas oil (MGO)/biodiesel blends on the exhaust emissions and fuel consumption in a single cylinder, stationary, diesel engine. Three different origins of biodiesel were used as the blending feedstock with the reference MGO, at proportions of 5 and 10% by volume. Methyl esters were examined according to the automotive FAME standard EN 14214. The baseline MGO and biodiesel blends were examined according to ISO 8217:2005 specifications for the DMA category. Independently of the biodiesel used, a decrease of PM, HC, CO and CO(2) emissions was observed. Emissions of NO(x) were also lower with respect to MGO. This reduction in NO(x) may be attributed to some physicochemical properties of the fuels applied, such as the higher cetane number and the lower volatility of methyl esters. Reductions in PM for biodiesel blends were lower in the exhaust than those of the reference fuel which was attributed to the oxygen content and the near absence of sulphur and aromatics compounds in biodiesel. However, a slight increase in fuel consumption was observed for the biodiesel blends that may be tolerated due to the exhaust emissions benefits. Brake thermal efficiency was also determined. Unregulated emissions were characterized by determining the soluble organic fraction content of the particulate matter.

  5. Time-resolved nature of exhaust gas emissions and piston wall temperature under transient operation in a small diesel engine

    SciTech Connect

    Reksowardojo, I.K.; Ogawa, Hideyuki; Miyamoto, Noboru; Enomoto, Yoshiteru; Kitamura, Toru

    1996-09-01

    Diesel combustion and exhaust gas emissions under transient operation (when fuel amounts abruptly increased) were investigated under a wide range of operating conditions with a newly developed gas sampling system. The relation between gas emissions and piston wall temperatures was also investigated. The results indicated that after the start of acceleration NOx, THC and smoke showed transient behaviors before reaching the steady state condition. Of the three gases, THC was most affected by piston wall temperature; its concentration decreased as the wall temperature increased throughout the acceleration except immediately after the start of acceleration. The number of cycles, at which gas concentrations reach the steady-state value after the start of acceleration, were about 1.2 times the cycle constant of the piston wall temperature for THC, and 2.3 times for smoke.

  6. Exhaust emission control apparatus

    SciTech Connect

    Eng, J.W.

    1991-09-24

    This patent describes an exhaust control apparatus for muffling noise and treating odors and pollutants, including solid particulate and gases in the exhaust of an internal combustion engine. It comprises an exhaust inlet tube for receiving the exhaust generated by an internal combustion engine; a cyclone barrier concentrically surrounding the exhaust inlet tube, a ring cavity between the cyclone tube and exhaust inlet tube defining a cyclone chamber in which the exhaust is treated; means for directing the exhaust from the exhaust inlet tube into the cyclone chamber; electrode means having small openings through which the exhaust passes to enter the cyclone chamber, the electrode means generating electrostatic forces which charge the solid particulate in the exhaust, ionize air and generate ozone in the cyclone chamber near the electrode; means for injecting air into the cyclone chamber causing centrifugal flow of the air and the exhausted within the cyclone chamber and increasing a dwell time of the exhaust within the cyclone chamber.

  7. METHANE EMISSIONS FROM THE NATURAL GAS INDUSTRY VOLUME 11: COMPRESSOR DRIVER EXHAUST

    EPA Science Inventory

    The 15-volume report summarizes the results of a comprehensive program to quantify methane (CH4) emissions from the U.S. natural gas industry for the base year. The objective was to determine CH4 emissions from the wellhead and ending downstream at the customer's meter. The accur...

  8. Gas-particle partitioning of primary organic aerosol emissions: (1) Gasoline vehicle exhaust

    NASA Astrophysics Data System (ADS)

    May, Andrew A.; Presto, Albert A.; Hennigan, Christopher J.; Nguyen, Ngoc T.; Gordon, Timothy D.; Robinson, Allen L.

    2013-10-01

    The gas-particle partitioning of the primary organic aerosol (POA) emissions from fifty-one light-duty gasoline vehicles (model years 1987-2012) was investigated at the California Air Resources Board Haagen-Smit Laboratory. Each vehicle was operated over the cold-start unified cycle on a chassis dynamometer and its emissions were sampled using a constant volume sampler. Four independent yet complementary approaches were used to investigate POA gas-particle partitioning: sampling artifact correction of quartz filter data, dilution from the constant volume sampler into a portable environmental chamber, heating in a thermodenuder, and thermal desorption/gas chromatography/mass spectrometry analysis of quartz filter samples. This combination of techniques allowed gas-particle partitioning measurements to be made across a wide range of atmospherically relevant conditions - temperatures of 25-100 °C and organic aerosol concentrations of <1-600 μg m-3. The gas-particle partitioning of the POA emissions varied continuously over this entire range of conditions and essentially none of the POA should be considered non-volatile. Furthermore, for most vehicles, the low levels of dilution used in the constant volume sampler created particle mass concentrations that were greater than a factor of 10 or higher than typical ambient levels. This resulted in large and systematic partitioning biases in the POA emission factors compared to more dilute atmospheric conditions, as the POA emission rates may be over-estimated by nearly a factor of four due to gas-particle partitioning at higher particle mass concentrations. A volatility distribution was derived to quantitatively describe the measured gas-particle partitioning data using absorptive partitioning theory. Although the POA emission factors varied by more than two orders of magnitude across the test fleet, the vehicle-to-vehicle differences in gas-particle partitioning were modest. Therefore, a single volatility distribution

  9. Gas-solid chromatographic analysis of automobile tailpipe emissions as a function of different engine and exhaust system modifications

    SciTech Connect

    Kang, L.; Armstrong, D.W.

    1994-12-31

    The authors developed a single, relatively short gas-solid chromatographic PLOT column and used it to separate aliphatic hydrocarbons, aromatic hydrocarbons and some inorganic gases (O{sub 2}, N{sub 2}, CO and CO{sub 2}) found in automobile exhaust. In the case of hydrocarbons, both aliphatic and aromatic components (up through alkylated-benzenes) were done in one run. Subambient temperature was needed for the oxygen-nitrogen separation, but they were easily resolved from each other and the other compounds present. The effects of different engine and exhaust system modifications on the level of compounds in the exhaust were tested. The concentrations of the emission gases varied considerably with changes in air/fuel ratio, coil voltage, use of catalytic converters and so forth. The results showed that the use of catalytic converter and a higher voltage coil tended to produce the most pronounced decreases in emissions of hydrocarbons and the catalytic converter produced the significant decrease in carbon monoxide concentrations. The results of the GSC analyses were compared to those of a commercial emission analyzer (i.e., sniffer). They showed similar trends and relative concentrations but somewhat different absolute concentrations. This may have been due to differences in the calibration of these methods.

  10. Emission of carcinogenic components with automobile exhausts.

    PubMed Central

    Stenberg, U; Alsberg, T; Westerholm, R

    1983-01-01

    Different sampling methods for mutagenic polynuclear aromatic hydrocarbons (PAH) are described. These methods involve either direct sampling of raw exhausts which prior to filtering are cooled in a condenser, or filter sampling of exhausts diluted in a tunnel. The relevance of gas-phase PAHs of samples from diluted exhausts is discussed; methods used are either adsorbents (XAD-2) or cryogenic condensation. The emission of benzo(a)pyrene and certain other PAHs is reported from vehicles using different fuels (gasoline, diesel, LPG, alcohols) or different emission control systems. The emission of some volatiles, such as benzene, ethylene and alkylnitrites, is also presented from different types of fuels used. PMID:6186483

  11. 78 FR 63015 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... kilonewtons (kN) (76 FR 45012). The EPA also proposed adopting the gas turbine engine test procedures of the... 18, 2012 (77 FR 36342), and was effective July 18, 2012. On December 31, 2012, the FAA published a final rule with a request for comments (77 FR 76842) adopting the EPA's new emissions standards in...

  12. Effects of prevaporized fuel on exhaust emissions of an experimental gas turbine combustor

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Ingebo, R. D.

    1973-01-01

    Effects of fuel vaporization on the exhaust emission levels of oxides of nitrogen (NOX), carbon monoxide, total hydrocarbons, and smoke number were obtained in an experimental turbojet combustor segment. Two fuel injector types were used in which liquid ASTM A-1 jet fuel and vapor propane fuel were independently controlled to simulate varying degrees of vaporization. Tests were conducted over a range of inlet-air temperatures from 478 to 700 K (860 to 1260 R), pressures from 4 to 20 atmospheres, and combustor reference velocities from 15.3 to 27.4 m/sec (50 to 90 ft/sec). Converting from liquid to complete vapor fuel resulted in NOX reductions as much as 22 percent and smoke number reductions up to 51 percent.

  13. The Use of Exhaust Gas Recirculation to Optimize Fuel Economy and Minimize Emission in Engines Operating on E85 Fuel

    SciTech Connect

    Wu, Ko-Jen

    2011-12-31

    This report summarizes activities conducted for the project “The Use of Exhaust Gas Recirculation to Optimized Fuel Economy and Minimize Emissions in Engines Operating on E85 Fuel” under COOPERATIVE AGREEMENT NUMBER DE-FC26-07NT43271, which are as outlined in the STATEMENT OF PROJECT OBJECTIVES (SOPO) dated March 2007 and in the supplemental SOPO dated October 2010. The project objective was to develop and demonstrate an internal combustion engine that is optimized for E85 (85% ethanol and 15% gasoline) fuel operation to achieve substantially improved fuel economy while operating with E85 fuel and that is also production viable in the near- to medium-term. The key engine technology selected for research and development was turbocharging, which is known to improve fuel economy thru downsizing and is in particular capable of exploiting ethanol fuel’s characteristics of high octane number and high latent heat of vaporization. The engine further integrated synergistic efficiency improving technologies of cooled exhaust gas recirculation (EGR), direct fuel injection and dual continuously variable intake and exhaust cam phasers. On the vehicle level, fuel economy was furthered thru powertrain system optimization by mating a state-of-the-art six-speed automatic transmission to the engine. In order to achieve the project’s objective of near- to medium-term production viability, it was essential to develop the engine to be flex-fuel capable of operating with fuels ranging from E0 (0% ethanol and 100% gasoline) to E85 and to use three-way type of catalyst technology for exhaust aftertreatment. Within these scopes, various technologies were developed through systems approach to focus on ways to help accelerate catalyst light-off. Significant amount of development took place during the course of the project within General Motors, LLC. Many prototype flex-fuel engines were designed, built and developed with various hardware configurations selected to achieve the project

  14. Effect of exhaust gas recirculation on emissions from a flame-tube combustor using Liquid Jet A fuel

    NASA Technical Reports Server (NTRS)

    Marek, C. J.; Tacina, R. R.

    1976-01-01

    The effects of uncooled exhaust gas recirculation as an inert diluent on emissions of oxides of nitrogen (NO + NO2) and on combustion efficiency were investigated. Ratios of recirculated combustion products to inlet airflow were varied from 10 to 80 percent by using an inlet air ejector nozzle. Liquid Jet A fuel was used. The flame-tube combustor was 10.2 cm in diameter. It was operated with and without a flameholder present. The combustor pressure was maintained constant at 0.5 MPa. The equivalence ratio was varied from 0.3 to 1.0. The inlet air temperature was varied from 590 to 800 K, and the reference velocity from 10 to 30 m/sec. Increasing the percent recirculation from 10 to 25 had the following effects: (1) the peak NOx emission was decreased by 37 percent, from 8 to 5 g NO2/kg fuel, at an inlet air temperature of 590 K and a reference velocity of 15 m/sec; (2) the combustion efficiency was increased, particularly at the higher equivalence ratios; and (3) for a high combustion efficiency of greater than 99.5 percent, the range of operation of the combustor was nearly doubled in terms of equivalence ratio. Increasing the recirculation from 25 to 50 percent did not change the emissions significantly.

  15. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed a smoke number (SN) of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas... paragraphs (a) and (b) of this section refer to exhaust smoke emission emitted during operation of the...

  16. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed a smoke number (SN) of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas... paragraphs (a) and (b) of this section refer to exhaust smoke emission emitted during operation of the...

  17. 40 CFR 86.1310-2007 - Exhaust gas sampling and analytical system for gaseous emissions from heavy-duty diesel-fueled...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sample gas temperature is maintained above the sample's aqueous dewpoint at all times during collection... sampling system requires dilution of the exhaust to a temperature of 47 °C ±5 °C, measured upstream of a... stream at the temperatures required for the measurement of particulate and hydrocarbon emission...

  18. 40 CFR 86.1310-2007 - Exhaust gas sampling and analytical system for gaseous emissions from heavy-duty diesel-fueled...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sample gas temperature is maintained above the sample's aqueous dewpoint at all times during collection... sampling system requires dilution of the exhaust to a temperature of 47 °C ±5 °C, measured upstream of a... stream at the temperatures required for the measurement of particulate and hydrocarbon emission...

  19. 40 CFR 86.1310-2007 - Exhaust gas sampling and analytical system for gaseous emissions from heavy-duty diesel-fueled...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sample gas temperature is maintained above the sample's aqueous dewpoint at all times during collection... sampling system requires dilution of the exhaust to a temperature of 47 °C ±5 °C, measured upstream of a... stream at the temperatures required for the measurement of particulate and hydrocarbon emission...

  20. Characterization of nitromethane emission from automotive exhaust

    NASA Astrophysics Data System (ADS)

    Sekimoto, Kanako; Inomata, Satoshi; Tanimoto, Hiroshi; Fushimi, Akihiro; Fujitani, Yuji; Sato, Kei; Yamada, Hiroyuki

    2013-12-01

    We carried out time-resolved experiments using a proton-transfer-reaction mass spectrometer and a chassis dynamometer to characterize nitromethane emission from automotive exhaust. We performed experiments under both cold-start and hot-start conditions, and determined the dependence of nitromethane emission on vehicle velocity and acceleration/deceleration as well as the effect of various types of exhaust-gas treatment system. We found that nitromethane emission was much lower from a gasoline car than from diesel trucks, probably due to the reduction function of the three-way catalyst of the gasoline car. Diesel trucks without a NOx reduction catalyst using hydrocarbons produced high emissions of nitromethane, with emission factors generally increasing with increasing acceleration at low vehicle velocities.

  1. Reduction of regulated and unregulated exhaust gas emission components from diesel engines running with rapeseedmethylester using oxidation catalyst technologies

    SciTech Connect

    May, H.; Huettenberger, P.

    1996-12-31

    Up to now all engine research was based on engines, which are adapted to Diesel fuel but not to vegetableoilmethylester (VME). Caused by the special climate conditions in Europe rapeseed and sunflowers, in the US soya-beans and in the tropical countries palm trees are the favorable plants for vegetable oil production. The physical and chemical properties of Diesel fuel and VME are quite different. Therefore an engine adaption and redesign to VME is a suitable way of further reduction of noxious and climate-influencing emissions. To prove the effectiveness of the emission reduction the European test-cycle ECE/EUDC, the US-FTP 75 test for passenger cars and the European 13-stage-test-cycle for heavy duty-truck-engines has been used with and without an oxidation catalyst in each case. The results of the exhaust gas measurement both concerning regulated and unregulated components are shown. A comparison between engines fueled with fossil diesel fuel and rapeseedmethylester (RME) is given.

  2. 40 CFR 86.109-94 - Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate emission measurements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles... designed to measure the true mass of gaseous emissions in the exhaust of either Otto-cycle light-duty vehicles or light-duty trucks which are waived from requirements for the measurement of...

  3. 40 CFR 86.109-94 - Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate emission measurements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles... designed to measure the true mass of gaseous emissions in the exhaust of either Otto-cycle light-duty vehicles or light-duty trucks which are waived from requirements for the measurement of...

  4. 40 CFR 86.109-94 - Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate emission measurements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles... designed to measure the true mass of gaseous emissions in the exhaust of either Otto-cycle light-duty vehicles or light-duty trucks which are waived from requirements for the measurement of...

  5. 40 CFR 86.109-94 - Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate emission measurements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles... designed to measure the true mass of gaseous emissions in the exhaust of either Otto-cycle light-duty vehicles or light-duty trucks which are waived from requirements for the measurement of...

  6. 78 FR 63017 - Exhaust Emissions Standards for New Aircraft Gas Turbine Engines and Identification Plate for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-23

    ... engines with rated thrusts greater than 26.7 kilonewtons (kN) (76 FR 45012). The EPA also proposed...). The final rule adopting these proposals was published on June 18, 2012 (77 FR 36342), and was... (77 FR 76842) adopting the EPA's new emissions standards in part 34. Although the EPA's NPRM...

  7. 40 CFR 86.210-08 - Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Vehicles; Cold Temperature Test Procedures § 86.210-08 Exhaust gas sampling system; Diesel-cycle vehicles... the THC probe be free from cold spots (i.e., free from spots where the probe wall temperature is less... common sample pump is used for all analyzers and the sample line system design reflects good...

  8. 40 CFR 86.210-08 - Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Vehicles; Cold Temperature Test Procedures § 86.210-08 Exhaust gas sampling system; Diesel-cycle vehicles... the THC probe be free from cold spots (i.e., free from spots where the probe wall temperature is less... common sample pump is used for all analyzers and the sample line system design reflects good...

  9. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions

    NASA Technical Reports Server (NTRS)

    Zupanc, Frank J. (Inventor); Yankowich, Paul R. (Inventor)

    2006-01-01

    A fuel-air mixer for use in a combustion chamber of a gas turbine engine is provided. The fuel air mixing apparatus comprises an annular fuel injector having a plurality of discrete plain jet orifices, a first swirler wherein the first swirler is located upstream from the fuel injector and a second swirler wherein the second swirler is located downstream from the fuel injector. The plurality of discrete plain jet orifices are situated between the highly swirling airstreams generated by the two radial swirlers. The distributed injection of the fuel between two highly swirling airstreams results in rapid and effective mixing to the desired fuel-air ratio and prevents the formation of local hot spots in the combustor primary zone. A combustor and a gas turbine engine comprising the fuel-air mixer of the present invention are also provided as well as a method using the fuel-air mixer of the present invention.

  10. Exhaust gas sensors

    SciTech Connect

    Hiller, J.; Miree, T.J.

    1997-02-09

    The automotive industry needed a fast, reliable, under-the-hood method of determining nitrogen oxides in automobile exhaust. Several technologies were pursued concurrently. These sensing technologies were based on light absorption, electrochemical methods, and surface mass loading. The Y-12 plant was selected to study the methods based on light absorption. The first phase was defining the detailed technical objectives of the sensors--this was the role of the automobile companies. The second phase was to develop prototype sensors in the laboratories--the national laboratories. The final phase was testing of the prototype sensors by the automobile industries. This program was canceled a few months into what was to be a three-year effort.

  11. Numerical investigation of exhaust gas emissions for a dual fuel engine configuration using diesel and pongamia oil.

    PubMed

    Mohamed Ibrahim, N H; Udayakumar, M

    2016-12-01

    The investigation presented in this paper focuses on determination of gaseous exhaust emissions by computational simulation during combustion in compression ignition engine with pongamia oil substitution. Combustion is modeled using Equilibrium Constants Method (ECM) with MATLAB program to calculate the mole fraction of 10 combustion products when pongamia oil is burnt along with diesel at variable equivalence ratio and blend ratio. It had been observed that pongamia oil substitution causes decrease in the CO emission and increase in the NOx emission as the blend ratio as well as equivalence ratio increases.

  12. Exhaust emissions from high speed passenger ferries

    NASA Astrophysics Data System (ADS)

    Cooper, D. A.

    Exhaust emission measurements have been carried out on-board three high-speed passenger ferries (A, B and C) during normal service routes. Ship A was powered by conventional, medium-speed, marine diesel engines, Ship B by gas turbine engines and Ship C conventional, medium-speed, marine diesel engines equipped with selective catalytic reduction (SCR) systems for NO x abatement. All ships had similar auxiliary engines (marine diesels) for generating electric power on-board. Real-world emission factors of NOx, SO2, CO, CO 2, NMVOC, CH4, N2O, NH3, PM and PAH at steady-state engine loads and for complete voyages were determined together with an estimate of annual emissions. In general, Ship B using gas turbines showed favourable NO x, PM and PAH emissions but at the expense of higher fuel consumption and CO 2 emissions. Ship C with the SCR had the lowest NO x emissions but highest NH 3 emissions especially during harbour approaches and stops. The greatest PM and PAH specific emissions were measured from auxiliary engines operating at low engine loads during harbour stops. Since all ships used a low-sulphur gas oil, SO 2 emissions were relatively low in all cases.

  13. Exhaustion, a guide to transportation emissions

    SciTech Connect

    1998-10-01

    This publication contains a series of fact sheets on the environmental impact of the automobile, addressing the issues of vehicle exhaust and its impact, alternative and cleaner fuels, and alternative forms of transportation. The sheets are intended to serve as background information and reference material. Specific topics of the sheets include: Components of car exhaust and other automobile-related emissions; air quality in Canada; smog; climate change and the greenhouse effect; acid rain; stratospheric ozone depletion; hazardous air pollutants and the automobile; health impacts; modifications and improvements to diesel fuels; reformulated gasoline; alternative fuels such as propane, ethanol, natural gas, hydrogen, and methanol; emissions standards and controls; inspection and maintenance programs; transportation demand management; driving behavior and the environment; and indirect costs of the automobile.

  14. 40 CFR 86.1511 - Exhaust gas analysis system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Exhaust gas analysis system....

  15. 14 CFR 34.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) §...

  16. 14 CFR 34.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) §...

  17. Exhaust gas clean up process

    DOEpatents

    Walker, R.J.

    1988-06-16

    A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

  18. 40 CFR 86.211-94 - Exhaust gas analytical system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., carbon monoxide, carbon dioxide, methane, and formaldehyde. The exhaust gas analytical system is not... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES...

  19. 40 CFR 86.1544 - Calculation; idle exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1544 Calculation; idle exhaust emissions. (a) The final idle emission test results shall be reported as percent for carbon monoxide on a dry basis. (b) If a CVS sampling system is used, the...

  20. Exhaust gas clean up process

    DOEpatents

    Walker, Richard J.

    1989-01-01

    A method of cleaning an exhaust gas containing particulates, SO.sub.2 and NO.sub.x includes prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO.sub.x and SO.sub.2, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO.sub.x is removed as N.sub.2 or nitrogen-sulfonate ions and the oxides of sulfur are removed as a vaulable sulfate salt.

  1. A comparative study of the elemental composition of the exhaust emissions of cars powered by liquefied petroleum gas and unleaded petrol

    NASA Astrophysics Data System (ADS)

    Lim, McKenzie C. H.; Ayoko, Godwin A.; Morawska, Lidia; Ristovski, Zoran D.; Jayaratne, E. Rohan; Kokot, Serge

    Elements emitted from the exhausts of new Ford Falcon Forte cars powered by unleaded petrol (ULP) and liquefied petroleum gas (LPG) were measured on a chassis dynamometer. The measurements were carried out in February, June and August 2001, and at two steady state driving conditions (60 and 80 km h -1). Thirty seven elements were quantified in the exhaust samples by inductively coupled plasma mass spectrometry (ICPMS). The total emission factors of the elements from the exhausts of ULP cars were higher than those of LPG cars at both engine speeds even though high variability in the exhaust emissions from different cars was noted. The effect of the operating conditions such as mileage of the cars, engine speed, fuel and lubricating oil compositions on the emissions was studied. To investigate the effects of these conditions, multivariate data analysis methods were employed including exploratory principal component analysis (PCA), and the multi-criteria decision making methods (MCDM), preference ranking organization method for enrichment evaluation (PROMETHEE) and geometrical analysis for interactive aid (GAIA), for ranking the cars on the basis of the emission factors of the elements. PCA biplot of the complete data matrix showed a clear discrimination of the February, June and August emission test results. In addition, (i) platinum group elements (PGE) emissions were separated from each other in the three different clusters viz. Pt with February, Pd with June and Rh with August; (ii) the motor oil related elements, Zn and P, were particularly associated with the June and August tests (these vectors were also grouped with V, Al and Cu); and (iii) highest emissions of most major elements were associated with the August test after the cars have recorded their highest mileage. Extensive analysis with the aid of the MCDM ranking methods demonstrated clearly that cars powered by LPG outperform those powered by ULP. In general, cars tested in June perform better than

  2. The evolution of automobile exhaust emission control

    SciTech Connect

    Taylor, K.C.

    1993-12-31

    Automobile catalytic converters have progressed from oxidation-only systems in the mid 1970`s to the current three-way catalytic converters which control emissions of carbon monoxide, hydrocarbons, and nitrogen oxide to very low levels. New exhaust emission regulations adopted Federally and in California which come into effect during the 1990`s once again demand new emission control system technology. A new generation of catalytic converter systems coupled with attention to fuel composition characterizes this third phase of exhaust emission control.

  3. Role of average speed in N₂O exhaust emissions as greenhouse gas in a huge urban zone (MVMZ): would we need a cold sun?

    PubMed

    Castillo, S; Mac-Beath, I; Mejia, I; Camposeco, R; Bazan, G; Morán-Pineda, M; Carrera, R; Gómez, R

    2012-05-15

    Nowadays, the drastic pollution problems, some of them related with greenhouse gas emissions, have promoted important attempts to face and diminish the global warming effects on the Mexico Valley Metropolitan Zone (MVMZ) as well as on the huge urban zones around the world. To reduce the exhaust gas emissions, many efforts have been carried out to reformulate fuels and design new catalytic converters; however, it is well known that other variables such as socio-economic and transport structure factors also play an important role around this problem. The present study analyzes the roles played by several commonly-used three-way catalytic converters (TWC) and the average traffic speed in the emission of N(2)O as greenhouse gas. According to this study, by increasing the average traffic flow and avoiding constant decelerations (frequent stops) during common trips, remarkable environmental and economic benefits could be obtained due to the diminution of N(2)O and other contaminant emissions such as ammonia (NH(3)) and even CO(2) with the concomitant reduced fossil fuel consumption. The actions mentioned above could be highly viable to diminish, in general, the global warming effects and contamination problems.

  4. Mercaptans emissions in diesel and biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Corrêa, Sérgio Machado; Arbilla, Graciela

    Biodiesel and ethanol are fuels in clear growth and evidence, basically due to its relation with the greenhouse effect reduction. There are several works regarding regulated pollutants emissions, but there is a lack of reports in non-regulated emissions. In a previous paper (Corrêa and Arbilla, 2006) the emissions of aromatic hydrocarbons were reported and in 2007 another paper was published in 2008 focusing carbonyls emissions (Corrêa and Arbilla, 2008). In this work four mercaptans (methyl, ethyl, n-propyl and n-butyl mercaptans) were evaluated for a heavy-duty diesel engine, fueled with pure diesel (D) and biodiesel blends (v/v) of 2% (B2), 5% (B5), 10% (B10), and 20% (B20). The tests were carried using a six cylinder heavy-duty engine, typical of the Brazilian fleet of urban buses, during a real use across the city. The exhaust gases were diluted near 20 times and the mercaptans were sampled with glass fiber filters impregnated with mercuric acetate. The chemical analyses were performed by gas chromatography with mass spectrometry detection. The results indicated that the mercaptans emissions exhibit a reduction with the increase of biodiesel content, but this reduction is lower as the mercaptan molar mass increases. For B20 results the emission reduction was 18.4% for methyl mercaptan, 18.1% for ethyl mercaptan, 16.3% for n-propyl mercaptan, and 9.6% for n-butyl mercaptan.

  5. Measurement of automobile exhaust emissions under realistic road conditions

    SciTech Connect

    Staab, J.; Schurmann, D.

    1987-01-01

    An exhaust gas measurement system for on-board use has been developed, which enables the direct and continuous determination of the exhaust mass emissions in vehicles on the road. Such measurements under realistic traffic conditions are a valuable supplement to measurements taken on test benches, the latter, however, still being necessary. In the last two years numerous test runs were undertaken. The reliability of the on-board system could be demonstrated and a very informative view of the exhaust emissions behavior of a vehicle on the road was obtained from the test results.

  6. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Exhaust gas analytical system; CVS bag... Emission Test Procedures § 89.421 Exhaust gas analytical system; CVS bag sample. (a) Schematic drawings. Figure 4 in appendix A to this subpart is a schematic drawing of the exhaust gas analytical system...

  7. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Exhaust gas analytical system; CVS bag... Emission Test Procedures § 89.421 Exhaust gas analytical system; CVS bag sample. (a) Schematic drawings. Figure 4 in appendix A to this subpart is a schematic drawing of the exhaust gas analytical system...

  8. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Exhaust gas analytical system; CVS bag... Emission Test Procedures § 89.421 Exhaust gas analytical system; CVS bag sample. (a) Schematic drawings. Figure 4 in appendix A to this subpart is a schematic drawing of the exhaust gas analytical system...

  9. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Exhaust gas analytical system; CVS bag... Emission Test Procedures § 89.421 Exhaust gas analytical system; CVS bag sample. (a) Schematic drawings. Figure 4 in appendix A to this subpart is a schematic drawing of the exhaust gas analytical system...

  10. Polycyclic aromatic hydrocarbon emissions in diesel exhaust using gas chromatography-mass spectrometry with programmed temperature vaporization and large volume injection

    NASA Astrophysics Data System (ADS)

    Vieira de Souza, Carolina; Corrêa, Sergio Machado

    2015-02-01

    Diesel engines are significant sources of Polycyclic Aromatic Compounds (PAHs) in urban atmospheres. These compounds are widely known for their carcinogenic potential and mutagenic properties. In this study, a method was developed for the analysis of 16 priorities PAHs using gas chromatography-mass spectrometry (GC-MS) with programmable temperature vaporizer large volume injection (PTV-LVI), which allowed to be obtained detection limits below 2.0 ng mL-1. This method was evaluated in samples from stratified particulate matter and gas phase from the emissions of diesel vehicle employing diesel commercial S10 (sulfur 10 mg L-1) and B5 (biodiesel 5% v/v). A sampling system that does not employ exhaust products dilution was used to evaluate the PAHs gas-particle partition. Six PAHs were identified in extracts and gas-phase PAHs took percentage of 80% in the total PAHs emissions. The sampling system without dilution not caused a strong nucleation/condensation of the most volatile PAHs. PAHs size-particle distribution was found in higher levels in the accumulation mode.

  11. Effect of cooled EGR on performance and exhaust gas emissions in EFI spark ignition engine fueled by gasoline and wet methanol blends

    NASA Astrophysics Data System (ADS)

    Rohadi, Heru; Syaiful, Bae, Myung-Whan

    2016-06-01

    Fuel needs, especially the transport sector is still dominated by fossil fuels which are non-renewable. However, oil reserves are very limited. Furthermore, the hazardous components produced by internal combustion engine forces many researchers to consider with alternative fuel which is environmental friendly and renewable sources. Therefore, this study intends to investigate the impact of cooled EGR on the performance and exhaust gas emissions in the gasoline engine fueled by gasoline and wet methanol blends. The percentage of wet methanol blended with gasoline is in the range of 5 to 15% in a volume base. The experiment was performed at the variation of engine speeds from 2500 to 4000 rpm with 500 intervals. The re-circulated exhaust gasses into combustion chamber was 5%. The experiment was performed at the constant engine speed. The results show that the use of cooled EGR with wet methanol of 10% increases the brake torque up to 21.3%. The brake thermal efficiency increases approximately 39.6% using cooled EGR in the case of the engine fueled by 15% wet methanol. Brake specific fuel consumption for the engine using EGR fueled by 10% wet methanol decreases up to 23% at the engine speed of 2500 rpm. The reduction of CO, O2 and HC emissions was found, while CO2 increases.

  12. Aircraft Piston Engine Exhaust Emission Symposium

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A 2-day symposium on the reduction of exhaust emissions from aircraft piston engines was held on September 14 and 15, 1976, at the Lewis Research Center in Cleveland, Ohio. Papers were presented by both government organizations and the general aviation industry on the status of government contracts, emission measurement problems, data reduction procedures, flight testing, and emission reduction techniques.

  13. Exhaust gas recirculation system for an internal combustion engine

    SciTech Connect

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  14. Status of German European exhaust emission legislation

    SciTech Connect

    Seiffert, U.

    1985-01-01

    Recent legislative initiatives in West Germany and other European countries are leading to more stringent automobile exhaust emission standards. A review of the emission inventory on a global and West German basis and other factors, such as acid rain and forest damage, indicate that the contribution of automobile exhaust to the emission problem may be less than the European public assumes. As an interim step while new standards are being considered, the West German government is promoting the purchase of low-pollution vehicles through a vehicle tax reduction program.

  15. 40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Exhaust emission standards for Tier 6 and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Emissions (New Aircraft Gas Turbine Engines) § 87.23 Exhaust emission standards for Tier 6 and Tier...

  16. 40 CFR 86.109-94 - Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate emission measurements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...), and associated valves, pressure and temperature sensors. The PDP-CVS shall conform to the following... and may be required for natural gas-fueled and liquefied petroleum gas-fueled vehicles. Procedures for..., and assorted valves, and pressure and temperature sensors. The CFV sample system shall conform to...

  17. 40 CFR 86.210-08 - Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... constant mass flow system must be used to ensure a proportional THC measurement. (2) For natural gas-fueled... than 355 °F). This will be determined by a temperature sensor located on a section of the probe wall outside of the walls of the sampling system. The temperature sensor shall be insulated from any...

  18. Process for desulfurizing an exhaust gas

    SciTech Connect

    Shinoda, N.; Okino, S.; Oshima, M.; Shigeta, S.; Tatani, A.; Ukawa, N.

    1983-12-13

    A process is disclosed for desulfurizing an exhaust gas which comprises desulfurizing an exhaust gas containing SO/sub 2/ by bringing it into contact with a slurry containing calcium compounds and aluminum compounds, characterized in that the concentration of the dissolved aluminum ion in said slurry is detected and a manganese compound is supplied into said slurry in such a manner that the ratio of the concentration of manganese (including both solid and liquid) to said concentration of the dissolved aluminum ion may be maintained in a molar ratio of less than 1 in said slurry.

  19. High speed exhaust gas recirculation valve

    SciTech Connect

    Fensom, Rod; Kidder, David J.

    2005-01-18

    In order to minimize pollutants such as Nox, internal combustion engines typically include an exhaust gas recirculation (EGR) valve that can be used to redirect a portion of exhaust gases to an intake conduit, such as an intake manifold, so that the redirected exhaust gases will be recycled. It is desirable to have an EGR valve with fast-acting capabilities, and it is also desirable to have the EGR valve take up as little space as possible. An exhaust gas recirculation valve is provided that includes an exhaust passage tube, a valve element pivotally mounted within the exhaust passage tube, a linear actuator; and a gear train. The gear train includes a rack gear operatively connected to the linear actuator, and at least one rotatable gear meshing with the rack gear and operatively connected to the valve element to cause rotation of the valve element upon actuation of the linear actuator. The apparatus provides a highly compact package having a high-speed valve actuation capability.

  20. Utilization of LPG and gasoline engine exhaust emissions by microalgae.

    PubMed

    Taştan, Burcu Ertit; Duygu, Ergin; Ilbaş, Mustafa; Dönmez, Gönül

    2013-02-15

    The effect of engine exhaust emissions on air pollution is one of the greatest problems that the world is facing today. The study focused on the effects of realistic levels of engine exhaust emissions of liquid petroleum gas (LPG) and gasoline (GSN) on Phormidium sp. and Chlorella sp. Multi parameters including pH, different medial compositions, fuel types, flow rates and biomass concentrations were described in detail. Effects of some growth factors such as triacontanol (TRIA) and salicylic acid (SA) have also been tested. The maximum biomass concentration of Phormidium sp. reached after 15 days at 0.36 and 0.15 g/L initial biomass concentrations were found as 1.160 g/L for LPG emission treated cultures and 1.331 g/L for GSN emission treated cultures, respectively. The corresponding figures were 1.478 g/L for LPG emission treated cultures and 1.636 g/L for GSN emission treated cultures at 0.65 and 0.36 g/L initial Chlorella sp. biomass concentrations. This study highlights the significance of using Phormidium sp. and Chlorella sp. for utilization of LPG and GSN engine exhaust emissions by the help of growth factors.

  1. 40 CFR 87.21 - Exhaust emission standards for Tier 4 and earlier engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.21 Exhaust emission standards for Tier 4 and earlier... apply for aircraft engines manufactured before July 18, 2012 and certain engines exempted under §...

  2. 40 CFR 87.21 - Exhaust emission standards for Tier 4 and earlier engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.21 Exhaust emission standards for Tier 4 and earlier... apply for aircraft engines manufactured before July 18, 2012 and certain engines exempted under §...

  3. Diesel exhaust-gas purification system

    SciTech Connect

    Doherty, B.J.

    1982-07-01

    The design of a diesel exhaust gas purification system is presented. It will provide 2000 scfm of dry, anerobic gas (essentially nitrogen) for use in air drilling operations where drill pipe corrosion is a problem, such as geothermal applications. The system is operable in the field and may be transported via highways. It will operate at ambient temperatures up to 110/sup 0/F and requires no water - diesel fuel is used to combust excess oxygen and to generate electricity for the system. Gas production costs, including capital amortization, operations, fuel and maintenance (for reasonable utilization) are about $1.50/1000 scf.

  4. Tumorigenesis of diesel exhaust, gasoline exhaust, and related emission extracts on SENCAR mouse skin

    SciTech Connect

    Nesnow, S; Triplett, L L; Slaga, T J

    1980-01-01

    The tumorigenicity of diesel exhaust particulate emissions was examined using a sensitive mouse skin tumorigenesis model (SENCAR). The tumorigenic potency of particulate emissions from diesel, gasoline, and related emission sources was compared.

  5. Measurement of Gas-phase Acids in Diesel Exhaust

    NASA Astrophysics Data System (ADS)

    Wentzell, J. J.; Liggio, J.; Li, S.; Vlasenko, A. L.; Staebler, R. M.; Brook, J.; Lu, G.; Poitras, M.; Chan, T.

    2012-12-01

    Gas-phase acids were measured using chemical ionization mass spectrometry (CIMS) as part of the Diesel Engine Emission Research Experiment (DEERE). The CIMS technique, utilizing acetate ion (CH3COO-) as a reagent ion, proved to be a rapid (measurements on the order of seconds) and sensitive (several counts/pptv) method of quantifying the acid emissions. Diluted diesel exhaust measurements were made from a Constant Volume Sampling dilution tunnel using a light duty (1.9L turbocharged Volkswagen Jetta TDI) diesel engine equipped with an OEM diesel oxidation catalyst and exhaust gas recirculation, mounted on an engine dynamometer. Acids measured included isocyanic, nitrous, nitric, propionic and sum of lactic and oxalic, as well as other unidentified compounds. Complimentary measurements of CO, CO2, Total Hydrocarbon (THC), and NOx, were also performed. Several engine modes (different engine rpm and torque outputs) at steady state were examined to determine their effect on acid emissions. Emission rates with respect to NOx and fuel based emission factors were determined. Measurements of HONO fuel emission factors agree well with real-world measurements within a traffic tunnel.1 The first estimate of isocyanic acid emission factors from a diesel engine is reported, and suggests that the emission of this highly toxic compound in diesel exhaust should not be ignored. 1. Kurtenbach, R., Becker, K. H., Gomes, J. A. G., Kleffmann, J.,Lorzer, J. C., Spittler, M., Wiesen, P., Ackermann, R., Geyer, A.,and Platt, U.: Investigations of emissions and heterogeneous formation of HONO in a road traffic tunnel, Atmos. Environ., 35, 3385-3394, doi:10.1016/S1352-2310(01)00138-8, 2001.

  6. 40 CFR 86.511-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Exhaust gas analytical system. 86.511... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.511-90 Exhaust gas analytical system. (a) Schematic drawings. Figure F90-3 is a schematic drawing of the exhaust gas analytical system for analysis...

  7. 40 CFR 86.511-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Exhaust gas analytical system. 86.511... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.511-90 Exhaust gas analytical system. (a) Schematic drawings. Figure F90-3 is a schematic drawing of the exhaust gas analytical system for analysis...

  8. 46 CFR 52.25-20 - Exhaust gas boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working...

  9. 46 CFR 52.25-20 - Exhaust gas boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working...

  10. 46 CFR 52.25-20 - Exhaust gas boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working...

  11. 46 CFR 52.25-20 - Exhaust gas boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working...

  12. 46 CFR 52.25-20 - Exhaust gas boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working...

  13. Photocatalytic destruction of automobile exhaust emissions

    SciTech Connect

    Kaviranta, P.D.; Peden, C.H.F.

    1996-10-01

    Hydrocarbons, carbon monoxide, and nitrogen oxides contained in automobile exhaust emissions are among the major atmospheric air pollutants. During the first few minutes of a cold start of the engine, the emission levels of unburned hydrocarbon and CO pollutants are very high due to the inefficiency of the cold engine and the poor activity of the catalysts lower temperatures. Therefore, it is necessary to provide an alternative approach to deal with this specific problem in order to meet near-term regulatory requirements. Our approach has been to use known photocatalytic reactions obtainable on semiconducting powders such as titanium dioxide. In this presentation we describe our recent studies aimed at the photocatalytic reduction of unburned hydrocarbons and carbon monoxide in automobile exhaust emissions. Our results demonstrate the effective destruction of propylene into water and carbon dioxide. The conversion was found to be dependent on the propylene flow rate. The reaction rate was studied as a function of time, humidity and temperature. The effect of the power of the UV source on conversion will also be presented.

  14. Boosting devices with integral features for recirculating exhaust gas

    DOEpatents

    Wu, Ko-Jen

    2015-12-22

    According to one embodiment of the invention, a turbine housing includes a turbine inlet in fluid communication with a turbine volute configured to house a turbine wheel, the turbine inlet configured to direct an exhaust gas flow from an engine to the turbine wheel. The turbine housing also includes a turbine outlet in fluid communication with the turbine volute, the turbine outlet configured to direct the exhaust gas flow to an exhaust gas conduit and a first exhaust gas recirculation supply port located on and in fluid communication with the turbine outlet, the first exhaust gas recirculation supply port being configured to direct a portion of the exhaust gas flow to an exhaust gas recirculation supply conduit.

  15. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... true mass of both gaseous and particulate emissions in the exhaust of petroleum-fueled, natural gas... integrated system is required for THC (petroleum-fueled, natural gas-fueled, and liquefied petroleum gas... heated sample system (375 ±20 °F (191 ±11 °C)). For natural gas-fueled and liquefied petroleum...

  16. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related exhaust...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-based fuel economy, CO2 emissions, and carbon-related exhaust emissions for a model type. 600.208-12... FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Calculating Fuel Economy and Carbon-Related Exhaust Emission Values § 600.208-12 Calculation of FTP-based and...

  17. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related exhaust...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-based fuel economy, CO2 emissions, and carbon-related exhaust emissions for a model type. 600.208-12... FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Calculating Fuel Economy and Carbon-Related Exhaust Emission Values § 600.208-12 Calculation of FTP-based and...

  18. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy, CO2 emissions, and carbon-related exhaust...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-based fuel economy, CO2 emissions, and carbon-related exhaust emissions for a model type. 600.208-12... FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Calculating Fuel Economy and Carbon-Related Exhaust Emission Values § 600.208-12 Calculation of FTP-based and...

  19. 40 CFR 86.1544 - Calculation; idle exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Calculation; idle exhaust emissions. 86.1544 Section 86.1544 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Test Procedures § 86.1544 Calculation; idle exhaust emissions. (a) The final idle emission test...

  20. Interrelation of exhaust-gas constituents

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C; Voss, Fred

    1938-01-01

    This report presents the results of an investigation conducted to determine the interrelation of the constituents of the exhaust gases of internal-combustion engines and the effect of engine performance on these relations. Six single-cylinder, liquid-cooled tests engines and one 9-cylinder radial air-cooled engine were tested. Various types of combustion chambers were used and the engines were operated at compression ratios from 5.1 to 7.0 using spark ignition and from 13.5 to 15.6 using compression ignition. The investigation covered a range of engine speeds from 1,500 to 2,100 r.p.m. The fuels used were two grades of aviation gasoline, auto diesel fuel, and laboratory diesel fuel. Power, friction, and fuel-consumption data were obtained from the single-cylinder engines at the same time that the exhaust-gas samples were collected.

  1. Vehicle's exhaust emissions under car-following model

    NASA Astrophysics Data System (ADS)

    Tang, Tie-Qiao; Li, Jin-Gang; Zhang, Dong; Wang, Yun-Peng

    2014-12-01

    In this paper, we explore each vehicle's exhaust emissions under the full velocity difference (FVD) model and the car-following model with consideration of the traffic interruption probability during three typical traffic situations. Numerical results show that the vehicle's exhaust emissions of the second model are less than those of the first model under the three typical traffic situations, which shows that the second model can reduce each vehicle's exhaust emissions.

  2. Exhaust Emission Rates for Heavy-Duty Onroad Vehicles in the Next Version of MOVES

    EPA Science Inventory

    Derivation of the exhaust and crankcase emission rates for HC, CO, NOx, and PM emissions from medium and heavy-duty diesel, gasoline, and compressed natural gas vehicles. Including updates for emission rates for 2007 and later model year diesel vehicles

  3. Organic positive ions in aircraft gas-turbine engine exhaust

    NASA Astrophysics Data System (ADS)

    Sorokin, Andrey; Arnold, Frank

    Volatile organic compounds (VOCs) represent a significant fraction of atmospheric aerosol. However the role of organic species emitted by aircraft (as a consequence of the incomplete combustion of fuel in the engine) in nucleation of new volatile particles still remains rather speculative and requires a much more detailed analysis of the underlying mechanisms. Measurements in aircraft exhaust plumes have shown the presence of both different non-methane VOCs (e.g. PartEmis project) and numerous organic cluster ions (MPIK-Heidelberg). However the link between detected organic gas-phase species and measured mass spectrum of cluster ions is uncertain. Unfortunately, up to now there are no models describing the thermodynamics of the formation of primary organic cluster ions in the exhaust of aircraft engines. The aim of this work is to present first results of such a model development. The model includes the block of thermodynamic data based on proton affinities and gas basicities of organic molecules and the block of non-equilibrium kinetics of the cluster ions evolution in the exhaust. The model predicts important features of the measured spectrum of positive ions in the exhaust behind aircraft. It is shown that positive ions emitted by aircraft engines into the atmosphere mostly consist of protonated and hydrated organic cluster ions. The developed model may be explored also in aerosol investigations of the background atmosphere as well as in the analysis of the emission of fine aerosol particles by automobiles.

  4. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system; diesel engines. 86.1310-90 Section 86.1310-90 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1310-90 Exhaust gas sampling and analytical system; diesel...

  5. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... system; diesel engines. 86.1310-90 Section 86.1310-90 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1310-90 Exhaust gas sampling and analytical system; diesel...

  6. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P.; Kieser, Andrew J.; Rodman, Anthony; Liechty, Michael P.; Hergart, Carl-Anders; Hardy, William L.

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  7. Measuring soot particles from automotive exhaust emissions

    NASA Astrophysics Data System (ADS)

    Andres, Hanspeter; Lüönd, Felix; Schlatter, Jürg; Auderset, Kevin; Jordan-Gerkens, Anke; Nowak, Andreas; Ebert, Volker; Buhr, Egbert; Klein, Tobias; Tuch, Thomas; Wiedensohler, Alfred; Mamakos, Athanasios; Riccobono, Francesco; Discher, Kai; Högström, Richard; Yli-Ojanperä, Jaakko; Quincey, Paul

    2014-08-01

    The European Metrology Research Programme participating countries and the European Union jointly fund a three year project to address the need of the automotive industry for a metrological sound base for exhaust measurements. The collaborative work on particle emissions involves five European National Metrology Institutes, the Tampere University of Technology, the Joint Research Centre for Energy and Transport and the Leibniz Institute for Tropospheric Research. On one hand, a particle number and size standard for soot particles is aimed for. Eventually this will allow the partners to provide accurate and comparable calibrations of measurement instruments for the type approval of Euro 5b and Euro 6 vehicles. Calibration aerosols of combustion particles, silver and graphite proof partially suitable. Yet, a consensus choice together with instrument manufactures is pending as the aerosol choice considerably affects the number concentration measurement. Furthermore, the consortium issued consistent requirements for novel measuring instruments foreseen to replace today's opacimeters in regulatory periodic emission controls of soot and compared them with European legislative requirements. Four partners are conducting a metrological validation of prototype measurement instruments. The novel instruments base on light scattering, electrical, ionisation chamber and diffusion charging sensors and will be tested at low and high particle concentrations. Results shall allow manufacturers to further improve their instruments to comply with legal requirements.

  8. Short review on heat recovery from exhaust gas

    NASA Astrophysics Data System (ADS)

    Jaber, Hassan; Khaled, Mahmoud; Lemenand, Thierry; Ramadan, Mohamad

    2016-07-01

    The increasing growth of energy demand leads to issues associated with energy demand reduction and propose new energy efficient solutions. Heat recovery consists the most promising solution especially in regions where renewable energy resources are not available. That is why the domain of heat recovery has shown a tremendous improvement during the recent years. On the other hand, few works have been dedicated to heat recovery from exhaust gas. This paper presents a review on heat recovery from exhaust gas. The authors propose to classify exhaust gas heat recovery systems within three different classifications that are exhaust gas temperature, utilized equipment and recovery purposes.

  9. Exhaust gas provides alternative gas source for cyclic EOR

    SciTech Connect

    Stoeppelwerth, G.P.

    1993-04-26

    Injected exhaust gas from a natural gas or propane engine enhanced oil recovery from several Nebraska and Kansas wells. The gas, containing nitrogen and carbon dioxide, is processed through a catalytic converted and neutralized as necessary before being injected in a cyclic (huff and puff) operation. The process equipment is skid or trailer mounted. The engine in these units drives the gas-injection compressor. The gas after passing through the converter and neutralizers is approximately 13% CO[sub 2] and 87% N[sub 2]. The pH is above 6.0 and dew point is near 0 F at atmospheric pressure. Water content is 0.0078 gal/Mscf. This composition is less corrosive than pure CO[sub 2] and reduces oil viscosity by 30% at 1,500 psi. The nitrogen supplies reservoir energy and occupies pore space. The paper describes gas permeability, applications, and field examples.

  10. 40 CFR 600.113-12 - Fuel economy, CO2 emissions, and carbon-related exhaust emission calculations for FTP, HFET, US06...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon... the non-zero value for CREE for purposes of meeting the greenhouse gas emission standards described in... electricity greenhouse gas emission rate at the powerplant, in grams per watt-hour). 2478 is the...

  11. Remote sensing of temperature and concentration profiles of a gas jet by coupling infrared emission spectroscopy and LIDAR for characterization of aircraft engine exhaust

    NASA Astrophysics Data System (ADS)

    Offret, J.-P.; Lebedinsky, J.; Navello, L.; Pina, V.; Serio, B.; Bailly, Y.; Hervé, P.

    2015-05-01

    Temperature data play an important role in the combustion chamber since it determines both the efficiency and the rate of pollutants emission of engines. Air pollution problem concerns the emissions of gases such as CO, CO2, NO, NO2, SO2 and also aerosols, soot and volatile organic compounds. Flame combustion occurs in hostile environments where temperature and concentration profiles are often not easy to measure. In this study, a temperature and CO2 concentration profiles optical measurement method, suitable for combustion analysis, is discussed and presented. The proposed optical metrology method presents numerous advantages when compared to intrusive methods. The experimental setup comprises a passive radiative emission measurement method combined with an active laser-measurement method. The passive method is based on the use of gas emission spectroscopy. The experimental spectrometer device is coupled with an active method. The active method is used to investigate and correct complex flame profiles. This method similar to a LIDAR (Light Detection And Ranging) device is based on the measurement of Rayleigh scattering of a short laser pulse recorded using a high-speed streak camera. The whole experimental system of this new method is presented. Results obtained on a small-scale turbojet are shown and discussed in order to illustrate the potentials deliver by the sophisticated method. Both temperature and concentration profiles of the gas jet are presented and discussed.

  12. Evolution of on-road vehicle exhaust emissions in Delhi

    NASA Astrophysics Data System (ADS)

    Goel, Rahul; Guttikunda, Sarath K.

    2015-03-01

    For a 40-year horizon (1990-2030), on-road vehicle exhaust emissions were evaluated, retrospectively and prospectively, for the largest urban agglomeration in India - the Greater Delhi region with a combined population of 22 million in 2011 (Delhi along with Ghaziabad, Noida, Greater Noida, Faridabad and Gurgaon). Emissions of particulate matter, sulfur dioxide, carbon monoxide and volatile organic compounds (VOCs) reached their peak during late 1990s through early 2000s after which they reduced significantly through year 2012. On the other hand, nitrogen oxides (NOx) and carbon dioxide show an increasing trend. The most reduction in emissions between 1998 and 2012 occurred as a result of implementation of four sets of vehicular emission standards, removal of lead, reduction of sulfur content, mandatory retirement of older commercial vehicles, and conversion of diesel and petrol run public transport vehicles to compressed natural gas. In addition, changes in the vehicular technology have also contributed to controlling emissions especially in case of auto-rickshaws and motorized two-wheelers, which changed from two-stroke to four-stroke. The rising trend of NOx along with the presence of VOCs indicates increasing tendency to form ground-level ozone and as a result, smog in the region. We predict that the current regime of vehicle technology, fuel standards, and high growth rate of private vehicles, is likely to nullify all the past emission reductions by the end of 2020s.

  13. Dynamics of exhaust gas generated by arc extinction

    NASA Astrophysics Data System (ADS)

    Hayashi, Yasushi; Watanabe, Masato; Okino, Akitoshi; Hotta, Eiki

    2001-11-01

    We report an analytical study on hot gas exhaust process of a SF6 gas circuit breaker (GCB), after current interruption. The behavior of the hot gas has been studied based on measured gas temperature and simulation results of gas composition. We also propose a mechanism of interaction between the hot gas and pressure waves, which causes a self-blocking of the exhaust gas. During the heavy current interruption, the flow model suggests that the dielectric strength of the hot gas is affected by the pressure waves that are generated by the hot gas exhaustion. We believe that the results reported in this article provide guidance for the optimum structure of the exhaust chamber for small size GCB, operating at very high interrupting current.

  14. Exhaust gas recirculation method for internal combustion engines

    SciTech Connect

    Kawanabe, T.; Kimura, K.; Asakura, M.; Shiina, T.

    1988-07-19

    This patent describes a method of controlling exhaust gas recirculation in an internal combustion engine having an exhaust passage, an intake passage, an exhaust gas recirculating passage communicating the exhaust passage with the intake passage, and exhaust gas recirculating valve; and a transmission having a shift lever. The valve opening of the exhaust gas recirculating valve is controlled in response to operating conditions of the engine so as to regulate the amount of exhaust gas recirculation to values appropriate to the operating conditions of the engine. The method comprising the steps of (1) determining whether or not the engine is in at least one of a predetermined accelerating condition and a predetermined decelerating condition; (2) varying the valve opening of the exhaust gas recirculating valve by a predetermined value when the engine is determined to be in at least one of the predetermined accelerating condition and the predetermined decelerating condition; (3) detecting a position of the shift lever of the transmission; and (4) correcting the predetermined value in accordance with the detected position of the shift lever so as to increase the valve opening of the exhaust gas recirculating valve as the shift lever of the transmission is set to a higher speed position.

  15. Exhaust gas purification system for lean burn engine

    DOEpatents

    Haines, Leland Milburn

    2002-02-19

    An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

  16. 40 CFR 86.211-94 - Exhaust gas analytical system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Exhaust gas analytical system. 86.211... analytical system. The provisions of § 86.111-94 apply to this subpart, except that the NOX analyzer is optional. The exhaust gas analytical system must contain components necessary to determine...

  17. 40 CFR 86.211-94 - Exhaust gas analytical system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas analytical system. 86.211... analytical system. The provisions of § 86.111-94 apply to this subpart, except that the NOX analyzer is optional. The exhaust gas analytical system must contain components necessary to determine...

  18. 40 CFR 86.211-94 - Exhaust gas analytical system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas analytical system. 86.211... analytical system. The provisions of § 86.111-94 apply to this subpart, except that the NOX analyzer is optional. The exhaust gas analytical system must contain components necessary to determine...

  19. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use...

  20. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use...

  1. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use...

  2. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use...

  3. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use...

  4. 30 CFR 7.102 - Exhaust gas cooling efficiency test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Exhaust gas cooling efficiency test. 7.102 Section 7.102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING....102 Exhaust gas cooling efficiency test. (a) Test procedures. (1) Follow the procedures specified...

  5. 30 CFR 7.102 - Exhaust gas cooling efficiency test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exhaust gas cooling efficiency test. 7.102 Section 7.102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING....102 Exhaust gas cooling efficiency test. (a) Test procedures. (1) Follow the procedures specified...

  6. Effect of gasoline/methanol blends on motorcycle emissions: Exhaust and evaporative emissions

    NASA Astrophysics Data System (ADS)

    Li, Lan; Ge, Yunshan; Wang, Mingda; Li, Jiaqiang; Peng, Zihang; Song, Yanan; Zhang, Liwei

    2015-02-01

    The emission characteristics of motorcycles using gasoline and M15 (consisting of 85% gasoline and 15% methanol by volume) were investigated in this article. Exhaust and evaporative emissions, including regulated and unregulated emissions, of three motorcycles were investigated on the chassis dynamometer over the Urban Driving Cycle (UDC) and in the Sealed Housing for Evaporative Determination (SHED), respectively. The regulated emissions were detected by an exhaust gas analyzer directly. The unregulated emissions, including carbonyls, volatile organic compounds (VOCs) and methanol, were sampled through battery-operated air pumps using tubes coated with 2,4-dintrophenylhydrazine (DNPH), Tenax TA and silica gel, respectively. The experimental results showed that, for exhaust emission, compared with those from gasoline fueled motorcycles, the concentration of total hydrocarbons (THC) and CO from motorcycles fueled with M15 decreased by 11%-34.5% and 63%-84% respectively, while the concentration of NOx increased by 76.9%-107.7%. Compared with those from gasoline fueled motorcycles, BTEX from motorcycles fueled with M15 decreased by 16%-60% while formaldehyde increased by 16.4%-52.5%. For evaporative emission, diurnal losses were more than hot soak losses and turned out to be dominated in evaporative emissions. In addition, compared with gasoline fueling motorcycles, the evaporative emissions of THC, carbonyls and VOCs from motorcycles fueled with M15 increased by 11.7%-37%, 38%-45% and 16%-42%, respectively. It should be noted that the growth rate of methanol was as high as 297%-1429%. It is important to reduce the evaporative emissions of methanol fueling motorcycles.

  7. 14 CFR 34.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE... Turbine Engines) § 34.64 Sampling and analytical procedures for measuring gaseous exhaust emissions....

  8. 14 CFR 34.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE... Turbine Engines) § 34.64 Sampling and analytical procedures for measuring gaseous exhaust emissions....

  9. Exhaust system with emissions storage device and plasma reactor

    DOEpatents

    Hoard, John W.

    1998-01-01

    An exhaust system for a combustion system, comprising a storage device for collecting NO.sub.x, hydrocarbon, or particulate emissions, or mixture of these emissions, and a plasma reactor for destroying the collected emissions is described. After the emission is collected in by the storage device for a period of time, the emission is then destroyed in a non-thermal plasma generated by the plasma reactor. With respect to the direction of flow of the exhaust stream, the storage device must be located before the terminus of the plasma reactor, and it may be located wholly before, overlap with, or be contained within the plasma reactor.

  10. 40 CFR 86.1343-88 - Calculations; particulate exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...), mm Hg (kPa). (vi) Tp = Average temperature of dilute exhaust entering the positive displacement pump... unrestricted discharge, Pis is negligible and can be assumed = 0.) (D) Tis = Average temperature of the dilute... temperature of the dilute exhaust sample at the inlet to the exit side gas meter or flow instrumentation,...

  11. 40 CFR 86.1343-88 - Calculations; particulate exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...), mm Hg (kPa). (vi) Tp = Average temperature of dilute exhaust entering the positive displacement pump... unrestricted discharge, Pis is negligible and can be assumed = 0.) (D) Tis = Average temperature of the dilute... temperature of the dilute exhaust sample at the inlet to the exit side gas meter or flow instrumentation,...

  12. 40 CFR 86.1343-88 - Calculations; particulate exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...), mm Hg (kPa). (vi) Tp = Average temperature of dilute exhaust entering the positive displacement pump... unrestricted discharge, Pis is negligible and can be assumed = 0.) (D) Tis = Average temperature of the dilute... temperature of the dilute exhaust sample at the inlet to the exit side gas meter or flow instrumentation,...

  13. Field Tests of a Laser Raman Measurement System for Aircraft Engine Exhaust Emissions

    DTIC Science & Technology

    1974-10-01

    practical one. The advantages of optical exhaust gas measurements versus probing systems has been demonstrated. It now remains to solve the remaining...Raman system NOVA digital data processor has the capability to service such additional measurements. If velocity information is desired a study should be...AD/A-003 648 FIELD TESTS OF A LASER RAMAN MEASURE- MENT SYSTEM FOR AIRCRAFT ENGINE EXHAUST EMISSIONS Donald A. Leunard Avoo Everett Researoh

  14. Boosting devices with integral features for recirculating exhaust gas

    DOEpatents

    Wu, Ko -Jen

    2015-09-15

    According to one embodiment of the invention, a compressor housing includes a compressor inlet in fluid communication with a compressor volute configured to house a compressor wheel, the compressor inlet configured to provide a first air flow to the compressor wheel and a compressor outlet in fluid communication with the compressor volute, the compressor outlet configured to direct a compressed gas to an intake manifold. The compressor housing further includes an exhaust gas recirculation inlet port in fluid communication with the compressor volute, the exhaust gas recirculation inlet port being configured to combine an exhaust gas flow with the air flow to the compressor wheel.

  15. Engine with pulse-suppressed dedicated exhaust gas recirculation

    SciTech Connect

    Keating, Edward J.; Baker, Rodney E.

    2016-06-07

    An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.

  16. Non-exhaust PM emissions from electric vehicles

    NASA Astrophysics Data System (ADS)

    Timmers, Victor R. J. H.; Achten, Peter A. J.

    2016-06-01

    Particulate matter (PM) exposure has been linked to adverse health effects by numerous studies. Therefore, governments have been heavily incentivising the market to switch to electric passenger cars in order to reduce air pollution. However, this literature review suggests that electric vehicles may not reduce levels of PM as much as expected, because of their relatively high weight. By analysing the existing literature on non-exhaust emissions of different vehicle categories, this review found that there is a positive relationship between weight and non-exhaust PM emission factors. In addition, electric vehicles (EVs) were found to be 24% heavier than equivalent internal combustion engine vehicles (ICEVs). As a result, total PM10 emissions from EVs were found to be equal to those of modern ICEVs. PM2.5 emissions were only 1-3% lower for EVs compared to modern ICEVs. Therefore, it could be concluded that the increased popularity of electric vehicles will likely not have a great effect on PM levels. Non-exhaust emissions already account for over 90% of PM10 and 85% of PM2.5 emissions from traffic. These proportions will continue to increase as exhaust standards improve and average vehicle weight increases. Future policy should consequently focus on setting standards for non-exhaust emissions and encouraging weight reduction of all vehicles to significantly reduce PM emissions from traffic.

  17. Further exhaust emission control for two-stroke engines

    SciTech Connect

    Sato, Kazuo; Nakano, Masamitsu; Ukawa, Haruo; Inaga, Hisashi

    1994-09-01

    Two-stroke engines are being utilized in large numbers as small utility, lawn and garden equipment engines. The following two subjects were examined with regards to exhaust emission control. The first subject was to compare the theoretical values of a combustion model simulation with the experimentally measured values of the base line emission of two-stroke volume. The second subject was to examine the emission conformability to the 1995 and 1999 California Air Resources Board (CARB) exhaust emission regulations California Regulations for 1995 and Later Utility and Lawn and Garden Equipment Engine, adopted at March 20, 1992, amended, at November 3, 1993. in two-stroke engines with various combinations between various fuels, fuel supply systems and scavenging systems. For this subject it was determine;that the emission control systems based on the lean combustion can be used to meet the 1995 CARB exhaust emission regulations. However, it was also concluded that to meet the 1999 CARB exhaust emission regulations, various emission control systems with various combinations regarding such parameters as fuels, scavenging systems and exhaust systems must be used. 27 refs., 20 figs., 4 tabs.

  18. Effects of jet exhaust gas properties on exhaust simulation and afterbody drag

    NASA Technical Reports Server (NTRS)

    Compton, W. B., III

    1975-01-01

    The effect of varying the jet exhaust's ratio of specific heats, gas constant, and temperature on airplane afterbody drag was investigated. Jet exhaust simulation parameters were evaluated also. Subsonic and transonic tests were made using a single nacelle model with afterbodies having boattail angles of 10 deg and 20 deg. Besides air, three other jet exhaust gases were investigated. The ratios of specific heats, gas constants, and total temperatures of the four exhaust gases ranged from 1.40 to 1.26, 287 to 376 J/kg-K, and 300 to 1013 K, respectively. For steep boattail angles, and transonic speeds and typical turbojet pressure ratios, the current data indicate that the use of air to simulate a dry turbojet exhaust can result in an overprediction of afterbody drag as high as 17 percent of the dry turbojet value.

  19. 40 CFR 86.1511 - Exhaust gas analysis system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum... Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Exhaust gas analysis system....

  20. 40 CFR 86.1511 - Exhaust gas analysis system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum... Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Exhaust gas analysis system....

  1. 40 CFR 86.1511 - Exhaust gas analysis system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum... Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Exhaust gas analysis system....

  2. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum... Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Exhaust gas sampling system....

  3. Two stroke engine exhaust emissions separator

    DOEpatents

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Raterman, Kevin T.

    2002-01-01

    A separator for substantially resolving at least one component of a process stream, such as from the exhaust of an internal combustion engine. The separator includes a body defining a chamber therein. A nozzle housing is located proximate the chamber. An exhaust inlet is in communication with the nozzle housing and the chamber. A nozzle assembly is positioned in the nozzle housing and includes a nozzle moveable within and relative to the nozzle housing. The nozzle includes at least one passage formed therethrough such that a process stream entering the exhaust inlet connection passes through the passage formed in the nozzle, which imparts a substantially rotational flow to the process stream as it enters the chamber. A positioning member is configured to position the nozzle relative to the nozzle housing in response to changes in process stream pressure to adjust flowrate of said process stream entering into the chamber.

  4. Two stroke engine exhaust emissions separator

    DOEpatents

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Raterman, Kevin T.

    2003-04-22

    A separator for substantially resolving at least one component of a process stream, such as from the exhaust of an internal combustion engine. The separator includes a body defining a chamber therein. A nozzle housing is located proximate the chamber. An exhaust inlet is in communication with the nozzle housing and the chamber. A nozzle assembly is positioned in the nozzle housing and includes a nozzle moveable within and relative to the nozzle housing. The nozzle includes at least one passage formed therethrough such that a process stream entering the exhaust inlet connection passes through the passage formed in the nozzle and imparts a substantially rotational flow to the process stream as it enters the chamber. A positioning member is configured to position the nozzle relative to the nozzle housing in response to changes in process stream pressure thereby adjusting flowrate of said process stream entering into the chamber.

  5. Development of Exhaust Gas Driven Absorption Chiller-Heater

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Endou, Tetsuya; Saito, Kiyoshi; Kawai, Sunao

    Waste heat from co-generation systems are usually recovered by hot water or steam, those are used to drive absorption refrigerators at cooling time, and those are used for heating via heat exchangers at heating time. However waste heat from micro gas turbines are discharged in the form of exhaust gas, it is simple that exhaust gas is directly supplied to absorption chiller-heaters. In the first report we studied cooling cycle, and this second paper, we evaluated various absorption heating cycles for exhaust gas driven absorption chiller-heaters, and adopted one of these cycles for the prototype machine. Also, we experimented with the prototype for wide range condition and got the heating characteristics. Based on the experimental data, we developed a simulation model of the static characteristics, and then studied how to increase the output by limited exhaust gas.

  6. The Development of Miniaturization Infrared Exhaust Gas Sensor

    NASA Astrophysics Data System (ADS)

    Chen, Hongyan; Zhang, Bing; Li, Zhibin; Liu, Wenzhen

    In order to solve the environmental pollution caused by motor vehicle exhaust, this article designed and developed a miniaturized infrared exhaust gas sensor, can effectively detect the concentration of CO2, CO, hydrocarbons, solves the existing sensor of large volume, slow response, etc.

  7. Gas flow means for improving efficiency of exhaust hoods

    DOEpatents

    Gadgil, Ashok J.

    1994-01-01

    Apparatus for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas mani-fold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gas from the front of the individual toward the contaminants.

  8. Gas flow means for improving efficiency of exhaust hoods

    DOEpatents

    Gadgil, A.J.

    1994-01-11

    Apparatus is described for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas manifold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gas from the front of the individual toward the contaminants. 15 figures.

  9. 40 CFR 94.8 - Exhaust emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for Compression-Ignition Marine Engines § 94.8 Exhaust emission standards. (a) The Tier 1 standards of.... (1) Tier 1 standards. NOX emissions from model year 2004 and later engines with displacement of 2.5... speed is less than 130 rpm. (ii) 45.0 × N−0.20 when maximum test speed is at least 130 but less...

  10. Measuring Carbon Monoxide in Auto Exhaust by Gas Chromatography.

    ERIC Educational Resources Information Center

    Jaffe, Dan; Herndon, Scott

    1995-01-01

    Presents a simple and reliable technique using commonly available equipment for monitoring carbon monoxide in automobile exhaust. The experiment utilizes a gas chromatograph and a thermal conductivity detector (TCD). (DDR)

  11. 40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Sampling and analytical procedures for measuring smoke exhaust emissions. 87.82 Section 87.82 Protection of Environment ENVIRONMENTAL PROTECTION... (Aircraft Gas Turbine Engines) § 87.82 Sampling and analytical procedures for measuring smoke...

  12. Method and apparatus for processing exhaust gas with corona discharge

    DOEpatents

    Barlow, Stephan E.; Orlando, Thomas M.; Tonkyn, Russell G.

    1999-01-01

    The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes.

  13. Method and apparatus for processing exhaust gas with corona discharge

    DOEpatents

    Barlow, S.E.; Orlando, T.M.; Tonkyn, R.G.

    1999-06-22

    The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes. 12 figs.

  14. Exhaust emissions reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.; Stuckas, K. J.; Tucker, J. R.; Meyers, J. E.

    1982-01-01

    Three concepts which, to an aircraft piston engine, provide reductions in exhaust emissions of hydrocarbons and carbon monoxide while simultaneously improving fuel economy. The three chosen concepts, (1) an improved fuel injection system, (2) an improved cooling cylinder head, and (3) exhaust air injection, when combined, show a synergistic relationship in achieving these goals. In addition, the benefits of variable ignition timing were explored and both dynamometer and flight testing of the final engine configuration were accomplished.

  15. [Preparation of ethanol-diesel fuel blends and exhausts emission characteristics in diesel engine].

    PubMed

    Zhang, Runduo; He, Hong; Zhang, Changbin; Shi, Xiaoyan

    2003-07-01

    The technology that diesel oil is partly substituted by ethanol can reduce diesel engine exhausts emission, especially fuel soot. This research is concentrated on preparation of ethanol-diesel blend fuel and exhausts emission characteristics using diesel engine bench. Absolute ethanol can dissolve into diesel fuel at an arbitrary ratio. However, a trace of water (0.2%) addition can lead to the phase separation of blends. Organic additive synthesized during this research can develop the ability of resistance to water and maintain the stability of ethanol-diesel-trace amounts of water system. The effects of 10%, 20%, and 30% ethanol-diesel fuel blends on exhausts emission, were compared with that of diesel fuel in direct injection (DI) diesel engine. The optimum ethanol percentage for ethanol-diesel fuel blends was 20%. Using 20% ethanol-diesel fuel blend with 2% additive of the total volume, bench diesel engine showed a large amount decrease of exhaust gas, e.g. 55% of Bosch smoke number, 70% of HC emission, and 45% of CO emission at 13 kW and 1540 r/min. Without the addition of additive, the blend of ethanol produced new organic compounds such as ethanol and acetaldehyde in tail gas. However, the addition of additive obviously reduced the emission of ethanol and acetaldehyde.

  16. Jet engine exhaust emissions of high altitude commercial aircraft projected to 1990

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high-altitude cruise conditions are presented. The forecasts are based on:(1) current knowledge of emission characteristics of combustors and augmentors; (2) the status of combustion research in emission reduction technology; and (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft fueled by either JP fuel, liquefied natural gas, or hydrogen. Results are presented for cruise conditions in terms of both an emission index (g constituent/kg fuel) and an emission rate (g constituent/hr).

  17. Development of Exhaust Gas Driven Absorption Chiller-Heater

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Endou, Tetsuya; Saito, Kiyoshi; Kawai, Sunao

    Micro gas turbines are expected as engines for the distributed co-generation systems, performing power generation and heat recovery. Waste heat from micro gas turbines are discharged in the form of exhaust gas, and it is simple that exhaust gas is directly supplied to an absorption refrigerator. In this paper, we evaluated various single-double effect absorption cycles for exhaust gas driven absorption refrigerators, and clarified that the difference of performance among these cycles are little. We adopted one of these cycles for the prototype machine, and experimented with it to get the partial load characteristics and the effect of cooling water temperature on the performance. Based on the experimental data, we developed as imulation model of the static characteristics, and studied the direction of improvement.

  18. 40 CFR 86.209-94 - Exhaust gas sampling system; gasoline-fueled vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system; gasoline... Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty... sampling system; gasoline-fueled vehicles. The provisions of § 86.109-90 apply to this subpart....

  19. 40 CFR 86.209-94 - Exhaust gas sampling system; gasoline-fueled vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Exhaust gas sampling system; gasoline... Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty... sampling system; gasoline-fueled vehicles. The provisions of § 86.109-90 apply to this subpart....

  20. 40 CFR 86.209-94 - Exhaust gas sampling system; gasoline-fueled vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Exhaust gas sampling system; gasoline... Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty... sampling system; gasoline-fueled vehicles. The provisions of § 86.109-90 apply to this subpart....

  1. 40 CFR 86.209-94 - Exhaust gas sampling system; gasoline-fueled vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system; gasoline... Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty... sampling system; gasoline-fueled vehicles. The provisions of § 86.109-90 apply to this subpart....

  2. [Emission characteristics of polycyclic aromatic hydrocarbons in exhaust particles from a diesel car].

    PubMed

    Tan, Pi-Qiang; Zhou, Zhou; Hu, Zhi-Yuan; Lou, Di-Ming

    2013-03-01

    The emission characteristics of polycyclic aromatic hydrocarbons (PAHs) in exhaust particles from a diesel car were studied. In the experiment, pure diesel fuel and B10 fuel with a biodiesel blend ratio of 10% were chosen. The gaseous emissions of HC, CO and NO(x) under New European Driving Cycle (NEDC) were measured, and exhaust particulate matter (PM) samples were analyzed by gas chromatography-mass spectrometry. The emission characteristics of PAHs in exhaust particles were highlighted. The results show that the emission concentrations of HC, CO, NO(x), and PM decreased when the diesel car used B10 fuel. Fluoranthene and pyrene were dominant in PAHs of PM emissions when the diesel car used pure diesel or B10 fuel. Compared to pure diesel, there was a slight increase in low-ring PAHs emissions when the diesel car used B10 fuel. On the contrary, PAHs emissions in middle and high-ring declined significantly. Besides, Benzo [ a] pyrene equivalent toxicity analysis results show that the BEQs of B10 fuel decreased by 21.6% compared to pure diesel. That means the toxicity of PAHs in exhaust particles declined when the diesel car used biodiesel fuel.

  3. Exhaust emissions from ships at berth

    NASA Astrophysics Data System (ADS)

    Cooper, D. A.

    Emission measurements have been carried out on board six ships at berth during normal real-world operation (hotelling, unloading and loading activities). The study included three passenger ferries, one transoceanic container/ro-ro, one transoceanic car/truck carrier, and one chemical tanker. Emissions were measured from 22 auxiliary engines (AEs, medium and high-speed marine diesels) covering seven engine models and ranging in size from 720 to 2675 kW maximum output. The fuels varied from low sulphur gasoils ( 2.91 cst viscosity) through to residual oils ( 411 cst viscosity). Both specific emission factors ( g kWh -1) at a given engine load and total emissions (kg) of nitrogen oxides (NO x), sulphur dioxide, carbon monoxide, hydrocarbons, carbon dioxide, particulate matter (PM) and polyaromatic hydrocarbons during actual harbour stops were determined. In addition, some preliminary measurements to investigate PM size distributions were undertaken. The specific emissions showed significant variations between the different engine models and also within the same engine model on board the same ship. For example NO x emissions varied between 9.6 and 20.2 g kWh corr-1 between all engines and 14.2- 18.6 g kWh corr-1 between engines of the same model and fuel. Other emissions from boiler use and possible main engine warm-up prior to departure were in general expected to be considerably less than those from the AEs. The results obtained for the three passenger ferries demonstrate that empirically derived, emission formulae using dead weight tonnage can prove to be a cost-effective and accurate tool for harbour emission inventories.

  4. Ground-based aircraft exhaust measurements of a Lufthansa Airbus A340 using FTIR emission spectrometry

    NASA Astrophysics Data System (ADS)

    Schaefer, Klaus; Heland, Joerg

    1999-01-01

    The emission inventories of aircraft emissions are being set up using flight routing data and test rig measurements of the engine manufacturers for certification purposes which have to be extrapolated with respect to the actual parameters at cruise altitude. Precise data from in-service engines are not existing. FTIR-emission-spectroscopy as a remote sensing multi-component exhaust gas analysis method has been further developed to specify the traceable molecules in aircraft exhausts, to determine the detection limits, and to obtain reliable statements concerning its accuracy. The first measurement with the Airbus A340 engine CFM56-5C2 during run up tests at ground level showed the overall ability of the FTIR-emission system to analyze the exhausts of modern gas turbines with high bypass ratio and mixing of fan air into the exhausts before the nozzle exit. Good quality spectra were measured and analyzed with respect to the mixing rations of CO2, H2O, CO, NO, and N2O, and the emission indices of CO, NO, and N2O. Total measurement times at one thrust level should be about 15 minutes to obtain reliable result which can be compared to the ICAO data of this engine.

  5. Damage of natural stone tablets exposed to exhaust gas under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Farkas, Orsolya; Szabados, György; Török, Ákos

    2016-04-01

    Natural stone tablets were exposed to exhaust gas under laboratory conditions to assess urban stone damage. Cylindrical test specimens (3 cm in diameter) were made from travertine, non-porous limestone, porous limestone, rhyolite tuff, sandstone, andesite, granite and marble. The samples were exposed to exhaust gas that was generated from diesel engine combustion (engine type: RÁBA D10 UTSLL 160, EURO II). The operating condition of the internal combustion engine was: 1300 r/m (app 50%). The exhaust gas was diverted into a pipe system where the samples were placed perpendicular to main flow for 1, 2, 4, 8 and 10 hours, respectively. The exhaust emission was measured by using AVL particulate measurement technology; filter paper method (AVL 415). The stone samples were documented and selective parameters were measured prior to and after exhaust gas exposure. Density, volume, ultrasonic pulse velocity, mineral composition and penetration depth of emission related particulate matter were recorded. The first results indicate that after 10 hours of exposure significant amount of particulate matter deposited on the stone surface independently from the surface properties and porosity. The black soot particles uniformly covered all types of stones, making hard to differentiate the specimens.

  6. 40 CFR 86.1544 - Calculation; idle exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and... Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks;...

  7. 40 CFR 86.244-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... relevant pollutant, i.e., THC, CO, THCE, NMHC, NMHCE, CH4, NOX, and CO2 in grams per vehicle mile. ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Calculations; exhaust emissions. 86.244-94 Section 86.244-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  8. 40 CFR 86.244-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... relevant pollutant, i.e., THC, CO, THCE, NMHC, NMHCE, CH4, NOX, and CO2 in grams per vehicle mile. ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Calculations; exhaust emissions. 86.244-94 Section 86.244-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  9. 40 CFR 86.244-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... relevant pollutant, i.e., THC, CO, THCE, NMHC, NMHCE, CH4, NOX, and CO2 in grams per vehicle mile. ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Calculations; exhaust emissions. 86.244-94 Section 86.244-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED)...

  10. 40 CFR 86.244-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Calculations; exhaust emissions. 86.244-94 Section 86.244-94 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.244-94 Calculations;...

  11. 40 CFR 86.1342-90 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test... mass: HCmass = Vmix × DensityHC × (HCconc/106) (2) Oxides of nitrogen mass: NOxmass = Vmix × DensityNO2... air as determined from dilution air methanol sample in ppm carbon. (2)(i) NOxmass = Oxides of...

  12. On-Road Measurement of Exhaust Emission Factors for Individual Diesel Trucks

    NASA Astrophysics Data System (ADS)

    Dallmann, T. R.; DeMartini, S.; Harley, R. A.; Kirchstetter, T. W.; Wood, E. C.; Onasch, T. B.; Herndon, S. C.

    2011-12-01

    Diesel trucks are an important source of primary fine particulate matter (PM2.5) that includes black carbon (BC) as a major component. More stringent exhaust emission standards for new engines, effective starting in 2007, considerably reduce allowable emissions and have led to use of after-treatment control devices such as diesel particle filters. The state of California is also implementing programs to accelerate replacement or retrofit of older trucks. In light of these changes, measurements of emissions from in-use heavy-duty diesel trucks are timely and needed to understand the impact of new control technologies on emissions. PM2.5, BC mass, particle light absorption, and particle light extinction emission factors for hundreds of individual diesel trucks were measured in this study. Emissions were measured in July 2010 from trucks driving through the Caldecott tunnel in the San Francisco Bay area. Gas-phase emissions including nitric oxide, nitrogen dioxide, carbon monoxide, and carbon dioxide (CO2) were also measured. Pollutants were measured using air sampling inlets located directly above the vertical exhaust stacks of heavy-duty trucks driving by on the roadway below. All of these measurements were made using fast time response (1 Hz) sensors. Particle optical properties were simultaneously characterized with direct measurements of absorption (babs) and extinction (bext) coefficients. Emission factors for individual trucks were calculated using a carbon balance method in which emissions of PM2.5, BC, babs, and bext in each exhaust plume were normalized to emissions of CO2. Emission factor distributions and fleet-average values are quantified. Absorption and extinction emission factors are used to calculate the aerosol single scattering albedo and BC mass absorption efficiency for individual truck exhaust plumes.

  13. System using electric furnace exhaust gas to preheat scrap for steelmaking

    SciTech Connect

    Takai, K.; Iwasaki, K.

    1987-09-08

    A method is described for clean preheating of scrap contaminated with oil and organic matter, for steelmaking, using heat from exhaust gas flow from an electric furnace. It consists of: burning any combustibles present in the exhaust gas flow and simultanously separating out dust particles from the exhaust gas flow; heating a predetermined amount of the scrap by heat exchange with a predetermined portion of the exhaust gas flow; removing and collecting dust from the exhaust gas flow after preheating of scrap thereby; sensing the temperature of the exhaust flow; scrubbing the exhaust gas flow with an aqueous solution of a deodorant solvent flowing at a rate regulated to be in a predetermined relationship related to the exhaust gas temperature sensed prior to scrubbing, thereby generating saturated vapor and reducing the temperature of the exhaust gas flow by a predetermined amount; and electrostatically precipitating out oil mist attached to saturated water vapor and liquid droplets in the exhaust gas flow.

  14. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and... specifications of Tables R99-15 and R99-16 are less than or equal to the standards in Tables R99-15 and R99-16 in...-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and Light Light-Duty Trucks Sold in the...

  15. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and... specifications of Tables R99-15 and R99-16 are less than or equal to the standards in Tables R99-15 and R99-16 in...-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and Light Light-Duty Trucks Sold in the...

  16. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and... specifications of Tables R99-15 and R99-16 are less than or equal to the standards in Tables R99-15 and R99-16 in...-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and Light Light-Duty Trucks Sold in the...

  17. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and... specifications of Tables R99-15 and R99-16 are less than or equal to the standards in Tables R99-15 and R99-16 in...-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and Light Light-Duty Trucks Sold in the...

  18. Fermentation exhaust gas analysis using mass spectrometry

    SciTech Connect

    Buckland, B.; Brix, Fastert, H.; Gbewonyo, K.; Hunt, G.; Jain, D.

    1985-11-01

    A Perkin Elmer MGA-1200 mass spectrometer has been coupled with a mini-computer and a sampling manifold to analyze up to 8 components in the exhaust gases of fermentors. Carbon dioxide, oxygen, and nitrogen are typically analyzed, but ethanol for yeast fermentations can also be tested by heating the line from the fermentor to the sampling manifold. Specifications, operation, and performance of the system are described. The system has been used for process control, the study of fermentation kinetics, and process development. 8 references, 7 figures, 1 table.

  19. Metal supports for exhaust gas catalysts

    SciTech Connect

    Nonnenmann, M.

    1985-01-01

    Since 1979, metal supports as pre-catalysts have been mass-produced and installed in export models of German automobiles bound for the United States and Japan. The close-to-engine installation directly behind the exhaust manifold places specially high demands on the thermal and mechanical durability of the metal supports. Sueddeutsche Kuehlerfabrik Behr produces these metal supports under the name of ''Metalit''. The development, properties and special advantages of these metal supports are covered. The successful use of hundreds of thousands of metal supports, a number of automobile manufacturers are working on programs to employ the Metalit concept for primary catalysts.

  20. Comparison of Exhaust Emissions and Their Mutagenicity from the Combustion of Biodiesel, Vegetable Oil, Gas-to-Liquid and Petrodiesel Fuels

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diesel engine emissions (DEE) are classified as probably carcinogenic to humans. In recent years every effort has been made to reduce DEE and their content of carcinogenic and mutanegnic polycycluc aromatic hydrocarbons (PAH). In several studies conducted since 1995, we observed an appreciable red...

  1. 40 CFR 86.1544 - Calculation; idle exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks;...

  2. 40 CFR 86.1544 - Calculation; idle exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks;...

  3. Exhaust constituent emission factors of printed circuit board pyrolysis processes and its exhaust control.

    PubMed

    Chiang, Hung-Lung; Lin, Kuo-Hsiung

    2014-01-15

    The printed circuit board (PCB) is an important part of electrical and electronic equipment, and its disposal and the recovery of useful materials from waste PCBs (WPCBs) are key issues for waste electrical and electronic equipment. Waste PCB compositions and their pyrolysis characteristics were analyzed in this study. In addition, the volatile organic compound (VOC) exhaust was controlled by an iron-impregnated alumina oxide catalyst. Results indicated that carbon and oxygen were the dominant components (hundreds mg/g) of the raw materials, and other elements such as nitrogen, bromine, and copper were several decades mg/g. Exhaust constituents of CO, H2, CH4, CO2, and NOx, were 60-115, 0.4-4.0, 1.1-10, 30-95, and 0-0.7mg/g, corresponding to temperatures ranging from 200 to 500°C. When the pyrolysis temperature was lower than 300°C, aromatics and paraffins were the major species, contributing 90% of ozone precursor VOCs, and an increase in the pyrolysis temperature corresponded to a decrease in the fraction of aromatic emission factors. Methanol, ethylacetate, acetone, dichloromethane, tetrachloromethane and acrylonitrile were the main species of oxygenated and chlorinated VOCs. The emission factors of some brominated compounds, i.e., bromoform, bromophenol, and dibromophenol, were higher at temperatures over 400°C. When VOC exhaust was flowed through the bed of Fe-impregnated Al2O3, the emission of ozone precursor VOCs could be reduced by 70-80%.

  4. Exhaust emissions of a double annular combustor: Parametric study

    NASA Technical Reports Server (NTRS)

    Schultz, D. F.

    1974-01-01

    A full scale double-annular ram-induction combustor designed for Mach 3.0 cruise operation was tested. Emissions of oxides of nitrogen, carbon monoxide, unburned hydrocarbons, and smoke were measured over a range of combustor operating variables including reference velocity, inlet air temperature and pressure, and exit average temperature. ASTM Jet-A fuel was used for these tests. An equation is provided relating oxides of nitrogen emissions as a function of the combustor, operating variables. A small effect of radial fuel staging on reducing exhaust emissions (which were originally quite low) is demonstrated.

  5. Effect of ethanol-gasoline blends on small engine generator energy efficiency and exhaust emission.

    PubMed

    Lin, Wen-Yinn; Chang, Yuan-Yi; Hsieh, You-Ru

    2010-02-01

    This study was focused on fuel energy efficiency and pollution analysis of different ratios of ethanol-gasoline blended fuels (E0, E3, E6, and E9) under different loadings. In this research, the experimental system consisted of a small engine generator, a particulate matter measurement system, and an exhaust gas analyzer system. Different fuels, unleaded gasoline, and ethanol-gasoline blends (E0, E3, E6, and E9) were used to study their effects on the exhaust gas emission and were expressed as thermal efficiency of the small engine generator energy efficiency. The results suggested that particle number concentration increased as the engine loading increased; however, it decreased as the ethanol content in the blend increased. While using E6 as fuel, the carbon monoxide (CO) concentration was less than other fuels (E0, E3, and E9) for each engine loading. The average of CO concentration reduction by using E3, E6, and E9 is 42, 86, and 83%, respectively. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 78.7, 97.5, and 89.46% of the mean average values of hydrocarbons (HCs) with E3, E6, and E9 fuels, respectively, for all engine loadings. Using an ethanol-gasoline blend led to a significant reduction in exhaust emissions by approximately 35, 86, and 77% of the mean average values of nitrogen oxides (NOx) with E3, E6, and E9 fuels, respectively, at each engine loading. The E6 fuel gave the best results of the exhaust emissions, and the E9 fuel gave the best results of the particle emissions and engine performance. The thermal efficiency of the small engine generator increased as the ethanol content in the blend increased and as the engine loading increased.

  6. Power recovery from turbine and gas engine exhausts

    SciTech Connect

    Lawson, G.L.

    1985-02-01

    Due to the energy consciousness of the United States and to the ever increasing cost of engine fuels, power recovery from turbine and gas engine exhausts has come of age. The addition of waste recovery systems to these exhausts increases the thermal efficiencies of typical systems from the range of 21% to 39% up to the range of 28% to 49%. The new ''expander'' type power recovery system includes a waste heat recovery exchanger which will transfer heat from the engine exhaust into any of numerous thermal fluids. The recovered heat energy now in the thermal fluid medium can, in turn, be used to produce power for any desired application (i.e. gas compression, process refrigeration, electrical power generation, etc.). The particular systems put forth in this paper concentrate on the use of expansion fluids (other than steam) driving ''expanders'' as motive devices.

  7. 75 FR 67634 - Compliance With Interstate Motor Carrier Noise Emission Standards: Exhaust Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... Carrier Noise Emission Standards: Exhaust Systems AGENCY: Federal Motor Carrier Safety Administration, DOT... Motor Carrier Noise Emission Standards: Exhaust Systems,'' published on September 20, 2010, in the... Noise Emission Standards: Exhaust Systems'' in the Federal Register (75 FR 57191). The direct final...

  8. Exhaust and evaporative emissions from motorcycles fueled with ethanol gasoline blends.

    PubMed

    Li, Lan; Ge, Yunshan; Wang, Mingda; Peng, Zihang; Song, Yanan; Zhang, Liwei; Yuan, Wanli

    2015-01-01

    The emission characteristics of motorcycles using gasoline and E10 (90% gasoline and 10% ethanol by volume) were investigated in this article. Exhaust and evaporative emissions of three motorcycles were investigated on the chassis dynamometer over the Urban Driving Cycle (UDC) and in the Sealed Housing for Evaporative Determination (SHED) including regulated and unregulated emissions. The regulated emissions were detected by an exhaust gas analyzer directly. The unregulated emissions including carbonyls and volatile organic compounds (VOCs) were sampled through battery-operated air pumps using tubes coated with 2,4-dinitrophenylhydrazine (DNPH) and Tenax TA, respectively. The experimental results showed that the emission factors of total hydrocarbons (THC) and carbon monoxide (CO) from E10 fueling motorcycles decreased by 26%-45% and 63%-73%, while the emission factor of NOx increased by 36%-54% compared with those from gasoline fueling motorcycles. For unregulated emissions, the emission amount of VOCs from motorcycles fueled with E10 decreased by 18%-31% while total carbonyls were 2.6-4.5 times higher than those for gasoline. For evaporative emissions of THC and VOCs, for gasoline or E10, the diurnal breathing loss (DBL) was higher than hot soak loss (HSL). Using E10 as a fuel does not make much difference in the amount of evaporative THC, while resulted in a slightly growth of 14%-17% for evaporative BETX (benzene, toluene, ethylbenzene, xylene).

  9. IET exhaust gas stack. Section, west elevation, foundation plan, access ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET exhaust gas stack. Section, west elevation, foundation plan, access ladder, airplane warning light. Ralph M. Parsons 902-5-ANP-712-S 433. Date: May 1954. Approved by INEEL Classification Office for public release. INEEL index code no. 035-0712-60-693-106984 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  10. IET exhaust gas duct, system layout, plan, and section. shows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET exhaust gas duct, system layout, plan, and section. shows mounting brackets, concrete braces, divided portion of duct, other details. Ralph M. Parsons 902-5-ANP-712-S 429. Date: May 1954. Approved by INEEL Classification Office for public release. INEEL index code no. 035-0712-60-693-106980 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  11. 40 CFR 89.416 - Raw exhaust gas flow.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Measurement of the air flow and the fuel flow by suitable metering systems (for details see SAE J244. This... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Raw exhaust gas flow. 89.416 Section 89.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  12. 40 CFR 89.416 - Raw exhaust gas flow.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Measurement of the air flow and the fuel flow by suitable metering systems (for details see SAE J244. This... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw exhaust gas flow. 89.416 Section 89.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  13. 40 CFR 89.416 - Raw exhaust gas flow.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Measurement of the air flow and the fuel flow by suitable metering systems (for details see SAE J244. This... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Raw exhaust gas flow. 89.416 Section 89.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  14. 40 CFR 89.416 - Raw exhaust gas flow.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Measurement of the air flow and the fuel flow by suitable metering systems (for details see SAE J244. This... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Raw exhaust gas flow. 89.416 Section 89.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  15. Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: a Review.

    PubMed

    Huang, Guanhua; Chen, Feng; Kuang, Yali; He, Huan; Qin, An

    2016-03-01

    The soaring increase of flue gas emission had caused global warming, environmental pollution as well as climate change. Widespread concern on reduction of flue gas released from industrial plants had considered the microalgae as excellent biological materials for recycling the carbon dioxide directly emitted from exhaust industries. Microalgae also have the potential to be the valuable feedback for renewable energy production due to their high growth rate and abilities to sequester inorganic carbon through photosynthetic process. In this review article, we will illustrate important relative mechanisms in the metabolic processes of biofixation by microalgae and their recent experimental researches and advances of sequestration of carbon dioxide by microalgae on actual industrial and stimulate flue gases, novel photobioreactor cultivation systems as well as the perspectives and limitations of microalgal cultivation in further development.

  16. Method and apparatus to selectively reduce NO.sub.x in an exhaust gas feedstream

    DOEpatents

    Schmieg, Steven J.; Blint, Richard J.; Den, Ling; Viola, Michael B.; Lee, Jong-Hwan

    2011-08-30

    A method and apparatus are described to selectively reduce NO.sub.x emissions of an internal combustion engine. An exhaust aftertreatment system includes an injection device operative to dispense a hydrocarbon reductant upstream of a silver-alumina catalytic reactor device. A control system determines a NO.sub.x concentration and hydrocarbon/NOx ratio based upon selected parameters of the exhaust gas feedstream and dispenses hydrocarbon reductant during lean engine operation. Included is a method to control elements of the feedstream during lean operation. The hydrocarbon reductant may include engine fuel.

  17. 40 CFR 86.1342-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test... if desired; 16.33 g/ft3-carbon atom (0.5768 kg/m3-carbon atom). (B) For #1 petroleum diesel fuel; 16.42 g/ft3-carbon atom (0.5800 kg/m3-carbon atom). (C) For #2 diesel 16.27 g/ft3-carbon atom (0.5746...

  18. 40 CFR 86.1342-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test... if desired; 16.33 g/ft3-carbon atom (0.5768 kg/m3-carbon atom). (B) For #1 petroleum diesel fuel; 16.42 g/ft3-carbon atom (0.5800 kg/m3-carbon atom). (C) For #2 diesel 16.27 g/ft3-carbon atom (0.5746...

  19. Methanol fuel vehicle demonstration: Exhaust emission testing. Final report

    SciTech Connect

    Hyde, J.D.

    1993-07-01

    Ford Motor Company converted four stock 1986 Ford Crown Victoria sedans to methanol flexible fuel vehicles (FFVs). During 143,108 operational miles from 1987 to 1990, the FFVs underwent more than 300 dynamometer driving tests to measure exhaust emissions, catalytic activity, fuel economy, acceleration, and driveability with gasoline and methanol blend fuels. Dynamometer driving tests included the Federal Test Procedure (FTP), the Highway Fuel Economy Test, and the New York City Cycle. Exhaust emission measurements included carbon dioxide, carbon monoxide (CO), nitrogen oxides (NO{sub x}), non- oxygenated hydrocarbons, organic material hydrocarbon equivalent (OMHCE), formaldehyde, and methanol. Catalytic activity was based on exhaust emissions data from active and inactive catalysts. OMHCE, CO, and NO{sub x} were usually lower with M85 (85% methanol, 15% gasoline) than with gasoline for both active and inactive catalysts when initial engine and catalyst temperatures were at or near normal operating temperatures. CO was higher with M85 than with gasoline when initial engine and catalyst temperatures were at or near ambient temperature. Formaldehyde and methanol were higher with M85. Active catalyst FTP OMHCE, CO, and NO{sub x} increased as vehicle mileage increased, but increased less with M85 than with gasoline. Energy based fuel economy remained almost constant with changes in fuel composition and vehicle mileage.

  20. 40 CFR 600.008 - Review of fuel economy, CO2 emissions, and carbon-related exhaust emission data, testing by the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Review of fuel economy, CO2 emissions... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES General Provisions § 600.008 Review of fuel economy,...

  1. 40 CFR 600.008 - Review of fuel economy, CO2 emissions, and carbon-related exhaust emission data, testing by the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Review of fuel economy, CO2 emissions... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES General Provisions § 600.008 Review of fuel economy,...

  2. 40 CFR 600.008 - Review of fuel economy, CO2 emissions, and carbon-related exhaust emission data, testing by the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Review of fuel economy, CO2 emissions... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES General Provisions § 600.008 Review of fuel economy,...

  3. Exhaust emission reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Moffett, R. N.

    1979-01-01

    Three concepts for optimizing the performance, increasing the fuel economy, and reducing exhaust emission of the piston aircraft engine were investigated. High energy-multiple spark discharge and spark plug tip penetration, ultrasonic fuel vaporization, and variable valve timing were evaluated individually. Ultrasonic fuel vaporization did not demonstrate sufficient improvement in distribution to offset the performance loss caused by the additional manifold restriction. High energy ignition and revised spark plug tip location provided no change in performance or emissions. Variable valve timing provided some performance benefit; however, even greater performance improvement was obtained through induction system tuning which could be accomplished with far less complexity.

  4. Test Program for High Efficiency Gas Turbine Exhaust Diffuser

    SciTech Connect

    Norris, Thomas R.

    2009-12-31

    This research relates to improving the efficiency of flow in a turbine exhaust, and thus, that of the turbine and power plant. The Phase I SBIR project demonstrated the technical viability of “strutlets” to control stalls on a model diffuser strut. Strutlets are a novel flow-improving vane concept intended to improve the efficiency of flow in turbine exhausts. Strutlets can help reduce turbine back pressure, and incrementally improve turbine efficiency, increase power, and reduce greenhouse gas emmission. The long-term goal is a 0.5 percent improvement of each item, averaged over the US gas turbine fleet. The strutlets were tested in a physical scale model of a gas turbine exhaust diffuser. The test flow passage is a straight, annular diffuser with three sets of struts. At the end of Phase 1, the ability of strutlets to keep flow attached to struts was demonstrated, but the strutlet drag was too high for a net efficiency advantage. An independently sponsored followup project did develop a highly-modified low-drag strutlet. In combination with other flow improving vanes, complicance to the stated goals was demonstrated for for simple cycle power plants, and to most of the goals for combined cycle power plants using this particular exhaust geometry. Importantly, low frequency diffuser noise was reduced by 5 dB or more, compared to the baseline. Appolicability to other diffuser geometries is yet to be demonstrated.

  5. Mutagenicity of emissions from a natural gas fueled truck.

    PubMed

    Lapin, Charles A; Gautam, Mridul; Zielinska, Barbara; Wagner, Valentine O; McClellan, Roger O

    2002-08-26

    Concern about the potential health risks of particulate exhaust emissions from diesel-fueled vehicles has led regulatory agencies to foster the use of natural gas fueled heavy duty vehicles. However, the potential health risks of particulate exhaust emissions from natural gas fueled vehicles have not been well-studied. The present study investigated the mutagenicity of particulate exhaust emissions from a natural gas fueled refuse truck currently in-service. Organic solvent extracts of exhaust particulate emissions from the natural gas fueled truck were positive in both Salmonella tester strains TA98 and TA100 in the presence and absence of S-9. The maximum mutagenic responses ranged from 7-fold in the TA100 strain to 87-fold in the TA98 strain when compared to negative controls. Our results show that current in-service natural gas fueled heavy duty trucks have particulate exhaust emissions that possess mutagenic activity. This finding requires follow-up studies to develop a database on natural gas fueled vehicles for comparison with data on diesel-fueled vehicles to aid in making decisions on use of alternative fuels to reduce air pollution health risks.

  6. Exhaust gas treatment in testing nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Zweig, Herbert R.; Fischler, Stanley; Wagner, William R.

    1993-01-01

    With the exception of the last test series of the Rover program, Nuclear Furnace 1, test-reactor and rocket engine hydrogen gas exhaust generated during the Rover/NERVA program was released directly to the atmosphere, without removal of the associated fission products and other radioactive debris. Current rules for nuclear facilities (DOE Order 5480.6) are far more protective of the general environment; even with the remoteness of the Nevada Test Site, introduction of potentially hazardous quantities of radioactive waste into the atmosphere must be scrupulously avoided. The Rocketdyne treatment concept features a diffuser to provide altitude simulation and pressure recovery, a series of heat exchangers to gradually cool the exhaust gas stream to 100 K, and an activated charcoal bed for adsorption of inert gases. A hydrogen-gas fed ejector provides auxiliary pumping for startup and shutdown of the engine. Supplemental filtration to remove particulates and condensed phases may be added at appropriate locations in the system. The clean hydrogen may be exhausted to the atmosphere and flared, or the gas may be condensed and stored for reuse in testing. The latter approach totally isolates the working gas from the environment.

  7. Flight Tests of Exhaust Gas Jet Propulsion, Special Report

    NASA Technical Reports Server (NTRS)

    Pnkel, Benjamin; Turner, L. Richard

    1940-01-01

    Flight test s were conducted on the XP-41 airplane, equipped with a Pratt & Whitney R1830-19, 14-cylinder, air-cooled engine, to determine the increase in flight speed obtainable by the use of individual exhaust stacks directed rearwardly to obtain exhaust-gas thrust. Speed increases up to 18 miles per hour at 20,000 feet altitude were obtained using stacks having an exit area of 3.42 square inches for each cylinder. A slight increase in engine power and decrease in cylinder temperature at a given manifold pressure were obtained with the individual stacks as compared with a collector-ring installation. Exhaust-flame visibility was quite low, particularly in the rich range of fuel-air ratios.

  8. Integrated exhaust gas recirculation and charge cooling system

    SciTech Connect

    Wu, Ko-Jen

    2013-12-10

    An intake system for an internal combustion engine comprises an exhaust driven turbocharger configured to deliver compressed intake charge, comprising exhaust gas from the exhaust system and ambient air, through an intake charge conduit and to cylinders of the internal combustion engine. An intake charge cooler is in fluid communication with the intake charge conduit. A cooling system, independent of the cooling system for the internal combustion engine, is in fluid communication with the intake charge cooler through a cooling system conduit. A coolant pump delivers a low temperature cooling medium from the cooling system to and through the intake charge cooler for the transfer of heat from the compressed intake charge thereto. A low temperature cooler receives the heated cooling medium through the cooling system conduit for the transfer or heat therefrom.

  9. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  10. Gaseous exhaust emissions from a J-58 engine at simulated supersonic flight conditions

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1974-01-01

    Emissions of total oxides of nitrogen, unburned hydrocarbons, carbon monoxide, and carbon dioxide from a J-58 engine at simulated flight conditions of Mach 2.0, 2.4, and 2.8 at 19.8 km altitude are reported. For each flight condition, measurements were made for four engine power levels from maximum power without afterburning through maximum afterburning. These measurements were made 7 cm downstream of the engine primary nozzle using a single point traversing gas sample probe. Results show that emissions vary with flight speed, engine power level, and with radial position across the exhaust.

  11. 40 CFR 1066.820 - Composite calculations for FTP exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Composite calculations for FTP exhaust... § 1066.820 Composite calculations for FTP exhaust emissions. (a) Determine the mass of exhaust emissions... composite gaseous test results as a mass-weighted value, e -FTPcomp, in grams per mile using the...

  12. US Department of Energy - Office of FreedomCar and Vehicle Technologies and US Centers for Disease Control and Prevention - National Institute for Occupational Safety and Health Inter-Agency Agreement Research on "The Analysis of Genotoxic Activities of Exhaust Emissions from Mobile Natural Gas, Diesel, and Spark-Ignition Engines"

    SciTech Connect

    William E. Wallace

    2006-09-30

    The US Department of Energy-Office of Heavy Vehicle Technologies (now the DOE-Office of FreedomCar and Vehicle Technologies) signed an Interagency Agreement (IAA) with National Institute for Occupational Safety and Health (NIOSH), No.01-15 DOE, 9/4/01, for 'The analysis of genotoxic activities of exhaust emissions from mobile natural gas, diesel, and spark-ignition engines'; subsequently modified on 3/27/02 (DOE IAG No.01-15-02M1); subsequently modified 9/02/03 (IAA Mod No. 01-15-03M1), as 'The analysis of genotoxic activities of exhaust emissions from mobile internal combustion engines: identification of engine design and operational parameters controlling exhaust genotoxicity'. The DOE Award/Contract number was DE-AI26-01CH11089. The IAA ended 9/30/06. This is the final summary technical report of National Institute for Occupational Safety and Health research performed with the US Department of Energy-Office of FreedomCar and Vehicle Technologies under that IAA: (A) NIOSH participation was requested by the DOE to provide in vitro genotoxicity assays of the organic solvent extracts of exhaust emissions from a suite of in-use diesel or spark-ignition vehicles; (B) research also was directed to develop and apply genotoxicity assays to the particulate phase of diesel exhaust, exploiting the NIOSH finding of genotoxicity expression by diesel exhaust particulate matter dispersed into the primary components of the surfactant coating the surface of the deep lung; (C) from the surfactant-dispersed DPM genotoxicity findings, the need for direct collection of DPM aerosols into surfactant for bioassay was recognized, and design and developmental testing of such samplers was initiated.

  13. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Exhaust gas analytical system; CVS... Procedures § 91.423 Exhaust gas analytical system; CVS grab sample. (a) Schematic drawings. Figure 4 in appendix B of this subpart is a schematic drawing of the exhaust gas analytical system used for...

  14. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Exhaust gas analytical system; CVS grab... Procedures § 91.423 Exhaust gas analytical system; CVS grab sample. (a) Schematic drawings. Figure 4 in appendix B of this subpart is a schematic drawing of the exhaust gas analytical system used for...

  15. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Exhaust gas analytical system; CVS... Procedures § 91.423 Exhaust gas analytical system; CVS grab sample. (a) Schematic drawings. Figure 4 in appendix B of this subpart is a schematic drawing of the exhaust gas analytical system used for...

  16. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Exhaust gas analytical system; CVS... Procedures § 91.423 Exhaust gas analytical system; CVS grab sample. (a) Schematic drawings. Figure 4 in appendix B of this subpart is a schematic drawing of the exhaust gas analytical system used for...

  17. Diesel Exhaust Emissions Control for Light-Duty Vehicles

    SciTech Connect

    Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C.; Anderson, J.A.; Howden, Kenneth C.

    2003-03-01

    The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on

  18. Gasoline exhaust emissions induce vascular remodeling pathways involved in atherosclerosis.

    PubMed

    Lund, Amie K; Knuckles, Travis L; Obot Akata, Chrys; Shohet, Ralph; McDonald, Jacob D; Gigliotti, Andrew; Seagrave, Jean Clare; Campen, Matthew J

    2007-02-01

    Epidemiological evidence indicates that environmental air pollutants are positively associated with the development of chronic vascular disease; however, the mechanisms involved have not been fully elucidated. In the present study we examined molecular pathways associated with chronic vascular disease in atherosclerosis-prone apolipoprotein E-deficient (ApoE(-/-)) mice, including markers of vascular remodeling and oxidative stress, in response to exposure to the ubiquitous environmental pollutant, gasoline engine emissions. ApoE(-/-) mice, on a high-fat diet, were exposed by inhalation to either filtered air; 8, 40, or 60 mug/m(3) particulate matter whole exhaust; or filtered exhaust with gases matching the 60-mug/m(3) concentration, for 7 weeks. Aortas and plasma were collected and assayed for changes in histochemical markers, real-time reverse transcriptase-polymerase chain reaction, and indicators of oxidative damage. Inhalational exposure to gasoline engine emissions resulted in increased aortic mRNA expression of matrix metalloproteinase-3 (MMP-3), MMP-7, and MMP-9, tissue inhibitor of metalloproteinases-2, endothelin-1 and heme oxygenase-1 in ApoE(-/-) mice; increased aortic MMP-9 protein levels were confirmed through immunohistochemistry. Elevated reactive oxygen species were also observed in arteries from exposed animals, despite absence of plasma markers. Similar findings were also observed in the aortas of ApoE(-/-) mice exposed to particle-filtered atmosphere, implicating the gaseous components of the whole exhaust in mediating the expression of markers associated with the vasculopathy. These findings demonstrate that exposure to gasoline engine emissions results in the transcriptional upregulation of factors associated with vascular remodeling, as well as increased markers of vascular oxidative stress, which may contribute to the progression of atherosclerosis and reduced stability of vulnerable plaques.

  19. Optimization of gasoline hydrocarbon compositions for reducing exhaust emissions.

    PubMed

    Shen, Yitao; Shuai, Shijin; Wang, Jianxin; Xiao, Jianhua

    2009-01-01

    Effects of hydrocarbon compositions on raw exhaust emissions and combustion processes were studied on an engine test bench. The optimization of gasoline hydrocarbon composition was discussed. As olefins content increased from 10.0% to 25.0% in volume, the combustion duration was shortened by about 2 degree crank angle (degrees CA), and the engine-out THC emission was reduced by about 15%. On the other hand, as aromatics content changed from 35.0% to 45.0%, the engine-out NOx emissions increased by 4%. An increment in olefins content resulted in a slight increase in engine-out CO emission, while the aromatics content had little effect on engine-out total hydrocarbon (THC) and CO emissions. Over the new European driving cycle (NEDC), the THC, NOx and CO emissions of fuel with 25.0% olefins and 35.0% aromatics were about 45%, 21% and 19% lower than those of fuel with 10.0% olefins and 40.0% aromatics, respectively. The optimized gasoline compositions for new engines and new vehicles have low aromatics and high olefins contents.

  20. 40 CFR 86.544-90 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of HC in exhaust gas. (A) For gasoline-fuel; DensityHC=576.8 g/m3-carbon atom (16.33 g/ft3-carbon atom), assuming an average carbon to hydrogen ratio of 1:1.85, at 20 °C (68 °F) and 101.3 kPa (760 mm...)) g/m3-carbon atom (1.1771(12.011+H/C(1.008)) g/ft3-carbon atom) where H/C is the hydrogen to...

  1. 40 CFR 86.544-90 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of HC in exhaust gas. (A) For gasoline-fuel; DensityHC=576.8 g/m3-carbon atom (16.33 g/ft3-carbon atom), assuming an average carbon to hydrogen ratio of 1:1.85, at 20 °C (68 °F) and 101.3 kPa (760 mm...)) g/m3-carbon atom (1.1771(12.011+H/C(1.008)) g/ft3-carbon atom) where H/C is the hydrogen to...

  2. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    NASA Astrophysics Data System (ADS)

    Nordin, Adzuieen; Amin, M.; Majid, A.

    2013-12-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO2 to the environment. This study analyzes the amount of CO2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants.

  3. 40 CFR 90.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Exhaust gas analytical system; CVS... KILOWATTS Gaseous Exhaust Test Procedures § 90.423 Exhaust gas analytical system; CVS grab sample. (a... analytical systems used for analyzing CVS grab “bag” samples from spark-ignition engines. Since...

  4. 40 CFR 90.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Exhaust gas analytical system; CVS... KILOWATTS Gaseous Exhaust Test Procedures § 90.423 Exhaust gas analytical system; CVS grab sample. (a... analytical systems used for analyzing CVS grab “bag” samples from spark-ignition engines. Since...

  5. 40 CFR 90.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Exhaust gas analytical system; CVS... KILOWATTS Gaseous Exhaust Test Procedures § 90.423 Exhaust gas analytical system; CVS grab sample. (a... analytical systems used for analyzing CVS grab “bag” samples from spark-ignition engines. Since...

  6. Exhaust gas bypass valve control for thermoelectric generator

    SciTech Connect

    Reynolds, Michael G; Yang, Jihui; Meisner, Greogry P.; Stabler, Francis R.; De Bock, Hendrik Pieter Jacobus; Anderson, Todd Alan

    2012-09-04

    A method of controlling engine exhaust flow through at least one of an exhaust bypass and a thermoelectric device via a bypass valve is provided. The method includes: determining a mass flow of exhaust exiting an engine; determining a desired exhaust pressure based on the mass flow of exhaust; comparing the desired exhaust pressure to a determined exhaust pressure; and determining a bypass valve control value based on the comparing, wherein the bypass valve control value is used to control the bypass valve.

  7. 40 CFR 1066.815 - Exhaust emission test procedures for FTP testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... FTP testing. 1066.815 Section 1066.815 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Vehicles § 1066.815 Exhaust emission test procedures for FTP testing. (a) General. The FTP exhaust emission... section and use the corresponding equation in § 1066.820 to calculate FTP composite emissions....

  8. Fuel composition and secondary organic aerosol formation: gas-turbine exhaust and alternative aviation fuels.

    PubMed

    Miracolo, Marissa A; Drozd, Greg T; Jathar, Shantanu H; Presto, Albert A; Lipsky, Eric M; Corporan, Edwin; Robinson, Allen L

    2012-08-07

    A series of smog chamber experiments were performed to investigate the effects of fuel composition on secondary particulate matter (PM) formation from dilute exhaust from a T63 gas-turbine engine. Tests were performed at idle and cruise loads with the engine fueled on conventional military jet fuel (JP-8), Fischer-Tropsch synthetic jet fuel (FT), and a 50/50 blend of the two fuels. Emissions were sampled into a portable smog chamber and exposed to sunlight or artificial UV light to initiate photo-oxidation. Similar to previous studies, neat FT fuel and a 50/50 FT/JP-8 blend reduced the primary particulate matter emissions compared to neat JP-8. After only one hour of photo-oxidation at typical atmospheric OH levels, the secondary PM production in dilute exhaust exceeded primary PM emissions, except when operating the engine at high load on FT fuel. Therefore, accounting for secondary PM production should be considered when assessing the contribution of gas-turbine engine emissions to ambient PM levels. FT fuel substantially reduced secondary PM formation in dilute exhaust compared to neat JP-8 at both idle and cruise loads. At idle load, the secondary PM formation was reduced by a factor of 20 with the use of neat FT fuel, and a factor of 2 with the use of the blend fuel. At cruise load, the use of FT fuel resulted in no measured formation of secondary PM. In every experiment, the secondary PM was dominated by organics with minor contributions from sulfate when the engine was operated on JP-8 fuel. At both loads, FT fuel produces less secondary organic aerosol than JP-8 because of differences in the composition of the fuels and the resultant emissions. This work indicates that fuel reformulation may be a viable strategy to reduce the contribution of emissions from combustion systems to secondary organic aerosol production and ultimately ambient PM levels.

  9. A comparison of exhaust emissions from vehicles fuelled with petrol, LPG and CNG

    NASA Astrophysics Data System (ADS)

    Bielaczyc, P.; Szczotka, A.; Woodburn, J.

    2016-09-01

    This paper presents an analysis of THC, NMHC, CO, NOx and CO2 emissions during testing of two bi-fuel vehicles, fuelled with petrol and gaseous fuels, on a chassis dynamometer in the context of the Euro 6 emissions requirements. The analyses were performed on one Euro 5 bi-fuel vehicle (petrol/LPG) and one Euro 5 bi-fuel vehicle (petrol/CNG), both with SI engines equipped with MPI feeding systems operating in closed-loop control, typical three-way-catalysts and heated oxygen sensors. The vehicles had been adapted by their manufacturers for fuelling with LPG or CNG by using additional special equipment mounted onto the existing petrol fuelling system. The vehicles tested featured multipoint gas injection systems. The aim of this paper was an analysis of the impact of the gaseous fuels on the exhaust emission in comparison to the emission of the vehicles fuelled with petrol. The tests subject to the analyses presented here were performed in the Engine Research Department of BOSMAL Automotive Research and Development Institute Ltd in Bielsko-Biala, Poland, within a research programme investigating the influence of alternative fuels on exhaust emissions from light duty vehicle vehicles with spark-ignition and compression-ignition engines.

  10. Treating exhaust gas from a pressurized fluidized bed reaction system

    DOEpatents

    Isaksson, Juhani; Koskinen, Jari

    1995-01-01

    Hot gases from a pressurized fluidized bed reactor system are purified. Under superatmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a flitrate cake on the surface of the separator, and a reducing agent--such as an NO.sub.x reducing agent (like ammonia), is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1-20 cm/s) during passage of the gas through the filtrate cake while at superatmospheric pressure. Separation takes place within a distinct pressure vessel the interior of which is at a pressure of about 2-100 bar, and-introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine).

  11. Treating exhaust gas from a pressurized fluidized bed reaction system

    SciTech Connect

    Isaksson, J.; Koskinen, J.

    1995-08-22

    Hot gases from a pressurized fluidized bed reactor system are purified. Under super atmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a filtrate cake on the surface of the separator, and a reducing agent--such as an NO{sub x} reducing agent (like ammonia)--is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1--20 cm/s) during passage of the gas through the filtrate cake while at super atmospheric pressure. Separation takes place within a distinct pressure vessel, the interior of which is at a pressure of about 2--100 bar, and introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine). 8 figs.

  12. On-road measurement of particle emission in the exhaust plume of a diesel passenger car.

    PubMed

    Vogt, Rainer; Scheer, Volker; Casati, Roberto; Benter, Thorsten

    2003-09-15

    Particle size distributions were measured under real world dilution conditions in the exhaust plume of a diesel passenger car closely followed by a mobile laboratory on a high speed test track. Under carefully controlled conditions the exhaust plume was continuously sampled and analyzed inside the mobile laboratory. Exhaust particle size distribution data were recorded together with exhaust gas concentrations, i.e., CO, CO2, and NO(x), and compared to data obtained from the same vehicle tested on a chassis dynamometer. Good agreement was found for the soot mode particles which occurred at a geometric mean diameter of approximately 50 nm and a total particle emission rate of 10(14) particles km(-1). Using 350 ppm high sulfur fuel and the standard oxidation catalyst a bimodal size distribution with a nucleation mode at 10 nm was observed at car velocities of 100 km h(-1) and 120 km h(-1), respectively. Nucleation mode particles were only present if high sulfur fuel was used with the oxidation catalyst installed. This is in agreement with prior work that these particles are of semivolatile nature and originate from the nucleation of sulfates formed inside the catalyst. Temporal effects of the occurrence of nucleation mode particles during steady-state cruising and the dynamical behavior during acceleration and deceleration were investigated.

  13. Subsonic Jet Noise Reduced With Improved Internal Exhaust Gas Mixers

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Aircraft noise pollution is becoming a major environmental concern for the world community. The Federal Aviation Administration (FAA) is responding to this concern by imposing more stringent noise restrictions for aircraft certification then ever before to keep the U.S. industry competitive with the rest of the world. At the NASA Lewis Research Center, attempts are underway to develop noise-reduction technology for newer engines and for retrofitting existing engines so that they are as quiet as (or quieter than) required. Lewis conducted acoustic and Laser Doppler Velocimetry (LDV) tests using Pratt & Whitney's Internal Exhaust Gas Mixers (IEGM). The IEGM's mix the core flow with the fan flow prior to their common exhaust. All tests were conducted in Lewis' Aero-Acoustic Propulsion Laboratory--a semihemispheric dome open to the ambient atmosphere. This was the first time Laser Doppler Velocimetry was used in such a facility at Lewis. Jet exhaust velocity and turbulence and the internal velocity fields were detailed. Far-field acoustics were also measured. Pratt & Whitney provided 1/7th scale model test hardware (a 12-lobe mixer, a 20-lobe mixer, and a splitter) for 1.7 bypass ratio engines, and NASA provided the research engineers, test facility, and test time. The Pratt & Whitney JT8D-200 engine power conditions were used for all tests.

  14. 40 CFR 86.160-00 - Exhaust emission test procedure for SC03 emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....161-00. (ii) Turn on the solar heating system. (iii) All vehicle test phases of preconditioning, soak... percent relative humidity), a solar heat load intensity of 850 W/m2, and vehicle cooling air flow... all vehicle windows. (4) Connect the emission test sampling system to the vehicle's exhaust tail...

  15. 40 CFR 86.160-00 - Exhaust emission test procedure for SC03 emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....161-00. (ii) Turn on the solar heating system. (iii) All vehicle test phases of preconditioning, soak... percent relative humidity), a solar heat load intensity of 850 W/m2, and vehicle cooling air flow... all vehicle windows. (4) Connect the emission test sampling system to the vehicle's exhaust tail...

  16. 40 CFR 86.160-00 - Exhaust emission test procedure for SC03 emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....161-00. (ii) Turn on the solar heating system. (iii) All vehicle test phases of preconditioning, soak... percent relative humidity), a solar heat load intensity of 850 W/m2, and vehicle cooling air flow... all vehicle windows. (4) Connect the emission test sampling system to the vehicle's exhaust tail...

  17. 40 CFR 86.160-00 - Exhaust emission test procedure for SC03 emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....161-00. (ii) Turn on the solar heating system. (iii) All vehicle test phases of preconditioning, soak... percent relative humidity), a solar heat load intensity of 850 W/m2, and vehicle cooling air flow... all vehicle windows. (4) Connect the emission test sampling system to the vehicle's exhaust tail...

  18. 40 CFR 86.160-00 - Exhaust emission test procedure for SC03 emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.160-00 Exhaust emission test... official test cycle, is either conducted in an environmental test facility or under test conditions that... ambient test conditions of: 95 °F air temperature, 100 grains of water/pound of dry air (approximately...

  19. Polycyclic aromatic hydrocarbon exhaust emissions from different reformulated diesel fuels and engine operating conditions

    NASA Astrophysics Data System (ADS)

    Borrás, Esther; Tortajada-Genaro, Luis A.; Vázquez, Monica; Zielinska, Barbara

    2009-12-01

    The study of light-duty diesel engine exhaust emissions is important due to their impact on atmospheric chemistry and air pollution. In this study, both the gas and the particulate phase of fuel exhaust were analyzed to investigate the effects of diesel reformulation and engine operating parameters. The research was focused on polycyclic aromatic hydrocarbon (PAH) compounds on particulate phase due to their high toxicity. These were analyzed using a gas chromatography-mass spectrometry (GC-MS) methodology. Although PAH profiles changed for diesel fuels with low-sulfur content and different percentages of aromatic hydrocarbons (5-25%), no significant differences for total PAH concentrations were detected. However, rape oil methyl ester biodiesel showed a greater number of PAH compounds, but in lower concentrations (close to 50%) than the reformulated diesel fuels. In addition, four engine operating conditions were evaluated, and the results showed that, during cold start, higher concentrations were observed for high molecular weight PAHs than during idling cycle and that the acceleration cycles provided higher concentrations than the steady-state conditions. Correlations between particulate PAHs and gas phase products were also observed. The emission of PAH compounds from the incomplete combustion of diesel fuel depended greatly on the source of the fuel and the driving patterns.

  20. Nitrogen dioxide in exhaust emissions from motor vehicles

    NASA Astrophysics Data System (ADS)

    Lenner, Magnus

    NO 2/NO x (v/v) fractions and NO 2 exhaust emission rates were determined for diesel- and gasoline-powered passenger cars and a diesel truck, at several conditions of constant engine load and speed. Vehicles with various kinds of emission control equipment were investigated. Also, integrations of NO 2/NO x percentages during Federal Test Procedure driving cycles were made for six types of passenger car. High (> 30 %) NO 2 fractions were measured for gasoline cars with air injection, and for diesel vehicles. A gasoline car with a 3-way catalyst had low NO x totals with small (< 1 %) NO 2 fractions. A passenger diesel with particle trap yielded surprisingly small (0-2%) NO 2 fractions at moderate speeds. The results have implications for NO 2 concentration in the atmosphere of northern cities during wintertime inversions, in view of the increasing use of air injection systems for passenger cars to meet legal restrictions on vehicle emissions of hydrocarbons and CO.

  1. Gaseous exhaust emissions from a JT8D-109 turbofan engine at simulated cruise flight conditions

    NASA Technical Reports Server (NTRS)

    Diehl, L. A.; Holdeman, J. D.

    1975-01-01

    Gaseous emissions from a JT8D-109 turbofan engine were measured in an altitude facility at four simulated cruise flight conditions: Mach 0.8 at altitudes of 9.1, 10, 7, and 12.2 km and Mach 0.9 at 10.7 km. Engine inlet air temperature was held constant at 283 K for all tests. Emissions measurements were made at nominally 6 cm intervals across the horizontal diameter of the engine exhaust nozzle with a single-point traversing gas sample probe. Measured emissions of decreased with increasing altitude from an emission index of 10.4 to one of 8.3, while carbon monoxide increased with increasing altitude from an emission index of 1.6 to one of 4.4. Unburned hydrocarbon emissions were essentially negligible for all flight conditions. Since the engine inlet air temperatures were not correctly simulated, the NOx emission indices were corrected to true altitude conditions by using correlating parameters for changes in combustor inlet temperature, pressure, and temperature rise. The correction was small at the lowest altitude. At the 10.7 and 12.2 km, Mach 0.8 test conditions the correction decreased the measured values by 1 emission index.

  2. Environmental policy constraints for acidic exhaust gas scrubber discharges from ships.

    PubMed

    Ülpre, H; Eames, I

    2014-11-15

    Increasingly stringent environmental legislation on sulphur oxide emissions from the combustion of fossil fuels onboard ships (International Maritime Organization (IMO) Regulation 14) can be met by either refining the fuel to reduce sulphur content or by scrubbing the exhaust gases. Commonly used open loop marine scrubbers discharge warm acidic exhaust gas wash water into the sea, depressing its pH. The focus on this paper is on the physics and chemistry behind the disposal of acidic discharges in seawater. The IMO Marine Environment Protection Committee (MEPC 59/24/Add.1 Annex 9) requires the wash water to reach a pH greater than 6.5 at a distance of 4m from the point of discharge. We examine the engineering constraints, specifically size and number of ports, to identify the challenges of meeting regulatory compliance.

  3. Carbonyl emissions from vehicular exhausts sources in Hong Kong.

    PubMed

    Ho, Steven Sai Hang; Ho, Kin Fai; Lee, Shun Cheng; Cheng, Yan; Yu, Jian Zhen; Lam, Ka Man; Feng, Natale Sin Yau; Huang, Yu

    2012-02-01

    Vehicular emission (VE) is one of the important anthropogenic sources for airborne carbonyls in urban area. Six types of VE-dominated samples were collected at representative locations in Hong Kong where polluted by a particular fueled type of vehicles, including (i) a gas refilling taxis station (liquefied petroleum gas [LPG] emission); (ii) a light-duty passenger car park (gasoline emission); (iii) a minibus station (diesel emission); (iv) a single-deck-bus depot (diesel emission); (v) a double-deck-bus depot (diesel emission); and (vi) a whole-food market entrance for light- and heavy-duty vehicles (diesel emission). A total of 15 carbonyls in the samples were quantified. Formaldehyde was the most abundant carbonyl among the VE-dominated samples, and its contribution to the total quantified amount on a molar basis ranged from 54.8% to 60.8%. Acetaldehyde and acetone were the next two abundant carbonyls. The carbonyls were quantified at three roadside locations in Hong Kong. The highest concentrations of formaldehyde and acetaldehyde, 22.7 +/- 8.4 and 6.0 +/- 2.8 microg/m3, respectively, were determined in the samples collected at a main transportation gate for goods between Hong Kong and Mainland China. The total quantified carbonyl concentration, 37.9 +/- 9.3 microg/m3, was the highest at an entrance of a cross-harbor tunnel in downtown area. The theoretical carbonyls compositions of the three roadside locations were estimated according to the VE-dominated sample profiles and the statistics on vehicle numbers and types during the sampling period. The measured compositions of formaldehyde were much higher than the theoretical compositions in summer, demonstrating that photochemical reactions significantly contributed to the formaldehyde production in the roadsides.

  4. 40 CFR 1037.102 - Exhaust emission standards for NOX, HC, PM, and CO.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., PM, and CO. 1037.102 Section 1037.102 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Related Requirements § 1037.102 Exhaust emission standards for NOX, HC, PM, and CO. See 40 CFR part 86 for the exhaust emission standards for NOX, HC, PM, and CO that apply for heavy-duty vehicles....

  5. 40 CFR 1037.102 - Exhaust emission standards for NOX, HC, PM, and CO.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., PM, and CO. 1037.102 Section 1037.102 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Related Requirements § 1037.102 Exhaust emission standards for NOX, HC, PM, and CO. See 40 CFR part 86 for the exhaust emission standards for NOX, HC, PM, and CO that apply for heavy-duty vehicles....

  6. 40 CFR 1037.102 - Exhaust emission standards for NOX, HC, PM, and CO.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., PM, and CO. 1037.102 Section 1037.102 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... and Related Requirements § 1037.102 Exhaust emission standards for NOX, HC, PM, and CO. See 40 CFR part 86 for the exhaust emission standards for NOX, HC, PM, and CO that apply for heavy-duty vehicles....

  7. 40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Exhaust emission standards for Tier 6 and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY....23 Exhaust emission standards for Tier 6 and Tier 8 engines. This section describes the...

  8. 40 CFR 1066.610 - Mass-based and molar-based exhaust emission calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Mass-based and molar-based exhaust... (CONTINUED) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Calculations § 1066.610 Mass-based and molar-based exhaust emission calculations. (a) Calculate your total mass of emissions over a test cycle...

  9. 40 CFR 1066.610 - Mass-based and molar-based exhaust emission calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Mass-based and molar-based exhaust... (CONTINUED) AIR POLLUTION CONTROLS VEHICLE-TESTING PROCEDURES Calculations § 1066.610 Mass-based and molar-based exhaust emission calculations. (a) Calculate your total mass of emissions over a test cycle...

  10. 40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Sampling and analytical procedures for measuring smoke exhaust emissions. 87.82 Section 87.82 Protection of Environment ENVIRONMENTAL PROTECTION... analytical procedures for measuring smoke exhaust emissions. The system and procedures for sampling...

  11. 40 CFR 87.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Sampling and analytical procedures for measuring gaseous exhaust emissions. 87.64 Section 87.64 Protection of Environment ENVIRONMENTAL PROTECTION....64 Sampling and analytical procedures for measuring gaseous exhaust emissions. (a) The system...

  12. 40 CFR 87.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Sampling and analytical procedures for measuring gaseous exhaust emissions. 87.64 Section 87.64 Protection of Environment ENVIRONMENTAL PROTECTION... Test Procedures § 87.64 Sampling and analytical procedures for measuring gaseous exhaust emissions....

  13. 14 CFR 34.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Sampling and analytical procedures for measuring gaseous exhaust emissions. 34.64 Section 34.64 Aeronautics and Space FEDERAL AVIATION... Turbine Engines) § 34.64 Sampling and analytical procedures for measuring gaseous exhaust emissions....

  14. 14 CFR 34.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Sampling and analytical procedures for measuring smoke exhaust emissions. 34.82 Section 34.82 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Sampling and analytical procedures for measuring smoke exhaust emissions. The system and procedures...

  15. 40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Sampling and analytical procedures for measuring smoke exhaust emissions. 87.82 Section 87.82 Protection of Environment ENVIRONMENTAL PROTECTION... analytical procedures for measuring smoke exhaust emissions. The system and procedures for sampling...

  16. 40 CFR 1037.105 - Exhaust emission standards for CO2 for vocational vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Exhaust emission standards for CO2 for... and Related Requirements § 1037.105 Exhaust emission standards for CO2 for vocational vehicles. (a... engines certified under § 1037.150(m). (b) The CO2 standards of this section are given in Table 1 to...

  17. 40 CFR 1037.105 - Exhaust emission standards for CO2 for vocational vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Exhaust emission standards for CO2 for... and Related Requirements § 1037.105 Exhaust emission standards for CO2 for vocational vehicles. (a... engines certified under § 1037.150(m). (b) The CO2 standards of this section are given in Table 1 to...

  18. 40 CFR 1037.105 - Exhaust emission standards for CO2 for vocational vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Exhaust emission standards for CO2 for... and Related Requirements § 1037.105 Exhaust emission standards for CO2 for vocational vehicles. (a... engines certified under § 1037.150(m). (b) The CO2 standards of this section are given in Table 1 to...

  19. 40 CFR 91.103 - Averaging, banking, and trading of exhaust emission credits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards and Certification Provisions § 91.103 Averaging, banking, and trading of exhaust emission credits... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Averaging, banking, and trading of exhaust emission credits. 91.103 Section 91.103 Protection of Environment ENVIRONMENTAL PROTECTION...

  20. Using GC×GC-ToF-MS to characterise SVOC from diesel exhaust emissions

    NASA Astrophysics Data System (ADS)

    Alam, M. S.; Ramadhas, A. S.; Stark, C. P.; Liu, D.; Xu, H.; Harrison, R. M.

    2014-12-01

    Despite intensive research over the last 20 years, a number of major research questions remain concerning the sources and properties of road traffic-generated particulate matter. There are major knowledge gaps concerning the composition of primary vehicle exhaust aerosol, and its contribution to secondary organic aerosol (SOA) formation. These uncertainties relate especially to the semi-volatile component of the particles. Semi-Volatile Organic Compounds (SVOC) are compounds which partition directly between the gas and aerosol phases under ambient conditions, and include compounds with saturation concentrations roughly between 0.1 and 104 μg m-3. The SVOC in engine exhaust are typically hydrocarbons in the C15-C35 range. They are largely uncharacterised, other than the n-alkanes, because they are unresolved by traditional gas chromatography and form a large hump in the chromatogram referred to as Unresolved Complex Mixture (UCM). In this study, samples were collected from the exhaust of a diesel engine with and without abatement devices fitted. Engine exhaust was diluted with air and collected using both filter and impaction (MOUDI), to resolve total mass and size resolved mass respectively. Particle size distribution was evaluated by sampling simultaneously with a Scanning Mobility Particle Sizer (SMPS). 2D Gas-Chromatography Time-of-Flight Mass-Spectrometry (GC×GC-ToF-MS) was exploited to characterise and quantify the composition of SVOC from the exhaust emission. The SVOC was observed to contain predominantly n-alkanes, alkyl-cyclohexanes and aromatics; similar to both fresh lubricating oil and fuel. Preliminary results indicate that the contribution of diesel fuel to the exhaust SVOC composition is dominant at high speeds, and a more pronounced contribution from lubricating oil is observed at low speeds. Differences were also observed in the SVOC composition when using different fuel types, engine lubricants, starting temperatures and collecting samples with

  1. Fiber-optic exhaust-gas sensor based on the fluorescence characteristics of Cu containing zeolites

    NASA Astrophysics Data System (ADS)

    Remillard, Jeffrey

    2000-03-01

    A single catalyst in the exhaust system can reduce the concentration of toxic gases emitted by automobiles if the engine is operated close to the stoichiometric air-fuel ratio. This is accomplished through the use of an electrochemical oxygen sensor in the exhaust stream. Near the stoichiometric point, this sensor produces a step-function response when the exhaust gas transitions from an oxygen-poor to an oxygen-rich condition. This talk describes a different kind of sensor based on the use of copper-containing zeolites that produces a proportional output. Zeolites are a class of aluminosilicate materials that have an open 3D structure containing channels and cavities. The Al sites are negatively charged and are generally compensated by cations present during formation of the zeolite. Our experiments use a zeolite designated Cu-ZSM-5, which has the protons originally present in the ZSM-5 material replaced with cupric (Cu^+2) ions. Exposure of this zeolite to a reducing gas results in the conversion of some cupric ions to cuprous (Cu^+1) ions. Subsequent exposure of the zeolite to an oxidizing gas reverses this reaction. The use of this material as a gas sensor is based on the observation that cuprous ions produce a green fluorescent emission when exposed to blue light, whereas no fluorescence is observed from cupric ions. Monitoring the fluorescence of Cu-ZSM-5 placed in a gas stream can thus provide information on the gas's reductant-to-oxidant ratio. We present the results of high temperature in-situ fluorescence spectra, intensity, and reponse-time measurements performed on samples of Cu-ZSM-5 exposed to various O_2-reductant combinations and also discuss data obtained from a single-fiber prototype sensor fabricated using a sol-gel processing technique.(J.T. Remillard et al.), Appl. Opt. 38 5306 (1999).

  2. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emission... emissions and carbon-related exhaust emissions. For each vehicle tested, determine the 5-cycle city...

  3. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emission... emissions and carbon-related exhaust emissions. For each vehicle tested, determine the 5-cycle city...

  4. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emission... emissions and carbon-related exhaust emissions. For each vehicle tested, determine the 5-cycle city...

  5. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    NASA Astrophysics Data System (ADS)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2017-03-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  6. Exhaust emissions reduction from diesel engine using combined Annona-Eucalyptus oil blends and antioxidant additive

    NASA Astrophysics Data System (ADS)

    Senthil, R.; Silambarasan, R.; Pranesh, G.

    2016-07-01

    The limited resources, rising petroleum prices and depletion of fossil fuel have now become a matter of great concern. Hence, there is an urgent need for researchers to find some alternate fuels which are capable of substituting partly or wholly the higher demanded conventional diesel fuel. Lot of research work has been conducted on diesel engine using biodiesel and its blends with diesel as an alternate fuel. Very few works have been done with combination of biodiesel-Eucalypts oil without neat diesel and this leads to lots of scope in this area. The aim of the present study is to analyze the performance and emission characteristics of a single cylinder, direct injection, compression ignition engine using eucalyptus oil-biodiesel as fuel. The presence of eucalyptus oil in the blend reduces the viscosity and improves the volatility of the blends. The methyl ester of Annona oil is blended with eucalypts oil in 10, 20, 30, 40 and 50 %. The performance and emission characteristics are evaluated by operating the engine at different loads. The performance characteristics such as brake thermal efficiency, brake specific fuel consumption and exhaust gas temperature are evaluated. The emission constituents measured are Carbon monoxide (CO), unburned hydrocarbons (HC), Oxides of nitrogen (NOx) and Smoke. It is found that A50-Eu50 (50 Annona + 50 % Eucalyptus oil) blend showed better performance and reduction in exhaust emissions. But, it showed a very marginal increase in NOx emission when compared to that of diesel. Therefore, in order to reduce the NOx emission, antioxidant additive (A-tocopherol acetate) is mixed with Annona-Eucalyptus oil blends in various proportions by which NOx emission is reduced. Hence, A50-Eu50 blend can be used as an alternate fuel for diesel engine without any modifications.

  7. Experimental Measurements of the Effects of Photo-chemical Oxidation on Aerosol Emissions in Aircraft Exhaust

    NASA Astrophysics Data System (ADS)

    Miracolo, M. A.; Presto, A. A.; Hennigan, C. J.; Nguyen, N.; Ranjan, M.; Reeder, A.; Lipsky, E.; Donahue, N. M.; Robinson, A. L.

    2009-12-01

    Many military and commercial airfields are located in non-attainment areas for particulate matter (PM2.5), but the contribution of emissions from in-use aircraft to local and regional PM2.5 concentrations is uncertain. In collaboration with the Pennsylvania Air National Guard 171st Air Refueling Wing, the Carnegie Mellon University (CMU) Mobile Laboratory was deployed to measure fresh and aged emissions from a CFM56-2B1 gas-turbine engine mounted on a KC-135 Stratotanker airframe. The CFM-56 family of engine powers many different types of military and civilian aircraft, including the Boeing 737 and several Airbus models. It is one of the most widely deployed models of engines in the world. The goal of this work was to measure the gas-particle partitioning of the fresh emissions at atmospherically relevant conditions and to investigate the effect of atmospheric oxidation on aerosol loadings as the emissions age. Emissions were sampled from an inlet installed one meter downstream of the engine exit plane and transferred into a portable smog chamber via a heated inlet line. Separate experiments were conducted at different engine loads ranging from ground idle to take-off rated thrust. During each experiment, some diluted exhaust was added to the chamber and the volatility of the fresh emissions was then characterized using a thermodenuder. After this characterization, the chamber was exposed to either ambient sunlight or UV lights to initiate photochemical oxidation, which produced secondary aerosol and ozone. A suite of gas and particle-phase instrumentation was used to characterize the evolution of the gas and particle-phase emissions, including an aerosol mass spectrometer (AMS) to measure particle size and composition distributions. Fresh emissions of fine particles varied with engine load with peak emission factors at low and high loads. At high engine loads, the fresh emissions were dominated by black carbon; at low loads volatile organic carbon emissions were

  8. Effect of measurement protocol on organic aerosol measurements of exhaust emissions from gasoline and diesel vehicles

    NASA Astrophysics Data System (ADS)

    Kim, Youngseob; Sartelet, Karine; Seigneur, Christian; Charron, Aurélie; Besombes, Jean-Luc; Jaffrezo, Jean-Luc; Marchand, Nicolas; Polo, Lucie

    2016-09-01

    Exhaust emissions of semi-volatile organic compounds (SVOC) from passenger vehicles are usually estimated only for the particle phase via the total particulate matter measurements. However, they also need to be estimated for the gas phase, as they are semi-volatile. To better estimate SVOC emission factors of passenger vehicles, a measurement campaign using a chassis dynamometer was conducted with different instruments: (1) a constant volume sampling (CVS) system in which emissions were diluted with filtered air and sampling was performed on filters and polyurethane foams (PUF) and (2) a Dekati Fine Particle Sampler (FPS) in which emissions were diluted with purified air and sampled with on-line instruments (PTR-ToF-MS, HR-ToF-AMS, MAAP, CPC). Significant differences in the concentrations of organic carbon (OC) measured by the instruments are observed. The differences can be explained by sampling artefacts, differences between (1) the time elapsed during sampling (in the case of filter and PUF sampling) and (2) the time elapsed from emission to measurement (in the case of on-line instruments), which vary from a few seconds to 15 min, and by the different dilution factors. To relate elapsed times and measured concentrations of OC, the condensation of SVOC between the gas and particle phases is simulated with a dynamic aerosol model. The simulation results allow us to understand the relation between elapsed times and concentrations in the gas and particle phases. They indicate that the characteristic times to reach thermodynamic equilibrium between gas and particle phases may be as long as 8 min. Therefore, if the elapsed time is less than this characteristic time to reach equilibrium, gas-phase SVOC are not at equilibrium with the particle phase and a larger fraction of emitted SVOC will be in the gas phase than estimated by equilibrium theory, leading to an underestimation of emitted OC if only the particle phase is considered or if the gas-phase SVOC are estimated

  9. Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

    SciTech Connect

    Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C.; Howden, Kenneth C.; Chalk, Steven

    2002-06-01

    system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 © 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  10. Exhaust emissions from a diesel power generator fuelled by waste cooking oil biodiesel.

    PubMed

    Valente, Osmano Souza; Pasa, Vanya Márcia Duarte; Belchior, Carlos Rodrigues Pereira; Sodré, José Ricardo

    2012-08-01

    The exhaust emissions from a diesel power generator operating with waste cooking oil biodiesel blends have been studied. Fuel blends with 25%, 50% and 75% of biodiesel concentration in diesel oil were tested, varying engine load from 0 to 25 kW. The original engine settings for diesel oil operation were kept the same during the experiments with the biodiesel blends. The main physical-chemical characteristics of the fuel blends used were measured to help with the analysis of the emission results. The results show that the addition of biodiesel to the fuel increases oxides of nitrogen (NO(X)), carbon monoxide (CO) and hydrocarbon (HC) emissions. Carbon dioxide (CO(2)) and exhaust gas opacity were also increased with the use of biodiesel. Major increase of NO(X) was observed at low loads, while CO and HC were mainly increased at high loads. Using 50% of biodiesel in diesel oil, the average increase of CO(2), CO, HC and NO(X) throughout the load range investigated was 8.5%, 20.1%, 23.5% and 4.8%, respectively.

  11. Exhaust gas measurements in a propane fueled swirl stabilized combustor

    NASA Technical Reports Server (NTRS)

    Aanad, M. S.

    1982-01-01

    Exhaust gas temperature, velocity, and composition are measured and combustor efficiencies are calculated in a lean premixed swirl stabilized laboratory combustor. The radial profiles of the data between the co- and the counter swirl cases show significant differences. Co-swirl cases show evidence of poor turbulent mixing across the combustor in comparison to the counter-swirl cases. NO sub x levels are low in the combustor but substantial amounts of CO are present. Combustion efficiencies are low and surprisingly constant with varying outer swirl in contradiction to previous results under a slightly different inner swirl condition. This difference in the efficiency trends is expected to be a result of the high sensitivity of the combustor to changes in the inner swirl. Combustor operation is found to be the same for propane and methane fuels. A mechanism is proposed to explain the combustor operation and a few important characteristics determining combustor efficiency are identified.

  12. Experimental Determination of Exhaust Gas Thrust, Special Report

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Voss, Fred

    1940-01-01

    This investigation presents the results of tests made on a radial engine to determine the thrust that can be obtained from the exhaust gas when discharged from separate stacks and when discharged from the collector ring with various discharge nozzles. The engine was provided with a propeller to absorb the power and was mounted on a test stand equipped with scales for measuring the thrust and engine torque. The results indicate that at full open throttle at sea level, for the engine tested, a gain in thrust horsepower of 18 percent using separate stacks, and 9.5 percent using a collector ring and discharge nozzle, can be expected at an air speed of 550 miles per hour.

  13. Effects of fuel type, driving cycle, and emission status on in-use vehicle exhaust reactivity.

    PubMed

    Ho, J; Winer, A M

    1998-07-01

    The introduction of reformulated gasolines significantly reduced exhaust hydrocarbon (HC) mass emissions, but few data are available concerning how these new fuels affect exhaust reactivity. Similarly, while it is well established that high-emitting vehicles contribute a significant portion of total mobile source HC mass emissions, it is also important to evaluate the exhaust reactivity from these vehicles. The objective of this study was to evaluate the relative influence on in-use vehicle exhaust reactivity of three critical factors: fuel, driving cycle, and vehicle emission status. Nineteen in-use vehicles were tested with seven randomly assigned fuel types and two driving cycles: the Federal Test Procedure (FTP) and the Unified Cycle (UC). Total exhaust reactivity was not statistically different between the FTP and UC cycles but was significantly affected by fuel type. On average, the exhaust reactivity for California Phase 2 fuel was the lowest (16% below the highest fuel type) among the seven fuels tested for cold start emissions. The average exhaust reactivity for high-emitting vehicles was significantly higher for hot stabilized (11%) and hot start (15%) emissions than for low-emitting vehicles. The exhaust reactivities for the FTP and UC cycles for light-end HCs and carbonyls were significantly different for the hot stabilized mode. There was a significant fuel effect on the mean specific reactivity (SR) for the mid-range HCs, but not for light-end HCs or carbonyls, while vehicle emission status affected the mean SR for all three HC compound classes.

  14. Ion beam analyses of particulate matter in exhaust gas of a ship diesel engine

    NASA Astrophysics Data System (ADS)

    Furuyama, Yuichi; Fujita, Hirotsugu; Taniike, Akira; Kitamura, Akira

    2011-12-01

    There is an urgent need to reduce emission of the particulate matter (PM) in the exhaust gas from ship diesel engines causing various health hazards and serious environmental pollution. Usually the heavy fuel oil (HFO) for ships is of low quality, and contains various kinds of impurities. Therefore, the emission of PM along with exhaust gas from ship diesel engines is one of the most serious environmental issues. However, the PM fundamental properties are not well known. Therefore, it is important to perform elemental analysis of the PM. The HFO contains sulfur with a relatively high concentration of a few percent. It is important to make quantitative measurements of sulfur in the PM, because this element is poisonous for the human body. In the present work, PM samples were collected from exhaust gas of a test engine, and RBS and PIXE analyses were applied successfully to quantitative analysis of the PM samples. The RBS analysis enabled quantitative analysis of sulfur and carbon in the collected PM, while heavier elements such as vanadium and iron were analyzed quantitatively with the PIXE analysis. It has been found that the concentration ratio of sulfur to carbon was between 0.007 and 0.012, and did not strongly depend on the output power of the engine. The S/ C ratio is approximately equal to the original composition of the HFO used in the present work, 0.01. From the known conversion ratio 0.015 of sulfur in the HFO to sulfates, the conversion ratio of carbon in the HFO to the PM is found to be 0.01-0.02 by the RBS measurements. On the other hand, the PIXE analysis revealed a vanadium enrichment of one order of magnitude in the PM.

  15. Exhaust emissions from light- and heavy-duty vehicles: chemical composition, impact of exhaust after treatment, and fuel parameters.

    PubMed Central

    Westerholm, R; Egebäck, K E

    1994-01-01

    This paper presents results from the characterization of vehicle exhaust that were obtained primarily within the Swedish Urban Air Project, "Tätortsprojektet." Exhaust emissions from both gasoline- and diesel-fueled vehicles have been investigated with respect to regulated pollutants (carbon monoxide [CO], hydrocarbon [HC], nitrogen oxides [NOx], and particulate), unregulated pollutants, and in bioassay tests (Ames test, TCDD receptor affinity tests). Unregulated pollutants present in both the particle- and the semi-volatile phases were characterized. Special interest was focused on the impact of fuel composition on heavy-duty diesel vehicle emissions. It was confirmed that there exists a quantifiable relationship between diesel-fuel variables of the fuel blends, the chemical composition of the emissions, and their biological effects. According to the results from the multivariate analysis, the most important fuel parameters are: polycyclic aromatic hydrocarbons (PAH) content, 90% distillation point, final boiling point, specific heat, aromatic content, density, and sulfur content. PMID:7529699

  16. 30 CFR 36.47 - Tests of exhaust-gas cooling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of exhaust-gas cooling system. 36.47..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.47 Tests of exhaust-gas cooling system. (a) The adequacy of...

  17. 30 CFR 36.49 - Tests of exhaust-gas dilution system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of exhaust-gas dilution system. 36.49..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.49 Tests of exhaust-gas dilution system. The performance...

  18. 30 CFR 36.49 - Tests of exhaust-gas dilution system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of exhaust-gas dilution system. 36.49..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.49 Tests of exhaust-gas dilution system. The performance...

  19. 30 CFR 36.49 - Tests of exhaust-gas dilution system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of exhaust-gas dilution system. 36.49..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.49 Tests of exhaust-gas dilution system. The performance...

  20. 30 CFR 36.49 - Tests of exhaust-gas dilution system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests of exhaust-gas dilution system. 36.49..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.49 Tests of exhaust-gas dilution system. The performance...

  1. 30 CFR 36.49 - Tests of exhaust-gas dilution system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of exhaust-gas dilution system. 36.49..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.49 Tests of exhaust-gas dilution system. The performance...

  2. 40 CFR 600.510-12 - Calculation of average fuel economy and average carbon-related exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and average carbon-related exhaust emissions. 600.510-12 Section 600.510-12 Protection of Environment... Carbon-Related Exhaust Emissions § 600.510-12 Calculation of average fuel economy and average carbon.... (iv) (2) Average carbon-related exhaust emissions will be calculated to the nearest one gram per...

  3. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emissions..., determine the 5-cycle city carbon-related exhaust emissions using the following equation: (1) CityCREE =...

  4. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. Paragraphs (a.... Paragraphs (d) through (f) of this section are used to calculate 5-cycle carbon-related exhaust emissions..., determine the 5-cycle city carbon-related exhaust emissions using the following equation: (1) CityCREE =...

  5. Emissions and fuel economy effects of vehicle exhaust emission control device (revision). Technical report

    SciTech Connect

    Johnson, H.

    1998-10-01

    This report describes testing by EPA of the Vehicle Exhaust Emission Control Device (VEECD) retrofit device under Section 32918 of Title 49 U.S.C. Retrofit Devices (RD). The VEECD is described by the developer in the international patent application as an embodiment of air bleed principle. It is intended to be retrofitted to vehicles produced without any, or with earlier-technology emission control systems. The developer claims (RD Application Appendix A) that the valve significantly reduces CO and HC emissions without substantially increasing CO{sub 2} or NOx emissions. Incidental city fuel economy enhancement was also claimed. Non-FTP test data obtained for 1986/87 European vehicles from two laboratories in the UK was submitted. This data (Appendix B) was analyzed using the t-test for the difference of constant speed data (30/60/85MPH) at 95% confidence level.

  6. Effect of operating and sampling conditions on the exhaust gas composition of small-scale power generators.

    PubMed

    Smits, Marianne; Vanpachtenbeke, Floris; Horemans, Benjamin; De Wael, Karolien; Hauchecorne, Birger; Van Langenhove, Herman; Demeestere, Kristof; Lenaerts, Silvia

    2012-01-01

    Small stationary diesel engines, like in generator sets, have limited emission control measures and are therefore responsible for 44% of the particulate matter (PM) emissions in the United States. The diesel exhaust composition depends on operating conditions of the combustion engine. Furthermore, the measurements are influenced by the used sampling method. This study examines the effect of engine loading and exhaust gas dilution on the composition of small-scale power generators. These generators are used in different operating conditions than road-transport vehicles, resulting in different emission characteristics. Experimental data were obtained for gaseous volatile organic compounds (VOC) and PM mass concentration, elemental composition and nitrate content. The exhaust composition depends on load condition because of its effect on fuel consumption, engine wear and combustion temperature. Higher load conditions result in lower PM concentration and sharper edged particles with larger aerodynamic diameters. A positive correlation with load condition was found for K, Ca, Sr, Mn, Cu, Zn and Pb adsorbed on PM, elements that originate from lubricating oil or engine corrosion. The nitrate concentration decreases at higher load conditions, due to enhanced nitrate dissociation to gaseous NO at higher engine temperatures. Dilution on the other hand decreases PM and nitrate concentration and increases gaseous VOC and adsorbed metal content. In conclusion, these data show that operating and sampling conditions have a major effect on the exhaust gas composition of small-scale diesel generators. Therefore, care must be taken when designing new experiments or comparing literature results.

  7. Effect of Operating and Sampling Conditions on the Exhaust Gas Composition of Small-Scale Power Generators

    PubMed Central

    Smits, Marianne; Vanpachtenbeke, Floris; Horemans, Benjamin; De Wael, Karolien; Hauchecorne, Birger; Van Langenhove, Herman; Demeestere, Kristof; Lenaerts, Silvia

    2012-01-01

    Small stationary diesel engines, like in generator sets, have limited emission control measures and are therefore responsible for 44% of the particulate matter (PM) emissions in the United States. The diesel exhaust composition depends on operating conditions of the combustion engine. Furthermore, the measurements are influenced by the used sampling method. This study examines the effect of engine loading and exhaust gas dilution on the composition of small-scale power generators. These generators are used in different operating conditions than road-transport vehicles, resulting in different emission characteristics. Experimental data were obtained for gaseous volatile organic compounds (VOC) and PM mass concentration, elemental composition and nitrate content. The exhaust composition depends on load condition because of its effect on fuel consumption, engine wear and combustion temperature. Higher load conditions result in lower PM concentration and sharper edged particles with larger aerodynamic diameters. A positive correlation with load condition was found for K, Ca, Sr, Mn, Cu, Zn and Pb adsorbed on PM, elements that originate from lubricating oil or engine corrosion. The nitrate concentration decreases at higher load conditions, due to enhanced nitrate dissociation to gaseous NO at higher engine temperatures. Dilution on the other hand decreases PM and nitrate concentration and increases gaseous VOC and adsorbed metal content. In conclusion, these data show that operating and sampling conditions have a major effect on the exhaust gas composition of small-scale diesel generators. Therefore, care must be taken when designing new experiments or comparing literature results. PMID:22442670

  8. Exposure to diesel exhaust emissions on board locomotives.

    PubMed

    Seshagiri, Baily

    2003-01-01

    Measurements of diesel exhaust emissions (DEEs) were taken in the cabs of leading and trailing locomotives on 48 runs, under winter and summer conditions, on 9 different routes. The cab windows were kept open during the summer runs and closed during the winter runs. The average measurement duration was 9.5 hours. There was virtually no exposure to DEEs in the lead locomotives during winter or summer and very little in the trailing locomotives during winter. The average elemental carbon (EC) concentration in the trailing units of the summer trials was greater than or equal to the proposed American Conference of Governmental Industrial Hygienists' threshold limit value/time-weighted average of 20 microg/m(3) on 26% of the runs, and was greater than or equal to 10 microg/m(3) on 63%. The concentrations of the gaseous components (nitric oxide, nitrogen dioxide, and carbon monoxide) were from 10 to 20 times below their respective threshold limit values. Mean EC concentration was 2.9 microg/m(3) (detection limit 2 microg/m(3)) during the winter runs and 17.1 microg/m(3) during summer. DEEs appeared to be fairly uniformly distributed in the trailing cabs. Configuration of the locomotives had a major impact on EC concentration, with the mean concentration being nearly three times higher in the forward-backward mode than in the forward-forward mode. Descriptive statistics such as means, medians, standard deviations, and so forth, are provided. Various types of statistical comparisons are reported. Recommendations for controlling exposure are made.

  9. 14 CFR 34.71 - Compliance with gaseous emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) §...

  10. 14 CFR 34.71 - Compliance with gaseous emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) §...

  11. 40 CFR 1042.240 - Demonstrating compliance with exhaust emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... emissions at the low-hour test point. For example, if you use aftertreatment technology that controls... additive) or include the effects in combined deterioration factors that include exhaust and...

  12. 40 CFR 1042.240 - Demonstrating compliance with exhaust emission standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... emissions at the low-hour test point. For example, if you use aftertreatment technology that controls... additive) or include the effects in combined deterioration factors that include exhaust and...

  13. Laboratory evaluation of a prototype photochemical chamber designed to investigate the health effects of fresh and aged vehicular exhaust emissions.

    PubMed

    Papapostolou, Vasileios; Lawrence, Joy E; Diaz, Edgar A; Wolfson, Jack M; Ferguson, Stephen T; Long, Mark S; Godleski, John J; Koutrakis, Petros

    2011-07-01

    Laboratory experiments simulating atmospheric aging of motor vehicle exhaust emissions were conducted using a single vehicle and a photochemical chamber. A compact automobile was used as a source of emissions. The vehicle exhaust was diluted with ambient air to achieve carbon monoxide (CO) concentrations similar to those observed in an urban highway tunnel. With the car engine idling, it is expected that the CO concentration is a reasonable surrogate for volatile organic compounds (VOCs) emissions. Varying the amount of dilution of the exhaust gas to produce different CO concentrations, allowed adjustment of the concentrations of VOCs in the chamber to optimize production of secondary organic aerosol (SOA) needed for animal toxicological exposures. Photochemical reactions in the chamber resulted in nitric oxide (NO) depletion, nitrogen dioxide (NO₂) formation, ozone (O₃) accumulation, and SOA formation. A stable SOA concentration of approximately 40 μg m⁻³ at a chamber mean residence time of 30 min was achieved. This relatively short mean residence time provided adequate chamber flow output for both particle characterization and animal exposures. The chamber was operated as a continuous flow reactor for animal toxicological tests. SOA mass generated from the car exhaust diluted with ambient air was almost entirely in the ultrafine mode. Chamber performance was improved by using different types of seed aerosol to provide a surface for condensation of semivolatile reaction products, thus increasing the yield of SOA. Toxicological studies using Sprague-Dawley rats found significant increases of in vivo chemiluminescence in lungs following exposure to SOA.

  14. Laboratory evaluation of a prototype photochemical chamber designed to investigate the health effects of fresh and aged vehicular exhaust emissions

    PubMed Central

    Papapostolou, Vasileios; Lawrence, Joy E.; Diaz, Edgar A.; Wolfson, Jack M.; Ferguson, Stephen T.; Long, Mark S.; Godleski, John J.; Koutrakis, Petros

    2013-01-01

    Laboratory experiments simulating atmospheric aging of motor vehicle exhaust emissions were conducted using a single vehicle and a photochemical chamber. A compact automobile was used as a source of emissions. The vehicle exhaust was diluted with ambient air to achieve carbon monoxide (CO) concentrations similar to those observed in an urban highway tunnel. With the car engine idling, it is expected that the CO concentration is a reasonable surrogate for volatile organic compounds (VOCs) emissions. Varying the amount of dilution of the exhaust gas to produce different CO concentrations, allowed adjustment of the concentrations of VOCs in the chamber to optimize production of secondary organic aerosol (SOA) needed for animal toxicological exposures. Photochemical reactions in the chamber resulted in nitric oxide (NO) depletion, nitrogen dioxide (NO2) formation, ozone (O3) accumulation, and SOA formation. A stable SOA concentration of approximately 40 µg m−3 at a chamber mean residence time of 30 min was achieved. This relatively short mean residence time provided adequate chamber flow output for both particle characterization and animal exposures. The chamber was operated as a continuous flow reactor for animal toxicological tests. SOA mass generated from the car exhaust diluted with ambient air was almost entirely in the ultrafine mode. Chamber performance was improved by using different types of seed aerosol to provide a surface for condensation of semivolatile reaction products, thus increasing the yield of SOA. Toxicological studies using Sprague-Dawley rats found significant increases of in vivo chemiluminescence in lungs following exposure to SOA. PMID:21689011

  15. 40 CFR 1042.240 - Demonstrating compliance with exhaust emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION... the deterioration expected in emissions over your engines' full useful life. See paragraph (e) of this... additive deterioration factor is the difference between exhaust emissions at the end of the useful life...

  16. 40 CFR 1054.105 - What exhaust emission standards must my nonhandheld engines meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK... for marine generator engines Class I 10.0 610 5.0 Class II 8.0 610 5.0 (b) Averaging, banking, and...) Other engines: THC emissions. (d) Useful life. Your engines must meet the exhaust emission standards...

  17. 40 CFR 1054.105 - What exhaust emission standards must my nonhandheld engines meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK... for marine generator engines Class I 10.0 610 5.0 Class II 8.0 610 5.0 (b) Averaging, banking, and...) Other engines: THC emissions. (d) Useful life. Your engines must meet the exhaust emission standards...

  18. 40 CFR 1042.240 - Demonstrating compliance with exhaust emission standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION... the deterioration expected in emissions over your engines' full useful life. See paragraph (e) of this... additive deterioration factor is the difference between exhaust emissions at the end of the useful life...

  19. 40 CFR 1054.105 - What exhaust emission standards must my nonhandheld engines meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK... for marine generator engines Class I 10.0 610 5.0 Class II 8.0 610 5.0 (b) Averaging, banking, and...) Other engines: THC emissions. (d) Useful life. Your engines must meet the exhaust emission standards...

  20. 40 CFR 1042.240 - Demonstrating compliance with exhaust emission standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION... the deterioration expected in emissions over your engines' full useful life. See paragraph (e) of this... additive deterioration factor is the difference between exhaust emissions at the end of the useful life...

  1. 40 CFR 1054.105 - What exhaust emission standards must my nonhandheld engines meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW, SMALL NONROAD SPARK... for marine generator engines Class I 10.0 610 5.0 Class II 8.0 610 5.0 (b) Averaging, banking, and...) Other engines: THC emissions. (d) Useful life. Your engines must meet the exhaust emission standards...

  2. Method for controlling exhaust gas heat recovery systems in vehicles

    DOEpatents

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  3. Measurement of exhaust emissions from two J-58 engines at simulated supersonic cruise flight conditions

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1976-01-01

    Emissions of total oxides of nitrogen, unburned hydrocarbons, carbon monoxide, and carbon dioxide from two J-58 afterburning turbojet engines at simulated high-altitude flight conditions are reported. Test conditions included flight speeds from Mach 2 to 3 at altitudes from 16 to 23 km. For each flight condition, exhaust measurements were made for four or five power levels from maximum power without afterburning through maximum afterburning. The data show that exhaust emissions vary with flight speed, altitude, power level, and radial position across the exhaust. Oxides of nitrogen (NOX) emissions decreased with increasing altitude, and increased with increasing flight speed. NOX emission indices with afterburning were less than half the value without afterburning. Carbon monoxide and hydrocarbon emissions increased with increasing altitude, and decreased with increasing flight speed. Emissions of these species were substantially higher with afterburning than without.

  4. Gas Emissions Acquired during the Aircraft Particle Emission Experiment (APEX) Series

    NASA Technical Reports Server (NTRS)

    Changlie, Wey; Chowen, Chou Wey

    2007-01-01

    NASA, in collaboration with other US federal agencies, engine/airframe manufacturers, airlines, and airport authorities, recently sponsored a series of 3 ground-based field investigations to examine the particle and gas emissions from a variety of in-use commercial aircraft. Emissions parameters were measured at multiple engine power settings, ranging from idle to maximum thrust, in samples collected at 3 different down stream locations of the exhaust. Sampling rakes at nominally 1 meter down stream contained multiple probes to facilitate a study of the spatial variation of emissions across the engine exhaust plane. Emission indices measured at 1 m were in good agreement with the engine certification data as well as predictions provided by the engine company. However at low power settings, trace species emissions were observed to be highly dependent on ambient conditions and engine temperature.

  5. Vehicle exhaust gas clearance by low temperature plasma-driven nano-titanium dioxide film prepared by radiofrequency magnetron sputtering.

    PubMed

    Yu, Shuang; Liang, Yongdong; Sun, Shujun; Zhang, Kai; Zhang, Jue; Fang, Jing

    2013-01-01

    A novel plasma-driven catalysis (PDC) reactor with special structure was proposed to remove vehicle exhaust gas. The PDC reactor which consisted of three quartz tubes and two copper electrodes was a coaxial dielectric barrier discharge (DBD) reactor. The inner and outer electrodes firmly surrounded the outer surface of the corresponding dielectric barrier layer in a spiral way, respectively. Nano-titanium dioxide (TiO2) film prepared by radiofrequency (RF) magnetron sputtering was coated on the outer wall of the middle quartz tube, separating the catalyst from the high voltage electrode. The spiral electrodes were designed to avoid overheating of microdischarges inside the PDC reactor. Continuous operation tests indicated that stable performance without deterioration of catalytic activity could last for more than 25 h. To verify the effectiveness of the PDC reactor, a non-thermal plasma(NTP) reactor was employed, which has the same structure as the PDC reactor but without the catalyst. The real vehicle exhaust gas was introduced into the PDC reactor and NTP reactor, respectively. After the treatment, compared with the result from NTP, the concentration of HC in the vehicle exhaust gas treated by PDC reactor reduced far more obviously while that of NO decreased only a little. Moreover, this result was explained through optical emission spectrum. The O emission lines can be observed between 870 nm and 960 nm for wavelength in PDC reactor. Together with previous studies, it could be hypothesized that O derived from catalytically O3 destruction by catalyst might make a significant contribution to the much higher HC removal efficiency by PDC reactor. A series of complex chemical reactions caused by the multi-components mixture in real vehicle exhaust reduced NO removal efficiency. A controllable system with a real-time feedback module for the PDC reactor was proposed to further improve the ability of removing real vehicle exhaust gas.

  6. Vehicle Exhaust Gas Clearance by Low Temperature Plasma-Driven Nano-Titanium Dioxide Film Prepared by Radiofrequency Magnetron Sputtering

    PubMed Central

    Yu, Shuang; Liang, Yongdong; Sun, Shujun; Zhang, Kai; Zhang, Jue; Fang, Jing

    2013-01-01

    A novel plasma-driven catalysis (PDC) reactor with special structure was proposed to remove vehicle exhaust gas. The PDC reactor which consisted of three quartz tubes and two copper electrodes was a coaxial dielectric barrier discharge (DBD) reactor. The inner and outer electrodes firmly surrounded the outer surface of the corresponding dielectric barrier layer in a spiral way, respectively. Nano-titanium dioxide (TiO2) film prepared by radiofrequency (RF) magnetron sputtering was coated on the outer wall of the middle quartz tube, separating the catalyst from the high voltage electrode. The spiral electrodes were designed to avoid overheating of microdischarges inside the PDC reactor. Continuous operation tests indicated that stable performance without deterioration of catalytic activity could last for more than 25 h. To verify the effectiveness of the PDC reactor, a non-thermal plasma(NTP) reactor was employed, which has the same structure as the PDC reactor but without the catalyst. The real vehicle exhaust gas was introduced into the PDC reactor and NTP reactor, respectively. After the treatment, compared with the result from NTP, the concentration of HC in the vehicle exhaust gas treated by PDC reactor reduced far more obviously while that of NO decreased only a little. Moreover, this result was explained through optical emission spectrum. The O emission lines can be observed between 870 nm and 960 nm for wavelength in PDC reactor. Together with previous studies, it could be hypothesized that O derived from catalytically O3 destruction by catalyst might make a significant contribution to the much higher HC removal efficiency by PDC reactor. A series of complex chemical reactions caused by the multi-components mixture in real vehicle exhaust reduced NO removal efficiency. A controllable system with a real-time feedback module for the PDC reactor was proposed to further improve the ability of removing real vehicle exhaust gas. PMID:23560062

  7. On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas

    NASA Astrophysics Data System (ADS)

    Meisner, G. P.

    2013-03-01

    The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.

  8. Development of naval diesel engine duty cycles for air exhaust emission environmental impact analysis. Master's thesis

    SciTech Connect

    Markle, S.P.

    1994-05-01

    A strategy for testing naval diesel engines for exhaust emissions was developed. A survey of existing international and national standard diesel engine duty cycles was conducted. All were found to be inadequate for testing and certification of engine exhaust emissions from naval diesel powered ships. Naval ship data covering 11,500 hours of engine operation of four U.S. Navy LSD 41 Class amphibious ships was analyzed to develop a 27 point class operating profile. A procedure combining ship hull form characteristics, ship propulsion plant parameters, and ship operating profile was detailed to derive an 11-Mode duty cycle representative for testing LSD 41 Class propulsion diesel engines. A similar procedure was followed for ship service diesel engines. Comparisons with industry accepted duty cycles were conducted using exhaust emission contour plots for the Colt-Pielstick PC-4B diesel engines. Results showed the 11-Mode LSD 41 Class Duty Cycle best predicted ship propulsion engine emissions compared to the 27 point operating profile propeller curve. The procedure was applied to T-AO 187 Class with similar results. The application of civilian industry standards to measure naval diesel ship propulsion engine exhaust emissions was found to be inadequate. Engine exhaust flow chemistry post turbocharger was investigated using the SANDIA Lab computer tool CHEMKIN. Results showed oxidation and reduction reactions within exhaust gases are quenched in the exhaust stack. Since the exhaust stream in the stack is unreactive, emission sampling may be performed where most convenient. A proposed emission measurement scheme for LSD 41 Class ships was presented.

  9. Determination of the Effects of Speed, Temperature, and Fuel Factors on Exhaust Emissions

    NASA Astrophysics Data System (ADS)

    Chou, Chia-Yang David

    1995-11-01

    This study provided a comprehensive approach to examining the relative significance and possible synergistic effects of speed, temperature, and fuel on mobile source emissions modeling. Eleven passenger vehicles from three fuel delivery system control groups were tested, namely, three from carburetor (CARBU), three from throttle body injection (TBI), and five from multi-port fuel injection (MPFI) group. A minimum of 90 tests were conducted on each vehicle with a random combination of three fuel types (Phase 1, Phase 2, and Indolene), three temperatures (50 F, 75 F, and 100 F), and ten speed cycles. Each vehicle was repeated for ten speed cycles (75 F and Indolene). In general, exhaust emissions descended in the order of CARBU, TBI, and MPFI. All vehicles in the CARBU group contained a "dead" catalyst, which probably explained why vehicles in CARBU were "high emitters.". Results from the paired t-test indicated that exhaust emissions difference between Phase 1 and Phase 2 fuels for all vehicles was significant. The net exhaust emissions reduction of Phase 2 over Phase 1 fuel for HC and NOx was 21% and 12%, respectively; which is in good agreements with the CARB projected 17% HC (including evaporative and exhaust emissions) and 11% CO emissions reduction based on 1996 calendar year when Phase 2 fuel is introduced. Temperature had minimal effects on exhaust emissions especially the test cycles were in hot-stabilized mode. Nevertheless, exhaust emissions from cold-start mode were higher than hot-start mode because the catalyst had not reached to optimal operating temperature during the cold-start mode. The relative contributions of speed, temperature, and fuel to exhaust emissions were determined using analysis of variance (ANOVA) and it was found interaction terms among fuel, speed, and temperature were statistically insignificant. Individually, the temperature and fuel factor played a minor role in exhaust emission modeling. Speed and vehicle type were the two

  10. Fuel consumptions and exhaust emissions induced by cooperative adaptive cruise control strategies

    NASA Astrophysics Data System (ADS)

    Yu, Shaowei; Shi, Zhongke

    2015-04-01

    Many cooperative adaptive cruise control strategies have been presented to improve traffic efficiency as well as road traffic safety, but scholars have rarely explored the impacts of these strategies on cars' fuel consumptions and exhaust emissions. In this paper, we respectively select two-velocity difference model, multiple velocity difference model and the car-following model considering multiple preceding cars' accelerations to investigate each car's fuel consumptions, carbon monoxide (CO), hydrocarbons (HC) and nitrogen oxides (NOX) emissions and carry out comparative analysis. The comparisons of fuel consumptions and exhaust emissions in three different cruise control strategies show that cooperative cars simulated by the car-following model considering multiple preceding cars' accelerations can run with the minimal fuel consumptions, CO, HC and NOX emissions, thus, taking the car-following model considering multiple preceding cars' accelerations as the cooperative adaptive cruise control strategy can significantly improve cars' fuel efficiency and exhaust emissions.

  11. Extrapolating Ground-Based Aircraft Engine Exhaust Emissions to Cruise Conditions: Lessons From the 2013 ACCESS Chase Plane Experiment

    NASA Astrophysics Data System (ADS)

    Moore, R.; Shook, M.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2011-12-01

    Aircraft engine emissions constitute a tiny fraction of the global black carbon mass, but can have a disproportionate climatic impact because they are emitted high in the troposphere and in remote regions with otherwise low aerosol concentrations. Consequently, these particles are likely to strongly influence cirrus and contrail formation by acting as ice nuclei (IN). However, the ice nucleating properties of aircraft exhaust at relevant atmospheric conditions are not well known, and thus, the overall impact of aviation on cloud formation remains very uncertain. While a number of aircraft engine emissions studies have previously been conducted at sea level temperature and pressure (e.g., APEX, AAFEX-1 and 2), it unclear the extent to which exhaust emissions on the ground translate to emissions at cruise conditions with much lower inlet gas temperatures and pressures. To address this need, the NASA Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) was conducted in February-April, 2013 to examine the aerosol and gas emissions from the NASA DC-8 under a variety of different fuel types, engine power, and altitude/meteorological conditions. Two different fuel types were studied: a traditional JP-8 fuel and a 50:50 blend of JP-8 and a camelina-based hydro-treated renewable jet (HRJ) fuel. Emissions were sampled using a comprehensive suite of gas- and aerosol-phase instrumentation integrated on an HU-25 Falcon jet that was positioned in the DC-8 exhaust plume at approximately 100-500m distance behind the engines. In addition, a four-hour ground test was carried out with sample probes positioned at 30 m behind each of the inboard engines. Measurements of aerosol concentration, size distribution, soot mass, and hygroscopicity were carried out along with trace gas measurements of CO2, NO, NO2, O3, and water vapor. NOx emissions were reconciled by employing the well-established Boeing method for normalizing engine fuel flow rates to STP; however, comparison

  12. Extrapolating Ground-Based Aircraft Engine Exhaust Emissions to Cruise Conditions: Lessons From the 2013 ACCESS Chase Plane Experiment

    NASA Astrophysics Data System (ADS)

    Moore, R.; Shook, M.; Thornhill, K. L.; Winstead, E.; Anderson, B. E.

    2013-12-01

    Aircraft engine emissions constitute a tiny fraction of the global black carbon mass, but can have a disproportionate climatic impact because they are emitted high in the troposphere and in remote regions with otherwise low aerosol concentrations. Consequently, these particles are likely to strongly influence cirrus and contrail formation by acting as ice nuclei (IN). However, the ice nucleating properties of aircraft exhaust at relevant atmospheric conditions are not well known, and thus, the overall impact of aviation on cloud formation remains very uncertain. While a number of aircraft engine emissions studies have previously been conducted at sea level temperature and pressure (e.g., APEX, AAFEX-1 and 2), it unclear the extent to which exhaust emissions on the ground translate to emissions at cruise conditions with much lower inlet gas temperatures and pressures. To address this need, the NASA Alternative Fuel Effects on Contrails and Cruise Emissions (ACCESS) was conducted in February-April, 2013 to examine the aerosol and gas emissions from the NASA DC-8 under a variety of different fuel types, engine power, and altitude/meteorological conditions. Two different fuel types were studied: a traditional JP-8 fuel and a 50:50 blend of JP-8 and a camelina-based hydro-treated renewable jet (HRJ) fuel. Emissions were sampled using a comprehensive suite of gas- and aerosol-phase instrumentation integrated on an HU-25 Falcon jet that was positioned in the DC-8 exhaust plume at approximately 100-500m distance behind the engines. In addition, a four-hour ground test was carried out with sample probes positioned at 30 m behind each of the inboard engines. Measurements of aerosol concentration, size distribution, soot mass, and hygroscopicity were carried out along with trace gas measurements of CO2, NO, NO2, O3, and water vapor. NOx emissions were reconciled by employing the well-established Boeing method for normalizing engine fuel flow rates to STP; however, comparison

  13. 40 CFR 86.144-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regulations for 1977 and Later Model Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle...) Total hydrocarbon mass: HCmass=Vmix × DensityHC × (HCconc/1,000,000) (2) Oxides of nitrogen mass...=Total hydrocarbon concentration of the dilute exhaust sample or, for diesel-cycle (or...

  14. Method for generating a highly reactive plasma for exhaust gas after treatment and enhanced catalyst reactivity

    SciTech Connect

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2000-07-01

    This patent application describes a method and apparatus of exhaust gas remediation that enhance the reactivity of the material catalysts found within catalytic converters of cars, trucks, and power stations.

  15. [Calculating emissions of exhaust particulate matter from motor vehicles with PART5 model].

    PubMed

    Wu, Ye; Hao, Jiming; Li, Wei; Fu, Lixin

    2002-01-30

    PART5, a vehicle particulate emission factor model developed by USEPA, was modified and then used to obtain the emission factors of exhaust PM10 and PM2.5 from on-road automobiles, trucks and motorcycles in Beijing. The total exhaust PM10 and PM2.5 emissions from motor vehicles in 1995 and 1998 were calculated separately. The contribution ratios of different types of vehicles to the total vehicular emissions, and the share of different exhaust particulate components including Pb, direct SO4(2-), soluble organic fraction (SOF) and remaining carbon portion (RCP), were also estimated. It was shown that the emission factors of exhaust PM10 and PM2.5 from gasoline motor vehicles, motorcycles and heavy-duty diesel vehicles in Beijing were 1.7-8.6 times, 2.1-3.5 times and 1.3-1.5 times, respectively, of the USA average emission levels during the same period. The total exhaust PM10 and PM2.5 from vehicles were 2445 tons and 1890 tons in 1995 in Beijing, and increased to 3359 tons and 2694 tons in 1998, which increase by 37.4% and 42.5%, respectively.

  16. Gas separation process using membranes with permeate sweep to remove CO.sub.2 from gaseous fuel combustion exhaust

    DOEpatents

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2012-05-15

    A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.

  17. Identification of polycyclic aromatic hydrocarbons in unleaded petrol and diesel exhaust emission.

    PubMed

    Yadav, Vinay Kumar; Prasad, Sahdeo; Patel, Devendra K; Khan, Altaf Husain; Tripathi, Madhu; Shukla, Yogeshwer

    2010-09-01

    Inhalation of emissions from petrol and diesel exhaust particulates is associated with potentially severe biological effects. In the present study, polycyclic aromatic hydrocarbons (PAHs) were identified from smokes released by the automobile exhaust from petrol and diesel. Intensive sampling of unleaded petrol and diesel exhaust were done by using 800-cm(3) motor car and 3,455-cm(3) vehicle, respectively. The particulate phase of exhaust was collected on Whatman filter paper. Particulate matters were extracted from filter paper by using Soxhlet. PAHs were identified from particulate matter by reverse phase high performance liquid chromatography using C(18) column. A total of 14 PAHs were identified in petrol and 13 in case of diesel sample after comparing to standard samples for PAH estimation. These inhalable PAHs released from diesel and petrol exhaust are known to possess mutagenic and carcinogenic activity, which may present a potential risk for the health of inhabitants.

  18. 40 CFR 1051.105 - What are the exhaust emission standards for off-highway motorcycles?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... useful life for the engine family in terms of kilometers if the average service life of your vehicles is... minimum useful life (10,000 kilometers). In determining the actual average service life of vehicles in an... VEHICLES Emission Standards and Related Requirements § 1051.105 What are the exhaust emission standards...

  19. 40 CFR 1051.105 - What are the exhaust emission standards for off-highway motorcycles?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... useful life for the engine family in terms of kilometers if the average service life of your vehicles is... minimum useful life (10,000 kilometers). In determining the actual average service life of vehicles in an... VEHICLES Emission Standards and Related Requirements § 1051.105 What are the exhaust emission standards...

  20. 40 CFR 1051.105 - What are the exhaust emission standards for off-highway motorcycles?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... useful life for the engine family in terms of kilometers if the average service life of your vehicles is... minimum useful life (10,000 kilometers). In determining the actual average service life of vehicles in an... VEHICLES Emission Standards and Related Requirements § 1051.105 What are the exhaust emission standards...

  1. 40 CFR 1051.105 - What are the exhaust emission standards for off-highway motorcycles?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... useful life for the engine family in terms of kilometers if the average service life of your vehicles is... minimum useful life (10,000 kilometers). In determining the actual average service life of vehicles in an... VEHICLES Emission Standards and Related Requirements § 1051.105 What are the exhaust emission standards...

  2. 40 CFR 1051.105 - What are the exhaust emission standards for off-highway motorcycles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... useful life for the engine family in terms of kilometers if the average service life of your vehicles is... minimum useful life (10,000 kilometers). In determining the actual average service life of vehicles in an... VEHICLES Emission Standards and Related Requirements § 1051.105 What are the exhaust emission standards...

  3. 40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION... subject to not-to-exceed standards. (d) Useful life. Your engines must meet the exhaust emission standards of this section over their full useful life, expressed as a period in years or hours of...

  4. 40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION... engines are not subject to not-to-exceed standards. (d) Useful life. Your engines must meet the exhaust emission standards of this section over their full useful life, expressed as a period in years or hours...

  5. 40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION... subject to not-to-exceed standards. (d) Useful life. Your engines must meet the exhaust emission standards of this section over their full useful life, expressed as a period in years or hours of...

  6. 40 CFR 1042.104 - Exhaust emission standards for Category 3 engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM NEW AND IN-USE MARINE COMPRESSION-IGNITION... engines are not subject to not-to-exceed standards. (d) Useful life. Your engines must meet the exhaust emission standards of this section over their full useful life, expressed as a period in years or hours...

  7. 40 CFR 1054.103 - What exhaust emission standards must my handheld engines meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... g/kW-hr for Class IV engines. (3) 186 g/kW-hr for Class V engines. (c) Fuel types. The exhaust emission standards in this section apply for engines using the fuel type on which the engines in the... this section based on the following types of hydrocarbon emissions for engines powered by the...

  8. 40 CFR 1054.105 - What exhaust emission standards must my nonhandheld engines meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... engines with displacement at or above 100 cc. (3) 12.1 for Class II engines. (c) Fuel types. The exhaust emission standards in this section apply for engines using the fuel type on which the engines in the... this section based on the following types of hydrocarbon emissions for engines powered by the...

  9. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  10. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  11. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  12. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION...

  13. 40 CFR 1045.105 - What exhaust emission standards must my sterndrive/inboard engines meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false What exhaust emission standards must my sterndrive/inboard engines meet? 1045.105 Section 1045.105 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION...

  14. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    DOEpatents

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  15. Catalysts, systems and methods to reduce NOX in an exhaust gas stream

    DOEpatents

    Castellano, Christopher R.; Moini, Ahmad; Koermer, Gerald S.; Furbeck, Howard

    2010-07-20

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having an SCR catalyst comprising silver tungstate on an alumina support. The emissions treatment system may be used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines. An emissions treatment system may further comprise an injection device operative to dispense a hydrocarbon reducing agent upstream of the catalyst.

  16. Nanoparticle emissions from 11 non-vehicle exhaust sources - A review

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Pirjola, Liisa; Ketzel, Matthias; Harrison, Roy M.

    2013-03-01

    Nanoparticle emissions from road vehicles have been studied extensively in the recent past due to their dominant contribution towards the total airborne particle number concentrations (PNCs) found in the urban atmospheric environment. In view of upcoming tighter vehicle emission standards and adoption of cleaner fuels in many parts of the world, the contribution to urban nanoparticles from non-vehicle exhaust sources (NES) may become more pronounced in future. As of now, only limited information exists on nanoparticle emissions from NES through the discretely published studies. This article presents critically synthesised information in a consolidated manner on 11 NES (i.e. road-tyre interaction, construction and demolition, aircraft, ships, municipal waste incineration, power plants, domestic biomass burning, forest fires, cigarette smoking, cooking, and secondary formation). Source characteristics and formation mechanisms of nanoparticles emitted from each NES are firstly discussed, followed by their emission strengths, airborne concentrations and physicochemical characteristics. Direct comparisons of the strengths of NES are not straightforward but an attempt has been made to discuss their importance relative to the most prominent source (i.e. road vehicles) of urban nanoparticles. Some interesting comparisons emerged such as 1 kg of fast and slow wood burning produces nearly the same number of particles as for each km driven by a heavy duty vehicle (HDV) and a light duty vehicle, respectively. About 1 min of cooking on gas can produce the similar particle numbers generated by ˜10 min of cigarette smoking or 1 m travel by a HDV. Apportioning the contribution of numerous sources from the bulk measured airborne PNCs is essential for determining their relative importance. Receptor modelling methods for estimation of source emission contributions are discussed. A further section evaluates the likely exposure risks, health and regulatory implications associated with

  17. 40 CFR 1033.101 - Exhaust emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... this section. Generating or using emission credits requires that you specify a family emission limit (FEL) for each pollutant you include in the ABT program for each engine family. These FELs serve as the emission standards for the engine family with respect to all required testing instead of the...

  18. Urban air quality: the challenge of traffic non-exhaust emissions.

    PubMed

    Amato, Fulvio; Cassee, Flemming R; Denier van der Gon, Hugo A C; Gehrig, Robert; Gustafsson, Mats; Hafner, Wolfgang; Harrison, Roy M; Jozwicka, Magdalena; Kelly, Frank J; Moreno, Teresa; Prevot, Andre S H; Schaap, Martijn; Sunyer, Jordi; Querol, Xavier

    2014-06-30

    About 400,000 premature adult deaths attributable to air pollution occur each year in the European Region. Road transport emissions account for a significant share of this burden. While important technological improvements have been made for reducing particulate matter (PM) emissions from motor exhausts, no actions are currently in place to reduce the non-exhaust part of emissions such as those from brake wear, road wear, tyre wear and road dust resuspension. These "non-exhaust" sources contribute easily as much and often more than the tailpipe exhaust to the ambient air PM concentrations in cities, and their relative contribution to ambient PM is destined to increase in the future, posing obvious research and policy challenges. This review highlights the major and more recent research findings in four complementary fields of research and seeks to identify the current gaps in research and policy with regard to non-exhaust emissions. The objective of this article is to encourage and direct future research towards an improved understanding on the relationship between emissions, concentrations, exposure and health impact and on the effectiveness of potential remediation measures in the urban environment.

  19. Non-exhaust emissions of PM and the efficiency of emission reduction by road sweeping and washing in the Netherlands.

    PubMed

    Keuken, Menno; Denier van der Gon, Hugo; van der Valk, Karin

    2010-09-15

    From research on PM(2.5) and PM(10) in 2007/2008 in the Netherlands, it was concluded that the coarse fraction (PM(2.5-10)) attributed 60% and 50% respectively, to the urban-regional and street-urban increments of PM(10). Contrary to Scandinavian and Mediterranean countries which exhibit significant seasonal variation in the coarse fraction of particulate matter (PM), in the Netherlands the coarse fraction in PM at a street location is rather constant during the year. Non-exhaust emissions by road traffic are identified as the main source for coarse PM in urban areas. Non-exhaust emissions mainly originate from re-suspension of accumulated deposited PM and road wear related particles, while primary tire and brake wear hardly contribute to the mass of non-exhaust emissions. However, tire and brake wear can clearly be identified in the total mass through the presence of the heavy metals: zinc, a tracer for tire wear and copper, a tracer for brake wear. The efficiency of road sweeping and washing to reduce non-exhaust emissions in a street-canyon in Amsterdam was investigated. The increments of the coarse fraction at a kerbside location and a housing façade location versus the urban background were measured at days with and without sweeping and washing. It was concluded that this measure did not significantly reduce non-exhaust emissions.

  20. Harmless drainage of automobile exhaust gas under catalysis

    SciTech Connect

    Zheng Qingying; Dai Qianhuan )

    1988-09-01

    In terms of an epidemiologic investigation in Beijing, a higher incidence of lung cancer appears in the population of traffic policemen and workers involved with automobile exhausts which might be a biomarker of the polycyclic aromatic hydrocarbons contamination in their environment. Recently, a purification catalyst containing cheaper metal oxides and rare earth metal oxides for automobile exhaust has been developed in this laboratory. After catalysis the CO, benzene and lower hydrocarbons oxidize completely to form CO{sub 2} and H{sub 2}O. The mark of polycyclic aromatic hydrocarbon (PAH) pollutant penteno(cd)pyrene, can not be found after the catalysis. Other PAH which have been carcinogenicity tested by animals or predicted in terms of Di region theory, were not found in the catalyzed exhaust.

  1. Control method for turbocharged diesel engines having exhaust gas recirculation

    DOEpatents

    Kolmanovsky, Ilya V.; Jankovic, Mrdjan J; Jankovic, Miroslava

    2000-03-14

    A method of controlling the airflow into a compression ignition engine having an EGR and a VGT. The control strategy includes the steps of generating desired EGR and VGT turbine mass flow rates as a function of the desired and measured compressor mass airflow values and exhaust manifold pressure values. The desired compressor mass airflow and exhaust manifold pressure values are generated as a function of the operator-requested fueling rate and engine speed. The EGR and VGT turbine mass flow rates are then inverted to corresponding EGR and VGT actuator positions to achieve the desired compressor mass airflow rate and exhaust manifold pressure. The control strategy also includes a method of estimating the intake manifold pressure used in generating the EGR valve and VGT turbine positions.

  2. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    DOEpatents

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  3. 40 CFR 1045.103 - What exhaust emission standards must my outboard and personal watercraft engines meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Emission Standards and Related Requirements § 1045.103 What exhaust.... (3) Other engines: THC emissions. (e) Useful life. Your engines must meet the exhaust...

  4. 40 CFR 1045.103 - What exhaust emission standards must my outboard and personal watercraft engines meet?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Emission Standards and Related Requirements § 1045.103 What exhaust.... (3) Other engines: THC emissions. (e) Useful life. Your engines must meet the exhaust...

  5. 40 CFR 1045.103 - What exhaust emission standards must my outboard and personal watercraft engines meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Emission Standards and Related Requirements § 1045.103 What exhaust.... (3) Other engines: THC emissions. (e) Useful life. Your engines must meet the exhaust...

  6. 40 CFR 1045.103 - What exhaust emission standards must my outboard and personal watercraft engines meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS CONTROL OF EMISSIONS FROM SPARK-IGNITION PROPULSION MARINE ENGINES AND VESSELS Emission Standards and Related Requirements § 1045.103 What exhaust.... (3) Other engines: THC emissions. (e) Useful life. Your engines must meet the exhaust...

  7. 40 CFR 1037.106 - Exhaust emission standards for CO2 for tractors above 26,000 pounds GVWR.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Exhaust emission standards for CO2 for... Emission Standards and Related Requirements § 1037.106 Exhaust emission standards for CO2 for tractors above 26,000 pounds GVWR. (a) The CO2 standards of this section apply for tractors above 26,000...

  8. 40 CFR 1037.106 - Exhaust emission standards for CO2 for tractors above 26,000 pounds GVWR.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Exhaust emission standards for CO2 for... Emission Standards and Related Requirements § 1037.106 Exhaust emission standards for CO2 for tractors above 26,000 pounds GVWR. (a) The CO2 standards of this section apply for tractors above 26,000...

  9. 40 CFR 1037.106 - Exhaust emission standards for CO2 for tractors above 26,000 pounds GVWR.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Exhaust emission standards for CO2 for... Emission Standards and Related Requirements § 1037.106 Exhaust emission standards for CO2 for tractors above 26,000 pounds GVWR. (a) The CO2 standards of this section apply for tractors above 26,000...

  10. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    PubMed

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.

  11. Real-world fuel efficiency and exhaust emissions of light-duty diesel vehicles and their correlation with road conditions.

    PubMed

    Hu, Jingnan; Wu, Ye; Wang, Zhishi; Li, Zhenhua; Zhou, Yu; Wang, Haitao; Bao, Xiaofeng; Hao, Jiming

    2012-01-01

    The real-world fuel efficiency and exhaust emission profiles of CO, HC and NOx for light-duty diesel vehicles were investigated. Using a portable emissions measurement system, 16 diesel taxies were tested on different roads in Macao and the data were normalized with the vehicle specific power bin method. The 11 Toyota Corolla diesel taxies have very good fuel economy of (5.9 +/- 0.6) L/100 km, while other five diesel taxies showed relatively high values at (8.5 +/- 1.7) L/100 km due to the variation in transmission systems and emission control strategies. Compared to similar Corolla gasoline models, the diesel cars confirmed an advantage of ca. 20% higher fuel efficiency. HC and CO emissions of all the 16 taxies are quite low, with the average at (0.05 +/- 0.02) g/km and (0.38 +/- 0.15) g/km, respectively. The average NOx emission factor of the 11 Corolla taxies is (0.56 +/- 0.17) g/km, about three times higher than their gasoline counterparts. Two of the three Hyundai Sonata taxies, configured with exhaust gas recirculation (EGR) + diesel oxidation catalyst (DOC) emission control strategies, indicated significantly higher NO2 emissions and NO2/NOx ratios than other diesel taxies and consequently trigger a concern of possibly adverse impacts on ozone pollution in urban areas with this technology combination. A clear and similar pattern for fuel consumption and for each of the three gaseous pollutant emissions with various road conditions was identified. To save energy and mitigate CO2 emissions as well as other gaseous pollutant emissions in urban area, traffic planning also needs improvement.

  12. Nondispersive infrared monitoring of NO emissions in exhaust gases of vehicles

    NASA Astrophysics Data System (ADS)

    de Castro, A. J.; Meneses, J.; Briz, S.; López, F.

    1999-07-01

    Road traffic is one of the most important contributors to air pollution, being that a small fraction of the running vehicles is responsible for more than a half of the emissions. Roadside emission monitoring of individual cars appears to be an efficient way to identify these gross polluters. In this sense, nondispersive infrared (NDIR) systems have been developed to monitor the gas emissions of individual vehicles. However, these systems do not include NOx detection because of the strong interference of NO and NO2 absorption bands with the water band. This work is focused on the roadside monitoring of NO emissions by NDIR techniques. A theoretical study of the interference between NO and H2O absorption bands in the 1800-1950 cm-1 spectral region has been performed. Two absorption lines, centered at 1876 and 1900 cm-1 have been selected due to the very low water interference. The development of a new application based on the buildup of a high order interference filter, the solid state Fabry-Pérot filter, is presented. Design of the filter system has been done, optimizing the transmittance at these two absorption lines. Finally, the ability of such a filter to discriminate NO absorption has been tested by using experimental absorption spectra measured by a commercial Fourier transform infrared spectroradiometer working in the active mode. The buildup of such a filter would permit us to increase the capabilities of on road exhaust monitoring systems using the NDIR technique, extending the range of analyzed gases to the nitrogen oxides.

  13. Toward gas exhaustion in the W51 high-mass protoclusters

    NASA Astrophysics Data System (ADS)

    Ginsburg, A.; Goss, W. M.; Goddi, C.; Galván-Madrid, R.; Dale, J. E.; Bally, J.; Battersby, C. D.; Youngblood, A.; Sankrit, R.; Smith, R.; Darling, J.; Kruijssen, J. M. D.; Liu, H. B.

    2016-10-01

    We present new JVLA observations of the high-mass cluster-forming region W51A from 2 to 16 GHz with resolution θfwhm ≈ 0.3-0.5″. The data reveal a wealth of observational results: (1) Currently forming, very massive (proto-O) stars are traced by o - H2CO21,1-21,2 emission, suggesting that this line can be used efficiently as a massive protostar tracer; (2) there is a spatially distributed population of ≲mJy continuum sources, including hypercompact H ii regions and candidate colliding wind binaries, in and around the W51 proto-clusters; and (3) there are two clearly detected protoclusters, W51e and W51 IRS2, that are gas-rich but may have most of their mass in stars within their inner ≲0.05 pc. The majority of the bolometric luminosity in W51 most likely comes from a third population of OB stars between these clusters. The presence of a substantial population of exposed O-stars coincident with a population of still-forming massive stars, together with a direct measurement of the low mass loss rate via ionized gas outflow from W51 IRS2, implies that feedback is ineffective at halting star formation in massive protoclusters. Instead, feedback may shut off the large-scale accretion of diffuse gas onto the W51 protoclusters, implying that they are evolving toward a state of gas exhaustion rather than gas expulsion. Recent theoretical models predict gas exhaustion to be a necessary step in the formation of gravitationally bound stellar clusters, and our results provide an observational validation of this process. This paper and all related analysis code are available on the web at http://https://github.com/adamginsburg/paper_w51_evlaTable A.1 and final data (FITS files) are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/595/A27

  14. Exhaust emissions of polycyclic aromatic hydrocarbons, n-alkanes and phenols from vehicles coming within different European classes

    NASA Astrophysics Data System (ADS)

    Perrone, Maria Grazia; Carbone, Claudio; Faedo, Davide; Ferrero, Luca; Maggioni, Angela; Sangiorgi, Giorgia; Bolzacchini, Ezio

    2014-01-01

    EU emission standards for vehicles do not include many particulate (PM) and gaseous species, despite their considerable impact on air pollution and health. Emission factors (EFs) were measured for unregulated species, i.e. polycyclic aromatic hydrocarbons (PAHs) and n-alkanes (ALKs) in the particle phase, and, for the first time, EFs for phenols in both particle and gas phases. Exhaust samples were collected under controlled operating conditions (chassis dynamometer tests) for in-service vehicles (private cars, PCs and light duty vehicles, LDVs) from different EURO classes. EFs of trace organics were highest for the old EURO 1 vehicles (the tested EURO 1 vehicles were without emission-control devices), and lowest for the more recent EURO 3 and 4 vehicles. ALKs (C20-C32) were the most abundant trace organic compounds found in PM vehicle exhaust, and their EF ranged between 2034 and 101 μg km-1 (Euro 1-4 LDVs). PM-phased phenols EFs were in the range 0.42-2.50 μg km-1, and 4-nitrophenol was the most abundant one. The highest EFs were measured for phenols in the gas phase (dominated by the presence of phenol) for gasoline EURO 1 (43.16 ± 9.99 μg km-1). Emissions of PAHs changed depending on the fuel used. The PAH EFs of diesel-driven PCs were 4-5 times higher than those of gasoline vehicles, with PAHs diesel exhaust being mainly enriched in low 4-ring PAHs (85%), while 5-6 ring PAHs were prevalent (55%) in gasoline vehicles. Results of source profiles from chassis dynamometer tests were compared with ambient data, and the traffic PAH source profile derived from a tunnel study (Milan) agreed with the estimated emissions from a mix of diesel and gasoline vehicles circulating in the same area. Moreover, the impact of EURO regulatory changes on exhaust emissions was calculated, and this made it possible to estimate the downward trend of PAH emissions in the Province of Milan in the period 2005-2020.

  15. A GIS-BASED MODAL MODEL OF AUTOMOBILE EXHAUST EMISSIONS

    EPA Science Inventory

    The report presents progress toward the development of a computer tool called MEASURE, the Mobile Emission Assessment System for Urban and Regional Evaluation. The tool works toward a goal of providing researchers and planners with a way to assess new mobile emission mitigation s...

  16. Examination of Acute Pulmonary Responses to Various Cookstove Exhaust Emissions

    EPA Science Inventory

    Air pollution is a global public heath problem, to which the emissions from rudimentary cooking devices has been estimated to contribute significantly through the burning of various types of biomass. Notably, exposure to cookstove emissions (CE) has been linked to increases in mo...

  17. The effect of gasoline RVP on exhaust emissions from current European vehicles

    SciTech Connect

    Bennett, P.J.; Beckwith, P.; Goodfellow, C.L.; Skaardalsmo, K.

    1995-12-31

    The effect of gasoline RVP on regulated exhaust emissions has been investigated in a fleet consisting of five current European vehicles. The effects of MTBE with changing RVP and E70 were also studied. All vehicles were equipped with the standard OEM small carbon canisters and three-way catalytic converters and the regulated emissions measured over the new European test cycle. A rigorous refueling protocol was employed to ensure that the carbon canisters were loaded in a repeatable way before the emission tests. The results show that a reduction in RVP gave benefits in CO and NOx, but no effect on exhaust THC emissions. The benefits for CO and NOx were greater in non-oxygenated fuels. Of the five test vehicles, three showed CO emission benefits due to RVP reduction, while CO from the other two was insensitive to RVP changes. Four vehicles also showed NOx emission benefits due to RVP reduction while the NOx emissions from the other vehicle were insensitive to RVP changes. The benefits of reducing RVP were observed for the fleet over all three phases of the cycle, however, the largest percentage of changes were seen after the vehicles had warmed up. Although no significant overall effect of RVP on exhaust THC emissions was apparent, reductions in THC over the ECE 3+4 and EUDC phases were observed. At high RVP MTBE addition gave reductions in CO and NOx emissions, but at low RVP no emission reductions were observed. A reduction in E70 only influenced exhaust THC emissions, resulting in a small increase.

  18. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  19. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  20. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  1. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle...

  2. The Purification and Thermal Recovery of Exhaust Gas with the Wet-type Electrostatic Precipitator

    NASA Astrophysics Data System (ADS)

    Umemiya, Hiromichi; Koike, Hiroshi

    The exhaust gas ejected from engine heat pump contain the injurious materials, SOx, NOx and dust. And it also has a good deal of thermal energy, so thermal recovery from the exhaust gas increases the total C.O.P. of the heat pump system. The experimental study for the purpose of the purification of the exhaust gas and the thermal recovery from exhaust gas has been conducted with the wet-type electrostatic precipitator, which has the advantage of high collection efficiency and the gas-liquid direct heat-exchanism. The experimental results showed that: 1. For the dust, the collection efficiency of 96 % was achieved, when applied voltage was 19,000V. 2. The effect of the alkali absorption of Nox and SOx gases was made sure by the experiment. 3. The fundamental equation which is useful for design method was resolved by kinetic model of charged particle. 4. In the phenomenon of coagulation the velocity constant was decided with "Chemical Kinetics" and so that the density of coagulant, Ca(OH)2 was decided. 5. It is shown that mixing coagulant, Ca(OH)2, was a very effective way to remove the dust particles from the waste water. 6. Thermal energy of 5.3 kW was recovered from exhaust gas, so that total C.O.P. of heat pump system increases from 1.83 to 1.97.

  3. General Motors Corporation and Pacific Northwest Laboratory Staff Exchange: Instrumentation for rapid measurement of automotive exhaust emissions

    SciTech Connect

    Griffin, J.W.; Sharpe, S.W.; Sloane, T.M.

    1995-07-01

    Information in this report on the staff exchange of Pacific Northwest Laboratory (PNL) staff with the AIGER Consortium (General Motors, Ford, Chrysler, Navistar, the environmental protection Agency, and the California Air Resources Board) includes the purpose and objectives, a summary of activities, significant accomplishments, significant problems, industry benefits realized, recommended follow-on work and potential benefits from that work, and two appendices. Appendix A is a brief description of the fast gas chromatography and infrared spectroscopy chemometric technologies and their application to the rapid characterization of automobile exhaust emissions. Appendix B is a list of key contacts and the schedule of activities pertaining to the staff exchange.

  4. U.S. Coast Guard/U.S. Maritime Administration Cooperative Research on Marine Engine Exhaust Emissions. Marine Exhaust Emissions Measurement of the M/V Kings Pointer.

    DTIC Science & Technology

    1996-07-01

    monitoring , and evaluation of the engine exhaust emissions as part of joint U.S. Coast Guard/Maritime Administration cooperative research on controlling air pollution from ships. The U.S. Coast Guard’s interest in emissions testing arises from both its desire to meet all federal and state air quality regulations and the fact that in the future it may be called upon to enforce regulations in the marine environment. The U.S. Maritime Administration’s interest in this and related research is based on its efforts to assure that its vessels and those of the

  5. Forecast of jet engine exhaust emissions for future high altitude commercial aircraft

    NASA Technical Reports Server (NTRS)

    Grobman, J.; Ingebo, R. D.

    1974-01-01

    Projected minimum levels of engine exhaust emissions that may be practicably achievable for future commercial aircraft operating at high altitude cruise conditions are presented. The forecasts are based on: (1) current knowledge of emission characteristics of combustors and augmentors; (2) the current status of combustion research in emission reduction technology; (3) predictable trends in combustion systems and operating conditions as required for projected engine designs that are candidates for advanced subsonic or supersonic commercial aircraft. Results are presented for cruise conditions in terms of an emission index, g pollutant/kg fuel. Two sets of engine exhaust emission predictions are presented: the first, based on an independent NASA study and the second, based on the consensus of an ad hoc committee composed of industry, university, and government representatives. The consensus forecasts are in general agreement with the NASA forecasts.

  6. Suicide by carbon monoxide from car exhaust-gas in Denmark 1995-1999.

    PubMed

    Thomsen, Asser H; Gregersen, Markil

    2006-08-10

    In the period 1995-1999 there were 388 car exhaust-gas suicides in Denmark. Of these 343 (88.4%) were men and 45 (11.6%) were women, the average age being 47 years. The car exhaust-gas suicides made up 9.3% of all suicides in Denmark in the period. The corresponding rate was 11.7% for men and 3.7% for women. In rural areas a larger part of all suicides were committed with car exhaust-gas compared to the more densely populated areas. Mental disease was diagnosed in 124 (32.0%) cases. A suicide note was found in 165 (42.5%) cases. A hose was fitted to the exhaust pipe in 334 (86.1%) cases. Of these the 234 (60.3%) occurred outside, typically in a forest area, while 76 (19.6%) occurred in a closed garage. All the 54 (13.9%) cases with no hose fitted to the exhaust pipe occurred in a garage. Seven (1.8%) victims were found in a burning or burnt-out car, where the following investigation revealed that it was actually a car exhaust-gas suicide. Carboxyhemoglobin was measured in 26 (6.7%) victims. In two of these victims no carboxyhemoglobin was found, as they had survived for some time after the poisoning. The average saturation of the remaining victims was 67%, the lowest saturation being 20% and the highest being 84%. In the period 1969-1987 the number of car exhaust-gas suicides in Denmark increased from 50 to approximately 190 per year and the rate of car exhaust-gas suicides compared to all suicides increased from approximately 5% to approximately 13%. In 1987-1999 these figures decreased from approximately 190 to 63 per year and from 13% to approximately 8%. During these 30 years the number of passenger cars in Denmark doubled, which explains the increase in car exhaust-gas suicides during 1969-1987. A possible explanation for the decrease in 1987-1999 is the introduction of the catalytic converter, which was made mandatory in 1990. We anticipate that car exhaust-gas suicides will continue to decrease in numbers, as more cars are equipped with catalytic converters.

  7. Effects of the biodiesel blend fuel on aldehyde emissions from diesel engine exhaust

    NASA Astrophysics Data System (ADS)

    Peng, Chiung-Yu; Yang, Hsi-Hsien; Lan, Cheng-Hang; Chien, Shu-Mei

    Interest in use of biodiesel fuels derived from vegetable oils or animal fats as alternative fuels for petroleum-based diesels has increased due to biodiesels having similar properties of those of diesels, and characteristics of renewability, biodegradability and potential beneficial effects on exhaust emissions. Generally, exhaust emissions of regulated pollutants are widely studied and the results favor biodiesels on CO, HC and particulate emissions; however, limited and inconsistent data are showed for unregulated pollutants, such as carbonyl compounds, which are also important indicators for evaluating available vehicle fuels. For better understanding biodiesel, this study examines the effects of the biodiesel blend fuel on aldehyde chemical emissions from diesel engine exhausts in comparison with those from the diesel fuel. Test engines (Mitsubishi 4M40-2AT1) with four cylinders, a total displacement of 2.84 L, maximum horsepower of 80.9 kW at 3700 rpm, and maximum torque of 217.6 N m at 2000 rpm, were mounted and operated on a Schenck DyNAS 335 dynamometer. Exhaust emission tests were performed several times for each fuel under the US transient cycle protocol from mileages of 0-80,000 km with an interval of 20,000 km, and two additional measurements were carried out at 40,000 and 80,000 km after maintenance, respectively. Aldehyde samples were collected from diluted exhaust by using a constant volume sampling system. Samples were extracted and analyzed by the HPLC/UV system. Dominant aldehydes of both fuels' exhausts are formaldehyde and acetaldehyde. These compounds together account for over 75% of total aldehyde emissions. Total aldehyde emissions for B20 (20% waste cooking oil biodiesel and 80% diesel) and diesel fuels are in the ranges of 15.4-26.9 mg bhp-h -1 and 21.3-28.6 mg bhp-h -1, respectively. The effects of increasing mileages and maintenance practice on aldehyde emissions are insignificant for both fuels. B20 generates slightly less emission than

  8. Exhaust Gas Modeling Effects on Hypersonic Powered Simulation at Mach 10

    NASA Technical Reports Server (NTRS)

    Tatum, Kenneth E.; Huebner, Lawrence D.

    1995-01-01

    A numerical study was performed to investigate the accuracy and validity of cold-gas simulation of actual hot scramjet exhaust within a Mach 10 free stream over a representative single-stage-to-orbit airbreathing configuration. In particular, exhausts of various noncombusting chemistry models were studied to characterize their effects on the vehicle aftbody performance and the plume flow field definition. Two approximations of the hot scramjet combustion products were utilized to determine the requirement for expensive, multi-species numerical modeling, and to establish a baseline for the validation of cold-gas simulation. Cold-gas simulation at Mach 10 is shown to be a viable technique using an appropriate thermally perfect gas mixture for reproducing hot scramjet exhaust effects.

  9. Carbon dioxide capture and use: organic synthesis using carbon dioxide from exhaust gas.

    PubMed

    Kim, Seung Hyo; Kim, Kwang Hee; Hong, Soon Hyeok

    2014-01-13

    A carbon capture and use (CCU) strategy was applied to organic synthesis. Carbon dioxide (CO2) captured directly from exhaust gas was used for organic transformations as efficiently as hyper-pure CO2 gas from a commercial source, even for highly air- and moisture-sensitive reactions. The CO2 capturing aqueous ethanolamine solution could be recycled continuously without any diminished reaction efficiency.

  10. Workshop on an Assessment of Gas-Side Fouling in Fossil Fuel Exhaust Environments

    NASA Technical Reports Server (NTRS)

    Marner, W. J. (Editor); Webb, R. L. (Editor)

    1982-01-01

    The state of the art of gas side fouling in fossil fuel exhaust environments was assessed. Heat recovery applications were emphasized. The deleterious effects of gas side fouling including increased energy consumption, increased material losses, and loss of production were identified.

  11. An Experimental Investigation of Rectangular Exhaust-Gas Ejectors Applicable for Engine Cooling

    NASA Technical Reports Server (NTRS)

    Manganiello, Eugene J; Bogatsky, Donald

    1945-01-01

    An experimental investigation of rectangular exhaust-gas ejector pumps was conducted to provide data that would serve as a guide to the design of ejector applications for aircraft engines with marginal cooling. The pumping characteristics of rectangular ejectors actuated by the exhaust of a single-cylinder aircraft engine were determined for a range of ejector mixing-section area from 20 to 50 square inches, over-all length from 12 to 42 inches, aspect ratio from 1 to 5, diffusing exit area from 20 to 81 square inches, and exhaust-nozzle aspect ratio from 1 to 42.

  12. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2002-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.

  13. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2001-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.

  14. Controlling the injection of ammonia in a dry type exhaust gas denitration process

    SciTech Connect

    Shiraishi, Y.; Ukawa, N.

    1982-02-02

    In a first processor unit the relationship between the amount of nitrogen oxides in a combustion exhaust gas and a numerical value representing an amount of combustion, E.G. - fuel flow rate or the like, is stored. In a second processor unit the ratio of ammonia to nitrogen oxides as a function of the combustion exhaust gas temperature is stored. A numerical value corresponding to the actual measured amount of combustion is inputted to the first processor unit to derive the amount of nitrogen oxides in the combustion exhaust gas. The actual measured combustion exhaust gas temperature is inputted to the second processor unit to derive the ratio of ammonia to nitrogen oxides. The optimum amount of ammonia to be injected is derived by multiplying the amount of nitrogen oxides, derived by means of the first processor unit, by the ratio of ammonia to nitrogen oxides derived by means of the second processor unit. In a preferable embodiment of the present invention, the ratio of ammonia to nitrogen oxides is corrected before the multiplication by means of a correction factor which is stored in a third processor unit and which corresponds to a time variation rate of the combustion exhaust gas temperature.

  15. Particle-Bound PAH Emission from the Exhaust of Combustion Chamber

    NASA Astrophysics Data System (ADS)

    Asgari Lamjiri, M.; Medrano, Y. S.; Guillaume, D. W.; Khachikian, C. S.

    2013-12-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are harmful, semi-volatile organic compounds which are generated due to the incomplete combustion of organic substances. PAHs are of concern as a pollutant because some of these compounds are carcinogenic and mutagenic even at low levels. Most of the PAHs are recalcitrant and persistent in the environment. The PAHs carcinogenic potential can be increased by the adsorption onto small size particles (< 1μm) which can easily get into the bronchioles and alveoli of the lungs. PAHs associated with sub-micron particles are mostly generated from high temperature sources like combustion chambers. In this current study, the presence of 16 priority PAHs (listed by United States Environmental Protection Agency) which are attached to the particulates emitted from the exhaust of the jet engine are evaluated. The engine was operated at different swirl numbers (S; the ratio of tangential air flow to axial air flow) to investigate the effect of this parameter on the effluent of combustion chamber. The samples were collected using two instruments simultaneously: a particle analyzer and a Micro-Orifice Uniform Deposited Impactor (MOUDI). Particle analyzer was used to count the number of particles in different sizes and MOUDI was used to collect particles with respect to their size as they were emitted from the exhaust. The MOUDI's aluminum substrates were weighed before and after the experiment in order to measure the mass of particles that were collected during the sampling period. The concentration of PAHs associated with the particles was measured by extracting the particles with dichloromethane followed by analysis via gas chromatography/mass spectrometry (GC/MS). In general, lower molecular weight PAHs emitted from the exhaust of combustion chamber are mostly in gas phase while PAHs of higher molecular weight are adsorbed onto particles. Preliminary results from GC/MS confirm the presence of higher molecular weight PAHs like Benzo

  16. [Evaluation on the Effectiveness of Vehicle Exhaust Emission Control Measures During the APEC Conference in Beijing].

    PubMed

    Fan, Shou-bin; Tian, Ling-di; Zhang, Dong-xu; Guo, Jin-jin

    2016-01-15

    Vehicle emission is one of the primary factors affecting the quality of atmospheric environment in Beijing. In order to improve the air quality during APEC conference, strict control measures including vehicle emission control were taken in Beijing during APEC meeting. Based on the activity level data of traffic volume, vehicle speed and vehicle types, the inventory of motor vehicle emissions in Beijing was developed following bottom-up methodology to assess the effectiveness of the control measures. The results showed that the traffic volume of Beijing road network during the APEC meeting decreased significantly, the vehicle speed increased obviously, and the largest decline of traffic volume was car. CO, NOx, HC and PM emissions of vehicle exhaust were reduced by 15.1%, 22.4%, 18.4% and 21.8% for freeways, 29.9%, 36.4%, 32.7% and 35.8% for major arterial, 35.7%, 41.7%, 38.4% and 41.2% for minor arterial, 40.8%, 46.5%, 43.1% and 46.0% for collectors, respectively. The vehicles exhaust emissions inventory before and during APEC conference was developed based on bottom-up emissions inventory method. The results indicated that CO, NOx, HC and PM emissions of vehicle exhaust were reduced by 37.5%, 43.4%, 39.9% and 42.9% in the study area, respectively.

  17. Effect of gasoline composition on stoichiometry and exhaust emissions

    SciTech Connect

    McDonald, C.R.; Lee, G.R.; Otter, G.J. den; Shore, P.R.; Humphries, D.T.

    1994-10-01

    Six full range gasolines were tested in two engines (one with a catalyst) operated at 4 steady states. Engine-out regulated emissions responded to equivalence ratio, {Phi}, in the accepted manner. For both CO and NO{sub x}, there was a characteristic, single emissions response to changes in {Phi}. Changing fuel composition will primarily alter the production of these emissions by modifying the stoichiometric air/fuel ratio, projecting engine operation onto another part of the {Phi} response curve. These {Phi} effects, which are independent of engine design, also determine how operating conditions affect engine-out CO and NO{sub x}. Speciated hydrocarbon measurements at engine-out and tail-pipe confirm results seen in previous test-cycle based programmes. 24 refs., 11 figs., 3 tabs.

  18. General aviation piston-engine exhaust emission reduction

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.; Houtman, W. H.; Westfield, W. T.; Duke, L. C.; Rezy, B. J.

    1977-01-01

    To support the promulgation of aircraft regulations, two airports were examined, Van Nuys and Tamiami. It was determined that the carbon monoxide (CO) emissions from piston-engine aircraft have a significant influence on the CO levels in the ambient air in and around airports, where workers and travelers would be exposed. Emissions standards were set up for control of emissions from aircraft piston engines manufactured after December 31, 1979. The standards selected were based on a technologically feasible and economically reasonable control of carbon monoxide. It was concluded that substantial CO reductions could be realized if the range of typical fuel-air ratios could be narrowed. Thus, improvements in fuel management were determined as reasonable controls.

  19. Accuracy of exhaust emission factor measurements on chassis dynamometer.

    PubMed

    Joumard, Robert; Laurikko, Juhani; Le Han, Tuan; Geivanidis, Savas; Samaras, Zissis; Merétei, Tamás; Devaux, Philippe; André, Jean-Marc; Cornelis, Erwin; Lacour, Stéphanie; Prati, Maria Vittoria; Vermeulen, Robin; Zallinger, Michael

    2009-06-01

    To improve the accuracy, reliability, and representativeness of emission factors, 10 European laboratories worked together to study the influence of 20 parameters on the measurement of light-vehicle emission factors on chassis dynamometer of 4 main categories: driving patterns, vehicle-related parameters, vehicle sampling, and laboratory-related parameters. The results are based on (1) literature synthesis, (2) approximately 2700 specific tests with 183 vehicles, and (3) the reprocessing of more than 900 tests. These tests concern the regulated atmospheric pollutants and pre-Euro to Euro 4 vehicles. Of the 20 parameters analyzed, 7 seemed to have no effect, 7 were qualitatively influential, and 6 were highly influential (gearshift strategy, vehicle mileage, ambient temperature, humidity, dilution ratio, and driving cycle). The first four of the six were able to have correction factors developed for them. The results allow for the design of recommendations or guidelines for the emission factor measurement method.

  20. A comparison of emissions from vehicles fueled with diesel or compressed natural gas.

    PubMed

    Hesterberg, Thomas W; Lapin, Charles A; Bunn, William B

    2008-09-01

    A comprehensive comparison of emissions from vehicles fueled with diesel or compressed natural gas (CNG) was developed from 25 reports on transit buses, school buses, refuse trucks, and passenger cars. Emissions for most compounds were highest for untreated exhaust emissions and lowest for treated exhaust CNG buses without after-treatment had the highest emissions of carbon monoxide, hydrocarbons, nonmethane hydrocarbons (NMHC), volatile organic compounds (VOCs; e.g., benzene, butadiene, ethylene, etc.), and carbonyl compounds (e.g., formaldehyde, acetaldehyde, acrolein). Diesel buses without after-treatment had the highest emissions of particulate matter and polycyclic aromatic hydrocarbons (PAHs). Exhaust after-treatments reduced most emissions to similar levels in diesel and CNG buses. Nitrogen oxides (NO(x)) and carbon dioxide (CO2) emissions were similar for most vehicle types, fuels, and exhaust after-treatments with some exceptions. Diesel school buses had higher CO2 emissions than the CNG bus. CNG transit buses and passenger cars equipped with three-way catalysts had lower NO(x) emissions. Diesel buses equipped with traps had higher nitrogen dioxide emissions. Fuel economy was best in the diesel buses not equipped with exhaust after-treatment.

  1. Development of techniques to characterize particulates emitted from gas turbine exhausts

    NASA Astrophysics Data System (ADS)

    Johnson, M. P.; Hilton, M.; Waterman, D. R.; Black, J. D.

    2003-07-01

    Particles emitted from aircraft play a role in the formation of contrails and it is essential to characterize them to understand the physical and chemical processes that are happening. Current methods for measuring aircraft particulate emissions study the reflectance of samples collected in filter papers. A series of experiments to more fully characterize particulates has been performed on a small-scale gas turbine engine. An intrusive sampling system conforming to current ICAO regulations for aircraft emissions was used with a scanning mobility particle sizer (SMPS). Non-intrusive measurements were made using laser induced incandescence (LII) and samples were taken from the exhaust to analyse using a transmission electron microscope. Results obtained from different techniques showed good agreement with each other. As engine power conditions increased, both the SMPS and LII indicated that the mass of soot had decreased. Differences were observed between measurements of diluted and undiluted samples. The mean particle size decreased with dilution but the size distribution became bi-modal. The study has shown how significant the sampling environment is for measuring particulates and careful techniques need to be used to ensure that accurate, consistent results can be obtained.

  2. Exhaust emissions of DI diesel engine using unconventional fuels

    NASA Astrophysics Data System (ADS)

    Sudrajad, Agung; Ali, Ismail; Hamdan, Hazmie; Hamzah, Mohd. Herzwan

    2012-06-01

    Optimization of using waste plastic and tire disposal fuel on diesel engine were observed. The experimental project was comparison between using both of unconventional fuel and base diesel fuel. The engine experiment was conducted with YANMAR TF120 single cylinder four stroke diesel engine set-up at variable engine speed at 2100, 1900, 1700, 1500 and 1300 rpm. The data have been taken at each point of engine speed during the stabilized engine-operating regime. Measurement of emissions parameters at different engine speed conditions have generally indicated lower in emission COfor waste plastic fuel, lower NOx for tire disposal fuel and lower SOx for diesel fuel.

  3. Dairy gas emissions model: reference manual

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Dairy Gas Emissions Model (DairyGEM) is a software tool for estimating ammonia, hydrogen sulfide, and greenhouse gas (GHG) emissions of dairy production systems as influenced by climate and farm management. A production system is defined to include emissions during the production of all feeds wh...

  4. 40 CFR 86.1777-99 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and... equivalent mass for ethanol vehicles: OMNMHCEmass=NMHCmass + (13.8756/32.042) × (CH3OH)mass + (13.8756/46.064... in Chapter 5 of the California Regulatory Requirements Applicable to the National Low...

  5. 40 CFR 86.1777-99 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and... equivalent mass for ethanol vehicles: OMNMHCEmass=NMHCmass + (13.8756/32.042) × (CH3OH)mass + (13.8756/46.064... in Chapter 5 of the California Regulatory Requirements Applicable to the National Low...

  6. 40 CFR 86.1777-99 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and... equivalent mass for ethanol vehicles: OMNMHCEmass=NMHCmass + (13.8756/32.042) × (CH3OH)mass + (13.8756/46.064... in Chapter 5 of the California Regulatory Requirements Applicable to the National Low...

  7. 40 CFR 86.1777-99 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) General Provisions for the Voluntary National Low Emission Vehicle Program for Light-Duty Vehicles and... equivalent mass for ethanol vehicles: OMNMHCEmass=NMHCmass + (13.8756/32.042) × (CH3OH)mass + (13.8756/46.064... in Chapter 5 of the California Regulatory Requirements Applicable to the National Low...

  8. 40 CFR 86.1342-90 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... results should be computed by using the following formula: ER06OC93.232 Where: (1) AWM = Weighted mass... continuously heated sampling system measurements is determined from the following equations: (1) Hydrocarbon...: ER06OC93.233 (d) Meaning of symbols: (1)(i) HCmass = Hydrocarbon emissions, in grams per test phase....

  9. The effects of neat biodiesel and biodiesel and HVO blends in diesel fuel on exhaust emissions from a light duty vehicle with a diesel engine.

    PubMed

    Prokopowicz, Adam; Zaciera, Marzena; Sobczak, Andrzej; Bielaczyc, Piotr; Woodburn, Joseph

    2015-06-16

    The influence of fatty acid methyl esters (FAME) and hydrotreated vegetable oil (HVO) diesel blends on the exhaust emissions from a passenger car was examined. The impact of FAME for the cold urban phase (UDC) was increased CO and HC emissions, probably due to blend physical properties promoting incomplete combustion. The HVO blend caused the lowest CO and HC emissions for the UDC. NOx emissions did not change significantly with the fuel used, however the UDC was characterized by lower NOx emission for FAME blends. Particle emissions were highest with standard diesel. Emissions of carbonyl compounds increased as fuel biodiesel content increased, especially during the UDC. HVO in diesel fuel decreased carbonyl emissions. Formaldehyde and acetaldehyde were the most abundant carbonyl compounds in the exhaust gas. Total particle-bound PAH emissions were variable, the emission of heavier PAHs increased with blend biodiesel content. The HVO blend increased emission of lighter PAHs. Nitro-PAHs were identified only during the UDC and not for all blends; the highest emissions were measured for pure diesel. The results showed that emission of nitro-PAHs may be decreased to a greater extent by using biodiesel than using a HVO blend.

  10. 78 FR 65554 - Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF TRANSPORTATION Federal Aviation Administration 14 CFR Parts 34 and 45 RIN 2120-AK15 Exhaust Emission Standards for New Aircraft Turbine Engines and Identification Plate for Aircraft Engines Correction In rule document 2013-24712, appearing on pages 63015-63017...

  11. 40 CFR 1045.101 - What exhaust emission standards and requirements must my engines meet?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false What exhaust emission standards and requirements must my engines meet? 1045.101 Section 1045.101 Protection of Environment ENVIRONMENTAL PROTECTION... engines must meet the requirements in § 1045.115. (b) It is important that you read § 1045.145...

  12. 40 CFR 1066.831 - Exhaust emission test procedures for aggressive driving.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... aggressive driving. 1066.831 Section 1066.831 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Vehicles § 1066.831 Exhaust emission test procedures for aggressive driving. (a) This section describes how to test using the US06 or LA-92 driving schedule. The US06 driving schedule can be divided into...

  13. 40 CFR 87.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Sampling and analytical procedures for measuring gaseous exhaust emissions. 87.64 Section 87.64 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) Definitions. Test Procedures § 87.64 Sampling and...

  14. 40 CFR 610.31 - Vehicle tests for fuel economy and exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Vehicle tests for fuel economy and... (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.31 Vehicle tests for fuel economy and exhaust emissions. (a) The tests described...

  15. 40 CFR 610.31 - Vehicle tests for fuel economy and exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Vehicle tests for fuel economy and... (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.31 Vehicle tests for fuel economy and exhaust emissions. (a) The tests described...

  16. 40 CFR 610.31 - Vehicle tests for fuel economy and exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 30 2011-07-01 2011-07-01 false Vehicle tests for fuel economy and... (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.31 Vehicle tests for fuel economy and exhaust emissions. (a) The tests described...

  17. 40 CFR 610.31 - Vehicle tests for fuel economy and exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Vehicle tests for fuel economy and... (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.31 Vehicle tests for fuel economy and exhaust emissions. (a) The tests described...

  18. 40 CFR 1054.107 - What is the useful life period for meeting exhaust emission standards?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... meeting exhaust emission standards? 1054.107 Section 1054.107 Protection of Environment ENVIRONMENTAL... equipment in which the subject engines are installed. (2) Engineering evaluations of field aged engines to ascertain when engine performance deteriorates to the point where usefulness and/or reliability is...

  19. External fins and ejector action for reducing the infrared emission of engine exhaust ducting

    NASA Technical Reports Server (NTRS)

    Vanfossen, G. J., Jr.

    1975-01-01

    An analytical investigation was conducted to determine the feasibility of using external fins and ejector action on the exhaust ducting of a helicopter to reduce the infrared emission of the aircraft. Temperatures were calculated for both circular disk fins and pin fins. Results show that combining ejector action with fins can lower the metal temperature to acceptable levels at least for high flight speeds.

  20. Introduction to NASA contracts. [on engine modifications to reduce exhaust emissions

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.

    1976-01-01

    The NASA Lewis Research Center issued requests for proposal to Avco Lycoming and Teledyne Continental Motors for a contractual effort to establish and demonstrate engine modifications to reduce exhaust emissions safely with minimum adverse effects on cost, weight, and fuel economy. The secondary objective was reducing fuel consumption.

  1. 40 CFR 610.31 - Vehicle tests for fuel economy and exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Vehicle tests for fuel economy and... (CONTINUED) ENERGY POLICY FUEL ECONOMY RETROFIT DEVICES Test Procedures and Evaluation Criteria Test Requirement Criteria § 610.31 Vehicle tests for fuel economy and exhaust emissions. (a) The tests described...

  2. 75 FR 57191 - Compliance With Interstate Motor Carrier Noise Emission Standards: Exhaust Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... Federal Motor Carrier Safety Administration 49 CFR Part 325 RIN-2126-AB31 Compliance With Interstate Motor Carrier Noise Emission Standards: Exhaust Systems AGENCY: Federal Motor Carrier Safety Administration, DOT... Association (TMA), the Federal Motor Carrier Safety Administration (FMCSA) amends its regulations to...

  3. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Model Year Automobiles-Test Procedures § 600.114-08 Vehicle-specific 5-cycle fuel economy and carbon... to calculate 5-cycle carbon-related exhaust emissions values for the purpose of determining optional... each vehicle tested, determine the 5-cycle city carbon-related exhaust emissions using the...

  4. 40 CFR 1051.240 - How do I demonstrate that my engine family complies with exhaust emission standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... family complies with exhaust emission standards? 1051.240 Section 1051.240 Protection of Environment... ENGINES AND VEHICLES Certifying Engine Families § 1051.240 How do I demonstrate that my engine family complies with exhaust emission standards? (a) For purposes of certification, your engine family...

  5. 40 CFR 1048.240 - How do I demonstrate that my engine family complies with exhaust emission standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... family complies with exhaust emission standards? 1048.240 Section 1048.240 Protection of Environment... SPARK-IGNITION ENGINES Certifying Engine Families § 1048.240 How do I demonstrate that my engine family complies with exhaust emission standards? (a) For purposes of certification, your engine family...

  6. 14 CFR 34.21 - Standards for exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... individual engine was on or before December 31, 1999: Oxides of Nitrogen: (40+2(rPR)) grams/kilonewtons r0... after December 31, 1999: Oxides of Nitrogen: (32+1.6 (rPR)) grams/kilonewtons r0. (v) The emission... 89 kilonewtons: Oxides of Nitrogen: (19 + 1.6 (rPR)) grams/kilonewtons rO. (B) That have a...

  7. 40 CFR 87.21 - Standards for exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31, 1999. Oxides of Nitrogen: (40 + 2(rPR)) grams/kilonewtons rO. (iv) Engines of a type or model of... Nitrogen: (32 + 1.6(rPR)) grams/kilonewtons rO. (v) The emission standards prescribed in paragraphs (d)(1... greater than 89 kilonewtons: Oxides of Nitrogen: (19 + 1.6(rPR)) grams/kilonewtons rO. (2) Engines with...

  8. 14 CFR 34.21 - Standards for exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... individual engine was on or before December 31, 1999: Oxides of Nitrogen: (40+2(rPR)) grams/kilonewtons r0... after December 31, 1999: Oxides of Nitrogen: (32+1.6 (rPR)) grams/kilonewtons r0. (v) The emission... 89 kilonewtons: Oxides of Nitrogen: (19 + 1.6 (rPR)) grams/kilonewtons rO. (B) That have a...

  9. A GAS TEMPERATURE PROFILE BY INFRARED EMISSION-ABSORPTION SPECTROSCOPY

    NASA Technical Reports Server (NTRS)

    Buchele, D. R.

    1994-01-01

    This computer program calculates the temperature profile of a flame or hot gas. Emphasis is on profiles found in jet engine or rocket engine exhaust streams containing water vapor or carbon dioxide as radiating gases. The temperature profile is assumed to be axisymmetric with a functional form controlled by two variable parameters. The parameters are calculated using measurements of gas radiation at two wavelengths in the infrared spectrum. Infrared emission and absorption measurements at two or more wavelengths provide a method of determining a gas temperature profile along a path through the gas by using a radiation source and receiver located outside the gas stream being measured. This permits simplified spectral scanning of a jet or rocket engine exhaust stream with the instrumentation outside the exhaust gas stream. This program provides an iterative-cyclic computation in which an initial assumed temperature profile is altered in shape until the computed emission and absorption agree, within specified limits, with the actual instrument measurements of emission and absorption. Temperature determination by experimental measurements of emission and absorption at two or more wavelengths is also provided by this program. Additionally, the program provides a technique for selecting the wavelengths to be used for determining the temperature profiles prior to the beginning of the experiment. By using this program feature, the experimenter has a higher probability of selecting wavelengths which will result in accurate temperature profile measurements. This program provides the user with a technique for determining whether this program will be sufficiently accurate for his particular application, as well as providing a means of finding the solution. The input to the program consists of four types of data: (1) computer program control constants, (2) measurements of gas radiance and transmittance at selected wavelengths, (3) tabulations from the literature of gas

  10. Use of gas turbine exhaust for the direct drying of food products: Final report

    SciTech Connect

    Not Available

    1988-06-01

    The objective of this program was to evaluate the merits of using natural gas-fired gas turbine exhaust to directly dry food products. A survey of drying practices utilized in the food industry and a detailed review of worldwide regulatory drying practices were completed. An investigation of the economic advantages associated with direct drying was also considered. Four drying scenarios were used as part of the analysis: Dilution - hot turbine exhaust gases were diluted with ambient air to achieve temperatures suitable for food product drying; Indirect Heat Exchanger - gas turbine exhaust was directed through an intermediate heat exchanger to avoid flue-gas contamination of the ambient air; Tri-Generation - exhaust gases from the gas turbine were first directed to a heat recovery boiler and then through the drying system to dry the food product; and Conventional Cogeneration - the most conventional simple cycle gas turbine cogeneration (this scenario served as the baseline for all evaluations). Although the economics associated with direct drying appear attractive, the principal concern of any potential use would be the extraordinarily high NO/sub x/ levels and the potential nitrate and nitrosamine (potential carcinogens and carcinogenic precursors) contamination in food products. 21 refs., 21 figs., 17 tabs.

  11. 40 CFR 1051.103 - What are the exhaust emission standards for snowmobiles?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Natural gas-fueled snowmobiles: NMHC emissions. (2) Alcohol-fueled snowmobiles: THCE emissions. (3) Other... be less than either of the following: (i) Your projected operating life from advertisements or...

  12. 40 CFR 1051.103 - What are the exhaust emission standards for snowmobiles?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Natural gas-fueled snowmobiles: NMHC emissions. (2) Alcohol-fueled snowmobiles: THCE emissions. (3) Other... marketing materials for any vehicles in the engine family. (ii) Your basic mechanical warranty for...

  13. Quantification of vehicle fleet PM10 particulate matter emission factors from exhaust and non-exhaust sources using tunnel measurement techniques.

    PubMed

    Lawrence, Samantha; Sokhi, Ranjeet; Ravindra, Khaiwal

    2016-03-01

    Road tunnels act like large laboratories; they provide an excellent environment to quantify atmospheric particles emission factors from exhaust and non-exhaust sources due to their known boundary conditions. Current work compares the High Volume, Dichotomous Stacked Filter Unit and Partisol Air Sampler for coarse, PM10 and PM2.5 particle concentration measurement and found that they do not differ significantly (p = 95%). PM2.5 fraction contributes 66% of PM10 proportions and significantly influenced by traffic (turbulence) and meteorological conditions. Mass emission factors for PM10 varies from 21.3 ± 1.9 to 28.8 ± 3.4 mg/vkm and composed of Motorcycle (0.0003-0.001 mg/vkm), Cars (26.1-33.4 mg/vkm), LDVs (2.4-3.0 mg/vkm), HDVs (2.2-2.8 mg/vkm) and Buses (0.1 mg/vkm). Based on Lawrence et al. (2013), source apportionment modelling, the PM10 emission of brake wear (3.8-4.4 mg/vkm), petrol exhaust (3.9-4.5 mg/vkm), diesel exhaust (7.2-8.3 mg/vkm), re-suspension (9-10.4 mg/vkm), road surface wear (3.9-4.5 mg/vkm), and unexplained (7.2 mg/vkm) were also calculated. The current study determined that the combined non-exhaust fleet PM10 emission factor (16.7-19.3 mg/vkm) are higher than the combined exhaust emission factor (11.1-12.8 mg/vkm). Thus, highlight the significance of non-exhaust emissions and the need for legislation and abatement strategies to reduce their contributions to ambient PM concentrations.

  14. Methane Emissions from Leak and Loss Audits of Natural Gas Compressor Stations and Storage Facilities.

    PubMed

    Johnson, Derek R; Covington, April N; Clark, Nigel N

    2015-07-07

    As part of the Environmental Defense Fund's Barnett Coordinated Campaign, researchers completed leak and loss audits for methane emissions at three natural gas compressor stations and two natural gas storage facilities. Researchers employed microdilution high-volume sampling systems in conjunction with in situ methane analyzers, bag samples, and Fourier transform infrared analyzers for emissions rate quantification. All sites had a combined total methane emissions rate of 94.2 kg/h, yet only 12% of the emissions total resulted from leaks. Methane slip from exhausts represented 44% of the total emissions. Remaining methane emissions were attributed to losses from pneumatic actuators and controls, engine crankcases, compressor packing vents, wet seal vents, and slop tanks. Measured values were compared with those reported in literature. Exhaust methane emissions were lower than emissions factor estimates for engine exhausts, but when combined with crankcase emissions, measured values were 11.4% lower than predicted by AP-42 as applicable to emissions factors for four-stroke, lean-burn engines. Average measured wet seal emissions were 3.5 times higher than GRI values but 14 times lower than those reported by Allen et al. Reciprocating compressor packing vent emissions were 39 times higher than values reported by GRI, but about half of values reported by Allen et al. Though the data set was small, researchers have suggested a method to estimate site-wide emissions factors for those powered by four-stroke, lean-burn engines based on fuel consumption and site throughput.

  15. Exhaust Emissions from Gasoline- and LPG-Powered Vehicles Operating at the Altitude of Mexico City.

    PubMed

    Gamas, Erick D; Diaz, Luis; Rodriguez, René; López-Salinas, E; Schifter, Isaac; Ontiveros, Luis

    1999-10-01

    Unburned hydrocarbons (HCs), carbon monoxide (CO), and oxides of nitrogen (NOx) are the compounds regulated as pollutants by an environmental standard in the Metropolitan Area of Mexico City (MAMC). The main fuel used in vehicular transportation is gasoline, and the use of liquefied petroleum gas (LPG) is now an alternative as low emission technology to decrease the environmental impact of transportation operations. The environmental impact of commercial gasoline consumption in the Valley of Mexico was estimated by on-road and FTP-75 testing of three formulations of gasoline (one leaded [octane 81] and two unleaded [one octane 87 and one octane 93]). A fleet of 30 vehicles was used: 10 were chosen that had pre-1990 technology, while 12 were 1991-1996 vehicles equipped with fuel injection, catalytic converters, and air/ fuel ratio control technology. The remaining eight vehicles were high-performance new model vehicles (1995-1996) equipped with the newest technology available for pollution control. Fifteen vehicles in the fleet were also tested for the effect of changing from leaded to unleaded gasoline. Three different LPG formulations were tested using three vehicles representative of the LPG-powered fleet in the MAMC. Two gasoline-to-LPG conversion certified commercial systems were evaluated following the BAR-90 and the HOT-505 procedures. Emissions corresponding to the high-octane (premium) gasoline showed a 15% higher contribution to HCs with a 6% lower reactivity than the 87 octane gasoline; the HCs in the exhaust for premium gasoline are mainly isoparaffins. When the vehicles were tested on the road at high speeds, an average 3% increase in mileage was obtained when vehicles were switched from leaded to unleaded gasoline, while a 5% increase in mileage was observed when vehicles were switched from 87 octane to premium gasoline. The tests of LPG formulations indicated that a change in composition from 60% vol of propane to 85.5% vol reduces levels of HCs and

  16. 40 CFR 86.509-90 - Exhaust gas sampling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... instantaneous flow. A low response time temperature sensor is necessary for accurate flow calculation. ER06OC93... sample lines), and associated valves, pressure and temperature sensors. The PDP-CVS shall conform to the... when testing natural gas and liquefied petroleum gas-fueled vehicles. (Procedures for determining...

  17. A Method for Removal of CO from Exhaust Gas Using Pulsed Corona Discharge.

    PubMed

    Li, Xiaohong; Yang, Lin; Lei, Yuyong; Wang, Jiansheng; Lu, Yiyu

    2000-10-01

    An experimental study of the oxidation of CO in exhaust gas from a motorcycle has been carried out using plasma chemical reactions in a pulsed corona discharge. In the process, some main parameters, such as the initial CO concentration, amplitude and frequency of pulses, residence time, reactor volume, and relative humidity (RH), as well as their effects on CO removal characteristics, were investigated. O3, which is beneficial to reducing CO, was produced during CO removal . When the exhaust gas was at ambient temperature, more than 80% CO removal efficiency was realized at an initial concentration of 288 ppm in a suitable range of the parameters.

  18. A method for removal of CO from exhaust gas using pulsed corona discharge.

    PubMed

    Li, X; Yang, L; Lei, Y; Wang, J; Lu, Y

    2000-10-01

    An experimental study of the oxidation of CO in exhaust gas from a motorcycle has been carried out using plasma chemical reactions in a pulsed corona discharge. In the process, some main parameters, such as the initial CO concentration, amplitude and frequency of pulses, residence time, reactor volume, and relative humidity (RH), as well as their effects on CO removal characteristics, were investigated. O3, which is beneficial to reducing CO, was produced during CO removal. When the exhaust gas was at ambient temperature, more than 80% CO removal efficiency was realized at an initial concentration of 288 ppm in a suitable range of the parameters.

  19. Estimation of exhaust and non-exhaust gaseous, particulate matter and air toxics emissions from on-road vehicles in Delhi

    NASA Astrophysics Data System (ADS)

    Nagpure, Ajay Singh; Gurjar, B. R.; Kumar, Vivek; Kumar, Prashant

    2016-02-01

    Analysis of emissions from on-road vehicles in an Indian megacity, Delhi, have been performed by comparing exhaust emissions of gaseous, particulate matter and mobile source air toxics (MSATs), together with volatile organic compound (VOCs) and PM10 (particulate matter ≤10 μm) from non-exhaust vehicular sources, during the past (1991-2011) and future (2011-2020) scenarios. Results indicate that emissions of most of the pollutants from private vehicles (two wheelers and cars) have increased by 2- to 18-times in 2020 over the 1991 levels. Two wheelers found to be dominating the emissions of carbon monoxide (CO, 29-51%), hydrocarbons (HC, 45-73%), acetaldehyde (46-51%) and total poly aromatic hydrocarbons (PAHs, 37-42%). Conversely, private cars were found to be responsible for the majority of the carbon dioxide (CO2, 24-42%), 1,3-butadiene (72-89%), benzene (60-82%), formaldehyde (23-44%) and total aldehyde (27-52%) between 1991 and 2011. The heavy-duty commercial vehicles (HCVs) shows their accountability for most of the nitrogen oxide (NOx, 18-41%) and PM10 (33-43%) emissions during the years 1991-2011. In terms of PM10 emissions, vehicular exhaust contributed by 21-55%, followed by road dust (42-73%) and brake wear (3-5%) between 1991 and 2011. After 2002, non-exhaust emissions (e.g. road dust, brake wear and tyre wear) together indicate higher accountability (66-86%) for PM10 emission than the exhaust emissions (14-34%). The temporal trend of emissions of NOx and CO show reasonable agreement with available ambient air concentrations that were monitored at locations, significantly influenced by vehicular activity. Encouraging results were emerged, showing a good correlation coefficient for CO (0.94) and NOx (0.68).

  20. Performance of Blowdown Turbine Driven by Exhaust Gas of Nine-Cylinder Radial Engine

    NASA Technical Reports Server (NTRS)

    Turner, L Richard; Desmon, Leland G

    1944-01-01

    An investigation was made of an exhaust-gas turbine having four separate nozzle boxes each covering a 90 degree arc of the nozzle diaphragm and each connected to a pair of adjacent cylinders of a nine-cylinder radial engine. This type of turbine has been called a "blowdown" turbine because it recovers the kinetic energy developed in the exhaust stacks during the blowdown period, that is the first part of the exhaust process when the piston of the reciprocating engine is nearly stationary. The purpose of the investigation was to determine whether the blow turbine could develop appreciable power without imposing any large loss in engine power arising from restriction of the engine exhaust by the turbine.

  1. Mutagenicity of diesel engine exhaust is eliminated in the gas phase by an oxidation catalyst but only slightly reduced in the particle phase.

    PubMed

    Westphal, Götz A; Krahl, Jürgen; Munack, Axel; Ruschel, Yvonne; Schröder, Olaf; Hallier, Ernst; Brüning, Thomas; Bünger, Jürgen

    2012-06-05

    Concerns about adverse health effects of diesel engine emissions prompted strong efforts to minimize this hazard, including exhaust treatment by diesel oxidation catalysts (DOC). The effectiveness of such measures is usually assessed by the analysis of the legally regulated exhaust components. In recent years additional analytical and toxicological tests were included in the test panel with the aim to fill possible analytical gaps, for example, mutagenic potency of polycyclic aromatic hydrocarbons (PAH) and their nitrated derivatives (nPAH). This investigation focuses on the effect of a DOC on health hazards from combustion of four different fuels: rapeseed methyl ester (RME), common mineral diesel fuel (DF), SHELL V-Power Diesel (V-Power), and ARAL Ultimate Diesel containing 5% RME (B5ULT). We applied the European Stationary Cycle (ESC) to a 6.4 L turbo-charged heavy load engine fulfilling the EURO III standard. The engine was operated with and without DOC. Besides regulated emissions we measured particle size and number distributions, determined the soluble and solid fractions of the particles and characterized the bacterial mutagenicity in the gas phase and the particles of the exhaust. The effectiveness of the DOC differed strongly in regard to the different exhaust constituents: Total hydrocarbons were reduced up to 90% and carbon monoxide up to 98%, whereas nitrogen oxides (NO(X)) remained almost unaffected. Total particle mass (TPM) was reduced by 50% with DOC in common petrol diesel fuel and by 30% in the other fuels. This effect was mainly due to a reduction of the soluble organic particle fraction. The DOC caused an increase of the water-soluble fraction in the exhaust of RME, V-Power, and B5ULT, as well as a pronounced increase of nitrate in all exhausts. A high proportion of ultrafine particles (10-30 nm) in RME exhaust could be ascribed to vaporizable particles. Mutagenicity of the exhaust was low compared to previous investigations. The DOC reduced

  2. Alkyl polycyclic aromatic hydrocarbons emissions in diesel/biodiesel exhaust

    NASA Astrophysics Data System (ADS)

    Casal, Carina S.; Arbilla, Graciela; Corrêa, Sergio M.

    2014-10-01

    Polycyclic aromatic hydrocarbons (PAHs) are widely studied in environmental matrices, such as air, water, soil and sediment, because of their toxicity, mutagenicity and carcinogenicity. Because of these properties, the environmental agencies of developed countries have listed sixteen PAHs as priority pollutants. Few countries have limits for these compounds for ambient air, but they only limit emissions from stationary and mobile sources and occupational areas. There are several studies to specifically address the 16 priority PAHs and very little for the alkyl PAHs. These compounds are more abundant, more persistent and frequently more toxic than the non-alkylated PAHs, and the toxicity increases with the number of alkyl substitutions on the aromatic ring. In this study, a method was developed for the analysis of PAHs and alkyl PAHs by using a GC-MS and large injection volume injection coupled with program temperature vaporisation, which allows for limits of detection below 1.0 ng μL-1. Several variables were tested, such as the injection volume, injection velocity, injector initial temperature, duration of the solvent split and others. This method was evaluated in samples from particulate matter from the emissions of engines employing standard diesel, commercial diesel and biodiesel B20. Samples were collected on a dynamometer bench for a diesel engine cycle and the results ranged from 0.5 to 96.9 ng mL-1, indicating that diesel/biodiesel makes a significant contribution to the formation of PAHs and alkyl PAHs.

  3. Accounting for Greenhouse Gas Emissions from Reservoirs

    EPA Science Inventory

    Nearly three decades of research has demonstrated that the impoundment of rivers and the flooding of terrestrial ecosystems behind dams can increase rates of greenhouse gas emission, particularly methane. The 2006 IPCC Guidelines for National Greenhouse Gas Inventories includes ...

  4. 40 CFR 86.144-94 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; DensityHC = 16.33 g/ft3−carbon atom (0.5768 kg/m3−carbon atom), assuming an average carbon to hydrogen... petroleum gas-fuel; DensityHC = 1.1771 (12.011+H/C (1.008)) g/ft3−carbon atom (0.04157(12.011+H/C (1.008))kg/m3−carbon atom), where H/C is the hydrogen to carbon ratio of the hydrocarbon components of the...

  5. 40 CFR 86.544-90 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-fuel; DensityHC=576.8 g/m3-carbon atom (16.33 g/ft3-carbon atom), assuming an average carbon to... liquefied petroleum gas-fuel; DensityHC=41.57(12.011+H/C(1.008)) g/m3-carbon atom (1.1771(12.011+H/C(1.008)) g/ft3-carbon atom) where H/C is the hydrogen to carbon ratio of the hydrocarbon components of...

  6. 40 CFR 86.544-90 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... gasoline-fuel; DensityHC = 576.8 g/m3-carbon atom (16.33 g/ft3-carbon atom), assuming an average carbon to... liquefied petroleum gas-fuel; DensityHC = 41.57(12.011+H/C(1.008)) g/m3-carbon atom (1.1771(12.011+H/C(1.008)) g/ft3-carbon atom) where H/C is the hydrogen to carbon ratio of the hydrocarbon components of...

  7. 40 CFR 86.544-90 - Calculations; exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-fuel; DensityHC=576.8 g/m3-carbon atom (16.33 g/ft3-carbon atom), assuming an average carbon to... liquefied petroleum gas-fuel; DensityHC=41.57(12.011+H/C(1.008)) g/m3-carbon atom (1.1771(12.011+H/C(1.008)) g/ft3-carbon atom) where H/C is the hydrogen to carbon ratio of the hydrocarbon components of...

  8. Assessment for fuel consumption and exhaust emissions of China's vehicles: future trends and policy implications.

    PubMed

    Wu, Yingying; Zhao, Peng; Zhang, Hongwei; Wang, Yuan; Mao, Guozhu

    2012-01-01

    In the recent years, China's auto industry develops rapidly, thus bringing a series of burdens to society and environment. This paper uses Logistic model to simulate the future trend of China's vehicle population and finds that China's auto industry would come into high speed development time during 2020-2050. Moreover, this paper predicts vehicles' fuel consumption and exhaust emissions (CO, HC, NO(x), and PM) and quantificationally evaluates related industry policies. It can be concluded that (1) by 2020, China should develop at least 47 million medium/heavy hybrid cars to prevent the growth of vehicle fuel consumption; (2) China should take the more stringent vehicle emission standard V over 2017-2021 to hold back the growth of exhaust emissions; (3) developing new energy vehicles is the most effective measure to ease the pressure brought by auto industry.

  9. Primary particulate emissions and secondary organic aerosol (SOA) formation from idling diesel vehicle exhaust in China.

    PubMed

    Deng, Wei; Hu, Qihou; Liu, Tengyu; Wang, Xinming; Zhang, Yanli; Song, Wei; Sun, Yele; Bi, Xinhui; Yu, Jianzhen; Yang, Weiqiang; Huang, Xinyu; Zhang, Zhou; Huang, Zhonghui; He, Quanfu; Mellouki, Abdelwahid; George, Christian

    2017-03-26

    In China diesel vehicles dominate the primary emission of particulate matters from on-road vehicles, and they might also contribute substantially to the formation of secondary organic aerosols (SOA). In this study tailpipe exhaust of three typical in-use diesel vehicles under warm idling conditions was introduced directly into an indoor smog chamber with a 30m(3) Teflon reactor to characterize primary emissions and SOA formation during photo-oxidation. The emission factors of primary organic aerosol (POA) and black carbon (BC) for the three types of Chinese diesel vehicles ranged 0.18-0.91 and 0.15-0.51gkg-fuel(-1), respectively; and the SOA production factors ranged 0.50-1.8gkg-fuel(-1) and SOA/POA ratios ranged 0.7-3.7 with an average of 2.2. The fuel-based POA emission factors and SOA production factors from this study for idling diesel vehicle exhaust were 1-3 orders of magnitude higher than those reported in previous studies for idling gasoline vehicle exhaust. The emission factors for total particle numbers were 0.65-4.0×10(15)particleskg-fuel(-1), and particles with diameters less than 50nm dominated in total particle numbers. Traditional C2-C12 precursor non-methane hydrocarbons (NMHCs) could only explain less than 3% of the SOA formed during aging and contribution from other precursors including intermediate volatile organic compounds (IVOC) needs further investigation.

  10. 40 CFR 600.113-12 - Fuel economy, CO2 emissions, and carbon-related exhaust emission calculations for FTP, HFET, US06...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... carbon-related exhaust emission calculations for FTP, HFET, US06, SC03 and cold temperature FTP tests... exhaust emission calculations for FTP, HFET, US06, SC03 and cold temperature FTP tests. The Administrator... cold temperature FTP tests. Additionally, the specific gravity, carbon weight fraction and net...

  11. 40 CFR 600.113-12 - Fuel economy, CO2 emissions, and carbon-related exhaust emission calculations for FTP, HFET, US06...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... carbon-related exhaust emission calculations for FTP, HFET, US06, SC03 and cold temperature FTP tests... exhaust emission calculations for FTP, HFET, US06, SC03 and cold temperature FTP tests. The Administrator... cold temperature FTP tests. Additionally, the specific gravity, carbon weight fraction and net...

  12. Effect of some Turkish vegetable oil-diesel fuel blends on exhaust emissions

    SciTech Connect

    Ergeneman, M.; Oezaktas, T.; Cigizoglu, K.B.; Karaosmanoglu, F.; Arslan, E.

    1997-10-01

    For different types of vegetable oils of Turkish origin (sunflower, corn, soybean, and olive oil) were blended with grade No. 2-D diesel fuel at a ratio of 20/80 (v/v). The effect of the compression ratio on exhaust emissions is investigated in an American Society for Testing and Materials (ASTM)-cooperative fuel research (CFR) engine working with the mentioned fuel blends and a baseline diesel fuel. A decrease in soot, CO, CO{sub 2}, and HC emissions and an increase in NO{sub x} emissions have been observed for fuel blends compared to diesel fuel.

  13. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust... for analyzing CVS bag samples from compression- ignition engines. Since various configurations can... engines to 191 °C ±6 °C) for the measurement of hydrocarbons, nondispersive infrared analyzers (NDIR)...

  14. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test... CVS grab “bag” samples from spark-ignition engines. Since various configurations can produce accurate... and water vapor interference, the use of the conditioning column may be deleted. (See §§ 91.317 and...

  15. Unregulated gaseous exhaust emission from modern ethanol fuelled light duty vehicles in cold ambient condition

    NASA Astrophysics Data System (ADS)

    Clairotte, M.; Adam, T. W.; Zardini, A. A.; Astorga, C.

    2011-12-01

    According to Directive 2003/30/EC and 2009/28/EC of the European Parliament and the Council, Member States should promote the use of biofuel. Consequently, all petrol and diesel used for transport purpose available on the market since the 1st of January 2011 must contain a reference value of 5.75% of renewable energy. Ethanol in gasoline could be a promising alternative to comply with this objective, and is actually available in higher proportion in Sweden and Brazil. In addition to a lower dependence on fossil fuel, it is well established that ethanol contributes to reduce air pollutant emissions during combustion (CO, THC), and presents a beneficial effect on the greenhouse gas emissions. However, these statements rely on numerous chassis dynamometer emission studies performed in warm condition (22°C), and very few emission data are available at cold ambient condition encountered in winter, particularly in the north of Europe. In this present study, the effects of ethanol (E75-E85) versus gasoline (E5) have been investigated at cold ambient temperature (-7°C). Experiments have been carried out in a chassis dynamometer at the Vehicle Emission Laboratory (VELA) of the European Commission's Joint Research Centre (JRC - Ispra, Italy). Emissions of modern passenger cars complying with the latest European standard (Euro4 and Euro5a) were tracked over the New European Driving Cycle (NEDC). Unregulated gaseous compounds like greenhouse gases (carbon dioxide, methane, nitrous oxide), and air quality related compounds (ammonia, formaldehyde, acetaldehyde) were monitored by an online Fourier Transformed Infra-Red spectrometer with 1 Hz acquisition frequency. In addition, a number of ozone precursors (carbonyls and volatile organic hydrocarbons) were collected in order to assess the ozone formation potential (OFP) of the exhaust. Results showed higher unregulated emissions at -7°C, regardless of the ethanol content in the fuel blend. Most of the emissions occurred during

  16. Catalysts to reduce NO.sub.x in an exhaust gas stream and methods of preparation

    DOEpatents

    Koermer, Gerald S [Basking Ridge, NJ; Moini, Ahmad [Princeton, NJ; Furbeck, Howard [Hamilton, NJ; Castellano, Christopher R [Ringoes, NJ

    2012-05-08

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having a catalyst comprising silver on a particulate alumina support, the silver having a diameter of less than about 20 nm. Methods of manufacturing catalysts are described in which ionic silver is impregnated on particulate hydroxylated alumina particles.

  17. Catalysts to reduce NO.sub.x in an exhaust gas stream and methods of preparation

    DOEpatents

    Castellano, Christopher R.; Moini, Ahmad; Koermer, Gerald S.; Furbeck, Howard; Schmieg, Steven J.; Blint, Richard J.

    2011-05-17

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having a catalyst comprising silver and a platinum group metal on a particulate alumina support, the atomic fraction of the platinum group metal being less than or equal to about 0.25. Methods of manufacturing catalysts are described in which silver is impregnated on alumina particles.

  18. Evaluation of exhaust emissions from a Bi-fueled vehicle operating on liquid and gaseous fuels. Topical report, June-July 1995

    SciTech Connect

    Whitney, K.A.

    1995-12-01

    Exhaust emissions were characterized from a bi-fueled vehicle operating on compressed natural gas and two gasolines over a heavy acceleration/high speed driving cycle and during cold temperature operation. The test fuels included compressed natural gas (CNG) meeting California Air Resources Board emissions certification specifications, industry average gasoline formulated to the specifications of Reference Fuel A (RF-A) used in the CRC/Auto Oil program, and Federal reformulated gasoline (RFG) purchased at a commercial service station in metropolitan Houston. Exhaust emissions were evaluated over the light-duty chassis dynamometer portion of the Federal Test Procedure at 75 deg F and at 20 deg F, and the REP05 - a hot, stabilized, high speed, high acceleration driving cycle developed by the EPA to be representative of non-FTP, in-use driving. In addition, CNG emissions were evaluated over the US06 driving cycle. Average regulated exhaust emissions (total hydrocarbons, methane, carbon monoxide, and oxides of nitrogen) were evaluated in a manner consistent with the Code of Federal Regulations.

  19. Assessment of benzene and toluene emissions from automobile exhaust in Bangkok.

    PubMed

    Muttamara, S; Leong, S T; Lertvisansak, I

    1999-07-01

    The use of unleaded gasoline, together with an increase in the number of vehicles in Bangkok, has significantly influenced benzene and toluene concentrations in vehicular emissions and contributes to the air pollution problem. As a matter of practical necessity, a quick test program is done for the measurement of emission concentrations/rates for vehicles driven on the road. Exhaust emission measurement at idle mode was conducted in a fleet of 12 vehicles of different model years and manufacturers. The study revealed that the benzene and toluene concentrations in the exhaust effluent averaged 4.4-22.02 and 12.24-44.75 mg/m3, respectively for 1990-1992 cars and decreased to 0.76-4.14 and 0.89-6.26 mg/m3, respectively for 1994-1995 cars. In another study, exhaust emission measurement on a chassis dynamometer was carried out in a fleet of nine selected, in-use cars. It was observed that benzene and toluene emission rates were considerably higher-in the range of 70.84-85.82 and 354.15- 429.00 mg/km, respectively, for 1990-1991 model year cars. Lower benzene and toluene emission rates of 0.43-95.07 and 2. 15-475.35 mg/km, respectively, were represented by newer cars with model years 1994-1995. These results indicated that there was a significant increase in benzene and toluene emission concentrations and rates with increasing car mileage and model year. The finding also revealed that only 28% of the tested vehicles complied to the approved emission standard.

  20. Applying Systems Engineering to Improve the Main Gas Turbine Exhaust System Maintenance Strategy for the CG-47 Ticonderoga Class Cruiser

    DTIC Science & Technology

    2015-09-01

    IMPROVE THE MAIN GAS TURBINE EXHAUST SYSTEM MAINTENANCE STRATEGY FOR THE CG-47 TICONDEROGA CLASS CRUISER by Robert D. Sparks September 2015 Thesis...TURBINE EXHAUST SYSTEM MAINTENANCE STRATEGY FOR THE CG-47 TICONDEROGA CLASS CRUISER 5. FUNDING NUMBERS 6. AUTHOR(S) Sparks, Robert D. 7. PERFORMING...recommendations for improvement of the main gas turbine exhaust system maintenance strategy are the focus of this thesis. The analysis recommends a

  1. Characterization, concentrations and emission rates of polycyclic aromatic hydrocarbons in the exhaust emissions from in-service vehicles in Damascus

    NASA Astrophysics Data System (ADS)

    Alkurdi, Farouk; Karabet, François; Dimashki, Marwan

    2013-02-01

    Motor vehicles are significant sources of polycyclic aromatic hydrocarbon (PAH) emissions to the urban atmosphere. Improved understanding of PAH emission profiles in mobile sources is the key to determining the viable approach for reducing PAH emissions from motor vehicles. Very limited data is available on the levels of PAH emissions in the urban atmospheres in Syria and no data are currently available on the level of PAH emissions from different combustion sources in the country. The aim of this study was to determine the profile and concentration of PAH in exhaust emissions of light and heavy-duty vehicles running on the roads of Damascus city. Three different types of vehicles (passenger cars, minivans and buses) were selected along with different age groups. Vapor- and particulate-phase PAH were collected from the vehicular exhausts of six in-service vehicles (with/without catalytic converters). High-performance liquid chromatography system, equipped with UV-Visible and fluorescence detectors, was used for the identification and quantification of PAH compounds in the cleaned extracts of the collected samples. The mean concentration of total PAH emissions (sum of 15 compounds) from all types of studied vehicles ranged between 69.28 ± 1.06 μg/m3 for passenger cars equipped with catalytic converters and 2169.41 ± 5.17 μg/m3 for old diesel buses without pollution controls. Values of total benzo(a)pyrene equivalent (∑ B[a]Peq) ranged between 1.868 μg/m3and 37.652 μg/m3. The results obtained in this study showed that the use of catalytic converters resulted into cleaner exhaust compositions and emissions with characteristics that are distinct from those obtained in the absence of catalytic converters.

  2. Histological examination of the rat after long-term exposure to subtoxic automotive exhaust gas.

    PubMed

    Roggendorf, W; Neumann, H; Thron, H L; Schneider, H; Sarasa-Corral, J L

    1981-07-01

    Regarding the potential impact of traffic-born air pollutants on public health, in recent years attention has increasingly been focused on the possible effects on the cardiovascular system. In order to investigate this problem further, the influence of long-term exhaust gas exposure on rats has been studied. One hundred Wistar rats of either sex were exposed 5 X 8 h/week up to 28 months to an atmosphere polluted by the emissions of an idling Otto engine, CO concentrations held constant at 90 ppm. A second group (50 rats) was exposed to 250 ppm for 6 months. Blood parameters and body weight were controlled. Specimens of CNS, heart, vessels, kidney etc. were investigated light microscopically. Focal necroses of the myocardium with inflammatory reactions as well as interstitial fibrosis were found in the heart muscle of the 90 ppm group. In the 250 ppm group endothelial proliferations, edema of the intima and deposits of proteoglycanes in the media were observed. We conclude that subtoxic concentrations of CO which only lead to slight morphologic changes may aggravate preexisting lesions caused by high risk conditions, e.g., hypertension or hypercholesteremia.

  3. Establishing isokinetic flow for a plasma torch exhaust gas diagnostic for a plasma hearth furnace

    SciTech Connect

    Pollack, Brian R.

    1996-05-01

    Real time monitoring of toxic metallic effluents in confined gas streams can be accomplished through use of Microwave Induced Plasmas to perform atomic emission spectroscopy, For this diagnostic to be viable it is necessary that it sample from the flowstream of interest in an isokinetic manner. A method of isokinetic sampling was established for this device for use in the exhaust system of a plasma hearth vitrification furnace. The flow and entrained particulate environment were simulated in the laboratory setting using a variable flow duct of the same dimensions (8-inch diameter, schedule 40) as that in the field and was loaded with similar particulate (less than 10 μm in diameter) of lake bed soil typically used in the vitrification process. The flow from the furnace was assumed to be straight flow. To reproduce this effect a flow straightener was installed in the device. An isokinetic sampling train was designed to include the plasma torch, with microwave power input operating at 2.45 GHz, to match local freestream velocities between 800 and 2400 ft/sec. The isokinetic sampling system worked as planned and the plasma torch had no difficulty operating at the required flowrates. Simulation of the particulate suspension was also successful. Steady particle feeds were maintained over long periods of time and the plasma diagnostic responded as expected.

  4. Toward reconciling instantaneous roadside measurements of light duty vehicle exhaust emissions with type approval driving cycles.

    PubMed

    Rhys-Tyler, Glyn A; Bell, Margaret C

    2012-10-02

    A method is proposed to relate essentially instantaneous roadside measurements of vehicle exhaust emissions, with emission results generated over a type approval driving cycle. An urban remote sensing data set collected in 2008 is used to define the dynamic relationship between vehicle specific power and exhaust emissions, across a range of vehicle ages, engine capacities, and fuel types. The New European Driving Cycle is synthesized from the remote sensing data using vehicle specific power to characterize engine load, and the results compared with official published emissions data from vehicle type approval tests over the same driving cycle. Mean carbon monoxide emissions from gasoline-powered cars ≤ 3 years old measured using remote sensing are found to be 1.3 times higher than published original type approval test values; this factor increases to 2.2 for cars 4-8 years old, and 6.4 for cars 9-12 years old. The corresponding factors for diesel cars are 1.1, 1.4, and 1.2, respectively. Results for nitric oxide, hydrocarbons, and particulate matter are also reported. The findings have potential implications for the design of traffic management interventions aimed at reducing emissions, fleet inspection and maintenance programs, and the specification of vehicle emission models.

  5. 30 CFR 36.43 - Determination of exhaust-gas composition.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.43 Determination of exhaust-gas composition. (a) Samples shall be... test data are observed. At all test conditions the intake mixture shall contain 1.5 ±0.1 percent,...

  6. 30 CFR 36.43 - Determination of exhaust-gas composition.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.43 Determination of exhaust-gas composition. (a) Samples shall be... test data are observed. At all test conditions the intake mixture shall contain 1.5 ±0.1 percent,...

  7. 75 FR 82040 - Notice of Public Meeting on the International Maritime Organization Guidelines for Exhaust Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... meeting. SUMMARY: The United States Coast Guard will conduct a public meeting on the International.... ADDRESSES: The public meeting will be held in Room 2501 of the United States Coast Guard Headquarters... Public Meeting on the International Maritime Organization Guidelines for Exhaust Gas Cleaning Systems...

  8. US Coast Guard/US Maritime Administration Cooperative Research on marine engine exhaust emissions. Marine exhaust emissions measurement of the M/V Kings Pointer. Final report

    SciTech Connect

    Allen, S.J.; Bentz, A.P.

    1996-07-01

    This report presents the results of emissions testing conducted on board the M/V KINGS POINTER in May 1995. The objective of this testing was to conduct baseline instrumentation, monitoring, and evaluation of the engine exhaust emissions as part of joint U.S. Coast Guard/Maritime Administration cooperative research on controlling air pollution from ships. The U.S. Coast Guard`s interest in emissions testing arises from both its desire to meet all federal and state air quality regulations and the fact that in the future it may be called upon to enforce regulations in the marine environment. The U.S. Maritime Administration`s interest in this and related research is based on its efforts to assure that its vessels and those of the privately-owned U.S. Flag Merchant Marine can comply with future air pollution control requirements. Underway tests were conducted of the 224-foot M/V KINGS POINTER in which two of its four diesel-electric generators were sampled for NO, NO2, CO, and SO2 in the exhaust. Additional data on fuel flow and power output were collected at five speeds over the full range of vessel operating ranges. NOx values were calculated and compared with standards proposed by the Environmental Protection Agency (EPA) and the International Maritime Organization (IMO). Results showed that average NOx values were 9.4 g/kWh which is slightly below the 10.9 g/kWh upper limit or cap that is being proposed by the IMO for a diesel engine with a rated speed of 1200 RPM. Additional conclusions and recommendations on the technique of portable emissions monitoring instrumentation are made.

  9. Effect of varying the combustion parameters on the emissions of carbon monoxide and nitrogen oxides in the exhaust gases from propane-fueled vehicles.

    PubMed

    Roberge, B

    2000-05-01

    Propane-fueled forklifts are one source of carbon monoxide (CO) contamination of workplace air. The previous study carried out by the Quebec Occupational Health and Safety Research Institute dealt with worker exposure to CO during forklift use in buildings. It recommends that exhaust gas emissions be kept below a 1 percent concentration. However, this control has not produced a significant reduction in worker exposure to CO, when factors (ventilation, type of work tasks, and management of vehicle fleet) specific to companies are taken into account. Consequently, a reduction in CO emissions below the threshold of 0.3 percent should be considered. The experience acquired with propane-fueled ice resurfacers can be used to determine the effect of combustion parameters on exhaust gas emissions. It is known that a reduction in CO emissions from ice resurfacers resulted in the appearance of nitrogen oxides (NOx) and eventually in nitrogen dioxide (NO2) poisoning. Few publications present NOx results in relation to the CO measured in the exhaust gases of propane-fueled vehicles. The objective of this study is to define the level to which CO emissions can be reduced without increasing NOx concentrations. This real-situation study quantified the CO, NO, and NOx in the exhaust gases of a fleet of propane-fueled forklifts in relation to the mixture ratio. The results show the impact of the motor speed and mixture ratio on the CO, NO, and NO2 concentrations. They confirm an increase in NOx concentrations when CO concentrations are reduced. They also show that proper maintenance of forklifts combined with optimal adjustments can reduce CO and NOx emissions. The study proposes a compromise between CO and NOx emissions by taking into account worker health and safety as well as vehicle performance. Monitoring must be done to control air quality in work areas and worker exposure to CO and NO2. A forklift preventive maintenance program and general building ventilation are the favored

  10. 40 CFR 86.511-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system for HC, CO and CO2, Figure F90-3, consists of a flame ionization detector (FID) (heated (235°±15... analytical system for methanol consists of a gas chromatograph (GC) equipped with a flame ionization detector. The analysis for formaldehyde is performed using high pressure liquid chromatography (HPLC) of...

  11. 40 CFR 86.511-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system for HC, CO and CO2, Figure F90-3, consists of a flame ionization detector (FID) (heated (235°±15... analytical system for methanol consists of a gas chromatograph (GC) equipped with a flame ionization detector. The analysis for formaldehyde is performed using high pressure liquid chromatography (HPLC) of...

  12. 40 CFR 86.1511 - Exhaust gas analysis system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-scale deflection. The precision is defined as two times the standard deviation of five repetitive... mean response to a zero calibration gas shall not exceed ±3 percent of full-scale deflection during a 1... calibration response shall be less than ±3 percent of full scale during a 1-hour period. The...

  13. 40 CFR 86.111-94 - Exhaust gas analytical system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chromatography (HPLC) of 2,4-dinitrophenylhydrazine (DNPH) derivatives using ultraviolet (UV) detection. The... Engineers, Inc. (SAE) Recommended Practice J1151, “Methane Measurement Using Gas Chromatography,” December... chromatography (HPLC) of 2,4-dinitrophenylhydrazine (DNPH) derivatives using ultraviolet (UV) detection....

  14. 40 CFR 86.111-94 - Exhaust gas analytical system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... hydrocarbon (THC) (hydrocarbon plus methanol in the case of methanol-fueled vehicles), methane (CH4) (for... of nitrogen (NOX). The schematic diagram of the continuous THC analysis train (and for THC plus... determination of THC, a methane analyzer (consisting of a gas chromatograph combined with a FID) for...

  15. Fast exhaust channel optical absorption method and apparatus to study the gas exchange in large diesel engines

    NASA Astrophysics Data System (ADS)

    Vattulainen, J.; Hernberg, R.; Hattar, C.; Gros, S.

    1998-01-01

    An optical absorption spectroscopic method and apparatus with shorter than 1 ms response time have been used to study the gas exchange processes in realistic conditions for a single cylinder of a large diesel engine. The method is based on measuring the differential line-of-sight optical uv absorption of the exhaust-gas-contained SO2 as a function of time in the exhaust port area just after the exhaust valves. The optical absorption by SO2 is determined from light transmission measurements at 280 and 340 nm performed through optical probes installed into the exhaust channel wall. The method has been applied to a continuously fired, large, medium speed production-line-type diesel engine with 990 kW rated power. The test engine was operated with standard light fuel oil (MDO Termoshell) and with light fuel oil treated with a sulfur additive {Di-Tert-Butyldisulfid [(CH3)3C]2S2}. The latter was to improve the optical absorption signals without increasing the fouling of the exhaust channel optical probes as in the case of heavier fuel oil qualities. In the reported case of a four-stroke diesel engine measurement results show that the method can provide time-resolved information of the SO2 density in the exhaust channel and thus give information on the single-cylinder gas exchange. During the inlet and exhaust valve overlap period the moment of fresh air entering into the measurement volume can be detected. If independent exhaust gas temperature and pressure data are available, the absorption measurements can readily be used for determining the burnt gas fraction in the exhaust channel. In this work the possibility of using the optical absorption measurement to determine the instaneous exhaust gas temperature was studied. Based on known fuel properties and conventional averaged SO2 measurements from the exhaust channel a known concentration of SO2 was assumed in the exhaust gas after the exhaust valves opening and before the inlet and exhaust valves overlap period

  16. OIL AND GAS FIELD EMISSIONS SURVEY

    EPA Science Inventory

    The report gives results of an oil and gas field emissions survey. The production segment of the oil and gas industry has been identified as a source category that requires the development of more reliable emissions inventory methodologies. The overall purpose of the project was ...

  17. Comparison of exhaust emissions resulting from cold- and hot-start motorcycle driving modes.

    PubMed

    Yao, Yung-Chen; Tsai, Jiun-Horng; Ye, Hui-Fen; Chiang, Hung-Lung

    2009-11-01

    This study investigated the emissions of criteria air pollutants (carbon monoxide [CO], hydrocarbons [HCs], and oxides of nitrogen [NOx]) from motorcycle exhaust at cold- and hot-start driving cycles on a chassis dynamometer. Seven four-stroke carburetors and two fuel-injection motorcycles were tested. As expected, the emission factors (g/km) of CO and HCs increased during cold-start driving. The ratio of emission factors (g/km) for cold- and hot-start driving cycles ranged from 1.1-1.5 (for CO) to 1.2-2.8 (for HCs). However, the difference of NOx emissions between the cold- and hot-start cycles was not pronounced. Further, the cold-/hot-start ratios of CO and HCs from 50-cm3 motorcycles were higher than those of 100- and 125-cm3 motorcycles; however, the carbon dioxide (CO2) emission was the lowest for the four-stroke motorcycles. High engine temperature and poor combustion efficiency of smaller cylinder-capacity motorcycles may contribute a significant amount of exhaust emission. Additionally, the fuel-base emission factor (g/L-fuel) ratios were low compared with the distance-base emission factor (g/km) in cold- and hot-start driving. This indicates that the effect of catalyst efficiency was greater than the effect of fuel combustion in the tested motorcycles. A comparison of emission ratios of motorcycles and passenger cars shows that the warm-up may be more important for cars, especially under low-temperature conditions. However, the motorcycle contributes a large proportion of CO and HC emissions in many Asian counties. The difference between cold- and hot-start emissions may affect inventory

  18. 40 CFR 600.208-12 - Calculation of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-based fuel economy and carbon-related exhaust emission values for a model type. 600.208-12 Section 600... ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Calculating Fuel Economy and... of FTP-based and HFET-based fuel economy and carbon-related exhaust emission values for a model...

  19. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy and carbon-related exhaust emission...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HFET-based fuel economy and carbon-related exhaust emission values for vehicle configurations. 600.206... POLICY FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Calculating Fuel Economy and Carbon-Related Exhaust Emission Values for 1977 and Later Model Year Automobiles §...

  20. GIS-based modal model of automobile exhaust emissions. Final report, January 1997--May 1998

    SciTech Connect

    Bachman, W.H.

    1998-08-01

    The report presents progress toward the development of a computer tool called MEASURE, the Mobile Emission Assessment System for Urban and Regional Evaluation. The tool works toward a goal of providing researchers and planners with a way to assess new mobile emission mitigation strategies. The model is based on a geographic information system (GIS) and uses modal operation (acceleration, deceleration, cruise, and idle). Estimates of spatially resolved fleet composition and activity are combined with situation-specific emission rates to predict engine start and running exhaust emissions. The estimates are provided at user-defined spatial scales. A demonstration of model operation is provided using a 100 sq km study area in Atlanta, Georgia. Future mobile emissions modeling research needs are developed from an analysis of the sources of model error.

  1. Fast Spatially Resolved Exhaust Gas Recirculation (EGR) Distribution Measurements in an Internal Combustion Engine Using Absorption Spectroscopy

    SciTech Connect

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E.; Perfetto, Anthony; Geckler, Sam; Partridge, William P.

    2015-09-01

    One effective method of reducing NOx emissions while improving efficiency is exhaust gas recirculation (EGR) in internal combustion engines. But, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder nonuniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. Furthermore, a sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. Our study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

  2. Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

    PubMed

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

  3. Fast Spatially Resolved Exhaust Gas Recirculation (EGR) Distribution Measurements in an Internal Combustion Engine Using Absorption Spectroscopy

    DOE PAGES

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E.; ...

    2015-09-01

    One effective method of reducing NOx emissions while improving efficiency is exhaust gas recirculation (EGR) in internal combustion engines. But, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder nonuniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. Furthermore, a sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in themore » intake manifold. Our study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.« less

  4. Suppression of Thermal Emission from Exhaust Components Using an Integrated Approach

    DTIC Science & Technology

    2002-08-01

    Thick Film Cooling; Thin Film Cooling; Fin cooling; Hidden Sacrifice Surface using Coanda Effect ; View hiding with insulation; Emissivity Control Plume...system while using a hidden surface to stabilize the flow and the Coanda effect to turn the flow in a desired direction at the exit plane. When view...34* Simple Exhaust using Coanda Effect to direct flow away from the vehicle; "* Segmentation into multiple jets to test self absorption; "* Vortex

  5. From Contrails and Smoke Trails to Exhaust Particle Processes: A Brief History of Aircraft Particulate Emissions

    DTIC Science & Technology

    2011-12-01

    2,6- Dimethylnaphthalene Acenaphthylene Acenaphthene Phenanthrene Anthracene Fluoranthene Benz[ a ]anthracene Benzofluoranthenes Benzo [ a ] pyrene Indeno...1,2,3-c,d] pyrene Benzo [g,h,i]perylene Methane Ethane Propane Acetylene Propene n-Pentane n-Hexane Toluene n-Decane Dodecane Tridecane Formaldehyd e...Aerodyne Research, Inc. From Contrails and Smoke Trails to Exhaust Particle Processes: A brief history of aircraft particulate emissions Presented

  6. Exhaust emissions survey of a turbofan engine for flame holder swirl type augmentors at simulated altitude flight conditions

    NASA Technical Reports Server (NTRS)

    Moss, J. E., Jr.

    1981-01-01

    Emissions of carbon dioxide, total oxides of nitrogen, unburned hydrocarbons, and carbon monoxide from an F100 afterburning two spool turbofan engine at simulated flight conditions are reported. Tests were run at Mach 0.8 at altitudes of 10.97 and 13.71 km (36,000 and 45,000 ft), and at Mach 1.2 at 13.71 km (45,000 ft). Emission measurements were made from intermediate power (nonafterburning) through maximum afterburning, using a single point gas sample probe traversed across the horizontal diameter of the exhaust nozzle. The data show that emissions vary with flight speed, altitude, power level, and radial position across the nozzle. Carbon monoxide emissions were low for intermediate and partial afterburning power. Unburned hydrocarbons were near zero for most of the simulated flight conditions. At maximum afterburning, there were regions of NOx deficiency in regions of high CO. The results suggest that the low NOx levels observed in the tests are a result of interaction with high CO in the thermal converter. CO2 emissions were proportional to local fuel air ratio for all test conditions.

  7. Impact of oxidation catalysts on exhaust NO2/NOx ratio from lean-burn natural gas engines.

    PubMed

    Olsen, Daniel B; Kohls, Morgan; Arney, Gregg

    2010-07-01

    Oxides of nitrogen (NOx) emitted from internal combustion engines are composed primarily of nitric oxide (NO) and nitrogen dioxide (NO2). Exhaust from most combustion sources contains NOx composed primarily of NO. There are two important scenarios specific to lean-burn natural gas engines in which the NO2/NOx ratio can be significant: (1) when the engine is operated at ultralean conditions and (2) when an oxidation catalyst is used. Large NO2/NOx ratios may result in additional uncertainty in NOx emissions measurements because the most common technique (chemiluminescence) was developed for low NO2/NOx ratios. In this work, scenarios are explored in which the NO2/NOx ratio can be large. Additionally, three NOx measurement approaches are compared for exhaust with various NO2/NOx ratios. The three measurement approaches are chemiluminescence, chemical cell, and Fourier-transform infrared spectroscopy. A portable analyzer with chemical cell technology was found to be the most accurate for measuring exhaust NOx with large NO2/NOx ratios.

  8. Effects of Fresh and Aged Vehicular Exhaust Emissions on Breathing Pattern and Cellular Responses – Pilot Single Vehicle Study

    PubMed Central

    Diaz, Edgar A.; Chung, Yeonseung; Papapostolou, Vasileios; Lawrence, Joy; Long, Mark S.; Hatakeyama, Vivian; Gomes, Brenno; Calil, Yasser; Sato, Rodrigo; Koutrakis, Petros; Godleski, John J.

    2013-01-01

    The study presented here is a laboratory pilot study using diluted car exhaust from a single vehicle to assess differences in toxicological response between primary emissions and secondary products resulting from atmospheric photochemical reactions of gas phase compounds with O3, OH and other radicals. Sprague-Dawley rats were exposed for five hours to either filtered room air (Sham) or one of two different atmospheres: 1. Diluted Car Exhaust (P) + Mt. Saint Helens Ash (MSHA); 2. P+MSHA+SOA (Secondary Organic Aerosol, formed during simulated photochemical aging of diluted exhaust). Primary and secondary gases were removed using a non-selective diffusion denuder. Continuous respiratory data was collected during the exposure, and broncho-alveolar lavage (BAL) and complete blood counts (CBC) were performed 24 hours after exposure. ANOVA models were used to assess the exposure effect and to compare those effects across different exposure types. Total average exposures were 363±66 μg/m3 P+MSHA and 212±95 μg/m3 P+MSHA+SOA. For both exposures, we observed decreases in breathing rate, tidal and minute volumes (TV, MV) and peak and median flows (PIF, PEF and EF50) along with increases in breathing cycle times (Ti, Te) compared to sham. These results indicate that the animals are changing their breathing pattern with these test atmospheres. Exposure to P+MSHA+SOA produced significant increases in Total Cells, Macrophages and Neutrophils in the BAL and in-vivo chemiluminescence of the lung. There were no significant differences in CBC parameters. Our data suggest that simulated atmospheric photochemistry, producing SOA in the P+MSHA+SOA exposures, enhanced the toxicity of vehicular emissions. PMID:22486346

  9. The effects of acceleration rate on vehicle exhaust emissions and fuel economy. Technical report

    SciTech Connect

    Landman, L.C.

    1982-08-01

    This report summarizes a test program which was designed to explore the impact on exhaust emissions and fuel economy of coupling the dynamometer rollers (front and rear) and of using acceleration rates higher than those used on the Federal Test Procedure (FTP). A total of six vehicles were tested in this program. All five gasoline-fueled exhibited increases in hydrocarbons (HC) and carbon monoxide (CO) emissions on the Federal Test Procedure (FTP) driving cycle when the dynamometer rollers were coupled. The other results are strongly vehicle dependent.

  10. Reduction of NOx and PM in marine diesel engine exhaust gas using microwave plasma

    NASA Astrophysics Data System (ADS)

    Balachandran, W.; FInst, P.; Manivannan, N.; Beleca, R.; Abbod, M.

    2015-10-01

    Abatement of NOx and particulate matters (PM) of marine diesel exhaust gas using microwave (MW) non-thermal plasma is presented in this paper. NOx mainly consist of NO and less concentration of NO2 in a typical two stoke marine diesel engine and microwave plasma generation can completely remove NO. MW was generated using two 2kW microwave sources and a saw tooth passive electrode. Passive electrode was used to generate high electric field region within microwave environment where high energetic electrons (1-3eV) are produced for the generation of non-thermal plasma (NTP). 2kW gen-set diesel exhaust gas was used to test our pilot-scale MW plasma reactor. The experimental results show that almost 100% removal of NO is possible for the exhaust gas flow rate of 60l/s. It was also shown that MW can significantly remove soot particles (PM, 10nm to 365nm) entrained in the exhaust gas of 200kW marine diesel engine with 40% engine load and gas flow rate of 130l/s. MW without generating plasma showed reduction up to 50% reduction of PM and with the plasma up to 90% reduction. The major challenge in these experiments was that igniting the desired plasma and sustaining it with passive electrodes for longer period (10s of minutes) as it required fine tuning of electrode position, which was influenced by many factors such as gas flow rate, geometry of reactor and MW power.

  11. Turbine exhaust diffuser with a gas jet producing a coanda effect flow control

    DOEpatents

    Orosa, John; Montgomery, Matthew

    2014-02-11

    An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub structure that has an upstream end and a downstream end. The outer boundary may include a region in which the outer boundary extends radially inward toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. The hub structure includes at least one jet exit located on the hub structure adjacent to the upstream end of the tail cone. The jet exit discharges a flow of gas substantially tangential to an outer surface of the tail cone to produce a Coanda effect and direct a portion of the exhaust flow in the diffuser toward the inner boundary.

  12. Optical Emissions from the High Speed Rocket Exhaust Interaction with the Ionosphere

    NASA Astrophysics Data System (ADS)

    Bhatt, A.; Bernhardt, P. A.; Erickson, P. J.; Lind, F. D.; Varney, R. H.; Kelley, M. C.

    2009-12-01

    An increasing number of space shuttle and rocket launches have inspired an investigation into the effects of vehicle exhaust on the earth's upper atmosphere. A controlled Charged Aerosol Release Experiment (CARE) will be carried out in September 2009 from Wallops Island, Virginia. The high speed exhaust from the Nihka motor on the rocket contains primarily Al2O3, H2O, CO, HCl, N2, CO2 and H2, would have an exit velocity of 2.8 km/s, and the exhaust would last for 18 seconds. The heavy particles are expected to form a charged dust layer in the lower thermosphere and the ionospheric E region. Sunlight scattered from the particulates will produce a bright optical display that can be observed with a ground spectrograph. In addition, the interactions of these molecular ions with the background ionospheric electrons are expected to also produce optical emissions in the range of 400-1000 nm. Observations from the CARE campaign were obtained using a ground based Visible/NIR spectrograph and the Millstone Hill ionospheric incoherent scatter radar located in Massachusetts. The chemical processes behind the expected emissions are compared with the observed optical emissions for both temporal and spatial scales. The spectral emissions observed with the spectrograph from the Wallops site are also compared to those observed at other ground based optical diagnostics sites. The temporal evolution of the emissions is correlated with that of the formation of the ionospheric layers as observed with the Millstone Hill radar. Finally, the significance of these results and future plans for more and enhanced observation techniques will be discussed.

  13. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria.

    PubMed

    Wu, Ya-Min; Yang, Jing; Fan, Xiao-Lei; Fu, Shan-Fei; Sun, Meng-Ting; Guo, Rong-Bo

    2017-01-13

    Biogas upgrading is essential for the comprehensive utilization of biogas as substitute of natural gas. However, the methane in the biogas can be fully recovered during the upgrading process of biogas, and the exhaust gas produced during biogas upgrading may contain a very low concentration of methane. If the exhaust gas with low concentration methane releases to atmosphere, it will be harmful to environment. In addition, the utilization of large amounts of digestate produced from biogas plant is another important issue for the development of biogas industry. In this study, solid digestate was used to produce active carbon, which was subsequently used as immobilized material for methane-oxidizing bacteria (MOB) in biofilter. Biofilter with MOB immobilized on active carbon was used to eliminate the methane in exhaust gas from biogas upgrading process. Results showed porous active carbon was successfully made from solid digestate. The final methane elimination capacity of immobilized MOB reached about 13molh(-1)m(-3), which was more 4 times higher than that of MOB without immobilization.

  14. Research on the 2nd generation biofuel BIOXDIESEL in aspects of emission of toxic substances in exhaust gases

    NASA Astrophysics Data System (ADS)

    Struś, M. S.; Poprawski, W.; Rewolte, M.

    2016-09-01

    This paper presents results of research of Diesel engines emission of toxic substances in exhaust gases fuelled with a second generation biofuel BIOXDIESEL, which is a blend of Fatty Acid Ethyl Esters obtained from waste resources such waste vegetable and animal fats, bioethanol and standard Diesel fuel. Presented results are very promising, showing that the emission of toxic substances in exhaust gases are significantly reduced when fuelling with BIOXDIESEL fuel in comparison with standard Diesel fuel.

  15. Emissions control for ground power gas turbines

    NASA Technical Reports Server (NTRS)

    Rudney, R. A.; Priem, R. J.; Juhasz, A. J.; Anderson, D. N.; Mroz, T. S.; Mularz, E. J.

    1977-01-01

    The similarities and differences of emissions reduction technology for aircraft and ground power gas turbines is described. The capability of this technology to reduce ground power emissions to meet existing and proposed emissions standards is presented and discussed. Those areas where the developing aircraft gas turbine technology may have direct application to ground power and those areas where the needed technology may be unique to the ground power mission are pointed out. Emissions reduction technology varying from simple combustor modifications to the use of advanced combustor concepts, such as catalysis, is described and discussed.

  16. Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Kook; Won, Byeong-Cheol; Rhi, Seok-Ho; Kim, Shi-Ho; Yoo, Jeong-Ho; Jang, Ju-Chan

    2011-05-01

    The present experimental and computational study investigates a new exhaust gas waste heat recovery system for hybrid vehicles, using a thermoelectric module (TEM) and heat pipes to produce electric power. It proposes a new thermoelectric generation (TEG) system, working with heat pipes to produce electricity from a limited hot surface area. The current TEG system is directly connected to the exhaust pipe, and the amount of electricity generated by the TEMs is directly proportional to their heated area. Current exhaust pipes fail to offer a sufficiently large hot surface area for the high-efficiency waste heat recovery required. To overcome this, a new TEG system has been designed to have an enlarged hot surface area by the addition of ten heat pipes, which act as highly efficient heat transfer devices and can transmit the heat to many TEMs. As designed, this new waste heat recovery system produces a maximum 350 W when the hot exhaust gas heats the evaporator surface of the heat pipe to 170°C; this promises great possibilities for application of this technology in future energy-efficient hybrid vehicles.

  17. Batch-processed semiconductor gas sensor array for the selective detection of NOx in automotive exhaust gas

    NASA Astrophysics Data System (ADS)

    Jang, Hani; Kim, Minki; Kim, Yongjun

    2016-12-01

    This paper reports on a semiconductor gas sensor array to detect nitrogen oxides (NOx) in automotive exhaust gas. The proposed semiconductor gas sensor array consisted of one common electrode and three individual electrodes to minimize the size of the sensor array, and three sensing layers [TiO2 + SnO2 (15 wt%), SnO2, and Ga2O3] were deposited using screen printing. In addition, sensing materials were sintered under the same conditions in order to take advantage of batch processing. The sensing properties of the proposed sensor array were verified by experimental measurements, and the selectivity improved by using pattern recognition.

  18. Emissions of Transport Refrigeration Units with CARB Diesel, Gas-to-Liquid Diesel, and Emissions Control Devices

    SciTech Connect

    Barnitt, R. A.; Chernich, D.; Burnitzki, M.; Oshinuga, A.; Miyasato, M.; Lucht, E.; van der Merwe, D.; Schaberg, P.

    2010-05-01

    A novel in situ method was used to measure emissions and fuel consumption of transport refrigeration units (TRUs). The test matrix included two fuels, two exhaust configurations, and two TRU engine operating speeds. Test fuels were California ultra low sulfur diesel and gas-to-liquid (GTL) diesel. Exhaust configurations were a stock muffler and a Thermo King pDPF diesel particulate filter. The TRU engine operating speeds were high and low, controlled by the TRU user interface. Results indicate that GTL diesel fuel reduces all regulated emissions at high and low engine speeds. Application of a Thermo King pDPF reduced regulated emissions, sometimes almost entirely. The application of both GTL diesel and a Thermo King pDPF reduced regulated emissions at high engine speed, but showed an increase in oxides of nitrogen at low engine speed.

  19. Studies on exhaust emissions of catalytic coated spark ignition engine with adulterated gasoline.

    PubMed

    Muralikrishna, M V S; Kishor, K; Venkata Ramana Reddy, Ch

    2006-04-01

    Adulteration of automotive fuels, especially, gasoline with cheaper fuels is widespread throughout south Asia. Some adulterants decrease the performance and life of the engine and increase the emission of harmful pollutants causing environmental and health problems. The present investigation is carried out to study the exhaust emissions from a single cylinder spark ignition (SI) engine with kerosene blended gasoline with different versions of the engine, such as conventional engine and catalytic coated engine with different proportions of the kerosene ranging from 0% to 40% by volume in steps of 10% in the kerosene-gasoline blend. The catalytic coated engine used in the study has copper coating of thickness 400 microns on piston and inner surface of the cylinder head. The pollutants in the exhaust, carbon monoxide (CO) and unburnt hydrocarbons (UBHC) are measured with Netel Chromatograph CO and HC analyzer at peak load operation of the engine. The engine is provided with catalytic converter with sponge iron as a catalyst to control the pollutants from the exhaust of the engine. An air injection is also provided to the catalytic converter to further reduce the pollutants. The pollutants found to increase drastically with adulterated gasoline. Copper-coated engine with catalytic converter significantly reduced pollutants, when compared to conventional engine.

  20. Dilution rates for tailpipe emissions: effects of vehicle shape, tailpipe position, and exhaust velocity.

    PubMed

    Chang, Victor W C; Hildemann, Lynn M; Chang, Cheng-hisn

    2009-06-01

    The rate at which motor vehicle exhaust undergoes dilution with ambient air will greatly affect the size distribution characteristics of the particulate emissions. Wind tunnel experiments were conducted to investigate the impacts of vehicle shape, tailpipe orientation, and exhaust exit velocity on the dilution profiles under steady driving conditions for three model vehicles: a light-duty truck, a passenger car, and a heavy-duty tractor head. A three dimensional array of 60 sensors provided simultaneous measurements of dilution ratios for the emissions in the near- and far-wake regions downstream of the vehicle. The processes underlying the observations were investigated via nondimensionalization. Many of the trends seen substantially downstream can be well generalized using a simple nondimensionalization technique; however, this is not true in the near-wake region (within a downstream distance equivalent to a few vehicle heights). In the near-wake region, using the vehicle width and length to normalize for the vehicle shape is not enough to fully account for the variations seen. Including the exhaust flow rate in the nondimensionalization process is effective further downwind but does not adequately capture the complexity in the near-wake region. Tailpipe orientation and location are also shown to be influential factors affecting the near-wake dilution characteristics.

  1. Exhaust emission calibration of two J-58 afterburning turbojet engines at simulated high-altitude, supersonic flight conditions

    NASA Technical Reports Server (NTRS)

    Holdeman, J. D.

    1976-01-01

    Emissions of total oxides of nitrogen, nitric oxide, unburned hydrocarbons, carbon monoxide, and carbon dioxide from two J-58 afterburning turbojet engines at simulated high-altitude flight conditions are reported. Test conditions included flight speeds from Mach 2 to 3 at altitudes from 16.0 to 23.5 km. For each flight condition exhaust measurements were made for four or five power levels, from maximum power without afterburning through maximum afterburning. The data show that exhaust emissions vary with flight speed, altitude, power level, and radial position across the exhaust. Oxides of nitrogen emissions decreased with increasing altitude and increased with increasing flight speed. Oxides of nitrogen emission indices with afterburning were less than half the value without afterburning. Carbon monoxide and hydrocarbon emissions increased with increasing altitude and decreased with increasing flight speed. Emissions of these species were substantially higher with afterburning than without.

  2. UPDATE OF EPA'S EMISSION FACTORS FOR LANDFILL GAS EMISSIONS

    EPA Science Inventory

    The paper describes an effort to collect updated data and determine if changes are needed to AP-42, a document that provides emission factors characterizing landfill gas (LFG) emissions from sites with and without LFG controls. The work underway includes the types of measurement ...

  3. Power plant emissions reduction

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  4. Design of the NDUV detection circuit for the NO concentration of the vehicle exhaust emissions

    NASA Astrophysics Data System (ADS)

    Zhang, Kai; Zhang, Yujun; He, Ying; You, Kun; Gao, Yanwei; Chen, Chen; Liu, Guohua; He, Chungui; Lu, Yibing; Liu, Wenqing

    2016-10-01

    With the increasing number of vehicles, the harm from NO to the environment becomes more and more prominent. So the monitoring of the NO concentration of the vehicle exhaust emissions is very important to assess the emission levels. In this paper, the NO detection system designing for vehicle exhaust emissions based on the non-dispersive ultraviolet principle (NDUV) has been researched. The technical indexes of the two-way modulation UV signal detection circuit are discussed in detail. And then a precision detection circuit is designed, which is composed of a trans-impedance amplifier and a lock-in amplifier, with which the output of the UV photoelectric detector can be amplified to a suitable voltage range, and the DC noise of the pre-stage amplifier is effectively removed by the lock-in amplifier. An experimental system was set up to test the designed circuit. To ensure the consistency of the two channels, the method of exchange calibration was adopted in the test. It's drawn that the designed circuit is of high SNR, measuring accuracy and a large dynamic range from the test results. The NO concentration detection limit of vehicle emissions can reach 1ppm, and the detection precision is +/-15ppm.

  5. Influence of driving cycles on exhaust emissions and fuel consumption of gasoline passenger car in Bangkok.

    PubMed

    Nutramon, Tamsanya; Supachart, Chungpaibulpatana

    2009-01-01

    The influence of different driving cycles on their exhaust emissions and fuel consumption rate of gasoline passenger car was investigated in Bangkok based on the actual measurements obtained from a test vehicle driving on a standard chassis dynamometer. A newly established Bangkok driving cycle (BDC) and the European driving cycle (EDC) which is presently adopted as the legislative cycle for testing automobiles registered in Thailand were used. The newly developed BDC is constructed using the driving characteristic data obtained from the real on-road driving tests along selected traffic routes. A method for selecting appropriate road routes for real driving tests is also introduced. Variations of keyed driving parameters of BDC with different driving cycles were discussed. The results showed that the HC and CO emission factors of BDC are almost two and four times greater than those of EDC, respectively. Although the difference in the NOx emission factor is small, the value from BDC is still greater than that of EDC by 10%. Under BDC, the test vehicle consumes fuel about 25% more than it does under EDC. All these differences are mainly attributed to the greater proportion of idle periods and higher fluctuations of vehicle speed in the BDC cycle. This result indicated that the exhausted emissions and fuel consumption of vehicles obtained from tests under the legislative modal-type driving cycle (EDC) are significantly different from those actually produced under real traffic conditions especially during peak periods.

  6. Studies of diesel engine particle emissions during transient operations using an Engine Exhaust Particle Sizer

    SciTech Connect

    Wang, Jian; Storey, John Morse; Domingo, Norberto; Huff, Shean P; Thomas, John F; West, Brian H; Lee, Doh-Won

    2006-01-01

    Diesel engine particle emissions during transient operations, including emissions during FTP transient cycles and during active regenerations of a NOx adsorber, were studied using a fast Engine Exhaust Particle Sizer (EEPS). For both fuels tested, a No. 2 certification diesel and a low sulfur diesel (BP-15), high particle concentrations and emission rates were mainly associated with heavy engine acceleration, high speed, and high torque during transient cycles. Averaged over the FTP transient cycle, the particle number concentration during tests with the certification fuel was 1.2e8/cm3, about four times the particle number concentration observed during tests using the BP-15 fuel. The effect of each engine parameter on particle emissions was studied. During tests using BP-15, the particle number emission rate was mainly controlled by the engine speed and torque, whereas for Certification fuel, the engine acceleration also had a strong effect on number emission rates. The effects of active regenerations of a diesel NOx adsorber on particle emissions were also characterized for two catalyst regeneration strategies: Delayed Extended Main (DEM) and Post 80 injection (Post80). Particle volume concentrations observed during DEM regenerations were much higher than those during Post80 regenerations, and the minimum air to fuel ratio achieved during the regenerations had little effect on particle emission for both strategies. This study provides valuable information for developing strategies that minimize the particle formation during active regenerations of NOx adsorbers.

  7. COMPARATIVE STUDY ON EXHAUST EMISSIONS FROM DIESEL- AND CNG-POWERED URBAN BUSES

    SciTech Connect

    COROLLER, P; PLASSAT, G

    2003-08-24

    Couple years ago, ADEME engaged programs dedicated to the urban buses exhaust emissions studies. The measures associated with the reduction of atmospheric and noise pollution has particular importance in the sector of urban buses. In many cases, they illustrate the city's environmental image and contribute to reinforcing the attractiveness of public transport. France's fleet in service, presently put at about 14,000 units, consumes about 2 per cent of the total energy of city transport. It causes about 2 per cent of the HC emissions and from 4 to 6 per cent of the NOx emissions and particles. These vehicles typically have a long life span (about 15 years) and are relatively expensive to buy, about 150.000 euros per unit. Several technical solutions were evaluated to quantify, on a real condition cycle for buses, on one hand pollutants emissions, fuel consumption and on the other hand reliability, cost in real existing fleet. This paper presents main preliminary results on urban buses exhaust emission on two different cases: - existing Diesel buses, with fuel modifications (Diesel with low sulphur content), Diesel with water emulsion and bio-Diesel (30% oil ester in standard Diesel fuel); renovating CNG powered Euro II buses fleet, over representative driving cycles, set up by ADEME and partners. On these cycles, pollutants (regulated and unregulated) were measured as well as fuel consumption, at the beginning of a program and one year after to quantify reliability and increase/decrease of pollutants emissions. At the same time, some after-treatment technologies were tested under real conditions and several vehicles. Information such as fuel consumption, lubricant analysis, problem on the technology were following during a one year program. On the overall level, it is the combination of various action, pollution-reduction and renewal that will make it possible to meet the technological challenge of reducing emissions and fuel consumption by urban bus networks.

  8. A new online exhaust gas monitoring system in hydrochloric acid regeneration of cold rolling mills.

    PubMed

    Tuo, Long; Zheng, Xiang; Chen, Xiong

    2015-07-07

    Measuring the content of hydrogen chloride (HCl) in exhaust gas used to take time and energy. In this paper, we introduce a new online monitoring system which can output real-time data to the monitoring center. The system samples and cools exhaust gas, and after a series of processing, it will be analyzed by a specific instrument. The core part of this system is remote terminal unit (RTU) which is designed on Cortex-A8 embedded architecture. RTU runs a scaled-down version of Linux which is a good choice of OS for embedded applications. It controls the whole processes, does data acquisition and data analysis, and communicates with monitoring center through Ethernet. In addition, through a software developed for windows, the monitoring process can be remotely controlled. The new system is quite beneficial for steel industry to do environment monitoring.

  9. Reservoir Greenhouse Gas Emissions at Russian HPP

    SciTech Connect

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V.; Savvichev, A. S.; Zinchenko, A. V.

    2015-05-15

    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  10. Regulations for Greenhouse Gas Emissions from Aircraft

    EPA Pesticide Factsheets

    EPA and the National Highway Traffic Safety Administration (NHTSA) are taking coordinated steps to enable the production of a new generation of clean vehicles, through reduced greenhouse gas (GHG) emissions and improved fuel use from onroad vehicles.

  11. Greenhouse Gas Emissions from Pasture

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Carbon dioxide, nitrous oxide, and methane are the primary greenhouse gases associated with global climate change. Livestock production’s contribution to carbon dioxide emissions is minimal, but it is a substantial contributor to both nitrous oxide and methane emissions. In both grazing and confin...

  12. Black carbon from ships: a review of the effects of ship speed, fuel quality and exhaust gas scrubbing

    NASA Astrophysics Data System (ADS)

    Lack, D. A.; Corbett, J. J.

    2012-01-01

    The International Maritime Organization (IMO) has moved to address the health and climate impact of the emissions from the combustion of low-quality residual fuels within the commercial shipping industry. Fuel sulfur content (FS) limits and an efficiency design index for future ships are examples of such IMO actions. The impacts of black carbon (BC) emissions from shipping are now under review by the IMO, with a particular focus on the potential impacts of future Arctic shipping. Recognizing that associating impacts with BC emissions requires both ambient and onboard observations, we provide recommendations for the measurement of BC. We also evaluate current insights regarding the effect of ship speed (engine load), fuel quality and exhaust gas scrubbing on BC emissions from ships. Observations demonstrate that BC emission factors (EFBC) increases 3 to 6 times at very low engine loads (<25% compared to EFBC at 85-100% load); absolute BC emissions (per nautical mile of travel) also increase up to 100% depending on engine load, even with reduced load fuel savings. If fleets were required to operate at lower maximum engine loads, presumably associated with reduced speeds, then engines could be re-tuned, which would reduce BC emissions. Ships operating in the Arctic are likely running at highly variable engine loads (25-100%) depending on ice conditions and ice breaking requirements. The ships operating at low load may be emitting up to 50% more BC than they would at their rated load. Such variable load conditions make it difficult to assess the likely emissions rate of BC. Current fuel sulfur regulations have the effect of reducing EFBC by an average of 30% and potentially up to 80% regardless of engine load; a removal rate similar to that of scrubbers. Uncertainties among current observations demonstrate there is a need for more information on (a) the impact of fuel quality on EFBC using robust measurement methods and (b) the efficacy of scrubbers for the removal of

  13. Black carbon from ships: a review of the effects of ship speed, fuel quality and exhaust gas scrubbing

    NASA Astrophysics Data System (ADS)

    Lack, D. A.; Corbett, J. J.

    2012-05-01

    The International Maritime Organization (IMO) has moved to address the health and climate impact of the emissions from the combustion of low-quality residual fuels within the commercial shipping industry. Fuel sulfur content (FS) limits and an efficiency design index for future ships are examples of such IMO actions. The impacts of black carbon (BC) emissions from shipping are now under review by the IMO, with a particular focus on the potential impacts of future Arctic shipping. Recognizing that associating impacts with BC emissions requires both ambient and onboard observations, we provide recommendations for the measurement of BC. We also evaluate current insights regarding the effect of ship speed (engine load), fuel quality and exhaust gas scrubbing on BC emissions from ships. Observations demonstrate that BC emission factors (EFBC) increases 3 to 6 times at very low engine loads (<25% compared to EFBC at 85-100% load); absolute BC emissions (per nautical mile of travel) also increase up to 100% depending on engine load, even with reduced load fuel savings. If fleets were required to operate at lower maximum engine loads, presumably associated with reduced speeds, then engines could be re-tuned, which would reduce BC emissions. Ships operating in the Arctic are likely running at highly variable engine loads (25-100%) depending on ice conditions and ice breaking requirements. The ships operating at low load may be emitting up to 50% more BC than they would at their rated load. Such variable load conditions make it difficult to assess the likely emissions rate of BC. Current fuel sulfur regulations have the effect of reducing EFBC by an average of 30% and potentially up to 80% regardless of engine load; a removal rate similar to that of scrubbers. Uncertainties among current observations demonstrate there is a need for more information on a) the impact of fuel quality on EFBC using robust measurement methods and b) the efficacy of scrubbers for the removal of

  14. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  15. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  16. Impact of higher alcohols blended in gasoline on light-duty vehicle exhaust emissions.

    PubMed

    Ratcliff, Matthew A; Luecke, Jon; Williams, Aaron; Christensen, Earl; Yanowitz, Janet; Reek, Aaron; McCormick, Robert L

    2013-12-03

    Certification gasoline was splash blended with alcohols to produce four blends: ethanol (16 vol%), n-butanol (17 vol%), i-butanol (21 vol%), and an i-butanol (12 vol%)/ethanol (7 vol%) mixture; these fuels were tested in a 2009 Honda Odyssey (a Tier 2 Bin 5 vehicle) over triplicate LA92 cycles. Emissions of oxides of nitrogen, carbon monoxide, non-methane organic gases (NMOG), unburned alcohols, carbonyls, and C1-C8 hydrocarbons (particularly 1,3-butadiene and benzene) were determined. Large, statistically significant fuel effects on regulated emissions were a 29% reduction in CO from E16 and a 60% increase in formaldehyde emissions from i-butanol, compared to certification gasoline. Ethanol produced the highest unburned alcohol emissions of 1.38 mg/mile ethanol, while butanols produced much lower unburned alcohol emissions (0.17 mg/mile n-butanol, and 0.30 mg/mile i-butanol); these reductions were offset by higher emissions of carbonyls. Formaldehyde, acetaldehyde, and butyraldehyde were the most significant carbonyls from the n-butanol blend, while formaldehyde, acetone, and 2-methylpropanal were the most significant from the i-butanol blend. The 12% i-butanol/7% ethanol blend was designed to produce no increase in gasoline vapor pressure. This fuel's exhaust emissions contained the lowest total oxygenates among the alcohol blends and the lowest NMOG of all fuels tested.

  17. Emissions from gas fired agricultural burners

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the Federal Clean Air Act, the San Joaquin Valley Unified Air Pollution Control District (SJVUAPCD) began defining Best Available Control Technology (BACT) for NOx emissions from cotton gin drying system gas fired burners in its jurisdiction. The NOx emission levels of conventionally used...

  18. Integrated exhaust gas analysis system for aircraft turbine engine component testing

    NASA Technical Reports Server (NTRS)

    Summers, R. L.; Anderson, R. C.

    1985-01-01

    An integrated exhaust gas analysis system was designed and installed in the hot-section facility at the Lewis Research Center. The system is designed to operate either manually or automatically and also to be operated from a remote station. The system measures oxygen, water vapor, total hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. Two microprocessors control the system and the analyzers, collect data and process them into engineering units, and present the data to the facility computers and the system operator. Within the design of this system there are innovative concepts and procedures that are of general interest and application to other gas analysis tasks.

  19. Experimental investigation on performance and exhaust emissions of castor oil biodiesel from a diesel engine.

    PubMed

    Shojaeefard, M H; Etgahni, M M; Meisami, F; Barari, A

    2013-01-01

    Biodiesel, produced from plant and animal oils, is an important alternative to fossil fuels because, apart from dwindling supply, the latter are a major source of air pollution. In this investigation, effects of castor oil biodiesel blends have been examined on diesel engine performance and emissions. After producing castor methyl ester by the transesterification method and measuring its characteristics, the experiments were performed on a four cylinder, turbocharged, direct injection, diesel engine. Engine performance (power, torque, brake specific fuel consumption and thermal efficiency) and exhaust emissions were analysed at various engine speeds. All the tests were done under 75% full load. Furthermore, the volumetric blending ratios of biodiesel with conventional diesel fuel were set at 5, 10, 15, 20 and 30%. The results indicate that lower blends of biodiesel provide acceptable engine performance and even improve it. Meanwhile, exhaust emissions are much decreased. Finally, a 15% blend of castor oil-biodiesel was picked as the optimized blend of biodiesel-diesel. It was found that lower blends of castor biodiesel are an acceptable fuel alternative for the engine.

  20. Bioethanol/gasoline blends for fuelling conventional and hybrid scooter. Regulated and unregulated exhaust emissions

    NASA Astrophysics Data System (ADS)

    Costagliola, Maria Antonietta; Prati, Maria Vittoria; Murena, Fabio

    2016-05-01

    The aim of this experimental activity was to evaluate the influence of ethanol fuel on the pollutant emissions measured at the exhaust of a conventional and a hybrid scooter. Both scooters are 4-stroke, 125 cm3 of engine capacity and Euro 3 compliant. They were tested on chassis dynamometer for measuring gaseous emissions of CO, HC, NOx, CO2 and some toxic micro organic pollutants, such as benzene, 1,3-butadiene, formaldehyde and acetaldehyde. The fuel consumption was estimated throughout a carbon balance on the exhaust species. Moreover, total particles number with diameter between 20 nm up to 1 μm was measured. Worldwide and European test cycles were carried out with both scooters fuelled with gasoline and ethanol/gasoline blends (10/90, 20/80 and 30/70% vol). According to the experimental results relative to both scooter technologies, the addiction of ethanol in gasoline reduces CO and particles number emissions. The combustion of conventional scooter becomes unstable when a percentage of 30%v of bioethanol is fed; as consequence a strong increasing of hydrocarbon is monitored, including carcinogenic species. The negative effects of ethanol fuel are related to the increasing of fuel consumption due to the less carbon content for volume unit and to the increasing of formaldehyde and acetaldehyde due to the higher oxygen availability. Almost 70% of Ozone Formation Potential is covered by alkenes and aromatics.