Sample records for exhibit complex patterns

  1. Decreased resting-state brain activity complexity in schizophrenia characterized by both increased regularity and randomness.

    PubMed

    Yang, Albert C; Hong, Chen-Jee; Liou, Yin-Jay; Huang, Kai-Lin; Huang, Chu-Chung; Liu, Mu-En; Lo, Men-Tzung; Huang, Norden E; Peng, Chung-Kang; Lin, Ching-Po; Tsai, Shih-Jen

    2015-06-01

    Schizophrenia is characterized by heterogeneous pathophysiology. Using multiscale entropy (MSE) analysis, which enables capturing complex dynamics of time series, we characterized MSE patterns of blood-oxygen-level-dependent (BOLD) signals across different time scales and determined whether BOLD activity in patients with schizophrenia exhibits increased complexity (increased entropy in all time scales), decreased complexity toward regularity (decreased entropy in all time scales), or decreased complexity toward uncorrelated randomness (high entropy in short time scales followed by decayed entropy as the time scale increases). We recruited 105 patients with schizophrenia with an age of onset between 18 and 35 years and 210 age- and sex-matched healthy volunteers. Results showed that MSE of BOLD signals in patients with schizophrenia exhibited two routes of decreased BOLD complexity toward either regular or random patterns. Reduced BOLD complexity toward regular patterns was observed in the cerebellum and temporal, middle, and superior frontal regions, and reduced BOLD complexity toward randomness was observed extensively in the inferior frontal, occipital, and postcentral cortices as well as in the insula and middle cingulum. Furthermore, we determined that the two types of complexity change were associated differently with psychopathology; specifically, the regular type of BOLD complexity change was associated with positive symptoms of schizophrenia, whereas the randomness type of BOLD complexity was associated with negative symptoms of the illness. These results collectively suggested that resting-state dynamics in schizophrenia exhibit two routes of pathologic change toward regular or random patterns, which contribute to the differences in syndrome domains of psychosis in patients with schizophrenia. © 2015 Wiley Periodicals, Inc.

  2. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons

    PubMed Central

    Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C.; Bunney, Benjamin S.; Peterson, Bradley S.

    2012-01-01

    Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. PMID:22831464

  3. Micro Language Planning and Cultural Renaissance in Botswana

    ERIC Educational Resources Information Center

    Alimi, Modupe M.

    2016-01-01

    Many African countries exhibit complex patterns of language use because of linguistic pluralism. The situation is often compounded by the presence of at least one foreign language that is either the official or second language. The language situation in Botswana depicts this complex pattern. Out of the 26 languages spoken in the country, including…

  4. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons.

    PubMed

    Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C; Bunney, Benjamin S; Peterson, Bradley S

    2012-11-01

    Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  5. Vegetation changes associated with a population irruption by Roosevelt elk

    USGS Publications Warehouse

    Starns, H D; Weckerly, Floyd W.; Ricca, Mark; Duarte, Adam

    2015-01-01

    Interactions between large herbivores and their food supply are central to the study of population dynamics. We assessed temporal and spatial patterns in meadow plant biomass over a 23-year period for meadow complexes that were spatially linked to three distinct populations of Roosevelt elk (Cervus elaphus roosevelti) in northwestern California. Our objectives were to determine whether the plant community exhibited a tolerant or resistant response when elk population growth became irruptive. Plant biomass for the three meadow complexes inhabited by the elk populations was measured using Normalized Difference Vegetation Index (NDVI), which was derived from Landsat 5 Thematic Mapper imagery. Elk populations exhibited different patterns of growth through the time series, whereby one population underwent a complete four-stage irruptive growth pattern while the other two did not. Temporal changes in NDVI for the meadow complex used by the irruptive population suggested a decline in forage biomass during the end of the dry season and a temporal decline in spatial variation of NDVI at the peak of plant biomass in May. Conversely, no such patterns were detected in the meadow complexes inhabited by the nonirruptive populations. Our findings suggest that the meadow complex used by the irruptive elk population may have undergone changes in plant community composition favoring plants that were resistant to elk grazing.

  6. Tree species exhibit complex patterns of distribution in bottomland hardwood forests

    Treesearch

    Luben D Dimov; Jim L Chambers; Brian R. Lockhart

    2013-01-01

    & Context Understanding tree interactions requires an insight into their spatial distribution. & Aims We looked for presence and extent of tree intraspecific spatial point pattern (random, aggregated, or overdispersed) and interspecific spatial point pattern (independent, aggregated, or segregated). & Methods We established twelve 0.64-ha plots in natural...

  7. Thermodynamics of complexity and pattern manipulation.

    PubMed

    Garner, Andrew J P; Thompson, Jayne; Vedral, Vlatko; Gu, Mile

    2017-04-01

    Many organisms capitalize on their ability to predict the environment to maximize available free energy and reinvest this energy to create new complex structures. This functionality relies on the manipulation of patterns-temporally ordered sequences of data. Here, we propose a framework to describe pattern manipulators-devices that convert thermodynamic work to patterns or vice versa-and use them to build a "pattern engine" that facilitates a thermodynamic cycle of pattern creation and consumption. We show that the least heat dissipation is achieved by the provably simplest devices, the ones that exhibit desired operational behavior while maintaining the least internal memory. We derive the ultimate limits of this heat dissipation and show that it is generally nonzero and connected with the pattern's intrinsic crypticity-a complexity theoretic quantity that captures the puzzling difference between the amount of information the pattern's past behavior reveals about its future and the amount one needs to communicate about this past to optimally predict the future.

  8. A fluid-filled soft robot that exhibits spontaneous switching among versatile spatiotemporal oscillatory patterns inspired by the true slime mold.

    PubMed

    Umedachi, Takuya; Idei, Ryo; Ito, Kentaro; Ishiguro, Akio

    2013-01-01

    Behavioral diversity is an essential feature of living systems, enabling them to exhibit adaptive behavior in hostile and dynamically changing environments. However, traditional engineering approaches strive to avoid, or suppress, the behavioral diversity in artificial systems to achieve high performance in specific environments for given tasks. The goals of this research include understanding how living systems exhibit behavioral diversity and using these findings to build lifelike robots that exhibit truly adaptive behaviors. To this end, we have focused on one of the most primitive forms of intelligence concerning behavioral diversity, namely, a plasmodium of true slime mold. The plasmodium is a large amoeba-like unicellular organism that does not possess any nervous system or specialized organs. However, it exhibits versatile spatiotemporal oscillatory patterns and switches spontaneously between these. Inspired by the plasmodium, we built a mathematical model that exhibits versatile oscillatory patterns and spontaneously transitions between these patterns. This model demonstrates that, in contrast to coupled nonlinear oscillators with a well-designed complex diffusion network, physically interacting mechanosensory oscillators are capable of generating versatile oscillatory patterns without changing any parameters. Thus, the results are expected to shed new light on the design scheme for lifelike robots that exhibit amazingly versatile and adaptive behaviors.

  9. Thermodynamics of complexity and pattern manipulation

    NASA Astrophysics Data System (ADS)

    Garner, Andrew J. P.; Thompson, Jayne; Vedral, Vlatko; Gu, Mile

    2017-04-01

    Many organisms capitalize on their ability to predict the environment to maximize available free energy and reinvest this energy to create new complex structures. This functionality relies on the manipulation of patterns—temporally ordered sequences of data. Here, we propose a framework to describe pattern manipulators—devices that convert thermodynamic work to patterns or vice versa—and use them to build a "pattern engine" that facilitates a thermodynamic cycle of pattern creation and consumption. We show that the least heat dissipation is achieved by the provably simplest devices, the ones that exhibit desired operational behavior while maintaining the least internal memory. We derive the ultimate limits of this heat dissipation and show that it is generally nonzero and connected with the pattern's intrinsic crypticity—a complexity theoretic quantity that captures the puzzling difference between the amount of information the pattern's past behavior reveals about its future and the amount one needs to communicate about this past to optimally predict the future.

  10. Investigating univariate temporal patterns for intrinsic connectivity networks based on complexity and low-frequency oscillation: a test-retest reliability study.

    PubMed

    Wang, X; Jiao, Y; Tang, T; Wang, H; Lu, Z

    2013-12-19

    Intrinsic connectivity networks (ICNs) are composed of spatial components and time courses. The spatial components of ICNs were discovered with moderate-to-high reliability. So far as we know, few studies focused on the reliability of the temporal patterns for ICNs based their individual time courses. The goals of this study were twofold: to investigate the test-retest reliability of temporal patterns for ICNs, and to analyze these informative univariate metrics. Additionally, a correlation analysis was performed to enhance interpretability. Our study included three datasets: (a) short- and long-term scans, (b) multi-band echo-planar imaging (mEPI), and (c) eyes open or closed. Using dual regression, we obtained the time courses of ICNs for each subject. To produce temporal patterns for ICNs, we applied two categories of univariate metrics: network-wise complexity and network-wise low-frequency oscillation. Furthermore, we validated the test-retest reliability for each metric. The network-wise temporal patterns for most ICNs (especially for default mode network, DMN) exhibited moderate-to-high reliability and reproducibility under different scan conditions. Network-wise complexity for DMN exhibited fair reliability (ICC<0.5) based on eyes-closed sessions. Specially, our results supported that mEPI could be a useful method with high reliability and reproducibility. In addition, these temporal patterns were with physiological meanings, and certain temporal patterns were correlated to the node strength of the corresponding ICN. Overall, network-wise temporal patterns of ICNs were reliable and informative and could be complementary to spatial patterns of ICNs for further study. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. X-ray studies on crystalline complexes involving amino acids and peptides. XXXII. Effect of chirality on ionisation state, stoichiometry and aggregation in the complexes of oxalic acid with DL- and L-lysine.

    PubMed

    Venkatraman, J; Prabu, M M; Vijayan, M

    1997-08-01

    Crystals of the oxalic acid complex of DL-lysine (triclinic P1; a = 5.540(1), b = 10.764(2), c = 12.056(2) A, alpha = 77.8(1), beta = 80.6(1), gamma = 75.6(1).; R = 4.7% for 2023 observed reflections) contain lysine and semioxalate ions in the 1:1 ratio, whereas the ratio of lysine and semioxalate/oxalate ions is 2:3 in the crystals of the L-lysine complex (monoclinic P2(1); alpha = 4.906(1), b = 20.145(4), c = 12.455(1) A, beta = 92.5(1).; R = 4.4% for 1494 observed reflections). The amino acid molecule in the L-lysine complex has an unusual ionisation state with positively charged alpha- and side-chain amino groups and a neutral carboxyl group. The unlike molecules aggregate into separate alternating layers in the DL-lysine complex in a manner similar to that observed in several of the amino acid complexes. The L-lysine complex exhibits a new aggregation pattern which cannot be easily explained in terms of planar features, thus emphasizing the fundamental dependence of aggregation on molecular characteristics. Despite the differences in stoichiometry, ionisation state and long-range aggregation patterns, the basic element of aggregation in the two complexes exhibits considerable similarity.

  12. Quantifying Landscape Spatial Pattern: What Is the State of the Art?

    Treesearch

    Eric J. Gustafson

    1998-01-01

    Landscape ecology is based on the premise that there are strong links between ecological pattern and ecological function and process. Ecological systems are spatially heterogeneous, exhibiting consid-erable complexity and variability in time and space. This variability is typically represented by categorical maps or by a collection of samples taken at specific spatial...

  13. The Control of Posture in Newly Standing Infants is Task Dependent

    ERIC Educational Resources Information Center

    Claxton, Laura J.; Melzer, Dawn K.; Ryu, Joong Hyun; Haddad, Jeffrey M.

    2012-01-01

    The postural sway patterns of newly standing infants were compared under two conditions: standing while holding a toy and standing while not holding a toy. Infants exhibited a lower magnitude of postural sway and more complex sway patterns when holding the toy. These changes suggest that infants adapt postural sway in a manner that facilitates…

  14. The complexity of gene expression dynamics revealed by permutation entropy

    PubMed Central

    2010-01-01

    Background High complexity is considered a hallmark of living systems. Here we investigate the complexity of temporal gene expression patterns using the concept of Permutation Entropy (PE) first introduced in dynamical systems theory. The analysis of gene expression data has so far focused primarily on the identification of differentially expressed genes, or on the elucidation of pathway and regulatory relationships. We aim to study gene expression time series data from the viewpoint of complexity. Results Applying the PE complexity metric to abiotic stress response time series data in Arabidopsis thaliana, genes involved in stress response and signaling were found to be associated with the highest complexity not only under stress, but surprisingly, also under reference, non-stress conditions. Genes with house-keeping functions exhibited lower PE complexity. Compared to reference conditions, the PE of temporal gene expression patterns generally increased upon stress exposure. High-complexity genes were found to have longer upstream intergenic regions and more cis-regulatory motifs in their promoter regions indicative of a more complex regulatory apparatus needed to orchestrate their expression, and to be associated with higher correlation network connectivity degree. Arabidopsis genes also present in other plant species were observed to exhibit decreased PE complexity compared to Arabidopsis specific genes. Conclusions We show that Permutation Entropy is a simple yet robust and powerful approach to identify temporal gene expression profiles of varying complexity that is equally applicable to other types of molecular profile data. PMID:21176199

  15. RELATIONSHIPS AMONG GEOMORPHOLOGY, HYDROLOGY, AND VEGETATION IN RIPARIAN MEADOWS: RESTORATION IMPLICATIONS

    EPA Science Inventory

    Vegetation patterns and dynamics within riparian corridors are controlled largely by geomorphic position, substrate characteristics and hydrologic regimes. Understanding management and restoration options for riparian meadow complexes exhibiting stream incision requires knowledge...

  16. Influence of volcanic history on groundwater patterns on the west slope of the Oregon High Cascades.

    Treesearch

    A. Jefferson; G. Grant; T. Rose

    2006-01-01

    Spring systems on the west slope of the Oregon High Cascades exhibit complex relationships among modern topography, lava flow geometries, and groundwater flow patterns. Seven cold springs were continuously monitored for discharge and temperature in the 2004 water year, and they were periodically sampled for ?18O, ?D, tritium, and dissolved noble gases. Anomalously high...

  17. Interference-mediated synaptonemal complex formation with embedded crossover designation

    PubMed Central

    Zhang, Liangran; Espagne, Eric; de Muyt, Arnaud; Zickler, Denise; Kleckner, Nancy E.

    2014-01-01

    Biological systems exhibit complex patterns at length scales ranging from the molecular to the organismic. Along chromosomes, events often occur stochastically at different positions in different nuclei but nonetheless tend to be relatively evenly spaced. Examples include replication origin firings, formation of chromatin loops along chromosome axes and, during meiosis, localization of crossover recombination sites (“crossover interference”). We present evidence in the fungus Sordaria macrospora that crossover interference is part of a broader pattern that includes synaptonemal complex (SC) nucleation. This pattern comprises relatively evenly spaced SC nucleation sites, among which a subset are crossover sites that show a classical interference distribution. This pattern ensures that SC forms regularly along the entire length of the chromosome as required for the maintenance of homolog pairing while concomitantly having crossover interactions locally embedded within the SC structure as required for both DNA recombination and structural events of chiasma formation. This pattern can be explained by a threshold-based designation and spreading interference process. This model can be generalized to give diverse types of related and/or partially overlapping patterns, in two or more dimensions, for any type of object. PMID:25380597

  18. Termination Patterns of Complex Partial Seizures: An Intracranial EEG Study

    PubMed Central

    Afra, Pegah; Jouny, Christopher C.; Bergey, Gregory K.

    2015-01-01

    Purpose While seizure onset patterns have been the subject of many reports, there have been few studies of seizure termination. In this study we report the incidence of synchronous and asynchronous termination patterns of partial seizures recorded with intracranial arrays. Methods Data were collected from patients with intractable complex partial seizures undergoing presurgical evaluations with intracranial electrodes. Patients with seizures originating from mesial temporal and neocortical regions were grouped into three groups based on patterns of seizure termination: synchronous only (So), asynchronous only (Ao), or mixed (S/A, with both synchronous and asynchronous termination patterns). Results 88% of the patients in the MT group had seizures with a synchronous pattern of termination exclusively (38%) or mixed (50%). 82% of the NC group had seizures with synchronous pattern of termination exclusively (52%) or mixed (30%). In the NC group, there was a significant difference of the range of seizure durations between So and Ao groups, with Ao exhibiting higher variability. Seizures with synchronous termination had low variability in both groups. Conclusions Synchronous seizure termination is a common pattern for complex partial seizures of both mesial temporal or neocortical onset. This may reflect stereotyped network behavior or dynamics at the seizure focus. PMID:26552555

  19. The Relationship between Respiration-Related Membrane Potential Slow Oscillations and Discharge Patterns in Mitral/Tufted Cells: What Are the Rules?

    PubMed Central

    Briffaud, Virginie; Fourcaud-Trocmé, Nicolas; Messaoudi, Belkacem; Buonviso, Nathalie; Amat, Corine

    2012-01-01

    Background A slow respiration-related rhythm strongly shapes the activity of the olfactory bulb. This rhythm appears as a slow oscillation that is detectable in the membrane potential, the respiration-related spike discharge of the mitral/tufted cells and the bulbar local field potential. Here, we investigated the rules that govern the manifestation of membrane potential slow oscillations (MPSOs) and respiration-related discharge activities under various afferent input conditions and cellular excitability states. Methodology and Principal Findings We recorded the intracellular membrane potential signals in the mitral/tufted cells of freely breathing anesthetized rats. We first demonstrated the existence of multiple types of MPSOs, which were influenced by odor stimulation and discharge activity patterns. Complementary studies using changes in the intracellular excitability state and a computational model of the mitral cell demonstrated that slow oscillations in the mitral/tufted cell membrane potential were also modulated by the intracellular excitability state, whereas the respiration-related spike activity primarily reflected the afferent input. Based on our data regarding MPSOs and spike patterns, we found that cells exhibiting an unsynchronized discharge pattern never exhibited an MPSO. In contrast, cells with a respiration-synchronized discharge pattern always exhibited an MPSO. In addition, we demonstrated that the association between spike patterns and MPSO types appeared complex. Conclusion We propose that both the intracellular excitability state and input strength underlie specific MPSOs, which, in turn, constrain the types of spike patterns exhibited. PMID:22952828

  20. Perspectives on object manipulation and action grammar for percussive actions in primates

    PubMed Central

    Hayashi, Misato

    2015-01-01

    The skill of object manipulation is a common feature of primates including humans, although there are species-typical patterns of manipulation. Object manipulation can be used as a comparative scale of cognitive development, focusing on its complexity. Nut cracking in chimpanzees has the highest hierarchical complexity of tool use reported in non-human primates. An analysis of the patterns of object manipulation in naive chimpanzees after nut-cracking demonstrations revealed the cause of difficulties in learning nut-cracking behaviour. Various types of behaviours exhibited within a nut-cracking context can be examined in terms of the application of problem-solving strategies, focusing on their basis in causal understanding or insightful intentionality. Captive chimpanzees also exhibit complex forms of combinatory manipulation, which is the precursor of tool use. A new notation system of object manipulation was invented to assess grammatical rules in manipulative actions. The notation system of action grammar enabled direct comparisons to be made between primates including humans in a variety of object-manipulation tasks, including percussive-tool use. PMID:26483528

  1. Perspectives on object manipulation and action grammar for percussive actions in primates.

    PubMed

    Hayashi, Misato

    2015-11-19

    The skill of object manipulation is a common feature of primates including humans, although there are species-typical patterns of manipulation. Object manipulation can be used as a comparative scale of cognitive development, focusing on its complexity. Nut cracking in chimpanzees has the highest hierarchical complexity of tool use reported in non-human primates. An analysis of the patterns of object manipulation in naive chimpanzees after nut-cracking demonstrations revealed the cause of difficulties in learning nut-cracking behaviour. Various types of behaviours exhibited within a nut-cracking context can be examined in terms of the application of problem-solving strategies, focusing on their basis in causal understanding or insightful intentionality. Captive chimpanzees also exhibit complex forms of combinatory manipulation, which is the precursor of tool use. A new notation system of object manipulation was invented to assess grammatical rules in manipulative actions. The notation system of action grammar enabled direct comparisons to be made between primates including humans in a variety of object-manipulation tasks, including percussive-tool use. © 2015 The Author(s).

  2. Evaluation of Two Statistical Methods Provides Insights into the Complex Patterns of Alternative Polyadenylation Site Switching

    PubMed Central

    Li, Jie; Li, Rui; You, Leiming; Xu, Anlong; Fu, Yonggui; Huang, Shengfeng

    2015-01-01

    Switching between different alternative polyadenylation (APA) sites plays an important role in the fine tuning of gene expression. New technologies for the execution of 3’-end enriched RNA-seq allow genome-wide detection of the genes that exhibit significant APA site switching between different samples. Here, we show that the independence test gives better results than the linear trend test in detecting APA site-switching events. Further examination suggests that the discrepancy between these two statistical methods arises from complex APA site-switching events that cannot be represented by a simple change of average 3’-UTR length. In theory, the linear trend test is only effective in detecting these simple changes. We classify the switching events into four switching patterns: two simple patterns (3’-UTR shortening and lengthening) and two complex patterns. By comparing the results of the two statistical methods, we show that complex patterns account for 1/4 of all observed switching events that happen between normal and cancerous human breast cell lines. Because simple and complex switching patterns may convey different biological meanings, they merit separate study. We therefore propose to combine both the independence test and the linear trend test in practice. First, the independence test should be used to detect APA site switching; second, the linear trend test should be invoked to identify simple switching events; and third, those complex switching events that pass independence testing but fail linear trend testing can be identified. PMID:25875641

  3. The benefits of flexible team interaction during crises.

    PubMed

    Stachowski, Alicia A; Kaplan, Seth A; Waller, Mary J

    2009-11-01

    Organizations increasingly rely on teams to respond to crises. While research on team effectiveness during nonroutine events is growing, naturalistic studies examining team behaviors during crises are relatively scarce. Furthermore, the relevant literature offers competing theoretical rationales concerning effective team response to crises. In this article, the authors investigate whether high- versus average-performing teams can be distinguished on the basis of the number and complexity of their interaction patterns. Using behavioral observation methodology, the authors coded the discrete verbal and nonverbal behaviors of 14 nuclear power plant control room crews as they responded to a simulated crisis. Pattern detection software revealed systematic differences among crews in their patterns of interaction. Mean comparisons and discriminant function analysis indicated that higher performing crews exhibited fewer, shorter, and less complex interaction patterns. These results illustrate the limitations of standardized response patterns and highlight the importance of team adaptability. Implications for future research and for team training are included.

  4. Task complexity and maximal isometric strength gains through motor learning

    PubMed Central

    McGuire, Jessica; Green, Lara A.; Gabriel, David A.

    2014-01-01

    Abstract This study compared the effects of a simple versus complex contraction pattern on the acquisition, retention, and transfer of maximal isometric strength gains and reductions in force variability. A control group (N = 12) performed simple isometric contractions of the wrist flexors. An experimental group (N = 12) performed complex proprioceptive neuromuscular facilitation (PNF) contractions consisting of maximal isometric wrist extension immediately reversing force direction to wrist flexion within a single trial. Ten contractions were completed on three consecutive days with a retention and transfer test 2‐weeks later. For the retention test, the groups performed their assigned contraction pattern followed by a transfer test that consisted of the other contraction pattern for a cross‐over design. Both groups exhibited comparable increases in strength (20.2%, P < 0.01) and reductions in mean torque variability (26.2%, P < 0.01), which were retained and transferred. There was a decrease in the coactivation ratio (antagonist/agonist muscle activity) for both groups, which was retained and transferred (35.2%, P < 0.01). The experimental group exhibited a linear decrease in variability of the torque‐ and sEMG‐time curves, indicating transfer to the simple contraction pattern (P < 0.01). The control group underwent a decrease in variability of the torque‐ and sEMG‐time curves from the first day of training to retention, but participants returned to baseline levels during the transfer condition (P < 0.01). However, the difference between torque RMS error versus the variability in torque‐ and sEMG‐time curves suggests the demands of the complex task were transferred, but could not be achieved in a reproducible way. PMID:25428951

  5. Termination patterns of complex partial seizures: An intracranial EEG study.

    PubMed

    Afra, Pegah; Jouny, Christopher C; Bergey, Gregory K

    2015-11-01

    While seizure onset patterns have been the subject of many reports, there have been few studies of seizure termination. In this study we report the incidence of synchronous and asynchronous termination patterns of partial seizures recorded with intracranial arrays. Data were collected from patients with intractable complex partial seizures undergoing presurgical evaluations with intracranial electrodes. Patients with seizures originating from mesial temporal and neocortical regions were grouped into three groups based on patterns of seizure termination: synchronous only (So), asynchronous only (Ao), or mixed (S/A, with both synchronous and asynchronous termination patterns). 88% of the patients in the MT group had seizures with a synchronous pattern of termination exclusively (38%) or mixed (50%). 82% of the NC group had seizures with synchronous pattern of termination exclusively (52%) or mixed (30%). In the NC group, there was a significant difference of the range of seizure durations between So and Ao groups, with Ao exhibiting higher variability. Seizures with synchronous termination had low variability in both groups. Synchronous seizure termination is a common pattern for complex partials seizures of both mesial temporal or neocortical onset. This may reflect stereotyped network behavior or dynamics at the seizure focus. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  6. Improved numerical modelling of morphodynamics of rivers with steep banks

    USDA-ARS?s Scientific Manuscript database

    The flow and sediment transport processes near steep streambanks, which are commonly found in meandering, braided, and anastomosing stream systems, exhibit complex patterns. The interactions between bed and bank morphologic adjustment, and their governing processes are still not well understood. Inc...

  7. Rare earth element scavenging in seawater

    NASA Astrophysics Data System (ADS)

    Byrne, Robert H.; Kim, Ki-Hyun

    1990-10-01

    Examinations of rare earth element (REE) adsorption in seawater, using a variety of surface-types, indicated that, for most surfaces, light rare earth elements (LREEs) are preferentially adsorbed compared to the heavy rare earths (HREEs). Exceptions to this behavior were observed only for silica phases (glass surfaces, acid-cleaned diatomaceous earth, and synthetic SiO 2). The affinity of the rare earths for surfaces can be strongly affected by thin organic coatings. Glass surfaces which acquired an organic coating through immersion in Tampa Bay exhibited adsorptive behavior typical of organic-rich, rather than glass, surfaces. Models of rare earth distributions between seawater and carboxylate-rich surfaces indicate that scavenging processes which involve such surfaces should exhibit a strong dependence on pH and carbonate complexation. Scavenging models involving carboxylate surfaces produce relative REE abundance patterns in good general agreement with observed shale-normalized REE abundances in seawater. Scavenging by carboxylate-rich surfaces should produce HREE enrichments in seawater relative to the LREEs and may produce enrichments of lanthanum relative to its immediate trivalent neighbors. Due to the origin of distribution coefficients as a difference between REE solution complexation (which increases strongly with atomic number) and surface complexation (which apparently also increases with atomic number) the relative solution abundance patterns of the REEs produced by scavenging reactions can be quite complex.

  8. Effects of Morphology Constraint on Electrophysiological Properties of Cortical Neurons

    NASA Astrophysics Data System (ADS)

    Zhu, Geng; Du, Liping; Jin, Lei; Offenhäusser, Andreas

    2016-04-01

    There is growing interest in engineering nerve cells in vitro to control architecture and connectivity of cultured neuronal networks or to build neuronal networks with predictable computational function. Pattern technologies, such as micro-contact printing, have been developed to design ordered neuronal networks. However, electrophysiological characteristics of the single patterned neuron haven’t been reported. Here, micro-contact printing, using polyolefine polymer (POP) stamps with high resolution, was employed to grow cortical neurons in a designed structure. The results demonstrated that the morphology of patterned neurons was well constrained, and the number of dendrites was decreased to be about 2. Our electrophysiological results showed that alterations of dendritic morphology affected firing patterns of neurons and neural excitability. When stimulated by current, though both patterned and un-patterned neurons presented regular spiking, the dynamics and strength of the response were different. The un-patterned neurons exhibited a monotonically increasing firing frequency in response to injected current, while the patterned neurons first exhibited frequency increase and then a slow decrease. Our findings indicate that the decrease in dendritic complexity of cortical neurons will influence their electrophysiological characteristics and alter their information processing activity, which could be considered when designing neuronal circuitries.

  9. One-Dimensional Photonic Crystal Superprisms

    NASA Technical Reports Server (NTRS)

    Ting, David

    2005-01-01

    Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.

  10. Weak connections form an infinite number of patterns in the brain

    NASA Astrophysics Data System (ADS)

    Ren, Hai-Peng; Bai, Chao; Baptista, Murilo S.; Grebogi, Celso

    2017-04-01

    Recently, much attention has been paid to interpreting the mechanisms for memory formation in terms of brain connectivity and dynamics. Within the plethora of collective states a complex network can exhibit, we show that the phenomenon of Collective Almost Synchronisation (CAS), which describes a state with an infinite number of patterns emerging in complex networks for weak coupling strengths, deserves special attention. We show that a simulated neuron network with neurons weakly connected does produce CAS patterns, and additionally produces an output that optimally model experimental electroencephalograph (EEG) signals. This work provides strong evidence that the brain operates locally in a CAS regime, allowing it to have an unlimited number of dynamical patterns, a state that could explain the enormous memory capacity of the brain, and that would give support to the idea that local clusters of neurons are sufficiently decorrelated to independently process information locally.

  11. Ortho-para interconversion in cation-water complexes: The case of V + (H 2 O) and Nb + (H 2 O) clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, T. B.; Miliordos, E.; Carnegie, P. D.

    Vanadium and niobium cation-water complexes, V+(H2O) and Nb+(H2O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O–H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 1:3 intensity ratios for K = even:odd levels for independent ortho:para nuclearmore » spin states are missing for some complexes. We relied on highly correlated internally contracted Multi-Reference Configuration Interaction (icMRCI) and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to quasi-C2v symmetry with significant probability off the C2 axis, thus explaining the reduced A values. Both vanadium and iobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 106 sec-1).« less

  12. Ortho-para interconversion in cation-water complexes: The case of V+(H2O) and Nb+(H2O) clusters.

    PubMed

    Ward, T B; Miliordos, E; Carnegie, P D; Xantheas, S S; Duncan, M A

    2017-06-14

    Vanadium and niobium cation-water complexes, V + (H 2 O) and Nb + (H 2 O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O-H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 3:1 intensity ratios for K = odd:even levels for independent ortho:para nuclear spin states are missing for some complexes. We relied on highly correlated internally contracted multi-reference configuration interaction and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to the quasi-C 2v symmetry with a significant probability off the C 2 axis, thus explaining the reduced A values. Both vanadium and niobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 10 6 s -1 ).

  13. Ortho-para interconversion in cation-water complexes: The case of V+(H2O) and Nb+(H2O) clusters

    NASA Astrophysics Data System (ADS)

    Ward, T. B.; Miliordos, E.; Carnegie, P. D.; Xantheas, S. S.; Duncan, M. A.

    2017-06-01

    Vanadium and niobium cation-water complexes, V+(H2O) and Nb+(H2O), are produced by laser vaporization in a pulsed supersonic expansion, mass selected in a time-of-flight spectrometer, and studied with infrared photodissociation spectroscopy using rare gas atom (Ar, Ne) complex predissociation. The vibrational bands measured in the O-H stretching region contain K-type rotational sub-band structure, which provides insight into the structures of these complexes. However, rotational sub-bands do not exhibit the simple patterns seen previously for other metal ion-water complexes. The A rotational constants are smaller than expected and the normal 3:1 intensity ratios for K = odd:even levels for independent ortho:para nuclear spin states are missing for some complexes. We relied on highly correlated internally contracted multi-reference configuration interaction and Coupled Cluster [CCSD(T)] electronic structure calculations of those complexes with and without the rare gas atoms to investigate these anomalies. Rare gas atoms were found to bind via asymmetric motifs to the hydrated complexes undergoing large amplitude motions that vibrationally average to the quasi-C2v symmetry with a significant probability off the C2 axis, thus explaining the reduced A values. Both vanadium and niobium cations exhibit unusually strong nuclear spin coupling to the hydrogen atoms of water, the values of which vary with their electronic state. This catalyzes ortho-para interconversion in some complexes and explains the rotational patterns. The rate of ortho-para relaxation in the equilibrated complexes must therefore be greater than the collisional cooling rate in the supersonic expansion (about 106 s-1).

  14. Pattern formation and collective effects in populations of magnetic microswimmers

    NASA Astrophysics Data System (ADS)

    Vach, Peter J.; Walker, Debora; Fischer, Peer; Fratzl, Peter; Faivre, Damien

    2017-03-01

    Self-propelled particles are one prototype of synthetic active matter used to understand complex biological processes, such as the coordination of movement in bacterial colonies or schools of fishes. Collective patterns such as clusters were observed for such systems, reproducing features of biological organization. However, one limitation of this model is that the synthetic assemblies are made of identical individuals. Here we introduce an active system based on magnetic particles at colloidal scales. We use identical but also randomly-shaped magnetic micropropellers and show that they exhibit dynamic and reversible pattern formation.

  15. Uniform modeling of bacterial colony patterns with varying nutrient and substrate

    NASA Astrophysics Data System (ADS)

    Schwarcz, Deborah; Levine, Herbert; Ben-Jacob, Eshel; Ariel, Gil

    2016-04-01

    Bacteria develop complex patterns depending on growth condition. For example, Bacillus subtilis exhibit five different patterns depending on substrate hardness and nutrient concentration. We present a unified integro-differential model that reproduces the entire experimentally observed morphology diagram at varying nutrient concentrations and substrate hardness. The model allows a comprehensive and quantitative comparison between experimental and numerical variables and parameters, such as colony growth rate, nutrient concentration and diffusion constants. As a result, the role of the different physical mechanisms underlying and regulating the growth of the colony can be evaluated.

  16. Social determinants of health inequalities: towards a theoretical perspective using systems science.

    PubMed

    Jayasinghe, Saroj

    2015-08-25

    A systems approach offers a novel conceptualization to natural and social systems. In recent years, this has led to perceiving population health outcomes as an emergent property of a dynamic and open, complex adaptive system. The current paper explores these themes further and applies the principles of systems approach and complexity science (i.e. systems science) to conceptualize social determinants of health inequalities. The conceptualization can be done in two steps: viewing health inequalities from a systems approach and extending it to include complexity science. Systems approach views health inequalities as patterns within the larger rubric of other facets of the human condition, such as educational outcomes and economic development. This anlysis requires more sophisticated models such as systems dynamic models. An extension of the approach is to view systems as complex adaptive systems, i.e. systems that are 'open' and adapt to the environment. They consist of dynamic adapting subsystems that exhibit non-linear interactions, while being 'open' to a similarly dynamic environment of interconnected systems. They exhibit emergent properties that cannot be estimated with precision by using the known interactions among its components (such as economic development, political freedom, health system, culture etc.). Different combinations of the same bundle of factors or determinants give rise to similar patterns or outcomes (i.e. property of convergence), and minor variations in the initial condition could give rise to widely divergent outcomes. Novel approaches using computer simulation models (e.g. agent-based models) would shed light on possible mechanisms as to how factors or determinants interact and lead to emergent patterns of health inequalities of populations.

  17. Host-induced bacterial cell wall decomposition mediates pattern-triggered immunity in Arabidopsis

    PubMed Central

    Liu, Xiaokun; Grabherr, Heini M; Willmann, Roland; Kolb, Dagmar; Brunner, Frédéric; Bertsche, Ute; Kühner, Daniel; Franz-Wachtel, Mirita; Amin, Bushra; Felix, Georg; Ongena, Marc; Nürnberger, Thorsten; Gust, Andrea A

    2014-01-01

    Peptidoglycans (PGNs) are immunogenic bacterial surface patterns that trigger immune activation in metazoans and plants. It is generally unknown how complex bacterial structures such as PGNs are perceived by plant pattern recognition receptors (PRRs) and whether host hydrolytic activities facilitate decomposition of bacterial matrices and generation of soluble PRR ligands. Here we show that Arabidopsis thaliana, upon bacterial infection or exposure to microbial patterns, produces a metazoan lysozyme-like hydrolase (lysozyme 1, LYS1). LYS1 activity releases soluble PGN fragments from insoluble bacterial cell walls and cleavage products are able to trigger responses typically associated with plant immunity. Importantly, LYS1 mutant genotypes exhibit super-susceptibility to bacterial infections similar to that observed on PGN receptor mutants. We propose that plants employ hydrolytic activities for the decomposition of complex bacterial structures, and that soluble pattern generation might aid PRR-mediated immune activation in cell layers adjacent to infection sites. DOI: http://dx.doi.org/10.7554/eLife.01990.001 PMID:24957336

  18. Observing Consistency in Online Communication Patterns for User Re-Identification.

    PubMed

    Adeyemi, Ikuesan Richard; Razak, Shukor Abd; Salleh, Mazleena; Venter, Hein S

    2016-01-01

    Comprehension of the statistical and structural mechanisms governing human dynamics in online interaction plays a pivotal role in online user identification, online profile development, and recommender systems. However, building a characteristic model of human dynamics on the Internet involves a complete analysis of the variations in human activity patterns, which is a complex process. This complexity is inherent in human dynamics and has not been extensively studied to reveal the structural composition of human behavior. A typical method of anatomizing such a complex system is viewing all independent interconnectivity that constitutes the complexity. An examination of the various dimensions of human communication pattern in online interactions is presented in this paper. The study employed reliable server-side web data from 31 known users to explore characteristics of human-driven communications. Various machine-learning techniques were explored. The results revealed that each individual exhibited a relatively consistent, unique behavioral signature and that the logistic regression model and model tree can be used to accurately distinguish online users. These results are applicable to one-to-one online user identification processes, insider misuse investigation processes, and online profiling in various areas.

  19. Biological pattern formation: from basic mechanisms to complex structures

    NASA Astrophysics Data System (ADS)

    Koch, A. J.; Meinhardt, H.

    1994-10-01

    The reliable development of highly complex organisms is an intriguing and fascinating problem. The genetic material is, as a rule, the same in each cell of an organism. How then do cells, under the influence of their common genes, produce spatial patterns? Simple models are discussed that describe the generation of patterns out of an initially nearly homogeneous state. They are based on nonlinear interactions of at least two chemicals and on their diffusion. The concepts of local autocatalysis and of long-range inhibition play a fundamental role. Numerical simulations show that the models account for many basic biological observations such as the regeneration of a pattern after excision of tissue or the production of regular (or nearly regular) arrays of organs during (or after) completion of growth. Very complex patterns can be generated in a reproducible way by hierarchical coupling of several such elementary reactions. Applications to animal coats and to the generation of polygonally shaped patterns are provided. It is further shown how to generate a strictly periodic pattern of units that themselves exhibit a complex and polar fine structure. This is illustrated by two examples: the assembly of photoreceptor cells in the eye of Drosophila and the positioning of leaves and axillary buds in a growing shoot. In both cases, the substructures have to achieve an internal polarity under the influence of some primary pattern-forming system existing in the fly's eye or in the plant. The fact that similar models can describe essential steps in organisms as distantly related as animals and plants suggests that they reveal some universal mechanisms.

  20. Origin of Complexity in Multicellular Organisms

    NASA Astrophysics Data System (ADS)

    Furusawa, Chikara; Kaneko, Kunihiko

    2000-06-01

    Through extensive studies of dynamical system modeling cellular growth and reproduction, we find evidence that complexity arises in multicellular organisms naturally through evolution. Without any elaborate control mechanism, these systems can exhibit complex pattern formation with spontaneous cell differentiation. Such systems employ a ``cooperative'' use of resources and maintain a larger growth speed than simple cell systems, which exist in a homogeneous state and behave ``selfishly.'' The relevance of the diversity of chemicals and reaction dynamics to the growth of a multicellular organism is demonstrated. Chaotic biochemical dynamics are found to provide the multipotency of stem cells.

  1. Complex, non-monotonic dose-response curves with multiple maxima: Do we (ever) sample densely enough?

    PubMed

    Cvrčková, Fatima; Luštinec, Jiří; Žárský, Viktor

    2015-01-01

    We usually expect the dose-response curves of biological responses to quantifiable stimuli to be simple, either monotonic or exhibiting a single maximum or minimum. Deviations are often viewed as experimental noise. However, detailed measurements in plant primary tissue cultures (stem pith explants of kale and tobacco) exposed to varying doses of sucrose, cytokinins (BA or kinetin) or auxins (IAA or NAA) revealed that growth and several biochemical parameters exhibit multiple reproducible, statistically significant maxima over a wide range of exogenous substance concentrations. This results in complex, non-monotonic dose-response curves, reminiscent of previous reports of analogous observations in both metazoan and plant systems responding to diverse pharmacological treatments. These findings suggest the existence of a hitherto neglected class of biological phenomena resulting in dose-response curves exhibiting periodic patterns of maxima and minima, whose causes remain so far uncharacterized, partly due to insufficient sampling frequency used in many studies.

  2. Electrochemically driven host-guest interactions on patterned donor/acceptor self-assembled monolayers.

    PubMed

    Maglione, Maria Serena; Casado-Montenegro, Javier; Fritz, Eva-Corinna; Crivillers, Núria; Ravoo, Bart Jan; Rovira, Concepció; Mas-Torrent, Marta

    2018-03-25

    Here, on ITO//Au patterned substrates SAMs of ferrocene (Fc) on the Au regions and of anthraquinone (AQ) on the ITO areas are prepared, exhibiting three stable redox states. Furthermore, by selectively oxidizing or reducing the Fc or AQ units, respectively, the surface properties are locally modified. As a proof-of-concept, such a confinement of the properties is exploited to locally form host-guest complexes with β-cyclodextrin on specific surface regions depending on the applied voltage.

  3. Factors affecting host range in a generalist seed pathogen of semi-arid shrublands

    Treesearch

    Julie Beckstead; Susan E. Meyer; Kurt O. Reinhart; Kellene M. Bergen; Sandra R. Holden; Heather F. Boekweg

    2014-01-01

    Generalist pathogens can exhibit differential success on different hosts, resulting in complex host range patterns. Several factors operate to reduce realized host range relative to potential host range, particularly under field conditions. We explored factors influencing host range of the naturally occurring generalist ascomycete grass seed pathogen Pyrenophora...

  4. Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drugs.

    PubMed

    Feng, Shini; Zhang, Huijie; Yan, Ting; Huang, Dandi; Zhi, Chunyi; Nakanishi, Hideki; Gao, Xiao-Dong

    With its unique physical and chemical properties and structural similarity to carbon, boron nitride (BN) has attracted considerable attention and found many applications. Biomedical applications of BN have recently started to emerge, raising great hopes in drug and gene delivery. Here, we developed a targeted anticancer drug delivery system based on folate-conjugated BN nanospheres (BNNS) with receptor-mediated targeting. Folic acid (FA) was successfully grafted onto BNNS via esterification reaction. In vitro cytotoxicity assay showed that BNNS-FA complexes were non-toxic to HeLa cells up to a concentration of 100 μg/mL. Then, doxorubicin hydrochloride (DOX), a commonly used anticancer drug, was loaded onto BNNS-FA complexes. BNNS-FA/DOX complexes were stable at pH 7.4 but effectively released DOX at pH 5.0, which exhibited a pH sensitive and sustained release pattern. BNNS-FA/DOX complexes could be recognized and specifically internalized by HeLa cells via FA receptor-mediated endocytosis. BNNS-FA/DOX complexes exhibited greater cytotoxicity to HeLa cells than free DOX and BNNS/DOX complexes due to the increased cellular uptake of DOX mediated by the FA receptor. Therefore, BNNS-FA complexes had strong potential for targeted cancer therapy.

  5. Binary Gene Expression Patterning of the Molt Cycle: The Case of Chitin Metabolism

    PubMed Central

    Abehsera, Shai; Glazer, Lilah; Tynyakov, Jenny; Plaschkes, Inbar; Chalifa-Caspi, Vered; Khalaila, Isam; Aflalo, Eliahu D.; Sagi, Amir

    2015-01-01

    In crustaceans, like all arthropods, growth is accompanied by a molting cycle. This cycle comprises major physiological events in which mineralized chitinous structures are built and degraded. These events are in turn governed by genes whose patterns of expression are presumably linked to the molting cycle. To study these genes we performed next generation sequencing and constructed a molt-related transcriptomic library from two exoskeletal-forming tissues of the crayfish Cherax quadricarinatus, namely the gastrolith and the mandible cuticle-forming epithelium. To simplify the study of such a complex process as molting, a novel approach, binary patterning of gene expression, was employed. This approach revealed that key genes involved in the synthesis and breakdown of chitin exhibit a molt-related pattern in the gastrolith-forming epithelium. On the other hand, the same genes in the mandible cuticle-forming epithelium showed a molt-independent pattern of expression. Genes related to the metabolism of glucosamine-6-phosphate, a chitin precursor synthesized from simple sugars, showed a molt-related pattern of expression in both tissues. The binary patterning approach unfolds typical patterns of gene expression during the molt cycle of a crustacean. The use of such a simplifying integrative tool for assessing gene patterning seems appropriate for the study of complex biological processes. PMID:25919476

  6. Observing Consistency in Online Communication Patterns for User Re-Identification

    PubMed Central

    Venter, Hein S.

    2016-01-01

    Comprehension of the statistical and structural mechanisms governing human dynamics in online interaction plays a pivotal role in online user identification, online profile development, and recommender systems. However, building a characteristic model of human dynamics on the Internet involves a complete analysis of the variations in human activity patterns, which is a complex process. This complexity is inherent in human dynamics and has not been extensively studied to reveal the structural composition of human behavior. A typical method of anatomizing such a complex system is viewing all independent interconnectivity that constitutes the complexity. An examination of the various dimensions of human communication pattern in online interactions is presented in this paper. The study employed reliable server-side web data from 31 known users to explore characteristics of human-driven communications. Various machine-learning techniques were explored. The results revealed that each individual exhibited a relatively consistent, unique behavioral signature and that the logistic regression model and model tree can be used to accurately distinguish online users. These results are applicable to one-to-one online user identification processes, insider misuse investigation processes, and online profiling in various areas. PMID:27918593

  7. Complex Dynamics in Information Sharing Networks

    NASA Astrophysics Data System (ADS)

    Cronin, Bruce

    This study examines the roll-out of an electronic knowledge base in a medium-sized professional services firm over a six year period. The efficiency of such implementation is a key business problem in IT systems of this type. Data from usage logs provides the basis for analysis of the dynamic evolution of social networks around the depository during this time. The adoption pattern follows an "s-curve" and usage exhibits something of a power law distribution, both attributable to network effects, and network position is associated with organisational performance on a number of indicators. But periodicity in usage is evident and the usage distribution displays an exponential cut-off. Further analysis provides some evidence of mathematical complexity in the periodicity. Some implications of complex patterns in social network data for research and management are discussed. The study provides a case study demonstrating the utility of the broad methodological approach.

  8. Spontaneous emergence of milling (vortex state) in a Vicsek-like model

    NASA Astrophysics Data System (ADS)

    Costanzo, A.; Hemelrijk, C. K.

    2018-04-01

    Collective motion is of interest to laymen and scientists in different fields. In groups of animals, many patterns of collective motion arise such as polarized schools and mills (i.e. circular motion). Collective motion can be generated in computational models of different degrees of complexity. In these models, moving individuals coordinate with others nearby. In the more complex models, individuals attract each other, aligning their headings, and avoiding collisions. Simpler models may include only one or two of these types of interactions. The collective pattern that interests us here is milling, which is observed in many animal species. It has been reproduced in the more complex models, but not in simpler models that are based only on alignment, such as the well-known Vicsek model. Our aim is to provide insight in the minimal conditions required for milling by making minimal modifications to the Vicsek model. Our results show that milling occurs when both the field of view and the maximal angular velocity are decreased. Remarkably, apart from milling, our minimal model also exhibits many of the other patterns of collective motion observed in animal groups.

  9. Characterizing heterogeneous cellular responses to perturbations.

    PubMed

    Slack, Michael D; Martinez, Elisabeth D; Wu, Lani F; Altschuler, Steven J

    2008-12-09

    Cellular populations have been widely observed to respond heterogeneously to perturbation. However, interpreting the observed heterogeneity is an extremely challenging problem because of the complexity of possible cellular phenotypes, the large dimension of potential perturbations, and the lack of methods for separating meaningful biological information from noise. Here, we develop an image-based approach to characterize cellular phenotypes based on patterns of signaling marker colocalization. Heterogeneous cellular populations are characterized as mixtures of phenotypically distinct subpopulations, and responses to perturbations are summarized succinctly as probabilistic redistributions of these mixtures. We apply our method to characterize the heterogeneous responses of cancer cells to a panel of drugs. We find that cells treated with drugs of (dis-)similar mechanism exhibit (dis-)similar patterns of heterogeneity. Despite the observed phenotypic diversity of cells observed within our data, low-complexity models of heterogeneity were sufficient to distinguish most classes of drug mechanism. Our approach offers a computational framework for assessing the complexity of cellular heterogeneity, investigating the degree to which perturbations induce redistributions of a limited, but nontrivial, repertoire of underlying states and revealing functional significance contained within distinct patterns of heterogeneous responses.

  10. Evolutionary fields can explain patterns of high-dimensional complexity in ecology

    NASA Astrophysics Data System (ADS)

    Wilsenach, James; Landi, Pietro; Hui, Cang

    2017-04-01

    One of the properties that make ecological systems so unique is the range of complex behavioral patterns that can be exhibited by even the simplest communities with only a few species. Much of this complexity is commonly attributed to stochastic factors that have very high-degrees of freedom. Orthodox study of the evolution of these simple networks has generally been limited in its ability to explain complexity, since it restricts evolutionary adaptation to an inertia-free process with few degrees of freedom in which only gradual, moderately complex behaviors are possible. We propose a model inspired by particle-mediated field phenomena in classical physics in combination with fundamental concepts in adaptation, which suggests that small but high-dimensional chaotic dynamics near to the adaptive trait optimum could help explain complex properties shared by most ecological datasets, such as aperiodicity and pink, fractal noise spectra. By examining a simple predator-prey model and appealing to real ecological data, we show that this type of complexity could be easily confused for or confounded by stochasticity, especially when spurred on or amplified by stochastic factors that share variational and spectral properties with the underlying dynamics.

  11. Pattern Formation on Networks: from Localised Activity to Turing Patterns

    PubMed Central

    McCullen, Nick; Wagenknecht, Thomas

    2016-01-01

    Networks of interactions between competing species are used to model many complex systems, such as in genetics, evolutionary biology or sociology and knowledge of the patterns of activity they can exhibit is important for understanding their behaviour. The emergence of patterns on complex networks with reaction-diffusion dynamics is studied here, where node dynamics interact via diffusion via the network edges. Through the application of a generalisation of dynamical systems analysis this work reveals a fundamental connection between small-scale modes of activity on networks and localised pattern formation seen throughout science, such as solitons, breathers and localised buckling. The connection between solutions with a single and small numbers of activated nodes and the fully developed system-scale patterns are investigated computationally using numerical continuation methods. These techniques are also used to help reveal a much larger portion of of the full number of solutions that exist in the system at different parameter values. The importance of network structure is also highlighted, with a key role being played by nodes with a certain so-called optimal degree, on which the interaction between the reaction kinetics and the network structure organise the behaviour of the system. PMID:27273339

  12. The isolation of spatial patterning modes in a mathematical model of juxtacrine cell signalling.

    PubMed

    O'Dea, R D; King, J R

    2013-06-01

    Juxtacrine signalling mechanisms are known to be crucial in tissue and organ development, leading to spatial patterns in gene expression. We investigate the patterning behaviour of a discrete model of juxtacrine cell signalling due to Owen & Sherratt (1998, Mathematical modelling of juxtacrine cell signalling. Math. Biosci., 153, 125-150) in which ligand molecules, unoccupied receptors and bound ligand-receptor complexes are modelled. Feedback between the ligand and receptor production and the level of bound receptors is incorporated. By isolating two parameters associated with the feedback strength and employing numerical simulation, linear stability and bifurcation analysis, the pattern-forming behaviour of the model is analysed under regimes corresponding to lateral inhibition and induction. Linear analysis of this model fails to capture the patterning behaviour exhibited in numerical simulations. Via bifurcation analysis, we show that since the majority of periodic patterns fold subcritically from the homogeneous steady state, a wide variety of stable patterns exists at a given parameter set, providing an explanation for this failure. The dominant pattern is isolated via numerical simulation. Additionally, by sampling patterns of non-integer wavelength on a discrete mesh, we highlight a disparity between the continuous and discrete representations of signalling mechanisms: in the continuous case, patterns of arbitrary wavelength are possible, while sampling such patterns on a discrete mesh leads to longer wavelength harmonics being selected where the wavelength is rational; in the irrational case, the resulting aperiodic patterns exhibit 'local periodicity', being constructed from distorted stable shorter wavelength patterns. This feature is consistent with experimentally observed patterns, which typically display approximate short-range periodicity with defects.

  13. Hybrid copper complex-derived conductive patterns printed on polyimide substrates

    NASA Astrophysics Data System (ADS)

    Lee, Byoungyoon; Jeong, Sooncheol; Kim, Yoonhyun; Jeong, Inbum; Woo, Kyoohee; Moon, Jooho

    2012-06-01

    We synthesized new copper complexes that can be readily converted into highly conductive Cu film. Mechanochemical milling of copper (I) oxide suspended in formic acid resulted in the submicron-sized Cu formate together Cu nanoparticles. The submicrometer-sized Cu formates are reactive toward inter-particle sintering and metallic Cu seeds present in the Cu complexes assist their decomposition and the nucleation of Cu. The hybrid copper complex film printed on polyimide substrate is decomposed into dense and uniform Cu layer after annealing at 250 °C for 30 min under nitrogen atmosphere. The resulting Cu film exhibited a low resistivity of 8.2 μΩ·cm and good adhesion characteristics.

  14. Defect chaos of oscillating hexagons in rotating convection

    PubMed

    Echebarria; Riecke

    2000-05-22

    Using coupled Ginzburg-Landau equations, the dynamics of hexagonal patterns with broken chiral symmetry are investigated, as they appear in rotating non-Boussinesq or surface-tension-driven convection. We find that close to the secondary Hopf bifurcation to oscillating hexagons the dynamics are well described by a single complex Ginzburg-Landau equation (CGLE) coupled to the phases of the hexagonal pattern. At the band center these equations reduce to the usual CGLE and the system exhibits defect chaos. Away from the band center a transition to a frozen vortex state is found.

  15. Patterns of Negotiation

    NASA Astrophysics Data System (ADS)

    Sood, Suresh; Pattinson, Hugh

    Traditionally, face-to-face negotiations in the real world have not been looked at as a complex systems interaction of actors resulting in a dynamic and potentially emergent system. If indeed negotiations are an outcome of a dynamic interaction of simpler behavior just as with a complex system, we should be able to see the patterns contributing to the complexities of a negotiation under study. This paper and the supporting research sets out to show B2B (business-to-business) negotiations as complex systems of interacting actors exhibiting dynamic and emergent behavior. This paper discusses the exploratory research based on negotiation simulations in which a large number of business students participate as buyers and sellers. The student interactions are captured on video and a purpose built research method attempts to look for patterns of interactions between actors using visualization techniques traditionally reserved to observe the algorithmic complexity of complex systems. Students are videoed negotiating with partners. Each video is tagged according to a recognized classification and coding scheme for negotiations. The classification relates to the phases through which any particular negotiation might pass, such as laughter, aggression, compromise, and so forth — through some 30 possible categories. Were negotiations more or less successful if they progressed through the categories in different ways? Furthermore, does the data depict emergent pathway segments considered to be more or less successful? This focus on emergence within the data provides further strong support for face-to-face (F2F) negotiations to be construed as complex systems.

  16. Characterization of geostationary particle signatures based on the 'injection boundary' model

    NASA Technical Reports Server (NTRS)

    Mauk, B. H.; Meng, C.-I.

    1983-01-01

    A simplified analytical procedure is used to characterize the details of geostationary particle signatures, in order to lend support to the 'injection boundary' concept. The signatures are generated by the time-of-flight effects evolving from an initial sharply defined, double spiraled boundary configuration. Complex and highly variable dispersion patterns often observed by geostationary satellites are successfully reproduced through the exclusive use of the most fundamental convection configuration characteristics. Many of the details of the patterns have not been previously presented. It is concluded that most of the dynamical dispersion features can be mapped to the double spiral boundary without further ad hoc assumptions, and that predicted and observed dispersion patterns exhibit symmetries distinct from those associated with the quasi-stationary particle convection patterns.

  17. Claudins in teleost fishes

    PubMed Central

    Kolosov, Dennis; Bui, Phuong; Chasiotis, Helen; Kelly, Scott P

    2013-01-01

    Teleost fishes are a large and diverse animal group that represent close to 50% of all described vertebrate species. This review consolidates what is known about the claudin (Cldn) family of tight junction (TJ) proteins in teleosts. Cldns are transmembrane proteins of the vertebrate epithelial/endothelial TJ complex that largely determine TJ permeability. Cldns achieve this by expressing barrier or pore forming properties and by exhibiting distinct tissue distribution patterns. So far, ~63 genes encoding for Cldn TJ proteins have been reported in 16 teleost species. Collectively, cldns (or Cldns) are found in a broad array of teleost fish tissues, but select genes exhibit restricted expression patterns. Evidence to date strongly supports the view that Cldns play a vital role in the embryonic development of teleost fishes and in the physiology of tissues and organ systems studied thus far. PMID:24665402

  18. Lévy flight and Brownian search patterns of a free-ranging predator reflect different prey field characteristics.

    PubMed

    Sims, David W; Humphries, Nicolas E; Bradford, Russell W; Bruce, Barry D

    2012-03-01

    1. Search processes play an important role in physical, chemical and biological systems. In animal foraging, the search strategy predators should use to search optimally for prey is an enduring question. Some models demonstrate that when prey is sparsely distributed, an optimal search pattern is a specialised random walk known as a Lévy flight, whereas when prey is abundant, simple Brownian motion is sufficiently efficient. These predictions form part of what has been termed the Lévy flight foraging hypothesis (LFF) which states that as Lévy flights optimise random searches, movements approximated by optimal Lévy flights may have naturally evolved in organisms to enhance encounters with targets (e.g. prey) when knowledge of their locations is incomplete. 2. Whether free-ranging predators exhibit the movement patterns predicted in the LFF hypothesis in response to known prey types and distributions, however, has not been determined. We tested this using vertical and horizontal movement data from electronic tagging of an apex predator, the great white shark Carcharodon carcharias, across widely differing habitats reflecting different prey types. 3. Individual white sharks exhibited movement patterns that predicted well the prey types expected under the LFF hypothesis. Shark movements were best approximated by Brownian motion when hunting near abundant, predictable sources of prey (e.g. seal colonies, fish aggregations), whereas movements approximating truncated Lévy flights were present when searching for sparsely distributed or potentially difficult-to-detect prey in oceanic or shelf environments, respectively. 4. That movement patterns approximated by truncated Lévy flights and Brownian behaviour were present in the predicted prey fields indicates search strategies adopted by white sharks appear to be the most efficient ones for encountering prey in the habitats where such patterns are observed. This suggests that C. carcharias appears capable of exhibiting search patterns that are approximated as optimal in response to encountered changes in prey type and abundance, and across diverse marine habitats, from the surf zone to the deep ocean. 5. Our results provide some support for the LFF hypothesis. However, it is possible that the observed Lévy patterns of white sharks may not arise from an adaptive behaviour but could be an emergent property arising from simple, straight-line movements between complex (e.g. fractal) distributions of prey. Experimental studies are needed in vertebrates to test for the presence of Lévy behaviour patterns in the absence of complex prey distributions. © 2011 The Authors. Journal of Animal Ecology © 2011 British Ecological Society.

  19. Folate-conjugated boron nitride nanospheres for targeted delivery of anticancer drugs

    PubMed Central

    Feng, Shini; Zhang, Huijie; Yan, Ting; Huang, Dandi; Zhi, Chunyi; Nakanishi, Hideki; Gao, Xiao-Dong

    2016-01-01

    With its unique physical and chemical properties and structural similarity to carbon, boron nitride (BN) has attracted considerable attention and found many applications. Biomedical applications of BN have recently started to emerge, raising great hopes in drug and gene delivery. Here, we developed a targeted anticancer drug delivery system based on folate-conjugated BN nanospheres (BNNS) with receptor-mediated targeting. Folic acid (FA) was successfully grafted onto BNNS via esterification reaction. In vitro cytotoxicity assay showed that BNNS-FA complexes were non-toxic to HeLa cells up to a concentration of 100 μg/mL. Then, doxorubicin hydrochloride (DOX), a commonly used anticancer drug, was loaded onto BNNS-FA complexes. BNNS-FA/DOX complexes were stable at pH 7.4 but effectively released DOX at pH 5.0, which exhibited a pH sensitive and sustained release pattern. BNNS-FA/DOX complexes could be recognized and specifically internalized by HeLa cells via FA receptor-mediated endocytosis. BNNS-FA/DOX complexes exhibited greater cytotoxicity to HeLa cells than free DOX and BNNS/DOX complexes due to the increased cellular uptake of DOX mediated by the FA receptor. Therefore, BNNS-FA complexes had strong potential for targeted cancer therapy. PMID:27695318

  20. Nixtamalization Process Affects Resistant Starch Formation and Glycemic Index of Tamales.

    PubMed

    Mariscal-Moreno, Rosa María; de Dios Figueroa Cárdenas, Juan; Santiago-Ramos, David; Rayas-Duarte, Patricia; Veles-Medina, José Juan; Martínez-Flores, Héctor Eduardo

    2017-05-01

    Tamales were prepared with 3 nixtamalization processes (traditional, ecological, and classic) and evaluated for chemical composition, starch properties, and glycemic index. Resistant starch (RS) in tamales increased 1.6 to 3.7 times compared to raw maize. This increment was due to the starch retrogradation (RS3) and amylose-lipid complexes (RS5) formation. Tamales elaborated with classic and ecological nixtamalization processes exhibited the highest total, soluble and insoluble dietary fiber content, and the highest RS content and lower in vivo glycemic index compared to tamales elaborated with traditional nixtamalization process. Thermal properties of tamales showed 3 endotherms: amylopectin retrogradation (42.7 to 66.6 °C), melting of amylose lipid complex type I (78.8 to 105.4), and melting of amylose-lipid complex type II (110.7 to 129.7). Raw maize exhibited X-ray diffraction pattern type A, after nixtamalization and cooking of tamales it changed to V-type polymorph structure, due to amylose-lipid complexes formation. Tamales from ecological nixtamalization processes could represent potential health benefits associated with the reduction on blood glucose response after consumption. © 2017 Institute of Food Technologists®.

  1. The Dynamics of Visual Experience, an EEG Study of Subjective Pattern Formation

    PubMed Central

    Elliott, Mark A.; Twomey, Deirdre; Glennon, Mark

    2012-01-01

    Background Since the origin of psychological science a number of studies have reported visual pattern formation in the absence of either physiological stimulation or direct visual-spatial references. Subjective patterns range from simple phosphenes to complex patterns but are highly specific and reported reliably across studies. Methodology/Principal Findings Using independent-component analysis (ICA) we report a reduction in amplitude variance consistent with subjective-pattern formation in ventral posterior areas of the electroencephalogram (EEG). The EEG exhibits significantly increased power at delta/theta and gamma-frequencies (point and circle patterns) or a series of high-frequency harmonics of a delta oscillation (spiral patterns). Conclusions/Significance Subjective-pattern formation may be described in a way entirely consistent with identical pattern formation in fluids or granular flows. In this manner, we propose subjective-pattern structure to be represented within a spatio-temporal lattice of harmonic oscillations which bind topographically organized visual-neuronal assemblies by virtue of low frequency modulation. PMID:22292053

  2. A Simple Model for Complex Dynamical Transitions in Epidemics

    NASA Astrophysics Data System (ADS)

    Earn, David J. D.; Rohani, Pejman; Bolker, Benjamin M.; Grenfell, Bryan T.

    2000-01-01

    Dramatic changes in patterns of epidemics have been observed throughout this century. For childhood infectious diseases such as measles, the major transitions are between regular cycles and irregular, possibly chaotic epidemics, and from regionally synchronized oscillations to complex, spatially incoherent epidemics. A simple model can explain both kinds of transitions as the consequences of changes in birth and vaccination rates. Measles is a natural ecological system that exhibits different dynamical transitions at different times and places, yet all of these transitions can be predicted as bifurcations of a single nonlinear model.

  3. Crystal Violet Lactone Salicylaldehyde Hydrazone Zn(II) Complex: a Reversible Photochromic Material both in Solution and in Solid Matrix

    PubMed Central

    Li, Kai; Li, Yuanyuan; Tao, Jing; Liu, Lu; Wang, Lili; Hou, Hongwei; Tong, Aijun

    2015-01-01

    Crystal violet lactone (CVL) is a classic halochromic dye which has been widely used as chromogenic reagent in thermochromic and piezochromic systems. In this work, a very first example of CVL-based reversible photochromic compound was developed, which showed distinct color change upon UV-visible light irradiation both in solution and in solid matrix. Moreover, metal complex of CVL salicylaldehyde hydrozone was facilely synthesized, exhibiting reversible photochromic properties with good fatigue resistance. It was served as promising solid material for photo-patterning. PMID:26412101

  4. Quasi-two-dimensional complex plasma containing spherical particles and their binary agglomerates.

    PubMed

    Chaudhuri, M; Semenov, I; Nosenko, V; Thomas, H M

    2016-05-01

    A unique type of quasi-two-dimensional complex plasma system was observed which consisted of monodisperse microspheres and their binary agglomerations (dimers). The particles and their dimers levitated in a plasma sheath at slightly different heights and formed two distinct sublayers. The system did not crystallize and may be characterized as a disordered solid. The dimers were identified based on their characteristic appearance in defocused images, i.e., rotating interference fringe patterns. The in-plane and interplane particle separations exhibit nonmonotonic dependence on the discharge pressure.

  5. Investigating flow patterns and related dynamics in multi-instability turbulent plasmas using a three-point cross-phase time delay estimation velocimetry scheme

    NASA Astrophysics Data System (ADS)

    Brandt, C.; Thakur, S. C.; Tynan, G. R.

    2016-04-01

    Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for time delay estimation velocimetry. The advantage of this introduced method is the capability of calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in complex spatiotemporal data. It is able to distinguish and visualize the details of simultaneously present superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.). The velocity calculations are based on time delay estimation obtained from cross-phase analysis of time series. Each velocity vector is unambiguously calculated from three time series measured at three different non-collinear spatial points. This method, when applied to fast imaging, has been crucial to understand the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon plasma. The capabilities and the limitations of this velocimetry method are discussed and demonstrated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for complex broadband wave dynamics involving simultaneously present multiple instabilities.

  6. Investigating flow patterns and related dynamics in multi-instability turbulent plasmas using a three-point cross-phase time delay estimation velocimetry scheme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandt, C.; Max-Planck-Institute for Plasma Physics, Wendelsteinstr. 1, D-17491 Greifswald; Thakur, S. C.

    2016-04-15

    Complexities of flow patterns in the azimuthal cross-section of a cylindrical magnetized helicon plasma and the corresponding plasma dynamics are investigated by means of a novel scheme for time delay estimation velocimetry. The advantage of this introduced method is the capability of calculating the time-averaged 2D velocity fields of propagating wave-like structures and patterns in complex spatiotemporal data. It is able to distinguish and visualize the details of simultaneously present superimposed entangled dynamics and it can be applied to fluid-like systems exhibiting frequently repeating patterns (e.g., waves in plasmas, waves in fluids, dynamics in planetary atmospheres, etc.). The velocity calculationsmore » are based on time delay estimation obtained from cross-phase analysis of time series. Each velocity vector is unambiguously calculated from three time series measured at three different non-collinear spatial points. This method, when applied to fast imaging, has been crucial to understand the rich plasma dynamics in the azimuthal cross-section of a cylindrical linear magnetized helicon plasma. The capabilities and the limitations of this velocimetry method are discussed and demonstrated for two completely different plasma regimes, i.e., for quasi-coherent wave dynamics and for complex broadband wave dynamics involving simultaneously present multiple instabilities.« less

  7. Fractal analysis of urban catchments and their representation in semi-distributed models: imperviousness and sewer system

    NASA Astrophysics Data System (ADS)

    Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Ochoa-Rodriguez, Susana; Willems, Patrick; Ichiba, Abdellah; Wang, Lipen; Pina, Rui; Van Assel, Johan; Bruni, Guendalina; Murla Tuyls, Damian; ten Veldhuis, Marie-Claire

    2017-04-01

    Land use distribution and sewer system geometry exhibit complex scale dependent patterns in urban environment. This scale dependency is even more visible in a rasterized representation where only a unique class is affected to each pixel. Such features are well grasped with fractal tools, which are based scale invariance and intrinsically designed to characterise and quantify the space filled by a geometrical set exhibiting complex and tortuous patterns. Fractal tools have been widely used in hydrology but seldom in the specific context of urban hydrology. In this paper, they are used to analyse surface and sewer data from 10 urban or peri-urban catchments located in 5 European countries in the framework of the NWE Interreg RainGain project (www.raingain.eu). The aim was to characterise urban catchment properties accounting for the complexity and inhomogeneity typical of urban water systems. Sewer system density and imperviousness (roads or buildings), represented in rasterized maps of 2 m x 2 m pixels, were analysed to quantify their fractal dimension, characteristic of scaling invariance. It appears that both sewer density and imperviousness exhibit scale invariant features that can be characterized with the help of fractal dimensions ranging from 1.6 to 2, depending on the catchment. In a given area, consistent results were found for the two geometrical features, yielding a robust and innovative way of quantifying the level of urbanization. The representation of imperviousness in operational semi-distributed hydrological models for these catchments was also investigated by computing fractal dimensions of the geometrical sets made up of the sub-catchments with coefficients of imperviousness greater than a range of thresholds. It enables to quantify how well spatial structures of imperviousness are represented in the urban hydrological models.

  8. An Investigation of CHC Cognitive Patterns among School Students in Grades Five through Nine with Learning Disabilities

    ERIC Educational Resources Information Center

    McClain-Pace, Erin Marie

    2012-01-01

    Interest in students who exhibit characteristics with difficulties in learning can be traced as far back as 1800. In order to better understand the complexities and causes of learning disabilities, many researchers (Bannatyne, 1968, 1974; Rugal, 1974) have investigated ways to better identify learners who struggle with academics. A strong argument…

  9. Combining experiment and optical simulation in coherent X-ray nanobeam characterization of Si/SiGe semiconductor heterostructures

    DOE PAGES

    Tilka, J. A.; Park, J.; Ahn, Y.; ...

    2016-07-06

    Here, the highly coherent and tightly focused x-ray beams produced by hard x-ray light sources enable the nanoscale characterization of the structure of electronic materials but are accompanied by significant challenges in the interpretation of diffraction and scattering patterns. X-ray nanobeams exhibit optical coherence combined with a large angular divergence introduced by the x-ray focusing optics. The scattering of nanofocused x-ray beams from intricate semiconductor heterostructures produces a complex distribution of scattered intensity. We report here an extension of coherent xray optical simulations of convergent x-ray beam diffraction patterns to arbitrary x-ray incident angles to allow the nanobeam diffraction patternsmore » of complex heterostructures to be simulated faithfully. These methods are used to extract the misorientation of lattice planes and the strain of individual layers from synchrotron x-ray nanobeam diffraction patterns of Si/SiGe heterostructures relevant to applications in quantum electronic devices. The systematic interpretation of nanobeam diffraction patterns from semiconductor heterostructures presents a new opportunity in characterizing and ultimately designing electronic materials.« less

  10. Network structure of subway passenger flows

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Mao, B. H.; Bai, Y.

    2016-03-01

    The results of transportation infrastructure network analyses have been used to analyze complex networks in a topological context. However, most modeling approaches, including those based on complex network theory, do not fully account for real-life traffic patterns and may provide an incomplete view of network functions. This study utilizes trip data obtained from the Beijing Subway System to characterize individual passenger movement patterns. A directed weighted passenger flow network was constructed from the subway infrastructure network topology by incorporating trip data. The passenger flow networks exhibit several properties that can be characterized by power-law distributions based on flow size, and log-logistic distributions based on the fraction of boarding and departing passengers. The study also characterizes the temporal patterns of in-transit and waiting passengers and provides a hierarchical clustering structure for passenger flows. This hierarchical flow organization varies in the spatial domain. Ten cluster groups were identified, indicating a hierarchical urban polycentric structure composed of large concentrated flows at urban activity centers. These empirical findings provide insights regarding urban human mobility patterns within a large subway network.

  11. Chemotactic-based adaptive self-organization during colonial development

    NASA Astrophysics Data System (ADS)

    Cohen, Inon; Czirók, Andras; Ben-Jacob, Eshel

    1996-02-01

    Bacterial colonies have developed sophisticated modes of cooperative behavior which enable them to respond to adverse growth conditions. It has been shown that such behavior can be manifested in the development of complex colonial patterns. Certain bacterial species exhibit formation of branching patterns during colony development. Here we present a generic model to describe such patterning of swimming (tumbling) bacteria on agar surfaces. The model incorporates: (1) food diffusion, (2) reproduction and sporulation of the cells, (3) movement of the bacterial cells within a self-produced wetting fluid and (4) chemotactic signaling. As a plausible explanation for transitions between different branching morphologies, we propose an interplay between chemotaxis towards food, self-produced short range chemoattractant and long range chemorepellent.

  12. Establishment of embryonic neuroepithelial cell lines exhibiting an epiplastic expression pattern of region specific markers.

    PubMed

    Nardelli, Jeannette; Catala, Martin; Charnay, Patrick

    2003-09-15

    Neuroepithelial b2T cells were derived from the hindbrain and the spinal cord of mouse transgenic embryos, which expressed SV40 T antigen under the control of a Hoxb2 enhancer. Strikingly, b2T cell lines of either origin exhibit a very similar gene expression pattern, including markers of the hindbrain and the spinal cord, such as Hox genes, but not of more anterior cephalic regions. In addition, the broad expression pattern of b2T cells, probably linked to culture conditions, appeared to be appropriately modulated when the cells were reimplanted at different longitudinal levels into chick host embryos, suggesting that these cells are responsive to exogenous signalling mechanisms. Further support for these allegations was obtained by culturing b2T cells in defined medium and by assessing the expression of Krox20, an odd-numbered rhombomere marker, which appeared to be modulated by a complex interplay between FGF, retinoic acid (RA), and noggin. With respect to these as yet unique properties, b2T cells constitute an original alternative tool to in vivo models for the analysis of molecular pathways involved in the patterning of the neural tube. Copyright 2003 Wiley-Liss, Inc.

  13. Developmental and communicative factors affecting VOT production in English and Arabic bilingual and monolingual speakers

    NASA Astrophysics Data System (ADS)

    Khattab, Ghada

    2004-05-01

    VOT patterns were investigated in the production of three Lebanese-English bilinguals' aged 5, 7, and 10, six aged-matched monolingual controls from the bilinguals' immediate communities, and the parents of bilinguals and monolinguals. The aim was to examine the extent to which children exposed to two languages acquire separate VOT patterns for each language and to determine the factors that affect such acquisition. Results showed that VOT patterns for each bilingual child differed significantly across the two languages. But while the contrast in English resembled a monolingual-like model, that for Arabic exhibited persisting developmental features; explanations were offered in terms of the relationship between input and complexity of voicing lead production. Evidence was used from developmental changes that were noted for two of the bilingual subjects over a period of 18 months. English code-switches produced by the bilinguals during Arabic sessions exhibited different VOT patterns from those produced during English sessions, which underlined the importance of taking the language context into consideration. Finally, results from monolinguals and bilinguals showed that the short lag categories for the two languages were different despite a degree of overlap. Such findings require finer divisions of the three universal VOT categories to account for language-specific patterns.

  14. Family feuds: social competition and sexual conflict in complex societies

    PubMed Central

    Rubenstein, Dustin R.

    2012-01-01

    Darwin was initially puzzled by the processes that led to ornamentation in males—what he termed sexual selection—and those that led to extreme cooperation and altruism in complex animal societies—what was later termed kin selection. Here, I explore the relationships between sexual and kin selection theory by examining how social competition for reproductive opportunities—particularly in females—and sexual conflict over mating partners are inherent and critical parts of complex altruistic societies. I argue that (i) patterns of reproductive sharing within complex societies can drive levels of social competition and reproductive conflict not only in males but also in females living in social groups, and ultimately the evolution of female traits such as ornaments and armaments; (ii) mating conflict over female choice of sexual partners can influence kin structure within groups and drive the evolution of complex societies; and (iii) patterns of reproductive sharing and conflict among females may also drive the evolution of complex societies by influencing kin structure within groups. Ultimately, complex societies exhibiting altruistic behaviour appear to have only arisen in taxa where social competition over reproductive opportunities and sexual conflict over mating partners were low. Once such societies evolved, there were important selective feedbacks on traits used to regulate and mediate intra-sexual competition over reproductive opportunities, particularly in females. PMID:22777018

  15. Family feuds: social competition and sexual conflict in complex societies.

    PubMed

    Rubenstein, Dustin R

    2012-08-19

    Darwin was initially puzzled by the processes that led to ornamentation in males-what he termed sexual selection-and those that led to extreme cooperation and altruism in complex animal societies-what was later termed kin selection. Here, I explore the relationships between sexual and kin selection theory by examining how social competition for reproductive opportunities-particularly in females-and sexual conflict over mating partners are inherent and critical parts of complex altruistic societies. I argue that (i) patterns of reproductive sharing within complex societies can drive levels of social competition and reproductive conflict not only in males but also in females living in social groups, and ultimately the evolution of female traits such as ornaments and armaments; (ii) mating conflict over female choice of sexual partners can influence kin structure within groups and drive the evolution of complex societies; and (iii) patterns of reproductive sharing and conflict among females may also drive the evolution of complex societies by influencing kin structure within groups. Ultimately, complex societies exhibiting altruistic behaviour appear to have only arisen in taxa where social competition over reproductive opportunities and sexual conflict over mating partners were low. Once such societies evolved, there were important selective feedbacks on traits used to regulate and mediate intra-sexual competition over reproductive opportunities, particularly in females.

  16. Divergent population structure and climate associations of a chromosomal inversion polymorphism across the Mimulus guttatus species complex

    PubMed Central

    Oneal, Elen; Lowry, David B.; Wright, Kevin M.; Zhu, Zhirui; Willis, John H.

    2014-01-01

    Chromosomal rearrangement polymorphisms are common and increasingly found to be associated with adaptive ecological divergence and speciation. Rearrangements, such as inversions, reduce recombination in heterozygous individuals and thus can protect favourable allelic combinations at linked loci, facilitating their spread in the presence of gene flow. Recently, we identified a chromosomal inversion polymorphism that contributes to ecological adaptation and reproductive isolation between annual and perennial ecotypes of the yellow monkeyflower, Mimulus guttatus. Here we evaluate the population genetic structure of this inverted region in comparison with the collinear regions of the genome across the M. guttatus species complex. We tested whether annual and perennial M. guttatus exhibit different patterns of divergence for loci in the inverted and noninverted regions of the genome. We then evaluated whether there are contrasting climate associations with these genomic regions through redundancy analysis. We found that the inversion exhibits broadly different patterns of divergence among annual and perennial M. guttatus and is associated with environmental variation across population accessions. This study is the first widespread population genetic survey of the diversity of the M. guttatus species complex. Our findings contribute to a greater understanding of morphological, ecological, and genetic evolutionary divergence across this highly diverse group of closely related ecotypes and species. Finally, understanding species relationships among M. guttatus sp. has hitherto been stymied by accumulated evidence of substantial gene flow among populations as well as designated species. Nevertheless, our results shed light on these relationships and provide insight into adaptation in life history traits within the complex. PMID:24796267

  17. Semantic mapping reveals distinct patterns in descriptions of social relations in adults with autism spectrum disorder.

    PubMed

    Luo, Sean X; Shinall, Jacqueline A; Peterson, Bradley S; Gerber, Andrew J

    2016-08-01

    Adults with autism spectrum disorder (ASD) may describe other individuals differently compared with typical adults. In this study, we first asked participants to describe closely related individuals such as parents and close friends with 10 positive and 10 negative characteristics. We then used standard natural language processing methods to digitize and visualize these descriptions. The complex patterns of these descriptive sentences exhibited a difference in semantic space between individuals with ASD and control participants. Machine learning algorithms were able to automatically detect and discriminate between these two groups. Furthermore, we showed that these descriptive sentences from adults with ASD exhibited fewer connections as defined by word-word co-occurrences in descriptions, and these connections in words formed a less "small-world" like network. Autism Res 2016, 9: 846-853. © 2015 International Society for Autism Research, Wiley Periodicals, Inc. © 2015 International Society for Autism Research, Wiley Periodicals, Inc.

  18. Parallel functional category deficits in clauses and nominal phrases: The case of English agrammatism

    PubMed Central

    Wang, Honglei; Yoshida, Masaya; Thompson, Cynthia K.

    2015-01-01

    Individuals with agrammatic aphasia exhibit restricted patterns of impairment of functional morphemes, however, syntactic characterization of the impairment is controversial. Previous studies have focused on functional morphology in clauses only. This study extends the empirical domain by testing functional morphemes in English nominal phrases in aphasia and comparing patients’ impairment to their impairment of functional morphemes in English clauses. In the linguistics literature, it is assumed that clauses and nominal phrases are structurally parallel but exhibit inflectional differences. The results of the present study indicated that aphasic speakers evinced similar impairment patterns in clauses and nominal phrases. These findings are consistent with the Distributed Morphology Hypothesis (DMH), suggesting that the source of functional morphology deficits among agrammatics relates to difficulty implementing rules that convert inflectional features into morphemes. Our findings, however, are inconsistent with the Tree Pruning Hypothesis (TPH), which suggests that patients have difficulty building complex hierarchical structures. PMID:26379370

  19. Changes in magnetic domain structure during twin boundary motion in single crystal Ni-Mn-Ga exhibiting magnetic shape memory effect

    NASA Astrophysics Data System (ADS)

    Kopecký, V.; Fekete, L.; Perevertov, O.; Heczko, O.

    2016-05-01

    The complexity of Ni-Mn-Ga single crystal originates from the interplay between ferromagnetic domain structure and ferroelastic twinned microstructure. Magnetic domain structure in the vicinity of single twin boundary was studied using magneto-optical indicator film and magnetic force microscopy technique. The single twin boundary of Type I was formed mechanically and an initial magnetization state in both variants were restored by local application of magnetic field (≈40 kA/m). The differently oriented variants exhibited either stripe or labyrinth magnetic domain pattern in agreement with the uniaxial magnetocrystalline anisotropy of the martensite. The twin boundary was then moved by compressive or tensile stress. The passage of the boundary resulted in the formation of granular or rake domains, respectively. Additionally, the specific magnetic domains pattern projected by twin boundary gradually vanished during twin boundary motion.

  20. Scale effects on information theory-based measures applied to streamflow patterns in two rural watersheds

    NASA Astrophysics Data System (ADS)

    Pan, Feng; Pachepsky, Yakov A.; Guber, Andrey K.; McPherson, Brian J.; Hill, Robert L.

    2012-01-01

    SummaryUnderstanding streamflow patterns in space and time is important for improving flood and drought forecasting, water resources management, and predictions of ecological changes. Objectives of this work include (a) to characterize the spatial and temporal patterns of streamflow using information theory-based measures at two thoroughly-monitored agricultural watersheds located in different hydroclimatic zones with similar land use, and (b) to elucidate and quantify temporal and spatial scale effects on those measures. We selected two USDA experimental watersheds to serve as case study examples, including the Little River experimental watershed (LREW) in Tifton, Georgia and the Sleepers River experimental watershed (SREW) in North Danville, Vermont. Both watersheds possess several nested sub-watersheds and more than 30 years of continuous data records of precipitation and streamflow. Information content measures (metric entropy and mean information gain) and complexity measures (effective measure complexity and fluctuation complexity) were computed based on the binary encoding of 5-year streamflow and precipitation time series data. We quantified patterns of streamflow using probabilities of joint or sequential appearances of the binary symbol sequences. Results of our analysis illustrate that information content measures of streamflow time series are much smaller than those for precipitation data, and the streamflow data also exhibit higher complexity, suggesting that the watersheds effectively act as filters of the precipitation information that leads to the observed additional complexity in streamflow measures. Correlation coefficients between the information-theory-based measures and time intervals are close to 0.9, demonstrating the significance of temporal scale effects on streamflow patterns. Moderate spatial scale effects on streamflow patterns are observed with absolute values of correlation coefficients between the measures and sub-watershed area varying from 0.2 to 0.6 in the two watersheds. We conclude that temporal effects must be evaluated and accounted for when the information theory-based methods are used for performance evaluation and comparison of hydrological models.

  1. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring.

    PubMed

    Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R

    2010-09-01

    A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.

  2. Biogeography, phylogeny, and morphological evolution of central Texas cave and spring salamanders

    PubMed Central

    2013-01-01

    Background Subterranean faunal radiations can result in complex patterns of morphological divergence involving both convergent or parallel phenotypic evolution and cryptic species diversity. Salamanders of the genus Eurycea in central Texas provide a particularly challenging example with respect to phylogeny reconstruction, biogeography and taxonomy. These predominantly aquatic species inhabit karst limestone aquifers and spring outflows, and exhibit a wide range of morphological and genetic variation. We extensively sampled spring and cave populations of six Eurycea species within this group (eastern Blepsimolge clade), to reconstruct their phylogenetic and biogeographic history using mtDNA and examine patterns and origins of cave- and surface-associated morphological variation. Results Genetic divergence is generally low, and many populations share ancestral haplotypes and/or show evidence of introgression. This pattern likely indicates a recent radiation coupled with a complex history of intermittent connections within the aquatic karst system. Cave populations that exhibit the most extreme troglobitic morphologies show no or very low divergence from surface populations and are geographically interspersed among them, suggesting multiple instances of rapid, parallel phenotypic evolution. Morphological variation is diffuse among cave populations; this is in contrast to surface populations, which form a tight cluster in morphospace. Unexpectedly, our analyses reveal two distinct and previously unrecognized morphological groups encompassing multiple species that are not correlated with spring or cave habitat, phylogeny or geography, and may be due to developmental plasticity. Conclusions The evolutionary history of this group of spring- and cave-dwelling salamanders reflects patterns of intermittent isolation and gene flow influenced by complex hydrogeologic dynamics that are characteristic of karst regions. Shallow genetic divergences among several species, evidence of genetic exchange, and nested relationships across morphologically disparate cave and spring forms suggests that cave invasion was recent and many troglobitic morphologies arose independently. These patterns are consistent with an adaptive-shift hypothesis of divergence, which has been proposed to explain diversification in other karst fauna. While cave and surface forms often do not appear to be genetically isolated, morphological diversity within and among populations may be maintained by developmental plasticity, selection, or a combination thereof. PMID:24044519

  3. Self-Organized Dynamic Flocking Behavior from a Simple Deterministic Map

    NASA Astrophysics Data System (ADS)

    Krueger, Wesley

    2007-10-01

    Coherent motion exhibiting large-scale order, such as flocking, swarming, and schooling behavior in animals, can arise from simple rules applied to an initial random array of self-driven particles. We present a completely deterministic dynamic map that exhibits emergent, collective, complex motion for a group of particles. Each individual particle is driven with a constant speed in two dimensions adopting the average direction of a fixed set of non-spatially related partners. In addition, the particle changes direction by π as it reaches a circular boundary. The dynamical patterns arising from these rules range from simple circular-type convective motion to highly sophisticated, complex, collective behavior which can be easily interpreted as flocking, schooling, or swarming depending on the chosen parameters. We present the results as a series of short movies and we also explore possible order parameters and correlation functions capable of quantifying the resulting coherence.

  4. Chimpanzees and Bonobos Exhibit Emotional Responses to Decision Outcomes

    PubMed Central

    Rosati, Alexandra G.; Hare, Brian

    2013-01-01

    The interface between cognition, emotion, and motivation is thought to be of central importance in understanding complex cognitive functions such as decision-making and executive control in humans. Although nonhuman apes have complex repertoires of emotional expression, little is known about the role of affective processes in ape decision-making. To illuminate the evolutionary origins of human-like patterns of choice, we investigated decision-making in humans' closest phylogenetic relatives, chimpanzees (Pan troglodytes) and bonobos (Pan paniscus). In two studies, we examined these species' temporal and risk preferences, and assessed whether apes show emotional and motivational responses in decision-making contexts. We find that (1) chimpanzees are more patient and more risk-prone than are bonobos, (2) both species exhibit affective and motivational responses following the outcomes of their decisions, and (3) some emotional and motivational responses map onto species-level and individual-differences in decision-making. These results indicate that apes do exhibit emotional responses to decision-making, like humans. We explore the hypothesis that affective and motivational biases may underlie the psychological mechanisms supporting value-based preferences in these species. PMID:23734175

  5. The varieties of speech to young children.

    PubMed

    Huttenlocher, Janellen; Vasilyeva, Marina; Waterfall, Heidi R; Vevea, Jack L; Hedges, Larry V

    2007-09-01

    This article examines caregiver speech to young children. The authors obtained several measures of the speech used to children during early language development (14-30 months). For all measures, they found substantial variation across individuals and subgroups. Speech patterns vary with caregiver education, and the differences are maintained over time. While there are distinct levels of complexity for different caregivers, there is a common pattern of increase across age within the range that characterizes each educational group. Thus, caregiver speech exhibits both long-standing patterns of linguistic behavior and adjustment for the interlocutor. This information about the variability of speech by individual caregivers provides a framework for systematic study of the role of input in language acquisition. PsycINFO Database Record (c) 2007 APA, all rights reserved

  6. The microgeographical patterns of morphological and molecular variation of a mixed ploidy population in the species complex Actinidia chinensis.

    PubMed

    Liu, Yifei; Li, Dawei; Yan, Ling; Huang, Hongwen

    2015-01-01

    Polyploidy and hybridization are thought to have significant impacts on both the evolution and diversification of the genus Actinidia, but the structure and patterns of morphology and molecular diversity relating to ploidy variation of wild Actinidia plants remain much less understood. Here, we examine the distribution of morphological variation and ploidy levels along geographic and environmental variables of a large mixed-ploidy population of the A. chinensis species complex. We then characterize the extent of both genetic and epigenetic diversity and differentiation exhibited between individuals of different ploidy levels. Our results showed that while there are three ploidy levels in this population, hexaploids were constituted the majority (70.3%). Individuals with different ploidy levels were microgeographically structured in relation to elevation and extent of niche disturbance. The morphological characters examined revealed clear difference between diploids and hexaploids, however tetraploids exhibited intermediate forms. Both genetic and epigenetic diversity were high but the differentiation among cytotypes was weak, suggesting extensive gene flow and/or shared ancestral variation occurred in this population even across ploidy levels. Epigenetic variation was clearly correlated with changes in altitudes, a trend of continuous genetic variation and gradual increase of epigenomic heterogeneities of individuals was also observed. Our results show that complex interactions between the locally microgeographical environment, ploidy and gene flow impact A. chinensis genetic and epigenetic variation. We posit that an increase in ploidy does not broaden the species habitat range, but rather permits A. chinensis adaptation to specific niches.

  7. Complex Seismic Anisotropy at the Edges of a Very-low Velocity Province in the Lowermost Mantle

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Wen, L.

    2005-12-01

    A prominent very-low velocity province (VLVP) in the lowermost mantle is revealed, and has been extensively mapped out in recent seismic studies (e.g., Wang and Wen, 2004). Seismic evidence unambiguously indicates that the VLVP is compositionally distinct, and its seismic structure can be best explained by partial melting driven by a compositional change produced in the early Earth's history (Wen, 2001; Wen et. al, 2001; Wang and Wen, 2004). In this presentation, we study the seismic anisotropic behavior inside the VLVP and its surrounding area using SKS and SKKS waveform data. We collect 272 deep earthquakes recorded by more than 80 stations in the Kaapvaal seismic array in southern Africa from 1997 to 1999. Based on the data quality, we choose SKS and SKKS waveform data for 16 earthquakes to measure the anisotropic parameters: the fast polarization direction and the splitting time, using the method of Silver and Chan (1991). A total of 162 high-quality measurements are obtained based on the statistics analysis of shear wave splitting results. The obtained anisotropy exhibits different patterns for the SKS and SKKS phases sampling inside the VLVP and at the edges of the VLVP. When the SKS and SKKS phases sample inside the VLVP, their fast polarization directions exhibit a pattern that strongly correlates with stations, gradually changing from 11°N~to 80°N~across the seismic array from south to north and rotating back to the North direction over short distances for several northernmost stations. The anisotropy pattern obtained from the analysis of the SKKS phases is the same as that from the SKS phases. However, when the SKS and SKKS phases sample at the edges of the VLVP, the measured anisotropy exhibits a very complex pattern. The obtained fast polarization directions change rapidly over a small distance, and they no longer correlate with stations; the measurements obtained from the SKS analysis also differ with those from the SKKS analysis. As the SKS and SKKS phases have similar propagation paths in the lithosphere beneath the array, but different sampling points near the core mantle boundary. The anisotropy in the lithosphere should have a similar influence on SKS and SKKS phases. Therefore, the similar anisotropy obtained from the SKS and SKKS phases sampling inside the VLVP and its correlation with seismic stations suggest that the observed anisotropy variation across the seismic array is mainly due to the anisotropy in the lithosphere beneath the Kaapvaal seismic array, and the interior of the VLVP is isotropic or weakly anisotropic. On the other hand, for the SKS and SKKS phases sampling at the edges of the VLVP, the observed complex anisotropy pattern and the lack of correlation between the results from the SKS and SKKS analyses indicate that part of that anisotropy has to originate from the lowermost mantle near the exit points of these phases at the core mantle boundary, revealing a complex flow pattern at the edges of the VLVP.

  8. Self-dissimilarity as a High Dimensional Complexity Measure

    NASA Technical Reports Server (NTRS)

    Wolpert, David H.; Macready, William

    2005-01-01

    For many systems characterized as "complex" the patterns exhibited on different scales differ markedly from one another. For example the biomass distribution in a human body "looks very different" depending on the scale at which one examines it. Conversely, the patterns at different scales in "simple" systems (e.g., gases, mountains, crystals) vary little from one scale to another. Accordingly, the degrees of self-dissimilarity between the patterns of a system at various scales constitute a complexity "signature" of that system. Here we present a novel quantification of self-dissimilarity. This signature can, if desired, incorporate a novel information-theoretic measure of the distance between probability distributions that we derive here. Whatever distance measure is chosen, our quantification of self-dissimilarity can be measured for many kinds of real-world data. This allows comparisons of the complexity signatures of wholly different kinds of systems (e.g., systems involving information density in a digital computer vs. species densities in a rain-forest vs. capital density in an economy, etc.). Moreover, in contrast to many other suggested complexity measures, evaluating the self-dissimilarity of a system does not require one to already have a model of the system. These facts may allow self-dissimilarity signatures to be used a s the underlying observational variables of an eventual overarching theory relating all complex systems. To illustrate self-dissimilarity we present several numerical experiments. In particular, we show that underlying structure of the logistic map is picked out by the self-dissimilarity signature of time series produced by that map

  9. New insights into sucking, swallowing and breathing central generators: A complexity analysis of rhythmic motor behaviors.

    PubMed

    Samson, Nathalie; Praud, Jean-Paul; Quenet, Brigitte; Similowski, Thomas; Straus, Christian

    2017-01-18

    Sucking, swallowing and breathing are dynamic motor behaviors. Breathing displays features of chaos-like dynamics, in particular nonlinearity and complexity, which take their source in the automatic command of breathing. In contrast, buccal/gill ventilation in amphibians is one of the rare motor behaviors that do not display nonlinear complexity. This study aimed at assessing whether sucking and swallowing would also follow nonlinear complex dynamics in the newborn lamb. Breathing movements were recorded before, during and after bottle-feeding. Sucking pressure and the integrated EMG of the thyroartenoid muscle, as an index of swallowing, were recorded during bottle-feeding. Nonlinear complexity of the whole signals was assessed through the calculation of the noise limit value (NL). Breathing and swallowing always exhibited chaos-like dynamics. The NL of breathing did not change significantly before, during or after bottle-feeding. On the other hand, sucking inconsistently and significantly less frequently than breathing exhibited a chaos-like dynamics. Therefore, the central pattern generator (CPG) that drives sucking may be functionally different from the breathing CPG. Furthermore, the analogy between buccal/gill ventilation and sucking suggests that the latter may take its phylogenetic origin in the gill ventilation CPG of the common ancestor of extant amphibians and mammals. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. Introduced earthworm species exhibited unique patterns of seasonal activity and vertical distribution, and Lumbricus terrestris burrows remained usable for at least 7 years in hardwood and pine stands

    Treesearch

    Lynette R. Potvin; Erik A. Lilleskov

    2017-01-01

    It is difficult to obtain non-destructive information on the seasonal dynamics of earthworms in northern forest soils. To overcome this, we used a Rhizotron facility to compile 7 years of data on the activity of anecic (Lumbricus terrestris) and endogeic (Aporrectodea caliginosa complex) earthworms in two contrasting soil/plant...

  11. Studies in nonlinear problems of energy. Progress report, October 1, 1993--September 30, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matkowsky, B.J.

    1994-09-01

    The authors concentrate on modeling, analysis and large scale scientific computation of combustion and flame propagation phenomena, with emphasis on the transition from laminar to turbulent combustion. In the transition process a flame passed through a stages exhibiting increasingly complex spatial and temporal patterns which serve as signatures identifying each stage. Often the transitions arise via bifurcation. The authors investigate nonlinear dynamics, bifurcation and pattern formation in the successive stage of transition. They describe the stability of combustion waves, and transitions to combustion waves exhibiting progressively higher degrees of spatio-temporal complexity. One aspect of this research program is the systematicmore » derivation of appropriate, approximate models from the original models governing combustion. The approximate models are then analyzed. The authors are particularly interested in understanding the basic mechanisms affecting combustion, which is a prerequisite to effective control of the process. They are interested in determining the effects of varying various control parameters, such as Nusselt number, Lewis number, heat release, activation energy, Damkohler number, Reynolds number, Prandtl number, Peclet number, etc. The authors have also considered a number of problems in self-propagating high-temperature synthesis (SHS), in which combustion waves are employed to synthesize advanced materials. Efforts are directed toward understanding fundamental mechanisms. 167 refs.« less

  12. Some considerations about the symmetry and evolution of chaotic Rayleigh-Bénard convection: The flywheel mechanism and the ``wind'' of turbulence

    NASA Astrophysics Data System (ADS)

    Lappa, Marcello

    2011-09-01

    Rayleigh-Bénard convection in finite-size enclosures exhibits really intricate features when turbulent states are reached and thermal plumes play a crucial role in a number of them. This complex mechanism may be regarded as a "machine" containing many different working parts: boundary layers, mixing zones, jets, and a relatively free and isothermal central region. These parts are generally regarded as the constitutive "ingredients" whose interplay leads to the emergence of a macroscopic pattern with well-defined properties. Like the Lorenz model (but with the due differences) such a complex structure has a prevailing two-dimensional nature and can be oriented clockwise or anticlockwise (both configurations are equally likely to occur and the flow can exhibit occasional and irregular "reversals" from one to the other without a change in magnitude). It is usually referred to in the literature as "wind of turbulence" or "flywheel". The present article provides insights into the possible origin of such dynamics and related patterning behavior (supported by "ad hoc" novel numerical simulations carried out for Pr=15 and O(10)⩽Ra⩽O(10)) together with a short exposition of existing theories, also illustrating open points and future directions of research.

  13. Complete characterization of the stability of cluster synchronization in complex dynamical networks.

    PubMed

    Sorrentino, Francesco; Pecora, Louis M; Hagerstrom, Aaron M; Murphy, Thomas E; Roy, Rajarshi

    2016-04-01

    Synchronization is an important and prevalent phenomenon in natural and engineered systems. In many dynamical networks, the coupling is balanced or adjusted to admit global synchronization, a condition called Laplacian coupling. Many networks exhibit incomplete synchronization, where two or more clusters of synchronization persist, and computational group theory has recently proved to be valuable in discovering these cluster states based on the topology of the network. In the important case of Laplacian coupling, additional synchronization patterns can exist that would not be predicted from the group theory analysis alone. Understanding how and when clusters form, merge, and persist is essential for understanding collective dynamics, synchronization, and failure mechanisms of complex networks such as electric power grids, distributed control networks, and autonomous swarming vehicles. We describe a method to find and analyze all of the possible cluster synchronization patterns in a Laplacian-coupled network, by applying methods of computational group theory to dynamically equivalent networks. We present a general technique to evaluate the stability of each of the dynamically valid cluster synchronization patterns. Our results are validated in an optoelectronic experiment on a five-node network that confirms the synchronization patterns predicted by the theory.

  14. Spatial and temporal heterogeneity of infectious hematopoietic necrosis virus in Pacific Northwest salmonids

    USGS Publications Warehouse

    Breyta, Rachel; Black, Allison; Kaufman, John; Kurath, Gael

    2016-01-01

    The aquatic rhaboviral pathogen infectious hematopoietic necrosis virus (IHNV) causes acute disease in juvenile fish of a number of populations of Pacific salmonid species. Heavily managed in both marine and freshwater environments, these fish species are cultured during the juvenile stage in freshwater conservation hatcheries, where IHNV is one of the top three infectious diseases that cause serious morbidity and mortality. Therefore, a comprehensive study of viral genetic surveillance data representing 2590 field isolates collected between 1958 and 2014 was conducted to determine the spatial and temporal patterns of IHNV in the Pacific Northwest of the contiguous United States. Prevalence of infection varied over time, fluctuating over a rough 5–7 year cycle. The genetic analysis revealed numerous subgroups of IHNV, each of which exhibited spatial heterogeneity. Within all subgroups, dominant genetic types were apparent, though the temporal patterns of emergence of these types varied among subgroups. Finally, the affinity or fidelity of subgroups to specific host species also varied, where UC subgroup viruses exhibited a more generalist profile and all other subgroups exhibited a specialist profile. These complex patterns are likely synergistically driven by numerous ecological, pathobiological, and anthropogenic factors. Since only a few anthropogenic factors are candidates for managed intervention aimed at improving the health of threatened or endangered salmonid fish populations, determining the relative impact of these factors is a high priority for future studies.

  15. Tough and Conductive Hybrid Hydrogels Enabling Facile Patterning.

    PubMed

    Zhu, Fengbo; Lin, Ji; Wu, Zi Liang; Qu, Shaoxing; Yin, Jun; Qian, Jin; Zheng, Qiang

    2018-04-25

    Conductive polymer hydrogels (CPHs) that combine the unique properties of hydrogels and electronic properties of conductors have shown their great potentials in wearable/implantable electronic devices, where materials with remarkable mechanical properties, high conductivity, and easy processability are demanding. Here, we have developed a new type of polyion complex/polyaniline (PIC/PAni) hybrid hydrogels that are tough, conductive, and can be facilely patterned. The incorporation of conductive phase (PAni) into PIC matrix through phytic acid resulted in hybrid gels with ∼65 wt % water; high conductivity while maintaining the key viscoelasticity of the tough matrix. The gel prepared from 1 M aniline (Ani) exhibited the breaking strain, fracture stress, tensile modulus, and electrical conductivity of 395%, 1.15 MPa, 5.31 MPa, and 0.7 S/m, respectively, superior to the most existing CPHs. The mechanical and electrical performance of PIC/PAni hybrid hydrogels exhibited pronounced rate-dependent and self-recovery behaviors. The hybrid gels can effectively detect subtle human motions as strain sensors. Alternating conductive/nonconductive patterns can be readily achieved by selective Ani polymerization using stencil masks. This facile patterning method based on PIC/PAni gels can be readily scaled up for fast fabrication of wavy gel circuits and multichannel sensor arrays, enabling real-time monitoring of the large-extent and large-area deformations with various sensitivities.

  16. Generation of helical Ince-Gaussian beams with a liquid-crystal display.

    PubMed

    Bentley, Joel B; Davis, Jeffrey A; Bandres, Miguel A; Gutiérrez-Vega, Julio C

    2006-03-01

    We generate helical Ince-Gaussian (HIG) beams by using complex amplitude and phase masks encoded onto a liquid-crystal display (LCD). These beams display an intensity pattern consisting of elliptic rings, whose number and ellipticity can be controlled, and a phase exhibiting a number of in-line vortices, each with a unitary topological charge. We show experimental results that display the properties of these elliptic dark hollow beams. We introduce a novel interference technique for generating the object and reference beams by using a single LCD and show the vortex interference patterns. We expect that these HIG beams will be useful in optical trapping applications.

  17. Generation of helical Ince-Gaussian beams with a liquid-crystal display

    NASA Astrophysics Data System (ADS)

    Bentley, Joel B.; Davis, Jeffrey A.; Bandres, Miguel A.; Gutiérrez-Vega, Julio C.

    2006-03-01

    We generate helical Ince-Gaussian (HIG) beams by using complex amplitude and phase masks encoded onto a liquid-crystal display (LCD). These beams display an intensity pattern consisting of elliptic rings, whose number and ellipticity can be controlled, and a phase exhibiting a number of in-line vortices, each with a unitary topological charge. We show experimental results that display the properties of these elliptic dark hollow beams. We introduce a novel interference technique for generating the object and reference beams by using a single LCD and show the vortex interference patterns. We expect that these HIG beams will be useful in optical trapping applications.

  18. An age-structured extension to the vectorial capacity model.

    PubMed

    Novoseltsev, Vasiliy N; Michalski, Anatoli I; Novoseltseva, Janna A; Yashin, Anatoliy I; Carey, James R; Ellis, Alicia M

    2012-01-01

    Vectorial capacity and the basic reproductive number (R(0)) have been instrumental in structuring thinking about vector-borne pathogen transmission and how best to prevent the diseases they cause. One of the more important simplifying assumptions of these models is age-independent vector mortality. A growing body of evidence indicates that insect vectors exhibit age-dependent mortality, which can have strong and varied affects on pathogen transmission dynamics and strategies for disease prevention. Based on survival analysis we derived new equations for vectorial capacity and R(0) that are valid for any pattern of age-dependent (or age-independent) vector mortality and explore the behavior of the models across various mortality patterns. The framework we present (1) lays the groundwork for an extension and refinement of the vectorial capacity paradigm by introducing an age-structured extension to the model, (2) encourages further research on the actuarial dynamics of vectors in particular and the relationship of vector mortality to pathogen transmission in general, and (3) provides a detailed quantitative basis for understanding the relative impact of reductions in vector longevity compared to other vector-borne disease prevention strategies. Accounting for age-dependent vector mortality in estimates of vectorial capacity and R(0) was most important when (1) vector densities are relatively low and the pattern of mortality can determine whether pathogen transmission will persist; i.e., determines whether R(0) is above or below 1, (2) vector population growth rate is relatively low and there are complex interactions between birth and death that differ fundamentally from birth-death relationships with age-independent mortality, and (3) the vector exhibits complex patterns of age-dependent mortality and R(0) ∼ 1. A limiting factor in the construction and evaluation of new age-dependent mortality models is the paucity of data characterizing vector mortality patterns, particularly for free ranging vectors in the field.

  19. An Age-Structured Extension to the Vectorial Capacity Model

    PubMed Central

    Novoseltsev, Vasiliy N.; Michalski, Anatoli I.; Novoseltseva, Janna A.; Yashin, Anatoliy I.; Carey, James R.; Ellis, Alicia M.

    2012-01-01

    Background Vectorial capacity and the basic reproductive number (R0) have been instrumental in structuring thinking about vector-borne pathogen transmission and how best to prevent the diseases they cause. One of the more important simplifying assumptions of these models is age-independent vector mortality. A growing body of evidence indicates that insect vectors exhibit age-dependent mortality, which can have strong and varied affects on pathogen transmission dynamics and strategies for disease prevention. Methodology/Principal Findings Based on survival analysis we derived new equations for vectorial capacity and R0 that are valid for any pattern of age-dependent (or age–independent) vector mortality and explore the behavior of the models across various mortality patterns. The framework we present (1) lays the groundwork for an extension and refinement of the vectorial capacity paradigm by introducing an age-structured extension to the model, (2) encourages further research on the actuarial dynamics of vectors in particular and the relationship of vector mortality to pathogen transmission in general, and (3) provides a detailed quantitative basis for understanding the relative impact of reductions in vector longevity compared to other vector-borne disease prevention strategies. Conclusions/Significance Accounting for age-dependent vector mortality in estimates of vectorial capacity and R0 was most important when (1) vector densities are relatively low and the pattern of mortality can determine whether pathogen transmission will persist; i.e., determines whether R0 is above or below 1, (2) vector population growth rate is relatively low and there are complex interactions between birth and death that differ fundamentally from birth-death relationships with age-independent mortality, and (3) the vector exhibits complex patterns of age-dependent mortality and R0∼1. A limiting factor in the construction and evaluation of new age-dependent mortality models is the paucity of data characterizing vector mortality patterns, particularly for free ranging vectors in the field. PMID:22724022

  20. Adaptive processes drive ecomorphological convergent evolution in antwrens (Thamnophilidae).

    PubMed

    Bravo, Gustavo A; Remsen, J V; Brumfield, Robb T

    2014-10-01

    Phylogenetic niche conservatism (PNC) and convergence are contrasting evolutionary patterns that describe phenotypic similarity across independent lineages. Assessing whether and how adaptive processes give origin to these patterns represent a fundamental step toward understanding phenotypic evolution. Phylogenetic model-based approaches offer the opportunity not only to distinguish between PNC and convergence, but also to determine the extent that adaptive processes explain phenotypic similarity. The Myrmotherula complex in the Neotropical family Thamnophilidae is a polyphyletic group of sexually dimorphic small insectivorous forest birds that are relatively homogeneous in size and shape. Here, we integrate a comprehensive species-level molecular phylogeny of the Myrmotherula complex with morphometric and ecological data within a comparative framework to test whether phenotypic similarity is described by a pattern of PNC or convergence, and to identify evolutionary mechanisms underlying body size and shape evolution. We show that antwrens in the Myrmotherula complex represent distantly related clades that exhibit adaptive convergent evolution in body size and divergent evolution in body shape. Phenotypic similarity in the group is primarily driven by their tendency to converge toward smaller body sizes. Differences in body size and shape across lineages are associated to ecological and behavioral factors. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  1. Dynamic analysis and pattern visualization of forest fires.

    PubMed

    Lopes, António M; Tenreiro Machado, J A

    2014-01-01

    This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns.

  2. Dynamic Analysis and Pattern Visualization of Forest Fires

    PubMed Central

    Lopes, António M.; Tenreiro Machado, J. A.

    2014-01-01

    This paper analyses forest fires in the perspective of dynamical systems. Forest fires exhibit complex correlations in size, space and time, revealing features often present in complex systems, such as the absence of a characteristic length-scale, or the emergence of long range correlations and persistent memory. This study addresses a public domain forest fires catalogue, containing information of events for Portugal, during the period from 1980 up to 2012. The data is analysed in an annual basis, modelling the occurrences as sequences of Dirac impulses with amplitude proportional to the burnt area. First, we consider mutual information to correlate annual patterns. We use visualization trees, generated by hierarchical clustering algorithms, in order to compare and to extract relationships among the data. Second, we adopt the Multidimensional Scaling (MDS) visualization tool. MDS generates maps where each object corresponds to a point. Objects that are perceived to be similar to each other are placed on the map forming clusters. The results are analysed in order to extract relationships among the data and to identify forest fire patterns. PMID:25137393

  3. The Meckel syndrome- associated protein MKS1 functionally interacts with components of the BBSome and IFT complexes to mediate ciliary trafficking and hedgehog signaling

    PubMed Central

    Barrington, Chloe L.; Katsanis, Nicholas

    2017-01-01

    The importance of primary cilia in human health is underscored by the link between ciliary dysfunction and a group of primarily recessive genetic disorders with overlapping clinical features, now known as ciliopathies. Many of the proteins encoded by ciliopathy-associated genes are components of a handful of multi-protein complexes important for the transport of cargo to the basal body and/or into the cilium. A key question is whether different complexes cooperate in cilia formation, and whether they participate in cilium assembly in conjunction with intraflagellar transport (IFT) proteins. To examine how ciliopathy protein complexes might function together, we have analyzed double mutants of an allele of the Meckel syndrome (MKS) complex protein MKS1 and the BBSome protein BBS4. We find that Mks1; Bbs4 double mutant mouse embryos exhibit exacerbated defects in Hedgehog (Hh) dependent patterning compared to either single mutant, and die by E14.5. Cells from double mutant embryos exhibit a defect in the trafficking of ARL13B, a ciliary membrane protein, resulting in disrupted ciliary structure and signaling. We also examined the relationship between the MKS complex and IFT proteins by analyzing double mutant between Mks1 and a hypomorphic allele of the IFTB component Ift172. Despite each single mutant surviving until around birth, Mks1; Ift172avc1 double mutants die at mid-gestation, and exhibit a dramatic failure of cilia formation. We also find that Mks1 interacts genetically with an allele of Dync2h1, the IFT retrograde motor. Thus, we have demonstrated that the MKS transition zone complex cooperates with the BBSome to mediate trafficking of specific trans-membrane receptors to the cilium. Moreover, the genetic interaction of Mks1 with components of IFT machinery suggests that the transition zone complex facilitates IFT to promote cilium assembly and structure. PMID:28291807

  4. Hydrologic regimes as potential drivers of morphologic divergence in fish

    USGS Publications Warehouse

    Bruckerhoff, Lindsey; Magoulick, Daniel D.

    2017-01-01

    Fishes often exhibit phenotypic divergence across gradients of abiotic and biotic selective pressures. In streams, many of the known selective pressures driving phenotypic differentiation are largely influenced by hydrologic regimes. Because flow regimes drive so many attributes of lotic systems, we hypothesized fish exhibit phenotypic divergence among streams with different flow regimes. We used a comparative field study to investigate the morphological divergence of Campostoma anomalom (central stonerollers) among streams characterized by highly variable, intermittent flow regimes and streams characterized by relatively stable, groundwater flow regimes. We also conducted a mesocosm experiment to compare the plastic effects of one component of flow regimes, water velocity, on morphology of fish from different flow regimes. We observed differences in shape between flow regimes likely driven by differences in allometric growth patterns. Although we observed differences in morphology across flow regimes in the field, C. anomalum did not exhibit morphologic plasticity in response to water velocity alone. This study contributes to the understanding of how complex environmental factors drive phenotypic divergence and may provide insight into the evolutionary consequences of disrupting natural hydrologic patterns, which are increasingly threatened by climate change and anthropogenic alterations.

  5. Spatial Patterns in Water Temperature in Pacific Northwest Rivers: Diversity at Multiple Scales and Potential Influence of Climate Change

    NASA Astrophysics Data System (ADS)

    Torgersen, C. E.; Fullerton, A.; Lawler, J. J.; Ebersole, J. L.; Leibowitz, S. G.; Steel, E. A.; Beechie, T. J.; Faux, R.

    2016-12-01

    Understanding spatial patterns in water temperature will be essential for evaluating vulnerability of aquatic biota to future climate and for identifying and protecting diverse thermal habitats. We used high-resolution remotely sensed water temperature data for over 16,000 km of 2nd to 7th-order rivers throughout the Pacific Northwest and California to evaluate spatial patterns of summertime water temperature at multiple spatial scales. We found a diverse and geographically distributed suite of whole-river patterns. About half of rivers warmed asymptotically in a downstream direction, whereas the rest exhibited complex and unique spatial patterns. Patterns were associated with both broad-scale hydroclimatic variables as well as characteristics unique to each basin. Within-river thermal heterogeneity patterns were highly river-specific; across rivers, median size and spacing of cool patches <15 °C were around 250 m. Patches of this size are large enough for juvenile salmon rearing and for resting during migration, and the distance between patches is well within the movement capabilities of both juvenile and adult salmon. We found considerable thermal heterogeneity at fine spatial scales that may be important to fish that would be missed if data were analyzed at coarser scales. We estimated future thermal heterogeneity and concluded that climate change will cause warmer temperatures overall, but that thermal heterogeneity patterns may remain similar in the future for many rivers. We demonstrated considerable spatial complexity in both current and future water temperature, and resolved spatial patterns that could not have been perceived without spatially continuous data.

  6. Perceptual and Physiological Responses to Jackson Pollock's Fractals

    PubMed Central

    Taylor, Richard P.; Spehar, Branka; Van Donkelaar, Paul; Hagerhall, Caroline M.

    2011-01-01

    Fractals have been very successful in quantifying the visual complexity exhibited by many natural patterns, and have captured the imagination of scientists and artists alike. Our research has shown that the poured patterns of the American abstract painter Jackson Pollock are also fractal. This discovery raises an intriguing possibility – are the visual characteristics of fractals responsible for the long-term appeal of Pollock's work? To address this question, we have conducted 10 years of scientific investigation of human response to fractals and here we present, for the first time, a review of this research that examines the inter-relationship between the various results. The investigations include eye tracking, visual preference, skin conductance, and EEG measurement techniques. We discuss the artistic implications of the positive perceptual and physiological responses to fractal patterns. PMID:21734876

  7. Brain activation during mental rotation in school children and adults.

    PubMed

    Kucian, K; von Aster, M; Loenneker, T; Dietrich, T; Mast, F W; Martin, E

    2007-01-01

    Mental rotation is a complex cognitive skill depending on the manipulation of mental representations. We aimed to investigate the maturing neuronal network for mental rotation by measuring brain activation in 20 children and 20 adults using functional magnetic resonance imaging. Our results indicate that brain activation patterns are very similar between children and adults. However, adults exhibit stronger activation in the left intraparietal sulcus compared to children. This finding suggests a shift of activation from a predominantly right parietal activation in children to a bilateral activation pattern in adults. Furthermore, adults show a deactivation of the posterior cingulate gyrus and precuneus, which is not observed in children. In conclusion, developmental changes of brain activation during mental rotation are leading to a bilateral parietal activation pattern and faster performance.

  8. Origins of adult pigmentation: diversity in pigment stem cell lineages and implications for pattern evolution

    PubMed Central

    Spiewak, Jessica E.

    2014-01-01

    Summary Teleosts comprise about half of all vertebrate species and exhibit an extraordinary diversity of adult pigment patterns that function in shoaling, camouflage and mate choice and have played important roles in speciation. Here, we review recent studies that have identified several distinct neural crest lineages, with distinct genetic requirements, that give rise to adult pigment cells in fishes. These lineages include post-embryonic, peripheral nerve associated stem cells that generate black melanophores and iridescent iridophores, cells derived directly from embryonic neural crest cells that generate yellow-orange xanthophores, and bipotent stem cells that generate both melanophores and xanthophores. This complexity in adult chromatophore lineages has implications for our understanding of adult traits, melanoma, and the evolutionary diversification of pigment cell lineages and patterns. PMID:25421288

  9. Simulating living organisms with populations of point vortices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmieder, R.W.

    1995-07-01

    The author has found that time-averaged images of small populations of point vortices can exhibit motions suggestive of the behavior of individual organisms. As an example, the author shows that collections of point vortices confined in a box and subjected to heating can generate patterns that are broadly similar to interspecies defense in certain sea anemones. It is speculated that other simple dynamical systems can be found to produce similar complex organism-like behavior.

  10. Characterization of WY 14,643 and its Complex with Aldose Reductase

    PubMed Central

    Sawaya, Michael R.; Verma, Malkhey; Balendiran, Vaishnavi; Rath, Nigam P.; Cascio, Duilio; Balendiran, Ganesaratnam K.

    2016-01-01

    The peroxisome proliferator, WY 14,643 exhibits a pure non-competitive inhibition pattern in the aldehyde reduction and in alcohol oxidation activities of human Aldose reductase (hAR). Fluorescence emission measurements of the equilibrium dissociation constants, Kd, of oxidized (hAR•NADP+) and reduced (hAR•NADPH) holoenzyme complexes display a 2-fold difference between them. Kd values for the dissociation of WY 14,643 from the oxidized (hAR•NADP+•WY 14,643) and reduced (hAR•NADPH•WY 14,643) ternary complexes are comparable to each other. The ternary complex structure of hAR•NADP+•WY 14,643 reveals the first structural evidence of a fibrate class drug binding to hAR. These observations demonstrate how fibrate molecules such as WY 14,643, besides being valued as agonists for PPAR, also inhibit hAR. PMID:27721416

  11. Geo-Distinctive Comorbidity Networks of Pediatric Asthma.

    PubMed

    Shin, Eun Kyong; Shaban-Nejad, Arash

    2018-01-01

    Most pediatric asthma cases occur in complex interdependencies, exhibiting complex manifestation of multiple symptoms. Studying asthma comorbidities can help to better understand the etiology pathway of the disease. Albeit such relations of co-expressed symptoms and their interactions have been highlighted recently, empirical investigation has not been rigorously applied to pediatric asthma cases. In this study, we use computational network modeling and analysis to reveal the links and associations between commonly co-observed diseases/conditions with asthma among children in Memphis, Tennessee. We present a novel method for geo-parsed comorbidity network analysis to show the distinctive patterns of comorbidity networks in urban and suburban areas in Memphis.

  12. Modeling the Hydration Layer around Proteins: Applications to Small- and Wide-Angle X-Ray Scattering

    PubMed Central

    Virtanen, Jouko Juhani; Makowski, Lee; Sosnick, Tobin R.; Freed, Karl F.

    2011-01-01

    Small-/wide-angle x-ray scattering (SWAXS) experiments can aid in determining the structures of proteins and protein complexes, but success requires accurate computational treatment of solvation. We compare two methods by which to calculate SWAXS patterns. The first approach uses all-atom explicit-solvent molecular dynamics (MD) simulations. The second, far less computationally expensive method involves prediction of the hydration density around a protein using our new HyPred solvation model, which is applied without the need for additional MD simulations. The SWAXS patterns obtained from the HyPred model compare well to both experimental data and the patterns predicted by the MD simulations. Both approaches exhibit advantages over existing methods for analyzing SWAXS data. The close correspondence between calculated and observed SWAXS patterns provides strong experimental support for the description of hydration implicit in the HyPred model. PMID:22004761

  13. Highly transparent and flexible circuits through patterning silver nanowires into microfluidic channels.

    PubMed

    Sun, Jing; Zhou, Wenhui; Yang, Haibo; Zhen, Xue; Ma, Longfei; Williams, Dirk; Sun, Xudong; Lang, Ming-Fei

    2018-05-10

    The development of flexible and transparent devices requires completely transparent and flexible circuits (TFCs). To overcome the disadvantages of the previously reported TFCs that are partially transparent, lacking pattern control, or labor consuming, we achieve true TFCs via a facile process with precise pattern control, exhibiting concurrent high transparency, conductivity, flexibility, stretchability, and robustness. A highly transparent and flexible conductive film is first made through spin coating silver nanowires (AgNWs) onto polydimethylsiloxane (PDMS), and demonstrates simultaneous high transparency (90.86%) and low sheet resistance (3.22 Ω sq-1). Taking advantage of microfluidic technology, circuits with ultraprecise and complex patterns from the microscale to milliscale are obtained through spin coating of AgNWs into microfluidic channels on PDMS. Without elaborate processing, this method may be suitable for mass production, which would contribute enormously to potential applications in wearable medical equipment and transparent electronic devices.

  14. Segmentation in Tardigrada and diversification of segmental patterns in Panarthropoda.

    PubMed

    Smith, Frank W; Goldstein, Bob

    2017-05-01

    The origin and diversification of segmented metazoan body plans has fascinated biologists for over a century. The superphylum Panarthropoda includes three phyla of segmented animals-Euarthropoda, Onychophora, and Tardigrada. This superphylum includes representatives with relatively simple and representatives with relatively complex segmented body plans. At one extreme of this continuum, euarthropods exhibit an incredible diversity of serially homologous segments. Furthermore, distinct tagmosis patterns are exhibited by different classes of euarthropods. At the other extreme, all tardigrades share a simple segmented body plan that consists of a head and four leg-bearing segments. The modular body plans of panarthropods make them a tractable model for understanding diversification of animal body plans more generally. Here we review results of recent morphological and developmental studies of tardigrade segmentation. These results complement investigations of segmentation processes in other panarthropods and paleontological studies to illuminate the earliest steps in the evolution of panarthropod body plans. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Magnetically assisted slip casting of bioinspired heterogeneous composites

    NASA Astrophysics Data System (ADS)

    Le Ferrand, Hortense; Bouville, Florian; Niebel, Tobias P.; Studart, André R.

    2015-11-01

    Natural composites are often heterogeneous to fulfil functional demands. Manufacturing analogous materials remains difficult, however, owing to the lack of adequate and easily accessible processing tools. Here, we report an additive manufacturing platform able to fabricate complex-shaped parts exhibiting bioinspired heterogeneous microstructures with locally tunable texture, composition and properties, as well as unprecedentedly high volume fractions of inorganic phase (up to 100%). The technology combines an aqueous-based slip-casting process with magnetically directed particle assembly to create programmed microstructural designs using anisotropic stiff platelets in a ceramic, metal or polymer functional matrix. Using quantitative tools to control the casting kinetics and the temporal pattern of the applied magnetic fields, we demonstrate that this approach is robust and can be exploited to design and fabricate heterogeneous composites with thus far inaccessible microstructures. Proof-of-concept examples include bulk composites with periodic patterns of microreinforcement orientation, and tooth-like bilayer parts with intricate shapes exhibiting site-specific composition and texture.

  16. Neomorphosis and heterochrony of skull shape in dog domestication.

    PubMed

    Geiger, Madeleine; Evin, Allowen; Sánchez-Villagra, Marcelo R; Gascho, Dominic; Mainini, Cornelia; Zollikofer, Christoph P E

    2017-10-18

    The overall similarity of the skull shape of some dog breeds with that of juvenile wolves begs the question if and how ontogenetic changes such as paedomorphosis (evolutionary juvenilisation) played a role in domestication. Here we test for changes in patterns of development and growth during dog domestication. We present the first geometric morphometric study using ontogenetic series of dog and wolf crania, and samples of dogs with relatively ancestral morphology and from different time periods. We show that patterns of juvenile-to-adult morphological change are largely similar in wolves and domestic dogs, but differ in two ways. First, dog skulls show unique (neomorphic) features already shortly after birth, and these features persist throughout postnatal ontogeny. Second, at any given age, juvenile dogs exhibit skull shapes that resemble those of consistently younger wolves, even in dog breeds that do not exhibit a 'juvenilized' morphology as adults. These patterns exemplify the complex nature of evolutionary changes during dog domestication: the cranial morphology of adult dogs cannot simply be explained as either neomorphic or paedomorphic. The key to our understanding of dog domestication may lie in a closer comparative examination of developmental phases.

  17. Upstream migratory behaviour of wild and ranched Atlantic salmon Salmo salar at a natural obstacle in a coastal spate river.

    PubMed

    Kennedy, R J; Moffett, I; Allen, M M; Dawson, S M

    2013-09-01

    The upstream migratory behaviour of wild and ranched Atlantic salmon Salmo salar in a small Irish coastal spate river was investigated using acoustic telemetry. Prespawning migratory behaviour was investigated including movement patterns at a large natural waterfall in the lower reaches of the river. A strong diurnal pattern was observed for upstream migrants at the waterfall indicative of the need for daylight to ascend this complex natural obstacle to migration. Successful passage of the waterfall was also associated with distinct environmental conditions and no difference in migratory ability was detected between wild and ranched origin S. salar. Wild S. salar tended to exhibit a non-erratic, stepwise upstream migration pattern after ascending the waterfall while ranched S. salar had an increased probability of displaying more erratic migratory behaviour. Wild S. salar penetrated further into the river catchment than ranched S. salar, although male ranched S. salar exhibited the greatest cumulative distance moved prior to the spawning period. The management implications of escaped or released ranched S. salar and movement at natural obstacles are discussed. © 2013 The Fisheries Society of the British Isles.

  18. Storage Costs and Heuristics Interact to Produce Patterns of Aphasic Sentence Comprehension Performance

    PubMed Central

    Clark, David Glenn

    2012-01-01

    Background: Despite general agreement that aphasic individuals exhibit difficulty understanding complex sentences, the nature of sentence complexity itself is unresolved. In addition, aphasic individuals appear to make use of heuristic strategies for understanding sentences. This research is a comparison of predictions derived from two approaches to the quantification of sentence complexity, one based on the hierarchical structure of sentences, and the other based on dependency locality theory (DLT). Complexity metrics derived from these theories are evaluated under various assumptions of heuristic use. Method: A set of complexity metrics was derived from each general theory of sentence complexity and paired with assumptions of heuristic use. Probability spaces were generated that summarized the possible patterns of performance across 16 different sentence structures. The maximum likelihood of comprehension scores of 42 aphasic individuals was then computed for each probability space and the expected scores from the best-fitting points in the space were recorded for comparison to the actual scores. Predictions were then compared using measures of fit quality derived from linear mixed effects models. Results: All three of the metrics that provide the most consistently accurate predictions of patient scores rely on storage costs based on the DLT. Patients appear to employ an Agent–Theme heuristic, but vary in their tendency to accept heuristically generated interpretations. Furthermore, the ability to apply the heuristic may be degraded in proportion to aphasia severity. Conclusion: DLT-derived storage costs provide the best prediction of sentence comprehension patterns in aphasia. Because these costs are estimated by counting incomplete syntactic dependencies at each point in a sentence, this finding suggests that aphasia is associated with reduced availability of cognitive resources for maintaining these dependencies. PMID:22590462

  19. Storage costs and heuristics interact to produce patterns of aphasic sentence comprehension performance.

    PubMed

    Clark, David Glenn

    2012-01-01

    Despite general agreement that aphasic individuals exhibit difficulty understanding complex sentences, the nature of sentence complexity itself is unresolved. In addition, aphasic individuals appear to make use of heuristic strategies for understanding sentences. This research is a comparison of predictions derived from two approaches to the quantification of sentence complexity, one based on the hierarchical structure of sentences, and the other based on dependency locality theory (DLT). Complexity metrics derived from these theories are evaluated under various assumptions of heuristic use. A set of complexity metrics was derived from each general theory of sentence complexity and paired with assumptions of heuristic use. Probability spaces were generated that summarized the possible patterns of performance across 16 different sentence structures. The maximum likelihood of comprehension scores of 42 aphasic individuals was then computed for each probability space and the expected scores from the best-fitting points in the space were recorded for comparison to the actual scores. Predictions were then compared using measures of fit quality derived from linear mixed effects models. All three of the metrics that provide the most consistently accurate predictions of patient scores rely on storage costs based on the DLT. Patients appear to employ an Agent-Theme heuristic, but vary in their tendency to accept heuristically generated interpretations. Furthermore, the ability to apply the heuristic may be degraded in proportion to aphasia severity. DLT-derived storage costs provide the best prediction of sentence comprehension patterns in aphasia. Because these costs are estimated by counting incomplete syntactic dependencies at each point in a sentence, this finding suggests that aphasia is associated with reduced availability of cognitive resources for maintaining these dependencies.

  20. Bursting synchronization dynamics of pancreatic β-cells with electrical and chemical coupling.

    PubMed

    Meng, Pan; Wang, Qingyun; Lu, Qishao

    2013-06-01

    Based on bifurcation analysis, the synchronization behaviors of two identical pancreatic β-cells connected by electrical and chemical coupling are investigated, respectively. Various firing patterns are produced in coupled cells when a single cell exhibits tonic spiking or square-wave bursting individually, irrespectively of what the cells are connected by electrical or chemical coupling. On the one hand, cells can burst synchronously for both weak electrical and chemical coupling when an isolated cell exhibits tonic spiking itself. In particular, for electrically coupled cells, under the variation of the coupling strength there exist complex transition processes of synchronous firing patterns such as "fold/limit cycle" type of bursting, then anti-phase continuous spiking, followed by the "fold/torus" type of bursting, and finally in-phase tonic spiking. On the other hand, it is shown that when the individual cell exhibits square-wave bursting, suitable coupling strength can make the electrically coupled system generate "fold/Hopf" bursting via "fold/fold" hysteresis loop; whereas, the chemically coupled cells generate "fold/subHopf" bursting. Especially, chemically coupled bursters can exhibit inverse period-adding bursting sequence. Fast-slow dynamics analysis is applied to explore the generation mechanism of these bursting oscillations. The above analysis of bursting types and the transition may provide us with better insight into understanding the role of coupling in the dynamic behaviors of pancreatic β-cells.

  1. Complex Degradation Processes Lead to Non-Exponential Decay Patterns and Age-Dependent Decay Rates of Messenger RNA

    PubMed Central

    Deneke, Carlus; Lipowsky, Reinhard; Valleriani, Angelo

    2013-01-01

    Experimental studies on mRNA stability have established several, qualitatively distinct decay patterns for the amount of mRNA within the living cell. Furthermore, a variety of different and complex biochemical pathways for mRNA degradation have been identified. The central aim of this paper is to bring together both the experimental evidence about the decay patterns and the biochemical knowledge about the multi-step nature of mRNA degradation in a coherent mathematical theory. We first introduce a mathematical relationship between the mRNA decay pattern and the lifetime distribution of individual mRNA molecules. This relationship reveals that the mRNA decay patterns at steady state expression level must obey a general convexity condition, which applies to any degradation mechanism. Next, we develop a theory, formulated as a Markov chain model, that recapitulates some aspects of the multi-step nature of mRNA degradation. We apply our theory to experimental data for yeast and explicitly derive the lifetime distribution of the corresponding mRNAs. Thereby, we show how to extract single-molecule properties of an mRNA, such as the age-dependent decay rate and the residual lifetime. Finally, we analyze the decay patterns of the whole translatome of yeast cells and show that yeast mRNAs can be grouped into three broad classes that exhibit three distinct decay patterns. This paper provides both a method to accurately analyze non-exponential mRNA decay patterns and a tool to validate different models of degradation using decay data. PMID:23408982

  2. THE ROLE OF SELF-INJURY IN THE ORGANIZATION OF BEHAVIOUR

    PubMed Central

    Sandman, Curt A.; Kemp, Aaron S.; Mabini, Christopher; Pincus, David; Magnusson, Magnus

    2012-01-01

    Background Self-injuring acts are among the most dramatic behaviours exhibited by human beings. There is no known single cause and there is no universally agreed upon treatment. Sophisticated sequential and temporal analysis of behaviour has provided alternative descriptions of self-injury that provide new insights into its initiation and maintenance. Method Forty hours of observations for each of 32 participants were collected in a contiguous two-week period. Twenty categories of behavioural and environmental events were recorded electronically that captured the precise time each observation occurred. Temporal behavioural/environmental patterns associated with self-injurious events were revealed with a method (t-patterns; THEME) for detecting non-linear, real-time patterns. Results Results indicated that acts of self-injury contributed both to more patterns and to more complex patterns. Moreover, self-injury left its imprint on the organization of behaviour even when counts of self-injury were expelled from the continuous record. Conclusions Behaviour of participants was organized in a more diverse array of patterns with SIB was present. Self-injuring acts may function as singular points, increasing coherence within self-organizing patterns of behaviour. PMID:22452417

  3. Floodplain complexity and surface metrics: influences of scale and geomorphology

    USGS Publications Warehouse

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2015-01-01

    Many studies of fluvial geomorphology and landscape ecology examine a single river or landscape, thus lack generality, making it difficult to develop a general understanding of the linkages between landscape patterns and larger-scale driving variables. We examined the spatial complexity of eight floodplain surfaces in widely different geographic settings and determined how patterns measured at different scales relate to different environmental drivers. Floodplain surface complexity is defined as having highly variable surface conditions that are also highly organised in space. These two components of floodplain surface complexity were measured across multiple sampling scales from LiDAR-derived DEMs. The surface character and variability of each floodplain were measured using four surface metrics; namely, standard deviation, skewness, coefficient of variation, and standard deviation of curvature from a series of moving window analyses ranging from 50 to 1000 m in radius. The spatial organisation of each floodplain surface was measured using spatial correlograms of the four surface metrics. Surface character, variability, and spatial organisation differed among the eight floodplains; and random, fragmented, highly patchy, and simple gradient spatial patterns were exhibited, depending upon the metric and window size. Differences in surface character and variability among the floodplains became statistically stronger with increasing sampling scale (window size), as did their associations with environmental variables. Sediment yield was consistently associated with differences in surface character and variability, as were flow discharge and variability at smaller sampling scales. Floodplain width was associated with differences in the spatial organization of surface conditions at smaller sampling scales, while valley slope was weakly associated with differences in spatial organisation at larger scales. A comparison of floodplain landscape patterns measured at different scales would improve our understanding of the role that different environmental variables play at different scales and in different geomorphic settings.

  4. A multiscale analysis of coral reef topographic complexity using lidar-derived bathymetry

    USGS Publications Warehouse

    Zawada, D.G.; Brock, J.C.

    2009-01-01

    Coral reefs represent one of the most irregular substrates in the marine environment. This roughness or topographic complexity is an important structural characteristic of reef habitats that affects a number of ecological and environmental attributes, including species diversity and water circulation. Little is known about the range of topographic complexity exhibited within a reef or between different reef systems. The objective of this study was to quantify topographic complexity for a 5-km x 5-km reefscape along the northern Florida Keys reef tract, over spatial scales ranging from meters to hundreds of meters. The underlying dataset was a 1-m spatial resolution, digital elevation model constructed from lidar measurements. Topographic complexity was quantified using a fractal algorithm, which provided a multi-scale characterization of reef roughness. The computed fractal dimensions (D) are a measure of substrate irregularity and are bounded between values of 2 and 3. Spatial patterns in D were positively correlated with known reef zonation in the area. Landward regions of the study site contain relatively smooth (D ??? 2.35) flat-topped patch reefs, which give way to rougher (D ??? 2.5), deep, knoll-shaped patch reefs. The seaward boundary contains a mixture of substrate features, including discontinuous shelf-edge reefs, and exhibits a corresponding range of roughness values (2.28 ??? D ??? 2.61). ?? 2009 Coastal Education and Research Foundation.

  5. Cross-diffusion-induced subharmonic spatial resonances in a predator-prey system

    NASA Astrophysics Data System (ADS)

    Gambino, G.; Lombardo, M. C.; Sammartino, M.

    2018-01-01

    In this paper we investigate the complex dynamics originated by a cross-diffusion-induced subharmonic destabilization of the fundamental subcritical Turing mode in a predator-prey reaction-diffusion system. The model we consider consists of a two-species Lotka-Volterra system with linear diffusion and a nonlinear cross-diffusion term in the predator equation. The taxis term in the search strategy of the predator is responsible for the onset of complex dynamics. In fact, our model does not exhibit any Hopf or wave instability, and on the basis of the linear analysis one should only expect stationary patterns; nevertheless, the presence of the nonlinear cross-diffusion term is able to induce a secondary instability: due to a subharmonic spatial resonance, the stationary primary branch bifurcates to an out-of-phase oscillating solution. Noticeably, the strong resonance between the harmonic and the subharmonic is able to generate the oscillating pattern albeit the subharmonic is below criticality. We show that, as the control parameter is varied, the oscillating solution (sub T mode) can undergo a sequence of secondary instabilities, generating a transition toward chaotic dynamics. Finally, we investigate the emergence of sub T -mode solutions on two-dimensional domains: when the fundamental mode describes a square pattern, subharmonic resonance originates oscillating square patterns. In the case of subcritical Turing hexagon solutions, the internal interactions with a subharmonic mode are able to generate the so-called "twinkling-eyes" pattern.

  6. Complex movement patterns of greenback flounder (Rhombosolea tapirina) in the Murray River estuary and Coorong, Australia

    NASA Astrophysics Data System (ADS)

    Earl, Jason; Fowler, Anthony J.; Ye, Qifeng; Dittmann, Sabine

    2017-04-01

    The greenback flounder Rhombosolea tapirina is a commercially-important flatfish species in southern Australia and New Zealand, whose population dynamics are poorly understood. Acoustic telemetry was used to assess movement patterns and area use for R. tapirina in the Murray River estuary and Coorong, South Australia. Twenty fish (221-313 mm total length) equipped with acoustic transmitters were monitored for up to seven months during a period of high freshwater inflow. Fish were detected over a large part of the system, but showed a strong preference for brackish and near-marine conditions in the inner estuary. Tagged fish exhibited complex movement patterns that differed among individuals, including: (1) within estuary movements; (2) dispersal from the estuary to the sea; and (3) return migrations between the estuary and the sea. A diurnal shift in fine-scale area use was observed in the part of the estuary where residency was highest, with individuals occupying deeper habitats during the day and shallower areas during the night. The results demonstrate the individualistic and often highly transient behaviour of this species and its ability to undertake regular movements over the spatial scale of 10s of km. Understanding such movement patterns can improve effective management of estuarine flatfish populations and ecosystems.

  7. The quinary pattern of blast injury.

    PubMed

    Kluger, Yoram; Nimrod, Adi; Biderman, Philippe; Mayo, Ami; Sorkin, Patric

    2007-01-01

    Bombing is the primary weapon of global terrorism, and it results in a complicated, multidimensional injury pattern. It induces bodily injuries through the well-documented primary, secondary, tertiary, and quaternary mechanisms of blast. Their effects dictate special medical concern and timely implementation of diagnostic and management strategies. Our objective is to report on clinical observations of patients admitted to the Tel Aviv Medical Center following a terrorist bombing. The explosion injured 27 patients, and three died. Four survivors who had been in close proximity to the explosion, as indicated by their eardrum perforation and additional blast injuries, were exposed to the blast wave. They exhibited a unique and immediate hyperinflammatory state, two upon admission to the intensive care unit and two during surgery. This hyperinflammatory state manifested as hyperpyrexia, sweating, low central venous pressure, and positive fluid balance. This state did not correlate with the complexity of injuries sustained by any of the 67 patients admitted to the intensive care unit after previous bombings. The patients' hyperinflammatory behavior, unrelated to their injury complexity and severity of trauma, indicates a new injury pattern in explosions, termed the "quinary blast injury pattern." Unconventional materials used in the manufacture of the explosive can partly explain the observed early hyperinflammatory state. Medical personnel caring for blast victims should be aware of this new type of bombing injury.

  8. Impaired Word and Face Recognition in Older Adults with Type 2 Diabetes.

    PubMed

    Jones, Nicola; Riby, Leigh M; Smith, Michael A

    2016-07-01

    Older adults with type 2 diabetes mellitus (DM2) exhibit accelerated decline in some domains of cognition including verbal episodic memory. Few studies have investigated the influence of DM2 status in older adults on recognition memory for more complex stimuli such as faces. In the present study we sought to compare recognition memory performance for words, objects and faces under conditions of relatively low and high cognitive load. Healthy older adults with good glucoregulatory control (n = 13) and older adults with DM2 (n = 24) were administered recognition memory tasks in which stimuli (faces, objects and words) were presented under conditions of either i) low (stimulus presented without a background pattern) or ii) high (stimulus presented against a background pattern) cognitive load. In a subsequent recognition phase, the DM2 group recognized fewer faces than healthy controls. Further, the DM2 group exhibited word recognition deficits in the low cognitive load condition. The recognition memory impairment observed in patients with DM2 has clear implications for day-to-day functioning. Although these deficits were not amplified under conditions of increased cognitive load, the present study emphasizes that recognition memory impairment for both words and more complex stimuli such as face are a feature of DM2 in older adults. Copyright © 2016 IMSS. Published by Elsevier Inc. All rights reserved.

  9. Asynchronous ripple oscillations between left and right hippocampi during slow-wave sleep

    PubMed Central

    Villalobos, Claudio

    2017-01-01

    Spatial memory, among many other brain processes, shows hemispheric lateralization. Most of the published evidence suggests that the right hippocampus plays a leading role in the manipulation of spatial information. Concurrently in the hippocampus, memory consolidation during sleep periods is one of the key steps in the formation of newly acquired spatial memory traces. One of the most characteristic oscillatory patterns in the hippocampus are sharp-wave ripple (SWR) complexes. Within this complex, fast-field oscillations or ripples have been demonstrated to be instrumental in the memory consolidation process. Since these ripples are relevant for the consolidation of memory traces associated with spatial navigation, and this process appears to be lateralized, we hypothesize that ripple events between both hippocampi would exhibit different temporal dynamics. We tested this idea by using a modified "split-hyperdrive" that allows us to record simultaneous LFPs from both right and left hippocampi of Sprague-Dawley rats during sleep. We detected individual events and found that during sleep periods these ripples exhibited a different occurrence patterns between hemispheres. Most ripple events were synchronous between intra- rather than inter-hemispherical recordings, suggesting that ripples in the hippocampus are independently generated and locally propagated within a specific hemisphere. In this study, we propose the ripples’ lack of synchrony between left and right hippocampi as the putative physiological mechanism underlying lateralization of spatial memory. PMID:28158285

  10. Asynchronous ripple oscillations between left and right hippocampi during slow-wave sleep.

    PubMed

    Villalobos, Claudio; Maldonado, Pedro E; Valdés, José L

    2017-01-01

    Spatial memory, among many other brain processes, shows hemispheric lateralization. Most of the published evidence suggests that the right hippocampus plays a leading role in the manipulation of spatial information. Concurrently in the hippocampus, memory consolidation during sleep periods is one of the key steps in the formation of newly acquired spatial memory traces. One of the most characteristic oscillatory patterns in the hippocampus are sharp-wave ripple (SWR) complexes. Within this complex, fast-field oscillations or ripples have been demonstrated to be instrumental in the memory consolidation process. Since these ripples are relevant for the consolidation of memory traces associated with spatial navigation, and this process appears to be lateralized, we hypothesize that ripple events between both hippocampi would exhibit different temporal dynamics. We tested this idea by using a modified "split-hyperdrive" that allows us to record simultaneous LFPs from both right and left hippocampi of Sprague-Dawley rats during sleep. We detected individual events and found that during sleep periods these ripples exhibited a different occurrence patterns between hemispheres. Most ripple events were synchronous between intra- rather than inter-hemispherical recordings, suggesting that ripples in the hippocampus are independently generated and locally propagated within a specific hemisphere. In this study, we propose the ripples' lack of synchrony between left and right hippocampi as the putative physiological mechanism underlying lateralization of spatial memory.

  11. Generating Spatiotemporal Joint Torque Patterns from Dynamical Synchronization of Distributed Pattern Generators

    PubMed Central

    Pitti, Alexandre; Lungarella, Max; Kuniyoshi, Yasuo

    2009-01-01

    Pattern generators found in the spinal cord are no more seen as simple rhythmic oscillators for motion control. Indeed, they achieve flexible and dynamical coordination in interaction with the body and the environment dynamics giving to rise motor synergies. Discovering the mechanisms underlying the control of motor synergies constitutes an important research question not only for neuroscience but also for robotics: the motors coordination of high dimensional robotic systems is still a drawback and new control methods based on biological solutions may reduce their overall complexity. We propose to model the flexible combination of motor synergies in embodied systems via partial phase synchronization of distributed chaotic systems; for specific coupling strength, chaotic systems are able to phase synchronize their dynamics to the resonant frequencies of one external force. We take advantage of this property to explore and exploit the intrinsic dynamics of one specified embodied system. In two experiments with bipedal walkers, we show how motor synergies emerge when the controllers phase synchronize to the body's dynamics, entraining it to its intrinsic behavioral patterns. This stage is characterized by directed information flow from the sensors to the motors exhibiting the optimal situation when the body dynamics drive the controllers (mutual entrainment). Based on our results, we discuss the relevance of our findings for modeling the modular control of distributed pattern generators exhibited in the spinal cord, and for exploring the motor synergies in robots. PMID:20011216

  12. Suppressed carrier density for the patterned high mobility two-dimensional electron gas at γ-Al2O3/SrTiO3 heterointerfaces

    NASA Astrophysics Data System (ADS)

    Niu, Wei; Gan, Yulin; Zhang, Yu; Valbjørn Christensen, Dennis; von Soosten, Merlin; Wang, Xuefeng; Xu, Yongbing; Zhang, Rong; Pryds, Nini; Chen, Yunzhong

    2017-07-01

    The two-dimensional electron gas (2DEG) at the non-isostructural interface between spinel γ-Al2O3 and perovskite SrTiO3 is featured by a record electron mobility among complex oxide interfaces in addition to a high carrier density up to the order of 1015 cm-2. Herein, we report on the patterning of 2DEG at the γ-Al2O3/SrTiO3 interface grown at 650 °C by pulsed laser deposition using a hard mask of LaMnO3. The patterned 2DEG exhibits a critical thickness of 2 unit cells of γ-Al2O3 for the occurrence of interface conductivity, similar to the unpatterned sample. However, its maximum carrier density is found to be approximately 3 × 1013 cm-2, much lower than that of the unpatterned sample (˜1015 cm-2). Remarkably, a high electron mobility of approximately 3600 cm2 V-1 s-1 was obtained at low temperatures for the patterned 2DEG at a carrier density of ˜7 × 1012 cm-2, which exhibits clear Shubnikov-de Haas quantum oscillations. The patterned high-mobility 2DEG at the γ-Al2O3/SrTiO3 interface paves the way for the design and application of spinel/perovskite interfaces for high-mobility all-oxide electronic devices.

  13. Global circulation patterns of seasonal influenza viruses vary with antigenic drift

    PubMed Central

    Bedford, Trevor; Riley, Steven; Barr, Ian G.; Broor, Shobha; Chadha, Mandeep; Cox, Nancy J.; Daniels, Rodney S.; Gunasekaran, C. Palani; Hurt, Aeron C.; Kelso, Anne; Lewis, Nicola S.; Li, Xiyan; McCauley, John W.; Odagiri, Takato; Potdar, Varsha; Rambaut, Andrew; Shu, Yuelong; Skepner, Eugene; Smith, Derek J.; Suchard, Marc A.; Tashiro, Masato; Wang, Dayan; Xu, Xiyan; Lemey, Philippe; Russell, Colin A.

    2015-01-01

    Understanding the spatio-temporal patterns of emergence and circulation of new human seasonal influenza virus variants is a key scientific and public health challenge. The global circulation patterns of influenza A/H3N2 viruses are well-characterized1-7 but the patterns of A/H1N1 and B viruses have remained largely unexplored. Here, based on analyses of 9,604 hemagglutinin sequences of human seasonal influenza viruses from 2000–2012, we show that the global circulation patterns of A/H1N1 (up to 2009), B/Victoria, and B/Yamagata viruses differ substantially from those of A/H3N2 viruses. While genetic variants of A/H3N2 viruses did not persist locally between epidemics and were reseeded from East and Southeast (E-SE) Asia, genetic variants of A/H1N1 and B viruses persisted across multiple seasons and exhibited complex global dynamics with E-SE Asia playing a limited role in disseminating new variants. The less frequent global movement of influenza A/H1N1 and B viruses coincided with slower rates of antigenic evolution, lower ages of infection, and smaller less frequent epidemics compared to A/H3N2 viruses. Detailed epidemic models support differences in age of infection, combined with the less frequent travel of children, as likely drivers of the differences in the patterns of global circulation, suggesting a complex interaction between virus evolution, epidemiology and human behavior. PMID:26053121

  14. Global circulation patterns of seasonal influenza viruses vary with antigenic drift

    NASA Astrophysics Data System (ADS)

    Bedford, Trevor; Riley, Steven; Barr, Ian G.; Broor, Shobha; Chadha, Mandeep; Cox, Nancy J.; Daniels, Rodney S.; Gunasekaran, C. Palani; Hurt, Aeron C.; Kelso, Anne; Klimov, Alexander; Lewis, Nicola S.; Li, Xiyan; McCauley, John W.; Odagiri, Takato; Potdar, Varsha; Rambaut, Andrew; Shu, Yuelong; Skepner, Eugene; Smith, Derek J.; Suchard, Marc A.; Tashiro, Masato; Wang, Dayan; Xu, Xiyan; Lemey, Philippe; Russell, Colin A.

    2015-07-01

    Understanding the spatiotemporal patterns of emergence and circulation of new human seasonal influenza virus variants is a key scientific and public health challenge. The global circulation patterns of influenza A/H3N2 viruses are well characterized, but the patterns of A/H1N1 and B viruses have remained largely unexplored. Here we show that the global circulation patterns of A/H1N1 (up to 2009), B/Victoria, and B/Yamagata viruses differ substantially from those of A/H3N2 viruses, on the basis of analyses of 9,604 haemagglutinin sequences of human seasonal influenza viruses from 2000 to 2012. Whereas genetic variants of A/H3N2 viruses did not persist locally between epidemics and were reseeded from East and Southeast Asia, genetic variants of A/H1N1 and B viruses persisted across several seasons and exhibited complex global dynamics with East and Southeast Asia playing a limited role in disseminating new variants. The less frequent global movement of influenza A/H1N1 and B viruses coincided with slower rates of antigenic evolution, lower ages of infection, and smaller, less frequent epidemics compared to A/H3N2 viruses. Detailed epidemic models support differences in age of infection, combined with the less frequent travel of children, as probable drivers of the differences in the patterns of global circulation, suggesting a complex interaction between virus evolution, epidemiology, and human behaviour.

  15. Evolution of meiotic recombination genes in maize and teosinte.

    PubMed

    Sidhu, Gaganpreet K; Warzecha, Tomasz; Pawlowski, Wojciech P

    2017-01-25

    Meiotic recombination is a major source of genetic variation in eukaryotes. The role of recombination in evolution is recognized but little is known about how evolutionary forces affect the recombination pathway itself. Although the recombination pathway is fundamentally conserved across different species, genetic variation in recombination components and outcomes has been observed. Theoretical predictions and empirical studies suggest that changes in the recombination pathway are likely to provide adaptive abilities to populations experiencing directional or strong selection pressures, such as those occurring during species domestication. We hypothesized that adaptive changes in recombination may be associated with adaptive evolution patterns of genes involved in meiotic recombination. To examine how maize evolution and domestication affected meiotic recombination genes, we studied patterns of sequence polymorphism and divergence in eleven genes controlling key steps in the meiotic recombination pathway in a diverse set of maize inbred lines and several accessions of teosinte, the wild ancestor of maize. We discovered that, even though the recombination genes generally exhibited high sequence conservation expected in a pathway controlling a key cellular process, they showed substantial levels and diverse patterns of sequence polymorphism. Among others, we found differences in sequence polymorphism patterns between tropical and temperate maize germplasms. Several recombination genes displayed patterns of polymorphism indicative of adaptive evolution. Despite their ancient origin and overall sequence conservation, meiotic recombination genes can exhibit extensive and complex patterns of molecular evolution. Changes in these genes could affect the functioning of the recombination pathway, and may have contributed to the successful domestication of maize and its expansion to new cultivation areas.

  16. Depth-Variable Settlement Patterns and Predation Influence on Newly Settled Reef Fishes (Haemulon spp., Haemulidae)

    PubMed Central

    Jordan, Lance K. B.; Lindeman, Kenyon C.; Spieler, Richard E.

    2012-01-01

    During early demersal ontogeny, many marine fishes display complex habitat-use patterns. Grunts of the speciose genus Haemulon are among the most abundant fishes on western North Atlantic coral reefs, with most species settling to shallow habitats (≤12 m). To gain understanding into cross-shelf distributional patterns exhibited by newly settled stages of grunts (<2 cm total length), we examined: 1) depth-specific distributions of congeners at settlement among sites at 8 m, 12 m, and 21 m, and 2) depth-variable predation pressure on newly settled individuals (species pooled). Of the six species identified from collections of newly settled specimens (n = 2125), Haemulon aurolineatum (tomtate), H. flavolineatum (French grunt), and H. striatum (striped grunt) comprised 98% of the total abundance; with the first two species present at all sites. Prevalence of H. aurolineatum and H. flavolineatum decreased substantially from the 8-m site to the two deeper sites. In contrast, H. striatum was absent from the 8-m site and exhibited its highest frequency at the 21-m site. Comparison of newly settled grunt delta density for all species on caged (predator exclusion) and control artificial reefs at the shallowest site (8-m) revealed no difference, while the 12-m and 21-m sites exhibited significantly greater delta densities on the caged treatment. This result, along with significantly higher abundances of co-occurring piscivorous fishes at the deeper sites, indicated lower predation pressure at the 8-m site. This study suggests habitat-use patterns of newly settled stages of some coral reef fishes that undergo ontogenetic shifts are a function of depth-variable predation pressure while, for at least one deeper-water species, proximity to adult habitat appears to be an important factor affecting settlement distribution. PMID:23272077

  17. Stratification Pattern of Static and Scale-Invariant Dynamic Measures of Heartbeat Fluctuations Across Sleep Stages in Young and Elderly

    PubMed Central

    Schmitt, Daniel T.; Stein, Phyllis K.; Ivanov, Plamen Ch.

    2010-01-01

    Cardiac dynamics exhibit complex variability characterized by scale-invariant and nonlinear temporal organization related to the mechanism of neuroautonomic control, which changes with physiologic states and pathologic conditions. Changes in sleep regulation during sleep stages are also related to fluctuations in autonomic nervous activity. However, the interaction between sleep regulation and cardiac autonomic control remains not well understood. Even less is known how this interaction changes with age, as aspects of both cardiac dynamics and sleep regulation differ in healthy elderly compared to young subjects. We hypothesize that because of the neuroautonomic responsiveness in young subjects, fractal and nonlinear features of cardiac dynamics exhibit a pronounced stratification pattern across sleep stages, while in elderly these features will remain unchanged due to age-related loss of cardiac variability and decline of neuroautonomic responsiveness. We analyze the variability and the temporal fractal organization of heartbeat fluctuations across sleep stages in both young and elderly. We find that independent linear and nonlinear measures of cardiac control consistently exhibit the same ordering in their values across sleep stages, forming a robust stratification pattern. Despite changes in sleep architecture and reduced heart rate variability in elderly subjects, this stratification surprisingly does not break down with advanced age. Moreover, the difference between sleep stages for some linear, fractal, and nonlinear measures exceeds the difference between young and elderly, suggesting that the effect of sleep regulation on cardiac dynamics is significantly stronger than the effect of healthy aging. Quantifying changes in this stratification pattern may provide insights into how alterations in sleep regulation contribute to increased cardiac risk. PMID:19203874

  18. Complexity, self-organisation and variation in behaviour in meandering rivers

    NASA Astrophysics Data System (ADS)

    Hooke, J. M.

    2007-11-01

    River meanders are natural features on the surface of Earth that present some degree of regularity of form. They range from being highly dynamic to being stable under present conditions. Conventional theory is that meanders develop to an equilibrium form which is related to discharge and sediment load. Other research has demonstrated that many highly active meanders exhibit a continuous evolution over time and a non-linearity in rate of development. Ideas of autogenesis and of self-organised criticality as being an explanation of some meander changes have been proposed. In this paper data from rivers around the world are examined for further evidence of autogenic, self-organised or non-linear behaviour through analysis of change in sinuosity over time for reaches and change in individual bend form, particularly bend curvature and bend elongation. Some examples do exhibit trends of increasing sinuosity over time and a few show limits from which large decreases occur. Several case studies show non-linearity of behaviour and increasing complexity of form. Other case studies, however, do not exhibit such trends. Phase space plots are used to help uncover emergent behaviour but show a variety of patterns. The example of a reach in which multiple cut-offs occurred is analysed for mechanisms of self-organisation of the planform and in the pool-riffle pattern. Riffles are more closely spaced and also more transient in the more rapidly changing and higher sinuosity parts of the channel. Hypothetical trajectories of different meander behaviour, including for bedrock meanders, are plotted but the challenge remains to uncover the conditions for occurrence and for divergence of tendencies to stability and instability. Identification of attractors and phase space of behaviour of different meandering systems offer the potential for application to sustainable channel management.

  19. Small Artery Elastin Distribution and Architecture-Focus on Three Dimensional Organization.

    PubMed

    Hill, Michael A; Nourian, Zahra; Ho, I-Lin; Clifford, Philip S; Martinez-Lemus, Luis; Meininger, Gerald A

    2016-11-01

    The distribution of ECM proteins within the walls of resistance vessels is complex both in variety of proteins and structural arrangement. In particular, elastin exists as discrete fibers varying in orientation across the adventitia and media as well as often resembling a sheet-like structure in the case of the IEL. Adding to the complexity is the tissue heterogeneity that exists in these structural arrangements. For example, small intracranial cerebral arteries lack adventitial elastin while similar sized arteries from skeletal muscle and intestinal mesentery exhibit a complex adventitial network of elastin fibers. With regard to the IEL, several vascular beds exhibit an elastin sheet with punctate holes/fenestrae while in others the IEL is discontinuous and fibrous in appearance. Importantly, these structural patterns likely sub-serve specific functional properties, including mechanosensing, control of external forces, mechanical properties of the vascular wall, cellular positioning, and communication between cells. Of further significance, these processes are altered in vascular disorders such as hypertension and diabetes mellitus where there is modification of ECM. This brief report focuses on the three-dimensional wall structure of small arteries and considers possible implications with regard to mechanosensing under physiological and pathophysiological conditions. © 2016 John Wiley & Sons Ltd.

  20. Fast social-like learning of complex behaviors based on motor motifs.

    PubMed

    Calvo Tapia, Carlos; Tyukin, Ivan Y; Makarov, Valeri A

    2018-05-01

    Social learning is widely observed in many species. Less experienced agents copy successful behaviors exhibited by more experienced individuals. Nevertheless, the dynamical mechanisms behind this process remain largely unknown. Here we assume that a complex behavior can be decomposed into a sequence of n motor motifs. Then a neural network capable of activating motor motifs in a given sequence can drive an agent. To account for (n-1)! possible sequences of motifs in a neural network, we employ the winnerless competition approach. We then consider a teacher-learner situation: one agent exhibits a complex movement, while another one aims at mimicking the teacher's behavior. Despite the huge variety of possible motif sequences we show that the learner, equipped with the provided learning model, can rewire "on the fly" its synaptic couplings in no more than (n-1) learning cycles and converge exponentially to the durations of the teacher's motifs. We validate the learning model on mobile robots. Experimental results show that the learner is indeed capable of copying the teacher's behavior composed of six motor motifs in a few learning cycles. The reported mechanism of learning is general and can be used for replicating different functions, including, for example, sound patterns or speech.

  1. Fast social-like learning of complex behaviors based on motor motifs

    NASA Astrophysics Data System (ADS)

    Calvo Tapia, Carlos; Tyukin, Ivan Y.; Makarov, Valeri A.

    2018-05-01

    Social learning is widely observed in many species. Less experienced agents copy successful behaviors exhibited by more experienced individuals. Nevertheless, the dynamical mechanisms behind this process remain largely unknown. Here we assume that a complex behavior can be decomposed into a sequence of n motor motifs. Then a neural network capable of activating motor motifs in a given sequence can drive an agent. To account for (n -1 )! possible sequences of motifs in a neural network, we employ the winnerless competition approach. We then consider a teacher-learner situation: one agent exhibits a complex movement, while another one aims at mimicking the teacher's behavior. Despite the huge variety of possible motif sequences we show that the learner, equipped with the provided learning model, can rewire "on the fly" its synaptic couplings in no more than (n -1 ) learning cycles and converge exponentially to the durations of the teacher's motifs. We validate the learning model on mobile robots. Experimental results show that the learner is indeed capable of copying the teacher's behavior composed of six motor motifs in a few learning cycles. The reported mechanism of learning is general and can be used for replicating different functions, including, for example, sound patterns or speech.

  2. Characterization of WY 14,643 and its Complex with Aldose Reductase

    DOE PAGES

    Sawaya, Michael R.; Verma, Malkhey; Balendiran, Vaishnavi; ...

    2016-10-10

    The peroxisome proliferator, WY 14,643 exhibits a pure non-competitive inhibition pattern in the aldehyde reduction and in alcohol oxidation activities of human Aldose reductase (hAR). Fluorescence emission measurements of the equilibrium dissociation constants, Kd, of oxidized (hAR•NADP+) and reduced (hAR•NADPH) holoenzyme complexes display a 2-fold difference between them. Kd values for the dissociation of WY 14,643 from the oxidized (hAR•NADP+•WY 14,643) and reduced (hAR•NADPH•WY 14,643) ternary complexes are comparable to each other. The ternary complex structure of hAR•NADP+•WY 14,643 reveals the first structural evidence of a fibrate class drug binding to hAR. These observations demonstrate how fibrate molecules such asmore » WY 14,643, besides being valued as agonists for PPAR, also inhibit hAR.« less

  3. Characterization of WY 14,643 and its Complex with Aldose Reductase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawaya, Michael R.; Verma, Malkhey; Balendiran, Vaishnavi

    The peroxisome proliferator, WY 14,643 exhibits a pure non-competitive inhibition pattern in the aldehyde reduction and in alcohol oxidation activities of human Aldose reductase (hAR). Fluorescence emission measurements of the equilibrium dissociation constants, Kd, of oxidized (hAR•NADP+) and reduced (hAR•NADPH) holoenzyme complexes display a 2-fold difference between them. Kd values for the dissociation of WY 14,643 from the oxidized (hAR•NADP+•WY 14,643) and reduced (hAR•NADPH•WY 14,643) ternary complexes are comparable to each other. The ternary complex structure of hAR•NADP+•WY 14,643 reveals the first structural evidence of a fibrate class drug binding to hAR. These observations demonstrate how fibrate molecules such asmore » WY 14,643, besides being valued as agonists for PPAR, also inhibit hAR.« less

  4. From Cylindrical to Stretching Ridges and Wrinkles in Twisted Ribbons

    NASA Astrophysics Data System (ADS)

    Pham Dinh, Huy; Démery, Vincent; Davidovitch, Benny; Brau, Fabian; Damman, Pascal

    2016-09-01

    Twisted ribbons under tension exhibit a remarkably rich morphology, from smooth and wrinkled helicoids, to cylindrical or faceted patterns. This complexity emanates from the instability of the natural, helicoidal symmetry of the system, which generates both longitudinal and transverse stresses, thereby leading to buckling of the ribbon. Here, we focus on the tessellation patterns made of triangular facets. Our experimental observations are described within an "asymptotic isometry" approach that brings together geometry and elasticity. The geometry consists of parametrized families of surfaces, isometric to the undeformed ribbon in the singular limit of vanishing thickness and tensile load. The energy, whose minimization selects the favored structure among those families, is governed by the tensile work and bending cost of the pattern. This framework describes the coexistence lines in a morphological phase diagram, and determines the domain of existence of faceted structures.

  5. Stability of nonlinear waves and patterns and related topics

    NASA Astrophysics Data System (ADS)

    Ghazaryan, Anna; Lafortune, Stephane; Manukian, Vahagn

    2018-04-01

    Periodic and localized travelling waves such as wave trains, pulses, fronts and patterns of more complex structure often occur in natural and experimentally built systems. In mathematics, these objects are realized as solutions of nonlinear partial differential equations. The existence, dynamic properties and bifurcations of those solutions are of interest. In particular, their stability is important for applications, as the waves that are observable are usually stable. When the waves are unstable, further investigation is warranted of the way the instability is exhibited, i.e. the nature of the instability, and also coherent structures that appear as a result of an instability of travelling waves. A variety of analytical, numerical and hybrid techniques are used to study travelling waves and their properties. This article is part of the theme issue `Stability of nonlinear waves and patterns and related topics'.

  6. A mechanical model for complex fault patterns induced by fluid overpressures due to dehydration reaction within evaporitic rocks

    NASA Astrophysics Data System (ADS)

    de Paola, N.; Collettini, C.; Trippetta, F.; Barchi, M. R.; Minelli, G.

    2006-12-01

    Complex fault patterns, i.e. faults which exhibit a diverse range of strikes, may develop under a weak/absent regional tectonic field (e.g. polygonal faults). We studied a complex synsedimentary fault pattern, geometrically similar to polygonal fault systems, developed during an early Jurassic faulting episode and exposed in the Umbria-Marche Apennines (Italy). Along the passive margin of the African plate, these faults disrupt the Early Jurassic platform overlying the Triassic Evaporites, and bound the subsiding basins where a pelagic succession was successively deposited. We digitised the fault pattern at the regional scale on the grounds of the available geological maps, characterising each fault in terms of attitude, length and throw (i.e. vertical displacement). Fault statistical analysis shows a largely scattered orientation, a high grade of fragmentation, an average length of about 10 km and a constant length/displacement ratio. The measured stratigraphic throw ranges from 300 m to 700 m leading to very low long-term fault slip rates (less than 0.1 mm/yr). We propose a mechanical model where Jurassic faulting has been strongly influenced by the onset of dehydration of the Triassic Evaporites, made of interbedded gypsum layers and dolostones. Dehydration, i.e. anhydritization of the gypsum rich layers, initiated during burial at 1000 m of depth. During initial phases of dehydration increasing fluid pressures trapped at the gypsum-dolostones interface, promote hydrofracturing and faulting within the dolostone layers and subsequent fluid release. Fluid expulsion produces volume contraction of the dehydrating rocks causing vertical thinning and horizontal isotropic extension. This state of non-plane strain is accommodated within the composite gypsum-dolostones sequence by a mix of ductile (flowage and boudinage) and brittle (hydrofracturing and faulting) deformation processes. The stress field caused by the former processes, consistent with an almost isotropic stress distribution within the horizontal plane, explains well the studied complex fault pattern and seems to be dominant over the far-field regional extensional tectonics.

  7. Mass spectrometric profiling reveals association of N-glycan patterns with epithelial ovarian cancer progression.

    PubMed

    Chen, Huanhuan; Deng, Zaian; Huang, Chuncui; Wu, Hongmei; Zhao, Xia; Li, Yan

    2017-07-01

    Aberrant changes of N-glycan modifications on proteins have been linked to various diseases including different cancers, suggesting possible avenue for exploring their etiologies based on N-glycomic analysis. Changes in N-glycan patterns during epithelial ovarian cancer development have so far been investigated mainly using serum, plasma, ascites, and cell lines. However, changes in patterns of N-glycans in tumor tissues during epithelial ovarian cancer progression have remained largely undefined. To investigate whether changes in N-glycan patterns correlate with oncogenesis and progression of epithelial ovarian cancer, we profiled N-glycans from formalin-fixed paraffin-embedded tissue slides using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and quantitatively compared among different pathological grades of epithelial ovarian cancer and healthy controls. Our results show that among the 80 compositions of N-glycan detected, expression levels of high-mannose type were higher in epithelial ovarian cancer samples than that observed in healthy controls, accompanied by reduced levels of hybrid-type glycans. By applying receiver operating characteristic analysis, we show that a combined panel composed of four high-mannose and three fucosylated neutral complex N-glycans allows for good discrimination of epithelial ovarian cancer from healthy controls. Furthermore, using a statistical analysis of variance assay, we found that different N-glycan patterns, including 2 high-mannose-type, 2 fucosylated and sialylated complex structures, and 10 fucosylated neutral complex N-glycans, exhibited specific changes in N-glycan abundance across epithelial ovarian cancer grades. Together, our results provide strong evidence that N-glycomic changes are a strong indicator for epithelial ovarian cancer pathological grades and should provide avenues to identify novel biomarkers for epithelial ovarian cancer diagnosis and monitoring.

  8. Fluctuation-Driven Neural Dynamics Reproduce Drosophila Locomotor Patterns

    PubMed Central

    Cruchet, Steeve; Gustafson, Kyle; Benton, Richard; Floreano, Dario

    2015-01-01

    The neural mechanisms determining the timing of even simple actions, such as when to walk or rest, are largely mysterious. One intriguing, but untested, hypothesis posits a role for ongoing activity fluctuations in neurons of central action selection circuits that drive animal behavior from moment to moment. To examine how fluctuating activity can contribute to action timing, we paired high-resolution measurements of freely walking Drosophila melanogaster with data-driven neural network modeling and dynamical systems analysis. We generated fluctuation-driven network models whose outputs—locomotor bouts—matched those measured from sensory-deprived Drosophila. From these models, we identified those that could also reproduce a second, unrelated dataset: the complex time-course of odor-evoked walking for genetically diverse Drosophila strains. Dynamical models that best reproduced both Drosophila basal and odor-evoked locomotor patterns exhibited specific characteristics. First, ongoing fluctuations were required. In a stochastic resonance-like manner, these fluctuations allowed neural activity to escape stable equilibria and to exceed a threshold for locomotion. Second, odor-induced shifts of equilibria in these models caused a depression in locomotor frequency following olfactory stimulation. Our models predict that activity fluctuations in action selection circuits cause behavioral output to more closely match sensory drive and may therefore enhance navigation in complex sensory environments. Together these data reveal how simple neural dynamics, when coupled with activity fluctuations, can give rise to complex patterns of animal behavior. PMID:26600381

  9. Pixel-based OPC optimization based on conjugate gradients.

    PubMed

    Ma, Xu; Arce, Gonzalo R

    2011-01-31

    Optical proximity correction (OPC) methods are resolution enhancement techniques (RET) used extensively in the semiconductor industry to improve the resolution and pattern fidelity of optical lithography. In pixel-based OPC (PBOPC), the mask is divided into small pixels, each of which is modified during the optimization process. Two critical issues in PBOPC are the required computational complexity of the optimization process, and the manufacturability of the optimized mask. Most current OPC optimization methods apply the steepest descent (SD) algorithm to improve image fidelity augmented by regularization penalties to reduce the complexity of the mask. Although simple to implement, the SD algorithm converges slowly. The existing regularization penalties, however, fall short in meeting the mask rule check (MRC) requirements often used in semiconductor manufacturing. This paper focuses on developing OPC optimization algorithms based on the conjugate gradient (CG) method which exhibits much faster convergence than the SD algorithm. The imaging formation process is represented by the Fourier series expansion model which approximates the partially coherent system as a sum of coherent systems. In order to obtain more desirable manufacturability properties of the mask pattern, a MRC penalty is proposed to enlarge the linear size of the sub-resolution assistant features (SRAFs), as well as the distances between the SRAFs and the main body of the mask. Finally, a projection method is developed to further reduce the complexity of the optimized mask pattern.

  10. Quantitative proteomic analysis reveals evolutionary divergence and species-specific peptides in the Alexandrium tamarense complex (Dinophyceae).

    PubMed

    Li, Cheng; Zhang, Yong; Xie, Zhang-Xian; He, Zhi-Ping; Lin, Lin; Wang, Da-Zhi

    2013-06-28

    The Alexandrium tamarense/catenella/fundyense complex is the major causative agent responsible for harmful algal blooms and paralytic shellfish poisoning around the world. However, taxonomy of the A. tamarense complex is contentious and the evolutionary relationships within the complex are unclear. This study compared protein profiles of the A. tamarense complex collected from different geographic regions using the two dimensional fluorescence difference gel electrophoresis (2-D DIGE) approach, and identified species-specific peptides using MALDI-TOF/TOF mass spectrometry. The results showed that three Alexandrium morphotypes presented significantly different protein expression patterns with about 30-40% shared proteins. However, ecotypes from different geographic regions within a species exhibited the same expression patterns, although a few proteins were altered in abundance. Several proteins, i.e. ribulose-1,5-bisphosphate carboxylase oxygenase form II, plastid protein NAP50, methionine S-adenosyltransferase, and peridinin-chlorophyll a-binding protein, were identified and presented different shift patterns in isoelectric point and/or molecular weight in the 2-D DIGE gels, indicating that amino acid mutation and/or posttranslational modification of these proteins had occurred. The species-specific peptide mass fingerprint and amino acid sequence of ribulose-1,5-bisphosphate carboxylase oxygenase were characterized in the A. tamarense complex, and amino acid substitution occurred among them. This study indicated that evolutionary divergence had occurred at the proteomic level in the A. tamarense complex, and that the species-specific peptides could be used as potential biomarkers to distinguish the three morphotypes. Scientific question: The Alexandrium tamarense/catenella/fundyense complex is the major causative agent responsible for harmful algal blooms and paralytic shellfish poisoning around the world. However, taxonomy of the A. tamarense complex is contentious and the evolutionary relationships within the complex are unclear, which has seriously impeded our understanding of Alexandrium-causing HABs and, consequently, the monitoring, mitigation and prevention. Technical significance: This study, for the first time, compared the global protein expression patterns of eight ecotypes from the A. tamarense complex and identified species-specific peptides using a quantitative proteomic approach combining 2-D DIGE and MALDI-TOF/TOF MS. This study demonstrated that the evolutionary divergence had occurred in the A. tamarense complex at the proteomic level, and the complex should be classified into three species, i.e. A. tamarense, A. catenella, and A. fundyense. Moreover, the species-specific peptide mass fingerprints could be used as potential biomarkers to distinguish the three morphotypes. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Reticulate Structures Reveal the Significance of Cell Motility in the Morphogenesis of Complex Microbial Structures in Pavilion Lake, British Columbia

    NASA Astrophysics Data System (ADS)

    Shepard, R.

    2008-12-01

    Microbial communities are architects of incredibly complex and diverse morphological structures. Each morphology is a snapshot that reflects the complex interactions within the microbial community and between the community and its environment. Characterizing morphology as an emergent property of microbial communities is thus relevant to understanding the evolution of multicellularity and complexity in developmental systems, to the identification of biosignatures, and to furthering our understanding of modern and ancient microbial ecology. Recently discovered cyanobacterial mats in Pavilion Lake, British Columbia construct unusual complex architecture on the scale of decimeters that incorporates significant void space. Fundamental mesoscale morphological elements include terraces, arches, bridges, depressions, domes, and pillars. The mats themselves also exhibit several microscale morphologies, with reticulate structures being the dominant example. The reticulate structures exhibit a diverse spectrum of morphologies with endmembers characterized by either angular or curvilinear ridges. In laboratory studies, aggregation into reticulate structures occurs as a result of the random gliding and colliding among motile cyanobacterial filaments. Likewise, when Pavilion reticulate mats were sampled and brought to the surface, cyanobacteria invariably migrated out of the mat onto surrounding surfaces. Filaments were observed to move rapidly in clumps, preferentially following paths of previous filaments. The migrating filaments organized into new angular and ropey reticulate biofilms within hours of sampling, demonstrating that cell motility is responsible for the reticulate patterns. Because the morphogenesis of reticulate structures can be linked to motility behaviors of filamentous cyanobacteria, the Willow Point mats provide a unique natural laboratory in which to elucidate the connections between a specific microbial behavior and the construction of complex microbial community morphology. To this end, we identified and characterized fundamental building blocks of the mesoscale morphologies, including bridges, anchors, and curved edges. These morphological building blocks were compared with the suite of motility behaviors and patterns observed in reticulate morphogenesis. Results of this comparison suggest that cyanobacterial motility plays a significant and often dominant role in the morphogenesis of the entire suite of morphologies observed in the microbial mats of Pavilion Lake.

  12. Endogenous Bioelectric Signaling Networks: Exploiting Voltage Gradients for Control of Growth and Form.

    PubMed

    Levin, Michael; Pezzulo, Giovanni; Finkelstein, Joshua M

    2017-06-21

    Living systems exhibit remarkable abilities to self-assemble, regenerate, and remodel complex shapes. How cellular networks construct and repair specific anatomical outcomes is an open question at the heart of the next-generation science of bioengineering. Developmental bioelectricity is an exciting emerging discipline that exploits endogenous bioelectric signaling among many cell types to regulate pattern formation. We provide a brief overview of this field, review recent data in which bioelectricity is used to control patterning in a range of model systems, and describe the molecular tools being used to probe the role of bioelectrics in the dynamic control of complex anatomy. We suggest that quantitative strategies recently developed to infer semantic content and information processing from ionic activity in the brain might provide important clues to cracking the bioelectric code. Gaining control of the mechanisms by which large-scale shape is regulated in vivo will drive transformative advances in bioengineering, regenerative medicine, and synthetic morphology, and could be used to therapeutically address birth defects, traumatic injury, and cancer.

  13. Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films

    NASA Astrophysics Data System (ADS)

    Sharma, Vivek; Zhang, Yiran; Yilixiati, Subinuer

    Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freely standing thin films. We distinguish nanoscopic rims, mesas and craters, and follow their emergence and growth. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), these topological features involve discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm. These non-flat features result from oscillatory, periodic, supramolecular structural forces that arise in confined fluids, and arise due to complex coupling of hydrodynamic and thermodynamic effects at the nanoscale.

  14. A complex interaction of imprinted and maternal-effect genes modifies sex determination in Odd Sex (Ods) mice.

    PubMed

    Poirier, Christophe; Qin, Yangjun; Adams, Carolyn P; Anaya, Yanett; Singer, Jonathan B; Hill, Annie E; Lander, Eric S; Nadeau, Joseph H; Bishop, Colin E

    2004-11-01

    The transgenic insertional mouse mutation Odd Sex (Ods) represents a model for the long-range regulation of Sox9. The mutation causes complete female-to-male sex reversal by inducing a male-specific expression pattern of Sox9 in XX Ods/+ embryonic gonads. We previously described an A/J strain-specific suppressor of Ods termed Odsm1(A). Here we show that phenotypic sex depends on a complex interaction between the suppressor and the transgene. Suppression can be achieved only if the transgene is transmitted paternally. In addition, the suppressor itself exhibits a maternal effect, suggesting that it may act on chromatin in the early embryo.

  15. A Complex Interaction of Imprinted and Maternal-Effect Genes Modifies Sex Determination in Odd Sex (Ods) Mice

    PubMed Central

    Poirier, Christophe; Qin, Yangjun; Adams, Carolyn P.; Anaya, Yanett; Singer, Jonathan B.; Hill, Annie E.; Lander, Eric S.; Nadeau, Joseph H.; Bishop, Colin E.

    2004-01-01

    The transgenic insertional mouse mutation Odd Sex (Ods) represents a model for the long-range regulation of Sox9. The mutation causes complete female-to-male sex reversal by inducing a male-specific expression pattern of Sox9 in XX Ods/+ embryonic gonads. We previously described an A/J strain-specific suppressor of Ods termed Odsm1A. Here we show that phenotypic sex depends on a complex interaction between the suppressor and the transgene. Suppression can be achieved only if the transgene is transmitted paternally. In addition, the suppressor itself exhibits a maternal effect, suggesting that it may act on chromatin in the early embryo. PMID:15579706

  16. Light-driven dynamic Archimedes spirals and periodic oscillatory patterns of topological solitons in anisotropic soft matter

    DOE PAGES

    Martinez, Angel; Smalyukh, Ivan I.

    2015-02-12

    Oscillatory and excitable systems very commonly exhibit formation of dynamic non-equilibrium patterns. For example, rotating spiral patterns are observed in biological, chemical, and physical systems ranging from organization of slime mold cells to Belousov-Zhabotinsky reactions, and to crystal growth from nuclei with screw dislocations. Here we describe spontaneous formation of spiral waves and a large variety of other dynamic patterns in anisotropic soft matter driven by low-intensity light. The unstructured ambient or microscope light illumination of thin liquid crystal films in contact with a self-assembled azobenzene monolayer causes spontaneous formation, rich spatial organization, and dynamics of twisted domains and topologicalmore » solitons accompanied by the dynamic patterning of azobenzene group orientations within the monolayer. Linearly polarized incident light interacts with the twisted liquid crystalline domains, mimicking their dynamics and yielding patterns in the polarization state of transmitted light, which can be transformed to similar dynamic patterns in its intensity and interference color. This shows that the delicate light-soft-matter interaction can yield complex self-patterning of both. Finally, we uncover underpinning physical mechanisms and discuss potential uses.« less

  17. Into the complexity of coseismic landslide clustering

    NASA Astrophysics Data System (ADS)

    Meunier, Patrick; Marc, Odin; Uchida, Taro; Hovius, Niels

    2014-05-01

    Earthquake-triggered landslides tend to cluster along topographic crests while rainfall-induced landslides are more uniformly distributed on hillslopes [1]. In theory, rainfall induced landslides should even occur downslope preferentially, where pore pressure induced by groundwater flows is the highest. Past studies on landslide clustering are all based on the analysis of complete dataset or subdataset of landslides associated with a given event (seismic or climatic) as a whole. In this work, we document the spatial variation of the landslide position (on hillslopes) within the epicentral area for the cases of the 1999 Chichi, the 2004 Niigata and the 2008 Iwate earthquakes. We show that landslide clustering is not uniform in space and exhibit patterns that vary a lot from one case to another. These patterns are not easy to interpret as they don't seem to be controlled by a single governing parameter but result from a complex interaction between local (hillslope length and gradient, lithology) and seismic (distance to source, slope aspect, radiation pattern, coseismic uplift) parameters. [1] Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3), 221-232.

  18. Adaptive Classification of Landscape Process and Function: An Integration of Geoinformatics and Self-Organizing Maps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coleman, Andre M.

    2009-07-17

    The advanced geospatial information extraction and analysis capabilities of a Geographic Information System (GISs) and Artificial Neural Networks (ANNs), particularly Self-Organizing Maps (SOMs), provide a topology-preserving means for reducing and understanding complex data relationships in the landscape. The Adaptive Landscape Classification Procedure (ALCP) is presented as an adaptive and evolutionary capability where varying types of data can be assimilated to address different management needs such as hydrologic response, erosion potential, habitat structure, instrumentation placement, and various forecast or what-if scenarios. This paper defines how the evaluation and analysis of spatial and/or temporal patterns in the landscape can provide insight intomore » complex ecological, hydrological, climatic, and other natural and anthropogenic-influenced processes. Establishing relationships among high-dimensional datasets through neurocomputing based pattern recognition methods can help 1) resolve large volumes of data into a structured and meaningful form; 2) provide an approach for inferring landscape processes in areas that have limited data available but exhibit similar landscape characteristics; and 3) discover the value of individual variables or groups of variables that contribute to specific processes in the landscape. Classification of hydrologic patterns in the landscape is demonstrated.« less

  19. Complex within a Complex: Integrative Taxonomy Reveals Hidden Diversity in Cicadetta brevipennis (Hemiptera: Cicadidae) and Unexpected Relationships with a Song Divergent Relative.

    PubMed

    Hertach, Thomas; Puissant, Stéphane; Gogala, Matija; Trilar, Tomi; Hagmann, Reto; Baur, Hannes; Kunz, Gernot; Wade, Elizabeth J; Loader, Simon P; Simon, Chris; Nagel, Peter

    2016-01-01

    Multiple sources of data in combination are essential for species delimitation and classification of difficult taxonomic groups. Here we investigate a cicada taxon with unusual cryptic diversity and we attempt to resolve seemingly contradictory data sets. Cicada songs act as species-specific premating barriers and have been used extensively to reveal hidden taxonomic diversity in morphologically similar species. The Palaearctic Cicadetta montana species complex is an excellent example where distinct song patterns have disclosed multiple recently described species. Indeed, two taxa turned out to be especially diverse in that they form a "complex within the complex": the Cicadetta cerdaniensis song group (four species studied previously) and Cicadetta brevipennis (examined in details here). Based on acoustic, morphological, molecular, ecological and spatial data sampled throughout their broad European distribution, we find that Cicadetta brevipennis s. l. comprises five lineages. The most distinct lineage is identified as Cicadetta petryi Schumacher, 1924, which we re-assign to the species level. Cicadetta brevipennis litoralis Puissant & Hertach ssp. n. and Cicadetta brevipennis hippolaidica Hertach ssp. n. are new to science. The latter hybridizes with Cicadetta brevipennis brevipennis Fieber, 1876 at a zone inferred from intermediate song patterns. The fifth lineage requires additional investigation. The C. cerdaniensis and the C. brevipennis song groups exhibit characteristic, clearly distinct basic song patterns that act as reproductive barriers. However, they remain completely intermixed in the Bayesian and maximum likelihood COI and COII mitochondrial DNA phylogenies. The closest relative of each of the four cerdaniensis group species is a brevipennis group taxon. In our favoured scenario the phylogenetic pairs originated in common Pleistocene glacial refuges where the taxa speciated and experienced sporadic inter-group hybridization leading to extensive introgression and mitochondrial capture.

  20. Infinitely robust order and local order-parameter tulips in Apollonian networks with quenched disorder

    NASA Astrophysics Data System (ADS)

    Kaplan, C. Nadir; Hinczewski, Michael; Berker, A. Nihat

    2009-06-01

    For a variety of quenched random spin systems on an Apollonian network, including ferromagnetic and antiferromagnetic bond percolation and the Ising spin glass, we find the persistence of ordered phases up to infinite temperature over the entire range of disorder. We develop a renormalization-group technique that yields highly detailed information, including the exact distributions of local magnetizations and local spin-glass order parameters, which turn out to exhibit, as function of temperature, complex and distinctive tulip patterns.

  1. Omori's law in the Internet traffic

    NASA Astrophysics Data System (ADS)

    Abe, S.; Suzuki, N.

    2003-03-01

    The Internet is a complex system, whose temporal behavior is highly nonstationary and exhibits sudden drastic changes regarded as main shocks or catastrophes. Here, analyzing a set of time series data of round-trip time measured in echo experiment with the Ping Command, the property of "aftershocks" (i.e., catastrophes of smaller scales) after a main shock is studied. It is found that the aftershocks obey Omori's law. Thus, the Internet shares with earthquakes and financial-market crashes a common scale-invariant feature in the temporal patterns of aftershocks.

  2. Diabetes insipidus, diabetes mellitus, optic atrophy and deafness. A clinical and genetic study.

    PubMed Central

    Nagi, N. A.

    1979-01-01

    Two Iraqi sisters and a female cousin developed diabetes insipidus (DI), diabetes mellitus (DM), optic atrophy (OA), and deafness (D), (the 'DIDMOAD' syndrome) before the age of 12 years. One girl exhibited all the features of this disease complex only 3 months after an unusually late onset of recognizable symptoms at 11 years 9 months. Another girl died suddenly and unexpectedly. This family study illustrates the recessive inheritance pattern of the syndrome. Images Fig. 2 Fig. 3 PMID:482181

  3. Evaluating the agreement between measurements and models of net ecosystem exchange at different times and timescales using wavelet coherence: an example using data from the North American Carbon Program Site-Level Interim Synthesis

    Treesearch

    P.C. Stoy; M.C. Dietze; A.D. Richardson; R. Vargas; A.G. Barr; R.S. Anderson; M.A. Arain; I.T. Baker; T.A. Black; J.M. Chen; R.B. Cook; C.M. Gough; R.F. Grant; D.Y. Hollinger; R.C. Izaurralde; C.J. Kucharik; P. Lafleur; B.E. Law; S. Liu; E. Lokupitiya; Y. Luo; J. W. Munger; C. Peng; B. Poulter; D.T. Price; D. M. Ricciuto; W. J. Riley; A. K. Sahoo; K. Schaefer; C.R. Schwalm; H. Tian; H. Verbeeck; E. Weng

    2013-01-01

    Earth system processes exhibit complex patterns across time, as do the models that seek to replicate these processes. Model output may or may not be significantly related to observations at different times and on different frequencies. Conventional model diagnostics provide an aggregate view of model-data agreement, but usually do not identify the time and frequency...

  4. Econophysics — complex correlations and trend switchings in financial time series

    NASA Astrophysics Data System (ADS)

    Preis, T.

    2011-03-01

    This article focuses on the analysis of financial time series and their correlations. A method is used for quantifying pattern based correlations of a time series. With this methodology, evidence is found that typical behavioral patterns of financial market participants manifest over short time scales, i.e., that reactions to given price patterns are not entirely random, but that similar price patterns also cause similar reactions. Based on the investigation of the complex correlations in financial time series, the question arises, which properties change when switching from a positive trend to a negative trend. An empirical quantification by rescaling provides the result that new price extrema coincide with a significant increase in transaction volume and a significant decrease in the length of corresponding time intervals between transactions. These findings are independent of the time scale over 9 orders of magnitude, and they exhibit characteristics which one can also find in other complex systems in nature (and in physical systems in particular). These properties are independent of the markets analyzed. Trends that exist only for a few seconds show the same characteristics as trends on time scales of several months. Thus, it is possible to study financial bubbles and their collapses in more detail, because trend switching processes occur with higher frequency on small time scales. In addition, a Monte Carlo based simulation of financial markets is analyzed and extended in order to reproduce empirical features and to gain insight into their causes. These causes include both financial market microstructure and the risk aversion of market participants.

  5. Complex adaptive systems and their relevance for nursing: An evolutionary concept analysis.

    PubMed

    Notarnicola, Ippolito; Petrucci, Cristina; De Jesus Barbosa, Maria Rosimar; Giorgi, Fabio; Stievano, Alessandro; Rocco, Gennaro; Lancia, Loreto

    2017-06-01

    This study aimed to analyse the concept of "complex adaptive systems." The construct is still nebulous in the literature, and a further explanation of the idea is needed to have a shared knowledge of it. A concept analysis was conducted utilizing Rodgers evolutionary method. The inclusive years of bibliographic search started from 2005 to 2015. The search was conducted at PubMed©, CINAHL© (EBSCO host©), Scopus©, Web of Science©, and Academic Search Premier©. Retrieved papers were critically analysed to explore the attributes, antecedents, and consequences of the concept. Moreover, surrogates, related terms, and a pattern recognition scheme were identified. The concept analysis showed that complex systems are adaptive and have the ability to process information. They can adapt to the environment and consequently evolve. Nursing is a complex adaptive system, and the nursing profession in practice exhibits complex adaptive system characteristics. Complexity science through complex adaptive systems provides new ways of seeing and understanding the mechanisms that underpin the nursing profession. © 2017 John Wiley & Sons Australia, Ltd.

  6. Distinguishing cognitive state with multifractal complexity of hippocampal interspike interval sequences

    PubMed Central

    Fetterhoff, Dustin; Kraft, Robert A.; Sandler, Roman A.; Opris, Ioan; Sexton, Cheryl A.; Marmarelis, Vasilis Z.; Hampson, Robert E.; Deadwyler, Sam A.

    2015-01-01

    Fractality, represented as self-similar repeating patterns, is ubiquitous in nature and the brain. Dynamic patterns of hippocampal spike trains are known to exhibit multifractal properties during working memory processing; however, it is unclear whether the multifractal properties inherent to hippocampal spike trains reflect active cognitive processing. To examine this possibility, hippocampal neuronal ensembles were recorded from rats before, during and after a spatial working memory task following administration of tetrahydrocannabinol (THC), a memory-impairing component of cannabis. Multifractal detrended fluctuation analysis was performed on hippocampal interspike interval sequences to determine characteristics of monofractal long-range temporal correlations (LRTCs), quantified by the Hurst exponent, and the degree/magnitude of multifractal complexity, quantified by the width of the singularity spectrum. Our results demonstrate that multifractal firing patterns of hippocampal spike trains are a marker of functional memory processing, as they are more complex during the working memory task and significantly reduced following administration of memory impairing THC doses. Conversely, LRTCs are largest during resting state recordings, therefore reflecting different information compared to multifractality. In order to deepen conceptual understanding of multifractal complexity and LRTCs, these measures were compared to classical methods using hippocampal frequency content and firing variability measures. These results showed that LRTCs, multifractality, and theta rhythm represent independent processes, while delta rhythm correlated with multifractality. Taken together, these results provide a novel perspective on memory function by demonstrating that the multifractal nature of spike trains reflects hippocampal microcircuit activity that can be used to detect and quantify cognitive, physiological, and pathological states. PMID:26441562

  7. Regional differences in hyoid muscle activity and length-dynamics during mammalian head-shaking

    PubMed Central

    Wentzel, Sarah E.; Konow, Nicolai; German, Rebecca Z.

    2010-01-01

    The sternohyoid (SH) and geniohyoid (GH) are antagonist strap-muscles that are active during a number of different behaviors, including sucking, intraoral transport, swallowing, breathing, and extension/flexion of the neck. Because these muscles have served different functions through the evolutionary history of vertebrates, it is quite likely they will have complex patterns of electrical activity and muscle fiber contraction. Different regions of the sternohyoid exhibit different contraction and activity patterns during a swallow. We examined the dynamics of the sternohyoid and geniohyoid muscles during an unrestrained, and vigorous head-shake behavior in an animal model of human head, neck and hyolingual movement. A gentle touch to infant pig ears elicited a head shake of several head revolutions. Using sonomicrometry and intramuscular EMG we measured regional (within) muscle strain and activity in SH and GH. We found that EMG was consistent across three regions (anterior, belly and posterior) of each muscle. Changes in muscle length however, were more complex. In the SH, mid-belly length-change occurred out of phase with the anterior and posterior end-regions, but with a zero-lag timing; the anterior region shortened prior to the posterior. In the GH, the anterior region shortened prior to, and out of phase with the mid-belly and posterior regions. Head-shaking is a relatively simple reflex behavior, yet the underlying patterns of muscle length-dynamics and EMG activity are not. The regional complexity in SH and GH, similar to regionalization of SH during swallowing, suggests that these ‘simple hyoid strap muscles’ are more complex than textbooks often suggest. PMID:21370479

  8. Disruption of endosperm development is a major cause of hybrid seed inviability between Mimulus guttatus and Mimulus nudatus.

    PubMed

    Oneal, Elen; Willis, John H; Franks, Robert G

    2016-05-01

    Divergence of developmental mechanisms within populations could lead to hybrid developmental failure, and might be a factor driving speciation in angiosperms. We investigate patterns of endosperm and embryo development in Mimulus guttatus and the closely related, serpentine endemic Mimulus nudatus, and compare them to those of reciprocal hybrid seed. We address whether disruption in hybrid seed development is the primary source of reproductive isolation between these sympatric taxa. M. guttatus and M. nudatus differ in the pattern and timing of endosperm and embryo development. Some hybrid seeds exhibit early disruption of endosperm development and are completely inviable, while others develop relatively normally at first, but later exhibit impaired endosperm proliferation and low germination success. These developmental patterns are reflected in mature hybrid seeds, which are either small and flat (indicating little to no endosperm) or shriveled (indicating reduced endosperm volume). Hybrid seed inviability forms a potent reproductive barrier between M. guttatus and M. nudatus. We shed light on the extent of developmental variation between closely related species within the M. guttatus species complex, an important ecological model system, and provide a partial mechanism for the hybrid barrier between M. guttatus and M. nudatus. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  9. Far infrared vibration-rotation-tunneling spectroscopy and internal dynamics of methane-water: A prototypical hydrophobic system

    NASA Astrophysics Data System (ADS)

    Dore, L.; Cohen, R. C.; Schmuttenmaer, C. A.; Busarow, K. L.; Elrod, M. J.; Loeser, J. G.; Saykally, R. J.

    1994-01-01

    Thirteen vibration-rotation-tunneling (VRT) bands of the CH4-H2O complex have been measured in the range from 18 to 35.5 cm-1 using tunable far infrared laser spectroscopy. The ground state has an average center of mass separation of 3.70 Å and a stretching force constant of 1.52 N/m, indicating that this complex is more strongly bound than Ar-H2O. The eigenvalue spectrum has been calculated with a variational procedure using a spherical expansion of a site-site ab initio intermolecular potential energy surface [J. Chem. Phys. 93, 7808 (1991)]. The computed eigenvalues exhibit a similar pattern to the observed spectra but are not in quantitative agreement. These observations suggest that both monomers undergo nearly free internal rotation within the complex.

  10. Pre-Quaternary divergence and subsequent radiation explain longitudinal patterns of genetic and morphological variation in the striped skink, Heremites vittatus.

    PubMed

    Baier, Felix; Schmitz, Andreas; Sauer-Gürth, Hedwig; Wink, Michael

    2017-06-09

    Many animal and plant species in the Middle East and northern Africa have a predominantly longitudinal distribution, extending from Iran and Turkey along the eastern Mediterranean coast into northern Africa. These species are potentially characterized by longitudinal patterns of biological diversity, but little is known about the underlying biogeographic mechanisms and evolutionary timescales. We examined these questions in the striped skink, Heremites vittatus, one such species with a roughly longitudinal distribution across the Middle East and northern Africa, by analyzing range-wide patterns of mitochondrial DNA (mtDNA) sequence and multi-trait morphological variation. The striped skink exhibits a basic longitudinal organization of mtDNA diversity, with three major mitochondrial lineages inhabiting northern Africa, the eastern Mediterranean coast, and Turkey/Iran. Remarkably, these lineages are of pre-Quaternary origin, and are characterized by p-distances of 9-10%. In addition, within each of these lineages a more recent Quaternary genetic diversification was observed, as evidenced by deep subclades and high haplotype diversity especially in the Turkish/Iranian and eastern Mediterranean lineages. Consistent with the genetic variation, our morphological analysis revealed that the majority of morphological traits show significant mean differences between specimens from northern Africa, the eastern Mediterranean coast, and Turkey/Iran, suggesting lineage-specific trait evolution. In addition, a subset of traits exhibits clinal variation along the eastern Mediterranean coast, potentially indicating selection gradients at the geographic transition from northern Africa to Anatolia. The existence of allopatric, morphologically and genetically divergent lineages suggests that Heremites vittatus might represent a complex with several taxa. Our work demonstrates that early divergence events in the Pliocene, likely driven by both climatic and geological factors, established the longitudinal patterns and distribution of Heremites vittatus. Subsequent radiation during the Pleistocene generated the genetic and morphological diversity observed today. Our study provides further evidence that longitudinal diversity patterns and species distributions in the Middle East and northern Africa were shaped by complex evolutionary processes, involving the region's intricate geological history, climatic oscillations, and the presence of the Sahara.

  11. Dynamic CRM occupancy reflects a temporal map of developmental progression.

    PubMed

    Wilczyński, Bartek; Furlong, Eileen E M

    2010-06-22

    Development is driven by tightly coordinated spatio-temporal patterns of gene expression, which are initiated through the action of transcription factors (TFs) binding to cis-regulatory modules (CRMs). Although many studies have investigated how spatial patterns arise, precise temporal control of gene expression is less well understood. Here, we show that dynamic changes in the timing of CRM occupancy is a prevalent feature common to all TFs examined in a developmental ChIP time course to date. CRMs exhibit complex binding patterns that cannot be explained by the sequence motifs or expression of the TFs themselves. The temporal changes in TF binding are highly correlated with dynamic patterns of target gene expression, which in turn reflect transitions in cellular function during different stages of development. Thus, it is not only the timing of a TF's expression, but also its temporal occupancy in refined time windows, which determines temporal gene expression. Systematic measurement of dynamic CRM occupancy may therefore serve as a powerful method to decode dynamic changes in gene expression driving developmental progression.

  12. UV-light assisted patterned metallization of textile fabrics

    NASA Astrophysics Data System (ADS)

    Bahners, Thomas; Gebert, Beate; Prager, Andrea; Hartmann, Nils; Hagemann, Ulrich; Gutmann, Jochen S.

    2018-04-01

    A UV-assisted process allows full-faced or local deposition of silver domains on textiles made of natural as well as synthetic fibers, which act as nuclei for subsequent galvanic metallization. SEM and XPS analyses indicate that the process generates particulate depositions - particles, aggregates - of elementary silver. Masking the UV irradiation confines silver deposition strictly to the exposed areas thus allowing patterning. Adhesion of the deposited silver is high on the studied natural fiber cotton and polyamide fibers. Adhesion on smooth and chemically inert synthethic fibers such as, e.g., poly(ethylene terephthalate) or para- and meta-aramids could be enhanced by finishing with poly(vinylamine) thus providing complex-forming amino groups. Although the process does not deposit a closed, electrically conducting layer, all studied samples could be metallized by galvanization. The resulting metal coatings exhibit high conductivity and wash stability. Following a patterned silver deposition, the subsequent galvanic metallization produced conductive patterns of identical geometry thus opening an avenue towards printed circuits on textile fabrics.

  13. Lineage diversification and morphological evolution in a large-scale continental radiation: The neotropical ovenbirds and woodcreepers (Aves: Furnariidae)

    USGS Publications Warehouse

    Derryberry, Elizabeth P.; Claramunt, Santiago; Derryberry, Graham; Chesser, R. Terry; Cracraft, Joel; Aleixo, Alexandre; Pérez-Emán, Jorge; Remsen, J.V.; Brumfield, Robb T.

    2011-01-01

    Patterns of diversification in species-rich clades provide insight into the processes that generate biological diversity. We tested different models of lineage and phenotypic diversification in an exceptional continental radiation, the ovenbird family Furnariidae, using the most complete species-level phylogenetic hypothesis produced to date for a major avian clade (97% of 293 species). We found that the Furnariidae exhibit nearly constant rates of lineage accumulation but show evidence of constrained morphological evolution. This pattern of sustained high rates of speciation despite limitations on phenotypic evolution contrasts with the results of most previous studies of evolutionary radiations, which have found a pattern of decelerating diversity-dependent lineage accumulation coupled with decelerating or constrained phenotypic evolution. Our results suggest that lineage accumulation in tropical continental radiations may not be as limited by ecological opportunities as in temperate or island radiations. More studies examining patterns of both lineage and phenotypic diversification are needed to understand the often complex tempo and mode of evolutionary radiations on continents.

  14. System controls on the aqueous distribution of mercury in the northern Florida Everglades

    USGS Publications Warehouse

    Hurley, J.P.; Krabbenhoft, D.P.; Cleckner, L.B.; Olson, M.L.; Aiken, G.R.; Rawlik, P.S.

    1998-01-01

    The forms and partitioning of aqueous mercury species in the canals and marshes of the Northern Florida Everglades exhibit strong spatial and temporal variability. In canals feeding Water Conservation Area (WCA) 2A, unfiltered total Hg (HgT(U)) is less than 3 ng L-1 and relatively constant. In contrast, methyl mercury (MeHg) exhibited a strong seasonal pattern, with highest levels entering WCA-2A marshes during July. Stagnation and reduced flows also lead to particle enrichment of MeHg. In the marshes of WCA-2A, 2B and 3A, HgT(U) is usually <5 ng L-1 with no consistent north-south patterns. However, for individual dates, aqueous unfiltered MeHg (MeHg(U)) levels increase from north to south with generally lowest levels in the eutrophied regions of northern WCA-2A. A strong relationship between filtered Hg species and dissolved organic carbon (DOC), evident for rivers draining wetlands in Wisconsin, was not apparent in the Everglades, suggesting either differences in the binding sites of DOC between the two regions, or non-organic Hg complexation in the Everglades.

  15. Complex metabolic oscillations in plants forced by harmonic irradiance.

    PubMed Central

    Nedbal, Ladislav; Brezina, Vítezslav

    2002-01-01

    Plants exposed to harmonically modulated irradiance, approximately 1 + cos(omegat), exhibit a complex periodic pattern of chlorophyll fluorescence emission that can be deconvoluted into a steady-state component, a component that is modulated with the frequency of the irradiance (omega), and into at least two upper harmonic components (2omega and 3omega). A model is proposed that accounts for the upper harmonics in fluorescence emission by nonlinear negative feedback regulation of photosynthesis. In contrast to simpler linear models, the model predicts that the steady-state fluorescence component will depend on the frequency of light modulation, and that amplitudes of all fluorescence components will exhibit resonance peak(s) when the irradiance frequency is tuned to an internal frequency of a regulatory component. The experiments confirmed that the upper harmonic components appear and exhibit distinct resonant peaks. The frequency of autonomous oscillations observed earlier upon an abrupt increase in CO(2) concentration corresponds to the sharpest of the resonant peaks of the forced oscillations. We propose that the underlying principles are general for a wide spectrum of negative-feedback regulatory mechanisms. The analysis by forced harmonic oscillations will enable us to examine internal dynamics of regulatory processes that have not been accessible to noninvasive fluorescence monitoring to date. PMID:12324435

  16. Potential roles for transposable elements in creating imprinted expression.

    PubMed

    Anderson, Sarah N; Springer, Nathan M

    2018-04-01

    Changes in gene expression can have profound effects on phenotype. Nature has provided many complex patterns of gene regulation such as imprinting. Imprinted genes exhibit differences in the expression of the maternal and paternal alleles, even though they reside in the same nucleus with access to the same trans-acting factors. Significant attention has been focused on the potential reasons that imprinted expression could be beneficial and stabilized by selection. However, less attention has focused on understanding how imprinted expression might arise or decay. We discuss the evidence for frequent turnover of imprinted expression based on evolutionary analyses in plants and the potential role for transposable elements (TEs) in creating imprinted expression patterns. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. The role of self-injury in the organisation of behaviour.

    PubMed

    Sandman, C A; Kemp, A S; Mabini, C; Pincus, D; Magnusson, M

    2012-05-01

    Self-injuring acts are among the most dramatic behaviours exhibited by human beings. There is no known single cause and there is no universally agreed upon treatment. Sophisticated sequential and temporal analysis of behaviour has provided alternative descriptions of self-injury that provide new insights into its initiation and maintenance. Forty hours of observations for each of 32 participants were collected in a contiguous 2-week period. Twenty categories of behavioural and environmental events were recorded electronically that captured the precise time each observation occurred. Temporal behavioural/environmental patterns associated with self-injurious events were revealed with a method (t-patterns; THEME) for detecting non-linear, real-time patterns. Results indicated that acts of self-injury contributed both to more patterns and to more complex patterns. Moreover, self-injury left its imprint on the organisation of behaviour even when counts of self-injury were expelled from the continuous record. Behaviour of participants was organised in a more diverse array of patterns when self-injurious behaviour was present. Self-injuring acts may function as singular points, increasing coherence within self-organising patterns of behaviour. © 2012 The Authors. Journal of Intellectual Disability Research © 2012 Blackwell Publishing Ltd.

  18. Unravelling a biogeographical knot: origin of the 'leapfrog' distribution pattern of Australo-Papuan sooty owls (Strigiformes) and logrunners (Passeriformes).

    PubMed

    Norman, J A; Christidis, L; Joseph, L; Slikas, B; Alpers, D

    2002-10-22

    Molecular analysis of two Australo-Papuan rainforest birds exhibiting correlated 'leapfrog' patterns were used to elucidate the evolutionary origin of this unusual pattern of geographical differentiation. In both sooty owls (Tyto) and logrunners (Orthonyx), phenotypically similar populations occupy widely disjunct areas (central-eastern Australia and upland New Guinea) with a third, highly distinctive population, occurring between them in northeastern Queensland. Two mechanisms have been proposed to explain the origin of leapfrog patterns in avian distributions: recent shared ancestry of terminal populations and unequal rates or phenotypic change among populations. As the former should generate correlated patterns of phenotypic and genetic differentiation, we tested for a sister relationship between populations from New Guinea and central-eastern Australia using nuclear and mitochondrial DNA sequences. The resulting phylogenies not only refute recent ancestry as an explanation for the leapfrog pattern, but provide evidence of vastly different spatio-temporal histories for sooty owls and logrunners within the Australo-Papuan rainforests. This incongruence indicates that the evolutionary processes responsible for generating leapfrog patterns in these co-distributed taxa are complex, possibly involving a combination of selection and drift in sooty owls and convergence or retention of ancestral characteristics in logrunners.

  19. Stability of nonlinear waves and patterns and related topics.

    PubMed

    Ghazaryan, Anna; Lafortune, Stephane; Manukian, Vahagn

    2018-04-13

    Periodic and localized travelling waves such as wave trains, pulses, fronts and patterns of more complex structure often occur in natural and experimentally built systems. In mathematics, these objects are realized as solutions of nonlinear partial differential equations. The existence, dynamic properties and bifurcations of those solutions are of interest. In particular, their stability is important for applications, as the waves that are observable are usually stable. When the waves are unstable, further investigation is warranted of the way the instability is exhibited, i.e. the nature of the instability, and also coherent structures that appear as a result of an instability of travelling waves. A variety of analytical, numerical and hybrid techniques are used to study travelling waves and their properties.This article is part of the theme issue 'Stability of nonlinear waves and patterns and related topics'. © 2018 The Author(s).

  20. Enhancer trap expression patterns provide a novel teaching resource.

    PubMed

    Geisler, Matt; Jablonska, Barbara; Springer, Patricia S

    2002-12-01

    A collection of Arabidopsis enhancer trap transposants has been identified for use as a teaching tool. This collection serves to assist students in understanding the patterning and organization of plant tissues and cells, and will be useful in plant anatomy, morphology, and developmental biology courses. Each transposant exhibits reporter gene expression in a specific tissue, cell type, or domain, and these lines collectively offer a glimpse of compartments of gene expression. Some compartments correspond to classical definitions of botanical anatomy and can assist in anatomical identification. Other patterns of reporter gene expression are more complex and do not necessarily correspond to known anatomical features. The sensitivity of the beta-glucuronidase histochemical stain provides the student with a colorful and direct way to visualize difficult aspects of plant development and anatomy, and provides the teacher with an invaluable tool for a practical laboratory session.

  1. A deployment of fine-grained sensor network and empirical analysis of urban temperature.

    PubMed

    Thepvilojanapong, Niwat; Ono, Takahiro; Tobe, Yoshito

    2010-01-01

    Temperature in an urban area exhibits a complicated pattern due to complexity of infrastructure. Despite geographical proximity, structures of a group of buildings and streets affect changes in temperature. To investigate the pattern of fine-grained distribution of temperature, we installed a densely distributed sensor network called UScan. In this paper, we describe the system architecture of UScan as well as experience learned from installing 200 sensors in downtown Tokyo. The field experiment of UScan system operated for two months to collect long-term urban temperature data. To analyze the collected data in an efficient manner, we propose a lightweight clustering methodology to study the correlation between the pattern of temperature and various environmental factors including the amount of sunshine, the width of streets, and the existence of trees. The analysis reveals meaningful results and asserts the necessity of fine-grained deployment of sensors in an urban area.

  2. Adolescent binge-pattern alcohol exposure alters genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve male offspring.

    PubMed

    Asimes, AnnaDorothea; Torcaso, Audrey; Pinceti, Elena; Kim, Chun K; Zeleznik-Le, Nancy J; Pak, Toni R

    2017-05-01

    Teenage binge drinking is a major health concern in the United States, with 21% of teenagers reporting binge-pattern drinking behavior in the previous 30 days. Recently, our lab showed that alcohol-naïve offspring of rats exposed to alcohol during adolescence exhibited altered gene expression profiles in the hypothalamus, a brain region involved in stress regulation. We employed Enhanced Reduced Representation Bisulfite Sequencing as an unbiased approach to test the hypothesis that parental exposure to binge-pattern alcohol during adolescence alters DNA methylation profiles in their alcohol-naïve offspring. Wistar rats were administered a repeated binge-ethanol exposure paradigm during early (postnatal day (PND) 37-44) and late (PND 67-74) adolescent development. Animals were mated 24 h after the last ethanol dose and subsequent offspring were produced. Analysis of male PND7 offspring revealed that offspring of alcohol-exposed parents exhibited differential DNA methylation patterns in the hypothalamus. The differentially methylated cytosines (DMCs) were distinct between offspring depending on which parent was exposed to ethanol. Moreover, novel DMCs were observed when both parents were exposed to ethanol and many DMCs from single parent ethanol exposure were not recapitulated with dual parent exposure. We also measured mRNA expression of several differentially methylated genes and some, but not all, showed correlative changes in expression. Importantly, methylation was not a direct predictor of expression levels, underscoring the complexity of transcriptional regulation. Overall, we demonstrate that adolescent binge ethanol exposure causes altered genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Adolescent binge-pattern alcohol exposure alters genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve male offspring

    PubMed Central

    Asimes, AnnaDorothea; Torcaso, Audrey; Pinceti, Elena; Kim, Chun K; Zeleznik-Le, Nancy J.; Pak, Toni R.

    2016-01-01

    Teenage binge drinking is a major health concern in the United States, with 21% of teenagers reporting binge-pattern drinking behavior in the last 30 days. Recently, our lab showed that alcohol-naïve offspring of rats exposed to alcohol during adolescence exhibited altered gene expression profiles in the hypothalamus, a brain region involved in stress regulation. We employed Enhanced Reduced Representation Bisulfite Sequencing as an unbiased approach to test the hypothesis that parental exposure to binge-pattern alcohol during adolescence alters DNA methylation profiles in their alcohol-naïve offspring. Wistar rats were administered a repeated binge-ethanol exposure paradigm during early (postnatal day (PND) 37-44) and late (PND 67-74) adolescent development. Animals were mated 24h after the last ethanol dose and subsequent offspring were produced. Analysis of male PND7 offspring revealed that offspring of alcohol-exposed parents exhibited differential DNA methylation patterns in the hypothalamus. The differentially methylated cytosines (DMCs) were distinct between offspring depending on which parent was exposed to ethanol. Moreover, novel DMCs were observed when both parents were exposed to ethanol and many DMCs from single parent ethanol exposure were not recapitulated with dual parent exposure. We also measured mRNA expression of several differentially methylated genes and some, but not all, showed correlative changes in expression. Importantly, methylation was not a direct predictor of expression levels, underscoring the complexity of transcriptional regulation. Overall, we demonstrate that adolescent binge ethanol exposure causes altered genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve offspring. PMID:27817987

  4. Controlling morphology in swelling-induced wrinkled surfaces

    NASA Astrophysics Data System (ADS)

    Breid, Derek Ronald

    Wrinkles represent a pathway towards the spontaneous generation of ordered surface microstructure for applications in numerous fields. Examples of highly complex ordered wrinkle structures abound in Nature, but the ability to harness this potential for advanced material applications remains limited. This work focuses on understanding the relationship between the patterns on a wrinkled surface and the experimental conditions under which they form. Because wrinkles form in response to applied stresses, particular attention is given to the nature of the stresses in a wrinkling surface. The fundamental insight gained was then utilized to account for observed wrinkle formation phenomena within more complex geometric and kinetic settings. In order to carefully control and measure the applied stresses on a wrinkling film, a swelling-based system was developed using poly(dimethylsiloxane) (PDMS), surface-oxidized with a UV-ozone treatment. The swelling of the oxidized surface upon exposure to an ethanol vapor atmosphere was characterized using beam-bending experiments, allowing quantitative measurements of the applied stress. The wrinkle morphologies were characterized as a function of the overstress, defined as the ratio of the applied swelling stress to the critical buckling stress of the material. A transition in the dominant morphology of the wrinkled surfaces from dimple patterns to ridge patterns was observed at an overstress value of ˜2. The pattern dependence of wrinkles on the ratio of the principal stresses was examined by fabricating samples with a gradient prestress. When swollen, these samples exhibited a smooth morphological transition from non-equibiaxial to equibiaxial patterns, with prestrains as low as 2.5% exhibiting non-equibiaxial characteristics. This transition was seen both in samples with low and high overstresses. To explore the impact of these stress states in more complex geometries, wrinkling hemispherical surfaces with radii of curvature ranging from 50--1000 μm were fabricated using the same material system. Upon wrinkling, the hemispheres formed complex hierarchical assemblies reminiscent of naturally occurring structures. The curvature of a surface exhibited a correlation with its critical buckling stress, independent of other factors. This enables the surface curvature to be used as an independent control over the dimple-to-ridge transition which occurs as a function of overstress. As in the flat buckling surfaces, this transition was shown to occur at an overstress value of ˜2. Surface curvature was also shown to improve the observed hexagonal ordering of the dimple arrays, resulting in the formation of regular "golf ball" structures. Geometric effects in finite flat plates were also examined. Using circular masks during the oxidation process, plates with radii ranging from 0.4--8.6 mm were created. Upon wrinkling, a dimple-to-ridge transition was observed with increasing plate size, with the morphological switch occurring at a radius of ˜2 mm. This observed transition was not found to be due to the inherent mechanics of plates of different sizes, but instead to a reduction in the oxide conversion due to shadowing or stagnation caused by the masking process, which lowered the applied overstress. The shape of the finite plate was found to have little impact on the resulting wrinkle morphologies. Kinetic aspects of wrinkling were qualitatively characterized by observing the wrinkling process over the course of swelling. Wrinkling was observed to frontally propagate across the surface, and the ordering of the patterns which developed showed a qualitative correlation with the degree of uniformity in the advancing wrinkle front. Swelling with different solvents was found to lead to the formation of different patterns, based on the swelling kinetics of the UVO-treated PDMS upon exposure to each solvent.

  5. Alternans and Spiral Breakup in an Excitable Reaction-Diffusion System: A Simulation Study

    PubMed Central

    Gani, M. Osman; Ogawa, Toshiyuki

    2014-01-01

    The determination of the mechanisms of spiral breakup in excitable media is still an open problem for researchers. In the context of cardiac electrophysiological activities, spiral breakup exhibits complex spatiotemporal pattern known as ventricular fibrillation. The latter is the major cause of sudden cardiac deaths all over the world. In this paper, we numerically study the instability of periodic planar traveling wave solution in two dimensions. The emergence of stable spiral pattern is observed in the considered model. This pattern occurs when the heart is malfunctioning (i.e., ventricular tachycardia). We show that the spiral wave breakup is a consequence of the transverse instability of the planar traveling wave solutions. The alternans, that is, the oscillation of pulse widths, is observed in our simulation results. Moreover, we calculate the widths of spiral pulses numerically and observe that the stable spiral pattern bifurcates to an oscillatory wave pattern in a one-parameter family of solutions. The spiral breakup occurs far below the bifurcation when the maximum and the minimum excited states become more distinct, and hence the alternans becomes more pronounced. PMID:27379274

  6. Alternans and Spiral Breakup in an Excitable Reaction-Diffusion System: A Simulation Study.

    PubMed

    Gani, M Osman; Ogawa, Toshiyuki

    2014-01-01

    The determination of the mechanisms of spiral breakup in excitable media is still an open problem for researchers. In the context of cardiac electrophysiological activities, spiral breakup exhibits complex spatiotemporal pattern known as ventricular fibrillation. The latter is the major cause of sudden cardiac deaths all over the world. In this paper, we numerically study the instability of periodic planar traveling wave solution in two dimensions. The emergence of stable spiral pattern is observed in the considered model. This pattern occurs when the heart is malfunctioning (i.e., ventricular tachycardia). We show that the spiral wave breakup is a consequence of the transverse instability of the planar traveling wave solutions. The alternans, that is, the oscillation of pulse widths, is observed in our simulation results. Moreover, we calculate the widths of spiral pulses numerically and observe that the stable spiral pattern bifurcates to an oscillatory wave pattern in a one-parameter family of solutions. The spiral breakup occurs far below the bifurcation when the maximum and the minimum excited states become more distinct, and hence the alternans becomes more pronounced.

  7. Large-Scale Patterns in a Minimal Cognitive Flocking Model: Incidental Leaders, Nematic Patterns, and Aggregates.

    PubMed

    Barberis, Lucas; Peruani, Fernando

    2016-12-09

    We study a minimal cognitive flocking model, which assumes that the moving entities navigate using the available instantaneous visual information exclusively. The model consists of active particles, with no memory, that interact by a short-ranged, position-based, attractive force, which acts inside a vision cone (VC), and lack velocity-velocity alignment. We show that this active system can exhibit-due to the VC that breaks Newton's third law-various complex, large-scale, self-organized patterns. Depending on parameter values, we observe the emergence of aggregates or millinglike patterns, the formation of moving-locally polar-files with particles at the front of these structures acting as effective leaders, and the self-organization of particles into macroscopic nematic structures leading to long-ranged nematic order. Combining simulations and nonlinear field equations, we show that position-based active models, as the one analyzed here, represent a new class of active systems fundamentally different from other active systems, including velocity-alignment-based flocking systems. The reported results are of prime importance in the study, interpretation, and modeling of collective motion patterns in living and nonliving active systems.

  8. Singular patterns for an aggregation model with a confining potential

    NASA Astrophysics Data System (ADS)

    Kolokolnikov, Theodore; Huang, Yanghong; Pavlovski, Mark

    2013-10-01

    We consider the aggregation equation with an attractive-repulsive force law. Recent studies (Kolokolnikov et al. (2011) [22]; von Brecht et al. (2012) [23]; Balague et al. (2013) [15]) have demonstrated that this system exhibits a very rich solution structure, including steady states consisting of rings, spots, annuli, N-fold symmetries, soccer-ball patterns etc. We show that many of these patterns can be understood as singular perturbations off lower-dimensional equilibrium states. For example, an annulus is a bifurcation from a ring; soccer-ball patterns bifurcate off solutions that consist of delta-point concentrations. We apply asymptotic methods to classify the form and stability of many of these patterns. To characterize spot solutions, a class of “semi-linear” aggregation problems is derived, where the repulsion is described by a nonlinear term and the attraction is linear but non-symmetric. For a special class of perturbations that consists of a Newtonian repulsion, the spot shape is shown to be an ellipse whose precise dimensions are determined via a complex variable method. For annular shapes, their width and radial density profile are described using perturbation techniques.

  9. Roles for SH2 and SH3 domains in Lyn kinase association with activated FcepsilonRI in RBL mast cells revealed by patterned surface analysis.

    PubMed

    Hammond, Stephanie; Wagenknecht-Wiesner, Alice; Veatch, Sarah L; Holowka, David; Baird, Barbara

    2009-10-01

    In mast cells, antigen-mediated cross-linking of IgE bound to its high-affinity surface receptor, FcepsilonRI, initiates a signaling cascade that culminates in degranulation and release of allergic mediators. Antigen-patterned surfaces, in which the antigen is deposited in micron-sized features on a silicon substrate, were used to examine the spatial relationship between clustered IgE-FcepsilonRI complexes and Lyn, the signal-initiating tyrosine kinase. RBL mast cells expressing wild-type Lyn-EGFP showed co-redistribution of this protein with clustered IgE receptors on antigen-patterned surfaces, whereas Lyn-EGFP containing an inhibitory point mutation in its SH2 domain did not significantly accumulate with the patterned antigen, and Lyn-EGFP with an inhibitory point mutation in its SH3 domain exhibited reduced interactions. Our results using antigen-patterned surfaces and quantitative cross-correlation image analysis reveal that both the SH2 and SH3 domains contribute to interactions between Lyn kinase and cross-linked IgE receptors in stimulated mast cells.

  10. From iconic handshapes to grammatical contrasts: longitudinal evidence from a child homesigner

    PubMed Central

    Coppola, Marie; Brentari, Diane

    2014-01-01

    Many sign languages display crosslinguistic consistencies in the use of two iconic aspects of handshape, handshape type and finger group complexity. Handshape type is used systematically in form-meaning pairings (morphology): Handling handshapes (Handling-HSs), representing how objects are handled, tend to be used to express events with an agent (“hand-as-hand” iconicity), and Object handshapes (Object-HSs), representing an object's size/shape, are used more often to express events without an agent (“hand-as-object” iconicity). Second, in the distribution of meaningless properties of form (morphophonology), Object-HSs display higher finger group complexity than Handling-HSs. Some adult homesigners, who have not acquired a signed or spoken language and instead use a self-generated gesture system, exhibit these two properties as well. This study illuminates the development over time of both phenomena for one child homesigner, “Julio,” age 7;4 (years; months) to 12;8. We elicited descriptions of events with and without agents to determine whether morphophonology and morphosyntax can develop without linguistic input during childhood, and whether these structures develop together or independently. Within the time period studied: (1) Julio used handshape type differently in his responses to vignettes with and without an agent; however, he did not exhibit the same pattern that was found previously in signers, adult homesigners, or gesturers: while he was highly likely to use a Handling-HS for events with an agent (82%), he was less likely to use an Object-HS for non-agentive events (49%); i.e., his productions were heavily biased toward Handling-HSs; (2) Julio exhibited higher finger group complexity in Object- than in Handling-HSs, as in the sign language and adult homesigner groups previously studied; and (3) these two dimensions of language developed independently, with phonological structure showing a sign language-like pattern at an earlier age than morphosyntactic structure. We conclude that iconicity alone is not sufficient to explain the development of linguistic structure in homesign systems. Linguistic input is not required for some aspects of phonological structure to emerge in childhood, and while linguistic input is not required for morphology either, it takes time to emerge in homesign. PMID:25191283

  11. Interaction and formation mechanism of binary complex between zein and propylene glycol alginate.

    PubMed

    Sun, Cuixia; Dai, Lei; Gao, Yanxiang

    2017-02-10

    The anti-solvent co-precipitation method was used to fabricate the zein-propylene glycol alginate (PGA) binary complex with different mass ratios of zein to PGA (20:1, 10:1, 5:1, 2:1 and 1:1) at pH 4.0. Results showed that attractive electrostatic interaction between zein and PGA occurred and negatively charged binary complex with large size and high turbidity was formed due to the charge neutralization. Hydrogen bonding and hydrophobic effects were involved in the interactions between zein and PGA, leading to the changed secondary structure and improved thermal stability of zein. Aggregates in the irregular shape with large size were obviously observed in the AFM images. PGA alone exhibited a fine filamentous network structure, while zein-PGA binary complex showed a rough branch-like pattern and the surface of "branch" was closely adsorbed by lots of spherical zein particles. Q in zein-PGA binary complex dispersions presented the improved photochemical and thermal stability. The potential mechanism of a two-step process was proposed to explain the formation of zein-PGA binary complexes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Dissipative structures induced by spin-transfer torques in nanopillars

    NASA Astrophysics Data System (ADS)

    León, Alejandro O.; Clerc, Marcel G.; Coulibaly, Saliya

    2014-02-01

    Macroscopic magnetic systems subjected to external forcing exhibit complex spatiotemporal behaviors as result of dissipative self-organization. Pattern formation from a uniform magnetization state, induced by the combination of a spin-polarized current and an external magnetic field, is studied for spin-transfer nano-oscillator devices. The system is described in the continuous limit by the Landau-Lifshitz-Gilbert equation. The bifurcation diagram of the quintessence parallel state, as a function of the external field and current, is elucidated. We have shown analytically that this state exhibits a spatial supercritical quintic bifurcation, which generates in two spatial dimensions a family of stationary stripes, squares, and superlattice states. Analytically, we have characterized their respective stabilities and bifurcations, which are controlled by a single dimensionless parameter. This scenario is confirmed numerically.

  13. Emergence of hysteresis loop in social contagions on complex networks.

    PubMed

    Su, Zhen; Wang, Wei; Li, Lixiang; Xiao, Jinghua; Stanley, H Eugene

    2017-07-21

    Understanding the spreading mechanisms of social contagions in complex network systems has attracted much attention in the physics community. Here we propose a generalized threshold model to describe social contagions. Using extensive numerical simulations and theoretical analyses, we find that a hysteresis loop emerges in the system. Specifically, the steady state of the system is sensitive to the initial conditions of the dynamics of the system. In the steady state, the adoption size increases discontinuously with the transmission probability of information about social contagions, and trial size exhibits a non-monotonic pattern, i.e., it first increases discontinuously then decreases continuously. Finally we study social contagions on heterogeneous networks and find that network topology does not qualitatively affect our results.

  14. Review of the crevalle jacks, Caranx hippos complex (Teleostei: Carangidae), with a description of a new species from West Africa

    USGS Publications Warehouse

    Smith-Vaniz, W.F.; Carpenter, K.E.

    2007-01-01

    The Caranx hippos species complex comprises three extant species: crevalle jack (Caranx hippos) (Linnaeus, 1766) from both the western and eastern Atlantic oceans; Pacific crevalle jack (Caranx caninus) Gu??nther, 1868 from the eastern Pacific Ocean; and longfin crevalle jack (Caranx fischeri) new species, from the eastern Atlantic, including the Mediterranean Sea and Ascension Island. Adults of all three species are superficially similar with a black blotch on the lower half of the pectoral fin, a black spot on the upper margin of opercle, one or two pairs of enlarged symphyseal canines on the lower jaw, and a similar pattern of breast squamation. Each species has a different pattern of hyperostotic bone development and anal-fin color. The two sympatric eastern Atlantic species also differ from each other in number of dorsal- and anal-fin rays, and in large adults of C. fischeri the lobes of these fins are longer and the body is deeper. Caranx hippos from opposite sides of the Atlantic are virtually indistinguishable externally but differ consistently in the expression of hyperostosis of the first dorsal-fin pterygiophore. The fossil species Caranx carangopsis Steindachner 1859 appears to have been based on composite material of Trachurus sp. and a fourth species of the Caranx hippos complex. Patterns of hyperostotic bone development are compared in the nine (of 15 total) species of Caranx sensu stricto that exhibit hyperostosis.

  15. The study of RMB exchange rate complex networks based on fluctuation mode

    NASA Astrophysics Data System (ADS)

    Yao, Can-Zhong; Lin, Ji-Nan; Zheng, Xu-Zhou; Liu, Xiao-Feng

    2015-10-01

    In the paper, we research on the characteristics of RMB exchange rate time series fluctuation with methods of symbolization and coarse gaining. First, based on fluctuation features of RMB exchange rate, we define the first type of fluctuation mode as one specific foreign currency against RMB in four days' fluctuating situations, and the second type as four different foreign currencies against RMB in one day's fluctuating situation. With the transforming method, we construct the unique-currency and multi-currency complex networks. Further, through analyzing the topological features including out-degree, betweenness centrality and clustering coefficient of fluctuation-mode complex networks, we find that the out-degree distribution of both types of fluctuation mode basically follows power-law distributions with exponents between 1 and 2. The further analysis reveals that the out-degree and the clustering coefficient generally obey the approximated negative correlation. With this result, we confirm previous observations showing that the RMB exchange rate exhibits a characteristic of long-range memory. Finally, we analyze the most probable transmission route of fluctuation modes, and provide probability prediction matrix. The transmission route for RMB exchange rate fluctuation modes exhibits the characteristics of partially closed loop, repeat and reversibility, which lays a solid foundation for predicting RMB exchange rate fluctuation patterns with large volume of data.

  16. Rare earth elements geochemistry in springs from Taftan geothermal area SE Iran

    NASA Astrophysics Data System (ADS)

    Shakeri, Ata; Ghoreyshinia, Sayedkazem; Mehrabi, Behzad; Delavari, Morteza

    2015-10-01

    Concentrations of rare earth elements (REEs) were determined in springs and andesitic-dacitic rocks of Taftan geothermal field. Hydrochemical results of major ions indicate that thermal springs are Na-SO4-Cl and Ca-SO4-Cl types. Concentrations of REEs are in ranges of 10- 4 to 1.2 and 49 to 62 times of chondrite for springwater and rock samples, respectively. The thermal (STS and TTS) and the cold (APS) springs with low pH values exhibit a very high REE contents (0.64 to 3.15 mg/l). Saturation index indicates that Fe and Al phases can control dissolved REE concentration in FTS and PF cold springs. The speciation of REE complexes indicates dominant presence of LnSO4+ and free ion in the Taftan thermal springs. In APS cold spring with pH 4, fluoride complexes are dominate over the free ion and sulfate species, while in PF and FTS cold springs with pH 6.4 and 7, respectively, carbonate complexes (LnCO3+) are predominant species. Chondrite-normalized pattern for the low-pH waters show very distinctive gull-wing patterns, characteristic feature of acid-sulfate geothermal systems, and are similar to those of the host rocks. Chemical characteristics of rare earth elements in spring and volcanic rock samples indicate that REEs are originated from the andesitic-dacitic host rocks. Whole-rock-normalized REE patterns and petrographic evidences show that rare earth elements leached mainly from marginal alteration of minerals and matrix decomposition in volcanic rocks. In chondrite-normalized REE patterns, significant negative Eu anomaly in the cold springs compare to the thermal and acidic springs indicates that alteration of plagioclase is more intense in the later, corresponding to increasing in temperature and acidic state of reactant water.

  17. Directed forgetting of complex pictures in an item method paradigm.

    PubMed

    Hauswald, Anne; Kissler, Johanna

    2008-11-01

    An item-cued directed forgetting paradigm was used to investigate the ability to control episodic memory and selectively encode complex coloured pictures. A series of photographs was presented to 21 participants who were instructed to either remember or forget each picture after it was presented. Memory performance was later tested with a recognition task where all presented items had to be retrieved, regardless of the initial instructions. A directed forgetting effect--that is, better recognition of "to-be-remembered" than of "to-be-forgotten" pictures--was observed, although its size was smaller than previously reported for words or line drawings. The magnitude of the directed forgetting effect correlated negatively with participants' depression and dissociation scores. The results indicate that, at least in an item method, directed forgetting occurs for complex pictures as well as words and simple line drawings. Furthermore, people with higher levels of dissociative or depressive symptoms exhibit altered memory encoding patterns.

  18. Bringing Together Evolution on Serpentine and Polyploidy: Spatiotemporal History of the Diploid-Tetraploid Complex of Knautia arvensis (Dipsacaceae)

    PubMed Central

    Kolář, Filip; Fér, Tomáš; Štech, Milan; Trávníček, Pavel; Dušková, Eva; Schönswetter, Peter; Suda, Jan

    2012-01-01

    Polyploidization is one of the leading forces in the evolution of land plants, providing opportunities for instant speciation and rapid gain of evolutionary novelties. Highly selective conditions of serpentine environments act as an important evolutionary trigger that can be involved in various speciation processes. Whereas the significance of both edaphic speciation on serpentine and polyploidy is widely acknowledged in plant evolution, the links between polyploid evolution and serpentine differentiation have not yet been examined. To fill this gap, we investigated the evolutionary history of the perennial herb Knautia arvensis (Dipsacaceae), a diploid-tetraploid complex that exhibits an intriguing pattern of eco-geographic differentiation. Using plastid DNA sequencing and AFLP genotyping of 336 previously cytotyped individuals from 40 populations from central Europe, we unravelled the patterns of genetic variation among the cytotypes and the edaphic types. Diploids showed the highest levels of genetic differentiation, likely as a result of long term persistence of several lineages in ecologically distinct refugia and/or independent immigration. Recurrent polyploidization, recorded in one serpentine island, seems to have opened new possibilities for the local serpentine genotype. Unlike diploids, the serpentine tetraploids were able to escape from the serpentine refugium and spread further; this was also attributable to hybridization with the neighbouring non-serpentine tetraploid lineages. The spatiotemporal history of K. arvensis allows tracing the interplay of polyploid evolution and ecological divergence on serpentine, resulting in a complex evolutionary pattern. Isolated serpentine outcrops can act as evolutionary capacitors, preserving distinct karyological and genetic diversity. The serpentine lineages, however, may not represent evolutionary ‘dead-ends’ but rather dynamic systems with a potential to further influence the surrounding populations, e.g., via independent polyplodization and hybridization. The complex eco-geographical pattern together with the incidence of both primary and secondary diploid-tetraploid contact zones makes K. arvensis a unique system for addressing general questions of polyploid research. PMID:22792207

  19. Complex within a Complex: Integrative Taxonomy Reveals Hidden Diversity in Cicadetta brevipennis (Hemiptera: Cicadidae) and Unexpected Relationships with a Song Divergent Relative

    PubMed Central

    Hertach, Thomas; Puissant, Stéphane; Gogala, Matija; Trilar, Tomi; Hagmann, Reto; Baur, Hannes; Kunz, Gernot; Wade, Elizabeth J.; Loader, Simon P.; Simon, Chris; Nagel, Peter

    2016-01-01

    Multiple sources of data in combination are essential for species delimitation and classification of difficult taxonomic groups. Here we investigate a cicada taxon with unusual cryptic diversity and we attempt to resolve seemingly contradictory data sets. Cicada songs act as species-specific premating barriers and have been used extensively to reveal hidden taxonomic diversity in morphologically similar species. The Palaearctic Cicadetta montana species complex is an excellent example where distinct song patterns have disclosed multiple recently described species. Indeed, two taxa turned out to be especially diverse in that they form a “complex within the complex”: the Cicadetta cerdaniensis song group (four species studied previously) and Cicadetta brevipennis (examined in details here). Based on acoustic, morphological, molecular, ecological and spatial data sampled throughout their broad European distribution, we find that Cicadetta brevipennis s. l. comprises five lineages. The most distinct lineage is identified as Cicadetta petryi Schumacher, 1924, which we re-assign to the species level. Cicadetta brevipennis litoralis Puissant & Hertach ssp. n. and Cicadetta brevipennis hippolaidica Hertach ssp. n. are new to science. The latter hybridizes with Cicadetta brevipennis brevipennis Fieber, 1876 at a zone inferred from intermediate song patterns. The fifth lineage requires additional investigation. The C. cerdaniensis and the C. brevipennis song groups exhibit characteristic, clearly distinct basic song patterns that act as reproductive barriers. However, they remain completely intermixed in the Bayesian and maximum likelihood COI and COII mitochondrial DNA phylogenies. The closest relative of each of the four cerdaniensis group species is a brevipennis group taxon. In our favoured scenario the phylogenetic pairs originated in common Pleistocene glacial refuges where the taxa speciated and experienced sporadic inter-group hybridization leading to extensive introgression and mitochondrial capture. PMID:27851754

  20. High-Performance Design Patterns for Modern Fortran

    DOE PAGES

    Haveraaen, Magne; Morris, Karla; Rouson, Damian; ...

    2015-01-01

    This paper presents ideas for using coordinate-free numerics in modern Fortran to achieve code flexibility in the partial differential equation (PDE) domain. We also show how Fortran, over the last few decades, has changed to become a language well-suited for state-of-the-art software development. Fortran’s new coarray distributed data structure, the language’s class mechanism, and its side-effect-free, pure procedure capability provide the scaffolding on which we implement HPC software. These features empower compilers to organize parallel computations with efficient communication. We present some programming patterns that support asynchronous evaluation of expressions comprised of parallel operations on distributed data. We implemented thesemore » patterns using coarrays and the message passing interface (MPI). We compared the codes’ complexity and performance. The MPI code is much more complex and depends on external libraries. The MPI code on Cray hardware using the Cray compiler is 1.5–2 times faster than the coarray code on the same hardware. The Intel compiler implements coarrays atop Intel’s MPI library with the result apparently being 2–2.5 times slower than manually coded MPI despite exhibiting nearly linear scaling efficiency. As compilers mature and further improvements to coarrays comes in Fortran 2015, we expect this performance gap to narrow.« less

  1. On the pattern of black hole information release

    NASA Astrophysics Data System (ADS)

    Park, I. Y.; James, F.

    2014-03-01

    We propose a step towards a resolution to black hole information paradox by analyzing scattering amplitudes of a complex scalar field around a Schwarzschild black hole. The scattering cross-section reveals much information on the incoming state but exhibits flux loss at the same time. The flux loss should be temporary, and indicate mass growth of the black hole. The black hole should Hawking-radiate subsequently, thereby, compensating for the flux loss. By examining the purity issue, we comment on the possibility that information bleaching may be the key to the paradox.

  2. Recognition of building group patterns in topographic maps based on graph partitioning and random forest

    NASA Astrophysics Data System (ADS)

    He, Xianjin; Zhang, Xinchang; Xin, Qinchuan

    2018-02-01

    Recognition of building group patterns (i.e., the arrangement and form exhibited by a collection of buildings at a given mapping scale) is important to the understanding and modeling of geographic space and is hence essential to a wide range of downstream applications such as map generalization. Most of the existing methods develop rigid rules based on the topographic relationships between building pairs to identify building group patterns and thus their applications are often limited. This study proposes a method to identify a variety of building group patterns that allow for map generalization. The method first identifies building group patterns from potential building clusters based on a machine-learning algorithm and further partitions the building clusters with no recognized patterns based on the graph partitioning method. The proposed method is applied to the datasets of three cities that are representative of the complex urban environment in Southern China. Assessment of the results based on the reference data suggests that the proposed method is able to recognize both regular (e.g., the collinear, curvilinear, and rectangular patterns) and irregular (e.g., the L-shaped, H-shaped, and high-density patterns) building group patterns well, given that the correctness values are consistently nearly 90% and the completeness values are all above 91% for three study areas. The proposed method shows promises in automated recognition of building group patterns that allows for map generalization.

  3. Fabrication and single-electron-transfer operation of a triple-dot single-electron transistor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jo, Mingyu, E-mail: mingyujo@eis.hokudai.ac.jp; Uchida, Takafumi; Tsurumaki-Fukuchi, Atsushi

    2015-12-07

    A triple-dot single-electron transistor was fabricated on silicon-on-insulator wafer using pattern-dependent oxidation. A specially designed one-dimensional silicon wire having small constrictions at both ends was converted to a triple-dot single-electron transistor by means of pattern-dependent oxidation. The fabrication of the center dot involved quantum size effects and stress-induced band gap reduction, whereas that of the two side dots involved thickness modulation because of the complex edge structure of two-dimensional silicon. Single-electron turnstile operation was confirmed at 8 K when a 100-mV, 1-MHz square wave was applied. Monte Carlo simulations indicated that such a device with inhomogeneous tunnel and gate capacitances canmore » exhibit single-electron transfer.« less

  4. The ventralizing activity of Radar, a maternally expressed bone morphogenetic protein, reveals complex bone morphogenetic protein interactions controlling dorso-ventral patterning in zebrafish.

    PubMed

    Goutel, C; Kishimoto, Y; Schulte-Merker, S; Rosa, F

    2000-12-01

    In Xenopus and zebrafish, BMP2, 4 and 7 have been implicated, after the onset of zygotic expression, in inducing and maintaining ventro-lateral cell fate during early development. We provide evidence here that a maternally expressed bone morphogenetic protein (BMP), Radar, may control early ventral specification in zebrafish. We show that Radar ventralizes zebrafish embryos and induces the early expression of bmp2b and bmp4. The analysis of Radar overexpression in both swirl/bmp2b mutants and embryos expressing truncated BMP receptors shows that Radar-induced ventralization is dependent on functional BMP2/4 pathways, and may initially rely on an Alk6-related signaling pathway. Finally, we show that while radar-injected swirl embryos still exhibit a strongly dorsalized phenotype, the overexpression of Radar into swirl/bmp2b mutant embryos restores ventral marker expression, including bmp4 expression. Our results suggest that a complex regulation of different BMP pathways controls dorso-ventral (DV) patterning from early cleavage stages until somitogenesis.

  5. Cyclophilin A stabilizes the HIV-1 capsid through a novel non-canonical binding site

    NASA Astrophysics Data System (ADS)

    Liu, Chuang; Perilla, Juan R.; Ning, Jiying; Lu, Manman; Hou, Guangjin; Ramalho, Ruben; Himes, Benjamin A.; Zhao, Gongpu; Bedwell, Gregory J.; Byeon, In-Ja; Ahn, Jinwoo; Gronenborn, Angela M.; Prevelige, Peter E.; Rousso, Itay; Aiken, Christopher; Polenova, Tatyana; Schulten, Klaus; Zhang, Peijun

    2016-03-01

    The host cell factor cyclophilin A (CypA) interacts directly with the HIV-1 capsid and regulates viral infectivity. Although the crystal structure of CypA in complex with the N-terminal domain of the HIV-1 capsid protein (CA) has been known for nearly two decades, how CypA interacts with the viral capsid and modulates HIV-1 infectivity remains unclear. We determined the cryoEM structure of CypA in complex with the assembled HIV-1 capsid at 8-Å resolution. The structure exhibits a distinct CypA-binding pattern in which CypA selectively bridges the two CA hexamers along the direction of highest curvature. EM-guided all-atom molecular dynamics simulations and solid-state NMR further reveal that the CypA-binding pattern is achieved by single-CypA molecules simultaneously interacting with two CA subunits, in different hexamers, through a previously uncharacterized non-canonical interface. These results provide new insights into how CypA stabilizes the HIV-1 capsid and is recruited to facilitate HIV-1 infection.

  6. Molecular identification of PpHDAC1, the first histone deacetylase fron the slime mold Physarum polycephalum.

    PubMed

    Brandtner, Eva-Maria; Lechner, Thomas; Loidl, Peter; Lusser, Alexandra

    2002-01-01

    The dynamic state of post-translational acetylation of eukaryotic histones is maintained by histone acetyltransferases (HATs) and histone deacetylases (HDACs). HATs and HDACs have been shown to be components of various regulatory protein complexes in the cell. Their enzymatic activities, intracellular localization and substrate specificities are regulated in a complex, cell cycle related manner. In the myxomycete Physarum polycephalum multiple HATs and HDACs can be distinguished in biochemical terms and they exhibit dynamic activity patterns depending on the cell cycle stage. Here we report on the cloning of the first P. polycephalum HDAC (PpHDAC1) related to the S. cerevisiae Rpd3 protein. The expression pattern of PpHDAC1 mRNA was analysed at different time points of the cell cycle and found to be largely constant. Treatment of macroplasmodia with the HDAC inhibitor trichostatin A at several cell cycle stages resulted in a significant delay in entry into mitosis of treated versus untreated plasmodia. No effect of TSA treatment could be observed on PpHDAC1 expression itself.

  7. Spatiotemporal dynamics of black-tailed prairie dog colonies affected by plague

    USGS Publications Warehouse

    Augustine, D.J.; Matchett, M.R.; Toombs, T.P.; Cully, J.F.; Johnson, T.L.; Sidle, John G.

    2008-01-01

    Black-tailed prairie dogs (Cynomys ludovicianus) are a key component of the disturbance regime in semi-arid grasslands of central North America. Many studies have compared community and ecosystem characteristics on prairie dog colonies to grasslands without prairie dogs, but little is known about landscape-scale patterns of disturbance that prairie dog colony complexes may impose on grasslands over long time periods. We examined spatiotemporal dynamics in two prairie dog colony complexes in southeastern Colorado (Comanche) and northcentral Montana (Phillips County) that have been strongly influenced by plague, and compared them to a complex unaffected by plague in northwestern Nebraska (Oglala). Both plague-affected complexes exhibited substantial spatiotemporal variability in the area occupied during a decade, in contrast to the stability of colonies in the Oglala complex. However, the plague-affected complexes differed in spatial patterns of colony movement. Colonies in the Comanche complex in shortgrass steppe shifted locations over a decade. Only 10% of the area occupied in 1995 was still occupied by prairie dogs in 2006. In 2005 and 2006 respectively, 74 and 83% of the total area of the Comanche complex occurred in locations that were not occupied in 1995, and only 1% of the complex was occupied continuously over a decade. In contrast, prairie dogs in the Phillips County complex in mixed-grass prairie and sagebrush steppe primarily recolonized previously occupied areas after plague-induced colony declines. In Phillips County, 62% of the area occupied in 1993 was also occupied by prairie dogs in 2004, and 12% of the complex was occupied continuously over a decade. Our results indicate that plague accelerates spatiotemporal movement of prairie dog colonies, and have significant implications for landscape-scale effects of prairie dog disturbance on grassland composition and productivity. These findings highlight the need to combine landscape-scale measures of habitat suitability with long-term measures of colony locations to understand the role of plague-affected prairie dogs as a grassland disturbance process. ?? 2007 Springer Science+Business Media B.V.

  8. Mitochondrial Complex 1 Activity Measured by Spectrophotometry Is Reduced across All Brain Regions in Ageing and More Specifically in Neurodegeneration.

    PubMed

    Pollard, Amelia Kate; Craig, Emma Louise; Chakrabarti, Lisa

    2016-01-01

    Mitochondrial function, in particular complex 1 of the electron transport chain (ETC), has been shown to decrease during normal ageing and in neurodegenerative disease. However, there is some debate concerning which area of the brain has the greatest complex 1 activity. It is important to identify the pattern of activity in order to be able to gauge the effect of age or disease related changes. We determined complex 1 activity spectrophotometrically in the cortex, brainstem and cerebellum of middle aged mice (70-71 weeks), a cerebellar ataxic neurodegeneration model (pcd5J) and young wild type controls. We share our updated protocol on the measurements of complex1 activity and find that mitochondrial fractions isolated from frozen tissues can be measured for robust activity. We show that complex 1 activity is clearly highest in the cortex when compared with brainstem and cerebellum (p<0.003). Cerebellum and brainstem mitochondria exhibit similar levels of complex 1 activity in wild type brains. In the aged brain we see similar levels of complex 1 activity in all three-brain regions. The specific activity of complex 1 measured in the aged cortex is significantly decreased when compared with controls (p<0.0001). Both the cerebellum and brainstem mitochondria also show significantly reduced activity with ageing (p<0.05). The mouse model of ataxia predictably has a lower complex 1 activity in the cerebellum, and although reductions are measured in the cortex and brain stem, the remaining activity is higher than in the aged brains. We present clear evidence that complex 1 activity decreases across the brain with age and much more specifically in the cerebellum of the pcd5j mouse. Mitochondrial impairment can be a region specific phenomenon in disease, but in ageing appears to affect the entire brain, abolishing the pattern of higher activity in cortical regions.

  9. Nonlinear Complexity Analysis of Brain fMRI Signals in Schizophrenia

    PubMed Central

    Sokunbi, Moses O.; Gradin, Victoria B.; Waiter, Gordon D.; Cameron, George G.; Ahearn, Trevor S.; Murray, Alison D.; Steele, Douglas J.; Staff, Roger T.

    2014-01-01

    We investigated the differences in brain fMRI signal complexity in patients with schizophrenia while performing the Cyberball social exclusion task, using measures of Sample entropy and Hurst exponent (H). 13 patients meeting diagnostic and Statistical Manual of Mental Disorders, 4th Edition (DSM IV) criteria for schizophrenia and 16 healthy controls underwent fMRI scanning at 1.5 T. The fMRI data of both groups of participants were pre-processed, the entropy characterized and the Hurst exponent extracted. Whole brain entropy and H maps of the groups were generated and analysed. The results after adjusting for age and sex differences together show that patients with schizophrenia exhibited higher complexity than healthy controls, at mean whole brain and regional levels. Also, both Sample entropy and Hurst exponent agree that patients with schizophrenia have more complex fMRI signals than healthy controls. These results suggest that schizophrenia is associated with more complex signal patterns when compared to healthy controls, supporting the increase in complexity hypothesis, where system complexity increases with age or disease, and also consistent with the notion that schizophrenia is characterised by a dysregulation of the nonlinear dynamics of underlying neuronal systems. PMID:24824731

  10. Iron chelating ligand for iron overload diseases.

    PubMed

    Ozbolat, G; Tuli, A

    2018-01-01

    Iron overloads are a serious clinical condition in the health of humans and are therefore a key target in drug development. In this study, iron(III) complex of 8-hydroxyquinoline-5 sulphonic acid was synthesized and structurally characterized in its solid state and solution state by FT-IR, UV-Vis, elemental analysis, magnetic susceptibility and 1H-NMR. The catalase activities of complex were investigated. It was showed that the complex has the catalase activity. It is suggested that this type of complex may constitute a new and interesting basis for the future search for new and more potential drugs. The electrochemical behaviour patterns of the ligand and complex were examined as supporting electrolyte and platinum electrode for cyclic voltammetry. The electrochemistry studies showed that the reductions in free ligand and complex take place differently.The cytotoxicity was evaluated by MTT assay. The complex exhibited a very high cytotoxic activity and showed a cytotoxic effect that was much better than that of the ligand.The observed cytotoxicity could be pursued to obtain a potential drug. These results indicate that using the 8-hydroxyquinoline-5 sulphonic acid for this aim in further studies is appropriate (Tab. 1, Fig. 4, Ref. 18). Text in PDF www.elis.sk.

  11. Scavengers on the move: behavioural changes in foraging search patterns during the annual cycle.

    PubMed

    López-López, Pascual; Benavent-Corai, José; García-Ripollés, Clara; Urios, Vicente

    2013-01-01

    Optimal foraging theory predicts that animals will tend to maximize foraging success by optimizing search strategies. However, how organisms detect sparsely distributed food resources remains an open question. When targets are sparse and unpredictably distributed, a Lévy strategy should maximize foraging success. By contrast, when resources are abundant and regularly distributed, simple brownian random movement should be sufficient. Although very different groups of organisms exhibit Lévy motion, the shift from a Lévy to a brownian search strategy has been suggested to depend on internal and external factors such as sex, prey density, or environmental context. However, animal response at the individual level has received little attention. We used GPS satellite-telemetry data of Egyptian vultures Neophron percnopterus to examine movement patterns at the individual level during consecutive years, with particular interest in the variations in foraging search patterns during the different periods of the annual cycle (i.e. breeding vs. non-breeding). Our results show that vultures followed a brownian search strategy in their wintering sojourn in Africa, whereas they exhibited a more complex foraging search pattern at breeding grounds in Europe, including Lévy motion. Interestingly, our results showed that individuals shifted between search strategies within the same period of the annual cycle in successive years. Results could be primarily explained by the different environmental conditions in which foraging activities occur. However, the high degree of behavioural flexibility exhibited during the breeding period in contrast to the non-breeding period is challenging, suggesting that not only environmental conditions explain individuals' behaviour but also individuals' cognitive abilities (e.g., memory effects) could play an important role. Our results support the growing awareness about the role of behavioural flexibility at the individual level, adding new empirical evidence about how animals in general, and particularly scavengers, solve the problem of efficiently finding food resources.

  12. CDKL5 gene-related epileptic encephalopathy: electroclinical findings in the first year of life.

    PubMed

    Melani, Federico; Mei, Davide; Pisano, Tiziana; Savasta, Salvatore; Franzoni, Emilio; Ferrari, Anna Rita; Marini, Carla; Guerrini, Renzo

    2011-04-01

    Cyclin-dependent kinase-like 5 (CDKL5) gene abnormalities cause an early-onset epileptic encephalopathy. We performed video-electroencephalography (video-EEG) monitoring early in the course of CDKL5-related epileptic encephalopathy in order to examine the early electroclinical characteristics of the condition. We used video-EEG to monitor six infants (five females, one male) with CDKL5-related epileptic encephalopathy (five mutations; one deletion), at ages 45 days to 12 months and followed them up to the ages of 14 months to 5 years (mean age 23 mo). We focused our analysis on the first year of life. The results were evaluated against those of a comparison group of nine infants (aged below 1y) with epileptic encephalography who had tested negative for CDKL5 mutations and deletions. One infant exhibited normal background activity, three exhibited moderate slowing, and two exhibited a suppression burst pattern. Two participants had epileptic spasms and four had a stereotyped complex seizure pattern, which we defined as a 'prolonged' generalized tonic-clonic event consisting of a tonic-tonic/vibratory contraction, followed by a clonic phase with series of spasms, gradually translating into repetitive distal myoclonic jerks. Seizure duration ranged from 2 to 4 minutes. The EEG correlate of each clinical phase included an initial electrodecremental event (tonic vibratory phase), irregular series of sharp waves and spike slow waves (clonic phase with series of spasms), and bilateral rhythmic sharp waves (time locked with myoclonus). Infants with CDKL5-related early epileptic encephalopathy can present in the first year of life with an unusual electroclinical pattern of 'prolonged' generalized tonic-clonic seizures. © The Authors. Journal compilation © Mac Keith Press 2011.

  13. Beyond the continuum: a multi-dimensional phase space for neutral-niche community assembly.

    PubMed

    Latombe, Guillaume; Hui, Cang; McGeoch, Melodie A

    2015-12-22

    Neutral and niche processes are generally considered to interact in natural communities along a continuum, exhibiting community patterns bounded by pure neutral and pure niche processes. The continuum concept uses niche separation, an attribute of the community, to test the hypothesis that communities are bounded by pure niche or pure neutral conditions. It does not accommodate interactions via feedback between processes and the environment. By contrast, we introduce the Community Assembly Phase Space (CAPS), a multi-dimensional space that uses community processes (such as dispersal and niche selection) to define the limiting neutral and niche conditions and to test the continuum hypothesis. We compare the outputs of modelled communities in a heterogeneous landscape, assembled by pure neutral, pure niche and composite processes. Differences in patterns under different combinations of processes in CAPS reveal hidden complexity in neutral-niche community dynamics. The neutral-niche continuum only holds for strong dispersal limitation and niche separation. For weaker dispersal limitation and niche separation, neutral and niche processes amplify each other via feedback with the environment. This generates patterns that lie well beyond those predicted by a continuum. Inferences drawn from patterns about community assembly processes can therefore be misguided when based on the continuum perspective. CAPS also demonstrates the complementary information value of different patterns for inferring community processes and captures the complexity of community assembly. It provides a general tool for studying the processes structuring communities and can be applied to address a range of questions in community and metacommunity ecology. © 2015 The Author(s).

  14. Beyond the continuum: a multi-dimensional phase space for neutral–niche community assembly

    PubMed Central

    Latombe, Guillaume; McGeoch, Melodie A.

    2015-01-01

    Neutral and niche processes are generally considered to interact in natural communities along a continuum, exhibiting community patterns bounded by pure neutral and pure niche processes. The continuum concept uses niche separation, an attribute of the community, to test the hypothesis that communities are bounded by pure niche or pure neutral conditions. It does not accommodate interactions via feedback between processes and the environment. By contrast, we introduce the Community Assembly Phase Space (CAPS), a multi-dimensional space that uses community processes (such as dispersal and niche selection) to define the limiting neutral and niche conditions and to test the continuum hypothesis. We compare the outputs of modelled communities in a heterogeneous landscape, assembled by pure neutral, pure niche and composite processes. Differences in patterns under different combinations of processes in CAPS reveal hidden complexity in neutral–niche community dynamics. The neutral–niche continuum only holds for strong dispersal limitation and niche separation. For weaker dispersal limitation and niche separation, neutral and niche processes amplify each other via feedback with the environment. This generates patterns that lie well beyond those predicted by a continuum. Inferences drawn from patterns about community assembly processes can therefore be misguided when based on the continuum perspective. CAPS also demonstrates the complementary information value of different patterns for inferring community processes and captures the complexity of community assembly. It provides a general tool for studying the processes structuring communities and can be applied to address a range of questions in community and metacommunity ecology. PMID:26702047

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shirkov, Leonid; Makarewicz, Jan, E-mail: jama@amu.edu.pl

    An ab initio intermolecular potential energy surface (PES) has been constructed for the benzene-krypton (BKr) van der Waals (vdW) complex. The interaction energy has been calculated at the coupled cluster level of theory with single, double, and perturbatively included triple excitations using different basis sets. As a result, a few analytical PESs of the complex have been determined. They allowed a prediction of the complex structure and its vibrational vdW states. The vibrational energy level pattern exhibits a distinct polyad structure. Comparison of the equilibrium structure, the dipole moment, and vibrational levels of BKr with their experimental counterparts has allowedmore » us to design an optimal basis set composed of a small Dunning’s basis set for the benzene monomer, a larger effective core potential adapted basis set for Kr and additional midbond functions. Such a basis set yields vibrational energy levels that agree very well with the experimental ones as well as with those calculated from the available empirical PES derived from the microwave spectra of the BKr complex. The basis proposed can be applied to larger complexes including Kr because of a reasonable computational cost and accurate results.« less

  16. Vagal-dependent nonlinear variability in the respiratory pattern of anesthetized, spontaneously breathing rats

    PubMed Central

    Dhingra, R. R.; Jacono, F. J.; Fishman, M.; Loparo, K. A.; Rybak, I. A.

    2011-01-01

    Physiological rhythms, including respiration, exhibit endogenous variability associated with health, and deviations from this are associated with disease. Specific changes in the linear and nonlinear sources of breathing variability have not been investigated. In this study, we used information theory-based techniques, combined with surrogate data testing, to quantify and characterize the vagal-dependent nonlinear pattern variability in urethane-anesthetized, spontaneously breathing adult rats. Surrogate data sets preserved the amplitude distribution and linear correlations of the original data set, but nonlinear correlation structure in the data was removed. Differences in mutual information and sample entropy between original and surrogate data sets indicated the presence of deterministic nonlinear or stochastic non-Gaussian variability. With vagi intact (n = 11), the respiratory cycle exhibited significant nonlinear behavior in templates of points separated by time delays ranging from one sample to one cycle length. After vagotomy (n = 6), even though nonlinear variability was reduced significantly, nonlinear properties were still evident at various time delays. Nonlinear deterministic variability did not change further after subsequent bilateral microinjection of MK-801, an N-methyl-d-aspartate receptor antagonist, in the Kölliker-Fuse nuclei. Reversing the sequence (n = 5), blocking N-methyl-d-aspartate receptors bilaterally in the dorsolateral pons significantly decreased nonlinear variability in the respiratory pattern, even with the vagi intact, and subsequent vagotomy did not change nonlinear variability. Thus both vagal and dorsolateral pontine influences contribute to nonlinear respiratory pattern variability. Furthermore, breathing dynamics of the intact system are mutually dependent on vagal and pontine sources of nonlinear complexity. Understanding the structure and modulation of variability provides insight into disease effects on respiratory patterning. PMID:21527661

  17. Evolutionary trends in arvicolids and the endemic murid Mikrotia - New data and a critical overview

    NASA Astrophysics Data System (ADS)

    Maul, Lutz C.; Masini, Federico; Parfitt, Simon A.; Rekovets, Leonid; Savorelli, Andrea

    2014-07-01

    The study of evolutionary rates dates back to the work of Simpson and Haldane in the 1940s. Small mammals, especially Plio-Pleistocene arvicolids (voles and lemmings), are particularly suited for such studies because they have an unusually complete fossil record and exhibit significant evolutionary change through time. In recent decades, arvicolids have been the focus of intensive research devoted to the tempo and mode of evolutionary change and the identification of trends in dental evolution that can be used to correlate and date fossil sites. These studies have raised interesting questions about whether voles and lemmings had unique evolutionary trajectories, or show convergent evolutionary patterns with other hypsodont rodents. Here we review evolutionary patterns in selected arvicolid lineages and endemic Messinian murids (Mikrotia spp.) and discuss reasons for convergence in dental morphology in these two groups of hypsodont rodents. The results substantiate previously detected patterns, but the larger dataset shows that some trends are less regular than previous studies have suggested. With the exception of a pervasive and sustained trend towards increased hypsodonty, our results show that other features do not follow consistent patterns in all lineages, exhibiting a mosaic pattern comprising stasis, variable rate evolution and gradual unidirectional change through time. Evidence for higher evolutionary rates is found in lineages apparently undergoing adaptations to new ecological niches. In the case of Mikrotia, Microtus voles and the water vole (Mimomys-Arvicola) lineage, a shift to a fossorial lifestyle appears to have been an important driving force in their evolution. For other characters, different causes can be invoked; for example a shift to a semi-aquatic lifestyle may be responsible for the trend towards increasing size in Arvicola. Biochronological application of the data should take into account the complexity and biases of the data.

  18. Further insight into reproductive incompatibility between putative cryptic species of the Bemisia tabaci whitefly complex.

    PubMed

    Qin, Li; Pan, Li-Long; Liu, Shu-Sheng

    2016-04-01

    The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae), with its global distribution and extensive genetic diversity, is now known to be a complex of over 35 cryptic species. However, a satisfactory resolution of the systematics of this species complex is yet to be achieved. Here, we designed experiments to examine reproductive compatibility among species with different levels of mitochondrial cytochrome oxidase I (mtCOI) divergence. The data show that putative species with mtCOI divergence of >8% between them consistently exhibited complete reproductive isolation. However, two of the putative species, Asia II 9 and Asia II 3, with mtCOI divergence of 4.47% between them, exhibited near complete reproductive compatibility in one direction of their cross, and partial reproductive compatibility in the other direction. Together with some recent reports on this topic from the literature, our data indicates that, while divergence in the mtCOI sequences provides a valid molecular marker for species delimitation in most clades, more genetic markers and more sophisticated molecular phylogeny will be required to achieve adequate delimitation of all species in this whitefly complex. While many attempts have been made to examine the reproductive compatibility among genetic groups of the B. tabaci complex, our study represents the first effort to conduct crossing experiments with putative species that were chosen with considerations of their genetic divergence. In light of the new data, we discuss the best strategy and protocols to conduct further molecular phylogenetic analysis and crossing trials, in order to reveal the overall pattern of reproductive incompatibility among species of this whitefly complex. © 2015 Institute of Zoology, Chinese Academy of Sciences.

  19. Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyama, Takuji; Toyota, Kenji; Waku, Tsuyoshi

    2009-08-01

    The structures of the ligand-binding domains (LBDs) of human peroxisome proliferator-activated receptors (PPARα, PPARγ and PPARδ) in complexes with a pan agonist, an α/δ dual agonist and a PPARδ-specific agonist were determined. The results explain how each ligand is recognized by the PPAR LBDs at an atomic level. Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family, which is defined as transcriptional factors that are activated by the binding of ligands to their ligand-binding domains (LBDs). Although the three PPAR subtypes display different tissue distribution patterns and distinct pharmacological profiles, they all are essentially related to fatty-acid andmore » glucose metabolism. Since the PPARs share similar three-dimensional structures within the LBDs, synthetic ligands which simultaneously activate two or all of the PPARs could be potent candidates in terms of drugs for the treatment of abnormal metabolic homeostasis. The structures of several PPAR LBDs were determined in complex with synthetic ligands, derivatives of 3-(4-alkoxyphenyl)propanoic acid, which exhibit unique agonistic activities. The PPARα and PPARγ LBDs were complexed with the same pan agonist, TIPP-703, which activates all three PPARs and their crystal structures were determined. The two LBD–ligand complex structures revealed how the pan agonist is adapted to the similar, but significantly different, ligand-binding pockets of the PPARs. The structures of the PPARδ LBD in complex with an α/δ-selective ligand, TIPP-401, and with a related δ-specific ligand, TIPP-204, were also determined. The comparison between the two PPARδ complexes revealed how each ligand exhibits either a ‘dual selective’ or ‘single specific’ binding mode.« less

  20. Neural strategies for reading Japanese and Chinese sentences: a cross-linguistic fMRI study of character-decoding and morphosyntax.

    PubMed

    Huang, Koongliang; Itoh, Kosuke; Kwee, Ingrid L; Nakada, Tsutomu

    2012-09-01

    Japanese and Chinese share virtually identical morphographic characters invented in ancient China. Whereas modern Chinese retained the original morphographic functionality of these characters (hanzi), modern Japanese utilizes these characters (kanji) as complex syllabograms. This divergence provides a unique opportunity to systematically investigate brain strategies for sentence reading in Japanese-Chinese bi-literates. Accordingly, we investigated brain activation associated with Japanese and Chinese reading in 14 native Japanese speakers literate in Mandarin and 14 native Mandarin speakers literate in Japanese using functional magnetic resonance imaging performed on a 3T system. The activation pattern exhibited clearly distinct features specific for each language. Regardless of the subject's native language literacy, Chinese reading activated an area significantly larger than Japanese reading, suggesting that brain processes involved in Chinese reading were much more complex than Japanese reading. Significant recruitment of corresponding cortical areas in the right hemisphere with Chinese reading was also apparent. The activation patterns associated with Japanese reading by native Japanese literates was highly consistent with previous reports, and included the left inferior frontal gyrus (IFG), left posterior temporal lobe (PTL), and left ventral premotor cortex (PMv). The activation pattern associated with Chinese reading by native Chinese literates was also highly consistent with previous reports, namely the left IFG, left PTL, left PMv, left anterior temporal lobe (ATL), and bilateral parieto occipital lobes (LPOL). The activation pattern associated with Chinese reading by native Japanese literates was virtually identical to that by native Chinese literates, whereas the activation pattern associated with Japanese reading by native Chinese literates was signified by additional activation of LPOL compared to that by native Japanese literate. The study indicated that IFG and PTL are universal language areas, while PMv is the area for decoding complex syllabograms. LPOL is the "Chinese language area," while ATL is essential for languages with analytic morphosyntax. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Unravelling a biogeographical knot: origin of the 'leapfrog' distribution pattern of Australo-Papuan sooty owls (Strigiformes) and logrunners (Passeriformes).

    PubMed Central

    Norman, J A; Christidis, L; Joseph, L; Slikas, B; Alpers, D

    2002-01-01

    Molecular analysis of two Australo-Papuan rainforest birds exhibiting correlated 'leapfrog' patterns were used to elucidate the evolutionary origin of this unusual pattern of geographical differentiation. In both sooty owls (Tyto) and logrunners (Orthonyx), phenotypically similar populations occupy widely disjunct areas (central-eastern Australia and upland New Guinea) with a third, highly distinctive population, occurring between them in northeastern Queensland. Two mechanisms have been proposed to explain the origin of leapfrog patterns in avian distributions: recent shared ancestry of terminal populations and unequal rates or phenotypic change among populations. As the former should generate correlated patterns of phenotypic and genetic differentiation, we tested for a sister relationship between populations from New Guinea and central-eastern Australia using nuclear and mitochondrial DNA sequences. The resulting phylogenies not only refute recent ancestry as an explanation for the leapfrog pattern, but provide evidence of vastly different spatio-temporal histories for sooty owls and logrunners within the Australo-Papuan rainforests. This incongruence indicates that the evolutionary processes responsible for generating leapfrog patterns in these co-distributed taxa are complex, possibly involving a combination of selection and drift in sooty owls and convergence or retention of ancestral characteristics in logrunners. PMID:12396487

  2. Synchronization and Causality Across Time-scales: Complex Dynamics and Extremes in El Niño/Southern Oscillation

    NASA Astrophysics Data System (ADS)

    Jajcay, N.; Kravtsov, S.; Tsonis, A.; Palus, M.

    2017-12-01

    A better understanding of dynamics in complex systems, such as the Earth's climate is one of the key challenges for contemporary science and society. A large amount of experimental data requires new mathematical and computational approaches. Natural complex systems vary on many temporal and spatial scales, often exhibiting recurring patterns and quasi-oscillatory phenomena. The statistical inference of causal interactions and synchronization between dynamical phenomena evolving on different temporal scales is of vital importance for better understanding of underlying mechanisms and a key for modeling and prediction of such systems. This study introduces and applies information theory diagnostics to phase and amplitude time series of different wavelet components of the observed data that characterizes El Niño. A suite of significant interactions between processes operating on different time scales was detected, and intermittent synchronization among different time scales has been associated with the extreme El Niño events. The mechanisms of these nonlinear interactions were further studied in conceptual low-order and state-of-the-art dynamical, as well as statistical climate models. Observed and simulated interactions exhibit substantial discrepancies, whose understanding may be the key to an improved prediction. Moreover, the statistical framework which we apply here is suitable for direct usage of inferring cross-scale interactions in nonlinear time series from complex systems such as the terrestrial magnetosphere, solar-terrestrial interactions, seismic activity or even human brain dynamics.

  3. Characterization of a Honeycomb-Like Scaffold With Dielectrophoresis-Based Patterning for Tissue Engineering.

    PubMed

    Huan, Zhijie; Chu, Henry K; Yang, Jie; Sun, Dong

    2017-04-01

    Seeding and patterning of cells with an engineered scaffold is a critical process in artificial tissue construction and regeneration. To date, many engineered scaffolds exhibit simple intrinsic designs, which fail to mimic the geometrical complexity of native tissues. In this study, a novel scaffold that can automatically seed cells into multilayer honeycomb patterns for bone tissue engineering application was designed and examined. The scaffold incorporated dielectrophoresis for noncontact manipulation of cells and intrinsic honeycomb architectures were integrated in each scaffold layer. When a voltage was supplied to the stacked scaffold layers, three-dimensional electric fields were generated, thereby manipulating cells to form into honeycomb-like cellular patterns for subsequent culture. The biocompatibility of the scaffold material was confirmed through the cell viability test. Experiments were conducted to evaluate the cell viability during DEP patterning at different voltage amplitudes, frequencies, and manipulating time. Three different mammalian cells were examined and the effects of the cell size and the cell concentration on the resultant cellular patterns were evaluated. Results showed that the proposed scaffold structure was able to construct multilayer honeycomb cellular patterns in a manner similar to the natural tissue. This honeycomb-like scaffold and the dielectrophoresis-based patterning technique examined in this study could provide the field with a promising tool to enhance seeding and patterning of a wide range of cells for the development of high-quality artificial tissues.

  4. Mandibular second molar exhibiting a unique "Y-" and "J-" "shaped" root canal anatomy diagnosed using cone-beam computed tomographic scanning: A case report.

    PubMed

    Parashar, Saumya-Rajesh; Kowsky, R Dinesh; Natanasabapathy, Velmurugan

    2017-01-01

    This article aims to report a unique case with aberrant root canal anatomy exhibiting "Y-" and "J"-shaped canal pattern in a mandibular second molar. Anatomic complexities may pose challenges for endodontic treatment. Before performing endodontic treatment, the clinician should be aware of the internal anatomy of the tooth being treated and should recognize anatomic aberrations if present. Presence of unusual anatomy may call for modifications in treatment planning. This report describes in detail about a mandibular second molar tooth associated with two paramolar tubercles having a peculiar "Y-" and "J-"shaped canal anatomy detected with the aid of cone beam computed tomography, which has never been reported in the dental literature. The proposed treatment protocol for the endodontic management of the same has also been discussed.

  5. Synthesis, spectroscopic, thermal and antimicrobial investigations of charge-transfer complexes formed from the drug procaine hydrochloride with quinol, picric acid and TCNQ

    NASA Astrophysics Data System (ADS)

    Adam, Abdel Majid A.

    2012-12-01

    Intermolecular charge-transfer or proton-transfer complexes between the drug procaine hydrochloride (PC-HCl) as a donor and quinol (QL), picric acid (PA) or 7,7',8,8'-tetracyanoquinodimethane (TCNQ) as a π-acceptor have been synthesized and spectroscopically studied in methanol at room temperature. Based on elemental analyses and photometric titrations, the stoichiometry of the complexes (donor:acceptor molar ratios) was determined to be 1:1 for all three complexes. The formation constant (KCT), molar extinction coefficient (ɛCT) and other spectroscopic data have been determined using the Benesi-Hildebrand method and its modifications. The newly synthesized CT complexes have been characterized via elemental analysis, IR, Raman, 1H NMR, and electronic absorption spectroscopy. The morphological features of these complexes were investigated using scanning electron microscopy (SEM), and the sharp, well-defined Bragg reflections at specific 2θ angles have been identified from the powder X-ray diffraction patterns. Thermogravimetric analyses (TGAs) and kinetic thermodynamic parameters were also used to investigate the thermal stability of the synthesized solid CT complexes. Finally, the CT complexes were screened for their antibacterial and antifungal activities against various bacterial and fungal strains, and only the complex obtained using picric acid exhibited moderate antibacterial activity against all of the tested strains.

  6. Dancing with Swarms: Utilizing Swarm Intelligence to Build, Investigate, and Control Complex Systems

    NASA Astrophysics Data System (ADS)

    Jacob, Christian

    We are surrounded by a natural world of massively parallel, decentralized biological "information processing" systems, a world that exhibits fascinating emergent properties in many ways. In fact, our very own bodies are the result of emergent patterns, as the development of any multi-cellular organism is determined by localized interactions among an enormous number of cells, carefully orchestrated by enzymes, signalling proteins and other molecular "agents". What is particularly striking about these highly distributed developmental processes is that a centralized control agency is completely absent. This is also the case for many other biological systems, such as termites which build their nests—without an architect that draws a plan, or brain cells evolving into a complex `mind machine'—without an explicit blueprint of a network layout.

  7. Lineage diversification and morphological evolution in a large-scale continental radiation: the neotropical ovenbirds and woodcreepers (aves: Furnariidae).

    PubMed

    Derryberry, Elizabeth P; Claramunt, Santiago; Derryberry, Graham; Chesser, R Terry; Cracraft, Joel; Aleixo, Alexandre; Pérez-Emán, Jorge; Remsen, J V; Brumfield, Robb T

    2011-10-01

    Patterns of diversification in species-rich clades provide insight into the processes that generate biological diversity. We tested different models of lineage and phenotypic diversification in an exceptional continental radiation, the ovenbird family Furnariidae, using the most complete species-level phylogenetic hypothesis produced to date for a major avian clade (97% of 293 species). We found that the Furnariidae exhibit nearly constant rates of lineage accumulation but show evidence of constrained morphological evolution. This pattern of sustained high rates of speciation despite limitations on phenotypic evolution contrasts with the results of most previous studies of evolutionary radiations, which have found a pattern of decelerating diversity-dependent lineage accumulation coupled with decelerating or constrained phenotypic evolution. Our results suggest that lineage accumulation in tropical continental radiations may not be as limited by ecological opportunities as in temperate or island radiations. More studies examining patterns of both lineage and phenotypic diversification are needed to understand the often complex tempo and mode of evolutionary radiations on continents. © 2011 The Author(s). Evolution© 2011 The Society for the Study of Evolution.

  8. New aspects of firing pattern autocontrol in oxytocin and vasopressin neurones.

    PubMed

    Moos, F; Gouzènes, L; Brown, D; Dayanithi, G; Sabatier, N; Boissin, L; Rabié, A; Richard, P

    1998-01-01

    In the rat, oxytocin (OT) and vasopressin (AVP) neurones exhibit specific electrical activities which are controlled by OT and AVP released from soma and dendrites within the magnocellular hypothalamic nuclei. OT enhances amplitude and frequency of suckling-induced bursts, and changes basal firing characteristics: spike patterning becomes very irregular (spike clusters separated by long silences), firing rate is highly variable, oscillating before facilitated bursts. This unstable behaviour which markedly decreases during hyperosmotic stimulation (interrupting bursting) could be a prerequisite for bursting. The effects of AVP depend on the initial phasic pattern of AVP neurones: AVP excites weakly active neurones (increasing burst duration, decreasing silences) and inhibits highly active neurones; neurones with intermediate phasic activity are unaffected. Thus, AVP ensures all AVP neurones discharge with moderate phasic activity (bursts and silences lasting 20-40 s), known to optimise systemic AVP release. V1a-type receptors are involved in AVP actions. In conclusion, OT and AVP control their respective neurones in a complex manner to favour the patterns of activity which are the best suited for an efficient systemic hormone release.

  9. Growth of school children in different urban environments in Argentina.

    PubMed

    Dahinten, S L; Castro, L E; Zavatti, J R; Forte, L M; Oyhenart, E E

    2011-03-01

    Nutritional transition has been described in various countries, each showing inherent characteristics. Furthermore, different patterns also appear within the same country. To compare the nutritional status of schoolchildren, of both sexes, living in two Argentine cities with different urban and environment characteristics, from the perspective of nutritional transition. The sample comprised 5355 children (6-13 years) living in Puerto Madryn (Chubut) and General Alvear (Mendoza), Argentina. Weight and height were transformed into Z-scores according to NHANES I- II; underweight, stunting and wasting defined by - 2 SD and overweight and obesity calculated according the cut-off proposed by IOTF. Prevalences of nutritional status were estimated. Comparison of the two cities revealed significant χ² values for the indicators of nutritional status analysed. Puerto Madryn had higher prevalences of overweight and obesity. General Alvear exhibited higher stunting and underweight values. The cities studied are in different stages of nutritional transition. Puerto Madryn is undergoing growing industrialization and urbanization and thus exhibits characteristics typical of an 'obesogenic' environment. General Alvear, a less complex urban centre, where some cultural patterns related to an agrarian way of life appear to have been retained, is situated at a less advanced stage.

  10. Slow-Theta-to-Gamma Phase–Amplitude Coupling in Human Hippocampus Supports the Formation of New Episodic Memories

    PubMed Central

    Lega, Bradley; Burke, John; Jacobs, Joshua; Kahana, Michael J.

    2016-01-01

    Phase–amplitude coupling (PAC) has been proposed as a neural mechanism for coordinating information processing across brain regions. Here we sought to characterize PAC in the human hippocampus, and in temporal and frontal cortices, during the formation of new episodic memories. Intracranial recordings taken as 56 neurosurgical patients studied and recalled lists of words revealed significant hippocampal PAC, with slow-theta activity (2.5–5 Hz) modulating gamma band activity (34–130 Hz). Furthermore, a significant number of hippocampal electrodes exhibited greater PAC during successful than unsuccessful encoding, with the gamma activity at these sites coupled to the trough of the slow-theta oscillation. These same conditions facilitate LTP in animal models, providing a possible mechanism of action for this effect in human memory. Uniquely in the hippocampus, phase preference during item encoding exhibited a biphasic pattern. Overall, our findings help translate between the patterns identified during basic memory tasks in animals and those present during complex human memory encoding. We discuss the unique properties of human hippocampal PAC and how our findings relate to influential theories of information processing based on theta–gamma interactions. PMID:25316340

  11. Two Parallel Olfactory Pathways for Processing General Odors in a Cockroach

    PubMed Central

    Watanabe, Hidehiro; Nishino, Hiroshi; Mizunami, Makoto; Yokohari, Fumio

    2017-01-01

    In animals, sensory processing via parallel pathways, including the olfactory system, is a common design. However, the mechanisms that parallel pathways use to encode highly complex and dynamic odor signals remain unclear. In the current study, we examined the anatomical and physiological features of parallel olfactory pathways in an evolutionally basal insect, the cockroach Periplaneta americana. In this insect, the entire system for processing general odors, from olfactory sensory neurons to higher brain centers, is anatomically segregated into two parallel pathways. Two separate populations of secondary olfactory neurons, type1 and type2 projection neurons (PNs), with dendrites in distinct glomerular groups relay olfactory signals to segregated areas of higher brain centers. We conducted intracellular recordings, revealing olfactory properties and temporal patterns of both types of PNs. Generally, type1 PNs exhibit higher odor-specificities to nine tested odorants than type2 PNs. Cluster analyses revealed that odor-evoked responses were temporally complex and varied in type1 PNs, while type2 PNs exhibited phasic on-responses with either early or late latencies to an effective odor. The late responses are 30–40 ms later than the early responses. Simultaneous intracellular recordings from two different PNs revealed that a given odor activated both types of PNs with different temporal patterns, and latencies of early and late responses in type2 PNs might be precisely controlled. Our results suggest that the cockroach is equipped with two anatomically and physiologically segregated parallel olfactory pathways, which might employ different neural strategies to encode odor information. PMID:28529476

  12. Patterns and Variation in Benthic Biodiversity in a Large Marine Ecosystem.

    PubMed

    Piacenza, Susan E; Barner, Allison K; Benkwitt, Cassandra E; Boersma, Kate S; Cerny-Chipman, Elizabeth B; Ingeman, Kurt E; Kindinger, Tye L; Lee, Jonathan D; Lindsley, Amy J; Reimer, Jessica N; Rowe, Jennifer C; Shen, Chenchen; Thompson, Kevin A; Thurman, Lindsey L; Heppell, Selina S

    2015-01-01

    While there is a persistent inverse relationship between latitude and species diversity across many taxa and ecosystems, deviations from this norm offer an opportunity to understand the conditions that contribute to large-scale diversity patterns. Marine systems, in particular, provide such an opportunity, as marine diversity does not always follow a strict latitudinal gradient, perhaps because several hypothesized drivers of the latitudinal diversity gradient are uncorrelated in marine systems. We used a large scale public monitoring dataset collected over an eight year period to examine benthic marine faunal biodiversity patterns for the continental shelf (55-183 m depth) and slope habitats (184-1280 m depth) off the US West Coast (47°20'N-32°40'N). We specifically asked whether marine biodiversity followed a strict latitudinal gradient, and if these latitudinal patterns varied across depth, in different benthic substrates, and over ecological time scales. Further, we subdivided our study area into three smaller regions to test whether coast-wide patterns of biodiversity held at regional scales, where local oceanographic processes tend to influence community structure and function. Overall, we found complex patterns of biodiversity on both the coast-wide and regional scales that differed by taxonomic group. Importantly, marine biodiversity was not always highest at low latitudes. We found that latitude, depth, substrate, and year were all important descriptors of fish and invertebrate diversity. Invertebrate richness and taxonomic diversity were highest at high latitudes and in deeper waters. Fish richness also increased with latitude, but exhibited a hump-shaped relationship with depth, increasing with depth up to the continental shelf break, ~200 m depth, and then decreasing in deeper waters. We found relationships between fish taxonomic and functional diversity and latitude, depth, substrate, and time at the regional scale, but not at the coast-wide scale, suggesting that coast-wide patterns can obscure important correlates at smaller scales. Our study provides insight into complex diversity patterns of the deep water soft substrate benthic ecosystems off the US West Coast.

  13. Evolution patterns and parameter regimes in edge localized modes on the National Spherical Torus Experiment

    DOE Data Explorer

    Smith, D. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bell, R. E. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Podesta, M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Smith, D. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Fonck, R. J. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); McKee, G. R. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Diallo, A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Kaye, S. M. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); LeBlanc, B. P. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Sabbagh, S. A. [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)

    2015-09-01

    We implement unsupervised machine learning techniques to identify characteristic evolution patterns and associated parameter regimes in edge localized mode (ELM) events observed on the National Spherical Torus Experiment. Multi-channel, localized measurements spanning the pedestal region capture the complex evolution patterns of ELM events on Alfven timescales. Some ELM events are active for less than 100~microsec, but others persist for up to 1~ms. Also, some ELM events exhibit a single dominant perturbation, but others are oscillatory. Clustering calculations with time-series similarity metrics indicate the ELM database contains at least two and possibly three groups of ELMs with similar evolution patterns. The identified ELM groups trigger similar stored energy loss, but the groups occupy distinct parameter regimes for ELM-relevant quantities like plasma current, triangularity, and pedestal height. Notably, the pedestal electron pressure gradient is not an effective parameter for distinguishing the ELM groups, but the ELM groups segregate in terms of electron density gradient and electron temperature gradient. The ELM evolution patterns and corresponding parameter regimes can shape the formulation or validation of nonlinear ELM models. Finally, the techniques and results demonstrate an application of unsupervised machine learning at a data-rich fusion facility.

  14. The Dissociative Subtype of Posttraumatic Stress Disorder: Unique Resting-State Functional Connectivity of Basolateral and Centromedial Amygdala Complexes

    PubMed Central

    Nicholson, Andrew A; Densmore, Maria; Frewen, Paul A; Théberge, Jean; Neufeld, Richard WJ; McKinnon, Margaret C; Lanius, Ruth A

    2015-01-01

    Previous studies point towards differential connectivity patterns among basolateral (BLA) and centromedial (CMA) amygdala regions in patients with posttraumatic stress disorder (PTSD) as compared with controls. Here we describe the first study to compare directly connectivity patterns of the BLA and CMA complexes between PTSD patients with and without the dissociative subtype (PTSD+DS and PTSD−DS, respectively). Amygdala connectivity to regulatory prefrontal regions and parietal regions involved in consciousness and proprioception were expected to differ between these two groups based on differential limbic regulation and behavioral symptoms. PTSD patients (n=49) with (n=13) and without (n=36) the dissociative subtype and age-matched healthy controls (n=40) underwent resting-state fMRI. Bilateral BLA and CMA connectivity patterns were compared using a seed-based approach via SPM Anatomy Toolbox. Among patients with PTSD, the PTSD+DS group exhibited greater amygdala functional connectivity to prefrontal regions involved in emotion regulation (bilateral BLA and left CMA to the middle frontal gyrus and bilateral CMA to the medial frontal gyrus) as compared with the PTSD−DS group. In addition, the PTSD+DS group showed greater amygdala connectivity to regions involved in consciousness, awareness, and proprioception—implicated in depersonalization and derealization (left BLA to superior parietal lobe and cerebellar culmen; left CMA to dorsal posterior cingulate and precuneus). Differences in amygdala complex connectivity to specific brain regions parallel the unique symptom profiles of the PTSD subgroups and point towards unique biological markers of the dissociative subtype of PTSD. PMID:25790021

  15. Defective pulmonary innervation and autonomic imbalance in congenital diaphragmatic hernia

    PubMed Central

    Lath, Nikesh R.; Galambos, Csaba; Rocha, Alejandro Best; Malek, Marcus; Gittes, George K.

    2012-01-01

    Congenital diaphragmatic hernia (CDH) is associated with significant mortality due to lung hypoplasia and pulmonary hypertension. The role of embryonic pulmonary innervation in normal lung development and lung maldevelopment in CDH has not been defined. We hypothesize that developmental defects of intrapulmonary innervation, in particular autonomic innervation, occur in CDH. This abnormal embryonic pulmonary innervation may contribute to lung developmental defects and postnatal physiological derangement in CDH. To define patterns of pulmonary innervation in CDH, human CDH and control lung autopsy specimens were stained with the pan-neural marker S-100. To further characterize patterns of overall and autonomic pulmonary innervation during lung development in CDH, the murine nitrofen model of CDH was utilized. Immunostaining for protein gene product 9.5 (a pan-neuronal marker), tyrosine hydroxylase (a sympathetic marker), vesicular acetylcholine transporter (a parasympathetic marker), or VIP (a parasympathetic marker) was performed on lung whole mounts and analyzed via confocal microscopy and three-dimensional reconstruction. Peribronchial and perivascular neuronal staining pattern is less complex in human CDH than control lung. In mice, protein gene product 9.5 staining reveals less complex neuronal branching and decreased neural tissue in nitrofen-treated lungs from embryonic day 12.5 to 16.5 compared with controls. Furthermore, nitrofen-treated embryonic lungs exhibited altered autonomic innervation, with a relative increase in sympathetic nerve staining and a decrease in parasympathetic nerve staining compared with controls. These results suggest a primary defect in pulmonary neural developmental in CDH, resulting in less complex neural innervation and autonomic imbalance. Defective embryonic pulmonary innervation may contribute to lung developmental defects and postnatal physiological derangement in CDH. PMID:22114150

  16. Changes in the neural control of a complex motor sequence during learning

    PubMed Central

    Otchy, Timothy M.; Goldberg, Jesse H.; Aronov, Dmitriy; Fee, Michale S.

    2011-01-01

    The acquisition of complex motor sequences often proceeds through trial-and-error learning, requiring the deliberate exploration of motor actions and the concomitant evaluation of the resulting performance. Songbirds learn their song in this manner, producing highly variable vocalizations as juveniles. As the song improves, vocal variability is gradually reduced until it is all but eliminated in adult birds. In the present study we examine how the motor program underlying such a complex motor behavior evolves during learning by recording from the robust nucleus of the arcopallium (RA), a motor cortex analog brain region. In young birds, neurons in RA exhibited highly variable firing patterns that throughout development became more precise, sparse, and bursty. We further explored how the developing motor program in RA is shaped by its two main inputs: LMAN, the output nucleus of a basal ganglia-forebrain circuit, and HVC, a premotor nucleus. Pharmacological inactivation of LMAN during singing made the song-aligned firing patterns of RA neurons adultlike in their stereotypy without dramatically affecting the spike statistics or the overall firing patterns. Removing the input from HVC, on the other hand, resulted in a complete loss of stereotypy of both the song and the underlying motor program. Thus our results show that a basal ganglia-forebrain circuit drives motor exploration required for trial-and-error learning by adding variability to the developing motor program. As learning proceeds and the motor circuits mature, the relative contribution of LMAN is reduced, allowing the premotor input from HVC to drive an increasingly stereotyped song. PMID:21543758

  17. Global pattern of trends in streamflow and water availability in a changing climate

    USGS Publications Warehouse

    Milly, P.C.D.; Dunne, K.A.; Vecchia, A.V.

    2005-01-01

    Water availability on the continents is important for human health, economic activity, ecosystem function and geophysical processes. Because the saturation vapour pressure of water in air is highly sensitive to temperature, perturbations in the global water cycle are expected to accompany climate warming. Regional patterns of warming-induced changes in surface hydroclimate are complex and less certain than those in temperature, however, with both regional increases and decreases expected in precipitation and runoff. Here we show that an ensemble of 12 climate models exhibits qualitative and statistically significant skill in simulating observed regional patterns of twentieth-century multidecadal changes in streamflow. These models project 10–40% increases in runoff in eastern equatorial Africa, the La Plata basin and high-latitude North America and Eurasia, and 10–30% decreases in runoff in southern Africa, southern Europe, the Middle East and mid-latitude western North America by the year 2050. Such changes in sustainable water availability would have considerable regional-scale consequences for economies as well as ecosystems.

  18. Global pattern of trends in streamflow and water availability in a changing climate.

    PubMed

    Milly, P C D; Dunne, K A; Vecchia, A V

    2005-11-17

    Water availability on the continents is important for human health, economic activity, ecosystem function and geophysical processes. Because the saturation vapour pressure of water in air is highly sensitive to temperature, perturbations in the global water cycle are expected to accompany climate warming. Regional patterns of warming-induced changes in surface hydroclimate are complex and less certain than those in temperature, however, with both regional increases and decreases expected in precipitation and runoff. Here we show that an ensemble of 12 climate models exhibits qualitative and statistically significant skill in simulating observed regional patterns of twentieth-century multidecadal changes in streamflow. These models project 10-40% increases in runoff in eastern equatorial Africa, the La Plata basin and high-latitude North America and Eurasia, and 10-30% decreases in runoff in southern Africa, southern Europe, the Middle East and mid-latitude western North America by the year 2050. Such changes in sustainable water availability would have considerable regional-scale consequences for economies as well as ecosystems.

  19. On Predictive Understanding of Extreme Events: Pattern Recognition Approach; Prediction Algorithms; Applications to Disaster Preparedness

    NASA Astrophysics Data System (ADS)

    Keilis-Borok, V. I.; Soloviev, A.; Gabrielov, A.

    2011-12-01

    We describe a uniform approach to predicting different extreme events, also known as critical phenomena, disasters, or crises. The following types of such events are considered: strong earthquakes; economic recessions (their onset and termination); surges of unemployment; surges of crime; and electoral changes of the governing party. A uniform approach is possible due to the common feature of these events: each of them is generated by a certain hierarchical dissipative complex system. After a coarse-graining, such systems exhibit regular behavior patterns; we look among them for "premonitory patterns" that signal the approach of an extreme event. We introduce methodology, based on the optimal control theory, assisting disaster management in choosing optimal set of disaster preparedness measures undertaken in response to a prediction. Predictions with their currently realistic (limited) accuracy do allow preventing a considerable part of the damage by a hierarchy of preparedness measures. Accuracy of prediction should be known, but not necessarily high.

  20. Theoretical Modeling of the Magnetic Behavior of Thiacalix[4]arene Tetranuclear Mn(II)2Gd(III)2 and Co(II)2Eu(III)2 Complexes.

    PubMed

    Aldoshin, Sergey M; Sanina, Nataliya A; Palii, Andrew V; Tsukerblat, Boris S

    2016-04-04

    In view of a wide perspective of 3d-4f complexes in single-molecule magnetism, here we propose an explanation of the magnetic behavior of the two thiacalix[4]arene tetranuclear heterometallic complexes Mn(II)2Gd(III)2 and Co(II)2Eu(III)2. The energy pattern of the Mn(II)2Gd(III)2 complex evaluated in the framework of the isotropic exchange model exhibits a rotational band of the low-lying spin excitations within which the Landé intervals are affected by the biquadratic spin-spin interactions. The nonmonotonic temperature dependence of the χT product observed for the Mn(II)2Gd(III)2 complex is attributed to the competitive influence of the ferromagnetic Mn-Gd and antiferromagnetic Mn-Mn exchange interactions, the latter being stronger (J(Mn, Mn) = -1.6 cm(-1), Js(Mn, Gd) = 0.8 cm(-1), g = 1.97). The model for the Co(II)2Eu(III)2 complex includes uniaxial anisotropy of the seven-coordinate Co(II) ions and an isotropic exchange interaction in the Co(II)2 pair, while the Eu(III) ions are diamagnetic in their ground states. Best-fit analysis of χT versus T showed that the anisotropic contribution (arising from a large zero-field splitting in Co(II) ions) dominates (weak-exchange limit) in the Co(II)2Eu(III)2 complex (D = 20.5 cm(-1), J = -0.4 cm(-1), gCo = 2.22). This complex is concluded to exhibit an easy plane of magnetization (arising from the Co(II) pair). It is shown that the low-lying part of the spectrum can be described by a highly anisotropic effective spin-(1)/2 Hamiltonian that is deduced for the Co(II)2 pair in the weak-exchange limit.

  1. Undifferentiated Endometrial Carcinomas Show Frequent Loss of Core Switch/Sucrose Nonfermentable Complex Proteins.

    PubMed

    Köbel, Martin; Hoang, Lien N; Tessier-Cloutier, Basile; Meng, Bo; Soslow, Robert A; Stewart, Colin J R; Lee, Cheng-Han

    2018-01-01

    Undifferentiated endometrial carcinoma is an aggressive type of endometrial carcinoma that typically presents with advanced stage disease and rapid clinical progression. In contrast to dedifferentiated endometrial carcinoma, undifferentiated carcinoma lacks a concurrent differentiated (typically low-grade endometrioid) carcinoma component, though the undifferentiated component of dedifferentiated carcinoma is similar histologically and immunophenotypically to pure undifferentiated carcinoma. We recently identified 3 mutually exclusive mechanisms of switch/sucrose nonfermentable (SWI/SNF) complex inactivation (BRG1 inactivation, INI1 inactivation or ARID1A/ARID1B co-inactivation) that are associated with histologic dedifferentiation in the majority of dedifferentiated endometrial carcinoma. In the current study, we aimed to determine by immunohistochemistry whether these patterns of SWI/SNF inactivation also occur in undifferentiated endometrial carcinomas. Of the 34 undifferentiated carcinomas examined, 17 (50%) exhibited SWI/SNF complex inactivation, with 11 tumors showing complete loss of both ARID1A and ARID1B, 5 showing complete loss of BRG1 and 1 showing complete loss of INI1. Ten of the remaining 17 undifferentiated carcinomas showed the following alterations: 5 tumors (15%) showed loss of ARID1A only with intact ARID1B, BRG1, and INI1 expression, 4 tumors (12%) showed mutated patterns of p53 staining with intact SWI/SNF protein expression, and 1 tumor (3%) harbored a POLE exonuclease domain mutation (P286R). SWI/SNF complex-inactivated tumors presented more frequently with extrauterine disease spread than those with intact expression (88% vs. 41%, respectively). In addition, patients with SWI/SNF complex-inactivated tumors had a significantly worse disease-specific survival (P=0.02). The findings here demonstrate frequent SWI/SNF complex inactivation in undifferentiated endometrial carcinomas, which has future implications regarding therapies that target chromatin remodelling and epigenetic control.

  2. Auxin-activated NADH oxidase activity of soybean plasma membranes is distinct from the constitutive plasma membrane NADH oxidase and exhibits prion-like properties

    NASA Technical Reports Server (NTRS)

    Morre, D. James; Morre, Dorothy M.; Ternes, Philipp

    2003-01-01

    The hormone-stimulated and growth-related cell surface hydroquinone (NADH) oxidase activity of etiolated hypocotyls of soybeans oscillates with a period of about 24 min or 60 times per 24-h day. Plasma membranes of soybean hypocotyls contain two such NADH oxidase activities that have been resolved by purification on concanavalin A columns. One in the apparent molecular weight range of 14-17 kDa is stimulated by the auxin herbicide 2,4-dichlorophenoxyacetic acid (2,4-D). The other is larger and unaffected by 2,4-D. The 2,4-D-stimulated activity absolutely requires 2,4-D for activity and exhibits a period length of about 24 min. Also exhibiting 24-min oscillations is the rate of cell enlargement induced by the addition of 2,4-D or the natural auxin indole-3-acetic acid (IAA). Immediately following 2,4-D or IAA addition, a very complex pattern of oscillations is frequently observed. However, after several hours a dominant 24-min period emerges at the expense of the constitutive activity. A recruitment process analogous to that exhibited by prions is postulated to explain this behavior.

  3. Settlement-Size Scaling among Prehistoric Hunter-Gatherer Settlement Systems in the New World

    PubMed Central

    Haas, W. Randall; Klink, Cynthia J.; Maggard, Greg J.; Aldenderfer, Mark S.

    2015-01-01

    Settlement size predicts extreme variation in the rates and magnitudes of many social and ecological processes in human societies. Yet, the factors that drive human settlement-size variation remain poorly understood. Size variation among economically integrated settlements tends to be heavy tailed such that the smallest settlements are extremely common and the largest settlements extremely large and rare. The upper tail of this size distribution is often formalized mathematically as a power-law function. Explanations for this scaling structure in human settlement systems tend to emphasize complex socioeconomic processes including agriculture, manufacturing, and warfare—behaviors that tend to differentially nucleate and disperse populations hierarchically among settlements. But, the degree to which heavy-tailed settlement-size variation requires such complex behaviors remains unclear. By examining the settlement patterns of eight prehistoric New World hunter-gatherer settlement systems spanning three distinct environmental contexts, this analysis explores the degree to which heavy-tailed settlement-size scaling depends on the aforementioned socioeconomic complexities. Surprisingly, the analysis finds that power-law models offer plausible and parsimonious statistical descriptions of prehistoric hunter-gatherer settlement-size variation. This finding reveals that incipient forms of hierarchical settlement structure may have preceded socioeconomic complexity in human societies and points to a need for additional research to explicate how mobile foragers came to exhibit settlement patterns that are more commonly associated with hierarchical organization. We propose that hunter-gatherer mobility with preferential attachment to previously occupied locations may account for the observed structure in site-size variation. PMID:26536241

  4. Dimensionality and entropy of spontaneous and evoked rate activity

    NASA Astrophysics Data System (ADS)

    Engelken, Rainer; Wolf, Fred

    Cortical circuits exhibit complex activity patterns both spontaneously and evoked by external stimuli. Finding low-dimensional structure in population activity is a challenge. What is the diversity of the collective neural activity and how is it affected by an external stimulus? Using concepts from ergodic theory, we calculate the attractor dimensionality and dynamical entropy production of these networks. We obtain these two canonical measures of the collective network dynamics from the full set of Lyapunov exponents. We consider a randomly-wired firing-rate network that exhibits chaotic rate fluctuations for sufficiently strong synaptic weights. We show that dynamical entropy scales logarithmically with synaptic coupling strength, while the attractor dimensionality saturates. Thus, despite the increasing uncertainty, the diversity of collective activity saturates for strong coupling. We find that a time-varying external stimulus drastically reduces both entropy and dimensionality. Finally, we analytically approximate the full Lyapunov spectrum in several limiting cases by random matrix theory. Our study opens a novel avenue to characterize the complex dynamics of rate networks and the geometric structure of the corresponding high-dimensional chaotic attractor. received funding from Evangelisches Studienwerk Villigst, DFG through CRC 889 and Volkswagen Foundation.

  5. Workforce Effects and the Evolution of Complex Sociality in Wild Damaraland Mole Rats.

    PubMed

    Young, Andrew J; Jarvis, Jennifer U M; Barnaville, James; Bennett, Nigel C

    2015-08-01

    Explaining the evolution of eusocial and cooperatively breeding societies demands that we understand the effects of workforce size on the reproductive success of breeders. This challenge has yet to be addressed in the family that arguably exhibits the most extreme outcomes of vertebrate social evolution, the African mole rats (Bathyergidae), leaving the ultimate causes of their many unusual adaptations open to debate. Here we report-using a 14-year field study of wild Damaraland mole rats, Fukomys damarensis-that workers appear to have strong but unusual effects on offspring. Groups with larger workforces exhibited substantially higher rates of offspring recruitment while maintaining high juvenile survival rates, relationships that may have favored the evolution of the delayed dispersal, cooperation, morphological specialization, and unusual patterns of longevity that characterize such societies. Offspring reared by larger workforces also showed slower growth, however. That reduced offspring growth in larger groups has also been documented under ad lib. food conditions in the laboratory raises the possibility that this reflects socially induced growth restraint rather than simple constraints on resource availability. Our findings shed new light on the evolution of complex sociality in this enigmatic clade and highlight further departures from the norms reported for other cooperative vertebrates.

  6. Structural analysis of LaVO3 thin films under epitaxial strain

    NASA Astrophysics Data System (ADS)

    Meley, H.; Karandeep, Oberson, L.; de Bruijckere, J.; Alexander, D. T. L.; Triscone, J.-M.; Ghosez, Ph.; Gariglio, S.

    2018-04-01

    Rare earth vanadate perovskites exhibit a phase diagram in which two different types of structural distortions coexist: the strongest, the rotation of the oxygen octahedra, comes from the small tolerance factor of the perovskite cell (t = 0.88 for LaVO3) and the smaller one comes from inter-site d-orbital interactions manifesting as a cooperative Jahn-Teller effect. Epitaxial strain acts on octahedral rotations and crystal field symmetry to alter this complex lattice-orbit coupling. In this study, LaVO3 thin film structures have been investigated by X-ray diffraction and scanning transmission electron microscopy. The analysis shows two different orientations of octahedral tilt patterns, as well as two distinct temperature behaviors, for compressive and tensile film strain states. Ab initio calculations capture the strain effect on the tilt pattern orientation in agreement with experimental data.

  7. Shared and unique patterns of phenotypic diversification along a stream gradient in two congeneric species

    NASA Astrophysics Data System (ADS)

    Jourdan, Jonas; Krause, Sarah T.; Lazar, V. Max; Zimmer, Claudia; Sommer-Trembo, Carolin; Arias-Rodriguez, Lenin; Klaus, Sebastian; Riesch, Rüdiger; Plath, Martin

    2016-12-01

    Stream ecosystems show gradual variation of various selection factors, which can result in a zonation of species distributions and gradient evolution of morphological and life-history traits within species. Identifying the selective agents underlying such phenotypic evolution is challenging as different species could show shared and/or unique (species-specific) responses to components of the river gradient. We studied a stream gradient inhabited by two mosquitofishes (genus Gambusia) in the Río Grijalva basin in southern Mexico and found a patchy distribution pattern of both congeners along a stretch of 100 km, whereby one species was usually dominant at a given site. We uncovered both shared and unique patterns of diversification: some components of the stream gradient, including differences in piscine predation pressure, drove shared patterns of phenotypic divergence, especially in females. Other components of the gradient, particularly abiotic factors (max. annual temperature and temperature range) resulted in unique patterns of divergence, especially in males. Our study highlights the complexity of selective regimes in stream ecosystems. It exemplifies that even closely related, congeneric species can respond in unique ways to the same components of the river gradient and shows how both sexes can exhibit quite different patterns of divergence in multivariate phenotypic character suites.

  8. Shared and unique patterns of phenotypic diversification along a stream gradient in two congeneric species

    PubMed Central

    Jourdan, Jonas; Krause, Sarah T.; Lazar, V. Max; Zimmer, Claudia; Sommer-Trembo, Carolin; Arias-Rodriguez, Lenin; Klaus, Sebastian; Riesch, Rüdiger; Plath, Martin

    2016-01-01

    Stream ecosystems show gradual variation of various selection factors, which can result in a zonation of species distributions and gradient evolution of morphological and life-history traits within species. Identifying the selective agents underlying such phenotypic evolution is challenging as different species could show shared and/or unique (species-specific) responses to components of the river gradient. We studied a stream gradient inhabited by two mosquitofishes (genus Gambusia) in the Río Grijalva basin in southern Mexico and found a patchy distribution pattern of both congeners along a stretch of 100 km, whereby one species was usually dominant at a given site. We uncovered both shared and unique patterns of diversification: some components of the stream gradient, including differences in piscine predation pressure, drove shared patterns of phenotypic divergence, especially in females. Other components of the gradient, particularly abiotic factors (max. annual temperature and temperature range) resulted in unique patterns of divergence, especially in males. Our study highlights the complexity of selective regimes in stream ecosystems. It exemplifies that even closely related, congeneric species can respond in unique ways to the same components of the river gradient and shows how both sexes can exhibit quite different patterns of divergence in multivariate phenotypic character suites. PMID:27982114

  9. Laser direct synthesis and patterning of silver nano/microstructures on a polymer substrate.

    PubMed

    Liu, Yi-Kai; Lee, Ming-Tsang

    2014-08-27

    This study presents a novel approach for the rapid fabrication of conductive nano/microscale metal structures on flexible polymer substrate (polyimide). Silver film is simultaneously synthesized and patterned on the polyimide substrate using an advanced continuous wave (CW) laser direct writing technology and a transparent, particle-free reactive silver ion ink. The location and shape of the resulting silver patterns are written by a laser beam from a digitally controlled micromirror array device. The silver patterns fabricated by this laser direct synthesis and patterning (LDSP) process exhibit the remarkably low electrical resistivity of 2.1 μΩ cm, which is compatible to the electrical resistivity of bulk silver. This novel LDSP process requires no vacuum chamber or photomasks, and the steps needed for preparation of the modified reactive silver ink are simple and straightforward. There is none of the complexity and instability associated with the synthesis of the nanoparticles that are encountered for the conventional laser direct writing technology which involves nanoparticle sintering process. This LDSP technology is an advanced method of nano/microscale selective metal patterning on flexible substrates that is fast and environmentally benign and shows potential as a feasible process for the roll-to-roll manufacturing of large area flexible electronic devices.

  10. Shared and unique patterns of phenotypic diversification along a stream gradient in two congeneric species.

    PubMed

    Jourdan, Jonas; Krause, Sarah T; Lazar, V Max; Zimmer, Claudia; Sommer-Trembo, Carolin; Arias-Rodriguez, Lenin; Klaus, Sebastian; Riesch, Rüdiger; Plath, Martin

    2016-12-16

    Stream ecosystems show gradual variation of various selection factors, which can result in a zonation of species distributions and gradient evolution of morphological and life-history traits within species. Identifying the selective agents underlying such phenotypic evolution is challenging as different species could show shared and/or unique (species-specific) responses to components of the river gradient. We studied a stream gradient inhabited by two mosquitofishes (genus Gambusia) in the Río Grijalva basin in southern Mexico and found a patchy distribution pattern of both congeners along a stretch of 100 km, whereby one species was usually dominant at a given site. We uncovered both shared and unique patterns of diversification: some components of the stream gradient, including differences in piscine predation pressure, drove shared patterns of phenotypic divergence, especially in females. Other components of the gradient, particularly abiotic factors (max. annual temperature and temperature range) resulted in unique patterns of divergence, especially in males. Our study highlights the complexity of selective regimes in stream ecosystems. It exemplifies that even closely related, congeneric species can respond in unique ways to the same components of the river gradient and shows how both sexes can exhibit quite different patterns of divergence in multivariate phenotypic character suites.

  11. Structural characterization of human galectin-4 C-terminal domain: elucidating the molecular basis for recognition of glycosphingolipids, sulfated saccharides and blood group antigens.

    PubMed

    Bum-Erdene, Khuchtumur; Leffler, Hakon; Nilsson, Ulf J; Blanchard, Helen

    2015-09-01

    Human galectin-4 is a lectin that is expressed mainly in the gastrointestinal tract and exhibits metastasis-promoting roles in some cancers. Its tandem-repeat nature exhibits two distinct carbohydrate recognition domains allowing crosslinking by simultaneous binding to sulfated and non-sulfated (but not sialylated) glycosphingolipids and glycoproteins, facilitating stabilization of lipid rafts. Critically, galectin-4 exerts favourable or unfavourable effects depending upon the cancer. Here we report the first X-ray crystallographic structural information on human galectin-4, specifically the C-terminal carbohydrate recognition domain of human (galectin-4C) in complex with lactose, lactose-3'-sulfate, 2'-fucosyllactose, lacto-N-tetraose and lacto-N-neotetraose. These structures enable elucidation of galectin-4C binding fine-specificity towards sulfated and non-sulfated lacto- and neolacto-series sphingolipids as well as to human blood group antigens. Analysis of the lactose-3'-sulfate complex structure shows that galectin-4C does not recognize the sulfate group using any specific amino acid, but binds the ligand nonetheless. Complex structures with lacto-N-tetraose and lacto-N-neotetraose displayed differences in binding interactions exhibited by the non-reducing-end galactose. That of lacto-N-tetraose points outward from the protein surface whereas that of lacto-N-neotetraose interacts directly with the protein. Recognition patterns of human galectin-4C towards lacto- and neolacto-series glycosphingolipids are similar to those of human galectin-3; however, detailed scrutiny revealed differences stemming from the extended binding site that offer distinction in ligand profiles of these two galectins. Structural characterization of the complex with 2'-fucosyllactose, a carbohydrate with similarity to the H antigen, and molecular dynamics studies highlight structural features that allow specific recognition of A and B antigens, whilst a lack of interaction with the 2'-fucose of blood group antigens was revealed. 4YLZ, 4YM0, 4YM1, 4YM2, 4YM3. © 2015 FEBS.

  12. Do Online Learning Patterns Exhibit Regional and Demographic Differences?

    ERIC Educational Resources Information Center

    Hsieh, Tsui-Chuan; Yang, Chyan

    2012-01-01

    This paper used a multi-level latent class model to evaluate whether online learning patterns exhibit regional differences and demographics. This study discovered that the Internet learning pattern consists of five segments, and the region of Taiwan is divided into two segments and further found that both the user and the regional segments are…

  13. Thick-film acoustic emission sensors for use in structurally integrated condition-monitoring applications.

    PubMed

    Pickwell, Andrew J; Dorey, Robert A; Mba, David

    2011-09-01

    Monitoring the condition of complex engineering structures is an important aspect of modern engineering, eliminating unnecessary work and enabling planned maintenance, preventing failure. Acoustic emissions (AE) testing is one method of implementing continuous nondestructive structural health monitoring. A novel thick-film (17.6 μm) AE sensor is presented. Lead zirconate titanate thick films were fabricated using a powder/sol composite ink deposition technique and mechanically patterned to form a discrete thick-film piezoelectric AE sensor. The thick-film sensor was benchmarked against a commercial AE device and was found to exhibit comparable responses to simulated acoustic emissions.

  14. Imaging Local Polarization in Ferroelectric Thin Films by Coherent X-Ray Bragg Projection Ptychography

    NASA Astrophysics Data System (ADS)

    Hruszkewycz, S. O.; Highland, M. J.; Holt, M. V.; Kim, Dongjin; Folkman, C. M.; Thompson, Carol; Tripathi, A.; Stephenson, G. B.; Hong, Seungbum; Fuoss, P. H.

    2013-04-01

    We used x-ray Bragg projection ptychography (BPP) to map spatial variations of ferroelectric polarization in thin film PbTiO3, which exhibited a striped nanoscale domain pattern on a high-miscut (001) SrTiO3 substrate. By converting the reconstructed BPP phase image to picometer-scale ionic displacements in the polar unit cell, a quantitative polarization map was made that was consistent with other characterization. The spatial resolution of 5.7 nm demonstrated here establishes BPP as an important tool for nanoscale ferroelectric domain imaging, especially in complex environments accessible with hard x rays.

  15. Formalized description and construction of semantic dictionary of graphic-text spatial relationship

    NASA Astrophysics Data System (ADS)

    Sun, Yizhong; Xue, Xiaolei; Zhao, Xiaoqin

    2008-10-01

    Graphic and text are two major elements in exhibiting of the results of urban planning and land administration. In combination, they convey the complex relationship resulting from spatial analysis and decision-making. Accurately interpreting and representing these relationships are important steps towards an intelligent GIS for urban planning. This paper employs concept-hierarchy-tree to formalize graphic-text relationships through a framework of spatial object lexicon, spatial relationship lexicon, restriction lexicon, applied pattern base, and word segmentation rule base. The methodology is further verified and shown effective on several urban planning archives.

  16. Method for shallow junction formation

    DOEpatents

    Weiner, K.H.

    1996-10-29

    A doping sequence is disclosed that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated. 8 figs.

  17. Method for shallow junction formation

    DOEpatents

    Weiner, Kurt H.

    1996-01-01

    A doping sequence that reduces the cost and complexity of forming source/drain regions in complementary metal oxide silicon (CMOS) integrated circuit technologies. The process combines the use of patterned excimer laser annealing, dopant-saturated spin-on glass, silicide contact structures and interference effects creates by thin dielectric layers to produce source and drain junctions that are ultrashallow in depth but exhibit low sheet and contact resistance. The process utilizes no photolithography and can be achieved without the use of expensive vacuum equipment. The process margins are wide, and yield loss due to contact of the ultrashallow dopants is eliminated.

  18. Reflow dynamics of thin patterned viscous films

    NASA Astrophysics Data System (ADS)

    Leveder, T.; Landis, S.; Davoust, L.

    2008-01-01

    This letter presents a study of viscous smoothening dynamics of a nanopatterned thin film. Ultrathin film manufacturing processes appearing to be a key point of nanotechnology engineering and numerous studies have been recently led in order to exhibit driving parameters of this transient surface motion, focusing on time scale accuracy method. Based on nanomechanical analysis, this letter shows that controlled shape measurements provided much more detailed information about reflow mechanism. Control of reflow process of any complex surface shape, or measurement of material parameter as thin film viscosity, free surface energy, or even Hamaker constant are therefore possible.

  19. Aeolian sand transport over complex intertidal bar-trough beach topography

    NASA Astrophysics Data System (ADS)

    Anthony, Edward J.; Ruz, Marie-Hélène; Vanhée, Stéphane

    2009-04-01

    Aeolian sand transport on macrotidal beaches with complex intertidal bar-trough topography (ridge-and-runnel beaches) was assessed from experiments in northern France that involved measurements of wind speed, saltation, surface moisture contents, and rates of sand trapping across surveyed portions of the upper beach profile. Beaches exhibiting intertidal bars and troughs are much more complex, topographically, than simple reflective or dissipative beaches. Furthermore, the intertidal bar-trough morphology commonly exhibits strong cross-shore variations in the moisture contents of the beach surface and in patterns of bedform development. The results of four 30-minute experiments, conducted along topographically surveyed portions of the upper beach-dune toe profile, show that troughs act as extremely efficient sand interceptors, because of their permanently saturated state, which also inhibits sand mobilisation. Troughs, thus, limit or segment the dry fetch during conditions of intermittent saltation. Flow lines, inferred from the wind profiles, suggest that complex interactions at the boundary layer are generated by the bar-trough topography. Troughs systematically appear to be characterised by air expansion, while bar faces generate ramp wind acceleration for onshore winds, and sometimes immediate downwind deceleration for offshore winds. These effects may also contribute to cross-shore variations in the rates of sand trapping. Finally, a simple conceptual model of effective fetch development, integrating the effects of the spring-neap tidal range and of gross bar-trough morphological variability over time, is proposed for bar-trough beaches. The model highlights the key theme of fetch segmentation induced by cross-shore differentiation in the moisture contents of the beach surface hinged on the complex topography of multiple bars and troughs.

  20. Redefining the functional roles of the gastrointestinal migrating motor complex and motilin in small bacterial overgrowth and hunger signaling.

    PubMed

    Deloose, Eveline; Tack, Jan

    2016-02-15

    During the fasting state the upper gastrointestinal tract exhibits a specific periodic migrating contraction pattern that is known as the migrating motor complex (MMC). Three different phases can be distinguished during the MMC. Phase III of the MMC is the most active of the three and can start either in the stomach or small intestine. Historically this pattern was designated to be the housekeeper of the gut since disturbances in the pattern were associated with small intestinal bacterial overgrowth; however, its role in the involvement of hunger sensations was already hinted in the beginning of the 20th century by both Cannon (Cannon W, Washburn A. Am J Physiol 29: 441-454, 1912) and Carlson (Carlson A. The Control of Hunger in Health and Disease. Chicago, IL: Univ. of Chicago Press, 1916). The discovery of motilin in 1973 shed more light on the control mechanisms of the MMC. Motilin plasma levels fluctuate together with the phases of the MMC and induce phase III contractions with a gastric onset. Recent research suggests that these motilin-induced phase III contractions signal hunger in healthy subjects and that this system is disturbed in morbidly obese patients. This minireview describes the functions of the MMC in the gut and its regulatory role in controlling hunger sensations. Copyright © 2016 the American Physiological Society.

  1. Unique Temporal Expression of Triplicated Long-Wavelength Opsins in Developing Butterfly Eyes

    PubMed Central

    Arikawa, Kentaro; Iwanaga, Tomoyuki; Wakakuwa, Motohiro; Kinoshita, Michiyo

    2017-01-01

    Following gene duplication events, the expression patterns of the resulting gene copies can often diverge both spatially and temporally. Here we report on gene duplicates that are expressed in distinct but overlapping patterns, and which exhibit temporally divergent expression. Butterflies have sophisticated color vision and spectrally complex eyes, typically with three types of heterogeneous ommatidia. The eyes of the butterfly Papilio xuthus express two green- and one red-absorbing visual pigment, which came about via gene duplication events, in addition to one ultraviolet (UV)- and one blue-absorbing visual pigment. We localized mRNAs encoding opsins of these visual pigments in developing eye disks throughout the pupal stage. The mRNAs of the UV and blue opsin are expressed early in pupal development (pd), specifying the type of the ommatidium in which they appear. Red sensitive photoreceptors first express a green opsin mRNA, which is replaced later by the red opsin mRNA. Broadband photoreceptors (that coexpress the green and red opsins) first express the green opsin mRNA, later change to red opsin mRNA and finally re-express the green opsin mRNA in addition to the red mRNA. Such a unique temporal and spatial expression pattern of opsin mRNAs may reflect the evolution of visual pigments and provide clues toward understanding how the spectrally complex eyes of butterflies evolved. PMID:29238294

  2. Total levels, localization patterns, and proportions of sperm exhibiting phospholipase C zeta are significantly correlated with fertilization rates after intracytoplasmic sperm injection.

    PubMed

    Yelumalai, Suseela; Yeste, Marc; Jones, Celine; Amdani, Siti N; Kashir, Junaid; Mounce, Ginny; Da Silva, Sarah J Martins; Barratt, Christopher L; McVeigh, Enda; Coward, Kevin

    2015-09-01

    To study the relationship of total levels, localization patterns, and proportions of sperm exhibiting phospholipase C zeta, with fertilization rates after in vitro fertilization (IVF) and intracytoplasmic sperm injection (ICSI). Laboratory study; controls vs. patients after IVF (n = 27) or ICSI (n = 17) treatment. Fertility center. A total of 44 semen samples, subjected to either IVF or ICSI treatment. Oocyte collection, ICSI or IVF, determination of sperm concentration and motility, and immunocytochemical analyses of phospholipase C zeta (PLCζ). None. Percentages of sperm exhibiting PLCζ. Significant positive correlation between ICSI fertilization rates and total levels, localization patterns, and the proportion (percentage) of sperm exhibiting PLCζ. Total levels, localization patterns, and the proportion of sperm exhibiting PLCζ are correlated with fertilization rates for ICSI, but not for IVF. Evaluating total levels, localization patterns, and proportions of PLCζ may represent a useful diagnostic tool for clinical purposes in men for whom IVF is not advised or has previously failed. This clinical study further supports the fundamental role of PLCζ in the oocyte activation process. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Gene Loss and Lineage-Specific Restriction-Modification Systems Associated with Niche Differentiation in the Campylobacter jejuni Sequence Type 403 Clonal Complex

    PubMed Central

    Morley, Laura; McNally, Alan; Paszkiewicz, Konrad; Corander, Jukka; Méric, Guillaume; Sheppard, Samuel K.; Blom, Jochen

    2015-01-01

    Campylobacter jejuni is a highly diverse species of bacteria commonly associated with infectious intestinal disease of humans and zoonotic carriage in poultry, cattle, pigs, and other animals. The species contains a large number of distinct clonal complexes that vary from host generalist lineages commonly found in poultry, livestock, and human disease cases to host-adapted specialized lineages primarily associated with livestock or poultry. Here, we present novel data on the ST403 clonal complex of C. jejuni, a lineage that has not been reported in avian hosts. Our data show that the lineage exhibits a distinctive pattern of intralineage recombination that is accompanied by the presence of lineage-specific restriction-modification systems. Furthermore, we show that the ST403 complex has undergone gene decay at a number of loci. Our data provide a putative link between the lack of association with avian hosts of C. jejuni ST403 and both gene gain and gene loss through nonsense mutations in coding sequences of genes, resulting in pseudogene formation. PMID:25795671

  4. Complex systems and the technology of variability analysis

    PubMed Central

    Seely, Andrew JE; Macklem, Peter T

    2004-01-01

    Characteristic patterns of variation over time, namely rhythms, represent a defining feature of complex systems, one that is synonymous with life. Despite the intrinsic dynamic, interdependent and nonlinear relationships of their parts, complex biological systems exhibit robust systemic stability. Applied to critical care, it is the systemic properties of the host response to a physiological insult that manifest as health or illness and determine outcome in our patients. Variability analysis provides a novel technology with which to evaluate the overall properties of a complex system. This review highlights the means by which we scientifically measure variation, including analyses of overall variation (time domain analysis, frequency distribution, spectral power), frequency contribution (spectral analysis), scale invariant (fractal) behaviour (detrended fluctuation and power law analysis) and regularity (approximate and multiscale entropy). Each technique is presented with a definition, interpretation, clinical application, advantages, limitations and summary of its calculation. The ubiquitous association between altered variability and illness is highlighted, followed by an analysis of how variability analysis may significantly improve prognostication of severity of illness and guide therapeutic intervention in critically ill patients. PMID:15566580

  5. Cyclic Game Dynamics Driven by Iterated Reasoning

    PubMed Central

    Frey, Seth; Goldstone, Robert L.

    2013-01-01

    Recent theories from complexity science argue that complex dynamics are ubiquitous in social and economic systems. These claims emerge from the analysis of individually simple agents whose collective behavior is surprisingly complicated. However, economists have argued that iterated reasoning–what you think I think you think–will suppress complex dynamics by stabilizing or accelerating convergence to Nash equilibrium. We report stable and efficient periodic behavior in human groups playing the Mod Game, a multi-player game similar to Rock-Paper-Scissors. The game rewards subjects for thinking exactly one step ahead of others in their group. Groups that play this game exhibit cycles that are inconsistent with any fixed-point solution concept. These cycles are driven by a “hopping” behavior that is consistent with other accounts of iterated reasoning: agents are constrained to about two steps of iterated reasoning and learn an additional one-half step with each session. If higher-order reasoning can be complicit in complex emergent dynamics, then cyclic and chaotic patterns may be endogenous features of real-world social and economic systems. PMID:23441191

  6. A reinvestigation of phylogeny and divergence times of the Ablepharus kitaibelii species complex (Sauria, Scincidae) based on mtDNA and nuDNA genes.

    PubMed

    Skourtanioti, Eirini; Kapli, Paschalia; Ilgaz, Çetin; Kumlutaş, Yusuf; Avcı, Aziz; Ahmadzadeh, Faraham; Crnobrnja-Isailović, Jelka; Gherghel, Iulian; Lymberakis, Petros; Poulakakis, Nikos

    2016-10-01

    Morphological and DNA data support that the East Mediterranean snake-eyed skink Ablepharus kitaibelii represents a species complex that includes four species A. kitaibelii, A. budaki, A. chernovi, and A. rueppellii, highlighting the need of its taxonomic reevaluation. Here, we used Bayesian and Maximum Likelihood methods to estimate the phylogenetic relationships of all members of the complex based on two mitochondrial (cyt b, 16S rRNA) and two nuclear markers (MC1R, and NKTR) and using Chalcides, Eumeces, and Eutropis as outgroups. The biogeographic history of the complex was also investigated through the application of several phylogeographic (BEAST) and biogeographic (BBM) analyses. Paleogeographic and paleoclimatic data were used to support the inferred phylogeographic patterns. The A. kitaibelli species complex exhibits high genetic diversity, revealing cases of hidden diversity and cases of non-monophyletic species such as A. kitaibelii and A. budaki. Our results indicate that A. pannonicus branches off first and a group that comprises specimens of A. kitaibelli and A. budaki from Kastelorizo Island group (southeast Greece) and southwest Turkey, respectively is differentiated from the rest A. kitaibelli and A. budaki populations and may represent a new species. The estimated divergence times place the origin of the complex in the Middle Miocene (∼16Mya) and the divergence of most currently recognized species in the Late Miocene. The inferred ancestral distribution suggests that the complex originated in Anatolia, supposing that several vicariance and dispersal events that are related with the formation of the Mid-Aegean Trench, the Anatolian Diagonal and the orogenesis of the mountain chains in southern and eastern Anatolia have led to current distribution pattern of A. kitaibelii species complex in the Balkans and Middle East. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Life history determines genetic structure and evolutionary potential of host–parasite interactions

    PubMed Central

    Barrett, Luke G.; Thrall, Peter H.; Burdon, Jeremy J.; Linde, Celeste C.

    2009-01-01

    Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns. PMID:18947899

  8. Rotating non-Boussinesq convection: oscillating hexagons

    NASA Astrophysics Data System (ADS)

    Moroz, Vadim; Riecke, Hermann; Pesch, Werner

    2000-11-01

    Within weakly nonlinear theory hexagon patterns are expected to undergo a Hopf bifurcation to oscillating hexagons when the chiral symmetry of the system is broken. Quite generally, the oscillating hexagons are expected to exhibit bistability of spatio-temporal defect chaos and periodic dynamics. This regime is described by the complex Ginzburg-Landau equation, which has been investigated theoretically in great detail. Its complex dynamics have, however, not been observed in experiments. Starting from the Navier-Stokes equations with realistic boundary conditions, we derive the three coupled real Ginzburg-Landau equations describing hexagons in rotating non-Boussinesq convection. We use them to provide quantitative results for the wavenumber range of stability of the stationary hexagons as well as the range of existence and stability of the oscillating hexagons. Our investigation is complemented by direct numerical simulations of the Navier-Stokes equations.

  9. Life history determines genetic structure and evolutionary potential of host-parasite interactions.

    PubMed

    Barrett, Luke G; Thrall, Peter H; Burdon, Jeremy J; Linde, Celeste C

    2008-12-01

    Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns.

  10. Flowering time control: another window to the connection between antisense RNA and chromatin.

    PubMed

    Ietswaart, Robert; Wu, Zhe; Dean, Caroline

    2012-09-01

    A high proportion of all eukaryotic genes express antisense RNA (asRNA), which accumulates to varying degrees at different loci. Whether there is a general function for asRNA is unknown, but its widespread occurrence and frequent regulation by stress suggest an important role. The best-characterized plant gene exhibiting a complex antisense transcript pattern is the Arabidopsis floral regulator FLOWERING LOCUS C (FLC). Changes occur in the accumulation, splicing, and polyadenylation of this antisense transcript, termed COOLAIR, in different environments and genotypes. These changes are associated with altered chromatin regulation and differential FLC expression, provoking mechanistic comparisons with many well-studied loci in yeast and mammals. Detailed analysis of these specific examples may shed light on the complex interplay between asRNA and chromatin modifications in different genomes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Prior activity of olfactory receptor neurons is required for proper sensory processing and behavior in Drosophila larvae.

    PubMed

    Utashiro, Nao; Williams, Claire R; Parrish, Jay Z; Emoto, Kazuo

    2018-06-05

    Animal responses to their environment rely on activation of sensory neurons by external stimuli. In many sensory systems, however, neurons display basal activity prior to the external stimuli. This prior activity is thought to modulate neural functions, yet its impact on animal behavior remains elusive. Here, we reveal a potential role for prior activity in olfactory receptor neurons (ORNs) in shaping larval olfactory behavior. We show that prior activity in larval ORNs is mediated by the olfactory receptor complex (OR complex). Mutations of Orco, an odorant co-receptor required for OR complex function, cause reduced attractive behavior in response to optogenetic activation of ORNs. Calcium imaging reveals that Orco mutant ORNs fully respond to optogenetic stimulation but exhibit altered temporal patterns of neural responses. These findings together suggest a critical role for prior activity in information processing upon ORN activation in Drosophila larvae, which in turn contributes to olfactory behavior control.

  12. Complex Patterns in Financial Time Series Through HIGUCHI’S Fractal Dimension

    NASA Astrophysics Data System (ADS)

    Grace Elizabeth Rani, T. G.; Jayalalitha, G.

    2016-11-01

    This paper analyzes the complexity of stock exchanges through fractal theory. Closing price indices of four stock exchanges with different industry sectors are selected. Degree of complexity is assessed through Higuchi’s fractal dimension. Various window sizes are considered in evaluating the fractal dimension. It is inferred that the data considered as a whole represents random walk for all the four indices. Analysis of financial data through windowing procedure exhibits multi-fractality. Attempts to apply moving averages to reduce noise in the data revealed lower estimates of fractal dimension, which was verified using fractional Brownian motion. A change in the normalization factor in Higuchi’s algorithm did improve the results. It is quintessential to focus on rural development to realize a standard and steady growth of economy. Tools must be devised to settle the issues in this regard. Micro level institutions are necessary for the economic growth of a country like India, which would induce a sporadic development in the present global economical scenario.

  13. Coupled counterrotating polariton condensates in optically defined annular potentials

    PubMed Central

    Dreismann, Alexander; Cristofolini, Peter; Balili, Ryan; Christmann, Gabriel; Pinsker, Florian; Berloff, Natasha G.; Hatzopoulos, Zacharias; Savvidis, Pavlos G.; Baumberg, Jeremy J.

    2014-01-01

    Polariton condensates are macroscopic quantum states formed by half-matter half-light quasiparticles, thus connecting the phenomena of atomic Bose–Einstein condensation, superfluidity, and photon lasing. Here we report the spontaneous formation of such condensates in programmable potential landscapes generated by two concentric circles of light. The imposed geometry supports the emergence of annular states that extend up to 100 μm, yet are fully coherent and exhibit a spatial structure that remains stable for minutes at a time. These states exhibit a petal-like intensity distribution arising due to the interaction of two superfluids counterpropagating in the circular waveguide defined by the optical potential. In stark contrast to annular modes in conventional lasing systems, the resulting standing wave patterns exhibit only minimal overlap with the pump laser itself. We theoretically describe the system using a complex Ginzburg–Landau equation, which indicates why the condensate wants to rotate. Experimentally, we demonstrate the ability to precisely control the structure of the petal condensates both by carefully modifying the excitation geometry as well as perturbing the system on ultrafast timescales to reveal unexpected superfluid dynamics. PMID:24889642

  14. Active turbulence in a gas of self-assembled spinners

    PubMed Central

    Kokot, Gašper; Das, Shibananda; Winkler, Roland G.; Aranson, Igor S.; Snezhko, Alexey

    2017-01-01

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air–liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generated advection flows. The same-chirality spinners (clockwise or counterclockwise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. Our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale. PMID:29158382

  15. Study on electrical current variations in electromembrane extraction process: Relation between extraction recovery and magnitude of electrical current.

    PubMed

    Rahmani, Turaj; Rahimi, Atyeh; Nojavan, Saeed

    2016-01-15

    This contribution presents an experimental approach to improve analytical performance of electromembrane extraction (EME) procedure, which is based on the scrutiny of current pattern under different extraction conditions such as using different organic solvents as supported liquid membrane, electrical potentials, pH values of donor and acceptor phases, variable extraction times, temperatures, stirring rates, different hollow fiber lengths and the addition of salts or organic solvents to the sample matrix. In this study, four basic drugs with different polarities were extracted under different conditions with the corresponding electrical current patterns compared against extraction recoveries. The extraction process was demonstrated in terms of EME-HPLC analyses of selected basic drugs. Comparing the obtained extraction recoveries with the electrical current patterns, most cases exhibited minimum recovery and repeatability at the highest investigated magnitude of electrical current. . It was further found that identical current patterns are associated with repeated extraction efficiencies. In other words, the pattern should be repeated for a successful extraction. The results showed completely different electrical currents under different extraction conditions, so that all variable parameters have contributions into the electrical current pattern. Finally, the current patterns of extractions from wastewater, plasma and urine samples were demonstrated. The results indicated an increase in the electrical current when extracting from complex matrices; this was seen to decrease the extraction efficiency. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Dynamics of DDT in the terrestrial snail Otala lactea (Stylommatophora:Helicidae)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurzinger, K.H.; Dindal, D.L.

    1975-01-01

    Seventy specimens of Otala lactea (Mueller) were fed 40 ..mu..g radiolabelled DDT.gram/sup -1/ body weight and analyzed by liquid scintillation spectrometry to determine the body distribution and dynamics of the DDT within the snail's tissues. More than 50% of the pesticide fed to the animals was excreted in the feces after 1 to 2 days. Residues in the body accumulated mostly in the hepatopancreas. All tissues assayed contained measureable quantities of DDT. Five patterns of residue distribution/time were apparent. Pattern I, exhibited by the buccal mass, esophagus, crop, stomach and intestine, showed a general decrease in residue concentrations over themore » 14 day test period. Pattern II, exhibited by the hepatopancreas, kidney, ovotestis, sperm-oviduct, albumen gland and mucous gland, showed a general increase in residue concentrations. Pattern III, exhibited by the salivary gland, spermatheca, circumesophageal nerve ring, lung, collar (mantle edge), foot and vagina + dart sack, showed a fairly constant level of residues. Pattern IV, exhibited by the retractor muscles, epidermis and heart, showed a cyclical distribution of residue levels. Pattern V, exhibited by the penis, showed a cyclical distribution of residue levels that were different from Pattern IV. A double compartment scheme was utilized to explain those trends. Period A, corresponding to the fast compartment, is due to the initial ingestionof insecticide. Periods B and C, corresponding to the slow compartment, are due to the redistribution of residues within the organism.« less

  17. Patterns in Calabi-Yau Distributions

    NASA Astrophysics Data System (ADS)

    He, Yang-Hui; Jejjala, Vishnu; Pontiggia, Luca

    2017-09-01

    We explore the distribution of topological numbers in Calabi-Yau manifolds, using the Kreuzer-Skarke dataset of hypersurfaces in toric varieties as a testing ground. While the Hodge numbers are well-known to exhibit mirror symmetry, patterns in frequencies of combination thereof exhibit striking new patterns. We find pseudo-Voigt and Planckian distributions with high confidence and exact fit for many substructures. The patterns indicate typicality within the landscape of Calabi-Yau manifolds of various dimension.

  18. Heterogeneous State of Stress and Seismicity Distribution Along the San Andreas Fault in Southern California: New Insights into Rupture Terminations of Past Earthquakes

    NASA Astrophysics Data System (ADS)

    Hauksson, E.; Ross, Z. E.; Yu, C.

    2016-12-01

    The southern San Andreas Fault (SAF) accommodates 80% of the plate motion between the Pacific and North America plates in southern California. We image complex patterns of the state of stress, style of faulting, and seismicity adjacent to the SAF, both along strike and away from the fault. This complexity is not captured in previous one-dimensional profiles of stress orientations across the fault. On average the maximum principal stress (S1) rotates from N30°E in central California, along the Cholame segment, to N0°-20°W along the Mojave and San Bernardino segments. Farther south, along the Coachella Valley segment the orientation is again N30°E. On a broad scale these changes in S1 orientation coincide with the more westerly strike of the SAF across the Mojave Desert but in detail they suggest significant variations in frictional coefficient or strength along strike. Similarly, on a more detailed scale, the size of the S1 rotations is spatially heterogeneous, with the largest rotations associated with the two bends in the SAF, at Gorman and Cajon Pass. In each location a major fault, Garlock fault and San Jacinto fault, intersects the SAF. In these intersected regions, the seismicity is more abundant and the S1 orientation is more likely to exhibit abrupt changes in trend by up to 10° across the fault. The GPS maximum principal strain rate orientations exhibit a similar but smoother pattern with mostly west of north orientations along the Mojave and San Bernardino segments. The style of faulting as derived from stress inversion is similarly heterogeneous with a mixture of strike-slip and thrust faulting forming complex spatial patterns. The D95% maximum depth of earthquakes changes abruptly both along and across the SAF suggesting that local variations in composition affect the maximum seismicity depth. The heterogeneity in the state of stress is not influenced by the average heat flow, which is similar along the whole length of the southern SAF. The crustal composition, background seismicity, and the strength of the SAF vary along strike, with the strongest fault segments being near the two bends, Gorman and Cajon Pass, where past major earthquake ruptures may have preferentially terminated.

  19. Mate choice for major histocompatibility complex genetic divergence as a bet-hedging strategy in the Atlantic salmon (Salmo salar).

    PubMed

    Evans, Melissa L; Dionne, Mélanie; Miller, Kristina M; Bernatchez, Louis

    2012-01-22

    Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures.

  20. From phase transitions to the topological renaissance. Comment on "Topodynamics of metastable brains" by Arturo Tozzi et al.

    NASA Astrophysics Data System (ADS)

    Somogyvári, Zoltán; Érdi, Péter

    2017-07-01

    The neural topodynamics theory of Tozzi et al. [13] has two main foci: metastable brain dynamics and the topological approach based on the Borsuk-Ulam theorem (BUT). Briefly, metastable brain dynamics theory hypothesizes that temporary stable synchronization and desynchronization of large number of individual dynamical systems, formed by local neural circuits, are responsible for coding of complex concepts in the brain and sudden changes of these synchronization patterns correspond to operational steps. But what dynamical network could form the substrate for this metastable dynamics, capable of entering into a combinatorially high number of metastable synchronization patterns and exhibit rapid transient changes between them? The general problem is related to the discrimination between ;Black Swans; and ;Dragon Kings;. While BSs are related to the theory of self-organized criticality, and suggests that high-impact extreme events are unpredictable, Dragon-kings are associated with the occurrence of a phase transition, whose emergent organization is based on intermittent criticality [9]. Widening the limits of predictability is one of the big open problems in the theory and practice of complex systems (Sect. 9.3 of Érdi [2]).

  1. Mate choice for major histocompatibility complex genetic divergence as a bet-hedging strategy in the Atlantic salmon (Salmo salar)

    PubMed Central

    Evans, Melissa L.; Dionne, Mélanie; Miller, Kristina M.; Bernatchez, Louis

    2012-01-01

    Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures. PMID:21697172

  2. Minimal perceptrons for memorizing complex patterns

    NASA Astrophysics Data System (ADS)

    Pastor, Marissa; Song, Juyong; Hoang, Danh-Tai; Jo, Junghyo

    2016-11-01

    Feedforward neural networks have been investigated to understand learning and memory, as well as applied to numerous practical problems in pattern classification. It is a rule of thumb that more complex tasks require larger networks. However, the design of optimal network architectures for specific tasks is still an unsolved fundamental problem. In this study, we consider three-layered neural networks for memorizing binary patterns. We developed a new complexity measure of binary patterns, and estimated the minimal network size for memorizing them as a function of their complexity. We formulated the minimal network size for regular, random, and complex patterns. In particular, the minimal size for complex patterns, which are neither ordered nor disordered, was predicted by measuring their Hamming distances from known ordered patterns. Our predictions agree with simulations based on the back-propagation algorithm.

  3. Identification of rice genes associated with cosmic-ray response via co-expression gene network analysis.

    PubMed

    Hwang, Sun-Goo; Kim, Dong Sub; Hwang, Jung Eun; Han, A-Reum; Jang, Cheol Seong

    2014-05-15

    In order to better understand the biological systems that are affected in response to cosmic ray (CR), we conducted weighted gene co-expression network analysis using the module detection method. By using the Pearson's correlation coefficient (PCC) value, we evaluated complex gene-gene functional interactions between 680 CR-responsive probes from integrated microarray data sets, which included large-scale transcriptional profiling of 1000 microarray samples. These probes were divided into 6 distinct modules that contained 20 enriched gene ontology (GO) functions, such as oxidoreductase activity, hydrolase activity, and response to stimulus and stress. In particular, modules 1 and 2 commonly showed enriched annotation categories such as oxidoreductase activity, including enriched cis-regulatory elements known as ROS-specific regulators. These results suggest that the ROS-mediated irradiation response pathway is affected by CR in modules 1 and 2. We found 243 ionizing radiation (IR)-responsive probes that exhibited similarities in expression patterns in various irradiation microarray data sets. The expression patterns of 6 randomly selected IR-responsive genes were evaluated by quantitative reverse transcription polymerase chain reaction following treatment with CR, gamma rays (GR), and ion beam (IB); similar patterns were observed among these genes under these 3 treatments. Moreover, we constructed subnetworks of IR-responsive genes and evaluated the expression levels of their neighboring genes following GR treatment; similar patterns were observed among them. These results of network-based analyses might provide a clue to understanding the complex biological system related to the CR response in plants. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Modeling carbachol-induced hippocampal network synchronization using hidden Markov models

    NASA Astrophysics Data System (ADS)

    Dragomir, Andrei; Akay, Yasemin M.; Akay, Metin

    2010-10-01

    In this work we studied the neural state transitions undergone by the hippocampal neural network using a hidden Markov model (HMM) framework. We first employed a measure based on the Lempel-Ziv (LZ) estimator to characterize the changes in the hippocampal oscillation patterns in terms of their complexity. These oscillations correspond to different modes of hippocampal network synchronization induced by the cholinergic agonist carbachol in the CA1 region of mice hippocampus. HMMs are then used to model the dynamics of the LZ-derived complexity signals as first-order Markov chains. Consequently, the signals corresponding to our oscillation recordings can be segmented into a sequence of statistically discriminated hidden states. The segmentation is used for detecting transitions in neural synchronization modes in data recorded from wild-type and triple transgenic mice models (3xTG) of Alzheimer's disease (AD). Our data suggest that transition from low-frequency (delta range) continuous oscillation mode into high-frequency (theta range) oscillation, exhibiting repeated burst-type patterns, occurs always through a mode resembling a mixture of the two patterns, continuous with burst. The relatively random patterns of oscillation during this mode may reflect the fact that the neuronal network undergoes re-organization. Further insight into the time durations of these modes (retrieved via the HMM segmentation of the LZ-derived signals) reveals that the mixed mode lasts significantly longer (p < 10-4) in 3xTG AD mice. These findings, coupled with the documented cholinergic neurotransmission deficits in the 3xTG mice model, may be highly relevant for the case of AD.

  5. Progesterone and prostaglandin F2α induce species-typical female preferences for male sexual displays in Cope's gray treefrog (Hyla chrysoscelis).

    PubMed

    Ward, Jessica L; Love, Elliot K; Baugh, Alexander T; Gordon, Noah M; Tanner, Jessie C; Bee, Mark A

    2015-12-01

    Endocrine systems play critical roles in facilitating sexual behavior in seasonally breeding vertebrates. Much of the research exploring this topic has focused on the endocrine correlates of signaling behavior in males and sexual proceptivity in females. What is less understood is how hormones promote the expression of the often complex and highly selective set of stimulus-response behaviors that are observed in naturally breeding animals. In female frogs, phonotaxis is a robust and sensitive bioassay of mate choice and is exhibited by gravid females during the breeding season. In stark contrast, females exhibit low phonotactic responsiveness outside the breeding season, but the administration of hormones can induce sexual proceptivity. Here we test the hypothesis that manipulation of a minimal set of reproductive hormones-progesterone and prostaglandin F2α-are capable of evoking not only proceptive behavior in non-breeding females, but also the patterns of intraspecific selectivity for male sexual displays observed in gravid females tested during the breeding season. Specifically, we investigated whether preferences for faster call rates, longer call durations, and higher call efforts were similar between breeding and hormone-treated females of Cope's gray treefrog (Hyla chrysoscelis). Hormone injections induced patterns of selective phonotaxis in non-breeding females that were remarkably similar to those observed in breeding females. These results suggest that there may be an important contribution of hormonal pleiotropy in regulating this complex, acoustically-guided sexual behavior. Our findings also support the idea that hormonal induction could be used to evaluate hypotheses about selective mate choice, and its underlying mechanisms, using non-breeding females. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage

    PubMed Central

    Ushach, Irina; Zlotnik, Albert

    2016-01-01

    M-CSF and GM-CSF are 2 important cytokines that regulate macrophage numbers and function. Here, we review their known effects on cells of the macrophage-monocyte lineage. Important clues to their function come from their expression patterns. M-CSF exhibits a mostly homeostatic expression pattern, whereas GM-CSF is a product of cells activated during inflammatory or pathologic conditions. Accordingly, M-CSF regulates the numbers of various tissue macrophage and monocyte populations without altering their "activation" status. Conversely, GM-CSF induces activation of monocytes/macrophages and also mediates differentiation to other states that participate in immune responses [i.e., dendritic cells (DCs)]. Further insights into their function have come from analyses of mice deficient in either cytokine. M-CSF signals through its receptor (CSF-1R). Interestingly, mice deficient in CSF-1R expression exhibit a more significant phenotype than mice deficient in M-CSF. This observation was explained by the discovery of a novel cytokine (IL-34) that represents a second ligand of CSF-1R. Information about the function of these ligands/receptor system is still developing, but its complexity is intriguing and strongly suggests that more interesting biology remains to be elucidated. Based on our current knowledge, several therapeutic molecules targeting either the M-CSF or the GM-CSF pathways have been developed and are currently being tested in clinical trials targeting either autoimmune diseases or cancer. It is intriguing to consider how evolution has directed these pathways to develop; their complexity likely mirrors the multiple functions in which cells of the monocyte/macrophage system are involved. PMID:27354413

  7. Chapter4 - Drought patterns in the conterminous United States and Hawaii.

    Treesearch

    Frank H. Koch; William D. Smith; John W. Coulston

    2014-01-01

    Droughts are common in virtually all U.S. forests, but their frequency and intensity vary widely both between and within forest ecosystems (Hanson and Weltzin 2000). Forests in the Western United States generally exhibit a pattern of annual seasonal droughts. Forests in the Eastern United States tend to exhibit one of two prevailing patterns: random occasional droughts...

  8. Multistage magma emplacement and progressive strain accumulation in the shallow-level Krkonoše-Jizera plutonic complex, Bohemian Massif

    NASA Astrophysics Data System (ADS)

    Žák, Jiří; Verner, Kryštof; Sláma, Jiří; Kachlík, Václav; Chlupáčová, Marta

    2013-09-01

    relationships combined with new U-Pb zircon geochronology suggest that the shallow-level Krkonoše-Jizera plutonic complex, northern Bohemian Massif, was assembled successively from bottom to top, starting with emplacement of the separately evolved S-type Tanvald granite (317.3 ± 2.1 Ma), followed by at least two voluminous batches of the I-type porphyritic Liberec (319.5 ± 2.3 Ma) and Jizera (320.1 ± 3.0 Ma and 319.3 ± 3.7 Ma) granites. The intrusive sequence was completed by uppermost, minor intrusions of the equigranular Harrachov (315.0 ± 2.7 Ma) and Krkonoše granites. The I-type granites exhibit an unusually complex pattern of superposed feldspar phenocryst and magnetic fabrics as revealed from the anisotropy of magnetic susceptibility (AMS). The outer Liberec granite preserves margin-parallel foliations and lineations, interpreted to record emplacement-related strain captured by cooling from the pluton floor and walls. In contrast, the inner Jizera, Harrachov, and Krkonoše granites were overprinted by synmagmatic strain resulting from dextral movements along regional strike-slip faults cutting the opposite ends of the plutonic complex. Late-stage felsic dikes in the Liberec and Jizera granites reorient from horizontal to vertical (lineation-perpendicular) attitude in response to changing the least principal stress direction, whereas mafic schlieren do not do so, representing only randomly oriented small-scale thermal-mechanical instabilities in the phenocryst framework. In general, this case example challenges the common approach of inferring pluton-wide magma flow from interpolated foliation, lineation, and schlieren patterns. More likely, magmatic fabrics in large plutons record complex temporal succession of superposed strains resulting from diverse processes at multiple scales.

  9. Non-Linear Pattern Formation in Bone Growth and Architecture

    PubMed Central

    Salmon, Phil

    2014-01-01

    The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here – chaotic non-linear pattern formation (NPF) – which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of “group intelligence” exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called “particle swarm optimization” (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating “socially” in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or “feedback” between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent consequence of the latter. PMID:25653638

  10. Origin of middle rare earth element enrichments in acid waters of a Canadian high Arctic lake.

    NASA Astrophysics Data System (ADS)

    Johannesson, Kevin H.; Zhou, Xiaoping

    1999-01-01

    -Middle rare earth element (MREE) enriched rock-normalized rare earth element (REE) patterns of a dilute acidic lake (Colour Lake) in the Canadian High Arctic, were investigated by quantifying whole-rock REE concentrations of rock samples collected from the catchment basin, as well as determining the acid leachable REE fraction of these rocks. An aliquot of each rock sample was leached with 1 N HNO 3 to examine the readily leachable REE fraction of each rock, and an additional aliquot was leached with a 0.04 M NH 2OH · HCl in 25% (v/v) CH 3COOH solution, designed specifically to reduce Fe-Mn oxides/oxyhydroxides. Rare earth elements associated with the leachates that reacted with clastic sedimentary rock samples containing petrographically identifiable Fe-Mn oxide/oxyhydroxide cements and/or minerals/amorphous phases, exhibited whole-rock-normalized REE patterns similar to the lake waters, whereas whole-rock-normalized leachates from mafic igneous rocks and other clastic sedimentary rocks from the catchment basin differed substantially from the lake waters. The whole-rock, leachates, and lake water REE data support acid leaching or dissolution of MREE enriched Fe-Mn oxides/oxyhydroxides contained and identified within some of the catchment basin sedimentary rocks as the likely source of the unique lake water REE patterns. Solution complexation modelling of the REEs in the inflow streams and lake waters indicate that free metal ions (e.g., Ln 3+, where Ln = any REE) and sulfate complexes (LnSO 4+) are the dominant forms of dissolved REEs. Consequently, solution complexation reactions involving the REEs during weathering, transport to the lake, or within the lake, cannot be invoked to explain the MREE enrichments observed in the lake waters.

  11. Non-linear pattern formation in bone growth and architecture.

    PubMed

    Salmon, Phil

    2014-01-01

    The three-dimensional morphology of bone arises through adaptation to its required engineering performance. Genetically and adaptively bone travels along a complex spatiotemporal trajectory to acquire optimal architecture. On a cellular, micro-anatomical scale, what mechanisms coordinate the activity of osteoblasts and osteoclasts to produce complex and efficient bone architectures? One mechanism is examined here - chaotic non-linear pattern formation (NPF) - which underlies in a unifying way natural structures as disparate as trabecular bone, swarms of birds flying, island formation, fluid turbulence, and others. At the heart of NPF is the fact that simple rules operating between interacting elements, and Turing-like interaction between global and local signals, lead to complex and structured patterns. The study of "group intelligence" exhibited by swarming birds or shoaling fish has led to an embodiment of NPF called "particle swarm optimization" (PSO). This theoretical model could be applicable to the behavior of osteoblasts, osteoclasts, and osteocytes, seeing them operating "socially" in response simultaneously to both global and local signals (endocrine, cytokine, mechanical), resulting in their clustered activity at formation and resorption sites. This represents problem-solving by social intelligence, and could potentially add further realism to in silico computer simulation of bone modeling. What insights has NPF provided to bone biology? One example concerns the genetic disorder juvenile Pagets disease or idiopathic hyperphosphatasia, where the anomalous parallel trabecular architecture characteristic of this pathology is consistent with an NPF paradigm by analogy with known experimental NPF systems. Here, coupling or "feedback" between osteoblasts and osteoclasts is the critical element. This NPF paradigm implies a profound link between bone regulation and its architecture: in bone the architecture is the regulation. The former is the emergent consequence of the latter.

  12. Human mobility and epidemic invasion

    NASA Astrophysics Data System (ADS)

    Colizza, Vittoria

    2010-03-01

    The current H1N1 influenza pandemic is just the latest example of how human mobility helps drive infectious diseases. Travel has grown explosively in the last decades, contributing to an emerging complex pattern of traffic flows that unfolds at different scales, shaping the spread of epidemics. Restrictions on people's mobility are thus investigated to design possible containment measures. By considering a theoretical framework in terms of reaction-diffusion processes, it is possible to study the invasion dynamics of epidemics in a metapopulation system with heterogeneous mobility patterns. The system is found to exhibit a global invasion threshold that sets the critical mobility rate below which the epidemic is contained. The results provide a general framework for the understanding of the numerical evidence from detailed data-driven simulations that show the limited benefit provided by travel flows reduction in slowing down or containing an emerging epidemic.

  13. Reproduction and optical analysis of Morpho-inspired polymeric nanostructures

    NASA Astrophysics Data System (ADS)

    Tippets, Cary A.; Fu, Yulan; Jackson, Anne-Martine; Donev, Eugenii U.; Lopez, Rene

    2016-06-01

    The brilliant blue coloration of the Morpho rhetenor butterfly originates from complex nanostructures found on the surface of its wings. The Morpho butterfly exhibits strong short-wavelength reflection and a unique two-lobe optical signature in the incident (θ) and reflected (ϕ) angular space. Here, we report the large-area fabrication of a Morpho-like structure and its reproduction in perfluoropolyether. Reflection comparisons of periodic and quasi-random ‘polymer butterfly’ nanostructures show similar normal-incidence spectra but differ in the angular θ-ϕ dependence. The periodic sample shows strong specular reflection and simple diffraction. However, the quasi-random sample produces a two-lobe angular reflection pattern with minimal specular refection, approximating the real butterfly’s optical behavior. Finite-difference time-domain simulations confirm that this pattern results from the quasi-random periodicity and highlights the significance of the inherent randomness in the Morpho’s photonic structure.

  14. Firing patterns transition and desynchronization induced by time delay in neural networks

    NASA Astrophysics Data System (ADS)

    Huang, Shoufang; Zhang, Jiqian; Wang, Maosheng; Hu, Chin-Kun

    2018-06-01

    We used the Hindmarsh-Rose (HR) model (Hindmarsh and Rose, 1984) to study the effect of time delay on the transition of firing behaviors and desynchronization in neural networks. As time delay is increased, neural networks exhibit diversity of firing behaviors, including regular spiking or bursting and firing patterns transitions (FPTs). Meanwhile, the desynchronization of firing and unstable bursting with decreasing amplitude in neural system, are also increasingly enhanced with the increase of time delay. Furthermore, we also studied the effect of coupling strength and network randomness on these phenomena. Our results imply that time delays can induce transition and desynchronization of firing behaviors in neural networks. These findings provide new insight into the role of time delay in the firing activities of neural networks, and can help to better understand the firing phenomena in complex systems of neural networks. A possible mechanism in brain that can cause the increase of time delay is discussed.

  15. Effects of population reduction on white-tailed deer home-range dynamics

    USGS Publications Warehouse

    Crimmins, Shawn M.; Edwards, John W.; Campbell, Tyler A; Ford, W. Mark; Keyser, Patrick D.; Miller, Brad F.; Miller, Karl V.

    2015-01-01

    Management strategies designed to reduce the negative impacts of overabundant Odocoileus virginianus (White-tailed Deer) populations on forest regeneration may be influenced by changes in both population density and timber harvest. However, there is conflicting evidence as to how such changes in per capita resource availability influence home-range patterns. We compared home-range patterns of 33 female White-tailed Deer from a low-density population at a site with abundant browse to patterns of a sample of >100 females prior to a 75% reduction in population density and a doubling in timber harvest area. Home-range and core-area sizes were approximately 3 times larger than were found prior to population decline and timber harvest increase, consistent with predictions related to intraspecific competition. We also observed greater site fidelity than previously exhibited, although this may be an artifact of increased home-range sizes. Our results support previous research suggesting that White-tailed Deer home-range size is inversely related to population density and is driven, in part, by intraspecific competition for resources. Relationships among population density, resource availability, and home-range patterns among female White-tailed Deer appear to be complex and context specific.

  16. incurvata13, a Novel Allele of AUXIN RESISTANT6, Reveals a Specific Role for Auxin and the SCF Complex in Arabidopsis Embryogenesis, Vascular Specification, and Leaf Flatness1[W][OA

    PubMed Central

    Esteve-Bruna, David; Pérez-Pérez, José Manuel; Ponce, María Rosa; Micol, José Luis

    2013-01-01

    Auxin plays a pivotal role in plant development by modulating the activity of SCF ubiquitin ligase complexes. Here, we positionally cloned Arabidopsis (Arabidopsis thaliana) incurvata13 (icu13), a mutation that causes leaf hyponasty and reduces leaf venation pattern complexity and auxin responsiveness. We found that icu13 is a novel recessive allele of AUXIN RESISTANT6 (AXR6), which encodes CULLIN1, an invariable component of the SCF complex. Consistent with a role for auxin in vascular specification, the vascular defects in the icu13 mutant were accompanied by reduced expression of auxin transport and auxin perception markers in provascular cells. This observation is consistent with the expression pattern of AXR6, which we found to be restricted to vascular precursors and hydathodes in wild-type leaf primordia. AXR1, RELATED TO UBIQUITIN1-CONJUGATING ENZYME1, CONSTITUTIVE PHOTOMORPHOGENIC9 SIGNALOSOME5A, and CULLIN-ASSOCIATED NEDD8-DISSOCIATED1 participate in the covalent modification of CULLIN1 by RELATED TO UBIQUITIN. Hypomorphic alleles of these genes also display simple venation patterns, and their double mutant combinations with icu13 exhibited a synergistic, rootless phenotype reminiscent of that caused by loss of function of MONOPTEROS (MP), which forms an auxin-signaling module with BODENLOS (BDL). The phenotypes of double mutant combinations of icu13 with either a gain-of-function allele of BDL or a loss-of-function allele of MP were synergistic. In addition, a BDL:green fluorescent protein fusion protein accumulated in icu13, and BDL loss of function or MP overexpression suppressed the phenotype of icu13. Our results demonstrate that the MP-BDL module is required not only for root specification in embryogenesis and vascular postembryonic development but also for leaf flatness. PMID:23319550

  17. Interfacial Octahedral Rotation Mismatch Control of the Symmetry and Properties of SrRuO 3

    DOE PAGES

    Gao, Ran; Dong, Yongqi; Xu, Han; ...

    2016-05-24

    We can use epitaxial strain to tune the properties of complex oxides with perovskite structure. Beyond just lattice mismatch, the use of octahedral rotation mismatch at heterointerfaces could also provide a route to manipulate material properties. We examine the evolution of the lattice (i.e., parameters, symmetry, and octahedral rotations) of SrRuO 3 films grown on substrates engineered to have the same lattice parameters, but 2 different octahedral rotations. SrRuO 3 films grown on SrTiO 3 (001) (no octahedral rotations) and GdScO 3-buffered SrTiO 3 (001) (with octahedral rotations) substrates are found to exhibit monoclinic and tetragonal symmetry, respectively. Electrical transportmore » and magnetic measurements reveal that the tetragonal films exhibit higher resistivity, lower magnetic Curie temperatures, and more isotropic magnetism as compared to those with monoclinic structure. Synchrotron-based half-order Bragg peak analysis reveals that the octahedral rotation pattern in both film variants is the same (albeit with slightly different magnitudes of in-plane rotation angles). Furthermore, the abnormal rotation pattern observed in tetragonal SrRuO 3 indicates a possible decoupling between the internal octahedral rotation and lattice symmetry, which could provide new opportunities to engineer thin-film structure and properties.« less

  18. Temporal-spatial evolution of the hydrologic drought characteristics of the karst drainage basins in South China

    NASA Astrophysics Data System (ADS)

    He, Zhonghua; Liang, Hong; Yang, Chaohui; Huang, Fasu; Zeng, Xinbo

    2018-02-01

    Hydrologic drought, as a typical natural phenomenon in the context of global climate change, is the extension and development of meteorological and agricultural droughts, and it is an eventual and extreme drought. This study selects 55 hydrological control basins in Southern China as research areas. The study analyzes features, such as intensity and occurrence frequency of hydrologic droughts, and explores the spatial-temporal evolution patterns in the karst drainage basins in Southern China by virtue of Streamflow Drought Index. Results show that (1) the general hydrologic droughts from 1970s to 2010s exhibited ;an upward trend after having experienced a previous decline; in the karst drainage basins in Southern China; the trend was mainly represented by the gradual alleviation of hydrologic droughts from 1970s to 1990s and the gradual aggravation from 2000s to 2010s. (2) The spatial-temporal evolution pattern of occurrence frequency in the karst drainage basins in Southern China was consistent with the intensity of hydrologic droughts. The periods of 1970s and 2010s exhibited the highest occurrence frequency. (3) The karst drainage basins in Southern China experienced extremely complex variability of hydrologic droughts from 1970s to 2010s. Drought intensity and occurrence frequency significantly vary for different types of hydrology.

  19. Instant noodles, processed food intake, and dietary pattern are associated with atopic dermatitis in an adult population (KNHANES 2009-2011).

    PubMed

    Park, Sunmin; Choi, Hyun-Seok; Bae, Ji-Hyun

    2016-01-01

    The incidence of atopic dermatitis (AD) is continuously increasing in industrialized countries, possibly due to dietary and lifestyle changes. However, the association between processed food intake and AD has not been studied in a large adult population. We investigated the association between dietary habits and AD in 17,497 adults in the 2009-2011 Korean National Health and Nutrition Examination Survey (KNHANES). We identified 4 dietary patterns using principal components analysis of a 63-item food frequency questionnaire: the "traditional dietary pattern", rich in rice and kimchi; the "processed food pattern", with more meat, instant noodles, soda, and processed foods; the "healthy dietary pattern", high in grains, vegetables, fruits, and seaweeds; and the "drinking dietary pattern", mainly drinking coffee and alcohol. Adjusted odds ratios (ORs) for AD were calculated according to dietary patterns after adjusting for potential confounders with incorporation of sample weights for the complex sample design. The "meat and processed food" pattern was associated with a significant 1.57 fold higher OR for atopic dermatitis than the low consumption group. Further analysis revealed that the increased atopic dermatitis was most closely associated with instant noodles. In contrast, the groups with high intake of rice and kimchi exhibited lower ORs, 0.38 and 0.43 folds, compared to the low intake group. Consuming instant noodles, meat and processed foods was associated with increased prevalence of atopic dermatitis, whereas consuming rice and kimchi, and coffee was associated with decreased prevalence of atopic dermatitis.

  20. Holocene forest dynamics in central and western Mediterranean: periodicity, spatio-temporal patterns and climate influence.

    PubMed

    Di Rita, Federico; Fletcher, William J; Aranbarri, Josu; Margaritelli, Giulia; Lirer, Fabrizio; Magri, Donatella

    2018-06-12

    It is well-known that the Holocene exhibits a millennial-scale climate variability. However, its periodicity, spatio-temporal patterns and underlying processes are not fully deciphered yet. Here we focus on the central and western Mediterranean. We show that recurrent forest declines from the Gulf of Gaeta (central Tyrrhenian Sea) reveal a 1860-yr periodicity, consistent with a ca. 1800-yr climate fluctuation induced by large-scale changes in climate modes, linked to solar activity and/or AMOC intensity. We show that recurrent forest declines and dry events are also recorded in several pollen and palaeohydrological proxy-records in the south-central Mediterranean. We found coeval events also in several palaeohydrological records from the south-western Mediterranean, which however show generally wet climate conditions, indicating a spatio-temporal hydrological pattern opposite to the south-central Mediterranean and suggesting that different expressions of climate modes occurred in the two regions at the same time. We propose that these opposite hydroclimate regimes point to a complex interplay of the prevailing or predominant phases of NAO-like circulation, East Atlantic pattern, and extension and location of the North African anticyclone. At a larger geographical scale, displacements of the ITCZ, modulated by solar activity and/or AMOC intensity, may have also indirectly influenced the observed pattern.

  1. Synthesis, photoluminescence and biological properties of terbium(III) complexes with hydroxyketone and nitrogen containing heterocyclic ligands

    NASA Astrophysics Data System (ADS)

    Poonam; Kumar, Rajesh; Boora, Priti; Khatkar, Anurag; Khatkar, S. P.; Taxak, V. B.

    2016-01-01

    The ternary terbium(III) complexes [Tb(HDAP)3ṡbiq], [Tb(HDAP)3ṡdmph] and [Tb(HDAP)3ṡbathophen] were prepared by using methoxy substituted hydroxyketone ligand HDAP (2-hydroxy-4,6-dimethoxyacetophenone) and an ancillary ligand 2,2-biquinoline or 5,6-dimethyl-1,10-phenanthroline or bathophenanthroline respectively. The ligand and synthesized complexes were characterised based on elemental analysis, FT-IR and 1H NMR. Thermal behaviour of the synthesized complexes illustrates the general decomposition patterns of the complexes by thermogravimetric analysis. Photophysical properties such as excitation spectra, emission spectra and luminescence decay curves of the complexes were investigated in detail. The main green emitting peak at 548 nm can be attributed to 5D4 → 7F5 of Tb3+ ion. Thus, these complexes might be used to make a bright green light-emitting diode for display purpose. In addition the in vitro antibacterial activities of HDAP and its Tb(III) complexes against Bacillus subtilis, Staphylococcus aureus, Escherichia coli and antifungal activities against Candida albicans and Aspergillus niger are reported. The Tb3+ complexes were found to be more potent antimicrobial agent as compared to the ligand. Among all these complexes, [Tb(HDAP)3ṡbathophen] exhibited excellent antimicrobial activity which proves its potential usefulness as an antimicrobial agent. Furthermore, in vitro antioxidant activity tests were carried out by using DPPH method which indicates that the complexes have considerable antioxidant activity when compared with the standard ascorbic acid.

  2. Rare earth elements as a fingerprint of soil components solubilization

    NASA Astrophysics Data System (ADS)

    Davranche, M.; Grybos, M.; Gruau, G.; Pédrot, M.; Dia, A.

    2009-04-01

    The retention of rare earth element (REE) in the soil profile are mainly controlled by three factors, (i) the stability of the primary REE-carrying minerals, (ii) the presence of secondary phases as clays and Fe- and Mn-oxyhydroxides and (ii) the concentration of colloidal organic matter (OM). Considering that each soil phases (mineral or organic) displays (ii) various surface properties, such as specific area, surface sites density and nature and (ii) their own REE distribution inherited from the rock weathering, their mobilization through various chemical reactions (dissolution, colloidal release….) may involve the development of various shaped REE patterns in the soil solutions. REE fractionation from the different soil phases may therefore be used to identify the response of the soil system to a particular chemical process such as reductive and/or acidic dissolution. To test this purpose, an organic-rich wetland soil sample was incubated under anaerobic condition at both pH 5 and uncontrolled pH. The REE patterns developed in the soil solution were then compared to the REE patterns obtained through either aerobic at pH 3 and 7 incubations or a chemical reduction experiment (using hydroxylamine). REE patterns in anaerobic and aerobic at pH 7 experiments exhibited the same middle rare earth element (MREE) downward concavity significant of the complexation of REE with soil OM. By contrast, under acidic condition, the REE pattern exhibited a positive Eu anomaly due to the dissolution of soil feldspar. Finally, REE pattern obtained from the chemical reducing experiment showed an intermediary flat shape corresponding to a mixing between the soil organic and mineral phases dissolution. The comparison of the various REE pattern shapes allowed to conclude that (i) biological reduction of wetland soil involved amorphous Fe(III) colloids linked to OM and, (ii) that the REE mobility was controlled by the dynamic of OM in wetland soil. They also evidence the potential of REE to be use as a tracer of the soil phases involved in the various chemical processes running in soil solutions.

  3. Deciphering complex patterns of class-I HLA-peptide cross-reactivity via hierarchical grouping.

    PubMed

    Mukherjee, Sumanta; Warwicker, Jim; Chandra, Nagasuma

    2015-07-01

    T-cell responses in humans are initiated by the binding of a peptide antigen to a human leukocyte antigen (HLA) molecule. The peptide-HLA complex then recruits an appropriate T cell, leading to cell-mediated immunity. More than 2000 HLA class-I alleles are known in humans, and they vary only in their peptide-binding grooves. The polymorphism they exhibit enables them to bind a wide range of peptide antigens from diverse sources. HLA molecules and peptides present a complex molecular recognition pattern, as many peptides bind to a given allele and a given peptide can be recognized by many alleles. A powerful grouping scheme that not only provides an insightful classification, but is also capable of dissecting the physicochemical basis of recognition specificity is necessary to address this complexity. We present a hierarchical classification of 2010 class-I alleles by using a systematic divisive clustering method. All-pair distances of alleles were obtained by comparing binding pockets in the structural models. By varying the similarity thresholds, a multilevel classification was obtained, with 7 supergroups, each further subclassifying to yield 72 groups. An independent clustering performed based only on similarities in their epitope pools correlated highly with pocket-based clustering. Physicochemical feature combinations that best explain the basis of clustering are identified. Mutual information calculated for the set of peptide ligands enables identification of binding site residues contributing to peptide specificity. The grouping of HLA molecules achieved here will be useful for rational vaccine design, understanding disease susceptibilities and predicting risk of organ transplants.

  4. Hierarchical sequencing of online social graphs

    NASA Astrophysics Data System (ADS)

    Andjelković, Miroslav; Tadić, Bosiljka; Maletić, Slobodan; Rajković, Milan

    2015-10-01

    In online communications, patterns of conduct of individual actors and use of emotions in the process can lead to a complex social graph exhibiting multilayered structure and mesoscopic communities. Using simplicial complexes representation of graphs, we investigate in-depth topology of the online social network constructed from MySpace dialogs which exhibits original community structure. A simulation of emotion spreading in this network leads to the identification of two emotion-propagating layers. Three topological measures are introduced, referred to as the structure vectors, which quantify graph's architecture at different dimension levels. Notably, structures emerging through shared links, triangles and tetrahedral faces, frequently occur and range from tree-like to maximal 5-cliques and their respective complexes. On the other hand, the structures which spread only negative or only positive emotion messages appear to have much simpler topology consisting of links and triangles. The node's structure vector represents the number of simplices at each topology level in which the node resides and the total number of such simplices determines what we define as the node's topological dimension. The presented results suggest that the node's topological dimension provides a suitable measure of the social capital which measures the actor's ability to act as a broker in compact communities, the so called Simmelian brokerage. We also generalize the results to a wider class of computer-generated networks. Investigating components of the node's vector over network layers reveals that same nodes develop different socio-emotional relations and that the influential nodes build social capital by combining their connections in different layers.

  5. Evaluating Education and Science in the KSC Visitor Complex Exhibits

    NASA Technical Reports Server (NTRS)

    Erickson, Lance K.

    2000-01-01

    The continuing development of exhibits at the Kennedy Space Center's Visitor Complex is an excellent opportunity for NASA personnel to promote science and provide insight into NASA programs and projects for the approximately 3 million visitors that come to KSC annually. Stated goals for the Visitor Complex, in fact, emphasize science awareness and recommend broadening the appeal of the displays and exhibits for all age groups. To this end, this summer project seeks to evaluate the science content of planned exhibits/displays in relation to these developing opportunities and identify specific areas for enhancement of existing or planned exhibits and displays. To help expand the educational and science content within the developing exhibits at the Visitor Complex, this project was structured to implement the goals of the Visitor Center Director. To accomplish this, the exhibits and displays planned for completion within the year underwent review and evaluation for science content and educational direction. Planning emphasis for the individual displays was directed at combining the elements of effective education with fundamental scientific integrity, within an appealing format.

  6. Hydroclimatology of Dual-Peak Annual Cholera Incidence: Insights from a Spatially Explicit Model

    NASA Astrophysics Data System (ADS)

    Bertuzzo, E.; Mari, L.; Righetto, L.; Gatto, M.; Casagrandi, R.; Rodriguez-Iturbe, I.; Rinaldo, A.

    2012-12-01

    Cholera incidence in some regions of the Indian subcontinent may exhibit two annual peaks although the main environmental drivers that have been linked to the disease (e.g. sea surface temperature, zooplankton abundance, river discharge) peak once per year during the summer. An empirical hydroclimatological explanation relating cholera transmission to river flows and to the disease spatial spreading has been recently proposed. We specifically support and substantiate mechanistically such hypothesis by means of a spatially explicit model of cholera transmission. Our framework directly accounts for the role of the river network in transporting and redistributing cholera bacteria among human communities as well as for spatial and temporal annual fluctuations of precipitation and river flows. To single out the single out the hydroclimatologic controls on the prevalence patterns in a non-specific geographical context, we first apply the model to Optimal Channel Networks as a general model of hydrological networks. Moreover, we impose a uniform distribution of population. The model is forced by seasonal environmental drivers, namely precipitation, temperature and chlorophyll concentration in the coastal environment, a proxy for Vibrio cholerae concentration. Our results show that these drivers may suffice to generate dual-peak cholera prevalence patterns for proper combinations of timescales involved in pathogen transport, hydrologic variability and disease unfolding. The model explains the possible occurrence of spatial patterns of cholera incidence characterized by a spring peak confined to coastal areas and a fall peak involving inland regions. We then proceed applying the model to the specific settings of Bay of Bengal accounting for the actual river networks (derived from digital terrain map manipulations), the proper distribution of population (estimated from downscaling of census data based on remotely sensed features) and precipitation patterns. Overall our modeling framework suggests insights on how environmental drivers concert the generation of complex spatiotemporal infections and proposes an explanation for the different cholera patterns (dual or single annual peaks) exhibited by regions that share similar hydroclimatological forcings.

  7. Infinitely Robust Order and Local Order-Parameter Tulips in Apollonian Networks with Quenched Disorder

    NASA Astrophysics Data System (ADS)

    Nadir Kaplan, C.; Hinczewski, Michael; Berker, A. Nihat

    2009-03-01

    For a variety of quenched random spin systems on an Apollonian network, including ferromagnetic and antiferromagnetic bond percolation and the Ising spin glass, we find the persistence of ordered phases up to infinite temperature over the entire range of disorder.[1] We develop a renormalization-group technique that yields highly detailed information, including the exact distributions of local magnetizations and local spin-glass order parameters, which turn out to exhibit, as function of temperature, complex and distinctive tulip patterns. [1] C.N. Kaplan, M. Hinczewski, and A.N. Berker, arXiv:0811.3437v1 [cond-mat.dis-nn] (2008).

  8. Tools for Detecting Causality in Space Systems

    NASA Astrophysics Data System (ADS)

    Johnson, J.; Wing, S.

    2017-12-01

    Complex systems such as the solar and magnetospheric envivonment often exhibit patterns of behavior that suggest underlying organizing principles. Causality is a key organizing principle that is particularly difficult to establish in strongly coupled nonlinear systems, but essential for understanding and modeling the behavior of systems. While traditional methods of time-series analysis can identify linear correlations, they do not adequately quantify the distinction between causal and coincidental dependence. We discuss tools for detecting causality including: granger causality, transfer entropy, conditional redundancy, and convergent cross maps. The tools are illustrated by applications to magnetospheric and solar physics including radiation belt, Dst (a magnetospheric state variable), substorm, and solar cycle dynamics.

  9. Major dust storms and westward traveling waves on Mars

    NASA Astrophysics Data System (ADS)

    Wang, Huiqun

    2017-04-01

    Westward traveling waves are observed during major dust storm periods in northern fall and winter. The close correlation in timing makes westward traveling wave one of the signature responses of the Martian atmosphere to major dust storms. Westward traveling waves are dominated by zonal wave number m = 1 in the middle atmosphere and are typically characterized by long wave period. They are associated with significant temperature perturbations near the edge of the north polar vortex. Their wind signals extend to the low latitudes and the southern hemisphere. Their eddy momentum and heat fluxes exhibit complex patterns on a global scale in the middle atmosphere.

  10. Global Mapping of the Yeast Genetic Interaction Network

    NASA Astrophysics Data System (ADS)

    Tong, Amy Hin Yan; Lesage, Guillaume; Bader, Gary D.; Ding, Huiming; Xu, Hong; Xin, Xiaofeng; Young, James; Berriz, Gabriel F.; Brost, Renee L.; Chang, Michael; Chen, YiQun; Cheng, Xin; Chua, Gordon; Friesen, Helena; Goldberg, Debra S.; Haynes, Jennifer; Humphries, Christine; He, Grace; Hussein, Shamiza; Ke, Lizhu; Krogan, Nevan; Li, Zhijian; Levinson, Joshua N.; Lu, Hong; Ménard, Patrice; Munyana, Christella; Parsons, Ainslie B.; Ryan, Owen; Tonikian, Raffi; Roberts, Tania; Sdicu, Anne-Marie; Shapiro, Jesse; Sheikh, Bilal; Suter, Bernhard; Wong, Sharyl L.; Zhang, Lan V.; Zhu, Hongwei; Burd, Christopher G.; Munro, Sean; Sander, Chris; Rine, Jasper; Greenblatt, Jack; Peter, Matthias; Bretscher, Anthony; Bell, Graham; Roth, Frederick P.; Brown, Grant W.; Andrews, Brenda; Bussey, Howard; Boone, Charles

    2004-02-01

    A genetic interaction network containing ~1000 genes and ~4000 interactions was mapped by crossing mutations in 132 different query genes into a set of ~4700 viable gene yeast deletion mutants and scoring the double mutant progeny for fitness defects. Network connectivity was predictive of function because interactions often occurred among functionally related genes, and similar patterns of interactions tended to identify components of the same pathway. The genetic network exhibited dense local neighborhoods; therefore, the position of a gene on a partially mapped network is predictive of other genetic interactions. Because digenic interactions are common in yeast, similar networks may underlie the complex genetics associated with inherited phenotypes in other organisms.

  11. Design of a polarization-independent, wide-angle, broadband visible absorber

    NASA Astrophysics Data System (ADS)

    Jia, Xiuli; Wang, Xiaoou

    2018-01-01

    Many optical systems benefit from elements that can absorb a broad range of wavelengths over a wide range of angles, independent of polarization. In this paper, we present a polarization-independent, wide-angle, broadband absorber in the visible regime that exploits strong symmetric and asymmetric resonance modes of electromagnetic dipoles. It makes use of a bilayer cross-pattern structure which is simple, having five layers that include two stacks of metal ribbon in cross-patterns, two dielectric spacers and a metal reflecting layer. Simulations show that the design exhibits a significantly enhanced absorption property when compared to a device with a bilayer metal film structure or any other complex structure of cross-patterns that have no intersection angle. The maximum absorption efficiency of the device is 100% at resonances, and its absorption characteristics can be maintained over a wide range of angles of incidence - up to ± 60° - regardless of the incident polarization. This strategy can, in principle, be applied to other material systems and could be useful in diverse applications, including thermal emitters, photovoltaics and photodetectors.

  12. Design of Multistable Origami Structures

    NASA Astrophysics Data System (ADS)

    Gillman, Andrew; Fuchi, Kazuko; Bazzan, Giorgio; Reich, Gregory; Alyanak, Edward; Buskohl, Philip

    Origami is being transformed from an art to a mathematically robust method for device design in a variety of scientific applications. These structures often require multiple stable configurations, e.g. efficient well-controlled deployment. However, the discovery of origami structures with mechanical instabilities is challenging given the complex geometric nonlinearities and the large design space to investigate. To address this challenge, we have developed a topology optimization framework for discovering origami fold patterns that realize stable and metastable positions. The objective function targets both the desired stable positions and nonlinear loading profiles of specific vertices in the origami structure. Multistable compliant structures have been shown to offer advantages in their stability and efficiency, and certain origami fold patterns exhibit multistable behavior. Building on this previous work of single vertex multistability analysis, e.g. waterbomb origami pattern, we are expanding the solution set of multistable mechanisms to include multiple vertices and a broader set of reference configurations. Collectively, these results enable an initial classification of geometry-induced mechanical instabilities that can be programmed into active material systems. This work was supported by the Air Force Office of Scientific Research.

  13. Effects of annealing on arrays of Ge nanocolumns formed by glancing angle deposition

    NASA Astrophysics Data System (ADS)

    Khare, C.; Gerlach, J. W.; Höche, T.; Fuhrmann, B.; Leipner, H. S.; Rauschenbach, B.

    2012-10-01

    Post-deposition thermal annealing of glancing angle deposited Ge nanocolumn arrays was carried out in a continuous Ar-flow at temperatures ranging from TA = 300 to 800 °C for different annealing durations. Morphological alterations and the recrystallization process induced by the thermal annealing treatment were investigated for the Ge nanocolumns deposited on planar and pre-patterned Si substrates. From X-ray diffraction (XRD) measurements, the films annealed at TA ≥ 500 °C were found to be polycrystalline. On planar Si substrates, at TA = 600 °C nanocolumns exhibited strong coarsening and merging, while a complete disintegration of the nanocolumns was detected at TA = 700 °C. The morphology of nanostructures deposited on pre-patterned substrates differs substantially, where the merging or column-disintegration effect was absent at elevated annealing temperatures. The two-arm-chevron nanostructures grown on pre-patterned substrates retained their complex shape and morphology, after extended annealing intervals. Investigations by transmission electron microscopy revealed nanocrystalline domains of the order of 5-30 nm (in diameter) present within the chevron structures after the annealing treatment.

  14. New Insights on co-seismic landslide clustering

    NASA Astrophysics Data System (ADS)

    Meunier, Patrick; Marc, Odin; Hovius, Niels

    2015-04-01

    Earthquake-triggered landslides tend to cluster along topographic crests while rainfall-induced landslides should occur downslope preferentially, where pore pressure induced by groundwater flows is the highest [1]. Past studies on landslide clustering are all based on the analysis of complete dataset or subdataset of landslides associated with a given event (seismic or climatic) as a whole. In this work, we document the spatial and temporal variations of the landslide position (on hillslopes) within the epicentral area of the 1994 Northridge, the 1999 Chichi, the 2004 Niigata, the 2008 Iwate and the 2008 Wenchuan earthquakes. We show that crest clustering is not systematic, non uniform in space and exhibit patterns that vary a lot from one case to another. These patterns are not easy to interpret as they don't seem to be controlled by a single governing parameter but result from a complex interaction between local (hillslope length and gradient, lithology) and seismic (distance to source, slope aspect, radiation pattern, coseismic uplift) parameters. [1] Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake induced landslides. Earth and Planetary Science Letters, 275(3), 221-232

  15. Multiphase magnetic systems: Measurement and simulation

    NASA Astrophysics Data System (ADS)

    Cao, Yue; Ahmadzadeh, Mostafa; Xu, Ke; Dodrill, Brad; McCloy, John S.

    2018-01-01

    Multiphase magnetic systems are common in nature and are increasingly being recognized in technical applications. One characterization method which has shown great promise for determining separate and collective effects of multiphase magnetic systems is first order reversal curves (FORCs). Several examples are given of FORC patterns which provide distinguishing evidence of multiple phases. In parallel, a visualization method for understanding multiphase magnetic interaction is given, which allocates Preisach magnetic elements as an input "Preisach hysteron distribution pattern" to enable simulation of different "wasp-waisted" magnetic behaviors. These simulated systems allow reproduction of different major hysteresis loops and FORC patterns of real systems and parameterized theoretical systems. The experimental FORC measurements and FORC diagrams of four commercially obtained magnetic materials, particularly those sold as nanopowders, show that these materials are often not phase pure. They exhibit complex hysteresis behaviors that are not predictable based on relative phase fraction obtained by characterization methods such as diffraction. These multiphase materials, consisting of various fractions of BaFe12O19, ɛ-Fe2O3, and γ-Fe2O3, are discussed.

  16. Patterns and Variation in Benthic Biodiversity in a Large Marine Ecosystem

    PubMed Central

    Lee, Jonathan D.

    2015-01-01

    While there is a persistent inverse relationship between latitude and species diversity across many taxa and ecosystems, deviations from this norm offer an opportunity to understand the conditions that contribute to large-scale diversity patterns. Marine systems, in particular, provide such an opportunity, as marine diversity does not always follow a strict latitudinal gradient, perhaps because several hypothesized drivers of the latitudinal diversity gradient are uncorrelated in marine systems. We used a large scale public monitoring dataset collected over an eight year period to examine benthic marine faunal biodiversity patterns for the continental shelf (55–183 m depth) and slope habitats (184–1280 m depth) off the US West Coast (47°20′N—32°40′N). We specifically asked whether marine biodiversity followed a strict latitudinal gradient, and if these latitudinal patterns varied across depth, in different benthic substrates, and over ecological time scales. Further, we subdivided our study area into three smaller regions to test whether coast-wide patterns of biodiversity held at regional scales, where local oceanographic processes tend to influence community structure and function. Overall, we found complex patterns of biodiversity on both the coast-wide and regional scales that differed by taxonomic group. Importantly, marine biodiversity was not always highest at low latitudes. We found that latitude, depth, substrate, and year were all important descriptors of fish and invertebrate diversity. Invertebrate richness and taxonomic diversity were highest at high latitudes and in deeper waters. Fish richness also increased with latitude, but exhibited a hump-shaped relationship with depth, increasing with depth up to the continental shelf break, ~200 m depth, and then decreasing in deeper waters. We found relationships between fish taxonomic and functional diversity and latitude, depth, substrate, and time at the regional scale, but not at the coast-wide scale, suggesting that coast-wide patterns can obscure important correlates at smaller scales. Our study provides insight into complex diversity patterns of the deep water soft substrate benthic ecosystems off the US West Coast. PMID:26308521

  17. Emergence of a complex and stable network in a model ecosystem with extinction and mutation.

    PubMed

    Tokita, Kei; Yasutomi, Ayumu

    2003-03-01

    We propose a minimal model of the dynamics of diversity-replicator equations with extinction, invasion and mutation. We numerically study the behavior of this simple model and show that it displays completely different behavior from the conventional replicator equation and the generalized Lotka-Volterra equation. We reach several significant conclusions as follows: (1) a complex ecosystem can emerge when mutants with respect to species-specific interaction are introduced; (2) such an ecosystem possesses strong resistance to invasion; (3) a typical fixation process of mutants is realized through the rapid growth of a group of mutualistic mutants with higher fitness than majority species; (4) a hierarchical taxonomic structure (like family-genus-species) emerges; and (5) the relative abundance of species exhibits a typical pattern widely observed in nature. Several implications of these results are discussed in connection with the relationship of the present model to the generalized Lotka-Volterra equation.

  18. Complex Dynamics of Wetland Ecosystem with Nonlinear Harvesting: Application to Chilika Lake in Odisha, India

    NASA Astrophysics Data System (ADS)

    Upadhyay, Ranjit Kumar; Tiwari, S. K.; Roy, Parimita

    2015-06-01

    In this paper, an attempt has been made to study the spatial and temporal dynamical interactions among the species of wetland ecosystem through a mathematical model. The model represents the population dynamics of phytoplankton, zooplankton and fish species found in Chilika lake, Odisha, India. Nonlinear stability analysis of both the temporal and spatial models has been carried out. Maximum sustainable yield and optimal harvesting policy have been studied for a nonspatial model system. Numerical simulation has been performed to figure out the parameters responsible for the complex dynamics of the wetland system. Significant outcomes of our numerical findings and their interpretations from an ecological point of view are provided in this paper. Numerical simulation of spatial model exhibits some interesting and beautiful patterns. We have also pointed out the parameters that are responsible for the good health of wetland ecosystem.

  19. Nonlinear acoustics in the pant-hoot vocalization of common chimpanzees (Pan troglodytes)

    NASA Astrophysics Data System (ADS)

    Riede, Tobias; Arcadi, Adam Clark; Owren, Michael J.

    2003-04-01

    Pant-hoots produced by chimpanzees are multi-call vocalizations. While predominantly harmonically structured, pant-hoots can exhibit acoustic complexity that has recently been found to result from inherent nonlinearity in the vocal-fold dynamics. This complexity reflects abrupt shifts between qualitatively distinct vibration patterns (known as modes), which include but are not limited to simple, synchronous movements by the two vocal folds. Studies with humans in particular have shown that as the amplitude and vibration rate increase, vocal-fold action becomes increasingly susceptible to higher-order synchronizations, desynchronized movements, and irregular behavior. We examined the occurrence of these sorts of nonlinear phenomena in pant-hoots, contrasting quieter and lower-pitched introduction components with loud and high-pitched climax calls in the same sounds. Spectrographic evidence revealed four classic kinds of nonlinear phenomena, including discrete frequency jumps, subharmonics, biphonation, and deterministic chaos. While these events were virtually never found in the introduction, they occurred in more than half of the climax calls. Biphonation was by far the most common. Individual callers varied in the degree to which their climax calls exhibited nonlinear phenomena, but we are consistent in showing more biphonation than any of the other forms. These outcomes demonstrate that understanding these calls requisitely requires an understanding of such events.

  20. The repetition of large-earthquake ruptures.

    PubMed Central

    Sieh, K

    1996-01-01

    This survey of well-documented repeated fault rupture confirms that some faults have exhibited a "characteristic" behavior during repeated large earthquakes--that is, the magnitude, distribution, and style of slip on the fault has repeated during two or more consecutive events. In two cases faults exhibit slip functions that vary little from earthquake to earthquake. In one other well-documented case, however, fault lengths contrast markedly for two consecutive ruptures, but the amount of offset at individual sites was similar. Adjacent individual patches, 10 km or more in length, failed singly during one event and in tandem during the other. More complex cases of repetition may also represent the failure of several distinct patches. The faults of the 1992 Landers earthquake provide an instructive example of such complexity. Together, these examples suggest that large earthquakes commonly result from the failure of one or more patches, each characterized by a slip function that is roughly invariant through consecutive earthquake cycles. The persistence of these slip-patches through two or more large earthquakes indicates that some quasi-invariant physical property controls the pattern and magnitude of slip. These data seem incompatible with theoretical models that produce slip distributions that are highly variable in consecutive large events. Images Fig. 3 Fig. 7 Fig. 9 PMID:11607662

  1. Investigating the Interaction Pattern and Structural Elements of a Drug-Polymer Complex at the Molecular Level.

    PubMed

    Nie, Haichen; Mo, Huaping; Zhang, Mingtao; Song, Yang; Fang, Ke; Taylor, Lynne S; Li, Tonglei; Byrn, Stephen R

    2015-07-06

    Strong associations between drug and polymeric carriers are expected to contribute to higher drug loading capacities and better physical stability of amorphous solid dispersions. However, molecular details of the interaction patterns and underlying mechanisms are still unclear. In the present study, a series of amorphous solid dispersions of clofazimine (CLF), an antileprosy drug, were prepared with different polymers by applying the solvent evaporation method. When using hypromellose phthalate (HPMCP) as the carrier, the amorphous solid dispersion system exhibits not only superior drug loading capacity (63% w/w) but also color change due to strong drug-polymer association. In order to further explain these experimental observations, the interaction between CLF and HPMCP was investigated in a nonpolar volatile solvent system (chloroform) prior to forming the solid dispersion. We observed significant UV/vis and (1)H NMR spectral changes suggesting the protonation of CLF and formation of ion pairs between CLF and HPMCP in chloroform. Furthermore, nuclear Overhauser effect spectroscopy (NOESY) and diffusion order spectroscopy (DOSY) were employed to evaluate the strength of associations between drug and polymers, as well as the molecular mobility of CLF. Finally, by correlating the experimental values with quantum chemistry calculations, we demonstrate that the protonated CLF is binding to the carboxylate group of HPMCP as an ion pair and propose a possible structural model of the drug-polymer complex. Understanding the drug and carrier interaction patterns from a molecular perspective is critical for the rational design of new amorphous solid dispersions.

  2. Coastal currents and mass transport of surface sediments over the shelf regions of Monterey Bay, California

    USGS Publications Warehouse

    Wolf, S.C.

    1970-01-01

    In Monterey Bay, the highest concentrations of medium and fine sands occur nearshore between ten and thirty fathoms. Silt and clay accumulate in greater depths. Contours of median diameter roughly parallel the isobaths. Fine-grained materials are supplied to the bay region from erosion of cliffs which partly surround Monterey Bay, from sediment laden river discharge, and from continual reworking of widespread Pleistocene and Recent sea floor sediments. These sediments in turn are picked up by coastal currents and distributed over the shelf regions by present day current regimes. Studies of bottom currents over the shelf regions and in Monterey Canyon have revealed patterns which vary with seasonal changes. Current patterns during August and September exhibit remarkable symmetry about the axis of Monterey Submarine Canyon. Central Shelf currents north and south of Monterey Canyon flowed northwest at an average rate of 0.2 knots and south at 0.3 knots respectively. On the North Shelf between January and March currents flowed east to southeast at 0.3-0.5 knots with mirror image patterns above the South Shelf during the same period. Irregular current flow in the canyon indicates a complex current structure with frequent shifts in counterclockwise and clockwise direction over very short periods of time. Bottom topography of the canyon complex often causes localization of canyon currents. One particular observation at a depth of 51 fathoms indicated up-canyon flow at a rate of 0.2 knots. Most of the observed currents are related to seasonal variations, upwelling, ocean swell patterns, and to changes in the California and Davidson currents. Changes in current regimes are reflected in the patterns of sediment distribution and transport. Sediment transport is chiefly parallel to the isobaths, particularly on the North and South Shelf regions. Complex dispersal patterns are observed near Monterey Canyon and Moss Landing Harbor jetties. Longshore currents move sediments southward except near Monterey Canyon which acts as a physiographic barrier and the extreme southern end of the bay where currents are non persistent. Some sediments are also transported offshore by rip currents and other agencies and deposited in deeper, quieter waters. Supply of sediments to the canyon head results in over-filling and steepening with subsequent mass movement of sediments seaward followed by deposition in channels and on the broad deep sea fan. ?? 1970.

  3. Fractal Patterns of Neural Activity Exist within the Suprachiasmatic Nucleus and Require Extrinsic Network Interactions

    PubMed Central

    Hu, Kun; Meijer, Johanna H.; Shea, Steven A.; vanderLeest, Henk Tjebbe; Pittman-Polletta, Benjamin; Houben, Thijs; van Oosterhout, Floor; Deboer, Tom; Scheer, Frank A. J. L.

    2012-01-01

    The mammalian central circadian pacemaker (the suprachiasmatic nucleus, SCN) contains thousands of neurons that are coupled through a complex network of interactions. In addition to the established role of the SCN in generating rhythms of ∼24 hours in many physiological functions, the SCN was recently shown to be necessary for normal self-similar/fractal organization of motor activity and heart rate over a wide range of time scales—from minutes to 24 hours. To test whether the neural network within the SCN is sufficient to generate such fractal patterns, we studied multi-unit neural activity of in vivo and in vitro SCNs in rodents. In vivo SCN-neural activity exhibited fractal patterns that are virtually identical in mice and rats and are similar to those in motor activity at time scales from minutes up to 10 hours. In addition, these patterns remained unchanged when the main afferent signal to the SCN, namely light, was removed. However, the fractal patterns of SCN-neural activity are not autonomous within the SCN as these patterns completely broke down in the isolated in vitro SCN despite persistence of circadian rhythmicity. Thus, SCN-neural activity is fractal in the intact organism and these fractal patterns require network interactions between the SCN and extra-SCN nodes. Such a fractal control network could underlie the fractal regulation observed in many physiological functions that involve the SCN, including motor control and heart rate regulation. PMID:23185285

  4. The reproductive cycle of the male sleep snake Sibynomorphus mikanii (Schlegel, 1837) from southeastern Brazil.

    PubMed

    Rojas, Claudio A; Barros, Verônica A; Almeida-Santos, Selma M

    2013-02-01

    This study describes the male reproductive cycle of Sibynomorphus mikanii from southeastern Brazil considering macroscopic and microscopic variables. Spermatogenesis occurs during spring-summer (September-December) and spermiogenesis or maturation occurs in summer (December-February). The length and width of the kidney, the tubular diameter, and the epithelium height of the sexual segment of the kidney (SSK) are larger in summer-autumn (December-May). Histochemical reaction of the SSK [periodic acid-Schiff (PAS) and bromophenol blue (BB)] shows stronger results during summer-autumn, indicating an increase in the secretory activity of the granules. Testicular regression is observed in autumn and early winter (March-June) when a peak in the width of the ductus deferens occurs. The distal ductus deferens as well as the ampulla ductus deferentis exhibit secretory activities with positive reaction for PAS and BB. These results suggest that this secretion may nourish the spermatozoa while they are being stored in the ductus deferens. The increase in the Leydig cell nuclear diameter in association with SSK hypertrophy and the presence of sperm in the female indicate that the mating season occurs in autumn when testes begin to decrease their activity. The peak activity of Leydig cells and SSK exhibits an associated pattern with the mating season. However, spermatogenesis is dissociated of the copulation characterizing a complex reproductive cycle. At the individual level, S. mikanii males present a continuous cyclical reproductive pattern in the testes and kidneys (SSK), whereas at the populational level the reproductive pattern may be classified as seasonal semisynchronous. Copyright © 2012 Wiley Periodicals, Inc.

  5. Network complexity as a measure of information processing across resting-state networks: evidence from the Human Connectome Project

    PubMed Central

    McDonough, Ian M.; Nashiro, Kaoru

    2014-01-01

    An emerging field of research focused on fluctuations in brain signals has provided evidence that the complexity of those signals, as measured by entropy, conveys important information about network dynamics (e.g., local and distributed processing). While much research has focused on how neural complexity differs in populations with different age groups or clinical disorders, substantially less research has focused on the basic understanding of neural complexity in populations with young and healthy brain states. The present study used resting-state fMRI data from the Human Connectome Project (Van Essen et al., 2013) to test the extent that neural complexity in the BOLD signal, as measured by multiscale entropy (1) would differ from random noise, (2) would differ between four major resting-state networks previously associated with higher-order cognition, and (3) would be associated with the strength and extent of functional connectivity—a complementary method of estimating information processing. We found that complexity in the BOLD signal exhibited different patterns of complexity from white, pink, and red noise and that neural complexity was differentially expressed between resting-state networks, including the default mode, cingulo-opercular, left and right frontoparietal networks. Lastly, neural complexity across all networks was negatively associated with functional connectivity at fine scales, but was positively associated with functional connectivity at coarse scales. The present study is the first to characterize neural complexity in BOLD signals at a high temporal resolution and across different networks and might help clarify the inconsistencies between neural complexity and functional connectivity, thus informing the mechanisms underlying neural complexity. PMID:24959130

  6. Interplay between membrane elasticity and active cytoskeleton forces regulates the aggregation dynamics of the immunological synapse

    NASA Astrophysics Data System (ADS)

    Dharan, Nadiv; Farago, Oded

    Adhesion between a T cell and an antigen presenting cell is achieved by TCR-pMHC and LFA1-ICAM1 protein complexes. These segregate to form a special pattern, known as the immunological synapse (IS), consisting of a central quasi-circular domain of TCR-pMHC bonds surrounded by a peripheral domain of LFA1-ICAM1 complexes. Insights gained from imaging studies had led to the conclusion that the formation of the central adhesion domain in the IS is driven by active (ATP-driven) mechanisms. Recent studies, however, suggested that passive (thermodynamic) mechanisms may also play an important role in this process. Here, we present a simple physical model, taking into account the membrane-mediated thermodynamic attraction between the TCR-pMHC bonds and the effective forces that they experience due to ATP-driven actin retrograde flow and transport by dynein motor proteins. Monte Carlo simulations of the model exhibit a good spatio-temporal agreement with the experimentally observed pattern evolution of the TCR-pMHC microclusters. The agreement is lost when one of the aggregation mechanisms is "muted", which helps to identify the respective roles in the process. We conclude that actin retrograde flow drives the centripetal motion of TCR-pMHC bonds, while the membrane-mediated interactions facilitate microcluster formation and growth. In the absence of dynein motors, the system evolves into a ring-shaped pattern, which highlights the role of dynein motors in the formation of the final concentric pattern. The interplay between the passive and active mechanisms regulates the rate of the accumulation process, which in the absence of one them proceeds either too quickly or slowly.

  7. GESA--a two-dimensional processing system using knowledge base techniques.

    PubMed

    Rowlands, D G; Flook, A; Payne, P I; van Hoff, A; Niblett, T; McKee, S

    1988-12-01

    The successful analysis of two-dimensional (2-D) polyacrylamide electrophoresis gels demands considerable experience and understanding of the protein system under investigation as well as knowledge of the separation technique itself. The present work concerns the development of a computer system for analysing 2-D electrophoretic separations which incorporates concepts derived from artificial intelligence research such that non-experts can use the technique as a diagnostic or identification tool. Automatic analysis of 2-D gel separations has proved to be extremely difficult using statistical methods. Non-reproducibility of gel separations is also difficult to overcome using automatic systems. However, the human eye is extremely good at recognising patterns in images, and human intervention in semi-automatic computer systems can reduce the computational complexities of fully automatic systems. Moreover, the expertise and understanding of an "expert" is invaluable in reducing system complexity if it can be encapsulated satisfactorily in an expert system. The combination of user-intervention in the computer system together with the encapsulation of expert knowledge characterises the present system. The domain within which the system has been developed is that of wheat grain storage proteins (gliadins) which exhibit polymorphism to such an extent that cultivars can be uniquely identified by their gliadin patterns. The system can be adapted to other domains where a range of polymorpic protein sub-units exist. In its generalised form, the system can also be used for comparing more complex 2-D gel electrophoretic separations.

  8. Decreased sleep stage transition pattern complexity in narcolepsy type 1.

    PubMed

    Ferri, Raffaele; Pizza, Fabio; Vandi, Stefano; Iloti, Martina; Plazzi, Giuseppe

    2016-08-01

    To analyze the complexity of the nocturnal sleep stage sequence in central disorders of hypersomnolence (CDH), with the hypothesis that narcolepsy type 1 (NT1) might exhibit distinctive sleep stage sequence organization and complexity. Seventy-nine NT1 patients, 22 narcolepsy type 2 (NT2), 22 idiopathic hypersomnia (IH), and 52 patients with subjective hypersomnolence (sHS) were recruited and their nocturnal sleep was polysomnographically recorded and scored. Group between-stage transition probability matrices were obtained and compared. Patients with NT1 differed significantly from all the other patient groups, the latter, in turn, were not different between each other. The individual probability of the R-to-N2 transition was found to be the parameter showing the difference of highest significance between the groups (lowest in NT1) and classified patients with or without NT1 with an accuracy of 78.9% (sensitivity 78.5% and specificity 79.2%), by applying a cut-off value of 0.15. The main result of this study is that the structure of the sleep stage transition pattern of hypocretin-deficient NT1 patients is significantly different from that of other forms of CDH and sHS, with normal hypocretin levels. The lower probability of R-to-N2 transition occurrence in NT1 appears to be a reliable polysomnographic feature with potential application at the individual level, for supportive diagnostic purposes. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  9. Additions to Philippine Slender Skinks of the Brachymeles bonitae Complex (Reptilia: Squamata: Scincidae) III: a new species from Tablas Island.

    PubMed

    Davis, Drew R; Geheber, Aaron D; Watters, Jessa L; Penrod, Michelle L; Feller, Kathryn D; Ashford, Alissa; Kouri, Josh; Nguyen, Daniel; Shauberger, Kathryn; Sheatsley, Kyra; Winfrey, Claire; Wong, Rachel; Sanguila, Marites B; Brown, Rafe M; Siler, Cameron D

    2016-06-28

    Studies of the diversity of Philippine amphibians and reptiles have resulted in the continued description of cryptic species. Species formerly thought to range across multiple recognized faunal regions are now considered to be assemblages of multiple unique species, each restricted to a single faunal region. This pattern continues to hold true when considering Philippine skinks of the genus Brachymeles. Recent studies have resulted in the description of numerous unique species with many exhibiting various degrees of digit loss or limb reduction, as well as suggesting that unique lineages are still present in the B. bonitae Complex. In this paper, we describe a new species of fossorial skink within this species complex from Tablas Island based on collections made nearly 50 years ago. Although no genetic data are available for the new species, examinations of morphological data (qualitative traits, meristic counts, and mensural measurements) support its distinction from all other members of the genus. Brachymeles dalawangdaliri sp. nov. is differentiated from other members of the genus based on a suite of unique phenotypic characteristics, including a small body size (SVL 66.0-80.9 mm), bidactyl fore-limbs, digitless, unidactyl, or bidactyl hind limbs, a high number of presacral vertebrae (49), the absence of auricular openings, and distinct dorsal head scale patterns. The description of the new species increases the diversity of endemic vertebrates recognized to occur in the Romblon Island Group in the central Philippines.

  10. Ecological and social correlates of chimpanzee tool use.

    PubMed

    Sanz, Crickette M; Morgan, David B

    2013-11-19

    The emergence of technology has been suggested to coincide with scarcity of staple resources that led to innovations in the form of tool-assisted strategies to diversify or augment typical diets. We examined seasonal patterns of several types of tool use exhibited by a chimpanzee (Pan troglodytes) population residing in central Africa, to determine whether their technical skills provided access to fallback resources when preferred food items were scarce. Chimpanzees in the Goualougo Triangle exhibit a diverse repertoire of tool behaviours, many of which are exhibited throughout the year. Further, they have developed specific tool sets to overcome the issues of accessibility to particular food items. Our conclusion is that these chimpanzees use a sophisticated tool technology to cope with seasonal changes in relative food abundance and gain access to high-quality foods. Subgroup sizes were smaller in tool using contexts than other foraging contexts, suggesting that the size of the social group may not be as important in promoting complex tool traditions as the frequency and type of social interactions. Further, reports from other populations and species showed that tool use may occur more often in response to ecological opportunities and relative profitability of foraging techniques than scarcity of resources.

  11. Ecological and social correlates of chimpanzee tool use

    PubMed Central

    Sanz, Crickette M.; Morgan, David B.

    2013-01-01

    The emergence of technology has been suggested to coincide with scarcity of staple resources that led to innovations in the form of tool-assisted strategies to diversify or augment typical diets. We examined seasonal patterns of several types of tool use exhibited by a chimpanzee (Pan troglodytes) population residing in central Africa, to determine whether their technical skills provided access to fallback resources when preferred food items were scarce. Chimpanzees in the Goualougo Triangle exhibit a diverse repertoire of tool behaviours, many of which are exhibited throughout the year. Further, they have developed specific tool sets to overcome the issues of accessibility to particular food items. Our conclusion is that these chimpanzees use a sophisticated tool technology to cope with seasonal changes in relative food abundance and gain access to high-quality foods. Subgroup sizes were smaller in tool using contexts than other foraging contexts, suggesting that the size of the social group may not be as important in promoting complex tool traditions as the frequency and type of social interactions. Further, reports from other populations and species showed that tool use may occur more often in response to ecological opportunities and relative profitability of foraging techniques than scarcity of resources. PMID:24101626

  12. Active turbulence in a gas of self-assembled spinners

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kokot, Gasper; Das, Shibananda; Winkler, Roland G.

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generatedmore » advection flows. The same-chirality spinners (clockwise or counterclock-wise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. As a result, our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.« less

  13. Active turbulence in a gas of self-assembled spinners

    DOE PAGES

    Kokot, Gasper; Das, Shibananda; Winkler, Roland G.; ...

    2017-11-20

    Colloidal particles subject to an external periodic forcing exhibit complex collective behavior and self-assembled patterns. A dispersion of magnetic microparticles confined at the air-liquid interface and energized by a uniform uniaxial alternating magnetic field exhibits dynamic arrays of self-assembled spinners rotating in either direction. Here, we report on experimental and simulation studies of active turbulence and transport in a gas of self-assembled spinners. We show that the spinners, emerging as a result of spontaneous symmetry breaking of clock/counterclockwise rotation of self-assembled particle chains, generate vigorous vortical flows at the interface. An ensemble of spinners exhibits chaotic dynamics due to self-generatedmore » advection flows. The same-chirality spinners (clockwise or counterclock-wise) show a tendency to aggregate and form dynamic clusters. Emergent self-induced interface currents promote active diffusion that could be tuned by the parameters of the external excitation field. Furthermore, the erratic motion of spinners at the interface generates chaotic fluid flow reminiscent of 2D turbulence. As a result, our work provides insight into fundamental aspects of collective transport in active spinner materials and yields rules for particle manipulation at the microscale.« less

  14. Synthesis, spectroscopy, magnetic and redox behaviors of copper(II) complexes with tert-butylated salen type ligands bearing bis(4-aminophenyl)ethane and bis(4-aminophenyl)amide backbones.

    PubMed

    Kasumov, Veli T; Yerli, Yusuf; Kutluay, Aysegul; Aslanoglu, Mehmet

    2013-03-01

    New salen type ligands, N,N'-bis(X-3-tert-butylsalicylidene)-4,4'-ethylenedianiline [(X=H (1), 5-tert-butyl (2)] and N,N'-bis(X-3-tert-butylsalicylidene)-4,4'-amidedianiline [X=H (3), 5-tert (4)] and their copper(II) complexes 5-8, have been synthesized. Their spectroscopic (IR, (1)H NMR, UV/vis, ESR) properties, as well as magnetic and redox-reactivity behavior are reported. IR spectra of 7 and 8 indicate the coordination of amide oxygen atoms of 3 and 4 ligands to Cu(II). The solid state ESR spectra of 5-8 exhibits less informative exchange narrowed isotropic or anisotropic signals with weak unresolved low field patterns. The magnetic moments of 5 (2.92 μ(B) per Cu(II)) and 6 (2.79 μ(B) per Cu(II)) are unusual for copper(II) complexes and considerably higher than those for complexes 7 and 8. Cryogenic measurements (300-10 K) show weak antiferromagnetic exchange interactions between the copper(II) centers in complexes 6 and 8. The results of electrochemical and chemical redox-reactivity studies are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. Quality control procedures for dynamic treatment delivery techniques involving couch motion.

    PubMed

    Yu, Victoria Y; Fahimian, Benjamin P; Xing, Lei; Hristov, Dimitre H

    2014-08-01

    In this study, the authors introduce and demonstrate quality control procedures for evaluating the geometric and dosimetric fidelity of dynamic treatment delivery techniques involving treatment couch motion synchronous with gantry and multileaf collimator (MLC). Tests were designed to evaluate positional accuracy, velocity constancy and accuracy for dynamic couch motion under a realistic weight load. A test evaluating the geometric accuracy of the system in delivering treatments over complex dynamic trajectories was also devised. Custom XML scripts that control the Varian TrueBeam™ STx (Serial #3) axes in Developer Mode were written to implement the delivery sequences for the tests. Delivered dose patterns were captured with radiographic film or the electronic portal imaging device. The couch translational accuracy in dynamic treatment mode was 0.01 cm. Rotational accuracy was within 0.3°, with 0.04 cm displacement of the rotational axis. Dose intensity profiles capturing the velocity constancy and accuracy for translations and rotation exhibited standard deviation and maximum deviations below 3%. For complex delivery involving MLC and couch motions, the overall translational accuracy for reproducing programmed patterns was within 0.06 cm. The authors conclude that in Developer Mode, TrueBeam™ is capable of delivering dynamic treatment delivery techniques involving couch motion with good geometric and dosimetric fidelity.

  16. Distinct signals from the microbiota promote different aspects of zebrafish gut differentiation.

    PubMed

    Bates, Jennifer M; Mittge, Erika; Kuhlman, Julie; Baden, Katrina N; Cheesman, Sarah E; Guillemin, Karen

    2006-09-15

    All animals exist in intimate associations with microorganisms that play important roles in the hosts' normal development and tissue physiology. In vertebrates, the most populous and complex community of microbes resides in the digestive tract. Here, we describe the establishment of the gut microbiota and its role in digestive tract differentiation in the zebrafish model vertebrate, Danio rerio. We find that in the absence of the microbiota, the gut epithelium is arrested in aspects of its differentiation, as revealed by the lack of brush border intestinal alkaline phosphatase activity, the maintenance of immature patterns of glycan expression and a paucity of goblet and enteroendocrine cells. In addition, germ-free intestines fail to take up protein macromolecules in the distal intestine and exhibit faster motility. Reintroduction of a complex microbiota at later stages of development or mono-association of germ-free larvae with individual constituents of the microbiota reverses all of these germ-free phenotypes. Exposure of germ-free zebrafish to heat-killed preparations of the microbiota or bacterial lipopolysaccharide is sufficient to restore alkaline phosphatase activity but not mature patterns of Gal alpha1,3Gal containing glycans, indicating that the host perceives and responds to its associated microbiota by at least two distinct pathways.

  17. On the Role of Situational Stressors in the Disruption of Global Neural Network Stability during Problem Solving.

    PubMed

    Liu, Mengting; Amey, Rachel C; Forbes, Chad E

    2017-12-01

    When individuals are placed in stressful situations, they are likely to exhibit deficits in cognitive capacity over and above situational demands. Despite this, individuals may still persevere and ultimately succeed in these situations. Little is known, however, about neural network properties that instantiate success or failure in both neutral and stressful situations, particularly with respect to regions integral for problem-solving processes that are necessary for optimal performance on more complex tasks. In this study, we outline how hidden Markov modeling based on multivoxel pattern analysis can be used to quantify unique brain states underlying complex network interactions that yield either successful or unsuccessful problem solving in more neutral or stressful situations. We provide evidence that brain network stability and states underlying synchronous interactions in regions integral for problem-solving processes are key predictors of whether individuals succeed or fail in stressful situations. Findings also suggested that individuals utilize discriminate neural patterns in successfully solving problems in stressful or neutral situations. Findings overall highlight how hidden Markov modeling can provide myriad possibilities for quantifying and better understanding the role of global network interactions in the problem-solving process and how the said interactions predict success or failure in different contexts.

  18. Spatiotemporal chaos and two-dimensional dissipative rogue waves in Lugiato-Lefever model

    NASA Astrophysics Data System (ADS)

    Panajotov, Krassimir; Clerc, Marcel G.; Tlidi, Mustapha

    2017-06-01

    Driven nonlinear optical cavities can exhibit complex spatiotemporal dynamics. We consider the paradigmatic Lugiato-Lefever model describing driven nonlinear optical resonator. This model is one of the most-studied nonlinear equations in optics. It describes a large spectrum of nonlinear phenomena from bistability, to periodic patterns, localized structures, self-pulsating localized structures and to a complex spatiotemporal behavior. The model is considered also as prototype model to describe several optical nonlinear devices such as Kerr media, liquid crystals, left handed materials, nonlinear fiber cavity, and frequency comb generation. We focus our analysis on a spatiotemporal chaotic dynamics in one-dimension. We identify a route to spatiotemporal chaos through an extended quasiperiodicity. We have estimated the Kaplan-Yorke dimension that provides a measure of the strange attractor complexity. Likewise, we show that the Lugiato-Leferver equation supports rogues waves in two-dimensional settings. We characterize rogue-wave formation by computing the probability distribution of the pulse height. Contribution to the Topical Issue "Theory and Applications of the Lugiato-Lefever Equation", edited by Yanne K. Chembo, Damia Gomila, Mustapha Tlidi, Curtis R. Menyuk.

  19. Complex chromatin condensation patterns and nuclear protein transitions during spermiogenesis: examples from mollusks.

    PubMed

    Chiva, M; Saperas, N; Ribes, E

    2011-12-01

    In this paper we review and analyze the chromatin condensation pattern during spermiogenesis in several species of mollusks. Previously, we had described the nuclear protein transitions during spermiogenesis in these species. The results of our study show two types of condensation pattern: simple patterns and complex patterns, with the following general characteristics: (a) When histones (always present in the early spermatid nucleus) are directly replaced by SNBP (sperm nuclear basic proteins) of the protamine type, the spermiogenic chromatin condensation pattern is simple. However, if the replacement is not direct but through intermediate proteins, the condensation pattern is complex. (b) The intermediate proteins found in mollusks are precursor molecules that are processed during spermiogenesis to the final protamine molecules. Some of these final protamines represent proteins with the highest basic amino acid content known to date, which results in the establishment of a very strong electrostatic interaction with DNA. (c) In some instances, the presence of complex patterns of chromatin condensation clearly correlates with the acquisition of specialized forms of the mature sperm nuclei. In contrast, simple condensation patterns always lead to rounded, oval or slightly cylindrical nuclei. (d) All known cases of complex spermiogenic chromatin condensation patterns are restricted to species with specialized sperm cells (introsperm). At the time of writing, we do not know of any report on complex condensation pattern in species with external fertilization and, therefore, with sperm cells of the primitive type (ect-aquasperm). (e) Some of the mollusk an spermiogenic chromatin condensation patterns of the complex type are very similar (almost identical) to those present in other groups of animals. Interestingly, the intermediate proteins involved in these cases can be very different.In this study, we discuss the biological significance of all these features and conclude that the appearance of precursor (intermediate) molecules facilitated the development of complex patterns of condensation and, as a consequence, a great diversity of forms in the sperm cell nuclei Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Phase reduction approach to synchronisation of nonlinear oscillators

    NASA Astrophysics Data System (ADS)

    Nakao, Hiroya

    2016-04-01

    Systems of dynamical elements exhibiting spontaneous rhythms are found in various fields of science and engineering, including physics, chemistry, biology, physiology, and mechanical and electrical engineering. Such dynamical elements are often modelled as nonlinear limit-cycle oscillators. In this article, we briefly review phase reduction theory, which is a simple and powerful method for analysing the synchronisation properties of limit-cycle oscillators exhibiting rhythmic dynamics. Through phase reduction theory, we can systematically simplify the nonlinear multi-dimensional differential equations describing a limit-cycle oscillator to a one-dimensional phase equation, which is much easier to analyse. Classical applications of this theory, i.e. the phase locking of an oscillator to a periodic external forcing and the mutual synchronisation of interacting oscillators, are explained. Further, more recent applications of this theory to the synchronisation of non-interacting oscillators induced by common noise and the dynamics of coupled oscillators on complex networks are discussed. We also comment on some recent advances in phase reduction theory for noise-driven oscillators and rhythmic spatiotemporal patterns.

  1. The mechanisms of repetitive spike generation in an axonless retinal interneuron

    PubMed Central

    Cembrowski, Mark S.; Logan, Stephen M.; Tian, Miao; Jia, Li; Li, Wei; Kath, William L.; Riecke, Hermann; Singer, Joshua H.

    2012-01-01

    SUMMARY Several types of retinal interneurons exhibit spikes but lack axons. One such neuron is the AII amacrine cell, in which spikes recorded at the soma exhibit small amplitudes (<10 mV) and broad time courses (>5 ms). Here, we used electrophysiological recordings and computational analysis to examine the mechanisms underlying this atypical spiking. We found that somatic spikes likely represent large, brief action potential-like events initiated in a single, electrotonically-distal dendritic compartment. In this same compartment, spiking undergoes slow modulation, likely by an M-type K conductance. The structural correlate of this compartment is a thin neurite that extends from the primary dendritic tree: local application of TTX to this neurite, or excision of it, eliminates spiking. Thus, the physiology of the axonless AII is much more complex than would be anticipated from morphological descriptions and somatic recordings; in particular, the AII possesses a single dendritic structure that controls its firing pattern. PMID:22832164

  2. Interlaced crystals having a perfect Bravais lattice and complex chemical order revealed by real-space crystallography

    DOE PAGES

    Shen, Xiao; Hernandez-Pagan, Emil; Zhou, Wu; ...

    2014-11-14

    The search for optimal thermoelectric materials aims for structures in which the crystalline order is disrupted to lower the thermal conductivity without degradation of the electron conductivity. Here we report the synthesis and characterization of ternary nanoparticles (two cations and one anion) that exhibit a new form of crystal-line order: an uninterrupted, perfect, global Bravais lattice, in which the two cations exhibit a wide array of distinct ordering patterns within the cation sublattice, form-ing interlaced domains and phases. Partitioning into domains and phases is not unique; the corresponding boundaries have no structural defects or strain and entail no energy cost.more » We call this form of crystalline order “interlaced crystals” and present the example of hexagonal-CuInS 2. Interlacing is possible in multi-cation tetrahedral-ly-bonded compound with an average of two electrons per bond. Interlacing has min-imal effect on electronic properties, but should strongly reduce phonon transport, making interlaced crystals attractive for thermoelectric applications.« less

  3. Localized oscillatory states in magnetoconvection.

    PubMed

    Buckley, Matthew C; Bushby, Paul J

    2013-02-01

    Localized states are found in many pattern forming systems. The aim of this paper is to investigate the occurrence of oscillatory localized states in two-dimensional Boussinesq magnetoconvection. Initially considering an idealized model, in which the vertical structure of the system has been simplified by a projection onto a small number of Fourier modes, we find that these states are restricted to the low ζ regime (where ζ represents the ratio of the magnetic to thermal diffusivities). These states always exhibit bistability with another nontrivial solution branch; in other words, they show no evidence of subcritical behavior. This is due to the weak flux expulsion that is exhibited by these time-dependent solutions. Using the results of this parameter survey, we locate corresponding states in a fully resolved two-dimensional system, although the mode of oscillation is more complex in this case. This is the first time that a localized oscillatory state, of this kind, has been found in a fully resolved magnetoconvection simulation.

  4. Spontaneous assembly of chemically encoded two-dimensional coacervate droplet arrays by acoustic wave patterning

    PubMed Central

    Tian, Liangfei; Martin, Nicolas; Bassindale, Philip G.; Patil, Avinash J.; Li, Mei; Barnes, Adrian; Drinkwater, Bruce W.; Mann, Stephen

    2016-01-01

    The spontaneous assembly of chemically encoded, molecularly crowded, water-rich micro-droplets into periodic defect-free two-dimensional arrays is achieved in aqueous media by a combination of an acoustic standing wave pressure field and in situ complex coacervation. Acoustically mediated coalescence of primary droplets generates single-droplet per node micro-arrays that exhibit variable surface-attachment properties, spontaneously uptake dyes, enzymes and particles, and display spatial and time-dependent fluorescence outputs when exposed to a reactant diffusion gradient. In addition, coacervate droplet arrays exhibiting dynamical behaviour and exchange of matter are prepared by inhibiting coalescence to produce acoustically trapped lattices of droplet clusters that display fast and reversible changes in shape and spatial configuration in direct response to modulations in the acoustic frequencies and fields. Our results offer a novel route to the design and construction of ‘water-in-water' micro-droplet arrays with controllable spatial organization, programmable signalling pathways and higher order collective behaviour. PMID:27708286

  5. Expression-Linked Patterns of Codon Usage, Amino Acid Frequency, and Protein Length in the Basally Branching Arthropod Parasteatoda tepidariorum

    PubMed Central

    Whittle, Carrie A.; Extavour, Cassandra G.

    2016-01-01

    Abstract Spiders belong to the Chelicerata, the most basally branching arthropod subphylum. The common house spider, Parasteatoda tepidariorum, is an emerging model and provides a valuable system to address key questions in molecular evolution in an arthropod system that is distinct from traditionally studied insects. Here, we provide evidence suggesting that codon usage, amino acid frequency, and protein lengths are each influenced by expression-mediated selection in P. tepidariorum. First, highly expressed genes exhibited preferential usage of T3 codons in this spider, suggestive of selection. Second, genes with elevated transcription favored amino acids with low or intermediate size/complexity (S/C) scores (glycine and alanine) and disfavored those with large S/C scores (such as cysteine), consistent with the minimization of biosynthesis costs of abundant proteins. Third, we observed a negative correlation between expression level and coding sequence length. Together, we conclude that protein-coding genes exhibit signals of expression-related selection in this emerging, noninsect, arthropod model. PMID:27017527

  6. Three-dimensional midwater camouflage from a novel two-component photonic structure in hatchetfish skin.

    PubMed

    Rosenthal, Eric I; Holt, Amanda L; Sweeney, Alison M

    2017-05-01

    The largest habitat by volume on Earth is the oceanic midwater, which is also one of the least understood in terms of animal ecology. The organisms here exhibit a spectacular array of optical adaptations for living in a visual void that have only barely begun to be described. We describe a complex pattern of broadband scattering from the skin of Argyropelecus sp., a hatchetfish found in the mesopelagic zone of the world's oceans. Hatchetfish skin superficially resembles the unpolished side of aluminium foil, but on closer inspection contains a complex composite array of subwavelength-scale dielectric structures. The superficial layer of this array contains dielectric stacks that are rectangular in cross-section, while the deeper layer contains dielectric bundles that are elliptical in cross-section; the cells in both layers have their longest dimension running parallel to the dorsal-ventral axis of the fish. Using the finite-difference time-domain approach and photographic radiometry, we explored the structural origins of this scattering behaviour and its environmental consequences. When the fish's flank is illuminated from an arbitrary incident angle, a portion of the scattered light exits in an arc parallel to the fish's anterior-posterior axis. Simultaneously, some incident light is also scattered downwards through the complex birefringent skin structure and exits from the ventral photophores. We show that this complex scattering pattern will provide camouflage simultaneously against the horizontal radially symmetric solar radiance in this habitat, and the predatory bioluminescent searchlights that are common here. The structure also directs light incident on the flank of the fish into the downwelling, silhouette-hiding counter-illumination of the ventral photophores. © 2017 The Authors.

  7. Three-dimensional midwater camouflage from a novel two-component photonic structure in hatchetfish skin

    PubMed Central

    Rosenthal, Eric I.; Holt, Amanda L.

    2017-01-01

    The largest habitat by volume on Earth is the oceanic midwater, which is also one of the least understood in terms of animal ecology. The organisms here exhibit a spectacular array of optical adaptations for living in a visual void that have only barely begun to be described. We describe a complex pattern of broadband scattering from the skin of Argyropelecus sp., a hatchetfish found in the mesopelagic zone of the world's oceans. Hatchetfish skin superficially resembles the unpolished side of aluminium foil, but on closer inspection contains a complex composite array of subwavelength-scale dielectric structures. The superficial layer of this array contains dielectric stacks that are rectangular in cross-section, while the deeper layer contains dielectric bundles that are elliptical in cross-section; the cells in both layers have their longest dimension running parallel to the dorsal–ventral axis of the fish. Using the finite-difference time-domain approach and photographic radiometry, we explored the structural origins of this scattering behaviour and its environmental consequences. When the fish's flank is illuminated from an arbitrary incident angle, a portion of the scattered light exits in an arc parallel to the fish's anterior–posterior axis. Simultaneously, some incident light is also scattered downwards through the complex birefringent skin structure and exits from the ventral photophores. We show that this complex scattering pattern will provide camouflage simultaneously against the horizontal radially symmetric solar radiance in this habitat, and the predatory bioluminescent searchlights that are common here. The structure also directs light incident on the flank of the fish into the downwelling, silhouette-hiding counter-illumination of the ventral photophores. PMID:28468923

  8. Multisensory temporal function and EEG complexity in patients with epilepsy and psychogenic nonepileptic events.

    PubMed

    Noel, Jean-Paul; Kurela, LeAnne; Baum, Sarah H; Yu, Hong; Neimat, Joseph S; Gallagher, Martin J; Wallace, Mark

    2017-05-01

    Cognitive and perceptual comorbidities frequently accompany epilepsy and psychogenic nonepileptic events (PNEE). However, and despite the fact that perceptual function is built upon a multisensory foundation, little knowledge exists concerning multisensory function in these populations. Here, we characterized facets of multisensory processing abilities in patients with epilepsy and PNEE, and probed the relationship between individual resting-state EEG complexity and these psychophysical measures in each patient. We prospectively studied a cohort of patients with epilepsy (N=18) and PNEE (N=20) patients who were admitted to Vanderbilt's Epilepsy Monitoring Unit (EMU) and weaned off of anticonvulsant drugs. Unaffected age-matched persons staying with the patients in the EMU (N=15) were also recruited as controls. All participants performed two tests of multisensory function: an audio-visual simultaneity judgment and an audio-visual redundant target task. Further, in the cohort of patients with epilepsy and PNEE we quantified resting state EEG gamma power and complexity. Compared with both patients with epilepsy and control subjects, patients with PNEE exhibited significantly poorer acuity in audiovisual temporal function as evidenced in significantly larger temporal binding windows (i.e., they perceived larger stimulus asynchronies as being presented simultaneously). These differences appeared to be specific for temporal function, as there was no difference among the three groups in a non-temporally based measure of multisensory function - the redundant target task. Further, patients with PNEE exhibited more complex resting state EEG patterns as compared to their patients with epilepsy, and EEG complexity correlated with multisensory temporal performance on a subject-by-subject manner. Taken together, findings seem to indicate that patients with PNEE bind information from audition and vision over larger temporal intervals when compared with control subjects as well as patients with epilepsy. This difference in multisensory function appears to be specific to the temporal domain, and may be a contributing factor to the behavioral and perceptual alterations seen in this population. Published by Elsevier Inc.

  9. Impaired cellulose synthase guidance leads to stem torsion and twists phyllotactic patterns in Arabidopsis.

    PubMed

    Landrein, Benoît; Lathe, Rahul; Bringmann, Martin; Vouillot, Cyril; Ivakov, Alexander; Boudaoud, Arezki; Persson, Staffan; Hamant, Olivier

    2013-05-20

    The parallel alignment of stiff cellulose microfibrils in plant-cell walls mediates anisotropic growth. This is largely controlled by cortical microtubules, which drive the insertion and trajectory of the cellulose synthase (CESA) complex at the plasma membrane. The CESA interactive protein 1 (CSI1) acts as a physical linker between CESA and cortical microtubules. Here we show that the inflorescence stems of csi1 mutants exhibit subtle right-handed torsion. Because cellulose deposition is largely uncoupled from cortical microtubules in csi1, we hypothesize that strictly transverse deposition of microfibrils in the wild-type is replaced by a helical orientation of uniform handedness in the mutant and that the helical microfibril alignment generates torsion. Interestingly, both elastic and viscous models for an expanding cell predict that a net helical orientation of microfibrils gives rise to a torque. We indeed observed tilted microfibrils in csi1 cells, and the torsion was almost absent in a csi1 prc1 background with impaired cellulose synthesis. In addition, the stem torsion led to a novel bimodal and robust phyllotactic pattern in the csi1 mutant, illustrating how growth perturbations can replace one robust mathematical pattern with a different, equally robust pattern. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. The Effect of Illustration on Improving Text Comprehension in Dyslexic Adults

    PubMed Central

    Wennås Brante, Eva; Nyström, Marcus

    2016-01-01

    This study analyses the effect of pictures in reading materials on the viewing patterns of dyslexic adults. By analysing viewing patterns using eye‐tracking, we captured differences in eye movements between young adults with dyslexia and controls based on the influence of reading skill as a continuous variable of the total sample. Both types of participants were assigned randomly to view either text‐only or a text + picture stimuli. The results show that the controls made an early global overview of the material and (when a picture was present) rapid transitions between text and picture. Having text illustrated with a picture decreased scores on questions about the learning material among participants with dyslexia. Controls spent 1.7% and dyslexic participants 1% of their time on the picture. Controls had 24% fewer total fixations; however, 29% more of the control group's fixations than the dyslexic group's fixations were on the picture. We also looked for effects of different types of pictures. Dyslexic subjects exhibited a comparable viewing pattern to controls when scenes were complex, but fewer fixations when scenes were neutral/simple. Individual scan paths are presented as examples of atypical viewing patterns for individuals with dyslexia as compared with controls. © 2016 The Authors. Dyslexia published by John Wiley & Sons Ltd. PMID:27892641

  11. Mitochondrial lineage sorting in action – historical biogeography of the Hyles euphorbiae complex (Sphingidae, Lepidoptera) in Italy

    PubMed Central

    2013-01-01

    Background Mitochondrial genes are among the most commonly used markers in studies of species’ phylogeography and to draw conclusions about taxonomy. The Hyles euphorbiae complex (HEC) comprises six distinct mitochondrial lineages in the Mediterranean region, of which one exhibits a cryptic disjunct distribution. The predominant mitochondrial lineage in most of Europe, euphorbiae, is also present on Malta; however, it is nowadays strangely absent from Southern Italy and Sicily, where it is replaced by 'italica'. A separate biological entity in Italy is further corroborated by larval colour patterns with a congruent, confined suture zone along the Northern Apennines. By means of historic DNA extracted from museum specimens, we aimed to investigate the evolution of the mitochondrial demographic structure of the HEC in Italy and Malta throughout the Twentieth Century. Results At the beginning of the Twentieth Century, the European mainland lineages were also present at a moderate frequency in Southern Italy and Sicily. The proportion of 'italica' then steadily increased in this area from below 60 percent to near fixation in about 120 years. Thus, geographical sorting of mitochondrial lineages in the HEC was not as complete then as the current demography suggests. The pattern of an integral 'italica' core region and a disjunct euphorbiae distribution evolved very recently. To explain these strong demographic changes, we propose genetic drift due to anthropogenic habitat loss and fragmentation in combination with an impact from recent climate warming that favoured the spreading of the potentially better adapted 'italica' populations. Conclusions The pattern of geographically separated mitochondrial lineages is commonly interpreted as representing long term separated entities. However, our results indicate that such a pattern can emerge surprisingly quickly, even in a widespread and rather common taxon. We thus caution against drawing hasty taxonomic conclusions from biogeographical patterns of mitochondrial markers derived from modern sampling alone. PMID:23594258

  12. Dynamics and Physiological Roles of Stochastic Firing Patterns Near Bifurcation Points

    NASA Astrophysics Data System (ADS)

    Jia, Bing; Gu, Huaguang

    2017-06-01

    Different stochastic neural firing patterns or rhythms that appeared near polarization or depolarization resting states were observed in biological experiments on three nervous systems, and closely matched those simulated near bifurcation points between stable equilibrium point and limit cycle in a theoretical model with noise. The distinct dynamics of spike trains and interspike interval histogram (ISIH) of these stochastic rhythms were identified and found to build a relationship to the coexisting behaviors or fixed firing frequency of four different types of bifurcations. Furthermore, noise evokes coherence resonances near bifurcation points and plays important roles in enhancing information. The stochastic rhythms corresponding to Hopf bifurcation points with fixed firing frequency exhibited stronger coherence degree and a sharper peak in the power spectrum of the spike trains than those corresponding to saddle-node bifurcation points without fixed firing frequency. Moreover, the stochastic firing patterns changed to a depolarization resting state as the extracellular potassium concentration increased for the injured nerve fiber related to pathological pain or static blood pressure level increased for aortic depressor nerve fiber, and firing frequency decreased, which were different from the physiological viewpoint that firing frequency increased with increasing pressure level or potassium concentration. This shows that rhythms or firing patterns can reflect pressure or ion concentration information related to pathological pain information. Our results present the dynamics of stochastic firing patterns near bifurcation points, which are helpful for the identification of both dynamics and physiological roles of complex neural firing patterns or rhythms, and the roles of noise.

  13. Energetics of the Brazil Current in the Rio Grande Cone region

    NASA Astrophysics Data System (ADS)

    Brum, André Lopes; Azevedo, José Luiz Lima de; Oliveira, Leopoldo Rota de; Calil, Paulo Henrique Rezende

    2017-10-01

    The energetics of the Brazil Current (BC) in the region of the Rio Grande Cone (RGC, 30-35.5°S), a topographic rise in the southwest portion of the Brazilian continental margin, are analyzed using 16 years of numerical data from the Ocean General Circulation Model (OGCM) for the Earth Simulator (OFES). The main focus of this study is the eddy-mean flow interactions of the BC and the local energy budgets in the study region. The kinetic and potential energy balance equations are derived for mean and eddy flows, and the resulting terms are presented and discussed. The eddy-mean flow interactions exhibit complex spatial distributions, and the intensities of the energy budgets decrease with increasing depth. However, only the mean potential energy (MPE) budget decreases southward. Eddy kinetic energy (EKE) and eddy potential energy (EPE) exhibit similar horizontal distribution patterns. Additionally, the baroclinic and barotropic conversion rates increase downstream of the bump, where the eddy energy field exhibits along-stream variability that increases southward. Barotropic conversion is more intense between 50 and 200 m, where mean kinetic energy (MKE) and EKE are concentrated, and it exhibits a horizontal cross-stream variation pattern, with mean-to-eddy energy conversion observed on the offshore side of the BC. This result indicates that the turbulence associated with the stream jet increases as the BC moves away from the coast, with the conversion term acting to stabilize the flow. Baroclinic conversion exhibits a high intensity below 300 m (where MPE and EPE display peaks), and it has a greater influence on the eddy-mean flow interaction than does the barotropic conversion. The RGC directly affects the local dynamics of the BC by increasing the eddy field as soon as the BC reaches the bump. The energy diagrams illustrate a stream characterized by evolving barotropic and baroclinic instability processes throughout the water column. This result indicates an intrinsically unstable jet in the study region. Moreover, baroclinic instability is the main source of EKE in the RGC region.

  14. Oxoiron(IV) complexes as synthons for the assembly of heterobimetallic centers such as the Fe/Mn active site of Class Ic ribonucleotide reductases.

    PubMed

    Zhou, Ang; Crossland, Patrick M; Draksharapu, Apparao; Jasniewski, Andrew J; Kleespies, Scott T; Que, Lawrence

    2018-01-01

    Nonheme oxoiron(IV) complexes can serve as synthons for generating heterobimetallic oxo-bridged dimetal complexes by reaction with divalent metal complexes. The formation of Fe III -O-Cr III and Fe III -O-Mn III complexes is described herein. The latter complexes may serve as models for the Fe III -X-Mn III active sites of an emerging class of Fe/Mn enzymes represented by the Class 1c ribonucleotide reductase from Chlamydia trachomatis and the R2-like ligand-binding oxidase (R2lox) found in Mycobacterium tuberculosis. These synthetic complexes have been characterized by UV-Vis, resonance Raman, and X-ray absorption spectroscopy, as well as electrospray mass spectrometry. The Fe III -O-Cr III complexes exhibit a three-band UV-Vis pattern that differs from the simpler features associated with Fe III -O-Fe III complexes. The positions of these features are modulated by the nature of the supporting polydentate ligand on the iron center, and their bands intensify dramatically in two examples upon the binding of an axial cyanate or thiocyanate ligand trans to the oxo bridge. In contrast, the Fe III -O-Mn III complexes resemble Fe III -O-Fe III complexes more closely. Resonance Raman characterization of the Fe III -O-M III complexes reveals an 18 O-sensitive vibration in the range of 760-890 cm -1 . This feature has been assigned to the asymmetric Fe III -O-M III stretching mode and correlates reasonably with the Fe-O bond distance determined by EXAFS analysis. The likely binding of an acetate as a bridging ligand to the Fe III -O-Mn III complex 12 lays the foundation for further efforts to model the heterobimetallic active sites of Fe/Mn enzymes.

  15. Understanding the complexity of human gait dynamics

    NASA Astrophysics Data System (ADS)

    Scafetta, Nicola; Marchi, Damiano; West, Bruce J.

    2009-06-01

    Time series of human gait stride intervals exhibit fractal and multifractal properties under several conditions. Records from subjects walking at normal, slow, and fast pace speed are analyzed to determine changes in the fractal scalings as a function of the stress condition of the system. Records from subjects with different age from children to elderly and patients suffering from neurodegenerative disease are analyzed to determine changes in the fractal scalings as a function of the physical maturation or degeneration of the system. A supercentral pattern generator model is presented to simulate the above two properties that are typically found in dynamical network performance: that is, how a dynamical network responds to stress and to evolution.

  16. Visibility graph analysis of very short-term heart rate variability during sleep

    NASA Astrophysics Data System (ADS)

    Hou, F. Z.; Li, F. W.; Wang, J.; Yan, F. R.

    2016-09-01

    Based on a visibility-graph algorithm, complex networks were constructed from very short-term heart rate variability (HRV) during different sleep stages. Network measurements progressively changed from rapid eye movement (REM) sleep to light sleep and then deep sleep, exhibiting promising ability for sleep assessment. Abnormal activation of the cardiovascular controls with enhanced 'small-world' couplings and altered fractal organization during REM sleep indicates that REM could be a potential risk factor for adverse cardiovascular event, especially in males, older individuals, and people who are overweight. Additionally, an apparent influence of gender, aging, and obesity on sleep was demonstrated in healthy adults, which may be helpful for establishing expected sleep-HRV patterns in different populations.

  17. Using ecological zones to increase the detail of Landsat classifications

    NASA Technical Reports Server (NTRS)

    Fox, L., III; Mayer, K. E.

    1981-01-01

    Changes in classification detail of forest species descriptions were made for Landsat data on 2.2 million acres in northwestern California. Because basic forest canopy structures may exhibit very similar E-M energy reflectance patterns in different environmental regions, classification labels based on Landsat spectral signatures alone become very generalized when mapping large heterogeneous ecological regions. By adding a seven ecological zone stratification, a 167% improvement in classification detail was made over the results achieved without it. The seven zone stratification is a less costly alternative to the inclusion of complex collateral information, such as terrain data and soil type, into the Landsat data base when making inventories of areas greater than 500,000 acres.

  18. Periodic, chaotic, and doubled earthquake recurrence intervals on the deep San Andreas Fault

    USGS Publications Warehouse

    Shelly, David R.

    2010-01-01

    Earthquake recurrence histories may provide clues to the timing of future events, but long intervals between large events obscure full recurrence variability. In contrast, small earthquakes occur frequently, and recurrence intervals are quantifiable on a much shorter time scale. In this work, I examine an 8.5-year sequence of more than 900 recurring low-frequency earthquake bursts composing tremor beneath the San Andreas fault near Parkfield, California. These events exhibit tightly clustered recurrence intervals that, at times, oscillate between ~3 and ~6 days, but the patterns sometimes change abruptly. Although the environments of large and low-frequency earthquakes are different, these observations suggest that similar complexity might underlie sequences of large earthquakes.

  19. Effect of B-ring substitution pattern on binding mode of propionamide selective androgen receptor modulators.

    PubMed

    Bohl, Casey E; Wu, Zengru; Chen, Jiyun; Mohler, Michael L; Yang, Jun; Hwang, Dong Jin; Mustafa, Suni; Miller, Duane D; Bell, Charles E; Dalton, James T

    2008-10-15

    Selective androgen receptor modulators (SARMs) are essentially prostate sparing androgens, which provide therapeutic potential in osteoporosis, male hormone replacement, and muscle wasting. Herein we report crystal structures of the androgen receptor (AR) ligand-binding domain (LBD) complexed to a series of potent synthetic nonsteroidal SARMs with a substituted pendant arene referred to as the B-ring. We found that hydrophilic B-ring para-substituted analogs exhibit an additional region of hydrogen bonding not seen with steroidal compounds and that multiple halogen substitutions affect the B-ring conformation and aromatic interactions with Trp741. This information elucidates interactions important for high AR binding affinity and provides new insight for structure-based drug design.

  20. Expression analysis of the speech-related genes FoxP1 and FoxP2 and their relation to singing behavior in two songbird species.

    PubMed

    Chen, Qianqian; Heston, Jonathan B; Burkett, Zachary D; White, Stephanie A

    2013-10-01

    Humans and songbirds are among the rare animal groups that exhibit socially learned vocalizations: speech and song, respectively. These vocal-learning capacities share a reliance on audition and cortico-basal ganglia circuitry, as well as neurogenetic mechanisms. Notably, the transcription factors Forkhead box proteins 1 and 2 (FoxP1, FoxP2) exhibit similar expression patterns in the cortex and basal ganglia of humans and the zebra finch species of songbird, among other brain regions. Mutations in either gene are associated with language disorders in humans. Experimental knock-down of FoxP2 in the basal ganglia song control region Area X during song development leads to imprecise copying of tutor songs. Moreover, FoxP2 levels decrease naturally within Area X when zebra finches sing. Here, we examined neural expression patterns of FoxP1 and FoxP2 mRNA in adult Bengalese finches, a songbird species whose songs exhibit greater sequence complexity and increased reliance on audition for maintaining their quality. We found that FoxP1 and FoxP2 expression in Bengalese finches is similar to that in zebra finches, including strong mRNA signals for both factors in multiple song control nuclei and enhancement of FoxP1 in these regions relative to surrounding brain tissue. As with zebra finches, when Bengalese finches sing, FoxP2 is behaviorally downregulated within basal ganglia Area X over a similar time course, and expression negatively correlates with the amount of singing. This study confirms that in multiple songbird species, FoxP1 expression highlights song control regions, and regulation of FoxP2 is associated with motor control of song.

  1. Evolutionary Determinants of Morphological Polymorphism in Colonial Animals.

    PubMed

    Simpson, Carl; Jackson, Jeremy B C; Herrera-Cubilla, Amalia

    2017-07-01

    Colonial animals commonly exhibit morphologically polymorphic modular units that are phenotypically distinct and specialize in specific functional tasks. But how and why these polymorphic modules have evolved is poorly understood. Across colonial invertebrates, there is wide variation in the degree of polymorphism, from none in colonial ascidians to extreme polymorphism in siphonophores, such as the Portuguese man-of-war. Bryozoa are a phylum of exclusively colonial invertebrates that uniquely exhibit almost the entire range of polymorphism, from monomorphic species to others that rival siphonophores in their polymorphic complexity. Previous approaches to understanding the evolution of polymorphism have been based on analyses of (1) the functional role of polymorphs or (2) presumed evolutionary costs and benefits based on evolutionary theory that postulates polymorphism should be evolutionarily sustainable only in more stable environments because polymorphism commonly leads to the loss of feeding and sexual competence. Here we use bryozoans from opposite shores of the Isthmus of Panama to revisit the environmental hypothesis by comparison of faunas from distinct oceanographic provinces that differ greatly in environmental variability, and we then examine the correlations between the extent of polymorphism in relation to patterns of ecological succession and variation in life histories. We find no support for the environmental hypothesis. Distributions of the incidence of polymorphism in the oceanographically unstable Eastern Pacific are indistinguishable from those in the more stable Caribbean. In contrast, the temporal position of species in a successional sequence is collinear with the degree of polymorphism because species with fewer types of polymorphs are competitively replaced by species with higher numbers of polymorphs on the same substrata. Competitively dominant species also exhibit patterns of growth that increase their competitive ability. The association between degrees of polymorphism and variations in life histories is fundamental to understanding of the macroevolution of polymorphism.

  2. Expression analysis of the speech-related genes FoxP1 and FoxP2 and their relation to singing behavior in two songbird species

    PubMed Central

    Chen, Qianqian; Heston, Jonathan B.; Burkett, Zachary D.; White, Stephanie A.

    2013-01-01

    SUMMARY Humans and songbirds are among the rare animal groups that exhibit socially learned vocalizations: speech and song, respectively. These vocal-learning capacities share a reliance on audition and cortico-basal ganglia circuitry, as well as neurogenetic mechanisms. Notably, the transcription factors Forkhead box proteins 1 and 2 (FoxP1, FoxP2) exhibit similar expression patterns in the cortex and basal ganglia of humans and the zebra finch species of songbird, among other brain regions. Mutations in either gene are associated with language disorders in humans. Experimental knock-down of FoxP2 in the basal ganglia song control region Area X during song development leads to imprecise copying of tutor songs. Moreover, FoxP2 levels decrease naturally within Area X when zebra finches sing. Here, we examined neural expression patterns of FoxP1 and FoxP2 mRNA in adult Bengalese finches, a songbird species whose songs exhibit greater sequence complexity and increased reliance on audition for maintaining their quality. We found that FoxP1 and FoxP2 expression in Bengalese finches is similar to that in zebra finches, including strong mRNA signals for both factors in multiple song control nuclei and enhancement of FoxP1 in these regions relative to surrounding brain tissue. As with zebra finches, when Bengalese finches sing, FoxP2 is behaviorally downregulated within basal ganglia Area X over a similar time course, and expression negatively correlates with the amount of singing. This study confirms that in multiple songbird species, FoxP1 expression highlights song control regions, and regulation of FoxP2 is associated with motor control of song. PMID:24006346

  3. Mediterranean undercurrent sandy contourites, Gulf of Cadiz, Spain

    USGS Publications Warehouse

    Hans, Nelson C.; Baraza, J.; Maldonado, A.

    1993-01-01

    The Pliocene-Quaternary pattern of contourite deposits on the eastern Gulf of Cadiz continental slope results from an interaction between linear diapiric ridges that are perpendicular to slope contours and the Mediterranean undercurrent that has flowed northwestward parallel to the slope contours and down valleys between the ridges since the late Miocene opening of the Strait of Gibraltar. Coincident with the northwestward decrease in undercurrent speeds from the Strait there is the following northwestward gradation of sediment facies associations: (1) upper slope facies, (2) sand dune facies on the upstream mid-slope terrace, (3) large mud wave facies on the lower slope, (4) sediment drift facies banked against the diapiric ridges, and (5) valley facies between the ridges. The southeastern sediment drift facies closest to Gibraltar contains medium-fine sand beds interbedded with mud. The adjacent valley floor facies is composed of gravelly, shelly coarse to medium sand lags and large sand dunes on the valley margins. Compared to this, the northwestern drift contains coarse silt interbeds and the adjacent valley floors exhibit small to medium sand dunes of fine sand. Further northwestward, sediment drift grades to biogenous silt near the Faro Drift at the Portuguese border. Because of the complex pattern of contour-parallel and valley-perpendicular flow paths of the Mediterranean undercurrent, the larger-scale bedforms and coarser-grained sediment of valley facies trend perpendicular to the smaller-scale bedforms and finer-grained contourite deposits of adjacent sediment drift facies. The bottom-current deposits of valleys and the contourites of the Cadiz slope intervalley areas are distinct from turbidite systems. The valley sequences are not aggradational like turbidite channel-levee complexes, but typically exhibit bedrock walls against ridges, extensive scour and fill into adjacent contourites, transverse bedform fields and bioclastic lag deposits. Both valley and contourite deposits exhibit reverse graded bedding and sharp upper bed contacts in coarse-grained layers, low deposition rates, and a regional pattern of bedform zones, textural variation, and compositional gradation. The surface sandy contourite layer of 0.2-1.2 m thickness that covers the Gulf of Cadiz slope has formed during the present Holocene high sea level because high sea level results in maximum water depth over the Gibraltar sill and full development of the Mediterranean undercurrent. The late Pleistocene age of the mud underlying the surface sand sheet correlates with the age of the last sea-level lowstand and apparent weak Mediterranean undercurrent development. Thus, the cyclic deposition of sand or mud layers and contourite or drape sequences appear to be related to late Pliocene and Quaternary sea-level changes and Mediterranean water circulation patterns. Since its Pliocene origin, the contourite sequence has had low deposition rates of < 5 cm/1000y on the upper slope and < 13 cm/1000y in the middle slope sediment drift. ?? 1993.

  4. Do larval fishes exhibit diel drift patterns in a large, turbid river?

    USGS Publications Warehouse

    Reeves, K.S.; Galat, D.L.

    2010-01-01

    Previous research suggested larval fishes do not exhibit a diel drift cycle in turbid rivers (transparency <30 cm). We evaluated this hypothesis in the turbid, lower Missouri River, Missouri. We also reviewed diel patterns of larval drift over a range of transparencies in rivers worldwide. Larval fishes were collected from the Missouri River primary channel every 4 h per 24-h period during spring-summer 2002. Water transparency was measured during this period and summarized for previous years. Diel drift patterns were analyzed at the assemblage level and lower taxonomic levels for abundant groups. Day and night larval fish catch-per-unit-effort (CPUE) was compared for the entire May through August sampling period and spring (May - June) and summer (July - August) seasons separately. There were no significant differences between day and night CPUE at the assemblage level for the entire sampling period or for the spring and summer seasons. However, Hiodon alosoides, Carpiodes/Ictiobus spp. and Macrhybopsis spp. exhibited a diel cycle of abundance within the drift. This pattern was evident although mean Secchi depth (transparency) ranged from 4 to 25 cm during the study and was <30 cm from May through August over the previous nine years. Larval diel drift studies from 48 rivers excluding the Missouri River indicated the primary drift period for larval fishes was at night in 38 rivers and during the day for five, with the remaining rivers showing no pattern. Water transparency was reported for 10 rivers with six being <30 cm or 'low'. Two of these six turbid rivers exhibited significant diel drift patterns. The effect of water transparency on diel drift of larval fishes appears taxa-specific and patterns of abundant taxa could mask patterns of rare taxa when analyzed only at the assemblage level. ?? 2010 Blackwell Verlag, Berlin.

  5. Goal-Source Asymmetry and Crosslinguistic Grammaticalization Patterns: A Cognitive-Typological Approach

    ERIC Educational Resources Information Center

    Kabata, Kaori

    2013-01-01

    In this paper, the patterns of semantic extensions of allative markers are compared with those of ablative markers from a cognitive-typological perspective. Despite the symmetry the two notions appear to exhibit semantically, goal and source exhibit asymmetry and the prevalence of the former over the latter can be seen in a wide range of…

  6. Recent drought conditions in the Conterminous United States

    Treesearch

    Frank H. Koch; William D. Smith; John W. Coulston

    2013-01-01

    Droughts are common in virtually all U.S. forests, but their frequency and intensity vary widely both between and within forest ecosystems (Hanson and Weltzin 2000). Forests in the Western United States generally exhibit a pattern of annual seasonal droughts. Forests in the Eastern United States tend to exhibit one of two prevailing patterns: random occasional droughts...

  7. Dietary breadth is positively correlated with venom complexity in cone snails.

    PubMed

    Phuong, Mark A; Mahardika, Gusti N; Alfaro, Michael E

    2016-05-26

    Although diet is believed to be a major factor underlying the evolution of venom, few comparative studies examine both venom composition and diet across a radiation of venomous species. Cone snails within the family, Conidae, comprise more than 700 species of carnivorous marine snails that capture their prey by using a cocktail of venomous neurotoxins (conotoxins or conopeptides). Venom composition across species has been previously hypothesized to be shaped by (a) prey taxonomic class (i.e., worms, molluscs, or fish) and (b) dietary breadth. We tested these hypotheses under a comparative phylogenetic framework using ecological data from past studies in conjunction with venom duct transcriptomes sequenced from 12 phylogenetically disparate cone snail species, including 10 vermivores (worm-eating), one molluscivore, and one generalist. We discovered 2223 unique conotoxin precursor peptides that encoded 1864 unique mature toxins across all species, >90 % of which are new to this study. In addition, we identified two novel gene superfamilies and 16 novel cysteine frameworks. Each species exhibited unique venom profiles, with venom composition and expression patterns among species dominated by a restricted set of gene superfamilies and mature toxins. In contrast with the dominant paradigm for interpreting Conidae venom evolution, prey taxonomic class did not predict venom composition patterns among species. We also found a significant positive relationship between dietary breadth and measures of conotoxin complexity. The poor performance of prey taxonomic class in predicting venom components suggests that cone snails have either evolved species-specific expression patterns likely as a consequence of the rapid evolution of conotoxin genes, or that traditional means of categorizing prey type (i.e., worms, mollusc, or fish) and conotoxins (i.e., by gene superfamily) do not accurately encapsulate evolutionary dynamics between diet and venom composition. We also show that species with more generalized diets tend to have more complex venoms and utilize a greater number of venom genes for prey capture. Whether this increased gene diversity confers an increased capacity for evolutionary change remains to be tested. Overall, our results corroborate the key role of diet in influencing patterns of venom evolution in cone snails and other venomous radiations.

  8. Antiviral drug acyclovir exhibits antitumor activity via targeting βTrCP1: Molecular docking and dynamics simulation study.

    PubMed

    Shafique, Shagufta; Rashid, Sajid

    2017-03-01

    The critical role of βTrCP1 in cancer development makes it a discerning target for the development of small drug like molecules. Currently, no inhibitor exists that is able to target its substrate binding site. Through molecular docking and dynamics simulation assays, we explored the comparative binding pattern of βTrCP1-WD40 domain with ACV and its phospho-derivatives (ACVMP, ACVDP and ACVTP). Consequently, through principal component analysis, βTrCP1-ACVTP was found to be more stable complex by obscuring a reduced conformational space than other systems. Thus based on the residual contribution and hydrogen bonding pattern, ACVTP was considered as a noteworthy inhibitor which demarcated binding in the cleft formed by βTrCP1-WD40 specific β-propeller. The outcomes of this study may provide a platform for rational design of specific and potent inhibitor against βTrCP1, with special emphasis on anticancer activity. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Local pH oscillations witness autocatalytic self-organization of biomorphic nanostructures

    NASA Astrophysics Data System (ADS)

    Montalti, M.; Zhang, G.; Genovese, D.; Morales, J.; Kellermeier, M.; García-Ruiz, J. M.

    2017-02-01

    Bottom-up self-assembly of simple molecular compounds is a prime pathway to complex materials with interesting structures and functions. Coupled reaction systems are known to spontaneously produce highly ordered patterns, so far observed in soft matter. Here we show that similar phenomena can occur during silica-carbonate crystallization, the emerging order being preserved. The resulting materials, called silica biomorphs, exhibit non-crystallographic curved morphologies and hierarchical textures, much reminiscent of structural principles found in natural biominerals. We have used a fluorescent chemosensor to probe local conditions during the growth of such self-organized nanostructures. We demonstrate that the pH oscillates in the local microenvironment near the growth front due to chemical coupling, which becomes manifest in the final mineralized architectures as intrinsic banding patterns with the same periodicity. A better understanding of dynamic autocatalytic crystallization processes in such simple model systems is key to the rational development of advanced materials and to unravel the mechanisms of biomineralization.

  10. Role of TRP ion channels in cancer and tumorigenesis.

    PubMed

    Shapovalov, George; Ritaine, Abigael; Skryma, Roman; Prevarskaya, Natalia

    2016-05-01

    Transient receptor potential (TRP) channels are recently identified proteins that form a versatile family of ion channels, the majority of which are calcium permeable and exhibit complex regulatory patterns with sensitivity to multiple environmental factors. While this sensitivity has captured early attention, leading to recognition of TRP channels as environmental and chemical sensors, many later studies concentrated on the regulation of intracellular calcium by TRP channels. Due to mutations, dysregulation of ion channel gating or expression levels, normal spatiotemporal patterns of local Ca(2+) distribution become distorted. This causes deregulation of downstream effectors sensitive to changes in Ca(2+) homeostasis that, in turn, promotes pathophysiological cancer hallmarks, such as enhanced survival, proliferation and invasion. These observations give rise to the appreciation of the important contributions that TRP channels make to many cellular processes controlling cell fate and positioning these channels as important players in cancer regulation. This review discusses the accumulated scientific knowledge focused on TRP channel involvement in regulation of cell fate in various transformed tissues.

  11. Molecular discrimination of lactobacilli used as starter and probiotic cultures by amplified ribosomal DNA restriction analysis.

    PubMed

    Roy, D; Sirois, S; Vincent, D

    2001-04-01

    Lactic acid bacteria such as Lactobacillus helveticus, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. lactis, L. delbrueckii subsp. bulgaricus, L. acidophilus, and L. casei related taxa which are widely used as starter or probiotic cultures can be identified by amplified ribosomal DNA restriction analysis (ARDRA). The genetic discrimination of the related species belonging to these groups was first obtained by PCR amplifications by using group-specific or species-specific 16S rDNA primers. The numerical analysis of the ARDRA patterns obtained by using CfoI, HinfI, Tru9I, and ScrFI was an efficient typing tool for identification of species of the L. acidophilus and L. casei complex. ARDRA by using CfoI was a reliable method for differentiation of L. delbrueckii subsp. bulgaricus and L. delbrueckii subsp. lactis. Finally, strains ATCC 393 and ATCC 15820 exhibited unique ARDRA patterns with CfoI and Tru9I restriction enzymes as compared with the other strains of L. casei, L. paracasei, and L. rhamnosus.

  12. Simulating immiscible multi-phase flow and wetting with 3D stochastic rotation dynamics (SRD)

    NASA Astrophysics Data System (ADS)

    Hiller, Thomas; Sanchez de La Lama, Marta; Herminghaus, Stephan; Brinkmann, Martin

    2013-11-01

    We use a variant of the mesoscopic particle method stochastic rotation dynamics (SRD) to simulate immiscible multi-phase flow on the pore and sub-pore scale in three dimensions. As an extension to the multi-color SRD method, first proposed by Inoue et al., we present an implementation that accounts for complex wettability on heterogeneous surfaces. In order to demonstrate the versatility of this algorithm, we consider immiscible two-phase flow through a model porous medium (disordered packing of spherical beads) where the substrate exhibits different spatial wetting patterns. We show that these patterns have a significant effect on the interface dynamics. Furthermore, the implementation of angular momentum conservation into the SRD algorithm allows us to extent the applicability of SRD also to micro-fluidic systems. It is now possible to study e.g. the internal flow behaviour of a droplet depending on the driving velocity of the surrounding bulk fluid or the splitting of droplets by an obstacle.

  13. Numerical modeling of interface displacement in heterogeneously wetting porous media

    NASA Astrophysics Data System (ADS)

    Hiller, T.; Brinkmann, M.; Herminghaus, S.

    2013-12-01

    We use the mesoscopic particle method stochastic rotation dynamics (SRD) to simulate immiscible multi-phase flow on the pore and sub-pore scale in three dimensions. As an extension to the standard SRD method, we present an approach on implementing complex wettability on heterogeneous surfaces. We use 3D SRD to simulate immiscible two-phase flow through a model porous medium (disordered packing of spherical beads) where the substrate exhibits different spatial wetting patterns. The simulations are designed to resemble experimental measurements of capillary pressure saturation. We show that the correlation length of the wetting patterns influences the temporal evolution of the interface and thus percolation, residual saturation and work dissipated during the fluid displacement. Our numerical results are in qualitatively good agreement with the experimental data. Besides of modeling flow in porous media, our SRD implementation allows us to address various questions of interfacial dynamics, e.g. the formation of capillary bridges between spherical beads or droplets in microfluidic applications to name only a few.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fehrenbacher, Jennifer S.; Russell, Ann D.; Davis, Catherine V.

    Mg/Ca ratios of planktic foraminifera are commonly used to reconstruct past ocean temperatures. However, intrashell Mg/Ca ratios exhibit a pattern of alternating high and low Mg-bands in many species. Whereas mechanisms controlling Mg variability are poorly constrained, recent experiments demonstrate that it is paced by the diurnal light/dark cycle in Orbulina universa, which forms a terminal shell of simple spherical geometry. It is unknown whether Mg-heterogeneity is diurnally paced in species with complex shell morphologies, or is the result of growth processes. Here, we show that high Mg/Ca-calcite also forms at night in cultured specimens of the multi-chambered planktic foraminiferamore » Neogloboquadrina dutertrei. Our results demonstrate that N. dutertrei adds a significant amount of calcite, and nearly all Mg-bands, after the final chamber forms. Furthermore, these results have implications for interpreting patterns of calcification in N. dutertrei, and possibly other foraminifera species, and suggests diurnal Mg-banding is an intrinsic component of biomineralization in planktic foraminifera.« less

  15. Natal foraging philopatry in eastern Pacific hawksbill turtles.

    PubMed

    Gaos, Alexander R; Lewison, Rebecca L; Jensen, Michael P; Liles, Michael J; Henriquez, Ana; Chavarria, Sofia; Pacheco, Carlos Mario; Valle, Melissa; Melero, David; Gadea, Velkiss; Altamirano, Eduardo; Torres, Perla; Vallejo, Felipe; Miranda, Cristina; LeMarie, Carolina; Lucero, Jesus; Oceguera, Karen; Chácon, Didiher; Fonseca, Luis; Abrego, Marino; Seminoff, Jeffrey A; Flores, Eric E; Llamas, Israel; Donadi, Rodrigo; Peña, Bernardo; Muñoz, Juan Pablo; Ruales, Daniela Alarcòn; Chaves, Jaime A; Otterstrom, Sarah; Zavala, Alan; Hart, Catherine E; Brittain, Rachel; Alfaro-Shigueto, Joanna; Mangel, Jeffrey; Yañez, Ingrid L; Dutton, Peter H

    2017-08-01

    The complex processes involved with animal migration have long been a subject of biological interest, and broad-scale movement patterns of many marine turtle populations still remain unresolved. While it is widely accepted that once marine turtles reach sexual maturity they home to natal areas for nesting or reproduction, the role of philopatry to natal areas during other life stages has received less scrutiny, despite widespread evidence across the taxa. Here we report on genetic research that indicates that juvenile hawksbill turtles ( Eretmochelys imbricata ) in the eastern Pacific Ocean use foraging grounds in the region of their natal beaches, a pattern we term natal foraging philopatry. Our findings confirm that traditional views of natal homing solely for reproduction are incomplete and that many marine turtle species exhibit philopatry to natal areas to forage. Our results have important implications for life-history research and conservation of marine turtles and may extend to other wide-ranging marine vertebrates that demonstrate natal philopatry.

  16. Natal foraging philopatry in eastern Pacific hawksbill turtles

    PubMed Central

    Lewison, Rebecca L.; Jensen, Michael P.; Liles, Michael J.; Henriquez, Ana; Chavarria, Sofia; Pacheco, Carlos Mario; Valle, Melissa; Melero, David; Gadea, Velkiss; Altamirano, Eduardo; Torres, Perla; Vallejo, Felipe; Miranda, Cristina; LeMarie, Carolina; Lucero, Jesus; Oceguera, Karen; Chácon, Didiher; Fonseca, Luis; Abrego, Marino; Seminoff, Jeffrey A.; Flores, Eric E.; Llamas, Israel; Donadi, Rodrigo; Peña, Bernardo; Muñoz, Juan Pablo; Ruales, Daniela Alarcòn; Chaves, Jaime A.; Otterstrom, Sarah; Zavala, Alan; Hart, Catherine E.; Brittain, Rachel; Alfaro-Shigueto, Joanna; Mangel, Jeffrey; Yañez, Ingrid L.; Dutton, Peter H.

    2017-01-01

    The complex processes involved with animal migration have long been a subject of biological interest, and broad-scale movement patterns of many marine turtle populations still remain unresolved. While it is widely accepted that once marine turtles reach sexual maturity they home to natal areas for nesting or reproduction, the role of philopatry to natal areas during other life stages has received less scrutiny, despite widespread evidence across the taxa. Here we report on genetic research that indicates that juvenile hawksbill turtles (Eretmochelys imbricata) in the eastern Pacific Ocean use foraging grounds in the region of their natal beaches, a pattern we term natal foraging philopatry. Our findings confirm that traditional views of natal homing solely for reproduction are incomplete and that many marine turtle species exhibit philopatry to natal areas to forage. Our results have important implications for life-history research and conservation of marine turtles and may extend to other wide-ranging marine vertebrates that demonstrate natal philopatry. PMID:28878969

  17. Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films

    NASA Astrophysics Data System (ADS)

    Yilixiati, Subinuer; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek

    Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freestanding thin films. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm are visualized and analyzed using IDIOM protocols. We distinguish nanoscopic rims, mesas and craters and show that the non-flat features are sculpted by oscillatory, periodic, supramolecular structural forces that arise in confined fluids

  18. Multi-segmental postural coordination in professional ballet dancers.

    PubMed

    Kiefer, Adam W; Riley, Michael A; Shockley, Kevin; Sitton, Candace A; Hewett, Timothy E; Cummins-Sebree, Sarah; Haas, Jacqui G

    2011-05-01

    Ballet dancers have heightened balance skills, but previous studies that compared dancers to non-dancers have not quantified patterns of multi-joint postural coordination. This study utilized a visual tracking task that required professional ballet dancers and untrained control participants to sway with the fore-aft motion of a target while standing on one leg, at target frequencies of 0.2 and 0.6Hz. The mean and variability of relative phase between the ankle and hip, and measures from cross-recurrence quantification analysis (i.e., percent cross-recurrence, percent cross-determinism, and cross-maxline), indexed the coordination patterns and their stability. Dancers exhibited less variable ankle-hip coordination and a less deterministic ankle-hip coupling, compared to controls. The results indicate that ballet dancers have increased coordination stability, potentially achieved through enhanced neuromuscular control and/or perceptual sensitivity, and indicate proficiency at optimizing the constraints that enable dancers to perform complex balance tasks. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Uniformity of nucleosome preservation pattern in Mammalian sperm and its connection to repetitive DNA elements.

    PubMed

    Samans, Birgit; Yang, Yang; Krebs, Stefan; Sarode, Gaurav Vilas; Blum, Helmut; Reichenbach, Myriam; Wolf, Eckhard; Steger, Klaus; Dansranjavin, Temuujin; Schagdarsurengin, Undraga

    2014-07-14

    Nucleosome-to-protamine exchange during mammalian spermiogenesis is essential for compaction and protection of paternal DNA. It is interesting that, depending on the species, 1% to 15% of nucleosomes are retained, but the generalizability and biological function of this retention are unknown. Here, we show concordantly in human and bovine that nucleosomes remained in sperm chromatin predominantly within distal intergenic regions and introns and associated with centromere repeats and retrotransposons (LINE1 and SINEs). In contrast, nucleosome depletion concerned particularly exons, 5'-UTR, 3'-UTR, TSS, and TTS and was associated with simple and low-complexity repeats. Overlap of human and bovine genes exhibiting nucleosome preservation in the promoter and gene body revealed a significant enrichment of signal transduction and RNA- and protein-processing factors. Our study demonstrates the genome-wide uniformity of the nucleosome preservation pattern in mammalian sperm and its connection to repetitive DNA elements and suggests a function in preimplantation processes for paternally derived nucleosomes. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. Wave of chaos in a spatial eco-epidemiological system: Generating realistic patterns of patchiness in rabbit-lynx dynamics.

    PubMed

    Upadhyay, Ranjit Kumar; Roy, Parimita; Venkataraman, C; Madzvamuse, A

    2016-11-01

    In the present paper, we propose and analyze an eco-epidemiological model with diffusion to study the dynamics of rabbit populations which are consumed by lynx populations. Existence, boundedness, stability and bifurcation analyses of solutions for the proposed rabbit-lynx model are performed. Results show that in the presence of diffusion the model has the potential of exhibiting Turing instability. Numerical results (finite difference and finite element methods) reveal the existence of the wave of chaos and this appears to be a dominant mode of disease dispersal. We also show the mechanism of spatiotemporal pattern formation resulting from the Hopf bifurcation analysis, which can be a potential candidate for understanding the complex spatiotemporal dynamics of eco-epidemiological systems. Implications of the asymptotic transmission rate on disease eradication among rabbit population which in turn enhances the survival of Iberian lynx are discussed. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  1. A single-substrate model to interpret high-resolution intra-annual stable isotope signals in tree ring cellulose

    NASA Astrophysics Data System (ADS)

    Ogée, J.; Barbour, M. M.; Dewar, R. C.; Wingate, L.; Bert, D.; Bosc, A.; Lambrot, C.; Stievenard, M.; Bariac, T.; Berbigier, P.; Loustau, D.

    2007-12-01

    High-resolution measurements of the carbon and oxygen stable isotope composition of cellulose in annual tree rings (δ13Ccellulose and δ18Ocellulose, respectively) reveal well-defined seasonal patterns that could contain valuable records of past climate and tree function. Interpreting these signals is nonetheless complex because they not only record the signature of current assimilates, but also depend on carbon allocation dynamics within the trees. Here, we will present a single-substrate model for wood growth in order to interpret qualitatively and quantitatively these seasonal isotopic signals. We will also show how this model can relate to more complex models of phloem transport and cambial activity. The model will then be tested against an isotopic intra-annual chronology collected on a Pinus pinaster tree equipped with point dendrometers and growing on a Carboeurope site where climate, soil and flux variables are also monitored. The empirical δ13Ccellulose and δ18Ocellulose signals exhibit dynamic seasonal patterns with clear differences between years, which makes it suitable for model testing. We will show how our simple model of carbohydrate reserves, forced by sap flow and eddy covariance measurements, enables us to interpret these seasonal and inter-annual patterns. Finally, we will present a sensitivity analysis of the model, showing how gas-exchange parameters, carbon and water pool sizes or wood maturation times affect these isotopic signals. Acknowledgements: this study benefited from the CarboEurope-IP Bray site facilities and was funded by the French INSU programme Eclipse, with an additional support from the INRA department EFPA.

  2. Coding rate and duration of vocalizations of the frog, Xenopus laevis.

    PubMed

    Zornik, Erik; Yamaguchi, Ayako

    2012-08-29

    Vocalizations involve complex rhythmic motor patterns, but the underlying temporal coding mechanisms in the nervous system are poorly understood. Using a recently developed whole-brain preparation from which "fictive" vocalizations are readily elicited in vitro, we investigated the cellular basis of temporal complexity of African clawed frogs (Xenopus laevis). Male advertisement calls contain two alternating components--fast trills (∼300 ms) and slow trills (∼700 ms) that contain clicks repeated at ∼60 and ∼30 Hz, respectively. We found that males can alter the duration of fast trills without changing click rates. This finding led us to hypothesize that call rate and duration are regulated by independent mechanisms. We tested this by obtaining whole-cell patch-clamp recordings in the "fictively" calling isolated brain. We discovered a single type of premotor neuron with activity patterns correlated with both the rate and duration of fast trills. These "fast-trill neurons" (FTNs) exhibited long-lasting depolarizations (LLDs) correlated with each fast trill and action potentials that were phase-locked with motor output-neural correlates of call duration and rate, respectively. When depolarized without central pattern generator activation, FTNs produced subthreshold oscillations and action potentials at fast-trill rates, indicating FTN resonance properties are tuned to, and may dictate, the fast-trill rhythm. NMDA receptor (NMDAR) blockade eliminated LLDs in FTNs, and NMDAR activation in synaptically isolated FTNs induced repetitive LLDs. These results suggest FTNs contain an NMDAR-dependent mechanism that may regulate fast-trill duration. We conclude that a single premotor neuron population employs distinct mechanisms to regulate call rate and duration.

  3. Landscape analysis of methane flux across complex terrain

    NASA Astrophysics Data System (ADS)

    Kaiser, K. E.; McGlynn, B. L.; Dore, J. E.

    2014-12-01

    Greenhouse gas (GHG) fluxes into and out of the soil are influenced by environmental conditions resulting in landscape-mediated patterns of spatial heterogeneity. The temporal variability of inputs (e.g. precipitation) and internal redistribution (e.g. groundwater flow) and dynamics (e.g. microbial communities) make predicating these fluxes challenging. Complex terrain can provide a laboratory for improving understanding of the spatial patterns, temporal dynamics, and drivers of trace gas flux rates, requisite to constraining current GHG budgets and future scenarios. Our research builds on previous carbon cycle research at the USFS Tenderfoot Creek Experimental Forest, Little Belt Mountains, Montana that highlighted the relationships between landscape position and seasonal CO2 efflux, induced by the topographic redistribution of water. Spatial patterns and landscape scale mediation of CH4 fluxes in seasonally aerobic soils have not yet been elucidated. We measured soil methane concentrations and fluxes across a full range of landscape positions, leveraging topographic and seasonal gradients, to examine the relationships between environmental variables, hydrologic dynamics, and CH4 production and consumption. We determined that a threshold of ~30% VWC distinguished the direction of flux at individual time points, with the riparian area and uplands having distinct source/sink characteristics respectively. Riparian locations were either strong sources or fluctuated between sink and source behavior, resulting in near neutral seasonal flux. Upland sites however, exhibited significant relationships between sink strength and topographic/energy balance indices. Our results highlight spatial and temporal coherence to landscape scale heterogeneity of CH4 dynamics that can improve estimates of landscape scale CH4 balances and sensitivity to change.

  4. Cranial suture biology of the Aleutian Island inhabitants.

    PubMed

    Cray, James; Mooney, Mark P; Siegel, Michael I

    2011-04-01

    Research on cranial suture biology suggests there is biological and taxonomic information to be garnered from the heritable pattern of suture synostosis. Suture synostosis along with brain growth patterns, diet, and biomechanical forces influence phenotypic variability in cranial vault morphology. This study was designed to determine the pattern of ectocranial suture synostosis in skeletal populations from the Aleutian Islands. We address the hypothesis that ectocranial suture synostosis pattern will differ according to cranial vault shape. Ales Hrdlicka identified two phenotypes in remains excavated from the Aleutian Island. The Paleo-Aleutians, exhibiting a dolichocranic phenotype with little prognathism linked to artifacts distinguished from later inhabitants, Aleutians, who exhibited a brachycranic phenotype with a greater amount of prognathism. A total of 212 crania representing Paleo-Aleuts and Aleutian as defined by Hrdlicka were investigated for suture synostosis pattern following standard methodologies. Comparisons were performed using Guttmann analyses. Results revealed similar suture fusion patterns for the Paleo-Aleut and Aleutian, a strong anterior to posterior pattern of suture fusion for the lateral-anterior suture sites, and a pattern of early termination at the sagittal suture sites for the vault. These patterns were found to differ from that reported in the literature. Because these two populations with distinct cranial shapes exhibit similar patterns of suture synostosis it appears pattern is independent of cranial shape in these populations of Homo sapiens. These findings suggest that suture fusion patterns may be population dependent and that a standardized methodology, using suture fusion to determine age-at-death, may not be applicable to all populations. Copyright © 2011 Wiley-Liss, Inc.

  5. Synthesis of 4‧-substituted-2,2‧;6‧,2″-terpyridine Ru(II) complexes electrochemical, fluorescence quenching and antibacterial studies

    NASA Astrophysics Data System (ADS)

    Ezhilarasu, Tamilarasu; Sathiyaseelan, Anbazhagan; Kalaichelvan, Pudupalayam Thangavelu; Balasubramanian, Sengottuvelan

    2017-04-01

    Three new Ru(II) terpyridine complexes viz. [Ru(BBtpy)2](PF6)2 [Ru(L1)] (BBtpy = 4‧-(4-benzyloxybenzaldehyde)-2,2‧:6‧,2″-terpyridine), [Ru(BMBtpy)2](PF6)2 [Ru(L2)] (BMBtpy = 4‧-(4-benzyloxy-3-methoxybenzaldehyde)-2,2‧:6‧,2″-terpyridine) and [Ru(BEBtpy)2](PF6)2 [Ru(L3)] (BEBtpy = 4‧-(4-benzyloxy-3-ethoxybenzaldehyde)-2,2‧:6‧,2″-terpyridine) have been synthesized and characterized. The MALDI-TOF/MS fragmentation pattern of [Ru(BMBtpy)2](PF6)2 complex exhibits a molecular ion peak at m/z = 987.09 [M-2PF6]2+ fragment. These Ru(II) complexes are redox active, show both metal centered oxidation and ligand centered reduction processes. The peak potential and peak current Ipa and Ipc also undergo definite shift and increase with increase in the scan rate (20-120 mV/s). The fluorescence of Ru(II) complexes [Ru(L1)], [Ru(L2)] and [Ru(L3)] are effectively quenched by 1,4-benzoquinone and 1,4-naphthoquinone in acetonitrile. The antibacterial activity of ruthenium(II) complexes were screened against four human pathogens both gram-positive bacteria (Bacillus subtilis, Staphylococcus aureus) and gram negative bacteria (Escherichia coli, Klebsiella pneumonia) by the well diffusion method. The antibacterial activity of Ru(II) complexes is comparable to that of standard antibiotics like tetracycline.

  6. Spectral, thermal, XRD and SEM studies of charge-transfer complexation of hexamethylenediamine and three types of acceptors: π-, σ- and vacant orbital acceptors that include quinol, picric acid, bromine, iodine, SnCl4 and ZnCl2 acceptors

    NASA Astrophysics Data System (ADS)

    Adam, Abdel Majid A.; Refat, Moamen S.; Saad, Hosam A.

    2013-11-01

    In this work, structural, thermal, morphological and pharmacological characterization was performed on the interactions between a hexamethylenediamine (HMDA) donor and three types of acceptors to understand the complexation behavior of diamines. The three types of acceptors include π-acceptors (i.e., quinol (QL) and picric acid (PA)), σ-acceptors (i.e., bromine and iodine) and vacant orbital acceptors (i.e., tin(IV) tetrachloride (SnCl4) and zinc chloride (ZnCl2)). The characterization of the obtained CT complexes was performed using elemental analysis, infrared (IR), Raman, 1H NMR and electronic absorption spectroscopy, powder X-ray diffraction (XRD) and thermogravimetric (TG) analysis. Their morphologies were studied using scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX). The biological activities of the obtained CT complexes were tested for their antibacterial activities. The complex containing the QL acceptor exhibited a remarkable electronic spectrum with a strong, broad absorption band, which had an observed λmax that was at a much longer wavelength than those of the free reactants. In addition, this complex exhibited strong antimicrobial activities against various bacterial and fungal strains compared to standard drugs. The complexes containing the PA, iodine, Sn(IV) and Zn(II) acceptors exhibited good thermal stability up to 240, 330, 275 and 295 °C, respectively. The complexes containing bromine, Sn(IV) and Zn(II) acceptors exhibited good crystallinity. In addition to its good crystallinity properties, the complex containing the bromine acceptor exhibits a remarkable morphology feature.

  7. Global design of satellite constellations: a multi-criteria performance comparison of classical walker patterns and new design patterns

    NASA Astrophysics Data System (ADS)

    Lansard, Erick; Frayssinhes, Eric; Palmade, Jean-Luc

    Basically, the problem of designing a multisatellite constellation exhibits a lot of parameters with many possible combinations: total number of satellites, orbital parameters of each individual satellite, number of orbital planes, number of satellites in each plane, spacings between satellites of each plane, spacings between orbital planes, relative phasings between consecutive orbital planes. Hopefully, some authors have theoretically solved this complex problem under simplified assumptions: the permanent (or continuous) coverage by a single and multiple satellites of the whole Earth and zonal areas has been entirely solved from a pure geometrical point of view. These solutions exhibit strong symmetry properties (e.g. Walker, Ballard, Rider, Draim constellations): altitude and inclination are identical, orbital planes and satellites are regularly spaced, etc. The problem with such constellations is their oversimplified and restricted geometrical assumption. In fact, the evaluation function which is used implicitly only takes into account the point-to-point visibility between users and satellites and does not deal with very important constraints and considerations that become mandatory when designing a real satellite system (e.g. robustness to satellite failures, total system cost, common view between satellites and ground stations, service availability and satellite reliability, launch and early operations phase, production constraints, etc.). An original and global methodology relying on a powerful optimization tool based on genetic algorithms has been developed at ALCATEL ESPACE. In this approach, symmetrical constellations can be used as initial conditions of the optimization process together with specific evaluation functions. A multi-criteria performance analysis is conducted and presented here in a parametric way in order to identify and evaluate the main sensitive parameters. Quantitative results are given for three examples in the fields of navigation, telecommunication and multimedia satellite systems. In particular, a new design pattern with very efficient properties in terms of robustness to satellite failures is presented and compared with classical Walker patterns.

  8. A New Approach for Determining Phase Response Curves Reveals that Purkinje Cells Can Act as Perfect Integrators

    PubMed Central

    Roth, Arnd; Häusser, Michael

    2010-01-01

    Cerebellar Purkinje cells display complex intrinsic dynamics. They fire spontaneously, exhibit bistability, and via mutual network interactions are involved in the generation of high frequency oscillations and travelling waves of activity. To probe the dynamical properties of Purkinje cells we measured their phase response curves (PRCs). PRCs quantify the change in spike phase caused by a stimulus as a function of its temporal position within the interspike interval, and are widely used to predict neuronal responses to more complex stimulus patterns. Significant variability in the interspike interval during spontaneous firing can lead to PRCs with a low signal-to-noise ratio, requiring averaging over thousands of trials. We show using electrophysiological experiments and simulations that the PRC calculated in the traditional way by sampling the interspike interval with brief current pulses is biased. We introduce a corrected approach for calculating PRCs which eliminates this bias. Using our new approach, we show that Purkinje cell PRCs change qualitatively depending on the firing frequency of the cell. At high firing rates, Purkinje cells exhibit single-peaked, or monophasic PRCs. Surprisingly, at low firing rates, Purkinje cell PRCs are largely independent of phase, resembling PRCs of ideal non-leaky integrate-and-fire neurons. These results indicate that Purkinje cells can act as perfect integrators at low firing rates, and that the integration mode of Purkinje cells depends on their firing rate. PMID:20442875

  9. Multivariate pattern analysis reveals anatomical connectivity differences between the left and right mesial temporal lobe epilepsy.

    PubMed

    Fang, Peng; An, Jie; Zeng, Ling-Li; Shen, Hui; Chen, Fanglin; Wang, Wensheng; Qiu, Shijun; Hu, Dewen

    2015-01-01

    Previous studies have demonstrated differences of clinical signs and functional brain network organizations between the left and right mesial temporal lobe epilepsy (mTLE), but the anatomical connectivity differences underlying functional variance between the left and right mTLE remain uncharacterized. We examined 43 (22 left, 21 right) mTLE patients with hippocampal sclerosis and 39 healthy controls using diffusion tensor imaging. After the whole-brain anatomical networks were constructed for each subject, multivariate pattern analysis was applied to classify the left mTLE from the right mTLE and extract the anatomical connectivity differences between the left and right mTLE patients. The classification results reveal 93.0% accuracy for the left mTLE versus the right mTLE, 93.4% accuracy for the left mTLE versus controls and 90.0% accuracy for the right mTLE versus controls. Compared with the right mTLE, the left mTLE exhibited a different connectivity pattern in the cortical-limbic network and cerebellum. The majority of the most discriminating anatomical connections were located within or across the cortical-limbic network and cerebellum, thereby indicating that these disease-related anatomical network alterations may give rise to a portion of the complex of emotional and memory deficit between the left and right mTLE. Moreover, the orbitofrontal gyrus, cingulate cortex, hippocampus and parahippocampal gyrus, which exhibit high discriminative power in classification, may play critical roles in the pathophysiology of mTLE. The current study demonstrated that anatomical connectivity differences between the left mTLE and the right mTLE may have the potential to serve as a neuroimaging biomarker to guide personalized diagnosis of the left and right mTLE.

  10. Short-term sustained hypoxia induces changes in the coupling of sympathetic and respiratory activities in rats

    PubMed Central

    Moraes, Davi J A; Bonagamba, Leni G H; Costa, Kauê M; Costa-Silva, João H; Zoccal, Daniel B; Machado, Benedito H

    2014-01-01

    Individuals experiencing sustained hypoxia (SH) exhibit adjustments in the respiratory and autonomic functions by neural mechanisms not yet elucidated. In the present study we evaluated the central mechanisms underpinning the SH-induced changes in the respiratory pattern and their impact on the sympathetic outflow. Using a decerebrated arterially perfused in situ preparation, we verified that juvenile rats exposed to SH (10% O2) for 24 h presented an active expiratory pattern, with increased abdominal, hypoglossal and vagal activities during late-expiration (late-E). SH also enhanced the activity of augmenting-expiratory neurones and depressed the activity of post-inspiratory neurones of the Bötzinger complex (BötC) by mechanisms not related to changes in their intrinsic electrophysiological properties. SH rats exhibited high thoracic sympathetic activity and arterial pressure levels associated with an augmented firing frequency of pre-sympathetic neurones of the rostral ventrolateral medulla (RVLM) during the late-E phase. The antagonism of ionotropic glutamatergic receptors in the BötC/RVLM abolished the late-E bursts in expiratory and sympathetic outputs of SH rats, indicating that glutamatergic inputs to the BötC/RVLM are essential for the changes in the expiratory and sympathetic coupling observed in SH rats. We also observed that the usually silent late-E neurones of the retrotrapezoid nucleus/parafacial respiratory group became active in SH rats, suggesting that this neuronal population may provide the excitatory drive essential to the emergence of active expiration and sympathetic overactivity. We conclude that short-term SH induces the activation of medullary expiratory neurones, which affects the pattern of expiratory motor activity and its coupling with sympathetic activity. PMID:24614747

  11. Reconsidering residency: Characterization and conservation implications of complex migratory patterns of shortnose sturgeon (Acispenser brevirostrum)

    USGS Publications Warehouse

    Dionne, Phillip E.; Zydlewski, Gayle B.; Kinnison, Michael T.; Zydlewski, Joseph D.; Wippelhauser, Gail S.

    2013-01-01

    Efforts to conserve endangered species usually involve attempts to define and manage threats at the appropriate scale of population processes. In some species that scale is localized; in others, dispersal and migration link demic units within larger metapopulations. Current conservation strategies for endangered shortnose sturgeon (Acipenser brevirostrum) assume the species is river resident, with little to no movement between rivers. However we have found that shortnose sturgeon travel more than 130 km through coastal waters between the largest rivers in Maine. Indeed, acoustic telemetry shows that shortnose sturgeon enter six out of the seven acoustically monitored rivers we have monitored, with over 70% of tagged individuals undertaking coastal migrations between river systems. Four migration patterns were identified for shortnose sturgeon inhabiting the Penobscot River, Maine: river resident (28%), spring coastal emigrant (24%), fall coastal emigrant (33%), and summer coastal emigrant (15%). No shortnose sturgeon classified as maturing female exhibited a resident pattern, indicating differential migration. Traditional river-specific assessment and management of shortnose sturgeon could be better characterized using a broader metapopulation scale, at least in the Gulf of Maine, that accounts for diverse migratory strategies and the importance of migratory corridors as critical habitat.

  12. Old Lineages in a New Ecosystem: Diversification of Arcellinid Amoebae (Amoebozoa) and Peatland Mosses

    PubMed Central

    Leander, Brian S.

    2014-01-01

    Arcellinid testate amoebae (Amoebozoa) form a group of free-living microbial eukaryotes with one of the oldest fossil records known, yet several aspects of their evolutionary history remain poorly understood. Arcellinids occur in a range of terrestrial, freshwater and even brackish habitats; however, many arcellinid morphospecies such as Hyalosphenia papilio are particularly abundant in Sphagnum-dominated peatlands, a relatively new ecosystem that appeared during the diversification of Sphagnum species in the Miocene (5–20 Myr ago). Here, we reconstruct divergence times in arcellinid testate amoebae after selecting several fossils for clock calibrations and then infer whether or not arcellinids followed a pattern of diversification that parallels the pattern described for Sphagnum. We found that the diversification of core arcellinids occurred during the Phanerozoic, which is congruent with most arcellinid fossils but not with the oldest known amoebozoan fossil (i.e. at ca. 662 or ca. 750 Myr). Overall, Sphagnum and the Hyalospheniidae exhibit different patterns of diversification. However, an extensive molecular phylogenetic analysis of distinct clades within H. papilio species complex demonstrated a correlation between the recent diversification of H. papilio, the recent diversification of Sphagnum mosses, and the establishment of peatlands. PMID:24762929

  13. Biliary tract variations of the left liver with special reference to the left medial sectional bile duct in 500 patients.

    PubMed

    Furusawa, Norihiko; Kobayashi, Akira; Yokoyama, Takahide; Shimizu, Akira; Motoyama, Hiroaki; Kanai, Keita; Arakura, Norikazu; Yamada, Akira; Kitou, Yoshihiro; Miyagawa, Shin-Ichi

    2015-08-01

    Among the intrahepatic bile ducts, the biliary system of the left medial sectional bile duct (B4) is known to have relatively complex patterns. The records of 500 patients who had been diagnosed as having hepato-pancreatico-biliary disease were retrospectively studied for anatomical biliary variations of the left liver with special reference to the drainage system of B4 using magnetic resonance images. The left hepatic duct was present in 494 patients (98.8%), whereas it was lacking in 6 patients (1.2%), and these patients exhibited the following B4 confluence patterns: B4 drained into the common hepatic duct in 2 patients (.4%), the right anterior sectional bile duct in 3 patients (.6%), and the right posterior sectional bile duct in 1 patient (.2%). The left hepatic duct was absent more frequently in patients with portal venous variations than in patients with a common branching pattern (8.2% vs .4%, P = .0011). The presently reported data are useful for obtaining a better understanding of the surgical anatomy of the biliary system of the left liver. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Daily travel distances of zoo-housed chimpanzees and gorillas: implications for welfare assessments and space requirements.

    PubMed

    Ross, Stephen R; Shender, Marisa A

    2016-07-01

    The degree to which the relatively smaller area of artificial environments (compared with natural habitats) has measureable effects on the behavior and welfare of captive animals has been debated for many years. While there is little question that these spaces provide far less opportunity for natural ranging behavior and travel, less is known about the degree to which captive animals travel within their environments and what factors influence these travel patterns. We intensively studied the movement of zoo-housed chimpanzees and gorillas using a computer map interface and determined their mean daily travel and found they travelled similar distances each day when restricted to their indoor areas, but when provided additional outdoor space, chimpanzees tended to increase their travel to a greater extent than did gorillas. Both species travelled shorter distances than has been recorded for their wild counterparts, however, when given access to their full indoor-outdoor exhibit; those differences were not as substantive. These findings suggest that while large, complex naturalistic environments might not stimulate comparable species-typical travel patterns in captive apes, larger spaces that include outdoor areas may be better at replicating this behavioral pattern than smaller, indoor areas.

  15. Thermal fluctuations of ferroelectric nanodomains in a ferroelectric-dielectric PbTiO 3 / SrTiO 3 superlattice

    DOE PAGES

    Zhang, Qingteng; Dufresne, Eric M.; Chen, Pice; ...

    2017-02-27

    Ferroelectric-dielectric superlattices consisting of alternating layers of ferroelectric PbTiO 3 and dielectric SrTiO 3 exhibit a disordered striped nanodomain pattern, with characteristic length scales of 6 nm for the domain periodicity and 30 nm for the in-plane coherence of the domain pattern. Spatial disorder in the domain pattern gives rise to coherent hard x-ray scattering patterns exhibiting intensity speckles. We show here using variable-temperature Bragg-geometry x-ray photon correlation spectroscopy that x-ray scattering patterns from the disordered domains exhibit a continuous temporal decorrelation due to spontaneous domain fluctuations. The temporal decorrelation can be described using a compressed exponential function, consistent withmore » what has been observed in other systems with arrested dynamics. The fluctuation speeds up at higher temperatures and the thermal activation energy estimated from the Arrhenius model is 0.35±0.21 eV. As a result, the magnitude of the energy barrier implies that the complicated energy landscape of the domain structures is induced by pinning mechanisms and domain patterns fluctuate via the generation and annihilation of topological defects similar to soft materials such as block copolymers.« less

  16. Dopamine- and Tyrosine Hydroxylase-Immunoreactive Neurons in the Brain of the American Cockroach, Periplaneta americana

    PubMed Central

    Hamanaka, Yoshitaka; Minoura, Run; Nishino, Hiroshi; Miura, Toru; Mizunami, Makoto

    2016-01-01

    The catecholamine dopamine plays several vital roles in the central nervous system of many species, but its neural mechanisms remain elusive. Detailed neuroanatomical characterization of dopamine neurons is a prerequisite for elucidating dopamine’s actions in the brain. In the present study, we investigated the distribution of dopaminergic neurons in the brain of the American cockroach, Periplaneta americana, using two antisera: 1) an antiserum against dopamine, and 2) an antiserum against tyrosine hydroxylase (TH, an enzyme required for dopamine synthesis), and identified about 250 putatively dopaminergic neurons. The patterns of dopamine- and TH-immunoreactive neurons were strikingly similar, suggesting that both antisera recognize the same sets of “dopaminergic” neurons. The dopamine and TH antibodies intensively or moderately immunolabeled prominent brain neuropils, e.g. the mushroom body (memory center), antennal lobe (first-order olfactory center) and central complex (motor coordination center). All subdivisions of the mushroom body exhibit both dopamine and TH immunoreactivity. Comparison of immunolabeled neurons with those filled by dye injection revealed that a group of immunolabeled neurons with cell bodies near the calyx projects into a distal region of the vertical lobe, which is a plausible site for olfactory memory formation in insects. In the antennal lobe, ordinary glomeruli as well as macroglomeruli exhibit both dopamine and TH immunoreactivity. It is noteworthy that the dopamine antiserum labeled tiny granular structures inside the glomeruli whereas the TH antiserum labeled processes in the marginal regions of the glomeruli, suggesting a different origin. In the central complex, all subdivisions excluding part of the noduli and protocerebral bridge exhibit both dopamine and TH immunoreactivity. These anatomical findings will accelerate our understanding of dopaminergic systems, specifically in neural circuits underlying aversive memory formation and arousal, in insects. PMID:27494326

  17. A Spectroscopic Analysis of the Galactic Globular Cluster NGC 6273 (M19)

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Rich, R. Michael; Pilachowski, Catherine A.; Caldwell, Nelson; Mateo, Mario; Bailey, John I., III; Crane, Jeffrey D.

    2015-08-01

    A combined effort utilizing spectroscopy and photometry has revealed the existence of a new globular cluster class. These “anomalous” clusters, which we refer to as “iron-complex” clusters, are differentiated from normal clusters by exhibiting large (≳0.10 dex) intrinsic metallicity dispersions, complex sub-giant branches, and correlated [Fe/H] and s-process enhancements. In order to further investigate this phenomenon, we have measured radial velocities and chemical abundances for red giant branch stars in the massive, but scarcely studied, globular cluster NGC 6273. The velocities and abundances were determined using high resolution (R ˜ 27,000) spectra obtained with the Michigan/Magellan Fiber System (M2FS) and MSpec spectrograph on the Magellan-Clay 6.5 m telescope at Las Campanas Observatory. We find that NGC 6273 has an average heliocentric radial velocity of +144.49 km s-1 (σ = 9.64 km s-1) and an extended metallicity distribution ([Fe/H] = -1.80 to -1.30) composed of at least two distinct stellar populations. Although the two dominant populations have similar [Na/Fe], [Al/Fe], and [α/Fe] abundance patterns, the more metal-rich stars exhibit significant [La/Fe] enhancements. The [La/Eu] data indicate that the increase in [La/Fe] is due to almost pure s-process enrichment. A third more metal-rich population with low [X/Fe] ratios may also be present. Therefore, NGC 6273 joins clusters such as ω Centauri, M2, M22, and NGC 5286 as a new class of iron-complex clusters exhibiting complicated star formation histories. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  18. The newly expanded KSC Visitors Complex features a new ticket plaza, information center, exhibits an

    NASA Technical Reports Server (NTRS)

    1999-01-01

    A host robot, Starquester 2000, helps describe for visitors the accomplishments of unsung space heroes - space probes - and their role in space exploration. The walk-through Robot Scouts exhibit is part of the $13 million expansion to KSC's Visitor Complex. Other additions include a walk-through Robot Scouts exhibit, a wildlife exhibit, and the film Quest for Life in a new 300-seat theater, plus an International Space Station-themed ticket plaza, featuring a structure of overhanging solar panels and astronauts performing assembly tasks. Inaugurated three decades ago, the Visitor Complex is now one of the top five tourist attractions in Florida. It is located on S.R. 407, east of I-95, within the Merritt Island National Wildlife Refuge.

  19. The newly expanded KSC Visitors Complex features a new ticket plaza, information center, exhibits an

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Part of the $13 million expansion to KSC's Visitor Complex, the new information center welcomes visitors to the Gateway to the Universe. The five large video walls provide an orientation video, with an introduction to the range of activities and exhibits, and honor the center's namesake, President John F. Kennedy. Other new attractions are an information center, a walk- through Robot Scouts exhibit, a wildlife exhibit, and the film Quest for Life in a new 300-seat theater. The KSC Visitor Complex was inaugurated three decades ago and is now one of the top five tourist attractions in Florida. It is located on S.R. 407, east of I-95, within the Merritt Island National Wildlife Refuge.

  20. Variance in total levels of phospholipase C zeta (PLC-ζ) in human sperm may limit the applicability of quantitative immunofluorescent analysis as a diagnostic indicator of oocyte activation capability.

    PubMed

    Kashir, Junaid; Jones, Celine; Mounce, Ginny; Ramadan, Walaa M; Lemmon, Bernadette; Heindryckx, Bjorn; de Sutter, Petra; Parrington, John; Turner, Karen; Child, Tim; McVeigh, Enda; Coward, Kevin

    2013-01-01

    To examine whether similar levels of phospholipase C zeta (PLC-ζ) protein are present in sperm from men whose ejaculates resulted in normal oocyte activation, and to examine whether a predominant pattern of PLC-ζ localization is linked to normal oocyte activation ability. Laboratory study. University laboratory. Control subjects (men with proven oocyte activation capacity; n = 16) and men whose sperm resulted in recurrent intracytoplasmic sperm injection failure (oocyte activation deficient [OAD]; n = 5). Quantitative immunofluorescent analysis of PLC-ζ protein in human sperm. Total levels of PLC-ζ fluorescence, proportions of sperm exhibiting PLC-ζ immunoreactivity, and proportions of PLC-ζ localization patterns in sperm from control and OAD men. Sperm from control subjects presented a significantly higher proportion of sperm exhibiting PLC-ζ immunofluorescence compared with infertile men diagnosed with OAD (82.6% and 27.4%, respectively). Total levels of PLC-ζ in sperm from individual control and OAD patients exhibited significant variance, with sperm from 10 out of 16 (62.5%) exhibiting levels similar to OAD samples. Predominant PLC-ζ localization patterns varied between control and OAD samples with no predictable or consistent pattern. The results indicate that sperm from control men exhibited significant variance in total levels of PLC-ζ protein, as well as significant variance in the predominant localization pattern. Such variance may hinder the diagnostic application of quantitative PLC-ζ immunofluorescent analysis. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  1. Effects of Pacing Site and Stimulation History on Alternans Dynamics and the Development of Complex Spatiotemporal Patterns in Cardiac Tissue

    PubMed Central

    Gizzi, Alessio; Cherry, Elizabeth M.; Gilmour, Robert F.; Luther, Stefan; Filippi, Simonetta; Fenton, Flavio H.

    2013-01-01

    Alternans of action potential duration has been associated with T wave alternans and the development of arrhythmias because it produces large gradients of repolarization. However, little is known about alternans dynamics in large mammalian hearts. Using optical mapping to record electrical activations simultaneously from the epicardium and endocardium of 9 canine right ventricles, we demonstrate novel arrhythmogenic complex spatiotemporal dynamics. (i) Alternans predominantly develops first on the endocardium. (ii) The postulated simple progression from normal rhythm to concordant to discordant alternans is not always observed; concordant alternans can develop from discordant alternans as the pacing period is decreased. (iii) In contrast to smaller tissue preparations, multiple stationary nodal lines may exist and need not be perpendicular to the pacing site or to each other. (iv) Alternans has fully three-dimensional dynamics and the epicardium and endocardium can show significantly different dynamics: multiple nodal surfaces can be transmural or intramural and can form concave/convex surfaces resulting in islands of discordant alternans. (v) The complex spatiotemporal patterns observed during alternans are very sensitive to both the site of stimulation and the stimulation history. Alternans in canine ventricles not only exhibit larger amplitudes and persist for longer cycle length regimes compared to those found in smaller mammalian hearts, but also show novel dynamics not previously described that enhance dispersion and show high sensitivity to initial conditions. This indicates some underlying predisposition to chaos and can help to guide the design of new drugs and devices controlling and preventing arrhythmic events. PMID:23637684

  2. Connectome analysis for pre-operative brain mapping in neurosurgery

    PubMed Central

    Hart, Michael G.; Price, Stephen J.; Suckling, John

    2016-01-01

    Abstract Object: Brain mapping has entered a new era focusing on complex network connectivity. Central to this is the search for the connectome or the brains ‘wiring diagram’. Graph theory analysis of the connectome allows understanding of the importance of regions to network function, and the consequences of their impairment or excision. Our goal was to apply connectome analysis in patients with brain tumours to characterise overall network topology and individual patterns of connectivity alterations. Methods: Resting-state functional MRI data were acquired using multi-echo, echo planar imaging pre-operatively from five participants each with a right temporal–parietal–occipital glioblastoma. Complex networks analysis was initiated by parcellating the brain into anatomically regions amongst which connections were identified by retaining the most significant correlations between the respective wavelet decomposed time-series. Results: Key characteristics of complex networks described in healthy controls were preserved in these patients, including ubiquitous small world organization. An exponentially truncated power law fit to the degree distribution predicted findings of general network robustness to injury but with a core of hubs exhibiting disproportionate vulnerability. Tumours produced a consistent reduction in local and long-range connectivity with distinct patterns of connection loss depending on lesion location. Conclusions: Connectome analysis is a feasible and novel approach to brain mapping in individual patients with brain tumours. Applications to pre-surgical planning include identifying regions critical to network function that should be preserved and visualising connections at risk from tumour resection. In the future one could use such data to model functional plasticity and recovery of cognitive deficits. PMID:27447756

  3. Epidemiology and trends in the antibiotic susceptibilities of Gram-negative bacilli isolated from patients with intra-abdominal infections in the Asia-Pacific region, 2010-2013.

    PubMed

    Chang, Ya-Ting; Coombs, Geoffrey; Ling, Thomas; Balaji, V; Rodrigues, Camilla; Mikamo, Hiroshige; Kim, Min-Ja; Rajasekaram, Datin Ganeswrie; Mendoza, Myrna; Tan, Thean Yen; Kiratisin, Pattarachai; Ni, Yuxing; Barry, Weinman; Xu, Yingchun; Chen, Yen-Hsu; Hsueh, Po-Ren

    2017-06-01

    This study was conducted to investigate the epidemiology and antimicrobial susceptibility patterns of Gram-negative bacilli (GNB) isolated from intra-abdominal infections (IAIs) in the Asia-Pacific region (APR) from 2010-2013. A total of 17 350 isolates were collected from 54 centres in 13 countries in the APR. The three most commonly isolated GNB were Escherichia coli (46.1%), Klebsiella pneumoniae (19.3%) and Pseudomonas aeruginosa (9.8%). Overall, the rates of extended-spectrum β-lactamase (ESBL)-producing E. coli and K. pneumoniae were 38.2% and 24.3%, respectively, and they were highest in China (66.6% and 38.7%, respectively), Thailand (49.8% and 36.5%, respectively) and Vietnam (47.9% and 30.4%, respectively). During 2010-2013, the rates of ESBL-producing E. coli and K. pneumoniae isolates causing community-associated (CA) IAIs (collected <48 h after admission) were 26.0% and 13.5%, respectively, and those causing hospital-associated (HA) IAIs were 48.0% and 30.6%, respectively. Amikacin, ertapenem and imipenem were the most effective agents against ESBL-producing isolates. Piperacillin/tazobactam displayed good in vitro activity (91.4%) against CA ESBL-producing E. coli. For other commonly isolated Enterobacteriaceae, fluoroquinolones, cefepime and carbapenems exhibited better in vitro activities than third-generation cephalosporins. Amikacin possessed high in vitro activity against all GNB isolates (>80%) causing IAIs, except for Acinetobacter calcoaceticus-baumannii (ACB) complex (30.9% for HA-IAI isolates). All of the antimicrobial agents tested exhibited <45% in vitro activity against ACB complex. Antimicrobial resistance is a persistent threat in the APR and continuous monitoring of evolutionary trends in the susceptibility patterns of GNB causing IAIs in this region is mandatory. Copyright © 2017 Elsevier B.V. and International Society of Chemotherapy. All rights reserved.

  4. True-slime-mould-inspired hydrostatically coupled oscillator system exhibiting versatile behaviours.

    PubMed

    Umedachi, Takuya; Idei, Ryo; Ito, Kentaro; Ishiguro, Akio

    2013-09-01

    Behavioural diversity is an indispensable attribute of living systems, which makes them intrinsically adaptive and responsive to the demands of a dynamically changing environment. In contrast, conventional engineering approaches struggle to suppress behavioural diversity in artificial systems to reach optimal performance in given environments for desired tasks. The goals of this research include understanding the essential mechanism that endows living systems with behavioural diversity and implementing the mechanism in robots to exhibit adaptive behaviours. For this purpose, we have focused on an amoeba-like unicellular organism: the plasmodium of true slime mould. Despite the absence of a central nervous system, the plasmodium exhibits versatile spatiotemporal oscillatory patterns and switches spontaneously among these patterns. By exploiting this behavioural diversity, it is able to exhibit adaptive behaviour according to the situation encountered. Inspired by this organism, we built a real physical robot using hydrostatically coupled oscillators that produce versatile oscillatory patterns and spontaneous transitions among the patterns. The experimental results show that exploiting physical hydrostatic interplay—the physical dynamics of the robot—allows simple phase oscillators to promote versatile behaviours. The results can contribute to an understanding of how a living system generates versatile and adaptive behaviours with physical interplays among body parts.

  5. KSC-2014-3137

    NASA Image and Video Library

    2014-07-03

    CAPE CANAVERAL, Fla. – The grand opening of the new Great Balls of Fire exhibit was held at NASA’s Kennedy Space Center Visitor Complex in Florida. The grand opening featured remarks by former NASA astronaut Tom Jones, and Therrin Protze, chief operating officer at Delaware North Parks and Resorts at the visitor complex. Informational displays about future NASA exploration missions are featured along the wall of the new exhibit. Great Balls of Fire shares the story of the origins of our solar system, asteroids and comets and their possible impacts and risks. The 1,500-square-foot exhibit, located in the East Gallery of the IMAX theatre at the visitor complex, features several interactive displays, real meteorites and replica asteroid models. The exhibit is a production of The Space Science Institute's National Center for Interactive Learning. It is a traveling exhibition that also receives funding from NASA and the National Science Foundation. Photo credit: NASA/Daniel Casper

  6. Complex-ordered patterns in shaken convection.

    PubMed

    Rogers, Jeffrey L; Pesch, Werner; Brausch, Oliver; Schatz, Michael F

    2005-06-01

    We report and analyze complex patterns observed in a combination of two standard pattern forming experiments. These exotic states are composed of two distinct spatial scales, each displaying a different temporal dependence. The system is a fluid layer experiencing forcing from both a vertical temperature difference and vertical time-periodic oscillations. Depending on the parameters these forcing mechanisms produce fluid motion with either a harmonic or a subharmonic temporal response. Over a parameter range where these mechanisms have comparable influence the spatial scales associated with both responses are found to coexist, resulting in complex, yet highly ordered patterns. Phase diagrams of this region are reported and criteria to define the patterns as quasiperiodic crystals or superlattices are presented. These complex patterns are found to satisfy four-mode (resonant tetrad) conditions. The qualitative difference between the present formation mechanism and the resonant triads ubiquitously used to explain complex-ordered patterns in other nonequilibrium systems is discussed. The only exception to quantitative agreement between our analysis based on Boussinesq equations and laboratory investigations is found to be the result of breaking spatial symmetry in a small parameter region near onset.

  7. Detection and Analysis of Complex Patterns of Ice Dynamics in Antarctica from ICESat Laser Altimetry

    NASA Astrophysics Data System (ADS)

    Babonis, Gregory Scott

    There remains much uncertainty in estimating the amount of Antarctic ice mass change, its dynamic component, and its spatial and temporal patterns. This work remedies the limitations of previous studies by generating the first detailed reconstruction of total and dynamic ice thickness and mass changes across Antarctica, from ICESat satellite altimetry observations in 2003-2009 using the Surface Elevation Reconstruction and Change Detection (SERAC) method. Ice sheet thickness changes are calculated with quantified error estimates for each time when ICESat flew over a ground-track crossover region, at approximately 110,000 locations across the Antarctic Ice Sheet. The time series are partitioned into changes due to surficial processes and ice dynamics. The new results markedly improve the spatial and temporal resolution of surface elevation, volume, and mass change rates for the AIS, and can be sampled at annual temporal resolutions. The results indicate a complex spatiotemporal pattern of dynamic mass loss in Antarctica, especially along individual outlet glaciers, and allow for the quantification of the annual contribution of Antarctic ice loss to sea level rise. Over 5000 individual locations exhibit either strong dynamic ice thickness change patterns, accounting for approximately 500 unique spatial clusters that identify regions likely influenced by subglacial hydrology. The spatial distribution and temporal behavior of these regions reveal the complexity and short-time scale variability in the subglacial hydrological system. From the 500 unique spatial clusters, over 370 represent newly identified, and not previously published, potential subglacial water bodies indicating an active subglacial hydrological system over a much larger region than previously observed. These numerous new observations of dynamic changes provide more than simply a larger set of data. Examination of both regional and local scale dynamic change patterns across Antarctica shows newly discovered connections between the geology and ice sheet dynamics of Antarctica, particularly along the boundary between East and West Antarctica in the Pagano Shear Zone. Additionally, increased dynamic activity is shown to concentrate in regions of Antarctica most likely to experience catastrophic failure and collapse in the future. Further quantification of mass and volume changes demonstrates that the methods described within allow for a true reconciliation between different satellite methods of measuring ice sheet mass and volume balance, and show that Antarctica is losing enough mass between 2003 and 2009 to raise global sea levels 0.1 mm/yr during that time. Additionally, analysis of local patterns of dynamic ice thickness changes shows that there is continued or increased ice loss, since before the ICESat mission period, in many of the coastal sectors of Antarctica.

  8. A brief history of Alzheimer's disease gene discovery.

    PubMed

    Tanzi, Rudolph E

    2013-01-01

    The rich and colorful history of gene discovery in Alzheimer's disease (AD) over the past three decades is as complex and heterogeneous as the disease, itself. Twin and family studies indicate that genetic factors are estimated to play a role in at least 80% of AD cases. The inheritance of AD exhibits a dichotomous pattern. On one hand, rare mutations inAPP, PSEN1, and PSEN2 are fully penetrant for early-onset (<60 years) familial AD, which represents <5% of AD. On the other hand, common gene polymorphisms, such as the 4 and 2 variants of the APOE gene, influence susceptibility for common (>95%) late-onset AD. These four genes account for 30-50% of the inheritability of AD. Genome-wide association studies have recently led to the identification of additional highly confirmed AD candidate genes. Here, I review the past, present, and future of attempts to elucidate the complex and heterogeneous genetic underpinnings of AD along with some of the unique events that made these discoveries possible.

  9. Vegetation-hydrology dynamics in complex terrain of semiarid areas: 1. A mechanistic approach to modeling dynamic feedbacks

    NASA Astrophysics Data System (ADS)

    Ivanov, Valeriy Y.; Bras, Rafael L.; Vivoni, Enrique R.

    2008-03-01

    Vegetation, particularly its dynamics, is the often-ignored linchpin of the land-surface hydrology. This work emphasizes the coupled nature of vegetation-water-energy dynamics by considering linkages at timescales that vary from hourly to interannual. A series of two papers is presented. A dynamic ecohydrological model [tRIBS + VEGGIE] is described in this paper. It reproduces essential water and energy processes over the complex topography of a river basin and links them to the basic plant life regulatory processes. The framework focuses on ecohydrology of semiarid environments exhibiting abundant input of solar energy but limiting soil water that correspondingly affects vegetation structure and organization. The mechanisms through which water limitation influences plant dynamics are related to carbon assimilation via the control of photosynthesis and stomatal behavior, carbon allocation, stress-induced foliage loss, as well as recruitment and phenology patterns. This first introductory paper demonstrates model performance using observations for a site located in a semiarid environment of central New Mexico.

  10. A selective optical sensor based on [9]mercuracarborand-3, a new type of ionophore with a chloride complexing cavity

    NASA Technical Reports Server (NTRS)

    Badr, I. H.; Johnson, R. D.; Diaz, M.; Hawthorne, M. F.; Bachas, L. G.; Daunert, S. (Principal Investigator)

    2000-01-01

    A highly selective optical sensor for chloride, based on the multidentate Lewis acid ionophore [9]mercuracarborand-3, is described herein. This sensor is constructed by embedding the mercuracarborand ionophore, a suitable pH-sensitive lipophilic dye, and lipophilic cationic sites in a plasticized polymeric membrane. The multiple complementary interactions offered by the preorganized complexing cavity of [9]mercuracarborand-3 is shown to control the anion selectivity pattern of the optical film. The film exhibits a significantly enhanced selectivity for chloride over a variety of lipophilic anions such as perchlorate, nitrate, salicylate, and thiocyanate. Furthermore, the optical selectivity coefficients obtained for chloride over other biologically relevant anions are shown to meet the selectivity requirements for the determination of chloride in physiological fluids, unlike previously reported chloride optical sensors. In addition, the optical film responds to chloride reversibly over a wide dynamic range (16 microM-136 mM) with fast response and recovery times.

  11. Transancestral mapping and genetic load in systemic lupus erythematosus.

    PubMed

    Langefeld, Carl D; Ainsworth, Hannah C; Cunninghame Graham, Deborah S; Kelly, Jennifer A; Comeau, Mary E; Marion, Miranda C; Howard, Timothy D; Ramos, Paula S; Croker, Jennifer A; Morris, David L; Sandling, Johanna K; Almlöf, Jonas Carlsson; Acevedo-Vásquez, Eduardo M; Alarcón, Graciela S; Babini, Alejandra M; Baca, Vicente; Bengtsson, Anders A; Berbotto, Guillermo A; Bijl, Marc; Brown, Elizabeth E; Brunner, Hermine I; Cardiel, Mario H; Catoggio, Luis; Cervera, Ricard; Cucho-Venegas, Jorge M; Dahlqvist, Solbritt Rantapää; D'Alfonso, Sandra; Da Silva, Berta Martins; de la Rúa Figueroa, Iñigo; Doria, Andrea; Edberg, Jeffrey C; Endreffy, Emőke; Esquivel-Valerio, Jorge A; Fortin, Paul R; Freedman, Barry I; Frostegård, Johan; García, Mercedes A; de la Torre, Ignacio García; Gilkeson, Gary S; Gladman, Dafna D; Gunnarsson, Iva; Guthridge, Joel M; Huggins, Jennifer L; James, Judith A; Kallenberg, Cees G M; Kamen, Diane L; Karp, David R; Kaufman, Kenneth M; Kottyan, Leah C; Kovács, László; Laustrup, Helle; Lauwerys, Bernard R; Li, Quan-Zhen; Maradiaga-Ceceña, Marco A; Martín, Javier; McCune, Joseph M; McWilliams, David R; Merrill, Joan T; Miranda, Pedro; Moctezuma, José F; Nath, Swapan K; Niewold, Timothy B; Orozco, Lorena; Ortego-Centeno, Norberto; Petri, Michelle; Pineau, Christian A; Pons-Estel, Bernardo A; Pope, Janet; Raj, Prithvi; Ramsey-Goldman, Rosalind; Reveille, John D; Russell, Laurie P; Sabio, José M; Aguilar-Salinas, Carlos A; Scherbarth, Hugo R; Scorza, Raffaella; Seldin, Michael F; Sjöwall, Christopher; Svenungsson, Elisabet; Thompson, Susan D; Toloza, Sergio M A; Truedsson, Lennart; Tusié-Luna, Teresa; Vasconcelos, Carlos; Vilá, Luis M; Wallace, Daniel J; Weisman, Michael H; Wither, Joan E; Bhangale, Tushar; Oksenberg, Jorge R; Rioux, John D; Gregersen, Peter K; Syvänen, Ann-Christine; Rönnblom, Lars; Criswell, Lindsey A; Jacob, Chaim O; Sivils, Kathy L; Tsao, Betty P; Schanberg, Laura E; Behrens, Timothy W; Silverman, Earl D; Alarcón-Riquelme, Marta E; Kimberly, Robert P; Harley, John B; Wakeland, Edward K; Graham, Robert R; Gaffney, Patrick M; Vyse, Timothy J

    2017-07-17

    Systemic lupus erythematosus (SLE) is an autoimmune disease with marked gender and ethnic disparities. We report a large transancestral association study of SLE using Immunochip genotype data from 27,574 individuals of European (EA), African (AA) and Hispanic Amerindian (HA) ancestry. We identify 58 distinct non-HLA regions in EA, 9 in AA and 16 in HA (∼50% of these regions have multiple independent associations); these include 24 novel SLE regions (P<5 × 10 -8 ), refined association signals in established regions, extended associations to additional ancestries, and a disentangled complex HLA multigenic effect. The risk allele count (genetic load) exhibits an accelerating pattern of SLE risk, leading us to posit a cumulative hit hypothesis for autoimmune disease. Comparing results across the three ancestries identifies both ancestry-dependent and ancestry-independent contributions to SLE risk. Our results are consistent with the unique and complex histories of the populations sampled, and collectively help clarify the genetic architecture and ethnic disparities in SLE.

  12. Chromosome rearrangements via template switching between diverged repeated sequences

    PubMed Central

    Anand, Ranjith P.; Tsaponina, Olga; Greenwell, Patricia W.; Lee, Cheng-Sheng; Du, Wei; Petes, Thomas D.

    2014-01-01

    Recent high-resolution genome analyses of cancer and other diseases have revealed the occurrence of microhomology-mediated chromosome rearrangements and copy number changes. Although some of these rearrangements appear to involve nonhomologous end-joining, many must have involved mechanisms requiring new DNA synthesis. Models such as microhomology-mediated break-induced replication (MM-BIR) have been invoked to explain these rearrangements. We examined BIR and template switching between highly diverged sequences in Saccharomyces cerevisiae, induced during repair of a site-specific double-strand break (DSB). Our data show that such template switches are robust mechanisms that give rise to complex rearrangements. Template switches between highly divergent sequences appear to be mechanistically distinct from the initial strand invasions that establish BIR. In particular, such jumps are less constrained by sequence divergence and exhibit a different pattern of microhomology junctions. BIR traversing repeated DNA sequences frequently results in complex translocations analogous to those seen in mammalian cells. These results suggest that template switching among repeated genes is a potent driver of genome instability and evolution. PMID:25367035

  13. Transancestral mapping and genetic load in systemic lupus erythematosus

    PubMed Central

    Langefeld, Carl D.; Ainsworth, Hannah C.; Graham, Deborah S. Cunninghame; Kelly, Jennifer A.; Comeau, Mary E.; Marion, Miranda C.; Howard, Timothy D.; Ramos, Paula S.; Croker, Jennifer A.; Morris, David L.; Sandling, Johanna K.; Almlöf, Jonas Carlsson; Acevedo-Vásquez, Eduardo M.; Alarcón, Graciela S.; Babini, Alejandra M.; Baca, Vicente; Bengtsson, Anders A.; Berbotto, Guillermo A.; Bijl, Marc; Brown, Elizabeth E.; Brunner, Hermine I.; Cardiel, Mario H.; Catoggio, Luis; Cervera, Ricard; Cucho-Venegas, Jorge M.; Dahlqvist, Solbritt Rantapää; D’Alfonso, Sandra; Da Silva, Berta Martins; de la Rúa Figueroa, Iñigo; Doria, Andrea; Edberg, Jeffrey C.; Endreffy, Emőke; Esquivel-Valerio, Jorge A.; Fortin, Paul R.; Freedman, Barry I.; Frostegård, Johan; García, Mercedes A.; de la Torre, Ignacio García; Gilkeson, Gary S.; Gladman, Dafna D.; Gunnarsson, Iva; Guthridge, Joel M.; Huggins, Jennifer L.; James, Judith A.; Kallenberg, Cees G. M.; Kamen, Diane L.; Karp, David R.; Kaufman, Kenneth M.; Kottyan, Leah C.; Kovács, László; Laustrup, Helle; Lauwerys, Bernard R.; Li, Quan-Zhen; Maradiaga-Ceceña, Marco A.; Martín, Javier; McCune, Joseph M.; McWilliams, David R.; Merrill, Joan T.; Miranda, Pedro; Moctezuma, José F.; Nath, Swapan K.; Niewold, Timothy B.; Orozco, Lorena; Ortego-Centeno, Norberto; Petri, Michelle; Pineau, Christian A.; Pons-Estel, Bernardo A.; Pope, Janet; Raj, Prithvi; Ramsey-Goldman, Rosalind; Reveille, John D.; Russell, Laurie P.; Sabio, José M.; Aguilar-Salinas, Carlos A.; Scherbarth, Hugo R.; Scorza, Raffaella; Seldin, Michael F.; Sjöwall, Christopher; Svenungsson, Elisabet; Thompson, Susan D.; Toloza, Sergio M. A.; Truedsson, Lennart; Tusié-Luna, Teresa; Vasconcelos, Carlos; Vilá, Luis M.; Wallace, Daniel J.; Weisman, Michael H.; Wither, Joan E.; Bhangale, Tushar; Oksenberg, Jorge R.; Rioux, John D.; Gregersen, Peter K.; Syvänen, Ann-Christine; Rönnblom, Lars; Criswell, Lindsey A.; Jacob, Chaim O.; Sivils, Kathy L.; Tsao, Betty P.; Schanberg, Laura E.; Behrens, Timothy W.; Silverman, Earl D.; Alarcón-Riquelme, Marta E.; Kimberly, Robert P.; Harley, John B.; Wakeland, Edward K.; Graham, Robert R.; Gaffney, Patrick M.; Vyse, Timothy J.

    2017-01-01

    Systemic lupus erythematosus (SLE) is an autoimmune disease with marked gender and ethnic disparities. We report a large transancestral association study of SLE using Immunochip genotype data from 27,574 individuals of European (EA), African (AA) and Hispanic Amerindian (HA) ancestry. We identify 58 distinct non-HLA regions in EA, 9 in AA and 16 in HA (∼50% of these regions have multiple independent associations); these include 24 novel SLE regions (P<5 × 10−8), refined association signals in established regions, extended associations to additional ancestries, and a disentangled complex HLA multigenic effect. The risk allele count (genetic load) exhibits an accelerating pattern of SLE risk, leading us to posit a cumulative hit hypothesis for autoimmune disease. Comparing results across the three ancestries identifies both ancestry-dependent and ancestry-independent contributions to SLE risk. Our results are consistent with the unique and complex histories of the populations sampled, and collectively help clarify the genetic architecture and ethnic disparities in SLE. PMID:28714469

  14. Atypical Balance between Occipital and Fronto-Parietal Activation for Visual Shape Extraction in Dyslexia

    PubMed Central

    Zhang, Ying; Whitfield-Gabrieli, Susan; Christodoulou, Joanna A.; Gabrieli, John D. E.

    2013-01-01

    Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI) to examine brain activation while adults with or without dyslexia responded to the change of an arrow’s direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading. PMID:23825653

  15. The newly expanded KSC Visitors Complex features a new ticket plaza, information center, exhibits an

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The $13 million expansion to KSC's Visitor Complex includes a new International Space Station-themed ticket plaza, featuring a structure of overhanging solar panels and astronauts performing assembly tasks. Other additions are a new information center, a walk-through Robot Scouts exhibit, a wildlife exhibit, and the film Quest for Life in a new 300-seat theater. The KSC Visitor Complex was inaugurated three decades ago and is now one of the top five tourist attractions in Florida. It is located on S.R. 407, east of I-95, within the Merritt Island National Wildlife Refuge.

  16. The newly expanded KSC Visitors Complex features a new ticket plaza, information center, exhibits an

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The $13 million expansion to KSC's Visitor Complex includes a new International Space Station-themed ticket plaza, featuring a structure of overhanging solar panels and astronauts performing assembly tasks. Other additions are the new information center, a walk-through Robot Scouts exhibit, a wildlife exhibit, and the film Quest for Life in a new 300-seat theater. The KSC Visitor Complex was inaugurated three decades ago and is now one of the top five tourist attractions in Florida. It is located on S.R. 407, east of I-95, within the Merritt Island National Wildlife Refuge.

  17. Emergent Rotational Symmetries in Disordered Magnetic Domain Patterns

    NASA Astrophysics Data System (ADS)

    Su, Run; Seu, Keoki A.; Parks, Daniel; Kan, Jimmy J.; Fullerton, Eric E.; Roy, Sujoy; Kevan, Stephen D.

    2011-12-01

    Uniaxial systems often form labyrinthine domains that exhibit short-range order but are macroscopically isotropic and would not be expected to exhibit precise symmetries. However, their underlying frustration results in a multitude of metastable configurations of comparable energy, and driving such a system externally might lead to pattern formation. We find that soft x-ray speckle diffraction patterns of the labyrinthine domains in CoPd/IrMn heterostructures reveal a diverse array of hidden rotational symmetries about the magnetization axis, thereby suggesting an unusual form of emergent order in an otherwise disordered system. These symmetries depend on applied magnetic field, magnetization history, and scattering wave vector. Maps of rotational symmetry exhibit intriguing structures that can be controlled by manipulating the applied magnetic field in concert with the exchange bias condition.

  18. Emergent rotational symmetries in disordered magnetic domain patterns.

    PubMed

    Su, Run; Seu, Keoki A; Parks, Daniel; Kan, Jimmy J; Fullerton, Eric E; Roy, Sujoy; Kevan, Stephen D

    2011-12-16

    Uniaxial systems often form labyrinthine domains that exhibit short-range order but are macroscopically isotropic and would not be expected to exhibit precise symmetries. However, their underlying frustration results in a multitude of metastable configurations of comparable energy, and driving such a system externally might lead to pattern formation. We find that soft x-ray speckle diffraction patterns of the labyrinthine domains in CoPd/IrMn heterostructures reveal a diverse array of hidden rotational symmetries about the magnetization axis, thereby suggesting an unusual form of emergent order in an otherwise disordered system. These symmetries depend on applied magnetic field, magnetization history, and scattering wave vector. Maps of rotational symmetry exhibit intriguing structures that can be controlled by manipulating the applied magnetic field in concert with the exchange bias condition. © 2011 American Physical Society

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Jiang Ping; Yan, Zhi Shuo; Long, Ji Ying

    By using a rigid dicarboxylate ligand, 4,5-di(4′-carboxylphenyl)benzene (H{sub 2}L), two complexes formulated as SrL(DMF)(H{sub 2}O)·(CH{sub 3}CN) (DMF=N,N′-dimethylformamide) (1) and BaL(H{sub 2}O){sub 2} (2) were solvothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complexes 1 and 2 display two-dimensional (2D) layer structures. The two complexes exhibit different electrochemical and photoelectrochemical properties. Their thermal stabilities, cyclic voltammograms, UV–vis absorption and diffuse reflectance spectra and photoluminescence properties have been investigated. The band structures, the total density of states (TDOS) and partial density of states (PDOS) of the two complexes were calculated by CASTEP program. Complex 2 exhibits much higher photocurrent density thanmore » complex 1. The Mott–Schottky plots reveal that complexes 1 and 2 both are p-type semiconductors, which are in agreement with their band structure calculations. - Graphical abstract: Two alkaline earth metal(II) complexes with 2D layer structures are p-type semiconductors, they possess different band structures and density of states. And the Ba(II) complex 2 exhibits much higher photocurrent density than the Sr(II) complex 1.« less

  20. Characteristics of pattern formation and evolution in approximations of Physarum transport networks.

    PubMed

    Jones, Jeff

    2010-01-01

    Most studies of pattern formation place particular emphasis on its role in the development of complex multicellular body plans. In simpler organisms, however, pattern formation is intrinsic to growth and behavior. Inspired by one such organism, the true slime mold Physarum polycephalum, we present examples of complex emergent pattern formation and evolution formed by a population of simple particle-like agents. Using simple local behaviors based on chemotaxis, the mobile agent population spontaneously forms complex and dynamic transport networks. By adjusting simple model parameters, maps of characteristic patterning are obtained. Certain areas of the parameter mapping yield particularly complex long term behaviors, including the circular contraction of network lacunae and bifurcation of network paths to maintain network connectivity. We demonstrate the formation of irregular spots and labyrinthine and reticulated patterns by chemoattraction. Other Turing-like patterning schemes were obtained by using chemorepulsion behaviors, including the self-organization of regular periodic arrays of spots, and striped patterns. We show that complex pattern types can be produced without resorting to the hierarchical coupling of reaction-diffusion mechanisms. We also present network behaviors arising from simple pre-patterning cues, giving simple examples of how the emergent pattern formation processes evolve into networks with functional and quasi-physical properties including tensionlike effects, network minimization behavior, and repair to network damage. The results are interpreted in relation to classical theories of biological pattern formation in natural systems, and we suggest mechanisms by which emergent pattern formation processes may be used as a method for spatially represented unconventional computation.

  1. Evaluating Education and Science at the KSC Visitor Complex

    NASA Technical Reports Server (NTRS)

    Erickson, Lance K.

    2002-01-01

    As part of a two-year NASA-ASEE project, a preliminary evaluation and subsequent recommendations were developed to improve the education and science content of the Kennedy Space Center Visitor Complex exhibits. Recommendations for improvements in those exhibits were based on qualitative descriptions of the exhibits, on comparisons to similar exhibit collections, and on available evaluation processes. Because of the subjective nature of measuring content in a broad group of exhibits and displays, emphasis is placed on employing a survey format for a follow-on, more quantitative evaluation. The use of an external organization for this evaluation development is also recommended to reduce bias and increase validity.

  2. Evaluating Education and Science at the KSC Visitor Complex

    NASA Technical Reports Server (NTRS)

    Erickson, Lance K.

    2001-01-01

    As part of a two-year NASA-ASEE project, a preliminary evaluation and subsequent recommendations were developed to improve the education and science content of the Kennedy Space Center Visitor Complex exhibits. Recommendations for improvements in those exhibits were based on qualitative descriptions of the exhibits, on comparisons to similar exhibit collections, and on available evaluation processes. Because of the subjective nature of measuring content in a broad group of exhibits and displays, emphasis is placed on employing a survey format for a follow-on, more quantitative evaluation. The use of an external organization for this evaluation development is also recommended to reduce bias and increase validity.

  3. Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs.

    PubMed

    Spröwitz, Alexander T; Ajallooeian, Mostafa; Tuleu, Alexandre; Ijspeert, Auke Jan

    2014-01-01

    In this work we research the role of body dynamics in the complexity of kinematic patterns in a quadruped robot with compliant legs. Two gait patterns, lateral sequence walk and trot, along with leg length control patterns of different complexity were implemented in a modular, feed-forward locomotion controller. The controller was tested on a small, quadruped robot with compliant, segmented leg design, and led to self-stable and self-stabilizing robot locomotion. In-air stepping and on-ground locomotion leg kinematics were recorded, and the number and shapes of motion primitives accounting for 95% of the variance of kinematic leg data were extracted. This revealed that kinematic patterns resulting from feed-forward control had a lower complexity (in-air stepping, 2-3 primitives) than kinematic patterns from on-ground locomotion (νm4 primitives), although both experiments applied identical motor patterns. The complexity of on-ground kinematic patterns had increased, through ground contact and mechanical entrainment. The complexity of observed kinematic on-ground data matches those reported from level-ground locomotion data of legged animals. Results indicate that a very low complexity of modular, rhythmic, feed-forward motor control is sufficient for level-ground locomotion in combination with passive compliant legged hardware.

  4. Kinematic primitives for walking and trotting gaits of a quadruped robot with compliant legs

    PubMed Central

    Spröwitz, Alexander T.; Ajallooeian, Mostafa; Tuleu, Alexandre; Ijspeert, Auke Jan

    2014-01-01

    In this work we research the role of body dynamics in the complexity of kinematic patterns in a quadruped robot with compliant legs. Two gait patterns, lateral sequence walk and trot, along with leg length control patterns of different complexity were implemented in a modular, feed-forward locomotion controller. The controller was tested on a small, quadruped robot with compliant, segmented leg design, and led to self-stable and self-stabilizing robot locomotion. In-air stepping and on-ground locomotion leg kinematics were recorded, and the number and shapes of motion primitives accounting for 95% of the variance of kinematic leg data were extracted. This revealed that kinematic patterns resulting from feed-forward control had a lower complexity (in-air stepping, 2–3 primitives) than kinematic patterns from on-ground locomotion (νm4 primitives), although both experiments applied identical motor patterns. The complexity of on-ground kinematic patterns had increased, through ground contact and mechanical entrainment. The complexity of observed kinematic on-ground data matches those reported from level-ground locomotion data of legged animals. Results indicate that a very low complexity of modular, rhythmic, feed-forward motor control is sufficient for level-ground locomotion in combination with passive compliant legged hardware. PMID:24639645

  5. A highly sensitive and flexible pressure sensor with electrodes and elastomeric interlayer containing silver nanowires.

    PubMed

    Wang, Jun; Jiu, Jinting; Nogi, Masaya; Sugahara, Tohru; Nagao, Shijo; Koga, Hirotaka; He, Peng; Suganuma, Katsuaki

    2015-02-21

    The next-generation application of pressure sensors is gradually being extended to include electronic artificial skin (e-skin), wearable devices, humanoid robotics and smart prosthetics. In these advanced applications, high sensing capability is an essential feature for high performance. Although surface patterning treatments and some special elastomeric interlayers have been applied to improve sensitivity, the process is complex and this inevitably raises the cost and is an obstacle to large-scale production. In the present study a simple printing process without complex patterning has been used for constructing the sensor, and an interlayer is employed comprising elastomeric composites filled with silver nanowires. By increasing the relative permittivity, εr, of the composite interlayer induced by compression at high nanowire concentration, it has been possible to achieve a maximum sensitivity of 5.54 kPa(-1). The improvement in sensitivity did not sacrifice or undermine the other features of the sensor. Thanks to the silver nanowire electrodes, the sensor is flexible and stable after 200 cycles at a bending radius of 2 mm, and exhibits outstanding reproducibility without hysteresis under similar pressure pulses. The sensor has been readily integrated onto an adhesive bandage and has been successful in detecting human movements. In addition to measuring pressure in direct contact, non-contact pressures such as air flow can also be detected.

  6. The emergence of collective phenomena in systems with random interactions

    NASA Astrophysics Data System (ADS)

    Abramkina, Volha

    Emergent phenomena are one of the most profound topics in modern science, addressing the ways that collectivities and complex patterns appear due to multiplicity of components and simple interactions. Ensembles of random Hamiltonians allow one to explore emergent phenomena in a statistical way. In this work we adopt a shell model approach with a two-body interaction Hamiltonian. The sets of the two-body interaction strengths are selected at random, resulting in the two-body random ensemble (TBRE). Symmetries such as angular momentum, isospin, and parity entangled with complex many-body dynamics result in surprising order discovered in the spectrum of low-lying excitations. The statistical patterns exhibited in the TBRE are remarkably similar to those observed in real nuclei. Signs of almost every collective feature seen in nuclei, namely, pairing superconductivity, deformation, and vibration, have been observed in random ensembles [3, 4, 5, 6]. In what follows a systematic investigation of nuclear shape collectivities in random ensembles is conducted. The development of the mean field, its geometry, multipole collectivities and their dependence on the underlying two-body interaction are explored. Apart from the role of static symmetries such as SU(2) angular momentum and isospin groups, the emergence of dynamical symmetries including the seniority SU(2), rotational symmetry, as well as the Elliot SU(3) is shown to be an important precursor for the existence of geometric collectivities.

  7. Anatomy of the Murine Hepatobiliary System: A Whole-Organ-Level Analysis Using a Transparency Method.

    PubMed

    Higashiyama, Hiroki; Sumitomo, Hiroyuki; Ozawa, Aisa; Igarashi, Hitomi; Tsunekawa, Naoki; Kurohmaru, Masamichi; Kanai, Yoshiakira

    2016-02-01

    The biliary tract is a well-branched ductal structure that exhibits great variation in morphology among vertebrates. Its function is maintained by complex constructions of blood vessels, nerves, and smooth muscles, the so-called hepatobiliary system. Although the mouse (Mus musculus) has been used as a model organism for humans, the morphology of its hepatobiliary system has not been well documented at the topographical level, mostly because of its small size and complexity. To reconcile this, we conducted whole-mount anatomical descriptions of the murine extrahepatic biliary tracts with related blood vessels, nerves, and smooth muscles using a recently developed transparentizing method, CUBIC. Several major differences from humans were found in mice: (1) among the biliary arteries, the arteria gastrica sinistra accessoria was commonly found, which rarely appears in humans; (2) the sphincter muscle in the choledochoduodenal junction is unseparated from the duodenal muscle; (3) the pancreatic duct opens to the bile duct without any sphincter muscles because of its distance from the duodenum. This state is identical to a human congenital malformation, an anomalous arrangement of pancreaticobiliary ducts. However, other parts of the murine hepatobiliary system (such as the branching patterns of the biliary tract, blood vessels, and nerves) presented the same patterns as humans and other mammals topologically. Thus, the mouse is useful as an experimental model for studying the human hepatobiliary system. © 2015 Wiley Periodicals, Inc.

  8. Molecular phylogeny and species separation of five morphologically similar Holosticha-complex ciliates (Protozoa, Ciliophora) using ARDRA riboprinting and multigene sequence data

    NASA Astrophysics Data System (ADS)

    Gao, Feng; Yi, Zhenzhen; Gong, Jun; Al-Rasheid Khaled, A. S.; Song, Weibo

    2010-05-01

    To separate and redefine the ambiguous Holosticha-complex, a confusing group of hypotrichous ciliates, six strains belonging to five morphospecies of three genera, Holosticha heterofoissneri, Anteholosticha sp. pop1, Anteholosticha sp. pop2, A. manca, A. gracilis and Nothoholosticha fasciola, were analyzed using 12 restriction enzymes on the basis of amplified ribosomal DNA restriction analysis. Nine of the 12 enzymes could digest the DNA products, four ( Hinf I, Hind III, Msp I, Taq I) yielded species-specific restriction patterns, and Hind III and Taq I produced different patterns for two Anteholosticha sp. populations. Distinctly different restriction digestion haplotypes and similarity indices can be used to separate the species. The secondary structures of the five species were predicted based on the ITS2 transcripts and there were several minor differences among species, while two Anteholosticha sp. populations were identical. In addition, phylogenies based on the SSrRNA gene sequences were reconstructed using multiple algorithms, which grouped them generally into four clades, and exhibited that the genus Anteholosticha should be a convergent assemblage. The fact that Holosticha species clustered with the oligotrichs and choreotrichs, though with very low support values, indicated that the topology may be very divergent and unreliable when the number of sequence data used in the analyses is too low.

  9. Task-Based Core-Periphery Organization of Human Brain Dynamics

    PubMed Central

    Bassett, Danielle S.; Wymbs, Nicholas F.; Rombach, M. Puck; Porter, Mason A.; Mucha, Peter J.; Grafton, Scott T.

    2013-01-01

    As a person learns a new skill, distinct synapses, brain regions, and circuits are engaged and change over time. In this paper, we develop methods to examine patterns of correlated activity across a large set of brain regions. Our goal is to identify properties that enable robust learning of a motor skill. We measure brain activity during motor sequencing and characterize network properties based on coherent activity between brain regions. Using recently developed algorithms to detect time-evolving communities, we find that the complex reconfiguration patterns of the brain's putative functional modules that control learning can be described parsimoniously by the combined presence of a relatively stiff temporal core that is composed primarily of sensorimotor and visual regions whose connectivity changes little in time and a flexible temporal periphery that is composed primarily of multimodal association regions whose connectivity changes frequently. The separation between temporal core and periphery changes over the course of training and, importantly, is a good predictor of individual differences in learning success. The core of dynamically stiff regions exhibits dense connectivity, which is consistent with notions of core-periphery organization established previously in social networks. Our results demonstrate that core-periphery organization provides an insightful way to understand how putative functional modules are linked. This, in turn, enables the prediction of fundamental human capacities, including the production of complex goal-directed behavior. PMID:24086116

  10. Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se–Te films

    PubMed Central

    Sadtler, Bryce; Burgos, Stanley P.; Batara, Nicolas A.; Beardslee, Joseph A.; Atwater, Harry A.; Lewis, Nathan S.

    2013-01-01

    Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium–tellurium (Se–Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light–matter interactions in the Se–Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns. PMID:24218617

  11. Phototropic growth control of nanoscale pattern formation in photoelectrodeposited Se-Te films.

    PubMed

    Sadtler, Bryce; Burgos, Stanley P; Batara, Nicolas A; Beardslee, Joseph A; Atwater, Harry A; Lewis, Nathan S

    2013-12-03

    Photoresponsive materials that adapt their morphologies, growth directions, and growth rates dynamically in response to the local incident electromagnetic field would provide a remarkable route to the synthesis of complex 3D mesostructures via feedback between illumination and the structure that develops under optical excitation. We report the spontaneous development of ordered, nanoscale lamellar patterns in electrodeposited selenium-tellurium (Se-Te) alloy films grown under noncoherent, uniform illumination on unpatterned substrates in an isotropic electrolyte solution. These inorganic nanostructures exhibited phototropic growth in which lamellar stripes grew toward the incident light source, adopted an orientation parallel to the light polarization direction with a period controlled by the illumination wavelength, and showed an increased growth rate with increasing light intensity. Furthermore, the patterns responded dynamically to changes during growth in the polarization, wavelength, and angle of the incident light, enabling the template-free and pattern-free synthesis, on a variety of substrates, of woodpile, spiral, branched, or zigzag structures, along with dynamically directed growth toward a noncoherent, uniform intensity light source. Full-wave electromagnetic simulations in combination with Monte Carlo growth simulations were used to model light-matter interactions in the Se-Te films and produced a model for the morphological evolution of the lamellar structures under phototropic growth conditions. The experiments and simulations are consistent with a phototropic growth mechanism in which the optical near-field intensity profile selects and reinforces the dominant morphological mode in the emergent nanoscale patterns.

  12. On the linkage between Arctic sea ice and Mid-latitude weather pattern: the situation in East Asia

    NASA Astrophysics Data System (ADS)

    Gu, S.; Zhang, Y.; Wu, Q.

    2017-12-01

    The influence of Arctic changes on the weather patterns in the highly populated mid-latitude is a complex and controversial topic with considerable uncertainties such as the low signal-to-noise, ill-suited metrics of circulation changes and the missing of dynamical understanding. In this study, the possible linkage between the Arctic sea ice concentration (SIC) and the wintertime weather patterns in East Asia is investigated by comparing groups of statistical and diagnostic analyses. Our study shows a robust relationship between the early autumn SIC in Barents, Kara, Laptev and East Siberia Sea and the energies of wintertime transient activities corresponding to the weather patterns over East Asia on inter-annual time scales. With the reduction of SIC in autumn, the wintertime synoptic (2-10 day) kinetic energy in the north of Eurasia decreases while the low-frequency (10-30 days) kinetic energy, which corresponds to persistent weather patterns, exhibits an evident and dominant increase over the north of Caspian Sea, Lake Baikal and the Ural Mountain. With the reduction of SIC, the intra-seasonal temperature fluctuations present coherent changes over a broader region as well, with significant increase of the low-frequency variability in the vast north of Tibet Plateau and East Asia. The changes of the low-frequency transient activities may be attributed to the slowly southward propagating wave energies from polar regions. However, no consistent stratosphere signals are found associated with such linkage on inter-annual time scales.

  13. Spectrum of dermoscopic patterns in lichen planus: a case series from China.

    PubMed

    Tan, Cheng; Min, Zhong-Sheng; Xue, Yanning; Zhu, Wen-Yuan

    2014-01-01

    Dermoscopy has been shown to be a promising method to facilitate the diagnosis of lichen planus (LP) outside of China. To investigate the spectrum of dermoscopic patterns in Chinese LP patients. The clinical data and dermoscopic patterns of nine LP cases with a total of 43 lesions were evaluated. To the naked eye, 20.97% of the lesions exhibited graying Wickham striae (WS); however, 37.5% presented with white streaks of annular, reticular, or leaf venation patterns under dermoscopy. Blue-white veils were occasionally observed in the center. Pigment patterns varied from dots, globules, and peppered pigment to pigmented lines, which were unrelated to the pigment network of the skin. At the periphery of the WS, red fine lines ran parallel to the delicate white streaming lines. WS exhibits five morphological patterns (leaf venation, reticular, white dots, circular and radial streaming) and three color patterns (homogeneous crystalline white, blue-white veil and yellowish-white). The pigment patterns consisted of dots/globules, peppered pigments and pigment. streaming lines.

  14. Acute and Subacute Oral Toxicity of Periodate in Rats

    DTIC Science & Technology

    2014-11-17

    presence of decreased TSH, a pattern associated with uremia. Sodium periodate exposed rats exhibited both activation of the innate immune system and...associated with kidney disease are characterized by activation of the innate immune system coupled with immune deficiency. Sodium periodate exposed rats...exhibited both activation of the innate immune system and lymphocyte depletion; however, the pattern of effects was more indicative of a stress leukogram

  15. Applications of Fractal Analytical Techniques in the Estimation of Operational Scale

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.; Quattrochi, Dale A.

    2000-01-01

    The observational scale and the resolution of remotely sensed imagery are essential considerations in the interpretation process. Many atmospheric, hydrologic, and other natural and human-influenced spatial phenomena are inherently scale dependent and are governed by different physical processes at different spatial domains. This spatial and operational heterogeneity constrains the ability to compare interpretations of phenomena and processes observed in higher spatial resolution imagery to similar interpretations obtained from lower resolution imagery. This is a particularly acute problem, since longterm global change investigations will require high spatial resolution Earth Observing System (EOS), Landsat 7, or commercial satellite data to be combined with lower resolution imagery from older sensors such as Landsat TM and MSS. Fractal analysis is a useful technique for identifying the effects of scale changes on remotely sensed imagery. The fractal dimension of an image is a non-integer value between two and three which indicates the degree of complexity in the texture and shapes depicted in the image. A true fractal surface exhibits self-similarity, a property of curves or surfaces where each part is indistinguishable from the whole, or where the form of the curve or surface is invariant with respect to scale. Theoretically, if the digital numbers of a remotely sensed image resemble an ideal fractal surface, then due to the self-similarity property, the fractal dimension of the image will not vary with scale and resolution, and the slope of the fractal dimension-resolution relationship would be zero. Most geographical phenomena, however, are not self-similar at all scales, but they can be modeled by a stochastic fractal in which the scaling properties of the image exhibit patterns that can be described by statistics such as area-perimeter ratios and autocovariances. Stochastic fractal sets relax the self-similarity assumption and measure many scales and resolutions to represent the varying form of a phenomenon as the pixel size is increased in a convolution process. We have observed that for images of homogeneous land covers, the fractal dimension varies linearly with changes in resolution or pixel size over the range of past, current, and planned space-borne sensors. This relationship differs significantly in images of agricultural, urban, and forest land covers, with urban areas retaining the same level of complexity, forested areas growing smoother, and agricultural areas growing more complex as small pixels are aggregated into larger, mixed pixels. Images of scenes having a mixture of land covers have fractal dimensions that exhibit a non-linear, complex relationship to pixel size. Measuring the fractal dimension of a difference image derived from two images of the same area obtained on different dates showed that the fractal dimension increased steadily, then exhibited a sharp decrease at increasing levels of pixel aggregation. This breakpoint of the fractal dimension/resolution plot is related to the spatial domain or operational scale of the phenomenon exhibiting the predominant visible difference between the two images (in this case, mountain snow cover). The degree to which an image departs from a theoretical ideal fractal surface provides clues as to how much information is altered or lost in the processes of rescaling and rectification. The measured fractal dimension of complex, composite land covers such as urban areas also provides a useful textural index that can assist image classification of complex scenes.

  16. More than one way to see it: Individual heuristics in avian visual computation

    PubMed Central

    Ravignani, Andrea; Westphal-Fitch, Gesche; Aust, Ulrike; Schlumpp, Martin M.; Fitch, W. Tecumseh

    2015-01-01

    Comparative pattern learning experiments investigate how different species find regularities in sensory input, providing insights into cognitive processing in humans and other animals. Past research has focused either on one species’ ability to process pattern classes or different species’ performance in recognizing the same pattern, with little attention to individual and species-specific heuristics and decision strategies. We trained and tested two bird species, pigeons (Columba livia) and kea (Nestor notabilis, a parrot species), on visual patterns using touch-screen technology. Patterns were composed of several abstract elements and had varying degrees of structural complexity. We developed a model selection paradigm, based on regular expressions, that allowed us to reconstruct the specific decision strategies and cognitive heuristics adopted by a given individual in our task. Individual birds showed considerable differences in the number, type and heterogeneity of heuristic strategies adopted. Birds’ choices also exhibited consistent species-level differences. Kea adopted effective heuristic strategies, based on matching learned bigrams to stimulus edges. Individual pigeons, in contrast, adopted an idiosyncratic mix of strategies that included local transition probabilities and global string similarity. Although performance was above chance and quite high for kea, no individual of either species provided clear evidence of learning exactly the rule used to generate the training stimuli. Our results show that similar behavioral outcomes can be achieved using dramatically different strategies and highlight the dangers of combining multiple individuals in a group analysis. These findings, and our general approach, have implications for the design of future pattern learning experiments, and the interpretation of comparative cognition research more generally. PMID:26113444

  17. Thin-section computed tomography findings in 104 immunocompetent patients with adenovirus pneumonia.

    PubMed

    Park, Chan Kue; Kwon, Hoon; Park, Ji Young

    2017-08-01

    Background To date, there has been no computed tomography (CT) evaluation of adenovirus pneumonia in a large number of immunocompetent patients. Purpose To describe the thin-section CT findings of immunocompetent patients with adenovirus pneumonia. Material and Methods We prospectively enrolled 104 patients with adenovirus pneumonia from a military hospital. CT scans of each patient were retrospectively and independently assessed by two radiologists for the presence of abnormalities, laterality and zonal predominance of the parenchymal abnormalities, and dominant imaging patterns and their anatomic distributions. Results CT findings included consolidation (n = 92), ground-glass opacity (GGO; n = 82), septal thickening (n = 34), nodules (n = 46), bronchial wall thickening (n = 32), pleural effusion (n = 16), and lymphadenopathy (n = 3). Eighty-four patients (81%) exhibited unilateral parenchymal abnormalities and 57 (57%) exhibited lower lung zone abnormalities. The most frequently dominant CT pattern was consolidation with surrounding GGO (n = 50), with subpleural (70%) and peribronchovascular (94%) distributions. Consolidation-the second-most common pattern (n = 33)-also exhibited subpleural (79%) and peribronchovascular (97%) distributions. The dominant nodule pattern (n = 14) exhibited mixed (64%) and peribronchovascular (100%) distributions. A dominant GGO pattern was only observed in four patients; none had central distribution. Conclusion Although the manifestations of adenovirus pneumonia on CT are varied, we found the most frequent pattern was consolidation with or without surrounding GGO, with subpleural and peribronchovascular distributions. Parenchymal abnormalities were predominantly unilateral and located in the lower lung zone. If dominant consolidation findings are present in immunocompetent patients during the early stages, adenovirus pneumonia should be considered.

  18. What does the structure of its visibility graph tell us about the nature of the time series?

    NASA Astrophysics Data System (ADS)

    Franke, Jasper G.; Donner, Reik V.

    2017-04-01

    Visibility graphs are a recently introduced method to construct complex network representations based upon univariate time series in order to study their dynamical characteristics [1]. In the last years, this approach has been successfully applied to studying a considerable variety of geoscientific research questions and data sets, including non-trivial temporal patterns in complex earthquake catalogs [2] or time-reversibility in climate time series [3]. It has been shown that several characteristic features of the thus constructed networks differ between stochastic and deterministic (possibly chaotic) processes, which is, however, relatively hard to exploit in the case of real-world applications. In this study, we propose studying two new measures related with the network complexity of visibility graphs constructed from time series, one being a special type of network entropy [4] and the other a recently introduced measure of the heterogeneity of the network's degree distribution [5]. For paradigmatic model systems exhibiting bifurcation sequences between regular and chaotic dynamics, both properties clearly trace the transitions between both types of regimes and exhibit marked quantitative differences for regular and chaotic dynamics. Moreover, for dynamical systems with a small amount of additive noise, the considered properties demonstrate gradual changes prior to the bifurcation point. This finding appears closely related to the subsequent loss of stability of the current state known to lead to a critical slowing down as the transition point is approaches. In this spirit, both considered visibility graph characteristics provide alternative tracers of dynamical early warning signals consistent with classical indicators. Our results demonstrate that measures of visibility graph complexity (i) provide a potentially useful means to tracing changes in the dynamical patterns encoded in a univariate time series that originate from increasing autocorrelation and (ii) allow to systematically distinguish regular from deterministic-chaotic dynamics. We demonstrate the application of our method for different model systems as well as selected paleoclimate time series from the North Atlantic region. Notably, visibility graph based methods are particularly suited for studying the latter type of geoscientific data, since they do not impose intrinsic restrictions or assumptions on the nature of the time series under investigation in terms of noise process, linearity and sampling homogeneity. [1] Lacasa, Lucas, et al. "From time series to complex networks: The visibility graph." Proceedings of the National Academy of Sciences 105.13 (2008): 4972-4975. [2] Telesca, Luciano, and Michele Lovallo. "Analysis of seismic sequences by using the method of visibility graph." EPL (Europhysics Letters) 97.5 (2012): 50002. [3] Donges, Jonathan F., Reik V. Donner, and Jürgen Kurths. "Testing time series irreversibility using complex network methods." EPL (Europhysics Letters) 102.1 (2013): 10004. [4] Small, Michael. "Complex networks from time series: capturing dynamics." 2013 IEEE International Symposium on Circuits and Systems (ISCAS2013), Beijing (2013): 2509-2512. [5] Jacob, Rinku, K.P. Harikrishnan, Ranjeev Misra, and G. Ambika. "Measure for degree heterogeneity in complex networks and its application to recurrence network analysis." arXiv preprint 1605.06607 (2016).

  19. Synthesis, characterization and solid state electrical properties of 1-D coordination polymer of the type [Cu{sub x}Ni{sub 1-x}(dadb){center_dot}yH{sub 2}O]{sub n}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, R.L., E-mail: rlpjc@yahoo.co.in; Kushwaha, A.; Shrivastava, O.N.

    2012-12-15

    New heterobimetallic complexes [Cu{sub x}Ni{sub 1-x}(dadb){center_dot}yH{sub 2}O]{sub n} {l_brace}where dadb=2,5-Diamino-3,6-dichloro-1,4-benzoquinone (1); x=1 (2), 0.5 (4), 0.25 (5), 0.125 (6), 0.0625 (7) and 0 (3); y=2; n=degree of polymerization{r_brace} were synthesized and characterized. Heterobimetallic complexes show normal magnetic moments, whereas, monometallic complexes exhibit magnetic moments less than the value due to spin only. Thermo-gravimetric analysis shows that degradation of the ligand dadb moiety is being controlled by the electronic environment of the Cu(II) ions in preference over Ni(II) in heterobimetallic complexes. Existence of the mixed valency/non-integral oxidation states of copper and nickel metal ions in the complex 4 has been attributedmore » from magnetic moment and ESR spectral results. Solid state dc electrical conductivity of all the complexes was investigated. Monometallic complexes were found to be semiconductors, whereas heterobimetallic coordination polymer 4 was found to exhibit metallic behaviour. Existence of mixed valency/ non-integral oxidation state of metal ions seems to be responsible for the metallic behaviour. - Graphical abstract: Contrast to the semiconductor monometallic complexes 2 and 3, the heterobimetallic complex 4 exhibits metallic behaviour attributed to the mixed valency/non-integral oxidation state of the metal ions concluded from magnetic and ESR spectral studies. Highlights: Black-Right-Pointing-Pointer 1-D coordination compounds of the type Cu{sub x}Ni{sub 1-x}(dadb){center_dot}yH{sub 2}O were synthesized and characterized. Black-Right-Pointing-Pointer Thermal degradation of the complexes provides an indication of long range electronic communication between metal to ligand. Black-Right-Pointing-Pointer On inclusion of Ni(II) into 1-D coordination polymer of Cu(II). (a) Cu(II) and Ni(II) ions exhibit non-integral oxidation state. (b) resulting heterobimetallic complex 4 exhibits metallic behaviour at all temperature range of the present study whereas monometallic complexes are semiconductor.« less

  20. The 3of5 web application for complex and comprehensive pattern matching in protein sequences.

    PubMed

    Seiler, Markus; Mehrle, Alexander; Poustka, Annemarie; Wiemann, Stefan

    2006-03-16

    The identification of patterns in biological sequences is a key challenge in genome analysis and in proteomics. Frequently such patterns are complex and highly variable, especially in protein sequences. They are frequently described using terms of regular expressions (RegEx) because of the user-friendly terminology. Limitations arise for queries with the increasing complexity of patterns and are accompanied by requirements for enhanced capabilities. This is especially true for patterns containing ambiguous characters and positions and/or length ambiguities. We have implemented the 3of5 web application in order to enable complex pattern matching in protein sequences. 3of5 is named after a special use of its main feature, the novel n-of-m pattern type. This feature allows for an extensive specification of variable patterns where the individual elements may vary in their position, order, and content within a defined stretch of sequence. The number of distinct elements can be constrained by operators, and individual characters may be excluded. The n-of-m pattern type can be combined with common regular expression terms and thus also allows for a comprehensive description of complex patterns. 3of5 increases the fidelity of pattern matching and finds ALL possible solutions in protein sequences in cases of length-ambiguous patterns instead of simply reporting the longest or shortest hits. Grouping and combined search for patterns provides a hierarchical arrangement of larger patterns sets. The algorithm is implemented as internet application and freely accessible. The application is available at http://dkfz.de/mga2/3of5/3of5.html. The 3of5 application offers an extended vocabulary for the definition of search patterns and thus allows the user to comprehensively specify and identify peptide patterns with variable elements. The n-of-m pattern type offers an improved accuracy for pattern matching in combination with the ability to find all solutions, without compromising the user friendliness of regular expression terms.

  1. Delay-induced cluster patterns in coupled Cayley tree networks

    NASA Astrophysics Data System (ADS)

    Singh, A.; Jalan, S.

    2013-07-01

    We study effects of delay in diffusively coupled logistic maps on the Cayley tree networks. We find that smaller coupling values exhibit sensitiveness to value of delay, and lead to different cluster patterns of self-organized and driven types. Whereas larger coupling strengths exhibit robustness against change in delay values, and lead to stable driven clusters comprising nodes from last generation of the Cayley tree. Furthermore, introduction of delay exhibits suppression as well as enhancement of synchronization depending upon coupling strength values. To the end we discuss the importance of results to understand conflicts and cooperations observed in family business.

  2. Preparation and Characterization of Cu-Ga-Se Thin Films Synthesized by Electrodeposition: Effect of Complexing Agent and Supporting Electrolyte

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, John A; Deutsch, Todd G; Fernandez, A. M.

    CuGaSe2 (CGS) is a semiconductor that has potential use as a photo electrode for solar water splitting. Its wide band gap and high absorption coefficient make it an ideal candidate for the top absorber in tandem structures. CGS can be synthesized by several techniques, being electrodeposition the most advantageous from a technical standpoint. Many reports show that electrodeposition of these films for producing the desired precursor atomic composition can be aided by using a complexing agent. However, the use of supporting electrolyte and the type of the electrolyte to improve the atomic composition in the films has never been reported.more » Using cyclic voltammetry, with complexing agents and deposition potentials between -0.5 and -0.9 V vs. Ag/AgCl reference electrode atomic ratios close to the ideal values ([Cu]/[Ga] = 1 and [Se]/[Cu + Ga] = 1), based on atomic composition and morphology analysis are reported in this work. From the X-ray diffraction (XRD), the as-deposited films exhibit poor crystallinity; however, the XRD patterns evidence the formation CuGaSe2 after annealing of the samples.« less

  3. Beyond Contagion: Reality Mining Reveals Complex Patterns of Social Influence.

    PubMed

    Alshamsi, Aamena; Pianesi, Fabio; Lepri, Bruno; Pentland, Alex; Rahwan, Iyad

    2015-01-01

    Contagion, a concept from epidemiology, has long been used to characterize social influence on people's behavior and affective (emotional) states. While it has revealed many useful insights, it is not clear whether the contagion metaphor is sufficient to fully characterize the complex dynamics of psychological states in a social context. Using wearable sensors that capture daily face-to-face interaction, combined with three daily experience sampling surveys, we collected the most comprehensive data set of personality and emotion dynamics of an entire community of work. From this high-resolution data about actual (rather than self-reported) face-to-face interaction, a complex picture emerges where contagion (that can be seen as adaptation of behavioral responses to the behavior of other people) cannot fully capture the dynamics of transitory states. We found that social influence has two opposing effects on states: adaptation effects that go beyond mere contagion, and complementarity effects whereby individuals' behaviors tend to complement the behaviors of others. Surprisingly, these effects can exhibit completely different directions depending on the stable personality or emotional dispositions (stable traits) of target individuals. Our findings provide a foundation for richer models of social dynamics, and have implications on organizational engineering and workplace well-being.

  4. In Vitro MRV-based Hemodynamic Study of Complex Helical Flow in a Patient-specific Jugular Model

    NASA Astrophysics Data System (ADS)

    Kefayati, Sarah; Acevedo-Bolton, Gabriel; Haraldsson, Henrik; Saloner, David

    2014-11-01

    Neurointerventional Radiologists are frequently requested to evaluate the venous side of the intracranial circulation for a variety of conditions including: Chronic Cerebrospinal Venous Insufficiency thought to play a role in the development of multiple sclerosis; sigmoid sinus diverticulum which has been linked to the presence of pulsatile tinnitus; and jugular vein distension which is related to cardiac dysfunction. Most approaches to evaluating these conditions rely on structural assessment or two dimensional flow analyses. This study was designed to investigate the highly complex jugular flow conditions using magnetic resonance velocimetry (MRV). A jugular phantom was fabricated based on the geometry of the dominant jugular in a tinnitus patient. Volumetric three-component time-resolved velocity fields were obtained using 4D PC-MRI -with the protocol enabling turbulence acquisition- and the patient-specific pulsatile waveform. Flow was highly complex exhibiting regions of jet, high swirling strength, and strong helical pattern with the core originating from the focal point of the jugular bulb. Specifically, flow was analyzed for helicity and the level of turbulence kinetic energy elevated in the core of helix and distally, in the post-narrowing region.

  5. Structure, energetics and vibrational spectra of dimers, trimers, and tetramers of HX (X = Cl, Br, I)

    NASA Astrophysics Data System (ADS)

    Latajka, Zdzislaw; Scheiner, Steve

    1997-03-01

    The title complexes are studied by correlated ab initio methods using a pseudopotential double-ζ basis set, augmented by diffuse sp and two sets of polarization functions. The binding energies of the complexes decrease in the order HCl > HBr > HI. In the mixed HX…HX' dimers, the nature of the proton-donor molecule is more important than is the proton-acceptor with respect to the strength of the interaction. Only one minimum is found on the potential energy surface of the trimers and tetramers, which corresponds to the C nh cyclic structure. Enlargement of the complex leads to progressively greater individual H-bond energy and HX bond stretch, coupled with reduced intermolecular separation and smaller nonlinearity of each H-bond. Electron correlation makes a larger contribution as the atomic number of X increases. The highest degree of cooperativity is noted for oligomers of HCl and HBr, as compared to HI. The nonadditivity is dominated by terms present at the SCF level. The vibrational frequencies exhibit trends that generally parallel the energetics and geometry patterns, particularly the red shifts of the HX stretches and the intermolecular modes.

  6. Coexistence and chaos in complex ecologies [rapid communication

    NASA Astrophysics Data System (ADS)

    Sprott, J. C.; Vano, J. A.; Wildenberg, J. C.; Anderson, M. B.; Noel, J. K.

    2005-02-01

    Many complex dynamical systems in ecology, economics, neurology, and elsewhere, in which agents compete for limited resources, exhibit apparently chaotic fluctuations. This Letter proposes a purely deterministic mechanism for evolving robustly but weakly chaotic systems that exhibit adaptation, self-organization, sporadic volatility, and punctuated equilibria.

  7. Phase Transitions of an Epidemic Spreading Model in Small-World Networks

    NASA Astrophysics Data System (ADS)

    Hua, Da-Yin; Gao, Ke

    2011-06-01

    We propose a modified susceptible-infected-refractory-susceptible (SIRS) model to investigate the global oscillations of the epidemic spreading in Watts—Strogatz (WS) small-world networks. It is found that when an individual immunity does not change or decays slowly in an immune period, the system can exhibit complex transition from an infecting stationary state to a large amplitude sustained oscillation or an absorbing state with no infection. When the immunity decays rapidly in the immune period, the transition to the global oscillation disappears and there is no oscillation. Furthermore, based on the spatio-temporal evolution patterns and the phase diagram, it is disclosed that a long immunity period takes an important role in the emergence of the global oscillation in small-world networks.

  8. A fuzzy logic approach to modeling the underground economy in Taiwan

    NASA Astrophysics Data System (ADS)

    Yu, Tiffany Hui-Kuang; Wang, David Han-Min; Chen, Su-Jane

    2006-04-01

    The size of the ‘underground economy’ (UE) is valuable information in the formulation of macroeconomic and fiscal policy. This study applies fuzzy set theory and fuzzy logic to model Taiwan's UE over the period from 1960 to 2003. Two major factors affecting the size of the UE, the effective tax rate and the degree of government regulation, are used. The size of Taiwan's UE is scaled and compared with those of other models. Although our approach yields different estimates, similar patterns and leading are exhibited throughout the period. The advantage of applying fuzzy logic is twofold. First, it can avoid the complex calculations in conventional econometric models. Second, fuzzy rules with linguistic terms are easy for human to understand.

  9. Surface compositions across Pluto and Charon.

    PubMed

    Grundy, W M; Binzel, R P; Buratti, B J; Cook, J C; Cruikshank, D P; Dalle Ore, C M; Earle, A M; Ennico, K; Howett, C J A; Lunsford, A W; Olkin, C B; Parker, A H; Philippe, S; Protopapa, S; Quirico, E; Reuter, D C; Schmitt, B; Singer, K N; Verbiscer, A J; Beyer, R A; Buie, M W; Cheng, A F; Jennings, D E; Linscott, I R; Parker, J Wm; Schenk, P M; Spencer, J R; Stansberry, J A; Stern, S A; Throop, H B; Tsang, C C C; Weaver, H A; Weigle, G E; Young, L A

    2016-03-18

    The New Horizons spacecraft mapped colors and infrared spectra across the encounter hemispheres of Pluto and Charon. The volatile methane, carbon monoxide, and nitrogen ices that dominate Pluto's surface have complicated spatial distributions resulting from sublimation, condensation, and glacial flow acting over seasonal and geological time scales. Pluto's water ice "bedrock" was also mapped, with isolated outcrops occurring in a variety of settings. Pluto's surface exhibits complex regional color diversity associated with its distinct provinces. Charon's color pattern is simpler, dominated by neutral low latitudes and a reddish northern polar region. Charon's near-infrared spectra reveal highly localized areas with strong ammonia absorption tied to small craters with relatively fresh-appearing impact ejecta. Copyright © 2016, American Association for the Advancement of Science.

  10. Optimal design of tweezer control for chimera states

    NASA Astrophysics Data System (ADS)

    Omelchenko, Iryna; Omel'chenko, Oleh E.; Zakharova, Anna; Schöll, Eckehard

    2018-01-01

    Chimera states are complex spatio-temporal patterns which consist of coexisting domains of spatially coherent and incoherent dynamics in systems of coupled oscillators. In small networks, chimera states usually exhibit short lifetimes and erratic drifting of the spatial position of the incoherent domain. A tweezer feedback control scheme can stabilize and fix the position of chimera states. We analyze the action of the tweezer control in small nonlocally coupled networks of Van der Pol and FitzHugh-Nagumo oscillators, and determine the ranges of optimal control parameters. We demonstrate that the tweezer control scheme allows for stabilization of chimera states with different shapes, and can be used as an instrument for controlling the coherent domains size, as well as the maximum average frequency difference of the oscillators.

  11. Interaction of stressful life events and chronic strains on community mental health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, G.W.; Jacobs, S.V.; Dooley, D.

    1987-02-01

    One of the possible adaptive costs of coping with stress is diminished capacity to respond to subsequent adaptive demands. This paper examined the complex interplay between major life events and one source of chronic strain. Residents of the greater Los Angeles metropolitan area exposed to higher levels of smog, who had also experienced a recent stressful life event, exhibited poorer mental health than those exposed to pollution who had not experienced a recent stressful life event. There were, however, no direct effects of smog levels on mental health. These patterns of results were replicated in both a cross-sectional and amore » longitudinal study. The interplay of psychosocial vulnerability and environmental conditions is discussed.« less

  12. Characterising non-linear dynamics in nocturnal breathing patterns of healthy infants using recurrence quantification analysis.

    PubMed

    Terrill, Philip I; Wilson, Stephen J; Suresh, Sadasivam; Cooper, David M; Dakin, Carolyn

    2013-05-01

    Breathing dynamics vary between infant sleep states, and are likely to exhibit non-linear behaviour. This study applied the non-linear analytical tool recurrence quantification analysis (RQA) to 400 breath interval periods of REM and N-REM sleep, and then using an overlapping moving window. The RQA variables were different between sleep states, with REM radius 150% greater than N-REM radius, and REM laminarity 79% greater than N-REM laminarity. RQA allowed the observation of temporal variations in non-linear breathing dynamics across a night's sleep at 30s resolution, and provides a basis for quantifying changes in complex breathing dynamics with physiology and pathology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Patterns of Post-Glacial Genetic Differentiation in Marginal Populations of a Marine Microalga

    PubMed Central

    Tahvanainen, Pia; Alpermann, Tilman J.; Figueroa, Rosa Isabel; John, Uwe; Hakanen, Päivi; Nagai, Satoshi; Blomster, Jaanika; Kremp, Anke

    2012-01-01

    This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS) sequences and Amplified Fragment Length Polymorphism (AFLP) of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (F ST) between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms. PMID:23300940

  14. Evolutionary Glycomics: Characterization of Milk Oligosaccharides in Primates

    PubMed Central

    Tao, Nannan; Wu, Shuai; Kim, Jaehan; An, Hyun Joo; Hinde, Katie; Power, Michael L.; Gagneux, Pascal; German, J. Bruce; Lebrilla, Carlito B.

    2011-01-01

    Free oligosaccharides are abundant components of mammalian milk and have primary roles as prebiotic compounds, in immune defense, and in brain development. Mass spectrometry-based technique is applied to profile milk oligosaccharides from apes (chimpanzee, gorilla, and siamang), new world monkeys (golden lion tamarin and common marmoset), and an old world monkey (rhesus). The purpose of this study was to evaluate the patterns of primate milk oligosaccharide composition from a phylogenetic perspective in order to assess the extent to which the compositions of hMOs derives from ancestral, primate patterns as opposed to more recent evolutionary events. Milk oligosaccharides were quantitated by nanoflow liquid chromatography on chip-based devices. The relative abundances of fucosylated and sialylated milk oligosaccharides in primates were also determined. For a systematic and comprehensive study of evolutionary patterns of milk oligosaccharides, cluster analysis of primate milk was performed using the chromatographic profile. In general, the oligosaccharides in primate milk, including humans, are more complex and exhibit greater diversity compared to the ones in non-primate milk. A detailed comparison of the oligosaccharides across evolution revealed non-sequential developmental pattern, i.e. that primate milk oligosaccharides do not necessarily cluster according to the primate phylogeny. This report represents the first comprehensive and quantitative effort to profile and elucidate the structures of free milk oligosaccharides so that they can be related to glycan function in different primates. PMID:21214271

  15. Patterns of post-glacial genetic differentiation in marginal populations of a marine microalga.

    PubMed

    Tahvanainen, Pia; Alpermann, Tilman J; Figueroa, Rosa Isabel; John, Uwe; Hakanen, Päivi; Nagai, Satoshi; Blomster, Jaanika; Kremp, Anke

    2012-01-01

    This study investigates the genetic structure of an eukaryotic microorganism, the toxic dinoflagellate Alexandrium ostenfeldii, from the Baltic Sea, a geologically young and ecologically marginal brackish water estuary which is predicted to support evolution of distinct, genetically impoverished lineages of marine macroorganisms. Analyses of the internal transcribed spacer (ITS) sequences and Amplified Fragment Length Polymorphism (AFLP) of 84 A. ostenfeldii isolates from five different Baltic locations and multiple external sites revealed that Baltic A. ostenfeldii is phylogenetically differentiated from other lineages of the species and micro-geographically fragmented within the Baltic Sea. Significant genetic differentiation (F(ST)) between northern and southern locations was correlated to geographical distance. However, instead of discrete genetic units or continuous genetic differentiation, the analysis of population structure suggests a complex and partially hierarchic pattern of genetic differentiation. The observed pattern suggests that initial colonization was followed by local differentiation and varying degrees of dispersal, most likely depending on local habitat conditions and prevailing current systems separating the Baltic Sea populations. Local subpopulations generally exhibited low levels of overall gene diversity. Association analysis suggests predominately asexual reproduction most likely accompanied by frequency shifts of clonal lineages during planktonic growth. Our results indicate that the general pattern of genetic differentiation and reduced genetic diversity of Baltic populations found in large organisms also applies to microscopic eukaryotic organisms.

  16. Genomic patterns in Acropora cervicornis show extensive population structure and variable genetic diversity.

    PubMed

    Drury, Crawford; Schopmeyer, Stephanie; Goergen, Elizabeth; Bartels, Erich; Nedimyer, Ken; Johnson, Meaghan; Maxwell, Kerry; Galvan, Victor; Manfrino, Carrie; Lirman, Diego

    2017-08-01

    Threatened Caribbean coral communities can benefit from high-resolution genetic data used to inform management and conservation action. We use Genotyping by Sequencing (GBS) to investigate genetic patterns in the threatened coral, Acropora cervicornis , across the Florida Reef Tract (FRT) and the western Caribbean. Results show extensive population structure at regional scales and resolve previously unknown structure within the FRT. Different regions also exhibit up to threefold differences in genetic diversity (He), suggesting targeted management based on the goals and resources of each population is needed. Patterns of genetic diversity have a strong spatial component, and our results show Broward and the Lower Keys are among the most diverse populations in Florida. The genetic diversity of Caribbean staghorn coral is concentrated within populations and within individual reefs (AMOVA), highlighting the complex mosaic of population structure. This variance structure is similar over regional and local scales, which suggests that in situ nurseries are adequately capturing natural patterns of diversity, representing a resource that can replicate the average diversity of wild assemblages, serving to increase intraspecific diversity and potentially leading to improved biodiversity and ecosystem function. Results presented here can be translated into specific goals for the recovery of A. cervicornis , including active focus on low diversity areas, protection of high diversity and connectivity, and practical thresholds for responsible restoration.

  17. The structure of the yeast plasma membrane SNARE complex reveals destabilizing water-filled cavities.

    PubMed

    Strop, Pavel; Kaiser, Stephen E; Vrljic, Marija; Brunger, Axel T

    2008-01-11

    SNARE proteins form a complex that leads to membrane fusion between vesicles, organelles, and plasma membrane in all eukaryotic cells. We report the 1.7A resolution structure of the SNARE complex that mediates exocytosis at the plasma membrane in the yeast Saccharomyces cerevisiae. Similar to its neuronal and endosomal homologues, the S. cerevisiae SNARE complex forms a parallel four-helix bundle in the center of which is an ionic layer. The S. cerevisiae SNARE complex exhibits increased helix bending near the ionic layer, contains water-filled cavities in the complex core, and exhibits reduced thermal stability relative to mammalian SNARE complexes. Mutagenesis experiments suggest that the water-filled cavities contribute to the lower stability of the S. cerevisiae complex.

  18. Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS.

    PubMed

    Moreno, S; Farioli-Vecchioli, S; Cerù, M P

    2004-01-01

    Peroxisome proliferator-activated and retinoid X receptors (PPARs and RXRs) are transcription factors belonging to the steroid hormone receptor superfamily. Upon activation by their ligands, PPARs and RXRs bind to their target genes as heterodimers. Ligands of these receptors include lipophylic molecules, such as retinoids, fatty acids and eicosanoids, the importance of which in the metabolism and functioning of the nervous tissue is well documented. The immunohistochemical distribution of PPARs and RXRs in the CNS of the adult rat was studied by means of a sensitive biotinyl-tyramide method. All PPAR (alpha, beta/delta and gamma) and RXR (alpha, beta and gamma) isotypes were detected and found to exhibit specific patterns of localization in the different areas of the brain and spinal cord. The presence of the nuclear receptors was observed in both neuronal and glial cells. While PPAR beta/delta and RXR beta showed a widespread distribution, alpha and gamma isotypes exhibited a more restricted pattern of expression. The frontal cortex, basal ganglia, reticular formation, some cranial nerve nuclei, deep cerebellar nuclei, and cerebellar Golgi cells appeared rather rich in all studied receptors. Based on our data, we suggest that in the adult CNS, PPARs and RXRs, besides playing roles common to many other tissues, may have specific functions in regulating the expression of genes involved in neurotransmission, and therefore play roles in complex processes, such as aging, neurodegeneration, learning and memory.

  19. Differential face-network adaptation in children, adolescents and adults.

    PubMed

    Cohen Kadosh, Kathrin; Johnson, Mark H; Henson, Richard N A; Dick, Frederic; Blakemore, Sarah-Jayne

    2013-04-01

    Faces are complex social stimuli, which can be processed both at the categorical and the individual level. Behavioral studies have shown that children take more than a decade of exposure and training to become proficient at processing faces at the individual level. The neurodevelopmental trajectories for different aspects of face-processing are still poorly understood. In this study, we used an fMR-adaptation design to investigate differential processing of three face aspects (identity, expression and gaze) in children, adolescents and adults. We found that, while all three tasks showed some overlap in activation patterns, there was a significant age effect in the occipital and temporal lobes and the inferior frontal gyrus. More importantly, the degree of adaptation differed across the three age groups in the inferior occipital gyrus, a core face processing area that has been shown in previous studies to be both integral and necessary for individual-level face processing. In the younger children, adaptation in this region seemed to suggest the use of a predominantly featural processing strategy, whereas adaptation effects in the adults exhibited a more strategic pattern that depended on the task. Interestingly, our sample of adolescents did not exhibit any differential adaptation effects; possibly reflecting increased heterogeneity in processing strategies in this age group. Our results support the notion that, in line with improving behavioral face-processing abilities, core face-responsive regions develop throughout the first two decades of life. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Enabling complex nanoscale pattern customization using directed self-assembly.

    PubMed

    Doerk, Gregory S; Cheng, Joy Y; Singh, Gurpreet; Rettner, Charles T; Pitera, Jed W; Balakrishnan, Srinivasan; Arellano, Noel; Sanders, Daniel P

    2014-12-16

    Block copolymer directed self-assembly is an attractive method to fabricate highly uniform nanoscale features for various technological applications, but the dense periodicity of block copolymer features limits the complexity of the resulting patterns and their potential utility. Therefore, customizability of nanoscale patterns has been a long-standing goal for using directed self-assembly in device fabrication. Here we show that a hybrid organic/inorganic chemical pattern serves as a guiding pattern for self-assembly as well as a self-aligned mask for pattern customization through cotransfer of aligned block copolymer features and an inorganic prepattern. As informed by a phenomenological model, deliberate process engineering is implemented to maintain global alignment of block copolymer features over arbitrarily shaped, 'masking' features incorporated into the chemical patterns. These hybrid chemical patterns with embedded customization information enable deterministic, complex two-dimensional nanoscale pattern customization through directed self-assembly.

  1. Healthcare improvement as planned system change or complex responsive processes? a longitudinal case study in general practice

    PubMed Central

    2013-01-01

    Background Interest in how to implement evidence-based practices into routine health care has never been greater. Primary care faces challenges in managing the increasing burden of chronic disease in an ageing population. Reliable prescriptions for translating knowledge into practice, however, remain elusive, despite intense research and publication activity. This study seeks to explore this dilemma in general practice by challenging the current way of thinking about healthcare improvement and asking what can be learned by looking at change through a complexity lens. Methods This paper reports the local level of an embedded case study of organisational change for better chronic illness care over more than a decade. We used interviews, document review and direct observation to explore how improved chronic illness care developed in one practice. This formed a critical case to compare, using pattern matching logic, to the common prescription for local implementation of best evidence and a rival explanation drawn from complexity sciences interpreted through modern sociology and psychology. Results The practice changed continuously over more than a decade to deliver better chronic illness care in line with research findings and policy initiatives – re-designing care processes, developing community linkages, supporting patient self-management, using guidelines and clinical information systems, and integrating nurses into the practice team. None of these improvements was designed and implemented according to an explicit plan in response to a documented gap in chronic disease care. The process that led to high quality chronic illness care exhibited clear complexity elements of co-evolution, non-linearity, self-organisation, emergence and edge of chaos dynamics in a network of agents and relationships where a stable yet evolving way of organizing emerged from local level communicative interaction, power relating and values based choices. Conclusions The current discourse of implementation science as planned system change did not match organisational reality in this critical case of improvement in general practice. Complexity concepts translated in human terms as complex responsive processes of relating fit the pattern of change more accurately. They do not provide just another fashionable blueprint for change but inform how researchers, policymakers and providers participate in improving healthcare. PMID:23617833

  2. Drosophila mutants of the autism candidate gene neurobeachin (rugose) exhibit neuro-developmental disorders, aberrant synaptic properties, altered locomotion, and impaired adult social behavior and activity patterns.

    PubMed

    Wise, Alexandria; Tenezaca, Luis; Fernandez, Robert W; Schatoff, Emma; Flores, Julian; Ueda, Atsushi; Zhong, Xiaotian; Wu, Chun-Fang; Simon, Anne F; Venkatesh, Tadmiri

    2015-01-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder in humans characterized by complex behavioral deficits, including intellectual disability, impaired social interactions, and hyperactivity. ASD exhibits a strong genetic component with underlying multigene interactions. Candidate gene studies have shown that the neurobeachin (NBEA) gene is disrupted in human patients with idiopathic autism ( Castermans et al., 2003 ). The NBEA gene spans the common fragile site FRA 13A and encodes a signal scaffold protein ( Savelyeva et al., 2006 ). In mice, NBEA has been shown to be involved in the trafficking and function of a specific subset of synaptic vesicles. ( Medrihan et al., 2009 ; Savelyeva et al., 2006 ). Rugose (rg) is the Drosophila homolog of the mammalian and human NBEA. Our previous genetic and molecular analyses have shown that rg encodes an A kinase anchor protein (DAKAP 550), which interacts with components of the epidermal growth factor receptor or EGFR and Notch-mediated signaling pathways, facilitating cross talk between these and other pathways ( Shamloula et al., 2002 ). We now present functional data from studies on the larval neuromuscular junction that reveal abnormal synaptic architecture and physiology. In addition, adult rg loss-of-function mutants exhibit defective social interactions, impaired habituation, aberrant locomotion, and hyperactivity. These results demonstrate that Drosophila NBEA (rg) mutants exhibit phenotypic characteristics reminiscent of human ASD and thus could serve as a genetic model for studying ASDs.

  3. First off-time treatment prostate-specific antigen kinetics predicts survival in intermittent androgen deprivation for prostate cancer.

    PubMed

    Sanchez-Salas, Rafael; Olivier, Fabien; Prapotnich, Dominique; Dancausa, José; Fhima, Mehdi; David, Stéphane; Secin, Fernando P; Ingels, Alexandre; Barret, Eric; Galiano, Marc; Rozet, François; Cathelineau, Xavier

    2016-01-01

    Prostate-specific antigen (PSA) doubling time is relying on an exponential kinetic pattern. This pattern has never been validated in the setting of intermittent androgen deprivation (IAD). Objective is to analyze the prognostic significance for PCa of recurrent patterns in PSA kinetics in patients undergoing IAD. A retrospective study was conducted on 377 patients treated with IAD. On-treatment period (ONTP) consisted of gonadotropin-releasing hormone agonist injections combined with oral androgen receptor antagonist. Off-treatment period (OFTP) began when PSA was lower than 4 ng/ml. ONTP resumed when PSA was higher than 20 ng/ml. PSA values of each OFTP were fitted with three basic patterns: exponential (PSA(t) = λ.e(αt)), linear (PSA(t) = a.t), and power law (PSA(t) = a.t(c)). Univariate and multivariate Cox regression model analyzed predictive factors for oncologic outcomes. Only 45% of the analyzed OFTPs were exponential. Linear and power law PSA kinetics represented 7.5% and 7.7%, respectively. Remaining fraction of analyzed OFTPs (40%) exhibited complex kinetics. Exponential PSA kinetics during the first OFTP was significantly associated with worse oncologic outcome. The estimated 10-year cancer-specific survival (CSS) was 46% for exponential versus 80% for nonexponential PSA kinetics patterns. The corresponding 10-year probability of castration-resistant prostate cancer (CRPC) was 69% and 31% for the two patterns, respectively. Limitations include retrospective design and mixed indications for IAD. PSA kinetic fitted with exponential pattern in approximately half of the OFTPs. First OFTP exponential PSA kinetic was associated with a shorter time to CRPC and worse CSS. © 2015 Wiley Periodicals, Inc.

  4. Mathematics and complex systems.

    PubMed

    Foote, Richard

    2007-10-19

    Contemporary researchers strive to understand complex physical phenomena that involve many constituents, may be influenced by numerous forces, and may exhibit unexpected or emergent behavior. Often such "complex systems" are macroscopic manifestations of other systems that exhibit their own complex behavior and obey more elemental laws. This article proposes that areas of mathematics, even ones based on simple axiomatic foundations, have discernible layers, entirely unexpected "macroscopic" outcomes, and both mathematical and physical ramifications profoundly beyond their historical beginnings. In a larger sense, the study of mathematics itself, which is increasingly surpassing the capacity of researchers to verify "by hand," may be the ultimate complex system.

  5. A novel tridentate coordination mode for the carbonatonickel system exhibited in an unusual hexanuclear nickel(II) mu3-carbonato-bridged complex.

    PubMed

    Anderson, James C; Blake, Alexander J; Moreno, Rafael Bou; Raynel, Guillaume; van Slageren, Joris

    2009-11-14

    The fixation of CO(2) at ambient temperature has been achieved by the reaction of Ni(cod)(2) and TMEDA in CO(2) saturated THF that yields a novel hexanuclear nickel(II) mu(3)-carbonato bridged complex [Ni(6)(mu(3)-CO(3))(4)(TMEDA)(6)(H(2)O)(12)](OH)(4) in 59% yield. The complex was characterised by MS analysis and the structure corroborated by single-crystal X-ray crystallography. The complex exhibits a rare carbonato binding mode for Ni(II) complexes and moderately strong antiferromagnetic interactions.

  6. Assessing the Effects of Light on Differentiation and Virulence of the Plant Pathogen Botrytis cinerea: Characterization of the White Collar Complex

    PubMed Central

    Hevia, Montserrat A.; Tudzynski, Paul; Larrondo, Luis F.

    2013-01-01

    Organisms are exposed to a tough environment, where acute daily challenges, like light, can strongly affect several aspects of an individual's physiology, including pathogenesis. While several fungal models have been widely employed to understand the physiological and molecular events associated with light perception, various other agricultural-relevant fungi still remain, in terms of their responsiveness to light, in the dark. The fungus Botrytis cinerea is an aggressive pathogen able to cause disease on a wide range of plant species. Natural B. cinerea isolates exhibit a high degree of diversity in their predominant mode of reproduction. Thus, the majority of naturally occurring strains are known to reproduce asexually via conidia and sclerotia, and sexually via apothecia. Studies from the 1970′s reported on specific developmental responses to treatments with near-UV, blue, red and far-red light. To unravel the signaling machinery triggering development – and possibly also connected with virulence – we initiated the functional characterization of the transcription factor/photoreceptor BcWCL1 and its partner BcWCL2, that form the White Collar Complex (WCC) in B. cinerea. Using mutants either abolished in or exhibiting enhanced WCC signaling (overexpression of both bcwcl1 and bcwcl2), we demonstrate that the WCC is an integral part of the mentioned machinery by mediating transcriptional responses to white light and the inhibition of conidiation in response to this stimulus. Furthermore, the WCC is required for coping with excessive light, oxidative stress and also to achieve full virulence. Although several transcriptional responses are abolished in the absence of bcwcl1, the expression of some genes is still light induced and a distinct conidiation pattern in response to daily light oscillations is enhanced, revealing a complex underlying photobiology. Though overlaps with well-studied fungal systems exist, the light-associated machinery of B. cinerea appears more complex than those of Neurospora crassa and Aspergillus nidulans. PMID:24391918

  7. Assessing the effects of light on differentiation and virulence of the plant pathogen Botrytis cinerea: characterization of the White Collar Complex.

    PubMed

    Canessa, Paulo; Schumacher, Julia; Hevia, Montserrat A; Tudzynski, Paul; Larrondo, Luis F

    2013-01-01

    Organisms are exposed to a tough environment, where acute daily challenges, like light, can strongly affect several aspects of an individual's physiology, including pathogenesis. While several fungal models have been widely employed to understand the physiological and molecular events associated with light perception, various other agricultural-relevant fungi still remain, in terms of their responsiveness to light, in the dark. The fungus Botrytis cinerea is an aggressive pathogen able to cause disease on a wide range of plant species. Natural B. cinerea isolates exhibit a high degree of diversity in their predominant mode of reproduction. Thus, the majority of naturally occurring strains are known to reproduce asexually via conidia and sclerotia, and sexually via apothecia. Studies from the 1970's reported on specific developmental responses to treatments with near-UV, blue, red and far-red light. To unravel the signaling machinery triggering development--and possibly also connected with virulence--we initiated the functional characterization of the transcription factor/photoreceptor BcWCL1 and its partner BcWCL2, that form the White Collar Complex (WCC) in B. cinerea. Using mutants either abolished in or exhibiting enhanced WCC signaling (overexpression of both bcwcl1 and bcwcl2), we demonstrate that the WCC is an integral part of the mentioned machinery by mediating transcriptional responses to white light and the inhibition of conidiation in response to this stimulus. Furthermore, the WCC is required for coping with excessive light, oxidative stress and also to achieve full virulence. Although several transcriptional responses are abolished in the absence of bcwcl1, the expression of some genes is still light induced and a distinct conidiation pattern in response to daily light oscillations is enhanced, revealing a complex underlying photobiology. Though overlaps with well-studied fungal systems exist, the light-associated machinery of B. cinerea appears more complex than those of Neurospora crassa and Aspergillus nidulans.

  8. Taxonomy of Individual Variations in Aesthetic Responses to Fractal Patterns

    PubMed Central

    Spehar, Branka; Walker, Nicholas; Taylor, Richard P.

    2016-01-01

    In two experiments, we investigate group and individual preferences in a range of different types of patterns with varying fractal-like scaling characteristics. In Experiment 1, we used 1/f filtered grayscale images as well as their thresholded (black and white) and edges only counterparts. Separate groups of observers viewed different types of images varying in slope of their amplitude spectra. Although with each image type, the groups exhibited the “universal” pattern of preference for intermediate amplitude spectrum slopes, we identified 4 distinct sub-groups in each case. Sub-group 1 exhibited a typical peak preference for intermediate amplitude spectrum slopes (“intermediate”; approx. 50%); sub-group 2 exhibited a linear increase in preference with increasing amplitude spectrum slope (“smooth”; approx. 20%), while sub-group 3 exhibited a linear decrease in preference as a function of the amplitude spectrum slope (“sharp”; approx. 20%). Sub-group 4 revealed no significant preference (“other”; approx. 10%). In Experiment 2, we extended the range of different image types and investigated preferences within the same observers. We replicate the results of our first experiment and show that individual participants exhibit stable patterns of preference across a wide range of image types. In both experiments, Q-mode factor analysis identified two principal factors that were able to explain more than 80% of interindividual variations in preference across all types of images, suggesting a highly similar dimensional structure of interindividual variations in preference for fractal-like scaling characteristics. PMID:27458365

  9. Temporal evolution of the spatial covariability of rainfall in South America

    NASA Astrophysics Data System (ADS)

    Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique M. J.; Kurths, Jürgen; Rammig, Anja

    2017-10-01

    The climate of South America exhibits pronounced differences between rainy and dry seasons, associated with specific synoptic features such as the establishment of the South Atlantic convergence zone. Here, we analyze the spatiotemporal correlation structure and in particular teleconnections of daily rainfall associated with these features by means of evolving complex networks. A modification of Pearson's correlation coefficient is introduced to handle the intricate statistical properties of daily rainfall. On this basis, spatial correlation networks are constructed, and new appropriate network measures are introduced in order to analyze the temporal evolution of the networks' characteristics. We particularly focus on the identification of coherent areas of similar rainfall patterns and previously unknown teleconnection structures between remote areas. We show that the monsoon onset is characterized by an abrupt transition from erratic to organized regional connectivity that prevails during the monsoon season, while only the onset times themselves exhibit anomalous large-scale organization of teleconnections. Furthermore, we reveal that the two mega-droughts in the Amazon basin were already announced in the previous year by an anomalous behavior of the connectivity structure.

  10. Triple grouping and period-three oscillations in minority-game dynamics.

    PubMed

    Dong, Jia-Qi; Huang, Zi-Gang; Huang, Liang; Lai, Ying-Cheng

    2014-12-01

    Dynamical systems based on the minority game (MG) have been a paradigm for gaining significant insights into a variety of social and biological behaviors. Recently, a grouping phenomenon has been unveiled in MG systems of multiple resources (strategies) in which the strategies spontaneously break into an even number of groups, each exhibiting an identical oscillation pattern in the attendance of game players. Here we report our finding of spontaneous breakup of resources into three groups, each exhibiting period-three oscillations. An analysis is developed to understand the emergence of the striking phenomenon of triple grouping and period-three oscillations. In the presence of random disturbances, the triple-group/period-three state becomes transient, and we obtain explicit formula for the average transient lifetime using two methods of approximation. Our finding indicates that, period-three oscillation, regarded as one of the most fundamental behaviors in smooth nonlinear dynamical systems, can also occur in much more complex, evolutionary-game dynamical systems. Our result also provides a plausible insight for the occurrence of triple grouping observed, for example, in the U.S. housing market.

  11. Population genomics reveals a candidate gene involved in bumble bee pigmentation.

    PubMed

    Pimsler, Meaghan L; Jackson, Jason M; Lozier, Jeffrey D

    2017-05-01

    Variation in bumble bee color patterns is well-documented within and between species. Identifying the genetic mechanisms underlying such variation may be useful in revealing evolutionary forces shaping rapid phenotypic diversification. The widespread North American species Bombus bifarius exhibits regional variation in abdominal color forms, ranging from red-banded to black-banded phenotypes and including geographically and phenotypically intermediate forms. Identifying genomic regions linked to this variation has been complicated by strong, near species level, genome-wide differentiation between red- and black-banded forms. Here, we instead focus on the closely related black-banded and intermediate forms that both belong to the subspecies B. bifarius nearcticus . We analyze an RNA sequencing (RNAseq) data set and identify a cluster of single nucleotide polymorphisms (SNPs) within one gene, Xanthine dehydrogenase/oxidase -like, that exhibit highly unusual differentiation compared to the rest of the sequenced genome. Homologs of this gene contribute to pigmentation in other insects, and results thus represent a strong candidate for investigating the genetic basis of pigment variation in B. bifarius and other bumble bee mimicry complexes.

  12. Evidence for modular evolution in a long-tailed pterosaur with a pterodactyloid skull.

    PubMed

    Lü, Junchang; Unwin, David M; Jin, Xingsheng; Liu, Yongqing; Ji, Qiang

    2010-02-07

    The fossil record is a unique source of evidence for important evolutionary phenomena such as transitions between major clades. Frustratingly, relevant fossils are still comparatively rare, most transitions have yet to be documented in detail and the mechanisms that underpin such events, typified by rapid large scale changes and for which microevolutionary processes seem insufficient, are still unclear. A new pterosaur (Mesozoic flying reptile) from the Middle Jurassic of China, Darwinopterus modularis gen. et sp. nov., provides the first insights into a prominent, but poorly understood transition between basal, predominantly long-tailed pterosaurs and the more derived, exclusively short-tailed pterodactyloids. Darwinopterus exhibits a remarkable 'modular' combination of characters: the skull and neck are typically pterodactyloid, exhibiting numerous derived character states, while the remainder of the skeleton is almost completely plesiomorphic and identical to that of basal pterosaurs. This pattern supports the idea that modules, tightly integrated complexes of characters with discrete, semi-independent and temporally persistent histories, were the principal focus of natural selection and played a leading role in evolutionary transitions.

  13. Small-world human brain networks: Perspectives and challenges.

    PubMed

    Liao, Xuhong; Vasilakos, Athanasios V; He, Yong

    2017-06-01

    Modelling the human brain as a complex network has provided a powerful mathematical framework to characterize the structural and functional architectures of the brain. In the past decade, the combination of non-invasive neuroimaging techniques and graph theoretical approaches enable us to map human structural and functional connectivity patterns (i.e., connectome) at the macroscopic level. One of the most influential findings is that human brain networks exhibit prominent small-world organization. Such a network architecture in the human brain facilitates efficient information segregation and integration at low wiring and energy costs, which presumably results from natural selection under the pressure of a cost-efficiency balance. Moreover, the small-world organization undergoes continuous changes during normal development and ageing and exhibits dramatic alterations in neurological and psychiatric disorders. In this review, we survey recent advances regarding the small-world architecture in human brain networks and highlight the potential implications and applications in multidisciplinary fields, including cognitive neuroscience, medicine and engineering. Finally, we highlight several challenging issues and areas for future research in this rapidly growing field. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Evaluating the Relationship Between Muscle Activation and Spine Kinematics Through Wavelet Coherence.

    PubMed

    Hay, Dean C; Wachowiak, Mark P; Graham, Ryan B

    2016-10-01

    Advances in time-frequency analysis can provide new insights into the important, yet complex relationship between muscle activation (ie, electromyography [EMG]) and motion during dynamic tasks. We use wavelet coherence to compare a fundamental cyclical movement (lumbar spine flexion and extension) to the surface EMG linear envelope of 2 trunk muscles (lumbar erector spinae and internal oblique). Both muscles cohere to the spine kinematics at the main cyclic frequency, but lumbar erector spinae exhibits significantly greater coherence than internal oblique to kinematics at 0.25, 0.5, and 1.0 Hz. Coherence phase plots of the 2 muscles exhibit different characteristics. The lumbar erector spinae precedes trunk extension at 0.25 Hz, whereas internal oblique is in phase with spine kinematics. These differences may be due to their proposed contrasting functions as a primary spine mover (lumbar erector spinae) versus a spine stabilizer (internal oblique). We believe that this method will be useful in evaluating how a variety of factors (eg, pain, dysfunction, pathology, fatigue) affect the relationship between muscles' motor inputs (ie, activation measured using EMG) and outputs (ie, the resulting joint motion patterns).

  15. The evolution of pattern camouflage strategies in waterfowl and game birds.

    PubMed

    Marshall, Kate L A; Gluckman, Thanh-Lan

    2015-05-01

    Visual patterns are common in animals. A broad survey of the literature has revealed that different patterns have distinct functions. Irregular patterns (e.g., stipples) typically function in static camouflage, whereas regular patterns (e.g., stripes) have a dual function in both motion camouflage and communication. Moreover, irregular and regular patterns located on different body regions ("bimodal" patterning) can provide an effective compromise between camouflage and communication and/or enhanced concealment via both static and motion camouflage. Here, we compared the frequency of these three pattern types and traced their evolutionary history using Bayesian comparative modeling in aquatic waterfowl (Anseriformes: 118 spp.), which typically escape predators by flight, and terrestrial game birds (Galliformes: 170 spp.), which mainly use a "sit and hide" strategy to avoid predation. Given these life histories, we predicted that selection would favor regular patterning in Anseriformes and irregular or bimodal patterning in Galliformes and that pattern function complexity should increase over the course of evolution. Regular patterns were predominant in Anseriformes whereas regular and bimodal patterns were most frequent in Galliformes, suggesting that patterns with multiple functions are broadly favored by selection over patterns with a single function in static camouflage. We found that the first patterns to evolve were either regular or bimodal in Anseriformes and either irregular or regular in Galliformes. In both orders, irregular patterns could evolve into regular patterns but not the reverse. Our hypothesis of increasing complexity in pattern camouflage function was supported in Galliformes but not in Anseriformes. These results reveal a trajectory of pattern evolution linked to increasing function complexity in Galliformes although not in Anseriformes, suggesting that both ecology and function complexity can have a profound influence on pattern evolution.

  16. The evolution of pattern camouflage strategies in waterfowl and game birds

    PubMed Central

    Marshall, Kate L A; Gluckman, Thanh-Lan

    2015-01-01

    Visual patterns are common in animals. A broad survey of the literature has revealed that different patterns have distinct functions. Irregular patterns (e.g., stipples) typically function in static camouflage, whereas regular patterns (e.g., stripes) have a dual function in both motion camouflage and communication. Moreover, irregular and regular patterns located on different body regions (“bimodal” patterning) can provide an effective compromise between camouflage and communication and/or enhanced concealment via both static and motion camouflage. Here, we compared the frequency of these three pattern types and traced their evolutionary history using Bayesian comparative modeling in aquatic waterfowl (Anseriformes: 118 spp.), which typically escape predators by flight, and terrestrial game birds (Galliformes: 170 spp.), which mainly use a “sit and hide” strategy to avoid predation. Given these life histories, we predicted that selection would favor regular patterning in Anseriformes and irregular or bimodal patterning in Galliformes and that pattern function complexity should increase over the course of evolution. Regular patterns were predominant in Anseriformes whereas regular and bimodal patterns were most frequent in Galliformes, suggesting that patterns with multiple functions are broadly favored by selection over patterns with a single function in static camouflage. We found that the first patterns to evolve were either regular or bimodal in Anseriformes and either irregular or regular in Galliformes. In both orders, irregular patterns could evolve into regular patterns but not the reverse. Our hypothesis of increasing complexity in pattern camouflage function was supported in Galliformes but not in Anseriformes. These results reveal a trajectory of pattern evolution linked to increasing function complexity in Galliformes although not in Anseriformes, suggesting that both ecology and function complexity can have a profound influence on pattern evolution. PMID:26045950

  17. Complex Event Recognition Architecture

    NASA Technical Reports Server (NTRS)

    Fitzgerald, William A.; Firby, R. James

    2009-01-01

    Complex Event Recognition Architecture (CERA) is the name of a computational architecture, and software that implements the architecture, for recognizing complex event patterns that may be spread across multiple streams of input data. One of the main components of CERA is an intuitive event pattern language that simplifies what would otherwise be the complex, difficult tasks of creating logical descriptions of combinations of temporal events and defining rules for combining information from different sources over time. In this language, recognition patterns are defined in simple, declarative statements that combine point events from given input streams with those from other streams, using conjunction, disjunction, and negation. Patterns can be built on one another recursively to describe very rich, temporally extended combinations of events. Thereafter, a run-time matching algorithm in CERA efficiently matches these patterns against input data and signals when patterns are recognized. CERA can be used to monitor complex systems and to signal operators or initiate corrective actions when anomalous conditions are recognized. CERA can be run as a stand-alone monitoring system, or it can be integrated into a larger system to automatically trigger responses to changing environments or problematic situations.

  18. Formation mechanism of complex pattern on fishes' skin

    NASA Astrophysics Data System (ADS)

    Li, Xia; Liu, Shuhua

    2009-10-01

    In this paper, the formation mechanism of the complex patterns observed on the skin of fishes has been investigated by a two-coupled reaction diffusion model. The effects of coupling strength between two layers play an important role in the pattern-forming process. It is found that only the epidermis layer can produce complicated patterns that have structures on more than one length scale. These complicated patterns including super-stripe pattern, mixture of spots and stripe, and white-eye pattern are similar to the pigmentation patterns on fishes' skin.

  19. Effects of littoral habitat complexity and sunfish composition on fish production

    USGS Publications Warehouse

    Carey, Michael P.; Maloney, K.O.; Chipps, S.R.; Wahl, David H.

    2010-01-01

    Habitat complexity is a key driver of food web dynamics because physical structure dictates resource availability to a community. Changes in fish diversity can also alter trophic interactions and energy pathways in food webs. Few studies have examined the direct, indirect, and interactive effects of biodiversity and habitat complexity on fish production. We explored the effects of habitat complexity (simulated vegetation), sunfish diversity (intra‐ vs. inter‐specific sunfish), and their interaction using a mesocosm experiment. Total fish production was examined across two levels of habitat complexity (low: 161 strands m−2 and high: 714 strands m−2) and two sunfish diversity treatments: bluegill only (Lepomis macrochirus) and bluegill, redear sunfish (Lepomis microlophus), and green sunfish (Lepomis cyanellus) combination. We also measured changes in total phosphorus, phytoplankton, periphyton, and invertebrates to explain patterns in fish production. Bluegill and total fish production were unaffected by the sunfish treatments. Habitat complexity had a large influence on food web structure by shifting primary productivity from pelagic to a more littoral pathway in the high habitat treatments. Periphyton was higher with dense vegetation, leading to reductions in total phosphorus, phytoplankton, cladoceran abundance and fish biomass. In tanks with low vegetation, bluegill exhibited increased growth. Habitat complexity can alter energy flow through food webs ultimately influencing higher trophic levels. The lack of an effect of sunfish diversity on fish production does not imply that conserving biodiversity is unimportant; rather, we suggest that understanding the context in which biodiversity is important to food web dynamics is critical to conservation planning

  20. Flow-pattern identification and nonlinear dynamics of gas-liquid two-phase flow in complex networks.

    PubMed

    Gao, Zhongke; Jin, Ningde

    2009-06-01

    The identification of flow pattern is a basic and important issue in multiphase systems. Because of the complexity of phase interaction in gas-liquid two-phase flow, it is difficult to discern its flow pattern objectively. In this paper, we make a systematic study on the vertical upward gas-liquid two-phase flow using complex network. Three unique network construction methods are proposed to build three types of networks, i.e., flow pattern complex network (FPCN), fluid dynamic complex network (FDCN), and fluid structure complex network (FSCN). Through detecting the community structure of FPCN by the community-detection algorithm based on K -mean clustering, useful and interesting results are found which can be used for identifying five vertical upward gas-liquid two-phase flow patterns. To investigate the dynamic characteristics of gas-liquid two-phase flow, we construct 50 FDCNs under different flow conditions, and find that the power-law exponent and the network information entropy, which are sensitive to the flow pattern transition, can both characterize the nonlinear dynamics of gas-liquid two-phase flow. Furthermore, we construct FSCN and demonstrate how network statistic can be used to reveal the fluid structure of gas-liquid two-phase flow. In this paper, from a different perspective, we not only introduce complex network theory to the study of gas-liquid two-phase flow but also indicate that complex network may be a powerful tool for exploring nonlinear time series in practice.

  1. Global-scale modes of surface temperature variability on interannual to century timescales

    NASA Technical Reports Server (NTRS)

    Mann, Michael E.; Park, Jeffrey

    1994-01-01

    Using 100 years of global temperature anomaly data, we have performed a singluar value decomposition of temperature variations in narrow frequency bands to isolate coherent spatio-temporal modes of global climate variability. Statistical significance is determined from confidence limits obtained by Monte Carlo simulations. Secular variance is dominated by a globally coherent trend; with nearly all grid points warming in phase at varying amplitude. A smaller, but significant, share of the secular variance corresponds to a pattern dominated by warming and subsequent cooling in the high latitude North Atlantic with a roughly centennial timescale. Spatial patterns associated with significant peaks in variance within a broad period range from 2.8 to 5.7 years exhibit characteristic El Nino-Southern Oscillation (ENSO) patterns. A recent transition to a regime of higher ENSO frequency is suggested by our analysis. An interdecadal mode in the 15-to-18 years period and a mode centered at 7-to-8 years period both exhibit predominantly a North Atlantic Oscillation (NAO) temperature pattern. A potentially significant decadal mode centered on 11-to-12 years period also exhibits an NAO temperature pattern and may be modulated by the century-scale North Atlantic variability.

  2. Zoogeography of epigean freshwater Amphipoda (Crustacea) in Romania: fragmented distributions and wide altitudinal variability.

    PubMed

    Copilaș-Ciocianu, Denis; Grabowski, Michał; Pârvulescu, Lucian; Petrusek, Adam

    2014-12-08

    Inland epigean freshwater amphipods of Romania are diverse and abundant for this region has a favourable geographical position between the Balkans and the Black Sea. Excluding Ponto-Caspian species originating in brackish waters and freshwater subterranean taxa, there are 11 formally recognized epigean freshwater species recorded from this country. They belong to 3 genera, each representing a different family: Gammarus (Gammaridae, 8 species or species complexes), Niphargus (Niphargidae, 2 epigean species) and Synurella (Crangonyctidae, one species). Their large-scale distribution patterns nevertheless remain obscure due to insufficient data, consequently limiting biogeographical interpretations. We provide extensive new data with high resolution distribution maps, thus improving the knowledge of the ranges of these taxa. Gammarus species display substantial altitudinal variability and patchy, fragmented distribution patterns. They occur abundantly, particularly in springs and streams, from lowlands to sub-mountainous and mountainous regions. In the light of recent molecular research, we hypothesize that the complex geomorphological dynamics of the Carpathian region during the Late Tertiary probably contributed to their allopatric distribution pattern. Contrasting with Gammarus, the genera Niphargus and Synurella exhibit low altitudinal variability, broad ecological valences and overlapping distributions, being widespread throughout the lowlands. The current distribution of N. hrabei and N. valachicus seems to be linked to the extent of the Paratethys during the Early Pliocene or Pleistocene. We further discuss the taxonomic validity of two synonymized and one apparently undescribed taxon, and provide an updated pictorial identification key that includes all taxa and forms discussed in our study. The mosaic distribution of epigean freshwater amphipod species in Romania shows that this region is particularly suitable for phylo- and biogeographical analyses of this group.

  3. Fucosylated chondroitin sulfate oligosaccharides exert anticoagulant activity by targeting at intrinsic tenase complex with low FXII activation: Importance of sulfation pattern and molecular size.

    PubMed

    Li, Junhui; Li, Shan; Yan, Lufeng; Ding, Tian; Linhardt, Robert J; Yu, Yanlei; Liu, Xinyue; Liu, Donghong; Ye, Xingqian; Chen, Shiguo

    2017-10-20

    Fucosylated chondroitin sulfates (fCSs) are structurally unusual glycosaminoglycans isolated from sea cucumbers that exhibit potent anticoagulant activity. These fCSs were isolated from sea cucumber, Isostichopus badionotus and Pearsonothuria graeffei. Fenton reaction followed by gel filtration chromatography afforded fCS oligosaccharides, with different sulfation patterns identified by mass and NMR spectroscopy, and these were used to clarify the relationship between the structures and the anticoagulant activities of fCSs. In vitro activities were measured by activated partial thromboplastin time (APTT), thrombin time (TT), thrombin and factor Xa inhibition, and activation of FXII. The results showed that free radicals preferentially acted on GlcA residues affording oligosaccharides that were purified from both fCSs. The inhibition of thrombin and factor X activities, mediated through antithrombin III and heparin cofactor II of fCSs oligosaccharides were affected by their molecular weight and fucose branches. Oligosaccharides with different sulfation patterns of the fucose branching had a similar ability to inhibit the FXa by the intrinsic factor Xase (factor IXa-VIIIa complex). Oligosaccharides with 2,4-O-sulfo fucose branches from fCS-Ib showed higher activities than ones with 3,4-O-disulfo branches obtained from fCS-Pg. Furthermore, a heptasaccharide is the minimum size oligosaccharide required for anticoagulation and FXII activation. This activity was absent for fCS oligosaccharides smaller than nonasaccharides. Molecular size and fucose branch sulfation are important for anticoagulant activity and reduction of size can reverse the activation of FXII caused by native fCSs. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  4. Differential gene expression patterns in developing sexually dimorphic rat brain regions exposed to antiandrogenic, estrogenic, or complex endocrine disruptor mixtures: glutamatergic synapses as target.

    PubMed

    Lichtensteiger, Walter; Bassetti-Gaille, Catherine; Faass, Oliver; Axelstad, Marta; Boberg, Julie; Christiansen, Sofie; Rehrauer, Hubert; Georgijevic, Jelena Kühn; Hass, Ulla; Kortenkamp, Andreas; Schlumpf, Margret

    2015-04-01

    The study addressed the question whether gene expression patterns induced by different mixtures of endocrine disrupting chemicals (EDCs) administered in a higher dose range, corresponding to 450×, 200×, and 100× high-end human exposure levels, could be characterized in developing brain with respect to endocrine activity of mixture components, and which developmental processes were preferentially targeted. Three EDC mixtures, A-Mix (anti-androgenic mixture) with 8 antiandrogenic chemicals (di-n-butylphthalate, diethylhexylphthalate, vinclozolin, prochloraz, procymidone, linuron, epoxiconazole, and DDE), E-Mix (estrogenic mixture) with 4 estrogenic chemicals (bisphenol A, 4-methylbenzylidene camphor, 2-ethylhexyl 4-methoxycinnamate, and butylparaben), a complex mixture, AEP-Mix, containing the components of A-Mix and E-Mix plus paracetamol, and paracetamol alone, were administered by oral gavage to rat dams from gestation day 7 until weaning. General developmental endpoints were not affected by EDC mixtures or paracetamol. Gene expression was analyzed on postnatal day 6, during sexual brain differentiation, by exon microarray in medial preoptic area in the high-dose group, and by real-time RT-PCR in medial preoptic area and ventromedial hypothalamus in all dose groups. Expression patterns were mixture, sex, and region specific. Effects of the analgesic drug paracetamol, which exhibits antiandrogenic activity in peripheral systems, differed from those of A-Mix. All mixtures had a strong, mixture-specific impact on genes encoding for components of excitatory glutamatergic synapses and genes controlling migration and pathfinding of glutamatergic and GABAergic neurons, as well as genes linked with increased risk of autism spectrum disorders. Because development of glutamatergic synapses is regulated by sex steroids also in hippocampus, this may represent a general target of ECD mixtures.

  5. In search of the Golden Fleece: Unraveling principles of morphogenesis by studying the integrative biology of skin appendages

    PubMed Central

    Hughes, Michael W.; Wu, Ping; Jiang, Ting-Xin; Lin, Sung-Jan; Dong, Chen-Yuan; Li, Ang; Hsieh, Fon-Jou; Widelitz, Randall B.; Choung, Cheng Ming

    2013-01-01

    Summary The mythological story of the Golden Fleece symbolizes the magical regenerative power of skin appendages. Similar to the adventurous pursuit of the Golden Fleece by the multi-talented Argonauts, today we also need an integrated multi-disciplined approach to understand the cellular and molecular processes during development, regeneration and evolution of skin appendages. To this end, we have explored several aspects of skin appendage biology that contribute to the Turing activator / inhibitor model in feather pattern formation, the topo-biological arrangement of stem cells in organ shape determination, the macro-environmental regulation of stem cells in regenerative hair waves, and potential novel molecular pathways in the morphological evolution of feathers. Here we show our current integrative biology efforts to unravel the complex cellular behavior in patterning stem cells and the control of regional specificity in skin appendages. We use feather / scale tissue recombination to demonstrate the timing control of competence and inducibility. Feathers from different body regions are used to study skin regional specificity. Bioinformatic analyses of transcriptome microarrays show the potential involvement of candidate molecular pathways. We further show Hox genes exhibit some region specific expression patterns. To visualize real time events, we applied time-lapse movies, confocal microscopy and multiphoton microscopy to analyze the morphogenesis of cultured embryonic chicken skin explants. These modern imaging technologies reveal unexpectedly complex cellular flow and organization of extracellular matrix molecules in three dimensions. While these approaches are in preliminary stages, this perspective highlights the challenges we face and new integrative tools we will use. Future work will follow these leads to develop a systems biology view and understanding in the morphogenetic principles that govern the development and regeneration of ectodermal organs. PMID:21437328

  6. The newly expanded KSC Visitors Complex features a new ticket plaza, information center, exhibits an

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Part of the Robot Scouts exhibit in the $13 million expansion to KSC's Visitor Complex, this display offers a view of how data from robotic probes might be used to build a human habitat for Mars. Visitors witness a simulated Martian sunset. Other new additions include and information center, a walk-through Robot Scouts exhibit, a wildlife exhibit, and the film Quest for Life in a new 300-seat theater, plus an International Space Station- themed ticket plaza, featuring a structure of overhanging solar panels and astronauts performing assembly tasks. The KSC Visitor Complex was inaugurated three decades ago and is now one of the top five tourist attractions in Florida. It is located on S.R. 407, east of I-95, within the Merritt Island National Wildlife Refuge.

  7. KSC-2014-3131

    NASA Image and Video Library

    2014-07-03

    CAPE CANAVERAL, Fla. – Lights flickered and balloons fell as former NASA astronaut Tom Jones, left, and Therrin Protze, chief operating officer of Delaware North Parks and Resorts at NASA’s Kennedy Space Center Visitor Complex in Florida, welcomed guests to the grand opening of the Great Balls of Fire exhibit at the visitor complex. Great Balls of Fire shares the story of the origins of our solar system, asteroids and comets and their possible impacts and risks. The 1,500-square-foot exhibit, located in the East Gallery of the IMAX theatre at the visitor complex, features several interactive displays, real meteorites and replica asteroid models. The exhibit is a production of The Space Science Institute's National Center for Interactive Learning. It is a traveling exhibition that also receives funding from NASA and the National Science Foundation. Photo credit: NASA/Daniel Casper

  8. KSC-2014-3136

    NASA Image and Video Library

    2014-07-03

    CAPE CANAVERAL, Fla. – The grand opening of the new Great Balls of Fire exhibit was held at NASA’s Kennedy Space Center Visitor Complex in Florida. The grand opening featured remarks by former NASA astronaut Tom Jones, and Therrin Protze, chief operating officer at Delaware North Parks and Resorts at the visitor complex. Great Balls of Fire shares the story of the origins of our solar system, asteroids and comets and their possible impacts and risks. The 1,500-square-foot exhibit, located in the East Gallery of the IMAX theatre at the visitor complex, features several interactive displays, real meteorites and replica asteroid models. The exhibit is a production of The Space Science Institute's National Center for Interactive Learning. It is a traveling exhibition that also receives funding from NASA and the National Science Foundation. Photo credit: NASA/Daniel Casper

  9. KSC-2014-3134

    NASA Image and Video Library

    2014-07-03

    CAPE CANAVERAL, Fla. – A real asteroid is on display at the new Great Balls of Fire exhibit at NASA’s Kennedy Space Center Visitor Complex in Florida. The grand opening of the new attraction featured remarks by former NASA astronaut Tom Jones, and Therrin Protze, chief operating officer at Delaware North Parks and Resorts at the visitor complex. Great Balls of Fire shares the story of the origins of our solar system, asteroids and comets and their possible impacts and risks. The 1,500-square-foot exhibit, located in the East Gallery of the IMAX theatre at the visitor complex, features several interactive displays, real meteorites and replica asteroid models. The exhibit is a production of The Space Science Institute's National Center for Interactive Learning. It is a traveling exhibition that also receives funding from NASA and the National Science Foundation. Photo credit: NASA/Daniel Casper

  10. The newly expanded KSC Visitors Complex features a new ticket plaza, information center, exhibits an

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Part of the $13 million expansion to KSC's Visitor Complex, the new information center welcomes visitors to the Gateway to the Universe. The five large video walls provide an orientation video, with an introduction to the range of activities and exhibits, and honor the center's namesake, President John F. Kennedy. Other additions include a walk-through Robot Scouts exhibit, a wildlife exhibit, and the film Quest for Life in a new 300-seat theater, plus an International Space Station-themed ticket plaza, featuring a structure of overhanging solar panels and astronauts performing assembly tasks. The KSC Visitor Complex was inaugurated three decades ago and is now one of the top five tourist attractions in Florida. It is located on S.R. 407, east of I-95, within the Merritt Island National Wildlife Refuge.

  11. The newly expanded KSC Visitors Complex features a new ticket plaza, information center, exhibits an

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Part of the $13 million expansion to KSC's Visitor Complex, the new information center welcomes visitors to the Gateway to the Universe. The five large video walls provide an orientation video, with an introduction to the range of activities and exhibits, and honor the center's namesake, President John F. Kennedy. Other new additions include a walk-through Robot Scouts exhibit, a wildlife exhibit, and the film Quest for Life in a new 300-seat theater, and an International Space Station-themed ticket plaza, featuring a structure of overhanging solar panels and astronauts performing assembly tasks. The KSC Visitor Complex was inaugurated three decades ago and is now one of the top five tourist attractions in Florida. It is located on S.R. 407, east of I-95, within the Merritt Island National Wildlife Refuge.

  12. Transcriptome analysis of the painted lady butterfly, Vanessa cardui during wing color pattern development.

    PubMed

    Connahs, Heidi; Rhen, Turk; Simmons, Rebecca B

    2016-03-31

    Butterfly wing color patterns are an important model system for understanding the evolution and development of morphological diversity and animal pigmentation. Wing color patterns develop from a complex network composed of highly conserved patterning genes and pigmentation pathways. Patterning genes are involved in regulating pigment synthesis however the temporal expression dynamics of these interacting networks is poorly understood. Here, we employ next generation sequencing to examine expression patterns of the gene network underlying wing development in the nymphalid butterfly, Vanessa cardui. We identified 9, 376 differentially expressed transcripts during wing color pattern development, including genes involved in patterning, pigmentation and gene regulation. Differential expression of these genes was highest at the pre-ommochrome stage compared to early pupal and late melanin stages. Overall, an increasing number of genes were down-regulated during the progression of wing development. We observed dynamic expression patterns of a large number of pigment genes from the ommochrome, melanin and also pteridine pathways, including contrasting patterns of expression for paralogs of the yellow gene family. Surprisingly, many patterning genes previously associated with butterfly pattern elements were not significantly up-regulated at any time during pupation, although many other transcription factors were differentially expressed. Several genes involved in Notch signaling were significantly up-regulated during the pre-ommochrome stage including slow border cells, bunched and pebbles; the function of these genes in the development of butterfly wings is currently unknown. Many genes involved in ecdysone signaling were also significantly up-regulated during early pupal and late melanin stages and exhibited opposing patterns of expression relative to the ecdysone receptor. Finally, a comparison across four butterfly transcriptomes revealed 28 transcripts common to all four species that have no known homologs in other metazoans. This study provides a comprehensive list of differentially expressed transcripts during wing development, revealing potential candidate genes that may be involved in regulating butterfly wing patterns. Some differentially expressed genes have no known homologs possibly representing genes unique to butterflies. Results from this study also indicate that development of nymphalid wing patterns may arise not only from melanin and ommochrome pigments but also the pteridine pigment pathway.

  13. Complex and unexpected dynamics in simple genetic regulatory networks

    NASA Astrophysics Data System (ADS)

    Borg, Yanika; Ullner, Ekkehard; Alagha, Afnan; Alsaedi, Ahmed; Nesbeth, Darren; Zaikin, Alexey

    2014-03-01

    One aim of synthetic biology is to construct increasingly complex genetic networks from interconnected simpler ones to address challenges in medicine and biotechnology. However, as systems increase in size and complexity, emergent properties lead to unexpected and complex dynamics due to nonlinear and nonequilibrium properties from component interactions. We focus on four different studies of biological systems which exhibit complex and unexpected dynamics. Using simple synthetic genetic networks, small and large populations of phase-coupled quorum sensing repressilators, Goodwin oscillators, and bistable switches, we review how coupled and stochastic components can result in clustering, chaos, noise-induced coherence and speed-dependent decision making. A system of repressilators exhibits oscillations, limit cycles, steady states or chaos depending on the nature and strength of the coupling mechanism. In large repressilator networks, rich dynamics can also be exhibited, such as clustering and chaos. In populations of Goodwin oscillators, noise can induce coherent oscillations. In bistable systems, the speed with which incoming external signals reach steady state can bias the network towards particular attractors. These studies showcase the range of dynamical behavior that simple synthetic genetic networks can exhibit. In addition, they demonstrate the ability of mathematical modeling to analyze nonlinearity and inhomogeneity within these systems.

  14. Phonological complexity in school-aged children who stutter and exhibit a language disorder.

    PubMed

    Wolk, Lesley; LaSalle, Lisa R

    2015-03-01

    The Index of Phonological Complexity and the Word Complexity Measure are two measures of the phonological complexity of a word. Other phonological measures such as phonological neighborhood density have been used to compare stuttered versus fluent words. It appears that in preschoolers who stutter, the length and complexity of the utterance is more influential than the phonetic features of the stuttered word. The present hypothesis was that in school-age children who stutter, stuttered words would be more phonologically complex than fluent words, when the length and complexity of the utterance containing them is comparable. School-age speakers who stutter were hypothesized to differ from those with a concomitant language disorder. Sixteen speakers, six females and ten males (M age=12;3; Range=7;7 to 19;5) available from an online database, were divided into eight who had a concomitant language disorder (S+LD) and eight age- and sex-matched speakers who did not (S-Only). When all stuttered content words were identified, S+LD speakers produced more repetitions, and S-Only speakers produced more inaudible sound prolongations. When stuttered content words were matched to fluent content words and when talker groups were combined, stuttered words were significantly (p≤0.01) higher in both the Index of Phonological Complexity and the Word Complexity Measure and lower in density ("sparser") than fluent words. Results corroborate those of previous researchers. Future research directions are suggested, such as cross-sectional designs to evaluate developmental patterns of phonological complexity and stuttering plus language disordered connections. The reader will be able to: (a) Define and describe phonological complexity; (b) Define phonological neighborhood density and summarize the literature on the topic; (c) Describe the Index of Phonological Complexity (IPC) for a given word; (d) Describe the Word Complexity Measure (WCM) for a given word; (e) Summarize two findings from the current study and describe how each relates to studies of phonological complexity and fluency disorders. Copyright © 2014 Elsevier Inc. All rights reserved.

  15. Lanthanide complexes with 2-(tosylamino)benzylidene-N-benzoylhydrazone, which exhibit high NIR emission.

    PubMed

    Utochnikova, V V; Kovalenko, A D; Burlov, A S; Marciniak, L; Ananyev, I V; Kalyakina, A S; Kurchavov, N A; Kuzmina, N P

    2015-07-28

    New NIR emitting materials were found among the lanthanide complexes with 2-(tosylamino)benzylidene-N-benzoylhydrazone. Complexes of Nd(3+), Er(3+) and Yb(3+), as well as Eu(3+), Gd(3+) and Lu(3+), were synthesized for the first time. Owing to the absence of vibration quenching the ytterbium complex was found to exhibit a photoluminescence quantum yield of 1.4%. Since the sensitization efficiency was calculated to be 55%, the losses in the quantum yield are probably due to Yb-Yb resonant energy transfer.

  16. Visitor circulation and nonhuman animal welfare: an overlooked variable?

    PubMed

    Davey, Gareth; Henzi, Peter

    2004-01-01

    This article investigates visitor circulation and behaviors within a gallery of primate exhibits in relation to their possible implications for nonhuman animal welfare. When entering a primate house, the majority of visitors (84%) turned right, a pattern upheld throughout all times of the day. These findings demonstrate the existence of the "right-turn" principle, a concept previously identified and investigated in the museum setting. The existence of this circulation pattern in zoos has important implications for the practical management of animal welfare issues because unbalanced or large numbers of visitors at specific enclosures could present a stressful influence. The "direction bias" could not be attributed to demographic or behavioral traits, therefore suggesting that the principle, like similar findings from museum research, generalizes across visitor populations and, therefore, zoos. A visitor sample at another exhibit (located outside the exhibit gallery) did not display a direction bias, suggesting that the marked circulation pattern may be specific to exhibit galleries. The article discusses the significance and consequences of visitor circulation with respect to visitor management and animal welfare.

  17. Pacopampa: Early evidence of violence at a ceremonial site in the northern Peruvian highlands.

    PubMed

    Nagaoka, Tomohito; Uzawa, Kazuhiro; Seki, Yuji; Morales Chocano, Daniel

    2017-01-01

    Pacopampa, a ceremonial complex in Peru's northern highlands, reveals early evidence of trauma in the Middle to Late Formative Period coinciding with the emergence of social stratification in the area. We examine the prevalence of trauma in human remains found at the site and present evidence of the circumstances surrounding the deaths of individuals who lived during the early stages of Andean civilization. The materials are the remains of 104 individuals (38 non-adult and 66 adult) from the Middle to Late Formative Periods. We explored trauma macroscopically and recorded patterns based on skeletons' locations, age at death, sex, social class, and chronology. We detected trauma in remains over the Middle to Late Formative Periods. While the prevalence of trauma was minimal in the Middle Formative Period, skeletons from the subsequent era exhibit more severe disturbances. However, all the skeletons show signs of healing and affected individuals experienced a low degree of trauma. Given the archaeological context (the remains were recovered from sites of ceremonial practices), as well as the equal distribution of trauma among both sexes and a lack of defensive architecture, it is plausible that rituals, rather than organized warfare or raids, caused most of the exhibited trauma. Pacopampa was home to a complex society founded on ritual activity in a ceremonial center: this is indicated by the presence of ritual violence in a society that built impressively large, ceremonial architecture and developed social stratification without any political control of surplus agricultural goods.

  18. Topography and Radiative Forcing Patterns on Glaciers in the Karakoram Himalaya

    NASA Astrophysics Data System (ADS)

    Dobreva, I. D.; Bishop, M. P.; Liu, J. C.; Liang, D.

    2015-12-01

    Glaciers in the western Himalaya exhibit significant spatial variations in morphology and dynamics. Climate, topography and debris cover variations are thought to significantly affect glacier fluctuations and glacier sensitivity to climate change, although the role of topography and radiative forcing have not been adequately characterized and related to glacier fluctuations and dynamics. Consequently, we examined the glaciers in the Karakoram Himalaya, as they exhibit high spatial variability in glacier fluctuation rates and ice dynamics including flow velocity and surging. Specifically, we wanted to examine the relationships between these glacier characteristics and temporal patterns of surface irradiance over the ablation season. To accomplish this, we developed and used a rigorous GIS-based solar radiative transfer model that accounts for the direct and diffuse-skylight irradiance components. The model accounts for multiple topographic effects on the magnitude of irradiance reaching glacier surfaces. We specifically used the ASTER GDEM digital elevation model for irradiance simulations. We then examined temporal patterns of irradiance at the grid-cell level to identify the dominant patterns that were used to train a 3-layer artificial neural network. Our results demonstrate that there are unique spatial and temporal patterns associated with downwasting and surging glaciers, and that these patterns partially account for the spatial distribution of advancing and retreating glaciers. Lower-altitude terminus regions of surging glaciers exhibited relatively low surface irradiance values that decreased in magnitude with time, demonstrating that high-velocity surging glaciers facilitate relief production and exhibit steeper surface irradiance gradients with altitude. Collectively, these results demonstrate the important role that local and regional topography play in governing climate-glacier dynamics in the Himalaya.

  19. Deciphering Transcriptome and Complex Alternative Splicing Transcripts in Mammary Gland Tissues from Cows Naturally Infected with Staphylococcus aureus Mastitis

    PubMed Central

    Jiang, Qiang; Yang, Chun Hong; Zhang, Yan; Sun, Yan; Li, Rong Ling; Wang, Chang Fa; Zhong, Ji Feng; Huang, Jin Ming

    2016-01-01

    Alternative splicing (AS) contributes to the complexity of the mammalian proteome and plays an important role in diseases, including infectious diseases. The differential AS patterns of these transcript sequences between the healthy (HS3A) and mastitic (HS8A) cows naturally infected by Staphylococcus aureus were compared to understand the molecular mechanisms underlying mastitis resistance and susceptibility. In this study, using the Illumina paired-end RNA sequencing method, 1352 differentially expressed genes (DEGs) with higher than twofold changes were found in the HS3A and HS8A mammary gland tissues. Gene ontology and KEGG pathway analyses revealed that the cytokine–cytokine receptor interaction pathway is the most significantly enriched pathway. Approximately 16k annotated unigenes were respectively identified in two libraries, based on the bovine Bos taurus UMD3.1 sequence assembly and search. A total of 52.62% and 51.24% annotated unigenes were alternatively spliced in term of exon skipping, intron retention, alternative 5′ splicing and alternative 3ʹ splicing. Additionally, 1,317 AS unigenes were HS3A-specific, whereas 1,093 AS unigenes were HS8A-specific. Some immune-related genes, such as ITGB6, MYD88, ADA, ACKR1, and TNFRSF1B, and their potential relationships with mastitis were highlighted. From Chromosome 2, 4, 6, 7, 10, 13, 14, 17, and 20, 3.66% (HS3A) and 5.4% (HS8A) novel transcripts, which harbor known quantitative trait locus associated with clinical mastitis, were identified. Many DEGs in the healthy and mastitic mammary glands are involved in immune, defense, and inflammation responses. These DEGs, which exhibit diverse and specific splicing patterns and events, can endow dairy cattle with the potential complex genetic resistance against mastitis. PMID:27459697

  20. Mineralogical and geochemical evidence for hydrothermal activity at the west wall of 12°50′N core complex (Mid-Atlantic ridge): a new ultramafic-hosted seafloor hydrothermal deposit?

    USGS Publications Warehouse

    Dekov, Vesselin; Boycheva, Tanya; Halenius, Ulf; Billstrom, Kjell; Kamenov, George D.; Shanks, Wayne C.; Stummeyer, Jens

    2011-01-01

    Dredging along the west wall of the core complex at 12°50′N Mid-Atlantic Ridge sampled a number of black oxyhydroxide crusts and breccias cemented by black and dark brown oxyhydroxide matrix. Black crusts found on top of basalt clasts (rubble) are mainly composed of Mn-oxides (birnessite, 10-Å manganates) with thin films of nontronite and X-ray amorphous FeOOH on their surfaces. Their chemical composition (low trace- and rare earth-element contents, high Li and Ag concentrations, rare earth element distribution patterns with negative both Ce and Eu anomalies), Sr–Nd–Pb-isotope systematic and O-isotope data suggest low-temperature (~ 20 °C) hydrothermal deposition from a diffuse vent area on the seafloor. Mineralogical, petrographic and geochemical investigations of the breccias showed the rock clasts were hydrothermally altered fragments of MORBs. Despite the substantial mineralogical changes caused by the alteration the Sr–Nd–Pb-isotope ratios have not been significantly affected by this process. The basalt clasts are cemented by dark brown and black matrix. Dark brown cement exhibits geochemical features (very low trace- and rare earth- element contents, high U concentration, rare earth element distribution pattern with high positive Eu anomaly) and Nd–Pb-isotope systematics (similar to that of MORB) suggesting that the precursor was a primary, high-temperature Fe-sulfide, which was eventually altered to goethite at ambient seawater conditions. The data presented in this work points towards the possible existence of high- and low-temperature hydrothermal activity at the west wall of the core complex at 12°50′N Mid-Atlantic Ridge. Tectonic setting at the site implies that the proposed hydrothermal field is possibly ultramafic-hosted.

Top