Sample records for exhaust gas processing

  1. Gas separation process using membranes with permeate sweep to remove CO.sub.2 from gaseous fuel combustion exhaust

    DOEpatents

    Wijmans, Johannes G [Menlo Park, CA; Merkel, Timothy C [Menlo Park, CA; Baker, Richard W [Palo Alto, CA

    2012-05-15

    A gas separation process for treating exhaust gases from the combustion of gaseous fuels, and gaseous fuel combustion processes including such gas separation. The invention involves routing a first portion of the exhaust stream to a carbon dioxide capture step, while simultaneously flowing a second portion of the exhaust gas stream across the feed side of a membrane, flowing a sweep gas stream, usually air, across the permeate side, then passing the permeate/sweep gas back to the combustor.

  2. A novel aerated surface flow constructed wetland using exhaust gas from biological wastewater treatment: Performance and mechanisms.

    PubMed

    Zhang, Xinwen; Hu, Zhen; Zhang, Jian; Fan, Jinlin; Ngo, Huu Hao; Guo, Wenshan; Zeng, Chujun; Wu, Yiwen; Wang, Siyuan

    2018-02-01

    In this study, a novel aerated surface flow constructed wetland (SFCW) using exhaust gas from biological wastewater treatment was investigated. Compared with un-aerated SFCW, the introduction of exhaust gas into SFCW significantly improved NH 4 + -N, TN and COD removal efficiencies by 68.30 ± 2.06%, 24.92 ± 1.13% and 73.92 ± 2.36%, respectively. The pollutants removal mechanism was related to the microbial abundance and the highest microbial abundance was observed in the SFCW with exhaust gas because of the introduction of exhaust gas from sequencing batch reactor (SBR), and thereby optimizing nitrogen transformation processes. Moreover, SFCW would significantly mitigate the risk of exhaust gas pollution. SFCW removed 20.00 ± 1.23%, 34.78 ± 1.39%, and 59.50 ± 2.33% of H 2 S, NH 3 and N 2 O in the exhaust gas, respectively. And 31.32 ± 2.23% and 32.02 ± 2.86% of bacterial and fungal aerosols in exhaust gas were also removed through passing SFCW, respectively. Copyright © 2017. Published by Elsevier Ltd.

  3. Process for detoxicating exhaust gases from Otto-combustion engines and apparatus for carrying out such process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klaue, H.J.; Reisacher, J.

    1974-03-12

    An afterburning process for reducing motor vehicle emissions of carbon monoxide and hydrocarbons is described which precludes extensive equipment for feeding the required air into the exhaust gases by means of exhaust gas expansion so that combustion air is sucked in by a partial vacuum formed. A twist generator is used to impart a swirl to the exhaust gases, resulting in their expansion. Air is aspirated into the expanded exhaust gases to provide a combustible gas-air mixture which is delivered to a diffusor for afterburning. The exhaust gases flowing to the twist generator pass through a heat exchanger which servesmore » to preheat the combustion air. The twist generator may be a set of stationary whirl-imparting vanes or may be the rotor of an exhaust gas turbo charger directly driving an air compressor which delivers the air through the heat exchanger to the turbocharger, with some of the compressed air being delivered back to the engine. The flow area of the outlet of the twist generator is adjustable to control the quantity of air aspirated into the exhaust gases supplied to the diffusor.« less

  4. Method and apparatus for processing exhaust gas with corona discharge

    DOEpatents

    Barlow, Stephan E.; Orlando, Thomas M.; Tonkyn, Russell G.

    1999-01-01

    The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes.

  5. Method and apparatus for processing exhaust gas with corona discharge

    DOEpatents

    Barlow, S.E.; Orlando, T.M.; Tonkyn, R.G.

    1999-06-22

    The present invention is placing a catalyst coating upon surfaces surrounding a volume containing corona discharge. In addition, the electrodes are coated with a robust dielectric material. Further, the electrodes are arranged so that at least a surface portion of each electrode extends into a flow path of the exhaust gas to be treated and there is only exhaust gas in the volume between each pair of electrodes. 12 figs.

  6. Elimination of methane in exhaust gas from biogas upgrading process by immobilized methane-oxidizing bacteria.

    PubMed

    Wu, Ya-Min; Yang, Jing; Fan, Xiao-Lei; Fu, Shan-Fei; Sun, Meng-Ting; Guo, Rong-Bo

    2017-05-01

    Biogas upgrading is essential for the comprehensive utilization of biogas as substitute of natural gas. However, the methane in the biogas can be fully recovered during the upgrading process of biogas, and the exhaust gas produced during biogas upgrading may contain a very low concentration of methane. If the exhaust gas with low concentration methane releases to atmosphere, it will be harmful to environment. In addition, the utilization of large amounts of digestate produced from biogas plant is another important issue for the development of biogas industry. In this study, solid digestate was used to produce active carbon, which was subsequently used as immobilized material for methane-oxidizing bacteria (MOB) in biofilter. Biofilter with MOB immobilized on active carbon was used to eliminate the methane in exhaust gas from biogas upgrading process. Results showed porous active carbon was successfully made from solid digestate. The final methane elimination capacity of immobilized MOB reached about 13molh -1 m -3 , which was more 4 times higher than that of MOB without immobilization. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Exhaust gas recirculation system for an internal combustion engine

    DOEpatents

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  8. Numerical study on the effect of a lobed nozzle on the flow characteristics of submerged exhaust

    NASA Astrophysics Data System (ADS)

    Miao, T. C.; Du, T.; Wu, D. Z.; Wang, L. Q.

    2016-05-01

    In order to investigate the effecting mechanism of nozzle structure on the flow characteristics of submerged exhaust, the processes of air exhausted from a lobed nozzle and a round nozzle into water have been numerically simulated using realizable k - ɛ model under the framework of the volume of fluid (VOF) model. Both the flow structure and the upstream pressure fluctuations are taken into consideration. The calculated results are in good agreement with the experimental results, showing that gas exhausted from the lobed nozzle would flow along the axial direction easier. Flow structure of the gas exhausted from the lobed nozzle is more continuous and smoother. The pressure fluctuations in the upstream pipeline would also be reduced when gas exhausted from the lobed nozzle. The resulting analysis indicates that the lobed structure could deflect water flow into the gas jet. The induced water would be mixed into the gas jet in form of small droplets, making the jet more continuous. As a result, the mixed jet flow would be less obstructed by the surrounding water, and the upstream pressure fluctuation would be reduced. The work in this paper partly explained the effecting mechanism of nozzle structure on the flow characteristics of submerged exhaust. The results are useful in the designing of exhaust nozzles.

  9. Improvement of the thermal and mechanical flow characteristics in the exhaust system of piston engine through the use of ejection effect

    NASA Astrophysics Data System (ADS)

    Plotnikov, L. V.; Zhilkin, B. P.; Brodov, Yu M.

    2017-11-01

    The results of experimental research of gas dynamics and heat transfer in the exhaust process in piston internal combustion engines are presented. Studies were conducted on full-scale models of piston engine in the conditions of unsteady gas-dynamic (pulsating flows). Dependences of the instantaneous flow speed and the local heat transfer coefficient from the crankshaft rotation angle in the exhaust pipe are presented in the article. Also, the flow characteristics of the exhaust gases through the exhaust systems of various configurations are analyzed. It is shown that installation of the ejector in the exhaust system lead to a stabilization of the flow and allows to improve cleaning of the cylinder from exhaust gases and to optimize the thermal state of the exhaust pipes. Experimental studies were complemented by numerical simulation of the working process of the DM-21 diesel engine (production of “Ural diesel-motor plant”). The object of modeling was the eight-cylinder diesel with turbocharger. The simulation was performed taking into account the processes nonstationarity in the intake and exhaust pipes for the various configurations of exhaust systems (with and without ejector). Numerical simulation of the working process of diesel was performed in ACTUS software (ABB Turbo Systems). The simulation results confirmed the stabilization of the flow due to the use of the ejection effect in the exhaust system of a diesel engine. The use of ejection in the exhaust system of the DM-21 diesel leads to improvement of cleaning cylinders up to 10 %, reduces the specific fuel consumption on average by 1 %.

  10. Improved methane removal in exhaust gas from biogas upgrading process using immobilized methane-oxidizing bacteria.

    PubMed

    Sun, Meng-Ting; Yang, Zhi-Man; Fu, Shan-Fei; Fan, Xiao-Lei; Guo, Rong-Bo

    2018-05-01

    Methane in exhaust gas from biogas upgrading process, which is a greenhouse gas, could cause global warming. The biofilter with immobilized methane-oxidizing bacteria (MOB) is a promising approach for methane removal, and the selections of inoculated MOB culture and support material are vital for the biofilter. In this work, five MOB consortia were enriched at different methane concentrations. The MOB-20 consortium enriched at the methane concentration of 20.0% (v/v) was then immobilized on sponge and two particle sizes of volcanic rock in biofilters to remove methane in exhaust gas from biogas upgrading process. Results showed that the immobilized MOB performed more admirable methane removal capacity than suspended cells. The immobilized MOB on sponge reached the highest methane removal efficiency (RE) of 35%. The rough surface, preferable hydroscopicity, appropriate pore size and particle size of support material might favor the MOB immobilization and accordingly methane removal. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Batch-processed semiconductor gas sensor array for the selective detection of NOx in automotive exhaust gas

    NASA Astrophysics Data System (ADS)

    Jang, Hani; Kim, Minki; Kim, Yongjun

    2016-12-01

    This paper reports on a semiconductor gas sensor array to detect nitrogen oxides (NOx) in automotive exhaust gas. The proposed semiconductor gas sensor array consisted of one common electrode and three individual electrodes to minimize the size of the sensor array, and three sensing layers [TiO2 + SnO2 (15 wt%), SnO2, and Ga2O3] were deposited using screen printing. In addition, sensing materials were sintered under the same conditions in order to take advantage of batch processing. The sensing properties of the proposed sensor array were verified by experimental measurements, and the selectivity improved by using pattern recognition.

  12. Catalytic process for control of NO.sub.x emissions using hydrogen

    DOEpatents

    Sobolevskiy, Anatoly; Rossin, Joseph A.; Knapke, Michael J.

    2010-05-18

    A selective catalytic reduction process with a palladium catalyst for reducing NOx in a gas, using hydrogen as a reducing agent. A zirconium sulfate (ZrO.sub.2)SO.sub.4 catalyst support material with about 0.01-2.0 wt. % Pd is applied to a catalytic bed positioned in a flow of exhaust gas at about 70-200.degree. C. The support material may be (ZrO.sub.2--SiO.sub.2)SO.sub.4. H.sub.2O and hydrogen may be injected into the exhaust gas upstream of the catalyst to a concentration of about 15-23 vol. % H.sub.2O and a molar ratio for H.sub.2/NO.sub.x in the range of 10-100. A hydrogen-containing fuel may be synthesized in an Integrated Gasification Combined Cycle power plant for combustion in a gas turbine to produce the exhaust gas flow. A portion of the fuel may be diverted for the hydrogen injection.

  13. Selective catalytic reduction system and process for control of NO.sub.x emissions in a sulfur-containing gas stream

    DOEpatents

    Sobolevskiy, Anatoly

    2015-08-11

    An exhaust gas treatment process, apparatus, and system for reducing the concentration of NOx, CO and hydrocarbons in a gas stream, such as an exhaust stream (29), via selective catalytic reduction with ammonia is provided. The process, apparatus and system include a catalytic bed (32) having a reducing only catalyst portion (34) and a downstream reducing-plus-oxidizing portion (36). Each portion (34, 36) includes an amount of tungsten. The reducing-plus-oxidizing catalyst portion (36) advantageously includes a greater amount of tungsten than the reducing catalyst portion (36) to markedly limit ammonia salt formation.

  14. System using electric furnace exhaust gas to preheat scrap for steelmaking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takai, K.; Iwasaki, K.

    1987-09-08

    A method is described for clean preheating of scrap contaminated with oil and organic matter, for steelmaking, using heat from exhaust gas flow from an electric furnace. It consists of: burning any combustibles present in the exhaust gas flow and simultanously separating out dust particles from the exhaust gas flow; heating a predetermined amount of the scrap by heat exchange with a predetermined portion of the exhaust gas flow; removing and collecting dust from the exhaust gas flow after preheating of scrap thereby; sensing the temperature of the exhaust flow; scrubbing the exhaust gas flow with an aqueous solution ofmore » a deodorant solvent flowing at a rate regulated to be in a predetermined relationship related to the exhaust gas temperature sensed prior to scrubbing, thereby generating saturated vapor and reducing the temperature of the exhaust gas flow by a predetermined amount; and electrostatically precipitating out oil mist attached to saturated water vapor and liquid droplets in the exhaust gas flow.« less

  15. Using Waste Heat for External Processes (English/Chinese) (Fact Sheet) (in Chin3se; English)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    Chinese translation of the Using Waste Heat for External Processes fact sheet. Provides suggestions on how to use waste heat in industrial applications. The temperature of exhaust gases from fuel-fired industrial processes depends mainly on the process temperature and the waste heat recovery method. Figure 1 shows the heat lost in exhaust gases at various exhaust gas temperatures and percentages of excess air. Energy from gases exhausted from higher temperature processes (primary processes) can be recovered and used for lower temperature processes (secondary processes). One example is to generate steam using waste heat boilers for the fluid heaters used inmore » petroleum crude processing. In addition, many companies install heat exchangers on the exhaust stacks of furnaces and ovens to produce hot water or to generate hot air for space heating.« less

  16. Boosting devices with integral features for recirculating exhaust gas

    DOEpatents

    Wu, Ko-Jen

    2015-12-22

    According to one embodiment of the invention, a turbine housing includes a turbine inlet in fluid communication with a turbine volute configured to house a turbine wheel, the turbine inlet configured to direct an exhaust gas flow from an engine to the turbine wheel. The turbine housing also includes a turbine outlet in fluid communication with the turbine volute, the turbine outlet configured to direct the exhaust gas flow to an exhaust gas conduit and a first exhaust gas recirculation supply port located on and in fluid communication with the turbine outlet, the first exhaust gas recirculation supply port being configured to direct a portion of the exhaust gas flow to an exhaust gas recirculation supply conduit.

  17. Performance of Blowdown Turbine Driven by Exhaust Gas of Nine-Cylinder Radial Engine

    NASA Technical Reports Server (NTRS)

    Turner, L Richard; Desmon, Leland G

    1944-01-01

    An investigation was made of an exhaust-gas turbine having four separate nozzle boxes each covering a 90 degree arc of the nozzle diaphragm and each connected to a pair of adjacent cylinders of a nine-cylinder radial engine. This type of turbine has been called a "blowdown" turbine because it recovers the kinetic energy developed in the exhaust stacks during the blowdown period, that is the first part of the exhaust process when the piston of the reciprocating engine is nearly stationary. The purpose of the investigation was to determine whether the blow turbine could develop appreciable power without imposing any large loss in engine power arising from restriction of the engine exhaust by the turbine.

  18. Controlling And Operating Homogeneous Charge Compression Ignition (Hcci) Engines

    DOEpatents

    Flowers, Daniel L.

    2005-08-02

    A Homogeneous Charge Compression Ignition (HCCI) engine system includes an engine that produces exhaust gas. A vaporization means vaporizes fuel for the engine an air induction means provides air for the engine. An exhaust gas recirculation means recirculates the exhaust gas. A blending means blends the vaporized fuel, the exhaust gas, and the air. An induction means inducts the blended vaporized fuel, exhaust gas, and air into the engine. A control means controls the blending of the vaporized fuel, the exhaust gas, and the air and for controls the inducting the blended vaporized fuel, exhaust gas, and air into the engine.

  19. Low exhaust temperature electrically heated particulate matter filter system

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J.; Bhatia, Garima [Bangalore, IN

    2012-02-14

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  20. Exhaust bypass flow control for exhaust heat recovery

    DOEpatents

    Reynolds, Michael G.

    2015-09-22

    An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.

  1. 40 CFR 86.1437 - Test run-manufacturer.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... pipes. Exhaust gas concentrations from vehicle engines equipped with multiple exhaust pipes must be... apply. (1) Exhaust gas sampling algorithm. The analysis of exhaust gas concentrations begins ten seconds after the applicable test mode begins. Exhaust gas concentrations must be analyzed at a minimum rate of...

  2. NO.sub.x sensor and process for detecting NO.sub.x

    DOEpatents

    Dalla Betta, Ralph A.; Sheridan, David R.; Reed, Daniel L.

    1994-01-01

    This invention is a process for detecting low levels of nitrogen oxides (NO.sub.x) in a flowing gas stream (typically an exhaust gas stream) and a catalytic NO.sub.x sensor which may be used in that process.

  3. Fuel quality/processing study. Volume 4: On site processing studies

    NASA Technical Reports Server (NTRS)

    Jones, G. E., Jr.; Cutrone, M.; Doering, H.; Hickey, J.

    1981-01-01

    Fuel treated at the turbine and the turbine exhaust gas processed at the turbine site are studied. Fuel treatments protect the turbine from contaminants or impurities either in the upgrading fuel as produced or picked up by the fuel during normal transportation. Exhaust gas treatments provide for the reduction of NOx and SOx to environmentally acceptable levels. The impact of fuel quality upon turbine maintenance and deterioration is considered. On site costs include not only the fuel treatment costs as such, but also incremental costs incurred by the turbine operator if a turbine fuel of low quality is not acceptably upgraded.

  4. 40 CFR 86.509-90 - Exhaust gas sampling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system. 86.509-90... 1978 and Later New Motorcycles; Test Procedures § 86.509-90 Exhaust gas sampling system. (a)(1) General. The exhaust gas sampling system is designed to measure the true mass emissions of vehicle exhaust. In...

  5. 40 CFR 86.509-90 - Exhaust gas sampling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system. 86.509-90... 1978 and Later New Motorcycles; Test Procedures § 86.509-90 Exhaust gas sampling system. (a)(1) General. The exhaust gas sampling system is designed to measure the true mass emissions of vehicle exhaust. In...

  6. Exhaust purification with on-board ammonia production

    DOEpatents

    Robel, Wade J.; Driscoll, James Joshua; Coleman, Gerald N.

    2010-10-12

    A method of ammonia production for a selective catalytic reduction system is provided. The method includes producing an exhaust gas stream within a cylinder group, wherein the first exhaust gas stream includes NOx. The exhaust gas stream may be supplied to an exhaust passage and cooled to a predetermined temperature range, and at least a portion of the NOx within the exhaust gas stream my be converted into ammonia.

  7. Exhaust purification with on-board ammonia production

    DOEpatents

    Robel, Wade J [Peoria, IL; Driscoll, James Joshua [Dunlap, IL; Coleman, Gerald N [Peterborough, GB

    2008-05-13

    A system of ammonia production for a selective catalytic reduction system is provided. The system includes producing an exhaust gas stream within a cylinder group, wherein the first exhaust gas stream includes NOx. The exhaust gas stream may be supplied to an exhaust passage and cooled to a predetermined temperature range, and at least a portion of the NOx within the exhaust gas stream may be converted into ammonia.

  8. Real-time exhaust gas modular flowmeter and emissions reporting system for mobile apparatus

    NASA Technical Reports Server (NTRS)

    Breton, Leo Alphonse Gerard (Inventor)

    2002-01-01

    A real-time emissions reporting system includes an instrument module adapted to be detachably connected to the exhaust pipe of a combustion engine to provide for flow of exhaust gas therethrough. The instrument module includes a differential pressure probe which allows for determination of flow rate of the exhaust gas and a gas sampling tube for continuously feeding a sample of the exhaust gas to a gas analyzer or a mounting location for a non-sampling gas analyzer. In addition to the module, the emissions reporting system also includes an elastomeric boot for detachably connecting the module to the exhaust pipe of the combustion engine, a gas analyzer for receiving and analyzing gases sampled within the module and a computer for calculating pollutant mass flow rates based on concentrations detected by the gas analyzer and the detected flowrate of the exhaust gas. The system may also include a particulate matter detector with a second gas sampling tube feeding same mounted within the instrument module.

  9. Exhaust gas clean up process

    DOEpatents

    Walker, R.J.

    1988-06-16

    A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

  10. [Research on diagnosis of gas-liquid detonation exhaust based on double optical path absortion spectroscopy technique].

    PubMed

    Lü, Xiao-Jing; Li, Ning; Weng, Chun-Sheng

    2014-03-01

    The effect detection of detonation exhaust can provide measurement data for exploring the formation mechanism of detonation, the promotion of detonation efficiency and the reduction of fuel waste. Based on tunable diode laser absorption spectroscopy technique combined with double optical path cross-correlation algorithm, the article raises the diagnosis method to realize the on-line testing of detonation exhaust velocity, temperature and H2O gas concentration. The double optical path testing system is designed and set up for the valveless pulse detonation engine with the diameter of 80 mm. By scanning H2O absorption lines of 1343nm with a high frequency of 50 kHz, the on-line detection of gas-liquid pulse detonation exhaust is realized. The results show that the optical testing system based on tunable diode laser absorption spectroscopy technique can capture the detailed characteristics of pulse detonation exhaust in the transient process of detonation. The duration of single detonation is 85 ms under laboratory conditions, among which supersonic injection time is 5.7 ms and subsonic injection time is 19.3 ms. The valveless pulse detonation engine used can work under frequency of 11 Hz. The velocity of detonation overflowing the detonation tube is 1,172 m x s(-1), the maximum temperature of detonation exhaust near the nozzle is 2 412 K. There is a transitory platform in the velocity curve as well as the temperature curve. H2O gas concentration changes between 0-7% during detonation under experimental conditions. The research can provide measurement data for the detonation process diagnosis and analysis, which is of significance to advance the detonation mechanism research and promote the research of pulse detonation engine control technology.

  11. 30 CFR 70.1900 - Exhaust Gas Monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exhaust Gas Monitoring. 70.1900 Section 70.1900... MANDATORY HEALTH STANDARDS-UNDERGROUND COAL MINES DIESEL EXHAUST GAS MONITORING § 70.1900 Exhaust Gas... ®) adopted by the American Conference of Governmental Industrial Hygienists, the mine operator shall...

  12. 40 CFR 89.416 - Raw exhaust gas flow.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Raw exhaust gas flow. 89.416 Section 89.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Procedures § 89.416 Raw exhaust gas flow. The exhaust gas flow shall be determined by one of the methods...

  13. 40 CFR 89.416 - Raw exhaust gas flow.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw exhaust gas flow. 89.416 Section 89.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED... Procedures § 89.416 Raw exhaust gas flow. The exhaust gas flow shall be determined by one of the methods...

  14. 46 CFR 52.25-20 - Exhaust gas boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working pressure...

  15. 46 CFR 52.25-20 - Exhaust gas boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working pressure...

  16. 46 CFR 52.25-20 - Exhaust gas boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working pressure...

  17. 46 CFR 52.25-20 - Exhaust gas boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working pressure...

  18. 46 CFR 52.25-20 - Exhaust gas boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working pressure...

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jahnke, Fred C.

    FuelCell Energy and ACuPowder investigated and demonstrated the use of waste anode exhaust gas from a high temperature fuel cell for replacing the reducing gas in a metal processing furnace. Currently companies purchase high pressure or liquefied gases for the reducing gas which requires substantial energy in production, compression/liquefaction, and transportation, all of which is eliminated by on-site use of anode exhaust gas as reducing gas. We performed research on the impact of the gas composition on product quality and then demonstrated at FuelCell Energy’s manufacturing facility in Torrington, Connecticut. This demonstration project continues to operate even though the researchmore » program is completed as it provides substantial benefits to the manufacturing facility by supplying power, heat, and hydrogen.« less

  20. [Poisoning by exhaust gas of the imperfect combustion of natural gas: 22 cases study].

    PubMed

    Dong, Li-Min; Zhao, Hai; Zhang, Ming-Chang; He, Meng

    2014-10-01

    To analyze the case characteristics of poisoning by exhaust gas of the imperfect combustion of natural gas and provide references for forensic identification and prevention of such accidents. Twenty-two cases of poisoning by exhaust gas of the imperfect combustion of natural gas in Minhang District during 2004 to 2013 were collected. Some aspects such as general conditions of deaths, incidence time, weather, field investigation, and autopsy were retrospectively analyzed. In the 22 cases, there were 15 males and 16 females. The age range was between 2 and 82 years old. The major occurring time was in January or February (8 cases in each) and the cases almost occurred in small area room (21 cases). There was wide crack next to the exhaust port when the gas water heater was been used in all cases. There are more prone to occurrence of exhaust gas poisoning of imperfect combustion of natural gas in small area room with a ventilation window near the exhaust port of gas water heated. It shows that the scene of combustion exhaust gas poisoning should be more concerned in the cold season.

  1. Sources and potential application of waste heat utilization at a gas processing facility

    NASA Astrophysics Data System (ADS)

    Alshehhi, Alyas Ali

    Waste heat recovery (WHR) has the potential to significantly improve the efficiency of oil and gas plants, chemical and other processing facilities, and reduce their environmental impact. In this Thesis a comprehensive energy audit at Abu Dhabi Gas Industries Ltd. (GASCO) ASAB gas processing facilities is undertaken to identify sources of waste heat and evaluate their potential for on-site recovery. Two plants are considered, namely ASAB0 and ASAB1. Waste heat evaluation criteria include waste heat grade (i.e., temperature), rate, accessibility (i.e., proximity) to potential on-site waste heat recovery applications, and potential impact of recovery on installation performance and safety. The operating parameters of key waste heat source producing equipment are compiled, as well as characteristics of the waste heat streams. In addition, potential waste heat recovery applications and strategies are proposed, focusing on utilities, i.e., enhancement of process cooling/heating, electrical/mechanical power generation, and steam production. The sources of waste heat identified at ASAB facilities consist of gas turbine and gas generator exhaust gases, flared gases, excess propane cooling capacity, excess process steam, process gas air-cooler heat dissipation, furnace exhaust gases and steam turbine outlet steam. Of the above waste heat sources, exhaust gases from five gas turbines and one gas generator at ASAB0 plant, as well as from four gas turbines at ASAB1 plant, were found to meet the rate (i.e., > 1 MW), grade (i.e., > 180°C), accessibility (i.e., < 50 m from potential on-site WHR applications) and minimal impact criteria on the performance and safety of existing installations, for potential waste heat recovery. The total amount of waste heat meeting these criteria were estimated at 256 MW and 289 MW at ASAB0 and ASAB1 plants, respectively, both of which are substantial. Of the 289 MW waste generated at ASAB1, approximately 173 MW are recovered by waste heat recovery steam generators (WHRSGs), leaving 116 MW unutilized. The following strategies were developed to recover the above waste heat. At ASAB0, it is proposed that exhaust gases from all five gas turbines be used to power a WHRSG. The steam generated by the WHRSG would both i) drive an absorption refrigeration unit for gas turbine inlet air cooling, which would result in additional electric or mechanical power generation, and pre-cooling of process gas, which could reduce the need for or eliminate air coolers, as well as reduce propane chiller load, and ii) serve for heating of lean gas, which would reduce furnace load. At ASAB1, it is proposed that exhaust gases from all four gas turbines be used to generate steam in WHRSG that would drive an absorption refrigeration unit for either gas turbine inlet air cooling for additional electric or mechanical power generation, or pre-cooling of process gas to eliminate air-coolers and reduce propane chiller cooling load. Considering the smaller amount of waste heat available at ASAB1 (116 MW) relative to ASAB0 (237 MW), these above two recovery options could not be implemented simultaneously at ASAB0. To permit the detailed design and techno-economic feasibility evaluation of the proposed waste heat recovery strategies in a subsequent study, the cooling loads and associated electric power consumption of ASAB0 process gas air-coolers were estimated at 21 MW and 1.9 MW, respectively, and 67 MW and 2.2 MW, respectively for ASAB1 plant. In addition, the heating loads and fuel consumption of ASAB0 furnaces used for lean gas re-generation were estimated at 24 MW and 0.0653 MMSCMD, respectively. In modeling work undertaken in parallel with this study at the Petroleum Institute, the waste heat recovery strategies proposed here were found to be thermodynamically and economically feasible, and to lead to substantial energy and cost savings, hence environmental benefits.

  2. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  3. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases

    PubMed Central

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay. PMID:23907148

  4. Synergistic effect of Brønsted acid and platinum on purification of automobile exhaust gases.

    PubMed

    Fu, Wei; Li, Xin-Hao; Bao, Hong-Liang; Wang, Kai-Xue; Wei, Xiao; Cai, Yi-Yu; Chen, Jie-Sheng

    2013-01-01

    The catalytic purification of automobile exhaust gases (CO, NOx and hydrocarbons) is one of the most practiced conversion processes used to lower the emissions and to reduce the air pollution. Nevertheless, the good performance of exhaust gas purification catalysts often requires the high consumption of noble metals such as platinum. Here we report that the Brønsted acid sites on the external surface of a microporous silicoaluminophosphate (SAPO) act as a promoter for exhaust gas purification, effectively cutting the loading amount of platinum in the catalyst without sacrifice of performance. It is revealed that in the Pt-loaded SAPO-CHA catalyst, there exists a remarkable synergistic effect between the Brønsted acid sites and the Pt nanoparticles, the former helping to adsorb and activate the hydrocarbon molecules for NO reduction during the catalytic process. The thermal stability of SAPO-CHA also makes the composite catalyst stable and reusable without activity decay.

  5. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Exhaust gas sampling system. 86.1509... Procedures § 86.1509 Exhaust gas sampling system. (a) The exhaust gas sampling system shall transport the... sample (i.e., water removed) to the analysis system. (c) A CVS sampling system with bag or continuous...

  6. 40 CFR 86.210-08 - Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system; Diesel... Vehicles; Cold Temperature Test Procedures § 86.210-08 Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements. (a) General applicability. The exhaust gas sampling...

  7. 40 CFR 86.210-08 - Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system; Diesel... Vehicles; Cold Temperature Test Procedures § 86.210-08 Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements. (a) General applicability. The exhaust gas sampling...

  8. 75 FR 82040 - Notice of Public Meeting on the International Maritime Organization Guidelines for Exhaust Gas...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-29

    ... on the International Maritime Organization Guidelines for Exhaust Gas Cleaning Systems for Marine... Organization guidelines for exhaust gas cleaning systems for marine engines in Washington, DC. The purpose of... exhaust gas cleaning systems for marine engines to remove sulphur oxide emissions in order to comply with...

  9. Current Techniques of Growing Algae Using Flue Gas from Exhaust Gas Industry: a Review.

    PubMed

    Huang, Guanhua; Chen, Feng; Kuang, Yali; He, Huan; Qin, An

    2016-03-01

    The soaring increase of flue gas emission had caused global warming, environmental pollution as well as climate change. Widespread concern on reduction of flue gas released from industrial plants had considered the microalgae as excellent biological materials for recycling the carbon dioxide directly emitted from exhaust industries. Microalgae also have the potential to be the valuable feedback for renewable energy production due to their high growth rate and abilities to sequester inorganic carbon through photosynthetic process. In this review article, we will illustrate important relative mechanisms in the metabolic processes of biofixation by microalgae and their recent experimental researches and advances of sequestration of carbon dioxide by microalgae on actual industrial and stimulate flue gases, novel photobioreactor cultivation systems as well as the perspectives and limitations of microalgal cultivation in further development.

  10. Energy Systems Fabrication Laboratory | Energy Systems Integration Facility

    Science.gov Websites

    Fabrication The fuel cell fabrication hub includes laboratory spaces with local exhaust and chemical fume hoods that support electrolysis and other chemical process research. Key Infrastructure Perchloric acid washdown hood, local exhaust, specialty gas manifolding, deionized water, chemical fume hoods, glassware

  11. 40 CFR 86.110-94 - Exhaust gas sampling system; diesel-cycle vehicles, and Otto-cycle vehicles requiring particulate...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system; diesel... Heavy-Duty Vehicles; Test Procedures § 86.110-94 Exhaust gas sampling system; diesel-cycle vehicles, and..., this is indicated by the statement “[Reserved].” (a) General. The exhaust gas sampling system described...

  12. Numerical study of particle deposition and scaling in dust exhaust of cyclone separator

    NASA Astrophysics Data System (ADS)

    Xu, W. W.; Li, Q.; Zhao, Y. L.; Wang, J. J.; Jin, Y. H.

    2016-05-01

    The solid particles accumulation in the dust exhaust cone area of the cyclone separator can cause the wall wear. This undoubtedly prevents the flue gas turbine from long period and safe operation. So it is important to study the mechanism how the particles deposited and scale on dust exhaust cone area of the cyclone separator. Numerical simulations of gas-solid flow field have been carried out in a single tube in the third cyclone separator. The three-dimensionally coupled computational fluid dynamic (CFD) technology and the modified Discrete Phase Model (DPM) are adopted to model the gas-solid two-phase flow. The results show that with the increase of the operating temperature and processing capacity, the particle sticking possibility near the cone area will rise. The sticking rates will decrease when the particle diameter becomes bigger.

  13. Exhaust gas clean up process

    DOEpatents

    Walker, Richard J.

    1989-01-01

    A method of cleaning an exhaust gas containing particulates, SO.sub.2 and NO.sub.x includes prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO.sub.x and SO.sub.2, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO.sub.x is removed as N.sub.2 or nitrogen-sulfonate ions and the oxides of sulfur are removed as a vaulable sulfate salt.

  14. Engine with exhaust gas recirculation system and variable geometry turbocharger

    DOEpatents

    Keating, Edward J.

    2015-11-03

    An engine assembly includes an intake assembly, an internal combustion engine defining a plurality of cylinders and configured to combust a fuel and produce exhaust gas, and an exhaust assembly in fluid communication with a first subset of the plurality of cylinders. Each of the plurality of cylinders are provided in fluid communication with the intake assembly. The exhaust assembly is provided in fluid communication with a first subset of the plurality of cylinders, and a dedicated exhaust gas recirculation system in fluid communication with both a second subset of the plurality of cylinders and with the intake assembly. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the second subset of the plurality of cylinders to the intake assembly. Finally, the engine assembly includes a turbocharger having a variable geometry turbine in fluid communication with the exhaust assembly.

  15. Apparatus and method to inject a reductant into an exhaust gas feedstream

    DOEpatents

    Viola, Michael B [Macomb Township, MI

    2009-09-22

    An exhaust aftertreatment system for an internal combustion engine is provided including an apparatus and method to inject a reductant into the exhaust gas feedstream. Included is a fuel metering device adapted to inject reductant into the exhaust gas feedstream and a controllable pressure regulating device. A control module is operatively connected to the reductant metering device and the controllable pressure regulating device, and, adapted to effect flow of reductant into the exhaust gas feedstream over a controllable flow range.

  16. 40 CFR 86.110-90 - Exhaust gas sampling system; diesel vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... probe. The sensor shall have an accuracy and precision of ±2 °F (1.1 °C). (14) The dilute exhaust gas... probe. The sensor shall have an accuracy and precision of ±2 °F (1.1 °C). (14) The dilute exhaust gas... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system; diesel...

  17. 40 CFR 86.110-90 - Exhaust gas sampling system; diesel vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... probe. The sensor shall have an accuracy and precision of ±2 °F (1.1 °C). (14) The dilute exhaust gas... probe. The sensor shall have an accuracy and precision of ±2 °F (1.1 °C). (14) The dilute exhaust gas... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system; diesel...

  18. Power plant emissions reduction

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy

    2015-10-20

    A system for improved emissions performance of a power plant generally includes an exhaust gas recirculation system having an exhaust gas compressor disposed downstream from the combustor, a condensation collection system at least partially disposed upstream from the exhaust gas compressor, and a mixing chamber in fluid communication with the exhaust gas compressor and the condensation collection system, where the mixing chamber is in fluid communication with the combustor.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Córdoba, Patricia, E-mail: pc247@hw.ac.uk; Maroto-Valer, M.; Delgado, Miguel Angel

    The work presented here reports the first study in which the speciation, behaviour and fate of mercury (Hg) have been evaluated under oxy-fuel combustion at the largest oxy-Pulverised Coal Combustion (oxy-PCC) demonstration plant to date during routine operating conditions and partial exhaust flue gas re-circulation to the boiler. The effect of the CO{sub 2}-rich flue gas re-circulation on Hg has also been evaluated. Results reveal that oxy-PCC operational conditions play a significant role on Hg partitioning and fate because of the continuous CO{sub 2}-rich flue gas re-circulations to the boiler. Mercury escapes from the cyclone in a gaseous form asmore » Hg{sup 2+} (68%) and it is the prevalent form in the CO{sub 2}-rich exhaust flue gas (99%) with lower proportions of Hg{sup 0} (1.3%). The overall retention rate for gaseous Hg is around 12%; Hg{sup 0} is more prone to be retained (95%) while Hg{sup 2+} shows a negative efficiency capture for the whole installation. The negative Hg{sup 2+} capture efficiencies are due to the continuous CO{sub 2}-rich exhaust flue gas recirculation to the boiler with enhanced Hg contents. Calculations revealed that 44 mg of Hg were re-circulated to the boiler as a result of 2183 re-circulations of CO{sub 2}-rich flue gas. Especial attention must be paid to the role of the CO{sub 2}-rich exhaust flue gas re-circulation to the boiler on the Hg enrichment in Fly Ashes (FAs). - Highlights: • The fate of gaseous Hg has been evaluated under oxy-fuel combustion. • The Hg oxidation process is enhanced in CO{sub 2}-rich flue gas recirculation. • Hg{sup 2+} is the prevalent gas species in the CO{sub 2}-rich exhaust flue gas. • Hg{sup 2+}{sub (g)} shows a negative efficiency capture for the whole installation. • Especial attention must be paid to the Hg enrichment in Fly Ashes.« less

  20. The primary evaluation and characterization of obsolete DDT pesticide from a precalciner of a cement kiln.

    PubMed

    Li, Yang; Wang, Qi; Huang, Qifei; He, Jie

    2014-01-01

    1,1,1-Trichloro-2,2-bi(4-chlorophenyl)ethane (DDT) pesticide that has been extensively used in agriculture in China in the last century, and even now, has been banned from all purposes. The disposal of obsolete DDT pesticide has been an urgent task for the Chinese government. In order to evaluate the feasibility of co-processing DDT in the current new style dry-process rotary kiln with a precalciner as the feeding point, the destruction efficiency (DE) of DDTs (including p,p(')-DDT, o,p(')-DDT, p,p(')-DDE and p,p(')-DDD), proportion of DDTs in the combustion residue and exhaust gas, and the release of chlorine were studied under different operating conditions of temperature, oxygen content and gas retention time in the laboratory. The DE of DDTs exceeded 99% when the temperature was over 800 °C with enough oxygen. As the temperature increased from 600 °C to 1200 °C, the proportion of p,p(')-DDD increased and p,p(')-DDT decreased but still the main effective component remained in the combustion residue. In the exhaust gas, the most dominant phenomenon was the rapid increase in p,p(')-DDE concentration as the temperature increased. The release of chlorine reached a peak between 800 °C and 900 °C. It was found that the oxygen content had a positive correlation with the process of dechlorination. The proportion of p,p(')-DDE increased as the oxygen content was increased in the exhaust gas. The gas retention time had almost no influenced on the DE of DDTs, but affected the degradation extent of DDTs in the gas phase. These experiments showed that co-processing of obsolete DDT pesticide in cement kiln precalciners is feasible.

  1. 30 CFR 7.97 - Application requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... internal parts, exhaust inlet and outlet, sensors, and the exhaust gas path through the exhaust conditioner... temperature sensor setting and exhaust gas temperature sensor setting used to meet the performance... sensors, flame arresters, exhaust conditioner, emergency intake air shutoff device, automatic fuel shutoff...

  2. 30 CFR 7.97 - Application requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... internal parts, exhaust inlet and outlet, sensors, and the exhaust gas path through the exhaust conditioner... temperature sensor setting and exhaust gas temperature sensor setting used to meet the performance... sensors, flame arresters, exhaust conditioner, emergency intake air shutoff device, automatic fuel shutoff...

  3. 40 CFR 87.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF and...

  4. 40 CFR 87.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF and...

  5. 40 CFR 87.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF and...

  6. 40 CFR 87.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of class TF and...

  7. 40 CFR 87.21 - Standards for exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) Definitions. Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.21 Standards for exhaust... each new aircraft gas turbine engine of class T8 manufactured on or after February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each new aircraft gas turbine engine of...

  8. 40 CFR 87.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) Definitions. Exhaust Emissions (In-Use Aircraft Gas Turbine Engines) § 87.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8... in-use aircraft gas turbine engine of class TF and of rated output of 129 kilonewtons thrust or...

  9. 14 CFR 34.21 - Standards for exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (New Aircraft Gas Turbine Engines) § 34.21 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured on or after February 1, 1974...) Exhaust emission of smoke from each new aircraft gas turbine engine of class T3 manufactured on or after...

  10. 14 CFR 34.21 - Standards for exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (New Aircraft Gas Turbine Engines) § 34.21 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured on or after February 1, 1974...) Exhaust emission of smoke from each new aircraft gas turbine engine of class T3 manufactured on or after...

  11. Integrated exhaust gas analysis system for aircraft turbine engine component testing

    NASA Technical Reports Server (NTRS)

    Summers, R. L.; Anderson, R. C.

    1985-01-01

    An integrated exhaust gas analysis system was designed and installed in the hot-section facility at the Lewis Research Center. The system is designed to operate either manually or automatically and also to be operated from a remote station. The system measures oxygen, water vapor, total hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. Two microprocessors control the system and the analyzers, collect data and process them into engineering units, and present the data to the facility computers and the system operator. Within the design of this system there are innovative concepts and procedures that are of general interest and application to other gas analysis tasks.

  12. Exhaust gas purification system for lean burn engine

    DOEpatents

    Haines, Leland Milburn

    2002-02-19

    An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

  13. Method of controlling temperature of a thermoelectric generator in an exhaust system

    DOEpatents

    Prior, Gregory P; Reynolds, Michael G; Cowgill, Joshua D

    2013-05-21

    A method of controlling the temperature of a thermoelectric generator (TEG) in an exhaust system of an engine is provided. The method includes determining the temperature of the heated side of the TEG, determining exhaust gas flow rate through the TEG, and determining the exhaust gas temperature through the TEG. A rate of change in temperature of the heated side of the TEG is predicted based on the determined temperature, the determined exhaust gas flow rate, and the determined exhaust gas temperature through the TEG. Using the predicted rate of change of temperature of the heated side, exhaust gas flow rate through the TEG is calculated that will result in a maximum temperature of the heated side of the TEG less than a predetermined critical temperature given the predicted rate of change in temperature of the heated side of the TEG. A corresponding apparatus is provided.

  14. 30 CFR 7.96 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conditioner. An exhaust conditioner that cools the exhaust gas without direct contact with water. Exhaust conditioner. An enclosure, containing a cooling system, through which the exhaust gases pass. Exhaust system... between which the escape of flame is prevented. Flammable mixture. A mixture of methane or natural gas...

  15. 30 CFR 7.96 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conditioner. An exhaust conditioner that cools the exhaust gas without direct contact with water. Exhaust conditioner. An enclosure, containing a cooling system, through which the exhaust gases pass. Exhaust system... between which the escape of flame is prevented. Flammable mixture. A mixture of methane or natural gas...

  16. 30 CFR 7.96 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... between which the escape of flame is prevented. Flammable mixture. A mixture of methane or natural gas... conditioner. An exhaust conditioner that cools the exhaust gas without direct contact with water. Exhaust conditioner. An enclosure, containing a cooling system, through which the exhaust gases pass. Exhaust system...

  17. On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas

    NASA Astrophysics Data System (ADS)

    Meisner, G. P.

    2013-03-01

    The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.

  18. Engine with pulse-suppressed dedicated exhaust gas recirculation

    DOEpatents

    Keating, Edward J.; Baker, Rodney E.

    2016-06-07

    An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.

  19. Method for removing soot from exhaust gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suib, Steven L.; Dharmarathna, D. A. Saminda; Pahalagedara, Lakshitha R.

    A method for oxidizing soot from diesel exhaust gas from a diesel engine. The method involves providing a diesel particulate filter for receiving the diesel exhaust gas; coating a catalyst composition on the diesel particulate filter; and contacting the soot from the diesel exhaust gas with the catalyst coated diesel particulate filter at a temperature sufficient to oxidize the soot to carbon dioxide. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2) material. A diesel exhaust gas treatment system that includes a diesel particulate filter for receiving diesel exhaust gas from a diesel engine andmore » collecting soot; and a catalyst composition coated on the diesel particulate filter. The catalyst composition is a doped or undoped manganese oxide octahedral molecular sieve (OMS-2).« less

  20. 40 CFR Appendix B to Subpart S of... - Test Procedures

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... percent or the vehicle's engine stalls at any time during the test sequence. (4) Multiple exhaust pipes. Exhaust gas concentrations from vehicle engines equipped with multiple exhaust pipes shall be sampled... pipes. Exhaust gas concentrations from vehicle engines equipped with multiple exhaust pipes shall be...

  1. Exhaust gas recirculation in a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Rodman, Anthony [Chillicothe, IL; Liechty, Michael P [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL; Hardy, William L [Peoria, IL

    2008-05-27

    A homogeneous charge compression ignition engine operates by injecting liquid fuel directly in a combustion chamber, and mixing the fuel with recirculated exhaust and fresh air through an auto ignition condition of the fuel. The engine includes at least one turbocharger for extracting energy from the engine exhaust and using that energy to boost intake pressure of recirculated exhaust gas and fresh air. Elevated proportions of exhaust gas recirculated to the engine are attained by throttling the fresh air inlet supply. These elevated exhaust gas recirculation rates allow the HCCI engine to be operated at higher speeds and loads rendering the HCCI engine a more viable alternative to a conventional diesel engine.

  2. Catalysts for lean burn engine exhaust abatement

    DOEpatents

    Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.

    2006-08-01

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  3. Catalysts For Lean Burn Engine Exhaust Abatement

    DOEpatents

    Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.

    2004-04-06

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  4. Catalysts for lean burn engine exhaust abatement

    DOEpatents

    Ott, Kevin C.; Clark, Noline C.; Paffett, Mark T.

    2003-01-01

    The present invention provides a process for catalytically reducing nitrogen oxides in an exhaust gas stream containing nitrogen oxides and a reductant material by contacting the gas stream under conditions effective to catalytically reduce the nitrogen oxides with a catalyst comprising a aluminum-silicate type material and a minor amount of a metal, the catalyst characterized as having sufficient catalytic activity so as to reduce the nitrogen oxides by at least 60 percent under temperatures within the range of from about 200.degree. C. to about 400.degree. C.

  5. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall...

  6. 14 CFR 34.21 - Standards for exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.21 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured on or after February 1, 1974...

  7. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall...

  8. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall...

  9. Exhaust pressure pulsation observation from turbocharger instantaneous speed measurement

    NASA Astrophysics Data System (ADS)

    Macián, V.; Luján, J. M.; Bermúdez, V.; Guardiola, C.

    2004-06-01

    In internal combustion engines, instantaneous exhaust pressure measurements are difficult to perform in a production environment. The high temperature of the exhaust manifold and its pulsating character make its application to exhaust gas recirculation control algorithms impossible. In this paper an alternative method for estimating the exhaust pressure pulsation is presented. A numerical model is built which enables the exhaust pressure pulses to be predicted from instantaneous turbocharger speed measurements. Although the model is data based, a theoretical description of the process is also provided. This combined approach makes it possible to export the model for different engine operating points. Also, compressor contribution in the turbocharger speed pulsation is discussed extensively. The compressor contribution is initially neglected, and effects of this simplified approach are analysed.

  10. Frozen Chemistry Effects on Nozzle Performance Simulations

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.; Georgiadis, Nicholas J.; O'Gara, Michael R.

    2009-01-01

    Simulations of exhaust nozzle flows are typically conducted assuming the gas is calorically perfect, and typically modeled as air. However the gas inside a real nozzle is generally composed of combustion products whose thermodynamic properties may differ. In this study, the effect of gas model assumption on exhaust nozzle simulations is examined. The three methods considered model the nozzle exhaust gas as calorically perfect air, a calorically perfect exhaust gas mixture, and a frozen exhaust gas mixture. In the latter case the individual non-reacting species are tracked and modeled as a gas which is only thermally perfect. Performance parameters such as mass flow rate, gross thrust, and thrust coefficient are compared as are mean flow and turbulence profiles in the jet plume region. Nozzles which operate at low temperatures or have low subsonic exit Mach numbers experience relatively minor temperature variations inside the nozzle, and may be modeled as a calorically perfect gas. In those which operate at the opposite extreme conditions, variations in the thermodynamic properties can lead to different expansion behavior within the nozzle. Modeling these cases as a perfect exhaust gas flow rather than air captures much of the flow features of the frozen chemistry simulations. Use of the exhaust gas reduces the nozzle mass flow rate, but has little effect on the gross thrust. When reporting nozzle thrust coefficient results, however, it is important to use the appropriate gas model assumptions to compute the ideal exit velocity. Otherwise the values obtained may be an overly optimistic estimate of nozzle performance.

  11. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use the...

  12. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use the...

  13. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use the...

  14. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use the...

  15. 40 CFR 1065.127 - Exhaust gas recirculation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Exhaust gas recirculation. 1065.127 Section 1065.127 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Equipment Specifications § 1065.127 Exhaust gas recirculation. Use the...

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khinkis, Mark J.; Kozlov, Aleksandr P.

    A radiant, non-catalytic recuperative reformer has a flue gas flow path for conducting hot exhaust gas from a thermal process and a reforming mixture flow path for conducting a reforming mixture. At least a portion of the reforming mixture flow path is positioned adjacent to the flue gas flow path to permit heat transfer from the hot exhaust gas to the reforming mixture. The reforming mixture flow path contains substantially no material commonly used as a catalyst for reforming hydrocarbon fuel (e.g., nickel oxide, platinum group elements or rhenium), but instead the reforming mixture is reformed into a higher calorificmore » fuel via reactions due to the heat transfer and residence time. In a preferred embodiment, a portion of the reforming mixture flow path is positioned outside of flue gas flow path for a relatively large residence time.« less

  17. Geological Sequestration of CO2 by Hydrous Carbonate Formation with Reclaimed Slag

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Von L. Richards; Kent Peaslee; Jeffrey Smith

    The concept of this project is to develop a process that improves the kinetics of the hydrous carbonate formation reaction enabling steelmakers to directly remove CO2 from their furnace exhaust gas. It is proposed to bring the furnace exhaust stream containing CO2 in contact with reclaimed steelmaking slag in a reactor that has an environment near the unit activity of water resulting in the production of carbonates. The CO2 emissions from the plant would be reduced by the amount sequestered in the formation of carbonates. The main raw materials for the process are furnace exhaust gases and specially prepared slag.

  18. A review on waste heat recovery from exhaust in the ceramics industry

    NASA Astrophysics Data System (ADS)

    Delpech, Bertrand; Axcell, Brian; Jouhara, Hussam

    2017-11-01

    Following the energy crisis in 1980, many saving technologies have been investigated with attempts to implement them into various industries, one of them is the field of ceramic production. In order to comply with energy saving trends and environmental issues, the European ceramic industry sector has developed energy efficient systems which reduced significantly production time and costs and reduced total energy consumption. The last achievement is of great importance as the energy consumption of the ceramic process accounts for a significant percentage of the total production costs. More precisely, the firing stage consumes the highest amount of energy during the whole ceramic production process. The use of roller kilns, fired by natural gas, involves a loss of 50% of the input energy via the flue gas and the cooling gas exhausts. This review paper briefly describes the production process of the different ceramic products, with a focus on the ceramic sector in Europe. Due to the limited on waste heat recovery in the ceramic industry, other high temperature waste heat recovery applications are considered in the paper, such as in concrete and steel production, which could have a potential use in the ceramic industry. The state of the art technologies used in the ceramics industry are reviewed with a special interest in waste heat recovery from the ceramic process exhaust stacks and energy saving technologies.

  19. Installation for the catalytic afterburning of exhaust gases of a multi-cylinder internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lange, K.

    1974-04-24

    An installation for the catalytic afterburning of exhaust gases of a multi-cylinder internal combustion engine has two cylinder rows with two exhaust gas lines, each of which includes at least one catalyst. A temperature-responsive control is operable during engine start-up to conduct substantially the entire exhaust gas flow from the internal combustion engine during warmup for a predetermined time by way of only one of the two catalyst and then, after a short period of time, to conduct the exhaust gas flow from each row of cylinders by way of its associated gas line and catalyst.

  20. 30 CFR 7.103 - Safety system control test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the temperature sensor in the exhaust gas stream which will automatically activate the safety shutdown... control that might interfere with the evaluation of the operation of the exhaust gas temperature sensor... allowable low water level. Run the engine until the exhaust gas temperature sensor activates the safety...

  1. 30 CFR 7.103 - Safety system control test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the temperature sensor in the exhaust gas stream which will automatically activate the safety shutdown... control that might interfere with the evaluation of the operation of the exhaust gas temperature sensor... allowable low water level. Run the engine until the exhaust gas temperature sensor activates the safety...

  2. 30 CFR 36.43 - Determination of exhaust-gas composition.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of fuel consumption, pressures, temperatures, and other data significant in the safe operation of diesel equipment. (b) Exhaust-gas samples shall be analyzed for carbon dioxide, oxygen, carbon monoxide....45). The engine shall be at temperature equilibrium before exhaust-gas samples are collected or other...

  3. 30 CFR 36.43 - Determination of exhaust-gas composition.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of fuel consumption, pressures, temperatures, and other data significant in the safe operation of diesel equipment. (b) Exhaust-gas samples shall be analyzed for carbon dioxide, oxygen, carbon monoxide....45). The engine shall be at temperature equilibrium before exhaust-gas samples are collected or other...

  4. 30 CFR 36.43 - Determination of exhaust-gas composition.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of fuel consumption, pressures, temperatures, and other data significant in the safe operation of diesel equipment. (b) Exhaust-gas samples shall be analyzed for carbon dioxide, oxygen, carbon monoxide....45). The engine shall be at temperature equilibrium before exhaust-gas samples are collected or other...

  5. 30 CFR 36.43 - Determination of exhaust-gas composition.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of fuel consumption, pressures, temperatures, and other data significant in the safe operation of diesel equipment. (b) Exhaust-gas samples shall be analyzed for carbon dioxide, oxygen, carbon monoxide....45). The engine shall be at temperature equilibrium before exhaust-gas samples are collected or other...

  6. 30 CFR 36.43 - Determination of exhaust-gas composition.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of fuel consumption, pressures, temperatures, and other data significant in the safe operation of diesel equipment. (b) Exhaust-gas samples shall be analyzed for carbon dioxide, oxygen, carbon monoxide....45). The engine shall be at temperature equilibrium before exhaust-gas samples are collected or other...

  7. Submarine Construction (Unterseebootsbau)

    DTIC Science & Technology

    1972-08-01

    PIPE FOR THE SNORKEL EXHAUST MAST 11 AIR EXIT (GENERALLY TO MAIN AIR INDUCTION LINE) 12 EXHAUST GAS INLET FROM EXHAUST GAS LINE SIDE VIEW (MAST...Electric Engine 76 Diesel Engines 79 Air Intake and Gas Exhaust Systems for the Diesel Engines 79 Diesel Fuel and Pressurized Water System 82...Lines of a Submarine ■. 31 Figure 6 - Lines of a Submersible 31 Figure 7 - Twin- Screw Stern Configurations 34 Figure 8 - Single- Screw Stern

  8. Fuel quality-processing study. Volume 2: Literature survey

    NASA Technical Reports Server (NTRS)

    Jones, G. E., Jr.; Amero, R.; Murthy, B.; Cutrone, M.

    1981-01-01

    The validity of initial assumptions about raw materials choices and relevant upgrading processing options was confirmed. The literature survey also served to define the on-site (at the turbine location) options for fuel treatment and exhaust gas treatment. The literature survey also contains a substantial compilation of specification and physical property information about liquid fuel products relevant to industrial gas turbines.

  9. Process for the removal of acid forming gases from exhaust gases

    DOEpatents

    Chang, Shih-Ger; Liu, David K.

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. are attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO and SO.sub.2 can be removed in an economic fashion.

  10. Process for the removal of acid forming gases from exhaust gases

    DOEpatents

    Chang, S.G.; Liu, D.K.

    1992-11-17

    Exhaust gases are treated to remove NO or NO[sub x] and SO[sub 2] by contacting the gases with an aqueous emulsion or suspension of yellow phosphorus preferably in a wet scrubber. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50 C is attractive. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO[sub x] and SO[sub 2], alkalis that are used for flue gas desulfurization are preferred. With this process, 100% of the by-products created are usable, and close to 100% of the NO or NO[sub x] and SO[sub 2] can be removed in an economic fashion. 9 figs.

  11. 30 CFR 7.102 - Exhaust gas cooling efficiency test.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Exhaust gas cooling efficiency test. 7.102 Section 7.102 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR TESTING....102 Exhaust gas cooling efficiency test. (a) Test procedures. (1) Follow the procedures specified in...

  12. 30 CFR 36.49 - Tests of exhaust-gas dilution system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of exhaust-gas dilution system. 36.49..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.49 Tests of exhaust-gas dilution system. The performance and...

  13. 30 CFR 36.49 - Tests of exhaust-gas dilution system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of exhaust-gas dilution system. 36.49..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.49 Tests of exhaust-gas dilution system. The performance and...

  14. Apparatus for controlling air/fuel ratio for internal combustion engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kato, K.; Mizuno, T.

    1986-07-08

    This patent describes an apparatus for controlling air-fuel ratio of an air-fuel mixture to be supplied to an internal combustion engine having an intake passage, an exhaust passage, an an exhaust gas recirculation passage for recirculating exhaust gases in the exhaust passage to the intake passage therethrough. The apparatus consists of: (a) means for sensing rotational speed of the engine; (b) means for sensing intake pressure in the intake passage; (c) means for sensing atmospheric pressure; (d) means for enabling and disabling exhaust gas recirculation through the exhaust gas recirculation passage in accordance with operating condition of the engine; (e)more » means for determining required amount of fuel in accordance with the sensed rotational speed and the sensed intake pressure; (f) means for determining, when the exhaust gas recirculation is enabled, a first correction value in accordance with the sensed rotational speed, the sensed intake pressure and the sensed atmospheric pressure, the first correction factor being used for correcting fuel amount so as to compensate for the decrease of fuel due to the performance of exhaust gas recirculation and also to compensate for the change in atmospheric pressure; (g) means for determining, when the exhaust gas recirculation is disabled, a second correction value in accordance with the atmospheric pressure, the second correction factor being used so as to compensate for the change in atmospheric pressure; (h) means for correcting the required amount of fuel by the first correction value and the second correction value when the exhaust gas recirculation is enabled and disabled respectively; and (i) means for supplying the engine with the corrected amount of fuel.« less

  15. Total cost of 46-Mw Borax cogen system put at $30M

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    de Biasi, V.

    1983-03-01

    The cogeneration system, designed around a W-251B gas turbine power plant exhausting into a Deltak waste heat boiler to produce ''free'' process steam from the gas turbine exhaust, is discussed. The design includes water injection for NO/sub x/ control, self-cleaning inlet air filters, evaporative coolers, supercharger, and supplementary firing of the waste heat boiler. Once the system is operational Borax will be able to generate all of the electricity needed for on-site operations and a large share of process steam needs--plus still have 22-23 Mw surplus electric power to sell, so that the installation should pay for itself in lessmore » than 5 years of service.« less

  16. 40 CFR 202.10 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... exhaust system gas flow so as to discharge the exhaust gas and acoustic energy to the atmosphere without passing through the entire length of the exhaust system, including all exhaust system sound attenuation... system means the system comprised of a combination of components which provides for enclosed flow of...

  17. Suicide by carbon monoxide from car exhaust-gas in Denmark 1995-1999.

    PubMed

    Thomsen, Asser H; Gregersen, Markil

    2006-08-10

    In the period 1995-1999 there were 388 car exhaust-gas suicides in Denmark. Of these 343 (88.4%) were men and 45 (11.6%) were women, the average age being 47 years. The car exhaust-gas suicides made up 9.3% of all suicides in Denmark in the period. The corresponding rate was 11.7% for men and 3.7% for women. In rural areas a larger part of all suicides were committed with car exhaust-gas compared to the more densely populated areas. Mental disease was diagnosed in 124 (32.0%) cases. A suicide note was found in 165 (42.5%) cases. A hose was fitted to the exhaust pipe in 334 (86.1%) cases. Of these the 234 (60.3%) occurred outside, typically in a forest area, while 76 (19.6%) occurred in a closed garage. All the 54 (13.9%) cases with no hose fitted to the exhaust pipe occurred in a garage. Seven (1.8%) victims were found in a burning or burnt-out car, where the following investigation revealed that it was actually a car exhaust-gas suicide. Carboxyhemoglobin was measured in 26 (6.7%) victims. In two of these victims no carboxyhemoglobin was found, as they had survived for some time after the poisoning. The average saturation of the remaining victims was 67%, the lowest saturation being 20% and the highest being 84%. In the period 1969-1987 the number of car exhaust-gas suicides in Denmark increased from 50 to approximately 190 per year and the rate of car exhaust-gas suicides compared to all suicides increased from approximately 5% to approximately 13%. In 1987-1999 these figures decreased from approximately 190 to 63 per year and from 13% to approximately 8%. During these 30 years the number of passenger cars in Denmark doubled, which explains the increase in car exhaust-gas suicides during 1969-1987. A possible explanation for the decrease in 1987-1999 is the introduction of the catalytic converter, which was made mandatory in 1990. We anticipate that car exhaust-gas suicides will continue to decrease in numbers, as more cars are equipped with catalytic converters.

  18. Boosting devices with integral features for recirculating exhaust gas

    DOEpatents

    Wu, Ko -Jen

    2015-09-15

    According to one embodiment of the invention, a compressor housing includes a compressor inlet in fluid communication with a compressor volute configured to house a compressor wheel, the compressor inlet configured to provide a first air flow to the compressor wheel and a compressor outlet in fluid communication with the compressor volute, the compressor outlet configured to direct a compressed gas to an intake manifold. The compressor housing further includes an exhaust gas recirculation inlet port in fluid communication with the compressor volute, the exhaust gas recirculation inlet port being configured to combine an exhaust gas flow with the air flow to the compressor wheel.

  19. An experimental study on the compatibility of acetone with aluminum flat-plate heat pipes

    NASA Astrophysics Data System (ADS)

    Hsieh, Jui-Ching; Lin, David T. W.; Huang, Hsin-Jung; Yang, Tzu-Wei

    2014-04-01

    This study investigates the compatibility of aluminum flat-plate heat pipes (FPHPs) used for filling acetone as a working fluid after long-term operation of and the non-condensable gas (NCG) exhausting process. The rate of NCG generation substantially decreased after conducting the NCG exhausting process, proving the compatibility of acetone with the aluminum FPHPs. However, the thermal resistance was not enhanced because hydroxide bayerite (Al(OH)3) was generated as a product of the reaction.

  20. Preparation and Characteristics of Ultrasonic Transducers for High Temperature Using PbNb2O6

    NASA Astrophysics Data System (ADS)

    Soejima, Junichiro; Sato, Kokichi; Nagata, Kunihiro

    2000-05-01

    The substance PZT(Pb(Zr, Ti)O3) is chiefly used for piezoceramic transducers in many ultrasonic flow meters. It is difficult to use PZT transducers for flow meters for automobile exhaust gas at high temperatures over 350°C. Lead niobate (PbNb2O6) has a high Curie temperature of 540°C and a low mechanical quality factor, and is the most suitable as the sensor element in flow meters for automobile exhaust gas. However, it is difficult to fabricate dense PbNb2O6 ceramics that have good piezoelectric properties. In this study, ceramics with high density and a high piezoelectric effect were fabricated by adding various elements such as Mn and Ca to PbNb2O6 and by examining the sintering process. A Langevin transducer with a resonance frequency of 80 kHz was made for measuring automobile exhaust gas flow using PbNb2O6 ceramics.

  1. Optimization of CCGT power plant and performance analysis using MATLAB/Simulink with actual operational data.

    PubMed

    Hasan, Naimul; Rai, Jitendra Nath; Arora, Bharat Bhushan

    2014-01-01

    In the Modern scenario, the naturally available resources for power generation are being depleted at an alarming rate; firstly due to wastage of power at consumer end, secondly due to inefficiency of various power system components. A Combined Cycle Gas Turbine (CCGT) integrates two cycles- Brayton cycle (Gas Turbine) and Rankine cycle (Steam Turbine) with the objective of increasing overall plant efficiency. This is accomplished by utilising the exhaust of Gas Turbine through a waste-heat recovery boiler to run a Steam Turbine. The efficiency of a gas turbine which ranges from 28% to 33% can hence be raised to about 60% by recovering some of the low grade thermal energy from the exhaust gas for steam turbine process. This paper is a study for the modelling of CCGT and comparing it with actual operational data. The performance model for CCGT plant was developed in MATLAB/Simulink.

  2. Municipal Waste Incinerator Public Works Center, Yokosuka Japan Evaluation and Recommendations

    DTIC Science & Technology

    1993-04-01

    Incinerator and Pollution Control Equipment 24 XIV. Gas Cooling Chamber Water Injection Sites and Control Valve 25 XV. Quencher Reactor 27 XVI...discussed below.I 11I.B.1. Exhaust Gas Cooling Chamber Within the exhaust gas cooling chamber, water is atomized into the gas stream cools the gases...as it evaporates. The feed rate of water is controlled to provide gases entering the quencher at 3000C (Figure XIV). The gases exit the exhaust gas

  3. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... filter and HFID. Determine these gas temperatures by a temperature sensor located immediately upstream of... analytical system description. (a) General. The exhaust gas sampling system described in this section is...-CVS must conform to all of the requirements listed for the exhaust gas PDP-CVS in § 90.420 of this...

  4. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... filter and HFID. Determine these gas temperatures by a temperature sensor located immediately upstream of... analytical system description. (a) General. The exhaust gas sampling system described in this section is...-CVS must conform to all of the requirements listed for the exhaust gas PDP-CVS in § 90.420 of this...

  5. Gas Turbines for the Production of Electrical and Thermal Energy,

    DTIC Science & Technology

    1983-01-28

    location 1 (in the position circle) and exhaust of the smoke gases from the gas turbines at position 4. The thermodynamic level of the operation is... combustion turbines, in which the working substance (air - exhaust gases) is continu- ously renewed, or the fresh working substance (air) is sucked out... of the environment and the exhausted working substance (the exhaust gases) is emitted into the environment; 4 3 7.. 7.7:7 -closed-cycle gas turbines

  6. Suppression of Thermal Emission from Exhaust Components Using an Integrated Approach

    DTIC Science & Technology

    2002-08-01

    design model must, as a minimum, include an accurate estimate of space required for the exhaust , backpressure to the engine , system weight, gas species...hot flovw testing. The virtual design model provides an estimate of space required for: tih exhaust , backiressure to the engine ., svsie:. weigar. gas...either be the engine for the exhaust system or is capable of providing more than the required mass flow rate and enough gas temperature margins so that

  7. Demonstration of the Feasibility of High Temperature Bearing Lubrication From Carbonaceous Gases

    NASA Technical Reports Server (NTRS)

    Blanchet, Thierry A.; Sawyer, W. Gregory

    1996-01-01

    Research has been conducted on silicon nitride pin-on-disk sliding contacts at temperatures of up to 520 C, and four-ball rolling contacts with silicon nitride balls and 52100 steel or silicon nitride races at 590 C. These tests were conducted in a variety of gaseous environments in order to determine the effects of simulated engine exhaust gas on the carbonaceous gas decomposition lubrication scheme. In rolling tests with steel races and exhaust gas the wear track depth was roughly half that of tests run in nitrogen gas alone. The deposition of lubricous microcrystalline graphitic carbon on the rolling surfaces, generated from the carbon monoxide within the exhaust gas mixture, was verified by microfocused Raman spectroscopy. Ten-fold reductions in rolling wear could be achieved by the exhaust gas atmosphere in cases where water vapor was removed or not present. The exhaust gas mixture alone was not found to provide any lubricating effect on silicon nitride sliding contacts, where the rate of wear greatly exceeds the rate of carbon deposition. Directed admixture of acetylene (as low as 5% of the exhaust gas flow rates), has provided reductions in both wear volume and coefficient of friction by factors of 60X and 20X respectively for sliding contacts during the initial 80 m of sliding distance. Exhaust gas atmosphere with the acetylene admixture provided 65OX reductions in steady state wear rate compared to that measured for sliding contacts in dry N2. Such acetylene admixture also augments the ability of the exhaust gas atmosphere to lubricate high-temperature rolling contacts, with up to 25-fold reductions in wear track depth compared to those measured in the presence of N2 alone. In addition to providing some lubricating benefit itself, an important potential role of the exhaust gas from rich mixtures would be to shield bearings from 02. Such shielding enables surface deposition of lubricous pyrolytic carbon from the acetylene admixture, instead of combustion, rendering feasible the continuously replenished solid lubrication of high-temperature bearing surfaces.

  8. 30 CFR 7.102 - Exhaust gas cooling efficiency test.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Intended for Use in Areas of Underground Coal Mines Where Permissible Electric Equipment is Required § 7... discharge from the exhaust conditioner. The temperature measuring device shall be accurate to ±4 °F (±2 °C). (3) Determine the exhaust gas temperature at discharge from the exhaust conditioner before the...

  9. Reduced Noise Gas Turbine Engine System and Supersonic Exhaust Nozzle System Using Elector to Entrain Ambient Air

    NASA Technical Reports Server (NTRS)

    Sokhey, Jagdish S. (Inventor); Pierluissi, Anthony F. (Inventor)

    2017-01-01

    One embodiment of the present invention is a unique gas turbine engine system. Another embodiment is a unique exhaust nozzle system for a gas turbine engine. Other embodiments include apparatuses, systems, devices, hardware, methods, and combinations for gas turbine engine systems and exhaust nozzle systems for gas turbine engines. Further embodiments, forms, features, aspects, benefits, and advantages of the present application will become apparent from the description and figures provided herewith.

  10. Influence of the single EGR valve usability on development of the charge directed to individual cylinders of an internal combustion engine

    NASA Astrophysics Data System (ADS)

    Krakowian, Konrad; Kaźmierczak, Andrzej; Górniak, Aleksander; Wróbel, Radosław

    2017-11-01

    Exhaust gas recirculation systems (EGR), aside to a catalytic converters, are nowadays widely used in piston internal combustion engines to reduce nitrogen oxides (NOx) in the exhaust gas. They are characterized in that a portion of exhaust gases from the exhaust manifold is recirculated (via a condenser), and directed to a particular valve. The valve, depending on the current engine load and speed, doses the appropriate amount of exhaust gas into the exhaust manifold. Moreover, its location has a significant impact on the diverse formation of nitrogen oxides and fumes smokiness from the individual cylinders of the engine, which is a result of uneven propagation of exhaust gas into the channels of the intake manifold. This article contains the results of numerical characterized charges formed in symmetrical intake manifold with a centrally-placed EGR valve. Simulations were performed for the original intake system derived from the two-liter, turbocharged VW diesel engine.

  11. 40 CFR 87.21 - Exhaust emission standards for Tier 4 and earlier engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Emissions (New Aircraft Gas Turbine Engines) § 87.21 Exhaust emission standards for Tier 4 and earlier... standards. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured... from each new aircraft gas turbine engine of class TF and of rated output of 129 kilonewtons thrust or...

  12. 40 CFR 87.21 - Exhaust emission standards for Tier 4 and earlier engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Emissions (New Aircraft Gas Turbine Engines) § 87.21 Exhaust emission standards for Tier 4 and earlier... standards. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured... from each new aircraft gas turbine engine of class TF and of rated output of 129 kilonewtons thrust or...

  13. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... filter and HFID. Determine these gas temperatures by a temperature sensor located immediately upstream of.... (a) General. The exhaust gas sampling system described in this section is designed to measure the...-CVS must conform to all of the requirements listed for the exhaust gas PDP-CVS in § 91.420 of this...

  14. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... filter and HFID. Determine these gas temperatures by a temperature sensor located immediately upstream of.... (a) General. The exhaust gas sampling system described in this section is designed to measure the...-CVS must conform to all of the requirements listed for the exhaust gas PDP-CVS in § 91.420 of this...

  15. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOEpatents

    Tomlinson, Leroy Omar; Smith, Raub Warfield

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  16. 30 CFR 7.101 - Surface temperature tests.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... in the application, § 7.97(a)(3). (iii) If a wet exhaust conditioner is used to cool the exhaust gas... temperature tests. The test for determination of exhaust gas cooling efficiency described in § 7.102 may be..., by volume, of methane in the intake air mixture until all parts of the engine, exhaust coolant system...

  17. 30 CFR 7.101 - Surface temperature tests.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... in the application, § 7.97(a)(3). (iii) If a wet exhaust conditioner is used to cool the exhaust gas... temperature tests. The test for determination of exhaust gas cooling efficiency described in § 7.102 may be..., by volume, of methane in the intake air mixture until all parts of the engine, exhaust coolant system...

  18. 30 CFR 7.101 - Surface temperature tests.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... in the application, § 7.97(a)(3). (iii) If a wet exhaust conditioner is used to cool the exhaust gas... temperature tests. The test for determination of exhaust gas cooling efficiency described in § 7.102 may be..., by volume, of methane in the intake air mixture until all parts of the engine, exhaust coolant system...

  19. 30 CFR 7.101 - Surface temperature tests.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... in the application, § 7.97(a)(3). (iii) If a wet exhaust conditioner is used to cool the exhaust gas... temperature tests. The test for determination of exhaust gas cooling efficiency described in § 7.102 may be..., by volume, of methane in the intake air mixture until all parts of the engine, exhaust coolant system...

  20. 30 CFR 7.101 - Surface temperature tests.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... in the application, § 7.97(a)(3). (iii) If a wet exhaust conditioner is used to cool the exhaust gas... temperature tests. The test for determination of exhaust gas cooling efficiency described in § 7.102 may be..., by volume, of methane in the intake air mixture until all parts of the engine, exhaust coolant system...

  1. Gas distributor for fluidized bed coal gasifier

    DOEpatents

    Worley, Arthur C.; Zboray, James A.

    1980-01-01

    A gas distributor for distributing high temperature reaction gases to a fluidized bed of coal particles in a coal gasification process. The distributor includes a pipe with a refractory reinforced lining and a plurality of openings in the lining through which gas is fed into the bed. These feed openings have an expanding tapered shape in the downstream or exhaust direction which aids in reducing the velocity of the gas jets as they enter the bed.

  2. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    DOEpatents

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  3. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or methanol-fueled engines. In the CVS... test period. (2) Engine exhaust to CVS duct. For methanol-fueled engines, reactions of the exhaust... samples for the bag sample, the methanol sample (Figure N90-2), and the formaldehyde sample (Figure N90-3...

  4. Practical Possibilities of High-Altitude Flight with Exhaust-Gas Turbines in Connection with Spark Ignition Engines Comparative Thermodynamic and Flight Mechanical Investigations

    NASA Technical Reports Server (NTRS)

    Weise, A.

    1947-01-01

    As a means of preparing for high-altitude flight with spark-ignition engines in conjunction with exhaust-gas turbosuperchargers, various methods of modifying the exhaust-gas temperatures, which are initially higher than a turbine can withstand are mathematically compared. The thermodynamic results first obtained are then examined with respect to the effect on flight speed, climbing speed, ceiling, economy, and cruising range. The results are so presented in a generalized form that they may be applied to every appropriate type of aircraft design and a comparison with the supercharged engine without exhaust-gas turbine can be made.

  5. Effects of injection pressure and injection timing to exhaust gas opacity for a conventional indirect diesel engine

    NASA Astrophysics Data System (ADS)

    Budiman, Agus; Majid, Akmal Irfan; Pambayun, Nirmala Adhi Yoga; Yuswono, Lilik Chaerul; Sukoco

    2016-06-01

    In relation to pollution control and environmental friendliness, the quality of exhaust gas from diesel engine needs to be considered. The influences of injection pressure and timing to exhaust gas opacity were investigated. A series of experiments were conducted in a one-cylinder conventional diesel engine with a naturally aspirated system and indirect injection. The default specification of injection pressure was 120 kg/cm2. To investigate the injection pressure, the engine speed was retained on 1000 rpm with pressure variations from 80 to 215 kg/cm2. On the other hand, the various injection timing (8, 10, 12, 16 degrees before TDC point and exact 18 degrees before TDC point) were used to determine their effects to exhaust gas opacity. In this case, the engine speed was varied from 1000 to 2400 rpm. The injector tester was used to measure injection pressure whereas the exhaust gas opacity was determined by the smoke meter. Those data were also statistically analyzed by product moment correlation. As the results, the injection pressure of diesel engine had a non-significant positive correlation to the exhaust gas opacity with r = 0.113 and p > 5 %. Injection pressure should be adjusted to the specification listed on the diesel engine as if it was too high or too low will lead to the higher opacity. Moreover, there was a significant positive correlation between injection timing and the exhaust gas opacity in all engine speeds.

  6. Diesel Engine With Air Boosted Turbocharger

    DTIC Science & Technology

    2010-05-26

    of the exhaust turbocharger over the entire RPM range of the internal combustion engine . To this end, the...Kriegler, discloses that in order to utilize recycling of exhaust gases at high engine loads in an internal- combustion engine with an exhaust gas...October 29, 2002) to Cook, discloses an apparatus for and method of exhaust gas recirculation in an internal combustion engine that operates

  7. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  8. Waste heat recovery system for recapturing energy after engine aftertreatment systems

    DOEpatents

    Ernst, Timothy C.; Nelson, Christopher R.

    2014-06-17

    The disclosure provides a waste heat recovery (WHR) system including a Rankine cycle (RC) subsystem for converting heat of exhaust gas from an internal combustion engine, and an internal combustion engine including the same. The WHR system includes an exhaust gas heat exchanger that is fluidly coupled downstream of an exhaust aftertreatment system and is adapted to transfer heat from the exhaust gas to a working fluid of the RC subsystem. An energy conversion device is fluidly coupled to the exhaust gas heat exchanger and is adapted to receive the vaporized working fluid and convert the energy of the transferred heat. The WHR system includes a control module adapted to control at least one parameter of the RC subsystem based on a detected aftertreatment event of a predetermined thermal management strategy of the aftertreatment system.

  9. 40 CFR 600.513-08 - Gas Guzzler Tax.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions § 600.513-08 Gas Guzzler... fuel economy while such automobiles are operated on gasoline will be used for Gas Guzzler Tax...

  10. 40 CFR 600.513-08 - Gas Guzzler Tax.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions § 600.513-08 Gas Guzzler... fuel economy while such automobiles are operated on gasoline will be used for Gas Guzzler Tax...

  11. 40 CFR 86.004-25 - Maintenance.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... its associated sensors (including oxygen sensor if installed) and actuators. (D) Exhaust gas..., and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas... ventilation valve. (B) Emission-related hoses and tubes. (C) Ignition wires. (D) Idle mixture. (E) Exhaust gas...

  12. 40 CFR 86.004-25 - Maintenance.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... its associated sensors (including oxygen sensor if installed) and actuators. (D) Exhaust gas..., and for 1985 and Later Model Year New Gasoline Fueled, Natural Gas-Fueled, Liquefied Petroleum Gas... ventilation valve. (B) Emission-related hoses and tubes. (C) Ignition wires. (D) Idle mixture. (E) Exhaust gas...

  13. Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes

    NASA Astrophysics Data System (ADS)

    Dash, S. M.; Pergament, H. S.; Thorpe, R. D.

    1980-05-01

    Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.

  14. Computational models for the viscous/inviscid analysis of jet aircraft exhaust plumes. [predicting afterbody drag

    NASA Technical Reports Server (NTRS)

    Dash, S. M.; Pergament, H. S.; Thorpe, R. D.

    1980-01-01

    Computational models which analyze viscous/inviscid flow processes in jet aircraft exhaust plumes are discussed. These models are component parts of an NASA-LaRC method for the prediction of nozzle afterbody drag. Inviscid/shock processes are analyzed by the SCIPAC code which is a compact version of a generalized shock capturing, inviscid plume code (SCIPPY). The SCIPAC code analyzes underexpanded jet exhaust gas mixtures with a self-contained thermodynamic package for hydrocarbon exhaust products and air. A detailed and automated treatment of the embedded subsonic zones behind Mach discs is provided in this analysis. Mixing processes along the plume interface are analyzed by two upgraded versions of an overlaid, turbulent mixing code (BOAT) developed previously for calculating nearfield jet entrainment. The BOATAC program is a frozen chemistry version of BOAT containing the aircraft thermodynamic package as SCIPAC; BOATAB is an afterburning version with a self-contained aircraft (hydrocarbon/air) finite-rate chemistry package. The coupling of viscous and inviscid flow processes is achieved by an overlaid procedure with interactive effects accounted for by a displacement thickness type correction to the inviscid plume interface.

  15. Laser-assisted homogeneous charge ignition in a constant volume combustion chamber

    NASA Astrophysics Data System (ADS)

    Srivastava, Dhananjay Kumar; Weinrotter, Martin; Kofler, Henrich; Agarwal, Avinash Kumar; Wintner, Ernst

    2009-06-01

    Homogeneous charge compression ignition (HCCI) is a very promising future combustion concept for internal combustion engines. There are several technical difficulties associated with this concept, and precisely controlling the start of auto-ignition is the most prominent of them. In this paper, a novel concept to control the start of auto-ignition is presented. The concept is based on the fact that most HCCI engines are operated with high exhaust gas recirculation (EGR) rates in order to slow-down the fast combustion processes. Recirculated exhaust gas contains combustion products including moisture, which has a relative peak of the absorption coefficient around 3 μm. These water molecules absorb the incident erbium laser radiations ( λ=2.79 μm) and get heated up to expedite ignition. In the present experimental work, auto-ignition conditions are locally attained in an experimental constant volume combustion chamber under simulated EGR conditions. Taking advantage of this feature, the time when the mixture is thought to "auto-ignite" could be adjusted/controlled by the laser pulse width optimisation, followed by its resonant absorption by water molecules present in recirculated exhaust gas.

  16. Gas flow means for improving efficiency of exhaust hoods

    DOEpatents

    Gadgil, Ashok J.

    1994-01-01

    Apparatus for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas mani-fold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gas from the front of the individual toward the contaminants.

  17. Increase in ozone due to the use of biodiesel fuel rather than diesel fuel.

    PubMed

    Thang, Phan Quang; Muto, Yusuke; Maeda, Yasuaki; Trung, Nguyen Quang; Itano, Yasuyuki; Takenaka, Norimichi

    2016-09-01

    The consumption of fuel by vehicles emits nitrogen oxides (NOx) and non-methane hydrocarbons (NMHCs) into the atmosphere, which are important ozone precursors. Ozone is formed as a secondary pollutant via photochemical processes and is not emitted directly into the atmosphere. In this paper, the ozone increase resulting from the use of biodiesel and diesel fuels was investigated, and the different ozone formation trends were experimentally evaluated. Known amounts of exhaust gas from a power generator operated using biodiesel and diesel fuels were added to ambient air. The quality of the ambient air, such as the initial NMHC and NOx concentrations, and the irradiation intensity have an effect on the ozone levels. When 30 cm(3) of biodiesel fuel exhaust gas (BFEG) or diesel fuel exhausted gas (DFEG) was added to 18 dm(3) of ambient air, the highest ratios of ozone increase from BFEG compared with DFEG in Japan and Vietnam were 31.2 and 42.8%, respectively, and the maximum ozone increases resulting from DFEG and BFEG compared with the ambient air in Japan were 17.4 and 26.4 ppb, respectively. The ozone increase resulting from the use of BFEG was large and significant compared to that from DFEG under all experimental conditions. The ozone concentration increased as the amount of added exhaust gas increased. The ozone increase from the Jatropha-BFEG was slightly higher than that from waste cooking oil-BFEG. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. System and method for regulating EGR cooling using a Rankine cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernst, Timothy C.; Morris, Dave

    This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.

  19. System and method for regulating EGR cooling using a rankine cycle

    DOEpatents

    Ernst, Timothy C.; Morris, Dave

    2015-12-22

    This disclosure relates to a waste heat recovery (WHR) system and method for regulating exhaust gas recirculation (EGR) cooling, and more particularly, to a Rankine cycle WHR system and method, including a recuperator bypass arrangement to regulate EGR exhaust gas cooling for engine efficiency improvement and thermal management. This disclosure describes other unique bypass arrangements for increased flexibility in the ability to regulate EGR exhaust gas cooling.

  20. High load operation in a homogeneous charge compression ignition engine

    DOEpatents

    Duffy, Kevin P [Metamora, IL; Kieser, Andrew J [Morton, IL; Liechty, Michael P [Chillicothe, IL; Hardy, William L [Peoria, IL; Rodman, Anthony [Chillicothe, IL; Hergart, Carl-Anders [Peoria, IL

    2008-12-23

    A homogeneous charge compression ignition engine is set up by first identifying combinations of compression ratio and exhaust gas percentages for each speed and load across the engines operating range. These identified ratios and exhaust gas percentages can then be converted into geometric compression ratio controller settings and exhaust gas recirculation rate controller settings that are mapped against speed and load, and made available to the electronic

  1. Fast monitoring of motor exhaust components by resonant multi-photon ionisation and time-of-flight mass spectrometry

    NASA Astrophysics Data System (ADS)

    Franzen, Jochen; Frey, Rüdiger; Nagel, Holger

    1995-03-01

    A new analytical procedure is provided by the combination of two types of spectroscopy. Resonant ionization of selected compounds by multiphoton ionization is based on results of absorption spectroscopy for the compound molecules of interest and time-of-flight mass spectrometry serves for the unambigious detection of these compounds. An interesting application of this method is the fast exhaust gas analysis. In the development of future combustion engines, the management of dynamic motor processes becomes predominant because by more than 90 % of all the dangerous exhaust pollutions are produced in instationary motor phases such as fast speed or load changes. The investigation of dynamic processes however, requires fast analytical procedures with millisecond time resolution together with the capability to measure individual components in a very complex gas mixture The objectives for a development project of such an instrument were set by the Research Association for Combustion Engines (Forschungsvereinigung Verbrennungskraftmaschinen, FVV, Germany): Up to ten substances should be monitored synchroneously with a time resolution of about 10 milliseconds, with concentration limits of 1 part per million and with a precision better than 10 % relative standard deviation. Such a laser mass spectrometer for fast multi-component automotive exhaust analyses has been developed in a joint research project by Bruker-Franzen Analytik GmbH, Dornier GmbH and the Technical University of Munich. The system has been applied at a motor test facility to investigate the emissions of the aromatic hydrocarbons benzene, toluene and xylene, of nitric oxide and acetaldehyde in stationary and dynamic engine operation. These measurements demonstrate that strong emission of these pollutants takes place at instationary engine operation and in particular that these compounds are emitted at different times, giving new information about the processes in the combustion chamber and in the exhaust pipe.

  2. Damage of natural stone tablets exposed to exhaust gas under laboratory conditions

    NASA Astrophysics Data System (ADS)

    Farkas, Orsolya; Szabados, György; Török, Ákos

    2016-04-01

    Natural stone tablets were exposed to exhaust gas under laboratory conditions to assess urban stone damage. Cylindrical test specimens (3 cm in diameter) were made from travertine, non-porous limestone, porous limestone, rhyolite tuff, sandstone, andesite, granite and marble. The samples were exposed to exhaust gas that was generated from diesel engine combustion (engine type: RÁBA D10 UTSLL 160, EURO II). The operating condition of the internal combustion engine was: 1300 r/m (app 50%). The exhaust gas was diverted into a pipe system where the samples were placed perpendicular to main flow for 1, 2, 4, 8 and 10 hours, respectively. The exhaust emission was measured by using AVL particulate measurement technology; filter paper method (AVL 415). The stone samples were documented and selective parameters were measured prior to and after exhaust gas exposure. Density, volume, ultrasonic pulse velocity, mineral composition and penetration depth of emission related particulate matter were recorded. The first results indicate that after 10 hours of exposure significant amount of particulate matter deposited on the stone surface independently from the surface properties and porosity. The black soot particles uniformly covered all types of stones, making hard to differentiate the specimens.

  3. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall... Section 34.31 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...

  4. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974, shall... Section 34.31 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT...

  5. A Low Cost Ferritic Stainless Steel Microalloyed by Higher Nb for Automotive Exhaust System

    NASA Astrophysics Data System (ADS)

    Chen, Erhu; Wang, Xuelin; Shang, Chengjia

    Automotive engine exhaust gas after combustion of fuel, and the gas will be liquefied in the rear of automotive exhaust system. A lot of corrosive anions existing in the condensate make corrosion of the exhaust system materials. Therefore, once pitting perforation, automotive exhaust system will fail directly. In 1980s, automotive exhaust manifold was made of Si-Mo ductile iron, mufflers and the tail pipe were made of carbon steel or aluminized steel. But with higher emission standards carried out, the improvement of engine performance and the higher exhaust temperature as well as the needs of the automotive light-weighting, we need the higher corrosion resistance of the material for automotive exhaust systems to meet the requirements.

  6. Face crack reduction strategy for particulate filters

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-01-31

    A system comprises a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion. A control module initiates combustion of PM in the PM filter using a heater and selectively adjusts oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter. A method comprises providing a particulate matter (PM) filter that comprises an upstream end for receiving exhaust gas, a downstream end and at least one portion; initiating combustion of PM in the PM filter using a heater; selectively adjusting oxygen levels of the exhaust gas to adjust a temperature of combustion adjacent to the at least one portion of the PM filter.

  7. Gas flow means for improving efficiency of exhaust hoods

    DOEpatents

    Gadgil, A.J.

    1994-01-11

    Apparatus is described for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas manifold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gas from the front of the individual toward the contaminants. 15 figures.

  8. Thermoelectric generators incorporating phase-change materials for waste heat recovery from engine exhaust

    DOEpatents

    Meisner, Gregory P; Yang, Jihui

    2014-02-11

    Thermoelectric devices, intended for placement in the exhaust of a hydrocarbon fuelled combustion device and particularly suited for use in the exhaust gas stream of an internal combustion engine propelling a vehicle, are described. Exhaust gas passing through the device is in thermal communication with one side of a thermoelectric module while the other side of the thermoelectric module is in thermal communication with a lower temperature environment. The heat extracted from the exhaust gasses is converted to electrical energy by the thermoelectric module. The performance of the generator is enhanced by thermally coupling the hot and cold junctions of the thermoelectric modules to phase-change materials which transform at a temperature compatible with the preferred operating temperatures of the thermoelectric modules. In a second embodiment, a plurality of thermoelectric modules, each with a preferred operating temperature and each with a uniquely-matched phase-change material may be used to compensate for the progressive lowering of the exhaust gas temperature as it traverses the length of the exhaust pipe.

  9. High speed exhaust gas recirculation valve

    DOEpatents

    Fensom, Rod; Kidder, David J.

    2005-01-18

    In order to minimize pollutants such as Nox, internal combustion engines typically include an exhaust gas recirculation (EGR) valve that can be used to redirect a portion of exhaust gases to an intake conduit, such as an intake manifold, so that the redirected exhaust gases will be recycled. It is desirable to have an EGR valve with fast-acting capabilities, and it is also desirable to have the EGR valve take up as little space as possible. An exhaust gas recirculation valve is provided that includes an exhaust passage tube, a valve element pivotally mounted within the exhaust passage tube, a linear actuator; and a gear train. The gear train includes a rack gear operatively connected to the linear actuator, and at least one rotatable gear meshing with the rack gear and operatively connected to the valve element to cause rotation of the valve element upon actuation of the linear actuator. The apparatus provides a highly compact package having a high-speed valve actuation capability.

  10. Method and apparatus for detection of catalyst failure on-board a motor vehicle using a dual oxygen sensor and an algorithm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clemmens, W.B.; Koupal, J.W.; Sabourin, M.A.

    1993-07-20

    Apparatus is described for detecting motor vehicle exhaust gas catalytic converter deterioration comprising a first exhaust gas oxygen sensor adapted for communication with an exhaust stream before passage of the exhaust stream through a catalytic converter and a second exhaust gas oxygen sensor adapted for communication with the exhaust stream after passage of the exhaust stream through the catalytic converter, an on-board vehicle computational means, said computational means adapted to accept oxygen content signals from the before and after catalytic converter oxygen sensors and adapted to generate signal threshold values, said computational means adapted to compare over repeated time intervalsmore » the oxygen content signals to the signal threshold values and to store the output of the compared oxygen content signals, and in response after a specified number of time intervals for a specified mode of motor vehicle operation to determine and indicate a level of catalyst deterioration.« less

  11. Controls for maintaining low nitrogen oxides content in internal combustion engine exhaust gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siebke, H.; Moro, B.; Schoenborn, M.

    1976-08-10

    A control system and apparatus for measuring and monitoring the nitrogen oxides content of internal combustion engine exhaust gases is described. The exhaust gases are contacted with the reducing electrode of a sensor cell having a predetermined potential established between the cell electrodes so that the reducing electrode is able to reduce both the nitrogen oxides and oxygen content of the exhaust gas. The current flowing through the sensor cell is measured to determine whether the nitrogen oxides content of the exhaust gas is sufficiently low.

  12. Electrochemical enhancement of nitric oxide removal from simulated lean-burn engine exhaust via solid oxide fuel cells.

    PubMed

    Huang, Ta-Jen; Wu, Chung-Ying; Lin, Yu-Hsien

    2011-07-01

    A solid oxide fuel cell (SOFC) unit is constructed with Ni-YSZ as the anode, YSZ as the electrolyte, and La(0.6)Sr(0.4)CoO(3)-Ce(0.9)Gd(0.1)O(1.95) as the cathode. The SOFC operation is performed at 600 °C with a cathode gas simulating the lean-burn engine exhaust and at various fixed voltage, at open-circuit voltage, and with an inert gas flowing over the anode side, respectively. Electrochemical enhancement of NO decomposition occurs when an operating voltage is generated; higher O(2) concentration leads to higher enhancement. Smaller NO concentration results in larger NO conversion. Higher operating voltage and higher O(2) concentration can lead to both higher NO conversion and lower fuel consumption. The molar rate of the consumption of the anode fuel can be very much smaller than that of NO to N(2) conversion. This makes the anode fuel consumed in the SOFC-DeNO(x) process to be much less than the equivalent amount of ammonia consumed in the urea-based selective catalytic reduction process. Additionally, the NO conversion increases with the addition of propylene and SO(2) into the cathode gas. These are beneficial for the application of the SOFC-DeNO(x) technology on treating diesel and other lean-burn engine exhausts.

  13. 76 FR 57691 - Approval and Promulgation of Implementation Plans; New Jersey; Motor Vehicle Enhanced Inspection...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-16

    ... remaining monitors (catalyst, evaporative system, oxygen sensor, heated oxygen sensor, and exhaust gas...--1968-1971 MY converter, presence of converter, presence of inclusive a gas cap, and fuel a gas cap, and fuel Exhaust Gas inlet restrictor--1975 inlet restrictor--1975 Recirculation (EGR) and newer (beginning...

  14. A study on the indirect urea dosing method in the Selective Catalytic Reduction system

    NASA Astrophysics Data System (ADS)

    Brzeżański, M.; Sala, R.

    2016-09-01

    This article presents the results of studies on concept solution of dosing urea in a gas phase in a selective catalytic reduction system. The idea of the concept was to heat-up and evaporate the water urea solution before introducing it into the exhaust gas stream. The aim was to enhance the processes of urea converting into ammonia, what is the target reductant for nitrogen oxides treatment. The study was conducted on a medium-duty Euro 5 diesel engine with exhaust line consisting of DOC catalyst, DPF filter and an SCR system with a changeable setup allowing to dose the urea in liquid phase (regular solution) and to dose it in a gas phase (concept solution). The main criteria was to assess the effect of physical state of urea dosed on the NOx conversion ratio in the SCR catalyst. In order to compare both urea dosing methods a special test procedure was developed which consisted of six test steps covering a wide temperature range of exhaust gas generated at steady state engine operation condition. Tests were conducted for different urea dosing quantities defined by the a equivalence ratio. Based on the obtained results, a remarkable improvement in NOx reduction was found for gas urea application in comparison to the standard liquid urea dosing. Measured results indicate a high potential to increase an efficiency of the SCR catalyst by using a gas phase urea and provide the basis for further scientific research on this type of concept.

  15. An efficient venturi scrubber system to remove submicron particles in exhaust gas.

    PubMed

    Tsai, Chuen-Jinn; Lin, Chia-Hung; Wang, Yu-Min; Hunag, Cheng-Hsiung; Li, Shou-Nan; Wu, Zong-Xue; Wang, Feng-Cai

    2005-03-01

    An efficient venturi scrubber system making use of heterogeneous nucleation and condensational growth of particles was designed and tested to remove fine particles from the exhaust of a local scrubber where residual SiH4 gas was abated and lots of fine SiO2 particles were generated. In front of the venturi scrubber, normal-temperature fine-water mist mixes with high-temperature exhaust gas to cool it to the saturation temperature, allowing submicron particles to grow into micron sizes. The grown particles are then scrubbed efficiently in the venturi scrubber. Test results show that the present venturi scrubber system is effective for removing submicron particles. For SiO2 particles greater than 0.1microm, the removal efficiency is greater than 80-90%, depending on particle concentration. The corresponding pressure drop is relatively low. For example, the pressure drop of the venturi scrubber is approximately 15.4 +/- 2.4 cm H2O when the liquid-to-gas ratio is 1.50 L/m3. A theoretical calculation has been conducted to simulate particle growth process and the removal efficiency of the venturi scrubber. The theoretical results agree with the experimental data reasonably well when SiO2 particle diameter is greater than 0.1 microm.

  16. Radon and Thoron Measured in Petrol and Gas-oil Exhaust Fumes by Using CR-39 and LR-115 II Nuclear Track Detectors: Radiation Doses to the Respiratory Tract of Mechanic Workers.

    PubMed

    Misdaq, M A; Chaouqi, A; Ouguidi, J; Touti, R; Mortassim, A

    2015-06-01

    Mechanic workers are exposed to exhaust fumes when controlling vehicle engines in motion inside repair shops. To assess radiation doses due to radon short-lived progeny from the inhalation of exhaust fumes by mechanic workers, concentrations of these radionuclides were measured in petrol (gasoline) and gas-oil exhaust fumes by evaluating mean critical angles of etching of the CR-39 and LR-115 type II SSNTDs for alpha particles emitted by the radon and thoron decay series. Committed effective doses due to ²¹⁸Po and ²¹⁴Po short-lived radon decay products from the inhalation of petrol and gas-oil exhaust fumes by workers were evaluated. A maximum value of 1.35 mSv y⁻¹ due to radon short-lived decay products from the inhalation of gas-oil exhaust fumes by mechanic workers was found, which is lower than the (3-10 mSv y⁻¹) dose limit interval for workers.

  17. Gas-Dynamic Designing of the Exhaust System for the Air Brake

    NASA Astrophysics Data System (ADS)

    Novikova, Yu; Goriachkin, E.; Volkov, A.

    2018-01-01

    Each gas turbine engine is tested some times during the life-cycle. The test equipment includes the air brake that utilizes the power produced by the gas turbine engine. In actual conditions, the outlet pressure of the air brake does not change and is equal to atmospheric pressure. For this reason, for the air brake work it is necessary to design the special exhaust system. Mission of the exhaust system is to provide the required level of backpressure at the outlet of the air brake. The backpressure is required for the required power utilization by the air brake (the air brake operation in the required points on the performance curves). The paper is described the development of the gas dynamic canal, designing outlet guide vane and the creation of a unified exhaust system for the air brake. Using a unified exhaust system involves moving the operating point to the performance curve further away from the calculated point. However, the applying of one exhaust system instead of two will significantly reduce the cash and time costs.

  18. Design and testing of high temperature micro-ORC test stand using Siloxane as working fluid

    NASA Astrophysics Data System (ADS)

    Turunen-Saaresti, Teemu; Uusitalo, Antti; Honkatukia, Juha

    2017-03-01

    Organic Rankine Cycle is a mature technology for many applications e.g. biomass power plants, waste heat recovery and geothermal power for larger power capacity. Recently more attention is paid on an ORC utilizing high temperature heat with relatively low power. One of the attractive applications of such ORCs would be utilization of waste heat of exhaust gas of combustion engines in stationary and mobile applications. In this paper, a design procedure of the ORC process is described and discussed. The analysis of the major components of the process, namely the evaporator, recuperator, and turbogenerator is done. Also preliminary experimental results of an ORC process utilizing high temperature exhaust gas heat and using siloxane MDM as a working fluid are presented and discussed. The turbine type utilized in the turbogenerator is a radial inflow turbine and the turbogenerator consists of the turbine, the electric motor and the feed pump. Based on the results, it was identified that the studied system is capable to generate electricity from the waste heat of exhaust gases and it is shown that high molecular weight and high critical temperature fluids as the working fluids can be utilized in high-temperature small-scale ORC applications. 5.1 kW of electric power was generated by the turbogenerator.

  19. Flow Characteristics of a Multiple Nozzle Exhaust Gas Eductor System.

    DTIC Science & Technology

    1981-03-01

    these exhaust gases are a temperatures significantly above those of conventionally powered ships. A few of the problems caused by these high temperatures ...systems designed for marine gas turbine applications must substantially cool exhaust gases , present an exterior stack surface temperature which will not...stack in. H 02 R - Gas constant for air, 53.34 ft-lbf/Ibm-R s - Entropy, Btu/Ibm-R S - Primary dimension of mixing stack T - Absolute temperature , R

  20. THE EFFECT OF SULFUR ON METHANE PARTIAL OXIDATION AND REFORMING PROCESSES FOR LEAN NOX TRAP CATALYSIS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parks, II, James E; Ponnusamy, Senthil

    2006-01-01

    Lean NOx trap catalysis has demonstrated the ability to reduce NOx emissions from lean natural gas reciprocating engines by >90%. The technology operates in a cyclic fashion where NOx is trapped on the catalyst during lean operation and released and reduced to N2 under rich exhaust conditions; the rich cleansing operation of the cycle is referred to as "regeneration" since the catalyst is reactivated for more NOx trapping after NOx purge. Creating the rich exhaust conditions for regeneration can be accomplished by catalytic partial oxidation of methane in the exhaust system. Furthermore, catalytic reforming of partial oxidation exhaust can enablemore » increased quantities of H2 which is an excellent reductant for lean NOx trap regeneration. It is critical to maintain clean and efficient partial oxidation and reforming processes to keep the lean NOx trap functioning properly and to reduce extra fuel consumption from the regeneration process. Although most exhaust constituents do not impede partial oxidation and reforming, some exhaust constituents may negatively affect the catalysts and result in loss of catalytic efficiency. Of particular concern are common catalyst poisons sulfur, zinc, and phosphorous. These poisons form in the exhaust through combustion of fuel and oil, and although they are present at low concentrations, they can accumulate to significant levels over the life of an engine system. In the work presented here, the effects of sulfur on the partial oxidation and reforming catalytic processes were studied to determine any durability limitations on the production of reductants for lean NOx trap catalyst regeneration.« less

  1. Technologies and Materials for Recovering Waste Heat in Harsh Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nimbalkar, Sachin U.; Thekdi, Arvind; Rogers, Benjamin M.

    2014-12-15

    A large amount (7,204 TBtu/year) of energy is used for process heating by the manufacturing sector in the United States (US). This energy is in the form of fuels mostly natural gas with some coal or other fuels and steam generated using fuels such as natural gas, coal, by-product fuels, and some others. Combustion of these fuels results in the release of heat, which is used for process heating, and in the generation of combustion products that are discharged from the heating system. All major US industries use heating equipment such as furnaces, ovens, heaters, kilns, and dryers. The hotmore » exhaust gases from this equipment, after providing the necessary process heat, are discharged into the atmosphere through stacks. This report deals with identification of industries and industrial heating processes in which the exhaust gases are at high temperature (>1200 F), contain all of the types of reactive constituents described, and can be considered as harsh or contaminated. It also identifies specific issues related to WHR for each of these processes or waste heat streams.« less

  2. Concept of Heat Recovery from Exhaust Gases

    NASA Astrophysics Data System (ADS)

    Bukowska, Maria; Nowak, Krzysztof; Proszak-Miąsik, Danuta; Rabczak, Sławomir

    2017-10-01

    The theme of the article is to determine the possibility of waste heat recovery and use it to prepare hot water. The scope includes a description of the existing sample of coal-fired boiler plant, the analysis of working condition and heat recovery proposals. For this purpose, a series of calculations necessary to identify the energy effect of exhaust temperature decreasing and transferring recovery heat to hot water processing. Heat recover solutions from the exhaust gases channel between boiler and chimney section were proposed. Estimation for the cost-effectiveness of such a solution was made. All calculations and analysis were performed for typical Polish conditions, for coal-fired boiler plant. Typicality of this solution is manifested by the volatility of the load during the year, due to distribution of heat for heating and hot water, determining the load variation during the day. Analysed system of three boilers in case of load variation allows to operational flexibility and adaptation of the boilers load to the current heat demand. This adaptation requires changes in the operating conditions of boilers and in particular assurance of properly conditions for the combustion of fuel. These conditions have an impact on the existing thermal loss and the overall efficiency of the boiler plant. On the boiler plant efficiency affects particularly exhaust gas temperature and the excess air factor. Increasing the efficiency of boilers plant is possible to reach by following actions: limiting the excess air factor in coal combustion process in boilers and using an additional heat exchanger in the exhaust gas channel outside of boilers (economizer) intended to preheat the hot water.

  3. Ecological effects and environmental fate of solid rocket exhaust

    NASA Technical Reports Server (NTRS)

    Nimmo, B.; Stout, I. J.; Mickus, J.; Vickers, D.; Madsen, B.

    1974-01-01

    Specific target processes were classified as to the chemical, chemical-physical, and biological reactions and toxic effects of solid rocket emissions within selected ecosystems at Kennedy Space Center. Exposure of Citris seedlings, English peas, and bush beans to SRM exhaust under laboratory conditions demonstrated reduced growth rates, but at very high concentrations. Field studies of natural plant populations in three diverse ecosystems failed to reveal any structural damage at the concentration levels tested. Background information on elemental composition of selected woody plants from two terrestrial ecosystems is reported. LD sub 50 for a native mouse (peromysous gossypinus) exposed to SRM exhaust was determined to be 50 ppm/g body weight. Results strongly indicate that other components of the SRM exhaust act synergically to enhance the toxic effects of HCl gas when inhaled. A brief summary is given regarding the work on SRM exhaust and its possible impact on hatchability of incubating bird eggs.

  4. 40 CFR 90.313 - Analyzers required.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of the exhaust gas at the sample probe is below 190 °C, the temperature of the valves, pipe work, and... temperature of the exhaust gas at the sample probe is above 190 °C, the temperature of the valves, pipe work... and carbon dioxide measurements must be made on a dry basis (for raw exhaust measurement only...

  5. AVGAS/AUTOGAS (Aviation Gasoline/Automobile Gasoline) Comparison. Winter Grade Fuels.

    DTIC Science & Technology

    1986-07-01

    mass MAP Manifold pressure - inHg MON Motor Octane Number NIPER National Institute of Petroleum and Energy Resources Pamb Ambient pressure - inHg...pressure - psig si Sea level (used as a subscript) STC Supplemental Type Certificate Tamb Ambient temperature - degC or degF Tdew Dew point - degC or degF...temperature deg C #2 exhaust gas temperature deg C #3 exhaust gas temperature deg C #4 exhaust gas temperature deg C Ambient air temperature deg C 6

  6. Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials

    DOEpatents

    Wang, Yifeng; Miller, Andy; Bryan, Charles R.; Kruichak, Jessica Nicole

    2015-11-17

    Methods of capturing and immobilizing radioactive nuclei with metal fluorite-based inorganic materials are described. For example, a method of capturing and immobilizing radioactive nuclei includes flowing a gas stream through an exhaust apparatus. The exhaust apparatus includes a metal fluorite-based inorganic material. The gas stream includes a radioactive species. The radioactive species is removed from the gas stream by adsorbing the radioactive species to the metal fluorite-based inorganic material of the exhaust apparatus.

  7. Workshop on an Assessment of Gas-Side Fouling in Fossil Fuel Exhaust Environments

    NASA Technical Reports Server (NTRS)

    Marner, W. J. (Editor); Webb, R. L. (Editor)

    1982-01-01

    The state of the art of gas side fouling in fossil fuel exhaust environments was assessed. Heat recovery applications were emphasized. The deleterious effects of gas side fouling including increased energy consumption, increased material losses, and loss of production were identified.

  8. A novel approach to scavenging anesthetic gases in rodent surgery.

    PubMed

    Nesbitt, Jeffrey C; Krageschmidt, Dale A; Blanco, Michael C

    2013-01-01

    Laboratory animal procedures using gas anesthetics may amass elevated waste gas concentrations in operating rooms if controls are not implemented for capturing and removing the vapors. Area sampling using an infrared analyzer indicated isoflurane concentrations likely to exceed occupational exposure guidelines. Our study showed environmental concentrations of oxygen as high as 40% and isoflurane concentrations >100 ppm when no controls or merely passive controls were utilized. These extraneous isoflurane emissions were determined to be originating from the pre-procedural induction process as well as the gas delivery nose cone. A novel waste gas collection cylinder was designed to enclose the gas delivery nose cone and animal head during the administration of anesthetic gases. The vented cylinder utilized a house vacuum to remove the waste anesthetic gases from the surgical field. A commercially available induction chamber designed to be actively and externally exhausted was used to lower concentrations during the induction process. With implementation of local exhaust ventilation controls, waste anesthetic gas concentrations decreased to below recommended occupational exposure levels. In vitro (sham) testing compared favorably to in vivo measurements validating the reduction capability of active ventilation during rodent anesthetic administration. In vivo isoflurane reductions for the induction chamber emissions, the operating room, and the surgeon's breathing zone were 95%, 60%, and 53%, respectively. The same measurements for an in vitro procedure were 98%, 84%, and 87%, respectively.

  9. Gas flow means for improving efficiency of exhaust hoods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gadgil, A.J.

    1994-01-11

    Apparatus is described for inhibiting the flow of contaminants in an exhaust enclosure toward an individual located adjacent an opening into the exhaust enclosure by providing a gas flow toward a source of contaminants from a position in front of an individual to urge said contaminants away from the individual toward a gas exit port. The apparatus comprises a gas manifold which may be worn by a person as a vest. The manifold has a series of gas outlets on a front face thereof facing away from the individual and toward the contaminants to thereby provide a flow of gasmore » from the front of the individual toward the contaminants. 15 figures.« less

  10. Measuring Carbon Monoxide in Auto Exhaust by Gas Chromatography.

    ERIC Educational Resources Information Center

    Jaffe, Dan; Herndon, Scott

    1995-01-01

    Presents a simple and reliable technique using commonly available equipment for monitoring carbon monoxide in automobile exhaust. The experiment utilizes a gas chromatograph and a thermal conductivity detector (TCD). (DDR)

  11. Process of afterburning combustible constituents of exhaust gases from rotary kilns

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schnabel, W.; Scheu, E.; Serbent, H.

    1984-03-13

    In order to avoid incrustation and an excessively strong thermal attack on the afterburning chamber, the exhaust gases which contain gaseous and solid constituents which are combustible are afterburned in a plurality of stages, which are connected in series. The rate at which oxygen is supplied to each stage is so controlled that part of the combustible constituents is afterburned in each stage. The gas which is about to enter each succeeding stage is cooled by injected water.

  12. Impact of operating conditions on performance of a novel gas double-dynamic solid-state fermentation bioreactor (GDSFB).

    PubMed

    Chen, Hongzhang; Li, Yanjun; Xu, Fujian

    2013-11-01

    A self-designed novel solid-state fermentation (SSF) bioreactor named "gas double-dynamic solid-state fermentation bioreactor (GDSFB)" showed great success in processes for the production of several valuable products. For the present study, a simple GDSFB (2 L in volume) was designed to investigate the impact of exhaust time on SSF performance. Both air pressure and vent aperture significantly influenced the exhaust time. The production of cellulase by Penicillium decumbens JUA10 was studied in this bioreactor. When the vent aperture was maintained at 0.2 cm, the highest FPA activity of 17.2 IU/g dry solid-state medium was obtained at an air pressure of 0.2 MPa (gauge pressure). When the air pressure was maintained at 0.2 MPa, a vent aperture of 0.3 cm gave the highest FPA activity of 18.0 IU/g dry solid-state medium. Further analysis revealed that the exhaust time was a crucial indicator of good performance in GDSFB.

  13. Start up system for hydrogen generator used with an internal combustion engine

    NASA Technical Reports Server (NTRS)

    Houseman, J.; Cerini, D. J. (Inventor)

    1977-01-01

    A hydrogen generator provides hydrogen rich product gases which are mixed with the fuel being supplied to an internal combustion engine for the purpose of enabling a very lean mixture of that fuel to be used, whereby nitrous oxides emitted by the engine are minimized. The hydrogen generator contains a catalyst which must be heated to a pre-determined temperature before it can react properly. To simplify the process of heating up the catalyst at start-up time, either some of the energy produced by the engine such as engine exhaust gas, or electrical energy produced by the engine, or the engine exhaust gas may be used to heat up air which is then used to heat the catalyst.

  14. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family is...

  15. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family is...

  16. 40 CFR 1037.241 - Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Demonstrating compliance with exhaust emission standards for greenhouse gas pollutants. 1037.241 Section 1037.241 Protection of Environment... standards for greenhouse gas pollutants. (a) For purposes of certification, your vehicle family is...

  17. Assessment and prediction of urban air pollution caused by motor transport exhaust gases using computer simulation methods

    NASA Astrophysics Data System (ADS)

    Boyarshinov, Michael G.; Vaismana, Yakov I.

    2016-10-01

    The following methods were used in order to identify the pollution fields of urban air caused by the motor transport exhaust gases: the mathematical model, which enables to consider the influence of the main factors that determine pollution fields formation in the complex spatial domain; the authoring software designed for computational modeling of the gas flow, generated by numerous mobile point sources; the results of computing experiments on pollutant spread analysis and evolution of their concentration fields. The computational model of exhaust gas distribution and dispersion in a spatial domain, which includes urban buildings, structures and main traffic arteries, takes into account a stochastic character of cars apparition on the borders of the examined territory and uses a Poisson process. The model also considers the traffic lights switching and permits to define the fields of velocity, pressure and temperature of the discharge gases in urban air. The verification of mathematical model and software used confirmed their satisfactory fit to the in-situ measurements data and the possibility to use the obtained computing results for assessment and prediction of urban air pollution caused by motor transport exhaust gases.

  18. Use of exhaust gas as sweep flow to enhance air separation membrane performance

    DOEpatents

    Dutart, Charles H.; Choi, Cathy Y.

    2003-01-01

    An intake air separation system for an internal combustion engine is provided with purge gas or sweep flow on the permeate side of separation membranes in the air separation device. Exhaust gas from the engine is used as a purge gas flow, to increase oxygen flux in the separation device without increasing the nitrogen flux.

  19. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... petroleum fuel or a non-heated flame ionization detector may be used. (3) Methanol-fueled engines require...); or (iii) Omitting the duct and performing the exhaust gas dilution function at the engine exhaust... two steps to a temperature never greater than 125 °F (51.7 °C) at the primary sample filter. A backup...

  20. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... petroleum fuel or a non-heated flame ionization detector may be used. (3) Methanol-fueled engines require...); or (iii) Omitting the duct and performing the exhaust gas dilution function at the engine exhaust... two steps to a temperature never greater than 125 °F (51.7 °C) at the primary sample filter. A backup...

  1. Motor Vehicle Exhaust Gas Suicide.

    PubMed

    Routley, Virginia

    2007-01-01

    In many motorized countries, inhalation of carbon monoxide from motor vehicle exhaust gas (MVEG) has been one of the leading methods of suicide. In some countries it remains so (e.g., Australia 16.0% of suicides in 2005). Relative to other methods it is a planned method and one often used by middle-aged males. The study provides a review of countermeasures aimed at restricting this method of suicide. The prevention measures identified were catalytic converters (introduced to reduce carbon monoxide for environmental reasons); in-cabin sensors; exhaust pipe modification; automatic idling stops; and helpline signage at suicide "hotspots." Catalytic converters are now in 90% of new vehicles worldwide and literature supports them being associated with a reduction in exhaust-gassing suicides. There remain, however, accounts of exhaust-gas fatalities in modern vehicles, whether accidentally or by suicide. These deaths and also crashes from fatigue could potentially be prevented by in-cabin multi-gas sensors, these having been developed to the prototype stage. Helpline signage at an exhaust-gassing suicide "hotspot" had some success in reducing suicides. The evidence on method substitution and whether a reduction in MVEG suicides causes a reduction in total suicides is inconsistent.

  2. Aerospace Thematic Workshop (4th): Fundamentals of Aerodynamic Flow and Combustion Control by Plasmas

    DTIC Science & Technology

    2013-04-01

    Supersonic Flow Control by Microwave Discharge and Non-equilibrium Processes in Viscous Gas Flows Elena Kustova (Saint Petersburg State University...implying new technologies (direct injection, turbocharging, exhaust gas recirculation, ...) and introducing new physics ( liquid films, flame propagation...combustion  Discharges physics and kinetics A visit was also organized in the afternoon of April 10 to the supersonic and hypersonic wind tunnels

  3. Pulse combusted acoustic agglomeration apparatus and process

    DOEpatents

    Mansour, Momtaz N.; Chandran, Ravi

    1994-01-01

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance agglomeration of particulates which may be collected and removed using a conventional separation apparatus. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, added particulates may include a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  4. Particulate exhaust emissions from an experimental combustor. [gas turbine engine

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Ingebo, R. D.

    1975-01-01

    The concentration of dry particulates (carbon) in the exhaust of an experimental gas turbine combustor was measured at simulated takeoff operating conditions and correlated with the standard smoke-number measurement. Carbon was determined quantitatively from a sample collected on a fiberglass filter by converting the carbon in the smoke sample to carbon dioxide and then measuring the volume of carbon dioxide formed by gas chromatography. At a smoke of 25 (threshold of visibility of the smoke plume for large turbojets) the carbon concentration was 2.8 mg carbon/cu m exhaust gas, which is equivalent to an emission index of 0.17 g carbon/kg fuel.

  5. [Evaluation of treatment technology of odor pollution source in petrochemical industry].

    PubMed

    Mu, Gui-Qin; Sui, Li-Hua; Guo, Ya-Feng; Ma, Chuan-Jun; Yang, Wen-Yu; Gao, Yang

    2013-12-01

    Using an environmental technology assessment system, we put forward the evaluation index system for treatment technology of the typical odor pollution sources in the petroleum refining process, which has been applied in the assessment of the industrial technology. And then the best available techniques are selected for emissions of gas refinery sewage treatment plant, headspace gas of acidic water jars, headspace gas of cold coke jugs/intermediate oil tank/dirty oil tank, exhaust of oxidative sweetening, and vapors of loading and unloading oil.

  6. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and...

  7. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and...

  8. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 20 2013-07-01 2013-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and...

  9. 40 CFR 86.1710-99 - Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Fleet average non-methane organic gas....1710-99 Fleet average non-methane organic gas exhaust emission standards for light-duty vehicles and... follows: Table R99-15—Fleet Average Non-Methane Organic Gas Standards (g/mi) for Light-Duty Vehicles and...

  10. Process for the removal of acid forming gases from exhaust gases and production of phosphoric acid

    DOEpatents

    Chang, Shih-Ger; Liu, David K.

    1992-01-01

    Exhaust gases are treated to remove NO or NO.sub.x and SO.sub.2 by contacting the gases with an aqueous emulsion or suspension of yellow phosphorous preferably in a wet scrubber. The addition of yellow phosphorous in the system induces the production of O.sub.3 which subsequently oxidizes NO to NO.sub.2. The resulting NO.sub.2 dissolves readily and can be reduced to form ammonium ions by dissolved SO.sub.2 under appropriate conditions. In a 20 acfm system, yellow phosphorous is oxidized to yield P.sub.2 O.sub.5 which picks up water to form H.sub.3 PO.sub.4 mists and can be collected as a valuable product. The pressure is not critical, and ambient pressures are used. Hot water temperatures are best, but economics suggest about 50.degree. C. The amount of yellow phosphorus used will vary with the composition of the exhaust gas, less than 3% for small concentrations of NO, and 10% or higher for concentrations above say 1000 ppm. Similarly, the pH will vary with the composition being treated, and it is adjusted with a suitable alkali. For mixtures of NO.sub.x and SO.sub.2, alkalis that are used for flue gas desulfurization are preferred. With this process, better than 90% of SO.sub.2 and NO in simulated flue gas can be removed. Stoichiometric ratios (P/NO) ranging between 0.6 and 1.5 were obtained.

  11. 40 CFR Table 1 to Subpart Ja of... - Molar Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Molar Exhaust Volumes and Molar Heat... Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents Constituent MEVa dscf/mol MHCb Btu/mol... standard conditions of 68 °F and 1 atmosphere. b MHC = molar heat content (higher heating value basis), Btu...

  12. 40 CFR Table 1 to Subpart Ja of... - Molar Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Molar Exhaust Volumes and Molar Heat... Exhaust Volumes and Molar Heat Content of Fuel Gas Constituents Constituent MEVa dscf/mol MHCb Btu/mol... standard conditions of 68 °F and 1 atmosphere. b MHC = molar heat content (higher heating value basis), Btu...

  13. Modification and performance evaluation of a mono-valve engine

    NASA Astrophysics Data System (ADS)

    Behrens, Justin W.

    A four-stroke engine utilizing one tappet valve for both the intake and exhaust gas exchange processes has been built and evaluated. The engine operates under its own power, but has a reduced power capacity than the conventional 2-valve engine. The reduction in power is traced to higher than expected amounts of exhaust gases flowing back into the intake system. Design changes to the cylinder head will fix the back flow problems, but the future capacity of mono-valve engine technology cannot be estimated. The back flow of exhaust gases increases the exhaust gas recirculation (EGR) rate and deteriorates combustion. Intake pressure data shows the mono-valve engine requires an advanced intake valve closing (IVC) time to prevent back flow of charge air. A single actuation camshaft with advanced IVC was tested in the mono-valve engine, and was found to improve exhaust scavenging at TDC and nearly eliminated all charge air back flow at IVC. The optimum IVC timing is shown to be approximately 30 crank angle degrees after BDC. The mono-valve cylinder head utilizes a rotary valve positioned above the tappet valve. The open spaces inside the rotary valveand between the rotary valve and tappet valve represent a common volume that needs to be reduced in order to reduce the base EGR rate. Multiple rotary valve configurations were tested, and the size of the common volume was found to have no effect on back flow but a direct effect on the EGR rate and engine performance. The position of the rotary valve with respect to crank angle has a direct effect on the scavenging process. Optimum scavenging occurs when the intake port is opened just after TDC.

  14. 30 CFR 250.1629 - Additional production and fuel gas system requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operating range. (2) Engine exhaust. You must equip engine exhausts to comply with the insulation and... structure. (4) Fire- and gas-detection system. (i) Fire (flame, heat, or smoke) sensors shall be installed...

  15. 40 CFR 63.9942 - What definitions apply to this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... metal alloys from natural sources of magnesium chloride such as sea water or water from the Great Salt... gases exhausted from gas turbines. Wet scrubber means a device that contacts an exhaust gas with a...

  16. 40 CFR 63.9942 - What definitions apply to this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... metal alloys from natural sources of magnesium chloride such as sea water or water from the Great Salt... gases exhausted from gas turbines. Wet scrubber means a device that contacts an exhaust gas with a...

  17. 40 CFR 63.9942 - What definitions apply to this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... metal alloys from natural sources of magnesium chloride such as sea water or water from the Great Salt... gases exhausted from gas turbines. Wet scrubber means a device that contacts an exhaust gas with a...

  18. 40 CFR 63.9942 - What definitions apply to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... metal alloys from natural sources of magnesium chloride such as sea water or water from the Great Salt... gases exhausted from gas turbines. Wet scrubber means a device that contacts an exhaust gas with a...

  19. 40 CFR 63.9942 - What definitions apply to this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... metal alloys from natural sources of magnesium chloride such as sea water or water from the Great Salt... gases exhausted from gas turbines. Wet scrubber means a device that contacts an exhaust gas with a...

  20. Modular fuel-cell stack assembly

    DOEpatents

    Patel, Pinakin

    2010-07-13

    A fuel cell assembly having a plurality of fuel cells arranged in a stack. An end plate assembly abuts the fuel cell at an end of said stack. The end plate assembly has an inlet area adapted to receive an exhaust gas from the stack, an outlet area and a passage connecting the inlet area and outlet area and adapted to carry the exhaust gas received at the inlet area from the inlet area to the outlet area. A further end plate assembly abuts the fuel cell at a further opposing end of the stack. The further end plate assembly has a further inlet area adapted to receive a further exhaust gas from the stack, a further outlet area and a further passage connecting the further inlet area and further outlet area and adapted to carry the further exhaust gas received at the further inlet area from the further inlet area to the further outlet area.

  1. 30 CFR 7.97 - Application requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sensors, flame arresters, exhaust conditioner, emergency intake air shutoff device, automatic fuel shutoff...-cooled components, coolant lines, radiator, surge tank, temperature sensors, and orifices; arrows... internal parts, exhaust inlet and outlet, sensors, and the exhaust gas path through the exhaust conditioner...

  2. 30 CFR 7.97 - Application requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sensors, flame arresters, exhaust conditioner, emergency intake air shutoff device, automatic fuel shutoff...-cooled components, coolant lines, radiator, surge tank, temperature sensors, and orifices; arrows... internal parts, exhaust inlet and outlet, sensors, and the exhaust gas path through the exhaust conditioner...

  3. 30 CFR 7.97 - Application requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sensors, flame arresters, exhaust conditioner, emergency intake air shutoff device, automatic fuel shutoff...-cooled components, coolant lines, radiator, surge tank, temperature sensors, and orifices; arrows... internal parts, exhaust inlet and outlet, sensors, and the exhaust gas path through the exhaust conditioner...

  4. An investigation of the treatment of particulate matter from gasoline engine exhaust using non-thermal plasma.

    PubMed

    Ye, Dan; Gao, Dengshan; Yu, Gang; Shen, Xianglin; Gu, Fan

    2005-12-09

    A plasma reactor with catalysts was used to treat exhaust gas from a gasoline engine in order to decrease particulate matter (PM) emissions. The effect of non-thermal plasma (NTP) of the dielectric discharges on the removal of PM from the exhaust gas was investigated experimentally. The removal efficiency of PM was based on the concentration difference in PM for particle diameters ranging from 0.3 to 5.0 microm as measured by a particle counter. Several factors affecting PM conversion, including the density of plasma energy, reaction temperature, flow rate of exhaust gas, were investigated in the experiment. The results indicate that PM removal efficiency ranged approximately from 25 to 57% and increased with increasing energy input in the reactor, reaction temperature and residence time of the exhaust gas in the reactor. Enhanced removal of the PM was achieved by filling the discharge gap of the reactor with Cu-ZSM-5 catalyst pellets. In addition, the removal of unburned hydrocarbons was studied. Finally, available approaches for PM conversion were analyzed involving the interactions between discharge and catalytic reactions.

  5. Effect of alumina nano additives into biodiesel-diesel blends on the combustion performance and emission characteristics of a diesel engine with exhaust gas recirculation.

    PubMed

    Anchupogu, Praveen; Rao, Lakshmi Narayana; Banavathu, Balakrishna

    2018-06-04

    In the present study, the combined effect of alumina nanoparticles into the Calophyllum inophyllum biodiesel blend and exhaust gas recirculation on the combustion, performance, and emission characteristics of a diesel engine was investigated. The alumina (Al 2 O 3 ) nanoparticles with the mass fraction of 40 ppm were dispersed into the C. inophyllum biodiesel blend (20% of C. inophyllum biodiesel + 80% of diesel (CIB20)) by the ultrasonication process. Further, the exhaust gas recirculation was adopted to control the oxides of nitrogen (NOx) emissions of a diesel engine. The experiments were conducted on a single cylinder diesel engine with the diesel, CIB20, 20% of C. inophyllum biodiesel + 80% of diesel + 40 ppm Al 2 O 3 nanoparticles (CIB20ANP40), CIB20 + 20% exhaust gas recirculation (EGR), and CIB20ANP40 + 20% EGR fuel samples at different load conditions. The results reveal that brake thermal efficiency of CIB20ANP40 fuel increased by 5.04 and 7.71% compared to the CIB20 and CIB20ANP40 + 20% EGR fuels, respectively. The addition of alumina nanoparticles to the CIB20 fuel, CO, and hydrocarbon (HC) emissions were was reduced compared to the CIB20 fuel. The smoke opacity was decreased with the addition of alumina nanoparticles to the CIB20 fuel by 7.3% compared to the CIB20 fuel. The NOx emissions for the CIB20ANP40 + 20% EGR fuel was decreased by 36.84, 31.53, and 17.67% compared to the CIB20, CIB20ANP40, and CIB20 + 20% EGR fuel samples at full load condition.

  6. Measuring self-pollution in school buses using a tracer gas technique

    NASA Astrophysics Data System (ADS)

    Behrentz, Eduardo; Fitz, Dennis R.; Pankratz, David V.; Sabin, Lisa D.; Colome, Steven D.; Fruin, Scott A.; Winer, Arthur M.

    A potentially important, but inadequately studied, source of children's exposure to pollutants during school bus commutes is the introduction of a bus's own exhaust into the passenger compartment. We developed and applied a method to determine the amount of a bus's own exhaust penetrating into the cabin in a study of six in-use school buses over a range of routes, roadway types, fuels, and emission control technologies. A tracer gas, SF 6, was metered into the bus's exhaust system using a mass flow controller whose flow rate was logged by a data acquisition system and processed with the concurrent real-time pollutant measurement data. At the same time, the SF 6 concentration inside the bus was measured using an AeroVironment CTA-1000 continuous analyzer connected to a series of solenoids that switched the sample inlet between the front and rear of the bus cabin. To account for a baseline drift of the CTA-1000, SF 6-free air was also drawn through a line located outside at the front of the bus. Although this third sample line generally provided a reference zero value, it also showed that under certain wind conditions (i.e., wind from the rear) when the bus was stopped and was idling, significant amounts of the bus's own exhaust reached this location at the front of the bus. Self-pollution, the percentage of a bus's own exhaust that can be found inside its cabin, was a function of bus type and age, and a strong function of window position (i.e., open or closed). We estimated up to 0.3% of the air inside the cabin was from the bus's own exhaust in older buses, approximately 10 times the percentage observed for newer buses, and 25% of the black carbon concentration variance was explained by the buses' self-pollution. Analysis of the tracer gas concentrations provided a powerful tool for identifying potentially high-exposure conditions.

  7. Dynamic gas temperature measurement system, volume 1

    NASA Technical Reports Server (NTRS)

    Elmore, D. L.; Robinson, W. W.; Watkins, W. B.

    1983-01-01

    A gas temperature measurement system with compensated frequency response of 1 kHz and capability to operate in the exhaust of a gas turbine engine combustor was developed. A review of available technologies which could attain this objective was done. The most promising method was identified as a two wire thermocouple, with a compensation method based on the responses of the two different diameter thermocouples to the fluctuating gas temperature field. In a detailed design of the probe, transient conduction effects were identified as significant. A compensation scheme was derived to include the effects of gas convection and wire conduction. The two wire thermocouple concept was tested in a laboratory burner exhaust to temperatures of about 3000 F and in a gas turbine engine to combustor exhaust temperatures of about 2400 F. Uncompensated and compensated waveforms and compensation spectra are presented.

  8. Plasma reforming and partial oxidation of hydrocarbon fuel vapor to produce synthesis gas and/or hydrogen gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2003-08-19

    Methods and systems for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  9. Plasma Reforming And Partial Oxidation Of Hydrocarbon Fuel Vapor To Produce Synthesis Gas And/Or Hydrogen Gas

    DOEpatents

    Kong, Peter C.; Detering, Brent A.

    2004-10-19

    Methods and systems are disclosed for treating vapors from fuels such as gasoline or diesel fuel in an internal combustion engine, to form hydrogen gas or synthesis gas, which can then be burned in the engine to produce more power. Fuel vapor, or a mixture of fuel vapor and exhaust gas and/or air, is contacted with a plasma, to promote reforming reactions between the fuel vapor and exhaust gas to produce carbon monoxide and hydrogen gas, partial oxidation reactions between the fuel vapor and air to produce carbon monoxide and hydrogen gas, or direct hydrogen and carbon particle production from the fuel vapor. The plasma can be a thermal plasma or a non-thermal plasma. The plasma can be produced in a plasma generating device which can be preheated by contact with at least a portion of the hot exhaust gas stream, thereby decreasing the power requirements of the plasma generating device.

  10. Analyses of turbulent flow fields and aerosol dynamics of diesel engine exhaust inside two dilution sampling tunnels using the CTAG model.

    PubMed

    Wang, Yan Jason; Yang, Bo; Lipsky, Eric M; Robinson, Allen L; Zhang, K Max

    2013-01-15

    Experimental results from laboratory emission testing have indicated that particulate emission measurements are sensitive to the dilution process of exhaust using fabricated dilution systems. In this paper, we first categorize the dilution parameters into two groups: (1) aerodynamics (e.g., mixing types, mixing enhancers, dilution ratios, residence time); and (2) mixture properties (e.g., temperature, relative humidity, particle size distributions of both raw exhaust and dilution gas). Then we employ the Comprehensive Turbulent Aerosol Dynamics and Gas Chemistry (CTAG) model to investigate the effects of those parameters on a set of particulate emission measurements comparing two dilution tunnels, i.e., a T-mixing lab dilution tunnel and a portable field dilution tunnel with a type of coaxial mixing. The turbulent flow fields and aerosol dynamics of particles are simulated inside two dilution tunnels. Particle size distributions under various dilution conditions predicted by CTAG are evaluated against the experimental data. It is found that in the area adjacent to the injection of exhaust, turbulence plays a crucial role in mixing the exhaust with the dilution air, and the strength of nucleation dominates the level of particle number concentrations. Further downstream, nucleation terminates and the growth of particles by condensation and coagulation continues. Sensitivity studies reveal that a potential unifying parameter for aerodynamics, i.e., the dilution rate of exhaust, plays an important role in new particle formation. The T-mixing lab tunnel tends to favor the nucleation due to a larger dilution rate of the exhaust than the coaxial mixing field tunnel. Our study indicates that numerical simulation tools can be potentially utilized to develop strategies to reduce the uncertainties associated with dilution samplings of emission sources.

  11. 14 CFR 34.30 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas... aircraft gas turbine engines certificated for operation within the United States of the classes specified...

  12. 14 CFR 34.30 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas... aircraft gas turbine engines certificated for operation within the United States of the classes specified...

  13. Method for generating a highly reactive plasma for exhaust gas after treatment and enhanced catalyst reactivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.

    This patent application describes a method and apparatus of exhaust gas remediation that enhance the reactivity of the material catalysts found within catalytic converters of cars, trucks, and power stations.

  14. Thermal chemical recuperation method and system for use with gas turbine systems

    DOEpatents

    Yang, W.C.; Newby, R.A.; Bannister, R.L.

    1999-04-27

    A system and method are disclosed for efficiently generating power using a gas turbine, a steam generating system and a reformer. The gas turbine receives a reformed fuel stream and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer. The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine. 2 figs.

  15. Thermal chemical recuperation method and system for use with gas turbine systems

    DOEpatents

    Yang, Wen-Ching; Newby, Richard A.; Bannister, Ronald L.

    1999-01-01

    A system and method for efficiently generating power using a gas turbine, a steam generating system (20, 22, 78) and a reformer. The gas turbine receives a reformed fuel stream (74) and an air stream and produces shaft power and exhaust. Some of the thermal energy from the turbine exhaust is received by the reformer (18). The turbine exhaust is then directed to the steam generator system that recovers thermal energy from it and also produces a steam flow from a water stream. The steam flow and a fuel stream are directed to the reformer that reforms the fuel stream and produces the reformed fuel stream used in the gas turbine.

  16. The Reduction of NOx Using Pulsed Electron Beams

    DTIC Science & Technology

    2015-12-30

    flue gas (SFG) is described. The SFG is a simulant for exhaust flue gas from a coal combustion power plant. The technology utilizes a pulsed electron...a surrogate flue gas (SFG) is described. The SFG simulates exhaust flue gas from a coal combustion power plant. The technology utilizes a pulsed...temperature combustion in air-breathing engines and coal power plants. The gases are also produced in nature during thunderstorms by lightning

  17. 40 CFR 63.3545 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., as appropriate, to measure gas volumetric flow rate. (3) Use Method 3, 3A, or 3B of appendix A to 40 CFR part 60, as appropriate, for gas analysis to determine dry molecular weight. You may also use as... monoxide content of exhaust gas in ANSI/ASME PTC 19.10-1981, “Flue and Exhaust Gas Analyses [Part 10...

  18. 40 CFR 87.21 - Standards for exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... aircraft gas turbine engine of class T8 manufactured on or after February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each new aircraft gas turbine engine of class TF and of... gas turbine engine of class T3 manufactured on or after January 1, 1978, shall not exceed: Smoke...

  19. 40 CFR 87.21 - Standards for exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... aircraft gas turbine engine of class T8 manufactured on or after February 1, 1974, shall not exceed: Smoke number of 30. (b) Exhaust emissions of smoke from each new aircraft gas turbine engine of class TF and of... gas turbine engine of class T3 manufactured on or after January 1, 1978, shall not exceed: Smoke...

  20. 77 FR 11421 - Airworthiness Directives; Pratt & Whitney Canada, Auxiliary Power Units

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-27

    ... separation of the rear gas generator case and release of high energy debris. This proposed AD would require modifications of the rear gas generator case, exhaust duct support, and turbine exhaust duct flanges. We are proposing this AD to prevent separation of the rear gas generator case and release of high energy debris...

  1. Review of homogeneous charge compression ignition (HCCI) combustion engines and exhaust gas recirculation (EGR) effects on HCCI

    NASA Astrophysics Data System (ADS)

    Akma Tuan Kamaruddin, Tengku Nordayana; Wahid, Mazlan Abdul; Sies, Mohsin Mohd

    2012-06-01

    This paper describes the development in ICE which leads to the new advanced combustion mode named Homogeneous Charge Compression Ignition (HCCI). It explains regarding the theory and working principle of HCCI plus the difference of the process in gasoline and diesel fuelled engines. Many of pioneer and recent research works are discussed to get the current state of art about HCCI. It gives a better indication on the potential of this method in improving the fuel efficiency and emission produced by the vehicles' engine. Apart from the advantages, the challenges and future trend of this technology are also included. HCCI is applying few types of control strategy in producing the optimum performance. This paper looks into Exhaust Gas Recirculation (EGR) as one of the control strategies.

  2. Combustion Model of Supersonic Rocket Exhausts in an Entrained Flow Enclosure

    NASA Technical Reports Server (NTRS)

    Vu, Bruce; Oliveira, Justin

    2011-01-01

    This paper describes the Computation Fluid Dynamics (CFD) model developed to simulate the supersonic rocket exhaust in an entrained flow cylinder. The model can be used to study the plume-induced environment due to static firing test of the Taurus II launch vehicle. The finite rate chemistry is used to model the combustion process involving rocket propellant (RP 1) and liquid oxidizer (LOX). A similar chemical reacting model is also used to simulate the mixing of rocket plume and ambient air. The model provides detailed information on the gas concentration and other flow parameters within the enclosed region thus allowing different operating scenarios to be examined in an efficient manner. It is shown that the real gas influence is significant and yields better agreement with the theory.

  3. Combustion Model of Supersonic Rocket Exhausts in an Entrained Flow Enclosure

    NASA Technical Reports Server (NTRS)

    Vu, Bruce T.; Oliveira, Justin

    2011-01-01

    This paper describes the Computational Fluid Dynamics (CFD) model developed to simulate the supersonic rocket exhaust in an entrained flow cylinder. The model can be used to study the plume-induced environment due to static firing tests of the Taurus-II launch vehicle. The finite-rate chemistry is used to model the combustion process involving rocket propellant (RP-1) and liquid oxidizer (LOX). A similar chemical reacting model is also used to simulate the mixing of rocket plume and ambient air. The model provides detailed information on the gas concentration and other flow parameters within the enclosed region, thus allowing different operating scenarios to be examined in an efficient manner. It is shown that the real gas influence is significant and yields better agreement with the theory.

  4. Reducing exhaust gas emissions from Citydiesel busses

    NASA Astrophysics Data System (ADS)

    Mikkonen, Seppo

    The effect of fuel composition and exhaust gas aftertreatment on the emissions was measured from truck and bus engines. Possibilities to measure unregulated emissions (aldehydes, polyaromatic hydrocarbons, mutagenicity) were built. A reformulated diesel fuel 'Citydiesel' was developed. Citydiesel was able to reduce emissions compared to standard diesel fuel as follows: particulates by 10 to 30%, nitrogen oxides by 2 to 10%, sulphur dioxide by 97%, polyaromatic hydrocarbons (PAH) over 50%, mutagenicity of the exhaust particulates clearly, odor of the exhaust, and smoke after a cold start. The use of Citydiesel fuel reduces emissions of the existing vehicles immediately which is a remarkable benefit. The very low sulphur content (below 50 ppm) makes it possible to use oxidation. catalytic converters to reduce emissions of diesel vehicles. The new Euro 2 exhaust regulations coming into force during 1996 can be met with a modern diesel engine, Citydiesel fuel, and exhaust gas aftertreatment. Properties of Citydiesel fuel were verified in a three year field test with 140 city buses. Experience was good; e.g., engine oil change interval could be lengthened. Total value of the exhaust was estimated with different fuels and aftertreatment device in order to find out cheap ways to reduce emissions.

  5. Chemical composition of gas-phase organic carbon emissions from motor vehicles and implications for ozone production.

    PubMed

    Gentner, Drew R; Worton, David R; Isaacman, Gabriel; Davis, Laura C; Dallmann, Timothy R; Wood, Ezra C; Herndon, Scott C; Goldstein, Allen H; Harley, Robert A

    2013-10-15

    Motor vehicles are major sources of gas-phase organic carbon, which includes volatile organic compounds (VOCs) and other compounds with lower vapor pressures. These emissions react in the atmosphere, leading to the formation of ozone and secondary organic aerosol (SOA). With more chemical detail than previous studies, we report emission factors for over 230 compounds from gasoline and diesel vehicles via two methods. First we use speciated measurements of exhaust emissions from on-road vehicles in summer 2010. Second, we use a fuel composition-based approach to quantify uncombusted fuel components in exhaust using the emission factor for total uncombusted fuel in exhaust together with detailed chemical characterization of liquid fuel samples. There is good agreement between the two methods except for products of incomplete combustion, which are not present in uncombusted fuels and comprise 32 ± 2% of gasoline exhaust and 26 ± 1% of diesel exhaust by mass. We calculate and compare ozone production potentials of diesel exhaust, gasoline exhaust, and nontailpipe gasoline emissions. Per mass emitted, the gas-phase organic compounds in gasoline exhaust have the largest potential impact on ozone production with over half of the ozone formation due to products of incomplete combustion (e.g., alkenes and oxygenated VOCs). When combined with data on gasoline and diesel fuel sales in the U.S., these results indicate that gasoline sources are responsible for 69-96% of emissions and 79-97% of the ozone formation potential from gas-phase organic carbon emitted by motor vehicles.

  6. Source Contaminant Control for the Heat Melt Compactor

    NASA Technical Reports Server (NTRS)

    Roman, Monsi; Howard, David

    2015-01-01

    The Logistics Reduction and Repurposing project includes the heat melt compactor (HMC), a device that compacts waste containing plastic into a tile that will minimize volume, and may be used as materials for radiation shielding. During the process, a small purge gas stream is directed through the HMC chamber to transport out gasses and humidity released from the process. NASA Marshall Space Flight Center is tasked with developing and delivering a contamination control system to clean the purge gas prior to exhausting it back into the cabin for crew inhalation.

  7. 40 CFR 90.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...

  8. 40 CFR 90.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...

  9. 40 CFR 90.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...

  10. 40 CFR 90.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...

  11. 40 CFR 90.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... sampling probe. (2) Exhaust flow metering system. A dilute exhaust flow metering system must be used to... exhaust. The background probe must draw a representative sample of the background air during each sampling... (bag) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe...

  12. Validation of scramjet exhaust simulation technique at Mach 6

    NASA Technical Reports Server (NTRS)

    Hopkins, H. B.; Konopka, W.; Leng, J.

    1979-01-01

    Current design philosophy for hydrogen-fueled, scramjet-powered hypersonic aircraft results in configurations with strong couplings between the engine plume and vehicle aerodynamics. The experimental verification of the scramjet exhaust simulation is described. The scramjet exhaust was reproduced for the Mach 6 flight condition by the detonation tube simulator. The exhaust flow pressure profiles, and to a large extent the heat transfer rate profiles, were then duplicated by cool gas mixtures of Argon and Freon 13B1 or Freon 12. The results of these experiments indicate that a cool gas simulation of the hot scramjet exhaust is a viable simulation technique except for phenomena which are dependent on the wall temperature relative to flow temperature.

  13. Burnout control at the Albright coal-waste-bank fire. Rept. of investigations/1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chaiken, R.F.; Bayles, L.G.

    1991-01-01

    Burnout Control is a process developed by the U.S. Bureau of Mines for accelerating the burning of wasted coal fires in situ, while at the same time controlling the heat and fumes produced. The Albright fire project is a first field trial of Burnout Control as applied to a coal waste bank. An exhaust ventilation system was designed and constructed and then operated over a 1-year period at the site of an existing abandoned mine land fire near the town of Albright, W.V. While predicted exhaust gas temperatures of 900 C and thermal power levels of 5 MW were achievedmore » at 20- to 30-in H2O vacuum levels, problems were encountered with engineering designs, equipment breakdown, and fuel-rich combustion that curtailed the time period of satisfactory operation. Effective afterburning of the exhaust gases (as they were drawn from the bank) corrected the problems associated with combustion stoichiometry and led to high thermal outputs. It is believed that with (1) improvements in engineering design and construction, (2) better control of the afterburning process, and (3) the use of conventional stack gas air-pollution controls, Burnout Control can be applied successfully to a coal waste bank fire.« less

  14. Control of diesel gaseous and particulate emissions with a tube-type wet electrostatic precipitator.

    PubMed

    Saiyasitpanich, Phirun; Keener, Tim C; Lu, Mingming; Liang, Fuyan; Khang, Soon-Jai

    2008-10-01

    In this study, experiments were performed with a bench-scale tube-type wet electrostatic precipitator (wESPs) to investigate its effectiveness for the removal of mass- and number-based diesel particulate matter (DPM), hydrocarbons (HCs), carbon monoxide (CO), and oxides of nitrogen (NOx) from diesel exhaust emissions. The concentration of ozone (O3) present in the exhaust that underwent a nonthermal plasma treatment process inside the wESP was also measured. A nonroad diesel generator operating at varying load conditions was used as a stationary diesel emission source. The DPM mass analysis was conducted by means of isokinetic sampling and the DPM mass concentration was determined by a gravimetric method. An electrical low-pressure impactor (ELPI) was used to quantify the DPM number concentration. The HC compounds, n-alkanes, and polycyclic aromatic hydrocarbons (PAHs) were collected on a moisture-free quartz filter together with a PUF/XAD/PUF cartridge and extracted in dichloromethane with sonication. Gas chromatography (GC)/mass spectroscopy (MS) was used to determine HC concentrations in the extracted solution. A calibrated gas combustion analyzer (Testo 350) and an O3 analyzer were used for quantifying the inlet and outlet concentrations of CO and NOx (nitric oxide [NO] + nitrogen dioxide [NO2]), and O3 in the diesel exhaust stream. The wESP was capable of removing approximately 67-86% of mass- and number-based DPM at a 100% exhaust volumetric flow rate generated from 0- to 75-kW engine loads. At 75-kW engine load, increasing gas residence time from approximately 0.1 to 0.4 sec led to a significant increase of DPM removal efficiency from approximately 67 to more than 90%. The removal of n-alkanes, 16 PAHs, and CO in the wESP ranged from 31 to 57% and 5 to 38%, respectively. The use of the wESP did not significantly affect NOx concentration in diesel exhaust. The O3 concentration in diesel exhaust was measured to be less than 1 ppm. The main mechanisms responsible for the removal of these pollutants from diesel exhaust are discussed.

  15. 14 CFR 34.20 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.20 Applicability. The provisions of this subpart are applicable to all aircraft gas...

  16. 14 CFR 34.20 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.20 Applicability. The provisions of this subpart are applicable to all aircraft gas...

  17. Exhaust gas cleaning catalysts and method of producing same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeoka, S.; Inaba, H.; Ichiki, M.

    1976-02-17

    Exhaust gas cleaning catalysts are produced by alloying copper and aluminum with at least one of the elements, nickel and chromium, and eluting by alkali or acid means aluminum from the cooled alloy surface. Small amounts of other metals from the fourth or fifth period V--VIII groups may be added to the catalysts by alloying, or by impregnation, for enhanced catalytic properties. The catalysts exhibit improved reduction of NO and oxidation of CO in an exhaust gas stream, in the presence of Pb, SO/sub 2/, moisture and hydrocarbons (HC) and at relatively low temperatures.

  18. Particle-bound benzene from diesel engine exhaust.

    PubMed

    Muzyka, V; Veimer, S; Shmidt, N

    1998-12-01

    The large surface area of the carbon core of diesel exhaust particles may contribute to the adsorption or condensation of such volatile carcinogenic organic compounds as benzene. The attention of this study focused on determining the distribution of benzene between the gas and particulate phases in the breathing zone of bus garage workers. Benzene and suspended particulate matter were evaluated jointly in the air of a municipal bus garage. Personal passive monitors were used for benzene sampling in the breathing zone of the workers. Active samplers were used for sampling diesel exhaust particles and the benzene associated with them. The benzene levels were measured by gas chromatography. Diesel engine exhaust from buses was the main source of air pollution caused by benzene and particles in this study. The concentration of benzene in the gas and particulate phases showed a wide range of variation, depending on the distance of the workplace from the operating diesel engine. Benzene present in the breathing zone of the workers was distributed between the gas and particulate phases. The amounts of benzene associated with particles were significantly lower in summer than in winter. The particulate matter of diesel exhaust contains benzene in amounts comparable to the concentrations of carcinogenic polycyclic aromatic hydrocarbons (PAH) and the usually found nitro-PAH. The concentration of benzene in the gas phase and in the suspended particulate matter of air can serve as an additional indicator of exposure to diesel exhaust and its carcinogenicity.

  19. Dynamic Test Bed Analysis of Gas Energy Balance for a Diesel Exhaust System Fit with a Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Dobrzyński, Michal

    2017-05-01

    Analysis of the energy balance for an exhaust system of a diesel engine fit with an automotive thermoelectric generator (ATEG) of our own design has been carried out. A special measurement system and dedicated software were developed to measure the power generated by the modules. The research object was a 1.3-l small diesel engine with power output of 66 kW. The tests were carried out on a dynamic engine test bed that allows reproduction of an actual driving cycle expressed as a function V = f( t), simulating drivetrain (clutch, transmission) operating characteristics, vehicle geometrical parameters, and driver behavior. Measurements of exhaust gas thermodynamic parameters (temperature, pressure, and mass flow) as well as the voltage and current generated by the thermoelectric modules were performed during tests of our own design. Based on the results obtained, the flow of exhaust gas energy in the entire exhaust system was determined along with the ATEG power output. The ideal area of the exhaust system for location of the ATEG was defined to ensure the highest thermal energy recovery efficiency.

  20. A Mathematical Model for the Exhaust Gas Temperature Profile of a Diesel Engine

    NASA Astrophysics Data System (ADS)

    Brito, C. H. G.; Maia, C. B.; Sodré, J. R.

    2015-09-01

    This work presents a heat transfer model for the exhaust gas of a diesel power generator to determine the gas temperature profile in the exhaust pipe. The numerical methodology to solve the mathematical model was developed using a finite difference method approach for energy equation resolution and determination of temperature profiles considering turbulent fluid flow and variable fluid properties. The simulation was carried out for engine operation under loads from 0 kW to 40 kW. The model was compared with results obtained using the multidimensional Ansys CFX software, which was applied to solve the governor equations of turbulent fluid flow. The results for the temperature profiles in the exhaust pipe show a good proximity between the mathematical model developed and the multidimensional software.

  1. Pulse combusted acoustic agglomeration apparatus and process

    DOEpatents

    Mansour, Momtaz N.

    1993-01-01

    An improved apparatus and process for removal of particulates entrained in a gas stream are provided. The removal process employs a pulse combustor to provide an acoustic pressure wave to acoustically enhance bimodal agglomeration of particulates which may be collected and removed using a conventional separation apparatus. A particulate having a size different from the size of the particulate in the gas stream to be cleaned is introduced into the system to effectuate the bimodal process. The apparatus may be employed as a direct fired system for improved operation of gas-operated equipment such as a gas turbine, or may, alternatively, be employed as an add-on subsystem for combustion exhaust clean-up. Additionally, the added particulate may be a sorbent for effecting sorption of other contaminants such as sulfur. Various other particulates for contaminant removal may also be introduced into the system as exemplified by alkali-gettering agents.

  2. Thermal engine driven heat pump for recovery of volatile organic compounds

    DOEpatents

    Drake, Richard L.

    1991-01-01

    The present invention relates to a method and apparatus for separating volatile organic compounds from a stream of process gas. An internal combustion engine drives a plurality of refrigeration systems, an electrical generator and an air compressor. The exhaust of the internal combustion engine drives an inert gas subsystem and a heater for the gas. A water jacket captures waste heat from the internal combustion engine and drives a second heater for the gas and possibly an additional refrigeration system for the supply of chilled water. The refrigeration systems mechanically driven by the internal combustion engine effect the precipitation of volatile organic compounds from the stream of gas.

  3. Analysis of carbon dioxide emission of gas fuelled cogeneration plant

    NASA Astrophysics Data System (ADS)

    Nordin, Adzuieen; Amin, M.; Majid, A.

    2013-12-01

    Gas turbines are widely used for power generation. In cogeneration system, the gas turbine generates electricity and the exhaust heat from the gas turbine is used to generate steam or chilled water. Besides enhancing the efficiency of the system, the process assists in reducing the emission of CO2 to the environment. This study analyzes the amount of CO2 emission by Universiti Teknologi Petronas gas fuelled cogeneration system using energy balance equations. The results indicate that the cogeneration system reduces the CO2 emission to the environment by 60%. This finding could encourage the power plant owners to install heat recovery systems to their respective plants.

  4. Effective height of chimney for biomass cook stove simulated by computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Faisal; Setiawan, A.; Wusnah; Khairil; Luthfi

    2018-02-01

    This paper presents the results of numerical modelling of temperature distribution and flow pattern in a biomass cooking stove using CFD simulation. The biomass stove has been designed to suite the household cooking process. The stove consists of two pots. The first is the main pot located on the top of the combustion chamber where the heat from the combustion process is directly received. The second pot absorbs the heat from the exhaust gas. A chimney installed at the end of the stove releases the exhaust gas to the ambient air. During the tests, the height of chimney was varied to find the highest temperatures at both pots. Results showed that the height of the chimney at the highest temperatures of the pots is 1.65 m. This chimney height was validated by developing a model for computational fluid dynamics. Both experimental and simulations results show a good agreement and help in tune-fining the design of biomass cooking stove.

  5. The effects of detoxification of domestic gas on suicide in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lester, D.

    As domestic gas was detoxified in the United States, the rate of suicide by domestic gas decreased. During this time period (1950-60), there was a parallel increase in the per capita ownership of cars and an accompanying increase in the rate of suicide by motor vehicle exhaust. However, displacement of suicide method from domestic gas to car exhaust occurred only for males and not for females.

  6. Exhaust gas treatment in testing nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Zweig, Herbert R.; Fischler, Stanley; Wagner, William R.

    1993-01-01

    With the exception of the last test series of the Rover program, Nuclear Furnace 1, test-reactor and rocket engine hydrogen gas exhaust generated during the Rover/NERVA program was released directly to the atmosphere, without removal of the associated fission products and other radioactive debris. Current rules for nuclear facilities (DOE Order 5480.6) are far more protective of the general environment; even with the remoteness of the Nevada Test Site, introduction of potentially hazardous quantities of radioactive waste into the atmosphere must be scrupulously avoided. The Rocketdyne treatment concept features a diffuser to provide altitude simulation and pressure recovery, a series of heat exchangers to gradually cool the exhaust gas stream to 100 K, and an activated charcoal bed for adsorption of inert gases. A hydrogen-gas fed ejector provides auxiliary pumping for startup and shutdown of the engine. Supplemental filtration to remove particulates and condensed phases may be added at appropriate locations in the system. The clean hydrogen may be exhausted to the atmosphere and flared, or the gas may be condensed and stored for reuse in testing. The latter approach totally isolates the working gas from the environment.

  7. 14 CFR 34.60 - Introduction.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.60 Introduction. (a) Except as provided... determine the conformity of new aircraft gas turbine engines with the applicable standards set forth in this...

  8. 14 CFR 34.30 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.30 Applicability. The provisions of this subpart are applicable to all in-use aircraft gas turbine engines certificated for operation within the United States of the classes specified...

  9. 14 CFR 34.30 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.30 Applicability. The provisions of this subpart are applicable to all in-use aircraft gas turbine engines certificated for operation within the United States of the classes specified...

  10. 14 CFR 34.30 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.30 Applicability. The provisions of this subpart are applicable to all in-use aircraft gas turbine engines certificated for operation within the United States of the classes specified...

  11. 14 CFR 34.20 - Applicability.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.20 Applicability. The provisions of this subpart are applicable to all aircraft gas turbine engines of the classes specified beginning on the dates specified in § 34.21. ...

  12. 14 CFR 34.20 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.20 Applicability. The provisions of this subpart are applicable to all aircraft gas turbine engines of the classes specified beginning on the dates specified in § 34.21. ...

  13. 14 CFR 34.20 - Applicability.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.20 Applicability. The provisions of this subpart are applicable to all aircraft gas turbine engines of the classes specified beginning on the dates specified in § 34.21. ...

  14. Odor intensity and characterization studies of exhaust from a turbojet engine combustor

    NASA Technical Reports Server (NTRS)

    Butze, H. F.; Kendall, D. A.

    1973-01-01

    Sensory odor tests of the exhaust from a turbojet combustor operating at simulated idle conditions were made by a human panel sniffing diluted exhaust gas. Simultaneously, samples of undiluted exhaust gas were collected on adsorbent substrates, subsequently removed by solvent flushing, and analyzed chemically by liquid chromatographic methods. The concentrations of the principal malodorous species, the aromatic (unburned fuel-related) and the oxygenated (partially burned fuel) fractions, as determined chromatographically, correlated well with the intensity of the odor as determined by sniffing. Odor intensity increased as combustion efficiency decreased. Combustor modifications which increased combustion efficiency decreased odor intensity.

  15. Particulate emissions from diesel engines: correlation between engine technology and emissions.

    PubMed

    Fiebig, Michael; Wiartalla, Andreas; Holderbaum, Bastian; Kiesow, Sebastian

    2014-03-07

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted.Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions.Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the particulate emissions without a negative impact on the particulate-size distribution towards smaller particles. The residual particles can be trapped in a diesel particulate trap independent of their size or the engine operating mode. The usage of a wall-flow diesel particulate filter leads to an extreme reduction of the emitted particulate mass and number, approaching 100%. A reduced particulate mass emission is always connected to a reduced particle number emission.

  16. Particulate emissions from diesel engines: correlation between engine technology and emissions

    PubMed Central

    2014-01-01

    In the last 30 years, diesel engines have made rapid progress to increased efficiency, environmental protection and comfort for both light- and heavy-duty applications. The technical developments include all issues from fuel to combustion process to exhaust gas aftertreatment. This paper provides a comprehensive summary of the available literature regarding technical developments and their impact on the reduction of pollutant emission. This includes emission legislation, fuel quality, diesel engine- and exhaust gas aftertreatment technologies, as well as particulate composition, with a focus on the mass-related particulate emission of on-road vehicle applications. Diesel engine technologies representative of real-world on-road applications will be highlighted. Internal engine modifications now make it possible to minimize particulate and nitrogen oxide emissions with nearly no reduction in power. Among these modifications are cooled exhaust gas recirculation, optimized injections systems, adapted charging systems and optimized combustion processes with high turbulence. With introduction and optimization of exhaust gas aftertreatment systems, such as the diesel oxidation catalyst and the diesel particulate trap, as well as NOx-reduction systems, pollutant emissions have been significantly decreased. Today, sulfur poisoning of diesel oxidation catalysts is no longer considered a problem due to the low-sulfur fuel used in Europe. In the future, there will be an increased use of bio-fuels, which generally have a positive impact on the particulate emissions and do not increase the particle number emissions. Since the introduction of the EU emissions legislation, all emission limits have been reduced by over 90%. Further steps can be expected in the future. Retrospectively, the particulate emissions of modern diesel engines with respect to quality and quantity cannot be compared with those of older engines. Internal engine modifications lead to a clear reduction of the particulate emissions without a negative impact on the particulate-size distribution towards smaller particles. The residual particles can be trapped in a diesel particulate trap independent of their size or the engine operating mode. The usage of a wall-flow diesel particulate filter leads to an extreme reduction of the emitted particulate mass and number, approaching 100%. A reduced particulate mass emission is always connected to a reduced particle number emission. PMID:24606725

  17. Monitoring of pollutant gases in aircraft exhausts by gas-filter correlation methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gryvnak, D.A.; Burch, D.E.

    1976-01-01

    An infrared instrument using a gas-filter correlation technique was used to monitor NO and CO by looking across the exhaust plume of a T56 jet engine combustor. The instrument, built previously by Aeronutronic Ford for EPA to monitor pollutant gases in smokestack exhausts, was modified for use on the combustor. Temperatures and concentrations ranged from 300 to 930 K and up to 130 ppM for NO, and from 300 to 550/sup 0/K and up to 220 ppM for CO. The infrared results compared reasonably well with results that were obtained simultaneously by withdrawing the sample using probe techniques and analyzingmore » the gas with a conventional gas analyzer.« less

  18. Hydrogen-fueled engine

    NASA Technical Reports Server (NTRS)

    Laumann, E. A.; Reynolds, R. K. (Inventor)

    1978-01-01

    A hydrogen-oxygen fueled internal combustion engine is described, which utilizes an inert gas, such as argon, as a working fluid to increase the efficiency of the engine, eliminate pollution, and facilitate operation of a closed cycle energy system. In a system where sunlight or other intermittent energy source is available to separate hydrogen and oxygen from water, the oxygen and inert gas are taken into a diesel engine into which hydrogen is injected and ignited. The exhaust is cooled so that it contains only water and the inert gas. The inert gas in the exhaust is returned to the engine for use with fresh oxygen, while the water in the exhaust is returned to the intermittent energy source for reconversion to hydrogen and oxygen.

  19. Effects of Exercise Training and Social Environment on Stress Resilience in Male and Female Long-Evans Rats

    DTIC Science & Technology

    2010-03-15

    1976) described the stress response as a process, named the general adaptation syndrome (GAS). The GAS is a non-specific stress response that...individual attempts to return to normal functioning. The exhaustion phase is also known as burnout , and occurs when the individual no longer has...including cardiovascular disease, obesity, diabetes, and metabolic syndrome . Physical activity is defined as any bodily movement produced by skeletal

  20. Exhaust gas bypass valve control for thermoelectric generator

    DOEpatents

    Reynolds, Michael G; Yang, Jihui; Meisner, Greogry P.; Stabler, Francis R.; De Bock, Hendrik Pieter Jacobus; Anderson, Todd Alan

    2012-09-04

    A method of controlling engine exhaust flow through at least one of an exhaust bypass and a thermoelectric device via a bypass valve is provided. The method includes: determining a mass flow of exhaust exiting an engine; determining a desired exhaust pressure based on the mass flow of exhaust; comparing the desired exhaust pressure to a determined exhaust pressure; and determining a bypass valve control value based on the comparing, wherein the bypass valve control value is used to control the bypass valve.

  1. Milestone Report #2: Direct Evaporator Leak and Flammability Analysis Modifications and Optimization of the Organic Rankine Cycle to Improve the Recovery of Waste Heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guillen, Donna Post

    2013-09-01

    The direct evaporator is a simplified heat exchange system for an Organic Rankine Cycle (ORC) that generates electricity from a gas turbine exhaust stream. Typically, the heat of the exhaust stream is transferred indirectly to the ORC by means of an intermediate thermal oil loop. In this project, the goal is to design a direct evaporator where the working fluid is evaporated in the exhaust gas heat exchanger. By eliminating one of the heat exchangers and the intermediate oil loop, the overall ORC system cost can be reduced by approximately 15%. However, placing a heat exchanger operating with a flammablemore » hydrocarbon working fluid directly in the hot exhaust gas stream presents potential safety risks. The purpose of the analyses presented in this report is to assess the flammability of the selected working fluid in the hot exhaust gas stream stemming from a potential leak in the evaporator. Ignition delay time for cyclopentane at temperatures and pressure corresponding to direct evaporator operation was obtained for several equivalence ratios. Results of a computational fluid dynamic analysis of a pinhole leak scenario are given.« less

  2. 14 CFR 34.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.64 Sampling and analytical procedures for measuring gaseous exhaust emissions. The...

  3. 14 CFR 34.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.64 Sampling and analytical procedures for measuring gaseous exhaust emissions. The...

  4. Energy Efficient Waste Heat Recovery from an Engine Exhaust System

    DTIC Science & Technology

    2016-12-01

    targets. Since solar panels and wind turbines will not work for ships; the energy savings must come from making the existing power generation...achieve an approximate solution to the problem . The research for this thesis involved design by analysis of heat exchange in a gas turbine exhaust...effectiveness of a new style of heat exchanger for waste heat recovery. The new design sought to optimize heat recovery from a gas turbine engine exhaust as

  5. [Purification of complicated industrial organic waste gas by complex absorption].

    PubMed

    Chen, Ding-Sheng; Cen, Chao-Ping; Tang, Zhi-Xiong; Fang, Ping; Chen, Zhi-Hang

    2011-12-01

    Complicated industrial organic waste gas with the characteristics of low concentration,high wind volume containing inorganic dust and oil was employed the research object by complex absorption. Complex absorption mechanism, process flow, purification equipment and engineering application were studied. Three different surfactants were prepared for the composite absorbent to purify exhaust gas loaded with toluene and butyl acetate, respectively. Results show that the low surface tension of the composite absorbent can improve the removal efficiency of toluene and butyl acetate. With the advantages of the water film, swirl plate and fill absorption device, efficient absorption equipment was developed for the treatment of complicated industrial organic waste gas. It is with superiorities of simple structure, small size, anti-jam and high mass transfer. Based on absorption technology, waste gas treatment process integrated with heating stripping, burning and anaerobic and other processes, so that emissions of waste gas and absorption solution could meet the discharge standards. The technology has been put into practice, such as manufacturing and spraying enterprises.

  6. 40 CFR Table 2 to Subpart Jjjj of... - Requirements for Performance Tests

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Interface Gas Chromatography/Mass Spectrometry as an alternative to EPA Method 18 for measuring total... portable analyzer. b You may use ASME PTC 19.10-1981, Flue and Exhaust Gas Analyses, for measuring the O2 content of the exhaust gas as an alternative to EPA Method 3B. c You may use EPA Method 18 of 40 CFR part...

  7. 40 CFR Table 2 to Subpart Jjjj of... - Requirements for Performance Tests

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Interface Gas Chromatography/Mass Spectrometry as an alternative to EPA Method 18 for measuring total... portable analyzer. b You may use ASME PTC 19.10-1981, Flue and Exhaust Gas Analyses, for measuring the O2 content of the exhaust gas as an alternative to EPA Method 3B. c You may use EPA Method 18 of 40 CFR part...

  8. Corner heating in rectangular solid oxide electrochemical cell generators

    DOEpatents

    Reichner, Philip

    1989-01-01

    Disclosed is an improvement in a solid oxide electrochemical cell generator 1 having a rectangular design with four sides that meet at corners, and containing multiplicity of electrically connected fuel cells 11, where a fuel gas is passed over one side of said cells and an oxygen containing gas is passed into said cells, and said fuel is burned to form heat, electricity, and an exhaust gas. The improvement comprises passing the exhaust gases over the multiplicity of cells 11 in such a way that more of the heat in said exhaust gases flows at the corners of the generator, such as through channels 19.

  9. The simulation of a propulsive jet and force measurement using a magnetically suspended wind tunnel model

    NASA Technical Reports Server (NTRS)

    Garbutt, K. S.; Goodyer, M. J.

    1994-01-01

    Models featuring the simulation of exhaust jets were developed for magnetic levitation in a wind tunnel. The exhaust gas was stored internally producing a discharge of sufficient duration to allow nominal steady state to be reached. The gas was stored in the form of compressed gas or a solid rocket propellant. Testing was performed with the levitated models although deficiencies prevented the detection of jet-induced aerodynamic effects. Difficulties with data reduction led to the development of a new force calibration technique, used in conjunction with an exhaust simulator and also in separate high incidence aerodynamic tests.

  10. 40 CFR 86.004-28 - Compliance with emission standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... factor may not be appropriate in cases where testing variability is significantly greater than engine-to-engine variability. Multiplicative deterioration factors must be specified to one more significant figure... regenerations are increasing exhaust gas temperature to remove sulfur from an adsorber or increasing exhaust gas...

  11. 40 CFR 63.1573 - What are my monitoring alternatives?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... continuous gas analyzer to measure and record the concentration of carbon dioxide, carbon monoxide, and... instrumentations, dscm/min (dscf/min); %CO2 = Carbon dioxide concentration in regenerator exhaust, percent by... regenerator atmospheric exhaust gas flow rate for your catalytic reforming unit during the coke burn and...

  12. Method and apparatus for controlling fuel/air mixture in a lean burn engine

    DOEpatents

    Kubesh, John Thomas; Dodge, Lee Gene; Podnar, Daniel James

    1998-04-07

    The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

  13. Increased PIO2 at Exhaustion in Hypoxia Enhances Muscle Activation and Swiftly Relieves Fatigue: A Placebo or a PIO2 Dependent Effect?

    PubMed Central

    Torres-Peralta, Rafael; Losa-Reyna, José; Morales-Alamo, David; González-Izal, Miriam; Pérez-Suárez, Ismael; Ponce-González, Jesús G.; Izquierdo, Mikel; Calbet, José A. L.

    2016-01-01

    To determine the level of hypoxia from which muscle activation (MA) is reduced during incremental exercise to exhaustion (IE), and the role played by PIO2 in this process, ten volunteers (21 ± 2 years) performed four IE in severe acute hypoxia (SAH) (PIO2 = 73 mmHg). Upon exhaustion, subjects were asked to continue exercising while the breathing gas mixture was swiftly changed to a placebo (73 mmHg) or to a higher PIO2 (82, 92, 99, and 142 mmHg), and the IE continued until a new exhaustion. At the second exhaustion, the breathing gas was changed to room air (normoxia) and the IE continued until the final exhaustion. MA, as reflected by the vastus medialis (VM) and lateralis (VL) EMG raw and normalized root mean square (RMSraw, and RMSNz, respectively), normalized total activation index (TAINz), and burst duration were 8–20% lower at exhaustion in SAH than in normoxia (P < 0.05). The switch to a placebo or higher PIO2 allowed for the continuation of exercise in all instances. RMSraw, RMSNz, and TAINz were increased by 5–11% when the PIO2 was raised from 73 to 92, or 99 mmHg, and VL and VM averaged RMSraw by 7% when the PIO2 was elevated from 73 to 142 mmHg (P < 0.05). The increase of VM-VL average RMSraw was linearly related to the increase in PIO2, during the transition from SAH to higher PIO2 (R2 = 0.915, P < 0.05). In conclusion, increased PIO2 at exhaustion reduces fatigue and allows for the continuation of exercise in moderate and SAH, regardless of the effects of PIO2 on MA. At task failure, MA is increased during the first 10 s of increased PIO2 when the IE is performed at a PIO2 close to 73 mmHg and the PIO2 is increased to 92 mmHg or higher. Overall, these findings indicate that one of the central mechanisms by which severe hypoxia may cause central fatigue and task failure is by reducing the capacity for reaching the appropriate level of MA to sustain the task. The fact that at exhaustion in severe hypoxia the exercise was continued with the placebo-gas mixture demonstrates that this central mechanism has a cognitive component. PMID:27582710

  14. Altitude Performance Characteristics of Turbojet-engine Tail-pipe Burner with Variable-area Exhaust Nozzle Using Several Fuel Systems and Flame Holders

    NASA Technical Reports Server (NTRS)

    Johnson, Lavern A; Meyer, Carl L

    1950-01-01

    A tail-pipe burner with a variable-area exhaust nozzle was investigated. From five configurations a fuel-distribution system and a flame holder were selected. The best configuration was investigated over a range of altitudes and flight Mach numbers. For the best configuration, an increase in altitude lowered the augmented thrust ratio, exhaust-gas total temperature, and tail-pipe combustion efficiency, and raised the specific fuel consumption. An increase in flight Mach number raised the augmented thrust ratio but had no apparent effect on exhaust-gas total temperature, tail-pipe combustion efficiency, or specific fuel consumption.

  15. The Further Development of Heat-Resistant Materials for Aircraft Engines

    NASA Technical Reports Server (NTRS)

    Bollenrath, Franz

    1946-01-01

    The present report deals with the problems involved in the greater utilization and development of aircraft engine materials, and specifically; piston materials, cylinder heads, exhaust valves, and exhaust gas turbine blading. The blades of the exhaust gas turbine are likely to be the highest stressed components of modern power plants from a thermal-mechanical and chemical standpoint, even though the requirements on exhaust valves of engines with gasoline injection are in general no less stringent. For the fire plate in Diesel engines the specifications for mechanical strength and design are not so stringent, and the question of heat resistance, which under these circumstances is easier obtainable, predominates.

  16. 40 CFR 464.31 - Specialized definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... discrete list of toxic organic pollutants for each process segment where it is regulated, as follows: (1... discrete wet scrubbing devices are employed in series in a single melting furnace exhaust gas stream. The ferrous melting furnace scrubber mass allowance shall be given to each discrete wet scrubbing device that...

  17. 40 CFR 202.10 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... need of each individual customer. (d) Cutout or by-pass or similar devices means devices which vary the exhaust system gas flow so as to discharge the exhaust gas and acoustic energy to the atmosphere without... rails. (n) Muffler means a device for abating the sound of escaping gases of an internal combustion...

  18. 40 CFR 202.10 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... need of each individual customer. (d) Cutout or by-pass or similar devices means devices which vary the exhaust system gas flow so as to discharge the exhaust gas and acoustic energy to the atmosphere without... rails. (n) Muffler means a device for abating the sound of escaping gases of an internal combustion...

  19. 40 CFR 202.10 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... need of each individual customer. (d) Cutout or by-pass or similar devices means devices which vary the exhaust system gas flow so as to discharge the exhaust gas and acoustic energy to the atmosphere without... rails. (n) Muffler means a device for abating the sound of escaping gases of an internal combustion...

  20. 40 CFR 202.10 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... need of each individual customer. (d) Cutout or by-pass or similar devices means devices which vary the exhaust system gas flow so as to discharge the exhaust gas and acoustic energy to the atmosphere without... rails. (n) Muffler means a device for abating the sound of escaping gases of an internal combustion...

  1. 30 CFR 7.98 - Technical requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with the exhaust gas cooling efficiency test in § 7.102. A sensor shall be provided that activates the... response to signals from sensors indicating— (1) The coolant temperature limit specified in paragraph (b) of this section; (2) The exhaust gas temperature limit specified in paragraph (s)(4) of this section...

  2. 30 CFR 7.98 - Technical requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with the exhaust gas cooling efficiency test in § 7.102. A sensor shall be provided that activates the... response to signals from sensors indicating— (1) The coolant temperature limit specified in paragraph (b) of this section; (2) The exhaust gas temperature limit specified in paragraph (s)(4) of this section...

  3. 30 CFR 36.6 - Application procedures and requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... overall dimensions of the equipment, location and capacity of the fuel tank, location of flame arresters, exhaust-gas conditioner and its water-supply tank, if applicable, exhaust-gas dilution system, and other..., such as the cylinder head, piston and cylinder liner; and other features that may affect permissibility...

  4. 30 CFR 36.6 - Application procedures and requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... overall dimensions of the equipment, location and capacity of the fuel tank, location of flame arresters, exhaust-gas conditioner and its water-supply tank, if applicable, exhaust-gas dilution system, and other..., such as the cylinder head, piston and cylinder liner; and other features that may affect permissibility...

  5. 30 CFR 36.6 - Application procedures and requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... overall dimensions of the equipment, location and capacity of the fuel tank, location of flame arresters, exhaust-gas conditioner and its water-supply tank, if applicable, exhaust-gas dilution system, and other..., such as the cylinder head, piston and cylinder liner; and other features that may affect permissibility...

  6. 30 CFR 36.6 - Application procedures and requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... overall dimensions of the equipment, location and capacity of the fuel tank, location of flame arresters, exhaust-gas conditioner and its water-supply tank, if applicable, exhaust-gas dilution system, and other..., such as the cylinder head, piston and cylinder liner; and other features that may affect permissibility...

  7. 40 CFR 86.211-94 - Exhaust gas analytical system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty Trucks and New Medium-Duty Passenger Vehicles; Cold Temperature Test Procedures § 86.211-94 Exhaust gas...

  8. 40 CFR 85.2218 - Preconditioned idle test-EPA 91.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Preconditioned idle test-EPA 91. 85... Tests § 85.2218 Preconditioned idle test—EPA 91. (a) General requirements—(1) Exhaust gas sampling algorithm. The analysis of exhaust gas concentrations begins ten seconds after the applicable test mode...

  9. Afterburning control of internal combustion engine exhaust gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Y.; Hayashi, Y.; Nagumo, S.I.

    1976-08-17

    Flow of secondary air into the exhaust system is regulated by diaphragm assembly controlled valves between an air supply and the exhaust system. The diaphragm assemblies respond to vacuum in the intake air system of the engine.

  10. Dedicated exhaust gas recirculation control systems and methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sczomak, David P.; Narayanaswamy, Kushal; Keating, Edward J.

    An engine control system of a vehicle includes a fuel control module that controls fuel injection of a first cylinder of an engine based on a first target air/fuel ratio that is fuel lean relative to a stoichiometric air/fuel ratio and that controls fuel injection of a second cylinder of the engine based on a second target air/fuel ratio that is fuel rich relative to stoichiometry. The first cylinder outputs exhaust to a first three way catalyst (TWC), and the second cylinder outputs exhaust to an exhaust gas recirculation (EGR) valve. An EGR control module controls opening of the EGRmore » valve to: (i) a second TWC that reacts with nitrogen oxides (NOx) in the exhaust and outputs ammonia to a selective catalytic reduction (SCR) catalyst; and (ii) a conduit that recirculates exhaust back to an intake system of the engine.« less

  11. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2001-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime (about 40 ps), high frequency (about 5G hz), high power bursts of low-duty factor microwaves sufficient to generate a dielectric barrier discharge and passing a gas to treated through the discharge so as to cause dissociative reduction of the exhaust gases. The invention also includes a reactor for generating the non-thermal plasma.

  12. Experimental Study on the Plasma Purification for Diesel Engine Exhaust Gas

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Zu, Kan; Wang, Mei

    2018-02-01

    It is known that the use of ternary catalysis is capable of significantly reducing the emission of pollutants from petrol vehicles. However, the disadvantages such as the temperature and other limitations make it unsuitable for diesel engines. The plasma-assisted catalyst technology has been applied in dealing with the diesel exhaust in the experiment in order to do further research on the effects of plasma in exhaust processing. The paper not only includes the experimental observation on the change of particle concentration after the operation of purification device, but also builds the kinetic model of chemical reactions to simulate the reactions of nitrogen oxides in plasma through using the software of Matlab, then compares the calculation results with experimental samples and finally gets some useful conclusions in practice.

  13. Plume and wake dynamics, mixing, and chemistry behind an HSCT aircraft

    NASA Technical Reports Server (NTRS)

    Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.

    1991-01-01

    The chemical evolution and mixing and vortical motion of a High Speed Civil Transport's engine exhausts must be analyzed in order to track the gas and its speciation as emissions are mixed to atmospheric scales. Attention is presently given to an analytic model of the wake dynamical processes which accounts for the roll-up of the trailing vorticity, its breakup due to the Crow instability, and the subsequent evolution and motion of the reconnected vorticity. The concentrated vorticity is noted to wrap up the buoyant exhaust and suppress its continued mixing and dilution. The species tracked encompass those which could be heterogeneously reactive on the surfaces of the condensed ice particles, and those capable of reacting with exhaust soot particle surfaces to form active contrail and/or cloud condensation nuclei.

  14. Hot metal gas forming of titanium grade 2 bent tubes

    NASA Astrophysics Data System (ADS)

    Paul, Alexander; Werner, Markus; Trân, Ricardo; Landgrebe, Dirk

    2017-10-01

    Within the framework of investigations, an exhaust gas component made of Titanium Grade 2 was produced by means of Hot Metal Gas Forming (HMGF) at the Fraunhofer IWU in Chemnitz, Germany. The semi-finished products were two-fold bent, thermal joined, calibrated and pre-formed tubes. So far, a three-stage internal high-pressure forming process at room temperature plus two necessary intermediate heat treatments were used to produce the component. Due to its complexity as well as the limited forming ability of Titanium Grade 2 at room temperature an one step Hot Metal Gas Forming was developed to replace the former procedure.

  15. A Flight Investigation of Exhaust-heat De-icing

    NASA Technical Reports Server (NTRS)

    Jones, Alun R; Rodert, Lewis A

    1940-01-01

    The National Advisory Committee for Aeronautics conducted exhaust-heat de-icing tests in flight to provide data needed in the application of this method. The capacity to extract heat from the exhaust gas for de-icing purposes, the quantity of heat required, and other factors were examined. The results indicate that a wing-heating system employing a spanwise exhaust tube within the leading edge of the wing removed 30 to 35 percent of the heat from exhaust gas entering the wing. Data are given from which the heat required for ice prevention can be calculated. Sample calculations have been made on the basis of existing engine power/wing area ratios to show that sufficient heating can be obtained for ice protection on modern transportation airplanes, provided that uniform distribution of the heat can be secured.

  16. 40 CFR 90.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw gaseous exhaust sampling and... OR BELOW 19 KILOWATTS Gaseous Exhaust Test Procedures § 90.414 Raw gaseous exhaust sampling and... between the muffler and the sample probe. The mixing chamber is an optional component of the raw gas...

  17. 40 CFR 90.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Raw gaseous exhaust sampling and... OR BELOW 19 KILOWATTS Gaseous Exhaust Test Procedures § 90.414 Raw gaseous exhaust sampling and... between the muffler and the sample probe. The mixing chamber is an optional component of the raw gas...

  18. Non-Thermal Removal of Gaseous Pollutants

    NASA Technical Reports Server (NTRS)

    Srivastava, S.; McGowan, J. William; Chiu, K. C. Ray

    1995-01-01

    The removal of fluorine based exhaust gases such as CFC's, PFC's, NF3, and SF6 used for plasma etching of and deposition on semi-conductors is a subject of increasing interest because of safety, air pollution, and global warming issues. Conventional treatment methods for removing exhaust gas pollutants are wet scrubbing, carbon and resin adsorption, catalytic oxidation, and thermal incineration. However, there are drawbacks associated with each of these methods which include difficulties in implementation, problems with the disposal of solid and liquid pollutant waste, large water and fuel consumption, and additional pollutants such as NOx emissions which are generated in thermal incineration processes.

  19. Gas turbine exhaust nozzle. [for noise reduction

    NASA Technical Reports Server (NTRS)

    Straight, D. M. (Inventor)

    1973-01-01

    An elongated hollow string is disposed in an exhaust nozzle combustion chamber and communicates with an air source through hollow struts at one end. The other end of the string is bell-mouth shaped and extends over the front portion of a nozzle plug. The bell-mouth may be formed by pivotally mounted flaps or leaves which are used to vary the exhaust throat area and the area between the plug and the leaves. Air from the engine inlet flows into the string and also between the combustion chamber and a housing disposed around the chamber. The air cools the plug and serves as a low velocity inner core of secondary gas to provide noise reduction for the primary exhaust gas while the other air, when it exits from the nozzle, forms an outer low velocity layer to further reduce noise. The structure produces increased thrust in a turbojet or turbofan engine.

  20. Design and analysis on fume exhaust system of blackbody cavity sensor for continuously measuring molten steel temperature

    NASA Astrophysics Data System (ADS)

    Mei, Guohui; Zhang, Jiu; Zhao, Shumao; Xie, Zhi

    2017-03-01

    Fume exhaust system is the main component of the novel blackbody cavity sensor with a single layer tube, which removes the fume by gas flow along the exhaust pipe to keep the light path clean. However, the gas flow may break the conditions of blackbody cavity and results in the poor measurement accuracy. In this paper, we analyzed the influence of the gas flow on the temperature distribution of the measuring cavity, and then calculated the integrated effective emissivity of the non-isothermal cavity based on Monte-Carlo method, accordingly evaluated the sensor measurement accuracy, finally obtained the maximum allowable flow rate for various length of the exhaust pipe to meet the measurement accuracy. These results will help optimize the novel blackbody cavity sensor design and use it better for measuring the temperature of molten steel.

  1. Selective NOx Recirculation for Stationary Lean-Burn Natural Gas Engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nigel N. Clark

    Nitric oxide (NO) and nitrogen dioxide (NO2) generated by internal combustion (IC) engines are implicated in adverse environmental and health effects. Even though lean-burn natural gas engines have traditionally emitted lower oxides of nitrogen (NOx) emissions compared to their diesel counterparts, natural gas engines are being further challenged to reduce NOx emissions to 0.1 g/bhp-hr. The Selective NOx Recirculation (SNR) approach for NOx reduction involves cooling the engine exhaust gas and then adsorbing the NOx from the exhaust stream, followed by the periodic desorption of NOx. By sending the desorbed NOx back into the intake and through the engine, amore » percentage of the NOx can be decomposed during the combustion process. SNR technology has the support of the Department of Energy (DOE), under the Advanced Reciprocating Engine Systems (ARES) program to reduce NOx emissions to under 0.1 g/bhp-hr from stationary natural gas engines by 2010. The NO decomposition phenomenon was studied using two Cummins L10G natural gas fueled spark-ignited (SI) engines in three experimental campaigns. It was observed that the air/fuel ratio ({lambda}), injected NO quantity, added exhaust gas recirculation (EGR) percentage, and engine operating points affected NOx decomposition rates within the engine. Chemical kinetic model predictions using the software package CHEMKIN were performed to relate the experimental data with established rate and equilibrium models. The model was used to predict NO decomposition during lean-burn, stoichiometric burn, and slightly rich-burn cases with added EGR. NOx decomposition rates were estimated from the model to be from 35 to 42% for the lean-burn cases and from 50 to 70% for the rich-burn cases. The modeling results provided an insight as to how to maximize NOx decomposition rates for the experimental engine. Results from this experiment along with chemical kinetic modeling solutions prompted the investigation of rich-burn operating conditions, with added EGR to prevent preignition. It was observed that the relative air/fuel ratio, injected NO quantity, added EGR fraction, and engine operating points affected the NO decomposition rates. While operating under these modified conditions, the highest NO decomposition rate of 92% was observed. In-cylinder pressure data gathered during the experiments showed minimum deviation from peak pressure as a result of NO injections into the engine. A NOx adsorption system, from Sorbent Technologies, Inc., was integrated with the Cummins engine, comprised a NOx adsorbent chamber, heat exchanger, demister, and a hot air blower. Data were gathered to show the possibility of NOx adsorption from the engine exhaust, and desorption of NOx from the sorbent material. In order to quantify the NOx adsorption/desorption characteristics of the sorbent material, a benchtop adsorption system was constructed. The temperature of this apparatus was controlled while data were gathered on the characteristics of the sorbent material for development of a system model. A simplified linear driving force model was developed to predict NOx adsorption into the sorbent material as cooled exhaust passed over fresh sorbent material. A mass heat transfer analysis was conducted to analyze the possibility of using hot exhaust gas for the desorption process. It was found in the adsorption studies, and through literature review, that NO adsorption was poor when the carrier gas was nitrogen, but that NO in the presence of oxygen was adsorbed at levels exceeding 1% by mass of the sorbent. From the three experimental campaigns, chemical kinetic modeling analysis, and the scaled benchtop NOx adsorption system, an overall SNR system model was developed. An economic analysis was completed, and showed that the system was impractical in cost for small engines, but that economies of scale favored the technology.« less

  2. Sulfur driven nucleation mode formation in diesel exhaust under transient driving conditions.

    PubMed

    Karjalainen, Panu; Rönkkö, Topi; Pirjola, Liisa; Heikkilä, Juha; Happonen, Matti; Arnold, Frank; Rothe, Dieter; Bielaczyc, Piotr; Keskinen, Jorma

    2014-02-18

    Sulfur driven diesel exhaust nucleation particle formation processes were studied in an aerosol laboratory, on engine dynamometers, and on the road. All test engines were equipped with a combination of a diesel oxidation catalyst (DOC) and a partial diesel particulate filter (pDPF). At steady operating conditions, the formation of semivolatile nucleation particles directly depended on SO2 conversion in the catalyst. The nucleation particle emission was most significant after a rapid increase in engine load and exhaust gas temperature. Results indicate that the nucleation particle formation at transient driving conditions does not require compounds such as hydrocarbons or sulfated hydrocarbons, however, it cannot be explained only by the nucleation of sulfuric acid. A real-world exhaust study with a heavy duty diesel truck showed that the nucleation particle formation occurs even with ultralow sulfur diesel fuel, even at downhill driving conditions, and that nucleation particles can contribute 60% of total particle number emissions. In general, due to sulfur storage and release within the exhaust aftertreatment systems and transients in driving, emissions of nucleation particles can even be the dominant part of modern diesel vehicle exhaust particulate number emissions.

  3. Examination of redirected continuous miner scrubber discharge configurations for exhaust face ventilation systems

    PubMed Central

    Organiscak, J.A.; Beck, T.W.

    2015-01-01

    The U.S. National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) has recently studied several redirected scrubber discharge configurations in its full-scale continuous miner gallery for both dust and gas control when using an exhaust face ventilation system. Dust and gas measurements around the continuous mining machine in the laboratory showed that the conventional scrubber discharge directed outby the face with a 12.2-m (40-ft) exhaust curtain setback appeared to be one of the better configurations for controlling dust and gas. Redirecting all the air toward the face equally up both sides of the machine increased the dust and gas concentrations around the machine. When all of the air was redirected toward the face on the off-curtain side of the machine, gas accumulations tended to be reduced at the face, at the expense of increased dust levels in the return and on the curtain side of the mining machine. A 6.1-m (20-ft) exhaust curtain setback without the scrubber operating resulted in the lowest dust levels around the continuous mining machine, but this configuration resulted in some of the highest levels of dust in the return and gas on the off-curtain side of the mining face. Two field studies showed some similarities to the laboratory findings, with elevated dust levels at the rear corners of the continuous miner when all of the scrubber exhaust was redirected toward the face either up the off-tubing side or equally up both sides of the mining machine. PMID:26251566

  4. Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Kook; Won, Byeong-Cheol; Rhi, Seok-Ho; Kim, Shi-Ho; Yoo, Jeong-Ho; Jang, Ju-Chan

    2011-05-01

    The present experimental and computational study investigates a new exhaust gas waste heat recovery system for hybrid vehicles, using a thermoelectric module (TEM) and heat pipes to produce electric power. It proposes a new thermoelectric generation (TEG) system, working with heat pipes to produce electricity from a limited hot surface area. The current TEG system is directly connected to the exhaust pipe, and the amount of electricity generated by the TEMs is directly proportional to their heated area. Current exhaust pipes fail to offer a sufficiently large hot surface area for the high-efficiency waste heat recovery required. To overcome this, a new TEG system has been designed to have an enlarged hot surface area by the addition of ten heat pipes, which act as highly efficient heat transfer devices and can transmit the heat to many TEMs. As designed, this new waste heat recovery system produces a maximum 350 W when the hot exhaust gas heats the evaporator surface of the heat pipe to 170°C; this promises great possibilities for application of this technology in future energy-efficient hybrid vehicles.

  5. A Highly Efficient Six-Stroke Internal Combustion Engine Cycle with Water Injection for In-Cylinder Exhaust Heat Recovery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conklin, Jim; Szybist, James P

    2010-01-01

    A concept is presented here that adds two additional strokes to the four-stroke Otto or Diesel cycle that has the potential to increase fuel efficiency of the basic cycle. The engine cycle can be thought of as a 4 stroke Otto or Diesel cycle followed by a 2-stroke heat recovery steam cycle. Early exhaust valve closing during the exhaust stroke coupled with water injection are employed to add an additional power stroke at the end of the conventional four-stroke Otto or Diesel cycle. An ideal thermodynamics model of the exhaust gas compression, water injection at top center, and expansion wasmore » used to investigate this modification that effectively recovers waste heat from both the engine coolant and combustion exhaust gas. Thus, this concept recovers energy from two waste heat sources of current engine designs and converts heat normally discarded to useable power and work. This concept has the potential of a substantial increase in fuel efficiency over existing conventional internal combustion engines, and under appropriate injected water conditions, increase the fuel efficiency without incurring a decrease in power density. By changing the exhaust valve closing angle during the exhaust stroke, the ideal amount of exhaust can be recompressed for the amount of water injected, thereby minimizing the work input and maximizing the mean effective pressure of the steam expansion stroke (MEPsteam). The value of this exhaust valve closing for maximum MEPsteam depends on the limiting conditions of either one bar or the dew point temperature of the expansion gas/moisture mixture when the exhaust valve opens to discard the spent gas mixture in the sixth stroke. The range of MEPsteam calculated for the geometry of a conventional gasoline spark-ignited internal combustion engine and for plausible water injection parameters is from 0.75 to 2.5 bars. Typical combustion mean effective pressures (MEPcombustion) of naturally aspirated gasoline engines are up to 10 bar, thus this concept has the potential to significantly increase the engine efficiency and fuel economy while not resulting in a decrease in power density.« less

  6. 40 CFR 1065.750 - Analytical gases.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... O2 concentration in the exhaust sample is zero, we recommend using a balance gas of purified nitrogen... concentration in the exhaust sample is zero, we recommend using a balance gas of purified nitrogen. (3) Use the....41) mol/mol, balance He, and a stated total hydrocarbon concentration of 0.05 µmol/mol or less. (ii...

  7. 40 CFR 1065.750 - Analytical gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... O2 concentration in the exhaust sample is zero, we recommend using a balance gas of purified nitrogen... concentration in the exhaust sample is zero, we recommend using a balance gas of purified nitrogen. (3) Use the....41) mol/mol, balance He, and a stated total hydrocarbon concentration of 0.05 µmol/mol or less. (ii...

  8. 40 CFR 1065.750 - Analytical gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... O2 concentration in the exhaust sample is zero, we recommend using a balance gas of purified nitrogen... concentration in the exhaust sample is zero, we recommend using a balance gas of purified nitrogen. (3) Use the....41) mol/mol, balance He, and a stated total hydrocarbon concentration of 0.05 µmol/mol or less. (ii...

  9. 40 CFR 1065.750 - Analytical gases.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... O2 concentration in the exhaust sample is zero, we recommend using a balance gas of purified nitrogen... concentration in the exhaust sample is zero, we recommend using a balance gas of purified nitrogen. (3) Use the....41) mol/mol, balance He, and a stated total hydrocarbon concentration of 0.05 µmol/mol or less. (ii...

  10. 30 CFR 36.47 - Tests of exhaust-gas cooling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... water consumption, high-water level when the system sprays excess water, and low-water level when the... cooling water shall be filled with the quantity of water recommended by the applicant. No cooling air... saturation, if this temperature is lower. (d) Water consumed in cooling the exhaust gas under the test...

  11. 40 CFR 86.209-94 - Exhaust gas sampling system; gasoline-fueled vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system; gasoline... Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty... sampling system; gasoline-fueled vehicles. The provisions of § 86.109-90 apply to this subpart. ...

  12. 40 CFR 86.209-94 - Exhaust gas sampling system; gasoline-fueled vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Exhaust gas sampling system; gasoline... Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty... sampling system; gasoline-fueled vehicles. The provisions of § 86.109-90 apply to this subpart. ...

  13. 40 CFR 86.209-94 - Exhaust gas sampling system; gasoline-fueled vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system; gasoline... Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty... sampling system; gasoline-fueled vehicles. The provisions of § 86.109-90 apply to this subpart. ...

  14. 40 CFR 86.209-94 - Exhaust gas sampling system; gasoline-fueled vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Exhaust gas sampling system; gasoline... Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty... sampling system; gasoline-fueled vehicles. The provisions of § 86.109-90 apply to this subpart. ...

  15. 40 CFR 86.1506 - Equipment required and specifications; overview.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... appear in §§ 86.1509 through 86.1511. (2) Fuel and analytical tests. Fuel requirements for idle exhaust... Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test... for performing idle exhaust emission tests on Otto-cycle heavy-duty engines and Otto-cycle light-duty...

  16. 40 CFR 86.1806-05 - On-board diagnostics for vehicles less than or equal to 14,000 pounds GVWR.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .../mi. (2) Engine misfire. Lack of cylinder combustion must be detected. (3) Exhaust gas sensors—(i... cylinder combustion must be detected. (3) Oxygen sensors. If equipped, oxygen sensor deterioration or... directly intended to control emissions, including but not necessarily limited to, the exhaust gas...

  17. Exhaust Gas Scrubber Washwater Effluent

    DTIC Science & Technology

    2011-11-01

    the washwater discharge and what are their concentrations or values?  How are these pollutants dissipated into the environment when the ship is...40  Exhaust Gas Scrubber Washwater Effluent Contents ii LIST OF TABLES Page 1 PAH Discharge Concentration Limit by...Flow Rate ..........................................................11  2 Concentrations of Metals in the Washwater Discharge from the Zaandam

  18. RE-ENTRAINMENT AND DISPERSION OF EXHAUSTS FROM INDOOR RADON REDUCTION SYSTEMS: ANALYSIS OF TRACER GAS DATA

    EPA Science Inventory

    Tracer gas studies were conducted around four model houses in a wind tunnel, and around one house in the field, to quantify re-entrainment and dispersion of exhaust gases released from residential indoor radon reduction systems. Re-entrainment tests in the field suggest that acti...

  19. 76 FR 2917 - Notice of Cancellation of Public Meeting on the International Maritime Organization Guidelines...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-18

    ... Public Meeting on the International Maritime Organization Guidelines for Exhaust Gas Cleaning Systems for... that a public meeting on the International Maritime Organization guidelines for exhaust gas cleaning..., 2011. F.J. Strum, Acting Director of Commercial Regulations and Standards. [FR Doc. 2011-1024 Filed 1...

  20. Improved design of a tangential entry cyclone separator for separation of particles from exhaust gas of diesel engine.

    PubMed

    Mukhopadhyay, N

    2011-01-01

    An effective design of cyclone separator with tangential inlet is developed applying an equation derived from the correlation of collection efficiency with maximum pressure drop components of the cyclone, which can efficiently remove the particles around 1microm of the exhaust gas of diesel engine.

  1. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-cycle and non-petroleum-fueled engines. 86.1309-90 Section 86.1309-90 Protection of Environment... HIGHWAY VEHICLES AND ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty...-cycle and non-petroleum-fueled engines. (a)(1) General. The exhaust gas sampling system described in...

  2. Thermoelectric Generators for Automotive Waste Heat Recovery Systems Part I: Numerical Modeling and Baseline Model Analysis

    NASA Astrophysics Data System (ADS)

    Kumar, Sumeet; Heister, Stephen D.; Xu, Xianfan; Salvador, James R.; Meisner, Gregory P.

    2013-04-01

    A numerical model has been developed to simulate coupled thermal and electrical energy transfer processes in a thermoelectric generator (TEG) designed for automotive waste heat recovery systems. This model is capable of computing the overall heat transferred, the electrical power output, and the associated pressure drop for given inlet conditions of the exhaust gas and the available TEG volume. Multiple-filled skutterudites and conventional bismuth telluride are considered for thermoelectric modules (TEMs) for conversion of waste heat from exhaust into usable electrical power. Heat transfer between the hot exhaust gas and the hot side of the TEMs is enhanced with the use of a plate-fin heat exchanger integrated within the TEG and using liquid coolant on the cold side. The TEG is discretized along the exhaust flow direction using a finite-volume method. Each control volume is modeled as a thermal resistance network which consists of integrated submodels including a heat exchanger and a thermoelectric device. The pressure drop along the TEG is calculated using standard pressure loss correlations and viscous drag models. The model is validated to preserve global energy balances and is applied to analyze a prototype TEG with data provided by General Motors. Detailed results are provided for local and global heat transfer and electric power generation. In the companion paper, the model is then applied to consider various TEG topologies using skutterudite and bismuth telluride TEMs.

  3. Determination of light extinction efficiency of diesel soot from smoke opacity measurements

    NASA Astrophysics Data System (ADS)

    Lapuerta, Magín; Martos, Francisco J.; Cárdenas, M. Dolores

    2005-10-01

    An experimental method for the indirect determination of the light extinction efficiency of the exhaust gas emitted by diesel engines is proposed in this paper, based on the simultaneous measurement of spot opacity and continuous opacity, together with the double modelling of the associated soot concentration. The first model simulates the projection of a differently sized soot particle population enclosed in an exhaust gas sample on the filter of a spot opacimeter. The second one simulates the light extinction caused by the soot particles flowing in the exhaust gas stream in an online continuous opacimeter, on the basis of the Beer-Lambert law. This method is an alternative to other theoretical or semi-empirical complex methods which have proved to be inadequate in the case of soot agglomerates. The application of this method to a set of experimental smoke measurements from a commercial light-duty DI diesel engine typical of vehicle road transportation permitted us to draw conclusions about the effect of different engine conditions on the mean light extinction efficiency of the soot particles flowing in the raw exhaust gas stream.

  4. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  5. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  6. Devise of an exhaust gas heat exchanger for a thermal oil heater in a palm oil refinery plant

    NASA Astrophysics Data System (ADS)

    Chucherd, Panom; Kittisupakorn, Paisan

    2017-08-01

    This paper presents the devise of an exhaust gas heat exchanger for waste heat recovery of the exhausted flue gas of palm oil refinery plant. This waste heat can be recovered by installing an economizer to heat the feed water which can save the fuel consumption of the coal fired steam boiler and the outlet temperature of flue gas will be controlled in order to avoid the acid dew point temperature and protect the filter bag. The decrease of energy used leads to the reduction of CO2 emission. Two designed economizer studied in this paper are gas in tube and water in tube. The gas in tube exchanger refers to the shell and tube heat exchanger which the flue gas flows in tube; this designed exchanger is used in the existing unit. The new designed water in tube refers to the shell and tube heat exchanger which the water flows in the tube; this designed exchanger is proposed for new implementation. New economizer has the overall coefficient of heat transfer of 19.03 W/m2.K and the surface heat transfer area of 122 m2 in the optimized case. Experimental results show that it is feasible to install economizer in the exhaust flue gas system between the air preheater and the bag filter, which has slightly disadvantage effect in the system. The system can raise the feed water temperature from 40 to 104°C and flow rate 3.31 m3/h, the outlet temperature of flue gas is maintained about 130 °C.

  7. Engine Cylinder Temperature Control

    DOEpatents

    Kilkenny, Jonathan Patrick; Duffy, Kevin Patrick

    2005-09-27

    A method and apparatus for controlling a temperature in a combustion cylinder in an internal combustion engine. The cylinder is fluidly connected to an intake manifold and an exhaust manifold. The method and apparatus includes increasing a back pressure associated with the exhaust manifold to a level sufficient to maintain a desired quantity of residual exhaust gas in the cylinder, and varying operation of an intake valve located between the intake manifold and the cylinder to an open duration sufficient to maintain a desired quantity of fresh air from the intake manifold to the cylinder, wherein controlling the quantities of residual exhaust gas and fresh air are performed to maintain the temperature in the cylinder at a desired level.

  8. Method for generating a highly reactive plasma for exhaust gas aftertreatment and enhanced catalyst reactivity

    DOEpatents

    Whealton, John H.; Hanson, Gregory R.; Storey, John M.; Raridon, Richard J.; Armfield, Jeffrey S.; Bigelow, Timothy S.; Graves, Ronald L.

    2002-01-01

    A method for non-thermal plasma aftertreatment of exhaust gases the method comprising the steps of providing short risetime, high frequency, high power bursts of low-duty factor microwaves sufficient to generate a plasma discharge and passing a gas to be treated through the discharge so as to cause dissociative reduction of the exhaust gases and enhanced catalyst reactivity through application of the pulsed microwave fields directly to the catalyst material sufficient to cause a polarizability catastrophe and enhanced heating of the metal crystallite particles of the catalyst, and in the presence or absence of the plasma. The invention also includes a reactor for aftertreatment of exhaust gases.

  9. The effect of ambient temperature and humidity on the carbon monoxide emissions of an idling gas turbine

    NASA Technical Reports Server (NTRS)

    Kauffman, C. W.; Subramaniam, A. K.

    1977-01-01

    Changes in ambient temperature and humidity affect the exhaust emissions of a gas turbine engine. The results of a test program employing a JT8D combustor are presented which quantize the effect of these changes on carbon monoxide emissions at simulated idle operating conditions. Analytical results generated by a kinetic model of the combustion process and reflecting changing ambient conditions are given. It is shown that for a complete range of possible ambient variations, significant changes do occur in the amount of carbon monoxide emitted by a gas turbine engine.

  10. Study of Hydrogen Production Method using Latent Heat of Liquefied Natural Gas

    NASA Astrophysics Data System (ADS)

    Ogawa, Masaru; Seki, Tatsuyoshi; Honda, Hiroshi; Nakamura, Motomu; Takatani, Yoshiaki

    In recent years, Fuel Cell Electrical Vehicle is expected to improve urban environment. Particularly a hydrogen fuel type FCEV expected for urban use, because its excellent characters such as short startup time, high responsibility and zero emission. On the other hand, as far as hydrogen production is concerned, large amount of CO2 is exhausted into the atmosphere by the process of LNG reforming. In our research, we studied the utilization of LNG latent heat for hydrogen gas production process as well as liquefied hydrogen process. Furthermore, CO2---Capturing as liquid state or solid state from hydrogen gas production process by LNG is also studied. Results of research shows that LNG latent heat is very effect to cool hydrogen gas for conventional hydrogen liquefied process. However, the LNG latent heat is not available for LNG reforming process. If we want to use LNG latent heat for this process, we have to develop new hydrogen gas produce process. In this new method, both hydrogen and CO2 is cooled by LNG directly, and CO2 is removed from the reforming gas. In order to make this method practical, we should develop a new type heat-exchanger to prevent solid CO2 from interfering the performance of it.

  11. The Performance of Chrome-Coated Copper as Metallic Catalytic Converter to Reduce Exhaust Gas Emissions from Spark-Ignition Engine

    NASA Astrophysics Data System (ADS)

    Warju; Harto, S. P.; Soenarto

    2018-01-01

    One of the automotive technologies to reduce exhaust gas emissions from the spark-ignition engine (SIE) is by using a catalytic converter. The aims of this research are firstly to conduct a metallic catalytic converter, secondly to find out to what extend chrome-coated copper plate (Cu+Cr) as a catalyst is efficient. To measure the concentration of carbon monoxide (CO) and hydrocarbon (HC) on the frame there are two conditions required. First is when the standard condition, and second is when Cu+Cr metallic catalytic converter is applied using exhaust gas analyzer. Exhaust gas emissions from SIE are measured by using SNI 19-7118.1-2005. The testing of CO and HC emissions were conducted with variable speed to find the trend of exhaust gas emissions from idle speed to high speed. This experiment results in the fact that the use of Cu+Cr metallic catalytic converter can reduce the production of CO and HC of a four-stroke gasoline engine. The reduction of CO and HC emission are 95,35% and 79,28%. Using active metal catalyst in form of metallic catalytic converter, it is gained an optimum effective surface of a catalyst which finally is able to decrease the amount of CO and HC emission significantly in every spinning happened in the engine. Finally, this technology can be applied to the spark ignition engine both car and motorcycle to support blue sky program in Indonesia.

  12. Utilization of coal mine ventilation exhaust as combustion air in gas-fired turbines for electric and/or mechanical power generation. Semi-annual topical report, June 1995--August 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-12-01

    Methane emitted during underground coal mining operations is a hazard that is dealt with by diluting the methane with fresh air and exhausting the contaminated air to the atmosphere. Unfortunately this waste stream may contain more than 60% of the methane resource from the coal, and in the atmosphere the methane acts as a greenhouse gas with an effect about 24.5 times greater than CO{sub 2}. Though the waste stream is too dilute for normal recovery processes, it can be used as combustion air for a turbine-generator, thereby reducing the turbine fuel requirements while reducing emissions. Preliminary analysis indicates thatmore » such a system, built using standard equipment, is economically and environmentally attractive, and has potential for worldwide application.« less

  13. Regenerative process for removal of mercury and other heavy metals from gases containing H.sub.2 and/or CO

    DOEpatents

    Jadhav, Raja A [Naperville, IL

    2009-07-07

    A method for removal of mercury from a gaseous stream containing the mercury, hydrogen and/or CO, and hydrogen sulfide and/or carbonyl sulfide in which a dispersed Cu-containing sorbent is contacted with the gaseous stream at a temperature in the range of about 25.degree. C. to about 300.degree. C. until the sorbent is spent. The spent sorbent is contacted with a desorbing gaseous stream at a temperature equal to or higher than the temperature at which the mercury adsorption is carried out, producing a regenerated sorbent and an exhaust gas comprising released mercury. The released mercury in the exhaust gas is captured using a high-capacity sorbent, such as sulfur-impregnated activated carbon, at a temperature less than about 100.degree. C. The regenerated sorbent may then be used to capture additional mercury from the mercury-containing gaseous stream.

  14. Investigation of JP-8 Autoignition Under Vitiated Combustion Conditions

    DTIC Science & Technology

    2011-01-01

    no less than 1.5 times the dew point temperature of the mixture for all test cases that involved H2O. The flow path and apparatus for the steam...Variable m Interaction Effect of Design Variables m and n R Universal Gas Constant [cal/mol-K] E Activation Energy of Ignition Process [cal/mol] T...combustion including CO2, CO, H2O, and NOX. Vitiated conditions are often the result of flue or exhaust gas recirculation (EGR) into a fresh air stream

  15. 40 CFR 61.64 - Emission standard for polyvinyl chloride plants.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... was taken to prevent the discharge, and measures adopted to prevent future discharges. (b) Stripper. The concentration of vinly chloride in each exhaust gas stream from each stripper is not to exceed 10... precedes the stripper (or the reactor if the plant has no stripper) in the plant process flow is not to...

  16. 40 CFR 61.64 - Emission standard for polyvinyl chloride plants.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... was taken to prevent the discharge, and measures adopted to prevent future discharges. (b) Stripper. The concentration of vinly chloride in each exhaust gas stream from each stripper is not to exceed 10... precedes the stripper (or the reactor if the plant has no stripper) in the plant process flow is not to...

  17. 40 CFR 61.64 - Emission standard for polyvinyl chloride plants.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... was taken to prevent the discharge, and measures adopted to prevent future discharges. (b) Stripper. The concentration of vinly chloride in each exhaust gas stream from each stripper is not to exceed 10... precedes the stripper (or the reactor if the plant has no stripper) in the plant process flow is not to...

  18. Air pollution from aircraft. [jet exhaust - aircraft fuels/combustion efficiency

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Chigier, N. A.

    1975-01-01

    A model which predicts nitric oxide and carbon monoxide emissions from a swirl can modular combustor is discussed. A detailed analysis of the turbulent fuel-air mixing process in the swirl can module wake region is reviewed. Hot wire anemometry was employed, and gas sampling analysis of fuel combustion emissions were performed.

  19. Fundamentals and industrial applications of ultrashort pulsed lasers at Bosch

    NASA Astrophysics Data System (ADS)

    König, Jens; Bauer, Thorsten

    2011-03-01

    Fundamental results of ablation processes of metals with ultrashort laser pulses in the far threshold fluence regime are shown and discussed. Time-resolved measurements of the plasma transmission exhibit two distinctive minima. The minima occurring within the first nanoseconds can be attributed to electrons and sublimated material emitted from the target surface, whereas the subsequent minimum after several 10 ns is due to particles and droplets after a thermal boiling process. Industrial applications of ultrashort pulsed laser micro machining in the Bosch Group are also shown with the production of exhaust gas sensors and common rail diesel systems. Since 2007, ultrashort laser pulses are used at the BOSCH plant in Bamberg for producing lambda-probes, which are made of a special ceramic layer system and can measure the exhaust gas properties faster and more accurately. This enables further reduction of emissions by optimized combustion control. Since 2009, BOSCH uses ultrashort pulsed lasers for micro-structuring the injector of common rail diesel systems. A drainage groove allows a tight system even at increased pressures up to 2000 bar. Diesel injection is thus even more reliable, powerful and environment-friendly.

  20. Mass spectra of cyclic ethers formed in the low-temperature oxidation of a series of n-alkanes

    PubMed Central

    Herbinet, Olivier; Bax, Sarah; Glaude, Pierre-Alexandre; Carré, Vincent; Battin-Leclerc, Frédérique

    2013-01-01

    Cyclic ethers are important intermediate species formed during the low-temperature oxidation of hydrocarbons. Along with ketones and aldehydes, they could consequently represent a significant part of the heavy oxygenated pollutants observed in the exhaust gas of engines. Apart a few of them such as ethylene oxide and tetrahydrofuran, cyclic ethers have not been much studied and very few of them are available for calibration and identification. Electron impact mass spectra are available for very few of them, making their detection in the exhaust emissions of combustion processes very difficult. The main goal of this study was to complete the existing set of mass spectra for this class of molecules. Thus cyclic ethers have been analyzed in the exhaust gases of a jet-stirred reactor in which the low-temperature oxidation of a series of n-alkanes was taking place. Analyzes were performed by gas chromatography coupled to mass spectrometry and to MS/MS. The second goal of this study was to derive some rules for the fragmentation of cyclic ethers in electron impact mass spectrometry and allow the identification of these species when no mass spectrum is available. PMID:24092947

  1. Anti-air pollution & energy conservation system for automobiles using leaded or unleaded gasoline, diesel or alternate fuel

    DOEpatents

    Bose, Ranendra K.

    2002-06-04

    Exhaust gases from an internal combustion engine operating with leaded or unleaded gasoline or diesel or natural gas, are used for energizing a high-speed gas turbine. The convoluting gas discharge causes a first separation stage by stratifying of heavier and lighter exhaust gas components that exit from the turbine in opposite directions, the heavier components having a second stratifying separation in a vortex tube to separate combustible pollutants from non-combustible components. The non-combustible components exit a vortex tube open end to atmosphere. The lighter combustible, pollutants effected in the first separation are bubbled through a sodium hydroxide solution for dissolving the nitric oxide, formaldehyde impurities in this gas stream before being piped to the engine air intake for re-combustion, thereby reducing the engine's exhaust pollution and improving its fuel economy. The combustible, heavier pollutants from the second separation stage are piped to air filter assemblies. This gas stream convoluting at a high-speed through the top stator-vanes of the air filters, centrifugally separates the coalescent water, aldehydes, nitrogen dioxides, sulfates, sulfur, lead particles which collect at the bottom of the bowl, wherein it is periodically released to the roadway. Whereas, the heavier hydrocarbon, carbon particles are piped through the air filter's porous element to the engine air intake for re-combustion, further reducing the engine's exhaust pollution and improving its fuel economy.

  2. Development of advanced Czochralski growth process to produce low cost 150 kg silicon ingots from a single crucible for technology readiness

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The design and development of an advanced Czochralski crystal grower are described. Several exhaust gas analysis system equipment specifications studied are discussed. Process control requirements were defined and design work began on the melt temperature, melt level, and continuous diameter control. Sensor development included assembly and testing of a bench prototype of a diameter scanner system.

  3. Calculations of economy of 18-cylinder radial aircraft engine with exhaust-gas turbine geared to the crankshaft

    NASA Technical Reports Server (NTRS)

    Hannum, Richard W; Zimmerman, Richard H

    1945-01-01

    Calculations based on dynamometer test-stand data obtained on an 18-cylinder radial engine were made to determine the improvement in fuel consumption that can be obtained at various altitudes by gearing an exhaust-gas turbine to the engine crankshaft in order to increase the engine-shaft work.

  4. 76 FR 58288 - International Maritime Organization Guidelines for Exhaust Gas Cleaning Systems for Marine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... Pollution by Ships, 1973 as modified by the Protocol of 1978 (MARPOL) if such a system should be considered an equivalent that would be at least as effective in reducing sulfur oxide emissions as the... Maritime Organization (IMO) for exhaust gas cleaning systems for marine engines to remove sulfur oxide...

  5. IET exhaust gas stack. Section, west elevation, foundation plan, access ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET exhaust gas stack. Section, west elevation, foundation plan, access ladder, airplane warning light. Ralph M. Parsons 902-5-ANP-712-S 433. Date: May 1954. Approved by INEEL Classification Office for public release. INEEL index code no. 035-0712-60-693-106984 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  6. 40 CFR 86.109-94 - Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate emission measurements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-cycle vehicles not requiring particulate emission measurements. 86.109-94 Section 86.109-94 Protection... Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles; Test Procedures § 86.109-94 Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate...

  7. 40 CFR 600.509-12 - Voluntary submission of additional data.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions... addition to the data required by the Administrator. (b) Additional fuel economy and carbon-related exhaust...

  8. 40 CFR 600.509-12 - Voluntary submission of additional data.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions... addition to the data required by the Administrator. (b) Additional fuel economy and carbon-related exhaust...

  9. 30 CFR 7.103 - Safety system control test.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... sensors which will automatically activate the safety shutdown system and stop the engine before the... the temperature sensor in the exhaust gas stream which will automatically activate the safety shutdown... using a wet exhaust conditioner, determine the effectiveness of the temperature sensor in the exhaust...

  10. 30 CFR 7.103 - Safety system control test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sensors which will automatically activate the safety shutdown system and stop the engine before the... the temperature sensor in the exhaust gas stream which will automatically activate the safety shutdown... using a wet exhaust conditioner, determine the effectiveness of the temperature sensor in the exhaust...

  11. 30 CFR 7.103 - Safety system control test.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sensors which will automatically activate the safety shutdown system and stop the engine before the... the temperature sensor in the exhaust gas stream which will automatically activate the safety shutdown... using a wet exhaust conditioner, determine the effectiveness of the temperature sensor in the exhaust...

  12. The Role of Hydrogen Bonds Of The Azeotropic Hydrous Ethanol Fuel Composition To The Exhaust Emissions

    NASA Astrophysics Data System (ADS)

    Made Suarta, I.; Nyoman Gede Baliarta, I.; Sopan Rahtika, I. P. G.; Wijaya Sunu, Putu

    2018-01-01

    In this study observed the role of hydrogen bonding to the composition of exhaust emissions which is produced hydrous ethanol fuel (95.5% v). Testing is done by using single cylinder four stroke motor engine. The composition of exhaust gas emissions is tested using exhaust gas analyzer on lean and stoichiometry mixer. The exhaust emissions produced by anhydrous ethanol were also tested. The composition of emissions produced by that two fuels is compared. The results showed CO emissions levels produced by hydrous ethanol are slightly higher than anhydrous ethanol in stoichiometric mixtures. But the composition of CO hydrous ethanol emissions is lower in the lean mix. If lean the mixer the different in the composition of emissions is increasing. On hydrous ethanol emission CO2 content little bit lower on the stoichiometric mixer and higher on the lean mixture. Exhaust emissions of ethanol fuel also produce O2. O2 hydrous ethanol emissions is higher than anhydrous ethanol fuel.

  13. Real-time CO2 sensor for the optimal control of electronic EGR system

    NASA Astrophysics Data System (ADS)

    Kim, Gwang-jung; Choi, Byungchul; Choi, Inchul

    2013-12-01

    In modern diesel engines, EGR (Exhaust Gas Recirculation) is an important technique used in nitrogen oxide (NOx) emission reduction. This paper describes the development and experimental results of a fiber-optical sensor using a 2.7 μm wavelength absorption to quantify the simultaneous CO2 concentration which is the primary variable of EGR rate (CO2 in the exhaust gas versus CO2 in the intake gas, %). A real-time laser absorption method was developed using a DFB (distributed feedback) diode laser and waveguide to make optimal design and control of electronic EGR system required for `Euro-6' and `Tier 4 Final' NOx emission regulations. While EGR is effective to reduce NOx significantly, the amount of HC and CO is increased in the exhaust gas if EGR rate is not controlled based on driving conditions. Therefore, it is important to recirculate an appropriate amount of exhaust gas in the operation condition generating high volume of NOx. In this study, we evaluated basic characteristics and functions of our optical sensor and studied basically in order to find out optimal design condition. We demonstrated CO2 measurement speed, accuracy and linearity as making a condition similar to real engine through the bench-scale experiment.

  14. Effect on combined cycle efficiency of stack gas temperature constraints to avoid acid corrosion

    NASA Technical Reports Server (NTRS)

    Nainiger, J. J.

    1980-01-01

    To avoid condensation of sulfuric acid in the gas turbine exhaust when burning fuel oils contaning sulfur, the exhaust stack temperature and cold-end heat exchanger surfaces must be kept above the condensation temperature. Raising the exhaust stack temperature, however, results in lower combined cycle efficiency compared to that achievable by a combined cycle burning a sulfur-free fuel. The maximum difference in efficiency between the use of sulfur-free and fuels containing 0.8 percent sulfur is found to be less than one percentage point. The effect of using a ceramic thermal barrier coating (TBC) and a fuel containing sulfur is also evaluated. The combined-cycle efficiency gain using a TBC with a fuel containing sulfur compared to a sulfur-free fuel without TBC is 0.6 to 1.0 percentage points with air-cooled gas turbines and 1.6 to 1.8 percentage points with water-cooled gas turbines.

  15. 40 CFR 600.112-08 - Exhaust sample analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Exhaust sample analysis. 600.112-08 Section 600.112-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related...

  16. 40 CFR 600.112-08 - Exhaust sample analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Exhaust sample analysis. 600.112-08 Section 600.112-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related...

  17. 40 CFR 600.112-08 - Exhaust sample analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Exhaust sample analysis. 600.112-08 Section 600.112-08 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related...

  18. Computer code for single-point thermodynamic analysis of hydrogen/oxygen expander-cycle rocket engines

    NASA Technical Reports Server (NTRS)

    Glassman, Arthur J.; Jones, Scott M.

    1991-01-01

    This analysis and this computer code apply to full, split, and dual expander cycles. Heat regeneration from the turbine exhaust to the pump exhaust is allowed. The combustion process is modeled as one of chemical equilibrium in an infinite-area or a finite-area combustor. Gas composition in the nozzle may be either equilibrium or frozen during expansion. This report, which serves as a users guide for the computer code, describes the system, the analysis methodology, and the program input and output. Sample calculations are included to show effects of key variables such as nozzle area ratio and oxidizer-to-fuel mass ratio.

  19. Stirling engines for hybrid electric vehicle applications

    NASA Astrophysics Data System (ADS)

    Ernst, William D.

    Laboratory and vehicle chassis dynamometer test data based on natural gas fuel are presented for kinematic Stirling engine emissions levels over a range of air/fuel ratios and exhaust gas recirculation levels. It is concluded that the natural-gas-fired Stirling engine is capable of producing exhaust pipe emissions levels significantly below those of other engines. The projected emissions levels are found to be compliant with the 1995 California Air Resources Board Mobile Source Emission Standards for ultra-low-emissions vehicles.

  20. Nitrogen oxides storage catalysts containing cobalt

    DOEpatents

    Lauterbach, Jochen; Snively, Christopher M.; Vijay, Rohit; Hendershot, Reed; Feist, Ben

    2010-10-12

    Nitrogen oxides (NO.sub.x) storage catalysts comprising cobalt and barium with a lean NO.sub.x storage ratio of 1.3 or greater. The NO.sub.x storage catalysts can be used to reduce NO.sub.x emissions from diesel or gas combustion engines by contacting the catalysts with the exhaust gas from the engines. The NO.sub.x storage catalysts can be one of the active components of a catalytic converter, which is used to treat exhaust gas from such engines.

  1. Effect of gasoline formulation on the formation of photosmog: a box model study.

    PubMed

    Geiger, Herald; Becker, Karl H; Wiesen, Peter

    2003-04-01

    Based on exhaust gas analyses from the combustion of five different types of gasoline in a passenger car operated on a chassis dynamometer, box model simulations of the irradiation of exhaust/NOx/air mixtures using an established chemical mechanism for a standardized photosmog scenario were performed. The fuel matrix used covered wide fractional ranges for paraffinic, olefinic, and aromatic hydrocarbons. Two fuels also contained methyl tertiary butyl ether (MTBE). The different O3 profiles calculated for each run were compared and interpreted. The O3 levels obtained were strongly influenced by the exhaust gas concentrations of aromatic and olefinic hydrocarbons. The higher exhaust content of these compounds caused higher O3 production in the smog system investigated. The conclusion of the present study is that the composition of gasoline cannot be taken directly for the estimation of the emissions' O3 creation potential from its combustion. Variation of the dilution in the different calculations showed evidence for an additional influence of transport effects. Accordingly, further detailed exhaust gas analyses followed by more complex modeling studies are necessary for a proper characterization of the relationship between fuel blend and gasoline combustion products.

  2. Reductant injection and mixing system

    DOEpatents

    Reeves, Matt; Henry, Cary A.; Ruth, Michael J.

    2016-02-16

    A gaseous reductant injection and mixing system is described herein. The system includes an injector for injecting a gaseous reductant into an exhaust gas stream, and a mixer attached to a surface of the injector. The injector includes a plurality of apertures through which the gaseous reductant is injected into an exhaust gas stream. The mixer includes a plurality of fluid deflecting elements.

  3. IET exhaust gas duct, system layout, plan, and section. shows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET exhaust gas duct, system layout, plan, and section. shows mounting brackets, concrete braces, divided portion of duct, other details. Ralph M. Parsons 902-5-ANP-712-S 429. Date: May 1954. Approved by INEEL Classification Office for public release. INEEL index code no. 035-0712-60-693-106980 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  4. FTIR Determination of Pollutants in Automobile Exhaust: An Environmental Chemistry Experiment Comparing Cold-Start and Warm-Engine Conditions

    ERIC Educational Resources Information Center

    Medhurst, Laura L.

    2005-01-01

    An experiment developed from the Advanced Integrated Environmental Laboratory illustrates the differences in automobile exhaust before and after the engine is warmed, using gas-phase Fourier transform infrared spectroscopy (FTIR). The apparatus consists of an Avatar 360 FTIR spectrometer from Nicolet fitted with a variable path length gas cell,…

  5. Combined cycle power plant incorporating coal gasification

    DOEpatents

    Liljedahl, Gregory N.; Moffat, Bruce K.

    1981-01-01

    A combined cycle power plant incorporating a coal gasifier as the energy source. The gases leaving the coal gasifier pass through a liquid couplant heat exchanger before being used to drive a gas turbine. The exhaust gases of the gas turbine are used to generate both high pressure and low pressure steam for driving a steam turbine, before being exhausted to the atmosphere.

  6. 40 CFR 63.4362 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., carbon dioxide, and carbon monoxide content of exhaust gas in ANSI/ASME, PTC 19.10-1981, “Flue and Exhaust Gas Analyses [Part 10, Instruments and Apparatus]” (incorporated by reference, see § 63.14). (4... applicable, during each test run. (b) Measure the volatile organic matter concentration as carbon at the...

  7. Effects of PM fouling on the heat exchange effectiveness of wave fin type EGR cooler for diesel engine use

    NASA Astrophysics Data System (ADS)

    Jang, Sang-Hoon; Hwang, Se-Joon; Park, Sang-Ki; Choi, Kap-Seung; Kim, Hyung-Man

    2012-06-01

    Developing an effective method of reducing nitrogen oxide emissions is an important goal in diesel engine research. The use of cooled exhaust gas recirculation has been considered one of the most effective techniques of reducing nitrogen oxide. However, since the combustion characteristics in a diesel engine involves high temperature and load, the amount of particulate matter emission tends to increase, and there is a trade-off between the amount of nitrogen oxide and particulate matter emissions. In the present study, engine dynamometer experiments are performed to investigate the effects of particulate matter fouling on the heat exchange characteristics of wave fin type exhaust gas recirculation coolers that have four cases of two wave pitch and three fin pitch lengths. To optimize the fin and wave pitches of the EGR cooler, the exhaust gas temperature, pressure drop and heat exchange effectiveness are compared. The experimental results show that the exhaust gas recirculation cooler with a fin pitch of 3.6 mm and a wave pitch of 8.8 mm exhibits better heat exchange characteristics and smaller particulate matter fouling effect than the other coolers.

  8. Influence of an Optimized Thermoelectric Generator on the Back Pressure of the Subsequent Exhaust Gas System of a Vehicle

    NASA Astrophysics Data System (ADS)

    Kühn, Roland; Koeppen, Olaf; Kitte, Jens

    2014-06-01

    Numerous research projects in automotive engineering focus on the industrialization of the thermoelectric generator (TEG). The development and the implementation of thermoelectric systems into the vehicle environment are commonly supported by virtual design activities. In this paper a customized simulation architecture is presented that includes almost all vehicle parts which are influenced by the TEG (overall system simulation) but is nevertheless capable of real-time use. Moreover, an optimized planar TEG with minimum nominal power output of about 580 W and pressure loss at nominal conditions of 10 mbar, synthesized using the overall system simulation, and the overall system simulation itself are used to answer a generally neglected question: What influence does the position of a TEG have on the back pressure of the subsequent exhaust gas system of the vehicle? It is found that the influence of the TEG on the muffler is low, but the catalytic converter is strongly influenced. It is shown that the TEG can reduce the back pressure of an exhaust gas system so much that its overall back pressure is less than the back pressure of a standard exhaust gas system.

  9. An investigation of noise produced by unsteady gas flow through silencer elements

    NASA Astrophysics Data System (ADS)

    Mawhinney, Graeme Hugh

    This thesis presents an investigation of the noise produced by unsteady gas flow through silencer elements. The central aim of the research project was to produce a tool for assistance in the design of the exhaust systems of diesel powered electrical generator sets, with the modelling techniques developed having a much wider application in reciprocating internal combustion engine exhaust systems. An automotive cylinder head was incorporated in a purpose built test rig to supply exhaust pulses, typical of those found in the exhaust system of four stroke diesel engines, to various experimental exhaust systems. Exhaust silencer elements evaluated included expansion, re- entrant, concentric tube resonator and absorptive elements. Measurements taken on the test rig included, unsteady superposition pressure in the exhaust ducting, cyclically averaged mass flow rate through the system and exhaust noise levels radiated into a semi-anechoic measurement chamber. The entire test rig was modelled using the 1D finite volume method developed previously developed at Queen's University Belfast. Various boundary conditions, developed over the years, were used to model the various silencer elements being evaluated. The 1D gas dynamic simulation thus estimated the mass flux history at the open end of the exhaust system. The mass flux history was then broken into its harmonic components and an acoustic radiation model was developed to model the sound pressure level produced by an acoustic monopole over a reflecting plane. The accuracy of the simulation technique was evaluated by correlation of measured and simulated superposition pressure and noise data. In general correlation of superposition pressure was excellent for all of the silencer elements tested. Predicted sound pressure level radiated from the open end of the exhaust tailpipe was seen to be accurate in the 100 Hz to 1 kHz frequency range for all of the silencer elements tested.

  10. 14 CFR 34.60 - Introduction.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.60 Introduction. (a) Use the equipment...

  11. DEVELOPMENT OF A PROPORTIONAL SAMPLER FOR AUTOMOBILE EXHAUST EMISSIONS TESTING

    EPA Science Inventory

    The report describes the development of a device that is capable of sampling gaseous emissions from automobiles. The device samples exhaust gases at a mass rate that is proportional to the total exhaust gas mass flow rate, which is measured using an ultrasonic vortex flowmeter. T...

  12. Method and apparatus to selectively reduce NO.sub.x in an exhaust gas feedstream

    DOEpatents

    Schmieg, Steven J [Troy, MI; Blint, Richard J [Shelby Township, MI; Den, Ling [Sterling Heights, MI; Viola, Michael B [Macomb Township, MI; Lee, Jong-Hwan [Rochester Hills, MI

    2011-08-30

    A method and apparatus are described to selectively reduce NO.sub.x emissions of an internal combustion engine. An exhaust aftertreatment system includes an injection device operative to dispense a hydrocarbon reductant upstream of a silver-alumina catalytic reactor device. A control system determines a NO.sub.x concentration and hydrocarbon/NOx ratio based upon selected parameters of the exhaust gas feedstream and dispenses hydrocarbon reductant during lean engine operation. Included is a method to control elements of the feedstream during lean operation. The hydrocarbon reductant may include engine fuel.

  13. Wind Tunnel Model Study of the Hot Exhaust Plume from the Compressor Research Facility at Wright-Patterson Air Force Base, Ohio

    DTIC Science & Technology

    1977-10-01

    PLUME FROM THE COMPRESSOR JtESEARCHJAC ILITY AT WRIGHT- /ATTERSON AIR FORCE JBASE, OHIO , r= mrm (.) Gary R./Ludwig 9. PERFORMING ORGANIZATION NAME... ms Mass flux of stack exhaust gas (slugs/sec) nrtfl Mass flux of ambient air and stack exhaust gas mixture st plume cross-section A (slugs/sec...the horizontal momentum flux in the ambient wind be the same in the model as it is in full-scale. /»» Ms M i a. ’ ro P>"S P*» + ’f (3) where 0

  14. On-line carbon balance of yeast fermentations using miniaturized optical sensors.

    PubMed

    Beuermann, Thomas; Egly, Dominik; Geoerg, Daniel; Klug, Kerris Isolde; Storhas, Winfried; Methner, Frank-Juergen

    2012-03-01

    Monitoring of microbiological processes using optical sensors and spectrometers has gained in importance over the past few years due to its advantage in enabling non-invasive on-line analysis. Near-infrared (NIR) and mid-infrared (MIR) spectrometer set-ups in combination with multivariate calibrations have already been successfully employed for the simultaneous determination of different metabolites in microbiological processes. Photometric sensors, in addition to their low price compared to spectrometer set-ups, have the advantage of being compact and are easy to calibrate and operate. In this work, the detection of ethanol and CO(2) in the exhaust gas during aerobic yeast fermentation was performed by two photometric gas analyzers, and dry yeast biomass was monitored using a fiber optic backscatter set-up. The optical sensors could be easily fitted to the bioreactor and exhibited high robustness during measuring. The ethanol content of the fermentation broth was monitored on-line by measuring the ethanol concentration in the fermentation exhaust and applying a conversion factor. The vapor/liquid equilibrium and the associated conversion factor strongly depend on the process parameter temperature but not on aeration and stirring rate. Dry yeast biomass was determined in-line by a backscattering signal applying a linear calibration. An on-line balance with a recovery rate of 95-97% for carbon was achieved with the use of three optical sensors (two infrared gas analyzers and one fiber optic backscatter set-up). Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  15. Power recovery from waste heat in modern turboexpander plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mafi, S.; Drake, C.

    1981-01-01

    The object of this study is to determine the feasibility and cost of installing a power recovery system in an existing gas processing plant. The power generated by the system is to be used to drive a residue gas compressor, a refrigeration compressor and the heat medium circulating pump, each having its own expander driver. For this purpose the heat from the exhaust of a number of gas turbines is to be combined to provide a total 75 MM Btu/hr. heat energy. Because of safety reasons, Freon 12 has been chosen for the working fluid. The condensing media is watermore » at a design temperature of 80 degrees F. The process conditions for the cycle and the duties of the major equipments are described.« less

  16. Reaction behavior of SO2 in the sintering process with flue gas recirculation.

    PubMed

    Yu, Zhi-Yuan; Fan, Xiao-Hui; Gan, Min; Chen, Xu-Ling; Chen, Qiang; Huang, Yun-Song

    2016-07-01

    The primary goal of this paper is to reveal the reaction behavior of SO2 in the sinter zone, combustion zone, drying-preheating zone, and over-wet zone during flue gas recirculation (FGR) technique. The results showed that SO2 retention in the sinter zone was associated with free-CaO in the form of CaSO3/CaSO4, and the SO2 adsorption reached a maximum under 900ºC. SO2 in the flue gas came almost from the combustion zone. One reaction behavior was the oxidation of sulfur in the sintering mix when the temperature was between 800 and 1000ºC; the other behavior was the decomposition of sulfite/sulfate when the temperature was over 1000ºC. However, the SO2 adsorption in the sintering bed mainly occurred in the drying-preheating zone, adsorbed by CaCO3, Ca(OH)2, and CaO. When the SO2 adsorption reaction in the drying-preheating zone reached equilibrium, the excess SO2 gas continued to migrate to the over-wet zone and was then absorbed by Ca(OH)2 and H2O. The emission rising point of SO2 moved forward in combustion zone, and the concentration of SO2 emissions significantly increased in the case of flue gas recirculation (FGR) technique. Aiming for the reuse of the sensible heat and a reduction in exhaust gas emission, the FGR technique is proposed in the iron ore sintering process. When using the FGR technique, SO2 emission in exhaust gas gets changed. In practice, the application of the FGR technique in a sinter plant should be cooperative with the flue gas desulfurization (FGD) technique. Thus, it is necessary to study the influence of the FGR technique on SO2 emissions because it will directly influence the demand and design of the FGD system.

  17. 40 CFR 600.511-08 - Determination of domestic production.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions...

  18. 40 CFR 600.511-08 - Determination of domestic production.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Procedures for Determining Manufacturer's Average Fuel Economy and Manufacturer's Average Carbon-Related Exhaust Emissions...

  19. [Ultrafine particle number concentration and size distribution of vehicle exhaust ultrafine particles].

    PubMed

    Lu, Ye-qiang; Chen, Qiu-fang; Sun, Zai; Cai, Zhi-liang; Yang, Wen-jun

    2014-09-01

    Ultrafine particle (UFP) number concentrations obtained from three different vehicles were measured using fast mobility particle sizer (FMPS) and automobile exhaust gas analyzer. UFP number concentration and size distribution were studied at different idle driving speeds. The results showed that at a low idle speed of 800 rmin-1 , the emission particle number concentration was the lowest and showed a increasing trend with the increase of idle speed. The majority of exhaust particles were in Nuclear mode and Aitken mode. The peak sizes were dominated by 10 nm and 50 nm. Particle number concentration showed a significantly sharp increase during the vehicle acceleration process, and was then kept stable when the speed was stable. In the range of 0. 4 m axial distance from the end of the exhaust pipe, the particle number concentration decayed rapidly after dilution, but it was not obvious in the range of 0. 4-1 m. The number concentration was larger than the background concentration. Concentration of exhaust emissions such as CO, HC and NO showed a reducing trend with the increase of idle speed,which was in contrast to the emission trend of particle number concentration.

  20. Stratospheric aircraft exhaust plume and wake chemistry studies

    NASA Technical Reports Server (NTRS)

    Miake-Lye, R. C.; Martinez-Sanchez, M.; Brown, R. C.; Kolb, C. E.; Worsnop, D. R.; Zahniser, M. S.; Robinson, G. N.; Rodriguez, J. M.; Ko, M. K. W.; Shia, R-L.

    1992-01-01

    This report documents progress to date in an ongoing study to analyze and model emissions leaving a proposed High Speed Civil Transport (HSCT) from when the exhaust gases leave the engine until they are deposited at atmospheric scales in the stratosphere. Estimates are given for the emissions, summarizing relevant earlier work (CIAP) and reviewing current propulsion research efforts. The chemical evolution and the mixing and vortical motion of the exhaust are analyzed to track the exhaust and its speciation as the emissions are mixed to atmospheric scales. The species tracked include those that could be heterogeneously reactive on the surfaces of the condensed solid water (ice) particles and on exhaust soot particle surfaces. Dispersion and reaction of chemical constituents in the far wake are studied with a Lagrangian air parcel model, in conjunction with a radiation code to calculate the net heating/cooling. Laboratory measurements of heterogeneous chemistry of aqueous sulfuric acid and nitric acid hydrates are also described. Results include the solubility of HCl in sulfuric acid which is a key parameter for modeling stratospheric processing. We also report initial results for condensation of nitric acid trihydrate from gas phase H2O and HNO3.

  1. Speciation, behaviour, and fate of mercury under oxy-fuel combustion conditions.

    PubMed

    Córdoba, Patricia; Maroto-Valer, M; Delgado, Miguel Angel; Diego, Ruth; Font, Oriol; Querol, Xavier

    2016-02-01

    The work presented here reports the first study in which the speciation, behaviour and fate of mercury (Hg) have been evaluated under oxy-fuel combustion at the largest oxy-Pulverised Coal Combustion (oxy-PCC) demonstration plant to date during routine operating conditions and partial exhaust flue gas re-circulation to the boiler. The effect of the CO2-rich flue gas re-circulation on Hg has also been evaluated. Results reveal that oxy-PCC operational conditions play a significant role on Hg partitioning and fate because of the continuous CO2-rich flue gas re-circulations to the boiler. Mercury escapes from the cyclone in a gaseous form as Hg(2+) (68%) and it is the prevalent form in the CO2-rich exhaust flue gas (99%) with lower proportions of Hg(0) (1.3%). The overall retention rate for gaseous Hg is around 12%; Hg(0) is more prone to be retained (95%) while Hg(2+) shows a negative efficiency capture for the whole installation. The negative Hg(2+) capture efficiencies are due to the continuous CO2-rich exhaust flue gas recirculation to the boiler with enhanced Hg contents. Calculations revealed that 44mg of Hg were re-circulated to the boiler as a result of 2183 re-circulations of CO2-rich flue gas. Especial attention must be paid to the role of the CO2-rich exhaust flue gas re-circulation to the boiler on the Hg enrichment in Fly Ashes (FAs). Copyright © 2015 Elsevier Inc. All rights reserved.

  2. Exhaustive Conversion of Inorganic Nitrogen to Nitrogen Gas Based on a Photoelectro-Chlorine Cycle Reaction and a Highly Selective Nitrogen Gas Generation Cathode.

    PubMed

    Zhang, Yan; Li, Jinhua; Bai, Jing; Shen, Zhaoxi; Li, Linsen; Xia, Ligang; Chen, Shuai; Zhou, Baoxue

    2018-02-06

    A novel method for the exhaustive conversion of inorganic nitrogen to nitrogen gas is proposed in this paper. The key properties of the system design included an exhaustive photoelectrochemical cycle reaction in the presence of Cl - , in which Cl· generated from oxidation of Cl - by photoholes selectively converted NH 4 + to nitrogen gas and some NO 3 - or NO 2 - . The NO 3 - or NO 2 - was finally reduced to nitrogen gas on a highly selective Pd-Cu-modified Ni foam (Pd-Cu/NF) cathode to achieve exhaustive conversion of inorganic nitrogen to nitrogen gas. The results indicated total nitrogen removal efficiencies of 30 mg L -1 inorganic nitrogen (NO 3 - , NH 4 + , NO 3 - /NH 4 + = 1:1 and NO 2 - /NO 3 - /NH 4 + = 1:1:1) in 90 min were 98.2%, 97.4%, 93.1%, and 98.4%, respectively, and the remaining nitrogen was completely removed by prolonging the reaction time. The rapid reduction of nitrate was ascribed to the capacitor characteristics of Pd-Cu/NF that promoted nitrate adsorption in the presence of an electric double layer, eliminating repulsion between the cathode and the anion. Nitrate was effectively removed with a rate constant of 0.050 min -1 , which was 33 times larger than that of Pt cathode. This system shows great potential for inorganic nitrogen treatment due to the high rate, low cost, and clean energy source.

  3. Processes to remove acid forming gases from exhaust gases

    DOEpatents

    Chang, S.G.

    1994-09-20

    The present invention relates to a process for reducing the concentration of NO in a gas, which process comprises: (A) contacting a gas sample containing NO with a gaseous oxidizing agent to oxidize the NO to NO[sub 2]; (B) contacting the gas sample of step (A) comprising NO[sub 2] with an aqueous reagent of bisulfite/sulfite and a compound selected from urea, sulfamic acid, hydrazinium ion, hydrazoic acid, nitroaniline, sulfanilamide, sulfanilic acid, mercaptopropanoic acid, mercaptosuccinic acid, cysteine or combinations thereof at between about 0 and 100 C at a pH of between about 1 and 7 for between about 0.01 and 60 sec; and (C) optionally contacting the reaction product of step (A) with conventional chemical reagents to reduce the concentrations of the organic products of the reaction in step (B) to environmentally acceptable levels. Urea or sulfamic acid are preferred, especially sulfamic acid, and step (C) is not necessary or performed. 16 figs.

  4. Integrated exhaust gas recirculation and charge cooling system

    DOEpatents

    Wu, Ko-Jen

    2013-12-10

    An intake system for an internal combustion engine comprises an exhaust driven turbocharger configured to deliver compressed intake charge, comprising exhaust gas from the exhaust system and ambient air, through an intake charge conduit and to cylinders of the internal combustion engine. An intake charge cooler is in fluid communication with the intake charge conduit. A cooling system, independent of the cooling system for the internal combustion engine, is in fluid communication with the intake charge cooler through a cooling system conduit. A coolant pump delivers a low temperature cooling medium from the cooling system to and through the intake charge cooler for the transfer of heat from the compressed intake charge thereto. A low temperature cooler receives the heated cooling medium through the cooling system conduit for the transfer or heat therefrom.

  5. Applicability of empirical data currently used in predicting solid propellant exhaust plumes

    NASA Technical Reports Server (NTRS)

    Tevepaugh, J. A.; Smith, S. D.; Penny, M. M.; Greenwood, T.; Roberts, B. B.

    1977-01-01

    Theoretical and experimental approaches to exhaust plume analysis are compared. A two-phase model is extended to include treatment of reacting gas chemistry, and thermodynamical modeling of the gaseous phase of the flow field is considered. The applicability of empirical data currently available to define particle drag coefficients, heat transfer coefficients, mean particle size, and particle size distributions is investigated. Experimental and analytical comparisons are presented for subscale solid rocket motors operating at three altitudes with attention to pitot total pressure and stagnation point heating rate measurements. The mathematical treatment input requirements are explained. The two-phase flow field solution adequately predicts gasdynamic properties in the inviscid portion of two-phase exhaust plumes. It is found that prediction of exhaust plume gas pressures requires an adequate model of flow field dynamics.

  6. Feasibility of Reburning for Controlling NOx Emissions from Air Force Jet Engine Test Cells

    DTIC Science & Technology

    1989-06-01

    the engine exhaust by the augmenter air. For this reason, it is important to examine the effect of inlet NOX concentration on achieved reduction...Schedule at Tinker AFB .... ......... 8 3 Typical Nonafterburning Turbine Engine Emission Trends. . 9 4 Temperature of Diluted Exhaust J-79 Engine ... Exhaust Temperature on Reburner NOX Reduction .......... ......................... . 43 24 Effect of Exhaust Gas Inlet Flow Rate on Reburner NOx

  7. Comparison of Airway Responses Induced in a Mouse Model by the Gas and Particulate Fractions of Gasoline Direct Injection Engine Exhaust.

    PubMed

    Maikawa, Caitlin L; Zimmerman, Naomi; Ramos, Manuel; Shah, Mittal; Wallace, James S; Pollitt, Krystal J Godri

    2018-03-01

    Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI) engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group). Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH) metabolism ( Cyp1b1 ) and inflammation ( TNFα ) in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important.

  8. Comparison of Airway Responses Induced in a Mouse Model by the Gas and Particulate Fractions of Gasoline Direct Injection Engine Exhaust

    PubMed Central

    Maikawa, Caitlin L.; Zimmerman, Naomi; Ramos, Manuel; Wallace, James S.; Pollitt, Krystal J. Godri

    2018-01-01

    Diesel exhaust has been associated with asthma, but its response to other engine emissions is not clear. The increasing prevalence of vehicles with gasoline direct injection (GDI) engines motivated this study, and the objective was to evaluate pulmonary responses induced by acute exposure to GDI engine exhaust in an allergic asthma murine model. Mice were sensitized with an allergen to induce airway hyperresponsiveness or treated with saline (non-allergic group). Animals were challenged for 2-h to exhaust from a laboratory GDI engine operated at conditions equivalent to a highway cruise. Exhaust was filtered to assess responses induced by the particulate and gas fractions. Short-term exposure to particulate matter from GDI engine exhaust induced upregulation of genes related to polycyclic aromatic hydrocarbon (PAH) metabolism (Cyp1b1) and inflammation (TNFα) in the lungs of non-allergic mice. High molecular weight PAHs dominated the particulate fraction of the exhaust, and this response was therefore likely attributable to the presence of these PAHs. The particle fraction of GDI engine exhaust further contributed to enhanced methacholine responsiveness in the central and peripheral tissues in animals with airway hyperresponsiveness. As GDI engines gain prevalence in the vehicle fleet, understanding the health impacts of their emissions becomes increasingly important. PMID:29494515

  9. Exhaust purification with on-board ammonia production

    DOEpatents

    Robel, Wade J.; Driscoll, James J.; Coleman, Gerald N.; Knox, Kevin J.

    2009-06-30

    A power source is provided for use with selective catalytic reduction systems for exhaust-gas purification. The power source includes a first cylinder group with a first air-intake passage and a first exhaust passage, and a second cylinder group with a second air-intake passage and a second exhaust passage. The second air-intake passage is fluidly isolated from the first air-intake passage. A fuel-supply device may be configured to supply fuel into the first exhaust passage, and a catalyst may be disposed downstream of the fuel-supply device to convert at least a portion of the exhaust stream in the first exhaust passage into ammonia.

  10. Lean burn natural gas fueled S.I. engine and exhaust emissions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Varde, K.S.; Patro, N.; Drouillard, K.

    1995-12-31

    An experimental study was undertaken to study exhaust emission from a lean-burn natural gas spark ignition engine. The possibility that such an engine may help to reduce exhaust emissions substantially by taking advantage of natural gas fuel properties, such as its antiknock properties and extended lean flammability limit compared to gasoline, was the main motivation behind the investigation. A four cylinder, automotive type spark ignition engine was used in the investigation. The engine was converted to operate on natural gas by replacing its fuel system with a gaseous carburetion system. A 3-way metal metrix catalytic converter was used in themore » engine exhaust system to reduce emission levels. The engine operated satisfactorily at an equivalence ratio as lean as 0.6, at all speeds and loads. As a result NOx emissions were significantly reduced. However, hydrocarbon emissions were high, particularly at very lean conditions and light loads. Most of these hydrocarbons were made up of methane with small concentrations of ethane and propane. Coefficient of variations in hydrocarbons were generally high at very lean operating conditions and light loads, but decreased with increasing equivalence ratio and engine speed. Methane concentrations in the engine exhaust decreased with increasing load and equivalence ratio. At lean air-to-fuel ratios and light loads oxidation of methane in the catalyst was substantially limited and no NOx reduction was achieved. In addition, the proportion of nitric oxide in oxides of nitrogen increased with increasing amount of NOx in the engine exhaust. A major problem encountered in the study was the inability of the fuel system to maintain near constant air-to-fuel ratios at steady operating conditions.« less

  11. Development and characterization of a mobile photoacoustic sensor for on-line soot emission monitoring in diesel exhaust gas.

    PubMed

    Beck, H A; Niessner, R; Haisch, C

    2003-04-01

    Upcoming regulations for vehicle exhaust emission demand substantial reduction of particle emission in diesel exhaust. To achieve these emission levels, the car manufacturing industry is developing new combustion concepts and exhaust after-treatment techniques such as the use of catalysts and particle filters. Many of the state-of-the-art analytical instruments do not meet the required detection limits, in combination with a high temporal resolution necessary for engine optimization. This paper reports a new detection system and the first results of its application to on-line diesel exhaust soot measurements on a engine test bench (MAN diesel engine facility Nürnberg, Germany). The instrument is based on differential photoacoustic (PA) spectroscopy of black carbon aerosol. It contains two identical PA cells, one for the measurement of the aerosol particles and one which analyses the particle-free gas. Thus, a potential cross-sensitivity to gaseous absorbers in the exhaust gas can be excluded. The PA cells were characterized in a laboratory set-up, with water vapor as reference gas and artificial soot generated by a spark discharge generator. The detection limit was found to be 2 microg m(-3) BC (for diesel soot) with a sampling rate of 3 Hz. The temporal response of the system was found to be in the order of 1 s. After full characterization of the cells, the system was transferred into a mobile 19"-rack. Characterization of the mobile sensor system under real-world conditions was performed during several measurement campaigns at an engine test bench for heavy-duty diesel engines. Results for the limit of detection, the time resolution, accuracy, repeatability, and robustness of the sensor system are very promising with regards to a routine application of the system in engine development.

  12. Injection system used into SI engines for complete combustion and reduction of exhaust emissions in the case of alcohol and petrol alcohol mixtures feed

    NASA Astrophysics Data System (ADS)

    Ispas, N.; Cofaru, C.; Aleonte, M.

    2017-10-01

    Internal combustion engines still play a major role in today transportation but increasing the fuel efficiency and decreasing chemical emissions remain a great goal of the researchers. Direct injection and air assisted injection system can improve combustion and can reduce the concentration of the exhaust gas pollutes. Advanced air-to-fuel and combustion air-to-fuel injection system for mixtures, derivatives and alcohol gasoline blends represent a major asset in reducing pollutant emissions and controlling combustion processes in spark-ignition engines. The use of these biofuel and biofuel blending systems for gasoline results in better control of spark ignition engine processes, making combustion as complete as possible, as well as lower levels of concentrations of pollutants in exhaust gases. The main purpose of this paper was to provide most suitable tools for ensure the proven increase in the efficiency of spark ignition engines, making them more environmentally friendly. The conclusions of the paper allow to highlight the paths leading to a better use of alcohols (biofuels) in internal combustion engines of modern transport units.

  13. 40 CFR 63.4766 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... also use as an alternative to Method 3B, the manual method for measuring the oxygen, carbon dioxide, and carbon monoxide content of exhaust gas in ANSI/ASME PTC 19.10-1981, “Flue and Exhaust Gas Analyses [Part 10, Instruments and Apparatus]” (incorporated by reference, see § 63.14). (4) Use Method 4 of...

  14. Modeling of Engine Parameters for Condition-Based Maintenance of the MTU Series 2000 Diesel Engine

    DTIC Science & Technology

    2016-09-01

    are suitable. To model the behavior of the engine, an autoregressive distributed lag (ARDL) time series model of engine speed and exhaust gas... time series model of engine speed and exhaust gas temperature is derived. The lag length for ARDL is determined by whitening of residuals using the...15 B. REGRESSION ANALYSIS ....................................................................15 1. Time Series Analysis

  15. One dimensional modeling of a diesel-CNG dual fuel engine

    NASA Astrophysics Data System (ADS)

    Azman, Putera Adam; Fawzi, Mas; Ismail, Muammar Mukhsin; Osman, Shahrul Azmir

    2017-04-01

    Some of the previous studies have shown that the use of compressed natural gas (CNG) in diesel engines potentially produce engine performance improvement and exhaust gas emission reduction, especially nitrogen oxides, unburned hydrocarbons, and carbon dioxide. On the other hand, there are other researchers who claimed that the use of CNG increases exhaust gas emissions, particularly nitrogen oxides. In this study, a one-dimensional model of a diesel-CNG dual fuel engine was made based on a 4-cylinder 2.5L common rail direct injection diesel engine. The software used is GT-Power, and it was used to analyze the engine performance and exhaust gas emissions of several diesel-CNG dual fuel blend ratios, i.e. 100:0, 90:10, 80:20, 70:30, 60:40 and 50:50. The effect of 100%, 75%, 50% engine loads on the exhaust gas emissions were also studied. The result shows that all diesel-CNG fuel blends produces higher brake torque and brake power at engine speed of 2000-3000 rpm compared with 100% diesel. The 50:50 diesel-CNG blend produces the highest brake torque and brake power, but also has the highest brake specific fuel consumption. As a higher percentage of CNG added to the dual fuel blend, unburned hydrocarbons and carbon monoxide emission increased while carbon dioxide emission decreased. The nitrogen oxides emission concentration is generally unaffected by any change of the dual fuel ratio.

  16. Assessing the depth of isoflurane anaesthesia during cardiopulmonary bypass.

    PubMed

    Ng, Ka Ting; Alston, R Peter; Just, George; McKenzie, Chris

    2018-03-01

    Bispectral index (BIS) and monitoring of end-tidal concentration may be associated with a reduction in the incidence of awareness during volatile-based general anaesthesia. An analogue of end-tidal concentration during cardiopulmonary bypass (CPB) is measuring exhausted isoflurane concentration from the oxygenator as an estimate to blood and, so, brain concentration. The aim of this study was to determine the relationships between oxygenator exhaust and blood concentrations of isoflurane and the BIS score during CPB when administering isoflurane into the sweep gas supply to the oxygenator. Seventeen patients undergoing elective cardiac surgery using CPB and isoflurane with BIS monitoring were recruited in a single-centre university hospital. Isoflurane gas was delivered via a calibrated vaporiser at the beginning of anaesthetic induction. Radial arterial blood samples were collected after the initiation of CPB and before aortic cross-clamping, which were analysed for isoflurane by gas chromatography and mass spectrometry. The BIS score and the concentration of exhausted isoflurane from the oxygenator membrane, as measured by an anaesthetic gas analyser, were recorded at the time of blood sampling. The mean duration of anaesthetic induction to arterial blood sampling was 90 min (95%CI: 80,100). On CPB, the median BIS was 39 (range, 7-43) and the mean oxygenator exhaust isoflurane concentration was 1.24 ± 0.21%. No significant correlation was demonstrated between BIS with arterial isoflurane concentration (r=-0.19, p=0.47) or oxygenator exhaust isoflurane concentration (r=0.07, p=0.80). Mixed-venous blood temperature was moderately correlated to BIS (r=0.50, p=0.04). Oxygenator exhaust isoflurane concentration was moderately, positively correlated with its arterial concentration (r=0.64, p<0.01). In conclusion, in patients undergoing heart surgery with CPB, the findings of this study indicate that, whilst oxygenator exhaust concentrations were significantly associated with arterial concentrations of isoflurane, neither had any association with the BIS scores, whereas body temperature has moderate positive correlation.

  17. 40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.23 Exhaust emission standards for Tier 6 and Tier 8...

  18. 40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87.23 Exhaust emission standards for Tier 6 and Tier 8...

  19. 40 CFR 87.23 - Exhaust emission standards for Tier 6 and Tier 8 engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Exhaust emission standards for Tier 6 and Tier 8 engines. 87.23 Section 87.23 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) Definitions. Exhaust Emissions (New Aircraft Gas Turbine Engines) § 87...

  20. 40 CFR 91.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... that complete mixing of the engine exhaust and background air is assured prior to the sampling probe.... The background probe must draw a representative sample of the background air during each sampling mode...) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe, this system...

  1. 40 CFR 91.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... that complete mixing of the engine exhaust and background air is assured prior to the sampling probe.... The background probe must draw a representative sample of the background air during each sampling mode...) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe, this system...

  2. 40 CFR 91.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... that complete mixing of the engine exhaust and background air is assured prior to the sampling probe.... The background probe must draw a representative sample of the background air during each sampling mode...) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe, this system...

  3. 40 CFR 91.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... that complete mixing of the engine exhaust and background air is assured prior to the sampling probe.... The background probe must draw a representative sample of the background air during each sampling mode...) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe, this system...

  4. 40 CFR 91.420 - CVS concept of exhaust gas sampling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... that complete mixing of the engine exhaust and background air is assured prior to the sampling probe.... The background probe must draw a representative sample of the background air during each sampling mode...) sampling system. If a critical flow venturi (CFV) is used on the dilute exhaust sample probe, this system...

  5. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 30 2014-07-01 2014-07-01 false Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations. 600.114-12 Section 600.114-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST...

  6. A demonstration test and evaluation of the Cannon Low-NO{sub x} Digester System. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-08-01

    Since 1985, Cannon Boiler Works, Inc. has been carrying out research and development efforts to perfect a system for removing nitrogen oxides, NO{sub x}, from the exhaust gases of furnaces, gas turbines, chemical reactors, incinerators and boilers.Computer simulations, bench-scale tests and pilot plant testing have proved that the system is capable of removing substantially all of the NO{sub x} from natural gas-fired equipment exhaust streams. Furthermore when retrofit to industrial boilers, both capital costs and operating costs are lower than for competing processes, while performance is much better. The Cannon system for removing NO{sub x}, originally designated as the Cannonmore » NO{sub x} Digester, has recently been renamed the Low Temperature Oxidation (LTO) System for NO{sub x} and SO{sub x} Reduction. It will be engineered and marketed by Cannon Technology, Inc, a wholly owned subsidiary of Cannon Boiler Works, Inc. Cannon has US patents for the process and for the associated equipment and has patent applications pending in Europe. Cannon`s Low Temperature Oxidation, LTO, process has proved effective for reducing the levels of NO{sub x}, CO, CO{sub 2}, SO{sub 2} and particulates from boiler flue gases.« less

  7. One-stage free-vortex aerodynamic window with pressure ratio 100 and atmospheric exhaust

    NASA Astrophysics Data System (ADS)

    Malkov, Victor M.; Trilis, A. V.; Savin, Andrew V.; Druzhinin, S. L.

    2005-03-01

    The aerodynamic windows (AW) are intended for a high power extraction from the gas laser optical cavity, where the pressure is much lower than environment pressure. The main requirements for the aerodynamic windows are to satisfy a low level of optical disturbances in a laser beam extraction channel and an air leakage absence into the optical cavity. Free vortex AW are most economic from a point of working gas consumption and the greatest pressure differential is realized on them at an exhaust to atmosphere. For ideal gas it is possible to receive as much as large pressure differential, however for real gas a pressure differential more than P>=50 is difficult to achieve. To achieve the pressure ratio 100 in free vortex single-stage AW the method of stabilizing of boundary layer was used. The gas of curtain was decelerated in the diffuser and was exhausted into the atmosphere straightly. The pressure recovery improvement was achieved by using the boundary layer blowing inside the diffuser. Only 10% of total mass flow was used for boundary layer blowing.

  8. Development of a tunable diode laser sensor for measurements of gas turbine exhaust temperature

    NASA Astrophysics Data System (ADS)

    Liu, X.; Jeffries, J. B.; Hanson, R. K.; Hinckley, K. M.; Woodmansee, M. A.

    2006-03-01

    A tunable diode laser (TDL) temperature sensor is designed, constructed, tested, and demonstrated in the exhaust of an industrial gas turbine. Temperature is determined from the ratio of the measured absorbance of two water vapor overtone transitions in the near infrared where telecommunication diode lasers are available. Design rules are developed to select the optimal pair of transitions for direct absorption measurements using spectral simulations by systematically examining the absorption strength, spectral isolation, and temperature sensitivity to maximize temperature accuracy in the core flow and minimize sensitivity to water vapor in the cold boundary layer. The contribution to temperature uncertainty from the spectroscopic database is evaluated and precise line-strength data are measured for the selected transitions. Gas-temperature measurements in a heated cell are used to verify the sensor accuracy (over the temperature range of 350 to 1000 K, ΔT˜2 K for the optimal line pair and ΔT˜5 K for an alternative line pair). Field measurements of exhaust-gas temperature in an industrial gas turbine demonstrate the practical utility of TDL sensing in harsh industrial environments.

  9. 40 CFR 600.110-08 - Equipment calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.110-08 Equipment calibration. The equipment used for fuel economy...

  10. 40 CFR 600.110-08 - Equipment calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.110-08 Equipment calibration. The equipment used for fuel economy...

  11. 14 CFR 34.71 - Compliance with gaseous emission standards.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.71...

  12. A temperature correlation for the radiation resistance of a thick-walled circular duct exhausting a hot gas

    NASA Technical Reports Server (NTRS)

    Mahan, J. R.; Cline, J. G.; Jones, J. D.

    1984-01-01

    It is often useful to know the radiation impedance of an unflanged but thick-walled circular duct exhausting a hot gas into relatively cold surroundings. The reactive component is shown to be insensitive to temperature, but the resistive component is shown to be temperature dependent. A temperature correlation is developed permitting prediction of the radiation resistance from a knowledge of the temperature difference between the ambient air and the gas flowing from the duct, and a physical basis for this correlation is presented.

  13. A Gas Chromatograph/Mass Spectrometer System for UltraLow-Emission Combustor Exhaust Studies

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Wey, Chowen Chou

    1996-01-01

    A gas chromatograph (GC)/mass spectrometer (MS) system that allows the speciation of unburnt hydrocarbons in the combustor exhaust has been developed at the NASA Lewis Research Center. Combustion gas samples are withdrawn through a water-cooled sampling probe which, when not in use, is protected from contamination by a high-pressure nitrogen purge. The sample line and its connecting lines, filters, and valves are all ultraclean and are heated to avoid condensation. The system has resolution to the parts-per-billion (ppb) level.

  14. Assessment of exhaust emissions from carbon nanotube production and particle collection by sampling filters.

    PubMed

    Tsai, Candace Su-Jung; Hofmann, Mario; Hallock, Marilyn; Ellenbecker, Michael; Kong, Jing

    2015-11-01

    This study performed a workplace evaluation of emission control using available air sampling filters and characterized the emitted particles captured in filters. Characterized particles were contained in the exhaust gas released from carbon nanotube (CNT) synthesis using chemical vapor deposition (CVD). Emitted nanoparticles were collected on grids to be analyzed using transmission electron microscopy (TEM). CNT clusters in the exhaust gas were collected on filters for investigation. Three types of filters, including Nalgene surfactant-free cellulose acetate (SFCA), Pall A/E glass fiber, and Whatman QMA quartz filters, were evaluated as emission control measures, and particles deposited in the filters were characterized using scanning transmission electron microscopy (STEM) to further understand the nature of particles emitted from this CNT production. STEM analysis for collected particles on filters found that particles deposited on filter fibers had a similar morphology on all three filters, that is, hydrophobic agglomerates forming circular beaded clusters on hydrophilic filter fibers on the collecting side of the filter. CNT agglomerates were found trapped underneath the filter surface. The particle agglomerates consisted mostly of elemental carbon regardless of the shapes. Most particles were trapped in filters and no particles were found in the exhaust downstream from A/E and quartz filters, while a few nanometer-sized and submicrometer-sized individual particles and filament agglomerates were found downstream from the SFCA filter. The number concentration of particles with diameters from 5 nm to 20 µm was measured while collecting particles on grids at the exhaust piping. Total number concentration was reduced from an average of 88,500 to 700 particle/cm(3) for the lowest found for all filters used. Overall, the quartz filter showed the most consistent and highest particle reduction control, and exhaust particles containing nanotubes were successfully collected and trapped inside this filter. As concern for the toxicity of engineered nanoparticles grows, there is a need to characterize emission from carbon nanotube synthesis processes and to investigate methods to prevent their environmental release. At this time, the particles emitted from synthesis were not well characterized when collected on filters, and limited information was available about filter performance to such emission. This field study used readily available sampling filters to collect nanoparticles from the exhaust gas of a carbon nanotube furnace. New agglomerates were found on filters from such emitted particles, and the performance of using the filters studied was encouraging in terms of capturing emissions from carbon nanotube synthesis.

  15. Diesel exhaust induced pulmonary and cardiovascular impairment: The role of hypertension intervention

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kodavanti, Urmila P., E-mail: kodavanti.urmila@epa.gov; Thomas, Ronald F.; Ledbetter, Allen D.

    Exposure to diesel exhaust (DE) and associated gases is linked to cardiovascular impairments; however, the susceptibility of hypertensive individuals is poorly understood. The objectives of this study were (1) to determine cardiopulmonary effects of gas-phase versus whole-DE and (2) to examine the contribution of systemic hypertension in pulmonary and cardiovascular effects. Male Wistar Kyoto (WKY) rats were treated with hydralazine to reduce blood pressure (BP) or L-NAME to increase BP. Spontaneously hypertensive (SH) rats were treated with hydralazine to reduce BP. Control and drug-pretreated rats were exposed to air, particle-filtered exhaust (gas), or whole DE (1500 μg/m{sup 3}), 4 h/daymore » for 2 days or 5 days/week for 4 weeks. Acute and 4-week gas and DE exposures increased neutrophils and γ-glutamyl transferase (γ-GT) activity in lavage fluid of WKY and SH rats. DE (4 weeks) caused pulmonary albumin leakage and inflammation in SH rats. Two-day DE increased serum fatty acid binding protein-3 (FABP-3) in WKY. Marked increases occurred in aortic mRNA after 4-week DE in SH (eNOS, TF, tPA, TNF-α, MMP-2, RAGE, and HMGB-1). Hydralazine decreased BP in SH while L-NAME tended to increase BP in WKY; however, neither changed inflammation nor BALF γ-GT. DE-induced and baseline BALF albumin leakage was reduced by hydralazine in SH rats and increased by L-NAME in WKY rats. Hydralazine pretreatment reversed DE-induced TF, tPA, TNF-α, and MMP-2 expression but not eNOS, RAGE, and HMGB-1. ET-1 was decreased by HYD. In conclusion, antihypertensive drug treatment reduces gas and DE-induced pulmonary protein leakage and expression of vascular atherogenic markers. - Highlights: ► Acute diesel exhaust exposure induces pulmonary inflammation in healthy rats. ► In hypertensive rats diesel exhaust effects are seen only after long term exposure. ► Normalizing blood pressure reverses lung protein leakage caused by diesel exhaust. ► Normalizing blood pressure reverses atherogenic effects of diesel exhaust. ► Diesel exhaust and hydralazine cause similar aorta effect on vascular tone markers.« less

  16. Generation of useful energy from process fluids using the biphase turbine

    NASA Astrophysics Data System (ADS)

    Helgeson, N. L.

    1981-01-01

    The six largest energy consuming industries in the United States were surveyed to determine the energy savings that could result from applying the Biphase turbine to industrial process streams. A national potential energy savings of 58 million barrels of oil per year (technical market) was identified. This energy is recoverable from flashing gas liquid process streams and is separate and distinct from exhaust gas waste heat recovery. The industries surveyed in this program were the petroleum chemical, primary metals, paper and pulp, stone-clay-glass, and food. It was required to determine the applicability of the Biphase turbine to flashing operations connected with process streams, to determine the energy changes associated with these flashes if carried out in a Biphase turbine, and to determine the suitability (technical and economical feasibility) of applying the Biphase turbine to these processes.

  17. High resolution temperature mapping of gas turbine combustor simulator exhaust with femtosecond laser induced fiber Bragg gratings

    NASA Astrophysics Data System (ADS)

    Walker, Robert B.; Yun, Sangsig; Ding, Huimin; Charbonneau, Michel; Coulas, David; Lu, Ping; Mihailov, Stephen J.; Ramachandran, Nanthan

    2017-04-01

    Femtosecond infrared (fs-IR) laser written fiber Bragg gratings (FBGs), have demonstrated great potential for extreme sensing. Such conditions are inherent in advanced gas turbine engines under development to reduce greenhouse gas emissions; and the ability to measure temperature gradients in these harsh environments is currently limited by the lack of sensors and controls capable of withstanding the high temperature, pressure and corrosive conditions present. This paper discusses fabrication and deployment of several fs-IR written FBG arrays, for monitoring exhaust temperature gradients of a gas turbine combustor simulator. Results include: contour plots of measured temperature gradients, contrast with thermocouple data.

  18. Exhaust gas emissions of a vortex breakdown stabilized combustor

    NASA Technical Reports Server (NTRS)

    Yetter, R. A.; Gouldin, F. C.

    1976-01-01

    Exhaust gas emission data are described for a swirl stabilized continuous combustor. The combustor consists of confined concentric jets with premixed fuel and air in the inner jet and air in the outer jet. Swirl may be induced in both inner and outer jets with the sense of rotation in the same or opposite directions (co-swirl and counter-swirl). The combustor limits NO emissions by lean operation without sacrificing CO and unburned hydrocarbon emission performance, when commercial-grade methane and air fired at one atmosphere without preheat are used. Relative swirl direction and magnitude are found to have significant effects on exhaust gas concentrations, exit temperatures, and combustor efficiencies. Counter-swirl gives a large recirculation zone, a short luminous combustion zone, and large slip velocities in the interjet shear layer. For maximum counter-swirl conditions, the efficiency is low.

  19. Treating exhaust gas from a pressurized fluidized bed reaction system

    DOEpatents

    Isaksson, J.; Koskinen, J.

    1995-08-22

    Hot gases from a pressurized fluidized bed reactor system are purified. Under super atmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a filtrate cake on the surface of the separator, and a reducing agent--such as an NO{sub x} reducing agent (like ammonia)--is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1--20 cm/s) during passage of the gas through the filtrate cake while at super atmospheric pressure. Separation takes place within a distinct pressure vessel, the interior of which is at a pressure of about 2--100 bar, and introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine). 8 figs.

  20. Treating exhaust gas from a pressurized fluidized bed reaction system

    DOEpatents

    Isaksson, Juhani; Koskinen, Jari

    1995-01-01

    Hot gases from a pressurized fluidized bed reactor system are purified. Under superatmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a flitrate cake on the surface of the separator, and a reducing agent--such as an NO.sub.x reducing agent (like ammonia), is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1-20 cm/s) during passage of the gas through the filtrate cake while at superatmospheric pressure. Separation takes place within a distinct pressure vessel the interior of which is at a pressure of about 2-100 bar, and-introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine).

  1. An integrated exhaust gas analysis system with self-contained data processing and automatic calibration

    NASA Technical Reports Server (NTRS)

    Anderson, R. C.; Summers, R. L.

    1981-01-01

    An integrated gas analysis system designed to operate in automatic, semiautomatic, and manual modes from a remote control panel is described. The system measures the carbon monoxide, oxygen, water vapor, total hydrocarbons, carbon dioxide, and oxides of nitrogen. A pull through design provides increased reliability and eliminates the need for manual flow rate adjustment and pressure correction. The system contains two microprocessors to range the analyzers, calibrate the system, process the raw data to units of concentration, and provides information to the facility research computer and to the operator through terminal and the control panels. After initial setup, the system operates for several hours without significant operator attention.

  2. 40 CFR 600.108-08 - Analytical gases.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.108-08 Analytical gases. The analytical gases for all fuel economy testing...

  3. 40 CFR 600.108-08 - Analytical gases.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.108-08 Analytical gases. The analytical gases for all fuel economy testing...

  4. A fast sampling device for the mass spectrometric analysis of liquid rocket engine exhaust

    NASA Technical Reports Server (NTRS)

    Ryason, P. R.

    1975-01-01

    The design of a device to obtain compositional data on rocket exhaust by direct sampling of reactive flow exhausts into a mass spectrometer is presented. Sampling at three stages differing in pressure and orifice angle and diameter is possible. Results of calibration with pure gases and gas mixtures are erratic and of unknown accuracy for H2, limiting the usefulness of the apparatus for determining oxidizer/fuel ratios from combustion product analysis. Deposition effects are discussed, and data obtained from rocket exhaust spectra are analyzed to give O/F ratios and mixture ratio distribution. The O/F ratio determined spectrometrically is insufficiently accurate for quantitative comparison with cold flow data. However, a criterion for operating conditions with improved mixing of fuel and oxidizer which is consistent with cold flow results may be obtained by inspection of contour plots. A chemical inefficiency in the combustion process when oxidizer is in excess is observed from reactive flow measurements. Present results were obtained with N2O4/N2H4 propellants.

  5. Simulation on Soot Oxidation with NO2 and O2 in a Diesel Particulate Filter

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kazuhiro; Satake, Shingo; Yamashita, Hiroshi; Obuchi, Akira; Uchisawa, Junko

    Although diesel engines have an advantage of low fuel consumption in comparison with gasoline engines, exhaust gas has more particulate matters (PM) including soot. As one of the key technologies, a diesel particulate filter (DPF) has been developed to reduce PM. When the exhaust gas passes its porous filter wall, the soot particles are trapped. However, the filter would readily be plugged with particles, and the accumulated particles must be removed to prevent filter clogging and a rise in backpressure, which is called filter regeneration process. In this study, we have simulated the flow in the wall-flow DPF using the lattice Boltzmann method. Filters of different length, porosity, and pore size are used. The soot oxidation for filter regeneration process is considered. Especially, the effect of NO2 on the soot oxidation is examined. The reaction rate has been determined by previous experimental data. Results show that, the flow along the filter monolith is roughly uniform, and the large pressure drop across the filter wall is observed. The soot oxidation rate becomes ten times larger when NO2 is added. These are useful information to construct the future regeneration system.

  6. A flow calorimeter for determining combustion efficiency from residual enthalpy of exhaust gases

    NASA Technical Reports Server (NTRS)

    Evans, Albert; Hibbard, Robert R

    1954-01-01

    A flow calorimeter for determining the combustion efficiency of turbojet and ram-jet combustors from measurement of the residual enthalpy of combustion of the exhaust gas is described. Briefly, the calorimeter catalytically oxidizes the combustible constituents of exhaust-gas samples, and the resultant temperature rise is measured. This temperature rise is related to the residual enthalpy of combustion of the sample by previous calibration of the calorimeter. Combustion efficiency can be calculated from a knowledge of the residual enthalpy of the exhaust gas and the combustor input enthalpy. An accuracy of +-0.2 Btu per cubic foot was obtained with prepared fuel-air mixtures, and the combustion efficiencies of single turbojet combustors measured by both the flow-calorimeter and heat-balance methods compared within 3 percentage units. Flow calorimetry appears to be a suitable method for determining combustion efficiencies at high combustor temperatures where ordinary thermocouples cannot be used. The method is fundamentally more accurate than heat-balance methods at high combustion efficiencies and can be used to verify near-100-percent efficiency data.

  7. 40 CFR 63.4166 - How do I determine the add-on control device emission destruction or removal efficiency?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... also use as an alternative to Method 3B, the manual method for measuring the oxygen, carbon dioxide, and carbon monoxide content of exhaust gas in ANSI/ASME, PTC 19.10-1981, “Flue and Exhaust Gas Analyses” (incorporated by reference, see § 63.14). (4) Use Method 4 of appendix A to 40 CFR part 60 to...

  8. 40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) Definitions. Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 87.82 Sampling and analytical procedures for measuring smoke exhaust...

  9. 14 CFR 34.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Smoke Emissions (Aircraft Gas Turbine Engines) § 34.82...

  10. 2. View of Liquified Propane Air Plant (New), former Exhaust ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of Liquified Propane Air Plant (New), former Exhaust and Compressor Building and former Purifying Plant in background. - Concord Gas Light Company, South Main Street, Concord, Merrimack County, NH

  11. Simulation of a hydrocarbon fueled scramjet exhaust

    NASA Technical Reports Server (NTRS)

    Leng, J.

    1982-01-01

    Exhaust nozzle flow fields for a fully integrated, hydrocarbon burning scramjet were calculated for flight conditions of M (undisturbed free stream) = 4 at 6.1 km altitude and M (undisturbed free stream) = 6 at 30.5 km altitude. Equilibrium flow, frozen flow, and finite rate chemistry effects are considered. All flow fields were calculated by method of characteristics. Finite rate chemistry results were evaluated by a one dimensional code (Bittker) using streamtube area distributions extracted from the equilibrium flow field, and compared to very slow artificial rate cases for the same streamtube area distribution. Several candidate substitute gas mixtures, designed to simulate the gas dynamics of the real engine exhaust flow, were examined. Two mixtures are found to give excellent simulations of the specified exhaust flow fields when evaluated by the same method of characteristics computer code.

  12. Changes in sevoflurane plasma concentration with delivery through the oxygenator during on-pump cardiac surgery.

    PubMed

    Nitzschke, R; Wilgusch, J; Kersten, J F; Trepte, C J; Haas, S A; Reuter, D A; Goetz, A E; Goepfert, M S

    2013-06-01

    It is unclear what factors affect the uptake of sevoflurane administered through the membrane oxygenator during cardiopulmonary bypass (CPB) and whether this can be monitored via the oxygenator exhaust gas. Stable delivery of sevoflurane was administered to 30 elective cardiac surgery patients at 1.8 vol% (inspiratory) via the anaesthetic circuit and ventilator. During CPB, sevoflurane was administered in the oxygenator fresh gas supply (Compactflo Evolution™; Sorin Group, Milano, Italy). Sevoflurane plasma concentration (SPC) was measured using gas chromatography. Changes were correlated with bispectral index (BIS), patient temperature, haematocrit, plasma albumin concentration, oxygenator fresh gas flow, and the sevoflurane concentration in the oxygenator exhaust at predefined time points. The mean SPC pre-bypass was 54.9 µg ml(-1) [95% confidence interval (CI): 50.6-59.1]. SPC decreased to 43.2 µg ml(-1) (95% CI: 40.3-46.1; P<0.001) after initiation of CPB, and was lower still during rewarming and weaning from bypass, 39.4 µg ml(-1) (95% CI: 36.6-42.3; P<0.001). BIS did not exceed a value of 55. SPCs were higher during hypothermia (P<0.001) and with an increase in oxygenator fresh gas flow (P=0.015), and lower with haemodilution (P=0.027). No correlation was found between SPC and the concentration of sevoflurane in the oxygenator exhaust gas (r=-0.04; 95% CI: -0.18 to 0.09; P=0.53). The uptake of sevoflurane delivered via the membrane oxygenator during CPB seems to be affected by hypothermia, haemodilution, and changes in the oxygenator fresh gas supply flow. Measuring the concentration of sevoflurane in the exhaust from the oxygenator is not useful for monitoring sevoflurane administration during bypass.

  13. Pulsed plasma processing for control of diesel engine emissions

    NASA Astrophysics Data System (ADS)

    Vogtlin, G. E.; Freytag, E. K.; Bardsley, J. N.; Wallman, H.

    1993-02-01

    Electrical discharges can be used as an after treatment for diesel exhaust. We are presently involved in research to determine the feasibility of this process. These discharges have been shown to remove nitric oxide, sulfur dioxide, particulates, and many organic compounds. A key issue is the efficiency of this removal since it effects both capital and operating costs. These discharges must be of short duration, less than one microsecond, to avoid energy losses due to heating of bulk gas molecules. The voltage must be kept below the voltage breakdown limit where ion heating creates an arc discharge. The basic process is the acceleration of electrons which then collide with gas molecules to form radicals such as O and OH. These radicals then react with and eliminate pollutants. Two basic electrode geometries are used to generate these discharges. The barrier discharge is when one or both of the electrodes is insulated and the pulse length is limited by charging of the insulator. This discharge must be driven by alternating current to permit alternating charging of the insulator. The other geometry is when one electrode has a peak voltage stress five or more times the average stress. We have been investigating the high stress geometry which uses a small wire inside a pipe. The principal experimental apparatus utilized by this effort uses a closed loop gas system. This system permits the production of various gas combinations prior to testing. Analysis can be conducted during or after these tests. The recirculated gas can be heated up to 400 F. This system can measure the energy used and the pollutant removal to determine efficiency. Our primary goal is the simultaneous removal of nitric oxide and particulates typical of diesel exhaust.

  14. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.114-08...

  15. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.114-12...

  16. 40 CFR 600.114-12 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 31 2012-07-01 2012-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.114-12...

  17. 40 CFR 600.114-08 - Vehicle-specific 5-cycle fuel economy and carbon-related exhaust emission calculations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 31 2013-07-01 2013-07-01 false Vehicle-specific 5-cycle fuel economy... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) ENERGY POLICY FUEL ECONOMY AND GREENHOUSE GAS EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy and Carbon-Related Exhaust Emission Test Procedures § 600.114-08...

  18. Survey of flue gas desulfurization systems: Dickerson Station, Potomac Electric Power Co. Final report, Feb--Aug 1975

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isaacs, G.A.

    1975-09-01

    Results are given of a survey of a flue gas desulfurization system, utilizing the Chemico/Basic MgO-SO2 removal/recovery process, that has been retrofitted to handle approximately half of the exhaust gas from the 190 MW unit 3 at Potomac Electric Power Company's Dickerson Station. The system was installed at a cost of SO.5 million. The boiler burns 2% sulfur coal and is equipped with a 94% efficient electrostatic precipitator. A single two-stage scrubber/absorber is used. The liquor streams for the two stages are separate, both operating in a closed-loop mode. Magnesium oxide (MgO) is regenerated off-site. (GRA)

  19. Solid oxide fuel cell process and apparatus

    DOEpatents

    Cooper, Matthew Ellis [Morgantown, WV; Bayless, David J [Athens, OH; Trembly, Jason P [Durham, NC

    2011-11-15

    Conveying gas containing sulfur through a sulfur tolerant planar solid oxide fuel cell (PSOFC) stack for sulfur scrubbing, followed by conveying the gas through a non-sulfur tolerant PSOFC stack. The sulfur tolerant PSOFC stack utilizes anode materials, such as LSV, that selectively convert H.sub.2S present in the fuel stream to other non-poisoning sulfur compounds. The remaining balance of gases remaining in the completely or near H.sub.2S-free exhaust fuel stream is then used as the fuel for the conventional PSOFC stack that is downstream of the sulfur-tolerant PSOFC. A broad range of fuels such as gasified coal, natural gas and reformed hydrocarbons are used to produce electricity.

  20. Apparatus for purifying exhaust gases of internal combustion engines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kakinuma, A.; Oya, H.

    1980-06-03

    Apparatus for purifying the exhaust gases of internal combustion engines is disclosed that is comprised of a pair of upstream exhaust pipes, a catalytic converter, and a downstream exhaust pipe. The catalytic converter comprises a cylindrical shell having an inlet chamber, a catalyst chamber, an outlet chamber, and a monolithic catalyst element in the catalyst chamber. The inlet chamber has inlet ports communicating with the upstream exhaust pipes respectively and axial lines of the inlet ports cross each other in the inlet chamber. In the inlet chamber, a diffusion means is provided to diffuse the exhaust gas for uniformly distributingmore » it to the catalyst element.« less

  1. 14 CFR 34.63 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.63 [Reserved] ...

  2. 14 CFR 34.63 - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) § 34.63 [Reserved] ...

  3. Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics

    NASA Astrophysics Data System (ADS)

    Alanen, Jenni; Simonen, Pauli; Saarikoski, Sanna; Timonen, Hilkka; Kangasniemi, Oskari; Saukko, Erkka; Hillamo, Risto; Lehtoranta, Kati; Murtonen, Timo; Vesala, Hannu; Keskinen, Jorma; Rönkkö, Topi

    2017-07-01

    Natural gas usage in the traffic and energy production sectors is a growing trend worldwide; thus, an assessment of its effects on air quality, human health and climate is required. Engine exhaust is a source of primary particulate emissions and secondary aerosol precursors, which both contribute to air quality and can cause adverse health effects. Technologies, such as cleaner engines or fuels, that produce less primary and secondary aerosols could potentially significantly decrease atmospheric particle concentrations and their adverse effects. In this study, we used a potential aerosol mass (PAM) chamber to investigate the secondary aerosol formation potential of natural gas engine exhaust. The PAM chamber was used with a constant UV-light voltage, which resulted in relatively long equivalent atmospheric ages of 11 days at most. The studied retro-fitted natural gas engine exhaust was observed to form secondary aerosol. The mass of the total aged particles, i.e., particle mass measured downstream of the PAM chamber, was 6-268 times as high as the mass of the emitted primary exhaust particles. The secondary organic aerosol (SOA) formation potential was measured to be 9-20 mg kgfuel-1. The total aged particles mainly consisted of organic matter, nitrate, sulfate and ammonium, with the fractions depending on exhaust after-treatment and the engine parameters used. Also, the volatility, composition and concentration of the total aged particles were found to depend on the engine operating mode, catalyst temperature and catalyst type. For example, a high catalyst temperature promoted the formation of sulfate particles, whereas a low catalyst temperature promoted nitrate formation. However, in particular, the concentration of nitrate needed a long time to stabilize - more than half an hour - which complicated the conclusions but also indicates the sensitivity of nitrate measurements on experimental parameters such as emission source and system temperatures. Sulfate was measured to have the highest evaporation temperature, and nitrate had the lowest. The evaporation temperature of ammonium depended on the fractions of nitrate and sulfate in the particles. The average volatility of the total aged particles was measured to be lower than that of primary particles, indicating better stability of the aged natural gas engine-emitted aerosol in the atmosphere. According to the results of this study, the exhaust of a natural gas engine equipped with a catalyst forms secondary aerosol when the atmospheric ages in a PAM chamber are several days long. The secondary aerosol matter has different physical characteristics from those of primary particulate emissions.

  4. Assessment of total efficiency in adiabatic engines

    NASA Astrophysics Data System (ADS)

    Mitianiec, W.

    2016-09-01

    The paper presents influence of ceramic coating in all surfaces of the combustion chamber of SI four-stroke engine on working parameters mainly on heat balance and total efficiency. Three cases of engine were considered: standard without ceramic coating, fully adiabatic combustion chamber and engine with different thickness of ceramic coating. Consideration of adiabatic or semi-adiabatic engine was connected with mathematical modelling of heat transfer from the cylinder gas to the cooling medium. This model takes into account changeable convection coefficient based on the experimental formulas of Woschni, heat conductivity of multi-layer walls and also small effect of radiation in SI engines. The simulation model was elaborated with full heat transfer to the cooling medium and unsteady gas flow in the engine intake and exhaust systems. The computer program taking into account 0D model of engine processes in the cylinder and 1D model of gas flow was elaborated for determination of many basic engine thermodynamic parameters for Suzuki DR-Z400S 400 cc SI engine. The paper presents calculation results of influence of the ceramic coating thickness on indicated pressure, specific fuel consumption, cooling and exhaust heat losses. Next it were presented comparisons of effective power, heat losses in the cooling and exhaust systems, total efficiency in function of engine rotational speed and also comparison of temperature inside the cylinder for standard, semi-adiabatic and full adiabatic engine. On the basis of the achieved results it was found higher total efficiency of adiabatic engines at 2500 rpm from 27% for standard engine to 37% for full adiabatic engine.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Furuya, K.; Yago, T.

    A system is disclosed for rapidly warming up a catalytic converter provided to an automotive internal combustion engine to purify the exhaust gas. The system includes a vacuum-operated device to increase the opening degree of the throttle valve by a predetermined degree to thereby increase the quantity of the exhaust gas and another vacuum-operated device to retard the ignition timing of the engine to a predetermined extent to thereby raise the temperature of the exhaust gas. The two devices are connected by a vacuum passage to the intake passage of the engine at a section downstream of the throttle valvemore » in series, and an electromagnetic valve renders the vacuum passage effective to thereby actuate the vacuum-operated devices only when the engine is idling under cold condition. Because of the series connection of the two devices, an intake vacuum is applied to the two devices in desirable sequence.« less

  6. Navier-Stokes calculations of scramjet-nozzle-afterbody flowfields

    NASA Technical Reports Server (NTRS)

    Baysal, Oktay

    1991-01-01

    A comprehensive computational fluid dynamics effort was conducted from 1987 to 1990 to properly design a nozzle and lower aft end of a generic hypersonic vehicle powered by a scramjet engine. The interference of the exhaust on the control surfaces of the vehicle can have adverse effects on its stability. Two-dimensional Navier-Stokes computations were performed, where the exhaust gas was assumed to be air behaving as a perfect gas. Then the exhaust was simulated by a mixture of Freon-12 and argon, which required solving the Navier-Stokes equations for four species: (nitrogen, oxygen, Freon-12, and argon). This allowed gamma to be a field variable during the mixing of the multispecies gases. Two different mixing models were used and comparisons between them as well as the perfect gas air calculations were made to assess their relative merits. Finally, the three dimensional Navier-Stokes computations were made for the full-span scramjet nozzle afterbody module.

  7. Navier-Stokes calculations of scramjet-nozzle-afterbody flowfields

    NASA Astrophysics Data System (ADS)

    Baysal, Oktay

    1991-07-01

    A comprehensive computational fluid dynamics effort was conducted from 1987 to 1990 to properly design a nozzle and lower aft end of a generic hypersonic vehicle powered by a scramjet engine. The interference of the exhaust on the control surfaces of the vehicle can have adverse effects on its stability. Two-dimensional Navier-Stokes computations were performed, where the exhaust gas was assumed to be air behaving as a perfect gas. Then the exhaust was simulated by a mixture of Freon-12 and argon, which required solving the Navier-Stokes equations for four species: (nitrogen, oxygen, Freon-12, and argon). This allowed gamma to be a field variable during the mixing of the multispecies gases. Two different mixing models were used and comparisons between them as well as the perfect gas air calculations were made to assess their relative merits. Finally, the three dimensional Navier-Stokes computations were made for the full-span scramjet nozzle afterbody module.

  8. Modeling and Simulation of a Nuclear Fuel Element Test Section

    NASA Technical Reports Server (NTRS)

    Moran, Robert P.; Emrich, William

    2011-01-01

    "The Nuclear Thermal Rocket Element Environmental Simulator" test section closely simulates the internal operating conditions of a thermal nuclear rocket. The purpose of testing is to determine the ideal fuel rod characteristics for optimum thermal heat transfer to their hydrogen cooling/working fluid while still maintaining fuel rod structural integrity. Working fluid exhaust temperatures of up to 5,000 degrees Fahrenheit can be encountered. The exhaust gas is rendered inert and massively reduced in temperature for analysis using a combination of water cooling channels and cool N2 gas injectors in the H2-N2 mixer portion of the test section. An extensive thermal fluid analysis was performed in support of the engineering design of the H2-N2 mixer in order to determine the maximum "mass flow rate"-"operating temperature" curve of the fuel elements hydrogen exhaust gas based on the test facilities available cooling N2 mass flow rate as the limiting factor.

  9. Design and evaluation of fluidized bed heat recovery for diesel engine systems

    NASA Technical Reports Server (NTRS)

    Hamm, J. R.; Newby, R. A.; Vidt, E. J.; Lippert, T. E.

    1985-01-01

    The potential of utilizing fluidized bed heat exchangers in place of conventional counter-flow heat exchangers for heat recovery from adiabatic diesel engine exhaust gas streams was studied. Fluidized bed heat recovery systems were evaluated in three different heavy duty transport applications: (1) heavy duty diesel truck; (2) diesel locomotives; and (3) diesel marine pushboat. The three applications are characterized by differences in overall power output and annual utilization. For each application, the exhaust gas source is a turbocharged-adiabatic diesel core. Representative subposed exhaust gas heat utilization power cycles were selected for conceptual design efforts including design layouts and performance estimates for the fluidized bed heat recovery heat exchangers. The selected power cycles were: organic rankine with RC-1 working fluid, turbocompound power turbine with steam injection, and stirling engine. Fuel economy improvement predictions are used in conjunction with capital cost estimates and fuel price data to determine payback times for the various cases.

  10. Discussion on Boiler Efficiency Correction Method with Low Temperature Economizer-Air Heater System

    NASA Astrophysics Data System (ADS)

    Ke, Liu; Xing-sen, Yang; Fan-jun, Hou; Zhi-hong, Hu

    2017-05-01

    This paper pointed out that it is wrong to take the outlet flue gas temperature of low temperature economizer as exhaust gas temperature in boiler efficiency calculation based on GB10184-1988. What’s more, this paper proposed a new correction method, which decomposed low temperature economizer-air heater system into two hypothetical parts of air preheater and pre condensed water heater and take the outlet equivalent gas temperature of air preheater as exhaust gas temperature in boiler efficiency calculation. This method makes the boiler efficiency calculation more concise, with no air heater correction. It has a positive reference value to deal with this kind of problem correctly.

  11. 40 CFR 600.206-12 - Calculation and use of FTP-based and HFET-based fuel economy and carbon-related exhaust emission...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... exhaust emission values from the tests performed using gasoline or diesel test fuel. (ii) Calculate the city, highway, and combined fuel economy and carbon-related exhaust emission values from the tests performed using alcohol or natural gas test fuel. (b) If only one equivalent petroleum-based fuel economy...

  12. 24 CFR 3280.708 - Exhaust duct system and provisions for the future installation of a clothes dryer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... for the future installation of a clothes dryer. 3280.708 Section 3280.708 Housing and Urban... duct system and provisions for the future installation of a clothes dryer. (a) Clothes dryers. (1) All gas and electric clothes dryers shall be exhausted to the outside by a moisture-lint exhaust duct and...

  13. 24 CFR 3280.708 - Exhaust duct system and provisions for the future installation of a clothes dryer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... for the future installation of a clothes dryer. 3280.708 Section 3280.708 Housing and Urban... duct system and provisions for the future installation of a clothes dryer. (a) Clothes dryers. (1) All gas and electric clothes dryers shall be exhausted to the outside by a moisture-lint exhaust duct and...

  14. 24 CFR 3280.708 - Exhaust duct system and provisions for the future installation of a clothes dryer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... for the future installation of a clothes dryer. 3280.708 Section 3280.708 Housing and Urban... duct system and provisions for the future installation of a clothes dryer. (a) Clothes dryers. (1) All gas and electric clothes dryers shall be exhausted to the outside by a moisture-lint exhaust duct and...

  15. 24 CFR 3280.708 - Exhaust duct system and provisions for the future installation of a clothes dryer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... for the future installation of a clothes dryer. 3280.708 Section 3280.708 Housing and Urban... duct system and provisions for the future installation of a clothes dryer. (a) Clothes dryers. (1) All gas and electric clothes dryers shall be exhausted to the outside by a moisture-lint exhaust duct and...

  16. Fabrication of a Mechanically Robust Carbon Nanofiber Foam

    DTIC Science & Technology

    2015-06-01

    Erlenmeyer exhaust trap utilizing zeolite and permanganate . ........................ 11   Figure 9.   Early CFF experimental mold...containing zeolite and permanganate to dilute the exhaust gases and trap unreacted ethylene prior to their release. Figure 7. MKS mass flow...controller (model MKS 647a). Figure 8. Erlenmeyer exhaust trap utilizing zeolite and permanganate . 12 c. Gas Mixture A flow of pure compressed

  17. Real-time diagnostics of a jet engine exhaust using an intra-pulse quantum cascade laser spectrometer

    NASA Astrophysics Data System (ADS)

    Duxbury, Geoffrey; Hay, Kenneth G.; Langford, Nigel; Johnson, Mark P.; Black, John D.

    2011-09-01

    It has been demonstrated that an intra-pulse scanned quantum cascade laser spectrometer may be used to obtain real-time diagnostics of the amounts of carbon monoxide, carbon dioxide, and water, in the exhaust of an aero gas turbine (turbojet) engine operated in a sea level test cell. Measurements have been made of the rapid changes in composition following ignition, the composition under steady state operating conditions, and the composition changes across the exhaust plume. The minimum detection limit for CO in a double pass through a typical gas turbine plume of 50 cm in diameter, with 0.4 seconds integration time, is approximately 2 ppm.

  18. Internal combustion engine having a reactor for afterburning of unburned exhaust gas constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maurhoff, G.; Steinwart, J.

    1974-08-07

    An internal combustion engine is described which has an engine housing and a reactor for afterburning of unburned constituents in the exhaust gas. The reactor has a shell with a periphery and contains a heat-insulated, reactor chamber which is freely movable beyond the point of connection to the shell. The reactor has an inlet nozzle extending freely through the shell and connected to an outlet passage of the engine and has an outlet for escape of the exhaust gases from the reactor chamber. The inlet nozzle protrudes freely into the outlet passage, and the shell has a portion around themore » inlet nozzle in contact with the engine housing.« less

  19. An assessment of consistence of exhaust gas emission test results obtained under controlled NEDC conditions

    NASA Astrophysics Data System (ADS)

    Balawender, K.; Jaworski, A.; Kuszewski, H.; Lejda, K.; Ustrzycki, A.

    2016-09-01

    Measurements concerning emissions of pollutants contained in automobile combustion engine exhaust gases is of primary importance in view of their harmful impact on the natural environment. This paper presents results of tests aimed at determining exhaust gas pollutant emissions from a passenger car engine obtained under repeatable conditions on a chassis dynamometer. The test set-up was installed in a controlled climate chamber allowing to maintain the temperature conditions within the range from -20°C to +30°C. The analysis covered emissions of such components as CO, CO2, NOx, CH4, THC, and NMHC. The purpose of the study was to assess repeatability of results obtained in a number of tests performed as per NEDC test plan. The study is an introductory stage of a wider research project concerning the effect of climate conditions and fuel type on emission of pollutants contained in exhaust gases generated by automotive vehicles.

  20. Turbine exhaust diffuser with a gas jet producing a coanda effect flow control

    DOEpatents

    Orosa, John; Montgomery, Matthew

    2014-02-11

    An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub structure that has an upstream end and a downstream end. The outer boundary may include a region in which the outer boundary extends radially inward toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. The hub structure includes at least one jet exit located on the hub structure adjacent to the upstream end of the tail cone. The jet exit discharges a flow of gas substantially tangential to an outer surface of the tail cone to produce a Coanda effect and direct a portion of the exhaust flow in the diffuser toward the inner boundary.

  1. Energy efficiency analysis of reactor for torrefaction of biomass with direct heating

    NASA Astrophysics Data System (ADS)

    Kuzmina, J. S.; Director, L. B.; Shevchenko, A. L.; Zaichenko, V. M.

    2016-11-01

    Paper presents energy analysis of reactor for torrefaction with direct heating of granulated biomass by exhaust gases. Various schemes of gas flow through the reactor zones are presented. Performed is a comparative evaluation of the specific energy consumption for the considered schemes. It has been shown that one of the most expensive processes of torrefaction technology is recycling of pyrolysis gases.

  2. Fuel quality-processing study. Volume 1: Overview and results

    NASA Technical Reports Server (NTRS)

    Jones, G. E., Jr.

    1982-01-01

    The methods whereby the intermediate results were obtained are outlined, and the evaluation of the feasible paths from liquid fossil fuel sources to generated electricity is presented. The segments from which these paths were built are the results from the fuel upgrading schemes, on-site treatments, and exhaust gas treatments detailed in the subsequent volumes. The salient cost and quality parameters are included.

  3. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures...

  4. Effect of indirect non-thermal plasma on particle size distribution and composition of diesel engine particles

    NASA Astrophysics Data System (ADS)

    Linbo, GU; Yixi, CAI; Yunxi, SHI; Jing, WANG; Xiaoyu, PU; Jing, TIAN; Runlin, FAN

    2017-11-01

    To explore the effect of the gas source flow rate on the actual diesel exhaust particulate matter (PM), a test bench for diesel engine exhaust purification was constructed, using indirect non-thermal plasma technology. The effects of different gas source flow rates on the quantity concentration, composition, and apparent activation energy of PM were investigated, using an engine exhaust particle sizer and a thermo-gravimetric analyzer. The results show that when the gas source flow rate was large, not only the maximum peak quantity concentrations of particles had a large drop, but also the peak quantity concentrations shifted to smaller particle sizes from 100 nm to 80 nm. When the gas source flow rate was 10 L min-1, the total quantity concentration greatly decreased where the removal rate of particles was 79.2%, and the variation of the different mode particle proportion was obvious. Non-thermal plasma (NTP) improved the oxidation ability of volatile matter as well as that of solid carbon. However, the NTP gas source rate had little effects on oxidation activity of volatile matter, while it strongly influenced the oxidation activity of solid carbon. Considering the quantity concentration and oxidation activity of particles, a gas source flow rate of 10 L min-1 was more appropriate for the purification of particles.

  5. Regeneration of sulfated metal oxides and carbonates

    DOEpatents

    Hubble, Bill R.; Siegel, Stanley; Cunningham, Paul T.

    1978-03-28

    Alkali metal or alkaline earth metal carbonates such as calcium carbonate and magnesium carbonate found in dolomite or limestone are employed for removal of sulfur dioxide from combustion exhaust gases. The sulfated carbonates are regenerated to oxides through use of a solid-solid reaction, particularly calcium sulfide with calcium sulfate to form calcium oxide and sulfur dioxide gas. The regeneration is performed by contacting the sulfated material with a reductant gas such as hydrogen within an inert diluent to produce calcium sulfide in mixture with the sulfate under process conditions selected to permit the sulfide-sulfate, solid-state reaction to occur.

  6. Heat Pipe-Assisted Thermoelectric Power Generation Technology for Waste Heat Recovery

    NASA Astrophysics Data System (ADS)

    Jang, Ju-Chan; Chi, Ri-Guang; Rhi, Seok-Ho; Lee, Kye-Bock; Hwang, Hyun-Chang; Lee, Ji-Su; Lee, Wook-Hyun

    2015-06-01

    Currently, large amounts of thermal energy dissipated from automobiles are emitted through hot exhaust pipes. This has resulted in the need for a new efficient recycling method to recover energy from waste hot exhaust gas. The present experimental study investigated how to improve the power output of a thermoelectric generator (TEG) system assisted by a wickless loop heat pipe (loop thermosyphon) under the limited space of the exhaust gas pipeline. The present study shows a novel loop-type heat pipe-assisted TEG concept to be applied to hybrid vehicles. The operating temperature of a TEG's hot side surface should be as high as possible to maximize the Seebeck effect. The present study shows a novel TEG concept of transferring heat from the source to the sink. This technology can transfer waste heat to any local place with a loop-type heat pipe. The present TEG system with a heat pipe can transfer heat and generate an electromotive force power of around 1.3 V in the case of 170°C hot exhaust gas. Two thermoelectric modules (TEMs) for a conductive block model and four Bi2Te3 TEMs with a heat pipe-assisted model were installed in the condenser section. Heat flows to the condenser section from the evaporator section connected to the exhaust pipe. This novel TEG system with a heat pipe can be placed in any location on an automobile.

  7. Performance of Blowdown Turbine driven by Exhaust Gas of Nine-Cylinder Radial Engine

    DTIC Science & Technology

    1944-12-01

    blade speed to mean jet speed FIQUBE 6.—Variation of mean turbine efficiency with ratio of blade speed to moan Jot speed. Engine speed, 2000 rpm; full...conventional turbo - supercharger axe used in series, the blowdown turbine may be geared to the engine . Aircraft engines are operated at high speed for...guide vanes in blowdown-turblno noule box. PERFORMANCE OF BLOWDOWN TURBINE DRIVEN BT EXHAUST GAS OF RADIAL ENGINE 245 (6) Diaphragm

  8. Impact of the injection dose of exhaust gases, on work parameters of combustion engine

    NASA Astrophysics Data System (ADS)

    Marek, W.; Śliwiński, K.

    2016-09-01

    This article is another one from the series in which were presented research results indicated the possible areas of application of the pneumatic injection using hot combustion gases proposed by Professor Jarnuszkiewicz. This publication present the results of the control system of exhaust gas recirculation. The main aim of this research was to determine the effect of exhaust gas recirculation to the operating parameters of the internal combustion engine on the basis of laboratory measurements. All measurements were performed at a constant engine speed. These conditions correspond to the operation of the motor operating an electrical generator. The study was conducted on the four-stroke two-cylinder engine with spark ignition. The study were specifically tested on the air injection system and therefore the selection of the rotational speed was not bound, as in conventional versions of operating parameters of the electrical machine. During the measurement there were applied criterion which used power control corresponding to the requirements of load power, at minimal values of engine speed. Recirculation value determined by the following recurrent position control valve of the injection doses inflator gas for pneumatic injection system. They were studied and recorded, the impact of dose of gases recirculation to the operating and ecological engine parameters such as power, torque, specific fuel consumption, efficiency, air fuel ratio, exhaust gas temperature and nitrogen oxides and hydrocarbons.

  9. Investigation Of Aeroacoustic Mechanisms By Remote Thermal Imaging

    NASA Astrophysics Data System (ADS)

    Witten, Alan J.; Courville, George E.

    1988-01-01

    A hush house is a hangar-like structure designed to isolate, from the surrounding environment, the noise produced by extended aircraft engine operations during diagnostic testing. While hush houses meet this intended need by suppressing audible noise, they do emit significant subaudible acoustic energy which has caused structural vibrations in nearby facilities. As a first step in mitigating the problems associated with hush house induced vibrations, it is necessary to identify the mechanism responsible for the low frequency acoustic emissions. It was hypothesized that the low frequency acoustic waves are a result of acoustic Cherenkov radiation. This radiation is in the form of a coherent wave produced by the engine exhaust gas flow. The speed of sound in the exhaust gas is quite high as a result of its elevated temperature. Therefore, the gas flow is sonic or subsonic relative to its own sound speed, but is supersonic relative to sound speed in the surrounding cooler air and, as a result, produces acoustic Cherenkov radiation. To confirm this hypothesis, thermographic surveys were conducted to image the thermal structure of the engine exhaust gas within the hush house. In the near-field, these images revealed that the exhaust gases did not behave like a high Reynolds number turbulent jet, but rather, the transition to turbulence is delayed by a suppression in growth of the self-excited instability wave as a result of acoustic Cherenkov radiation.

  10. Novel process chain for hot metal gas forming of ferritic stainless steel 1.4509

    NASA Astrophysics Data System (ADS)

    Mosel, André; Lambarri, Jon; Degenkolb, Lars; Reuther, Franz; Hinojo, José Luis; Rößiger, Jörg; Eurich, Egbert; Albert, André; Landgrebe, Dirk; Wenzel, Holger

    2018-05-01

    Exhaust gas components of automobiles are often produced in ferritic stainless steel 1.4509 due to the low thermal expansion coefficient and the low material price. Until now, components of the stainless steel with complex geometries have been produced in series by means of multi-stage hydroforming at room temperature with intermediate annealing operations. The application of a single-stage hot-forming process, also referred to as hot metal gas forming (HMGF), offers great potential to significantly reduce the production costs of such components. The article describes a novel process chain for the HMGF process. Therefore the tube is heated in two steps. After pre-heating of the semi-finished product outside the press, the tube is heated up to forming start temperature by means of a tool-integrated conductive heating before forming. For the tube of a demonstrator geometry, a simulation model for the conduction heating was set up. In addition to the tool development for this process, experimental results are also described for the production of the demonstrator geometry.

  11. 14 CFR 34.65-34.70 - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Test Procedures for Engine Exhaust Gaseous Emissions (Aircraft and Aircraft Gas Turbine Engines) 34.65-34.70 [Reserved] ...

  12. The characterisation of diesel exhaust particles - composition, size distribution and partitioning.

    PubMed

    Alam, Mohammed S; Zeraati-Rezaei, Soheil; Stark, Christopher P; Liang, Zhirong; Xu, Hongming; Harrison, Roy M

    2016-07-18

    A number of major research questions remain concerning the sources and properties of road traffic generated particulate matter. A full understanding of the composition of primary vehicle exhaust aerosol and its contribution to secondary organic aerosol (SOA) formation still remains elusive, and many uncertainties exist relating to the semi-volatile component of the particles. Semi-Volatile Organic Compounds (SVOCs) are compounds which partition directly between the gas and aerosol phases under ambient conditions. The SVOCs in engine exhaust are typically hydrocarbons in the C15-C35 range, and are largely uncharacterised because they are unresolved by traditional gas chromatography, forming a large hump in the chromatogram referred to as Unresolved Complex Mixture (UCM). In this study, thermal desorption coupled to comprehensive Two Dimensional Gas-Chromatography Time-of-Flight Mass-Spectrometry (TD-GC × GC-ToF-MS) was exploited to characterise and quantify the composition of SVOCs from the exhaust emission. Samples were collected from the exhaust of a diesel engine, sampling before and after a diesel oxidation catalyst (DOC), while testing at steady state conditions. Engine exhaust was diluted with air and collected using both filter and impaction (nano-MOUDI), to resolve total mass and size resolved mass respectively. Adsorption tubes were utilised to collect SVOCs in the gas phase and they were then analysed using thermal desorption, while particle size distribution was evaluated by sampling with a DMS500. The SVOCs were observed to contain predominantly n-alkanes, branched alkanes, alkyl-cycloalkanes, alkyl-benzenes, PAHs and various cyclic aromatics. Particle phase compounds identified were similar to those observed in engine lubricants, while vapour phase constituents were similar to those measured in fuels. Preliminary results are presented illustrating differences in the particle size distribution and SVOCs composition when collecting samples with and without a DOC. The results indicate that the DOC tested is of very limited efficiency, under the studied engine operating conditions, for removal of SVOCs, especially at the upper end of the molecular weight range.

  13. Fast spatially resolved exhaust gas recirculation (EGR) distribution measurements in an internal combustion engine using absorption spectroscopy.

    PubMed

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E; Perfetto, Anthony; Geckler, Sam; Partridge, William P

    2015-09-01

    Exhaust gas recirculation (EGR) in internal combustion engines is an effective method of reducing NOx emissions while improving efficiency. However, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder non-uniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. A sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO2 concentration at various locations in the intake manifold. The study employed mid-infrared light sources tuned to an absorption band of CO2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.

  14. External combustion engine having an asymmetrical CAM

    NASA Astrophysics Data System (ADS)

    Duva, Anthony W.

    1994-11-01

    An external combustion engine having an asymmetrical cam is the focus of this patent. The engine includes a combustion chamber for generating a high-pressure, energized gas from a monopropellant fuel and an even number of cylinders for receiving sequentially the energized gas through the rotary valve, the gas performing work on a piston disposed within each cylinder. The pistons transfer energy to a drive shaft through a connection to the asymmetrically shaped cam. The cam is shaped having two identical halves, each half having a power and an exhaust stroke. The identical halves provide that opposing cylinders are in thermodynamic balance, thus reducing rocking vibrations and torque pulsations. Having opposing pistons within the same thermodynamic cycle allows piston stroke to be reduced while maintaining displacement comparable to an engine having individual cycle positions. The reduced stroke diminishes gas flow velocity thus reducing flow induced noise. The power and exhaust strokes within each identical half of the cam are asymmetrical in that the power stroke is of greater duration than the exhaust stroke. The shape and length of the power stroke is optimized for increased efficiency.

  15. Fast Spatially Resolved Exhaust Gas Recirculation (EGR) Distribution Measurements in an Internal Combustion Engine Using Absorption Spectroscopy

    DOE PAGES

    Yoo, Jihyung; Prikhodko, Vitaly; Parks, James E.; ...

    2015-09-01

    One effective method of reducing NO x emissions while improving efficiency is exhaust gas recirculation (EGR) in internal combustion engines. But, insufficient mixing between fresh air and exhaust gas can lead to cycle-to-cycle and cylinder-to-cylinder nonuniform charge gas mixtures of a multi-cylinder engine, which can in turn reduce engine performance and efficiency. Furthermore, a sensor packaged into a compact probe was designed, built and applied to measure spatiotemporal EGR distributions in the intake manifold of an operating engine. The probe promotes the development of more efficient and higher-performance engines by resolving high-speed in situ CO 2 concentration at various locationsmore » in the intake manifold. Our study employed mid-infrared light sources tuned to an absorption band of CO 2 near 4.3 μm, an industry standard species for determining EGR fraction. The calibrated probe was used to map spatial EGR distributions in an intake manifold with high accuracy and monitor cycle-resolved cylinder-specific EGR fluctuations at a rate of up to 1 kHz.« less

  16. Integration of a molten carbonate fuel cell with a direct exhaust absorption chiller

    NASA Astrophysics Data System (ADS)

    Margalef, Pere; Samuelsen, Scott

    A high market value exists for an integrated high-temperature fuel cell-absorption chiller product throughout the world. While high-temperature, molten carbonate fuel cells are being commercially deployed with combined heat and power (CHP) and absorption chillers are being commercially deployed with heat engines, the energy efficiency and environmental attributes of an integrated high-temperature fuel cell-absorption chiller product are singularly attractive for the emerging distributed generation (DG) combined cooling, heating, and power (CCHP) market. This study addresses the potential of cooling production by recovering and porting the thermal energy from the exhaust gas of a high-temperature fuel cell (HTFC) to a thermally activated absorption chiller. To assess the practical opportunity of serving an early DG-CCHP market, a commercially available direct fired double-effect absorption chiller is selected that closely matches the exhaust flow and temperature of a commercially available HTFC. Both components are individually modeled, and the models are then coupled to evaluate the potential of a DG-CCHP system. Simulation results show that a commercial molten carbonate fuel cell generating 300 kW of electricity can be effectively coupled with a commercial 40 refrigeration ton (RT) absorption chiller. While the match between the two "off the shelf" units is close and the simulation results are encouraging, the match is not ideal. In particular, the fuel cell exhaust gas temperature is higher than the inlet temperature specified for the chiller and the exhaust flow rate is not sufficient to achieve the potential heat recovery within the chiller heat exchanger. To address these challenges, the study evaluates two strategies: (1) blending the fuel cell exhaust gas with ambient air, and (2) mixing the fuel cell exhaust gases with a fraction of the chiller exhaust gas. Both cases are shown to be viable and result in a temperature drop and flow rate increase of the gases before the chiller inlet. The results show that no risk of cold end corrosion within the chiller heat exchanger exists. In addition, crystallization is not an issue during system operation. Accounting for the electricity and the cooling produced and disregarding the remaining thermal energy, the second strategy is preferred and yields an overall estimated efficiency of 71.7%.

  17. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  18. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  19. 40 CFR 86.1511 - Exhaust gas analysis system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

  20. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Heavy-Duty Engines, New Otto-Cycle Light-Duty Trucks, and New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test...

Top