Science.gov

Sample records for exhaust systems

  1. Automotive Fuel and Exhaust Systems.

    ERIC Educational Resources Information Center

    Irby, James F.; And Others

    Materials are provided for a 14-hour course designed to introduce the automotive mechanic to the basic operations of automotive fuel and exhaust systems incorporated on military vehicles. The four study units cover characteristics of fuels, gasoline fuel system, diesel fuel systems, and exhaust system. Each study unit begins with a general…

  2. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1123 Exhaust system. (a) Each exhaust system must be fireproof and corrosion-resistant, and must have means...

  3. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1123 Exhaust system. (a) Each exhaust system must be fireproof and corrosion-resistant, and must have means...

  4. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1123 Exhaust system. (a) Each exhaust system must be fireproof and corrosion-resistant, and must have means...

  5. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1123 Exhaust system. (a) Each exhaust system must be fireproof and corrosion-resistant, and must have means...

  6. 14 CFR 23.1123 - Exhaust system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1123 Exhaust system. (a) Each exhaust system must be fireproof and corrosion-resistant, and must have means...

  7. Automotive Fuel and Exhaust Systems.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This correspondence course, originally developed for the Marine Corps, is designed to provide mechanics with an understanding of the construction, operation, malfunction, diagnosis, maintenance, and repair of the fuel and exhaust systems used in automobiles. The course contains five study units covering fundamentals of gasoline engine fuel…

  8. Debris exhaust system

    DOEpatents

    McBride, Donald D.; Bua, Dominic; Domankevitz, Yacov; Nishioka, Norman

    1998-01-01

    A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping.

  9. Debris exhaust system

    DOEpatents

    McBride, D.D.; Bua, D.; Domankevitz, Y.; Nishioka, N.

    1998-06-23

    A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping. 9 figs.

  10. 46 CFR 169.609 - Exhaust systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Electrical Internal Combustion Engine Installations § 169.609 Exhaust systems. Engine exhaust installations... separate from the engine cooling system, a suitable warning device must be provided to indicate a...

  11. 46 CFR 169.609 - Exhaust systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Electrical Internal Combustion Engine Installations § 169.609 Exhaust systems. Engine exhaust installations... separate from the engine cooling system, a suitable warning device must be provided to indicate a...

  12. 46 CFR 169.609 - Exhaust systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Electrical Internal Combustion Engine Installations § 169.609 Exhaust systems. Engine exhaust installations... separate from the engine cooling system, a suitable warning device must be provided to indicate a...

  13. 46 CFR 169.609 - Exhaust systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Electrical Internal Combustion Engine Installations § 169.609 Exhaust systems. Engine exhaust installations... separate from the engine cooling system, a suitable warning device must be provided to indicate a...

  14. 46 CFR 169.609 - Exhaust systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Electrical Internal Combustion Engine Installations § 169.609 Exhaust systems. Engine exhaust installations... separate from the engine cooling system, a suitable warning device must be provided to indicate a...

  15. 46 CFR 128.320 - Exhaust systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Exhaust systems. 128.320 Section 128.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS MARINE ENGINEERING: EQUIPMENT AND SYSTEMS Main and Auxiliary Machinery § 128.320 Exhaust systems. No diesel-engine exhaust...

  16. 46 CFR 128.320 - Exhaust systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Exhaust systems. 128.320 Section 128.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS MARINE ENGINEERING: EQUIPMENT AND SYSTEMS Main and Auxiliary Machinery § 128.320 Exhaust systems. No diesel-engine exhaust...

  17. 46 CFR 128.320 - Exhaust systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Exhaust systems. 128.320 Section 128.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS MARINE ENGINEERING: EQUIPMENT AND SYSTEMS Main and Auxiliary Machinery § 128.320 Exhaust systems. No diesel-engine exhaust...

  18. 46 CFR 128.320 - Exhaust systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Exhaust systems. 128.320 Section 128.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS MARINE ENGINEERING: EQUIPMENT AND SYSTEMS Main and Auxiliary Machinery § 128.320 Exhaust systems. No diesel-engine exhaust...

  19. 46 CFR 128.320 - Exhaust systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Exhaust systems. 128.320 Section 128.320 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) OFFSHORE SUPPLY VESSELS MARINE ENGINEERING: EQUIPMENT AND SYSTEMS Main and Auxiliary Machinery § 128.320 Exhaust systems. No diesel-engine exhaust...

  20. 49 CFR 393.83 - Exhaust systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... combustible part of the motor vehicle. (b) No exhaust system shall discharge to the atmosphere at a location... gasoline engine shall discharge to the atmosphere at or within 6 inches forward of the rearmost part of the bus. (d) The exhaust system of a bus using fuels other than gasoline shall discharge to the...

  1. 49 CFR 393.83 - Exhaust systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... combustible part of the motor vehicle. (b) No exhaust system shall discharge to the atmosphere at a location... gasoline engine shall discharge to the atmosphere at or within 6 inches forward of the rearmost part of the bus. (d) The exhaust system of a bus using fuels other than gasoline shall discharge to the...

  2. System for Removing Pollutants from Incinerator Exhaust

    NASA Technical Reports Server (NTRS)

    Wickham, David t.; Bahr, James; Dubovik, Rita; Gebhard, Steven C.; Lind, Jeffrey

    2008-01-01

    A system for removing pollutants -- primarily sulfur dioxide and mixed oxides of nitrogen (NOx) -- from incinerator exhaust has been demonstrated. The system is also designed secondarily to remove particles, hydrocarbons, and CO. The system is intended for use in an enclosed environment, for which a prior NOx-and-SO2-removal system designed for industrial settings would not be suitable.

  3. Exhaust gas recirculation system for an internal combustion engine

    SciTech Connect

    Wu, Ko-Jen

    2013-05-21

    An exhaust gas recirculation system for an internal combustion engine comprises an exhaust driven turbocharger having a low pressure turbine outlet in fluid communication with an exhaust gas conduit. The turbocharger also includes a low pressure compressor intake and a high pressure compressor outlet in communication with an intake air conduit. An exhaust gas recirculation conduit fluidly communicates with the exhaust gas conduit to divert a portion of exhaust gas to a low pressure exhaust gas recirculation branch extending between the exhaust gas recirculation conduit and an engine intake system for delivery of exhaust gas thereto. A high pressure exhaust gas recirculation branch extends between the exhaust gas recirculation conduit and the compressor intake and delivers exhaust gas to the compressor for mixing with a compressed intake charge for delivery to the intake system.

  4. 49 CFR 393.83 - Exhaust systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... shall have a system to direct the discharge of such fumes. No part shall be located where its location... combustible part of the motor vehicle. (b) No exhaust system shall discharge to the atmosphere at a location... gasoline engine shall discharge to the atmosphere at or within 6 inches forward of the rearmost part of...

  5. 40 CFR 86.511-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Exhaust gas analytical system. 86.511... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.511-90 Exhaust gas analytical system. (a) Schematic drawings. Figure F90-3 is a schematic drawing of the exhaust gas analytical system for analysis...

  6. 40 CFR 86.511-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Exhaust gas analytical system. 86.511... Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.511-90 Exhaust gas analytical system. (a) Schematic drawings. Figure F90-3 is a schematic drawing of the exhaust gas analytical system for analysis...

  7. 30 CFR 36.25 - Engine exhaust system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Engine exhaust system. 36.25 Section 36.25... EQUIPMENT Construction and Design Requirements § 36.25 Engine exhaust system. (a) Construction. The exhaust system of the engine shall be designed to withstand an internal pressure equal to 4 times the...

  8. Diesel exhaust-gas purification system

    SciTech Connect

    Doherty, B.J.

    1982-07-01

    The design of a diesel exhaust gas purification system is presented. It will provide 2000 scfm of dry, anerobic gas (essentially nitrogen) for use in air drilling operations where drill pipe corrosion is a problem, such as geothermal applications. The system is operable in the field and may be transported via highways. It will operate at ambient temperatures up to 110/sup 0/F and requires no water - diesel fuel is used to combust excess oxygen and to generate electricity for the system. Gas production costs, including capital amortization, operations, fuel and maintenance (for reasonable utilization) are about $1.50/1000 scf.

  9. 49 CFR 325.91 - Exhaust systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... sound reduction, such as exhaust gas leaks or alteration or deterioration of muffler elements, (small traces of soot on flexible exhaust pipe sections shall not constitute a violation of this subpart);...

  10. Steam atmosphere drying exhaust steam recompression system

    DOEpatents

    Becker, Frederick E.; Smolensky, Leo A.; Doyle, Edward F.; DiBella, Francis A.

    1994-01-01

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculated through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried The dryer comprises a vessel which enables the feedstock and steam to enter recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard.

  11. Steam atmosphere drying exhaust steam recompression system

    DOEpatents

    Becker, F.E.; Smolensky, L.A.; Doyle, E.F.; DiBella, F.A.

    1994-03-08

    This invention relates to a heated steam atmosphere drying system comprising dryer in combination with an exhaust recompression system which is extremely energy efficient and eliminates dangers known to air dryers. The system uses superheated steam as the drying medium, which recirculates through the system where its heat of evaporation and heat of compression is recovered, thereby providing a constant source of heat to the drying chamber. The dryer has inlets whereby feedstock and superheated steam are fed therein. High heat transfer and drying rates are achieved by intimate contact of the superheated steam with the particles being dried. The dryer comprises a vessel which enables the feedstock and steam to enter and recirculate together. When the feedstock becomes dry it will exit the dryer with the steam and become separated from the steam through the use of a curvilinear louver separator (CLS). The CLS enables removal of fine and ultrafine particles from the dryer. Water vapor separated from the particles in the CLS as superheated steam, may then be recovered and recirculated as steam through the use of a compressor to either directly or indirectly heat the dryer, and a heat exchanger or a heater to directly provide heat to the dryer. This system not only provides a very efficient heat transfer system but results in a minimum carry-over of ultrafine particles thereby eliminating any explosive hazard. 17 figures.

  12. 40 CFR 86.211-94 - Exhaust gas analytical system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Exhaust gas analytical system. 86.211... analytical system. The provisions of § 86.111-94 apply to this subpart, except that the NOX analyzer is optional. The exhaust gas analytical system must contain components necessary to determine...

  13. 40 CFR 86.211-94 - Exhaust gas analytical system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas analytical system. 86.211... analytical system. The provisions of § 86.111-94 apply to this subpart, except that the NOX analyzer is optional. The exhaust gas analytical system must contain components necessary to determine...

  14. 40 CFR 86.211-94 - Exhaust gas analytical system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas analytical system. 86.211... analytical system. The provisions of § 86.111-94 apply to this subpart, except that the NOX analyzer is optional. The exhaust gas analytical system must contain components necessary to determine...

  15. Exhaust gas purification system for lean burn engine

    DOEpatents

    Haines, Leland Milburn

    2002-02-19

    An exhaust gas purification system for a lean burn engine includes a thermal mass unit and a NO.sub.x conversion catalyst unit downstream of the thermal mass unit. The NO.sub.x conversion catalyst unit includes at least one catalyst section. Each catalyst section includes a catalytic layer for converting NO.sub.x coupled to a heat exchanger. The heat exchanger portion of the catalyst section acts to maintain the catalytic layer substantially at a desired temperature and cools the exhaust gas flowing from the catalytic layer into the next catalytic section in the series. In a further aspect of the invention, the exhaust gas purification system includes a dual length exhaust pipe upstream of the NO.sub.x conversion catalyst unit. The dual length exhaust pipe includes a second heat exchanger which functions to maintain the temperature of the exhaust gas flowing into the thermal mass downstream near a desired average temperature.

  16. 40 CFR 202.22 - Visual exhaust system inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Visual exhaust system inspection. 202.22 Section 202.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE... Standards § 202.22 Visual exhaust system inspection. No motor carrier subject to these regulations...

  17. 40 CFR 86.211-94 - Exhaust gas analytical system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., carbon monoxide, carbon dioxide, methane, and formaldehyde. The exhaust gas analytical system is not... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES...

  18. Integrated exhaust gas recirculation and charge cooling system

    SciTech Connect

    Wu, Ko-Jen

    2013-12-10

    An intake system for an internal combustion engine comprises an exhaust driven turbocharger configured to deliver compressed intake charge, comprising exhaust gas from the exhaust system and ambient air, through an intake charge conduit and to cylinders of the internal combustion engine. An intake charge cooler is in fluid communication with the intake charge conduit. A cooling system, independent of the cooling system for the internal combustion engine, is in fluid communication with the intake charge cooler through a cooling system conduit. A coolant pump delivers a low temperature cooling medium from the cooling system to and through the intake charge cooler for the transfer of heat from the compressed intake charge thereto. A low temperature cooler receives the heated cooling medium through the cooling system conduit for the transfer or heat therefrom.

  19. Integrated exhaust and electrically heated particulate filter regeneration systems

    SciTech Connect

    Gonze, Eugene V.; Paratore, Jr., Michael J.

    2013-01-08

    A system includes a particulate matter (PM) filter that includes multiple zones. An electrical heater includes heater segments that are associated with respective ones of the zones. The electrical heater is arranged upstream from and proximate with the PM filter. A post-fuel injection system injects fuel into at least one of a cylinder of an engine and an exhaust system. A control module is configured to operate in a first mode that includes activating the electrical heater to heat exhaust of the engine. The control module is also configured to operate in a second mode that includes activating the post-injection system to heat the exhaust. The control module selectively operates in at least one of the first mode and the second mode.

  20. 40 CFR 205.171-2 - Test exhaust system sample selection and preparation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Test exhaust system sample selection... (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Motorcycle Exhaust Systems § 205.171-2 Test exhaust system sample selection and preparation. (a)(1) Exhaust...

  1. A Low-Cost, Effective, Fumes Exhaust System.

    ERIC Educational Resources Information Center

    Jacobs, C. O.

    1979-01-01

    Discusses the importance of avoiding welding fumes. The sources of these fumes are presented in a table. Criticizes currently used ventilation systems and reviews the Occupational Safety and Health Act requirements. Describes a low-cost exhaust system developed for agricultural mechanics laboratories. (LRA)

  2. Computer aided design of jet engine test cell exhaust systems

    SciTech Connect

    Collings, D.

    1982-01-01

    A computerized design procedure that provides a multi-directional analysis of available data is a proven method of developing accurate cost models and performing system trade-offs. The application to the engineering of exhaust silencing systems for jet engine test cells is discused.

  3. Exhaust system with emissions storage device and plasma reactor

    DOEpatents

    Hoard, John W.

    1998-01-01

    An exhaust system for a combustion system, comprising a storage device for collecting NO.sub.x, hydrocarbon, or particulate emissions, or mixture of these emissions, and a plasma reactor for destroying the collected emissions is described. After the emission is collected in by the storage device for a period of time, the emission is then destroyed in a non-thermal plasma generated by the plasma reactor. With respect to the direction of flow of the exhaust stream, the storage device must be located before the terminus of the plasma reactor, and it may be located wholly before, overlap with, or be contained within the plasma reactor.

  4. Low exhaust temperature electrically heated particulate matter filter system

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J.; Bhatia, Garima [Bangalore, IN

    2012-02-14

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  5. 40 CFR 86.1511 - Exhaust gas analysis system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum... Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test... 40 Protection of Environment 19 2010-07-01 2010-07-01 false Exhaust gas analysis system....

  6. 40 CFR 86.1511 - Exhaust gas analysis system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum... Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test... 40 Protection of Environment 20 2012-07-01 2012-07-01 false Exhaust gas analysis system....

  7. 40 CFR 86.1511 - Exhaust gas analysis system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum Gas... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Exhaust gas analysis system....

  8. 40 CFR 86.1511 - Exhaust gas analysis system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum... Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Exhaust gas analysis system....

  9. 40 CFR 86.1509 - Exhaust gas sampling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Regulations for Otto-Cycle Heavy-Duty Engines, New Methanol-Fueled Natural Gas-Fueled, and Liquefied Petroleum... Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test... 40 Protection of Environment 19 2011-07-01 2011-07-01 false Exhaust gas sampling system....

  10. IET exhaust gas duct, system layout, plan, and section. shows ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    IET exhaust gas duct, system layout, plan, and section. shows mounting brackets, concrete braces, divided portion of duct, other details. Ralph M. Parsons 902-5-ANP-712-S 429. Date: May 1954. Approved by INEEL Classification Office for public release. INEEL index code no. 035-0712-60-693-106980 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID

  11. The Design of Exhaust Systems and Discharge Stacks [With Comments].

    ERIC Educational Resources Information Center

    Clarke, John H.

    1963-01-01

    An important part of ventilating for safety consists of providing the necessary exhaust systems to remove building contaminants safely. Further, the effluent must be cleaned within practical limits by means of filters, collectors, and scrubbers. Where recirculation is not safe or feasible, the effluent must be discharged to the outside in a manner…

  12. Parasitic load control system for exhaust temperature control

    DOEpatents

    Strauser, Aaron D.; Coleman, Gerald N.; Coldren, Dana R.

    2009-04-28

    A parasitic load control system is provided. The system may include an exhaust producing engine and a fuel pumping mechanism configured to pressurize fuel in a pressure chamber. The system may also include an injection valve configured to cause fuel pressure to build within the pressure chamber when in a first position and allow injection of fuel from the pressure chamber into one or more combustion chambers of the engine when in a second position. The system may further include a controller configured to independently regulate the pressure in the pressure chamber and the injection of fuel into the one or more combustion chambers, to increase a load on the fuel pumping mechanism, increasing parasitic load on the engine, thereby increasing a temperature of the exhaust produced by the engine.

  13. Hot Flow Testing of Multiple Nozzle Exhaust Eductor Systems

    DTIC Science & Technology

    1979-09-01

    distribution unlimited. Hot Flow Testing of Multiple Nozzle Exhaust Eductor Systems by James Allan Hill Lieutenant, United States Navy B.A. Economics...8217M 3.. . . . . . . . A L). N30 - - 𔃺 0 N N N O. 3 ’ . . . .4 A% v 34 -- --- .L 4 44 Q 4 a 4 0 0 a 03 -r ’P 0 t .4. 0 0 0 0 0 0 a 3.q 4z -- . . . . 9

  14. Aircraft Engine Exhaust Nozzle System for Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Thomas, Russell H. (Inventor); Czech, Michael J. (Inventor); Elkoby, Ronen (Inventor)

    2014-01-01

    The aircraft exhaust engine nozzle system includes a fan nozzle to receive a fan flow from a fan disposed adjacent to an engine disposed above an airframe surface of the aircraft, a core nozzle disposed within the fan nozzle and receiving an engine core flow, and a pylon structure connected to the core nozzle and structurally attached with the airframe surface to secure the engine to the aircraft.

  15. 40 CFR 90.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Exhaust gas analytical system; CVS... KILOWATTS Gaseous Exhaust Test Procedures § 90.423 Exhaust gas analytical system; CVS grab sample. (a... analytical systems used for analyzing CVS grab “bag” samples from spark-ignition engines. Since...

  16. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Exhaust gas analytical system; CVS... Procedures § 91.423 Exhaust gas analytical system; CVS grab sample. (a) Schematic drawings. Figure 4 in appendix B of this subpart is a schematic drawing of the exhaust gas analytical system used for...

  17. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Exhaust gas analytical system; CVS bag... Emission Test Procedures § 89.421 Exhaust gas analytical system; CVS bag sample. (a) Schematic drawings. Figure 4 in appendix A to this subpart is a schematic drawing of the exhaust gas analytical system...

  18. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Exhaust gas analytical system; CVS bag... Emission Test Procedures § 89.421 Exhaust gas analytical system; CVS bag sample. (a) Schematic drawings. Figure 4 in appendix A to this subpart is a schematic drawing of the exhaust gas analytical system...

  19. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Exhaust gas analytical system; CVS grab... Procedures § 91.423 Exhaust gas analytical system; CVS grab sample. (a) Schematic drawings. Figure 4 in appendix B of this subpart is a schematic drawing of the exhaust gas analytical system used for...

  20. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Exhaust gas analytical system; CVS bag... Emission Test Procedures § 89.421 Exhaust gas analytical system; CVS bag sample. (a) Schematic drawings. Figure 4 in appendix A to this subpart is a schematic drawing of the exhaust gas analytical system...

  1. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Exhaust gas analytical system; CVS bag... Emission Test Procedures § 89.421 Exhaust gas analytical system; CVS bag sample. (a) Schematic drawings. Figure 4 in appendix A to this subpart is a schematic drawing of the exhaust gas analytical system...

  2. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Exhaust gas analytical system; CVS... Procedures § 91.423 Exhaust gas analytical system; CVS grab sample. (a) Schematic drawings. Figure 4 in appendix B of this subpart is a schematic drawing of the exhaust gas analytical system used for...

  3. 40 CFR 90.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Exhaust gas analytical system; CVS... KILOWATTS Gaseous Exhaust Test Procedures § 90.423 Exhaust gas analytical system; CVS grab sample. (a... analytical systems used for analyzing CVS grab “bag” samples from spark-ignition engines. Since...

  4. 40 CFR 90.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Exhaust gas analytical system; CVS... KILOWATTS Gaseous Exhaust Test Procedures § 90.423 Exhaust gas analytical system; CVS grab sample. (a... analytical systems used for analyzing CVS grab “bag” samples from spark-ignition engines. Since...

  5. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Exhaust gas analytical system; CVS... Procedures § 91.423 Exhaust gas analytical system; CVS grab sample. (a) Schematic drawings. Figure 4 in appendix B of this subpart is a schematic drawing of the exhaust gas analytical system used for...

  6. 75 FR 67634 - Compliance With Interstate Motor Carrier Noise Emission Standards: Exhaust Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-03

    ... Carrier Noise Emission Standards: Exhaust Systems AGENCY: Federal Motor Carrier Safety Administration, DOT... Motor Carrier Noise Emission Standards: Exhaust Systems,'' published on September 20, 2010, in the... Noise Emission Standards: Exhaust Systems'' in the Federal Register (75 FR 57191). The direct final...

  7. 24 CFR 3280.708 - Exhaust duct system and provisions for the future installation of a clothes dryer.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... gas and electric clothes dryers shall be exhausted to the outside by a moisture-lint exhaust duct and... exhaust duct system is connected to the clothes dryer, and (ii) A moisture lint exhaust duct system is... section. (2) A clothes dryer moisture-lint exhaust duct shall not be connected to any other duct, vent...

  8. Non-Thermal Plasma System Development for CIDI Exhaust Aftertreatment

    SciTech Connect

    Balmer, M. Lou ); Tonkyn, Russell ); Maupin, Gary; Yoon, Steven; Kolwaite, Ana; Barlow, Stephen; Domingo, Norberto; Storey, John M.; Hoard, John Wm.; Howden, Ken

    2000-04-01

    There is a need for an efficient, durable technology to reduce NOx emissions from oxidative exhaust streams such as those produced by compression-ignition, direct injection (CIDI) diesel or lean-burn gasoline engines. A partnership formed between the DOE Office of Advanced Automotive Technology, Pacific Northwest National Laboratory, Oak Ridge National Laboratory and the USCAR Low Emission Technologies Research and Development Partnership is evaluating the effectiveness of a non-thermal plasma in conjunction with catalytic materials to mediate NOx and particulate emissions from diesel fueled light duty (CIDI) engines. Preliminary studies showed that plasma-catalyst systems could reduce up to 70% of NOx emissions at an equivalent cost of 3.5% of the input fuel in simulated diesel exhaust. These studies also showed that the type and concentration of hydrocarbon play a key role in both the plasma gas phase chemistry and the catalyst surface chemistry. More recently, plasma/catalyst systems have been evaluated for NOx reduction and particulate removal on a CIDI engine. Performance results for select plasma-catalyst systems for both simulated and actual CIDI exhaust will be presented. The effect of NOx and hydrocarbon concentration on plasma-catalyst performance will also be shown. SAE Paper SAE-2000-01-1601 {copyright} 2000 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.

  9. Exhaustive search system and method using space-filling curves

    DOEpatents

    Spires, Shannon V.

    2003-10-21

    A search system and method for one agent or for multiple agents using a space-filling curve provides a way to control one or more agents to cover an area of any space of any dimensionality using an exhaustive search pattern. An example of the space-filling curve is a Hilbert curve. The search area can be a physical geography, a cyberspace search area, or an area searchable by computing resources. The search agent can be one or more physical agents, such as a robot, and can be software agents for searching cyberspace.

  10. Acoustically shielded exhaust system for high thrust jet engines

    NASA Technical Reports Server (NTRS)

    Carey, John P. (Inventor); Lee, Robert (Inventor); Majjigi, Rudramuni K. (Inventor)

    1995-01-01

    A flade exhaust nozzle for a high thrust jet engine is configured to form an acoustic shield around the core engine exhaust flowstream while supplementing engine thrust during all flight conditions, particularly during takeoff. The flade airflow is converted from an annular 360.degree. flowstream to an arcuate flowstream extending around the lower half of the core engine exhaust flowstream so as to suppress exhaust noise directed at the surrounding community.

  11. Modular Analysis of Automobile Exhaust Thermoelectric Power Generation System

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Zhang, Y.; Su, C. Q.

    2015-06-01

    In this paper, an automobile exhaust thermoelectric power generation system is packaged into a model with its own operating principles. The inputs are the engine speed and power, and the output is the power generated by the system. The model is divided into two submodels. One is the inlet temperature submodel, and the other is the power generation submodel. An experimental data modeling method is adopted to construct the inlet temperature submodel, and a theoretical modeling method is adopted to construct the power generation submodel. After modeling, simulation is conducted under various engine operating conditions to determine the variation of the power generated by the system. Finally, the model is embedded into a Honda Insight vehicle model to explore the energy-saving effect of the system on the vehicle under Economic Commission for Europe and cyc-constant_60 driving cycles.

  12. Treating exhaust gas from a pressurized fluidized bed reaction system

    DOEpatents

    Isaksson, Juhani; Koskinen, Jari

    1995-01-01

    Hot gases from a pressurized fluidized bed reactor system are purified. Under superatmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a flitrate cake on the surface of the separator, and a reducing agent--such as an NO.sub.x reducing agent (like ammonia), is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1-20 cm/s) during passage of the gas through the filtrate cake while at superatmospheric pressure. Separation takes place within a distinct pressure vessel the interior of which is at a pressure of about 2-100 bar, and-introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine).

  13. Treating exhaust gas from a pressurized fluidized bed reaction system

    SciTech Connect

    Isaksson, J.; Koskinen, J.

    1995-08-22

    Hot gases from a pressurized fluidized bed reactor system are purified. Under super atmospheric pressure conditions hot exhaust gases are passed through a particle separator, forming a filtrate cake on the surface of the separator, and a reducing agent--such as an NO{sub x} reducing agent (like ammonia)--is introduced into the exhaust gases just prior to or just after particle separation. The retention time of the introduced reducing agent is enhanced by providing a low gas velocity (e.g. about 1--20 cm/s) during passage of the gas through the filtrate cake while at super atmospheric pressure. Separation takes place within a distinct pressure vessel, the interior of which is at a pressure of about 2--100 bar, and introduction of reducing agent can take place at multiple locations (one associated with each filter element in the pressure vessel), or at one or more locations just prior to passage of clean gas out of the pressure vessel (typically passed to a turbine). 8 figs.

  14. A static investigation of several STOVL exhaust system concepts

    NASA Technical Reports Server (NTRS)

    Romine, B. M., Jr.; Meyer, B. E.; Re, R. J.

    1989-01-01

    A static cold flow scale model test was performed in order to determine the internal performance characteristics of various STOVL exhaust systems. All of the concepts considered included a vectorable cruise nozzle and a separate vectorable vertical thrust ventral nozzle mounted on the tailpipe. The two ventral nozzle configurations tested featured vectorable constant thickness cascade vanes for area control and improved performance during transition and vertical lift flight. The best transition performance was achieved using a butterfly door type ventral nozzle and a pitch vectoring 2DCD or axisymmetric cruise nozzle. The clamshell blocker type of ventral nozzle had reduced transition performance due to the choking of the tailpipe flow upstream of the cruise nozzle.

  15. Noise Measurements of High Aspect Ratio Distributed Exhaust Systems

    NASA Technical Reports Server (NTRS)

    Bridges, James

    2015-01-01

    This paper covers far-field acoustic measurements of a family of rectangular nozzles with aspect ratio 8, in the high subsonic flow regime. Several variations of nozzle geometry, commonly proposed for embedded exhaust systems, are explored, including bevels, slants, single broad chevrons and notches, and internal septae. Far-field acoustic results, presented previously for the simple rectangular nozzle, showed that increasing aspect ratio increases the high frequency noise, especially directed in the plane containing the minor axis of the nozzle. Detailed changes to the nozzle geometry generally made little difference in the noise, and the differences were greatest at low speed. Having an extended lip on one broad side ('bevel') did produce up to 3dB more noise in all directions, while extending the lip on the narrow side ('slant') produced up to 2dB more noise, primarily on the side with the extension. Adding a single, non-intrusive chevron, made no significant change to the noise, while inverting the chevron ('notch') produced up to 2dB increase in the noise. Having internal walls ('septae') within the nozzle, such as would be required for structural support or when multiple fan ducts are aggregated, reduced the noise of the rectangular jet, but could produce a highly directional shedding tone from the septae trailing edges. Finally, a nozzle with both septae and a beveled nozzle, representative of the exhaust system envisioned for a distributed propulsion aircraft with a common rectangular duct, produced almost as much noise as the beveled nozzle, with the septae not contributing much reduction in noise.

  16. Noise Measurements of High Aspect Ratio Distributed Exhaust Systems

    NASA Technical Reports Server (NTRS)

    Bridges, James E.

    2015-01-01

    This paper covers far-field acoustic measurements of a family of rectangular nozzles with aspect ratio 8, in the high subsonic flow regime. Several variations of nozzle geometry, commonly found in embedded exhaust systems, are explored, including bevels, slants, single broad chevrons and notches, and internal septae. Far-field acoustic results, presented previously for the simple rectangular nozzle, showed that increasing aspect ratio increases the high frequency noise, especially directed in the plane containing the minor axis of the nozzle. Detailed changes to the nozzle geometry generally made little difference in the noise, and the differences were greatest at low speed. Having an extended lip on one broad side (bevel) did produce up to 3 decibels more noise in all directions, while extending the lip on the narrow side (slant) produced up to 2 decibels more noise, primarily on the side with the extension. Adding a single, non-intrusive chevron, made no significant change to the noise, while inverting the chevron (notch) produced up to 2decibels increase in the noise. Having internal walls (septae) within the nozzle, such as would be required for structural support or when multiple fan ducts are aggregated, reduced the noise of the rectangular jet, but could produce a highly directional shedding tone from the septae trailing edges. Finally, a nozzle with both septae and a beveled nozzle, representative of the exhaust system envisioned for a distributed electric propulsion aircraft with a common rectangular duct, produced almost as much noise as the beveled nozzle, with the septae not contributing much reduction in noise.

  17. QCGAT mixer compound exhaust system design and static big model test report

    NASA Technical Reports Server (NTRS)

    Blackmore, W. L.; Thompson, C. E.

    1978-01-01

    A mixer exhaust system was designed to meet the proposed performance and exhaust jet noise goals for the AiResearch QCGAT engine. Some 0.35 scale models of the various nozzles were fabricated and aerodynamically and acoustically tested. Preliminary optimization, engine cycle matching, model test data and analysis are presented. A final mixer exhaust system is selected for optimum performance for the overall flight regime.

  18. 40 CFR 91.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... analytical system description. 91.414 Section 91.414 Protection of Environment ENVIRONMENTAL PROTECTION... Gaseous Exhaust Test Procedures § 91.414 Raw gaseous exhaust sampling and analytical system description. (a) Schematic drawing. An example of a sampling and analytical system which may be used for...

  19. 30 CFR 36.47 - Tests of exhaust-gas cooling system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of exhaust-gas cooling system. 36.47..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.47 Tests of exhaust-gas cooling system. (a) The adequacy of...

  20. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system; diesel engines. 86.1310-90 Section 86.1310-90 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1310-90 Exhaust gas sampling and analytical system; diesel...

  1. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... system; diesel engines. 86.1310-90 Section 86.1310-90 Protection of Environment ENVIRONMENTAL PROTECTION... ENGINES (CONTINUED) Emission Regulations for New Otto-Cycle and Diesel Heavy-Duty Engines; Gaseous and Particulate Exhaust Test Procedures § 86.1310-90 Exhaust gas sampling and analytical system; diesel...

  2. 30 CFR 36.49 - Tests of exhaust-gas dilution system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Tests of exhaust-gas dilution system. 36.49..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.49 Tests of exhaust-gas dilution system. The performance...

  3. 30 CFR 36.49 - Tests of exhaust-gas dilution system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Tests of exhaust-gas dilution system. 36.49..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.49 Tests of exhaust-gas dilution system. The performance...

  4. 30 CFR 36.49 - Tests of exhaust-gas dilution system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Tests of exhaust-gas dilution system. 36.49..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.49 Tests of exhaust-gas dilution system. The performance...

  5. 30 CFR 36.49 - Tests of exhaust-gas dilution system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Tests of exhaust-gas dilution system. 36.49..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.49 Tests of exhaust-gas dilution system. The performance...

  6. 30 CFR 36.49 - Tests of exhaust-gas dilution system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Tests of exhaust-gas dilution system. 36.49..., EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE DIESEL-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.49 Tests of exhaust-gas dilution system. The performance...

  7. Method of controlling temperature of a thermoelectric generator in an exhaust system

    DOEpatents

    Prior, Gregory P; Reynolds, Michael G; Cowgill, Joshua D

    2013-05-21

    A method of controlling the temperature of a thermoelectric generator (TEG) in an exhaust system of an engine is provided. The method includes determining the temperature of the heated side of the TEG, determining exhaust gas flow rate through the TEG, and determining the exhaust gas temperature through the TEG. A rate of change in temperature of the heated side of the TEG is predicted based on the determined temperature, the determined exhaust gas flow rate, and the determined exhaust gas temperature through the TEG. Using the predicted rate of change of temperature of the heated side, exhaust gas flow rate through the TEG is calculated that will result in a maximum temperature of the heated side of the TEG less than a predetermined critical temperature given the predicted rate of change in temperature of the heated side of the TEG. A corresponding apparatus is provided.

  8. Design and Experimental Study of an Over-Under TBCC Exhaust System.

    PubMed

    Mo, Jianwei; Xu, Jinglei; Zhang, Liuhuan

    2014-01-01

    Turbine-based combined-cycle (TBCC) propulsion systems have been a topic of research as a means for more efficient flight at supersonic and hypersonic speeds. The present study focuses on the fundamental physics of the complex flow in the TBCC exhaust system during the transition mode as the turbine exhaust is shut off and the ramjet exhaust is increased. A TBCC exhaust system was designed using methods of characteristics (MOC) and subjected to experimental and computational study. The main objectives of the study were: (1) to identify the interactions between the two exhaust jet streams during the transition mode phase and their effects on the whole flow-field structure; (2) to determine and verify the aerodynamic performance of the over-under TBCC exhaust nozzle; and (3) to validate the simulation ability of the computational fluid dynamics (CFD) software according to the experimental conditions. Static pressure taps and Schlieren apparatus were employed to obtain the wall pressure distributions and flow-field structures. Steady-state tests were performed with the ramjet nozzle cowl at six different positions at which the turbine flow path were half closed and fully opened, respectively. Methods of CFD were used to simulate the exhaust flow and they complemented the experimental study by providing greater insight into the details of the flow field and a means of verifying the experimental results. Results indicated that the flow structure was complicated because the two exhaust jet streams interacted with each other during the exhaust system mode transition. The exhaust system thrust coefficient varied from 0.9288 to 0.9657 during the process. The CFD simulation results agree well with the experimental data, which demonstrated that the CFD methods were effective in evaluating the aerodynamic performance of the TBCC exhaust system during the mode transition.

  9. 40 CFR 90.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... family to engine family. (c) Mixing chamber. The exhaust mixing chamber is located in the exhaust system between the muffler and the sample probe. The mixing chamber is an optional component of the raw gas sampling equipment. (1) The internal volume of the mixing chamber may not be less than ten times...

  10. 40 CFR 90.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... family to engine family. (c) Mixing chamber. The exhaust mixing chamber is located in the exhaust system... family to engine family. The probe must be located in a position which yields a well mixed, homogenous... probe must connect directly to valve V2. The location of optional valve V2 in Figure 1 of appendix B...

  11. 40 CFR 85.2224 - Exhaust analysis system-EPA 81.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust analysis system-EPA 81. 85.2224 Section 85.2224 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Tests § 85.2224 Exhaust analysis system—EPA 81. (a) Applicability. The requirements of this...

  12. 40 CFR 85.2224 - Exhaust analysis system-EPA 81.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust analysis system-EPA 81. 85.2224 Section 85.2224 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS... Tests § 85.2224 Exhaust analysis system—EPA 81. (a) Applicability. The requirements of this...

  13. Applying Systems Engineering to Improve the Main Gas Turbine Exhaust System Maintenance Strategy for the CG-47 Ticonderoga Class Cruiser

    DTIC Science & Technology

    2015-09-01

    IMPROVE THE MAIN GAS TURBINE EXHAUST SYSTEM MAINTENANCE STRATEGY FOR THE CG-47 TICONDEROGA CLASS CRUISER by Robert D. Sparks September 2015 Thesis...TURBINE EXHAUST SYSTEM MAINTENANCE STRATEGY FOR THE CG-47 TICONDEROGA CLASS CRUISER 5. FUNDING NUMBERS 6. AUTHOR(S) Sparks, Robert D. 7. PERFORMING...recommendations for improvement of the main gas turbine exhaust system maintenance strategy are the focus of this thesis. The analysis recommends a

  14. An evaluation of a local exhaust ventilation control system for a foundry casting-cleaning operation.

    PubMed

    Gressel, M G

    1997-05-01

    A study was conducted to evaluate the effectiveness of a local exhaust ventilation system for a foundry casting-cleaning operation in which a worker cleaned gray iron castings using a variety of handheld chipping and grinding tools. The operation originally had an exhaust system consisting only of an exhaust duct terminating approximately 1 m (3 ft) above the floor and 2 m (6 ft) from the casting-cleaning workstation. An earlier evaluation of this original control system found time-weighted average exposures to respirable silica ranging from 124 to 160 micrograms/m3. The local exhaust ventilation system evaluated in this present study consisted of a downdraft booth outfitted with a turntable for manipulating the castings. The modified local exhaust ventilation system was installed at this facility and connected to the existing plant exhaust ventilation system through the original ductwork. A direct-reading instrument was used to measure the operator's respirable aerosol exposure concentrations during a single day both before and after the installation of the new workstation. The same worker was sampled both times. The operator's activities were recorded on videotape so that the exposures associated with the various tools could be determined. While day-to-day variability could not be accounted for, depending on the type of tool used the local exhaust ventilation system reduced exposures by 59 to 79% during casting cleaning by the sampled worker when compared with the original configuration. These reductions were statistically significant.

  15. 30 CFR 36.25 - Engine exhaust system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pressure observed in explosion tests, which are described in § 36.46, or a pressure of 125 pounds per... the equipment assembly that it is protected from accidental external damage. (2) A spaced-plate flame... conditioner may be used as the exhaust flame arrester provided that explosion tests demonstrate that...

  16. 30 CFR 36.25 - Engine exhaust system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pressure observed in explosion tests, which are described in § 36.46, or a pressure of 125 pounds per... the equipment assembly that it is protected from accidental external damage. (2) A spaced-plate flame... conditioner may be used as the exhaust flame arrester provided that explosion tests demonstrate that...

  17. 30 CFR 36.25 - Engine exhaust system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... device to shut off automatically the fuel supply to the engine at a safe minimum water level. A cooling... after the fuel supply has been shut off automatically until the water supply in the cooling box has been... controls a safe minimum water level in the cooling box and also prevents the final exhaust temperature...

  18. 30 CFR 36.25 - Engine exhaust system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... device to shut off automatically the fuel supply to the engine at a safe minimum water level. A cooling... after the fuel supply has been shut off automatically until the water supply in the cooling box has been... controls a safe minimum water level in the cooling box and also prevents the final exhaust temperature...

  19. Exhaust system having a gold-platinum group metal catalyst

    DOEpatents

    Ragle, Christie Susan [Havana, IL; Silver, Ronald G [Peoria, IL; Zemskova, Svetlana Mikhailovna [Edelstein, IL; Eckstein, Colleen J [Metamora, IL

    2011-12-06

    A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.

  20. Exhaust system having a gold-platinum group metal catalyst

    DOEpatents

    Ragle, Christie Susan; Silver, Ronald G.; Zemskova, Svetlana Mikhailovna; Eckstein, Colleen J.

    2012-08-07

    A method of providing an exhaust treatment device is disclosed. The method includes applying a catalyst including gold and a platinum group metal to a particulate filter. The concentration of the gold and the platinum group metal is sufficient to enable oxidation of carbon monoxide and nitric oxide.

  1. Field Tests of a Laser Raman Measurement System for Aircraft Engine Exhaust Emissions

    DTIC Science & Technology

    1974-10-01

    practical one. The advantages of optical exhaust gas measurements versus probing systems has been demonstrated. It now remains to solve the remaining...Raman system NOVA digital data processor has the capability to service such additional measurements. If velocity information is desired a study should be...AD/A-003 648 FIELD TESTS OF A LASER RAMAN MEASURE- MENT SYSTEM FOR AIRCRAFT ENGINE EXHAUST EMISSIONS Donald A. Leunard Avoo Everett Researoh

  2. Power plant including an exhaust gas recirculation system for injecting recirculated exhaust gases in the fuel and compressed air of a gas turbine engine

    DOEpatents

    Anand, Ashok Kumar; Nagarjuna Reddy, Thirumala Reddy; Shaffer, Jason Brian; York, William David

    2014-05-13

    A power plant is provided and includes a gas turbine engine having a combustor in which compressed gas and fuel are mixed and combusted, first and second supply lines respectively coupled to the combustor and respectively configured to supply the compressed gas and the fuel to the combustor and an exhaust gas recirculation (EGR) system to re-circulate exhaust gas produced by the gas turbine engine toward the combustor. The EGR system is coupled to the first and second supply lines and configured to combine first and second portions of the re-circulated exhaust gas with the compressed gas and the fuel at the first and second supply lines, respectively.

  3. 5. West SideElevated Tank Structure with fume exhaust system and ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. West Side-Elevated Tank Structure with fume exhaust system and support structure in foreground. - Mare Island Naval Shipyard, Acid Mixing Facility, California Avenue & E Street, Vallejo, Solano County, CA

  4. 24 CFR 3280.708 - Exhaust duct system and provisions for the future installation of a clothes dryer.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Exhaust duct system and provisions... duct system and provisions for the future installation of a clothes dryer. (a) Clothes dryers. (1) All gas and electric clothes dryers shall be exhausted to the outside by a moisture-lint exhaust duct...

  5. Development of Diesel Exhaust Aftertreatment System for Tier II Emissions

    SciTech Connect

    Yu, R. C.; Cole, A. S., Stroia, B. J.; Huang, S. C.; Howden, Kenneth C.; Chalk, Steven

    2002-06-01

    system design and analysis, critical lab/engine experiments, and ranking then selection of NOX control technologies against reliability, up-front cost, fuel economy, service interval/serviceability, and size/weight. The results of the investigations indicate that the best NOX control approach for LDV and LDT applications is a NOX adsorber system. A greater than 83% NOX reduction efficiency is required to achieve 0.07g/mile NOX Tier II vehicle-out emissions. Both active lean NOX and PACR technology are currently not capable of achieving the high conversion efficiency required for Tier II, Bin 5 emissions standards. In this paper, the NOX technology assessment and selection is first reviewed and discussed. Development of the selected NOX technology (NOX adsorber) and PM control are then discussed in more detail. Discussion includes exhaust sulfur management, further adsorber formulation development, reductant screening, diesel particulate filter development & active regeneration, and preliminary test results on the selected integrated SOX trap, NOX adsorber, and diesel particulate filter system over an FTP-75 emissions cycle, and its impact on fuel economy. Finally, the direction of future work for continued advanced aftertreatment technology development is discussed. (SAE Paper SAE-2002-01-1867 © 2002 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  6. Catalytic booster device for vehicular exhaust systems and method of installing

    SciTech Connect

    Feaster, D.L.

    1984-04-24

    A catalytic booster-converter for insertion into the exhaust pipe of a vehicular exhaust system comprising an elongated conduit device adapted to be rigidly connected in series with an exhaust pipe intermediate the ends thereof. The elongated conduit device is in separate length portions which are spaced apart a predetermined distance. A catalytic converter element is interposed between and removably secured to the facing ends of said length portions. A converter element is secured between such length portions in such a manner that it can be removed and replaced by movement transversely of the conduit device.

  7. Real-time exhaust gas modular flowmeter and emissions reporting system for mobile apparatus

    NASA Technical Reports Server (NTRS)

    Breton, Leo Alphonse Gerard (Inventor)

    2002-01-01

    A real-time emissions reporting system includes an instrument module adapted to be detachably connected to the exhaust pipe of a combustion engine to provide for flow of exhaust gas therethrough. The instrument module includes a differential pressure probe which allows for determination of flow rate of the exhaust gas and a gas sampling tube for continuously feeding a sample of the exhaust gas to a gas analyzer or a mounting location for a non-sampling gas analyzer. In addition to the module, the emissions reporting system also includes an elastomeric boot for detachably connecting the module to the exhaust pipe of the combustion engine, a gas analyzer for receiving and analyzing gases sampled within the module and a computer for calculating pollutant mass flow rates based on concentrations detected by the gas analyzer and the detected flowrate of the exhaust gas. The system may also include a particulate matter detector with a second gas sampling tube feeding same mounted within the instrument module.

  8. Catalysts, systems and methods to reduce NOX in an exhaust gas stream

    DOEpatents

    Castellano, Christopher R.; Moini, Ahmad; Koermer, Gerald S.; Furbeck, Howard

    2010-07-20

    Catalysts, systems and methods are described to reduce NO.sub.x emissions of an internal combustion engine. In one embodiment, an emissions treatment system for an exhaust stream is provided having an SCR catalyst comprising silver tungstate on an alumina support. The emissions treatment system may be used for the treatment of exhaust streams from diesel engines and lean burn gasoline engines. An emissions treatment system may further comprise an injection device operative to dispense a hydrocarbon reducing agent upstream of the catalyst.

  9. 30 CFR 36.46 - Explosion tests of intake and exhaust systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.46 Explosion tests of intake and exhaust systems... with the systems connected to the engine or the systems simulated as connected to the engine. The...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in...

  10. 30 CFR 36.46 - Explosion tests of intake and exhaust systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.46 Explosion tests of intake and exhaust systems... with the systems connected to the engine or the systems simulated as connected to the engine. The...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in...

  11. 30 CFR 36.46 - Explosion tests of intake and exhaust systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.46 Explosion tests of intake and exhaust systems... with the systems connected to the engine or the systems simulated as connected to the engine. The...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in...

  12. 30 CFR 36.46 - Explosion tests of intake and exhaust systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-POWERED TRANSPORTATION EQUIPMENT Test Requirements § 36.46 Explosion tests of intake and exhaust systems... with the systems connected to the engine or the systems simulated as connected to the engine. The...) Explosion tests shall be made with the engine at rest and with the flammable natural gas-air mixtures in...

  13. Method for controlling exhaust gas heat recovery systems in vehicles

    DOEpatents

    Spohn, Brian L.; Claypole, George M.; Starr, Richard D

    2013-06-11

    A method of operating a vehicle including an engine, a transmission, an exhaust gas heat recovery (EGHR) heat exchanger, and an oil-to-water heat exchanger providing selective heat-exchange communication between the engine and transmission. The method includes controlling a two-way valve, which is configured to be set to one of an engine position and a transmission position. The engine position allows heat-exchange communication between the EGHR heat exchanger and the engine, but does not allow heat-exchange communication between the EGHR heat exchanger and the oil-to-water heat exchanger. The transmission position allows heat-exchange communication between the EGHR heat exchanger, the oil-to-water heat exchanger, and the engine. The method also includes monitoring an ambient air temperature and comparing the monitored ambient air temperature to a predetermined cold ambient temperature. If the monitored ambient air temperature is greater than the predetermined cold ambient temperature, the two-way valve is set to the transmission position.

  14. Systems and methods to reduce reductant consumption in exhaust aftertreament systems

    DOEpatents

    Gupta, Aniket; Cunningham, Michael J.

    2017-02-14

    Systems, apparatus and methods are provided for reducing reductant consumption in an exhaust aftertreatment system that includes a first SCR device and a downstream second SCR device, a first reductant injector upstream of the first SCR device, and a second reductant injector between the first and second SCR devices. NOx conversion occurs with reductant injection by the first reductant injector to the first SCR device in a first temperature range and with reductant injection by the second reductant injector to the second SCR device when the temperature of the first SCR device is above a reductant oxidation conversion threshold.

  15. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... true mass of both gaseous and particulate emissions in the exhaust of petroleum-fueled, natural gas... integrated system is required for THC (petroleum-fueled, natural gas-fueled, and liquefied petroleum gas... heated sample system (375 ±20 °F (191 ±11 °C)). For natural gas-fueled and liquefied petroleum...

  16. 30 CFR 36.46 - Explosion tests of intake and exhaust systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... combustion of a flammable gas-air mixture drawn into the system under test by the cooling of the products... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Explosion tests of intake and exhaust systems... TESTING, EVALUATION, AND APPROVAL OF MINING PRODUCTS APPROVAL REQUIREMENTS FOR PERMISSIBLE MOBILE...

  17. 40 CFR 86.209-94 - Exhaust gas sampling system; gasoline-fueled vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Exhaust gas sampling system; gasoline... Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty... sampling system; gasoline-fueled vehicles. The provisions of § 86.109-90 apply to this subpart....

  18. Engine Performance (Section B: Fuel and Exhaust Systems). Auto Mechanics Curriculum Guide. Module 3. Instructor's Guide.

    ERIC Educational Resources Information Center

    Rains, Larry

    This module is the third of nine modules in the competency-based Missouri Auto Mechanics Curriculum Guide. Six units cover: fuel supply systems; carburetion; carburetor service; gasoline engine electronic fuel injection; diesel fuel injection; and exhaust systems and turbochargers. Introductory materials include a competency profile and…

  19. 40 CFR 86.209-94 - Exhaust gas sampling system; gasoline-fueled vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Exhaust gas sampling system; gasoline... Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty... sampling system; gasoline-fueled vehicles. The provisions of § 86.109-90 apply to this subpart....

  20. 40 CFR 86.209-94 - Exhaust gas sampling system; gasoline-fueled vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Exhaust gas sampling system; gasoline... Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty... sampling system; gasoline-fueled vehicles. The provisions of § 86.109-90 apply to this subpart....

  1. 40 CFR 86.209-94 - Exhaust gas sampling system; gasoline-fueled vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Exhaust gas sampling system; gasoline... Emission Regulations for 1994 and Later Model Year Gasoline-Fueled New Light-Duty Vehicles, New Light-Duty... sampling system; gasoline-fueled vehicles. The provisions of § 86.109-90 apply to this subpart....

  2. Experiments on Exhaust Noise of Tightly Integrated Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Brown, Clifford A.; Bozak, Richard F.

    2014-01-01

    A wide-ranging series of tests have been completed that seek to map the effects of installation, including jet by jet interaction effects, on exhaust noise from various nozzles in forward flight. The primary data was far-field acoustic spectral directivity. The goals of the test series were (i) to generate enough data for empirical models of the different effects, and (ii) to provide data for advanced computational noise predictions methods applied to simplified yet realistic configurations. Data is presented that demonstrate several checks on data quality and that provide an overview of trends observed to date. Among the findings presented here: (i) Data was repeatable between jet rigs for single nozzles with and without surfaces to within +/- 0.5 dB. (ii) The presence of a second jet caused a strong reduction of the summed noise in the plane of the two plumes and an increase over the expected source doubling in most other azimuthal planes. (iii) The impact of the second jet was reduced when the jets were unheated. (iv) The impact of adding a second isolated rectangular jet was relatively independent of the nozzle aspect ratio up to aspect ratio 8:1. (v) Forward flight had similar impact on a high aspect ratio (8:1) jet as on an axisymmetric jet, except at the peak noise angle where the impact was less. (vi) The effect of adding a second round jet to a tightly integrated nozzle where the nozzle lip was less than a diameter from the surface was very dependent upon the length of the surface downstream of the nozzle. (vii) When the nozzles were rectangular and tightly integrated with the airframe surface the impact of a second jet was very dependent upon how close together the two jets were. This paper serves as an overview of the test; other papers presented in the same conference will give more detailed analysis of the results.

  3. Exhaust system-related burns affecting children: a UK perspective and literature review.

    PubMed

    Vermaak, P V; Deall, C E; McArdle, C; Burge, T

    2016-06-30

    Burns caused by exhaust systems in children may be associated with considerable morbidity. Current epidemiological data varies, but no data are available for the UK population. We aim to identify the pattern of exhaust-related burns affecting children who presented to a regional centre for paediatric burn care in the UK. Patients who sustained burns related to exhaust mechanisms between May 2005 and August 2012 were identified via the departmental database. Data collected included patient demographics, burn injury information, management and outcomes. Thirty-nine patients sustained 43 burns from contact with exhaust mechanisms, and the majority were less than 5 years of age. 77% of the patients were male. Burns affected critical areas such as the hands and feet in 26% of cases. Most burns involved a total body surface area of ≤1% and were partial thickness in depth. Thirty-three percent of patients required operative intervention. Time to heal was less than 3 weeks in 69% of cases and 3 patients healed with hypertrophic scarring. The majority of burns were small in size and partial thickness in depth. Most were treated conservatively and healed with low complication rates. More than 1 in 5 injuries involved critical burn areas, highlighting the potential for considerable morbidity. The age profile in our study contrasted with other results worldwide. Our study highlights the need for vigilant supervision of children around motorcycles. We recommend the wearing of protective long trousers when riding motorcycles and the fitting of external shields to motorcycle exhaust pipes.

  4. Exhaust system-related burns affecting children: a UK perspective and literature review

    PubMed Central

    Vermaak, P.V.; Deall, C.E.; McArdle, C.; Burge, T.

    2016-01-01

    Summary Burns caused by exhaust systems in children may be associated with considerable morbidity. Current epidemiological data varies, but no data are available for the UK population. We aim to identify the pattern of exhaust-related burns affecting children who presented to a regional centre for paediatric burn care in the UK. Patients who sustained burns related to exhaust mechanisms between May 2005 and August 2012 were identified via the departmental database. Data collected included patient demographics, burn injury information, management and outcomes. Thirty-nine patients sustained 43 burns from contact with exhaust mechanisms, and the majority were less than 5 years of age. 77% of the patients were male. Burns affected critical areas such as the hands and feet in 26% of cases. Most burns involved a total body surface area of ≤1% and were partial thickness in depth. Thirty-three percent of patients required operative intervention. Time to heal was less than 3 weeks in 69% of cases and 3 patients healed with hypertrophic scarring. The majority of burns were small in size and partial thickness in depth. Most were treated conservatively and healed with low complication rates. More than 1 in 5 injuries involved critical burn areas, highlighting the potential for considerable morbidity. The age profile in our study contrasted with other results worldwide. Our study highlights the need for vigilant supervision of children around motorcycles. We recommend the wearing of protective long trousers when riding motorcycles and the fitting of external shields to motorcycle exhaust pipes. PMID:28149228

  5. Characterization of microbial communities in exhaust air treatment systems of large-scale pig housing facilities.

    PubMed

    Haneke, J; Lee, N M; Gaul, T W; Van den Weghe, H F A

    2010-01-01

    Exhaust air treatment has gained importance as an essential factor in intensive livestock areas due to the rising emissions in the environment. Wet filter walls of multi-stage exhaust air treatment systems precipitate gaseous ammonia and dust particles from exhaust air in washing water. Microbial communities in the biomass developed in the washing water of five large-scale exhaust air treatment units of pig housing facilities, were investigated by fluorescence in situ hybridization (FISH) and 16S rDNA sequence analyses. No "standard" nitrifying bacteria were found in the washing water. Instead mainly α-Proteobacteria, aggregating β- and χ-Proteobacteria, a large number of Actinobacteria, as well as individual Planctomycetales and Crenarchaeota were detected after more than twelve months' operation. The main Proteobacteria species present were affiliated to the families Alcaligenaceae, Comamonadaceae and Xanthomonadaceae. Furthermore, we investigated the consumption of inorganic nitrogen compounds in the washing water of one exhaust air treatment unit during a fattening period with and without pH control. Maintaining the pH at 6.0 resulted in a ca. fivefold higher ammonium concentration and a ca. fourfold lower concentration of oxidized nitrogen compounds after the fattening period was finished.

  6. Thermoelectric Power Generation System for Future Hybrid Vehicles Using Hot Exhaust Gas

    NASA Astrophysics Data System (ADS)

    Kim, Sun-Kook; Won, Byeong-Cheol; Rhi, Seok-Ho; Kim, Shi-Ho; Yoo, Jeong-Ho; Jang, Ju-Chan

    2011-05-01

    The present experimental and computational study investigates a new exhaust gas waste heat recovery system for hybrid vehicles, using a thermoelectric module (TEM) and heat pipes to produce electric power. It proposes a new thermoelectric generation (TEG) system, working with heat pipes to produce electricity from a limited hot surface area. The current TEG system is directly connected to the exhaust pipe, and the amount of electricity generated by the TEMs is directly proportional to their heated area. Current exhaust pipes fail to offer a sufficiently large hot surface area for the high-efficiency waste heat recovery required. To overcome this, a new TEG system has been designed to have an enlarged hot surface area by the addition of ten heat pipes, which act as highly efficient heat transfer devices and can transmit the heat to many TEMs. As designed, this new waste heat recovery system produces a maximum 350 W when the hot exhaust gas heats the evaporator surface of the heat pipe to 170°C; this promises great possibilities for application of this technology in future energy-efficient hybrid vehicles.

  7. New Model Exhaust System Supports Testing in NASA Lewis' 10- by 10-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Roeder, James W., Jr.

    1998-01-01

    In early 1996, the ability to run NASA Lewis Research Center's Abe Silverstein 10- by 10- Foot Supersonic Wind Tunnel (10x10) at subsonic test section speeds was reestablished. Taking advantage of this new speed range, a subsonic research test program was scheduled for the 10x10 in the fall of 1996. However, many subsonic aircraft test models require an exhaust source to simulate main engine flow, engine bleed flows, and other phenomena. This was also true of the proposed test model, but at the time the 10x10 did not have a model exhaust capability. So, through an in-house effort over a period of only 5 months, a new model exhaust system was designed, installed, checked out, and made ready in time to support the scheduled test program.

  8. Motor Transportation Technology: Automechanics. [Fuel and Exhaust System.] Block VII. A-VII.

    ERIC Educational Resources Information Center

    Texas A and M Univ., College Station. Vocational Instructional Services.

    Instructional materials on fuel and exhaust systems are provided for an auto mechanics course in the motor transportation technology program. Instructor's plans are provided for five units. Each unit consists of instructional and manipulative lessons. The format of an instructional lesson is as follows: the subject, aim, a listing of teaching aids…

  9. Limiter/vacuum system for plasma impurity control and exhaust in tokamaks

    SciTech Connect

    Abdou, M.; Brooks, J.; Mattas, R.

    1980-01-01

    A detailed design of a limiter/vacuum system for plasma impurity control and exhaust has been developed for the STARFIRE tokamak power plant. It is shown that the limiter/vacuum concept is a very attractive option for power reactors. It is relatively simple and inexpensive and deserves serious experimental verification.

  10. 40 CFR 205.171-2 - Test exhaust system sample selection and preparation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the manufacturer's normal production processes, in stock configuration including exhaust system, as...'s normal production process. (d) Unless otherwise indicated in the test request, the manufacturer..., including parts and subassemblies, that will not normally be used during the production and assembly of...

  11. Measuring Airflow in Local Exhaust Ventilation Systems. Module 23. Vocational Education Training in Environmental Sciences.

    ERIC Educational Resources Information Center

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on measuring airflow in local exhaust ventilation systems. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) naming each…

  12. Regeneration of Exhausted Arsenic Adsorptive media of a Full Scale Treatment System

    EPA Science Inventory

    This presentation will describe the method and results of laboratory tests showing the feasibility of regenerating exhausted, iron-based, adsorptive media and the results of a follow up regeneration test at a full scale system in Twentynine Palms CA. The laboratory studies on se...

  13. An Evaluation of a Welding Fumes Exhaust System. Agricultural Experiment Station Research Report 284.

    ERIC Educational Resources Information Center

    Jacobs, C. O.

    A study evaluated the feasibility of introducing unheated outside air into the airstream of a cross-flow welding exhaust system to reduce heating energy costs of a school welding laboratory. The physical facility used was the agricultural mechanics laboratory at the University of Arizona, which is similar to facilities in which instruction in…

  14. Calibration and demonstration of a condensation nuclei counting system for airborne measurements of aircraft exhausted particles

    NASA Astrophysics Data System (ADS)

    Cofer, Wesley R.; Anderson, Bruce E.; Winstead, Edward L.; Bagwell, Donald R.

    A system of multiple continuous-flow condensation nuclei counters (CNC) was assembled, calibrated, and demonstrated on a NASA T-39 Sabreliner jet aircraft. The mission was to penetrate the exhaust plumes and/or contrails of other subsonic jet aircraft and determine the concentrations of submicrometer diameter aerosol particles. Mission criteria required rapid response measurements ( ˜ 1 s) at aircraft cruise altitudes (9-12 km). The CNC sampling system was optimized to operate at 160 Torr. Aerosol samples were acquired through an externally mounted probe. Installed downstream of the probe was a critical flow orifice that provided sample to the CNC system. The orifice not only controlled volumetric flow rate, but also dampened probe pressure/flow oscillations encountered in the turbulent aircraft-wake vortex environment. Laboratory calibrations with NaCl particles under representative conditions are reported that indicate small amounts of particle loss and a maximum measurement efficiency of ˜ 75% for particles with diameters ranging from ⩾ 0.01- ⩽ 0.18 μm Data from exhaust/contrail samplings of a NASA B757 and DC-8 at cruise altitude are discussed. Data include exhaust/contrail measurements made during periods in which the B757 port jet engine burned low-sulfur fuel while the starboard engine simultaneously burned specially prepared high-sulfur fuel. The data discussed highlight the CNC systems performance, and introduce new observations pertinent to the behavior of sulfur in aircraft exhaust aerosol chemistry.

  15. Modular Exhaust Design and Manufacturing Techniques for Low Cost Mid Volume Rapid Buidl to Order Systems

    DTIC Science & Technology

    2014-08-06

    technical data package will contain the following pieces of information: • Manufacturing Drawings • Code for running CNC machinery • Documentation...MODULAR EXHAUST DESIGN AND MANUFACTURING TECHNIQUES FOR LOW COST MID VOLUME RAPID BUILD TO ORDER SYSTEMS Kevin Nelson Project Engineer...customizable mufflers, as well as modular manufacturing techniques targeted at mid volume manufacturing quantities. A successful solution would reduce

  16. 75 FR 57191 - Compliance With Interstate Motor Carrier Noise Emission Standards: Exhaust Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-20

    ... Federal Motor Carrier Safety Administration 49 CFR Part 325 RIN-2126-AB31 Compliance With Interstate Motor Carrier Noise Emission Standards: Exhaust Systems AGENCY: Federal Motor Carrier Safety Administration, DOT... Association (TMA), the Federal Motor Carrier Safety Administration (FMCSA) amends its regulations to...

  17. 40 CFR 86.511-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... system for HC, CO and CO2, Figure F90-3, consists of a flame ionization detector (FID) (heated (235°±15... analytical system for methanol consists of a gas chromatograph (GC) equipped with a flame ionization detector. The analysis for formaldehyde is performed using high pressure liquid chromatography (HPLC) of...

  18. 40 CFR 86.511-90 - Exhaust gas analytical system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... system for HC, CO and CO2, Figure F90-3, consists of a flame ionization detector (FID) (heated (235°±15... analytical system for methanol consists of a gas chromatograph (GC) equipped with a flame ionization detector. The analysis for formaldehyde is performed using high pressure liquid chromatography (HPLC) of...

  19. Experimental Investigation of Exhaust Thermoelectric System and Application for Vehicle

    NASA Astrophysics Data System (ADS)

    Liu, X.; Deng, Y. D.; Wang, W. S.; Su, C. Q.

    2015-06-01

    In this case study, an energy harvesting system using a thermoelectric power generator (TEG) has been constructed. Experimental investigation of the hot and cold sides of the thermoelectric modules (TMs) in this system has been undertaken to assess the feasibility for automotive applications. Two test benches have been developed to analyze the TM performance and the TEG system characteristics, especially the temperature difference, open-circuit voltage, and maximum power output of the TM and TEG system. As the performance of a TM is most influenced by the applied pressure and the temperature difference, a thermostatic heater, thermostatic water tank, and clamping devices are used in our experimental apparatus, increasing the output power of the TEG system. Based on the test bench, a new system called the "four-TEGs" system was designed and assembled into a prototype vehicle called "Warrior," and the characteristics of the system such as the maximum power output have been studied in road tests. The results show great potential for application of this technology in future vehicles.

  20. Application of a New Selective Noncatalytic NO Reduction System to Diesel Exhaust

    NASA Astrophysics Data System (ADS)

    Nakanishi, Yasufumi; Gong, Joon Dugk; Yoshihara, Yoshinobu; Nishiwaki, Kazuie

    The chemical gas-phase reduction process used to reduce nitric oxide (NO) in diesel engine exhaust has been applied to a high-speed, light-duty diesel engine. The chemical gas-phase reduction process involves adding methylamine (CH3NH2) in water solution to the exhaust gas as an NO reduction agent. In this study, an experimental selective noncatalytic NO reduction system designed to be used with a diesel engine was applied to evaluate this technique for practical use. The NOx reduction ratio (RNOx) of methylamine processes with and without the installation of a particulate filter was investigated. Two different mixing chambers with different volumes and residence times (0.1s and 0.17s) were also tested. Longer residence times were required to achieve a given level of NOx reduction in unfiltered exhaust, suggesting that the presence of particulate matter inhibits NO reduction. For the standard residence time (0.1s), the process achieved 64% NO reduction in unfiltered diesel exhaust, which increased to 80% NO reduction when a particle filter was fitted to the system.

  1. Setting the global thermostat with an exhaustible tradeable permit system

    SciTech Connect

    Kosobud, R.G.; Quinn, K.G. |; South, D.W.; Daly, T.A.

    1993-05-01

    The global warming policy debate has centered largely on near-term objectives such as freezing 1990 CO{sub 2} emissions without regard to long-run implications. A policy of freezing CO{sub 2} emissions is shown to slow but not halt global warming, while requiring expensive near-term adjustments. If the long-run temperature change outcome of the freeze policy is set as the goal of a more graduated control policy, one which allows the market to determine annual emissions, a more cost-effective solution is obtained that reduces the negative adjustment effects on the energy and other affected industries. The most cost-effective emissions time path of a graduated control policy could be achieved by an evaporative marketable CO{sub 2} emissions permit system. This paper provides a preliminary examination of an evaporative permit system used to achieve long-run stabilization of greenhouse-induced temperature change.

  2. A new online exhaust gas monitoring system in hydrochloric acid regeneration of cold rolling mills.

    PubMed

    Tuo, Long; Zheng, Xiang; Chen, Xiong

    2015-07-07

    Measuring the content of hydrogen chloride (HCl) in exhaust gas used to take time and energy. In this paper, we introduce a new online monitoring system which can output real-time data to the monitoring center. The system samples and cools exhaust gas, and after a series of processing, it will be analyzed by a specific instrument. The core part of this system is remote terminal unit (RTU) which is designed on Cortex-A8 embedded architecture. RTU runs a scaled-down version of Linux which is a good choice of OS for embedded applications. It controls the whole processes, does data acquisition and data analysis, and communicates with monitoring center through Ethernet. In addition, through a software developed for windows, the monitoring process can be remotely controlled. The new system is quite beneficial for steel industry to do environment monitoring.

  3. Shuttle primary reaction control system engine exhaust plume contamination effects

    NASA Technical Reports Server (NTRS)

    Koontz, Steve; Ehlers, Horst; Pedley, Mike; Cross, John; Hakes, Charles

    1993-01-01

    Space Shuttle proximity operations constitute an important part of the SSF induced external environment. The impingement of primary reaction control system (PRCS) engine plumes on SSF functional surfaces during docking or berthing and separation leads to concerns about molecular contamination and high speed particle impact. The Shuttle Plume Impingement flight Experiment (SPIE) was designed to provide a direct measure of both the molecular contamination and particle impact rates produced by Shuttle PRCS engines in the LEO environment. The measured permanent deposition produced by PRCS engine firings was less than that assumed in current SSF programatic assessments. Only two to three possible high velocity particle impact pits were observed on the RMS end effector hardware.

  4. Integrated exhaust gas analysis system for aircraft turbine engine component testing

    NASA Technical Reports Server (NTRS)

    Summers, R. L.; Anderson, R. C.

    1985-01-01

    An integrated exhaust gas analysis system was designed and installed in the hot-section facility at the Lewis Research Center. The system is designed to operate either manually or automatically and also to be operated from a remote station. The system measures oxygen, water vapor, total hydrocarbons, carbon monoxide, carbon dioxide, and oxides of nitrogen. Two microprocessors control the system and the analyzers, collect data and process them into engineering units, and present the data to the facility computers and the system operator. Within the design of this system there are innovative concepts and procedures that are of general interest and application to other gas analysis tasks.

  5. Influence of the exhaust system on performance of a 4-cylinder supercharged engine

    SciTech Connect

    Trenc, F.; Bizjan, F.; Hribernik, A.

    1998-10-01

    Twin entry radial turbines are mostly used to drive compressors of small and medium size 6-cylinder diesel engines where the available energy of the undisturbed exhaust pulses can be efficiently used to drive the turbine of a turbocharger. Three selected cylinders feed two separated manifold branches and two turbine inlets and prevent negative interaction of pressure waves and its influence on the scavenging process of the individual cylinders. In the case of a four-stroke, 4-cylinder engine, two selected cylinders, directed by the firing order, can be connected to one (of the two) separated manifold branches that feeds one turbine entry. Good utilization of the pressure pulse energy, together with typically longer periods of reduced exhaust flow can lead to good overall efficiency of the two-pulse system. Sometimes this system can be superior to the single manifold system with four cylinders connected to one single-entry turbine. The paper describes advantages and disadvantages of the above described exhaust systems applied to a turbocharged and aftercooled 4-cylinder Diesel engine. Comparisons supported by the analyses of the numerical and experimental results are also given in the presented paper.

  6. Fluid dynamic modeling of junctions in internal combustion engine inlet and exhaust systems

    NASA Astrophysics Data System (ADS)

    Chalet, David; Chesse, Pascal

    2010-10-01

    The modeling of inlet and exhaust systems of internal combustion engine is very important in order to evaluate the engine performance. This paper presents new pressure losses models which can be included in a one dimensional engine simulation code. In a first part, a CFD analysis is made in order to show the importance of the density in the modeling approach. Then, the CFD code is used, as a numerical test bench, for the pressure losses models development. These coefficients depend on the geometrical characteristics of the junction and an experimental validation is made with the use of a shock tube test bench. All the models are then included in the engine simulation code of the laboratory. The numerical calculation of unsteady compressible flow, in each pipe of the inlet and exhaust systems, is made and the calculated engine torque is compared with experimental measurements.

  7. Double shell tank primary ventilation exhaust flow monitor system design description

    SciTech Connect

    Willingham, W.E., Fluor Daniel Hanford

    1997-03-11

    This document describes the flow monitoring systems that will be installed on the ventilation exhaust ducts of the flammable gas watch list double shell tanks (241-AN-103, 241-AN-104, 241-AN-105, 241-AN-107, 241-AW-101 and 241-SY-103), the saltwell receiver tanks (241-AN-101 and 241-SY-102) and the cross-site receiver tank (241-AP-104).

  8. Effect of Room Ventilation Rates in Rodent Rooms with Direct-Exhaust IVC Systems.

    PubMed

    Geertsema, Roger S; Lindsell, Claire E

    2015-09-01

    When IVC are directly exhausted from a rodent housing room, the air quality of the room can become independent of the intracage air quality and may reduce the need for high room ventilation rates. This study assessed the effect of decreasing the ventilation rate in rodent rooms using direct-exhaust IVC systems. The study was conducted over 16 wk and compared conditions in 8 rodent rooms that had ventilation rates of 5 to 6 air changes per hour (ACH) with those in rooms at 10 to 12 ACH. At the low ventilation rate, rooms had higher CO₂ concentrations, higher dew point temperature, and lower particulate levels and spent a greater percentage of time above the temperature set point than did rooms at the high rate. The levels of allergens and endotoxins in room air were the same regardless of the ventilation rate. Differences seen in parameters within cages at the 2 ventilation rates were operationally irrelevant. We detected no total volatile organic compounds in the room that were attributable to ammonia, regardless of the ventilation rate. Clearing the air of ethanol after a spill took longer at the low compared with high rate. However, ethanol clearance was faster at the low rate when the demand-control system was activated than at the high ventilation rate alone. Air quality in the room and in the cages were acceptable with room ventilation rates of 5 to 6 ACH in rodent rooms that use direct-exhaust IVC systems.

  9. Effect of Room Ventilation Rates in Rodent Rooms with Direct-Exhaust IVC Systems

    PubMed Central

    Geertsema, Roger S; Lindsell, Claire E

    2015-01-01

    When IVC are directly exhausted from a rodent housing room, the air quality of the room can become independent of the intracage air quality and may reduce the need for high room ventilation rates. This study assessed the effect of decreasing the ventilation rate in rodent rooms using direct-exhaust IVC systems. The study was conducted over 16 wk and compared conditions in 8 rodent rooms that had ventilation rates of 5 to 6 air changes per hour (ACH) with those in rooms at 10 to 12 ACH. At the low ventilation rate, rooms had higher CO2 concentrations, higher dew point temperature, and lower particulate levels and spent a greater percentage of time above the temperature set point than did rooms at the high rate. The levels of allergens and endotoxins in room air were the same regardless of the ventilation rate. Differences seen in parameters within cages at the 2 ventilation rates were operationally irrelevant. We detected no total volatile organic compounds in the room that were attributable to ammonia, regardless of the ventilation rate. Clearing the air of ethanol after a spill took longer at the low compared with high rate. However, ethanol clearance was faster at the low rate when the demand-control system was activated than at the high ventilation rate alone. Air quality in the room and in the cages were acceptable with room ventilation rates of 5 to 6 ACH in rodent rooms that use direct-exhaust IVC systems. PMID:26424250

  10. Reduction of fuel consumption and exhaust pollutant using intelligent transport systems.

    PubMed

    Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M A; Masum, B M

    2014-01-01

    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NO x ). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment.

  11. Reduction of Fuel Consumption and Exhaust Pollutant Using Intelligent Transport Systems

    PubMed Central

    Nasir, Mostofa Kamal; Md Noor, Rafidah; Kalam, M. A.; Masum, B. M.

    2014-01-01

    Greenhouse gas emitted by the transport sector around the world is a serious issue of concern. To minimize such emission the automobile engineers have been working relentlessly. Researchers have been trying hard to switch fossil fuel to alternative fuels and attempting to various driving strategies to make traffic flow smooth and to reduce traffic congestion and emission of greenhouse gas. Automobile emits a massive amount of pollutants such as Carbon Monoxide (CO), hydrocarbons (HC), carbon dioxide (CO2), particulate matter (PM), and oxides of nitrogen (NOx). Intelligent transport system (ITS) technologies can be implemented to lower pollutant emissions and reduction of fuel consumption. This paper investigates the ITS techniques and technologies for the reduction of fuel consumption and minimization of the exhaust pollutant. It highlights the environmental impact of the ITS application to provide the state-of-art green solution. A case study also advocates that ITS technology reduces fuel consumption and exhaust pollutant in the urban environment. PMID:25032239

  12. NO.sub.x catalyst and method of suppressing sulfate formation in an exhaust purification system

    DOEpatents

    Balmer-Millar, Mari Lou; Park, Paul W.; Panov, Alexander G.

    2006-08-22

    The activity and durability of a zeolite lean-bum NOx catalyst can be increased by loading metal cations on the outer surface of the zeolite. However, the metal loadings can also oxidize sulfur dioxide to cause sulfate formation in the exhaust. The present invention is a method of suppressing sulfate formation in an exhaust purification system including a NO.sub.x catalyst. The NO.sub.x catalyst includes a zeolite loaded with at least one metal. The metal is selected from among an alkali metal, an alkaline earth metal, a lanthanide metal, a noble metal, and a transition metal. In order to suppress sulfate formation, at least a portion of the loaded metal is complexed with at least one of sulfate, phosphate, and carbonate.

  13. NO.sub.x catalyst and method of suppressing sulfate formation in an exhaust purification system

    DOEpatents

    Balmer-Millar, Mari Lou; Park, Paul W.; Panov, Alexander G.

    2007-06-26

    The activity and durability of a zeolite lean-burn NOx catalyst can be increased by loading metal cations on the outer surface of the zeolite. However, the metal loadings can also oxidize sulfur dioxide to cause sulfate formation in the exhaust. The present invention is a method of suppressing sulfate formation in an exhaust purification system including a NO.sub.x catalyst. The NO.sub.x catalyst includes a zeolite loaded with at least one metal. The metal is selected from among an alkali metal, an alkaline earth metal, a lanthanide metal, a noble metal, and a transition metal. In order to suppress sulfate formation, at least a portion of the loaded metal is complexed with at least one of sulfate, phosphate, and carbonate.

  14. A conceptual plasma exhaust system for the Laser Inertial Fusion Engine (LIFE)

    NASA Astrophysics Data System (ADS)

    Iriza, Alexander; Gentile, Charles; Blanchard, William; Kozub, Thomas

    2011-10-01

    The Laser Inertial Fusion Engine (LIFE) project proposes the construction of an indirect-drive inertial fusion reactor for the generation of electrical energy. LIFE will use hohlraum targets containing a deuterium-tritium fuel mixture which will be ignited by lasers at a rate of 16 times per second. In order to shield the first wall from high-energy x-rays and ions, the reactor vessel will be filled with an intervention gas of xenon. The average xenon density from the center to the first wall must be at least 8 g/m3 to ensure sufficient stopping power, while, because of nuclear exposure concerns, the amount of tritium in the vessel must not exceed 10 g. A conceptual design of the LIFE exhaust-processing system is undertaken with a focus on assessing its efficacy in meeting these two requirements simultaneously. A model of the density profile within the vessel indicates that an exhaust rate at the first wall of at least 26 m3/s is necessary to keep the tritium inventory below 10 g. At this rate, in order to maintain the required xenon density, approximately 40 tons of xenon will need to be exhausted, processed, and recirculated each day. This paper will discuss the operating parameters of this progenitor system for this and future IFE fusion reactors.

  15. Development of an Organic Rankine Cycle system for exhaust energy recovery in internal combustion engines

    NASA Astrophysics Data System (ADS)

    Cipollone, Roberto; Bianchi, Giuseppe; Gualtieri, Angelo; Di Battista, Davide; Mauriello, Marco; Fatigati, Fabio

    2015-11-01

    Road transportation is currently one of the most influencing sectors for global energy consumptions and CO2 emissions. Nevertheless, more than one third of the fuel energy supplied to internal combustion engines is still rejected to the environment as thermal waste at the exhaust. Therefore, a greater fuel economy might be achieved recovering the energy from exhaust gases and converting it into useful power on board. In the current research activity, an ORC-based energy recovery system was developed and coupled with a diesel engine. The innovative feature of the recovery power unit relies upon the usage of sliding vane rotary machines as pump and expander. After a preliminary exhaust gas mapping, which allowed to assess the magnitude of the thermal power to be recovered, a thermodynamic analysis was carried out to design the ORC system and the sliding vane machines using R236fa as working fluid. An experimental campaign was eventually performed at different operating regimes according to the ESC procedure and investigated the recovery potential of the power unit at design and off-design conditions. Mechanical power recovered ranged from 0.7 kW up to 1.9 kW, with an overall cycle efficiency from 3.8% up to 4.8% respectively. These results candidate sliding vane machines as efficient and reliable devices for waste heat recovery applications.

  16. System using electric furnace exhaust gas to preheat scrap for steelmaking

    SciTech Connect

    Takai, K.; Iwasaki, K.

    1987-09-08

    A method is described for clean preheating of scrap contaminated with oil and organic matter, for steelmaking, using heat from exhaust gas flow from an electric furnace. It consists of: burning any combustibles present in the exhaust gas flow and simultanously separating out dust particles from the exhaust gas flow; heating a predetermined amount of the scrap by heat exchange with a predetermined portion of the exhaust gas flow; removing and collecting dust from the exhaust gas flow after preheating of scrap thereby; sensing the temperature of the exhaust flow; scrubbing the exhaust gas flow with an aqueous solution of a deodorant solvent flowing at a rate regulated to be in a predetermined relationship related to the exhaust gas temperature sensed prior to scrubbing, thereby generating saturated vapor and reducing the temperature of the exhaust gas flow by a predetermined amount; and electrostatically precipitating out oil mist attached to saturated water vapor and liquid droplets in the exhaust gas flow.

  17. Thermoelectric Generators for the Integration into Automotive Exhaust Systems for Passenger Cars and Commercial Vehicles

    NASA Astrophysics Data System (ADS)

    Frobenius, Fabian; Gaiser, Gerd; Rusche, Ulrich; Weller, Bernd

    2016-03-01

    A special thermoelectric generator system design and the setup of a thermoelectric generator for the integration into the exhaust line of combustion engine-driven vehicles are described. A prototype setup for passenger cars and the effects on the measured power output are shown. Measurement results using this setup show the potential and the limitations of a setup based on thermoelectric modules commercially available today. In a second step, a short outline of the detailed mathematical modeling of the thermoelectric generator and simulation studies based on this model are presented. By this means, it can be shown by which measures an improvement of the system power output can be achieved—even if today's modules are used. Furthermore, simulation studies show how the exhaust gas conditions of diesel- and Otto-engines significantly affect the requirements on thermoelectric materials as well as the potential and the design of the thermoelectric generator. In a further step, the design and the setup of a thermoelectric generator for an application in a commercial vehicle are presented. This thermoelectric generator is designed to be integrated into the exhaust aftertreatment box of the vehicle. Experimental results with this setup are performed and presented. The results show that thermoelectric generators can become an interesting technology for exhaust waste heat recovery due to the fact that they comprise non-moving parts. However, the efficiency of the modules commercially available today is still far from what is required. Hence, modules made of new materials known from laboratory samples are urgently required. With regard to future CO2 regulations, a large market opportunity for modules with a high efficiency can be expected.

  18. Performance evaluation of a novel personalized ventilation-personalized exhaust system for airborne infection control.

    PubMed

    Yang, J; Sekhar, S C; Cheong, K W D; Raphael, B

    2015-04-01

    In the context of airborne infection control, it is critical that the ventilation system is able to extract the contaminated exhaled air within the shortest possible time. To minimize the spread of contaminated air exhaled by occupants efficiently, a novel personalized ventilation (PV)-personalized exhaust (PE) system has been developed, which aims to exhaust the exhaled air as much as possible from around the infected person (IP). The PV-PE system was studied experimentally for a particular healthcare setting based on a typical consultation room geometry and four different medical consultation positions of an IP and a healthy person (HP). Experiments using two types of tracer gases were conducted to evaluate two types of PE: Top-PE and Shoulder-PE under two different background ventilation systems: Mixing Ventilation and Displacement Ventilation. Personalized exposure effectiveness, intake fraction (iF) and exposure reduction (ε) were used as indices to evaluate the PV-PE system. The results show that the combined PV-PE system for the HP achieves the lowest intake fraction; and the use of PE system for the IP alone shows much better performance than using PV system for the HP alone.

  19. Examination of redirected continuous miner scrubber discharge configurations for exhaust face ventilation systems

    PubMed Central

    Organiscak, J.A.; Beck, T.W.

    2015-01-01

    The U.S. National Institute for Occupational Safety and Health (NIOSH) Office of Mine Safety and Health Research (OMSHR) has recently studied several redirected scrubber discharge configurations in its full-scale continuous miner gallery for both dust and gas control when using an exhaust face ventilation system. Dust and gas measurements around the continuous mining machine in the laboratory showed that the conventional scrubber discharge directed outby the face with a 12.2-m (40-ft) exhaust curtain setback appeared to be one of the better configurations for controlling dust and gas. Redirecting all the air toward the face equally up both sides of the machine increased the dust and gas concentrations around the machine. When all of the air was redirected toward the face on the off-curtain side of the machine, gas accumulations tended to be reduced at the face, at the expense of increased dust levels in the return and on the curtain side of the mining machine. A 6.1-m (20-ft) exhaust curtain setback without the scrubber operating resulted in the lowest dust levels around the continuous mining machine, but this configuration resulted in some of the highest levels of dust in the return and gas on the off-curtain side of the mining face. Two field studies showed some similarities to the laboratory findings, with elevated dust levels at the rear corners of the continuous miner when all of the scrubber exhaust was redirected toward the face either up the off-tubing side or equally up both sides of the mining machine. PMID:26251566

  20. Heat Transfer Analysis of an Engine Exhaust-Based Thermoelectric Evaporation System

    NASA Astrophysics Data System (ADS)

    Chen, Ming; Tan, Gangfeng; Guo, Xuexun; Deng, Yadong; Zhang, Hongguang; Yang, Kai

    2016-03-01

    Engine exhaust can be used by thermoelectric generators for improving thermal efficiency of internal combustion engines. In his paper, the performance of a thermoelectric evaporation system is investigated. First, the thermal characteristics of diesel engines are obtained according to the experiment data. Then, mathematical models are created based on the specified conditions of the coolant cycle and the evaporator geometric parameters. Finally, the heat transfer characteristics and power performance of the thermoelectric evaporation system are estimated, and a comparison with the system in which the heat exchanger operates with all-liquid coolant is investigated. The results show that the overall heat transfer rate of the thermoelectric evaporator system increases with engine power. At the rated condition, the two-phase zone with an area of 0.8689 m2 dominates the evaporator's heat transfer area compared with the preheated zone area of 0.0055 m2, and for the thermoelectric module, the cold-side temperature is stable at 74°C while the hot-side temperature drops from 341.8°C to 304.9°C along the exhaust direction. For certain thermoelectric cells, the temperature difference between the cold side and hot side rises with the engine load, and the temperature difference drops from 266.9°C to 230.6°C along the exhaust direction. For two cold-side systems with the same heat transfer, coolant mass flow rate in the evaporator with two-phase state is much less, and the temperature difference along with equivalent heat transfer length L is significantly larger than in the all-liquid one. At rated power point, power generated by thermoelectric cells in the two-phase evaporation system is 508.4 W, while the other is only 328.8 W.

  1. System for the incineraton of refuse and the treatment of the incineration exhaust gasses

    SciTech Connect

    Wilson, P.

    1991-09-24

    This patent describes a method for the incineration of refuse and the treatment of incineration exhaust gases, it comprises: incinerating the refuse in a fire box having air intake means, oil decomposition product removal means, and exhaust gas off take means, directing the gases from the off take means to cooling means, treating the exhaust gases in the cooling means by heat exchange with a cooling liquid, passing the exhaust gases through filtration means whereby particulates are removed from the exhaust gases, subjecting the exhaust gases to after-burning in a closed after-burner chamber, passing the exhaust gases through a wash assembly whereby the exhaust gases are passed through a water bath and subjected to a water spray, and discharging the cleaned exhaust gases to the atmosphere.

  2. A Gas Chromatograph/Mass Spectrometer System for UltraLow-Emission Combustor Exhaust Studies

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.; Wey, Chowen Chou

    1996-01-01

    A gas chromatograph (GC)/mass spectrometer (MS) system that allows the speciation of unburnt hydrocarbons in the combustor exhaust has been developed at the NASA Lewis Research Center. Combustion gas samples are withdrawn through a water-cooled sampling probe which, when not in use, is protected from contamination by a high-pressure nitrogen purge. The sample line and its connecting lines, filters, and valves are all ultraclean and are heated to avoid condensation. The system has resolution to the parts-per-billion (ppb) level.

  3. Exhaust-stack nozzle area and shape for individual cylinder exhaust-gas jet-propulsion system

    NASA Technical Reports Server (NTRS)

    Pinkel, Benjamin; Turner, Richard; Voss, Fred; Humble, Leroy V

    1943-01-01

    This report presents the results of an investigation conducted on the effect of exhaust-stack nozzle area, shape, and length on engine power, jet thrust, and gain in net thrust (engine propeller plus jet). Single-cylinder engine data were obtained using three straight stacks 25, 44, and 108 inches in length; an S-shaped stack, a 90 degree bend, a 180 degree bend, and a short straight stack having a closed branch faired into it. Each stack was fitted with nozzles varying in exit area from 0.91 square inch to the unrestricted area of the stack of 4.20 square inches. The engine was generally operated over a range of engine speeds from 1300 to 2100 r.p.m, inlet-manifold pressures from 22 to 30 inches of mercury absolute, and a fuel-air ratio of 0.08. The loss in engine power, the jet thrust, and the gain in net thrust are correlated in terms of several simple parameters. An example is given for determining the optimum nozzle area and the overall net thrust.

  4. Airborne Effluent Monitoring System Certification for New Canister Storage Building Ventilation Exhaust Stack

    SciTech Connect

    Glissmeyer, J.A.; Maughan, A.D.

    1999-04-01

    Pacific Northwest National Laboratory conducted three of the six tests needed to verify that the effluent monitoring system for the new Canister Storage Building ventilation exhaust stack meets applicable regulatory performance criteria for air sampling systems at nuclear facilities. These performance criteria address both the suitability of the location for the air-sampling probe and the transport of the sample to the collection devices. The criteria covering the location for the air-sampling probe ensure that the contaminants in the stack are well mixed with the airflow at the probe location such that the extracted sample represents the whole. The sample-transport criteria ensure that the sampled contaminants are quantitatively delivered to the collection device. The specific performance criteria are described in detail in this report. The tests reported here cover the contaminant tracer uniformity and particle delivery performance criteria. These criteria were successfully met. The other three tests were conducted by the start-up staff of Duke Engineering and Services Hanford Inc. (DESH) and reported elsewhere. The Canister Storage Building is located in the 200 East Area of the U.S. Department of Energy's Hanford Site near Richland, Washington. The new air-exhaust system was built under the W379 Project. The air sampling system features a probe with a single shrouded sampling nozzle, a sample delivery line, and a filter holder to collect the sample.

  5. Development of an experimental capability to validate infrared signature predictions of installed aircraft exhaust systems

    NASA Astrophysics Data System (ADS)

    Rooks, Steve; Fair, Martin L.; Smith, Anthony G.; Chettle, Nicholas

    2002-08-01

    As methods continue to develop for predicting infrared signatures for complex propulsion systems, the need to validate such methods and, indeed to gain confidence in new designs grows. Within Dstl, work to develop static engine test rigs has been carried out. These rigs allow aspects of infrared signature such as plume mixing, cavity emissions, surface impingement and subsequent treatment, obscuration and nozzle shaping to be studied. However, there is a growing need for data, which is more closely related to actual flight conditions. Full flight measurements are prohibitively expensive and often out of the question when a range of geometries are to be studied. Wind tunnel tests can also be difficult because of the quantity of power required for the free stream flow and the need to produce realistic hot gas. This paper describes the work that has been carried out to produce a cost effective free stream measurement capability, which makes use of existing static engine facilities. By bleeding engine compressor flows and exhaust flows, a reduced scale system has been created which allows the simulation of infrared propulsion issues at free stream Mach numbers of up to 0.5. The data obtained with this system has been used to validate the prediction methods for 3D-exhaust plume and afterbody infrared signature.

  6. Bithermal Low-Cycle Fatigue Evaluation of Automotive Exhaust System Alloy SS409

    NASA Technical Reports Server (NTRS)

    Lu, Gui-Ying; Behling, Mike B.; Halford, Gary R.

    2000-01-01

    This investigation provides, for the first time, cyclic strainrange-controlled, thermomechanical fatigue results for the ferritic stainless steel alloy SS409. The alloy has seen extensive application for automotive exhaust system components. The data were generated to calibrate the Total Strain Version of the Strainrange Partitioning (TS-SRP) method for eventual application to the design and durability assessment of automotive exhaust systems. The thermomechanical cyclic lifetime and cyclic stress-strain constitutive behavior for alloy SS409 were measured using bithermal tests cycling between isothermal extremes of 400 and 800 C. Lives ranged up to 10,000 cycles to failure with hold-times of 0.33 to 2.0 minutes. The bithermal fatigue behavior is compared to isothermal, strain-controlled fatigue behavior at both 400 and 800 C. Thermomechanical cycling was found to have a profound detrimental influence on the fatigue failure resistance of SS409 compared to isothermal cycling. Supplementary bithermal cyclic stress-strain constitutive tests with hold-times ranging from 40 seconds up to 1.5 hours were conducted to calibrate the TS-SRP equation for extrapolation to longer lifetime predictions. Observed thermomechanical (bithermal) fatigue lives correlated well with lives calculated using the calibrated TS-SRP equations: 70% of the bithermal fatigue data fall within a factor of 1.2 of calculated life; 85% within a factor of 1.4; and 100% within a factor of 1.8.

  7. Exhaust after-treatment system with in-cylinder addition of unburnt hydrocarbons

    DOEpatents

    Coleman, Gerald N.; Kesse, Mary L.

    2007-10-30

    Certain exhaust after-treatment devices, at least periodically, require the addition of unburnt hydrocarbons in order to create reductant-rich exhaust conditions. The present disclosure adds unburnt hydrocarbons to exhaust from at least one combustion chamber by positioning, at least partially within a combustion chamber, a mixed-mode fuel injector operable to inject fuel into the combustion chamber in a first spray pattern with a small average angle relative to a centerline of the combustion chamber and a second spray pattern with a large average angle relative to the centerline of the combustion chamber. An amount of fuel is injected in the first spray pattern into a non-combustible environment within the at least one combustion chamber during at least one of an expansion stroke and exhaust stroke. The exhaust with the unburnt amount of fuel is moved into an exhaust passage via an exhaust valve.

  8. Scale model performance test investigation of mixed flow exhaust systems for an energy efficient engine /E3/ propulsion system

    NASA Technical Reports Server (NTRS)

    Kuchar, A. P.; Chamberlin, R.

    1983-01-01

    As part of the NASA Energy Efficient Engine program, scale-model performance tests of a mixed flow exhaust system were conducted. The tests were used to evaluate the performance of exhaust system mixers for high-bypass, mixed-flow turbofan engines. The tests indicated that: (1) mixer penetration has the most significant affect on both mixing effectiveness and mixer pressure loss; (2) mixing/tailpipe length improves mixing effectiveness; (3) gap reduction between the mixer and centerbody increases high mixing effectiveness; (4) mixer cross-sectional shape influences mixing effectiveness; (5) lobe number affects mixing degree; and (6) mixer aerodynamic pressure losses are a function of secondary flows inherent to the lobed mixer concept.

  9. A study of ingestion and dispersion of engine exhaust products in trailing vortex systems

    NASA Technical Reports Server (NTRS)

    Nielsen, J. N.; Stahara, S. S.; Woolley, J. P.

    1973-01-01

    Analysis has been made of the ingestion and dispersion of engine exhaust products into the trailing vortex system of supersonic aircraft flying in the stratosphere. The rate of mixing between the supersonic jet and the co-flowing supersonic stream was found to be an order of magnitude less than would be expected on the basis of subsonic eddy-viscosity results. The length of the potential core was 66 nozzle exit radii so that the exhaust gases remain at elevated temperatures and concentrations over much longer distances than previsously estimated. Ingestion started at the end of the potential core and all hot gas from the engine was ingested into the trailing vortex within two core lengths. Comparison between the buoyancy calculations for the supersonic case with nondimensionalized subsonic aircraft contrail data on wake spreading showed good agreement. Velocity and temperature profiles have been specified at various stages of the wake, and the analysis in this report can be used to predict variations of concentrations of species such as nitrogen oxides under conditions of chemical reaction.

  10. Dynamic Test Bed Analysis of Gas Energy Balance for a Diesel Exhaust System Fit with a Thermoelectric Generator

    NASA Astrophysics Data System (ADS)

    Fuc, Pawel; Lijewski, Piotr; Ziolkowski, Andrzej; Dobrzyński, Michal

    2017-02-01

    Analysis of the energy balance for an exhaust system of a diesel engine fit with an automotive thermoelectric generator (ATEG) of our own design has been carried out. A special measurement system and dedicated software were developed to measure the power generated by the modules. The research object was a 1.3-l small diesel engine with power output of 66 kW. The tests were carried out on a dynamic engine test bed that allows reproduction of an actual driving cycle expressed as a function V = f(t), simulating drivetrain (clutch, transmission) operating characteristics, vehicle geometrical parameters, and driver behavior. Measurements of exhaust gas thermodynamic parameters (temperature, pressure, and mass flow) as well as the voltage and current generated by the thermoelectric modules were performed during tests of our own design. Based on the results obtained, the flow of exhaust gas energy in the entire exhaust system was determined along with the ATEG power output. The ideal area of the exhaust system for location of the ATEG was defined to ensure the highest thermal energy recovery efficiency.

  11. Design and Integrate Improved Systems for Nuclear Facility Ventilation and Exhaust Operations

    SciTech Connect

    Moore, Murray E.

    2014-04-15

    Objective: The objective of this R&D project would complete the development of three new systems and integrate them into a single experimental effort. However, each of the three systems has stand-alone applicability across the DOE complex. At US DOE nuclear facilities, indoor air is filtered and ventilated for human occupancy, and exhaust air to the outdoor environment must be regulated and monitored. At least three technical standards address these functions, and the Los Alamos National Laboratory would complete an experimental facility to answer at least three questions: (1) Can the drag coefficient of a new Los Alamos air mixer be reduced for better operation in nuclear facility exhaust stacks? (2) Is it possible to verify the accuracy of a new dilution method for HEPA filter test facilities? (3) Is there a performance-based air flow metric (volumetric flow or mass flow) for operating HEPA filters? In summary, the three new systems are: a mixer, a diluter and a performance-based metric, respectively. The results of this project would be applicable to at least four technical standards: ANSI N13.1 Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities; ASTM F1471 Standard Test Method for Air Cleaning Performance of a High-Efficiency Particulate Air Filter System, ASME N511: In-Service Testing of Nuclear Air Treatment, Heating, Ventilating, and Air-Conditioning Systems, and ASME AG-1: Code On Nuclear Air And Gas Treatment. All of the three proposed new systems must be combined into a single experimental device (i.e. to develop a new function of the Los Alamos aerosol wind tunnel). Technical Approach: The Radiation Protection RP-SVS group at Los Alamos has an aerosol wind tunnel that was originally (2006) designed to evaluate small air samplers (cf. US EPA 40 CFR 53.42). In 2009, the tunnel was modified for exhaust stack verifications per the ANSI N13.1 standard. In 2010, modifications were started on the

  12. Aircraft Fuel, Fuel Metering, Induction and Exhaust Systems (Course Outline), Aviation Mechanics (Power Plant): 9057.02.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to help the trainee gain the skills and knowledge necessary to become an aviation powerplant mechanic. The course outlines the theory of operation of various fuel systems, fuel metering, induction, and exhaust system components with an emphasis on troubleshooting, maintenance, and…

  13. 40 CFR 86.210-08 - Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Vehicles; Cold Temperature Test Procedures § 86.210-08 Exhaust gas sampling system; Diesel-cycle vehicles... the THC probe be free from cold spots (i.e., free from spots where the probe wall temperature is less... common sample pump is used for all analyzers and the sample line system design reflects good...

  14. 40 CFR 86.210-08 - Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Vehicles; Cold Temperature Test Procedures § 86.210-08 Exhaust gas sampling system; Diesel-cycle vehicles... the THC probe be free from cold spots (i.e., free from spots where the probe wall temperature is less... common sample pump is used for all analyzers and the sample line system design reflects good...

  15. Surveillance of a Ventilated Rack System for Corynebacterium bovis by Sampling Exhaust-Air Manifolds.

    PubMed

    Manuel, Christopher A; Pugazhenthi, Umarani; Leszczynski, Jori K

    2016-01-01

    Corynebacterium bovis causes an opportunistic infection of nude (Foxn1, nu/nu) mice, leading to nude mouse hyperkeratotic dermatitis (scaly skin disease). Enzootic in many nude mouse colonies, C. bovis spreads rapidly to naive nude mice, despite modern husbandry practices, and is very difficult to eradicate. To facilitate rapid detection in support of eradication efforts, we investigated a surveillance method based on quantitative real-time PCR (qPCR) evaluation of swabs collected from the horizontal exhaust manifold (HEM) of an IVC rack system. We first evaluated the efficacy of rack sanitation methods for removing C. bovis DNA from the HEM of racks housing endemic colonies of infected nude mice. Pressurized water used to flush the racks' air exhaust system followed by a standard rack-washer cycle was ineffective in eliminating C. bovis DNA. Only after autoclaving did all sanitized racks test negative for C. bovis DNA. We then measured the effects of stage of infection (early or established), cage density, and cage location on the rack on time-to-detection at the HEM. Stage of infection significantly affected time-to-detection, independent of cage location. Early infections required 7.3 ± 1.2 d whereas established infections required 1 ± 0 d for detection of C. bovis at the HEM. Cage density influenced the quantity of C. bovis DNA detected but not time-to-detection. The location of the cage on the rack affected the time-to-detection only during early C. bovis infections. We suggest that qPCR swabs of HEM are useful during the routine surveillance of nude mouse colonies for C. bovis infection.

  16. Surveillance of a Ventilated Rack System for Corynebacterium bovis by Sampling Exhaust-Air Manifolds

    PubMed Central

    Manuel, Christopher A; Pugazhenthi, Umarani; Leszczynski, Jori K

    2016-01-01

    Corynebacterium bovis causes an opportunistic infection of nude (Foxn1, nu/nu) mice, leading to nude mouse hyperkeratotic dermatitis (scaly skin disease). Enzootic in many nude mouse colonies, C. bovis spreads rapidly to naive nude mice, despite modern husbandry practices, and is very difficult to eradicate. To facilitate rapid detection in support of eradication efforts, we investigated a surveillance method based on quantitative real-time PCR (qPCR) evaluation of swabs collected from the horizontal exhaust manifold (HEM) of an IVC rack system. We first evaluated the efficacy of rack sanitation methods for removing C. bovis DNA from the HEM of racks housing endemic colonies of infected nude mice. Pressurized water used to flush the racks’ air exhaust system followed by a standard rack-washer cycle was ineffective in eliminating C. bovis DNA. Only after autoclaving did all sanitized racks test negative for C. bovis DNA. We then measured the effects of stage of infection (early or established), cage density, and cage location on the rack on time-to-detection at the HEM. Stage of infection significantly affected time-to-detection, independent of cage location. Early infections required 7.3 ± 1.2 d whereas established infections required 1 ± 0 d for detection of C. bovis at the HEM. Cage density influenced the quantity of C. bovis DNA detected but not time-to-detection. The location of the cage on the rack affected the time-to-detection only during early C. bovis infections. We suggest that qPCR swabs of HEM are useful during the routine surveillance of nude mouse colonies for C. bovis infection. PMID:26817981

  17. [Passive detection of aeroengine exhaust based on Fourier transform infrared system].

    PubMed

    Li, Shao-cheng; Zuo, Hong-fu; Xia, Qing

    2008-10-01

    Since the composition and concentration of aeroengine exhaust can reflect the combustion efficiency, they can provide the basis for condition based maintenance, and also the basis for the analysis of environment pollution caused by aeroengine exhaust. So the importance of aeroengine exhaust detection is evident. Up to now, the measurement of aeroengine exhaust is based on sampling analysis which is not convenient and can't meet the detection requirements when an aeroplane is flying-off or flying in the sky. Hence, new methods of exhaust detection must be studied. The passive measurement technology based on Fourier transform infrared spectroscopy (FTIR) was applied to the measurement of aeroengine exhaust in the present paper. At first, the principle of passive measurement based on FTIR was introduced in detail. On this basis, a model algorithm for gas concentration calculation was deduced based on the principle of infrared transmission. Then the feasibility of aeroengine exhaust measurement based on passive FTIR was analyzed, and the passive measurement method of aeroengine exhaust based on FTIR was given. In the end, an experiment of aeroengine exhaust passive measurement was carried out by a FTIR with the type of Tensor 27 produced by BRUKER. Good quality spectra of the exhaust and the background were measured. Based on the model algo rithm of passive measurement, the absorbance spectra of CO and NO were obtained respectively, and the concentrations of CO and NO were figured out. To check up the veracity of this method, a comparison was made with another apparatus. There were only little differences between the results of the two experiments, showing that the passive measurement technology based on FTIR could meet the requirements of aeroengine exhaust detection.

  18. 40 CFR 90.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... OR BELOW 19 KILOWATTS Gaseous Exhaust Test Procedures § 90.414 Raw gaseous exhaust sampling and... exit of the mixing chamber. The probe must pass through the approximate center and must extend across at least 80 percent of the diameter of the exit. The exact position of the probe may vary from...

  19. Exhaust bypass flow control for exhaust heat recovery

    DOEpatents

    Reynolds, Michael G.

    2015-09-22

    An exhaust system for an engine comprises an exhaust heat recovery apparatus configured to receive exhaust gas from the engine and comprises a first flow passage in fluid communication with the exhaust gas and a second flow passage in fluid communication with the exhaust gas. A heat exchanger/energy recovery unit is disposed in the second flow passage and has a working fluid circulating therethrough for exchange of heat from the exhaust gas to the working fluid. A control valve is disposed downstream of the first and the second flow passages in a low temperature region of the exhaust heat recovery apparatus to direct exhaust gas through the first flow passage or the second flow passage.

  20. The mesolimbic system participates in the naltrexone-induced reversal of sexual exhaustion: opposite effects of intra-VTA naltrexone administration on copulation of sexually experienced and sexually exhausted male rats.

    PubMed

    Garduño-Gutiérrez, René; León-Olea, Martha; Rodríguez-Manzo, Gabriela

    2013-11-01

    Male rats allowed to copulate until reaching sexual exhaustion exhibit a long-lasting sexual behavior inhibition (around 72 h) that can be reversed by systemic opioid receptor antagonist administration. Copulation activates the mesolimbic dopaminergic system (MLS) and promotes endogenous opioid release. In addition, endogenous opioids, acting at the ventral tegmental area (VTA), modulate the activity of the MLS. We hypothesized that endogenous opioids participate in the sexual exhaustion phenomenon by interacting with VTA opioid receptors and consequently, its reversal by opioid antagonists could be exerted at those receptors. In this study we determined the effects of intra-VTA infusion of different doses of the non-specific opioid receptor antagonist naltrexone (0.1-1.0 μg/rat) on the already established sexual behavior inhibition of sexually exhausted male rats. To elucidate the possible involvement of VTA δ-opioid receptors in the naltrexone-mediated reversal of sexual exhaustion, the effects of different doses of the selective δ-opioid receptor antagonist, naltrindole (0.03-1.0 μg/rat) were also tested. Results showed that intra-VTA injection of 0.3 μg naltrexone reversed the sexual inhibition of sexually exhausted rats, evidenced by an increased percentage of animals capable of showing two successive ejaculations. Intra-VTA infused naltrindole did not reverse sexual exhaustion at any dose. It is concluded that the MLS is involved in the reversal of sexual exhaustion induced by systemic naltrexone, and that μ-, but not δ-opioid receptors participate in this effect. Intra-VTA naltrexone infusion to sexually experienced male rats had an inhibitory effect on sexual activity. The opposite effects of intra-VTA naltrexone on male rat sexual behavior expression of sexually experienced and sexually exhausted rats is discussed.

  1. Design and analysis on fume exhaust system of blackbody cavity sensor for continuously measuring molten steel temperature

    NASA Astrophysics Data System (ADS)

    Mei, Guohui; Zhang, Jiu; Zhao, Shumao; Xie, Zhi

    2017-03-01

    Fume exhaust system is the main component of the novel blackbody cavity sensor with a single layer tube, which removes the fume by gas flow along the exhaust pipe to keep the light path clean. However, the gas flow may break the conditions of blackbody cavity and results in the poor measurement accuracy. In this paper, we analyzed the influence of the gas flow on the temperature distribution of the measuring cavity, and then calculated the integrated effective emissivity of the non-isothermal cavity based on Monte-Carlo method, accordingly evaluated the sensor measurement accuracy, finally obtained the maximum allowable flow rate for various length of the exhaust pipe to meet the measurement accuracy. These results will help optimize the novel blackbody cavity sensor design and use it better for measuring the temperature of molten steel.

  2. RE-ENTRAINMENT AND DISPERSION OF EXHAUSTS FROM INDOOR RADON REDUCTION SYSTEMS: ANALYSIS OF TRACER GAS DATA

    EPA Science Inventory

    Tracer gas studies were conducted around four model houses in a wind tunnel, and around one house in the field, to quantify re-entrainment and dispersion of exhaust gases released from residential indoor radon reduction systems. Re-entrainment tests in the field suggest that acti...

  3. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...-cycle and non-petroleum-fueled engines. 86.1309-90 Section 86.1309-90 Protection of Environment...-cycle and non-petroleum-fueled engines. (a)(1) General. The exhaust gas sampling system described in... gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or methanol-fueled engines. In the...

  4. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...-cycle and non-petroleum-fueled engines. 86.1309-90 Section 86.1309-90 Protection of Environment...-cycle and non-petroleum-fueled engines. (a)(1) General. The exhaust gas sampling system described in... gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or methanol-fueled engines. In the...

  5. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-cycle and non-petroleum-fueled engines. 86.1309-90 Section 86.1309-90 Protection of Environment...-cycle and non-petroleum-fueled engines. (a)(1) General. The exhaust gas sampling system described in... gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or methanol-fueled engines. In the...

  6. Fluid-structure interaction study of the splitter plate in a TBCC exhaust system during mode transition phase

    NASA Astrophysics Data System (ADS)

    Guo, Shuai; Xu, Jinglei; Mo, Jianwei; Gu, Rui; Pang, Lina

    2015-07-01

    Splitter plate plays an important role in a turbine-based combined-cycle (TBCC) exhaust system during the mode transition phase when turbojet engine and ramjet engine operate simultaneously. Dissimilar pressure distribution on both sides of the plate has a potential origin in the aeroelastic coupling, which is an interesting topic while few research works have devoted to that aspect. To better understand the aeroelastic behavior of the plate and the corresponding dynamic flow features, an integrated fluid-structure interaction simulation is conducted under one particular operation condition during mode transition phase in the TBCC exhaust system. A finite-volume-based CFD solver FLUENT is adopted to solve the unsteady Reynolds average Navier-Stokes equations. ABAQUS, a finite-element-method-based CSD solver, is employed to compute the plate elastic deformation. A two-way interaction between the fluid and the structure is accomplished by the mesh-based parallel-code coupling interface (MpCCI) in a loosely-coupled manner. The accuracy of the coupling procedure is validated for the flutter of a flat plate in supersonic flow. Then, features of steady flow field of the TBCC exhaust system are discussed, followed by the investigation of the aeroelastic phenomenon of the splitter plate and the evolution process of the flow field pattern. Finally, performances variation of the exhaust system is obtained and discussed. The results show that the plate vibrates with decaying amplitude and reaches a dynamic stable state eventually. The thrust, lift and pitch moment of the TBCC exhaust system are increased by 0.68%, 2.82% and 5.86%, respectively, compared with the corresponding values in steady state which does not take into account the fluid-structure interaction effects. The analysis reveals the importance of considering the fluid-structure interaction effects in designing the splitter plate in the TBCC exhaust system and demonstrates the availability of the present coupled

  7. On-board ammonia generation and exhaust after treatment system using same

    SciTech Connect

    Driscoll, Josh; Robel, Wade J.; Brown, Cory A.; Urven, Jr., Roger L.

    2010-03-30

    Often NOx selective catalysts that use ammonia to reduce NOx within exhaust to a harmless gas require on-board storage of ammonia which can be hazardous and inconvenient. In order to generate ammonia in exhaust, the present disclosure increases a NOx concentration in exhaust from at least one combustion chamber, at least in part, by injecting fuel in a predetermined increased NOx generation sequence that includes a first injection during non-auto ignition conditions and a second injection during auto ignition conditions. At least a portion of the NOx is converted to ammonia by passing at least a portion of the exhaust with the increased NOx concentration over an ammonia-producing catalyst.

  8. The design and development of a mixer compound exhaust system for a quiet clean general aviation turbofan

    NASA Technical Reports Server (NTRS)

    Blackmore, W. L.; Thompson, C. E.

    1981-01-01

    Lower engine fuel consumption has become a dominant factor in turbofan engine design due to rapidly increasing fuel costs. One engine component with a large impact on engine performance is the exhaust system. Previous exhaust system studies have demonstrated the significant exhaust system efficiency gains available through mixing of the core and bypass flows. Typically, a large, costly rig and engine program are required to develop and optimize these gains. The purpose of this paper is to present the results of the low-cost design system used for the quiet, clean general aviation turbofan mixer nozzle design and development. The scale model and full-scale engine test results confirm the predicted 3 to 5% reduction in cruise fuel consumption. This unique design system, which is based on integrating advanced three-dimensional viscous numerical methods with empirical optimization techniques, is summarized and detailed comparisons with test data are presented. The ability to accurately predict relative performance of mixer systems with substantially reduced development time and cost savings is demonstrated.

  9. Impact of endotoxin exposure after exhausting exercise on the immune system in solid organ transplant recipients.

    PubMed

    Königsrainer, Ingmar; Löffler, Markus; Bühler, Sarah; Walter, Michael; Schafbuch, Luana; Beckert, Stefan; Glatzle, Jörg; Horvath, Philipp; Northoff, Hinnak; Nadalin, Silvio; Königsrainer, Alfred; Zieker, Derek

    2012-01-01

    Subsequent to prolonged exhausting exercise a transient immunosuppression is often observed in athletes. This so-called "open window" results in a reduced resistance of the athletes to viral and bacterial infections after an exhaustive exercise bout. Concerning the effect of bacterial endotoxin contact after exhausting exercise in transplant recipients, who are innately immunosuppressed by their medication, no data exists at present. After performing 81 km cycling, including ascending more than 1800 m in altitude, peripheral blood from 10 male kidney transplant recipients and from 10 healthy controls matched for age and gender was obtained. Simulating contact of the athletes with a pathogen post-exercise, the blood samples were incubated with Lipopolysaccharides (LPS). Thereafter microarray analysis was performed. Microarray analysis revealed a markedly oppositional pattern of gene expression in transplant recipients compared with their controls after LPS incubation. Especially immune response genes were significantly over-represented in controls immediately after the exhaustive exercise bout with LPS stimulation, whereas numerous apoptotic genes were over-represented in transplant recipients. Merging our previous data with these recent findings it should be discussed if transplant recipients need to reduce their immunosuppressive medication before performing exhaustive exercise.

  10. Modeling the Air Flow in the 3410 Building Filtered Exhaust Stack System

    SciTech Connect

    Recknagle, Kurtis P.; Barnett, J. Matthew; Suffield, Sarah R.

    2013-01-23

    Additional ventilation capacity has been designed for the 3410 Building filtered exhaust stack system. The updated system will increase the number of fans from two to three and will include ductwork to incorporate the new fan into the existing stack. Stack operations will involve running various two-fan combinations at any given time. The air monitoring system of the existing two-fan stack was previously found to be in compliance with the ANSI/HPS N13.1-1999 standard, however it is not known if the modified (three-fan) system will comply. Subsequently, a full-scale three-dimensional (3-D) computational fluid dynamics (CFD) model of the modified stack system has been created to examine the sampling location for compliance with the standard. The CFD modeling results show good agreement with testing data collected from the existing 3410 Building stack and suggest that velocity uniformity and flow angles will remain well within acceptance criteria when the third fan and associated ductwork is installed. This includes two-fan flow rates up to 31,840 cfm for any of the two-fan combinations. For simulation cases in which tracer gas and particles are introduced in the main duct, the model predicts that both particle and tracer gas coefficients of variance (COVs) may be larger than the acceptable 20 percent criterion of the ANSI/HPS N13.1-1999 standard for each of the two-fan, 31,840 cfm combinations. Simulations in which the tracers are introduced near the fans result in improved, though marginally acceptable, COV values for the tracers. Due to the remaining uncertainty that the stack will qualify with the addition of the third fan and high flow rates, a stationary air blender from Blender Products, Inc. is considered for inclusion in the stack system. A model of the air blender has been developed and incorporated into the CFD model. Simulation results from the CFD model that includes the air blender show striking improvements in tracer gas mixing and tracer particle

  11. 40 CFR 91.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... probe shall be a straight, closed end, stainless steel, multi-hole probe. The inside diameter shall not... three holes. The spacing of the radial planes for each hole in the probe must be such that they cover approximately equal cross-sectional areas of the exhaust duct. The angular spacing of the holes must...

  12. 40 CFR 91.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... probe shall be a straight, closed end, stainless steel, multi-hole probe. The inside diameter shall not... three holes. The spacing of the radial planes for each hole in the probe must be such that they cover approximately equal cross-sectional areas of the exhaust duct. The angular spacing of the holes must...

  13. 40 CFR 91.414 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... probe shall be a straight, closed end, stainless steel, multi-hole probe. The inside diameter shall not... three holes. The spacing of the radial planes for each hole in the probe must be such that they cover approximately equal cross-sectional areas of the exhaust duct. The angular spacing of the holes must...

  14. 40 CFR 89.421 - Exhaust gas analytical system; CVS bag sample.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE NONROAD COMPRESSION-IGNITION ENGINES Exhaust... for analyzing CVS bag samples from compression- ignition engines. Since various configurations can... engines to 191 °C ±6 °C) for the measurement of hydrocarbons, nondispersive infrared analyzers (NDIR)...

  15. 40 CFR 91.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM MARINE SPARK-IGNITION ENGINES Gaseous Exhaust Test... CVS grab “bag” samples from spark-ignition engines. Since various configurations can produce accurate... and water vapor interference, the use of the conditioning column may be deleted. (See §§ 91.317 and...

  16. Factors to Consider in Designing Aerosol Inlet Systems for Engine Exhaust Plume Sampling

    NASA Technical Reports Server (NTRS)

    Anderson, Bruce

    2004-01-01

    This document consists of viewgraphs of charts and diagrams of considerations to take when sampling the engine exhaust plume. It includes a chart that compares the emissions from various fuels, a diagram and charts of the various processes and conditions that influence the particulate size and concentration,

  17. 40 CFR 86.110-90 - Exhaust gas sampling system; diesel vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... be sufficient to prevent water condensation. However, the sample zone dilute exhaust temperature... 125 °F (52 °C) or less and shall prevent the condensation of water vapor in the dilution tunnel. (2... taken, at a temperature of 125 °F (52 °C) or less and shall prevent the condensation of water vapor...

  18. 40 CFR 89.412 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the exhaust pipe shall be as small as practical in order to minimize heat loss from the probe. (2) The... sample pump. (d) Venting. All vents, including analyzer vents, bypass flow, and pressure relief vents of... as instruments, valves, solenoids, pumps, switches, and so forth, may be employed to...

  19. 40 CFR 89.412 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the exhaust pipe shall be as small as practical in order to minimize heat loss from the probe. (2) The... sample pump. (d) Venting. All vents, including analyzer vents, bypass flow, and pressure relief vents of... as instruments, valves, solenoids, pumps, switches, and so forth, may be employed to...

  20. 40 CFR 89.412 - Raw gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the exhaust pipe shall be as small as practical in order to minimize heat loss from the probe. (2) The... sample pump. (d) Venting. All vents, including analyzer vents, bypass flow, and pressure relief vents of... as instruments, valves, solenoids, pumps, switches, and so forth, may be employed to...

  1. Efficiency of a tool-mounted local exhaust ventilation system for controlling dust exposure during metal grinding operations.

    PubMed

    Ojima, Jun

    2007-12-01

    In general, control of metal dust from hand-held disk grinders is difficult because such respirable dust tends to disperse in every direction around the grinding wheel and cannot be captured effectively by a conventional exhaust hood. The author described the application of a custom-made tool-mounted local exhaust ventilation (LEV) system attached to a hand-held disk grinder, and by laboratory experiments assessed its effectiveness at dust control. The effectiveness of the LEV for dust control was assessed by determining the respirable dust concentration around the grinding wheel during metal surface grinding with and without the use of the LEV. It was shown that the average respirable grinding dust concentration decreased from 7.73 mg/m(3) with the LEV off to 4.87 mg/m(3) with the LEV on, a mean dust generation reduction of about 37%.

  2. System design description for portable 1,000 CFM exhauster Skids POR-007/Skid E and POR-008/Skid F

    SciTech Connect

    Nelson, O.D.

    1998-07-25

    The primary purpose of the two 1,000 CFM Exhauster Skids, POR-007-SKID E and POR-008-SKID F, is to provide backup to the waste tank primary ventilation systems for tanks 241-C-106 and 241-AY-102, and the AY-102 annulus in the event of a failure during the sluicing of tank 241-C-106 and subsequent transfer of sluiced waste to 241-AY-102. This redundancy is required since both of the tank ventilation systems have been declared as Safety Class systems.

  3. Comparison of full-scale engine and subscale model performance of a mixed flow exhaust system for an energy efficient engine (E3) propulsion system

    NASA Technical Reports Server (NTRS)

    Kuchar, A. P.; Chamberlin, R.

    1984-01-01

    A full scale engine test of the NASA/General Electric Company (GE) Energy Efficient Engine (E3) was conducted to demonstrate the E3 engine concept and evaluate its performance. The test program, performed at the GE outdoor engine test facilities in Peebles, OH, included a detailed evaluation of the total pressure and temperature profiles at the exit of the mixed flow exhaust system to determine its mixing effectiveness. Subscale model tests of the same mixed flow exhaust system had been previously conducted at FluiDyne Engineering Corporation in Minneapolis, Minnesota as part of the GE E3 mixer aerodynamic technology development program. The scale model and full scale engine nozzle exit survey data and the calculated mixing effectiveness are compared and discussed. Results indicate the full scale engine mixing effectiveness to be five percent higher than the scale model as a result of a geometric difference and higher turbulence levels in the engne exhaust flowfield.

  4. A new grading system for plant-available potassium using exhaustive cropping techniques combined with chemical analyses of soils

    NASA Astrophysics Data System (ADS)

    Li, Ting; Wang, Huoyan; Zhou, Zijun; Chen, Xiaoqin; Zhou, Jianmin

    2016-11-01

    A new grading system for plant-available potassium (K) in soils based on K release rate from soils and plant growth indices was established. In the study, fourteen different agricultural soils from the southern subtropical to the northern temperate zones in China were analyzed by both chemical extraction methods and exhaustive cropping techniques. Based on the change trends in plant growth indices, relative biomass yields of 70% and 50%, K-deficient coefficients of 35 and 22 under conventional exhaustive experiments, and tissue K concentrations of 40 g kg‑1 and 15 g kg‑1 under intensive exhaustive experiments were obtained as critical values that represent different change trends. In addition, the extraction method using 0.2 mol L‑1 sodium tetraphenylboron (NaTPB) suggested soil K release rates of 12 mg kg‑1 min‑1 and 0.4 mg kg‑1 min‑1 as turning points that illustrated three different release trends. Thus, plant-available K in soils was classified into three categories: high available K, medium available K and low available K, and grading criteria and measurement methods were also proposed. This work has increased our understanding of soil K bioavailability and has direct application in terms of routine assessment of agriculture soils.

  5. A new grading system for plant-available potassium using exhaustive cropping techniques combined with chemical analyses of soils

    PubMed Central

    Li, Ting; Wang, Huoyan; Zhou, Zijun; Chen, Xiaoqin; Zhou, Jianmin

    2016-01-01

    A new grading system for plant-available potassium (K) in soils based on K release rate from soils and plant growth indices was established. In the study, fourteen different agricultural soils from the southern subtropical to the northern temperate zones in China were analyzed by both chemical extraction methods and exhaustive cropping techniques. Based on the change trends in plant growth indices, relative biomass yields of 70% and 50%, K-deficient coefficients of 35 and 22 under conventional exhaustive experiments, and tissue K concentrations of 40 g kg−1 and 15 g kg−1 under intensive exhaustive experiments were obtained as critical values that represent different change trends. In addition, the extraction method using 0.2 mol L−1 sodium tetraphenylboron (NaTPB) suggested soil K release rates of 12 mg kg−1 min−1 and 0.4 mg kg−1 min−1 as turning points that illustrated three different release trends. Thus, plant-available K in soils was classified into three categories: high available K, medium available K and low available K, and grading criteria and measurement methods were also proposed. This work has increased our understanding of soil K bioavailability and has direct application in terms of routine assessment of agriculture soils. PMID:27876838

  6. Gas-solid chromatographic analysis of automobile tailpipe emissions as a function of different engine and exhaust system modifications

    SciTech Connect

    Kang, L.; Armstrong, D.W.

    1994-12-31

    The authors developed a single, relatively short gas-solid chromatographic PLOT column and used it to separate aliphatic hydrocarbons, aromatic hydrocarbons and some inorganic gases (O{sub 2}, N{sub 2}, CO and CO{sub 2}) found in automobile exhaust. In the case of hydrocarbons, both aliphatic and aromatic components (up through alkylated-benzenes) were done in one run. Subambient temperature was needed for the oxygen-nitrogen separation, but they were easily resolved from each other and the other compounds present. The effects of different engine and exhaust system modifications on the level of compounds in the exhaust were tested. The concentrations of the emission gases varied considerably with changes in air/fuel ratio, coil voltage, use of catalytic converters and so forth. The results showed that the use of catalytic converter and a higher voltage coil tended to produce the most pronounced decreases in emissions of hydrocarbons and the catalytic converter produced the significant decrease in carbon monoxide concentrations. The results of the GSC analyses were compared to those of a commercial emission analyzer (i.e., sniffer). They showed similar trends and relative concentrations but somewhat different absolute concentrations. This may have been due to differences in the calibration of these methods.

  7. Technical basis for installation of the double shell tank exhaust flow monitoring systems

    SciTech Connect

    Willingham, W.E., Fluor Daniel Hanford

    1997-03-11

    This document presents the technical bases for installation of flow meters on the ventilation exhaust ducts of the flammable gas watch list double shell tanks (241-AN-103, 241-AN-104, 241-AN-105, 241-AN-107, 241-AW-101 and 241-SY-103), the saltwell receiver tanks (241-AN-101 and 241-SY-102) and the cross-site receiver tank (241-AP-104).

  8. Turbocharged engine with exhaust purifier

    SciTech Connect

    Tadokoro, T.; Matsuda, I.; Okimoto, H.

    1986-09-23

    The patent described a control system for an automobile engine having intake and exhaust systems for respectively conducting intake gases to and exhaust gases from the engine, which comprises, in combination: a turbocharger including a turbine disposed in the exhaust system and adapted to be driven by the flow of the exhaust gases therethrough and a blower disposed in the intake system and drivingly connected with the turbine for supercharging the intake gases; and exhaust purifying device disposed in the exhaust system downstream of the turbine with respect to the direction of flow of the exhaust gases; a regulating means for varying the effective cross-section of a portion of the exhaust system leading to the turbine; a control means for controlling the regulating means in dependence on an operating condition of the engine, the control means causing the regulating means to decrease the effective cross-section during a low speed operating condition, but to increase the effective cross-section during a high speed operating condition of the engine.

  9. Method and system for the combination of non-thermal plasma and metal/metal oxide doped .gamma.-alumina catalysts for diesel engine exhaust aftertreatment system

    DOEpatents

    Aardahl, Christopher L.; Balmer-Miller, Mari Lou; Chanda, Ashok; Habeger, Craig F.; Koshkarian, Kent A.; Park, Paul W.

    2006-07-25

    The present disclosure pertains to a system and method for treatment of oxygen rich exhaust and more specifically to a method and system that combines non-thermal plasma with a metal doped .gamma.-alumina catalyst. Current catalyst systems for the treatment of oxygen rich exhaust are capable of achieving only approximately 7 to 12% NO.sub.x reduction as a passive system and only 25 40% reduction when a supplemental hydrocarbon reductant is injected into the exhaust stream. It has been found that treatment of an oxygen rich exhaust initially with a non-thermal plasma and followed by subsequent treatment with a metal doped .gamma.-alumina prepared by the sol gel method is capable of increasing the NO.sub.x reduction to a level of approximately 90% in the absence of SO.sub.2 and 80% in the presence of 20 ppm of SO.sub.2. Especially useful metals have been found to be indium, gallium, and tin.

  10. Test plan for N2 HEPA filters assembly shop stock used on PFP E4 exhaust system

    SciTech Connect

    DICK, J.D.

    1999-09-01

    At Plutonium Finishing Plant (PFP) and Plutonium Reclamation Facility (PRF) Self-contained HEPA filters, encased in wooden frames and boxes, are installed in the E4 Exhaust Ventilation System to provide confinement of radioactive releases to the environment and confinement of radioactive contamination within designated zones inside the facility. Recently during the routine testing in-leakage was discovered downstream of the Self-contained HEPA filters boxes. This Test Plan describes the approach to conduct investigation of the root causes for the in-leakage of HEPA filters.

  11. Determination of mutagenic activities in different fractions of automobile exhaust condensate by the Salmonella/oxygenase mutagenicity test system.

    PubMed

    Norpoth, K; Jacob, J; Grimmer, G; Mohtashamipur, E

    1985-05-01

    Automobile exhaust condensate of a passenger car (gasoline engine) was separated into fractions of 2-3 rings containing -, 4-7 rings containing polycyclic aromatic hydrocarbons (PAHs) and PAH-free fractions. All fractions were tested for mutagenicity by the Ames system. The highest dose-dependent increase in revertant colonies was found for the 4-7 ring PAH-fraction when tested with Salmonella typhimurium TA 98 and TA 100. These results are compatible with data obtained in in-vivo tests by previous investigations. The mutagenicity of these fractions in the absence of the oxygenase was negligible.

  12. 14 CFR 25.1123 - Exhaust piping.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1123 Exhaust piping. For powerplant... corrosion resistant, and must have provisions to prevent failure due to expansion by operating...

  13. 14 CFR 25.1123 - Exhaust piping.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1123 Exhaust piping. For powerplant... corrosion resistant, and must have provisions to prevent failure due to expansion by operating...

  14. 14 CFR 25.1123 - Exhaust piping.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1123 Exhaust piping. For powerplant... corrosion resistant, and must have provisions to prevent failure due to expansion by operating...

  15. 14 CFR 25.1123 - Exhaust piping.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1123 Exhaust piping. For powerplant... corrosion resistant, and must have provisions to prevent failure due to expansion by operating...

  16. 14 CFR 25.1123 - Exhaust piping.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1123 Exhaust piping. For powerplant... corrosion resistant, and must have provisions to prevent failure due to expansion by operating...

  17. Effect of Thermoelectric Modules' Topological Connection on Automotive Exhaust Heat Recovery System

    NASA Astrophysics Data System (ADS)

    Deng, Y. D.; Zheng, S. J.; Su, C. Q.; Yuan, X. H.; Yu, C. G.; Wang, Y. P.

    2016-03-01

    In automotive exhaust-based thermoelectric generators (AETEGs), a certain number of thermoelectric modules are connected in series and/or parallel to recover energy from exhaust gas, which provides a way to improve fuel efficiency of the vehicle. Because of the temperature distribution on the surfaces of heat exchanger, several types of modules are planned for use in an AETEG; however, property disparities among modules exist and wire resistance cannot be neglected in practical application, so experiments have been carried out to research effects of the two factors on the maximum output power of series and parallel connection. The performance of series and parallel connections have been characterized, and mathematic models have been built to analyze and predict the performance of each connection. Experiments and theoretical analysis reveal that parallel connection shows a better performance than series connection when large differences of Seebeck coefficient and resistivity exist. However, wire resistance will cause more significant power dissipation in parallel connection. The authors believe the research presented in this paper is the first to carry out an examination of the impact of module property disparity and wire resistance on the output power of an array of thermoelectric modules connected in series and parallel, which provides a reference for choosing module connection in AETEGs.

  18. Apparatus and methods of reheating gas turbine cooling steam and high pressure steam turbine exhaust in a combined cycle power generating system

    DOEpatents

    Tomlinson, Leroy Omar; Smith, Raub Warfield

    2002-01-01

    In a combined cycle system having a multi-pressure heat recovery steam generator, a gas turbine and steam turbine, steam for cooling gas turbine components is supplied from the intermediate pressure section of the heat recovery steam generator supplemented by a portion of the steam exhausting from the HP section of the steam turbine, steam from the gas turbine cooling cycle and the exhaust from the HP section of the steam turbine are combined for flow through a reheat section of the HRSG. The reheated steam is supplied to the IP section inlet of the steam turbine. Thus, where gas turbine cooling steam temperature is lower than optimum, a net improvement in performance is achieved by flowing the cooling steam exhausting from the gas turbine and the exhaust steam from the high pressure section of the steam turbine in series through the reheater of the HRSG for applying steam at optimum temperature to the IP section of the steam turbine.

  19. Exhaust emission control apparatus

    SciTech Connect

    Eng, J.W.

    1991-09-24

    This patent describes an exhaust control apparatus for muffling noise and treating odors and pollutants, including solid particulate and gases in the exhaust of an internal combustion engine. It comprises an exhaust inlet tube for receiving the exhaust generated by an internal combustion engine; a cyclone barrier concentrically surrounding the exhaust inlet tube, a ring cavity between the cyclone tube and exhaust inlet tube defining a cyclone chamber in which the exhaust is treated; means for directing the exhaust from the exhaust inlet tube into the cyclone chamber; electrode means having small openings through which the exhaust passes to enter the cyclone chamber, the electrode means generating electrostatic forces which charge the solid particulate in the exhaust, ionize air and generate ozone in the cyclone chamber near the electrode; means for injecting air into the cyclone chamber causing centrifugal flow of the air and the exhausted within the cyclone chamber and increasing a dwell time of the exhaust within the cyclone chamber.

  20. Exhaust pressure and density of various pulsed MPD-Arc thruster systems

    NASA Technical Reports Server (NTRS)

    Michels, C. J.

    1973-01-01

    Exhaust flow in a new 155-cm-i.d. vacuum facility is compared with earlier measurements in a small (15.2-cm-i.d.) duct. Reductions in post-transient impact pressure are about 5:1 in the larger facility. Corresponding reduced electron number densities (about 2 x 10 to the 13th power per cu cm) are noted. A new 125-microsec pulse-forming network power source produced no major differences in impact pressure compared to the crowbarred condenser bank used earlier. Comparing a puff gas feed of the arc chamber with a new 10-msec steady gas feed also shows no major difference in impact pressure for 125-microsec powering.

  1. Assessment of technologies for predicting insertion loss and directivity of power plant exhaust systems

    NASA Astrophysics Data System (ADS)

    Cummins, Jim R.; Loewenstein, Marshall

    2005-09-01

    Much technology exists for predicting the insertion loss, directivity and radiation of various components in a power plant. For example, the ASHRAE noise guide gives the IL and/or directivity for many duct configurations. Unfortunately, there are also many components or geometries for which there is currently no practical prediction methodology. The state of the technology for predicting insertion loss, directivity and sound radiation by power plant components, especially ducted sources, such as intake and exhaust, is reviewed with emphasis on modeling techniques and verification. Several cases where the normal prediction methods are both adequate and inadequate are presented. Suggestions are given as to methods and/or future development that could provide more accurate, reliable, or useable results.

  2. Acoustic and Laser Doppler Anemometer Results for Confluent and 12-Lobed E(exp 3) Mixer Exhaust Systems for Subsonic Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Babbit, R. R.; Shin, H.; Wisler, S.; Janardan, B. A.; Majjigi, R. K.; Bridges, James (Technical Monitor)

    2002-01-01

    The research described in this report has been funded by NASA Glenn Research Center as part of the Advanced Subsonic Technologies (AST) initiative. The program operates under the Large Engine Technologies (LET) as Task Order #3 1. Task Order 31 is a three year research program divided into three subtasks. Subtask A develops the experimental acoustic and aerodynamic subsonic mixed flow exhaust system databases. Subtask B seeks to develop and assess CFD-based aero-acoustic methods for subsonic mixed flow exhaust systems. Subtask B relies on the data obtained from Subtask A to direct and calibrate the aero-acoustic methods development. Subtask C then seeks to utilize both the aero-acoustic data bases developed in Subtask A and the analytical methods developed in Subtask B to define improved subsonic mixed-flow exhaust systems. The mixed flow systems defined in Subtask C will be experimentally demonstrated for improved noise reduction in a scale model aero-acoustic test conducted similarly to the test performed in Subtask A. The overall object of this Task Order is to develop and demonstrate the technology to define a -3EPNdB exhaust system relative to 1992 exhaust system technology.

  3. Effects of diesel exhaust, heavy metals and pesticides on various organ systems: possible mechanisms and strategies for prevention and treatment.

    PubMed

    Gulati, Kavita; Banerjee, Basudeb; Lall, Shyam Bala; Ray, Arunabha

    2010-07-01

    Environmental pollutants have a significant impact on the ecosystem and disrupt balance between environment, human and non-human components that result in deleterious effects to all forms of life. Identifying environmental factors for potential imbalance are extremely crucial for devising strategies for combating such toxic dysregulation. Automobile exhaust (in air), heavy metals (in food and water) and pesticides (in air, food, soil and water) are the most common environmental pollutants and their short and long-term exposures can cause hazardous effects in humans leading to systemic disorders involving lungs, kidney and immune systems. Mechanisms involved in genesis of such toxic effects have revealed complex, interactive pathways. Strategies for the protection of homeostasis and health, viz., general preventive measures, nutritional supplements and herbal agents have been described, to counter these pollutants induced damaging effects on various body systems.

  4. Experimental aerodynamic and acoustic model testing of the Variable Cycle Engine (VCE) testbed coannular exhaust nozzle system

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.; Morris, P. M.

    1980-01-01

    Aerodynamic performance and jet noise characteristics of a one sixth scale model of the variable cycle engine testbed exhaust system were obtained in a series of static tests over a range of simulated engine operating conditions. Model acoustic data were acquired. Data were compared to predictions of coannular model nozzle performance. The model, tested with an without a hardwall ejector, had a total flow area equivalent to a 0.127 meter (5 inch) diameter conical nozzle with a 0.65 fan to primary nozzle area ratio and a 0.82 fan nozzle radius ratio. Fan stream temperatures and velocities were varied from 422 K to 1089 K (760 R to 1960 R) and 434 to 755 meters per second (1423 to 2477 feet per second). Primary stream properties were varied from 589 to 1089 K (1060 R to 1960 R) and 353 to 600 meters per second (1158 to 1968 feet per second). Exhaust plume velocity surveys were conducted at one operating condition with and without the ejector installed. Thirty aerodynamic performance data points were obtained with an unheated air supply. Fan nozzle pressure ratio was varied from 1.8 to 3.2 at a constant primary pressure ratio of 1.6; primary pressure ratio was varied from 1.4 to 2.4 while holding fan pressure ratio constant at 2.4. Operation with the ejector increased nozzle thrust coefficient 0.2 to 0.4 percent.

  5. 40 CFR 1065.130 - Engine exhaust.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... exhaust tubing that has either a wall thickness of less than 2 mm or is air gap-insulated to minimize... balance of fuel, intake air, and exhaust according to § 1065.655 to verify exhaust system integrity....

  6. 40 CFR 1065.130 - Engine exhaust.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... exhaust tubing that has either a wall thickness of less than 2 mm or is air gap-insulated to minimize... balance of fuel, intake air, and exhaust according to § 1065.655 to verify exhaust system integrity....

  7. 40 CFR 1065.130 - Engine exhaust.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... exhaust tubing that has either a wall thickness of less than 2 mm or is air gap-insulated to minimize..., intake air, and exhaust according to § 1065.655 to verify exhaust system integrity. (f)...

  8. 40 CFR 1065.130 - Engine exhaust.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... exhaust tubing that has either a wall thickness of less than 2 mm or is air gap-insulated to minimize... balance of fuel, intake air, and exhaust according to § 1065.655 to verify exhaust system integrity....

  9. 40 CFR 1065.130 - Engine exhaust.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....130 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR POLLUTION CONTROLS... exhaust tubing that has either a wall thickness of less than 2 mm or is air gap-insulated to minimize... balance of fuel, intake air, and exhaust according to § 1065.655 to verify exhaust system integrity....

  10. Chrysotile asbestos exposure associated with removal of automobile exhaust systems (ca. 1945-1975) by mechanics: results of a simulation study.

    PubMed

    Paustenbach, Dennis J; Madl, Amy K; Donovan, Ellen; Clark, Katherine; Fehling, Kurt; Lee, Terry C

    2006-03-01

    For decades, asbestos-containing gaskets were used in virtually every system that involved the transport of fluids or gases. Prior to the mid-1970s, some automobile exhaust systems contained asbestos gaskets either at flanges along the exhaust pipes or at the exhaust manifolds of the engine. A limited number of automobile mufflers were lined with asbestos paper. This paper describes a simulation study that characterized personal and bystander exposures to asbestos during the removal of automobile exhaust systems (ca. 1945-1975) containing asbestos gaskets. A total of 16 pre-1974 vehicles with old or original exhaust systems were studied. Of the 16 vehicles, 12 contained asbestos gaskets in the exhaust system and two vehicles had asbestos lining inside the muffler. A total of 82 samples (23 personal, 38 bystander, and 21 indoor background) were analyzed by Phase Contrast Microscopy (PCM) and 88 samples (25 personal, 41 bystander, and 22 indoor background) by Transmission Electron Microscopy (TEM). Only seven of 25 worker samples analyzed by TEM detected asbestos fibers and 18 were below the analytical sensitivity limit (mean 0.013 f/cc, range 0.001-0.074 f/cc). Applying the ratio of asbestos fibers:total fibers (including non-asbestos) as determined by TEM to the PCM results showed an average (1 h) adjusted PCM worker exposure of 0.018 f/cc (0.002-0.04 f/cc). The average (1 h) adjusted PCM airborne concentration for bystanders was 0.008 f/cc (range 0.0008-0.015 f/cc). Assuming a mechanic can replace four automobile single exhaust systems in 1 workday, the estimated 8-h time-weighted average (TWA) for a mechanic performing this work was 0.01 f/cc. Under a scenario where a mechanic might repeatedly conduct exhaust work, these results suggest that exposures to asbestos from work with automobile exhaust systems during the 1950s through the 1970s containing asbestos gaskets were substantially below 0.1 f/cc, the current PEL for chrysotile asbestos, and quite often were

  11. Investigation of the Performance of HEMT-Based NO, NO₂ and NH₃ Exhaust Gas Sensors for Automotive Antipollution Systems.

    PubMed

    Halfaya, Yacine; Bishop, Chris; Soltani, Ali; Sundaram, Suresh; Aubry, Vincent; Voss, Paul L; Salvestrini, Jean-Paul; Ougazzaden, Abdallah

    2016-02-23

    We report improved sensitivity to NO, NO₂ and NH₃ gas with specially-designed AlGaN/GaN high electron mobility transistors (HEMT) that are suitable for operation in the harsh environment of diesel exhaust systems. The gate of the HEMT device is functionalized using a Pt catalyst for gas detection. We found that the performance of the sensors is enhanced at a temperature of 600 °C, and the measured sensitivity to 900 ppm-NO, 900 ppm-NO₂ and 15 ppm-NH₃ is 24%, 38.5% and 33%, respectively, at 600 °C. We also report dynamic response times as fast as 1 s for these three gases. Together, these results indicate that HEMT sensors could be used in a harsh environment with the ability to control an anti-pollution system in real time.

  12. Exhaust Nozzles for Propulsion Systems with Emphasis on Supersonic Cruise Aircraft

    NASA Technical Reports Server (NTRS)

    Stitt, Leonard E.

    1990-01-01

    This compendium summarizes the contributions of the NASA-Lewis and its contractors to supersonic exhaust nozzle research from 1963 to 1985. Two major research and technology efforts sponsored this nozzle research work; the U.S. Supersonic Transport (SST) Program and the follow-on Supersonic Cruise Research (SCR) Program. They account for two generations of nozzle technology: the first from 1963 to 1971, and the second from 1971 to 1985. First, the equations used to calculate nozzle thrust are introduced. Then the general types of nozzles are presented, followed by a discussion of those types proposed for supersonic aircraft. Next, the first-generation nozzles designed specifically for the Boeing SST and the second-generation nozzles designed under the SCR program are separately reviewed and then compared. A chapter on throttle-dependent afterbody drag is included, since drag has a major effect on the off-design performance of supersonic nozzles. A chapter on the performance of supersonic dash nozzles follows, since these nozzles have similar design problems, Finally, the nozzle test facilities used at NASA-Lewis during this nozzle research effort are identified and discussed. These facilities include static test stands, a transonic wind tunnel, and a flying testbed aircraft. A concluding section points to the future: a third generation of nozzles designed for a new era of high speed civil transports to produce even greater advances in performance, to meet new noise rules, and to ensure the continuity of over two decades of NASA research.

  13. System and method for selective catalytic reduction of nitrogen oxides in combustion exhaust gases

    DOEpatents

    Sobolevskiy, Anatoly; Rossin, Joseph A

    2014-04-08

    A multi-stage selective catalytic reduction (SCR) unit (32) provides efficient reduction of NOx and other pollutants from about 50-550.degree. C. in a power plant (19). Hydrogen (24) and ammonia (29) are variably supplied to the SCR unit depending on temperature. An upstream portion (34) of the SCR unit catalyzes NOx+NH.sub.3 reactions above about 200.degree. C. A downstream portion (36) catalyzes NOx+H.sub.2 reactions below about 260.degree. C., and catalyzes oxidation of NH.sub.3, CO, and VOCs with oxygen in the exhaust above about 200.degree. C., efficiently removing NOx and other pollutants over a range of conditions with low slippage of NH.sub.3. An ammonia synthesis unit (28) may be connected to the SCR unit to provide NH.sub.3 as needed, avoiding transport and storage of ammonia or urea at the site. A carbonaceous gasification plant (18) on site may supply hydrogen and nitrogen to the ammonia synthesis unit, and hydrogen to the SCR unit.

  14. Do 'Surgical Helmet Systems' or 'Body Exhaust Suits' Affect Contamination and Deep Infection Rates in Arthroplasty? A Systematic Review.

    PubMed

    Young, Simon W; Zhu, Mark; Shirley, Otis C; Wu, Qing; Spangehl, Mark J

    2016-01-01

    This systematic review examined whether negative-pressure Charnley-type body exhaust suits (BES) or modern positive-pressure surgical helmet systems (SHS) reduce deep infection rates and/or contamination in arthroplasty. For deep infection, four studies (3990 patients) gave adjusted relative risk for deep infection of 0.11 (P = 0.09) against SHS. Five of 7 (71%) studies found less air contamination and 2 of 4 studies (50%) less wound contamination with BES. One of 4 (25%) found less air contamination with SHS and 0 of 1 (0%) less wound contamination. In contrast to BES, modern SHS designs were not shown to reduce contamination or deep infection during arthroplasty.

  15. Method for simultaneously removing SO.sub.2 and NO.sub.X pollutants from exhaust of a combustion system

    DOEpatents

    Levendis, Yiannis A.; Wise, Donald L.

    1994-05-17

    A method is disclosed for removing pollutants from the exhaust of combustion systems burning fuels containing substantial amounts of sulfur and nitrogen. An exemplary method of the invention involves the formation and reaction of a sorbent comprising calcium magnesium acetate (CMA). The CMA is either dry-sprayed (in the form of a fine powder) or wet-sprayed in an aqueous solution in a high temperature environment such as a combustion chamber. The latter technique is feasible since CMA is a uniquely water-soluble form of calcium and magnesium. When the dispersed particles of CMA are heated to a high temperature, fine calcium and magnesium oxide particles, which are hollow with thin and highly porous walls are formed, affording optimum external and internal accessibility for reacting with toxic gaseous emissions such as SO.sub.2. Further, the combustion of the organic acetate portion of the sorbent results in the conversion of NO.sub.x to N.sub.2.

  16. Effects of diesel exhaust on the microbiota within a tuffaceous tunnel system

    SciTech Connect

    Haldeman, D.L.; Lagadinos, T.; Amy, P.S.; Hersman, L.; Meike, A.

    1996-08-01

    The abundance and distribution of microbiota that may be impacted by diesel and diesel exhaust were investigated from three depths into the walls and invert (floor) of U12n tunnel at Rainier Mesa, Nevada Test Site, a potential geological analog of Yucca Mountain. Enumerations included total cell counts, and numbers of aerobic heterotrophic, sulfate-reducing, nitrate-reducing, and diesel-degrading bacteria. Additionally, the disappearance of total petroleum hydrocarbons was determined in microcosms containing subsurface materials that were amended with diesel fuel. Results revealed that microbes capable of utilizing diesel and diesel combustion products were present in the subsurface in both the walls and the invert of the tunnel. The abundance of specific bacterial types in the tunnel invert, a perturbed environment, was greater than that observed in the tunnel wall. Few trends of microbial distribution either into the tunnel wall or the invert were noted with the exception of aerobic heterotrophic abundance which increased with depth into the wall and decreased with depth into the invert. No correlation between microbiota and a specific introduced chemical species have yet been determined. The potential for microbial contamination of the tunnel wall during sampling was determined to be negligible by the use of fluorescently labeled latex spheres (1{mu}m in dia.) as tracers. Results indicate that additional investigations might be needed to examine the microbiota and their possible impacts on the geology and geochemistry of the subsurface, both indigenous microbiota and those microorganisms that will likely be introduced by anthropogenic activity associated with the construction of a high-level waste repository.

  17. The role of exhaust ventilation systems in reducing occupational exposure to organic solvents in a paint manufacturing factory

    PubMed Central

    Jafari, Mohammad Javad; Karimi, Ali; Azari, Mansoor Rezazadeh

    2008-01-01

    This paper presents the successful design and implementation of several exhaust ventilation systems in a paint manufacturing factory. The ventilation systems were designed based on American Conference of Governmental Industrial Hygienists recommendations. The duct works, fans, and other parts were made and mounted by local manufacturers. The concentrations of toluene and xylene as the common solvents used in paint mixing factories were measured to evaluate the role of ventilation systems in controlling the organic solvents. Occupational exposure to toluene and xylene as the major pollutants was assessed with and without applying ventilation systems. For this purpose, samples were taken from breathing zone of exposed workers using personal samples. The samples were analyzed using Occupational Safety and Health Administration analytical method No.12. The samples were quantified using gas chromatography. The results showed that the ventilation systems successfully controlled toluene and xylene vapors in workplace, air well below the recommended threshold limit value of Iran (44.49 and 97.73 ppm, respectively). It was also discovered that benzene concentration in workplace air was higher than its allowable concentrations. This could be from solvents impurities that require more investigations. PMID:20040984

  18. Exhaust purification with on-board ammonia production

    DOEpatents

    Robel, Wade J.; Driscoll, James Joshua; Coleman, Gerald N.

    2008-05-13

    A system of ammonia production for a selective catalytic reduction system is provided. The system includes producing an exhaust gas stream within a cylinder group, wherein the first exhaust gas stream includes NOx. The exhaust gas stream may be supplied to an exhaust passage and cooled to a predetermined temperature range, and at least a portion of the NOx within the exhaust gas stream may be converted into ammonia.

  19. 40 CFR 86.1310-90 - Exhaust gas sampling and analytical system; diesel engines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... such as instruments, valves, solenoids, pumps, and switches may be used to provide additional... a sample from the continuous HC sample probe, line or system, unless a common sample pump is used... characteristics of the system at initial installation and after any major maintenance performed on the system....

  20. 40 CFR 89.419 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... instruments, valves, solenoids, pumps, and switches may be used to provide additional information and..., line or system, unless a common sample pump is used for all analyzers and the sample line system design... major maintenance performed on the system. The profiling shall be accomplished using the...

  1. 40 CFR 89.419 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... instruments, valves, solenoids, pumps, and switches may be used to provide additional information and..., line or system, unless a common sample pump is used for all analyzers and the sample line system design... major maintenance performed on the system. The profiling shall be accomplished using the...

  2. Acoustic and Laser Doppler Anemometer Results for Confluent, 22-Lobed, and Unique-Lobed Mixer Exhaust Systems for Subsonic Jet Noise Reduction

    NASA Technical Reports Server (NTRS)

    Salikuddin, M.; Martens, S.; Shin, H.; Majjigi, R. K.; Krejsa, Gene (Technical Monitor)

    2002-01-01

    The objective of this task was to develop a design methodology and noise reduction concepts for high bypass exhaust systems which could be applied to both existing production and new advanced engine designs. Special emphasis was given to engine cycles with bypass ratios in the range of 4:1 to 7:1, where jet mixing noise was a primary noise source at full power takeoff conditions. The goal of this effort was to develop the design methodology for mixed-flow exhaust systems and other novel noise reduction concepts that would yield 3 EPNdB noise reduction relative to 1992 baseline technology. Two multi-lobed mixers, a 22-lobed axisymmetric and a 21-lobed with a unique lobe, were designed. These mixers along with a confluent mixer were tested with several fan nozzles of different lengths with and without acoustic treatment in GEAE's Cell 41 under the current subtask (Subtask C). In addition to the acoustic and LDA tests for the model mixer exhaust systems, a semi-empirical noise prediction method for mixer exhaust system is developed. Effort was also made to implement flowfield data for noise prediction by utilizing MGB code. In general, this study established an aero and acoustic diagnostic database to calibrate and refine current aero and acoustic prediction tools.

  3. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. Comprehensive data report. Volume 1: Design layouts

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.

    1981-01-01

    The design layouts and detailed design drawings of coannular exhaust nozzle models for a supersonic propulsion system are presented. The layout drawings show the assembly of the component parts for each configuration. A listing of the component parts is also given.

  4. 40 CFR 86.1310-2007 - Exhaust gas sampling and analytical system for gaseous emissions from heavy-duty diesel-fueled...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... sample gas temperature is maintained above the sample's aqueous dewpoint at all times during collection... sampling system requires dilution of the exhaust to a temperature of 47 °C ±5 °C, measured upstream of a... stream at the temperatures required for the measurement of particulate and hydrocarbon emission...

  5. 40 CFR 86.1310-2007 - Exhaust gas sampling and analytical system for gaseous emissions from heavy-duty diesel-fueled...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... sample gas temperature is maintained above the sample's aqueous dewpoint at all times during collection... sampling system requires dilution of the exhaust to a temperature of 47 °C ±5 °C, measured upstream of a... stream at the temperatures required for the measurement of particulate and hydrocarbon emission...

  6. 40 CFR 86.1310-2007 - Exhaust gas sampling and analytical system for gaseous emissions from heavy-duty diesel-fueled...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... sample gas temperature is maintained above the sample's aqueous dewpoint at all times during collection... sampling system requires dilution of the exhaust to a temperature of 47 °C ±5 °C, measured upstream of a... stream at the temperatures required for the measurement of particulate and hydrocarbon emission...

  7. Effect of systemic pH on pH sub i and lactic acid generation in exhaustive forearm exercise

    SciTech Connect

    Hood, V.L.; Schubert, C.; Keller, U.; Mueller, S. Univ. of Vermont College of Medicine, Burlington )

    1988-09-01

    To investigate whether changes in systemic pH affect intracellular pH (pH{sub i}), energy-rich phosphates, and lactic acid generation in muscle, eight normal volunteers performed exhaustive forearm exercise with arterial blood flow occluded for 2 min on three occasions. Subjects ingested 4 mmol/kg NH{sub 4}Cl (acidosis; A) or NaHCO{sub 3} (alkalosis; B) or nothing (control; C) 3 h before the exercise. Muscle pH{sub i} and phosphocreatine (PCr) content were measured with {sup 31}P-nuclear magnetic resonance ({sup 31}P-NMR) spectroscopy during exercise and recovery. Lactate output during 0.5-7 min of recovery was calculated as deep venous-arterial concentration differences times forearm blood flow. Before exercise, blood pH and bicarbonate were lower in acidosis than alkalosis and intermediate in control. Lactic acid output during recovery was less with A than B and intermediate in C. PCr utilization and resynthesis were not affected by extracellular pH changes. pH{sub i} did not differ before exercise or at its end. Hence systemic acidosis inhibited and alkalosis stimulated lactic acid output. These findings suggest that systemic pH regulates cellular acid production, protecting muscle pH, at the expense of energy availability.

  8. The role of immune system exhaustion on cancer cell escape and anti-tumor immune induction after irradiation.

    PubMed

    Mendes, Fernando; Domingues, Cátia; Rodrigues-Santos, Paulo; Abrantes, Ana Margarida; Gonçalves, Ana Cristina; Estrela, Jéssica; Encarnação, João; Pires, Ana Salomé; Laranjo, Mafalda; Alves, Vera; Teixo, Ricardo; Sarmento, Ana Bela; Botelho, Maria Filomena; Rosa, Manuel Santos

    2016-04-01

    Immune surveillance seems to represent an effective tumor suppressor mechanism. However, some cancer cells survive and become variants, being poorly immunogenic and able to enter a steady-state phase. These cells become functionally dormant or remain hidden clinically throughout. Neoplastic cells seem to be able to instruct immune cells to undergo changes promoting malignancy. Radiotherapy may act as a trigger of the immune response. After radiotherapy a sequence of reactions occurs, starting in the damage of oncogenic cells by multiple mechanisms, leading to the immune system positive feedback against the tumor. The link between radiotherapy and the immune system is evident. T cells, macrophages, Natural Killer cells and other immune cells seem to have a key role in controlling the tumor. T cells may be dysfunctional and remain in a state of T cell exhaustion, nonetheless, they often retain a high potential for successful defense against cancer, being able to be mobilized to become highly functional. The lack of clinical trials on a large scale makes data a little robust, in spite of promising information, there are still many variables in the studies relating to radiation and immune system. The clarification of the mechanisms underlying immune response to radiation exposure may contribute to treatment improvement, gain of life quality and span of patients.

  9. Material and system for catalytic reduction of nitrogen oxide in an exhaust stream of a combustion process

    DOEpatents

    Gardner, Timothy J.; Lott, Stephen E.; Lockwood, Steven J.; McLaughlin, Linda I.

    1998-01-01

    A catalytic material of activated hydrous metal oxide doped with platinum, palladium, or a combination of these, and optionally containing an alkali or alkaline earth metal, that is effective for NO.sub.X reduction in an oxidizing exhaust stream from a combustion process is disclosed. A device for reduction of nitrogen oxides in an exhaust stream, particularly an automotive exhaust stream, the device having a substrate coated with the activated noble-metal doped hydrous metal oxide of the invention is also provided.

  10. 14 CFR 25.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat exchanger... operation at high temperatures and resistant to corrosion from exhaust gases; (2) There must be means...

  11. 14 CFR 25.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat exchanger... operation at high temperatures and resistant to corrosion from exhaust gases; (2) There must be means...

  12. 14 CFR 25.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat exchanger... operation at high temperatures and resistant to corrosion from exhaust gases; (2) There must be means...

  13. 14 CFR 25.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat exchanger... operation at high temperatures and resistant to corrosion from exhaust gases; (2) There must be means...

  14. 14 CFR 25.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant Exhaust System § 25.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes, the following apply: (a) Each exhaust heat exchanger... operation at high temperatures and resistant to corrosion from exhaust gases; (2) There must be means...

  15. 46 CFR 119.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the exhaust pipe. (3) The part of the exhaust system between the point of cooling water injection and..., all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible if... deepest load waterline; (iii) They are so arranged as to prevent entry of cold water from rough...

  16. 46 CFR 119.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the exhaust pipe. (3) The part of the exhaust system between the point of cooling water injection and..., all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible if... deepest load waterline; (iii) They are so arranged as to prevent entry of cold water from rough...

  17. 46 CFR 119.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the exhaust pipe. (3) The part of the exhaust system between the point of cooling water injection and..., all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible if... deepest load waterline; (iii) They are so arranged as to prevent entry of cold water from rough...

  18. 46 CFR 56.50-15 - Steam and exhaust piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the exhaust lines of machinery, and the exhaust side, including engine steam cylinders and chests... 46 Shipping 2 2010-10-01 2010-10-01 false Steam and exhaust piping. 56.50-15 Section 56.50-15... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-15 Steam and exhaust piping. (a)...

  19. 46 CFR 56.50-15 - Steam and exhaust piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the exhaust lines of machinery, and the exhaust side, including engine steam cylinders and chests... 46 Shipping 2 2013-10-01 2013-10-01 false Steam and exhaust piping. 56.50-15 Section 56.50-15... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-15 Steam and exhaust piping. (a)...

  20. 46 CFR 56.50-15 - Steam and exhaust piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the exhaust lines of machinery, and the exhaust side, including engine steam cylinders and chests... 46 Shipping 2 2011-10-01 2011-10-01 false Steam and exhaust piping. 56.50-15 Section 56.50-15... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-15 Steam and exhaust piping. (a)...

  1. 46 CFR 56.50-15 - Steam and exhaust piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the exhaust lines of machinery, and the exhaust side, including engine steam cylinders and chests... 46 Shipping 2 2014-10-01 2014-10-01 false Steam and exhaust piping. 56.50-15 Section 56.50-15... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-15 Steam and exhaust piping. (a)...

  2. 46 CFR 56.50-15 - Steam and exhaust piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the exhaust lines of machinery, and the exhaust side, including engine steam cylinders and chests... 46 Shipping 2 2012-10-01 2012-10-01 false Steam and exhaust piping. 56.50-15 Section 56.50-15... APPURTENANCES Design Requirements Pertaining to Specific Systems § 56.50-15 Steam and exhaust piping. (a)...

  3. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Pump—Constant Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi... components such as instruments, valves, solenoids, pumps, and switches may be used to provide additional... a sample from the continuous HC sample probe, line, or system, unless a common sample pump is...

  4. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... requirements are as follows: (1) This sampling system requires the use of a Positive Displacement Pump—Constant... components such as instruments, valves, solenoids, pumps, and switches may be used to provide additional... a sample from the continuous HC sample probe, line, or system, unless a common sample pump is...

  5. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Pump—Constant Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi... components such as instruments, valves, solenoids, pumps, and switches may be used to provide additional... a sample from the continuous HC sample probe, line, or system, unless a common sample pump is...

  6. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... requirements are as follows: (1) This sampling system requires the use of a Positive Displacement Pump—Constant... components such as instruments, valves, solenoids, pumps, and switches may be used to provide additional... a sample from the continuous HC sample probe, line, or system, unless a common sample pump is...

  7. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... requirements are as follows: (1) This sampling system requires the use of a Positive Displacement Pump—Constant... components such as instruments, valves, solenoids, pumps, and switches may be used to provide additional... a sample from the continuous HC sample probe, line, or system, unless a common sample pump is...

  8. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Pump—Constant Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi... components such as instruments, valves, solenoids, pumps, and switches may be used to provide additional... a sample from the continuous HC sample probe, line, or system, unless a common sample pump is...

  9. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... requirements are as follows: (1) This sampling system requires the use of a Positive Displacement Pump—Constant... components such as instruments, valves, solenoids, pumps, and switches may be used to provide additional... a sample from the continuous HC sample probe, line, or system, unless a common sample pump is...

  10. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Pump—Constant Volume Sampler (PDP-CVS) system with a heat exchanger, or a Critical Flow Venturi... components such as instruments, valves, solenoids, pumps, and switches may be used to provide additional... a sample from the continuous HC sample probe, line, or system, unless a common sample pump is...

  11. 40 CFR 89.419 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... instruments, valves, solenoids, pumps, and switches may be used to provide additional information and... measurement of hydrocarbon emissions noted in the following paragraph and to prevent condensation of water at..., line or system, unless a common sample pump is used for all analyzers and the sample line system...

  12. 40 CFR 89.419 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... instruments, valves, solenoids, pumps, and switches may be used to provide additional information and... measurement of hydrocarbon emissions noted in the following paragraph and to prevent condensation of water at..., line or system, unless a common sample pump is used for all analyzers and the sample line system...

  13. 30 CFR 36.47 - Tests of exhaust-gas cooling system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the engine operating under test conditions by withdrawing water until the cooling system fails to... to start the engine. Note: If the cooling system includes a reserve supply water tank, the line or... effectiveness of the automatic engine shut-off, which will operate when the water in the cooling...

  14. 30 CFR 36.47 - Tests of exhaust-gas cooling system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the engine operating under test conditions by withdrawing water until the cooling system fails to... to start the engine. Note: If the cooling system includes a reserve supply water tank, the line or... effectiveness of the automatic engine shut-off, which will operate when the water in the cooling...

  15. 30 CFR 36.47 - Tests of exhaust-gas cooling system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the engine operating under test conditions by withdrawing water until the cooling system fails to... to start the engine. Note: If the cooling system includes a reserve supply water tank, the line or... effectiveness of the automatic engine shut-off, which will operate when the water in the cooling...

  16. 30 CFR 36.47 - Tests of exhaust-gas cooling system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the engine operating under test conditions by withdrawing water until the cooling system fails to... to start the engine. Note: If the cooling system includes a reserve supply water tank, the line or... effectiveness of the automatic engine shut-off, which will operate when the water in the cooling...

  17. Exhaust gas ignition

    SciTech Connect

    1996-04-01

    This article describes a system developed for rapid light-off of underbody catalysts that has shown potential to meet Euro Stage III emissions targets and to be more cost-effective than some alternatives. Future emissions legislation will require SI engine aftertreatment systems to approach full operating efficiency within the first few seconds after starting to reduce the high total-emissions fraction currently contributed by the cold phase of driving. A reduction of cold-start emissions during Phase 1 (Euro) or Bag 1 (FTP), which in many cases can be as much as 80% of the total for the cycle, has been achieved by electrical heating of the catalytic converter. But electrically heated catalyst (EHC) systems require high currents (100--200 A) to heat the metallic substrate to light-off temperatures over the first 15--20 seconds. Other viable approaches to reducing cold-start emissions include use of a fuel-powered burner upstream of the catalyst. However, as with EHC, the complexity of parts and the introduction of raw fuel into the exhaust system make this device unsatisfactory. Still another approach, an exhaust gas ignition (EGI) system, was first demonstrated in 1991. The operation of a system developed by engineers at Ford Motor Co., Ltd., Cambustion Ltd., and Tickford Ltd. is described here.

  18. 24 CFR 3280.708 - Exhaust duct system and provisions for the future installation of a clothes dryer.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... designed to resist the entry of water or rodents. The manufacturer is not required to provide the moisture... rodents into the home. The manufacturer is not required to provide the moisture-lint exhaust duct or...

  19. 24 CFR 3280.708 - Exhaust duct system and provisions for the future installation of a clothes dryer.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... designed to resist the entry of water or rodents. The manufacturer is not required to provide the moisture... rodents into the home. The manufacturer is not required to provide the moisture-lint exhaust duct or...

  20. Vehicle cabin cooling system for capturing and exhausting heated boundary layer air from inner surfaces of solar heated windows

    DOEpatents

    Farrington, Robert B.; Anderson, Ren

    2001-01-01

    The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.

  1. Application of local exhaust ventilation system and integrated collectors for control of air pollutants in mining company.

    PubMed

    Ghorbani Shahna, Farshid; Bahrami, Abdulrahman; Farasati, Farhad

    2012-01-01

    Local exhaust ventilation (LEV) systems and integrated collectors were designed and implemented in a mining company in order to control emitted air pollutant from furnaces. The LEV was designed for capture and transition of air pollutants emitted from furnaces to the integrated collectors. The integrated collectors including four high efficiency Stairmand model cyclones for control of particulate matter, a venturi scrubber for control of the fine particles, SO(2) and a part of H(2)S to follow them, and a packed scrubber for treatment of the residual H(2)S and SO(2) were designed. Pollutants concentration were measured to determine system effectiveness. The results showed that the effectiveness of LEV for reducing workplace pollution is 91.83%, 96.32% and 83.67% for dust, SO(2) and H(2)S, respectively. Average removal efficiency of particles by combination of cyclone and venturi scrubber was 98.72%. Average removal efficiency of SO(2) and H(2)S were 95.85% and 47.13% for the venturi scrubber and 68.45% and 92.7% for the packed bed scrubber. The average removal efficiency of SO(2) and H(2)S were increased to 99.1% and 95.95% by the combination of venturi and packed bed scrubbers. According to the results, integrated collectors are a good air pollution control option for industries with economic constraints and ancient technologies.

  2. 40 CFR 90.423 - Exhaust gas analytical system; CVS grab sample.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NONROAD SPARK-IGNITION ENGINES AT OR BELOW 19... analytical systems used for analyzing CVS grab “bag” samples from spark-ignition engines. Since various... essentially free of CO2 and water vapor interference, the use of the conditioning column may be deleted....

  3. [Exhaustion of family caregivers: a masked domestic crisis? A psychodynamic and systemic approach].

    PubMed

    Bouati, Noureddine; Sagne, Alain; Hunsicker, Morgane; Gavazzi, Gaëtan; Couturier, Pascal

    2016-03-01

    We try, from our clinical practice in a geriatric medicine department, to identify the processes involved in family crisis, especially in the relationship carer/cared. Psychodynamic and systemic determinants are highlighted to understand how family caregivers may suffer burn out, and suggest preventive measures.

  4. 76 FR 58288 - International Maritime Organization Guidelines for Exhaust Gas Cleaning Systems for Marine...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... 4 of the International Convention for the Prevention of Pollution by Ships, 1973 as modified by the... effective in reducing sulfur oxide emissions as the requirements of MARPOL Annex VI regulation 14. DATES... systems for marine engines to remove sulfur oxide emissions. Annex VI regulation 4 of the...

  5. 40 CFR 91.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... modes is an acceptable method of dilute testing for all constituents, HC, NOX. CO, and CO2. Continuous.... (iv) The overflow gases must enter the sample line as close as practical to the outside surface of the... to the continuous NOX, CO, or CO2 sampling and analysis system to the specifications of 40 CFR...

  6. 40 CFR 92.114 - Exhaust gas and particulate sampling and analytical system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...; V10 and V12—heated flow control valves; V11—Selector valve to select NOX or bypass mode in the... the analysis system must be measured. Capillary flows such as in HFID and CL analyzers are excluded... an oven, then only the surface temperature of the component with the largest thermal mass and...

  7. 40 CFR 92.114 - Exhaust gas and particulate sampling and analytical system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...; V10 and V12—heated flow control valves; V11—Selector valve to select NOX or bypass mode in the... the analysis system must be measured. Capillary flows such as in HFID and CL analyzers are excluded... an oven, then only the surface temperature of the component with the largest thermal mass and...

  8. 40 CFR 92.114 - Exhaust gas and particulate sampling and analytical system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...; V10 and V12—heated flow control valves; V11—Selector valve to select NOX or bypass mode in the... the analysis system must be measured. Capillary flows such as in HFID and CL analyzers are excluded... an oven, then only the surface temperature of the component with the largest thermal mass and...

  9. 40 CFR 92.114 - Exhaust gas and particulate sampling and analytical system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...; V10 and V12—heated flow control valves; V11—Selector valve to select NOX or bypass mode in the... the analysis system must be measured. Capillary flows such as in HFID and CL analyzers are excluded... an oven, then only the surface temperature of the component with the largest thermal mass and...

  10. 40 CFR 92.114 - Exhaust gas and particulate sampling and analytical system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...; V10 and V12—heated flow control valves; V11—Selector valve to select NOX or bypass mode in the... the analysis system must be measured. Capillary flows such as in HFID and CL analyzers are excluded... an oven, then only the surface temperature of the component with the largest thermal mass and...

  11. 40 CFR 90.421 - Dilute gaseous exhaust sampling and analytical system description.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... measuring mass emissions of HC, NOX. CO, and CO2. Grab sampling for individual modes is an acceptable method.... (iv) The overflow gases must enter the sample line as close as practical to the outside surface of the...) Conform to the continuous NOX, CO, or CO2 sampling and analysis system to the specifications of 40...

  12. Flow field description of the Space Shuttle Vernier reaction control system exhaust plumes

    NASA Technical Reports Server (NTRS)

    Cerimele, Mary P.; Alred, John W.

    1987-01-01

    The flow field for the Vernier Reaction Control System (VRCS) jets of the Space Shuttle Orbiter has been calculated from the nozzle throat to the far-field region. The calculations involved the use of recently improved rocket engine nozzle/plume codes. The flow field is discussed, and a brief overview of the calculation techniques is presented. In addition, a proposed on-orbit plume measurement experiment, designed to improve future estimations of the Vernier flow field, is addressed.

  13. Exhaust purification with on-board ammonia production

    DOEpatents

    Robel, Wade J.; Driscoll, James Joshua; Coleman, Gerald N.

    2010-10-12

    A method of ammonia production for a selective catalytic reduction system is provided. The method includes producing an exhaust gas stream within a cylinder group, wherein the first exhaust gas stream includes NOx. The exhaust gas stream may be supplied to an exhaust passage and cooled to a predetermined temperature range, and at least a portion of the NOx within the exhaust gas stream my be converted into ammonia.

  14. 46 CFR 111.33-9 - Ventilation exhaust.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... REQUIREMENTS Power Semiconductor Rectifier Systems § 111.33-9 Ventilation exhaust. The exhaust of each forced-air semiconductor rectifier system must: (a) Terminate in a location other than a hazardous...

  15. Ventilation Exhaust Power Recovery Design

    NASA Astrophysics Data System (ADS)

    Yandell, Jeremy

    2012-11-01

    Due to the expense of designing ductwork and exhaust fans to meet the exact desired flow rate for building exhaust, there is wasted energy that is unrecovered when exhausted to the atmosphere. By designing a small diameter wind turbine the kinetic energy in the exhaust stream can be recovered and power provided back into the building. Unlike large scale commercial wind turbines that must be designed to provide power from a large range of wind speeds and directions, this smaller scale turbine can be optimized for a single constant wind speed with no variation in direction. The critical component is to prevent backpressure feeding through the system and increasing the load on the exhaust fan. This design project began with the theoretical airfoil and blade design, followed by modeling the system in fluid dynamics software, a full CAD design was created and modified for the selected manufacturing process, prototype creation and testing will be completed both in a wind tunnel and in a real environment, and the completed data will be compared with theoretical and computational results. Note: There is a patent pending for this design and concept.

  16. Contrasting actions of diesel exhaust particles on the pulmonary and cardiovascular systems and the effects of thymoquinone

    PubMed Central

    Nemmar, Abderrahim; Al-Salam, Suhail; Zia, Shaheen; Marzouqi, Fatima; Al-Dhaheri, Amna; Subramaniyan, Deepa; Dhanasekaran, Subramanian; Yasin, Javed; Ali, Badreldin H; Kazzam, Elsadig E

    2011-01-01

    BACKGROUND AND PURPOSE Acute exposure to particulate air pollution has been linked to acute cardiopulmonary events, but the underlying mechanisms are uncertain. EXPERIMENTAL APPROACH We investigated the acute (at 4 and 18 h) effects of diesel exhaust particles (DEP) on cardiopulmonary parameters in mice and the protective effect of thymoquinone, a constituent of Nigella sativa. Mice were given, intratracheally, either saline (control) or DEP (30 µg·per mouse). KEY RESULTS At 18 h (but not 4 h) after giving DEP, there was lung inflammation and loss of lung function. At both 4 and 18 h, DEP caused systemic inflammation characterized by leucocytosis, increased IL-6 concentrations and reduced systolic blood pressure (SBP). Superoxide dismutase (SOD) activity was decreased only at 18 h. DEP reduced platelet numbers and aggravated in vivo thrombosis in pial arterioles. In vitro, addition of DEP (0.1–1 µg·mL−1) to untreated blood-induced platelet aggregation. Pretreatment of mice with thymoquinone prevented DEP-induced decrease of SBP and leucocytosis, increased IL-6 concentration and decreased plasma SOD activity. Thymoquinone also prevented the decrease in platelet numbers and the prothrombotic events but not platelet aggregation in vitro. CONCLUSIONS AND IMPLICATIONS At 4 h after DEP exposure, the cardiovascular changes did not appear to result from pulmonary inflammation but possibly from the entry of DEP and/or their associated components into blood. However, at 18 h, DEP induced significant changes in pulmonary and cardiovascular functions along with lung inflammation. Pretreatment with thymoquinone prevented DEP-induced cardiovascular changes. PMID:21501145

  17. Design Review Report for formal review of safety class features of exhauster system for rotary mode core sampling

    SciTech Connect

    JANICEK, G.P.

    2000-06-08

    Report documenting Formal Design Review conducted on portable exhausters used to support rotary mode core sampling of Hanford underground radioactive waste tanks with focus on Safety Class design features and control requirements for flammable gas environment operation and air discharge permitting compliance.

  18. 40 CFR 86.109-94 - Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate emission measurements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles... designed to measure the true mass of gaseous emissions in the exhaust of either Otto-cycle light-duty vehicles or light-duty trucks which are waived from requirements for the measurement of...

  19. 40 CFR 86.109-94 - Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate emission measurements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles... designed to measure the true mass of gaseous emissions in the exhaust of either Otto-cycle light-duty vehicles or light-duty trucks which are waived from requirements for the measurement of...

  20. 40 CFR 86.109-94 - Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate emission measurements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles... designed to measure the true mass of gaseous emissions in the exhaust of either Otto-cycle light-duty vehicles or light-duty trucks which are waived from requirements for the measurement of...

  1. 40 CFR 86.109-94 - Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate emission measurements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Year New Light-Duty Vehicles and New Light-Duty Trucks and New Otto-Cycle Complete Heavy-Duty Vehicles... designed to measure the true mass of gaseous emissions in the exhaust of either Otto-cycle light-duty vehicles or light-duty trucks which are waived from requirements for the measurement of...

  2. The trapping system for the recirculated gases at different locations of the exhaust gas recirculation (EGR) pipe of a homogeneous charge compression ignition (HCCI) engine

    NASA Astrophysics Data System (ADS)

    Piperel, A.; Montagne, X.; Dagaut, P.

    2008-10-01

    Nowadays, in diesel engines, it is typical to recycle exhaust gases (EGR) in order to decrease pollutant emissions. However, few studies report the precisely measured composition of the recycled gases. Indeed, in order to know precisely the composition of the EGR gases, they have to be sampled hot and not diluted, in contrast to the usual practice. Thus, a new system to collect such samples was developed. With this new trapping system, it is possible to measure the concentrations of NOx, CO, CO2, O2, hydrocarbons (HCs) in the range C1-C9, aldehydes, ketones and PAHs. The trapping system and the analytical protocol used are described in this paper.

  3. Characterization of a high-pressure diesel fuel injection system as a control technology option to improve engine performance and reduce exhaust emissions

    NASA Technical Reports Server (NTRS)

    Mcfadden, J. J.; Dezelick, R. A.; Barrows, R. R.

    1983-01-01

    Test results from a high pressure electronically controlled fuel injection system are compared with a commercial mechanical injection system on a single cylinder, diesel test engine using an inlet boost pressure of 2.6:1. The electronic fuel injection system achieved high pressure by means of a fluid intensifier with peak injection pressures of 47 to 69 MPa. Reduced exhaust emissions were demonstrated with an increasing rate of injection followed by a fast cutoff of injection. The reduction in emissions is more responsive to the rate of injection and injection timing than to high peak injection pressure.

  4. Measurements of the ionospheric reaction to exhaust from dedicated burns of the space shuttle’s orbital maneuvering system engines over Kwajalein

    NASA Astrophysics Data System (ADS)

    Caton, R. G.; Groves, K. M.; Pedersen, T. R.; Hysell, D. L.; Carrano, C. S.; Bernhardt, P. A.; Tsunoda, R. T.; Coster, A. J.

    2009-12-01

    In a continuation of the Shuttle Ionospheric Modification with Pulsed Localized Exhaust (SIMPLEX) experiment, a series of Orbiting Maneuver Subsystem (OMS) engine burns from the space shuttle have been carried out over Kwajalein Atoll in the Republic of the Marshall Islands. Exhaust from the shuttle’s two OMS engines consists of CO, CO2, H2, H20, and N2, each of which interact with the background ionosphere (predominately O+) through charge exchange resulting in electron “holes.” Such interactions have been detected from the ground with radars, optical imagers, and GPS TEC measurements and from space with satellites such as the Communication/Navigation Outage Forecasting System (C/NOFS) in the Shuttle Exhaust Ion Turbulence Experiment (SEITE). In this talk, we present signatures of ionospheric modification resulting from OMS burns during recent shuttle missions observed in incoherent scatter returns on the ARPA Long-range Tracking And Instrumentation Radar (ALTAIR) and in optical data from an All-Sky Imager. GPS TEC measurements are investigated for evidence of depletions resulting from post-burn molecular recombination. Space Shuttle OMS Engine Burn

  5. The Subchronic Inhalation Toxicity of DF2 (Diesel Fuel) Used in Vehicle Engine Exhaust Smoke Systems (VEESS).

    DTIC Science & Technology

    1986-03-01

    to ascertain pregnancy and to record numbers of viable fetuses, nonviable fetuses, and corpora lutea. Data in these categories were analyzed using the...smoke/exhaust caused a slight increase in sodium and a decrease in triglycerides (Tables F-10 to F-11). An increase in glucose was also evident after...Tables J-1 and J-2. In the oral exposure, the 10% DF2 (diesel fuel) mixture was the only concentration that caused significant mor- tality when compared to

  6. Experimental aerodynamic and acoustic model testing of the Variable Cycle Engine (VCE) testbed coannular exhaust nozzle system: Comprehensive data report

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.; Morris, P. M.

    1980-01-01

    The component detail design drawings of the one sixth scale model of the variable cycle engine testbed demonstrator exhaust syatem tested are presented. Also provided are the basic acoustic and aerodynamic data acquired during the experimental model tests. The model drawings, an index to the acoustic data, an index to the aerodynamic data, tabulated and graphical acoustic data, and the tabulated aerodynamic data and graphs are discussed.

  7. Design and test of an exhaust gas clean-up system for power plants using high sulphur content fuels. Final report

    SciTech Connect

    Chang, C.N.

    1980-10-10

    This experimental program, initially designated to study an exhaust gas cleanup and water recovery system for a Cheng Cycle Dual-Fluid (CCDF) turbine power plant using sulfur rich fuels, has shown the potential of a general Flue Gas Desulfurization (FGD) system applicable to utility and industrial boilers as well. The process was studied both theoretically and experimentaly. Experiments were performed using a bench scale (25k equivalent) apparatus and a pilot scale (1Mw equivalent) apparatus. Data obtained indicated the IPT process potentially can out-perform the conventional FGD process with significant cost savings.

  8. Duplex tab exhaust nozzle

    NASA Technical Reports Server (NTRS)

    Gutmark, Ephraim Jeff (Inventor); Martens, Steven (nmn) (Inventor)

    2012-01-01

    An exhaust nozzle includes a conical duct terminating in an annular outlet. A row of vortex generating duplex tabs are mounted in the outlet. The tabs have compound radial and circumferential aft inclination inside the outlet for generating streamwise vortices for attenuating exhaust noise while reducing performance loss.

  9. The evolution of automobile exhaust emission control

    SciTech Connect

    Taylor, K.C.

    1993-12-31

    Automobile catalytic converters have progressed from oxidation-only systems in the mid 1970`s to the current three-way catalytic converters which control emissions of carbon monoxide, hydrocarbons, and nitrogen oxide to very low levels. New exhaust emission regulations adopted Federally and in California which come into effect during the 1990`s once again demand new emission control system technology. A new generation of catalytic converter systems coupled with attention to fuel composition characterizes this third phase of exhaust emission control.

  10. 14 CFR 23.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes the following apply: (a... suitable for continued operation at high temperatures and resistant to corrosion from exhaust gases;...

  11. 14 CFR 23.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes the following apply: (a... suitable for continued operation at high temperatures and resistant to corrosion from exhaust gases;...

  12. 14 CFR 23.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes the following apply: (a... suitable for continued operation at high temperatures and resistant to corrosion from exhaust gases;...

  13. 14 CFR 23.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes the following apply: (a... suitable for continued operation at high temperatures and resistant to corrosion from exhaust gases;...

  14. 14 CFR 23.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Exhaust System § 23.1125 Exhaust heat exchangers. For reciprocating engine powered airplanes the following apply: (a... suitable for continued operation at high temperatures and resistant to corrosion from exhaust gases;...

  15. Exhaust emission control and diagnostics

    DOEpatents

    Mazur, Christopher John; Upadhyay, Devesh

    2006-11-14

    A diesel engine emission control system uses an upstream oxidation catalyst and a downstream SCR catalyst to reduce NOx in a lean exhaust gas environment. The engine and upstream oxidation catalyst are configured to provide approximately a 1:1 ratio of NO to NO2 entering the downstream catalyst. In this way, the downstream catalyst is insensitive to sulfur contamination, and also has improved overall catalyst NOx conversion efficiency. Degradation of the system is determined when the ratio provided is no longer near the desired 1:1 ratio. This condition is detected using measurements of engine operating conditions such as from a NOx sensor located downstream of the catalysts. Finally, control action to adjust an injected amount of reductant in the exhaust gas based on the actual NO to NO2 ratio upstream of the SCR catalyst and downstream of the oxidation catalyst.

  16. Atmospheric scavenging exhaust

    NASA Technical Reports Server (NTRS)

    Fenton, D. L.; Purcell, R. Y.

    1977-01-01

    Solid propellant rocket exhaust was directly utilized to ascertain raindrop scavenging rates for hydrogen chloride. The airborne HCl concentration varied from 0.2 to 10.0 ppm and the raindrop sizes tested included 0.55 mm, 1.1 mm, and 3.0 mm. Two chambers were used to conduct the experiments. A large, rigid walled, spherical chamber stored the exhaust constituents while the smaller chamber housing all the experiments was charged as required with rocket exhaust HCl. Surface uptake experiments demonstrated an HCl concentration dependence for distilled water. Sea water and brackish water HCl uptake was below the detection limit of the chlorine-ion analysis technique employed. Plant life HCl uptake experiments were limited to corn and soybeans. Plant age effectively correlated the HCl uptake data. Metallic corrosion was not significant for single 20 minute exposures to the exhaust HCl under varying relative humidity.

  17. Emission of carcinogenic components with automobile exhausts.

    PubMed Central

    Stenberg, U; Alsberg, T; Westerholm, R

    1983-01-01

    Different sampling methods for mutagenic polynuclear aromatic hydrocarbons (PAH) are described. These methods involve either direct sampling of raw exhausts which prior to filtering are cooled in a condenser, or filter sampling of exhausts diluted in a tunnel. The relevance of gas-phase PAHs of samples from diluted exhausts is discussed; methods used are either adsorbents (XAD-2) or cryogenic condensation. The emission of benzo(a)pyrene and certain other PAHs is reported from vehicles using different fuels (gasoline, diesel, LPG, alcohols) or different emission control systems. The emission of some volatiles, such as benzene, ethylene and alkylnitrites, is also presented from different types of fuels used. PMID:6186483

  18. Task-specific tailored multiple-reflection mirror systems for sensitivity enhancement of spectroscopic measurements: application for aircraft engine exhaust emission measurements with FT-IR spectro

    NASA Astrophysics Data System (ADS)

    Brockmann, Klaus; Kurtenbach, Ralf; Kriesche, Volker; Wiesen, Peter; Heland, Joerg; Schaefer, Klaus

    1999-09-01

    Multi-path reflection mirror systems in White- or Herriott- type configuration have been widely used to enhance the absorption path-length and thus the sensitivity of laboratory spectroscopic systems, e.g. for smog chamber studies and molecular spectroscopy. Field studies, for instance using mobile tunable diode laser spectroscopy have widened the range of applications of these mirror systems for specific measurement tasks. In this paper a special designed White-type system mounted in two racks with 5 m base-length and adjustable optical path-length up to 74 passes is described. This system has been tested and successfully used to enhance the sensitivity of non-intrusive FT-IR measurements of aircraft engine exhaust emissions in the harsh environment of an engine test bed. The open cell around the engine plume including the transfer optics for the adaption of the spectrometers in a separate room allowed manual switching between passive FT-IR emission measurements, FT-IR absorption measurements with the cell, and, by covering the infrared source (globar) with a shutter, multi-path FT-IR emission measurements. Tests prior to the aircraft engine measurements were made to investigate the influence of different path- lengths, the position of the plume in the White cell, soot in the exhaust gas, and vibrations of the mirrors. The FT-IR spectra from all three measurement modes using the White cell during the engine measurements were found to be of good quality and the results of the analyses were comparable to the results from intrusive measurement systems.

  19. Investigation of the Performance of HEMT-Based NO, NO2 and NH3 Exhaust Gas Sensors for Automotive Antipollution Systems

    PubMed Central

    Halfaya, Yacine; Bishop, Chris; Soltani, Ali; Sundaram, Suresh; Aubry, Vincent; Voss, Paul L.; Salvestrini, Jean-Paul; Ougazzaden, Abdallah

    2016-01-01

    We report improved sensitivity to NO, NO2 and NH3 gas with specially-designed AlGaN/GaN high electron mobility transistors (HEMT) that are suitable for operation in the harsh environment of diesel exhaust systems. The gate of the HEMT device is functionalized using a Pt catalyst for gas detection. We found that the performance of the sensors is enhanced at a temperature of 600 °C, and the measured sensitivity to 900 ppm-NO, 900 ppm-NO2 and 15 ppm-NH3 is 24%, 38.5% and 33%, respectively, at 600 °C. We also report dynamic response times as fast as 1 s for these three gases. Together, these results indicate that HEMT sensors could be used in a harsh environment with the ability to control an anti-pollution system in real time. PMID:26907298

  20. Response of selected plant and insect species to simulated SRM exhaust mixtures and to exhaust components from SRM fuels

    NASA Technical Reports Server (NTRS)

    Heck, W. W.

    1980-01-01

    The possible biologic effects of exhaust products from solid rocket motor (SRM) burns associated with the space shuttle are examined. The major components of the exhaust that might have an adverse effect on vegetation, HCl and Al2O3 are studied. Dose response curves for native and cultivated plants and selected insects exposed to simulated exhaust and component chemicals from SRM exhaust are presented. A system for dispensing and monitoring component chemicals of SRM exhaust (HCl and Al2O3) and a system for exposing test plants to simulated SRM exhaust (controlled fuel burns) are described. The effects of HCl, Al2O3, and mixtures of the two on the honeybee, the corn earworm, and the common lacewing and the effects of simulated exhaust on the honeybee are discussed.

  1. Epidemiological-environmental study of diesel bus garage workers: chronic effects of diesel exhaust on the respiratory system

    SciTech Connect

    Gamble, J.; Jones, W.; Minshall, S.

    1987-10-01

    Two hundred and eighty-three (283) male diesel bus garage workers from four garages in two cities were examined to determine if there was excess chronic respiratory morbidity related to diesel exposure. The dependent variables were respiratory symptoms, radiographic interpretation for pneumoconiosis, and pulmonary function (FVC, FEV1, and flow rates). Independent variables included race, age, smoking, drinking, height, and tenure (as surrogate measure of exposure). Exposure-effect relationships within the study population showed no detectable associations of symptoms with tenure. There was an apparent association of pulmonary function and tenure. Seven workers (2.5%) had category 1 pneumoconiosis (three rounded opacities, two irregular opacities, and one with both rounded and irregular). The study population was also compared to a nonexposed blue-collar population. After indirect adjustment for age, race, and smoking, the study population had elevated prevalences of cough, phlegm, and wheezing, but there was no association with tenure. Dyspnea showed a dose-response trend but no apparent increase in prevalence. Mean percent predicted pulmonary function of the study population was greater than 100%, i.e., elevated above the comparison population. These data show there is an apparent effect of diesel exhaust on pulmonary function but not chest radiographs. Respiratory symptoms are high compared to blue-collar workers, but there is no relationship with tenure.

  2. A portable local exhaust hood system used to sample one-ton containers (TCs) previously filled with chemical warfare munitions

    SciTech Connect

    Butler, D.R.; McFeters, J.J.; Williams, L.D.

    1995-12-31

    Tennessee Valley Authority (TVA), Muscle Shoals, Alabama, by contract with the Department of the Army, Rocky Mountain Arsenal (RMA), Denver, Colorado, sampled and verified the decontamination level of 2,354 empty one-ton containers (TCs) previously used to store chemical warfare munitions. The TCs had previously been chemically and/or thermally decontaminated and were stored on RMA awaiting removal and disposal. The size and weight of the TCs prohibited placing them inside an enclosure during sampling. To enable sampling containers in place, a portable local exhaust hood was devised to protect sampling personnel and to prevent the release of any residual chemical agent vapors to the environment. Agent vapors captured by the hood were scrubbed through a 200-pound bed of activated charcoal before being released to the ambient environment. Engineers and work crews on-site in Denver conceived the hood design and tested three prototypes before obtaining a functional unit. Crafts persons in Muscle Shoals fabricated the hood designs and made modifications. Over a five-month period in the summer of 1990, TVA successfully sampled 2,354 TCs for four chemical agents with no personnel exposures and no release of agent into the environment. Residual contamination was identified in 547 TCs.

  3. Numerical Simulation of Exhaust Gas Cooling in Channels with Periodic Elbows for Application in Compact Heat Recovery Systems

    NASA Astrophysics Data System (ADS)

    Di Bari, Sergio; Cotton, James S.; Robinson, Anthony J.

    2012-11-01

    Miniature and Micro devices represent the new frontier for advanced heat and mass transfer technology. Due to the small length scales, the use of CFD is very useful for designing and optimizing microfluidic devices since experimentation and visualization at these scales can be difficult. In this work a high temperature air microfluidic cooling strategy for applications such as compact waste heat recovery, exhaust gas recirculation and fuel cell thermal management is proposed. Initially, the application of a simple straight microchannel is considered. In an effort to partially compensate for the poor thermal properties of air, right-angle bends are introduced in order to induce Dean vortices which periodically restart the thermal boundary layer development, thus improving the heat transfer and fluid mixing. Numerical simulations in the range of 100 <= ReDh <= 1000 have been carried out for channels of square cross-section. Channel wall lengths of 1.0 mm are investigated for elbow spacings of 5 mm, 10 mm and 15 mm. High temperature air (300°C) at atmospheric inlet pressure is the working fluid. The results indicate that the elbows substantially improve the local and average heat transfer in the channels while increasing the pressure drop. Design considerations are discussed which take into account the heat transfer and pressure drop characteristics of the channels.

  4. Space shuttle exhaust cloud properties

    NASA Technical Reports Server (NTRS)

    Anderson, B. J.; Keller, V. W.

    1983-01-01

    A data base describing the properties of the exhaust cloud produced by the launch of the Space Transportation System and the acidic fallout observed after each of the first four launches was assembled from a series of ground and aircraft based measurements made during the launches of STS 2, 3, and 4. Additional data were obtained from ground-based measurements during firings of the 6.4 percent model of the Solid Rocket Booster at the Marshall Center. Analysis indicates that the acidic fallout is produced by atomization of the deluge water spray by the rocket exhaust on the pad followed by rapid scavening of hydrogen chloride gas aluminum oxide particles from the Solid Rocket Boosters. The atomized spray is carried aloft by updrafts created by the hot exhaust and deposited down wind. Aircraft measurements in the STS-3 ground cloud showed an insignificant number of ice nuclei. Although no measurements were made in the column cloud, the possibility of inadvertent weather modification caused by the interaction of ice nuclei with natural clouds appears remote.

  5. Lightweight Exhaust Manifold and Exhaust Pipe Ducting for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    An improved exhaust system for an internal combustion gasoline-and/or diesel-fueled engine includes an engine exhaust manifold which has been fabricated from carbon- carbon composite materials in operative association with an exhaust pipe ducting which has been fabricated from carbon-carbon composite materials. When compared to conventional steel. cast iron. or ceramic-lined iron paris. the use of carbon-carbon composite exhaust-gas manifolds and exhaust pipe ducting reduces the overall weight of the engine. which allows for improved acceleration and fuel efficiency: permits operation at higher temperatures without a loss of strength: reduces the "through-the wall" heat loss, which increases engine cycle and turbocharger efficiency and ensures faster "light-off" of catalytic converters: and, with an optional thermal reactor, reduces emission of major pollutants, i.e. hydrocarbons and carbon monoxide.

  6. Hyperventilation and exhaustion syndrome.

    PubMed

    Ristiniemi, Heli; Perski, Aleksander; Lyskov, Eugene; Emtner, Margareta

    2014-12-01

    Chronic stress is among the most common diagnoses in Sweden, most commonly in the form of exhaustion syndrome (ICD-10 classification - F43.8). The majority of patients with this syndrome also have disturbed breathing (hyperventilation). The aim of this study was to investigate the association between hyperventilation and exhaustion syndrome. Thirty patients with exhaustion syndrome and 14 healthy subjects were evaluated with the Nijmegen Symptom Questionnaire (NQ). The participants completed questionnaires about exhaustion, mental state, sleep disturbance, pain and quality of life. The evaluation was repeated 4 weeks later, after half of the patients and healthy subjects had engaged in a therapy method called 'Grounding', a physical exercise inspired by African dance. The patients reported significantly higher levels of hyperventilation as compared to the healthy subjects. All patients' average score on NQ was 26.57 ± 10.98, while that of the healthy subjects was 15.14 ± 7.89 (t = -3.48, df = 42, p < 0.001). The NQ scores correlated strongly with two measures of exhaustion (Karolinska Exhaustion Scale KES r = 0.772, p < 0.01; Shirom Melamed Burnout Measure SMBM r = 0.565, p < 0.01), mental status [Hospital Anxiety and Depression Score (HADS) depression r = 0.414, p < 0.01; HADS anxiety r = 0.627, p < 0.01], sleep disturbances (r = -0.514, p < 0.01), pain (r = -.370, p < 0.05) and poor well-being (Medical Outcomes Survey Short Form 36 questionnaire- SR Health r = -0.529, p < 0.05). In the logistic regression analysis, the variance in the scores from NQ were explained to a high degree (R(2) = 0.752) by scores in KES and HADS. The brief Grounding training contributed to a near significant reduction in hyperventilation (F = 2.521, p < 0.124) and to significant reductions in exhaustion scores and scores of depression and anxiety. The conclusion is that hyperventilation is common in exhaustion syndrome patients and that it can be reduced by systematic physical therapy

  7. Long-term oxidation of candidate cast iron and stainless steel exhaust system alloys from 650 to 800 °C in air with water vapor

    SciTech Connect

    Brady, Michael P.; Muralidharan, Govindarajan; Leonard, Donovan .; Haynes, James A.; Weldon, R. G.; England, R. D.

    2014-08-29

    Here, the oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 °C in air with 10% H2O. At 650 °C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 °C and higher, whereas the oxide scales formed on SiMo cast iron remained adherent from 700-800 °C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 °C compared to 650-700 °C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.

  8. Long-term oxidation of candidate cast iron and stainless steel exhaust system alloys from 650 to 800 °C in air with water vapor

    DOE PAGES

    Brady, Michael P.; Muralidharan, Govindarajan; Leonard, Donovan .; ...

    2014-08-29

    Here, the oxidation behavior of SiMo cast iron, Ni-resist D5S cast iron, cast chromia-forming austenitic stainless steels of varying Cr/Ni content based on CF8C plus, HK, and HP, and a developmental cast alumina-forming austenitic (AFA) stainless steel of interest for diesel exhaust system components were studied for up to 5000 h at 650-800 °C in air with 10% H2O. At 650 °C, the Ni-resist D5S exhibited moderately better oxidation resistance than did the SiMo cast iron. However, the D5S suffered from oxide scale spallation issues at 700 °C and higher, whereas the oxide scales formed on SiMo cast iron remainedmore » adherent from 700-800 °C despite oxide scales hundreds of microns thick. The oxidation of the SiMo cast iron exhibited unusual temperature dependence, with periods of slower oxidation kinetics at 750-800 °C compared to 650-700 °C due to continuous silica-rich scale formation at the higher temperatures. The oxidation of the cast chromia-forming austenitics trended with the level of Cr and Ni additions, with small mass losses consistent with Cr oxy-hydroxide volatilization processes for the higher 25Cr/25-35Ni HK and HP type alloys, and transition to rapid Fe-base oxide formation and scale spallation in the lower 19Cr/12Ni CF8C plus type alloy. In contrast, small positive mass changes consistent with protective alumina scale formation were observed for the cast AFA alloy under all conditions studied. Implications of these findings for diesel exhaust system components are discussed.« less

  9. Hybrid Exhaust Component

    NASA Technical Reports Server (NTRS)

    Pelletier, Gerard D. (Inventor); Logan, Charles P. (Inventor); McEnerney, Bryan William (Inventor); Haynes, Jeffrey D. (Inventor)

    2015-01-01

    An exhaust includes a wall that has a first composite material having a first coefficient of thermal expansion and a second composite material having a second coefficient of the thermal expansion that is less than the first coefficient of thermal expansion.

  10. Diesel engine exhaust

    Integrated Risk Information System (IRIS)

    Diesel engine exhaust ; CASRN N.A . Human health assessment information on a chemical substance is included in the IRIS database only after a comprehensive review of toxicity data , as outlined in the IRIS assessment development process . Sections I ( Health Hazard Assessments for Noncarcinogenic Ef

  11. [Progresses on adverse health effects of automobile exhaust].

    PubMed

    Cheng, Yibin; Jin, Yinlong; Liu, Yingchun

    2003-09-01

    The progresses on the latest studies at home and abroad on adverse health effects of automobile exhaust were reviewed in this paper. Particulates and poisonous gases from automobile exhaust were considered to be harmful to respiratory system, immune system and reproductive system. It showed that increased prevalence of respiratory disease (e.g. chronic bronchitis and asthma), and decreased lung function, immunity were associated with automobile exhaust. The carcinogenic potential from the exposure to automobile exhausts needs to be further explored because the carcinogenesis is multifactorial.

  12. Multispectral imaging of aircraft exhaust

    NASA Astrophysics Data System (ADS)

    Berkson, Emily E.; Messinger, David W.

    2016-05-01

    Aircraft pollutants emitted during the landing-takeoff (LTO) cycle have significant effects on the local air quality surrounding airports. There are currently no inexpensive, portable, and unobtrusive sensors to quantify the amount of pollutants emitted from aircraft engines throughout the LTO cycle or to monitor the spatial-temporal extent of the exhaust plume. We seek to thoroughly characterize the unburned hydrocarbon (UHC) emissions from jet engine plumes and to design a portable imaging system to remotely quantify the emitted UHCs and temporally track the distribution of the plume. This paper shows results from the radiometric modeling of a jet engine exhaust plume and describes a prototype long-wave infrared imaging system capable of meeting the above requirements. The plume was modeled with vegetation and sky backgrounds, and filters were selected to maximize the detectivity of the plume. Initial calculations yield a look-up chart, which relates the minimum amount of emitted UHCs required to detect the presence of a plume to the noise-equivalent radiance of a system. Future work will aim to deploy the prototype imaging system at the Greater Rochester International Airport to assess the applicability of the system on a national scale. This project will help monitor the local pollution surrounding airports and allow better-informed decision-making regarding emission caps and pollution bylaws.

  13. Partially integrated exhaust manifold

    SciTech Connect

    Hayman, Alan W; Baker, Rodney E

    2015-01-20

    A partially integrated manifold assembly is disclosed which improves performance, reduces cost and provides efficient packaging of engine components. The partially integrated manifold assembly includes a first leg extending from a first port and terminating at a mounting flange for an exhaust gas control valve. Multiple additional legs (depending on the total number of cylinders) are integrally formed with the cylinder head assembly and extend from the ports of the associated cylinder and terminate at an exit port flange. These additional legs are longer than the first leg such that the exit port flange is spaced apart from the mounting flange. This configuration provides increased packaging space adjacent the first leg for any valving that may be required to control the direction and destination of exhaust flow in recirculation to an EGR valve or downstream to a catalytic converter.

  14. 40 CFR 86.210-08 - Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... constant mass flow system must be used to ensure a proportional THC measurement. (2) For natural gas-fueled... than 355 °F). This will be determined by a temperature sensor located on a section of the probe wall outside of the walls of the sampling system. The temperature sensor shall be insulated from any...

  15. Altitude-Wind-Tunnel Investigation of R-4360-18 Power-Plant Installation for XR60 Airplane. 3; Performance of Induction and Exhaust Systems

    NASA Technical Reports Server (NTRS)

    Dupree, David T.; Hawkins, W. Kent

    1947-01-01

    A study has been made of the performance of the induction and the exhaust systems on the XR60 power-plant installation as part of an investigation conducted in the Cleveland altitude wind tunnel. Altitude flight conditions from 5000 to 30,000 feet were simulated for a range of engine powers from 750 to 3000 brake horsepower. Slipstream rotation prevented normal pressure recoveries in the right side of the main duct in the region of the right intercooler cooling-air duct inlet. Total-pressure losses in the charge-air flow between the turbosupercharger and the intercoolers were as high as 2.1 inches of mercury. The total-pressure distribution of the charge air at the intercooler inlets was irregular and varied as much as 1.0 inch of mercury from the average value at extreme conditions, Total-pressure surveys at the carburetor top deck showed a variation from the average value of 0.3 inch of mercury at take-off power and 0.05 inch of mercury at maximum cruising power, The carburetor preheater system increased the temperature of the engine charge air a maximum of about 82 F at an average cowl-inlet air temperature of 9 F, a pressure altitude of 5000 feet, and a brake horsepower of 1240.

  16. Shape memory alloy actuated adaptive exhaust nozzle for jet engine

    NASA Technical Reports Server (NTRS)

    Song, Gangbing (Inventor); Ma, Ning (Inventor)

    2009-01-01

    The proposed adaptive exhaust nozzle features an innovative use of the shape memory alloy (SMA) actuators for actively control of the opening area of the exhaust nozzle for jet engines. The SMA actuators remotely control the opening area of the exhaust nozzle through a set of mechanism. An important advantage of using SMA actuators is the reduction of weight of the actuator system for variable area exhaust nozzle. Another advantage is that the SMA actuator can be activated using the heat from the exhaust and eliminate the need of other energy source. A prototype has been designed and fabricated. The functionality of the proposed SMA actuated adaptive exhaust nozzle is verified in the open-loop tests.

  17. Analysis on Impulse Characteristics of PDRE with Exhaust Measurements

    NASA Astrophysics Data System (ADS)

    Hu, Hong-bo; Weng, Chun-sheng; Lv, Xiao-jing; Li, Ning

    2014-06-01

    The exhaust characteristics related to impulse was investigated in a pulse detonation rocket engine (PDRE) by tunable diode laser absorption sensing system. The instantaneous parameters of temperature, velocity and pressure were obtained for exhaust at engine exit. Analysis on impulse characteristics based on control volume of the PDRE was conducted for a single operation circle with experimental results. It was concluded that the impulse (3.26 N·s) achieved by exhaust measurements was in agreement with that (3.09 N·s) by a load cell. The impulse caused by exhaust momentum experienced an extremely sharp ascending, a steep rising and a slow increment in sequence. The exhausts during the sharp ascending and steep rising were under expansion with high mass weighted average temperature (>1266 K), so there was a possible promotion for exhausts utilizing.

  18. Exhaust purification with on-board ammonia production

    DOEpatents

    Robel, Wade J.; Driscoll, James J.; Coleman, Gerald N.; Knox, Kevin J.

    2009-06-30

    A power source is provided for use with selective catalytic reduction systems for exhaust-gas purification. The power source includes a first cylinder group with a first air-intake passage and a first exhaust passage, and a second cylinder group with a second air-intake passage and a second exhaust passage. The second air-intake passage is fluidly isolated from the first air-intake passage. A fuel-supply device may be configured to supply fuel into the first exhaust passage, and a catalyst may be disposed downstream of the fuel-supply device to convert at least a portion of the exhaust stream in the first exhaust passage into ammonia.

  19. Outdoor smog chamber experiments: reactivity of methanol exhaust. Part 2. Quality assurance and data processing system description

    SciTech Connect

    Jeffries, H.E.; Sexton, K.G.; Kamens, R.M.; Holleman, M.S.

    1985-09-01

    The report describes the Quality Assurance and Data Processing procedures and systems used at the UNC Outdoor Smog Chamber Facility. The primary product of research conducted at this facility is information in the form of measurements of reactants and products in photochemical systems and measurements of the critical parameters that influence the chemical transformations system. Generating useful data begins with understanding the goals of the project and the special needs and concerns of conducting a successful smog-chamber operation. The system components are designed to collect, transfer, process, and report accurate, high-resolution data without loss or distortion. The system components in the Quality Assurance and Data Processing system are: people, hardware, software, checklists, and data bases. Quality-assurance checks are made at every level of the program. Pressurized gas-tank and liquid mixtures were used to establish experimental conditions of HC assuring consistency throughout the program. Several NBS traceable standards and liquid injections into the chamber used for calibration have been intercompared and show good agreement.

  20. Short review on heat recovery from exhaust gas

    NASA Astrophysics Data System (ADS)

    Jaber, Hassan; Khaled, Mahmoud; Lemenand, Thierry; Ramadan, Mohamad

    2016-07-01

    The increasing growth of energy demand leads to issues associated with energy demand reduction and propose new energy efficient solutions. Heat recovery consists the most promising solution especially in regions where renewable energy resources are not available. That is why the domain of heat recovery has shown a tremendous improvement during the recent years. On the other hand, few works have been dedicated to heat recovery from exhaust gas. This paper presents a review on heat recovery from exhaust gas. The authors propose to classify exhaust gas heat recovery systems within three different classifications that are exhaust gas temperature, utilized equipment and recovery purposes.

  1. 24 CFR 3280.708 - Exhaust duct system and provisions for the future installation of a clothes dryer.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... duct system consisting of a complete access space (hole) through the wall or floor cavity with a cap or... designed to resist the entry of water or rodents. The manufacturer is not required to provide the moisture... (hole) through the wall or floor cavity with a cap or cover on the interior and exterior of the...

  2. 40 CFR 86.1309-90 - Exhaust gas sampling system; Otto-cycle and non-petroleum-fueled engines.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... gasoline-fueled, natural gas-fueled, liquefied petroleum gas-fueled or methanol-fueled engines. In the CVS... associated valves, pressure and temperature sensors. The temperature of the sample lines shall be more than 5... from similar tests.) The temperature measuring system (sensors and readout) shall have an accuracy...

  3. 40 CFR 86.109-94 - Exhaust gas sampling system; Otto-cycle vehicles not requiring particulate emission measurements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...), and associated valves, pressure and temperature sensors. The PDP-CVS shall conform to the following... and may be required for natural gas-fueled and liquefied petroleum gas-fueled vehicles. Procedures for..., and assorted valves, and pressure and temperature sensors. The CFV sample system shall conform to...

  4. 40 CFR 86.210-08 - Exhaust gas sampling system; Diesel-cycle vehicles not requiring particulate emissions measurements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... detector (HFID) (375 °±20 °F (191 °±11 °C)) sample for total hydrocarbon (THC) analysis. The HFID sample... integrated measurement of diluted THC is required. Unless compensation for varying mass flow is made, a constant mass flow system must be used to ensure a proportional THC measurement. (2) For natural...

  5. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. [Lewis 8 by 6-foot supersonic wind tunnel tests

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.

    1980-01-01

    Wind tunnel tests were conducted to evaluate the aerodynamic performance of a coannular exhaust nozzle for a proposed variable stream control supersonic propulsion system. Tests were conducted with two simulated configurations differing primarily in the fan duct flowpaths: a short flap mechanism for fan stream control with an isentropic contoured flow splitter, and an iris fan nozzle with a conical flow splitter. Both designs feature a translating primary plug and an auxiliary inlet ejector. Tests were conducted at takeoff and simulated cruise conditions. Data were acquired at Mach numbers of 0, 0.36, 0.9, and 2.0 for a wide range of nozzle operating conditions. At simulated supersonic cruise, both configurations demonstrated good performance, comparable to levels assumed in earlier advanced supersonic propulsion studies. However, at subsonic cruise, both configurations exhibited performance that was 6 to 7.5 percent less than the study assumptions. At take off conditions, the iris configuration performance approached the assumed levels, while the short flap design was 4 to 6 percent less.

  6. Use of aromatic salts for simultaneously removing SO.sub.2 and NO.sub.x pollutants from exhaust of a combustion system

    DOEpatents

    Levendis, Yiannis A.; Wise, Donald L.

    1994-10-04

    A method is disclosed for removing pollutants from the exhaust of combustion systems burning fuels containing substantial amounts of sulfur and nitrogen. An exemplary method of the invention involves the formation and reaction of a sorbent comprising calcium benzoate. The calcium benzoate is either dry-sprayed (in the form of a fine powder) or wet-sprayed in an aqueous solution in a high temperature environment such as a combustion chamber. The latter technique is feasible since calcium benzoate is a water-soluble form of calcium. When the dispersed particles of calcium benzoate are heated to a high temperature, the organic benzoate burns off and fine calcium oxide particles are formed. These particles are cenospheric (hollow) and have thin and highly porous walls, thus, affording optimum external and internal accessibility for reacting with toxic gaseous emissions such as SO.sub.2. Further, the combustion of the organic benzoate portion of the sorbent results in the conversion of NO.sub.x to N.sub.2.

  7. Detectability of vehicle exhaust hydrocarbons: the Wisconsin inspection/maintentance (I/M) analyzer and the remote vehicle emissions sensing (RVES) system

    NASA Astrophysics Data System (ADS)

    Cors, Rebecca; Rendahl, Craig S.

    1995-05-01

    The Wisconsin Departments of Transportation and Natural Resources evaluated the hydrocarbon (HC) detection capability of the Remote Vehicle Emissions Sensing (RVES) system, which employs remote sensing technology, and Wisconsin's I/M analyzers, which use BAR90 specifications. Both analyzers employ non-dispersive infrared (NDIR) technology. Other recent research has quantified HC measurement inaccuracies for vehicle emissions analyzers that use NDIR technology or have BAR90 specifications. This research shows that BAR90 analyzers undermeasure some water- soluble HCs and NDIR analyzers undermeasure olefinic and aromatic HCs. This evaluation was based on both field measurements and calculations that simulate these inaccuracies. These calculations give a measurement accuracy value, which estimates the fraction of the total HCs in a vehicle exhaust sample that each analyzer measures. Other calculations quantify the ozone forming potential of this measured fraction by considering the reactivity of measured HCs. Our field measurements and calculations show Wisconsin I/M analyzer HC measurements are on average 7 percent and 1 percent less than RVES, respectively. Calculations estimate that both analyzers measure at most 43 to 71 percent (an average 61 percent) of the total HCs in an emissions sample. Additional calculations estimate that the HCs measured by both analyzers have 49 to 71 percent (an average 62 percent) of the ozone forming potential of the total HCs in an emissions sample.

  8. Model aerodynamic test results for two variable cycle engine coannular exhaust systems at simulated takeoff and cruise conditions. Comprehensive data report. Volume 2: Tabulated aeroynamic data book 1

    NASA Technical Reports Server (NTRS)

    Nelson, D. P.

    1981-01-01

    Tabulated data from wind tunnel tests conducted to evaluate the aerodynamic performance of an advanced coannular exhaust nozzle for a future supersonic propulsion system are presented. Tests were conducted with two test configurations: (1) a short flap mechanism for fan stream control with an isentropic contoured flow splitter, and (2) an iris fan nozzle with a conical flow splitter. Both designs feature a translating primary plug and an auxiliary inlet ejector. Tests were conducted at takeoff and simulated cruise conditions. Data were acquired at Mach numbers of 0, 0.36, 0.9, and 2.0 for a wide range of nozzle operating conditions. At simulated supersonic cruise, both configurations demonstrated good performance, comparable to levels assumed in earlier advanced supersonic propulsion studies. However, at subsonic cruise, both configurations exhibited performance that was 6 to 7.5 percent less than the study assumptions. At takeoff conditions, the iris configuration performance approached the assumed levels, while the short flap design was 4 to 6 percent less. Data are provided through test run 25.

  9. Numerical Analysis of Rocket Exhaust Cratering

    NASA Technical Reports Server (NTRS)

    2008-01-01

    Supersonic jet exhaust impinging onto a flat surface is a fundamental flow encountered in space or with a missile launch vehicle system. The flow is important because it can endanger launch operations. The purpose of this study is to evaluate the effect of a landing rocket s exhaust on soils. From numerical simulations and analysis, we developed characteristic expressions and curves, which we can use, along with rocket nozzle performance, to predict cratering effects during a soft-soil landing. We conducted a series of multiphase flow simulations with two phases: exhaust gas and sand particles. The main objective of the simulation was to obtain the numerical results as close to the experimental results as possible. After several simulating test runs, the results showed that packing limit and the angle of internal friction are the two critical and dominant factors in the simulations.

  10. Formal Verification of Safety Properties for Aerospace Systems Through Algorithms Based on Exhaustive State-Space Exploration

    NASA Technical Reports Server (NTRS)

    Ciardo, Gianfranco

    2004-01-01

    The Runway Safety Monitor (RSM) designed by Lockheed Martin is part of NASA's effort to reduce aviation accidents. We developed a Petri net model of the RSM protocol and used the model checking functions of our tool SMART to investigate a number of safety properties in RSM. To mitigate the impact of state-space explosion, we built a highly discretized model of the system, obtained by partitioning the monitored runway zone into a grid of smaller volumes and by considering scenarios involving only two aircraft. The model also assumes that there are no communication failures, such as bad input from radar or lack of incoming data, thus it relies on a consistent view of reality by all participants. In spite of these simplifications, we were able to expose potential problems in the RSM conceptual design. Our findings were forwarded to the design engineers, who undertook corrective action. Additionally, the results stress the efficiency attained by the new model checking algorithms implemented in SMART, and demonstrate their applicability to real-world systems. Attempts to verify RSM with NuSMV and SPIN have failed due to excessive memory consumption.

  11. The Benefits of Mixed Flow Technology: Roof Exhaust Fans.

    ERIC Educational Resources Information Center

    Tetley, Paul A.

    2001-01-01

    Explores the problems associated with laboratory workstation exhaust faced by most colleges and universities and explains how the selection of a proper fume hood exhaust system can prevent or eliminate these problems and provide a clean and safe lab environment. Also highlighted are indoor air quality legal implications. (GR)

  12. PHYSICAL AND NUMERICAL MODELING OF ASD EXHAUST DISPERSION AROUND HOUSES

    EPA Science Inventory

    The report discusses the use of a wind tunnel to physically model the dispersion of exhaust plumes from active soil depressurization (ASD) radon mitigation systems in houses. he testing studied the effects of exhaust location (grade level vs. above the eave), as house height, roo...

  13. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would...

  14. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would...

  15. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would...

  16. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would...

  17. 14 CFR 25.941 - Inlet, engine, and exhaust compatibility.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY AIRPLANES Powerplant General § 25.941 Inlet, engine, and exhaust compatibility. For airplanes using variable inlet or exhaust system geometry, or both... malfunctions) upon the aerodynamic control of the airplane may not result in any condition that would...

  18. Aero-acoustic tests of duct-burning turbofan exhaust nozzles

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Packman, A. B.

    1976-01-01

    The acoustic and aerodynamic characteristics of several exhaust systems suitable for duct burning turbofan engines are evaluated. Scale models representing unsuppressed coannular exhaust systems are examined statically under varying exhaust conditions. Ejectors with both hardwall and acoustically treated inserts are investigated.

  19. Engine with pulse-suppressed dedicated exhaust gas recirculation

    SciTech Connect

    Keating, Edward J.; Baker, Rodney E.

    2016-06-07

    An engine assembly includes an intake assembly, a spark-ignited internal combustion engine, and an exhaust assembly. The intake assembly includes a charge air cooler disposed between an exhaust gas recirculation (EGR) mixer and a backpressure valve. The charge air cooler has both an inlet and an outlet, and the back pressure valve is configured to maintain a minimum pressure difference between the inlet of the charge air cooler and an outlet of the backpressure valve. A dedicated exhaust gas recirculation system is provided in fluid communication with at least one cylinder and with the EGR mixer. The dedicated exhaust gas recirculation system is configured to route all of the exhaust gas from the at least one cylinder to the EGR mixer for recirculation back to the engine.

  20. Exhaust gas sensors

    SciTech Connect

    Hiller, J.; Miree, T.J.

    1997-02-09

    The automotive industry needed a fast, reliable, under-the-hood method of determining nitrogen oxides in automobile exhaust. Several technologies were pursued concurrently. These sensing technologies were based on light absorption, electrochemical methods, and surface mass loading. The Y-12 plant was selected to study the methods based on light absorption. The first phase was defining the detailed technical objectives of the sensors--this was the role of the automobile companies. The second phase was to develop prototype sensors in the laboratories--the national laboratories. The final phase was testing of the prototype sensors by the automobile industries. This program was canceled a few months into what was to be a three-year effort.

  1. Acceptance test procedure for SY Tank Farm replacement exhauster unit

    SciTech Connect

    Becken, G.W.

    1994-12-16

    The proper functioning of a new 241-SY Tank Farm replacement exhauster will be acceptance tested, to establish operability and to provide an operational baseline for the equipment. During this test, a verification of all of the alarm and control circuits associated with the exhaust, which provide operating controls and/or signals to local and remote alarm/annunciator panels, shall be performed. Test signals for sensors that provide alarms, warnings, and/or interlocks will be applied to verify that alarm, warning, and interlock setpoints are correct. Alarm and warning lights, controls, and local and remote readouts for the exhauster will be verified to be adequate for proper operation of the exhauster. Testing per this procedure shall be conducted in two phases. The first phase of testing, to verify alarm, warning, and interlock setpoints primarily, will be performed in the MO-566 Fab Shop. The second phase of testing, to verify proper operation and acceptable interface with other tank farm systems, will be conducted after the exhauster and all associated support and monitoring equipment have been installed in the SY Tank Farm. The exhauster, which is mounted on a skid and which will eventually be located in the SY tank farm, receives input signals from a variety of sensors mounted on the skid and associated equipment. These sensors provide information such as: exhauster system inlet vacuum pressure; prefilter and HEPA filter differential pressures; exhaust stack sampler status; exhaust fan status; system status (running/shut down); and radiation monitoring systems status. The output of these sensors is transmitted to the exhauster annunciator panel where the signals are displayed and monitored for out-of-specification conditions.

  2. Identification of Potential Novel Biomarkers and Signaling Pathways Related to Otitis Media Induced by Diesel Exhaust Particles Using Transcriptomic Analysis in an In Vivo System

    PubMed Central

    Kwon, Jee Young; Kim, Yeo Jin; Hun Kang, Seung; Jang, Won-Hee; Lee, Jun Ho; Seo, Myung-Whan; Song, Jae-Jun; Seo, Young Rok; Park, Moo Kyun

    2016-01-01

    Introduction Air pollutants are associated with inflammatory diseases such as otitis media (OM). Significantly higher incidence rates of OM are reported in regions with air pollution. Diesel exhaust particles (DEPs) comprise a major class of contaminants among numerous air pollutants, and they are characterized by a carbonic mixture of polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs, and small amounts of sulfate, nitrate, metals and other trace elements. DEP exposure is a risk factor for inflammatory diseases. Our previous study identified potential biomarkers using gene expression microarray and pathway analyses in an in vitro system. Although in vitro investigations have been conducted to elucidate plausible biomarkers and molecular mechanisms related to DEP exposure, in vivo studies are necessary to identify the exact biological relevance regarding the incidence of OM caused by DEP exposure. In this study, we identified potential molecular biomarkers and pathways triggered by DEP exposure in a rodent model. Methods Transcriptomic analysis was employed to identify novel potential biomarkers in the middle ear of DEP-exposed mice. Results A total of 697 genes were differentially expressed in the DEP-exposed mice; 424 genes were upregulated and 273 downregulated. In addition, signaling pathways among the differentially expressed genes mediated by DEP exposure were predicted. Several key molecular biomarkers were identified including cholinergic receptor muscarinic 1 (CHRM1), erythropoietin (EPO), son of sevenless homolog 1 (SOS1), estrogen receptor 1 (ESR1), cluster of differentiation 4 (CD4) and interferon alpha-1 (IFNA1). Conclusions Our results shed light on the related cell processes and gene signaling pathways affected by DEP exposure. The identified biomarkers might be potential candidates for determining early diagnoses and effective treatment strategies for DEP-mediated disorders. PMID:27832168

  3. 40 CFR 86.110-94 - Exhaust gas sampling system; diesel-cycle vehicles, and Otto-cycle vehicles requiring particulate...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... heated flame ionization detector (HFID) (375 °±20 °F (191 °±11 °C)) sample for total hydrocarbon (THC... the exhaust enters the dilution tunnel). (ii) Sufficiently distant (radially) from the THC probe so as to be free from the influence of any wakes or eddies produced by the THC probe. (iii) 0.5 inch...

  4. Jet Engine Exhaust Analysis by Subtractive Chromatography

    DTIC Science & Technology

    1978-12-01

    and J. J. Brooks. Development of a portable miniature collection system for the exposure as- sessment within the microenvironment for carcinogens ...65 A-2. Recovery of acrylonitrile from standard sample generation system ...... ............. 66 B-I. Jet engine exhaust sampling and analysis...7 n-Butane 0.16 2.6 minutes 8 Propylene oxide 3.14 52 minutes 9 Acrylonitrile 9.35 2.6 hours 10 Phenanthrene 1.9 x 106 61 years 11 4-Bromodiphenyl

  5. Portable exhausters POR-004 SKID B, POR-005 SKID C, POR-006 SKID D storage plan

    SciTech Connect

    Nelson, O.D.

    1997-09-04

    This document provides a storage plan for portable exhausters POR-004 SKID B, POR-005 SKID C, AND POR-006 SKID D. The exhausters will be stored until they are needed by the TWRS (Tank Waste Remediation Systems) Saltwell Pumping Program. The storage plan provides criteria for portable exhauster storage, periodic inspections during storage, and retrieval from storage.

  6. Design Analysis Report for 244-AR Interim Stabilization Exhaust Ventilation Ducting

    SciTech Connect

    RUTHERFORD, J.

    2002-11-21

    This report documents the design analysis performed for the exhaust ducting associated with the 244-AR Interim Stabilization Project. The exhaust ducting connects portable exhausters PORO5 and PORO6 to the existing east dog house of the 291-AR filter vault and the vessel ventilation system. This analysis examines loads on the ductwork and ductwork supports.

  7. Measurement of automobile exhaust emissions under realistic road conditions

    SciTech Connect

    Staab, J.; Schurmann, D.

    1987-01-01

    An exhaust gas measurement system for on-board use has been developed, which enables the direct and continuous determination of the exhaust mass emissions in vehicles on the road. Such measurements under realistic traffic conditions are a valuable supplement to measurements taken on test benches, the latter, however, still being necessary. In the last two years numerous test runs were undertaken. The reliability of the on-board system could be demonstrated and a very informative view of the exhaust emissions behavior of a vehicle on the road was obtained from the test results.

  8. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    DOEpatents

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  9. High-speed schlieren imaging of rocket exhaust plumes

    NASA Astrophysics Data System (ADS)

    Coultas-McKenney, Caralyn; Winter, Kyle; Hargather, Michael

    2016-11-01

    Experiments are conducted to examine the exhaust of a variety of rocket engines. The rocket engines are mounted in a schlieren system to allow high-speed imaging of the engine exhaust during startup, steady state, and shutdown. A variety of rocket engines are explored including a research-scale liquid rocket engine, consumer/amateur solid rocket motors, and water bottle rockets. Comparisons of the exhaust characteristics, thrust and cost for this range of rockets is presented. The variety of nozzle designs, target functions, and propellant type provides unique variations in the schlieren imaging.

  10. Capture of Heat Energy from Diesel Engine Exhaust

    SciTech Connect

    Chuen-Sen Lin

    2008-12-31

    Diesel generators produce waste heat as well as electrical power. About one-third of the fuel energy is released from the exhaust manifolds of the diesel engines and normally is not captured for useful applications. This project studied different waste heat applications that may effectively use the heat released from exhaust of Alaskan village diesel generators, selected the most desirable application, designed and fabricated a prototype for performance measurements, and evaluated the feasibility and economic impact of the selected application. Exhaust flow rate, composition, and temperature may affect the heat recovery system design and the amount of heat that is recoverable. In comparison with the other two parameters, the effect of exhaust composition may be less important due to the large air/fuel ratio for diesel engines. This project also compared heat content and qualities (i.e., temperatures) of exhaust for three types of fuel: conventional diesel, a synthetic diesel, and conventional diesel with a small amount of hydrogen. Another task of this project was the development of a computer-aided design tool for the economic analysis of selected exhaust heat recovery applications to any Alaskan village diesel generator set. The exhaust heat recovery application selected from this study was for heating. An exhaust heat recovery system was fabricated, and 350 hours of testing was conducted. Based on testing data, the exhaust heat recovery heating system showed insignificant effects on engine performance and maintenance requirements. From measurements, it was determined that the amount of heat recovered from the system was about 50% of the heat energy contained in the exhaust (heat contained in exhaust was evaluated based on environment temperature). The estimated payback time for 100% use of recovered heat would be less than 3 years at a fuel price of $3.50 per gallon, an interest rate of 10%, and an engine operation of 8 hours per day. Based on experimental data

  11. Characterization of nitromethane emission from automotive exhaust

    NASA Astrophysics Data System (ADS)

    Sekimoto, Kanako; Inomata, Satoshi; Tanimoto, Hiroshi; Fushimi, Akihiro; Fujitani, Yuji; Sato, Kei; Yamada, Hiroyuki

    2013-12-01

    We carried out time-resolved experiments using a proton-transfer-reaction mass spectrometer and a chassis dynamometer to characterize nitromethane emission from automotive exhaust. We performed experiments under both cold-start and hot-start conditions, and determined the dependence of nitromethane emission on vehicle velocity and acceleration/deceleration as well as the effect of various types of exhaust-gas treatment system. We found that nitromethane emission was much lower from a gasoline car than from diesel trucks, probably due to the reduction function of the three-way catalyst of the gasoline car. Diesel trucks without a NOx reduction catalyst using hydrocarbons produced high emissions of nitromethane, with emission factors generally increasing with increasing acceleration at low vehicle velocities.

  12. Testing Installed Propulsion for Shielded Exhaust Configurations

    NASA Technical Reports Server (NTRS)

    Bridges, James E.; Podboy, Gary G.; Brown, Clifford A.

    2016-01-01

    Jet-surface interaction (JSI) can be a significant factor in the exhaust noise of installed propulsion systems. Tests to further the understanding and prediction of the acoustic impacts of JSI have been described. While there were many objectives for the test, the overall objective was to prepare for a future test validating the design of a low-noise, lowboom supersonic commercial airliner. In this paper we explore design requirements for a partial aircraft model to be used in subscale acoustic testing, especially focusing on the amount of aircraft body that must be included to produce the acoustic environment between propulsion exhaust system and observer. We document the dual-stream jets, both nozzle and flow conditions, which were tested to extend JSI acoustic modeling from simple singlestream jets to realistic dual-stream exhaust nozzles. Sample observations are provided of changes to far-field sound as surface geometry and flow conditions were varied. Initial measurements are presented for integrating the propulsion on the airframe for a supersonic airliner with simulated airframe geometries and nozzles. Acoustic impacts of installation were modest, resulting in variations of less than 3 EPNdB in most configurations.

  13. Exhaust emissions reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Rezy, B. J.; Stuckas, K. J.; Tucker, J. R.; Meyers, J. E.

    1982-01-01

    Three concepts which, to an aircraft piston engine, provide reductions in exhaust emissions of hydrocarbons and carbon monoxide while simultaneously improving fuel economy. The three chosen concepts, (1) an improved fuel injection system, (2) an improved cooling cylinder head, and (3) exhaust air injection, when combined, show a synergistic relationship in achieving these goals. In addition, the benefits of variable ignition timing were explored and both dynamometer and flight testing of the final engine configuration were accomplished.

  14. Method for determining H2SO4 in automobile exhaust.

    PubMed

    Kipp, K L; Rhodes, D R

    1975-04-01

    A relatively simple procedure for measuring H2SO4 in auto exhaust will be presented. The system is compatible with the Federal constant volume sampler (CVS unit). The time required to get sufficient sample for titration is 15-30 min. Values on sulfates in exhaust with a catalyst car and a noncatalyst car agree well with literature data obtained by dilution tube and filtration techniques.

  15. Testing Installed Propulsion For Shielded Exhaust Configurations

    NASA Technical Reports Server (NTRS)

    Bridges, James; Podboy, Gary G.; Brown, Clifford A.

    2016-01-01

    Jet-surface interaction (JSI) can be a significant factor in the exhaust noise of installed propulsion. Tests to further understanding and prediction of the acoustic impacts of JSI have been described. While there were many objectives for the NASA JSI1044 test, the overall objective was to prepare for a 2016 test validating the design of a low-noise, low-boom supersonic commercial airliner. In this paper we explore design requirements for a partial aircraft model to be used in subscale acoustic testing, especially focusing on the amount of shielding surface that must be provided to simulate the acoustic environment between propulsion exhaust system and observer. We document the dual-stream jets, both nozzle and flow conditions, which were tested to extend JSI acoustic modeling from simple single-stream jets to realistic dual-stream exhaust nozzles. Examples of observations found as surface geometry and flow conditions were varied were provided. And we have presented initial measurements of the installation impacts of integrating the propulsion on the airframe for a supersonic airliner with realistic airframe geometries and nozzles.

  16. Chemical laser exhaust pipe design research

    NASA Astrophysics Data System (ADS)

    Sun, Yunqiang; Huang, Zhilong; Chen, Zhiqiang; Ren, Zebin; Guo, Longde

    2016-10-01

    In order to weaken the chemical laser exhaust gas influence of the optical transmission, a vent pipe is advised to emissions gas to the outside of the optical transmission area. Based on a variety of exhaust pipe design, a flow field characteristic of the pipe is carried out by numerical simulation and analysis in detail. The research results show that for uniform deflating exhaust pipe, although the pipeline structure is cyclical and convenient for engineering implementation, but there is a phenomenon of air reflows at the pipeline entrance slit which can be deduced from the numerical simulation results. So, this type of pipeline structure does not guarantee seal. For the design scheme of putting the pipeline contract part at the end of the exhaust pipe, or using the method of local area or tail contraction, numerical simulation results show that backflow phenomenon still exists at the pipeline entrance slit. Preliminary analysis indicates that the contraction of pipe would result in higher static pressure near the wall for the low speed flow field, so as to produce counter pressure gradient at the entrance slit. In order to eliminate backflow phenomenon at the pipe entrance slit, concerned with the pipeline type of radial size increase gradually along the flow, flow field property in the pipe is analyzed in detail by numerical simulation methods. Numerical simulation results indicate that there is not reflow phenomenon at entrance slit of the dilated duct. However the cold air inhaled in the slit which makes the temperature of the channel wall is lower than the center temperature. Therefore, this kind of pipeline structure can not only prevent the leak of the gas, but also reduce the wall temperature. In addition, compared with the straight pipe connection way, dilated pipe structure also has periodic structure, which can facilitate system integration installation.

  17. A Flight Investigation of Exhaust-heat De-icing

    NASA Technical Reports Server (NTRS)

    Jones, Alun R; Rodert, Lewis A

    1940-01-01

    The National Advisory Committee for Aeronautics conducted exhaust-heat de-icing tests in flight to provide data needed in the application of this method. The capacity to extract heat from the exhaust gas for de-icing purposes, the quantity of heat required, and other factors were examined. The results indicate that a wing-heating system employing a spanwise exhaust tube within the leading edge of the wing removed 30 to 35 percent of the heat from exhaust gas entering the wing. Data are given from which the heat required for ice prevention can be calculated. Sample calculations have been made on the basis of existing engine power/wing area ratios to show that sufficient heating can be obtained for ice protection on modern transportation airplanes, provided that uniform distribution of the heat can be secured.

  18. Development of Exhaust Gas Driven Absorption Chiller-Heater

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Endou, Tetsuya; Saito, Kiyoshi; Kawai, Sunao

    Waste heat from co-generation systems are usually recovered by hot water or steam, those are used to drive absorption refrigerators at cooling time, and those are used for heating via heat exchangers at heating time. However waste heat from micro gas turbines are discharged in the form of exhaust gas, it is simple that exhaust gas is directly supplied to absorption chiller-heaters. In the first report we studied cooling cycle, and this second paper, we evaluated various absorption heating cycles for exhaust gas driven absorption chiller-heaters, and adopted one of these cycles for the prototype machine. Also, we experimented with the prototype for wide range condition and got the heating characteristics. Based on the experimental data, we developed a simulation model of the static characteristics, and then studied how to increase the output by limited exhaust gas.

  19. Fermentation exhaust gas analysis using mass spectrometry

    SciTech Connect

    Buckland, B.; Brix, Fastert, H.; Gbewonyo, K.; Hunt, G.; Jain, D.

    1985-11-01

    A Perkin Elmer MGA-1200 mass spectrometer has been coupled with a mini-computer and a sampling manifold to analyze up to 8 components in the exhaust gases of fermentors. Carbon dioxide, oxygen, and nitrogen are typically analyzed, but ethanol for yeast fermentations can also be tested by heating the line from the fermentor to the sampling manifold. Specifications, operation, and performance of the system are described. The system has been used for process control, the study of fermentation kinetics, and process development. 8 references, 7 figures, 1 table.

  20. Further exhaust emission control for two-stroke engines

    SciTech Connect

    Sato, Kazuo; Nakano, Masamitsu; Ukawa, Haruo; Inaga, Hisashi

    1994-09-01

    Two-stroke engines are being utilized in large numbers as small utility, lawn and garden equipment engines. The following two subjects were examined with regards to exhaust emission control. The first subject was to compare the theoretical values of a combustion model simulation with the experimentally measured values of the base line emission of two-stroke volume. The second subject was to examine the emission conformability to the 1995 and 1999 California Air Resources Board (CARB) exhaust emission regulations California Regulations for 1995 and Later Utility and Lawn and Garden Equipment Engine, adopted at March 20, 1992, amended, at November 3, 1993. in two-stroke engines with various combinations between various fuels, fuel supply systems and scavenging systems. For this subject it was determine;that the emission control systems based on the lean combustion can be used to meet the 1995 CARB exhaust emission regulations. However, it was also concluded that to meet the 1999 CARB exhaust emission regulations, various emission control systems with various combinations regarding such parameters as fuels, scavenging systems and exhaust systems must be used. 27 refs., 20 figs., 4 tabs.

  1. Turbojet-exhaust-nozzle secondary-airflow pumping as an exit control of an inlet-stability bypass system for a Mach 2.5 axisymmetric mixed-compression inlet. [Lewis 10- by 10-ft. supersonic wind tunnel test

    NASA Technical Reports Server (NTRS)

    Sanders, B. W.

    1980-01-01

    The throat of a Mach 2.5 inlet that was attached to a turbojet engine was fitted with large, porous bleed areas to provide a stability bypass system that would allow a large, stable airflow range. Exhaust-nozzle, secondary-airflow pumping was used as the exit control for the stability bypass airflow. Propulsion system response and stability bypass performance were obtained for several transient airflow disturbances, both internal and external. Internal airflow disturbances included reductions in overboard bypass airflow, power lever angle, and primary-nozzle area, as well as compressor stall. Nozzle secondary pumping as a stability bypass exit control can provide the inlet with a large stability margin with no adverse effects on propulsion system performance.

  2. Analysis, Verification, and Application of Equations and Procedures for Design of Exhaust-pipe Shrouds

    NASA Technical Reports Server (NTRS)

    Ellerbrock, Herman H.; Wcislo, Chester R.; Dexter, Howard E.

    1947-01-01

    Investigations were made to develop a simplified method for designing exhaust-pipe shrouds to provide desired or maximum cooling of exhaust installations. Analysis of heat exchange and pressure drop of an adequate exhaust-pipe shroud system requires equations for predicting design temperatures and pressure drop on cooling air side of system. Present experiments derive such equations for usual straight annular exhaust-pipe shroud systems for both parallel flow and counter flow. Equations and methods presented are believed to be applicable under certain conditions to the design of shrouds for tail pipes of jet engines.

  3. Embryotoxicity of irradiated and nonirradiated catalytic convertertreated automotive exhaust.

    PubMed

    Hoffman, D J; Campbell, K I

    1977-11-01

    This study was undertaken to examine the relative embryotoxicity in chick embryos of photochemically reacted and unreacted diluted automotive exhaust emissions from a system equipped with a catalytic converter. Clean air controls and H2SO4 aerosol controls equivalent in concentration to those found in the catalytic exhaust atmosphere were also studied. From day 1 through day 14 of development, continuous exposure to nonirradiated exhause resulted in decreased survival, lowered embryonic weight, a small increase in heart/body weight ratio, and altered hematocrit and serum enzyme activities (LDH and GOT). Irradiated exhaust had little effect on survival or on embryonic weight but resulted in a higher liver/body weight ratio as well as altered hematocrit and serum enzyme activities. Interactions or cumulative effects of different compositions of exhaust atmospheres may play a role in differing biological responses between unreacted and irradiated exhaust. Sulfuric acid aerosol had a minimal effect on survival and resulted in only a slight decrease in embryonic weight and serum LDH activity, with no other apparent effects. In previous studies where the catalytic converter was not used, more pronounced effects on survival, increased heart/body weigh ratio, elevated serum GPT activity, and liver discoloration were observed. Thus, the introduction of an oxidizing catalytic converter appeared to alleviate some but not all of the embryotoxic effects of automotive exhaust.

  4. Analysis of exhaustive limited service for token ring networks

    NASA Technical Reports Server (NTRS)

    Peden, Jeffery H.

    1990-01-01

    Token ring operation is well-understood in the cases of exhaustive, gated, gated limited, and ordinary cyclic service. There is no current data, however, on queueing models for the exhaustive limited service type. This service type differs from the others in that there is a preset maximum (omega) on the number of packets which may be transmitted per token reception, and packets which arrive after token reception may still be transmitted if the preset packet limit has not been reached. Exhaustive limited service is important since it closely approximates a timed token service discipline (the approximation becomes exact if packet lengths are constant). A method for deriving the z-transforms of the distributions of the number of packets present at both token departure and token arrival for a system using exhaustive limited service is presented. This allows for the derivation of a formula for mean queueing delay and queue lengths. The method is theoretically applicable to any omega. Fortunately, as the value of omega becomes large (typically values on the order of omega = 8 are considered large), the exhaustive limited service discipline closely approximates an exhaustive service discipline.

  5. Using Laser-Induced Incandescence To Measure Soot in Exhaust

    NASA Technical Reports Server (NTRS)

    Bachalo, William D.; Sankar, Subramanian V.

    2005-01-01

    An instrumentation system exploits laser-induced incandescence (LII) to measure the concentration of soot particles in an exhaust stream from an engine, furnace, or industrial process that burns hydrocarbon fuel. In comparison with LII soot-concentration-measuring systems, this system is more complex and more capable.

  6. Microwave-Regenerated Diesel Exhaust Particulate Filter

    SciTech Connect

    Nixdorf, Richard D.; Green, Johney Boyd; Story, John M.; Wagner, Robert M.

    2001-03-05

    Development of a microwave-regenerated particulate filter system has evolved from bench scale work to actual diesel engine experimentation. The filter system was initially evaluated on a stationary mounted 1.2-L diesel engine and was able to remove a significant amount of carbon particles from the exhaust. The ability of the microwave energy to regenerate or clean the filter was also demonstrated on this engine under idle conditions. Based on the 1.2-L experiments, improvements to the filter design and materials were implemented and the system was re-evaluated on a vehicle equipped with a 7.3-L diesel engine. The 7.3-L engine was selected to achieve heavy filter loading in a relatively short period of time. The purpose of these experiments was to evaluate filter-loading capacity, power requirements for regeneration, and filter regeneration efficiency. A more detailed evaluation of the filter was performed on a stationary mounted 1.9-L diesel engine. The effect of exhaust flow rate, loading, transients, and regeneration on filter efficiency was evaluated with this setup. In addition, gaseous exhaust emissions were investigated with and without an oxidation catalyst on the filter cartridge during loading and regeneration. (SAE Paper SAE-2001-01-0903 © 2001 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on-line, download this pdf file and print one copy of this paper at no cost for your use only. The downloaded pdf file and printout of this SAE paper may not be copied, distributed or forwarded to others or for the use of others.)

  7. Power recovery from turbine and gas engine exhausts

    SciTech Connect

    Lawson, G.L.

    1985-02-01

    Due to the energy consciousness of the United States and to the ever increasing cost of engine fuels, power recovery from turbine and gas engine exhausts has come of age. The addition of waste recovery systems to these exhausts increases the thermal efficiencies of typical systems from the range of 21% to 39% up to the range of 28% to 49%. The new ''expander'' type power recovery system includes a waste heat recovery exchanger which will transfer heat from the engine exhaust into any of numerous thermal fluids. The recovered heat energy now in the thermal fluid medium can, in turn, be used to produce power for any desired application (i.e. gas compression, process refrigeration, electrical power generation, etc.). The particular systems put forth in this paper concentrate on the use of expansion fluids (other than steam) driving ''expanders'' as motive devices.

  8. Engine Would Recover Exhaust Energy More Efficiently

    NASA Technical Reports Server (NTRS)

    Dimpelfeld, Philip M.

    1993-01-01

    Exhaust energy used for supercharging and extra shaft power. Flow of exhaust apportioned by waste gate to meet demand of turbocharger, and portion not fed to turbocharger sent to power-recovery turbine. Expected to increase fuel efficiency.

  9. The Effect of Indexing Exhaustivity on Retrieval Performance.

    ERIC Educational Resources Information Center

    Burgin, Robert

    1991-01-01

    Describes results of a study that investigated the effect of variations in indexing exhaustivity on retrieval performance in a vector space retrieval system. The test collection of documents in the National Library of Medicine's Medline file indexed under cystic fibrosis is described, and use of the SMART information retrieval system is discussed.…

  10. Experimental evaluation of exhaust mixers for an Energy Efficient Engine

    NASA Technical Reports Server (NTRS)

    Kozlowski, H.; Kraft, G.

    1980-01-01

    Static scale model tests were conducted to evaluate exhaust system mixers for a high bypass ratio engine as part of the NASA sponsored Energy Efficient program. Gross thrust coefficients were measured for a series of mixer configurations which included variations in the number of mixer lobes, tailpipe length, mixer penetration, and length. All of these parameters have a significant impact on exhaust system performance. In addition, flow visualization pictures and pressure/temperature traverses were obtained for selected configurations. Parametric performance trends are discussed and the results considered relative to the Energy Efficient Engine program goals.

  11. Detection of mutagenic activity in automobile exhaust.

    PubMed

    Ohnishi, Y; Kachi, K; Sato, K; Tahara, I; Takeyoshi, H; Tokiwa, H

    1980-03-01

    Using the Ames Salmonella-microsome system, we detected mutagenic activity in the exhaust from two kinds of 4-cycle gasoline engines of unregulated and regulated cars, and from diesel engines, as well as in the particulates from air collected in tunnels. The mutagenicity of particulates from a car equipped with a catalyst (regulated car), as compared with that from an unregulated car, was reduced very much (down to 500 from 4500 revertants/plate/m3 in tester strain TA98). However, the mutagenicity of the ether-soluble acid and neutral fractions from the condensed water of emissions from a regulated car was still high (down to 2880 from 10 900 revertants/plate/m3 in tester strain TA100). The mutagenic activity of emission exhaust from old diesel car engines was very high; the particulates showed 9140 and 19 600 revertants/plate/m3 from strain TA98 incubated with an activating rat-liver S9 fraction. A small diesel engine of the type used for the generation of electric power or in farm machinery also produced exhaust with highly mutagenic particulates. The mutagenic activity of a methanol extract of particulate air pollutants collected in a highway tunnel showed 39 revertants/plate/m3 toward strain TA98 and 87 toward strain TA100. The ether-soluble neutral fraction yielded 86 revertants/plate/m3 from strain TA98 and 100 from strain TA100. This fraction also contained carcinogenic compounds, including benzo[a]pyrene, benzo[e]pyrene, benz[a]anthracene, benzo[ghi]perylene and chrysene. Very high mutagenic activity was detected, especially in the particulate air pollutants collected at night, in another tunnel on a superhighway: 60-88 revertants/plate/m3 from strain TA100 for the sample collected by day, but 121-238, by night. Night traffic includes many more diesel-powered vehicles compared with gasoline-powered automobiles.

  12. Remote passive detection of aircraft exhausts at airports

    NASA Astrophysics Data System (ADS)

    Schaefer, Klaus P.; Jahn, Carsten; Harig, Roland; Aleyt, Christian; Rusch, Peter

    Emissions from vented sources are often important inputs for the development of emission inventories and contribute to local air pollution and global enhancement of greenhouse gases. Aircraft engines are part of these emission sources. A passive measurement technique such as FTIR emission spectrometry is more cost effective and faster in operation for the determination of the composition of hot exhausts of this kind than other measurement systems as e.g. in situ techniques. Within the scope of aircraft emission investigations the measurements were performed from a measurement van which is equipped with an FTIR spectrometer of high spectral resolution coupled with a telescope and a two-axis movable mirror for rapid orientation towards the emission sources. At airports the emission indices of CO2, CO and NO of main engines and auxiliary power units of standing aircraft were determined. The measurement time is about one minute. The accuracy is better than 30 % as found from burner experiments with calibration gases (CO and NO). The method is also applied to detect exhausts of flares and smoke stacks. Currently, a new scanning FTIR-system is developed. The system allows imaging of the exhaust gas and rapid automated alignment of the field of view. The goal of the new development is to measure aircraft exhausts during normal operations at the airport. The spectrometer is coupled with a camera giving an image of the scenery so that a rapid selection of the hottest exhaust area is possible. It is planned to equip the system with an infrared camera for automatic tracking of this area with the scanning mirror so that measurements of the exhausts of a moving aircraft are possible.

  13. Particle Characterization in Rocket Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    Callen, E. Eugene, Jr.; Fisher, J. Scott

    1997-01-01

    A method to characterize particles in rocket exhaust plumes is developed. The particle velocity, size, and material composition are determined from crater characteristics resulting from impacts into aluminum and copper targets passed through the plume. The targets are mounted on a steel arm approximately 21 inches (53 cm) long which is rotated through the plume at sufficient velocity to prevent material failure resulting from thermal effects. A Scanning Electron Microscope (SEM) with secondary x-ray detectors is used to determine the particle material, and a standard optical measurement microscope is used to determine the crater diameter and depth. The crater diameter and depth are used in turn, as inputs to a ballistics computer code to estimate the velocity and size of the particle. The target has a safe residence time in the plume of approximately 50 ms before reaching an unacceptably high temperature. The = must mach a velocity of 104 ft/s (32 m/s) before entering the plume to produce the design residence time of 20 ms. The arm is actuated by a torsion spring with a 5-inch (13 cm) outer diameter, 0.625-inch (16 mm wire diameter, and 11 coils. A prototype of the entire rocket exhaust particle impact characterization system (PICS) was constructed and statically tested.

  14. Investigation of NOx Removal from Small Engine Exhaust

    NASA Technical Reports Server (NTRS)

    Akyurtlu, Ates; Akyurtlu, Jale F.

    1999-01-01

    Contribution of emissions from small engines to the air pollution is significant. Due to differences in operating conditions and economics, the pollution control systems designed for automobiles will be neither suitable nor economically feasible for use on small engines. The objective of this project was to find a catalyst for the removal of NOx from the exhaust of small engines which use a rich air to fuel ratio. The desired catalyst should be inexpensive so that the cost of the pollution control unit will be only a small fraction of the total equipment cost. The high cost of noble metals makes them too expensive for use as NOx catalyst for small engines. Catalytic reduction of Nitrogen Oxide (NO) can also be accomplished by base-metal oxide catalysts. The main disadvantage of base-metal catalysts is their deactivation by poisons and high temperatures. Requirements for the length of the life of the small engine exhaust catalysts are much less than those for automobile exhaust catalysts. Since there is no oxygen in the exhaust gases, reduction selectivity is not a problem. Also, the reducing exhaust gases might help prevent the harmful interactions of the catalyst with the support. For these reasons only the supported metal oxide catalysts were investigated in this project.

  15. Investigation of NO(x) Removal from Small Engine Exhaust

    NASA Technical Reports Server (NTRS)

    Akyurtlu, Ates; Akyurtlu, Jale F.

    1999-01-01

    Contribution of emissions from small engines to the air pollution is significant. Due to differences in operating conditions and economics, the pollution control systems designed for automobiles will be neither suitable nor economically feasible for use on small engines. The objective of this project was to find a catalyst for the removal of NOx from the exhaust of small engines which use a rich air to fuel ratio. The desired catalyst should be inexpensive so that the cost of the pollution control unit will be only a small fraction of the total equipment cost. The high cost of noble metals makes them too expensive for use as NOx catalyst for small engines. Catalytic reduction of NO can also be accomplished by base-metal oxide catalysts. The main disadvantage of base-metal catalysts is their deactivation by poisons and high temperatures. Requirements for the length of the life of the small engine exhaust catalysts are much less than those for automobile exhaust catalysts. Since there is no oxygen in the exhaust gases, reduction selectivity is not a problem. Also, the reducing exhaust gases might help prevent the harmful interactions of the catalyst with the support. For these reasons only the supported metal oxide catalysts were investigated in this project.

  16. Recovery of carbon dioxide from fuel cell exhaust

    SciTech Connect

    Healy, H.C.; Kolodney, M.; Levy, A.H.; Trocciola, P.

    1988-06-14

    An acid fuel cell power plant system operable to produce carbon dioxide as a by-product is described comprising: (a) fuel cell stack means having anode means, cathode means, and fuel cell cooling means, the cooling means using a water coolant; (b) means for delivering a hydrogen-rich fuel gas which contains carbon dioxide to the anode means for consumption of hydrogen by the anode means in an electrochemical reaction in the stack; (c) carbon dioxide absorber means including an absorbent for stripping carbon dioxide from gaseous mixtures thereof; (d) means for delivering hydrogen-depleted exhaust gas containing carbon dioxide from the anode means to the carbon dioxide absorber means for absorption of carbon dioxide from the exhaust gas; (e) an absorbent regenerator; (f) means for delivering carbon dioxide-enriched absorbent from the absorber means to the regenerator for separation of carbon dioxide from the absorbent; (g) means for exhausting carbon dioxide from the regenerator, the means for exhausting further including means for cooling and compressing carbon dioxide exhausted from the regenerator; and (h) means for removing the compressed carbon dioxide from the power plant.

  17. Exhaust gas clean up process

    DOEpatents

    Walker, R.J.

    1988-06-16

    A method of cleaning an exhaust gas containing particulates, SO/sub 2/ and NO/sub x/ is described. The method involves prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO/sub x/ and SO/sub 2/, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO/sub x/ is removed as N/sub 2/ gas or nitrogen sulfonate ions and the oxides of sulfur are removed as a valuable sulfate salt. 4 figs.

  18. Exhaust gas clean up process

    DOEpatents

    Walker, Richard J.

    1989-01-01

    A method of cleaning an exhaust gas containing particulates, SO.sub.2 and NO.sub.x includes prescrubbing with water to remove HCl and most of the particulates, scrubbing with an aqueous absorbent containing a metal chelate and dissolved sulfite salt to remove NO.sub.x and SO.sub.2, and regenerating the absorbent solution by controlled heating, electrodialysis and carbonate salt addition. The NO.sub.x is removed as N.sub.2 or nitrogen-sulfonate ions and the oxides of sulfur are removed as a vaulable sulfate salt.

  19. Response of selected plant and insect species to simulated solid rocket exhaust mixtures and to exhaust components from solid rocket fuels

    NASA Technical Reports Server (NTRS)

    Heck, W. W.; Knott, W. M.; Stahel, E. P.; Ambrose, J. T.; Mccrimmon, J. N.; Engle, M.; Romanow, L. A.; Sawyer, A. G.; Tyson, J. D.

    1980-01-01

    The effects of solid rocket fuel (SRF) exhaust on selected plant and and insect species in the Merritt Island, Florida area was investigated in order to determine if the exhaust clouds generated by shuttle launches would adversely affect the native, plants of the Merritt Island Wildlife Refuge, the citrus production, or the beekeeping industry of the island. Conditions were simulated in greenhouse exposure chambers and field chambers constructed to model the ideal continuous stirred tank reactor. A plant exposure system was developed for dispensing and monitoring the two major chemicals in SRF exhaust, HCl and Al203, and for dispensing and monitoring SRF exhaust (controlled fuel burns). Plants native to Merritt Island, Florida were grown and used as test species. Dose-response relationships were determined for short term exposure of selected plant species to HCl, Al203, and mixtures of the two to SRF exhaust.

  20. Development of Exhaust Gas Driven Absorption Chiller-Heater

    NASA Astrophysics Data System (ADS)

    Inoue, Naoyuki; Endou, Tetsuya; Saito, Kiyoshi; Kawai, Sunao

    Micro gas turbines are expected as engines for the distributed co-generation systems, performing power generation and heat recovery. Waste heat from micro gas turbines are discharged in the form of exhaust gas, and it is simple that exhaust gas is directly supplied to an absorption refrigerator. In this paper, we evaluated various single-double effect absorption cycles for exhaust gas driven absorption refrigerators, and clarified that the difference of performance among these cycles are little. We adopted one of these cycles for the prototype machine, and experimented with it to get the partial load characteristics and the effect of cooling water temperature on the performance. Based on the experimental data, we developed as imulation model of the static characteristics, and studied the direction of improvement.

  1. Detection of aircraft exhaust in hyperspectral image data

    NASA Astrophysics Data System (ADS)

    Lane, Sarah E.; West, Leanne L.; Gimmestad, Gary G.; Smith, William L., Sr.; Burdette, Edward M.

    2011-10-01

    The use of a hyperspectral imaging system for the detection of gases has been investigated, and algorithms have been developed for various applications. Of particular interest here is the ability to use these algorithms in the detection of the wake disturbances trailing an aircraft. A dataset of long wave infrared (LWIR) hyperspectral datacubes taken with a Telops Hyper-Cam at Hartsfield-Jackson International Airport in Atlanta, Georgia is investigated. The methodology presented here assumes that the aircraft engine exhaust gases will become entrained in wake vortices that develop; therefore, if the exhaust can be detected upon exiting the engines, it can be followed through subsequent datacubes until the vortex disturbance is detected. Gases known to exist in aircraft exhaust are modeled, and the Adaptive Coherence/Cosine Estimator (ACE) is used to search for these gases. Although wake vortices have not been found in the data, an unknown disturbance following the passage of the aircraft has been discovered.

  2. 40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Sampling and analytical procedures for measuring smoke exhaust emissions. 87.82 Section 87.82 Protection of Environment ENVIRONMENTAL PROTECTION... analytical procedures for measuring smoke exhaust emissions. The system and procedures for sampling...

  3. 40 CFR 87.64 - Sampling and analytical procedures for measuring gaseous exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Sampling and analytical procedures for measuring gaseous exhaust emissions. 87.64 Section 87.64 Protection of Environment ENVIRONMENTAL PROTECTION....64 Sampling and analytical procedures for measuring gaseous exhaust emissions. (a) The system...

  4. 14 CFR 34.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Sampling and analytical procedures for measuring smoke exhaust emissions. 34.82 Section 34.82 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... Sampling and analytical procedures for measuring smoke exhaust emissions. The system and procedures...

  5. 40 CFR 87.82 - Sampling and analytical procedures for measuring smoke exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Sampling and analytical procedures for measuring smoke exhaust emissions. 87.82 Section 87.82 Protection of Environment ENVIRONMENTAL PROTECTION... analytical procedures for measuring smoke exhaust emissions. The system and procedures for sampling...

  6. Evaluation of carcinogenic hazard of diesel engine exhaust needs to consider revolutionary changes in diesel technology.

    PubMed

    McClellan, Roger O; Hesterberg, Thomas W; Wall, John C

    2012-07-01

    Diesel engines, a special type of internal combustion engine, use heat of compression, rather than electric spark, to ignite hydrocarbon fuels injected into the combustion chamber. Diesel engines have high thermal efficiency and thus, high fuel efficiency. They are widely used in commerce prompting continuous improvement in diesel engines and fuels. Concern for health effects from exposure to diesel exhaust arose in the mid-1900s and stimulated development of emissions regulations and research to improve the technology and characterize potential health hazards. This included epidemiological, controlled human exposure, laboratory animal and mechanistic studies to evaluate potential hazards of whole diesel exhaust. The International Agency for Research on Cancer (1989) classified whole diesel exhaust as - "probably carcinogenic to humans". This classification stimulated even more stringent regulations for particulate matter that required further technological developments. These included improved engine control, improved fuel injection system, enhanced exhaust cooling, use of ultra low sulfur fuel, wall-flow high-efficiency exhaust particulate filters, exhaust catalysts, and crankcase ventilation filtration. The composition of New Technology Diesel Exhaust (NTDE) is qualitatively different and the concentrations of particulate constituents are more than 90% lower than for Traditional Diesel Exhaust (TDE). We recommend that future reviews of carcinogenic hazards of diesel exhaust evaluate NTDE separately from TDE.

  7. 46 CFR 111.33-9 - Ventilation exhaust.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Ventilation exhaust. 111.33-9 Section 111.33-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... under Subpart 111.105 of this part; and (b) Not impinge upon any other electric device....

  8. 46 CFR 111.33-9 - Ventilation exhaust.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Ventilation exhaust. 111.33-9 Section 111.33-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... under Subpart 111.105 of this part; and (b) Not impinge upon any other electric device....

  9. 46 CFR 111.33-9 - Ventilation exhaust.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Ventilation exhaust. 111.33-9 Section 111.33-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... under Subpart 111.105 of this part; and (b) Not impinge upon any other electric device....

  10. 46 CFR 111.33-9 - Ventilation exhaust.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Ventilation exhaust. 111.33-9 Section 111.33-9 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) ELECTRICAL ENGINEERING ELECTRIC SYSTEMS-GENERAL... under Subpart 111.105 of this part; and (b) Not impinge upon any other electric device....

  11. 40 CFR 89.416 - Raw exhaust gas flow.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) Measurement of the air flow and the fuel flow by suitable metering systems (for details see SAE J244. This... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Raw exhaust gas flow. 89.416 Section 89.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  12. 40 CFR 89.416 - Raw exhaust gas flow.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) Measurement of the air flow and the fuel flow by suitable metering systems (for details see SAE J244. This... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Raw exhaust gas flow. 89.416 Section 89.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  13. 40 CFR 89.416 - Raw exhaust gas flow.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) Measurement of the air flow and the fuel flow by suitable metering systems (for details see SAE J244. This... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Raw exhaust gas flow. 89.416 Section 89.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  14. 40 CFR 89.416 - Raw exhaust gas flow.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) Measurement of the air flow and the fuel flow by suitable metering systems (for details see SAE J244. This... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Raw exhaust gas flow. 89.416 Section 89.416 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS...

  15. 40 CFR 86.1544 - Calculation; idle exhaust emissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Natural Gas-Fueled, and Liquefied Petroleum Gas-Fueled Diesel-Cycle Light-Duty Trucks; Idle Test Procedures § 86.1544 Calculation; idle exhaust emissions. (a) The final idle emission test results shall be reported as percent for carbon monoxide on a dry basis. (b) If a CVS sampling system is used, the...

  16. 40 CFR 86.1310-2007 - Exhaust gas sampling and analytical system for gaseous emissions from heavy-duty diesel-fueled...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... may determine compliance from the arithmetic mean of the results. A continuously integrated system may... ionization detector (HFID) and heated sample system (191 ±11 °C) using either: (i) Continuously integrated.... (5) Continuously integrated NO X, CO, and CO2 measurement systems. (i) The sample probe shall: (A)...

  17. Exhaust gas bypass valve control for thermoelectric generator

    SciTech Connect

    Reynolds, Michael G; Yang, Jihui; Meisner, Greogry P.; Stabler, Francis R.; De Bock, Hendrik Pieter Jacobus; Anderson, Todd Alan

    2012-09-04

    A method of controlling engine exhaust flow through at least one of an exhaust bypass and a thermoelectric device via a bypass valve is provided. The method includes: determining a mass flow of exhaust exiting an engine; determining a desired exhaust pressure based on the mass flow of exhaust; comparing the desired exhaust pressure to a determined exhaust pressure; and determining a bypass valve control value based on the comparing, wherein the bypass valve control value is used to control the bypass valve.

  18. Effluent sampling of Titan 3 C vehicle exhaust

    NASA Technical Reports Server (NTRS)

    Gregory, G. L.; Storey, R. W., Jr.

    1975-01-01

    Downwind in situ ground-level measurements of the exhaust from a Titan 3 C launch vehicle were made during a normal launch. The measurement activity was conducted as part of an overall program to obtain field data for comparison with the multilayer dispersion model currently being used to predict the behavior of rocket vehicle exhaust clouds. All measurements were confined to land, ranging from the launch pad to approximately 2 kilometers downwind from the pad. Measurement systems included detectors for hydrogen chloride (HCl), carbon dioxide (CO2), and particulates (Al2O3). Airborne and ground-based optical systems were employed to monitor exhaust cloud rise, growth, and movement. These measurement systems, located along the ground track (45 deg azimuth from the launch pad) of the exhaust cloud, showed no effluents attributable to the launch. Some hydrogen chloride and aluminum oxide were detected in the surface wind direction (15 deg azimuth) from the pad. Comparisons with the model were made in three areas: (1) assumption of cloud geometry at stabilization; (2) prediction of cloud stabilization altitude; and (3) prediction of the path of cloud travel. In addition, the importance of elemental analyses of the particulate samples is illustrated.

  19. On the thermodynamics of waste heat recovery from internal combustion engine exhaust gas

    NASA Astrophysics Data System (ADS)

    Meisner, G. P.

    2013-03-01

    The ideal internal combustion (IC) engine (Otto Cycle) efficiency ηIC = 1-(1/r)(γ - 1) is only a function of engine compression ratio r =Vmax/Vmin and exhaust gas specific heat ratio γ = cP/cV. Typically r = 8, γ = 1.4, and ηIC = 56%. Unlike the Carnot Cycle where ηCarnot = 1-(TC/TH) for a heat engine operating between hot and cold heat reservoirs at TH and TC, respectively, ηIC is not a function of the exhaust gas temperature. Instead, the exhaust gas temperature depends only on the intake gas temperature (ambient), r, γ, cV, and the combustion energy. The ejected exhaust gas heat is thermally decoupled from the IC engine and conveyed via the exhaust system (manifold, pipe, muffler, etc.) to ambient, and the exhaust system is simply a heat engine that does no useful work. The maximum fraction of fuel energy that can be extracted from the exhaust gas stream as useful work is (1-ηIC) × ηCarnot = 32% for TH = 850 K (exhaust) and TC = 370 K (coolant). This waste heat can be recovered using a heat engine such as a thermoelectric generator (TEG) with ηTEG> 0 in the exhaust system. A combined IC engine and TEG system can generate net useful work from the exhaust gas waste heat with efficiency ηWH = (1-ηIC) × ηCarnot ×ηTEG , and this will increase the overall fuel efficiency of the total system. Recent improvements in TEGs yield ηTEG values approaching 15% giving a potential total waste heat conversion efficiency of ηWH = 4.6%, which translates into a fuel economy improvement approaching 5%. This work is supported by the US DOE under DE-EE0005432.

  20. Critical Propulsion Components. Volume 3; Exhaust Nozzle

    NASA Technical Reports Server (NTRS)

    2005-01-01

    Several studies have concluded that a supersonic aircraft, if environmentally acceptable and economically viable, could successfully compete in the 21st century marketplace. However, before industry can commit to what is estimated as a 15 to 20 billion dollar investment, several barrier issues must be resolved. In an effort to address these barrier issues, NASA and Industry teamed to form the High-Speed Research (HSR) program. As part of this program, the Critical Propulsion Components (CPC) element was created and assigned the task of developing those propulsion component technologies necessary to: (1) reduce cruise emissions by a factor of 10 and (2) meet the ever-increasing airport noise restrictions with an economically viable propulsion system. The CPC-identified critical components were ultra-low emission combustors, low-noise/high-performance exhaust nozzles, low-noise fans, and stable/high-performance inlets. Propulsion cycle studies (coordinated with NASA Langley Research Center sponsored airplane studies) were conducted throughout this CPC program to help evaluate candidate components and select the best concepts for the more complex and larger scale research efforts. The propulsion cycle and components ultimately selected were a mixed-flow turbofan (MFTF) engine employing a lean, premixed, prevaporized (LPP) combustor coupled to a two-dimensional mixed compression inlet and a two-dimensional mixer/ejector nozzle. Due to the large amount of material presented in this report, it was prepared in four volumes; Volume 1: Summary, Introduction, and Propulsion System Studies, Volume 2: Combustor, Volume 3: Exhaust Nozzle, and Volume 4: Inlet and Fan/Inlet Acoustic Team.

  1. Development of a system for the numerical simulation of Euler flows, with results of preliminary 3-D propeller-slipstream/exhaust-jet calculations

    NASA Astrophysics Data System (ADS)

    Boerstoel, J. W.

    1988-01-01

    The current status of a computer program system for the numerical simulation of Euler flows is presented. Preliminary test calculation results are shown. They concern the three-dimensional flow around a wing-nacelle-propeller-outlet configuration. The system is constructed to execute four major tasks: block decomposition of the flow domain around given, possibly complex, three-dimensional aerodynamic surfaces; grid generation on the blocked flow domain; Euler-flow simulation on the blocked grid; and graphical visualization of the computed flow on the blocked grid, and postprocessing. The system consists of about 20 codes interfaced by files. Most of the required tasks can be executed. The geometry of complex aerodynamic surfaces in three-dimensional space can be handled. The validation test showed that the system must be improved to increase the speed of the grid generation process.

  2. Controlled human exposures to diesel exhaust

    EPA Science Inventory

    Diesel exhaust (DE) is a complex mixture of gaseous and particulate compounds resulting from an incomplete combustion of diesel fuel. Controlled human exposures to DE and diesel exhaust particles (DEP) have contributed to understanding health effects. Such exposure studies of h...

  3. Correlates of Work Exhaustion for Medical Technologists.

    ERIC Educational Resources Information Center

    Blau, Gary; Tatum, Donna Surges; Ward-Cook, Kory

    2003-01-01

    Medical technologists (n=196) were followed over 4 years. Higher levels of work exhaustion were related to perceived work interference with family, task load, and lower organizational support. Distributive justice partly mediated the effects of work interference and support on exhaustion. Distributive justice mediated the impact of procedural…

  4. Validation of scramjet exhaust simulation technique

    NASA Technical Reports Server (NTRS)

    Hopkins, H. B.; Konopka, W.; Leng, J.

    1976-01-01

    Scramjet/airframe integration design philosophy for hypersonic aircraft results in configurations having lower aft surfaces that serve as exhaust nozzles. There is a strong coupling between the exhaust plume and the aerodynamics of the vehicle, making accurate simulation of the engine exhaust mandatory. The experimental verification of the simulation procedure is described. The detonation tube simulator was used to produce an exact simulation of the scramjet exhaust for a Mach 8 flight condition. The pressure distributions produced by the exact exhaust flow were then duplicated by a cool mixture Argon and Freon 13B1. Such a substitute gas mixture validated by the detonation tube technique could be used in conventional wind tunnel tests. The results presented show the substitute gas simulation technique to be valid for shockless expansions.

  5. Hot streak characterization in serpentine exhaust nozzles

    NASA Astrophysics Data System (ADS)

    Crowe, Darrell S.

    Modern aircraft of the United States Air Force face increasingly demanding cost, weight, and survivability requirements. Serpentine exhaust nozzles within an embedded engine allow a weapon system to fulfill mission survivability requirements by providing denial of direct line-of-sight into the high-temperature components of the engine. Recently, aircraft have experienced material degradation and failure along the aft deck due to extreme thermal loading. Failure has occurred in specific regions along the aft deck where concentrations of hot gas have come in contact with the surface causing hot streaks. The prevention of these failures will be aided by the accurate prediction of hot streaks. Additionally, hot streak prediction will improve future designs by identifying areas of the nozzle and aft deck surfaces that require thermal management. To this end, the goal of this research is to observe and characterize the underlying flow physics of hot streak phenomena. The goal is accomplished by applying computational fluid dynamics to determine how hot streak phenomena is affected by changes in nozzle geometry. The present research first validates the computational methods using serpentine inlet experimental and computational studies. A design methodology is then established for creating six serpentine exhaust nozzles investigated in this research. A grid independent solution is obtained on a nozzle using several figures of merit and the grid-convergence index method. An investigation into the application of a second-order closure turbulence model is accomplished. Simulations are performed for all serpentine nozzles at two flow conditions. The research introduces a set of characterization and performance parameters based on the temperature distribution and flow conditions at the nozzle throat and exit. Examination of the temperature distribution on the upper and lower nozzle surfaces reveals critical information concerning changes in hot streak phenomena due to changes

  6. Laboratories for the 21st Century: Best Practices; Modeling Exhaust Dispersion for Specifying Acceptable Exhaust/Intake Design (Brochure)

    SciTech Connect

    Not Available

    2011-09-01

    This guide provides general information on specifying acceptable exhaust and intake designs. It also provides various quantitative approaches that can be used to determine expected concentration levels resulting from exhaust system emissions. In addition, the guide describes methodologies that can be employed to operate laboratory exhaust systems in a safe and energy efficient manner by using variable air volume (VAV) technology. The guide, one in a series on best practices for laboratories, was produced by Laboratories for the 21st Century (Labs21), a joint program of the U.S. Environmental Protection Agency (EPA) and the U.S. Department of Energy (DOE). Geared toward architects, engineers, and facility managers, the guides contain information about technologies and practices to use in designing, constructing, and operating safe, sustainable, high-performance laboratories. Studies show a direct relationship between indoor air quality and the health and productivity of building occupants. Historically, the study and protection of indoor air quality focused on emission sources emanating from within the building. For example, to ensure that the worker is not exposed to toxic chemicals, 'as manufactured' and 'as installed' containment specifications are required for fume hoods. However, emissions from external sources, which may be re-ingested into the building through closed circuiting between the building's exhaust stacks and air intakes, are an often overlooked aspect of indoor air quality.

  7. Laser-induced incandescence measurements of particles in aeroengine exhausts

    NASA Astrophysics Data System (ADS)

    Black, John D.

    1999-09-01

    Laser Induced Incandescence (LII) has been demonstrated as a non-intrusive technique for measurement of particle concentration in the exhausts of aero-engines on sea level test beds as part of a European Union collaborative program (AEROJET) aimed at replacing gas sampling rakes behind development engines with non-intrusive instrumentation. Currently emissions of CO, NOx, unburned hydrocarbon, and smoke from aero-engines must be shown to be less than internationally specified limits. Measurements are made on development engines on sea level test beds by applying a number of standard analytical methods to extracted exhaust gas samples. The hardware required for exhaust gas sampling is heavy and complex and is expensive to build and install. As a result, only the minimum number of emissions tests are conducted during an engine development program, and emissions data is only available to combustion engineers late in the program. Hence, there is a need for more versatile and less costly non-intrusive measurement techniques. Molecular species can be measured using Fourier Transform Infrared (FTIR) spectroscopy, while LII is a promising smoke measuring technique. The development of an LII system specifically designed for exhaust applications is described.

  8. Experimental investigation of 1 kW solid oxide fuel cell system with a natural gas reformer and an exhaust gas burner

    NASA Astrophysics Data System (ADS)

    Yen, Tzu-Hsiang; Hong, Wen-Tang; Huang, Wei-Ping; Tsai, Yu-Ching; Wang, Hung-Yu; Huang, Cheng-Nan; Lee, Chien-Hsiung

    An experimental investigation is performed to establish the optimal operating conditions of a porous media after-burner integrated with a 1 kW solid oxide fuel cell (SOFC) system fed by a natural gas reformer. The compositions of the anode off-gas and cathode off-gas emitted by the SOFC when operating with fuel utilizations in the range 0-0.6 are predicted using commercial GCTool software. The numerical results are then used to set the compositions of the anode off-gas and cathode off-gas in a series of experiments designed to clarify the effects of the fuel utilization, cathode off-gas temperature and excess air ratio on the temperature distribution within the after-burner. The experimental results show that the optimal after-burner operation is obtained when using an anode off-gas temperature of 650 °C, a cathode off-gas temperature of 390 °C, a flame barrier temperature of 700 °C, an excess air ratio of 2 and a fuel utilization of U f = 0.6. It is shown that under these conditions, the after-burner can operate in a long-term, continuous fashion without the need for either cooling air or any additional fuel other than that provided by the anode off-gas.

  9. Retention modeling of diesel exhaust particles in rats and humans.

    PubMed

    Yu, C P; Yoon, K J

    1991-05-01

    controlled by macrophage migration to the mucociliary escalator, whereas at high lung burdens, the clearance rate was determined principally by transport to the lymphatic system. The retention model of diesel exhaust particles for rats was extrapolated to humans of different age groups, from birth to adulthood. To derive the transport rates for the human model, the mechanical clearance from the alveolar region of the lung was assumed to be dependent on the specific particulate burden on the alveolar surface. The reduction in the mechanical clearance in adult humans caused by exposure to high concentrations of diesel exhaust was found to be much less than that observed in rats. The reduction in children was greater than that in adults.(ABSTRACT TRUNCATED AT 400 WORDS)

  10. Pollutant monitoring of aircraft exhaust with multispectral imaging

    NASA Astrophysics Data System (ADS)

    Berkson, Emily E.; Messinger, David W.

    2016-10-01

    Communities surrounding local airports are becoming increasingly concerned about the aircraft pollutants emitted during the landing-takeoff (LTO) cycle, and their potential for negative health effects. Chicago, Los Angeles, Boston and London have all recently been featured in the news regarding concerns over the amount of airport pollution being emitted on a daily basis, and several studies have been published on the increased risks of cancer for those living near airports. There are currently no inexpensive, portable, and unobtrusive sensors that can monitor the spatial and temporal nature of jet engine exhaust plumes. In this work we seek to design a multispectral imaging system that is capable of tracking exhaust plumes during the engine idle phase, with a specific focus on unburned hydrocarbon (UHC) emissions. UHCs are especially potent to local air quality, and their strong absorption features allow them to act as a spatial and temporal plume tracer. Using a Gaussian plume to radiometrically model jet engine exhaust, we have begun designing an inexpensive, portable, and unobtrusive imaging system to monitor the relative amount of pollutants emitted by aircraft in the idle phase. The LWIR system will use two broadband filters to detect emitted UHCs. This paper presents the spatial and temporal radiometric models of the exhaust plume from a typical jet engine used on 737s. We also select filters for plume tracking, and propose an imaging system layout for optimal detectibility. In terms of feasibility, a multispectral imaging system will be two orders of magnitude cheaper than current unobtrusive methods (PTR-MS) used to monitor jet engine emissions. Large-scale impacts of this work will include increased capabilities to monitor local airport pollution, and the potential for better-informed decision-making regarding future developments to airports.

  11. Taxation of exhaustible resources. [Monograph

    SciTech Connect

    Dasgupta, P.; Heal, G.; Stiglitz, J.

    1980-01-01

    This paper analyzes the effect of taxation on the intertemporal allocation of an exhaustible resource. A general framework within which a large variety of taxes can be analyzed is developed and then applied to a number of specific taxes. It is shown that there exists a pattern of taxation which can generate essentially any desired pattern of resource usage. Many tax policies, however, have effects markedly different both from the effects that these policies would have in the case of produced commodities and from those which they are designed (or widely thought) to have. For instance, if extraction costs are zero, a depletion allowance at a constant rate (widely thought to encourage the extraction of resources) has absolutely no effect; its gradual removal (usually thought to be preferable to a sudden removal) leads to faster rates of depletion (and lower prices) now, but higher prices in the future; which its sudden and unanticipated removal has absolutely no distortionary effect on the pattern of extraction. More generally, it is shown that the effects of tax structure on the patterns of extraction are critically dependent on expectations concerning future taxation. The changes in tax structure that have occurred in the past fifty years are of the kind that, if they were anticipated, (or if similar further changes are expected to occur in the future) lead to excessively fast exploitation of natural resources. However, if it is believed that current tax policies (including rates) will persist indefinitely, the current tax structure would lead to excessive conservationism. Thus, whether in fact current tax policies have lead to excessive conservationism is a moot question.

  12. Diesel exhaust particles and airway inflammation

    EPA Science Inventory

    Purpose of review. Epidemiologic investigation has associated traffic-related air pollution with adverse human health outcomes. The capacity ofdiesel exhaust particles (DEP), a major emission source air pollution particle, to initiate an airway inflammation has subsequently been ...

  13. Exhaustible Resource Depletion: A Modified Graphical Approach.

    ERIC Educational Resources Information Center

    Tisato, Peter

    1995-01-01

    Presents a graphical analysis of the exhaustible resource depletion problem. Applies Hotelling's "r percent rule" as a new approach that operates in an "N"-period context. Includes two figures illustrating the approach. (CFR)

  14. Two phase exhaust for internal combustion engine

    SciTech Connect

    Vuk, Carl T

    2011-11-29

    An internal combustion engine having a reciprocating multi cylinder internal combustion engine with multiple valves. At least a pair of exhaust valves are provided and each supply a separate power extraction device. The first exhaust valves connect to a power turbine used to provide additional power to the engine either mechanically or electrically. The flow path from these exhaust valves is smaller in area and volume than a second flow path which is used to deliver products of combustion to a turbocharger turbine. The timing of the exhaust valve events is controlled to produce a higher grade of energy to the power turbine and enhance the ability to extract power from the combustion process.

  15. Atmospheric scavenging of solid rocket exhaust effluents

    NASA Technical Reports Server (NTRS)

    Fenton, D. L.; Purcell, R. Y.

    1978-01-01

    Solid propellant rocket exhaust was directly utilized to ascertain raindrop scavenging rates for hydrogen chloride. Two chambers were used to conduct the experiments; a large, rigid walled, spherical chamber stored the exhaust constituents, while the smaller chamber housing all the experiments was charged as required with rocket exhaust HCl. Surface uptake experiments demonstrated an HCl concentration dependence for distilled water. Sea water and brackish water HCl uptake was below the detection limit of the chlorine-ion analysis technique used. Plant life HCl uptake experiments were limited to corn and soybeans. Plant age effectively correlated the HCl uptake data. Metallic corrosion was not significant for single 20 minute exposures to the exhaust HCl under varying relative humidity. Characterization of the aluminum oxide particles substantiated the similarity between the constituents of the small scale rocket and the full size vehicles.

  16. Diesel Exhaust in New England | US EPA

    EPA Pesticide Factsheets

    2017-04-10

    Pollution from diesel engines is a widespread problem across New England and it significantly contributes to air pollution, especially in urban areas. Diesel exhaust is made up of small particles, known as fine particulate matter.

  17. Effects of motor vehicle exhaust on male reproductive function and associated proteins.

    PubMed

    Rengaraj, Deivendran; Kwon, Woo-Sung; Pang, Myung-Geol

    2015-01-02

    Air pollution is consistently associated with various diseases and subsequent death among children, adult, and elderly people worldwide. Motor vehicle exhaust contributes to a large proportion of the air pollution present. The motor vehicle exhaust systems emit a variety of toxic components, including carbon monoxide, nitrogen oxides, volatile organic compounds, ozone, particulate matter, and polycyclic aromatic hydrocarbons. Several epidemiological studies and laboratory studies have demonstrated that these components are potentially mutagenic, carcinogenic, and endocrine disrupting agents. However, their impact on male reproductive function and associated proteins is not very clear. Therefore, a comprehensive review on the effects of motor vehicle exhaust on male reproductive function and associated proteins is needed to better understand the risks of exhaust exposure for men. We found that motor vehicle exhaust can cause harmful effects on male reproductive functions by altering organ weights, reducing the spermatozoa qualities, and inducing oxidative stress. Remarkably, motor vehicle exhaust exposure causes significant changes in the expression patterns of proteins that are key components involved in spermatogenesis and testosterone synthesis. In conclusion, this review helps to describe the risks of vehicle exhaust exposure and its relationship to potential adverse effects on the male reproduction system.

  18. Reducing exhaust gas emissions from Citydiesel busses

    NASA Astrophysics Data System (ADS)

    Mikkonen, Seppo

    The effect of fuel composition and exhaust gas aftertreatment on the emissions was measured from truck and bus engines. Possibilities to measure unregulated emissions (aldehydes, polyaromatic hydrocarbons, mutagenicity) were built. A reformulated diesel fuel 'Citydiesel' was developed. Citydiesel was able to reduce emissions compared to standard diesel fuel as follows: particulates by 10 to 30%, nitrogen oxides by 2 to 10%, sulphur dioxide by 97%, polyaromatic hydrocarbons (PAH) over 50%, mutagenicity of the exhaust particulates clearly, odor of the exhaust, and smoke after a cold start. The use of Citydiesel fuel reduces emissions of the existing vehicles immediately which is a remarkable benefit. The very low sulphur content (below 50 ppm) makes it possible to use oxidation. catalytic converters to reduce emissions of diesel vehicles. The new Euro 2 exhaust regulations coming into force during 1996 can be met with a modern diesel engine, Citydiesel fuel, and exhaust gas aftertreatment. Properties of Citydiesel fuel were verified in a three year field test with 140 city buses. Experience was good; e.g., engine oil change interval could be lengthened. Total value of the exhaust was estimated with different fuels and aftertreatment device in order to find out cheap ways to reduce emissions.

  19. High speed exhaust gas recirculation valve

    SciTech Connect

    Fensom, Rod; Kidder, David J.

    2005-01-18

    In order to minimize pollutants such as Nox, internal combustion engines typically include an exhaust gas recirculation (EGR) valve that can be used to redirect a portion of exhaust gases to an intake conduit, such as an intake manifold, so that the redirected exhaust gases will be recycled. It is desirable to have an EGR valve with fast-acting capabilities, and it is also desirable to have the EGR valve take up as little space as possible. An exhaust gas recirculation valve is provided that includes an exhaust passage tube, a valve element pivotally mounted within the exhaust passage tube, a linear actuator; and a gear train. The gear train includes a rack gear operatively connected to the linear actuator, and at least one rotatable gear meshing with the rack gear and operatively connected to the valve element to cause rotation of the valve element upon actuation of the linear actuator. The apparatus provides a highly compact package having a high-speed valve actuation capability.

  20. Activation and Exhaustion of Adaptive Immune Cells in Hepatitis B Infection.

    PubMed

    Gogoi, Dimpu; Borkakoty, Biswajyoti; Biswas, Dipankar; Mahanta, Jagadish

    2015-09-01

    In hepatitis B virus (HBV) infection, the immune reaction is responsible for viral clearance and preventing their spread within the host. However, the immune system is dysfunctional in patients with chronic HBV infection, leading to an inadequate immune response against the virus. A major factor contributing to inefficient immune function is the phenomenon of immune exhaustion. Hence, understanding immune activation and exhaustion during HBV infection is important, as it would provide insight in developing immunotherapy to control chronic HBV infection. The aim of this review is to highlight the existing information on immune effector functions and immune exhaustion in response to HBV infection.

  1. Corrosion of Exhaust and Filtration Equipment in a Radioactive Waste Incinerator

    SciTech Connect

    Jenkins, C.F.

    2003-10-31

    Condensation in the exhaust gas system of an incinerator burning low activity radioactive wastes led to numerous corrosion developments and rapid failure of the discharge filters. The problem was traced to insufficient reheat of the exhaust gases following scrubbing. Rust particulate and moisture loaded the filters, leading to water accumulation, chloride cracking of the filter housings, and plugging and tearing of the filter media itself. To mitigate the problem, the exhaust gas temperature was increased, thermal insulation was installed on the ductwork, and the interiors of the ducts and new filter housings were lined with a protective coating.

  2. Dynamically Movable Exhausting Emc Sealing System

    DOEpatents

    Barringer, Dennis R.; Seminaro, Edward J.; Toffler, Harold M.

    2003-12-09

    A docking apparatus for printed circuit boards including a cassette housing, having a housing base, a housing cover and a housing wall, wherein the housing base and the housing wall are disposed relative to each other so as to define a housing cavity for containing a printed circuit card and wherein the housing wall includes a cable opening disposed so as to be communicated with the housing cavity, a housing bezel, disposed relative to the cassette housing so as to be associated with the cable opening, the housing bezel includes an outer bezel having a first plurality of openings and an inner bezel having a second plurality of apertures, the inner bezel in electrical communication with the printed circuit card, wherein said housing bezel is removable, and an EMC gasket disposed between the outer and inner bezels of said housing bezel, the EMC gasket configured to provide a removable EMC seal proximate the cable opening while still allowing airflow through the first and second plurality of apertures having the EMC gasket therebetween. A docking apparatus for printed circuit boards including a cassette housing, having a housing base, a housing cover and a housing wall, wherein the housing base and the housing wall are disposed relative to each other so as to define a housing cavity for containing a printed circuit card and wherein the housing wall includes a cable opening disposed so as to be communicated with the housing cavity, a housing bezel, disposed relative to the cassette housing so as to be associated with the cable opening, the housing bezel includes an outer bezel having a first plurality of openings and an inner bezel having a second plurality of apertures, the inner bezel in electrical communication with the printed circuit card, wherein said housing bezel is removable, and an EMC gasket disposed between the outer and inner bezels of said housing bezel, the EMC gasket configured to provide a removable EMC seal proximate the cable opening while still allowing airflow through the first and second plurality of apertures having the EMC gasket therebetween.

  3. 46 CFR 119.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Engine exhaust cooling. 119.425 Section 119.425 Shipping... Machinery Requirements § 119.425 Engine exhaust cooling. (a) Except as otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible...

  4. 46 CFR 119.425 - Engine exhaust cooling.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Engine exhaust cooling. 119.425 Section 119.425 Shipping... Machinery Requirements § 119.425 Engine exhaust cooling. (a) Except as otherwise provided in this paragraph, all engine exhaust pipes must be water cooled. (1) Vertical dry exhaust pipes are permissible...

  5. 14 CFR 29.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Exhaust heat exchangers. 29.1125 Section 29... exchangers. For reciprocating engine powered rotorcraft the following apply: (a) Each exhaust heat exchanger... is subject to contact with exhaust gases; and (4) No exhaust heat exchanger or muff may have...

  6. 14 CFR 29.1125 - Exhaust heat exchangers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Exhaust heat exchangers. 29.1125 Section 29... exchangers. For reciprocating engine powered rotorcraft the following apply: (a) Each exhaust heat exchanger... is subject to contact with exhaust gases; and (4) No exhaust heat exchanger or muff may have...

  7. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974,...

  8. 14 CFR 34.31 - Standards for exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (In-use Aircraft Gas Turbine Engines) § 34.31 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each in-use aircraft gas turbine engine of Class T8, beginning February 1, 1974,...

  9. 14 CFR 34.21 - Standards for exhaust emissions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... FUEL VENTING AND EXHAUST EMISSION REQUIREMENTS FOR TURBINE ENGINE POWERED AIRPLANES Exhaust Emissions (New Aircraft Gas Turbine Engines) § 34.21 Standards for exhaust emissions. (a) Exhaust emissions of smoke from each new aircraft gas turbine engine of class T8 manufactured on or after February 1,...

  10. 40 CFR 600.112-78 - Exhaust sample analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978 and Later Model Year Automobiles-Test Procedures § 600.112-78 Exhaust sample analysis. The exhaust... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Exhaust sample analysis....

  11. 40 CFR 600.112-08 - Exhaust sample analysis.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FUEL ECONOMY AND CARBON-RELATED EXHAUST EMISSIONS OF MOTOR VEHICLES Fuel Economy Regulations for 1978 and Later Model Year Automobiles-Test Procedures § 600.112-08 Exhaust sample analysis. The exhaust... 40 Protection of Environment 29 2010-07-01 2010-07-01 false Exhaust sample analysis....

  12. Low Noise Exhaust Nozzle Technology Development

    NASA Technical Reports Server (NTRS)

    Majjigi, R. K.; Balan, C.; Mengle, V.; Brausch, J. F.; Shin, H.; Askew, J. W.

    2005-01-01

    NASA and the U.S. aerospace industry have been assessing the economic viability and environmental acceptability of a second-generation supersonic civil transport, or High Speed Civil Transport (HSCT). Development of a propulsion system that satisfies strict airport noise regulations and provides high levels of cruise and transonic performance with adequate takeoff performance, at an acceptable weight, is critical to the success of any HSCT program. The principal objectives were to: 1. Develop a preliminary design of an innovative 2-D exhaust nozzle with the goal of meeting FAR36 Stage III noise levels and providing high levels of cruise performance with a high specific thrust for Mach 2.4 HSCT with a range of 5000 nmi and a payload of 51,900 lbm, 2. Employ advanced acoustic and aerodynamic codes during preliminary design, 3. Develop a comprehensive acoustic and aerodynamic database through scale-model testing of low-noise, high-performance, 2-D nozzle configurations, based on the preliminary design, and 4. Verify acoustic and aerodynamic predictions by means of scale-model testing. The results were: 1. The preliminary design of a 2-D, convergent/divergent suppressor ejector nozzle for a variable-cycle engine powered, Mach 2.4 HSCT was evolved, 2. Noise goals were predicted to be achievable for three takeoff scenarios, and 3. Impact of noise suppression, nozzle aerodynamic performance, and nozzle weight on HSCT takeoff gross weight were assessed.

  13. Exhaust emissions from high speed passenger ferries

    NASA Astrophysics Data System (ADS)

    Cooper, D. A.

    Exhaust emission measurements have been carried out on-board three high-speed passenger ferries (A, B and C) during normal service routes. Ship A was powered by conventional, medium-speed, marine diesel engines, Ship B by gas turbine engines and Ship C conventional, medium-speed, marine diesel engines equipped with selective catalytic reduction (SCR) systems for NO x abatement. All ships had similar auxiliary engines (marine diesels) for generating electric power on-board. Real-world emission factors of NOx, SO2, CO, CO 2, NMVOC, CH4, N2O, NH3, PM and PAH at steady-state engine loads and for complete voyages were determined together with an estimate of annual emissions. In general, Ship B using gas turbines showed favourable NO x, PM and PAH emissions but at the expense of higher fuel consumption and CO 2 emissions. Ship C with the SCR had the lowest NO x emissions but highest NH 3 emissions especially during harbour approaches and stops. The greatest PM and PAH specific emissions were measured from auxiliary engines operating at low engine loads during harbour stops. Since all ships used a low-sulphur gas oil, SO 2 emissions were relatively low in all cases.

  14. Bronchoalveolar inflammation after exposure to diesel exhaust: comparison between unfiltered and particle trap filtered exhaust

    PubMed Central

    Rudell, B.; Blomberg, A.; Helleday, R.; Ledin, M. C.; Lundback, B.; Stjernberg, N.; Horstedt, P.; Sandstrom, T.

    1999-01-01

    OBJECTIVES: Air pollution particulates have been identified as having adverse effects on respiratory health. The present study was undertaken to further clarify the effects of diesel exhaust on bronchoalveolar cells and soluble components in normal healthy subjects. The study was also designed to evaluate whether a ceramic particle trap at the end of the tail pipe, from an idling engine, would reduce indices of airway inflammation. METHODS: The study comprised three exposures in all 10 healthy never smoking subjects; air, diluted diesel exhaust, and diluted diesel exhaust filtered with a ceramic particle trap. The exposures were given for 1 hour in randomised order about 3 weeks apart. The diesel exhaust exposure apperatus has previously been carefully developed and evaluated. Bronchoalveolar lavage was performed 24 hours after exposures and the lavage fluids from the bronchial and bronchoalveolar region were analysed for cells and soluble components. RESULTS: The particle trap reduced the mean steady state number of particles by 50%, but the concentrations of the other measured compounds were almost unchanged. It was found that diesel exhaust caused an increase in neutrophils in airway lavage, together with an adverse influence on the phagocytosis by alveolar macrophages in vitro. Furthermore, the diesel exhaust was found to be able to induce a migration of alveolar macrophages into the airspaces, together with reduction in CD3+CD25+ cells. (CD = cluster of differentiation) The use of the specific ceramic particle trap at the end of the tail pipe was not sufficient to completely abolish these effects when interacting with the exhaust from an idling vehicle. CONCLUSIONS: The current study showed that exposure to diesel exhaust may induce neutrophil and alveolar macrophage recruitment into the airways and suppress alveolar macrophage function. The particle trap did not cause significant reduction of effects induced by diesel exhaust compared with unfiltered diesel

  15. High exhaust temperature, zoned, electrically-heated particulate matter filter

    DOEpatents

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  16. Weight Penalty Incurred in Thermoelectric Recovery of Automobile Exhaust Heat

    NASA Astrophysics Data System (ADS)

    Rowe, D. M.; Smith, J.; Thomas, G.; Min, G.

    2011-05-01

    Thermoelectric recovery of automobile waste exhaust heat has been identified as having potential for reducing fuel consumption and environmentally unfriendly emissions. Around 35% of combustion energy is discharged as heat through the exhaust system, at temperatures which depend upon the engine's operation and range from 800°C to 900°C at the outlet port to less than 50°C at the tail-pipe. Beneficial reduction in fuel consumption of 5% to 10% is widely quoted in the literature. However, comparison between claims is difficult due to nonuniformity of driving conditions. In this paper the available waste exhaust heat energy produced by a 1.5 L family car when undergoing the new European drive cycle was measured and the potential thermoelectric output estimated. The work required to power the vehicle through the drive cycle was also determined and used to evaluate key parameters. This enabled an estimate to be made of the engine efficiency and additional work required by the engine to meet the load of a thermoelectric generating system. It is concluded that incorporating a thermoelectric generator would attract a penalty of around 12 W/kg. Employing thermoelectric modules fabricated from low-density material such as magnesium silicide would considerably reduce the generator weight penalty.

  17. Control of Nitrous Oxide Exposure in Dental Operatories Using Local Exhaust Ventilation

    PubMed Central

    Jacobs, David E.; Middendorf, Paul J.

    1986-01-01

    An experimental portable local exhaust ventilation system was installed in three dental operatories where nitrous oxide was used routinely. Standard methods of exhaust ventilation design used in industry to control exposures to toxic airborne substances were applied to the dental operatory setting. The concentration of nitrous oxide in the dentists' breathing zones was measured before and after installation to determine the efficiency of the system in reducing occupational exposures. Results indicate that placement of the exhaust opening and exhaust air flow rate are important in determining the degree of control achieved. After the system had been installed in one operatory, peak exposures declined from over 600 parts per million (ppm) to less than 70 ppm: the time-weighted average exposure was below the NIOSH recommended level of 25 ppm. A permanently installed local exhaust ventilation system modeled after the portable one used in this pilot study may be feasible for most operatories and should not interfere with dental procedures. The results suggest that nitrous oxide exposures can be greatly reduced if dental operatories are equipped with local exhaust ventilation. ImagesFig. 4Fig. 7 PMID:3465259

  18. Exhaustive Thresholds and Resistance Checkpoints

    NASA Technical Reports Server (NTRS)

    Easton, Charles; Khuzadi, Mbuyi

    2008-01-01

    Once deployed, all intricate systems that operate for a long time (such as an airplane or chemical processing plant) experience degraded performance during operational lifetime. These can result from losses of integrity in subsystems and parts that generally do not materially impact the operation of the vehicle (e.g., the light behind the button that opens the sliding door of the minivan). Or it can result from loss of more critical parts or subsystems. Such losses need to be handled quickly in order to avoid loss of personnel, mission, or part of the system itself. In order to manage degraded systems, knowledge of its potential problem areas and the means by which these problems are detected should be developed during the initial development of the system. Once determined, a web of sensors is employed and their outputs are monitored with other system parameters while the system is in preparation or operation. Just gathering the data is only part of the story. The interpretation of the data itself and the response of the system must be carefully developed as well to avoid a mishap. Typically, systems use a test-threshold-response paradigm to process potential system faults. However, such processing sub-systems can suffer from errors and oversights of a consistent type, causing system aberrant behavior instead of expected system and recovery operations. In our study, we developed a complete checklist for determining the completeness of a fault system and its robustness to common processing and response difficulties.

  19. The Chemical Exhaust Hazards of Dichlorosilane Deposits Determined with FT-ICR Mass Spectrometry

    SciTech Connect

    JAREK, RUSSELL L.; THORNBERG, STEVEN M.

    1999-10-01

    Flammable deposits have been analyzed from the exhaust systems of tools employing dichlorosilane (DCS) as a processing gas. Exact mass determinations with a high-resolution Fourier-transform ion-cyclotron resonance (FT-ICR) mass spectrometer allowed the identification of various polysiloxane species present in such an exhaust flow. Ion-molecule reactions indicate the preferred reaction pathway of siloxane formation is through HCl loss, leading to the highly reactive polysiloxane that was detected in the flammable deposits.

  20. Performance of Installed Cooking Exhaust Devices

    SciTech Connect

    Singer, Brett C.; Delp, William W.; Apte, Michael G.; Price, Philip N.

    2011-11-01

    The performance metrics of airflow, sound, and combustion product capture efficiency (CE) were measured for a convenience sample of fifteen cooking exhaust devices, as installed in residences. Results were analyzed to quantify the impact of various device- and installation-dependent parameters on CE. Measured maximum airflows were 70% or lower than values noted on product literature for 10 of the devices. Above-the-cooktop devices with flat bottom surfaces (no capture hood) – including exhaust fan/microwave combination appliances – were found to have much lower CE at similar flow rates, compared to devices with capture hoods. For almost all exhaust devices and especially for rear-mounted downdraft exhaust and microwaves, CE was substantially higher for back compared with front burner use. Flow rate, and the extent to which the exhaust device extends over the burners that are in use, also had a large effect on CE. A flow rate of 95 liters per second (200 cubic feet per minute) was necessary, but not sufficient, to attain capture efficiency in excess of 75% for the front burners. A-weighted sound levels in kitchens exceeded 57 dB when operating at the highest fan setting for all 14 devices evaluated for sound performance.

  1. Effect of exhaustive exercise on myocardial performance

    SciTech Connect

    Grimditch, G.K.; Barnard, R.J.; Duncan, H.W.

    1981-11-01

    Possible changes in cardiac functional capacity in the intact heart following prolonged exhaustive exercise are investigated. Cardiac output, coronary blood flow, aortic blood pressure, left ventricular pressure, maximum rate of left ventricular pressure development and maximum rate of left ventricular pressure relaxation were measured in eight chronically instrumented adult mongrel dogs run at a constant work load to exhaustion signalled by the animals' refusal or inability to continue. All cardiovascular parameters, with the exception of stroke volume, are found to increase significantly during the transition from rest to steady-state exercise at about 75% of maximum heart rate. In the transition from steady state to exhaustion, only the maximum rates of left ventricular pressure development and relaxation are observed to increase significantly, while all other values exhibited no significant change. Similarly, no significant changes are observed in measurements of maximum cardiac parameters before and after exhaustion. Results indicate that cardiac function and hemodynamic parameters are not depressed at exhaustion in dogs despite observed ultrastructural changes.

  2. Effects of jet exhaust gas properties on exhaust simulation and afterbody drag

    NASA Technical Reports Server (NTRS)

    Compton, W. B., III

    1975-01-01

    The effect of varying the jet exhaust's ratio of specific heats, gas constant, and temperature on airplane afterbody drag was investigated. Jet exhaust simulation parameters were evaluated also. Subsonic and transonic tests were made using a single nacelle model with afterbodies having boattail angles of 10 deg and 20 deg. Besides air, three other jet exhaust gases were investigated. The ratios of specific heats, gas constants, and total temperatures of the four exhaust gases ranged from 1.40 to 1.26, 287 to 376 J/kg-K, and 300 to 1013 K, respectively. For steep boattail angles, and transonic speeds and typical turbojet pressure ratios, the current data indicate that the use of air to simulate a dry turbojet exhaust can result in an overprediction of afterbody drag as high as 17 percent of the dry turbojet value.

  3. H-CANYON AIR EXHAUST TUNNEL INSPECTION VEHICLE DEVELOPMENT

    SciTech Connect

    Minichan, R.; Fogle, R.; Marzolf, A.

    2011-05-24

    The H-Canyon at Savannah River Site is a large concrete structure designed for chemical separation processes of radioactive material. The facility requires a large ventilation system to maintain negative pressure in process areas for radioactive contamination control and personnel protection. The ventilation exhaust is directed through a concrete tunnel under the facility which is approximately five feet wide and 8 feet tall that leads to a sand filter and stack. Acidic vapors in the exhaust have had a degrading effect on the surface of the concrete tunnels. Some areas have been inspected; however, the condition of other areas is unknown. Experience from historical inspections with remote controlled vehicles will be discussed along with the current challenge of inspecting levels below available access points. The area of interest in the exhaust tunnel must be accessed through a 14 X 14 inch concrete plug in the floor of the hot gang valve corridor. The purpose for the inspection is to determine the condition of the inside of the air tunnel and establish if there are any structural concerns. Various landmarks, pipe hangers and exposed rebar are used as reference points for the structural engineers when evaluating the current integrity of the air tunnel.

  4. Exhaust gas treatment in testing nuclear rocket engines

    NASA Astrophysics Data System (ADS)

    Zweig, Herbert R.; Fischler, Stanley; Wagner, William R.

    1993-01-01

    With the exception of the last test series of the Rover program, Nuclear Furnace 1, test-reactor and rocket engine hydrogen gas exhaust generated during the Rover/NERVA program was released directly to the atmosphere, without removal of the associated fission products and other radioactive debris. Current rules for nuclear facilities (DOE Order 5480.6) are far more protective of the general environment; even with the remoteness of the Nevada Test Site, introduction of potentially hazardous quantities of radioactive waste into the atmosphere must be scrupulously avoided. The Rocketdyne treatment concept features a diffuser to provide altitude simulation and pressure recovery, a series of heat exchangers to gradually cool the exhaust gas stream to 100 K, and an activated charcoal bed for adsorption of inert gases. A hydrogen-gas fed ejector provides auxiliary pumping for startup and shutdown of the engine. Supplemental filtration to remove particulates and condensed phases may be added at appropriate locations in the system. The clean hydrogen may be exhausted to the atmosphere and flared, or the gas may be condensed and stored for reuse in testing. The latter approach totally isolates the working gas from the environment.

  5. Exhaust Nozzle Materials Development for the High Speed Civil Transport

    NASA Technical Reports Server (NTRS)

    Grady, J. E.

    1999-01-01

    The United States has embarked on a national effort to develop the technology necessary to produce a Mach 2.4 High Speed Civil Transport (HSCT) for entry into service by the year 2005. The viability of this aircraft is contingent upon its meeting both economic and environmental requirements. Two engine components have been identified as critical to the environmental acceptability of the HSCT. These include a combustor with significantly lower emissions than are feasible with current technology, and a lightweight exhaust nozzle that meets community noise standards. The Enabling Propulsion Materials (EPM) program will develop the advanced structural materials, materials fabrication processes, structural analysis and life prediction tools for the HSCT combustor and low noise exhaust nozzle. This is being accomplished through the coordinated efforts of the NASA Lewis Research Center, General Electric Aircraft Engines and Pratt & Whitney. The mission of the EPM Exhaust Nozzle Team is to develop and demonstrate this technology by the year 1999 to enable its timely incorporation into HSCT propulsion systems.

  6. Monitoring Engine Vibrations And Spectrum Of Exhaust

    NASA Technical Reports Server (NTRS)

    Martinez, Carol L.; Randall, Michael R.; Reinert, John W.

    1991-01-01

    Real-time computation of intensities of peaks in visible-light emission spectrum of exhaust combined with real-time spectrum analysis of vibrations into developmental monitoring technique providing up-to-the-second information on conditions of critical bearings in engine. Conceived to monitor conditions of bearings in turbopump suppling oxygen to Space Shuttle main engine, based on observations that both vibrations in bearings and intensities of visible light emitted at specific wavelengths by exhaust plume of engine indicate wear and incipient failure of bearings. Applicable to monitoring "health" of other machinery via spectra of vibrations and electromagnetic emissions from exhausts. Concept related to one described in "Monitoring Bearing Vibrations For Signs Of Damage", (MFS-29734).

  7. Acid droplet generation in SRM exhaust clouds

    NASA Technical Reports Server (NTRS)

    Dingle, A. N.

    1983-01-01

    A free energy analysis is applied to the co-condensation/evaporation of H2O and HCl vapors on wettable particles in open air in order to model droplet nucleation in solid rocket motor (SRM) exhaust clouds. Formulations are defined for the free energy change, the drop radius, the saturation ratio, the total number of molecules, and the mean molecular radius in solution, as well as the molecular volume and the concentration range. The free energy release in the phase transition for the AL2O3 nuclei in the SRM exhaust is examined as a function of the HCl molefraction and nucleating particle radius, based on Titan III launch exhaust cloud conditions 90 sec after ignition. The most efficient droplet growth is determined to occur at an HCl molefraction of 0.082 and a particle radius of 0.0000013 cm, i.e. a molality of 5.355.

  8. Two stroke engine exhaust emissions separator

    DOEpatents

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Raterman, Kevin T.

    2002-01-01

    A separator for substantially resolving at least one component of a process stream, such as from the exhaust of an internal combustion engine. The separator includes a body defining a chamber therein. A nozzle housing is located proximate the chamber. An exhaust inlet is in communication with the nozzle housing and the chamber. A nozzle assembly is positioned in the nozzle housing and includes a nozzle moveable within and relative to the nozzle housing. The nozzle includes at least one passage formed therethrough such that a process stream entering the exhaust inlet connection passes through the passage formed in the nozzle, which imparts a substantially rotational flow to the process stream as it enters the chamber. A positioning member is configured to position the nozzle relative to the nozzle housing in response to changes in process stream pressure to adjust flowrate of said process stream entering into the chamber.

  9. Two stroke engine exhaust emissions separator

    DOEpatents

    Turner, Terry D.; Wilding, Bruce M.; McKellar, Michael G.; Raterman, Kevin T.

    2003-04-22

    A separator for substantially resolving at least one component of a process stream, such as from the exhaust of an internal combustion engine. The separator includes a body defining a chamber therein. A nozzle housing is located proximate the chamber. An exhaust inlet is in communication with the nozzle housing and the chamber. A nozzle assembly is positioned in the nozzle housing and includes a nozzle moveable within and relative to the nozzle housing. The nozzle includes at least one passage formed therethrough such that a process stream entering the exhaust inlet connection passes through the passage formed in the nozzle and imparts a substantially rotational flow to the process stream as it enters the chamber. A positioning member is configured to position the nozzle relative to the nozzle housing in response to changes in process stream pressure thereby adjusting flowrate of said process stream entering into the chamber.

  10. Simulation of a hydrocarbon fueled scramjet exhaust

    NASA Technical Reports Server (NTRS)

    Leng, J.

    1982-01-01

    Exhaust nozzle flow fields for a fully integrated, hydrocarbon burning scramjet were calculated for flight conditions of M (undisturbed free stream) = 4 at 6.1 km altitude and M (undisturbed free stream) = 6 at 30.5 km altitude. Equilibrium flow, frozen flow, and finite rate chemistry effects are considered. All flow fields were calculated by method of characteristics. Finite rate chemistry results were evaluated by a one dimensional code (Bittker) using streamtube area distributions extracted from the equilibrium flow field, and compared to very slow artificial rate cases for the same streamtube area distribution. Several candidate substitute gas mixtures, designed to simulate the gas dynamics of the real engine exhaust flow, were examined. Two mixtures are found to give excellent simulations of the specified exhaust flow fields when evaluated by the same method of characteristics computer code.

  11. Diesel Exhaust Emissions Control for Light-Duty Vehicles

    SciTech Connect

    Mital, R.; Li, J.; Huang, S. C.; Stroia, B. J.; Yu, R. C.; Anderson, J.A.; Howden, Kenneth C.

    2003-03-01

    The objective of this paper is to present the results of diesel exhaust aftertreatment testing and analysis done under the FreedomCAR program. Nitrogen Oxides (NOx) adsorber technology was selected based on a previous investigation of various NOx aftertreatment technologies including non-thermal plasma, NOx adsorber and active lean NOx. Particulate Matter (PM) emissions were addressed by developing a catalyzed particulate filter. After various iterations of the catalyst formulation, the aftertreatment components were integrated and optimized for a light duty vehicle application. This compact exhaust aftertreatment system is dual leg and consists of a sulfur trap, NOx adsorbers, and catalyzed particulate filters (CPF). During regeneration, supplementary ARCO ECD low-sulfur diesel fuel is injected upstream of the adsorber and CPF in the exhaust. Steady state and transient emission test results with and without the exhaust aftertreatment system (EAS) are presented. Results of soot filter regeneration by injecting low-sulfur diesel fuel and slip of unregulated emissions, such as NH3, are discussed. Effects of adsorber size and bypass strategy on NOx conversion efficiency and fuel economy penalty are also presented in this paper. The results indicate that if the supplementary fuel injection is optimized, NH3 slip is negligible. During the FTP cycle, injection of low sulfur diesel fuel can create temperature exotherms high enough to regenerate a loaded CPF. With the optimized NOx adsorber regeneration strategies the fuel injection penalty can be reduced by 40 to 50%. Results for various other issues like low temperature light off, reductant optimization, exhaust sulfur management, system integration and design trade-off, are also presented and discussed in this paper. (SAE Paper SAE-2003-01-0041 © 2003 SAE International. This paper is published on this website with permission from SAE International. As a user of this website, you are permitted to view this paper on

  12. Generation and characterization of radiolabeled diesel exhaust.

    PubMed

    Dutcher, J S; Sun, J D; Lopez, J A; Wolf, I; Wolff, R K; McClellan, R O

    1984-07-01

    To evaluate the potential health risks associated with increased use of diesel engines, information is needed on the biological fate of inhaled diesel exhaust components. Appropriately radiolabeled exhaust produced by burning radiolabeled fuel could be used to gain this information. The purpose of this study was to characterize different radiolabeled diesel exhausts with respect to their potential use in studies of the biological fate of exhaust carbon particles and particle-associated organic compounds (particle extracts). A single-cylinder diesel engine was used to burn diesel fuel containing trace amounts of 14C-labeled hexadecane, dotriacontane, benzene, phenanthrene or benzo(a)pyrene. Greater than 98% of the 14C in all additives was converted to volatile materials upon combustion. The remainder was distributed in varying amounts between the carbon particles and particle extracts. Aromatic additives labeled carbon particles more efficiently than aliphatic additives. Column chromatography of the particle extracts showed that, in most cases, the majority of the radioactivity eluted in fractions identical to the specific fuel additive employed, suggesting that a large amount of the particle-associated organic compounds consisted of uncombusted fuel constituents. Applying an electrical load to the engine-electrical generator increased carbon particle radioactivity, but had variable effects on the amount of radioactivity in the particle extracts. 67Ga-tetramethylheptanedione was also studied as a fuel additive to label carbon particles. 67Ga was incorporated into the exhaust particles and lung deposition of particles in rats was found to be approximately 10%. However, the 67Ga-radiolabel was found to separate from the particles in vivo, making it an unsuitable radiolabel for studying the long-term lung retention of diesel exhaust carbonaceous particles.

  13. Brain glycogen supercompensation following exhaustive exercise.

    PubMed

    Matsui, Takashi; Ishikawa, Taro; Ito, Hitoshi; Okamoto, Masahiro; Inoue, Koshiro; Lee, Min-Chul; Fujikawa, Takahiko; Ichitani, Yukio; Kawanaka, Kentaro; Soya, Hideaki

    2012-02-01

    Brain glycogen localized in astrocytes, a critical energy source for neurons, decreases during prolonged exhaustive exercise with hypoglycaemia. However, it is uncertain whether exhaustive exercise induces glycogen supercompensation in the brain as in skeletal muscle. To explore this question, we exercised adult male rats to exhaustion at moderate intensity (20 m min(-1)) by treadmill, and quantified glycogen levels in several brain loci and skeletal muscles using a high-power (10 kW) microwave irradiation method as a gold standard. Skeletal muscle glycogen was depleted by 82-90% with exhaustive exercise, and supercompensated by 43-46% at 24 h after exercise. Brain glycogen levels decreased by 50-64% with exhaustive exercise, and supercompensated by 29-63% (whole brain 46%, cortex 60%, hippocampus 33%, hypothalamus 29%, cerebellum 63% and brainstem 49%) at 6 h after exercise. The brain glycogen supercompensation rates after exercise positively correlated with their decrease rates during exercise. We also observed that cortical and hippocampal glycogen supercompensation were sustained until 24 h after exercise (long-lasting supercompensation), and their basal glycogen levels increased with 4 weeks of exercise training (60 min day(-1) at 20 m min(-1)). These results support the hypothesis that, like the effect in skeletal muscles, glycogen supercompensation also occurs in the brain following exhaustive exercise, and the extent of supercompensation is dependent on that of glycogen decrease during exercise across brain regions. However, supercompensation in the brain preceded that of skeletal muscles. Further, the long-lasting supercompensation of the cortex and hippocampus is probably a prerequisite for their training adaptation (increased basal levels), probably to meet the increased energy demands of the brain in exercising animals.

  14. A Flight Investigation of Exhaust-Heat De-Icing, Special Report

    NASA Technical Reports Server (NTRS)

    Rodert, Lewis A.; Jones, Alun R.

    1940-01-01

    The National Advisory Committee for Aeronautics has conducted exhaust-heat de-icing tests inflight t o provide data needed in the application of this method of ice prevention. Thc capacity to extract heat from the exhaust gas for de-icing purposes, the quantity of heat required, and other factors were examined. The results indicate that a wing-heating system employing a spanwise exhaust tube within the leading edge of the wing will make available for de-icing purposes between 30 and 35 percent of the exhaust-gas heat. Data are given by which the heat required for ice prevention can be calculated. Sample calculations have been made, on a basis of existing engine power over wing area ratios, to show that sufficient heating can be obtained for ice protection on modern transport airplanes,

  15. Turbine exhaust diffuser with region of reduced flow area and outer boundary gas flow

    DOEpatents

    Orosa, John

    2014-03-11

    An exhaust diffuser system and method for a turbine engine. The outer boundary may include a region in which the outer boundary extends radially inwardly toward the hub structure and may direct at least a portion of an exhaust flow in the diffuser toward the hub structure. At least one gas jet is provided including a jet exit located on the outer boundary. The jet exit may discharge a flow of gas downstream substantially parallel to an inner surface of the outer boundary to direct a portion of the exhaust flow in the diffuser toward the outer boundary to effect a radially outward flow of at least a portion of the exhaust gas flow toward the outer boundary to balance an aerodynamic load between the outer and inner boundaries.

  16. Process for desulfurizing an exhaust gas

    SciTech Connect

    Shinoda, N.; Okino, S.; Oshima, M.; Shigeta, S.; Tatani, A.; Ukawa, N.

    1983-12-13

    A process is disclosed for desulfurizing an exhaust gas which comprises desulfurizing an exhaust gas containing SO/sub 2/ by bringing it into contact with a slurry containing calcium compounds and aluminum compounds, characterized in that the concentration of the dissolved aluminum ion in said slurry is detected and a manganese compound is supplied into said slurry in such a manner that the ratio of the concentration of manganese (including both solid and liquid) to said concentration of the dissolved aluminum ion may be maintained in a molar ratio of less than 1 in said slurry.

  17. Status of German European exhaust emission legislation

    SciTech Connect

    Seiffert, U.

    1985-01-01

    Recent legislative initiatives in West Germany and other European countries are leading to more stringent automobile exhaust emission standards. A review of the emission inventory on a global and West German basis and other factors, such as acid rain and forest damage, indicate that the contribution of automobile exhaust to the emission problem may be less than the European public assumes. As an interim step while new standards are being considered, the West German government is promoting the purchase of low-pollution vehicles through a vehicle tax reduction program.

  18. Optimization of valve opening process for the suppression of impulse exhaust noise

    NASA Astrophysics Data System (ADS)

    Li, Jingxiang; Zhao, Shengdun

    2017-02-01

    Impulse exhaust noise generated by the sudden impact of discharging flow of pneumatic systems has significant temporal characteristics including high sound pressure and rapid sound transient. The impulse noise exposures are more hazardous to hearing than the energy equivalent uniform noise exposures. This paper presents a novel approach to suppress the peak sound pressure as a major indicator of impulsiveness of the impulse exhaust noise by an optimization of the opening process of valve. Relationships between exhaust flow and impulse noise are described by thermodynamics and noise generating mechanism. Then an optimized approach by controlling the valve opening process is derived under a constraint of pre-setting exhaust time. A modified servo-direct-driven valve was designed and assembled in a typical pneumatic system for the verification experiments comparing with an original solenoid valve. Experimental results with groups of initial cylinder pressures and pre-setting exhaust times are shown to verify the effects of the proposed optimization. Some indicators of energy-equivalent and impulsiveness are introduced to discuss the effects of the noise suppressions. Relationship between noise reduction and exhaust time delay is also discussed.

  19. Field Study of Exhaust Fans for Mitigating Indoor Air Quality Problems & Indoor Air Quality - Exhaust Fan Mitigation.

    SciTech Connect

    United States. Bonneville Power Administration.

    1987-07-01

    Overall, the findings show that exhaust fans basically provide small amounts of ventilation compensation. By monitoring the common indoor air pollutants (radon, formaldehyde, carbon monoxide, nitrogen dioxide, and water vapor), it was found that the quality of the indoor air was not adversely affected by the use of exhaust fans. Nor did their use provide any measurable or significant benefits since no improvement in air quality was ascertained. While exhaust fans of this small size did not increase radon, which is the contaminant of most concern, the researchers caution that operation of a larger fan or installation in a very tight home could result in higher levels because depressurization is greater. The daily energy consumption for use of these appliances during the heating season was calculated to be 1.5 kilowatt hours or approximately 3% of the energy consumption in the study homes. The information collected in this collaborative field study indicates that the use of these particular ventilation systems has no significant effect on indoor air quality.

  20. Comparative toxicity and mutagenicity of biodiesel exhaust

    EPA Science Inventory

    Biodiesel (BD) is commercially made from the transesterification of plant and animal derived oils. The composition of biodiesel exhaust (BE) depends on the type of fuel, the blend ratio and the engine and operating conditions. While numerous studies have characterized the health ...

  1. 241-SY modular exhauster pad analysis

    SciTech Connect

    Kriskovich, J.R.

    1994-11-16

    The purpose of this document is to show the analytical results which were reached in analyzing the new 241-SY modular exhauster concrete pad and retaining wall. The analysis covers wind loading (80 mph), an equivalent static load due to a seismic event, and from those two results, a determination of the pad thickness and the location and size of reinforcement bar was made. The analysis of the exhauster assembly and sampling cabinet evaluated overturning of the assemblies as a whole. An analysis was then performed for the bolting requirements for these two assemblies. The reason why this was broken up into components was to determine if the individual components could take the load exerted by the workset case loading condition, whether it be wind or seismic. The retaining wall that will be located near the new concrete pad was also analyzed. The retaining wall was evaluated to determine the area of reinforcement required, the location of reinforcement, as well as the mass and configuration of the wall to prevent overturning or sliding. The wall was considered Non-Safety Class 4. Additional piping was required to tie-in the new exhauster to the existing primary ventilation ductwork. The design for the tie-in includes two butterfly valves, a tee fitting, elbows, flanges, straight pipe sections, and two new pipe supports to accommodate the additional weight. The valves will enable the new and existing exhausters to be isolated independently. The ductwork, couplings, and supports were analyzed for structural adequacy given Safety Class 2 loads.

  2. Microphysical properties of the Shuttle exhaust cloud

    NASA Technical Reports Server (NTRS)

    Keller, V. W.; Anderson, B. J.

    1983-01-01

    A data base describing the properties of the exhaust cloud produced by the launch of the STS has been developed based on data from a series of ground and aircraft based measurements made during the launches of STS 2, 3, and 4. Aircraft observations were performed during the STS-3 launch with a NOAA WP-3D Orion hurricane research aircraft which contained instrumentation for cloud condensation nucleus and ice nucleus counting, Aitken particle counting, and pH determination. Ground observations were conducted at 50 different sites, as well as in the direct exhaust from the solid rocket booster flame trench at all three launches. The data is analyzed in order to determine any possible adverse impacts of the exhaust products on human health and/or the environment. Analyses of the exhaust cloud measurements indicate that in the case of the ground cloud where plenty of large water drops are present and considerable scavenging and fallout of aerosol takes place, possible adverse impacts of the remaining aerosols (CCN and IN) on natural precipitation processes which may occur in the launch area hours after the launch are remote. However, it is determined that under certain atmospheric conditions there could be short term adverse effects on visibility.

  3. Silver doped catalysts for treatment of exhaust

    DOEpatents

    Park, Paul Worn; Hester, Virgil Raymond; Ragle, Christie Susan; Boyer, Carrie L.

    2009-06-02

    A method of making an exhaust treatment element includes washcoating a substrate with a slurry that includes a catalyst support material. At least some of the catalyst support material from the slurry may be transferred to the substrate, and silver metal (Ag) is dispersed within the catalyst support material.

  4. Aircraft Piston Engine Exhaust Emission Symposium

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A 2-day symposium on the reduction of exhaust emissions from aircraft piston engines was held on September 14 and 15, 1976, at the Lewis Research Center in Cleveland, Ohio. Papers were presented by both government organizations and the general aviation industry on the status of government contracts, emission measurement problems, data reduction procedures, flight testing, and emission reduction techniques.

  5. Lethal methemoglobinemia and automobile exhaust inhalation.

    PubMed

    Vevelstad, Merete; Morild, Inge

    2009-05-30

    Inhalation of automobile exhaust gas often leads to death by CO intoxication. In some cases the measured carbon monoxide hemoglobin saturation level (COHb) is considerably below what is considered to be lethal. The death in such cases has been attributed to a combination of a high CO2 and a low O2 tension. In a recent case the deceased was found dead in a car equipped with a catalytic converter, with a hose leading exhaust from the engine to the interior of the car. Analysis revealed a moderately elevated COHb and a high methemoglobin saturation level (MetHb) in peripheral blood. No ethanol, narcotics or drugs were detected. Reports mentioning MetHb or methemoglobinemia in post-mortem cases are surprisingly scarce, and very few have related exhaust gas deaths to methemoglobinemia. High-degree methemoglobinemia causes serious tissue hypoxia leading to unconsciousness, arrhythmia and death. The existing literature in this field and the knowledge that exhaust fumes contain nitrogen oxide gases (NOx) that by inhalation and absorption can result in severe methemoglobinemia, led us to postulate that this death could possibly be attributed to a combination of methemoglobinemia and a moderately high COHb concentration.

  6. Diesel exhaust, diesel fumes, and laryngeal cancer.

    PubMed

    Muscat, J E; Wynder, E L

    1995-03-01

    A hospital-based, case-control study of 235 male patients with laryngeal cancer and 205 male control patients was conducted to determine the effects of exposure to diesel engine exhaust and diesel fumes and the risk of laryngeal cancer. All patients were interviewed directly in the hospital with a standardized questionnaire that gathered information on smoking habits, alcohol consumption, employment history, and occupational exposures. Occupations that involve substantial exposure to diesel engine exhaust include mainly truck drivers, as well as mine workers, firefighters, and railroad workers. The odds ratio for laryngeal cancer associated with these occupations was 0.96 (95% confidence interval, 0.5 to 1.8). The odds ratio for self-reported exposure to diesel exhaust was 1.47 (95% confidence interval, 0.5 to 4.1). An elevated risk was found for self-reported exposure to diesel fumes (odds ratio, 6.4; 95% confidence interval, 1.8 to 22.6). No association was observed between jobs that entail exposure to diesel fumes, such as automobile mechanics, and the risk of laryngeal cancer. These results show that diesel engine exhaust is unrelated to laryngeal cancer risk. The different findings for self-reported diesel fumes and occupations that involve exposure to diesel fumes could reflect a recall bias.

  7. Diesel injector additives for a clean exhaust

    SciTech Connect

    Herbstman, S.; Virk, K.S.

    1988-08-01

    Increased public awareness of clean air is causing closer examination of potential health problems associated with diesel exhaust particulates. Recently, the EPA published standards mandating a sixfold reduction in diesel exhaust particulates for heavy duty engines from 0.60 gm/bhp-hr in 1988-1990 to 0.10 gm/bhp-hr in 1994. NOx exhaust concentrations were also reduced. For some time now, we have been interested in ways to reduce black smoke from diesel engines since it is one of the prime contributors to exhaust particulates. One of its causes is dirty or clogged fuel injectors due to deposit buildup. During operation with dirty injectors, the spray pattern of fuel into the combustion chamber is distorted, usually resulting in a fuel-rich environment. Incomplete burning of the rich fuel mixture results in an excess of carbonaceous material which is discharged in the exhaust as black smoke. We are engaged in evaluating additives with detergency and antioxidant properties to reduce deposit buildup in the injectors. Long chain alkylamines, and other types of surfactant molecules have been reported as active in preventing deposit buildup. However, little practical information was available concerning structure-activity relationships for use in developing a commercially acceptable additive package. We decided to investigate additives which are active either as gasoline carburetor detergents or as lubricant dispersants; both categories appear to have the necessary surfactant behavior and oil solubility to satisfy our needs for a diesel injector keep clean agent. Our approach to the problem was to develop an additive package for future use in Texaco fuels to reduce black smoke.

  8. Tumorigenesis of diesel exhaust, gasoline exhaust, and related emission extracts on SENCAR mouse skin

    SciTech Connect

    Nesnow, S; Triplett, L L; Slaga, T J

    1980-01-01

    The tumorigenicity of diesel exhaust particulate emissions was examined using a sensitive mouse skin tumorigenesis model (SENCAR). The tumorigenic potency of particulate emissions from diesel, gasoline, and related emission sources was compared.

  9. Mutagenicity of diesel exhaust particles from an engine with differing exhaust after treatments.

    PubMed

    Shi, X-C; Keane, M J; Ong, T; Li, S-Q; Bugarski, A B

    2010-01-01

    This study was conducted to investigate the effects of engine operating conditions and exhaust aftertreatments on the mutagenicity of diesel particulate matter (DPM) collected directly in an underground mine environment. A number of after-treatment devices are currently used on diesel engines in mines, but it is critical to determine whether reductions in DPM concentrations result in a corresponding decrease in adverse health effects. An eddy-current dynamometer was used to operate naturally aspirated mechanically controlled engine at several steady-state conditions. The samples were collected when the engine was equipped with a standard muffler, a diesel oxidation catalytic converter, two types of uncatalyzed diesel particulate filter systems, and three types of disposable diesel particulate filter elements. Bacterial gene mutation activity of DPM was tested on acetone extracts using the Ames Salmonella assay. The results indicated strong correlation between engine operating conditions and mutagenic activity of DPM. When the engine was fitted with muffler, the mutagenic activity was observed for the samples collected from light-load, but not heavy-load operating conditions. When the engine was equipped with a diesel oxidation catalyst, the samples did not exhibit mutagenic activity for any of four engine operating conditions. Mutagenic activity was observed for the samples collected when the engine was retrofitted with three types of disposable filters and sintered metal diesel particulate filter and operated at light load conditions. However, those filtration systems substantially reduced the concentration-normalized mutagenic activity from the levels observed for the muffler.

  10. Experimental Evaluation of Installed Cooking Exhaust Fan Performance

    SciTech Connect

    Singer, Brett C.; Delp, William W.; Apte, Michael G.

    2010-11-01

    The installed performance of cooking exhaust fans was evaluated through residential field experiments conducted on a sample of 15 devices varying in design and other characteristics. The sample included two rear downdraft systems, two under-cabinet microwave over range (MOR) units, three different installations of an under-cabinet model with grease screens across the bottom and no capture hood, two devices with grease screens covering the bottom of a large capture hood (one under-cabinet, one wall-mount chimney), four under-cabinet open hoods, and two open hoods with chimney mounts over islands. Performance assessment included measurement of airflow and sound levels across fan settings and experiments to quantify the contemporaneous capture efficiency for the exhaust generated by natural gas cooking burners.Capture efficiency is defined as the fraction of generated pollutants that are removed through the exhaust and thus not available for inhalation of household occupants. Capture efficiency (CE) was assessed for various configurations of burner use (e.g., single front, single back, combination of one front and one back, oven) and fan speed setting. Measured airflow rates were substantially lower than the levels noted in product literature for many of the units. This shortfall was observed for several units costing in excess of $1000. Capture efficiency varied widely (from<5percent to roughly 100percent) across devices and across conditions for some devices. As expected, higher capture efficiencies were achieved with higher fan settings and the associated higher air flow rates. In most cases, capture efficiencies were substantially higher for rear burners than for front burners. The best and most consistent performance was observed for open hoods that covered all cooktop burners and operated at higher airflow rates. The lowest capture efficiencies were measured when a front burner was used with a rear backdraft system or with lowest fan setting for above the range

  11. Steam atmosphere drying concepts using steam exhaust recompression

    SciTech Connect

    DiBella, F.A.

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg{sub evap} to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  12. Steam atmosphere drying concepts using steam exhaust recompression

    SciTech Connect

    DiBella, F.A. )

    1992-08-01

    In the US industrial drying accounts for approximately 1.5 quads of energy use per year. Annual industrial dryer expenditures are estimated to be in the $500 million range. Industrial drying is a significant energy and monetary expense. For the thermal drying processes in which water is removed via evaporation from the feedstock, attempts have been made to reduce the consumption of energy using exhaust waste heat recovery techniques, improved dryer designs, or even the deployment of advanced mechanical dewatering techniques. Despite these efforts, it is obvious that a large amount of thermal energy is often still lost if the latent heat of evaporation from the evaporated water cannot be recovered and/or in some way be utilized as direct heat input into the dryer. Tecogen Inc. is conducting research and development on an industrial drying concept. That utilizes a directly or indirectly superheated steam cycle atmosphere with exhaust steam recompression to recover the latent heat in the exhaust that would otherwise be lost. This approach has the potential to save 55 percent of the energy required by a conventional air dryer. Other advantages to the industrial dryer user include: A 35-percent reduction in the yearly cost per kg[sub evap] to dry wet feedstock, Reduced airborne emissions, Reduced dry dust fire/explosion risks, Hot product not exposed to oxygen thus, the product quality is enhanced, Constant rate drying in steam atmosphere, Reduced dryer size and cost, Reduced dryer heat losses due to lower dryer inlet temperatures. Tecogen has projected that the steam atmosphere drying system is most suitable as a replacement technology for state-of-the-art spray, flash, and fluidized bed drying systems. Such systems are utilized in the food and kindred products; rubber products; chemical and allied products; stone, clay, and glass; textiles; and pulp and paper industrial sectors.

  13. Open loop pneumatic control of a Lysholm engine or turbine exhaust pressure

    SciTech Connect

    Plonski, B.A.

    1981-07-17

    A Lysholm engine, or helical screw expander, is currently being evaluated at the University of California, Berkeley for staging with a conventional turbine in geothermal energy conversion. A pneumatic closed loop, proportional-integral control system was implemented to control the Lysholm engine's exhaust pressure for performance testing of the engine at constant inlet/outlet pressure ratios. The control system will also be used to control the exhaust pressure of the conventional turbine during future testing of the staged Lysholm-turbine system. Analytical modeling of the control system was performed and successful tuning was achieved by applying Ziegler-Nichol's tuning method. Stable control and quick response, of approximately 1 minute, was demonstrated for load and set point changes in desired exhaust pressures.

  14. Turbine exhaust diffuser flow path with region of reduced total flow area

    SciTech Connect

    Orosa, John A.

    2012-12-25

    An exhaust diffuser system and method for a turbine engine includes an inner boundary and an outer boundary with a flow path defined therebetween. The inner boundary is defined at least in part by a hub that has an upstream end and a downstream end. The outer boundary has a region in which the outer boundary extends radially inward toward the hub. The region can begin at a point that is substantially aligned with the downstream end of the hub or, alternatively, at a point that is proximately upstream of the downstream end of the hub. The region directs at least a portion of an exhaust flow in the diffuser toward the hub. As a result, the exhaust diffuser system and method can achieve the performance of a long hub system while enjoying the costs of a short hub system.

  15. Exhaust emission reduction for intermittent combustion aircraft engines

    NASA Technical Reports Server (NTRS)

    Moffett, R. N.

    1979-01-01

    Three concepts for optimizing the performance, increasing the fuel economy, and reducing exhaust emission of the piston aircraft engine were investigated. High energy-multiple spark discharge and spark plug tip penetration, ultrasonic fuel vaporization, and variable valve timing were evaluated individually. Ultrasonic fuel vaporization did not demonstrate sufficient improvement in distribution to offset the performance loss caused by the additional manifold restriction. High energy ignition and revised spark plug tip location provided no change in performance or emissions. Variable valve timing provided some performance benefit; however, even greater performance improvement was obtained through induction system tuning which could be accomplished with far less complexity.

  16. Exhaust apparatus for a v-type internal combustion engine

    SciTech Connect

    Ito, Y.; Deguchi, R.; Matsuoka, H.; Hanafusa, T.

    1988-03-22

    An exhaust apparatus adapted for connection to a V-type internal combustion engine in an automobile having a first cylinder bank away from the passenger compartment of the automobile and a second cylinder bank proximate the passenger compartment of the automobile, is described comprising: a first exhaust manifold connected to the first cylinder bank; a second exhaust manifold connected to the second cylinder bank; a catalytic converter; and means for connecting the first and second exhaust manifolds to the catalytic convertor.

  17. 40 CFR 1037.510 - Duty-cycle exhaust testing.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Duty-cycle exhaust testing. 1037.510... Duty-cycle exhaust testing. This section applies where exhaust emission testing is required, such as... type of vehicle and for each duty cycle as described in the following table: Table 1 to §...

  18. 40 CFR 1037.510 - Duty-cycle exhaust testing.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Duty-cycle exhaust testing. 1037.510... Duty-cycle exhaust testing. This section applies where exhaust emission testing is required, such as... type of vehicle and for each duty cycle as described in the following table: Table 1 to §...

  19. 40 CFR 1037.510 - Duty-cycle exhaust testing.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Duty-cycle exhaust testing. 1037.510... Duty-cycle exhaust testing. This section applies where exhaust emission testing is required, such as... type of vehicle and for each duty cycle as described in the following table: Table 1 to §...

  20. 46 CFR 52.25-20 - Exhaust gas boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Exhaust gas boilers. 52.25-20 Section 52.25-20 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING POWER BOILERS Other Boiler Types § 52.25-20 Exhaust gas boilers. Exhaust gas boilers with a maximum allowable working...