Sample records for exhibit good performance

  1. Semiconducting compounds and devices incorporating same

    DOEpatents

    Marks, Tobin J; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2014-06-17

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  2. Semiconducting compounds and devices incorporating same

    DOEpatents

    Marks, Tobin J.; Facchetti, Antonio; Boudreault, Pierre-Luc; Miyauchi, Hiroyuki

    2016-01-19

    Disclosed are molecular and polymeric compounds having desirable properties as semiconducting materials. Such compounds can exhibit desirable electronic properties and possess processing advantages including solution-processability and/or good stability. Organic transistor and photovoltaic devices incorporating the present compounds as the active layer exhibit good device performance.

  3. Preparation and Characterization of Biomass-Derived Advanced Carbon Materials for Lithium-Ion Battery Applications

    NASA Astrophysics Data System (ADS)

    Hardiansyah, Andri; Chaldun, Elsy Rahimi; Nuryadin, Bebeh Wahid; Fikriyyah, Anti Khoerul; Subhan, Achmad; Ghozali, Muhammad; Purwasasmita, Bambang Sunendar

    2018-04-01

    In this study, carbon-based advanced materials for lithium-ion battery applications were prepared by using soybean waste-based biomass material, through a straightforward process of heat treatment followed by chemical modification processes. Various types of carbon-based advanced materials were developed. Physicochemical characteristics and electrochemical performance of the resultant materials were characterized systematically. Scanning electron microscopy observation revealed that the activated carbon and graphene exhibits wrinkles structures and porous morphology. Electrochemical impedance spectroscopy (EIS) revealed that both activated carbon and graphene-based material exhibited a good conductivity. For instance, the graphene-based material exhibited equivalent series resistance value of 25.9 Ω as measured by EIS. The graphene-based material also exhibited good reversibility and cyclic performance. Eventually, it would be anticipated that the utilization of soybean waste-based biomass material, which is conforming to the principles of green materials, could revolutionize the development of advanced material for high-performance energy storage applications, especially for lithium-ion batteries application.

  4. Preparation and Characterization of Biomass-Derived Advanced Carbon Materials for Lithium-Ion Battery Applications

    NASA Astrophysics Data System (ADS)

    Hardiansyah, Andri; Chaldun, Elsy Rahimi; Nuryadin, Bebeh Wahid; Fikriyyah, Anti Khoerul; Subhan, Achmad; Ghozali, Muhammad; Purwasasmita, Bambang Sunendar

    2018-07-01

    In this study, carbon-based advanced materials for lithium-ion battery applications were prepared by using soybean waste-based biomass material, through a straightforward process of heat treatment followed by chemical modification processes. Various types of carbon-based advanced materials were developed. Physicochemical characteristics and electrochemical performance of the resultant materials were characterized systematically. Scanning electron microscopy observation revealed that the activated carbon and graphene exhibits wrinkles structures and porous morphology. Electrochemical impedance spectroscopy (EIS) revealed that both activated carbon and graphene-based material exhibited a good conductivity. For instance, the graphene-based material exhibited equivalent series resistance value of 25.9 Ω as measured by EIS. The graphene-based material also exhibited good reversibility and cyclic performance. Eventually, it would be anticipated that the utilization of soybean waste-based biomass material, which is conforming to the principles of green materials, could revolutionize the development of advanced material for high-performance energy storage applications, especially for lithium-ion batteries application.

  5. Ethanol chemiresistor with enhanced discriminative ability from acetone based on Sr-doped SnO2 nanofibers.

    PubMed

    Jiang, Ziqiao; Jiang, Tingting; Wang, Jinfeng; Wang, Zhaojie; Xu, Xiuru; Wang, Zongxin; Zhao, Rui; Li, Zhenyu; Wang, Ce

    2015-01-01

    We demonstrated a new metal oxides based chemiresistor (MOC), which exhibits fast response/recovery behavior, large sensitivity, and good selectivity to ethanol, enabled by Sr-doped SnO2 nanofibers via simple electrospinning and followed by calcination. Transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray photoelectron spectra (XPS) were carefully used to characterize their morphology, structure, and composition. The ethanol sensing performances based on Sr-doped SnO2 nanofibers were investigated. Comparing with the pristine SnO2 nanofibers, enhanced ethanol sensing performances (more rapid response/recovery behavior and larger response values) have been achieved owing to the basic SnO2 surface caused by Sr-doping, whereas the acetone sensing performances have been weakened. Thus, good discriminative ability to ethanol from acetone has been realized. Additionally, Sr-doped SnO2 nanofibers also exhibit good selectivity. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. High Electron Mobility and Disorder Induced by Silver Ion Migration Lead to Good Thermoelectric Performance in the Argyrodite Ag 8 SiSe 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heep, Barbara K.; Weldert, Kai S.; Krysiak, Yasar

    Superionic chalcopyrites have recently attracted interest in their use as potential thermoelectric materials because of extraordinary low thermal conductivities. To overcome long-term stability issues in thermoelectric generators using superionic materials at evaluated temperatures, materials need to be found that show good thermoelectric performance at moderate temperatures. Here, we present the structural and thermoelectric properties of the argyrodite Ag 8SiSe 6, which exhibits promising thermoelectric performance close to room temperature.

  7. Carbon Dots/NiCo2 O4 Nanocomposites with Various Morphologies for High Performance Supercapacitors.

    PubMed

    Wei, Ji-Shi; Ding, Hui; Zhang, Peng; Song, Yan-Fang; Chen, Jie; Wang, Yong-Gang; Xiong, Huan-Ming

    2016-11-01

    A series of carbon dots/NiCo 2 O 4 composites with various morphologies are prepared and tested for supercapacitors. These samples have good electrical conductivities and efficient ions transport paths, so they exhibit high specific capacitances, superior rate performances, and high cycling stabilities. The optimal composite for hybrid supercapacitor exhibits a high energy density up to 62.0 Wh kg -1 . © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods.

    PubMed

    Yang, Gang; Xiao, Zhenghua; Long, Haiyan; Ma, Kunlong; Zhang, Junpeng; Ren, Xiaomei; Zhang, Jiang

    2018-01-25

    This comparative study aims to identify a biocompatible and effective crosslinker for preparing gelatin sponges. Glutaraldehyde (GTA), genipin (GP), 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide (EDC), and microbial transglutaminase (mTG) were used as crosslinking agents. The physical properties of the prepared samples were characterized, and material degradation was studied in vitro with various proteases and in vivo through subcutaneous implantation of the sponges in rats. Adipose-derived stromal stem cells (ADSCs) were cultured and inoculated onto the scaffolds to compare the cellular biocompatibility of the sponges. Cellular seeding efficiency and digestion time of the sponges were also evaluated. Cellular viability and proliferation in scaffolds were analyzed by fluorescence staining and MTT assay. All the samples exhibited high porosity, good swelling ratio, and hydrolysis properties; however, material strength, hydrolysis, and enzymolytic properties varied among the samples. GTA-sponge and GP-sponge possessed high compressive moduli, and EDC-sponge exhibited fast degradation performance. GTA and GP sponge implants exerted strong in vivo rejections, and the former showed poor cell growth. mTG-sponge exhibited the optimal comprehensive performance, with good porosity, compressive modulus, anti-degradation ability, and good biocompatibility. Hence, mTG-sponge can be used as a scaffold material for tissue engineering applications.

  9. Nanoparticle-Mediated Physical Exfoliation of Aqueous-Phase Graphene for Fabrication of Three-Dimensionally Structured Hybrid Electrodes.

    PubMed

    Lee, Younghee; Choi, Hojin; Kim, Min-Sik; Noh, Seonmyeong; Ahn, Ki-Jin; Im, Kyungun; Kwon, Oh Seok; Yoon, Hyeonseok

    2016-01-27

    Monodispersed polypyrrole (PPy) nanospheres were physically incorporated as guest species into stacked graphene layers without significant property degradation, thereby facilitating the formation of unique three-dimensional hybrid nanoarchitecture. The electrochemical properties of the graphene/particulate PPy (GPPy) nanohybrids were dependent on the sizes and contents of the PPy nanospheres. The nanohybrids exhibited optimum electrochemical performance in terms of redox activity, charge-transfer resistance, and specific capacitance at an 8:1 PPy/graphite (graphene precursor) weight ratio. The packing density of the alternately stacked nanohybrid structure varied with the nanosphere content, indicating the potential for high volumetric capacitance. The nanohybrids also exhibited good long-term cycling stability because of a structural synergy effect. Finally, fabricated nanohybrid-based flexible all-solid state capacitor cells exhibited good electrochemical performance in an acidic electrolyte with a maximum energy density of 8.4 Wh kg(-1) or 1.9 Wh L(-1) at a maximum power density of 3.2 kW kg(-1) or 0.7 kW L(-1); these performances were based on the mass or packing density of the electrode materials.

  10. Nanoparticle-Mediated Physical Exfoliation of Aqueous-Phase Graphene for Fabrication of Three-Dimensionally Structured Hybrid Electrodes

    PubMed Central

    Lee, Younghee; Choi, Hojin; Kim, Min-Sik; Noh, Seonmyeong; Ahn, Ki-Jin; Im, Kyungun; Kwon, Oh Seok; Yoon, Hyeonseok

    2016-01-01

    Monodispersed polypyrrole (PPy) nanospheres were physically incorporated as guest species into stacked graphene layers without significant property degradation, thereby facilitating the formation of unique three-dimensional hybrid nanoarchitecture. The electrochemical properties of the graphene/particulate PPy (GPPy) nanohybrids were dependent on the sizes and contents of the PPy nanospheres. The nanohybrids exhibited optimum electrochemical performance in terms of redox activity, charge-transfer resistance, and specific capacitance at an 8:1 PPy/graphite (graphene precursor) weight ratio. The packing density of the alternately stacked nanohybrid structure varied with the nanosphere content, indicating the potential for high volumetric capacitance. The nanohybrids also exhibited good long-term cycling stability because of a structural synergy effect. Finally, fabricated nanohybrid-based flexible all–solid state capacitor cells exhibited good electrochemical performance in an acidic electrolyte with a maximum energy density of 8.4 Wh kg−1 or 1.9 Wh L−1 at a maximum power density of 3.2 kW kg−1 or 0.7 kW L−1; these performances were based on the mass or packing density of the electrode materials. PMID:26813878

  11. A green synthesis of a layered titanate, potassium lithium titanate; lower temperature solid-state reaction and improved materials performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ogawa, Makoto, E-mail: waseda.ogawa@gmail.com; Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050; Morita, Masashi, E-mail: m-masashi@y.akane.waseda.jp

    2013-10-15

    A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassiummore » lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst.« less

  12. Thermoelectric materials and devices

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Talcott, Noel A. (Inventor)

    2011-01-01

    New thermoelectric materials comprise highly [111]-oriented twinned group IV alloys on the basal plane of trigonal substrates, which exhibit a high thermoelectric figure of merit and good material performance, and devices made with these materials.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xing, Ling-Bao; Hou, Shu-Fen; Zhou, Jin

    In present work, we demonstrate an efficient and facile strategy to fabricate three-dimensional (3D) nitrogen-doped graphene aerogels (NGAs) based on melamine, which serves as reducing and functionalizing agent of graphene oxide (GO) in an aqueous medium with ammonia. Benefiting from well-defined and cross-linked 3D porous network architectures, the supercapacitor based on the NGAs exhibited a high specific capacitance of 170.5 F g{sup −1} at 0.2 A g{sup −1}, and this capacitance also showed good electrochemical stability and a high degree of reversibility in the repetitive charge/discharge cycling test. More interestingly, the prepared NGAs further exhibited high adsorption capacities and highmore » recycling performance toward several metal ions such as Pb{sup 2+}, Cu{sup 2+} and Cd{sup 2+}. Moreover, the hydrophobic carbonized nitrogen-doped graphene aerogels (CNGAs) showed outstanding adsorption and recycling performance for the removal of various oils and organic solvents. - Graphical abstract: Three-dimensional nitrogen-doped graphene aerogels were prepared by using melamine as reducing and functionalizing agent in an aqueous medium with ammonia, which showed multifunctional applications in supercapacitors and adsorption. - Highlights: • Three-dimensional nitrogen-doped graphene aerogels (NGAs) were prepared. • Melamine was used as reducing and functionalizing agent. • NGAs exhibited relatively good electrochemical properties in supercapacitor. • NGAs exhibited high adsorption performance toward several metal ions. • CNGAs showed outstanding adsorption capacities for various oils and solvents.« less

  14. Peer assessment of aviation performance: inconsistent for good reasons.

    PubMed

    Roth, Wolff-Michael; Mavin, Timothy J

    2015-03-01

    Research into expertise is relatively common in cognitive science concerning expertise existing across many domains. However, much less research has examined how experts within the same domain assess the performance of their peer experts. We report the results of a modified think-aloud study conducted with 18 pilots (6 first officers, 6 captains, and 6 flight examiners). Pairs of same-ranked pilots were asked to rate the performance of a captain flying in a critical pre-recorded simulator scenario. Findings reveal (a) considerable variance within performance categories, (b) differences in the process used as evidence in support of a performance rating, (c) different numbers and types of facts (cues) identified, and (d) differences in how specific performance events affect choice of performance category and gravity of performance assessment. Such variance is consistent with low inter-rater reliability. Because raters exhibited good, albeit imprecise, reasons and facts, a fuzzy mathematical model of performance rating was developed. The model provides good agreement with observed variations. Copyright © 2014 Cognitive Science Society, Inc.

  15. Spectral, thermal, XRD and SEM studies of charge-transfer complexation of hexamethylenediamine and three types of acceptors: π-, σ- and vacant orbital acceptors that include quinol, picric acid, bromine, iodine, SnCl4 and ZnCl2 acceptors

    NASA Astrophysics Data System (ADS)

    Adam, Abdel Majid A.; Refat, Moamen S.; Saad, Hosam A.

    2013-11-01

    In this work, structural, thermal, morphological and pharmacological characterization was performed on the interactions between a hexamethylenediamine (HMDA) donor and three types of acceptors to understand the complexation behavior of diamines. The three types of acceptors include π-acceptors (i.e., quinol (QL) and picric acid (PA)), σ-acceptors (i.e., bromine and iodine) and vacant orbital acceptors (i.e., tin(IV) tetrachloride (SnCl4) and zinc chloride (ZnCl2)). The characterization of the obtained CT complexes was performed using elemental analysis, infrared (IR), Raman, 1H NMR and electronic absorption spectroscopy, powder X-ray diffraction (XRD) and thermogravimetric (TG) analysis. Their morphologies were studied using scanning electron microscopy with energy-dispersive X-ray analysis (SEM-EDX). The biological activities of the obtained CT complexes were tested for their antibacterial activities. The complex containing the QL acceptor exhibited a remarkable electronic spectrum with a strong, broad absorption band, which had an observed λmax that was at a much longer wavelength than those of the free reactants. In addition, this complex exhibited strong antimicrobial activities against various bacterial and fungal strains compared to standard drugs. The complexes containing the PA, iodine, Sn(IV) and Zn(II) acceptors exhibited good thermal stability up to 240, 330, 275 and 295 °C, respectively. The complexes containing bromine, Sn(IV) and Zn(II) acceptors exhibited good crystallinity. In addition to its good crystallinity properties, the complex containing the bromine acceptor exhibits a remarkable morphology feature.

  16. Method of improving system performance and survivability through changing function

    NASA Technical Reports Server (NTRS)

    Hinchey, Michael G. (Inventor); Vassev, Emil I. (Inventor)

    2012-01-01

    A biologically-inspired system and method is provided for self-adapting behavior of swarm-based exploration missions, whereby individual components, for example, spacecraft, in the system can sacrifice themselves for the greater good of the entire system. The swarm-based system can exhibit emergent self-adapting behavior. Each component can be configured to exhibit self-sacrifice behavior based on Autonomic System Specification Language (ASSL).

  17. Low-loss electromagnetic composites for RF and microwave applications.

    PubMed

    Wang, Hong; Yang, Haibo; Xiang, Feng; Yao, Xi

    2011-09-01

    Low-loss electromagnetic composites with high permittivity and permeability will benefit the miniaturization and multifunctional of RF devices. A kind of low-loss dielectric-magnetic ceramic-ceramic composite was developed by hybrid processing technology with the goal of integrating the dielectric properties and magnetic properties. The hybrid processing technology exhibits the advantage of lowered sintering temperatures for the composites while retaining good microstructure and high performance. By introducing elastomer as matrix, a kind of flexible low-loss dielectric-magnetic ceramic-polymer composite was prepared and studied. The obtained flexible dielectric-magnetic ceramic-polymer composite exhibited low loss and good mechanical properties. The results show good effects on lowering the dielectric loss and extending the cut-off magnetic frequency of the electromagnetic composite. Methods for tailoring the properties of the multifunctional composites were proposed and discussed.

  18. Prediction of pump cavitation performance

    NASA Technical Reports Server (NTRS)

    Moore, R. D.

    1974-01-01

    A method for predicting pump cavitation performance with various liquids, liquid temperatures, and rotative speeds is presented. Use of the method requires that two sets of test data be available for the pump of interest. Good agreement between predicted and experimental results of cavitation performance was obtained for several pumps operated in liquids which exhibit a wide range of properties. Two cavitation parameters which qualitatively evaluate pump cavitation performance are also presented.

  19. Lower-limb kinematics of single-leg squat performance in young adults.

    PubMed

    Horan, Sean A; Watson, Steven L; Carty, Christopher P; Sartori, Massimo; Weeks, Benjamin K

    2014-01-01

    To determine the kinematic parameters that characterize good and poor single-leg squat (SLS) performance. A total of 22 healthy young adults free from musculoskeletal impairment were recruited for testing. For each SLS, both two-dimensional video and three-dimensional motion analysis data were collected. Pelvis, hip, and knee angles were calculated using a reliable and validated lower-limb (LL) biomechanical model. Two-dimensional video clips of SLSs were blindly assessed in random order by eight musculoskeletal physiotherapists using a 10-point ordinal scale. To facilitate between-group comparisons, SLS performances were stratified by tertiles corresponding to poor, intermediate, and good SLS performance. Mean ratings of SLS performance assessed by physiotherapists were 8.3 (SD 0.5), 6.8 (SD 0.7), and 4.0 (SD 0.8) for good, intermediate, and poor squats, respectively. Three-dimensional analysis revealed that people whose SLS performance was assessed as poor exhibited increased hip adduction, reduced knee flexion, and increased medio-lateral displacement of the knee joint centre compared to those whose SLS performance was assessed as good (p≤0.05). Overall, poor SLS performance is characterized by inadequate knee flexion and excessive frontal plane motion of the knee and hip. Future investigations of SLS performance should consider standardizing knee flexion angle to illuminate other influential kinematic parameters.

  20. Reading comprehension in adolescents with ADHD: exploring the poor comprehender profile and individual differences in vocabulary and executive functions.

    PubMed

    Martinussen, Rhonda; Mackenzie, Genevieve

    2015-03-01

    The overall objective of this study was to investigate reading comprehension in youth with and without a prior diagnosis of attention-deficit hyperactivity disorder (ADHD). The first goal was to determine whether youth with and without ADHD matched in word reading ability exhibited differences in reading comprehension proficiency. The next goal was to determine whether good and poor comprehenders within the ADHD subgroup differed from each other on language and academic achievement measures. The third objective was to examine whether word recognition or oral vocabulary knowledge mediated the effect of ADHD symptoms on reading comprehension performance. Youth with ADHD scored significantly lower than the comparison youth on a standardized measure of reading comprehension. Relative to good comprehenders with ADHD, poor comprehenders with ADHD exhibited weaknesses in expressive vocabulary, mathematical reasoning, written expression, and exhibited more executive function (EF) difficulties as reported by the teacher. Expressive vocabulary and word reading, but not teacher EF ratings, accounted for unique variance in reading comprehension performance and mediated the relationship between ADHD symptoms and reading comprehension. Implications for further research and educational practice are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Electrochemical properties of new organic radical materials for lithium secondary batteries

    NASA Astrophysics Data System (ADS)

    Lee, Seo Hwan; Kim, Jae-Kwang; Cheruvally, Gouri; Choi, Jae-Won; Ahn, Jou-Hyeon; Chauhan, Ghanshyam S.; Song, Choong Eui

    The use of ionic liquid (IL)-supported organic radicals as cathode-active materials in lithium secondary batteries is reported in this article. Two different types of IL-supported organic radicals based on the 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) radical and imidazolium hexafluorophosphate IL were synthesized. The first type is a mono-radical with one unit of TEMPO and the second is a symmetrical di-radical with 2 U of TEMPO; both are viscous liquids at 25 °C. The radicals exhibit electrochemical activity at ∼3.5 V versus Li/Li + as revealed in the cyclic voltammetry tests. The organic radical batteries (ORBs) with these materials as the cathode, a lithium metal anode and 1 M LiPF 6 in EC/DMC electrolyte exhibited good performance at room temperature during the charge-discharge and cycling tests. The batteries exhibited specific capacities of 59 and 80 mAh g -1 at 1 C-rate with the mono- and di-radicals as the cathodes, respectively, resulting in 100% utilization of the materials. The performance degradation with increasing C-rate is very minimal for the ORBs, thus demonstrating good rate capability.

  2. Porous WO3/graphene/polyester textile electrode materials with enhanced electrochemical performance for flexible solid-state supercapacitors.

    PubMed

    Jin, Li-Na; Liu, Ping; Jin, Chun; Zhang, Jia-Nan; Bian, Shao-Wei

    2018-01-15

    In this work, a flexible and porous WO 3 /grapheme/polyester (WO 3 /G/PT) textile electrode was successfully prepared by in situ growing WO 3 on the fiber surface inside G/PT composite fabrics. The unique electrode structure facilitates to enhance the energy storage performance because the 3D conductive network constructed by the G/PT increase the electron transportation rate, nanotructured WO 3 exposed enhanced electrochemically active surface area and the hierarchically porous structure improved the electrolyte ion diffusion rate. The optimized WO 3 /G/PT textile electrode exhibited good electrochemical performance with a high areal capacitance of 308.2mFcm -2 at a scan rate of 2mVs -1 and excellent cycling stability. A flexible asymmetric supercapacitor (ASC) device was further fabricated by using the WO 3 /G/PT electrode and G/PT electrode, which exhibited a good specific capacitance of 167.6mFcm -3 and high energy density of 60μWhcm -3 at the power density of 2320 μWcm -3 . Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Intelligence related upper alpha desynchronization in a semantic memory task.

    PubMed

    Doppelmayr, M; Klimesch, W; Hödlmoser, K; Sauseng, P; Gruber, W

    2005-07-30

    Recent evidence shows that event-related (upper) alpha desynchronization (ERD) is related to cognitive performance. Several studies observed a positive, some a negative relationship. The latter finding, interpreted in terms of the neural efficiency hypothesis, suggests that good performance is associated with a more 'efficient', smaller extent of cortical activation. Other studies found that ERD increases with semantic processing demands and that this increase is larger for good performers. Studies supporting the neural efficiency hypothesis used tasks that do not specifically require semantic processing. Thus, we assume that the lack of semantic processing demands may at least in part be responsible for the reduced ERD. In the present study we measured ERD during a difficult verbal-semantic task. The findings demonstrate that during semantic processing, more intelligent (as compared to less intelligent) subjects exhibited a significantly larger upper alpha ERD over the left hemisphere. We conclude that more intelligent subjects exhibit a more extensive activation in a semantic processing system and suggest that divergent findings regarding the neural efficiency hypotheses are due to task specific differences in semantic processing demands.

  4. Mechanical and Electrochemical Performance of Graphene-Based Flexible Supercapacitors

    DTIC Science & Technology

    2014-08-01

    Charge/ discharge testing of a packaged, flexible, graphene-based supercapacitor using 0.5 M K2SO4 electrolyte...the use of electrochemical double-layer capacitors (commonly referred to as “supercapacitors”) for high power charging/ discharging and long cyclic...exhibit rapid charging/ discharging and good performance over a wide temperature range. 1 Supercapacitors may prove useful as a standalone power

  5. Self-assembled Li 3V 2(PO 4) 3/reduced graphene oxide multilayer composite prepared by sequential adsorption

    DOE PAGES

    Kim, Myeong-Seong; Bak, Seong-Min; Lee, Suk-Woo; ...

    2017-09-26

    Here in this paper, we report on Li 3V 2(PO 4) 3 (LVP)/reduced graphene oxide (rGO) multilayer composites prepared via a sequential adsorption method and subsequent heat treatment, and their use as cathodes for high-rate lithium-ion batteries. The sequential adsorption process includes adsorbing oppositely charged components of anionic inorganic species and cationic head of a surfactant adsorbed to graphite oxide sheets, which is a key step in the fabrication of the LVP/rGO multilayer composites. The multilayer structure has open channels between the highly conductive rGO layers while achieving a relatively high tap density, which could effectively improve the rate capability.more » Consequently, the LVP/rGO multilayer composites exhibit a high tap density (0.6 g cm -3) and good electrochemical properties. Specifically, in the voltage range of 3.0–4.3 V, the composite exhibits a specific capacity of 131 mAh g -1 at 0.1C, a good rate capabilities (88% capacity retention at 60C), and long cycling performance (97% capacity retention after 500 cycles at 10C). Moreover, in the extended voltage range of 3.0–4.8 V, it exhibits a high specific capacity of 185 mAh g -1 at 0.2C, a good rate capability (66% capacity retention at 30C), and stable cycling performance (96% capacity retention after 500 cycles at 10C).« less

  6. Self-assembled Li 3V 2(PO 4) 3/reduced graphene oxide multilayer composite prepared by sequential adsorption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Myeong-Seong; Bak, Seong-Min; Lee, Suk-Woo

    Here in this paper, we report on Li 3V 2(PO 4) 3 (LVP)/reduced graphene oxide (rGO) multilayer composites prepared via a sequential adsorption method and subsequent heat treatment, and their use as cathodes for high-rate lithium-ion batteries. The sequential adsorption process includes adsorbing oppositely charged components of anionic inorganic species and cationic head of a surfactant adsorbed to graphite oxide sheets, which is a key step in the fabrication of the LVP/rGO multilayer composites. The multilayer structure has open channels between the highly conductive rGO layers while achieving a relatively high tap density, which could effectively improve the rate capability.more » Consequently, the LVP/rGO multilayer composites exhibit a high tap density (0.6 g cm -3) and good electrochemical properties. Specifically, in the voltage range of 3.0–4.3 V, the composite exhibits a specific capacity of 131 mAh g -1 at 0.1C, a good rate capabilities (88% capacity retention at 60C), and long cycling performance (97% capacity retention after 500 cycles at 10C). Moreover, in the extended voltage range of 3.0–4.8 V, it exhibits a high specific capacity of 185 mAh g -1 at 0.2C, a good rate capability (66% capacity retention at 30C), and stable cycling performance (96% capacity retention after 500 cycles at 10C).« less

  7. Development of biodegradable materials; balancing degradability and performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mayer, J.M.; Allen, A.L.; Dell, P.A.

    1993-12-31

    The development of biodegradable materials suitable for packaging must take into consideration various performance criteria such as mechanical and barrier properties, as well as rate of biodegradability in given environments. Individual or blended biopolymer films were obtained commercially or blown into film in the laboratory and tested for tensile strength, ultimate elongation and oxygen barrier. These films were then subjected to accelerated marine biodegradation tests as well as simulated marine respirometry. Starch/ethylene vinyl alcohol films exhibited good mechanical and excellent oxygen barrier properties, but were very slow to biodegrade in the simulated and excellent oxygen barrier properties, but were verymore » slow to biodegrade in the simulated marine environment. Polyhydroxyalkanoates had good mechanical properties, average oxygen barrier and good biodegradability. Data indicate that performance and biodegradability of packaging can be tailored to needs by combining individual biopolymers in different proportions in blends and laminates.« less

  8. Free-standing anode of N-doped carbon nanofibers containing SnO{sub x} for high-performance lithium batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zou, Mingzhong; Li, Jiaxin, E-mail: ljx3012982@yahoo.com; Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002

    2014-12-15

    Highlights: • Self-standing SnO{sub x} N-CNF electrodes were synthesized by electrospinning. • The SnO{sub x} N-CNFs anode exhibits high capacity, good cyclic stability, and excellent rate performance for lithium ion batteries. • The enhanced performance is ascribed to the synergetic effects between N-CNFs and SnO{sub x} nanoparticles. - Abstract: Free-standing paper of N-doped carbon nanofibers (NCNFs) containing SnO{sub x} was prepared by electrospinning. The structure and morphology of the sample were analyzed by XRD, XPS, SEM, and TEM. The results show that nitrogen atoms were successfully doped into CNFs. The SnO{sub x} were homogenously embedded in the N-doped CNFs viamore » annealing treatment. Subsequently, the SnO{sub x} NCNF paper was cut into disks and used as anodes for lithium ion batteries (LIBs). The anodes of SnO{sub x} NCNFs exhibit excellent cycling stability and show high capacity of 520 mA h g{sup −1} tested at a 200 mA g{sup −1} after 100 cycles. More importantly, at a high current density of 500 mA g{sup −1}, a large reversible capacity of 430 mA h g{sup −1} after 100 cycles can still be obtained. The good electrochemical performance should be attributed to the good electronic conductivity from the NCNFs and the synergistic effects from NCNFs and SnO{sub x} materials.« less

  9. High‐Performance Lithium‐Oxygen Battery Electrolyte Derived from Optimum Combination of Solvent and Lithium Salt

    PubMed Central

    Ahn, Su Mi; Suk, Jungdon; Kim, Do Youb; Kim, Hwan Kyu

    2017-01-01

    Abstract To fabricate a sustainable lithium‐oxygen (Li‐O2) battery, it is crucial to identify an optimum electrolyte. Herein, it is found that tetramethylene sulfone (TMS) and lithium nitrate (LiNO3) form the optimum electrolyte, which greatly reduces the overpotential at charge, exhibits superior oxygen efficiency, and allows stable cycling for 100 cycles. Linear sweep voltammetry (LSV) and differential electrochemical mass spectrometry (DEMS) analyses reveal that neat TMS is stable to oxidative decomposition and exhibit good compatibility with a lithium metal. But, when TMS is combined with typical lithium salts, its performance is far from satisfactory. However, the TMS electrolyte containing LiNO3 exhibits a very low overpotential, which minimizes the side reactions and shows high oxygen efficiency. LSV‐DEMS study confirms that the TMS‐LiNO3 electrolyte efficiently produces NO2 −, which initiates a redox shuttle reaction. Interestingly, this NO2 −/NO2 redox reaction derived from the LiNO3 salt is not very effective in solvents other than TMS. Compared with other common Li‐O2 solvents, TMS seems optimum solvent for the efficient use of LiNO3 salt. Good compatibility with lithium metal, high dielectric constant, and low donicity of TMS are considered to be highly favorable to an efficient NO2 −/NO2 redox reaction, which results in a high‐performance Li‐O2 battery. PMID:29051863

  10. High-Performance Lithium-Oxygen Battery Electrolyte Derived from Optimum Combination of Solvent and Lithium Salt.

    PubMed

    Ahn, Su Mi; Suk, Jungdon; Kim, Do Youb; Kang, Yongku; Kim, Hwan Kyu; Kim, Dong Wook

    2017-10-01

    To fabricate a sustainable lithium-oxygen (Li-O 2 ) battery, it is crucial to identify an optimum electrolyte. Herein, it is found that tetramethylene sulfone (TMS) and lithium nitrate (LiNO 3 ) form the optimum electrolyte, which greatly reduces the overpotential at charge, exhibits superior oxygen efficiency, and allows stable cycling for 100 cycles. Linear sweep voltammetry (LSV) and differential electrochemical mass spectrometry (DEMS) analyses reveal that neat TMS is stable to oxidative decomposition and exhibit good compatibility with a lithium metal. But, when TMS is combined with typical lithium salts, its performance is far from satisfactory. However, the TMS electrolyte containing LiNO 3 exhibits a very low overpotential, which minimizes the side reactions and shows high oxygen efficiency. LSV-DEMS study confirms that the TMS-LiNO 3 electrolyte efficiently produces NO 2 - , which initiates a redox shuttle reaction. Interestingly, this NO 2 - /NO 2 redox reaction derived from the LiNO 3 salt is not very effective in solvents other than TMS. Compared with other common Li-O 2 solvents, TMS seems optimum solvent for the efficient use of LiNO 3 salt. Good compatibility with lithium metal, high dielectric constant, and low donicity of TMS are considered to be highly favorable to an efficient NO 2 - /NO 2 redox reaction, which results in a high-performance Li-O 2 battery.

  11. EVALUATION OF A PORTABLE FOURIER TRANSFORM INFRARED GAS ANALYZER FOR MEASUREMENTS OF AIR TOXICS IN POLLUTION PREVENTION RESEARCH

    EPA Science Inventory

    A portable Fourier transform infrared gas analyzer with a photoacoustic detector performed reliably during pollution prevention research at two industrial facilities. It exhibited good agreement (within approximately 6%) with other analytical instruments (dispersive infrared and ...

  12. Enhanced electrochromic and energy storage performance in mesoporous WO3 film and its application in a bi-functional smart window.

    PubMed

    Wang, Wei-Qi; Wang, Xiu-Li; Xia, Xin-Hui; Yao, Zhu-Jun; Zhong, Yu; Tu, Jiang-Ping

    2018-05-03

    Construction of multifunctional photoelectrochemical energy devices is of great importance to energy saving. In this study, we have successfully prepared a mesoporous WO3 film on FTO glass via a facile dip-coating sol-gel method; the designed mesoporous WO3 film exhibited advantages including high transparency, good adhesion and high porosity. Also, multifunctional integrated energy storage and optical modulation ability are simultaneously achieved by the mesoporous WO3 film. Impressively, the mesoporous WO3 film exhibits a noticeable electrochromic energy storage performance with a large optical modulation up to 75.6% at 633 nm, accompanied by energy storage with a specific capacity of 75.3 mA h g-1. Furthermore, a full electrochromic energy storage window assembled with the mesoporous WO3 anode and PANI nanoparticle cathode is demonstrated with large optical modulation and good long-term stability. Our research provides a new route to realize the coincident utilization of optical-electrochemical energy.

  13. High-performance PbS quantum dot vertical field-effect phototransistor using graphene as a transparent electrode

    NASA Astrophysics Data System (ADS)

    Che, Yongli; Zhang, Yating; Cao, Xiaolong; Song, Xiaoxian; Zhang, Haiting; Cao, Mingxuan; Dai, Haitao; Yang, Junbo; Zhang, Guizhong; Yao, Jianquan

    2016-12-01

    Solution processed photoactive PbS quantum dots (QDs) were used as channel in high-performance near-infrared vertical field-effect phototransistor (VFEpT) where monolayer graphene embedded as transparent electrode. In this vertical architecture, the PbS QD channel was sandwiched and naturally protected between the drain and source electrodes, which made the device ultrashort channel length (110 nm) simply the thickness of the channel layer. The VFEpT exhibited ambipolar operation with high mobilities of μe = 3.5 cm2/V s in n-channel operation and μh = 3.3 cm2/V s in p-channel operation at low operation voltages. By using the photoactive PbS QDs as channel material, the VFEpT exhibited good photoresponse properties with a responsivity of 4.2 × 102 A/W, an external quantum efficiency of 6.4 × 104% and a photodetectivity of 2.1 × 109 Jones at the light irradiance of 36 mW/cm2. Additionally, the VFEpT showed excellent on/off switching with good stability and reproducibility and fast response speed with a short rise time of 12 ms in n-channel operation and 10.6 ms in p-channel operation. These high mobilities, good photoresponse properties and simplistic fabrication of our VFEpTs provided a facile route to the high-performance inorganic photodetectors.

  14. Hierarchical NiCo2 O4 nanosheets grown on Ni nanofoam as high-performance electrodes for supercapacitors.

    PubMed

    Gao, Guoxin; Wu, Hao Bin; Ding, Shujiang; Liu, Li-Min; Lou, Xiong Wen David

    2015-02-18

    A high-performance electrode for supercapacitors is designed and synthesized by growing electroactive NiCo2 O4 nanosheets on conductive Ni nanofoam. Because of the structural advantages, the as-prepared Ni@NiCo2 O4 hybrid nanostructure exhibits significantly improved electrochemical performance with high capacitance, excellent rate capability, and good cycling stability. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Nitrogen-doped 3D flower-like carbon materials derived from polyimide as high-performance anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Qiong; Liu, Jiaqi; Yuan, Chenpei; Li, Qiang; Wang, Heng-guo

    2017-12-01

    Nitrogen-doped 3D flower-like carbon materials (NFCs) have been fabricated using a simple and effective strategy, namely, the hierarchical assembly of polyimide (PI) and subsequent thermal treatment. The effect of pyrolysis temperature on the structural evolution process of PI is also investigated systematically. When evaluated as anode materials for lithium ion batteries (LIBs), the as-obtained NFCs, especially NFCs-550, exhibit good electrochemical performance, including a high reversible capacity (1488.1 mAh g-1 at 0.05 A g-1), excellent rate performance (287.6 mAh g-1 at 2 A g-1), and good cycling stability (645 mAh g-1 with 96% retention after 300 cycles at 0.1 A g-1). The good electrochemical performance is attributed to the synergistic effect between 3D flower-like nanostructure and high nitrogen content. This approach may provide some inspiration to construct a series of heteroatom doped and hierarchical structured carbon materials using polymers for LIBs.

  16. High performance and reusable SERS substrates using Ag/ZnO heterostructure on periodic silicon nanotube substrate

    NASA Astrophysics Data System (ADS)

    Lai, Yi-Chen; Ho, Hsin-Chia; Shih, Bo-Wei; Tsai, Feng-Yu; Hsueh, Chun-Hway

    2018-05-01

    Surface-enhanced Raman scattering (SERS) substrate with a higher surface area, enhanced light harvesting, multiple hot spots and strong electromagnetic field enhancements would exhibit enhanced Raman signals. Herein, the Ag nanoparticle/ZnO nanowire heterostructure decorated periodic silicon nanotube (Ag@ZnO@SiNT) substrate was proposed and fabricated. The proposed structure employed as SERS-active substrate was examined, and the results showed both the high performance in terms of high sensitivity and good reproducibility. Furthermore, the Ag@ZnO@SiNT substrate demonstrated the self-cleaning performance through the photocatalytic degradation of probed molecules upon UV-irradiation. The results showed that the proposed nanostructure had high performance, good reproducibility and reusability, and it is a promising SERS-active substrate for molecular sensing and cleaning.

  17. Application of distributed optical fiber sensing technologies to the monitoring of leakage and abnormal disturbance of oil pipeline

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojun; Zhu, Xiaofei; Deng, Chi; Li, Junyi; Liu, Cheng; Yu, Wenpeng; Luo, Hui

    2017-10-01

    To improve the level of management and monitoring of leakage and abnormal disturbance of long distance oil pipeline, the distributed optical fiber temperature and vibration sensing system is employed to test the feasibility for the healthy monitoring of a domestic oil pipeline. The simulating leakage and abnormal disturbance affairs of oil pipeline are performed in the experiment. It is demonstrated that the leakage and abnormal disturbance affairs of oil pipeline can be monitored and located accurately with the distributed optical fiber sensing system, which exhibits good performance in the sensitivity, reliability, operation and maintenance etc., and shows good market application prospect.

  18. Theoretical study of surface plasmon resonance sensors based on 2D bimetallic alloy grating

    NASA Astrophysics Data System (ADS)

    Dhibi, Abdelhak; Khemiri, Mehdi; Oumezzine, Mohamed

    2016-11-01

    A surface plasmon resonance (SPR) sensor based on 2D alloy grating with a high performance is proposed. The grating consists of homogeneous alloys of formula MxAg1-x, where M is gold, copper, platinum and palladium. Compared to the SPR sensors based a pure metal, the sensor based on angular interrogation with silver exhibits a sharper (i.e. larger depth-to-width ratio) reflectivity dip, which provides a big detection accuracy, whereas the sensor based on gold exhibits the broadest dips and the highest sensitivity. The detection accuracy of SPR sensor based a metal alloy is enhanced by the increase of silver composition. In addition, the composition of silver which is around 0.8 improves the sensitivity and the quality of SPR sensor of pure metal. Numerical simulations based on rigorous coupled wave analysis (RCWA) show that the sensor based on a metal alloy not only has a high sensitivity and a high detection accuracy, but also exhibits a good linearity and a good quality.

  19. NASA in the Park, 2018

    NASA Image and Video Library

    2018-06-20

    NASA in the Park on June 16 in Huntsville featured more than 60 exhibits and demonstrations by NASA experts, as well as performances by Marshall musicians, educational opportunities, games and hands-on activities for all ages. Big Spring canal is a good place to cool off in the 90 degree heat

  20. Outdoor Leadership Evaluation: Nature and Scope of the Problem.

    ERIC Educational Resources Information Center

    James, Leroy M.

    Beyond the ability to exhibit good judgment and common sense while performing duties as a leader under stress and pressure, an outdoor adventure program leader should possess technical skills, human relations skills, and philosophical understanding of outdoor programming. Technical skills include knowledge of initiatives/ropes course activities,…

  1. Teachers' Self Efficacy: Is Reporting Non-Significant Results Essential?

    ERIC Educational Resources Information Center

    Moalosi, Smitta Waitshega Tefo

    2013-01-01

    Self-efficacious teachers are viewed as having the ability to organize relevant activities, patient with students who are struggling in learning, and spending more time designing relevant teaching activities. The teachers exhibit good performance and probably remain committed to their work. And they are committed to organizing appropriate teaching…

  2. Preparation, ferromagnetic and photocatalytic performance of NiO and hollow Co{sub 3}O{sub 4} fibers through centrifugal-spinning technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Cong; Lin, Xuejun; Wang, Xinqiang, E-mail: xqwang@sdu.edu.cn

    Highlights: • NiO and hollow Co{sub 3}O{sub 4} fibers with the diameter of about 10 μm were prepared through centrifugal-spinning technique. • The evolution mechanism from precursor to crystalline fibers was explored. • Both NiO and hollow Co{sub 3}O{sub 4} fibers show ferromagnetism. • The NiO fibers exhibit good photocatalytic performance. - Abstract: Both NiO and hollow Co{sub 3}O{sub 4} fibers with the diameter of about 10 μm have been successfully prepared through spinning high viscous sols into precursor fibers and followed calcination process. The evolution process from precursor to crystalline fibers and the microstructures of the obtained fibers weremore » characterized by TG-DSC, FT-IR, XRD, HRTEM, SEM and the like. The method is facile and cost-effective for mass production of fibers and the obtained fibers are pure phase with high crystallinity. Their magnetic properties were investigated, showing that both the fibers are ferromagnetic. Meanwhile, the NiO fibers exhibit good photocatalytic performance for the removal of Congo red from water under UV light irradiation.« less

  3. Advances in TlBr detector development

    NASA Astrophysics Data System (ADS)

    Hitomi, Keitaro; Shoji, Tadayoshi; Ishii, Keizo

    2013-09-01

    Thallium bromide (TlBr) is a promising compound semiconductor for fabrication of gamma-ray detectors. The attractive physical properties of TlBr lie in its high photon stopping power, high resistivity and good charge transport properties. Gamma-ray detectors fabricated from TlBr crystals have exhibited excellent spectroscopic performance. In this paper, advances in TlBr radiation detector development are reviewed with emphasis on crystal growth, detector fabrication, physical properties and detector performance.

  4. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites.

    PubMed

    Li, Zijiong; Zhou, Zhihua; Yun, Gaoqian; Shi, Kai; Lv, Xiaowei; Yang, Baocheng

    2013-11-12

    In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g-1 at a scan rate of 5 mV.s-1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors.

  5. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites

    NASA Astrophysics Data System (ADS)

    Li, Zijiong; Zhou, Zhihua; Yun, Gaoqian; Shi, Kai; Lv, Xiaowei; Yang, Baocheng

    2013-11-01

    In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g-1 at a scan rate of 5 mV.s-1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors.

  6. High-performance solid-state supercapacitors based on graphene-ZnO hybrid nanocomposites

    PubMed Central

    2013-01-01

    In this paper, we report a facile low-cost synthesis of the graphene-ZnO hybrid nanocomposites for solid-state supercapacitors. Structural analysis revealed a homogeneous distribution of ZnO nanorods that are inserted in graphene nanosheets, forming a sandwiched architecture. The material exhibited a high specific capacitance of 156 F g−1 at a scan rate of 5 mV.s−1. The fabricated solid-state supercapacitor device using these graphene-ZnO hybrid nanocomposites exhibits good supercapacitive performance and long-term cycle stability. The improved supercapacitance property of these materials could be ascribed to the increased conductivity of ZnO and better utilization of graphene. These results demonstrate the potential of the graphene-ZnO hybrid nanocomposites as an electrode in high-performance supercapacitors. PMID:24215772

  7. MnO2/multiwall carbon nanotube/Ni-foam hybrid electrode for electrochemical capacitor

    NASA Astrophysics Data System (ADS)

    Chen, L. H.; Li, L.; Qian, W. J.; Dong, C. K.

    2018-01-01

    The ternary composites of manganese dioxide/multiwall carbon nanotube/Ni-foam (MnO2/MWNT/Ni-foam) for supercapacitors were fabricated via a hydrothermal method after direct growth of MWNTs on the Ni-foam. The structural properties of the electrodes were characterized by SEM and TEM. The electrode exhibited excellent electrochemical properties from the investigation based on the three-electrode setup. Low contact resistance Rs of about 0.291 Ω between MnO2/MWNT and Ni-foam was reached benefited from the direct growth structure. High capacitance of 355.1 F/g at the current density of 2 A/g was achieved, with good capacitive response at high current density. The MnO2/MWNT/Ni-foam electrode exhibits good stability performance after 2000 cycles at a current of 40 mA.

  8. Paper-based transparent flexible thin film supercapacitors

    NASA Astrophysics Data System (ADS)

    Gao, Kezheng; Shao, Ziqiang; Wu, Xue; Wang, Xi; Zhang, Yunhua; Wang, Wenjun; Wang, Feijun

    2013-05-01

    Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm-2), and a transmittance of about 56% (at 550 nm).Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm-2), and a transmittance of about 56% (at 550 nm). Electronic supplementary information (ESI) available: Experimental, TEM image, IR spectra, and XRD spectra of cellulose nanofibers, TEM image, and XRD spectra of RGO, graphite, GO nanosheets, CNF paper, and CNF-[RGO]20 hybrid paper, high-resolution C1s spectra of GO, Raman spectra of GO nanosheets, cross-sectional FESEM image of CNF-[RGO]20 hybrid paper and stress-strain curve of T-SC-20. See DOI: 10.1039/c3nr00674c

  9. Performance and Safety Testing of Cylindrical Moli Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Jeevarajan, Judith A.; Deng, Yi; Rehm, Ray; Tracinski, Walter A.; Bragg, Bobby J.

    2002-01-01

    The Moli lithium-ion cells were tested under normal and abuse conditions. The cells exhibit only 50% of their original capacity at about -10 C. The optimum charge/discharge rate with the least percentage loss in capacity is C/2 charge and C/4 discharge. The cells did not explode or go into a thermal runaway during venting at very high temperatures. They exhibited good tolerance under the vibration conditions tested and could potentially be used in the build up of large batteries that have high current pulse (up to 3C) applications.

  10. Ultrasensitive Label-free Electrochemical Immunosensor based on Multifunctionalized Graphene Nanocomposites for the Detection of Alpha Fetoprotein

    PubMed Central

    Wang, Yaoguang; Zhang, Yong; Wu, Dan; Ma, Hongmin; Pang, Xuehui; Fan, Dawei; Wei, Qin; Du, Bin

    2017-01-01

    In this work, a novel label-free electrochemical immunosensor was developed for the quantitative detection of alpha fetoprotein (AFP). Multifunctionalized graphene nanocomposites (TB-Au-Fe3O4-rGO) were applied to modify the electrode to achieve the amplification of electrochemical signal. TB-Au-Fe3O4-rGO includes the advantages of graphene, ferroferric oxide nanoparticles (Fe3O4 NPs), gold nanoparticles (Au NPs) and toluidine blue (TB). As a kind of redox probe, TB can produce the electrochemical signal. Graphene owns large specific surface area, high electrical conductivity and good adsorption property to load a large number of TB. Fe3O4 NPs have good electrocatalytic performance towards the redox of TB. Au NPs have good biocompatibility to capture the antibodies. Due to the good electrochemical performance of TB-Au-Fe3O4-rGO, the effective and sensitive detection of AFP was achieved by the designed electrochemical immunosensor. Under optimal conditions, the designed immunosensor exhibited a wide linear range from 1.0 × 10−5 ng/mL to 10.0 ng/mL with a low detection limit of 2.7 fg/mL for AFP. It also displayed good electrochemical performance including good reproducibility, selectivity and stability, which would provide potential applications in the clinical diagnosis of other tumor markers. PMID:28186128

  11. Electrochemical immunosensor with NiAl-layered double hydroxide/graphene nanocomposites and hollow gold nanospheres double-assisted signal amplification.

    PubMed

    Qiao, Lu; Guo, Yemin; Sun, Xia; Jiao, Yancui; Wang, Xiangyou

    2015-08-01

    A sensitive electrochemical immunosensor based on NiAl-layered double hydroxide/graphene nanocomposites (NiAl-LDH/G) and hollow gold nanospheres (HGNs) was proposed for chlorpyrifos detection. The NiAl-LDH/G was prepared using a conventional coprecipitation process and reduction of the supporting graphene oxide. Subsequently, the nanocomposites were dispersed with chitosan (CS). The NiAl-LDH/G possessed good electrochemical behavior and high binding affinity to the electrode. The high surface areas of HGNs and the vast aminos and hydroxyls of CS provided a platform for the covalently crosslinking of antibody. Under optimal conditions, the immunosensor exhibited a wide linear range from 5 to 150 μg/mL and from 150 to 2 μg/mL, with a detection limit of 0.052 ng/mL. The detection results showed good agreement with standard gas chromatography method. The constructed immunosensor exhibited good reproducibility, high specificity, acceptable stability and regeneration performance, which provided a new promising tool for chlorpyrifos detection in real samples.

  12. Constructing Free Standing Metal Organic Framework MIL-53 Membrane Based on Anodized Aluminum Oxide Precursor

    PubMed Central

    Zhang, Yunlu; Gao, Qiuming; Lin, Zhi; Zhang, Tao; Xu, Jiandong; Tan, Yanli; Tian, Weiqian; Jiang, Lei

    2014-01-01

    Metal organic framework (MOF) materials have attracted great attention due to their well-ordered and controllable pores possessing of prominent potentials for gas molecule sorption and separation performances. Organizing the MOF crystals to a continuous membrane with a certain scale will better exhibit their prominent potentials. Reports in recent years concentrate on well grown MOF membranes on specific substrates. Free standing MOF membranes could have more important applications since they are independent from the substrates. However, the method to prepare such a membrane has been a great challenge because good mechanical properties and stabilities are highly required. Here, we demonstrate a novel and facile technique for preparing the free standing membrane with a size as large as centimeter scale. The substrate we use proved itself not only a good skeleton but also an excellent precursor to fulfill the reaction. This kind of membrane owns a strong mechanical strength, based on the fact that it is much thinner than the composite membranes grown on substrates and it could exhibit good property of gas separation. PMID:24821299

  13. Normally-off AlGaN/GaN-based MOS-HEMT with self-terminating TMAH wet recess etching

    NASA Astrophysics Data System (ADS)

    Son, Dong-Hyeok; Jo, Young-Woo; Won, Chul-Ho; Lee, Jun-Hyeok; Seo, Jae Hwa; Lee, Sang-Heung; Lim, Jong-Won; Kim, Ji Heon; Kang, In Man; Cristoloveanu, Sorin; Lee, Jung-Hee

    2018-03-01

    Normally-off AlGaN/GaN-based MOS-HEMT has been fabricated by utilizing damage-free self-terminating tetramethyl ammonium hydroxide (TMAH) recess etching. The device exhibited a threshold voltage of +2.0 V with good uniformity, extremely small hysteresis of ∼20 mV, and maximum drain current of 210 mA/mm. The device also exhibited excellent off-state performances, such as breakdown voltage of ∼800 V with off-state leakage current as low as ∼10-12 A and high on/off current ratio (Ion/Ioff) of 1010. These excellent device performances are believed to be due to the high quality recessed surface, provided by the simple self-terminating TMAH etching.

  14. Construction of novel xanthine biosensor by using polymeric mediator/MWCNT nanocomposite layer for fish freshness detection.

    PubMed

    Dervisevic, Muamer; Custiuc, Esma; Çevik, Emre; Şenel, Mehmet

    2015-08-15

    A novel nanocomposite host matrix for enzyme immobilization of xanthine oxidase was developed by incorporating MWCNT in poly(GMA-co-VFc) copolymer film. In the food industry fish is a product with a very low commercial life, and a high variability as well elevated level of xanthine is an important biomarker as a sign of spoilage. The fabricated process was characterized by scanning electron microscopy (SEM), and the electrochemical behaviors of the biosensor were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The prepared enzyme electrodes exhibited maximum response at pH 7.0 and 45°C +0.35 V and reached 95% of steady-state current in about ∼ 4 s and its sensitivity was 16 mAM(-1). Linear ranges (2-28 μM, 28-46 and 46-86 μM), analytical performance and a low detection limit 0.12 μM obtained from the xanthine biosensor gives reliable results in measuring xanthine concentration in the fish meat. All the results indicating that the resulting biosensor exhibited a good response to xanthine that was related to the addition of MWCNT in the polymeric mediator film which played an important role in the biosensor performance. In addition, the biosensor exhibited high good storage stability and satisfactory anti-interference ability. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Design of underwater superoleophobic TiO{sub 2} coatings with additional photo-induced self-cleaning properties by one-step route bio-inspired from fish scales

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Hao; Guo, Zhiguang, E-mail: zguo@licp.cas.cn; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000

    Self-cleaning properties inspired by the structures and functions of some creatures are of great interest since the late 20th century. In this paper, TiO{sub 2} coatings with hierarchical rutile TiO{sub 2} flowers on fluorine-doped tin oxide substrate are fabricated through a simple one-step hydrothermal method. The flower-like coatings exhibit superhydrophilicity in air and superoleophobicity underwater with a contact angle as high as 157°, presenting good underwater self-cleaning performance. In addition, when contaminated by oleic acid, the as-prepared TiO{sub 2} coatings also exhibit excellent photocatalytic capability under ultraviolet irradiation, which demonstrated self-cleaning properties in a different way. This self-cleaning film providesmore » a good strategy for some industrial and ocean applications.« less

  16. Hydrothermal synthesis of NiCo2O4 nanowires/nitrogen-doped graphene for high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Chen, Jianpeng; Ma, Yuxiao; Zhang, Jingdan; Liu, Jianhua; Li, Songmei; An, Junwei

    2014-09-01

    NiCo2O4 nanowires/nitrogen-doped graphene (NCO/NG) composite materials were synthesized by hydrothermal treatment in a water-glycerol mixed solvent and subsequent thermal transformation. The obtained materials were characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy and Raman spectroscopy. The electrochemical performance of the composites was evaluated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectrum techniques. NiCo2O4 nanowires are densely coated by nitrogen-doped graphene and the composite displays good electrochemical performance. The maximum specific capacitance of NCO/NG is 1273.13 F g-1 at 0.5 A g-1 in 6 M KOH aqueous solution, and it exhibits good capacity retention without noticeable degradation after 3000 cycles at 4 A g-1.

  17. Paper-based transparent flexible thin film supercapacitors.

    PubMed

    Gao, Kezheng; Shao, Ziqiang; Wu, Xue; Wang, Xi; Zhang, Yunhua; Wang, Wenjun; Wang, Feijun

    2013-06-21

    Paper-based transparent flexible thin film supercapacitors were fabricated using CNF-[RGO]n hybrid paper as an electrode material and charge collector. Owing to the self-anti-stacking of distorted RGO nanosheets and internal electrolyte nanoscale-reservoirs, the device exhibited good electrochemical performance (about 1.73 mF cm(-2)), and a transmittance of about 56% (at 550 nm).

  18. Linear quadratic Gaussian and feedforward controllers for the DSS-13 antenna

    NASA Technical Reports Server (NTRS)

    Gawronski, W. K.; Racho, C. S.; Mellstrom, J. A.

    1994-01-01

    The controller development and the tracking performance evaluation for the DSS-13 antenna are presented. A trajectory preprocessor, linear quadratic Gaussian (LQG) controller, feedforward controller, and their combination were designed, built, analyzed, and tested. The antenna exhibits nonlinear behavior when the input to the antenna and/or the derivative of this input exceeds the imposed limits; for slewing and acquisition commands, these limits are typically violated. A trajectory preprocessor was designed to ensure that the antenna behaves linearly, just to prevent nonlinear limit cycling. The estimator model for the LQG controller was identified from the data obtained from the field test. Based on an LQG balanced representation, a reduced-order LQG controller was obtained. The feedforward controller and the combination of the LQG and feedforward controller were also investigated. The performance of the controllers was evaluated with the tracking errors (due to following a trajectory) and the disturbance errors (due to the disturbances acting on the antenna). The LQG controller has good disturbance rejection properties and satisfactory tracking errors. The feedforward controller has small tracking errors but poor disturbance rejection properties. The combined LQG and feedforward controller exhibits small tracking errors as well as good disturbance rejection properties. However, the cost for this performance is the complexity of the controller.

  19. High-energy coordination polymers (CPs) exhibiting good catalytic effect on the thermal decomposition of ammonium dinitramide

    NASA Astrophysics Data System (ADS)

    Li, Xin; Han, Jing; Zhang, Sheng; Zhai, Lianjie; Wang, Bozhou; Yang, Qi; Wei, Qing; Xie, Gang; Chen, Sanping; Gao, Shengli

    2017-09-01

    High-energy coordination polymers (CPs) not only exhibit good energetic performances but also have a good catalytic effect on the thermal decomposition of energetic materials. In this contribution, two high-energy CPs Cu2(DNBT)2(CH3OH)(H2O)3·3H2O (1) and [Cu3(DDT)2(H2O)2]n (2) (H2DNBT = 3,3‧-dinitro-5,5‧-bis(1H-1,2,4-triazole and H3DDT = 4,5-bis(1H-tetrazol-5-yl)-2H-1,2,3-triazole) were synthesized and structurally characterized. Furthermore, 1 was thermos-dehydrated to produce Cu2(DNBT)2(CH3OH)(H2O)3 (1a). The thermal decomposition kinetics of 1, 1a and 2 were studied by Kissinger's method and Ozawa's method. Thermal analyses and sensitivity tests show that all compounds exhibit high thermal stability and low sensitivity for external stimuli. Meanwhile, all compounds have large positive enthalpy of formation, which are calculated as being (1067.67 ± 2.62) kJ mol-1 (1), (1464.12 ± 3.12) kJ mol-1 (1a) and (3877.82 ± 2.75) kJ mol-1 (2), respectively. The catalytic effects of 1a and 2 on the thermal decomposition of ammonium dinitramide (ADN) were also investigated.

  20. Influence of Alumina Binder Content on Catalytic Performance of Ni/HZSM-5 for Hydrodeoxygenation of Cyclohexanone

    PubMed Central

    Kong, Xiangjin; Liu, Junhai

    2014-01-01

    The influence of the amount of alumina binders on the catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone was investigated in a fixed-bed reactor. N2 sorption, X-ray diffraction, H2-chemisorption and temperature-programmed desorption of ammonia were used to characterize the catalysts. It can be observed that the Ni/HZSM-5 catalyst bound with 30 wt.% alumina binder exhibited the best catalytic performance. The high catalytic performance may be due to relatively good Ni metal dispersion, moderate mesoporosity, and proper acidity of the catalyst. PMID:25009974

  1. Influence of alumina binder content on catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone.

    PubMed

    Kong, Xiangjin; Liu, Junhai

    2014-01-01

    The influence of the amount of alumina binders on the catalytic performance of Ni/HZSM-5 for hydrodeoxygenation of cyclohexanone was investigated in a fixed-bed reactor. N2 sorption, X-ray diffraction, H2-chemisorption and temperature-programmed desorption of ammonia were used to characterize the catalysts. It can be observed that the Ni/HZSM-5 catalyst bound with 30 wt.% alumina binder exhibited the best catalytic performance. The high catalytic performance may be due to relatively good Ni metal dispersion, moderate mesoporosity, and proper acidity of the catalyst.

  2. Mechanical performance of porous concrete pavement containing nano black rice husk ash

    NASA Astrophysics Data System (ADS)

    Ibrahim, M. Y. Mohd; Ramadhansyah, P. J.; Rosli, H. Mohd; Ibrahim, M. H. Wan

    2018-01-01

    This paper presents an experimental research on the performance of nano black rice husk ash on the porous concrete pavement properties. The performance of the porous concrete pavement mixtures was investigated based on their compressive strength, flexural strength, and splitting tensile strength. The results indicated that using nano material from black rice husk ash improved the mechanical properties of porous concrete pavement. In addition, the result of compressive, flexural, and splitting tensile strength was increased with increasing in curing age. Finally, porous concrete pavement with 10% replacement levels exhibited an excellent performance with good strength compared to others.

  3. The impact of manufacturing complexity drivers on performance-a preliminary study

    NASA Astrophysics Data System (ADS)

    Huah Leang, Suh; Mahmood, Wan Hasrulnizzam Wan; Rahman, Muhamad Arfauz A.

    2018-03-01

    Manufacturing systems, in pursuit of cost, time and flexibility optimisation are becoming more and more complex, exhibiting a dynamic and nonlinear behaviour. Unpredictability is a distinct characteristic of such behaviour and effects production planning significantly. Therefore, this study was undertaken to investigate the priority level and current achievement of manufacturing performance in Malaysia’s manufacturing industry and the complexity drivers on manufacturing productivity performance. The results showed that Malaysia’s manufacturing industry prioritised product quality and they managed to achieve a good on time delivery performance. However, for other manufacturing performance, there was a difference where the current achievement of manufacturing performances in Malaysia’s manufacturing industry is slightly lower than the priority given to them. The strong correlation of significant value for priority status was observed between efficient production levelling (finished goods) and finish product management while the strong correlation of significant value for current achievement was minimised the number of workstation and factory transportation system. This indicates that complexity drivers have an impact towards manufacturing performance. Consequently, it is necessary to identify complexity drivers to achieve well manufacturing performance.

  4. Molecular gated-AlGaN/GaN high electron mobility transistor for pH detection.

    PubMed

    Ding, Xiangzhen; Yang, Shuai; Miao, Bin; Gu, Le; Gu, Zhiqi; Zhang, Jian; Wu, Baojun; Wang, Hong; Wu, Dongmin; Li, Jiadong

    2018-04-18

    A molecular gated-AlGaN/GaN high electron mobility transistor has been developed for pH detection. The sensing surface of the sensor was modified with 3-aminopropyltriethoxysilane to provide amphoteric amine groups, which would play the role of receptors for pH detection. On modification with 3-aminopropyltriethoxysilane, the transistor exhibits good chemical stability in hydrochloric acid solution and is sensitive for pH detection. Thus, our molecular gated-AlGaN/GaN high electron mobility transistor acheived good electrical performances such as chemical stability (remained stable in hydrochloric acid solution), good sensitivity (37.17 μA/pH) and low hysteresis. The results indicate a promising future for high-quality sensors for pH detection.

  5. Silicon/copper dome-patterned electrodes for high-performance hybrid supercapacitors.

    PubMed

    Liu, Xuyan; Jung, Hun-Gi; Kim, Sang-Ok; Choi, Ho-Suk; Lee, Sangwha; Moon, Jun Hyuk; Lee, Joong Kee

    2013-12-02

    This study proposes a method for manufacturing high-performance electrode materials in which controlling the shape of the current collector and electrode material for a Li-ion capacitor (LIC). In particular, the proposed LIC manufacturing method maintains the high voltage of a cell by using a microdome-patterned electrode material, allowing for reversible reactions between the Li-ion and the active material for an extended period of time. As a result, the LICs exhibit initial capacities of approximately 42 F g⁻¹, even at 60 A g⁻¹. The LICs also exhibit good cycle performance up to approximately 15,000 cycles. In addition, these advancements allow for a considerably higher energy density than other existing capacitor systems. The energy density of the proposed LICs is approximately nine, two, and 1.5 times higher than those of the electrochemical double layer capacitor (EDLC), AC/LiMn₂O₄ hybrid capacitor, and intrinsic Si/AC LIC, respectively.

  6. Silicon/copper dome-patterned electrodes for high-performance hybrid supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Xuyan; Jung, Hun-Gi; Kim, Sang-Ok; Choi, Ho-Suk; Lee, Sangwha; Moon, Jun Hyuk; Lee, Joong Kee

    2013-12-01

    This study proposes a method for manufacturing high-performance electrode materials in which controlling the shape of the current collector and electrode material for a Li-ion capacitor (LIC). In particular, the proposed LIC manufacturing method maintains the high voltage of a cell by using a microdome-patterned electrode material, allowing for reversible reactions between the Li-ion and the active material for an extended period of time. As a result, the LICs exhibit initial capacities of approximately 42 F g-1, even at 60 A g-1. The LICs also exhibit good cycle performance up to approximately 15,000 cycles. In addition, these advancements allow for a considerably higher energy density than other existing capacitor systems. The energy density of the proposed LICs is approximately nine, two, and 1.5 times higher than those of the electrochemical double layer capacitor (EDLC), AC/LiMn2O4 hybrid capacitor, and intrinsic Si/AC LIC, respectively.

  7. H3PO4 solution hydrothermal carbonization combined with KOH activation to prepare argy wormwood-based porous carbon for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Dai, Changchao; Wan, Jiafeng; Yang, Juan; Qu, Shanshan; Jin, Tieyu; Ma, Fangwei; Shao, Jinqiu

    2018-06-01

    In this work, argy wormwood-based porous carbon electrode materials for high-performance supercapacitors are prepared through H3PO4 solution hydrothermal carbonization and subsequent KOH activation. The obtained carbon has a specific surface area (SSA) of 927 m2 g-1, a total pore volume of 0.56 cm3 g-1, and a high oxygen (9.38%) content. In three-electrode system, it exhibits specific capacitance of 344 F g-1 at 1 A g-1. Moreover, the symmetric supercapacitor shows an excellent rate capability of 87% retention from 1 A g-1 to 10 A g-1, and a good cycling performance with 91.6% retention over 5000 cycles in 6 M KOH. Therefore, the sample activated by H3PO4 & KOH exhibits an excellent future in energy storage.

  8. An Analysis of Integrated Child Development Scheme Performance in Contributing to Alleviation of Malnutrition in Two Economically Resurgent States.

    PubMed

    Ruia, Aparna; Gupta, Rajul Kumar; Bandyopadhyay, Gargi; Gupta, Rajshree R

    2018-01-01

    Good economic growth is considered synonymous with good nutrition. In recent past, some states (like Bihar and Gujarat) have seen unprecedented economic growth. Despite this and introducing plethora of programs (including integrated child development scheme [ICDS]) to reduce malnutrition, one state might be performing well in reducing malnutrition whereas other with equally high economic growth rate might lag behind. Is mere economic growth good enough to alleviate malnutrition? The aim of the article is to document a critical comparative analysis of malnutrition with special emphasis on ICDS (with respect to finances, infrastructure, training, performance) in the two economically resurgent states of Gujarat and Bihar. An exploratory study using secondary data sources (for ICDS performance) to critically analyze malnutrition status in Bihar and Gujarat. Gujarat, which was criticized for placing excessive emphasis on economic growth, has shown sharp improvement in combating malnutrition. Undernourished children declined from 73.04% in 2007 to 25.09% in 2013, with just 1.6% being severely malnourished. On the other hand, Bihar too exhibited an impressive economic growth but still languishes at bottom with malnutrition rate of 82%. A high economic growth does not have automatic immediate positive gains on malnutrition alleviation.

  9. Planar junctionless phototransistor: A potential high-performance and low-cost device for optical-communications

    NASA Astrophysics Data System (ADS)

    Ferhati, H.; Djeffal, F.

    2017-12-01

    In this paper, a new junctionless optical controlled field effect transistor (JL-OCFET) and its comprehensive theoretical model is proposed to achieve high optical performance and low cost fabrication process. Exhaustive study of the device characteristics and comparison between the proposed junctionless design and the conventional inversion mode structure (IM-OCFET) for similar dimensions are performed. Our investigation reveals that the proposed design exhibits an outstanding capability to be an alternative to the IM-OCFET due to the high performance and the weak signal detection benefit offered by this design. Moreover, the developed analytical expressions are exploited to formulate the objective functions to optimize the device performance using Genetic Algorithms (GAs) approach. The optimized JL-OCFET not only demonstrates good performance in terms of derived drain current and responsivity, but also exhibits superior signal to noise ratio, low power consumption, high-sensitivity, high ION/IOFF ratio and high-detectivity as compared to the conventional IM-OCFET counterpart. These characteristics make the optimized JL-OCFET potentially suitable for developing low cost and ultrasensitive photodetectors for high-performance and low cost inter-chips data communication applications.

  10. Program to study optimal protocol for cardiovascular and muscular efficiency. [physical fitness training for manned space flight

    NASA Technical Reports Server (NTRS)

    Olree, H. D.

    1974-01-01

    Training programs necessary for the development of optimal strength during prolonged manned space flight were examined, and exercises performed on the Super Mini Gym Skylab 2 were compared with similar exercises on the Universal Gym and calisthenics. Cardiopulmonary gains were found negligible but all training groups exhibited good gains in strength.

  11. Ultrafine manganese dioxide nanowire network for high-performance supercapacitors.

    PubMed

    Jiang, Hao; Zhao, Ting; Ma, Jan; Yan, Chaoyi; Li, Chunzhong

    2011-01-28

    Ultrafine MnO(2) nanowires with sub-10 nm diameters have been synthesized by a simple process of hydrothermal treatment with subsequent calcinations to form networks that exhibit an enhanced specific capacitance (279 F g(-1) at 1 A g(-1)), high rate capability (54.5% retention at 20 A g(-1)) and good cycling stability (1.7% loss after 1000 cycles).

  12. The Sheperd equation and chaos identification.

    PubMed

    Gregson, Robert A M

    2010-04-01

    An equation created by Sheperd (1982) to model stability in exploited fish populations has been found to have a wider application, and it exhibits complicated internal dynamics, including phases of strict periodicity and of chaos. It may be potentially applicable to other psychophysiological contexts. The problems of determining goodness-of fit, and the comparative performance of alternative models including the Shephed model, are briefly addressed.

  13. Treeing phenomenon of thermoplastic polyethylene blends for recyclable cable insulation materials

    NASA Astrophysics Data System (ADS)

    Li, Lunzhi; Zhang, Kai; Zhong, Lisheng; Gao, Jinghui; Xu, Man; Chen, Guanghui; Fu, Mingli

    2017-02-01

    Owing to its good recyclability and low processing energy consumption, non-crosslinked polyethylene blends (e.g. LLDPE-HDPE blends) are considered as one of potential environmental-friendly substitutions for crosslinked polyethylene (XLPE) as cable insulation material. Although extensive work has been performed for measuring the basic dielectric properties, there is a lack of the investigations on the aging properties for such a material system, which hinders the evaluation of reliability and lifetime of the material for cable insulation. In this paper, we study the electric aging phenomenon of 0.7LLDPE-0.3HDPE blending material by investigating the treeing behavior, and its comparison with XLPE and LLDPE. Treeing tests show that the 0.7LLDPE-0.3HDPE blends have lower probability for treeing as well as smaller treeing dimensions. Further thermal analysis and microstructure study results suggest that the blends exhibit larger proportion of thick lamellae and higher crystallinity with homogeneously-distributed amorphous region, which is responsible for good anti-treeing performance. Our finding provides the evidence that the 0.7LLDPE-0.3HDPE blends exhibits better electric-aging-retardance properties than XLPE, which may result in a potential application for cable insulation.

  14. One-pot synthesis of zeolitic imidazolate framework-8/poly (methyl methacrylate-ethyleneglycol dimethacrylate) monolith coating for stir bar sorptive extraction of phytohormones from fruit samples followed by high performance liquid chromatography-ultraviolet detection.

    PubMed

    You, Linna; He, Man; Chen, Beibei; Hu, Bin

    2017-11-17

    In this work, zeolitic imidazolate framework-8 (ZIF-8)/poly (methyl methacrylate-ethyleneglycol dimethacrylate) (MMA-EGDMA) composite monolith was in situ synthesized on stir bar by one-pot polymerization. Compared with the neat monolith, ZIF-8/poly(MMA-EGDMA) composite monolith has larger surface area and pore volume. It also exhibits higher extraction efficiency for target phytohormones than poly(MMA-EGDMA) monolith and commercial polyethylene glycol (PEG) coated stir bar. Based on it, a method of ZIF-8/poly(MMA-EGDMA) monolith coated stir bar sorptive extraction (SBSE)-high performance liquid chromatography-ultraviolet detection (HPLC-UV) was established for the analysis of five phytohormones in apple and pear samples. The developed method exhibited low limits of detection (0.11-0.51μg/L), wide linear range (0.5-500μg/L) and good recoveries (82.7-111%), which demonstrated good application potential of the ZIF-8/monolith coated stir bar in trace analysis of organic compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Transparent and Self-Supporting Graphene Films with Wrinkled- Graphene-Wall-Assembled Opening Polyhedron Building Blocks for High Performance Flexible/Transparent Supercapacitors.

    PubMed

    Li, Na; Huang, Xuankai; Zhang, Haiyan; Li, Yunyong; Wang, Chengxin

    2017-03-22

    Improving mass loading while maintaining high transparency and large surface area in one self-supporting graphene film is still a challenge. Unfortunately, all of these factors are absolutely essential for enhancing the energy storage performance of transparent supercapacitors for practical applications. To solve the above bottleneck problem, we produce a novel self-supporting flexible and transparent graphene film (STF-GF) with wrinkled-wall-assembled opened-hollow polyhedron building units. Taking advantage of the microscopic morphology, the STF-GF exhibits improved mass loading with high transmittance (70.2% at 550 nm), a large surface area (1105.6 m 2 /g), and good electrochemical performance: high energy (552.3 μWh/cm 3 ), power densities (561.9 mW/cm 3 ), a superlong cycle life, and good cycling stability (the capacitance retention is ∼94.8% after 20,000 cycles).

  16. Fabrication of a highly sensitive penicillin sensor based on charge transfer techniques.

    PubMed

    Lee, Seung-Ro; Rahman, M M; Sawada, Kazuaki; Ishida, Makoto

    2009-03-15

    A highly sensitive penicillin biosensor based on a charge-transfer technique (CTTPS) has been fabricated and demonstrated in this paper. CTTPS comprised a charge accumulation technique for penicilloic acid and H(+) ions perception system. With the proposed CTTPS, it is possible to amplify the sensing signals without external amplifier by using the charge accumulation cycles. The fabricated CTTPS exhibits excellent performance for penicillin detection and exhibit a high-sensitivity (47.852 mV/mM), high signal-to-noise ratio (SNR), large span (1445 mV), wide linear range (0-25 mM), fast response time (<3s), and very good reproducibility. A very lower detection limit of about 0.01 mM was observed from the proposed sensor. Under optimum conditions, the proposed CTTPS outstripped the performance of the widely used ISFET penicillin sensor and exhibited almost eight times greater sensitivity as compared to ISFET (6.56 mV/mM). The sensor system is implemented for the measurement of the penicillin concentration in penicillin fermentation broth.

  17. Integrated digital inverters based on two-dimensional anisotropic ReS₂ field-effect transistors

    DOE PAGES

    Liu, Erfu; Fu, Yajun; Wang, Yaojia; ...

    2015-05-07

    Semiconducting two-dimensional transition metal dichalcogenides are emerging as top candidates for post-silicon electronics. While most of them exhibit isotropic behaviour, lowering the lattice symmetry could induce anisotropic properties, which are both scientifically interesting and potentially useful. Here we present atomically thin rhenium disulfide (ReS₂) flakes with unique distorted 1T structure, which exhibit in-plane anisotropic properties. We fabricated monolayer and few-layer ReS₂ field-effect transistors, which exhibit competitive performance with large current on/off ratios (~10⁷) and low subthreshold swings (100 mV per decade). The observed anisotropic ratio along two principle axes reaches 3.1, which is the highest among all known two-dimensional semiconductingmore » materials. Furthermore, we successfully demonstrated an integrated digital inverter with good performance by utilizing two ReS₂ anisotropic field-effect transistors, suggesting the promising implementation of large-scale two-dimensional logic circuits. Our results underscore the unique properties of two-dimensional semiconducting materials with low crystal symmetry for future electronic applications.« less

  18. Formation of NiFe2O4/Expanded Graphite Nanocomposites with Superior Lithium Storage Properties

    NASA Astrophysics Data System (ADS)

    Xiao, Yinglin; Zai, Jiantao; Tian, Bingbing; Qian, Xuefeng

    2017-07-01

    A NiFe2O4/expanded graphite (NiFe2O4/EG) nanocomposite was prepared via a simple and inexpensive synthesis method. Its lithium storage properties were studied with the goal of applying it as an anode in a lithium-ion battery. The obtained nanocomposite exhibited a good cycle performance, with a capacity of 601 mAh g-1 at a current of 1 A g-1 after 800 cycles. This good performance may be attributed to the enhanced electrical conductivity and layered structure of the EG. Its high mechanical strength could postpone the disintegration of the nanocomposite structure, efficiently accommodate volume changes in the NiFe2O4-based anodes, and alleviate aggregation of NiFe2O4 nanoparticles.

  19. Study of flowability effect on self-planarization performance at SOC materials

    NASA Astrophysics Data System (ADS)

    Yun, Huichan; Kim, Jinhyung; Park, Youjung; Kim, Yoona; Jeong, Seulgi; Baek, Jaeyeol; Yoon, Byeri; Lim, Sanghak

    2017-03-01

    For multilayer process, importance of carbon-based spin-on hardmask material that replaces amorphous carbon layer (ACL) is ever increasing. Carbon-based spin-on hardmask is an organic polymer with high carbon content formulated in organic solvents for spin-coating application that is cured through baking. In comparison to CVD process for ACL, carbon-based spin-on hardmask material can offer several benefits: lower cost of ownership (CoO) and improved process time, as well as better gap-fill and planarization performances. Thus carbon-based spin-on hardmask material of high etch resistance, good gap-fill properties and global planarization performances over various pattern topographies are desired to achieve the fine patterning and high aspect ratio (A/R). In particular, good level of global planarization of spin coated layer over the underlying pattern topographies is important for self-aligned double patterning (SADP) process as it dictates the photolithographic margin. Herein, we report a copolymer carbon-based spin-on hardmask resin formulation that exhibits favorable film shrinkage profile and good etch resistance properties. By combining the favorable characteristics of each resin - one resin with good shrinkage property and the other with excellent etch resistance into the copolymer, it was possible to achieve a carbonbased spin-on hardmask formulation with desirable level of etch resistance and the planarization performances across various underlying substrate pattern topographies.

  20. Detailed phenolic composition of Vidal grape pomace by ultrahigh-performance liquid chromatography-tandem mass spectrometry.

    PubMed

    Luo, Lanxin; Cui, Yan; Zhang, Shuting; Li, Lingxi; Suo, Hao; Sun, Baoshan

    2017-11-15

    Vidal Blanc grape (Vitis vinifera cv.) is the predominant white grape variety used for the production of icewine in China's Liaoning province. In this paper, the development and validation of the method by ultrahigh-performance liquid chromatography-tandem mass spectrometry has been performed for determination of the detailed phenolic composition in the skin, seed and stem of Vidal grapes. The validation of the method was realized by calculating the linearity, repeatability, precision, stability and the limits of detection (LOD) and quantification (LOQ) of standard solutions. All the curves exhibited good linearity (r 2 >0.9997) and the LOD and LOQ were in the range of 0.002-0.025 and 0.006-0.086μg/ml, respectively. Good repeatability (RSD<4.3%) and stability (RSD<3.7%) were also found. Results confirmed that the developed method was more effective and sensitive for simultaneous determination of the major phenolic compounds in Vidal grape pomace. The optimized and validated method of ultrahigh-performance liquid chromatography tandem two complementary techniques, fourier transform ion cyclotron resonance mass spectrometry and triple-quadrupole mass spectrometry, allowed to identify and quantify up to 35 phenolic compounds in Vidal grape pomace, which has, as far as we know, been reported this grapevine variety for the first time. Seeds, skins and stems exhibited different qualitative and quantitative phenolic profiles. These results provided useful information for recovery of phenolic antioxidants from different parts of icewine pomace. Copyright © 2017. Published by Elsevier B.V.

  1. The mechanistic exploration of porous activated graphene sheets-anchored SnO2 nanocrystals for application in high-performance Li-ion battery anodes.

    PubMed

    Yang, Yingchang; Ji, Xiaobo; Lu, Fang; Chen, Qiyuan; Banks, Craig E

    2013-09-28

    Porous activated graphene sheets have been for the first time exploited herein as encapsulating substrates for lithium ion battery (LIB) anodes. The as-fabricated SnO2 nanocrystals-porous activated graphene sheet (AGS) composite electrode exhibits improved electrochemical performance as an anode material for LIBs, such as better cycle performance and higher rate capability in comparison with graphene sheets, activated graphene sheets, bare SnO2 and SnO2-graphene sheet composites. The superior electrochemical performances of the designed anode can be ascribed to the porous AGS substrate, which improves the electrical conductivity of the electrode, inhibits agglomeration between particles and effectively buffers the strain from the volume variation during Li(+)-intercalation-de-intercalation and provides more cross-plane diffusion channels for Li(+) ions. As a result, the designed anode exhibits an outstanding capacity of up to 610 mA h g(-1) at a current density of 100 mA g(-1) after 50 cycles and a good rate performance of 889, 747, 607, 482 and 372 mA h g(-1) at a current density of 100, 200, 500, 1000, and 2000 mA g(-1), respectively. This work is of importance for energy storage as it provides a new substrate for the design and implementation of next-generation LIBs exhibiting exceptional electrochemical performances.

  2. Asymmetric hydrogenation of aromatic ketones by new recyclable ionic tagged ferrocene-ruthenium catalyst system.

    PubMed

    Xu, Di; Zhou, Zhi-Ming; Dai, Li; Tang, Li-Wei; Zhang, Jun

    2015-05-01

    Newly developed ferrocene-oxazoline-phosphine ligands containing quaternary ammonium ionic groups exhibited excellent catalytic performance for the ruthenium-catalyzed hydrogenation of aromatic ketonic substrates to give chiral secondary alcohols with high levels of conversions and enantioselectivities. Simple manipulation process, water tolerance, high activity and good recyclable property make this catalysis practical and appealing. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Chemistry and properties of new poly(arylene ether imidazoles)

    NASA Technical Reports Server (NTRS)

    Connell, J. W.; Hergenrother, P. M.

    1990-01-01

    As part of a program to develop high-temperature high-performance structural resins for aerospace applications, the chemistry and properties of new poly(arylene ether imidazoles) were investigated. The polymers were prepared by the nucleophilic displacement reaction of aromatic bis(imidazolephenols) with activated aromatic difluoro compounds. The amorphous thermoplastic polymers exhibited glass transition temperatures from 230 to 301 C, inherent viscosities from 0.46 to 1.46 dL/g, and number-average molecular weights as high as 59,300 g/mole. The polymers exhibit good toughness, adhesive, composite, and film properties. The chemical, physical, and mechanical properties of these materials are discussed.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Hongyu; Ahmad, Mashkoor, E-mail: mashkoorahmad2003@yahoo.com; Luo, Jun

    Graphical abstract: The synthesized SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes hybrid structures exhibit large reversible capacity, superior cycling performance, and good rate capability as compared to pure SnS{sub 2} nanoflakes. - Highlights: • Synthesis of SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes hybrid structures. • Simple solution-phase approach. • Morphology feature of SnS{sub 2}. • Enhanced performance as Li-ion batteries. - Abstract: SnS{sub 2} nanoflakes decorated multiwalled carbon nanotubes (MWCNTs) hybrid structures are directly synthesized via a simple solution-phase approach. The as-prepared SnS{sub 2}/MWCNTs structures are investigated as anode materials for Li-ion batteries as compared with SnS{sub 2} nanoflakes.more » It has been found that the composite structure exhibit excellent lithium storage performance with a large reversible capacity, superior cycling performance, and good rate capability as compared to pure SnS{sub 2} nanoflakes. The first discharge and charge capacities have been found to be 1416 and 518 mA h g{sup −1} for SnS{sub 2}/MWCNTs composite electrodes at a current density of 100 mA g{sup −1} between 5 mV and 1.15 V versus Li/Li{sup +}. A stable reversible capacity of ∼510 mA h g{sup −1} is obtained for 50 cycles. The improved electrochemical performance may be attributed to the flake-morphology feature of SnS{sub 2} and the addition of MWCNTs that can hinder the agglomeration of the active materials and improve the conductivity of the composite electrode simultaneously.« less

  5. A fused-ring acceptor unit in d-a copolymers benefits photovoltaic performance.

    PubMed

    Zuo, Chuantian; Cao, Jiamin; Ding, Liming

    2014-08-01

    Pentacyclic lactam acceptor unit TPTI invented by our group is proved to be a good building block for efficient D-A copolymers used in organic solar cells. Here, two D-A copolymers PBTTPTI and PTTTPTI are developed by copolymerizing TPTI with 2,2'-bithiophene (BT) or thieno[3,2-b]thiophene (TT). PBTTPTI and PTTTPTI exhibit good solubility and strong interchain π-π interaction even in dilute solution. They possess deep HOMO levels (ca. -5.3 eV), partial crystallinity, and good hole mobilities. Blending with PC71 BM, PBTTPTI and PTTTPTI give decent power conversion efficiencies (PCE) up to 6.83% and 5.86%, with outstanding fill factors (FF) of 74.3% and 71.3%, respectively. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Assembly and evaluation of a pyroelectric detector bonded to vertically aligned multiwalled carbon nanotubes over thin silicon.

    PubMed

    Theocharous, E; Theocharous, S P; Lehman, J H

    2013-11-20

    A novel pyroelectric detector consisting of a vertically aligned nanotube array on thin silicon (VANTA/Si) bonded to a 60 μm thick crystal of LiTaO₃ has been fabricated. The performance of the VANTA/Si-coated pyroelectric detector was evaluated using National Physical Laboratory's (NPL's) detector-characterization facilities. The relative spectral responsivity of the detector was found to be spectrally flat in the 0.8-24 μm wavelength range, in agreement with directional-hemispherical reflectance measurements of witness samples of the VANTA. The spatial uniformity of response of the test detector exhibited good uniformity, although the nonuniformity increased with increasing modulation frequency. The nonuniformity may be assigned either to the dimensions of the VANTA or the continuity of the bond between the VANTA/Si coating and the pyroelectric crystal substrate. The test detector exhibited a small superlinear response, which is similar to that of pyroelectric detectors coated with good quality gold-black coatings.

  7. Preparation of a porous Sn@C nanocomposite as a high-performance anode material for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Zhang, Yanjun; Jiang, Li; Wang, Chunru

    2015-07-01

    A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries.A porous Sn@C nanocomposite was prepared via a facile hydrothermal method combined with a simple post-calcination process, using stannous octoate as the Sn source and glucose as the C source. The as-prepared Sn@C nanocomposite exhibited excellent electrochemical behavior with a high reversible capacity, long cycle life and good rate capability when used as an anode material for lithium ion batteries. Electronic supplementary information (ESI) available: Detailed experimental procedure and additional characterization, including a Raman spectrum, TGA curve, N2 adsorption-desorption isotherm, TEM images and SEM images. See DOI: 10.1039/c5nr03093e

  8. Synthesis and characterization of curcumin-sulfonamide hybrids: Biological evaluation and molecular docking studies

    NASA Astrophysics Data System (ADS)

    Banuppriya, Govindharasu; Sribalan, Rajendran; Padmini, Vediappen

    2018-03-01

    Curcumin-sulfonamide hybrids (4a-e) were synthesized and their in vitro antioxidant, anti-inflammatory and anticancer activities were studied. The synthesized compounds showed a very good potent activity towards antioxidant and anti-inflammatory studies rather than its parent as well as standard. These compounds have exhibited an excellent toxicity effect to the cancer cell lines such as A549 and AGS. The compounds 4a and 4c have showed good anticancer activity than curcumin. The molecular docking studies were also performed against various Epidermal Growth Factor Receptor (EGFR) enzymes. The DFT calculations were also done in order to support the docking results.

  9. Flexible Fe3O4@Carbon Nanofibers Hierarchically Assembled with MnO2 Particles for High-Performance Supercapacitor Electrodes.

    PubMed

    Iqbal, Nousheen; Wang, Xianfeng; Babar, Aijaz Ahmed; Zainab, Ghazala; Yu, Jianyong; Ding, Bin

    2017-11-09

    Increasing use of wearable electronic devices have resulted in enhanced demand for highly flexible supercapacitor electrodes with superior electrochemical performance. In this study, flexible composite membranes with electrosprayed MnO 2 particles uniformly anchored on Fe 3 O 4 doped electrospun carbon nanofibers (Fe 3 O 4 @CNF Mn ) have been prepared as flexible electrodes for high-performance supercapacitors. The interconnected porous beaded structure ensures free movement of electrolyte within the composite membranes, therefore, the developed supercapacitor electrodes not only offer high specific capacitance of ~306 F/g, but also exhibit good capacitance retention of ~85% after 2000 cycles, which certify that the synthesized electrodes offer high and stable electrochemical performance. Additionally, the supercapacitors fabricated from our developed electrodes well maintain their performance under flexural stress and exhibit a very minute change in specific capacitance even up to 180° bending angle. The developed electrode fabrication strategy integrating electrospinning and electrospray techniques paves new insights into the development of potential functional nanofibrous materials for light weight and flexible wearable supercapacitors.

  10. Cross-cultural adaptation and validation of the French version of the Expanded Prostate cancer Index Composite questionnaire for health-related quality of life in prostate cancer patients.

    PubMed

    Anota, Amélie; Mariet, Anne-Sophie; Maingon, Philippe; Joly, Florence; Bosset, Jean-François; Guizard, Anne-Valérie; Bittard, Hugues; Velten, Michel; Mercier, Mariette

    2016-12-06

    Health-related quality of life (HRQoL) has been positioned as one of the major endpoints in oncology. Thus, there is a need to validate cancer-site specific survey instruments. This study aimed to perform a transcultural adaptation of the 50-item Expanded Prostate cancer Index Composite (EPIC) questionnaire for HRQoL in prostate cancer patients and to validate the psychometric properties of the French-language version. The EPIC questionnaire measures urinary, bowel, sexual and hormonal domains. The first step, corresponding to transcultural adaptation of the original English version of the EPIC was performed according to the back translation technique. The second step, comprising the validation of the psychometric properties of the EPIC questionnaire, was performed in patients under treatment for localized prostate cancer (treatment group) and in patients cured of prostate cancer (cured group). The EORTC QLQ-C30 and QLQ-PR25 prostate cancer module were also completed by patients to assess criterion validity. Two assessments were performed, i.e., before and at the end of treatment for the Treatment group, to assess sensitivity to change; and at 2 weeks' interval in the Cured group to assess test-retest reliability. Psychometric properties were explored according to classical test theory. The first step showed overall good acceptability and understanding of the questionnaire. In the second step, 215 patients were included from January 2012 to June 2014: 125 in the Treatment group, and 90 in the Cured group. All domains exhibited good internal consistency, except the bowel domain (Cronbach's α = 0.61). No floor effect was observed. Test-retest reliability assessed in the cured group was acceptable, expect for bowel function (intraclass coefficient = 0.68). Criterion validity was good for each domain and subscale. Construct validity was not demonstrated for the hormonal and bowel domains. Sensitivity to change was exhibited for 5/8 subscales and 2/4 summary scores for patients who experienced toxicities during treatment. The French EPIC questionnaire seems to have adequate psychometric properties, comparable to those exhibited by the original English-language version, except for the construct validity, which was not available in original version.

  11. Synthesis of Co 2SnO 4@C core-shell nanostructures with reversible lithium storage

    NASA Astrophysics Data System (ADS)

    Qi, Yue; Du, Ning; Zhang, Hui; Wu, Ping; Yang, Deren

    This paper reports the synthesis of Co 2SnO 4@C core-shell nanostructures through a simple glucose hydrothermal and subsequent carbonization approach. The as-synthesized Co 2SnO 4@C core-shell nanostructures have been applied as anode materials for lithium-ion batteries, which exhibit improved cyclic performance compared to pure Co 2SnO 4 nanocrystals. The carbon matrix has good volume buffering effect and high electronic conductivity, which may be responsible for the improved cyclic performance.

  12. Carbon-coated SnO2 nanotubes: template-engaged synthesis and their application in lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Wu, Ping; Du, Ning; Zhang, Hui; Yu, Jingxue; Qi, Yue; Yang, Deren

    2011-02-01

    This paper reports the synthesis of carbon-coated SnO2 (SnO2-C) nanotubes through a simple glucose hydrothermal and subsequent carbonization approach by using Sn nanorods as sacrificial templates. The as-synthesized SnO2-C nanotubes have been applied as anode materials for lithium-ion batteries, which exhibit improved cyclic performance compared to pure SnO2 nanotubes. The hollow nanostructure, together with the carbon matrix which has good buffering effect and high electronic conductivity, can be responsible for the improved cyclic performance.

  13. Influence of reactivation on the electrochemical performances of activated carbon based on coconut shell.

    PubMed

    Geng, Xin; Li, Lixiang; Zhang, Meiling; An, Baigang; Zhu, Xiaoming

    2013-12-01

    Coconut shell-based activated carbon (AC) were prepared by CO2 activation, and then the ACs with higher mesopore ratio were obtained by steam activation and by impregnating iron catalyst followed by steam activation, respectively. The AC with the highest mesopore ratio (AChmr) shows superior capacitive behavior, power output and high-frequency performance in supercapacitors. The results should attribute to the connection of its wide micropores and mesopores larger than 3 nm, which is more favorable for fast ionic transportation. The pore size distribution exhibits that the mesopore ratios of the ACs are significantly increased by reactivation of steam or catalyst up to 75% and 78%, respectively. As evidenced by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic measurements, the AChmr shows superior capacitive behaviors, conductivity and performance of electrolytic ionic transportation. The response current densities are evidently enhanced through the cyclic voltammery test at 50 mV/sec scan rate. The electrochemical impedance spectroscopy demonstrates that the conductivity and ion transport performance of the ACs are improved. The specific capacitances of the ACs were increased from 140 to 240 F/g at 500 mA/g current density. The AChmr can provide much higher power density while still maintaining good energy density, and demonstrate excellent high-frequency performances. The pore structure and conductivity of the AChmr also improve the cycleability and self-discharge of supercapacitors. Such AChmr exhibits a great potential in supercapacitors, particularly for applications where high power output and good high-frequency capacitive performances are required. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.

  14. Binder-free 2D titanium carbide (MXene)/carbon nanotube composites for high-performance lithium-ion capacitors.

    PubMed

    Yu, Peng; Cao, Gejin; Yi, Sha; Zhang, Xiong; Li, Chen; Sun, Xianzhong; Wang, Kai; Ma, Yanwei

    2018-03-29

    Two-dimensional (2D) MXenes have a very good application prospect in the field of electrochemical energy storage due to their metallic conductivity, high volumetric capacity, mechanical and thermal stability. Herein, we report the preparation of titanium carbide (Ti3C2Tx)/carbon nanotube (CNT) flexible self-supporting composite films by vacuum filtration. The CNTs can effectively prevent Ti3C2Tx from stacking and improve the electrochemical performance. The as-fabricated Ti3C2Tx/CNT film shows a high reversible capacity of 489 mA h g-1 at a current density of 50 mA g-1 together with good cycling performance. The full-cell lithium-ion capacitor (LIC) is assembled using the Ti3C2Tx/CNT film as the anode and activated carbon as the cathode. The LIC exhibits a high energy density of 67 Wh kg-1 (based on the total weight of the anode and the cathode), and a good capacity retention of 81.3% after 5000 cycles. These results suggest that Ti3C2Tx-CNT films are promising as anode materials for lithium ion capacitors.

  15. Preparation of LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries by a mist CVD process

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tadanaga, Kiyoharu, E-mail: tadanaga@chem.osakafu-u.ac.jp; Yamaguchi, Akihiro; Sakuda, Atsushi

    2014-05-01

    Highlights: • LiMn{sub 2}O{sub 4} thin films were prepared by using the mist CVD process. • An aqueous solution of lithium and manganese acetates is used for the precursor solution. • The cell with the LiMn{sub 2}O{sub 4} thin films exhibited a capacity of about 80 mAh/g. • The cell showed good cycling performance during 10 cycles. - Abstract: LiMn{sub 2}O{sub 4} cathode thin films for thin film lithium secondary batteries were prepared by using so-called the “mist CVD process”, employing an aqueous solution of lithium acetate and manganese acetate, as the source of Li and Mn, respectively. The aqueousmore » solution of starting materials was ultrasonically atomized to form mist particles, and mists were transferred by nitrogen gas to silica glass substrate to form thin films. FE-SEM observation revealed that thin films obtained by this process were dense and smooth, and thin films with a thickness of about 750 nm were obtained. The electrochemical cell with the thin films obtained by sintering at 700 °C exhibited a capacity of about 80 mAh/g, and the cell showed good cycling performance during 10 cycles.« less

  16. Synthesis and thermoelectric properties of Rashba semiconductor BiTeBr with intensive texture.

    PubMed

    Xin, Jia-Zhan; Fu, Chen-Guang; Shi, Wu-Jun; Li, Guo-Wei; Auffermann, Gudrun; Qi, Yan-Peng; Zhu, Tie-Jun; Zhao, Xin-Bing; Felser, Claudia

    2018-01-01

    Bismuth tellurohalides with Rashba-type spin splitting exhibit unique Fermi surface topology and are developed as promising thermoelectric materials. However, BiTeBr, which belongs to this class of materials, is rarely investigated in terms of the thermoelectric transport properties. In the study, polycrystalline bulk BiTeBr with intensive texture was synthesized via spark plasma sintering (SPS). Additionally, its thermoelectric properties above room temperature were investigated along both the in-plane and out-plane directions, and they exhibit strong anisotropy. Low sound velocity along two directions is found and contributes to its low lattice thermal conductivity. Polycrystalline BiTeBr exhibits relatively good thermoelectric performance along the in-plane direction, with a maximum dimensionless figure of merit (ZT) of 0.35 at 560 K. Further enhancements of ZT are expected by utilizing systematic optimization strategies.

  17. Hydro-economic assessment of hydrological forecasting systems

    NASA Astrophysics Data System (ADS)

    Boucher, M.-A.; Tremblay, D.; Delorme, L.; Perreault, L.; Anctil, F.

    2012-01-01

    SummaryAn increasing number of publications show that ensemble hydrological forecasts exhibit good performance when compared to observed streamflow. Many studies also conclude that ensemble forecasts lead to a better performance than deterministic ones. This investigation takes one step further by not only comparing ensemble and deterministic forecasts to observed values, but by employing the forecasts in a stochastic decision-making assistance tool for hydroelectricity production, during a flood event on the Gatineau River in Canada. This allows the comparison between different types of forecasts according to their value in terms of energy, spillage and storage in a reservoir. The motivation for this is to adopt the point of view of an end-user, here a hydroelectricity production society. We show that ensemble forecasts exhibit excellent performances when compared to observations and are also satisfying when involved in operation management for electricity production. Further improvement in terms of productivity can be reached through the use of a simple post-processing method.

  18. Highly Conductive Aromatic Functionalized Multi-Walled Carbon Nanotube for Inkjet Printable High Performance Supercapacitor Electrodes

    PubMed Central

    Attri, Pankaj

    2015-01-01

    We report the functionalization of multiwalled carbon nanotubes (MWCNT) via the 1,3-dipolar [3+2] cycloaddition of aromatic azides, which resulted in a detangled CNT as shown by transmission electron microscopy (TEM). Carboxylic moieties (-COOH) on aromatic azide result in highly stable aqueous dispersion (max. conc. ~ 10 mg/mL H2O), making the suitable for inkjet printing. Printed patterns on polyethylene terephthalate (PET) flexible substrate exhibit low sheet resistivity ~65 Ω. cm, which is attributed to enhanced conductivity. Fabricated Supercapacitors (SC) assembled using these printed substrates exhibit good electrochemical performance in organic as well as aqueous electrolytes. High energy and power density (57.8 Wh/kg and 0.85 kW/kg) in 1M H2SO4 aqueous electrolyte demonstrate the excellent performance of the proposed supercapacitor. Capacitive retention varies from ~85–94% with columbic efficiency ~95% after 1000 charge/discharge cycles in different electrolytes, demonstrating the excellent potential of the device for futuristic power applications. PMID:26153688

  19. Ternary manganese ferrite/graphene/polyaniline nanostructure with enhanced electrochemical capacitance performance

    NASA Astrophysics Data System (ADS)

    Xiong, Pan; Hu, Chenyao; Fan, Ye; Zhang, Wenyao; Zhu, Junwu; Wang, Xin

    2014-11-01

    A ternary manganese ferrite/graphene/polyaniline (MGP) nanostructure is designed and synthesized via a facile two-step approach. This nanostructure exhibits outstanding electrochemical performances, such as high specific capacitance (454.8 F g-1 at 0.2 A g-1), excellent rate capability (75.8% capacity retention at 5 A g-1), and good cycling stability (76.4% capacity retention after 5000 cycles at 2 A g-1), which are superior to those of its individual components (manganese ferrite, reduced-graphene oxide, polyaniline) and corresponding binary hybrids (manganese ferrite/graphene (MG), manganese ferrite/polyaniline (MP), and graphene/polyaniline (GP)). A symmetric supercapacitor device using the as-obtained hybrid has been fabricated and tested. The device exhibits a high specific capacitance of 307.2 F g-1 at 0.1 A g-1 with a maximum energy density of 13.5 W h kg-1. The high electrochemical performance of ternary MGP can be attributed to its well-designed nanostructure and the synergistic effect of the individual components.

  20. Silicon/copper dome-patterned electrodes for high-performance hybrid supercapacitors

    PubMed Central

    Liu, Xuyan; Jung, Hun-Gi; Kim, Sang-Ok; Choi, Ho-Suk; Lee, Sangwha; Moon, Jun Hyuk; Lee, Joong Kee

    2013-01-01

    This study proposes a method for manufacturing high-performance electrode materials in which controlling the shape of the current collector and electrode material for a Li-ion capacitor (LIC). In particular, the proposed LIC manufacturing method maintains the high voltage of a cell by using a microdome-patterned electrode material, allowing for reversible reactions between the Li-ion and the active material for an extended period of time. As a result, the LICs exhibit initial capacities of approximately 42 F g−1, even at 60 A g−1. The LICs also exhibit good cycle performance up to approximately 15,000 cycles. In addition, these advancements allow for a considerably higher energy density than other existing capacitor systems. The energy density of the proposed LICs is approximately nine, two, and 1.5 times higher than those of the electrochemical double layer capacitor (EDLC), AC/LiMn2O4 hybrid capacitor, and intrinsic Si/AC LIC, respectively. PMID:24292725

  1. Ice-templated synthesis of multifunctional three dimensional graphene/noble metal nanocomposites and their mechanical, electrical, catalytic, and electromagnetic shielding properties

    PubMed Central

    Sahoo, P. K.; Aepuru, Radhamanohar; Panda, Himanshu Sekhar; Bahadur, D.

    2015-01-01

    In-situ homogeneous dispersion of noble metals in three-dimensional graphene sheets is a key tactic for producing macroscopic architecture, which is desirable for practical applications, such as electromagnetic interference shielding and catalyst. We report a one-step greener approach for developing porous architecture of 3D-graphene/noble metal (Pt and Ag) nanocomposite monoliths. The resulting graphene/noble metal nanocomposites exhibit a combination of ultralow density, excellent elasticity, and good electrical conductivity. Moreover, in order to illuminate the advantages of the 3D-graphene/noble metal nanocomposites, their electromagnetic interference (EMI) shielding and electrocatalytic performance are further investigated. The as-synthesized 3D-graphene/noble metal nanocomposites exhibit excellent EMI shielding effectiveness when compared to bare graphene; the effectiveness has an average of 28 dB in the 8.2–12.4 GHz X-band range. In the electro-oxidation of methanol, the 3D-graphene/Pt nanocomposite also exhibits significantly enhanced electrocatalytic performance and stability than compared to reduced graphene oxide/Pt and commercial Pt/C. PMID:26638827

  2. Integrated digital inverters based on two-dimensional anisotropic ReS2 field-effect transistors

    PubMed Central

    Liu, Erfu; Fu, Yajun; Wang, Yaojia; Feng, Yanqing; Liu, Huimei; Wan, Xiangang; Zhou, Wei; Wang, Baigeng; Shao, Lubin; Ho, Ching-Hwa; Huang, Ying-Sheng; Cao, Zhengyi; Wang, Laiguo; Li, Aidong; Zeng, Junwen; Song, Fengqi; Wang, Xinran; Shi, Yi; Yuan, Hongtao; Hwang, Harold Y.; Cui, Yi; Miao, Feng; Xing, Dingyu

    2015-01-01

    Semiconducting two-dimensional transition metal dichalcogenides are emerging as top candidates for post-silicon electronics. While most of them exhibit isotropic behaviour, lowering the lattice symmetry could induce anisotropic properties, which are both scientifically interesting and potentially useful. Here we present atomically thin rhenium disulfide (ReS2) flakes with unique distorted 1T structure, which exhibit in-plane anisotropic properties. We fabricated monolayer and few-layer ReS2 field-effect transistors, which exhibit competitive performance with large current on/off ratios (∼107) and low subthreshold swings (100 mV per decade). The observed anisotropic ratio along two principle axes reaches 3.1, which is the highest among all known two-dimensional semiconducting materials. Furthermore, we successfully demonstrated an integrated digital inverter with good performance by utilizing two ReS2 anisotropic field-effect transistors, suggesting the promising implementation of large-scale two-dimensional logic circuits. Our results underscore the unique properties of two-dimensional semiconducting materials with low crystal symmetry for future electronic applications. PMID:25947630

  3. Preparation and performance of broadband antireflective sub-wavelength structures on Ge substrate

    NASA Astrophysics Data System (ADS)

    Shen, Xiang-Wei; Liu, Zheng-Tang; Li, Yang-Ping; Lu, Hong-Cheng; Xu, Qi-Yuan; Liu, Wen-Ting

    2009-01-01

    Sub-wavelength structures (SWS) were prepared on Ge substrates through photolithography and reactive ion etching (RIE) technology for broadband antireflective purposes in the long wave infrared (LWIR) waveband of 8-12 μm. Topography of the etched patterns was observed using high resolution optical microscope and atomic force microscope (AFM). Infrared transmission performance of the SWS was investigated by Fourier transform infrared (FTIR) spectrometer. Results show that the etched patterns were of high uniformity and fidelity, the SWS exhibited a good broadband antireflective performance with the increment of the average transmittance which is over 8-12 μm up to 8%.

  4. Coated Porous Si for High Performance On-Chip Supercapacitors

    NASA Astrophysics Data System (ADS)

    Grigoras, K.; Keskinen, J.; Grönberg, L.; Ahopelto, J.; Prunnila, M.

    2014-11-01

    High performance porous Si based supercapacitor electrodes are demonstrated. High power density and stability is provided by ultra-thin TiN coating of the porous Si matrix. The TiN layer is deposited by atomic layer deposition (ALD), which provides sufficient conformality to reach the bottom of the high aspect ratio pores. Our porous Si supercapacitor devices exhibit almost ideal double layer capacitor characteristic with electrode volumetric capacitance of 7.3 F/cm3. Several orders of magnitude increase in power and energy density is obtained comparing to uncoated porous silicon electrodes. Good stability of devices is confirmed performing several thousands of charge/discharge cycles.

  5. Electrochemical properties of graphene nanosheets/polyaniline nanofibers composites as electrode for supercapacitors

    NASA Astrophysics Data System (ADS)

    Li, Jing; Xie, Huaqing; Li, Yang; Liu, Jie; Li, Zhuxin

    Graphene nanosheets/polyaniline nanofibers (GNS/PANI) composites are synthesized via in situ polymerization of aniline monomer in HClO 4 solution. The PANI nanofibers homogeneously coating on the surface of GNS greatly improve the charge transfer reaction. The GNS/PANI composites exhibit better electrochemical performances than the pure individual components. A remarkable specific capacitance of 1130 F g -1 (based on GNS/PANI composites) is obtained at a scan rate of 5 mV s -1 in 1 M H 2SO 4 solution compared to 402 F g -1 for pure PANI and 270 F g -1 for GNS. The excellent performance is not only due to the GNS which can provide good electrical conductivity and high specific surface area, but also associate with a good redox activity of ordered PANI nanofibers. Moreover, the GNS/PANI composites present excellent long cycle life with 87% specific capacitance retained after 1000 charge/discharge processes. The resulting composites are promising electrode materials for high-performance electrical energy storage devices.

  6. Remarkable Effect of Sodium Alginate Aqueous Binder on Anatase TiO2 as High-Performance Anode in Sodium Ion Batteries.

    PubMed

    Ling, Liming; Bai, Ying; Wang, Zhaohua; Ni, Qiao; Chen, Guanghai; Zhou, Zhiming; Wu, Chuan

    2018-02-14

    Sodium alginate (SA) is investigated as the aqueous binder to fabricate high-performance, low-cost, environmentally friendly, and durable TiO 2 anodes in sodium-ion batteries (SIBs) for the first time. Compared to the conventional polyvinylidene difluoride (PVDF) binder, electrodes using SA as the binder exhibit significant promotion of electrochemical performances. The initial Coulombic efficiency is as high as 62% at 0.1 C. A remarkable capacity of 180 mAh g -1 is achieved with no decay after 500 cycles at 1 C. Even at 10 C (3.4 A g -1 ), it remains 82 mAh g -1 after 3600 cycles with approximate 100% Coulombic efficiency. TiO 2 electrodes with SA binder display less electrolyte decomposition, fewer side reactions, high electrochemistry reaction activity, effective suppression of polarization, and good electrode morphology, which is ascribed to the rich carboxylic groups, high Young's modulus, and good electrochemical stability of SA binder.

  7. Shape control of Co3O4 micro-structures for high-performance gas sensor

    NASA Astrophysics Data System (ADS)

    Zhou, Qu; Zeng, Wen

    2018-01-01

    Recently, spinel cobalt oxide (Co3O4) structure has been widely investigated due to its excellent sensitivity towards various noxious gases and good response/recovery speed at low concentration. In this work, we designed and synthesized two kinds of different Co3O4 micro-structure (cube and octahedron) with a similar size. After fabricating them into gas sensors, we found that the crystal plane structure of Co3O4 has an important effect on its gas sensing performance. Furthermore, the {111} planes of Co3O4may be more sensitive than {100} planes to various testing gases. Co3O4 octahedrons micro-structure exhibits an excellent sensitivity (about 12.6), good response/recovery speed and cycling stability (no decline even after 2 days) under 50 ppm ethanol gases at working temperature of 200 °C. As such, thisCo3O4 octahedrons micro-structure is a promising candidate for a high-performance gas sensing material.

  8. SDU6 Interior Liner Testing & Evaluation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skidmore, T. E.

    Two liner materials (Marseal® M-3500 and REMA Chemoline® 4CN) proposed for use as a liner inside the Saltstone Disposal Unit 6 (SDU6) were subjected to specific ASTM tests (tensile and lap-shear) after immersion in 50% and 100% simulant solutions for 1000 hours at the Savannah River Ecology Laboratory. Both liner materials exhibited good resistance to the simulant chemistry, at least based on the tests performed and the test duration/conditions imposed. In lap-shear tests, both materials failed in the base material rather than peeling apart, confirming good adhesion. The REMA 4CN bromobutyl elastomer showed superior bonding characteristics and absence of warpingmore » or delamination at the conditions tested. The Marseal M-3500 material (PVC/EVA blend with polyester reinforcement) exhibited deformation and debonding in some locations. The cause of the deformation and delamination observed in the Marseal M-3500 material is not fully known, but possibly attributed to thermomechanical stress at immersion temperatures, and the thermoplastic nature of the material. The immersion temperature (68 °C) is slightly greater than the maximum use temperature limit quoted for the Marseal M- 3500 liner (65 °C), though the basis for the service limit is unknown. The testing performed was limited in scope and only for these two liner materials. These tests were primarily performed to screen for severe incompatibility or short-term degradation in Saltstone bleedwater simulants at bounding solution temperatures. Additional testing is recommended to assess long-term performance and the overall service life of the liner.« less

  9. Vertical-Strip-Fed Broadband Circularly Polarized Dielectric Resonator Antenna.

    PubMed

    Altaf, Amir; Jung, Jin-Woo; Yang, Youngoo; Lee, Kang-Yoon; Hwang, Keum Cheol

    2017-08-18

    A vertical-strip-fed dielectric resonator antenna exhibiting broadband circular polarization characteristics is presented. A broad 3 dB axial ratio bandwidth (ARBW) is achieved by combining multiple orthogonal modes due to the use of a special-shaped dielectric resonator. The proposed antenna is fabricated to evaluate its actual performance capabilities. The antenna exhibits a measured 3 dB ARBW of 44.2% (3.35-5.25 GHz), lying within a -10 dB reflection bandwidth of 82.7% (2.44-5.88 GHz). The measured peak gain within 3 dB ARBW is found to be 5.66 dBic at 4.8 GHz. The measured results are in good agreement with the simulated results.

  10. Information matrix estimation procedures for cognitive diagnostic models.

    PubMed

    Liu, Yanlou; Xin, Tao; Andersson, Björn; Tian, Wei

    2018-03-06

    Two new methods to estimate the asymptotic covariance matrix for marginal maximum likelihood estimation of cognitive diagnosis models (CDMs), the inverse of the observed information matrix and the sandwich-type estimator, are introduced. Unlike several previous covariance matrix estimators, the new methods take into account both the item and structural parameters. The relationships between the observed information matrix, the empirical cross-product information matrix, the sandwich-type covariance matrix and the two approaches proposed by de la Torre (2009, J. Educ. Behav. Stat., 34, 115) are discussed. Simulation results show that, for a correctly specified CDM and Q-matrix or with a slightly misspecified probability model, the observed information matrix and the sandwich-type covariance matrix exhibit good performance with respect to providing consistent standard errors of item parameter estimates. However, with substantial model misspecification only the sandwich-type covariance matrix exhibits robust performance. © 2018 The British Psychological Society.

  11. Three dimensional nitrogen-doped graphene aerogels functionalized with melamine for multifunctional applications in supercapacitors and adsorption

    NASA Astrophysics Data System (ADS)

    Xing, Ling-Bao; Hou, Shu-Fen; Zhou, Jin; Zhang, Jing-Li; Si, Weijiang; Dong, Yunhui; Zhuo, Shuping

    2015-10-01

    In present work, we demonstrate an efficient and facile strategy to fabricate three-dimensional (3D) nitrogen-doped graphene aerogels (NGAs) based on melamine, which serves as reducing and functionalizing agent of graphene oxide (GO) in an aqueous medium with ammonia. Benefiting from well-defined and cross-linked 3D porous network architectures, the supercapacitor based on the NGAs exhibited a high specific capacitance of 170.5 F g-1 at 0.2 A g-1, and this capacitance also showed good electrochemical stability and a high degree of reversibility in the repetitive charge/discharge cycling test. More interestingly, the prepared NGAs further exhibited high adsorption capacities and high recycling performance toward several metal ions such as Pb2+, Cu2+ and Cd2+. Moreover, the hydrophobic carbonized nitrogen-doped graphene aerogels (CNGAs) showed outstanding adsorption and recycling performance for the removal of various oils and organic solvents.

  12. High-performance supercapacitors of Cu-based porous coordination polymer nanowires and the derived porous CuO nanotubes.

    PubMed

    Wu, Meng-Ke; Zhou, Jiao-Jiao; Yi, Fei-Yan; Chen, Chen; Li, Yan-Li; Li, Qin; Tao, Kai; Han, Lei

    2017-12-12

    Electrode materials for supercapacitors with one-dimensional porous nanostructures, such as nanowires and nanotubes, are very attractive for high-efficiency storage of electrochemical energy. Herein, ultralong Cu-based porous coordination polymer nanowires (copper-l-aspartic acid) were used as the electrode material for supercapacitors, for the first time. The as-prepared material exhibits a high specific capacitance of 367 F g -1 at 0.6 A g -1 and excellent cycling stability (94% retention over 1000 cycles). Moreover, porous CuO nanotubes were successfully fabricated by the thermal decomposition of this nanowire precursor. The CuO nanotube exhibits good electrochemical performance with high rate capacity (77% retention at 12.5 A g -1 ) and long-term stability (96% retention over 1000 cycles). The strategy developed here for the synthesis of porous nanowires and nanotubes can be extended to the construction of other electrode materials for more efficient energy storage.

  13. Bis(4-nitraminofurazanyl-3-azoxy)azofurazan and Derivatives: 1,2,5-Oxadiazole Structures and High-Performance Energetic Materials.

    PubMed

    Liu, Yuji; Zhang, Jiaheng; Wang, Kangcai; Li, Jinshan; Zhang, Qinghua; Shreeve, Jean'ne M

    2016-09-12

    Bis(4-nitraminofurazanyl-3-azoxy)azofurazan (1) and ten of its energetic salts were prepared and fully characterized. Computational analysis based on isochemical shielding surface and trigger bond dissociation enthalpy provide a better understanding of the thermal stabilities for nitramine-furazans. These energetic compounds exhibit good densities, high heats of formation, and excellent detonation velocity and pressure. Some representative compounds, for example, 1 (vD : 9541 m s(-1) ; P: 40.5 GPa), and 4 (vD : 9256 m s(-1) ; P: 38.0 GPa) exhibit excellent detonation performances, which are comparable with current high explosives such as RDX (vD : 8724 m s(-1) ; P: 35.2 GPa) and HMX (vD : 9059 m s(-1) ; P: 39.2 GPa). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Virtual auditorium concepts for exhibition halls

    NASA Astrophysics Data System (ADS)

    Evans, Jack; Himmel, Chad; Knight, Sarah

    2002-11-01

    Many communities lack good performance facilities for symphonic music, opera, dramatic and musical arts, but have basic convention, exhibition or assembly spaces. It should be possible to develop performance space environments within large multipurpose facilities that will accommodate production and presentation of dramatic arts. Concepts for moderate-cost, temporary enhancements that transform boxy spaces into more intimate, acoustically articulated venues will be presented. Acoustical criteria and design parameters will be discussed in the context of creating a virtual auditorium within the building envelope. Physical, economic, and logistical limitations affect implementation. Sound reinforcement system augmentation can supplement the room conversion. Acceptable control of reflection patterns, reverberation, and to some extent, ambient noise, may be achieved with an array of nonpermanent reflector and absorber elements. These elements can sculpture an enclosure to approach the shape and acoustic characteristics of an auditorium. Plan and section illustrations will be included.

  15. A Thin Film Flexible Supercapacitor Based on Oblique Angle Deposited Ni/NiO Nanowire Arrays.

    PubMed

    Ma, Jing; Liu, Wen; Zhang, Shuyuan; Ma, Zhe; Song, Peishuai; Yang, Fuhua; Wang, Xiaodong

    2018-06-11

    With high power density, fast charging-discharging speed, and a long cycling life, supercapacitors are a kind of highly developed novel energy-storage device that has shown a growing performance and various unconventional shapes such as flexible, linear-type, stretchable, self-healing, etc. Here, we proposed a rational design of thin film, flexible micro-supercapacitors with in-plane interdigital electrodes, where the electrodes were fabricated using the oblique angle deposition technique to grow oblique Ni/NiO nanowire arrays directly on polyimide film. The obtained electrodes have a high specific surface area and good adhesion to the substrate compared with other in-plane micro-supercapacitors. Meanwhile, the as-fabricated micro-supercapacitors have good flexibility and satisfactory energy-storage performance, exhibiting a high specific capacity of 37.1 F/cm³, a high energy density of 5.14 mWh/cm³, a power density of up to 0.5 W/cm³, and good stability during charge-discharge cycles and repeated bending-recovery cycles, respectively. Our micro-supercapacitors can be used as ingenious energy storage devices for future portable and wearable electronic applications.

  16. Synthesis of hollow NiCo2O4 nanospheres with large specific surface area for asymmetric supercapacitors.

    PubMed

    Xu, Kaibing; Yang, Jianmao; Hu, Junqing

    2018-02-01

    Hollow micro-/nanostructured electrode materials with high active surface area are highly desirable for achieving outstanding electrochemical properties. Herein, we report the successful synthesis of hierarchical hollow NiCo 2 O 4 nanospheres with high surface area as electrode materials for supercapacitors. Electrochemical measurements prove that such electrode materials exhibit excellent electrochemical behavior with a specific capacitance reaching 1229 F/g at 1 A/g, remarkable rate performance (∼83.6% retention from 1 to 25 A/g) and good cycling performance (86.3% after 3000 cycles). Furthermore, the asymmetric supercapacitor is fabricated with hollow NiCo 2 O 4 nanospheres electrode and activated carbon (AC) electrode as the positive and negative, respectively. This device exhibits a maximum energy density of 21.5 W h/kg, excellent cycling performance and coulombic efficiency. The results show that hollow NiCo 2 O 4 nanosphere electrode is a promising electrode material for the future application in high performance supercapacitors. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Concurrent validity and reliability of torso-worn inertial measurement unit for jump power and height estimation.

    PubMed

    Rantalainen, Timo; Gastin, Paul B; Spangler, Rhys; Wundersitz, Daniel

    2018-09-01

    The purpose of the present study was to evaluate the concurrent validity and test-retest repeatability of torso-worn IMU-derived power and jump height in a counter-movement jump test. Twenty-seven healthy recreationally active males (age, 21.9 [SD 2.0] y, height, 1.76 [0.7] m, mass, 73.7 [10.3] kg) wore an IMU and completed three counter-movement jumps a week apart. A force platform and a 3D motion analysis system were used to concurrently measure the jumps and subsequently derive power and jump height (based on take-off velocity and flight time). The IMU significantly overestimated power (mean difference = 7.3 W/kg; P < 0.001) compared to force-platform-derived power but good correspondence between methods was observed (Intra-class correlation coefficient [ICC] = 0.69). IMU-derived power exhibited good reliability (ICC = 0.67). Velocity-derived jump heights exhibited poorer concurrent validity (ICC = 0.72 to 0.78) and repeatability (ICC = 0.68) than flight-time-derived jump heights, which exhibited excellent validity (ICC = 0.93 to 0.96) and reliability (ICC = 0.91). Since jump height and power are closely related, and flight-time-derived jump height exhibits excellent concurrent validity and reliability, flight-time-derived jump height could provide a more desirable measure compared to power when assessing athletic performance in a counter-movement jump with IMUs.

  18. The simple determination method for anthocyanidin aglycones in fruits using ultra-high-performance liquid chromatography.

    PubMed

    Shim, You-Shin; Yoon, Won-Jin; Kim, Dong-Man; Watanabe, Masaki; Park, Hyun-Jin; Jang, Hae Won; Lee, Jangho; Ha, Jaeho

    2015-01-01

    The simple determination method for anthocyanidin aglycones in fruits using ultra-high-performance liquid chromatography (UHPLC) coupled with the heating-block acidic hydrolysis method was validated through the precision, accuracy and linearity. The UHPLC separation was performed on a reversed-phase C18 column (particle size 2 μm, i.d. 2 mm, length 100 mm) with a photodiode-array detector. The limits of detection and quantification of the UHPLC analyses were 0.09 and 0.29 mg/kg for delphinidin, 0.08 and 0.24 mg/kg for cyanidin, 0.09 and 0.26 mg/kg for petunidin, 0.14 and 0.42 mg/kg for pelargonidin, 0.16 and 0.48 mg/kg for peonidin and 0.30 and 0.91 mg/kg for malvidin, respectively. The intra- and inter-day precisions of individual anthocyanidin aglycones were <10.3%. All calibration curves exhibited good linearity (r = 0.999) within the tested ranges. The total run time of UHPLC was 8 min. The simple preparation method with UHPLC detection in this study presented herein significantly improved the speed and the simplicity for preparation step of delphinidin, cyanidin, petunidin, pelargonidin, peonidin and malvidin in fruits. Especially, the UHPLC detection exhibited good resolution in spite of shorter run time about four times than conventional HPLC detection. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. High-performance single-crystalline arsenic-doped indium oxide nanowires for transparent thin-film transistors and active matrix organic light-emitting diode displays.

    PubMed

    Chen, Po-Chiang; Shen, Guozhen; Chen, Haitian; Ha, Young-geun; Wu, Chao; Sukcharoenchoke, Saowalak; Fu, Yue; Liu, Jun; Facchetti, Antonio; Marks, Tobin J; Thompson, Mark E; Zhou, Chongwu

    2009-11-24

    We report high-performance arsenic (As)-doped indium oxide (In(2)O(3)) nanowires for transparent electronics, including their implementation in transparent thin-film transistors (TTFTs) and transparent active-matrix organic light-emitting diode (AMOLED) displays. The As-doped In(2)O(3) nanowires were synthesized using a laser ablation process and then fabricated into TTFTs with indium-tin oxide (ITO) as the source, drain, and gate electrodes. The nanowire TTFTs on glass substrates exhibit very high device mobilities (approximately 1490 cm(2) V(-1) s(-1)), current on/off ratios (5.7 x 10(6)), steep subthreshold slopes (88 mV/dec), and a saturation current of 60 microA for a single nanowire. By using a self-assembled nanodielectric (SAND) as the gate dielectric, the device mobilities and saturation current can be further improved up to 2560 cm(2) V(-1) s(-1) and 160 microA, respectively. All devices exhibit good optical transparency (approximately 81% on average) in the visible spectral range. In addition, the nanowire TTFTs were utilized to control green OLEDs with varied intensities. Furthermore, a fully integrated seven-segment AMOLED display was fabricated with a good transparency of 40% and with each pixel controlled by two nanowire transistors. This work demonstrates that the performance enhancement possible by combining nanowire doping and self-assembled nanodielectrics enables silicon-free electronic circuitry for low power consumption, optically transparent, high-frequency devices assembled near room temperature.

  20. The performance of hematite nanostructures in different humidity levels

    NASA Astrophysics Data System (ADS)

    Ahmad, W. R. W.; Mamat, M. H.; Zoolfakar, A. S.; Khusaimi, Z.; Yusof, M. M.; Ismail, A. S.; Saidi, S. A.; Rusop, M.

    2018-05-01

    In this study, hematite (α-Fe2O3) nanostructure were prepared in Schott vials on fluorine-doped tin oxide (FTO) coated glass substrate using the sonicated immersion method in aqueous solution with ferric chloride FeCl3ṡ6H2O as a precursor and urea NH2-CONH2 as a stabilizer. The samples were characterized for different level of humidity conditions within range 40% to 90% RH. Based on the results obtained, the hematite nanostructure exhibited good optical properties and virtuous sensor response with high sensitivity. The fabricated hematite nanostructure has revealed a good potential for humidity sensor application based on the results obtained under different levels of humidity.

  1. Design and evaluation of a robust dynamic neurocontroller for a multivariable aircraft control problem

    NASA Technical Reports Server (NTRS)

    Troudet, T.; Garg, S.; Merrill, W.

    1992-01-01

    The design of a dynamic neurocontroller with good robustness properties is presented for a multivariable aircraft control problem. The internal dynamics of the neurocontroller are synthesized by a state estimator feedback loop. The neurocontrol is generated by a multilayer feedforward neural network which is trained through backpropagation to minimize an objective function that is a weighted sum of tracking errors, and control input commands and rates. The neurocontroller exhibits good robustness through stability margins in phase and vehicle output gains. By maintaining performance and stability in the presence of sensor failures in the error loops, the structure of the neurocontroller is also consistent with the classical approach of flight control design.

  2. A facile method to prepare dual-functional membrane for efficient oil removal and in situ reversible mercury ions adsorption from wastewater

    NASA Astrophysics Data System (ADS)

    Zhang, Qingdong; Liu, Na; Cao, Yingze; Zhang, Weifeng; Wei, Yen; Feng, Lin; Jiang, Lei

    2018-03-01

    In this work, a novel thiol covered polyamide (nylon 66) microfiltration membrane was fabricated by combining mussel-inspired chemistry and coupling reaction, which owns excellent dual-function that can simultaneously remove oil from water efficiently and adsorb the mercury ions contained in the wastewater reversibly. Such membrane exhibited high oil/water separation efficiency, outstanding mercury adsorption ability, and good stability. Moreover, it can be regenerated in nitric acid solution, and maintain its good adsorption performance. The as-prepared membrane showed great potentials for water purification to reduce the heavy metal ion pollution and complicated industrial oily wastewater and living wastewater.

  3. CTAB-Aided Synthesis of Stacked V2O5 Nanosheets: Morphology, Electrochemical Features and Asymmetric Device Performance

    NASA Astrophysics Data System (ADS)

    Saravanakumar, B.; Maruthamuthu, S.; Umadevi, V.; Saravanan, V.

    To accomplish superior performance in supercapacitors, a fresh class of electrode materials with advantageous structures is essential. Owing to its rich electrochemical activity, vanadium oxides are considered to be an attractive electrode material for energy storing devices. In this work, vanadium pentoxide (V2O5) nanostructures were prepared using surfactant (CTAB)-assisted hydrothermal route. Stacked V2O5 sheets enable additional channels for electrolyte ion intercalation. These stacked V2O5 nanosheets show highest specific capacitance of 466Fg-1 at 0.5Ag-1. In addition, it exhibits good rate capacity, lower value of charge transfer resistance and good stability when used as an electrode material for supercapacitors. Further, an asymmetric supercapacitor device was assembled utilizing the stacked V2O5 sheets and activated carbon as electrodes. The electrochemical features of the device are also discussed.

  4. Simulation of proportional control of hydraulic actuator using digital hydraulic valves

    NASA Astrophysics Data System (ADS)

    Raghuraman, D. R. S.; Senthil Kumar, S.; Kalaiarasan, G.

    2017-11-01

    Fluid power systems using oil hydraulics in earth moving and construction equipment have been using proportional and servo control valves for a long time to achieve precise and accurate position control backed by system performance. Such valves are having feedback control in them and exhibit good response, sensitivity and fine control of the actuators. Servo valves and proportional valves are possessing less hysteresis when compared to on-off type valves, but when the servo valve spools get stuck in one position, a high frequency called as jitter is employed to bring the spool back, whereas in on-off type valves it requires lesser technology to retract the spool. Hence on-off type valves are used in a technology known as digital valve technology, which caters to precise control on slow moving loads with fast switching times and with good flow and pressure control mimicking the performance of an equivalent “proportional valve” or “servo valve”.

  5. High performance porous Si@C anodes synthesized by low temperature aluminothermic reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Kuber; Zheng, Jianming; Patel, Rajankumar

    A low temperature (210°C) aluminothermic reduction reaction process has been developed to synthesis porous silicon (Si) as an anode for Li ion battery applications. An eutectic mixture of AlCl3 and ZnCl2 is used as the mediator to reduce the reaction temperature. With carbon pre-coated on the porous SiO2 precursor, porous Si@C core shell structured anodes could be obtained with structure and morphology similar to that of the porous precursor. In addition, carbon coated porous Si also exhibits superior cyclic stability, higher rate performance, and higher coulombic efficiency. The porous Si anode demonstrates a high specific capacity of ~2100 mAh/g atmore » the current density of 1.2 A/g and has a good cycling stability with ~76% capacity retention over 250 cycles. Therefore, it will be a good candidate for anode used in high energy density Li-ion batteries.« less

  6. Enabling aqueous processing for crack-free thick electrodes

    DOE PAGES

    Du, Zhijia; Rollag, K. M.; Li, J.; ...

    2017-04-14

    Aqueous processing of thick electrodes for Li-ion cells promises to increase energy density due to increased volume fraction of active materials, and to reduce cost due to the elimination of the toxic solvents. Here in this paper this work reports the processing and characterization of aqueous processed electrodes with high areal loading and associated full pouch cell performance. Cracking of the electrode coatings becomes a critical issue for aqueous processing of the positive electrode as areal loading increases above 20–25 mg/cm 2 (~4 mAh/cm 2). Crack initiation and propagation, which was observed during drying via optical microscopy, is related tomore » the build-up of capillary pressure during the drying process. The surface tension of water was reduced by the addition of isopropyl alcohol (IPA), which led to improved wettability and decreased capillary pressure during drying. The critical thickness (areal loading) without cracking increased gradually with increasing IPA content. The electrochemical performance was evaluated in pouch cells. Electrodes processed with water/IPA (80/20 wt%) mixture exhibited good structural integrity with good rate performance and cycling performance.« less

  7. Electrochemically synthesized nanocrystalline spinel thin film for high performance supercapacitor

    NASA Astrophysics Data System (ADS)

    Gupta, Vinay; Gupta, Shubhra; Miura, Norio

    Spinels are not known for their supercapacitive nature. Here, we have explored electrochemically synthesized nanostructured NiCo 2O 4 spinel thin-film electrode for electrochemical supercapacitors. The nanostructured NiCo 2O 4 spinel thin film exhibited a high specific capacitance value of 580 F g -1 and an energy density of 32 Wh kg -1 at the power density of 4 kW kg -1, accompanying with good cyclic stability.

  8. Neurological soft signs in obsessive compulsive disorder with good and poor insight.

    PubMed

    Karadag, Filiz; Tumkaya, Selim; Kırtaş, Duygu; Efe, Muharrem; Alacam, Hüseyin; Oguzhanoglu, Nalan K

    2011-06-01

    Obsessive compulsive disorder (OCD) is a clinically heterogeneous disorder; OCD with poor insight has been suggested to be a specific clinical subtype. Neurological soft signs (NSSs) may be helpful to identify the specific subtypes of OCD patients. In the present study, we aimed to compare OCD patients with poor insight with OCD patients having good insight, and healthy individuals. Sixty-four OCD patients (38 with good insight and 26 with poor insight), and 32 healthy subjects were enrolled in the present study. The Overvalued Ideas Scale (OVIS) was used to determine OCD patients with poor insight. NSSs were assessed by using the Neurological Evaluation Scale (NES). Two OCD groups had significantly higher total NES scores compared to controls (p=.000). Compared to healthy controls, OCD patients with poor insight performed significantly worse on all NES subscales, and they had significantly more NSSs on motor coordination, and sensory integration subscales compared to the OCD with good insight group. Our results suggested that OCD patients with poor insight exhibit more extensive neurodevelopmental impairments compared to OCD patients with good insight. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Low-temperature irradiation behavior of uranium-molybdenum alloy dispersion fuel

    NASA Astrophysics Data System (ADS)

    Meyer, M. K.; Hofman, G. L.; Hayes, S. L.; Clark, C. R.; Wiencek, T. C.; Snelgrove, J. L.; Strain, R. V.; Kim, K.-H.

    2002-08-01

    Irradiation tests have been conducted to evaluate the performance of a series of high-density uranium-molybdenum (U-Mo) alloy, aluminum matrix dispersion fuels. Fuel plates incorporating alloys with molybdenum content in the range of 4-10 wt% were tested. Two irradiation test vehicles were used to irradiate low-enrichment fuels to approximately 40 and 70 at.% 235U burnup in the advanced test reactor at fuel temperatures of approximately 65 °C. The fuel particles used to fabricate dispersion specimens for most of the test were produced by generating filings from a cast rod. In general, fuels with molybdenum contents of 6 wt% or more showed stable in-reactor fission gas behavior, exhibiting a distribution of small, stable gas bubbles. Fuel particle swelling was moderate and decreased with increasing alloy content. Fuel particles with a molybdenum content of 4 wt% performed poorly, exhibiting extensive fuel-matrix interaction and the growth of relatively large fission gas bubbles. Fuel particles with 4 or 6 wt% molybdenum reacted more rapidly with the aluminum matrix than those with higher-alloy content. Fuel particles produced by an atomization process were also included in the test to determine the effect of fuel particle morphology and microstructure on fuel performance for the U-10Mo composition. Both of the U-10Mo fuel particle types exhibited good irradiation performance, but showed visible differences in fission gas bubble nucleation and growth behavior.

  10. Surface-Charge-Mediated Formation of H-TiO2 @Ni(OH)2 Heterostructures for High-Performance Supercapacitors.

    PubMed

    Ke, Qingqing; Guan, Cao; Zhang, Xiao; Zheng, Minrui; Zhang, Yong-Wei; Cai, Yongqing; Zhang, Hua; Wang, John

    2017-02-01

    An electrochemically favorable Ni(OH) 2 with porously hierarchical structure and ultrathin nanosheets in a core-shell structure H-TiO 2 @Ni(OH) 2 is achieved through modulating the surface chemical activity of TiO 2 by hydrogenation, which creates a defect-rich surface of TiO 2 , thereby facilitating the subsequent nucleation and growth of Ni(OH) 2 . These configuration-tailored H-TiO 2 @Ni(OH) 2 core-shell nanowires exhibit a superior electrochemical performance and good flexibility. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Design and evaluation of experimental ceramic automobile thermal reactors

    NASA Technical Reports Server (NTRS)

    Stone, P. L.; Blankenship, C. P.

    1974-01-01

    The paper summarizes the results obtained in an exploratory evaluation of ceramics for automobile thermal reactors. Candidate ceramic materials were evaluated in several reactor designs using both engine dynamometer and vehicle road tests. Silicon carbide contained in a corrugated metal support structure exhibited the best performance, lasting 1100 hours in engine dynamometer tests and for more than 38,600 kilimeters (24,000 miles) in vehicle road tests. Although reactors containing glass-ceramic components did not perform as well as silicon carbide, the glass-ceramics still offer good potential for reactor use with improved reactor designs.

  12. Design and evaluation of experimental ceramic automobile thermal reactors

    NASA Technical Reports Server (NTRS)

    Stone, P. L.; Blankenship, C. P.

    1974-01-01

    The results obtained in an exploratory evaluation of ceramics for automobile thermal reactors are summarized. Candidate ceramic materials were evaluated in several reactor designs by using both engine-dynamometer and vehicle road tests. Silicon carbide contained in a corrugated-metal support structure exhibited the best performance, lasting 1100 hr in engine-dynamometer tests and more than 38,600 km (24000 miles) in vehicle road tests. Although reactors containing glass-ceramic components did not perform as well as those containing silicon carbide, the glass-ceramics still offer good potential for reactor use with improved reactor designs.

  13. Rheological and fracturing characteristics of a novel sulfonated hydroxypropyl guar gum.

    PubMed

    Qiu, Liewei; Shen, Yiding; Wang, Tao; Wang, Chen

    2018-05-15

    A series of sulfonated hydroxypropyl guar gum (SHG) samples with different degrees of substitution (DSs) were prepared, and the SHG solution and SHG fracturing fluid were prepared and analyzed. The SHG aqueous solutions with different DSs all exhibit shear thinning behavior, which is well correlated with the Ostwald-deWaele model. Owing to the electrostatic repulsion of SHG molecular chains, SHG solutions with a higher DS will exhibit weaker thixotropic performance and strong anti-salinity ability. In addition, the SHG fracturing fluids, which were formed by interactions between SHG and organic zirconium, exhibit good temperature- and shear-resistant properties, proppant suspension properties, and salt tolerance. Furthermore, SHG gel-breaking fluids show low interfacial and surface tensions, with low residue content and small core permeability damage. These results provide useful indicators for the applications of SHG in the oil field industry. Copyright © 2017. Published by Elsevier B.V.

  14. Influence of Pre-Training Predator Stress on the Expression of c-fos mRNA in the Hippocampus, Amygdala, and Striatum Following Long-Term Spatial Memory Retrieval

    PubMed Central

    VanElzakker, Michael B.; Zoladz, Phillip R.; Thompson, Vanessa M.; Park, Collin R.; Halonen, Joshua D.; Spencer, Robert L.; Diamond, David M.

    2011-01-01

    We have studied the influence of pre-training psychological stress on the expression of c-fos mRNA following long-term spatial memory retrieval. Rats were trained to learn the location of a hidden escape platform in the radial-arm water maze, and then their memory for the platform location was assessed 24 h later. Rat brains were extracted 30 min after the 24-h memory test trial for analysis of c-fos mRNA. Four groups were tested: (1) Rats given standard training (Standard); (2) Rats given cat exposure (Predator Stress) 30 min prior to training (Pre-Training Stress); (3) Rats given water exposure only (Water Yoked); and (4) Rats given no water exposure (Home Cage). The Standard trained group exhibited excellent 24 h memory which was accompanied by increased c-fos mRNA in the dorsal hippocampus and basolateral amygdala (BLA). The Water Yoked group exhibited no increase in c-fos mRNA in any brain region. Rats in the Pre-Training Stress group were classified into two subgroups: good and bad memory performers. Neither of the two Pre-Training Stress subgroups exhibited a significant change in c-fos mRNA expression in the dorsal hippocampus or BLA. Instead, stressed rats with good memory exhibited significantly greater c-fos mRNA expression in the dorsolateral striatum (DLS) compared to stressed rats with bad memory. This finding suggests that stressed rats with good memory used their DLS to generate a non-spatial (cue-based) strategy to learn and subsequently retrieve the memory of the platform location. Collectively, these findings provide evidence at a molecular level for the involvement of the hippocampus and BLA in the retrieval of spatial memory and contribute novel observations on the influence of pre-training stress in activating the DLS in response to long-term memory retrieval. PMID:21738501

  15. Highly efficient biosensors by using well-ordered ZnO/ZnS core/shell nanotube arrays

    NASA Astrophysics Data System (ADS)

    Tarish, Samar; Xu, Yang; Wang, Zhijie; Mate, Faten; Al-Haddad, Ahmed; Wang, Wenxin; Lei, Yong

    2017-10-01

    We have studied the fabrication of highly efficient glucose sensors using well-ordered heterogeneous ZnO/ZnS core/shell nanotube arrays (CSNAs). The modified electrodes exhibit a superior electrochemical response towards ferrocyanide/ferricyanide and in glucose sensing. Further, the fabricated glucose biosensor exhibited good performance over an acceptable linear range from 2.39 × 10-5 to 2.66 × 10-4 mM, with a sensitivity of 188.34 mA mM-1 cm-2, which is higher than that of the ZnO nanotube array counterpart. A low limit of detection was realized (24 μM), which is good compared with electrodes based on conventional structures. In addition, the enhanced direct electrochemistry of glucose oxidase indicates the fast electron transfer of ZnO/ZnS CSNA electrodes, with a heterogeneous electron transfer rate constant (K s) of 1.69 s-1. The fast electron transfer is attributed to the high conductivity of the modified electrodes. The presented ZnS shell can facilitate the construction of future sensors and enhance the ZnO surface in a biological environment.

  16. Flower-like Copper Cobaltite Nanosheets on Graphite Paper as High-Performance Supercapacitor Electrodes and Enzymeless Glucose Sensors.

    PubMed

    Liu, Shude; Hui, K S; Hui, K N

    2016-02-10

    Flower-like copper cobaltite (CuCo2O4) nanosheets anchored on graphite paper have been synthesized using a facile hydrothermal method followed by a postannealing treatment. Supercapacitor electrodes employing CuCo2O4 nanosheets exhibit an enhanced capacitance of 1131 F g(-1) at a current density of 1 A g(-1) compared with previously reported supercapacitor electrodes. The CuCo2O4 electrode delivers a specific capacitance of up to 409 F g(-1) at a current density of as high as 50 A g(-1), and a good long-term cycling stability, with 79.7% of its specific capacitance retained after 5000 cycles at 10 A g(-1). Furthermore, the as-prepared CuCo2O4 nanosheets on graphite paper can be fabricated as electrodes and used as enzymeless glucose sensors, which exhibit good sensitivity (3.625 μA μM(-1) cm(-2)) and an extraordinary linear response ranging up to 320 μM with a low detection limit (5 μM).

  17. Fabrication of 3D honeycomb-like porous polyurethane-functionalized reduced graphene oxide for detection of dopamine.

    PubMed

    Vilian, A T Ezhil; An, Suyeong; Choe, Sang Rak; Kwak, Cheol Hwan; Huh, Yun Suk; Lee, Jonghwi; Han, Young-Kyu

    2016-12-15

    A three dimensional reduced graphene oxide/polyurethane (RGO-PU) porous material with connected pores was prepared by physical adsorption of RGO onto the surface of porous PU. The porous PU was prepared by directional melt crystallization of a solvent, which produced high pores with controlled orientation. The prepared RGO-PU was characterized by scanning electron microscopy, spectroscopy and electro-chemical methods. The RGO-PU porous material revealed better electrochemical performance, which might be attributed to the robust structure, superior conductivity, large surface area, and good flexibility. Differential pulse voltammetry (DPV) analysis of DA using the RGO-PU exhibited a linear response range over a wide DA concentration of 100-1150pM, with the detection limit of 1pM. This sensor exhibited outstanding anti-interference ability towards co-existing molecules with good stability, sensitivity, and reproducibility. Furthermore, the fabricated sensor was successfully applied for the quantitative analysis of DA in human serum and urine samples with acceptable recovery, which indicates its feasibility for practical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Different types of degradable vectors from low-molecular-weight polycation-functionalized poly(aspartic acid) for efficient gene delivery.

    PubMed

    Dou, X B; Hu, Y; Zhao, N N; Xu, F J

    2014-03-01

    Poly(aspartic acid) (PAsp) has been employed as the potential backbone for the preparation of efficient gene carriers, due to its low cytotoxicity, good biodegradability and excellent biocompatibility. In this work, the degradable linear or star-shaped PBLA was first prepared via ring-opining polymerization of β-benzyl-L-aspartate N-carboxy anhydride (BLA-NCA) initiated by ethylenediamine (ED) or ED-functionalized cyclodextrin cores. Then, PBLA was functionalized via aminolysis reaction with low-molecular-weight poly(2-(dimethylamino)ethyl methacrylate) with one terminal primary amine group (PDMAEMA-NH2), followed by addition of excess ED or ethanolamine (EA) to complete the aminolysis process. The obtained different types of cationic PAsp-based vectors including linear or star PAsp-PDM-NH2 and PAsp-PDM-OH exhibited good condensation capability and degradability, benefiting gene delivery process. In comparison with gold standard polyethylenimine (PEI, ∼ 25 kDa), the cationic PAsp-based vectors, particularly star-shaped ones, exhibited much better transfection performances. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. One-pot synthesis of fluorescent nitrogen-doped carbon dots with good biocompatibility for cell labeling.

    PubMed

    Zhang, Zhengwei; Yan, Kun; Yang, Qiulian; Liu, Yanhua; Yan, Zhengyu; Chen, Jianqiu

    2017-12-01

    Here we report an easy and economical hydrothermal carbonization approach to synthesize the fluorescent nitrogen-doped carbon dots (N-CDs) that was developed using citric acid and triethanolamine as the precursors. The synthesis conditions were optimized to obtain the N-CDs with superior fluorescence performances. The as-prepared N-CDs are monodispersed sphere nanoparticles with good water solubility, and exhibited strong fluorescence, favourable photostability and excitation wavelength-dependent behavior. Furthermore, the in vitro cytotoxicity and cellular labeling of N-CDs were investigated using the rat glomerular mesangial cells. The results showed the N-CDs have more inconspicuous cytotoxicity and better biosafety in comparison with ZnSe quantum dots, although both targeted the cells successfully. Considering their admirable photostability, low toxicity and good compatibility, the as-obtained N-CDs could have potential applications in biosensors, cellular imaging, and other fields. Copyright © 2017 John Wiley & Sons, Ltd.

  20. In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams

    PubMed Central

    Kovtun, Anna; Goeckelmann, Melanie J.; Niclas, Antje A.; Montufar, Edgar B.; Ginebra, Maria-Pau; Planell, Josep A.; Santin, Matteo; Ignatius, Anita

    2015-01-01

    Major limitations of calcium phosphate cements (CPCs) are their relatively slow degradation rate and the lack of macropores allowing the ingrowth of bone tissue. The development of self-setting cement foams has been proposed as a suitable strategy to overcome these limitations. In previous work we developed a gelatine-based hydroxyapatite foam (G-foam), which exhibited good injectability and cohesion, interconnected porosity and good biocompatibility in vitro. In the present study we evaluated the in vivo performance of the G-foam. Furthermore, we investigated whether enrichment of the foam with soybean extract (SG-foam) increased its bioactivity. G-foam, SG-foam and non-foamed CPC were implanted in a critical-size bone defect in the distal femoral condyle of New Zealand white rabbits. Bone formation and degradation of the materials were investigated after 4, 12 and 20 weeks using histological and biomechanical methods. The foams maintained their macroporosity after injection and setting in vivo. Compared to non-foamed CPC, cellular degradation of the foams was considerably increased and accompanied by new bone formation. The additional functionalization with soybean extract in the SG-foam slightly reduced the degradation rate and positively influenced bone formation in the defect. Furthermore, both foams exhibited excellent biocompatibility, implying that these novel materials may be promising for clinical application in non-loaded bone defects. PMID:25448348

  1. In vivo performance of novel soybean/gelatin-based bioactive and injectable hydroxyapatite foams.

    PubMed

    Kovtun, Anna; Goeckelmann, Melanie J; Niclas, Antje A; Montufar, Edgar B; Ginebra, Maria-Pau; Planell, Josep A; Santin, Matteo; Ignatius, Anita

    2015-01-01

    Major limitations of calcium phosphate cements (CPCs) are their relatively slow degradation rate and the lack of macropores allowing the ingrowth of bone tissue. The development of self-setting cement foams has been proposed as a suitable strategy to overcome these limitations. In previous work we developed a gelatine-based hydroxyapatite foam (G-foam), which exhibited good injectability and cohesion, interconnected porosity and good biocompatibility in vitro. In the present study we evaluated the in vivo performance of the G-foam. Furthermore, we investigated whether enrichment of the foam with soybean extract (SG-foam) increased its bioactivity. G-foam, SG-foam and non-foamed CPC were implanted in a critical-size bone defect in the distal femoral condyle of New Zealand white rabbits. Bone formation and degradation of the materials were investigated after 4, 12 and 20weeks using histological and biomechanical methods. The foams maintained their macroporosity after injection and setting in vivo. Compared to non-foamed CPC, cellular degradation of the foams was considerably increased and accompanied by new bone formation. The additional functionalization with soybean extract in the SG-foam slightly reduced the degradation rate and positively influenced bone formation in the defect. Furthermore, both foams exhibited excellent biocompatibility, implying that these novel materials may be promising for clinical application in non-loaded bone defects. Copyright © 2014 Acta Materialia Inc. All rights reserved.

  2. Sulfacetamide loaded Eudragit® RL100 nanosuspension with potential for ocular delivery.

    PubMed

    Mandal, Bivash; Alexander, Kenneth S; Riga, Alan T

    2010-01-01

    Polymeric nanosuspension was prepared from an inert polymer resin (Eudragit® RL100) with the aim of improving the availability of sulfacetamide at the intraocular level to combat bacterial infections. Nanosuspensions were prepared by the solvent displacement method using acetone and Pluronic® F108 solution. Drug to polymer ratio was selected as formulation variable. Characterization of the nanosupension was performed by measuring particle size, zeta potential, Fourier Transform infrared spectra (FTIR), Differential Scanning Calorimetry (DSC), Powder X-Ray Diffraction (PXRD), drug entrapment efficiency and in vitro release. In addition, freeze drying, redispersibility and short term stability study at room temperature and at 4(0)C were performed. Spherical, uniform particles (size below 500 nm) with positive zeta potential were obtained. No significant chemical interactions between drug and polymer were observed in the solid state characterization of the freeze dried nanosuspension (FDN). Drug entrapment efficiency of the selected batch was increased by changing the pH of the external phase and addition of polymethyl methacrylate in the formulation. The prepared nanosuspension exhibited good stability after storage at room temperature and at 4(0)C. Sucrose and Mannitol were used as cryoprotectants and exhibited good water redispersibility of the FDN. The results indicate that the formulation of sulfacetamide in Eudragit® RL100 nanosuspension could be utilized as potential delivery system for treating ocular bacterial infections.

  3. Exospheric hydrogen above St-Santin /France/

    NASA Technical Reports Server (NTRS)

    Derieux, A.; Lejeune, G.; Bauer, P.

    1975-01-01

    The temperature and hydrogen concentration of the exosphere was determined using incoherent scatter measurements performed above St. Santin from 1969 to 1972. The hydrogen concentration was deduced from measurements of the number density of positive hydrogen and oxygen ions. A statistical analysis is given of the hydrogen concentration as a function of the exospheric temperature and the diurnal variation of the hydrogen concentration is investigated for a few selected days of good quality observation. The data averaged with respect to the exospheric temperature without consideration of the local time exhibits a distribution consistent with a constant effective Jeans escape flux of about 9 x 10 to the 7 cu cm/s. The local time variation exhibits a maximum to minimum concentration ratio of at least 3.5.

  4. Spectroscopic analysis and the excellent reusability of sphere-capped ferrocene in the oxidation of glucose oxidase.

    PubMed

    Antepli, Esin; Sarı, Nurşen

    2016-08-01

    Sphere-capped ferrocene nanospheres with Schiff base spacers have been prepared using a template, and used as carriers to immobilize glucose oxidase (GOx). GOx immobilized on spheres with one C-spacer (APS-Fc) exhibited high binding affinity to the substrate, which was attributed to appropriate position for the GOx conformation. When glucose oxidase was immobilized with spacers of different lengths, it was found that storage stability decreased with increasing the length of the spacer. It has been found that nanospheres, including capped ferrocene, exhibit good performance as the immobilized supporters of GOx. (APS-EtFc-GOx) retain more than 10% of the initial activity after forty-two successive cycles, which is a remarkable result.

  5. A Hybrid Actuation System Demonstrating Significantly Enhanced Electromechanical Performance

    NASA Technical Reports Server (NTRS)

    Su, Ji; Xu, Tian-Bing; Zhang, Shujun; Shrout, Thomas R.; Zhang, Qiming

    2004-01-01

    A hybrid actuation system (HYBAS) utilizing advantages of a combination of electromechanical responses of an electroactive polymer (EAP), an electrostrictive copolymer, and an electroactive ceramic single crystal, PZN-PT single crystal, has been developed. The system employs the contribution of the actuation elements cooperatively and exhibits a significantly enhanced electromechanical performance compared to the performances of the device made of each constituting material, the electroactive polymer or the ceramic single crystal, individually. The theoretical modeling of the performances of the HYBAS is in good agreement with experimental observation. The consistence between the theoretical modeling and experimental test make the design concept an effective route for the development of high performance actuating devices for many applications. The theoretical modeling, fabrication of the HYBAS and the initial experimental results will be presented and discussed.

  6. Preparation and Humidity Sensing Properties of KCl/MCM-41 Composite

    NASA Astrophysics Data System (ADS)

    Liu, Li; Kou, Li-Ying; Zhong, Zhi-Cheng; Wang, Lian-Yuan; Liu, Li-Fang; Li, Wei

    2010-05-01

    KCl/mobil composition of matter-41 (MCM-41) composite has been synthesized via a heat-treating process and characterized by x-ray diffraction, high resolution transmission electron microscopy, and nitrogen adsorption/desorption isotherms. In contrast with pure MCM-41, KCl/MCM-41 composite exhibits improved humidity sensing properties within the relative humidity range of 11-95%. The impedance of KCl/MCM-41 composite changes by about four orders of magnitude over the whole humidity range with the response time and the recovery times are about 30 s and 35 s, respectively. Small humidity hysteresis and good stability are also observed based on our product. These results make our product a good candidate in fabricating humidity sensors with high performances and low synthetic complexity.

  7. Superhydrophobic coatings on wood substrate for self-cleaning and EMI shielding

    NASA Astrophysics Data System (ADS)

    Xing, Yingjie; Xue, Yaping; Song, Jinlong; Sun, Yankui; Huang, Liu; Liu, Xin; Sun, Jing

    2018-04-01

    A layer of superhydrophobic coating having good electromagnetic shielding and self-cleaning performance was fabricated on a wood surface through an electroless copper plated process. The superhydrophobic property of the wood surface was measured by contact angle (CA) and roll-off angle (RA) measurements. The microstructure and chemical composition of the superhydrophobic coating were analyzed by scanning electron microscopy (SEM), energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The analysis revealed that the microscale particles were uniformly distributed on the wood surface and the main component of the coating is metallic copper. The as-prepared Cu coatings on wood substrate exhibit a good superhydrophobicity with water contact angle about 160° and rolling angle less than 5°.

  8. Eco-Friendly Synthesis of Some Thiosemicarbazones and Their Applications as Intermediates for 5-Arylazothiazole Disperse Dyes.

    PubMed

    Gaffer, Hatem E; Khalifa, Mohamed E

    2015-12-09

    The solid-solid reactions of thiosemicarbazide with 4-formylantipyrine, 2-acetylpyrrole and camphor were performed to afford the thiosemicarbazones 1-3 which underwent hetero-cyclization with phenacyl bromide to furnish the corresponding thiazole derivatives 4-6. The yields of the reactions are quantitative in all cases and the products do not require further purification. A series of 5-arylazo-2-(substituted ylidene-hydrazinyl)-thiazole dyes 7-9 was then prepared by diazo coupling of thiazole derivatives 4-6 with several diazonium chlorides. The synthesized dyes were applied as disperse dyes for dyeing polyester fabric. The dyed fabrics exhibit good washing, perspiration, sublimation and light fastness properties, with little variation in their moderate to good rubbing fastness.

  9. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    DOE PAGES

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; ...

    2018-01-01

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. In this paper, we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is inmore » sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm -3 and high areal capacitances over 20 F cm -2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. In conclusion, these promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.« less

  10. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. In this paper, we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is inmore » sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm -3 and high areal capacitances over 20 F cm -2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. In conclusion, these promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.« less

  11. Controllable synthesis of CuS hollow microflowers hierarchical structures for asymmetric supercapacitors

    NASA Astrophysics Data System (ADS)

    Liu, Yanxia; Zhou, Zhaoxiao; Zhang, Shengping; Luo, Wenhao; Zhang, Guofeng

    2018-06-01

    One of the major challenges of high-performance asymmetric supercapacitors is engineering electrode materials with high capacitance and good cycling stability. Hence, we have successfully prepared different CuS hierarchical structures including CuS tubular structures (T-CuS), CuS hollow microspheres (S-CuS) and CuS hollow microflowers (H-CuS) by adjusting the solvents, all of which are investigated as electrode materials for supercapacitors. Among them, the H-CuS electrode exhibits the best electrochemical performance involving a high capacitance of 536.7 F g-1 at a current density of 8 A g-1 and excellent cycling stability with 83.6% capacitance retention for 20,000 continuous cycles at a current density of 5 A g-1. In addition, an asymmetric supercapacitor has assembled with H-CuS as positive electrode and activated carbon (AC) as negative electrode, which exhibits a desirable energy density of 15.97 W h kg-1 when the power density is 185.4 W kg-1. These desirable electrochemical performances powerfully demonstrate that the H-CuS electrode has promising potential for applications in energy storage fields.

  12. Epitaxy of Ferroelectric P(VDF-TrFE) Films via Removable PTFE Templates and Its Application in Semiconducting/Ferroelectric Blend Resistive Memory.

    PubMed

    Xia, Wei; Peter, Christian; Weng, Junhui; Zhang, Jian; Kliem, Herbert; Jiang, Yulong; Zhu, Guodong

    2017-04-05

    Ferroelectric polymer based devices exhibit great potentials in low-cost and flexible electronics. To meet the requirements of both low voltage operation and low energy consumption, thickness of ferroelectric polymer films is usually required to be less than, for example, 100 nm. However, decrease of film thickness is also accompanied by the degradation of both crystallinity and ferroelectricity and also the increase of current leakage, which surely degrades device performance. Here we report one epitaxy method based on removable poly(tetrafluoroethylene) (PTFE) templates for high-quality fabrication of ordered ferroelectric polymer thin films. Experimental results indicate that such epitaxially grown ferroelectric polymer films exhibit well improved crystallinity, reduced current leakage and good resistance to electrical breakdown, implying their applications in high-performance and low voltage operated ferroelectric devices. On the basis of this removable PTFE template method, we fabricated organic semiconducting/ferroelectric blend resistive films which presented record electrical performance with operation voltage as low as 5 V and ON/OFF ratio up to 10 5 .

  13. Robust and conductive two-dimensional metal-organic frameworks with exceptionally high volumetric and areal capacitance

    NASA Astrophysics Data System (ADS)

    Feng, Dawei; Lei, Ting; Lukatskaya, Maria R.; Park, Jihye; Huang, Zhehao; Lee, Minah; Shaw, Leo; Chen, Shucheng; Yakovenko, Andrey A.; Kulkarni, Ambarish; Xiao, Jianping; Fredrickson, Kurt; Tok, Jeffrey B.; Zou, Xiaodong; Cui, Yi; Bao, Zhenan

    2018-01-01

    For miniaturized capacitive energy storage, volumetric and areal capacitances are more important metrics than gravimetric ones because of the constraints imposed by device volume and chip area. Typically used in commercial supercapacitors, porous carbons, although they provide a stable and reliable performance, lack volumetric performance because of their inherently low density and moderate capacitances. Here we report a high-performing electrode based on conductive hexaaminobenzene (HAB)-derived two-dimensional metal-organic frameworks (MOFs). In addition to possessing a high packing density and hierarchical porous structure, these MOFs also exhibit excellent chemical stability in both acidic and basic aqueous solutions, which is in sharp contrast to conventional MOFs. Submillimetre-thick pellets of HAB MOFs showed high volumetric capacitances up to 760 F cm-3 and high areal capacitances over 20 F cm-2. Furthermore, the HAB MOF electrodes exhibited highly reversible redox behaviours and good cycling stability with a capacitance retention of 90% after 12,000 cycles. These promising results demonstrate the potential of using redox-active conductive MOFs in energy-storage applications.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Hongying, E-mail: liuhongying@hdu.edu.cn; Gu, Chunchuan; Li, Dujuan

    Graphical abstract: A non-enzymatic H{sub 2}O{sub 2} sensor with high selectivity and sensitivity based on rose-shaped FeMoO{sub 4} synthesized by the convenient microwave-assisted hydrothermal method, was fabricated. - Highlights: • Rose-shaped FeMoO{sub 4} is synthesized within 10 min via microwave-assisted hydrothermal approach. • Non-enzymatic hydrogen peroxide biosensor based on FeMoO{sub 4} nanomaterials is fabricated. • The biosensor exhibits good performance. - Abstract: In this work, we demonstrated a simple, rapid and reliable microwave-assisted hydrothermal approach to synthesize the uniform rose-shaped FeMoO{sub 4} within 10 min. The morphologies of the synthesized materials were characterized by X-ray powder diffraction and scanning electronmore » microscopy. Moreover, a non-enzymatic amperometric sensor for the detection of hydrogen peroxide (H{sub 2}O{sub 2}) was fabricated on the basis of the FeMoO{sub 4} as electrocatalysis. The resulting FeMoO{sub 4} exhibited high sensitivity and good stability for the detection of H{sub 2}O{sub 2}, which may be attributed to the rose-shaped structure of the material and the catalytic property of FeMoO{sub 4}. Amperometric response showed that the modified electrode had a good response for H{sub 2}O{sub 2} with a linear range from 1 μM to 1.6 mM, a detection limit of 0.5 μM (S/N = 3), high selectivity and short response time. Additionally, good recoveries of analytes in real milk samples confirm the reliability of the prepared sensor in practical applications.« less

  15. Development of polyisocyanurate pour foam formulation for space shuttle external tank thermal protection system

    NASA Technical Reports Server (NTRS)

    Harvey, James A.; Butler, John M.; Chartoff, Richard P.

    1988-01-01

    Four commercially available polyisocyanurate polyurethane spray-foam insulation formulations are used to coat the external tank of the space shuttle. There are several problems associated with these formulations. For example, some do not perform well as pourable closeout/repair systems. Some do not perform well at cryogenic temperatures (poor adhesion to aluminum at liquid nitrogen temperatures). Their thermal stability at elevated temperatures is not adequate. A major defect in all the systems is the lack of detailed chemical information. The formulations are simply supplied to NASA and Martin Marietta, the primary contractor, as components; Part A (isocyanate) and Part B (poly(s) and additives). Because of the lack of chemical information the performance behavior data for the current system, NASA sought the development of a non-proprietary room temperature curable foam insulation. Requirements for the developed system were that it should exhibit equal or better thermal stability both at elevated and cryogenic temperatures with better adhesion to aluminum as compared to the current system. Several formulations were developed that met these requirements, i.e., thermal stability, good pourability, and good bonding to aluminum.

  16. Training to improve manual control in 7-8 and 10-12 year old children: Training eliminates performance differences between ages.

    PubMed

    Snapp-Childs, Winona; Fath, Aaron J; Watson, Carol A; Flatters, Ian; Mon-Williams, Mark; Bingham, Geoffrey P

    2015-10-01

    Many children have difficulty producing movements well enough to improve in perceptuo-motor learning. We have developed a training method that supports active movement generation to allow improvement in a 3D tracing task requiring good compliance control. We previously tested 7-8 year old children who exhibited poor performance and performance differences before training. After training, performance was significantly improved and performance differences were eliminated. According to the Dynamic Systems Theory of development, appropriate support can enable younger children to acquire the ability to perform like older children. In the present study, we compared 7-8 and 10-12 year old school children and predicted that younger children would show reduced performance that was nonetheless amenable to training. Indeed, the pre-training performance of the 7-8 year olds was worse than that of the 10-12 year olds, but post-training performance was equally good for both groups. This was similar to previous results found using this training method for children with DCD and age-matched typically developing children. We also found in a previous study of 7-8 year old school children that training in the 3D tracing task transferred to a 2D drawing task. We now found similar transfer for the 10-12 year olds. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Ultrathin nickel hydroxide on carbon coated 3D-porous copper structures for high performance supercapacitors.

    PubMed

    Kang, Kyeong-Nam; Kim, Ik-Hee; Ramadoss, Ananthakumar; Kim, Sun-I; Yoon, Jong-Chul; Jang, Ji-Hyun

    2018-01-03

    An ultrathin nickel hydroxide layer electrodeposited on a carbon-coated three-dimensional porous copper structure (3D-C/Cu) is suggested as an additive and binder-free conductive electrode with short electron path distances, large electrochemical active sites, and improved structural stability, for high performance supercapacitors. The 3D-porous copper structure (3D-Cu) provides high electrical conductivity and facilitates electron transport between the Ni(OH) 2 active materials and the current collector of the Ni-plate. A carbon coating was applied to the 3D-Cu to prevent the oxidation of Cu, without degrading the electron transport behavior of the 3D-Cu. The 3D-Ni(OH) 2 /C/Cu exhibited a high specific capacitance of 1860 F g -1 at 1 A g -1 , and good cycling performance, with an 86.5% capacitance retention after 10 000 cycles. When tested in a two-electrode system, an asymmetric supercapacitor exhibited an energy density of 147.9 W h kg -1 and a power density of 37.0 kW kg -1 . These results open a new area of ultrahigh-performance supercapacitors, supported by 3D-Cu electrodes.

  18. Nanostructure selenium compounds as pseudocapacitive electrodes for high-performance asymmetric supercapacitor.

    PubMed

    Ma, Guofu; Hua, Fengting; Sun, Kanjun; Fenga, Enke; Peng, Hui; Zhang, Zhiguo; Lei, Ziqiang

    2018-01-01

    The electrochemical performance of an energy conversion and storage device like the supercapacitor mainly depends on the microstructure and morphology of the electrodes. In this paper, to improve the capacitance performance of the supercapacitor, the all-pseudocapacitive electrodes of lamella-like Bi 18 SeO 29 /BiSe as the negative electrode and flower-like Co 0.85 Se nanosheets as the positive electrode are synthesized by using a facile low-temperature one-step hydrothermal method. The microstructures and morphology of the electrode materials are carefully characterized, and the capacitance performances are also tested. The Bi 18 SeO 29 /BiSe and Co 0.85 Se have high specific capacitance (471.3 F g -1 and 255 F g -1 at 0.5 A g -1 ), high conductivity, outstanding cycling stability, as well as good rate capability. The assembled asymmetric supercapacitor completely based on the pseudocapacitive electrodes exhibits outstanding cycling stability (about 93% capacitance retention after 5000 cycles). Moreover, the devices exhibit high energy density of 24.2 Wh kg -1 at a power density of 871.2 W kg -1 in the voltage window of 0-1.6 V with 2 M KOH solution.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang

    Graphical abstract: CuO nanotube array electrodes prepared by electrodeposition method exhibit an excellent lithium ion storage ability as anode of Li-ion battery. - Highlights: • CuO nanotube arrays are synthesized by an electrodeposition method. • CuO nanotube shows a high-rate performance. • CuO nanotube shows an excellent cycling performance. - Abstract: We report a facile strategy to prepared CuO nanotube arrays directly grown on Cu plate through the electrodeposition method. The as-prepared CuO nanotubes show a quasi-cylinder nanostructure with internal diameters of ca. ∼100 nm, external diameters of ca. ∼120 nm, and average length of ∼3 μm. As an anodemore » for lithium ion batteries, the electrochemical properties of the CuO nanotube arrays are investigated by cyclic voltammetry (CV) and galvanostatic charge/discharge tests. Due to the unique nanotube nanostructure, the as-prepared CuO electrodes exhibit good rate performance (550 mAh g{sup −1} at 0.1 C and 464 mAh g{sup −1} at 1 C) and cycling performance (581 mAh g{sup −1} at 0.1 C and 538 mAh g{sup −1} at 0.5 C)« less

  20. Binder-free cobalt phosphate one-dimensional nanograsses as ultrahigh-performance cathode material for hybrid supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Sankar, K. Vijaya; Lee, S. C.; Seo, Y.; Ray, C.; Liu, S.; Kundu, A.; Jun, S. C.

    2018-01-01

    One-dimensional (1D) nanostructure exhibits excellent electrochemical performance because of their unique physico-chemical properties like fast electron transfer, good rate capability, and cyclic stability. In the present study, Co3(PO4)2 1D nanograsses are grown on Ni foam using a simple and eco-friendly hydrothermal technique with different reaction times. The open space with uniform nanograsses displays a high areal capacitance, rate capability, energy density, and cyclic stability due to the nanostructure enhancing fast ion and material interactions. Ex-situ microscope images confirm the dependence of structural stability on the reaction time, and the nanograsses promoted ion interaction through material. Further, the reproducibility of the electrochemical performance confirms the binder-free Co3(PO4)2 1D nanograsses to be a suitable high-performance cathode material for application to hybrid supercapacitor. Finally, the assembled hybrid supercapacitor exhibits a high energy density (26.66 Wh kg-1 at 750 W kg-1) and longer lifetimes (80% retained capacitance after 6000 cycles). Our results suggests that the Co3(PO4)2 1D nanograss design have a great promise for application to hybrid supercapacitor.

  1. Video game performances are preserved in ADHD children compared with controls.

    PubMed

    Bioulac, Stéphanie; Lallemand, Stéphanie; Fabrigoule, Colette; Thoumy, Anne-Laure; Philip, Pierre; Bouvard, Manuel Pierre

    2014-08-01

    Although ADHD and excessive video game playing have received some attention, few studies have explored the performances of ADHD children when playing video games. The authors hypothesized that performances of ADHD children would be as good as those of control children in motivating video games tasks but not in the Continuous Performance Test II (CPT II). The sample consisted of 26 ADHD children and 16 control children. Performances of ADHD and control children were compared on three commercially available games, on the repetition of every game, and on the CPT II. ADHD children had lower performances on the CPT II than did controls, but they exhibited equivalent performances to controls when playing video games at both sessions and on all three games. When playing video games, ADHD children present no difference in inhibitory performances compared with control children. This demonstrates that cognitive difficulties in ADHD are task dependent. © 2012 SAGE Publications.

  2. Exploratory evaluation of ceramics for automobile thermal reactors

    NASA Technical Reports Server (NTRS)

    Stone, P. L.; Blankenship, C. P.

    1972-01-01

    An exploratory evaluation of ceramics for automobile thermal reactors was conducted. Potential ceramic materials were evaluated in several reactor designs using both engine dynamometer and vehicle road tests. Silicon carbide contained in a corrugated metal support structure exhibited the best performance lasting over 800 hours in engine dynamometer tests and over 15,000 miles (24,200 km) of vehicle road tests. Reactors containing glass-ceramic components did not perform as well as silicon carbide. But the glass-ceramics still offer good potential for reactor use. The results of this study are considered to be a reasonable demonstration of the potential use of ceramics in thermal reactors.

  3. Military Ethics in Counterinsurgency: a New Look at an Old Problem

    DTIC Science & Technology

    2007-12-14

    exhibits a preference to judge based on what is known instead of waiting to try to perceive all aspects and different viewpoints of a probl Thus regardless...Koreans to manage contracts and dea nflicts develop and orean Government Employees are routinely under investigation. aps lie nd situations or...have to be “ managed ” in such a way that benefits the overall good of the mission. The US must perform a delicate balancing act, knowing it will be

  4. Yolk–shell Fe 2O 3 ⊙ C composites anchored on MWNTs with enhanced lithium and sodium storage

    DOE PAGES

    Zhao, Yi; Feng, Zhenxing; Xu, Zhichuan J.

    2015-04-24

    For this research, a unique architecture with yolk–shell Fe 2O 3 ⊙ C composites attached to the surface of MWNTs is designed. Benefiting from the good electrical conductivity of MWNTs and carbon layers, as well as the large void space to accommodate the volume expansion/extraction of Fe 2O 3 during battery cycling, the obtained MWNT@Fe 2O 3 ⊙ C exhibited outstanding lithium and sodium storage performance.

  5. Mechanical Testing of Ultra-High Temperature Ceramics at 1500 C in Air - Development of an Experimental Facility and Test Method

    DTIC Science & Technology

    2015-03-26

    SiC. TEM micrograph courtesy of R. S . Hay (AFRL/RXCC). ...................33 Fig. 5. Schematic of HfB2-based UHTC test specimen...the early work performed by the U. S . Air force and NASA was the identification of hafnium diboride (HfB2) and zirconium diboride (ZrB2) as good high...sintering, reactive routes, and spark plasma sintering. ~ 14 ~ Because diborides exhibit strong covalent bonding and low self-diffusion, high

  6. Effects of Kaolin Clay on the Mechanical Properties of Asphaltic Concrete AC14

    NASA Astrophysics Data System (ADS)

    Abdullah, M. E.; Ramadhansyah, P. J.; Rafsanjani, M. H.; Norhidayah, A. H.; Yaacob, H.; Hainin, M. R.; Warid, M. N. Mohd; Satar, M. K. I. Mohd; Aziz, Md Maniruzzaman A.; Mashros, N.

    2018-04-01

    This study investigated the effect of kaolin clay on the mechanical properties of asphaltic concrete AC14 through Marshall Stability, resilient modulus, and dynamic creep tests. Four replacement levels of kaolin clay (2%, 4%, 6%, and 8% by weight of the binder) were considered. Kaolin clay functioned as an effective filler replacement material to increase the mechanical properties of asphalt mixtures. Asphaltic concrete with 2% to 4% kaolin clay replacement level exhibited excellent performance with good stability, resilient modulus, and creep stiffness.

  7. Flexible organic light-emitting devices with a smooth and transparent silver nanowire electrode

    NASA Astrophysics Data System (ADS)

    Cui, Hai-Feng; Zhang, Yi-Fan; Li, Chuan-Nan

    2014-07-01

    We demonstrate a flexible organic light-emitting device (OLED) by using silver nanowire (AgNW) transparent electrode. A template stripping process has been employed to fabricate the AgNW electrode on a photopolymer substrate. From this approach, a random AgNW network electrode can be transferred to the flexible substrate and its roughness has been successfully decreased. As a result, the devices obtained by this method exhibit high efficiency. In addition, the flexible OLEDs keep good performance under a small bending radius.

  8. Dual channel sensitive detection of hsa-miR-21 based on rolling circle amplification and quantum dots tagging.

    PubMed

    Wangt, Dan-Chen; Hu, Li-Hui; Zhou, Yu-Hui; Huang, Yu-Ting; Li, Xinhua; Zhu, Jun-Jie

    2014-04-01

    An isothermal, highly sensitive and specific assay for the detection of hsa-miR-21 with the integration of QDs tagging and rolling circle amplification was offered. In addition, a dual channel strategy for miRNA detection was proposed: anodic stripping voltammetry (ASV) and fluorescent method were both performed for the final Cd2+ signal readout. The designed strategy exhibited good specificity to hsa-miR-21 and presented comparable detection results by detection methods.

  9. Solar power satellite system definition study. Part 2, volume 4: Microwave power transmission systems

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A slotted waveguide planar array was established as the baseline design for the spaceborne transmitter antenna. Key aspects of efficient energy conversion at both ends of the power transfer link were analyzed and optimized alternate approaches in the areas of antenna and tube design are discussed. An integrated design concept was developed which meets design requirements, observes structural and thermal constraints, exhibits good performance and was developed in adequate depth to permit cost estimating at the subsystem/component level.

  10. New Polyimide Has Many Uses

    NASA Technical Reports Server (NTRS)

    St. Clair, Terry L.; Progar, Donald J.; Smith, Janice Y.; Smith, Ricky E.

    1991-01-01

    Low-toxicity and low-mutogenicity monomer key to new high-performance polyimide. LaRC-IA is thermoplastic polyimide made from 3-4'-oxydianiline and 4,4'-oxydiphthalic anhydride. Good processing characteristics, low toxicity, and no mutagenicity. Adhesives, composite matrix resins, heat resin moldings, and coating films made of new polymer found to exhibit properties identical or superior to commercially available polyimides. Potential applications wide ranging. With and without end capping, employed to prepare unfilled moldings, coatings and free films, adhesive tape, adhesively bonded substrates, prepregs, and composites.

  11. 76 FR 4929 - Agency Information Collection Activities: Entry of Articles for Exhibition.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-27

    ... Activities: Entry of Articles for Exhibition. AGENCY: U.S. Customs and Border Protection (CBP), Department of... requirement concerning the Entry of Articles for Exhibition (19 CFR 147.11(c)). This request for comment is...: Title: Entry of Articles for Exhibition. OMB Number: 1651-0037. Form Number: None. Abstract: Goods...

  12. Training children aged 5-10 years in manual compliance control to improve drawing and handwriting.

    PubMed

    Bingham, Geoffrey P; Snapp-Childs, Winona

    2018-04-12

    A large proportion of school-aged children exhibit poor drawing and handwriting. This prevalence limits the availability of therapy. We developed an automated method for training improved manual compliance control and relatedly, prospective control of a stylus. The approach included a difficult training task, while providing parametrically modifiable support that enables the children to perform successfully while developing good compliance control. The task was to use a stylus to push a bead along a 3D wire path. Support was provided by making the wire magnetically attractive to the stylus. Support was progressively reduced as 3D tracing performance improved. We report studies that (1) compared performance of Typically Developing (TD) children and children with Developmental Coordination Disorder (DCD), (2) tested training with active versus passive movement, (3) tested progressively reduced versus constant or no support during training, (4) tested children of different ages, (5) tested the transfer of training to a drawing task, (6) tested the specificity of training in respect to the size, shape and dimensionality of figures, and (7) investigated the relevance of the training task to the Beery VMI, an inventory used to diagnose DCD. The findings were as follows. (1) Pre-training performance of TD and DCD children was the same and good with high support but distinct and poor with low support. Support yielded good self-efficacy that motivated training. Post training performance with no support was improved and the same for TD and DCD children. (2) Actively controlled movements were required for improved performance. (3) Progressively reduced support was required for good performance during and after training. (4) Age differences in performance during pre-training were eliminated post-training. (5) Improvements transferred to drawing. (6) There was no evidence of specificity of training in transfer. (7) Disparate Beery scores were reflected in pre-training but not post-training performance. We conclude that the method improves manual compliance control, and more generally, prospective control of movements used in drawing performance. Copyright © 2018. Published by Elsevier B.V.

  13. Structural, electronic, optical and thermoelectric investigations of antiperovskites A3SnO (A = Ca, Sr, Ba) using density functional theory

    NASA Astrophysics Data System (ADS)

    Hassan, M.; Shahid, A.; Mahmood, Q.

    2018-02-01

    Density functional theory study of the structural, electrical, optical and thermoelectric behaviors of very less investigated anti-perovskites A3SnO (A = Ca, Sr, Ba) is performed with FP-LAPW technique. The A3SnO exhibit narrow direct band gap, in contrast to the wide indirect band gap of the respective perovskites. Hence, indirect to direct band gap transformation can be realized by the structural transition from perovskite to anti-perovskite. The p-p hybridization between A and O states result in the covalent bonding. The transparency and maximum reflectivity to the certain energies, and the verification of the Penn's model indicate potential optical device applications. Thermoelectric behaviors computed within 200-800 K depict that Ca3SnO exhibits good thermoelectric performance than Ba3SnO and Sr3SnO, and all three operate at their best at 800 K suggesting high temperature thermoelectric device applications.

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Guoqiang; Wu, Feng; Zhan, Chun

    The development of safe, stable, and long-life Li-ion batteries is being intensively pursued to enable the electrification of transportation and intelligent grid applications. Here, we report a new solid-state Li-ion battery technology, using a solid nanocomposite electrolyte composed of porous silica matrices with in situ immobilizing Li+ conducting ionic liquid, anode material of MCMB, and cathode material of LiCoO 2, LiNi 1/3Co 1/3Mn 1/3O 2, or LiFePO 4. An injection printing method is used for the electrode/electrolyte preparation. Solid nanocomposite electrolytes exhibit superior performance to the conventional organic electrolytes with regard to safety and cycle-life. They also have a transparentmore » glassy structure with high ionic conductivity and good mechanical strength. Solid-state full cells tested with the various cathodes exhibited high specific capacities, long cycling stability, and excellent high temperature performance. This solid-state battery technology will provide new avenues for the rational engineering of advanced Li-ion batteries and other electrochemical devices.« less

  15. Synthesis and Supercapacitor Performance of Polyaniline/Nitrogen-Doped Ordered Mesoporous Carbon Composites

    NASA Astrophysics Data System (ADS)

    Xie, Kangjun; Zhang, Manman; Yang, Yang; Zhao, Long; Qi, Wei

    2018-05-01

    The electrochemical property of ordered mesoporous carbon (OMC) can be changed significantly due to the incorporating of electron-donating heteroatoms into OMC. Here, we demonstrate the successful fabrication of nitrogen-doped ordered mesoporous carbon (NOMC) materials to be used as carbon substrates for loading polyaniline (PANI) by in situ polymerization. Compared with NOMC, the PANI/NOMC prepared with a different mass ratio of PANI and NOMC exhibits remarkably higher electrochemical specific capacitance. In a typical three-electrode configuration, the hybrid has a specific capacitance about 276.1 F/g at 0.2 A/g with a specific energy density about 38.4 Wh/kg. What is more, the energy density decreases very slowly with power density increasing, which is a different phenomenon from other reports. PANI/NOMC materials exhibit good rate performance and long cycle stability in alkaline electrolyte ( 80% after 5000 cycles). The fabrication of PANI/NOMC with enhanced electrochemical properties provides a feasible route for promoting its applications in supercapacitors.

  16. Highly Conductive and Reliable Copper-Filled Isotropically Conductive Adhesives Using Organic Acids for Oxidation Prevention

    NASA Astrophysics Data System (ADS)

    Chen, Wenjun; Deng, Dunying; Cheng, Yuanrong; Xiao, Fei

    2015-07-01

    The easy oxidation of copper is one critical obstacle to high-performance copper-filled isotropically conductive adhesives (ICAs). In this paper, a facile method to prepare highly reliable, highly conductive, and low-cost ICAs is reported. The copper fillers were treated by organic acids for oxidation prevention. Compared with ICA filled with untreated copper flakes, the ICA filled with copper flakes treated by different organic acids exhibited much lower bulk resistivity. The lowest bulk resistivity achieved was 4.5 × 10-5 Ω cm, which is comparable to that of commercially available Ag-filled ICA. After 500 h of 85°C/85% relative humidity (RH) aging, the treated ICAs showed quite stable bulk resistivity and relatively stable contact resistance. Through analyzing the results of x-ray diffraction, x-ray photoelectron spectroscopy, and thermogravimetric analysis, we found that, with the assistance of organic acids, the treated copper flakes exhibited resistance to oxidation, thus guaranteeing good performance.

  17. Performance evaluation of bottom gate ZnO based thin film transistors with different W/L ratios for UV sensing

    NASA Astrophysics Data System (ADS)

    Varma, Tarun; Periasamy, C.; Boolchandani, Dharmendar

    2018-02-01

    In this paper, we report the simulation, fabrication and characterisation of UV photo-detectors with bottom gate ZnO Thin Film Transistors (TFTs), grown on silicon at room temperature using RF magnetron sputtering process. The static performance of these detectors have been explored by varying the channel lengths (6 μm and 12 μm). The fabricated devices show low leakage currents with threshold voltages of 1.18 & 2.33 V, sub-threshold swings of 13.5 & 12.8 V/dec for channel lengths of 6 μm and 12 μm TFT, respectively. They also exhibit superior electrical characteristics with an ON-OFF ratio of the order of 3. The detector was also tested for device stability, with the transfer characteristics of the TFTs, which got deteriorated mainly by the negative bias-stress. The TFTs were further tested for UV detector applications and found to exhibit good photo-response.

  18. Microwave assisted synthesis of biarlys by Csbnd C coupling reactions with a new chitosan supported Pd(II) catalyst

    NASA Astrophysics Data System (ADS)

    Baran, Talat; Menteş, Ayfer

    2016-10-01

    In this study a new type chitosan-based support has been produced for Pd(II) catalyst and its catalytic performance in Suzuki Csbnd C reactions has been studied under microwave irradiation without using any solvent. The chemical identification of the catalyst was performed using TG/DTG, FTIR, UV-Vis ICP-OES, SEM/EDAX, 13C NMR, molar conductivity, XRD and magnetic moment techniques. The performance of this new Pd(II) catalyst was studied in Suzuki Csbnd C reactions. The Pd(II) catalyst exhibited a good catalytic performance in very short time (4 min) by giving high TONs and TOFs with low amount of the catalyst (0.015 mol%). The catalyst also had reusability and did not lose its activity until six runs.

  19. Insight into the epitaxial encapsulation of Pd catalysts in an oriented metalloporphyrin network thin film for tandem catalysis.

    PubMed

    Vohra, M Ismail; Li, De-Jing; Gu, Zhi-Gang; Zhang, Jian

    2017-06-14

    A palladium catalyst (Pd-Cs) encapsulated metalloporphyrin network PIZA-1 thin film with bifunctional properties has been developed through a modified epitaxial layer-by-layer encapsulation approach. Combining the oxidation activity of Pd-Cs and the acetalization activity of the Lewis acidic sites in the PIZA-1 thin film, this bifunctional catalyst of the Pd-Cs@PIZA-1 thin film exhibits a good catalytic activity in a one-pot tandem oxidation-acetalization reaction. Furthermore, the surface components can be controlled by ending the top layer with different precursors in the thin film preparation procedures. The catalytic performances of these thin films with different surface composites were studied under the same conditions, which showed different reaction conversions. The result revealed that the surface component can influence the catalytic performance of the thin films. This epitaxial encapsulation offers a good understanding of the tandem catalysis for thin film materials and provides useful guidance to develop new thin film materials with catalytic properties.

  20. Reconstruction of TiO2/MnO2-C nanotube/nanoflake core/shell arrays as high-performance supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Xiong, Qinqin; Zheng, Cun; Chi, Hongzhong; Zhang, Jun; Ji, Zhenguo

    2017-02-01

    Construction of electrodes with fast reaction kinetics is of great importance for achieving advanced supercapacitors. Herein we report a facile combined synthetic strategy with atomic layer deposition (ALD) and electrodeposition to rationally fabricate nanotube/nanoflake core/shell arrays. ALD-TiO2 nanotubes are used as the skeleton core for assembly of electrodeposited MnO2-C nanoflake shells forming a core/shell structure. Highly porous architecture and good electrical conductivity are combined in this unique core/shell structure, resulting in fast ion/electron transfer. In tests of electrochemical performance, the TiO2/MnO2-C core/shell arrays are characterized as cathode for asymmetric supecapacitors and exhibit high specific capacitance (880 F g-1 at 2.5 A g-1), excellent rate properties (735 F g-1 at 30 A g-1) and good long-term cycling stability (94.3% capacitance retention after 20 000 cycles). The proposed electrode construction strategy is favorable for fabrication of other advanced supercapacitor electrodes.

  1. Reconstruction of TiO2/MnO2-C nanotube/nanoflake core/shell arrays as high-performance supercapacitor electrodes.

    PubMed

    Xiong, Qinqin; Zheng, Cun; Chi, Hongzhong; Zhang, Jun; Ji, Zhenguo

    2017-02-03

    Construction of electrodes with fast reaction kinetics is of great importance for achieving advanced supercapacitors. Herein we report a facile combined synthetic strategy with atomic layer deposition (ALD) and electrodeposition to rationally fabricate nanotube/nanoflake core/shell arrays. ALD-TiO 2 nanotubes are used as the skeleton core for assembly of electrodeposited MnO 2 -C nanoflake shells forming a core/shell structure. Highly porous architecture and good electrical conductivity are combined in this unique core/shell structure, resulting in fast ion/electron transfer. In tests of electrochemical performance, the TiO 2 /MnO 2 -C core/shell arrays are characterized as cathode for asymmetric supecapacitors and exhibit high specific capacitance (880 F g -1 at 2.5 A g -1 ), excellent rate properties (735 F g -1 at 30 A g -1 ) and good long-term cycling stability (94.3% capacitance retention after 20 000 cycles). The proposed electrode construction strategy is favorable for fabrication of other advanced supercapacitor electrodes.

  2. Flexible ultraviolet photodetectors based on ZnO-SnO2 heterojunction nanowire arrays

    NASA Astrophysics Data System (ADS)

    Lou, Zheng; Yang, Xiaoli; Chen, Haoran; Liang, Zhongzhu

    2018-02-01

    A ZnO-SnO2 nanowires (NWs) array, as a metal oxide semiconductor, was successfully synthesized by a near-field electrospinning method for the applications as high performance ultraviolet photodetectors. Ultraviolet photodetectors based on a single nanowire exhibited excellent photoresponse properties to 300 nm ultraviolet light illumination including ultrahigh I on/I off ratios (up to 103), good stability and reproducibility because of the separation between photo-generated electron-hole pairs. Moreover, the NWs array shows an enhanced photosensing performance. Flexible photodetectors on the PI substrates with similar tendency properties were also fabricated. In addition, under various bending curvatures and cycles, the as-fabricated flexible photodetectors revealed mechanical flexibility and good stable electrical properties, showing that they have the potential for applications in future flexible photoelectron devices. Project supported by the National Science Foundation of China (No. 61504136) and the State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine and Physics, Chinese Academy of Sciences.

  3. Characterization of new functionalized calcium carbonate-polycaprolactone composite material for application in geometry-constrained drug release formulation development.

    PubMed

    Wagner-Hattler, Leonie; Schoelkopf, Joachim; Huwyler, Jörg; Puchkov, Maxim

    2017-10-01

    A new mineral-polymer composite (FCC-PCL) performance was assessed to produce complex geometries to aid in development of controlled release tablet formulations. The mechanical characteristics of a developed material such as compactibility, compressibility and elastoplastic deformation were measured. The results and comparative analysis versus other common excipients suggest efficient formation of a complex, stable and impermeable geometries for constrained drug release modifications under compression. The performance of the proposed composite material has been tested by compacting it into a geometrically altered tablet (Tablet-In-Cup, TIC) and the drug release was compared to commercially available product. The TIC device exhibited a uniform surface, showed high physical stability, and showed absence of friability. FCC-PCL composite had good binding properties and good compactibility. It was possible to reveal an enhanced plasticity characteristic of a new material which was not present in the individual components. The presented FCC-PCL composite mixture has the potential to become a successful tool to formulate controlled-release dosage solid forms.

  4. Performance of selective catalytic reduction of NO with NH3 over natural manganese ore catalysts at low temperature.

    PubMed

    Wang, Tao; Zhu, Chengzhu; Liu, Haibo; Xu, Yongpeng; Zou, Xuehua; Xu, Bin; Chen, Tianhu

    2018-02-01

    Natural manganese ore catalysts for selective catalytic reduction (SCR) of NO with NH 3 at low temperature in the presence and absence of SO 2 and H 2 O were systematically investigated. The physical and chemical properties of catalysts were characterized by X-ray diffraction, Brunauer-Emmett-Teller (BET) specific surface area, NH 3 temperature-programmed desorption (NH 3 -TPD) and NO-TPD methods. The results showed that natural manganese ore from Qingyang of Anhui Province had a good low-temperature activity and N 2 selectivity, and it could be a novel catalyst in terms of stability, good efficiency, good reusability and lower cost. The NO conversion exceeded 85% between 150°C and 300°C when the initial NO concentration was 1000 ppm. The activity was suppressed by adding H 2 O (10%) or SO 2 (100 or 200 ppm), respectively, and its activity could recover while the SO 2 supply is cut off. The simultaneous addition of H 2 O and SO 2 led to the increase of about 100% in SCR activity than bare addition of SO 2 . The formation of the amorphous MnO x , high concentration of lattice oxygen and surface-adsorbed oxygen groups and a lot of reducible species as well as adsorption of the reactants brought about excellent SCR performance and exhibited good SO 2 and H 2 O resistance.

  5. High-performance tin oxide-nitrogen doped graphene aerogel hybrids as anode materials for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tan, Chunhui; Cao, Jing; Khattak, Abdul Muqsit; Cai, Feipeng; Jiang, Bo; Yang, Gai; Hu, Suqin

    2014-12-01

    Tin dioxide nanoparticles on nitrogen doped graphene aerogel (SnO2-NGA) hybrid are synthesized by one-step hydrothermal method and successfully applied in lithium-ion batteries as a free-standing anode. The electrochemical performance of SnO2-NGA hybrid is investigated by galvanostatic charge-discharge cycling, rate capability test, cyclic voltammetry and electrochemical impedance spectroscopy. It is found that the SnO2-NGA hybrid with freestanding spongy-like structure exhibit remarkable lithium storage capacity (1100 mAh g-1 after 100 cycles), good cycling stability and high rate capability. The outstanding performance is attributed to the uniform SnO2 nanoparticles, unique spongy-like structure and N doping defect for Li+ diffusion.

  6. Young Children's Competency to Take the Oath: Effects of Task, Maltreatment, and Age.

    PubMed

    Lyon, Thomas D; Carrick, Nathalie; Quas, Jodi A

    2010-04-01

    This study examined maltreated and non-maltreated children's (N = 183) emerging understanding of "truth" and "lie," terms about which they are quizzed to qualify as competent to testify. Four- to six-year-old children were asked to accept or reject true and false (T/F) statements, label T/F statements as the "truth" or "a lie," label T/F statements as "good" or "bad," and label "truth" and "lie" as "good" or "bad." The youngest children were at ceiling in accepting/rejecting T/F statements. The labeling tasks revealed improvement with age and children performed similarly across the tasks. Most children were better able to evaluate "truth" than "lie." Maltreated children exhibited somewhat different response patterns, suggesting greater sensitivity to the immorality of lying.

  7. Novel Tacrine-Benzofuran Hybrids as Potent Multitarget-Directed Ligands for the Treatment of Alzheimer's Disease: Design, Synthesis, Biological Evaluation, and X-ray Crystallography.

    PubMed

    Zha, Xiaoming; Lamba, Doriano; Zhang, Lili; Lou, Yinghan; Xu, Changxu; Kang, Di; Chen, Li; Xu, Yungen; Zhang, Luyong; De Simone, Angela; Samez, Sarah; Pesaresi, Alessandro; Stojan, Jure; Lopez, Manuela G; Egea, Javier; Andrisano, Vincenza; Bartolini, Manuela

    2016-01-14

    Twenty-six new tacrine-benzofuran hybrids were designed, synthesized, and evaluated in vitro on key molecular targets for Alzheimer's disease. Most hybrids exhibited good inhibitory activities on cholinesterases and β-amyloid self-aggregation. Selected compounds displayed significant inhibition of human β-secretase-1 (hBACE-1). Among the 26 hybrids, 2e showed the most interesting profile as a subnanomolar selective inhibitor of human acetylcholinesterase (hAChE) (IC50 = 0.86 nM) and a good inhibitor of both β-amyloid aggregation (hAChE- and self-induced, 61.3% and 58.4%, respectively) and hBACE-1 activity (IC50 = 1.35 μM). Kinetic studies showed that 2e acted as a slow, tight-binding, mixed-type inhibitor, while X-ray crystallographic studies highlighted the ability of 2e to induce large-scale structural changes in the active-site gorge of Torpedo californica AChE (TcAChE), with significant implications for structure-based drug design. In vivo studies confirmed that 2e significantly ameliorates performances of scopolamine-treated ICR mice. Finally, 2e administration did not exhibit significant hepatotoxicity.

  8. The natural oscillation of two types of ENSO events based on analyses of CMIP5 model control runs

    NASA Astrophysics Data System (ADS)

    Xu, Kang; Su, Jingzhi; Zhu, Congwen

    2014-07-01

    The eastern- and central-Pacific El Niño-Southern Oscillation (EP- and CP-ENSO) have been found to be dominant in the tropical Pacific Ocean, and are characterized by interannual and decadal oscillation, respectively. In the present study, we defined the EP- and CP-ENSO modes by singular value decomposition (SVD) between SST and sea level pressure (SLP) anomalous fields. We evaluated the natural features of these two types of ENSO modes as simulated by the pre-industrial control runs of 20 models involved in phase five of the Coupled Model Intercomparison Project (CMIP5). The results suggested that all the models show good skill in simulating the SST and SLP anomaly dipolar structures for the EP-ENSO mode, but only 12 exhibit good performance in simulating the tripolar CP-ENSO modes. Wavelet analysis suggested that the ensemble principal components in these 12 models exhibit an interannual and multi-decadal oscillation related to the EP- and CP-ENSO, respectively. Since there are no changes in external forcing in the pre-industrial control runs, such a result implies that the decadal oscillation of CP-ENSO is possibly a result of natural climate variability rather than external forcing.

  9. Flavonoid detection in hydroethanolic extract of Pouteria torta (Sapotaceae) leaves by HPLC-DAD and the determination of its mutagenic activity.

    PubMed

    Costa, Daryne L M G; Rinaldo, Daniel; Varanda, Eliana A; de Sousa, Juliana F; Nasser, Ana L M; Silva, Ana C Z; Baldoqui, Débora C; Vilegas, Wagner; dos Santos, Lourdes Campaner

    2014-10-01

    It is well known that phytotherapy has grown in popularity in recent years. Because a drug cannot be administered without ensuring its effectiveness and safety, the standardization and regulation of phytotherapeutic drugs are required by the global market and governmental authorities. This article describes a simple and reliable high-performance liquid chromatography-diode array detection analysis method for the simultaneous detection of myricetin-3-O-β-D-galactopyranoside, myricetin-3-O-α-L-arabinopyranoside, and myricetin-3-O-α-L-rhaminopyranoside present in the hydroethanolic extract (ethanol/H2O, 7:3, v/v) of Pouteria torta. The mutagenic activity of the extract was evaluated on Salmonella typhimurium and by an in vivo micronucleus test on the peripheral blood cells of Swiss mice. The linearity, sensitivity, selectivity, repeatability, accuracy, and precision of the assay were evaluated. The analytical curves were linear and exhibited good repeatability (with a deviation of less than 5%) and demonstrated good recovery (within the 83-107% range). The results demonstrate that the hydroethanolic extract exhibited a mutagenic activity in both assays, suggesting caution in the use of this plant in folk medicine.

  10. Influence of Nb Doping Concentration on Bolometric Properties of RF Magnetron Sputtered Nb:TiO2- x Films

    NASA Astrophysics Data System (ADS)

    Reddy, Y. Ashok Kumar; Shin, Young Bong; Kang, In-Ku; Lee, Hee Chul

    2018-03-01

    The present study directly addresses the improved bolometric properties by means of different Nb doping concentrations into TiO2- x films. The x-ray diffraction patterns do not display any obvious diffraction peaks, suggesting that all the films deposited at room temperature had an amorphous structure. A small binding energy shift was observed in x-ray photo electron spectroscopy due to the change of chemical composition with Nb doping concentration. All the device samples exhibit linear I- V characteristics, which attests to the formation of good ohmic contact with low contact resistance between the Nb:TiO2- x (TNO) film and the electrode (Ti) material. The performance of the bolometric material can be evaluated through the temperature coefficient of resistance (TCR), and the absolute value of TCR was found to be increased from 2.54% to 2.78% with increasing the Nb doping concentration. The voltage spectral density of 1/ f noise was measured in the frequency range of 1-60 Hz and found to be decreased with increase of Nb doping concentration. As a result, for 1 at.% Nb-doped TNO sample exhibits improved bolometric properties towards the good infrared image sensor device.

  11. Flavonoid Detection in Hydroethanolic Extract of Pouteria torta (Sapotaceae) Leaves by HPLC-DAD and the Determination of Its Mutagenic Activity

    PubMed Central

    Costa, Daryne L.M.G.; Rinaldo, Daniel; Varanda, Eliana A.; de Sousa, Juliana F.; Nasser, Ana L.M.; Silva, Ana C.Z.; Baldoqui, Débora C.; Vilegas, Wagner

    2014-01-01

    Abstract It is well known that phytotherapy has grown in popularity in recent years. Because a drug cannot be administered without ensuring its effectiveness and safety, the standardization and regulation of phytotherapeutic drugs are required by the global market and governmental authorities. This article describes a simple and reliable high-performance liquid chromatography–diode array detection analysis method for the simultaneous detection of myricetin-3-O-β-D-galactopyranoside, myricetin-3-O-α-L-arabinopyranoside, and myricetin-3-O-α-L-rhaminopyranoside present in the hydroethanolic extract (ethanol/H2O, 7:3, v/v) of Pouteria torta. The mutagenic activity of the extract was evaluated on Salmonella typhimurium and by an in vivo micronucleus test on the peripheral blood cells of Swiss mice. The linearity, sensitivity, selectivity, repeatability, accuracy, and precision of the assay were evaluated. The analytical curves were linear and exhibited good repeatability (with a deviation of less than 5%) and demonstrated good recovery (within the 83–107% range). The results demonstrate that the hydroethanolic extract exhibited a mutagenic activity in both assays, suggesting caution in the use of this plant in folk medicine. PMID:25055245

  12. Preparation of molecular imprinted microspheres based on inorganic-organic co-functional monomer for miniaturized solid-phase extraction of fluoroquinolones in milk.

    PubMed

    Wang, Hui; Wang, Ruiling; Han, Yehong

    2014-02-15

    An inorganic-organic co-functional monomer, methacrylic acid-vinyltriethoxysilan (MAA-VTES) was designed for the synthesis of molecularly imprinted microspheres (MIMs). By virtue of the aqueous suspension polymerization and dummy template (pazufloxacin), the obtained MAA-VTES based MIMs exhibited good recognition and selectivity to fluoroquinolones (FQs), and were successfully applied as selective sorbents of a miniaturized home-made solid phase extraction device for the determination of ofloxacin (OFL), lomefloxacin (LOM) and ciprofloxacin (CIP) in milk samples. Under the optimum conditions of the miniaturized molecularly imprinted solid phase extraction (mini-MISPE) coupled with liquid chromatography-ultraviolet detector (LC-UV), good linearities were obtained for three FQs in a range of 0.2-20.0μgmL(-1) and the average recoveries at three spiked levels were ranged from 87.2% to 106.1% with the relative standard deviation (RSD) less than 5.4%. The presented co-functional monomer based mini-MISPE-LC-UV protocol introduced the rigidity and flexibility of inorganic silicon materials, exhibited excellent extraction performance towards targets, and could be potentially applied to the determination of FQs in milk samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Binder-free flexible LiMn2O4/carbon nanotube network as high power cathode for rechargeable hybrid aqueous battery

    NASA Astrophysics Data System (ADS)

    Zhu, Xiao; Wu, Xianwen; Doan, The Nam Long; Tian, Ye; Zhao, Hongbin; Chen, P.

    2016-09-01

    Highly flexible LiMn2O4/carbon nanotube (CNT) electrodes are developed and used as a high power cathode for the Rechargeable Hybrid Aqueous Battery (ReHAB). LiMn2O4 particles are entangled into CNT networks, forming a self-supported free-standing hybrid films. Such hybrid films can be used as electrodes of ARLB without using any additional binders. The binder-free LiMn2O4/CNT electrode exhibits good mechanical properties, high conductivity, and effective charge transport. High-rate capability and high cycling stability are obtained. Typically, the LiMn2O4/CNT electrode achieves a discharge capacity of 72 mAh g-1 at the large-current of 20 C (1 C = 120 mAh g-1), and exhibits good cycling performance and high reversibility: Coulombic efficiency of almost 100% over 300 charge-discharge cycles at 4 C. By reducing the weight, and improving the large-current rate capability simultaneously, the LiMn2O4/CNT electrode can highly enhance the energy/power density of ARLB and hold potential to be used in ultrathin, lightweight electronic devices.

  14. Weighting Mean and Variability during Confidence Judgments

    PubMed Central

    de Gardelle, Vincent; Mamassian, Pascal

    2015-01-01

    Humans can not only perform some visual tasks with great precision, they can also judge how good they are in these tasks. However, it remains unclear how observers produce such metacognitive evaluations, and how these evaluations might be dissociated from the performance in the visual task. Here, we hypothesized that some stimulus variables could affect confidence judgments above and beyond their impact on performance. In a motion categorization task on moving dots, we manipulated the mean and the variance of the motion directions, to obtain a low-mean low-variance condition and a high-mean high-variance condition with matched performances. Critically, in terms of confidence, observers were not indifferent between these two conditions. Observers exhibited marked preferences, which were heterogeneous across individuals, but stable within each observer when assessed one week later. Thus, confidence and performance are dissociable and observers’ confidence judgments put different weights on the stimulus variables that limit performance. PMID:25793275

  15. Mo-doped V2O5 hierarchical nanorod/nanoparticle core/shell porous microspheres with improved performance for cathode of lithium-ion battery

    NASA Astrophysics Data System (ADS)

    Yu, Haolin; Zeng, Jianyun; Hao, Wen; Zhou, Peng; Wen, Xiaogang

    2018-05-01

    Mo-doped V2O5 hierarchical nanorod/nanoparticle core/shell porous microspheres (MVHPMs) were prepared via a simple hydrothermal approach using ammonium metavanadate and ammonium molybdate as precursors followed by a thermal annealing process. The samples were characterized by XRD, SEM, TEM, EDS, and XPS carefully; it confirmed that porous microspheres with uniform Mo doping in the V2O5 matrix were obtained, and it contains an inner core self-assembled with 1D nanorods and outer shell consisting of nanoparticles. A plausible growth mechanism of Mo-doped V2O5 (Mo-V2O5) porous microspheres is suggested. The unique microstructure made the Mo-V2O5 hierarchical microspheres a good cathode material for Li-ion battery. The results indicate the synthesized Mo-V2O5 hierarchical microspheres exhibit well-improved electrochemical performance compared to the undoped samples. It delivers a high initial reversible capacity of 282 mAh g-1 at 0.2 C, 208 mAh g-1 at 2 C, and 111 mAh g-1 at 10 C, and it also exhibits good cycling stabilities; a capacity of 144 mAh g-1 is obtained after 200 cycles at 6 C with a capacity retention of > 82%, which is much high than that of pure V2O5 (95 mAh g-1 with a capacity retention of 72%). [Figure not available: see fulltext.

  16. Sintered electrode for solid oxide fuel cells

    DOEpatents

    Ruka, Roswell J.; Warner, Kathryn A.

    1999-01-01

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation.

  17. Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor

    NASA Astrophysics Data System (ADS)

    Nguyen, Thu-Thuy; Huy, Bui The; Hwang, Seo-Young; Vuong, Nguyen Minh; Pham, Quoc-Thai; Nghia, Nguyen Ngoc; Kirtland, Aaron; Lee, Yong-Ill

    2018-05-01

    Cuprous oxide (Cu2O) nanostructure has been synthesized using an electrochemical method with a two-electrode system. Cu foils were used as electrodes and NH2(OH) was utilized as the reducing agent. The effects of pH and applied voltages on the morphology of the product were investigated. The morphology and optical properties of Cu2O particles were characterized using scanning electron microscopy, x-ray diffraction, and diffuse reflectance spectra. The synthesized Cu2O nanostructures that formed in the vicinity of the anode at 2 V and pH = 11 showed high uniform distribution, small size, and good electrochemical sensing. These Cu2O nanoparticles were coated on an Indium tin oxide substrate and applied to detect non-enzyme glucose as excellent biosensors. The non-enzyme glucose biosensors exhibited good performance with high response, good selectivity, wide linear detection range, and a low detection limit at 0.4 μM. Synthesized Cu2O nanostructures are potential materials for a non-enzyme glucose biosensor.

  18. Fabrication of thickness controllable free-standing sandwich-structured hybrid carbon film for high-rate and high-power supercapacitor

    PubMed Central

    Wei, Helin; Wei, Sihang; Tian, Weifeng; Zhu, Daming; Liu, Yuhao; Yuan, Lili; Li, Xin

    2014-01-01

    Hybrid carbon films composed of graphene film and porous carbon film may give full play to the advantages of both carbon materials, and have great potential for application in energy storage and conversion devices. Unfortunately, there are very few reports on fabrication of hybrid carbon films. Here we demonstrate a simple approach to fabricate free-standing sandwich-structured hybrid carbon film composed of porous amorphous carbon film and multilayer graphene film by chemical vapor deposition in a controllable and scalable way. Hybrid carbon films reveal good electrical conductivity, excellent flexibility, and good compatibility with substrate. Supercapacitors assembled by hybrid carbon films exhibit ultrahigh rate capability, wide frequency range, good capacitance performance, and high-power density. Moreover, this approach may provide a general path for fabrication of hybrid carbon materials with different structures by using different metals with high carbon solubility, and greatly expands the application scope of carbon materials. PMID:25394410

  19. Antimicrobial and anticancer activity of some novel fluorinated thiourea derivatives carrying sulfonamide moieties: synthesis, biological evaluation and molecular docking.

    PubMed

    Ghorab, Mostafa M; Alsaid, Mansour S; El-Gaby, Mohamed S A; Elaasser, Mahmoud M; Nissan, Yassin M

    2017-04-07

    Various thiourea derivatives have been used as starting materials for compounds with better biological activities. Molecular modeling tools are used to explore their mechanism of action. A new series of thioureas were synthesized. Fluorinated pyridine derivative 4a showed the highest antimicrobial activity (with MIC values ranged from 1.95 to 15.63 µg/mL). Interestingly, thiadiazole derivative 4c and coumarin derivative 4d exhibited selective antibacterial activities against Gram positive bacteria. Fluorinated pyridine derivative 4a was the most active against HepG2 with IC50 value of 4.8 μg/mL. Molecular docking was performed on the active site of MK-2 with good results. Novel compounds were obtained with good anticancer and antibacterial activity especially fluorinated pyridine derivative 4a and molecular docking study suggest good activity as mitogen activated protein kinase-2 inhibitor. Graphical abstract Compound 4a in the active site of MK-2.

  20. Sintered electrode for solid oxide fuel cells

    DOEpatents

    Ruka, R.J.; Warner, K.A.

    1999-06-01

    A solid oxide fuel cell fuel electrode is produced by a sintering process. An underlayer is applied to the electrolyte of a solid oxide fuel cell in the form of a slurry, which is then dried. An overlayer is applied to the underlayer and then dried. The dried underlayer and overlayer are then sintered to form a fuel electrode. Both the underlayer and the overlayer comprise a combination of electrode metal such as nickel, and stabilized zirconia such as yttria-stabilized zirconia, with the overlayer comprising a greater percentage of electrode metal. The use of more stabilized zirconia in the underlayer provides good adhesion to the electrolyte of the fuel cell, while the use of more electrode metal in the overlayer provides good electrical conductivity. The sintered fuel electrode is less expensive to produce compared with conventional electrodes made by electrochemical vapor deposition processes. The sintered electrodes exhibit favorable performance characteristics, including good porosity, adhesion, electrical conductivity and freedom from degradation. 4 figs.

  1. Preparing cuprous oxide nanomaterials by electrochemical method for non-enzymatic glucose biosensor.

    PubMed

    Nguyen, Thu-Thuy; Huy, Bui The; Hwang, Seo-Young; Vuong, Nguyen Minh; Pham, Quoc-Thai; Nghia, Nguyen Ngoc; Kirtland, Aaron; Lee, Yong-Ill

    2018-05-18

    Cuprous oxide (Cu 2 O) nanostructure has been synthesized using an electrochemical method with a two-electrode system. Cu foils were used as electrodes and NH 2 (OH) was utilized as the reducing agent. The effects of pH and applied voltages on the morphology of the product were investigated. The morphology and optical properties of Cu 2 O particles were characterized using scanning electron microscopy, x-ray diffraction, and diffuse reflectance spectra. The synthesized Cu 2 O nanostructures that formed in the vicinity of the anode at 2 V and pH = 11 showed high uniform distribution, small size, and good electrochemical sensing. These Cu 2 O nanoparticles were coated on an Indium tin oxide substrate and applied to detect non-enzyme glucose as excellent biosensors. The non-enzyme glucose biosensors exhibited good performance with high response, good selectivity, wide linear detection range, and a low detection limit at 0.4 μM. Synthesized Cu 2 O nanostructures are potential materials for a non-enzyme glucose biosensor.

  2. Enhancing the value of commodity polymers: Part 1. Structure-property relationships in composite materials based on maleated polypropylene/inorganic phosphate glasses. Part 2. New value-added applications for polyesters

    NASA Astrophysics Data System (ADS)

    Gupta, Mohit

    The first part of the thesis (Chapters 2 & 3) describes a new class of organic polymer/inorganic glass composite materials with property improvements that are impossible to achieve with classical polymer blends or composites. These materials exhibit good processability, superior mechanical performance, good thermal stability, and have excellent gas barrier properties. Low glass transition temperature phosphate glasses (Pglass) are used as inorganic fillers and slightly maleated polypropylene is used as the organic polymer matrix. The Pglass, which was dispersed as spherical droplets in the unoriented composites can be elongated into high aspect ratio platelets during the biaxial stretching process. Biaxially oriented films exhibited a brick wall type microstructure with highly aligned inorganic platelets in a ductile organic matrix and the oxygen barrier properties are significantly improved due to presence of Pglass platelets as impermeable inclusions. Mechanical properties of the biaxially oriented films showed significant improvements compared to neat polymer due to uniform dispersion of the Pglass platelets. Properly dispersed and aligned platelets have proven to be very effective for increasing the composite modulus. These developed materials therefore show promise to help fulfill the ever increasing demand for new advanced materials for a wide variety of advanced packaging applications because of their gas barrier properties, flexibility, transparency, mechanical strength and performance under humid conditions. The second part of the thesis (Chapters 4 & 5) describes new value-added applications for polyesters. Chapter 4 reports a novel process for the decolorization of green and blue colored PET bottle flakes using hydrogen peroxide. The decolorized flakes were characterized for color, intrinsic viscosity values. Decolorized flakes exhibited color values similar to those of colorless recycled PET and even though IV values decreased, bleached flakes still exhibit useful molecular weight. The consumption of H2O2 during the bleaching process was quantified by titrating the residual peroxide using a standard solution of potassium permanganate. Chapter 5 reports synthesis of ductile amorphous polymers which change their color as a function of mechanical deformation. Cyano--OPV moieties were covalently incorporated into the backbone of amorphous polyester PETG. The materials exhibit a significant color change upon compression consistent with efficient breakup of the dye aggregates upon deformation and therefore can be useful for technological applications that require smart coatings with integrated scratch detectors.

  3. Got spirit? The spiritual climate scale, psychometric properties, benchmarking data and future directions.

    PubMed

    Doram, Keith; Chadwick, Whitney; Bokovoy, Joni; Profit, Jochen; Sexton, Janel D; Sexton, J Bryan

    2017-02-11

    Organizations that encourage the respectful expression of diverse spiritual views have higher productivity and performance, and support employees with greater organizational commitment and job satisfaction. Within healthcare, there is a paucity of studies which define or intervene on the spiritual needs of healthcare workers, or examine the effects of a pro-spirituality environment on teamwork and patient safety. Our objective was to describe a novel survey scale for evaluating spiritual climate in healthcare workers, evaluate its psychometric properties, provide benchmarking data from a large faith-based healthcare system, and investigate relationships between spiritual climate and other predictors of patient safety and job satisfaction. Cross-sectional survey study of US healthcare workers within a large, faith-based health system. Seven thousand nine hundred twenty three of 9199 eligible healthcare workers across 325 clinical areas within 16 hospitals completed our survey in 2009 (86% response rate). The spiritual climate scale exhibited good psychometric properties (internal consistency: Cronbach α = .863). On average 68% (SD 17.7) of respondents of a given clinical area expressed good spiritual climate, although assessments varied widely (14 to 100%). Spiritual climate correlated positively with teamwork climate (r = .434, p < .001) and safety climate (r = .489, p < .001). Healthcare workers reporting good spiritual climate were less likely to have intentions to leave, to be burned out, or to experience disruptive behaviors in their unit and more likely to have participated in executive rounding (p < .001 for each variable). The spiritual climate scale exhibits good psychometric properties, elicits results that vary widely by clinical area, and aligns well with other culture constructs that have been found to correlate with clinical and organizational outcomes.

  4. Awareness during drowsiness: dynamics and electrophysiological correlates

    NASA Technical Reports Server (NTRS)

    Makeig, S.; Jung, T. P.; Sejnowski, T. J.

    2000-01-01

    During drowsy periods, performance on tasks requiring continuous attention becomes intermittent. Previously, we have reported that during drowsy periods of intermittent performance, 7 of 10 participants performing an auditory detection task exhibited episodes of non-responding lasting about 18 s (Makeig & Jung, 1996). Further, the time patterns of these episodes were repeated precisely in subsequent sessions. The 18-s cycles were accompanied by counterbalanced power changes within two frequency bands in the vertex EEG (near 4 Hz and circa 40 Hz). In the present experiment, performance patterns and concurrent EEG spectra were examined in four participants performing a continuous visuomotor compensatory tracking task in 15-20 minute bouts during a 42-hour sleep deprivation study. During periods of good performance, participants made compensatory trackball movements about twice per second, attempting to keep a target disk near a central ring. Autocorrelations of time series representing the distance of the target disk from the ring centre showed that during periods of poor performance marked near-18-s cycles in performance again appeared. There were phases of poor or absent performance accompanied by an increase in EEG power that was largest at 3-4 Hz. These studies show that in drowsy humans, opening and closing of the gates of behavioural awareness is marked not by the appearance of (12-14 Hz) sleep spindles, but by prominent EEG amplitude changes in the low theta band. Further, both EEG and behavioural changes during drowsiness often exhibit stereotyped 18-s cycles.

  5. Three-dimensional nitrogen and sulfur co-doped holey-reduced graphene oxide frameworks anchored with MoO2 nanodots for advanced rechargeable lithium-ion batteries.

    PubMed

    Pei, Jie; Geng, Hongbo; Ang, Huixiang; Zhang, Lingling; Wei, Huaixin; Cao, Xueqin; Zheng, Junwei; Gu, Hongwei

    2018-07-20

    In this manuscript, we synthesize a porous three-dimensional anode material consisting of molybdenum dioxide nanodots anchored on nitrogen (N)/sulfur (S) co-doped reduced graphene oxide (GO) (3D MoO 2 /NP-NSG) through hydrothermal, lyophilization and thermal treatment. First, the NP-NSG is formed via hydrothermal treatment using graphene oxide, hydrogen peroxide (H 2 O 2 ), and thiourea as the co-dopant for N and S, followed by calcination of the N/S co-doped GO in the presence of ammonium molybdate tetrahydrate to obtain the 3D MoO 2 /NP-NSG product. This novel material exhibits a series of out-bound electrochemical performances, such as superior conductivity, high specific capacity, and excellent stability. As an anode for lithium-ion batteries (LIBs), the MoO 2 /NP-NSG electrode has a high initial specific capacity (1376 mAh g -1 ), good cycling performance (1250 mAh g -1 after 100 cycles at a current density of 0.2 A g -1 ), and outstanding Coulombic efficiency (99% after 450 cycles at a current density of 1 A g -1 ). Remarkably, the MoO 2 /NP-NSG battery exhibits exceedingly good rate capacities of 1021, 965, 891, 760, 649, 500 and 425 mAh g -1 at different current densities of 200, 500, 1000, 2000, 3000, 4000 and 5000 mA g -1 , respectively. The superb electrochemical performance is owed to the high porosity of the 3D architecture, the synergistic effect contribution from N and S co-doped in the reduced graphene oxide (rGO), and the uniform distribution of MoO 2 nanodots on the rGO surface.

  6. Separation performance of cucurbit[7]uril in ionic liquid-based sol-gel coating as stationary phase for capillary gas chromatography.

    PubMed

    Wang, Xiaogang; Qi, Meiling; Fu, Ruonong

    2014-12-05

    Here we report the separation performance of a new stationary phase of cucurbit[7]uril (CB7) incorporated into an ionic liquid-based sol-gel coating (CB7-SG) for capillary gas chromatography (GC). The CB7-SG stationary phase showed an average polarity of 455, suggesting its polar nature. Abraham system constants revealed that its major interactions with analytes include H-bond basicity (a), dipole-dipole (s) and dispersive (l) interactions. The CB7-SG stationary phase achieved baseline separation for a wide range of analytes with symmetrical peak shapes and showed advantages over the conventional polar stationary phase that failed to resolve some critical analytes. Also, it exhibited different retention behaviors from the conventional stationary phase in terms of retention times and elution order. Most interestingly, in contrast to the conventional polar phase, the CB7-SG stationary phase exhibited longer retentions for analytes of lower polarity but relatively comparable retentions for polar analytes such as alcohols and phenols. The high resolving ability and unique retention behaviors of the CB7-SG stationary phase may stem from the comprehensive interactions of the aforementioned interactions and shape selectivity. Moreover, the CB7-SG column showed good peak shapes for analytes prone to peak tailing, good thermal stability up to 280°C and separation repeatability with RSD values in the range of 0.01-0.11% for intra-day, 0.04-0.41% for inter-day and 2.5-6.0% for column-to-column, respectively. As demonstrated, the proposed coating method can simultaneously address the solubility problem with CBs for the intended purpose and achieve outstanding GC separation performance. Copyright © 2014 Elsevier B.V. All rights reserved.

  7. Three-dimensional nitrogen and sulfur co-doped holey-reduced graphene oxide frameworks anchored with MoO2 nanodots for advanced rechargeable lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Pei, Jie; Geng, Hongbo; Ang, Huixiang; Zhang, Lingling; Wei, Huaixin; Cao, Xueqin; Zheng, Junwei; Gu, Hongwei

    2018-07-01

    In this manuscript, we synthesize a porous three-dimensional anode material consisting of molybdenum dioxide nanodots anchored on nitrogen (N)/sulfur (S) co-doped reduced graphene oxide (GO) (3D MoO2/NP-NSG) through hydrothermal, lyophilization and thermal treatment. First, the NP-NSG is formed via hydrothermal treatment using graphene oxide, hydrogen peroxide (H2O2), and thiourea as the co-dopant for N and S, followed by calcination of the N/S co-doped GO in the presence of ammonium molybdate tetrahydrate to obtain the 3D MoO2/NP-NSG product. This novel material exhibits a series of out-bound electrochemical performances, such as superior conductivity, high specific capacity, and excellent stability. As an anode for lithium-ion batteries (LIBs), the MoO2/NP-NSG electrode has a high initial specific capacity (1376 mAh g‑1), good cycling performance (1250 mAh g‑1 after 100 cycles at a current density of 0.2 A g‑1), and outstanding Coulombic efficiency (99% after 450 cycles at a current density of 1 A g‑1). Remarkably, the MoO2/NP-NSG battery exhibits exceedingly good rate capacities of 1021, 965, 891, 760, 649, 500 and 425 mAh g‑1 at different current densities of 200, 500, 1000, 2000, 3000, 4000 and 5000 mA g‑1, respectively. The superb electrochemical performance is owed to the high porosity of the 3D architecture, the synergistic effect contribution from N and S co-doped in the reduced graphene oxide (rGO), and the uniform distribution of MoO2 nanodots on the rGO surface.

  8. Prediction of nocturnal hypoglycemia by an aggregation of previously known prediction approaches: proof of concept for clinical application.

    PubMed

    Tkachenko, Pavlo; Kriukova, Galyna; Aleksandrova, Marharyta; Chertov, Oleg; Renard, Eric; Pereverzyev, Sergei V

    2016-10-01

    Nocturnal hypoglycemia (NH) is common in patients with insulin-treated diabetes. Despite the risk associated with NH, there are only a few methods aiming at the prediction of such events based on intermittent blood glucose monitoring data and none has been validated for clinical use. Here we propose a method of combining several predictors into a new one that will perform at the level of the best involved one, or even outperform all individual candidates. The idea of the method is to use a recently developed strategy for aggregating ranking algorithms. The method has been calibrated and tested on data extracted from clinical trials, performed in the European FP7-funded project DIAdvisor. Then we have tested the proposed approach on other datasets to show the portability of the method. This feature of the method allows its simple implementation in the form of a diabetic smartphone app. On the considered datasets the proposed approach exhibits good performance in terms of sensitivity, specificity and predictive values. Moreover, the resulting predictor automatically performs at the level of the best involved method or even outperforms it. We propose a strategy for a combination of NH predictors that leads to a method exhibiting a reliable performance and the potential for everyday use by any patient who performs self-monitoring of blood glucose. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers

    NASA Astrophysics Data System (ADS)

    Liu, Wenwen; Yan, Xingbin; Chen, Jiangtao; Feng, Yaqiang; Xue, Qunji

    2013-06-01

    In comparison with graphene sheets, graphene quantum dots (GQDs) exhibit novel chemical/physical properties including nanometer-size, abundant edge defects, good electrical conductivity, high mobility, chemical inertia, stable photoluminescence and better surface grafting, making them promising for fabricating various novel devices. In the present work, an asymmetric micro-supercapacitor, using GQDs as negative active material and polyaniline (PANI) nanofibers as positive active material, is built for the first time by a simple and controllable two-step electro-deposition on interdigital finger gold electrodes. Electrochemical measurements reveal that the as-made GQDs//PANI asymmetric micro-supercapacitor has a more excellent rate capability (up to 1000 V s-1) than previously reported electrode materials, as well as faster power response capability (with a very short relaxation time constant of 115.9 μs) and better cycling stability after 1500 cycles in aqueous electrolyte. On this basis, an all-solid-state GQDs//PANI asymmetric micro-supercapacitor is fabricated using H3PO4-polyvinyl alcohol gel as electrolyte, which also exhibits desirable electrochemical capacitive performances. These encouraging results presented here may open up new insight into GQDs with highly promising applications in high-performance energy-storage devices, and further expand the potential applications of GQDs beyond the energy-oriented application of GQDs discussed above.In comparison with graphene sheets, graphene quantum dots (GQDs) exhibit novel chemical/physical properties including nanometer-size, abundant edge defects, good electrical conductivity, high mobility, chemical inertia, stable photoluminescence and better surface grafting, making them promising for fabricating various novel devices. In the present work, an asymmetric micro-supercapacitor, using GQDs as negative active material and polyaniline (PANI) nanofibers as positive active material, is built for the first time by a simple and controllable two-step electro-deposition on interdigital finger gold electrodes. Electrochemical measurements reveal that the as-made GQDs//PANI asymmetric micro-supercapacitor has a more excellent rate capability (up to 1000 V s-1) than previously reported electrode materials, as well as faster power response capability (with a very short relaxation time constant of 115.9 μs) and better cycling stability after 1500 cycles in aqueous electrolyte. On this basis, an all-solid-state GQDs//PANI asymmetric micro-supercapacitor is fabricated using H3PO4-polyvinyl alcohol gel as electrolyte, which also exhibits desirable electrochemical capacitive performances. These encouraging results presented here may open up new insight into GQDs with highly promising applications in high-performance energy-storage devices, and further expand the potential applications of GQDs beyond the energy-oriented application of GQDs discussed above. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr01139a

  10. Ultrafine MnO2 Nanowire Arrays Grown on Carbon Fibers for High-Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Jiyu; Qian, Feng; Song, Guosheng; Li, Wenyao; Wang, Linlin

    2016-10-01

    Large-area ultrafine MnO2 nanowire arrays (NWA) directly grew on a carbon fiber (CF, used as a substrate) by a simple electrochemical method, forming three-dimensional (3D) hierarchical heterostructures of a CF@MnO2 NWA composite. As an electrode for supercapacitors, the CF@MnO2 NWA composite exhibits excellent electrochemical performances including high specific capacitance (321.3 F g-1 at 1000 mA g-1) and good rate capability. Further, the overall capacitance retention is 99.7 % capacitance after 3000 cycles. These outstanding electrochemical performances attribute to a large number of transport channels for the penetration of electrolyte and the transportation of ions and electrons of electrodes. The as-prepared CF@MnO2 NWA composite may be a promising electrode material for high-performance supercapacitors.

  11. Ultrafine MnO2 Nanowire Arrays Grown on Carbon Fibers for High-Performance Supercapacitors.

    PubMed

    Hu, Jiyu; Qian, Feng; Song, Guosheng; Li, Wenyao; Wang, Linlin

    2016-12-01

    Large-area ultrafine MnO 2 nanowire arrays (NWA) directly grew on a carbon fiber (CF, used as a substrate) by a simple electrochemical method, forming three-dimensional (3D) hierarchical heterostructures of a CF@MnO 2 NWA composite. As an electrode for supercapacitors, the CF@MnO 2 NWA composite exhibits excellent electrochemical performances including high specific capacitance (321.3 F g -1 at 1000 mA g -1 ) and good rate capability. Further, the overall capacitance retention is ~99.7 % capacitance after 3000 cycles. These outstanding electrochemical performances attribute to a large number of transport channels for the penetration of electrolyte and the transportation of ions and electrons of electrodes. The as-prepared CF@MnO 2 NWA composite may be a promising electrode material for high-performance supercapacitors.

  12. [Spectroscopic study of photocatalytic mechanism of methanol and CO2].

    PubMed

    Hai, Feng; Zhang, Qian-cheng; Bai, Feng-rong; Wang, A-nan; Wang, Zhi-wei; Jian, Li

    2011-12-01

    Ni-Ti-O/SiO2 catalyst was prepared by impregnation method, and its photocatalytic performance for carbonylation of methanol with CO2 was investigated under UV light. The in-situ IR, XPS and MS were carried out to analyze the possible photocatalytic reaction mechanism. Results indicated that the Ni-Ti-O/SiO2 exhibited good photocatalytic performance for carbonylation of methanol with CO2, the methanol conversion reached up to 24.9%, and the selectivity for the carbonylated products was more than 60% within 180 min reaction time. The catalyst characterization results showed that the O==C .--O- and CH3OC(O)* might be important intermediate in the carbonylation of methanol with CO2.

  13. Parallel/distributed direct method for solving linear systems

    NASA Technical Reports Server (NTRS)

    Lin, Avi

    1990-01-01

    A new family of parallel schemes for directly solving linear systems is presented and analyzed. It is shown that these schemes exhibit a near optimal performance and enjoy several important features: (1) For large enough linear systems, the design of the appropriate paralleled algorithm is insensitive to the number of processors as its performance grows monotonically with them; (2) It is especially good for large matrices, with dimensions large relative to the number of processors in the system; (3) It can be used in both distributed parallel computing environments and tightly coupled parallel computing systems; and (4) This set of algorithms can be mapped onto any parallel architecture without any major programming difficulties or algorithmical changes.

  14. Inlet-engine matching for SCAR including application of a bicone variable geometry inlet

    NASA Technical Reports Server (NTRS)

    Wasserbauer, J. F.; Gerstenmaier, W. H.

    1978-01-01

    Airflow characteristics of variable cycle engines (VCE) designed for Mach 2.32 can have transonic airflow requirements as high as 1.6 times the cruise airflow. This is a formidable requirement for conventional, high performance, axisymmetric, translating centerbody mixed compression inlets. An alternate inlet is defined, where the second cone of a two cone center body collapses to the initial cone angle to provide a large off-design airflow capability, and incorporates modest centerbody translation to minimize spillage drag. Estimates of transonic spillage drag are competitive with those of conventional translating centerbody inlets. The inlet's cruise performance exhibits very low bleed requirements with good recovery and high angle of attack capability.

  15. An all-solid-state lithium/polyaniline rechargeable cell

    NASA Astrophysics Data System (ADS)

    Li, Changzhi; Peng, Xinsheng; Zhang, Borong; Wang, Baochen

    1992-07-01

    The performance of an all-solid-state cell having a lithium negative electrode, a modified polyethylene oxide (PEO)-epoxy resin (ER) electrolyte, and a polyaniline (PAn) positive electrode has been studied using cyclic voltammetry, charge/discharge cycling, and polarization curves at various temperatures. The redox reaction of the PAn electrode at the PAn/modified PEO-ER interface exhibits good reversibility. At 50-80 C, the Li/PEO-ER-LiClO4/PAn cell shows more than 40 charge/discharge cycles, 90 percent charge/discharge efficiency, and 54 W h kg discharge energy density (on PAn weight basis) at 50 micro-A between 2 and 4 V. The polarization performance of the battery improves steadily with increase in temperature.

  16. Measuring pregnancy planning: An assessment of the London Measure of Unplanned Pregnancy among urban, south Indian women

    PubMed Central

    Rocca, Corinne H.; Krishnan, Suneeta; Barrett, Geraldine; Wilson, Mark

    2010-01-01

    We evaluated the psychometric properties of the London Measure of Unplanned Pregnancy among Indian women using classical methods and Item Response Modeling. The scale exhibited good internal consistency and internal structure, with overall scores correlating well with each item’s response categories. Items performed similarly for pregnant and non-pregnant women, and scores decreased with increasing parity, providing evidence for validity. Analyses also detected limitations, including infrequent selection of middle response categories and some evidence of differential item functioning by parity. We conclude that the LMUP represents an improvement over existing measures but recommend steps for enhancing scale performance for this cultural context. PMID:21170147

  17. Handwriting capacity in children newly diagnosed with Attention Deficit Hyperactivity Disorder.

    PubMed

    Brossard-Racine, Marie; Majnemer, Annette; Shevell, Michael; Snider, Laurie; Bélanger, Stacey Ageranioti

    2011-01-01

    Preliminary evidence suggests that children with Attention Deficit Hyperactivity Disorder (ADHD) may exhibit handwriting difficulties. However, the exact nature of these difficulties and the extent to which they may relate to motor or behavioural difficulties remains unclear. The aim of this study was to describe handwriting capacity in children newly diagnosed with ADHD and identify predictors of performance. Forty medication-naïve children with ADHD (mean age 8.1 years) were evaluated with the Evaluation Tool of Children's Handwriting-Manuscript, the Movement Assessment Battery for Children (M-ABC), the Developmental Test of Visual Motor Integration (VMI) and the Conner Global Index. An important subset (85.0%) exhibited manual dexterity difficulties. Handwriting performance was extremely variable in terms of speed and legibility. VMI was the most important predictor of legibility. Upper extremity coordination, as measured by the M-ABC ball skills subtest, was also a good predictor of word legibility. Poor handwriting legibility and slow writing speed were common in children newly diagnosed with ADHD and were associated with motor abilities. Future studies are needed to determine whether interventions, including stimulant medications, can improve handwriting performance and related motor functioning. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Wire-type MnO2/Multilayer graphene/Ni electrode for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Hu, Minglei; Liu, Yuhao; Zhang, Min; Wei, Helin; Gao, Yihua

    2016-12-01

    Commercially available wearable energy storage devices need a wire-type electrode with high strength, conductivity and electrochemical performance, as well as stable structure under deformation. Herein, we report a novel wire-type electrode of hierarchically structure MnO2 on Ni wire with multilayer graphene (MGr) as a buffer layer to enhance the electrical conductivity of the MnO2 and interface contact between the MnO2 and Ni wire. Thus, the wire-type MnO2/MGr/Ni electrode has a stable and high quality interface. The wire-type supercapacitor (WSC) based on wire-type MnO2/MGr/Ni electrode exhibits good electrochemical performance, high rate capability, extraordinary flexibility, and superior cycle lifetime. Length (area, volumetric) specific capacitance of the WSC reaches 6.9 mF cm-1 (73.2 mF cm-2, 9.8 F cm-3). Maximum length (volumetric) energy density of the WSC based on MnO2/MGr/Ni reaches 0.62 μWh cm-1 (0.88 mWh cm-3). Furthermore, the WSC has a short time constant (0.5-400 ms) and exhibits minimal change in capacitance under different bending shapes.

  19. In vitro investigation of the potential health benefits of wild Mediterranean dietary plants as anti-obesity agents with α-amylase and pancreatic lipase inhibitory activities.

    PubMed

    Marrelli, Mariangela; Loizzo, Monica Rosa; Nicoletti, Marcello; Menichini, Francesco; Conforti, Filomena

    2014-08-01

    Inhibition of digestive enzymes is one of the most widely studied mechanisms used to determine the potential efficacy of natural products as anti-obesity agents. In vitro studies reported here were performed to evaluate the inhibitory activity of formulations of edible plants from Italy on amylase and lipase by monitoring the hydrolysis of nitrophenyl caprilate and the hydrolysis of glycoside bonds in digestible carbohydrate foods. The formulation obtained from Capparis sicula exhibited the strongest inhibitory effect on pancreatic lipase (IC50 = 0.53 mg mL(-1) ) while the Borago officinalis formulation exhibited the strongest inhibitory effect on α-amylase (IC50 = 31.61 µg mL(-1) ). In order to characterise the extracts, high-performance thin-layer chromatography analysis of the formulations was performed, revealing the predominance of (±)-catechin in Mentha aquatica formulation, rutin in C. sicula, and caffeic acid and chlorogenic acid in Echium vulgare. The results obtained indicated that the extracts of C. sicula and B. officinalis could be good candidates for further studies to isolate pancreatic lipase and α-amylase inhibitors, respectively. © 2013 Society of Chemical Industry.

  20. In-situ synthesis of monodisperse micro-nanospherical LiFePO4/carbon cathode composites for lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Gong, Hao; Xue, Hairong; Wang, Tao; He, Jianping

    2016-06-01

    The LiFePO4 is recognized as the promising cathode material, due to its high specific capacity, excellent, structural stability and environmental benignity. However, it is blamed for the low tap density and poor rate performance when served as the cathode materials for a long time. Here, the microspheric LiFePO4/C composites are successfully synthesized through a one-step in-situ solvothermal method combined with carbothermic reduction. These LiFePO4/C microspheres are assembled by LiFePO4 nanoparticles (∼100 nm) and uniformly coated by the carbon, which show a narrow diameter distribution of 4 μm. As a cathode material for lithium ion batteries, the LiFePO4/C composites can deliver an initiate charge capacity of 155 mAh g-1 and retain 90% of initial capacity after 200 cycles at 0.1 C. When cycled at high current densities up to 20 C, it shows a discharge capacity of ∼60 mAh g-1, exhibiting superior rate performance. The significantly improved electrochemical performance of LiFePO4/C composites material can be attributed to its special micro-nano hierarchical structure. Microspheric LiFePO4/C composites exhibit a high tap density about 1.3 g cm-3. What's more, the well-coated carbon insures the high electrical conductivity and the nano-sized LiFePO4/C particles shorten lithium ion transport, thus exhibiting the high specific capacity, high cycling stability and good rate performance.

  1. Electroconvulsive Therapy Hasn’t Negative Effects on Short-Term Memory Function, as Assessed Using a Bedside Hand-Held Device

    PubMed Central

    Müller, Helge H.O.; Reike, Mareen; Grosse-Holz, Simon; Röther, Mareike; Lücke, Caroline; Philipsen, Alexandra; Kornhuber, Johannes; Grömer, Teja W.

    2017-01-01

    Electroconvulsive therapy (ECT) is effective in the treatment of treatment-resistant major depression. The fear of cognitive impairment after ECT often deters patients from choosing this treatment option. There is little reliable information regarding the effects of ECT on overall cognitive performance, while short-term memory deficits are well known but not easy to measure within clinical routines. In this pilot study, we examined ECT recipients’ pre- and post-treatment performances on a digital ascending number tapping test. We found that cognitive performance measures exhibited good reproducibility in individual patients and that ECT did not significantly alter cognitive performance up to 2 hours after this therapy was applied. Our results can help patients and physicians make decisions regarding the administration of ECT. Digital measurements are recommended, especially when screening for the most common side effects on cognitive performance and short-term memory. PMID:28748058

  2. Electroconvulsive Therapy Hasn't Negative Effects on Short-Term Memory Function, as Assessed Using a Bedside Hand-Held Device.

    PubMed

    Müller, Helge H O; Reike, Mareen; Grosse-Holz, Simon; Röther, Mareike; Lücke, Caroline; Philipsen, Alexandra; Kornhuber, Johannes; Grömer, Teja W

    2017-03-22

    Electroconvulsive therapy (ECT) is effective in the treatment of treatment-resistant major depression. The fear of cognitive impairment after ECT often deters patients from choosing this treatment option. There is little reliable information regarding the effects of ECT on overall cognitive performance, while short-term memory deficits are well known but not easy to measure within clinical routines. In this pilot study, we examined ECT recipients' pre- and post-treatment performances on a digital ascending number tapping test. We found that cognitive performance measures exhibited good reproducibility in individual patients and that ECT did not significantly alter cognitive performance up to 2 hours after this therapy was applied. Our results can help patients and physicians make decisions regarding the administration of ECT. Digital measurements are recommended, especially when screening for the most common side effects on cognitive performance and short-term memory.

  3. The sol-gel template synthesis of porous TiO2 for a high performance humidity sensor

    NASA Astrophysics Data System (ADS)

    Wang, Zhuyi; Shi, Liyi; Wu, Fengqing; Yuan, Shuai; Zhao, Yin; Zhang, Meihong

    2011-07-01

    This research develops a simple template assisted sol-gel process for preparing porous TiO2 for a high performance humidity sensor. Tetraethyl orthosilicate (TEOS) as a template was directly introduced into TiO2 sol formed by the hydrolysis and condensation of titanium alkoxide; the following calcination led to the formation of TiO2-SiO2 composite, and the selective removal of SiO2 by dilute HF solution led to the formation of porous structure in TiO2. The resulting porous TiO2-based sensor exhibits high sensitivity and linear response in the wide relative humidity (RH) range of 11%-95%, with an impedance variation of four orders of magnitude to humidity change. Moreover, it exhibits a rapid and highly reversible response characterized by a very small hysteresis of < 1% RH and a short response-recovery time (5 s for adsorption and 8 s for desorption), and a 30-day stability test also confirms its long-term stability. Compared with pure TiO2 prepared by the conventional sol-gel method, our product shows remarkably improved performance and good prospect for a high performance humidity sensor. The complex impedance spectra were used to elucidate its humidity sensing mechanism in detail.

  4. Hierarchical structured Sm2O3 modified CuO nanoflowers as electrode materials for high performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaojuan; He, Mingqian; He, Ping; Liu, Hongtao; Bai, Hongmei; Chen, Jingchao; He, Shaoying; Zhang, Xingquan; Dong, Faqing; Chen, Yang

    2017-12-01

    By a simple and cost effective chemical precipitation-hydrothermal method, novel hierarchical structured Sm2O3 modified CuO nanoflowers are prepared and investigated as electrode materials for supercapacitors. The physical properties of prepared materials are characterized by XRD, FE-SEM, EDX and FTIR techniques. Furthermore, electrochemical performances of prepared materials are investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectrum in 1.0 M KOH electrolyte. The resulting Sm2O3 modified CuO based electrodes exhibit obviously enhanced capacitive properties owing to the unique nanostructures and strong synergistic effects. It is worth noting that the optimized SC-3 based electrode exhibits the best electrochemical performances in all prepared electrodes, including higher specific capacitance (383.4 F g-1 at 0.5 A g-1) and good rate capability (393.2 F g-1 and 246.3 F g-1 at 0.3 A g-1 and 3.0 A g-1, respectively), as well as excellent cycling stability (84.6% capacitance retention after 2000 cycles at 1.0 A g-1). The present results show that Sm2O3 is used as a promising modifier to change the morphology and improve electrochemical performances of CuO materials.

  5. Nanostructure selenium compounds as pseudocapacitive electrodes for high-performance asymmetric supercapacitor

    PubMed Central

    Hua, Fengting; Sun, Kanjun; Fenga, Enke; Peng, Hui; Zhang, Zhiguo; Lei, Ziqiang

    2018-01-01

    The electrochemical performance of an energy conversion and storage device like the supercapacitor mainly depends on the microstructure and morphology of the electrodes. In this paper, to improve the capacitance performance of the supercapacitor, the all-pseudocapacitive electrodes of lamella-like Bi18SeO29/BiSe as the negative electrode and flower-like Co0.85Se nanosheets as the positive electrode are synthesized by using a facile low-temperature one-step hydrothermal method. The microstructures and morphology of the electrode materials are carefully characterized, and the capacitance performances are also tested. The Bi18SeO29/BiSe and Co0.85Se have high specific capacitance (471.3 F g–1 and 255 F g–1 at 0.5 A g–1), high conductivity, outstanding cycling stability, as well as good rate capability. The assembled asymmetric supercapacitor completely based on the pseudocapacitive electrodes exhibits outstanding cycling stability (about 93% capacitance retention after 5000 cycles). Moreover, the devices exhibit high energy density of 24.2 Wh kg–1 at a power density of 871.2 W kg–1 in the voltage window of 0–1.6 V with 2 M KOH solution. PMID:29410830

  6. Topex Microwave Radiometer thermal control - Post-system-test modifications and on-orbit performance

    NASA Technical Reports Server (NTRS)

    Lin, Edward I.

    1993-01-01

    The Topex Microwave Radiometer has had an excellent thermal performance since launch. The instrument, however, went through a hardware modification right before launch to correct for a thermal design inadequacy that was uncovered during the spacecraft thermal vacuum test. This paper reports on how the initially obscure problem was tracked down, and how the thermal models were revised, validated, and utilized to investigate the solution options and guide the hardware modification decisions. Details related to test data interpretation, analytical uncertainties, and model-prediction vs. test-data correlation, are documented. Instrument/spacecraft interface issues, where the problem originated and where in general pitfalls abound, are dealt with specifically. Finally, on-orbit thermal performance data are presented, which exhibit good agreement with flight predictions, and lessons learned are discussed.

  7. Working memory impairment and cardiovascular hyperarousal in young primary insomniacs.

    PubMed

    Cellini, Nicola; de Zambotti, Massimiliano; Covassin, Naima; Sarlo, Michela; Stegagno, Luciano

    2014-02-01

    We investigated memory performance and cardiovascular activity in 13 primary insomniacs (PI) compared to 13 good sleepers (GS). Cardiovascular and hemodynamic measures, including heart rate, pre-ejection period, and blood pressure, were continuously recorded at rest and during two memory tasks. PI showed working memory impairment under high cognitive load, but performed as well as GS in an easy memory task. In addition, PI exhibited markers of hyperarousal both at rest and during the execution of the two tasks. However, we failed to find a clear-cut relationship between cardiovascular hyperarousal and cognitive performance in insomniacs. Our data provide further evidence of both cognitive impairment and cardiovascular hyperarousal in primary insomnia, while not supporting the hypothesis of hyperarousal as a compensatory mechanism to overcome cognitive challenges.

  8. Galvanic displacement assembly of ultrathin Co3O4 nanosheet arrays on nickel foam for a high-performance supercapacitor

    NASA Astrophysics Data System (ADS)

    You, Yuxiu; Zheng, Maojun; Ma, Liguo; Yuan, Xiaoliang; Zhang, Bin; Li, Qiang; Wang, Faze; Song, Jingnan; Jiang, Dongkai; Liu, Pengjie; Ma, Li; Shen, Wenzhong

    2017-03-01

    High-performance supercapacitors are very desirable for many portable electronic devices, electric vehicles and high-power electronic devices. Herein, a facile and binder-free synthesis method, galvanic displacement of the precursor followed by heat treatment, is used to fabricate ultrathin Co3O4 nanosheet arrays on nickel foam substrate. When used as a supercapacitor electrode the prepared Co3O4 on nickel foam exhibits a maximum specific capacitance of 1095 F g-1 at a current density of 1 A g-1 and good cycling stability of 71% retention after 2000 cycling tests. This excellent electrochemical performance can be ascribed to the high specific surface area of each Co3O4 nanosheet that comprises numerous nanoparticles.

  9. Analysis of improved dc and ac performances of an InGaP/GaAs heterojunction bipolar transistor with a graded Al xGa 1- xAs layer at emitter/base heterojunction

    NASA Astrophysics Data System (ADS)

    Cheng, Shiou-Ying

    2004-07-01

    An InGaP/GaAs heterojunction bipolar transistor (HBT) with a continuous conduction-band structure is demonstrated and theoretically investigated. This device exhibited good performance including lower turn-on voltage, lower offset voltage and smaller collector current saturation voltage. The novel aspect of device structure design is the adoption of the compositionally linear-graded AlGaAs layer between the InGaP-emitter and GaAs-base layers. Therefore, the device studied shows better dc and ac performances than a conventional device. Consequently, this causes the substantial benefit for practical analog and digital applications especially for lower operation voltage, lower power consumption commercial and military products.

  10. One-step hydrothermal synthesis of hexangular starfruit-like vanadium oxide for high power aqueous supercapacitors

    NASA Astrophysics Data System (ADS)

    Shao, Jie; Li, Xinyong; Qu, Qunting; Zheng, Honghe

    2012-12-01

    Homogenous hexangular starfruit-like vanadium oxide was prepared for the first time by a one-step hydrothermal method. The assembly process of hexangular starfruit-like structure was observed from TEM images. The electrochemical performance of starfruit-like vanadium oxide was examined by cyclic voltammetry and galvanostatic charge/discharge. The obtained starfruit-like vanadium oxide exhibits a high power capability (19 Wh kg-1 at the specific power of 3.4 kW kg-1) and good cycling stability for supercapacitors application.

  11. 3D Freeze-Casting of Cellular Graphene Films for Ultrahigh-Power-Density Supercapacitors.

    PubMed

    Shao, Yuanlong; El-Kady, Maher F; Lin, Cheng-Wei; Zhu, Guanzhou; Marsh, Kristofer L; Hwang, Jee Youn; Zhang, Qinghong; Li, Yaogang; Wang, Hongzhi; Kaner, Richard B

    2016-08-01

    3D cellular graphene films with open porosity, high electrical conductivity, and good tensile strength, can be synthesized by a method combining freeze-casting and filtration. The resulting supercapacitors based on 3D porous reduced graphene oxide (RGO) film exhibit extremely high specific power densities and high energy densities. The fabrication process provides an effective means for controlling the pore size, electronic conductivity, and loading mass of the electrode materials, toward devices with high energy-storage performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Polymer optical fiber tapering using hot water

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Ujihara, Hiroki; Lee, Heeyoung; Hayashi, Neisei; Nakamura, Kentaro

    2017-06-01

    We perform a pilot trial of highly convenient taper fabrication for polymer optical fibers (POFs) using hot water. A ∼380-mm-long POF taper is successfully fabricated, and its ∼150-mm-long waist has a uniform outer diameter of ∼230 µm. The shape is in good agreement with the theoretical prediction. The optical loss dependence on the strain applied to the waist shows an interesting behavior exhibiting three regimes, the origins of which are inferred by microscopic observations. We then discuss the controllability of the taper length.

  13. Two-dimensional ultra-thin SiO(x) (0 < x < 2) nanosheets with long-term cycling stability as lithium ion battery anodes.

    PubMed

    Sun, Lin; Su, Tingting; Xu, Lei; Liu, Meipin; Du, Hong-Bin

    2016-03-21

    Ultra-thin SiO(x) (0 < x < 2) nanosheets were obtained via a convenient solvothermal route from a Zintl compound CaSi2. After carbon coating, the SiOx@C nanosheet anodes exhibit high capacity, good rate and superior cycling performance for high-capacity lithium ion battery applications. The specific capacity can be maintained as high as 760 mA h g(-1) with almost no capacity decay after 400 cycles at a current density of 0.5 A g(-1).

  14. 3D organic Na4C6O6/graphene architecture for fast sodium storage with ultralong cycle life.

    PubMed

    Gu, Jianan; Gu, Yue; Yang, Shubin

    2017-11-23

    Sodium-ion batteries (SIBs) have aroused increasing interest as one of the most promising replacements for lithium-ion batteries (LIBs). Here, a novel organic-inorganic 3D Na 4 C 6 O 6 -graphene architecture was successfully fabricated from commercial Na 2 C 6 O 6 and for the first time applied for sodium storage. Hence, the 3D Na 4 C 6 O 6 -graphene architecture exhibits a high reversible capacity, good cyclic performance and high-rate capability for sodium storage.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, John B.; Detsi, Eric; Liu, Yijin

    Next generation Li-ion batteries will require negative electrode materials with energy densities many-fold higher than that found in the graphitic carbon currently used in commercial Li-ion batteries. While various nanostructured alloying-type anode materials may satisfy that requirement, such materials do not always exhibit long cycle lifetimes and/or their processing routes are not always suitable for large-scale synthesis. Here, we report on a high-performance anode material for next generation Li-ion batteries made of nanoporous Sn powders with hierarchical ligament morphology. This material system combines both long cycle lifetimes (more than 72% capacity retention after 350 cycles), high capacity (693 mAh/g, nearlymore » twice that of commercial graphitic carbon), good charging/discharging capabilities (545 mAh/g at 1 A/g, 1.5C), and a scalable processing route that involves selective alloy corrosion. The good cycling performance of this system is attributed to its nanoporous architecture and its unique hierarchical ligament morphology, which accommodates the large volume changes taking place during lithiation, as confirmed by synchrotron-based ex-situ X-ray 3D tomography analysis. In conclusion, our findings are an important step for the development of high-performance Li-ion batteries.« less

  16. Development of polyisocyanurate pour foam formulation for space shuttle external tank thermal protection system. Final technical report, March 1986-October 1987

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harvey, J.A.; Butler, J.M.; Chartoff, R.P.

    1988-08-01

    Four commercially available polyisocyanurate polyurethane spray-foam insulation formulations are used to coat the external tank of the space shuttle. There are several problems associated with these formulations. For example, some do not perform well as pourable closeout/repair systems. Some do not perform well at cryogenic temperatures (poor adhesion to aluminum at liquid nitrogen temperatures). Their thermal stability at elevated temperatures is not adequate. A major defect in all the systems is the lack of detailed chemical information. The formulations are simply supplied to NASA and Martin Marietta, the primary contractor, as components; Part A (isocyanate) and Part B (poly(s) andmore » additives). Because of the lack of chemical information the performance behavior data for the current system, NASA sought the development of a non-proprietary room temperature curable foam insulation. Requirements for the developed system were that it should exhibit equal or better thermal stability both at elevated and cryogenic temperatures with better adhesion to aluminum as compared to the current system. Several formulations were developed that met these requirements, i.e., thermal stability, good pourability, and good bonding to aluminum.« less

  17. Hard Carbon Originated from Polyvinyl Chloride Nanofibers As High-Performance Anode Material for Na-Ion Battery

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bai, Ying; Wang, Zhen; Wu, Chuan

    2015-02-27

    Two types of hard carbon materials were synthesized through direct pyrolysis of commercial polyvinyl chloride (PVC) particles and pyrolysis of PVC nanofibers at 600-800 degrees C, respectively, where the nanofibers were prepared by an electrospinning PVC precursors method. These as-prepared hard carbon samples were used as anode materials for Na-ion batteries. The hard carbon obtained from PVC nanofibers achieved a high reversible capacity of 271 mAh/g and an initial Coulombic efficiency of 69.9%, which were much superior to the one from commercial PVC, namely, a reversible capacity of 206 mAh/g and an initial Coulombic efficiency of 60.9%. In addition, themore » hard carbon originated from the PVC nanofibers exhibited good cycling stability and rate performance: the initial discharge capacities were 389, 228, 194, 178, 147 mAh/g at the current density of 12, 24, 60, 120, and 240 mA/g, respectively, retaining 211 mAh/g after 150 cycles. Such excellent cycle performance, high reversible capacity, and good rate capability enabled this hard carbon to be a promising candidate as anode material for Na-ion battery application.« less

  18. Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor.

    PubMed

    Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong

    2015-09-18

    A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs- GOD)₄/Au biosensor exhibited a good linear range of 0.01-8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance.

  19. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery.

    PubMed

    Bai, Ying; Wang, Zhen; Wu, Chuan; Xu, Rui; Wu, Feng; Liu, Yuanchang; Li, Hui; Li, Yu; Lu, Jun; Amine, Khalil

    2015-03-11

    Two types of hard carbon materials were synthesized through direct pyrolysis of commercial polyvinyl chloride (PVC) particles and pyrolysis of PVC nanofibers at 600-800 °C, respectively, where the nanofibers were prepared by an electrospinning PVC precursors method. These as-prepared hard carbon samples were used as anode materials for Na-ion batteries. The hard carbon obtained from PVC nanofibers achieved a high reversible capacity of 271 mAh/g and an initial Coulombic efficiency of 69.9%, which were much superior to the one from commercial PVC, namely, a reversible capacity of 206 mAh/g and an initial Coulombic efficiency of 60.9%. In addition, the hard carbon originated from the PVC nanofibers exhibited good cycling stability and rate performance: the initial discharge capacities were 389, 228, 194, 178, 147 mAh/g at the current density of 12, 24, 60, 120, and 240 mA/g, respectively, retaining 211 mAh/g after 150 cycles. Such excellent cycle performance, high reversible capacity, and good rate capability enabled this hard carbon to be a promising candidate as anode material for Na-ion battery application.

  20. A knittable fiber-shaped supercapacitor based on natural cotton thread for wearable electronics

    NASA Astrophysics Data System (ADS)

    Zhou, Qianlong; Jia, Chunyang; Ye, Xingke; Tang, Zhonghua; Wan, Zhongquan

    2016-09-01

    At present, the topic of building high-performance, miniaturized and mechanically flexible energy storage modules which can be directly integrated into textile based wearable electronics is a hotspot in the wearable technology field. In this paper, we reported a highly flexible fiber-shaped electrode fabricated through a one-step convenient hydrothermal process. The prepared graphene hydrogels/multi-walled carbon nanotubes-cotton thread derived from natural cotton thread is electrochemically active and mechanically strong. Fiber-shaped supercapacitor based on the prepared fiber electrodes and polyvinyl alcohol-H3PO4 gel electrolyte exhibits good capacitive performance (97.73 μF cm-1 at scan rate of 2 mV s-1), long cycle life (95.51% capacitance retention after 8000 charge-discharge cycles) and considerable stability (90.75% capacitance retention after 500 continuous bending cycles). Due to its good mechanical and electrochemical properties, the graphene hydrogels/multi-walled carbon nanotubes-cotton thread based all-solid fiber-shaped supercapacitor can be directly knitted into fabrics and maintain its original capacitive performance. Such a low-cost textile thread based versatile energy storage device may hold great potential for future wearable electronics applications.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, H. X.; Zhang, T.; Wang, R. X.

    A nano-floating gate memory structure based on Ni nanocrystals (NCs) embedded HfO{sub x} film is deposited by means of radio-frequency magnetron sputtering. Microstructure investigations reveal that self-organized Ni-NCs with diameters of 4-8 nm are well dispersed in amorphous HfO{sub x} matrix. Pt/Ni-NCs embedded HfO{sub x}/Si/Ag capacitor structures exhibit voltage-dependent capacitance-voltage hysteresis, and a maximum flat-band voltage shift of 1.5 V, corresponding to a charge storage density of 6.0 × 10{sup 12} electrons/cm{sup 2}, is achieved. These capacitor memory cells exhibit good endurance characteristic up to 4 × 10{sup 4} cycles and excellent retention performance of 10{sup 5} s, fulfilling themore » requirements of next generation non-volatile memory devices. Schottky tunneling is proven to be responsible for electrons tunneling in these capacitors.« less

  2. Charge storage and tunneling mechanism of Ni nanocrystals embedded HfOx film

    NASA Astrophysics Data System (ADS)

    Zhu, H. X.; Zhang, T.; Wang, R. X.; Zhang, Y. Y.; Li, L. T.; Qiu, X. Y.

    2016-05-01

    A nano-floating gate memory structure based on Ni nanocrystals (NCs) embedded HfOx film is deposited by means of radio-frequency magnetron sputtering. Microstructure investigations reveal that self-organized Ni-NCs with diameters of 4-8 nm are well dispersed in amorphous HfOx matrix. Pt/Ni-NCs embedded HfOx/Si/Ag capacitor structures exhibit voltage-dependent capacitance-voltage hysteresis, and a maximum flat-band voltage shift of 1.5 V, corresponding to a charge storage density of 6.0 × 1012 electrons/cm2, is achieved. These capacitor memory cells exhibit good endurance characteristic up to 4 × 104 cycles and excellent retention performance of 105 s, fulfilling the requirements of next generation non-volatile memory devices. Schottky tunneling is proven to be responsible for electrons tunneling in these capacitors.

  3. Design of Compact Flower Shape Dual Notched-Band Monopole Antenna for Extended UWB Wireless Applications

    NASA Astrophysics Data System (ADS)

    Sharma, Manish; Awasthi, Y. K.; Singh, Himanshu; Kumar, Raj; Kumari, Sarita

    2016-11-01

    In this letter, a compact monopole antenna for ultra wideband (UWB) applications is proposed with small size of 18×20=360 mm2. Antenna consist of a flower shape radiating patch with a pair of C-shaped slots which offer two notch bands for WiMAX (3.04-3.68 GHz) & WLAN (4.73-5.76 GHz) and two rectangular shaped slots in the ground plane which provides a wide measured usable fractional extended bandwidth of 163 % (2.83-14.0 GHz) with improved VSWR. Moreover, it is also convenient for other wireless application as close range radar, 8-12 GHz in X-band. Measured radiation patterns exhibits nearly omnidirectional in H-plane and dipole like pattern in E-plane across the bandwidth and furthermore exhibits good time domain performance.

  4. Hollow cathode plasma coupling study, 1986

    NASA Technical Reports Server (NTRS)

    Wilbur, Paul J.

    1986-01-01

    The electron collection and emission characteristics of a simple hollow cathode contactor, an extended anode hollow cathode contactor supplied by JSC, and a ring cusp magnetic field contactor are presented and the effects of discharge power and argon or xenon expellant flowrate on these characteristics are examined. All of the contactors are shown to exhibit good electron emission performance over a wide range of discharge power and expellant type and flowrate. Good electron performance is shown to be more difficult to achieve. Results suggest that the extended anode and ring cusp contactors should perform satisfactorily to electron emission currents beyond 1000 mA and electron collection currents beyond 500 mA. All contactors performed better on xenon than argon. A general theory of plasma contactor operation in both the electron collection and electron emission modes, which describes the current-limiting effects of space-charge phenomena is given. This current-limiting and collecting phenomenon is shown to be a function of driving potential differences and emitting and collecting surface radius ratio for the case of a spherical geometry. Discharge power did not appear to influence the electron collection current substantially in the experiments so it is suggested in light of the model that the contactors are generally not limited by their ion production capabilities under conditions at which they were tested.

  5. Immobilization and direct electrochemistry of glucose oxidase on a tetragonal pyramid-shaped porous ZnO nanostructure for a glucose biosensor.

    PubMed

    Dai, Zhihui; Shao, Guojian; Hong, Jianmin; Bao, Jianchun; Shen, Jian

    2009-01-01

    A tetragonal pyramid-shaped porous ZnO (TPSP-ZnO) nanostructure is used for the immobilization, direct electrochemistry and biosensing of proteins. The prepared ZnO has a large surface area and good biocompatibility. Using glucose oxidase (GOD) as a model, this shaped ZnO is tested for immobilization of proteins and the construction of electrochemical biosensors with good electrochemical performances. The interaction between GOD and TPSP-ZnO is examined by using AFM, N(2) adsorption isotherms and electrochemical methods. The immobilized GOD at a TPSP-ZnO-modified glassy carbon electrode shows a good direct electrochemical behavior, which depends on the properties of the TPSP-ZnO. Based on a decrease of the electrocatalytic response of the reduced form of GOD to dissolved oxygen, the proposed biosensor exhibits a linear response to glucose concentrations ranging from 0.05 to 8.2mM with a detection limit of 0.01mM at an applied potential of -0.50V which has better biosensing properties than those from other morphological ZnO nanoparticles. The biosensor shows good stability, reproducibility, low interferences and can diagnose diabetes very fast and sensitively. Such the TPSP-ZnO nanostructure provides a good matrix for protein immobilization and biosensor preparation.

  6. Functional solid additive modified PEDOT:PSS as an anode buffer layer for enhanced photovoltaic performance and stability in polymer solar cells

    PubMed Central

    Xu, Binrui; Gopalan, Sai-Anand; Gopalan, Anantha-Iyengar; Muthuchamy, Nallal; Lee, Kwang-Pill; Lee, Jae-Sung; Jiang, Yu; Lee, Sang-Won; Kim, Sae-Wan; Kim, Ju-Seong; Jeong, Hyun-Min; Kwon, Jin-Beon; Bae, Jin-Hyuk; Kang, Shin-Won

    2017-01-01

    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is most commonly used as an anode buffer layer in bulk-heterojunction (BHJ) polymer solar cells (PSCs). However, its hygroscopic and acidic nature contributes to the insufficient electrical conductivity, air stability and restricted photovoltaic (PV) performance for the fabricated PSCs. In this study, a new multifunctional additive, 2,3-dihydroxypyridine (DOH), has been used in the PEDOT: PSS buffer layer to obtain modified properties for PEDOT: PSS@DOH and achieve high PV performances. The electrical conductivity of PEDOT:PSS@DOH films was markedly improved compared with that of PEDOT:PSS. The PEDOT:PSS@DOH film exhibited excellent optical characteristics, appropriate work function alignment, and good surface properties in BHJ-PSCs. When a poly(3-hexylthiohpene):[6,6]-phenyl C61-butyric acid methyl ester blend system was applied as the photoactive layer, the power conversion efficiency of the resulting PSCs with PEDOT:PSS@DOH(1.0%) reached 3.49%, outperforming pristine PEDOT:PSS, exhibiting a power conversion enhancement of 20%. The device fabricated using PEDOT:PSS@DOH (1.0 wt%) also exhibited improved thermal and air stability. Our results also confirm that DOH, a basic pyridine derivative, facilitates adequate hydrogen bonding interactions with the sulfonic acid groups of PSS, induces the conformational transformation of PEDOT chains and contributes to the phase separation between PEDOT and PSS chains. PMID:28338088

  7. Facile Co-Electrodeposition Method for High-Performance Supercapacitor Based on Reduced Graphene Oxide/Polypyrrole Composite Film.

    PubMed

    Chen, Junchen; Wang, Yaming; Cao, Jianyun; Liu, Yan; Zhou, Yu; Ouyang, Jia-Hu; Jia, Dechang

    2017-06-14

    A facile co-electrodeposition method has been developed to fabricate reduced graphene oxide/polypyrrole (rGO/PPy) composite films, with sodium dodecyl benzene sulfonate as both a surfactant and supporting electrolyte in the precursor solution. The introduction of rGO into the PPy films forms porous structure and enhances the conductivity across the film, leading to superior electrochemical performance. By controlling the deposition time and rGO concentration, the highest area capacitance can reach 411 mF/cm 2 (0.2 mA/cm 2 ) for rGO/PPy films, whereas optimized specific capacitance is as high as 361 F/g (0.2 mA/cm 2 ). All of the composite films exhibit excellent rate capability (at least 175 F/g at the current density of 12 mA/cm 2 ) compared with pure PPy film (only 12 F/g at the current density of 12 mA/cm 2 ). The rGO/PPy composite exhibits excellent cycling stability that maintains 104% of its initial capacitance after cycling for 2000 cycles and 80% for 5000 cycles. The two-electrode solid-state supercapacitor (SC) based on rGO/PPy composite electrodes demonstrates good rate performance, excellent cycling stability, as well as a high area capacitance of 222 mF/cm 2 . The solid-state planar SC based on the rGO/PPy composite exhibits an area capacitance of 9.4 mF/cm 2 , demonstrating great potential for fabrication of microsupercapacitors.

  8. Functional solid additive modified PEDOT:PSS as an anode buffer layer for enhanced photovoltaic performance and stability in polymer solar cells

    NASA Astrophysics Data System (ADS)

    Xu, Binrui; Gopalan, Sai-Anand; Gopalan, Anantha-Iyengar; Muthuchamy, Nallal; Lee, Kwang-Pill; Lee, Jae-Sung; Jiang, Yu; Lee, Sang-Won; Kim, Sae-Wan; Kim, Ju-Seong; Jeong, Hyun-Min; Kwon, Jin-Beon; Bae, Jin-Hyuk; Kang, Shin-Won

    2017-03-01

    Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) is most commonly used as an anode buffer layer in bulk-heterojunction (BHJ) polymer solar cells (PSCs). However, its hygroscopic and acidic nature contributes to the insufficient electrical conductivity, air stability and restricted photovoltaic (PV) performance for the fabricated PSCs. In this study, a new multifunctional additive, 2,3-dihydroxypyridine (DOH), has been used in the PEDOT: PSS buffer layer to obtain modified properties for PEDOT: PSS@DOH and achieve high PV performances. The electrical conductivity of PEDOT:PSS@DOH films was markedly improved compared with that of PEDOT:PSS. The PEDOT:PSS@DOH film exhibited excellent optical characteristics, appropriate work function alignment, and good surface properties in BHJ-PSCs. When a poly(3-hexylthiohpene):[6,6]-phenyl C61-butyric acid methyl ester blend system was applied as the photoactive layer, the power conversion efficiency of the resulting PSCs with PEDOT:PSS@DOH(1.0%) reached 3.49%, outperforming pristine PEDOT:PSS, exhibiting a power conversion enhancement of 20%. The device fabricated using PEDOT:PSS@DOH (1.0 wt%) also exhibited improved thermal and air stability. Our results also confirm that DOH, a basic pyridine derivative, facilitates adequate hydrogen bonding interactions with the sulfonic acid groups of PSS, induces the conformational transformation of PEDOT chains and contributes to the phase separation between PEDOT and PSS chains.

  9. A Palladium-Tin Modified Microband Electrode Array for Nitrate Determination

    PubMed Central

    Fu, Yexiang; Bian, Chao; Kuang, Jian; Wang, Jinfen; Tong, Jianhua; Xia, Shanhong

    2015-01-01

    A microband electrode array modified with palladium-tin bimetallic composite has been developed for nitrate determination. The microband electrode array was fabricated by Micro Electro-Mechanical System (MEMS) technique. Palladium and tin were electrodeposited successively on the electrode, forming a double-layer structure. The effect of the Pd-Sn composite was investigated and its enhancement of catalytic activity and lifetime was revealed. The Pd-Sn modified electrode showed good linearity (R2 = 0.998) from 1 mg/L to 20 mg/L for nitrate determination with a sensitivity of 398 μA/(mg∙L−1∙cm2). The electrode exhibited a satisfying analytical performance after 60 days of storage, indicating a long lifetime. Good repeatability was also displayed by the Pd-Sn modified electrodes. The results provided an option for nitrate determination in water. PMID:26389904

  10. Gamma radiation-induced thermoluminescence emission of minerals adhered to Mexican sesame seeds

    NASA Astrophysics Data System (ADS)

    Rodríguez-Lazcano, Y.; Correcher, V.; Garcia-Guinea, J.; Cruz-Zaragoza, E.

    2013-02-01

    The thermoluminescence (TL) emission of minerals isolated from Mexican sesame seeds appear as a good tool to discern between irradiated and non-irradiated samples. According to the X-ray diffraction (XRD) and environmental scanning electron microscope (ESEM) data, the adhered dust in both samples is mainly composed of different amounts of quartz and feldspars. These mineral phases exhibit (i) enough sensitivity to ionizing radiation inducing good TL intensity, (ii) high stability of the TL signal during the storage of the material, i.e. low fading, and (iii) are thermally and chemically stable. Blind tests were performed under laboratory conditions, but simulating industrial preservation processes, allow us to distinguish between 1 kGy gamma-irradiated and non-irradiated samples even 15 months after irradiation processing followed the EN 1788 European Standard protocol in sesame samples.

  11. A CuNi/C Nanosheet Array Based on a Metal-Organic Framework Derivate as a Supersensitive Non-Enzymatic Glucose Sensor

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Ye, Chen; Li, Xu; Ding, Yaru; Liang, Hongbo; Zhao, Guangyu; Wang, Yan

    2018-06-01

    Bimetal catalysts are good alternatives for non-enzymatic glucose sensors owing to their low cost, high activity, good conductivity, and ease of fabrication. In the present study, a self-supported CuNi/C electrode prepared by electrodepositing Cu nanoparticles on a Ni-based metal-organic framework (MOF) derivate was used as a non-enzymatic glucose sensor. The porous construction and carbon scaffold inherited from the Ni-MOF guarantee good kinetics of the electrode process in electrochemical glucose detection. Furthermore, Cu nanoparticles disturb the array structure of MOF derived films and evidently enhance their electrochemical performances in glucose detection. Electrochemical measurements indicate that the CuNi/C electrode possesses a high sensitivity of 17.12 mA mM-1 cm-2, a low detection limit of 66.67 nM, and a wider linearity range from 0.20 to 2.72 mM. Additionally, the electrode exhibits good reusability, reproducibility, and stability, thereby catering to the practical use of glucose sensors. Similar values of glucose concentrations in human blood serum samples are detected with our electrode and with the method involving glucose-6-phosphate dehydrogenase; the results further demonstrate the practical feasibility of our electrode.

  12. Phenotypic plasticity and specialization in clonal versus non-clonal plants: A data synthesis

    NASA Astrophysics Data System (ADS)

    Fazlioglu, Fatih; Bonser, Stephen P.

    2016-11-01

    Reproductive strategies can be associated with ecological specialization and generalization. Clonal plants produce lineages adapted to the maternal habitat that can lead to specialization. However, clonal plants frequently display high phenotypic plasticity (e.g. clonal foraging for resources), factors linked to ecological generalization. Alternately, sexual reproduction can be associated with generalization via increasing genetic variation or specialization through rapid adaptive evolution. Moreover, specializing to high or low quality habitats can determine how phenotypic plasticity is expressed in plants. The specialization hypothesis predicts that specialization to good environments results in high performance trait plasticity and specialization to bad environments results in low performance trait plasticity. The interplay between reproductive strategies, phenotypic plasticity, and ecological specialization is important for understanding how plants adapt to variable environments. However, we currently have a poor understanding of these relationships. In this study, we addressed following questions: 1) Is there a relationship between phenotypic plasticity, specialization, and reproductive strategies in plants? 2) Do good habitat specialists express greater performance trait plasticity than bad habitat specialists? We searched the literature for studies examining plasticity for performance traits and functional traits in clonal and non-clonal plant species from different habitat types. We found that non-clonal (obligate sexual) plants expressed greater performance trait plasticity and functional trait plasticity than clonal plants. That is, non-clonal plants exhibited a specialist strategy where they perform well only in a limited range of habitats. Clonal plants expressed less performance loss across habitats and a more generalist strategy. In addition, specialization to good habitats did not result in greater performance trait plasticity. This result was contrary to the predictions of the specialization hypothesis. Overall, reproductive strategies are associated with ecological specialization or generalization through phenotypic plasticity. While specialization is common in plant populations, the evolution of specialization does not control the nature of phenotypic plasticity as predicted under the specialization hypothesis.

  13. Quasi 2D Mesoporous Carbon Microbelts Derived from Fullerene Crystals as an Electrode Material for Electrochemical Supercapacitors.

    PubMed

    Tang, Qin; Bairi, Partha; Shrestha, Rekha Goswami; Hill, Jonathan P; Ariga, Katsuhiko; Zeng, Haibo; Ji, Qingmin; Shrestha, Lok Kumar

    2017-12-27

    Fullerene C 60 microbelts were fabricated using the liquid-liquid interfacial precipitation method and converted into quasi 2D mesoporous carbon microbelts by heat treatment at elevated temperatures of 900 and 2000 °C. The carbon microbelts obtained by heat treatment of fullerene C 60 microbelts at 900 °C showed excellent electrochemical supercapacitive performance, exhibiting high specific capacitances ca. 360 F g -1 (at 5 mV s -1 ) and 290 F g -1 (at 1 A g -1 ) because of the enhanced surface area and the robust mesoporous framework structure. Additionally, the heat-treated carbon microbelt showed good rate performance, retaining 49% of capacitance at a high scan rate of 10 A g -1 . The carbon belts exhibit super cyclic stability. Capacity loss was not observed even after 10 000 charge/discharge cycles. These results demonstrate that the quasi 2D mesoporous carbon microbelts derived from a π-electron-rich carbon source, fullerene C 60 crystals, could be used as a new candidate material for electrochemical supercapacitor applications.

  14. Design consideration of δ-doping channels for high-performance n + - GaAs / p + -InGaP/n-GaAs camel-gate field effect transistors

    NASA Astrophysics Data System (ADS)

    Tsai, Jung-Hui; Chen, Jeng-Shyan; Chu, Yu-Jui

    2005-01-01

    The influence of δ-doping channels on the performance of n +-GaAs/p +-InGaP/n-GaAs camel-gate field effect transistors is investigated by theoretical analysis and experimental results. The depleted pn junction of the camel gate and the existence of considerable conduction band discontinuity at the InGaP/GaAs heterojunction enhance the potential barrier height and the forward gate voltage. As the concentration-thickness products of the n-GaAs layer and δ-doping layer are fixed, the higher δ-doping device exhibits a higher potential barrier height, a larger drain current, and a broader gate voltage swing, whereas the transconductance is somewhat lower. For a n +=5.5×10 12 cm -2δ-doping device, the experimental result exhibits a maximum transconductance of 240 mS/mm and a gate voltage swing of 3.5 V. Consequently, the studied devices provide a good potential for large signal and linear circuit applications.

  15. High performance asymmetric supercapacitor based on molybdenum disulphide/graphene foam and activated carbon from expanded graphite.

    PubMed

    Masikhwa, Tshifhiwa M; Madito, Moshawe J; Bello, Abdulhakeem; Dangbegnon, Julien K; Manyala, Ncholu

    2017-02-15

    Molybdenum disulphide which has a graphene-like single layer structure has excellent mechanical and electrical properties and unique morphology, which might be used with graphene foam as composite in supercapacitor applications. In this work, Molybdenum disulphide (MoS 2 )/graphene foam (GF) composites with different graphene foam loading were synthesized by the hydrothermal process to improve on specific capacitance of the composites. Asymmetric supercapacitor device was fabricated using the best performing MoS 2 /GF composite and activated carbon derived from expanded graphite (AEG) as positive and negative electrodes, respectively, in 6M KOH electrolyte. The asymmetric MoS 2 /GF//AEG device exhibited a maximum specific capacitance of 59Fg -1 at a current density of 1Ag -1 with maximum energy and power densities of 16Whkg -1 and 758Wkg -1 , respectively. The supercapacitor also exhibited a good cyclic stability with 95% capacitance retention over 2000 constant charge-discharge cycles. The results obtained demonstrate the potential of MoS 2 /GF//AEG as a promising material for electrochemical energy storage application. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Peng; State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012; Bai, Xue, E-mail: baix@jlu.edu.cn, E-mail: yuzhang@jlu.edu.cn

    High quantum yield, narrow full width at half-maximum and tunable emission color of perovskite quantum dots (QDs) make this kind of material good prospects for light-emitting diodes (LEDs). However, the relatively poor stability under high temperature and air condition limits the device performance. To overcome this issue, the liquid-type packaging structure in combination with blue LED chip was employed to fabricate the fluorescent perovskite quantum dot-based LEDs. A variety of monochromatic LEDs with green, yellow, reddish-orange, and red emission were fabricated by utilizing the inorganic cesium lead halide perovskite quantum dots as the color-conversion layer, which exhibited the narrow fullmore » width at half-maximum (<35 nm), the relatively high luminous efficiency (reaching 75.5 lm/W), and the relatively high external quantum efficiency (14.6%), making it the best-performing perovskite LEDs so far. Compared to the solid state LED device, the liquid-type LED devices exhibited excellent color stability against the various working currents. Furthermore, we demonstrated the potential prospects of all-inorganic perovskite QDs for the liquid-type warm white LEDs.« less

  17. Highly attrition-resistant zinc oxide-based sorbents for H{sub 2}S removal by spray-drying technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, J.B.; Baek, J.I.; Ryu, C.K.

    2008-07-15

    A ZnO-based sorbent, ZAC 32N, applicable to transport reactors was successfully prepared by the spray-drying technique. Another sorbent, ZAC 32SU, was prepared by scale-up preparation of ZAC 32N sorbent. The physical properties of the sorbents such as attrition resistance, specific surface area, pore volume, and particle size were extensively characterized and exhibited a good potential for use in transport applications. The chemical reactivity tested in the thermogravimetric analyzer and microreactor exhibited desirable characteristics for effective desulfurization of syngas streams in the range of 450-550{sup o}C. Bench-scale tests for the sorbent ZAC 32SU were performed for a continuous 160 h withmore » a steady solid circulation of 54.6 kg/h. The results showed 99.5%+ desulfurization at 500-550{sup o}C and reasonable regenerability at 550-620{sup o}C. Test results on the physical properties and chemical reactivity indicated that the performance of developed sorbents proved to be outstanding.« less

  18. Zn-Ge-Sb glass composite mixed with Ba2+ ions: a high capacity anode material for Na-ion batteries

    NASA Astrophysics Data System (ADS)

    Ravuri, Balaji Rao; Gandi, Suman; Chinta, Srinivasa Rao

    2018-06-01

    (100-x)(0.7[0.625ZnO-0.375GeO2]-0.3Sb2O3)-xBaO (x = 0, 2, 4 and 6 mol%, labeled as ZGSB x ) glass anode samples are synthesized using a high-energy ball-milling method and employed as anode material for Na-ion batteries. The results on microstructures (XRD, SEM) and electrochemical properties (constant current charge/discharge tests, CV and EIS) indicated that the optimum concentration of Ba2+ ions in the Zn-Ge-Sb glass anode network exhibits the pillaring effect, which would lead to increased electrical conductivity, minimize the volume changes, cracks and voids to boost up electrochemical performance. The ZGSB4 glass anode sample exhibits good capacity retention even after 20 cycles with 95% coulombic efficiency, which is a significant trend for a successful anode network. Electrochemical performance is considerably enhanced by reducing the cut-off voltage from 2 to 1.25 V due to the disassembly of amorphous intermediate domains, optimum volume changes and increased electrical conductivity in this ZGSB x glass network.

  19. Transforming waste biomass with an intrinsically porous network structure into porous nitrogen-doped graphene for highly efficient oxygen reduction.

    PubMed

    Zhou, Huang; Zhang, Jian; Amiinu, Ibrahim Saana; Zhang, Chenyu; Liu, Xiaobo; Tu, Wenmao; Pan, Mu; Mu, Shichun

    2016-04-21

    Porous nitrogen-doped graphene with a very high surface area (1152 m(2) g(-1)) is synthesized by a novel strategy using intrinsically porous biomass (soybean shells) as a carbon and nitrogen source via calcination and KOH activation. To redouble the oxygen reduction reaction (ORR) activity by tuning the doped-nitrogen content and type, ammonia (NH3) is injected during thermal treatment. Interestingly, this biomass-derived graphene catalyst exhibits the unique properties of mesoporosity and high pyridine-nitrogen content, which contribute to the excellent oxygen reduction performance. As a result, the onset and half-wave potentials of the new metal-free non-platinum catalyst reach -0.009 V and -0.202 V (vs. SCE), respectively, which is very close to the catalytic activity of the commercial Pt/C catalyst in alkaline media. Moreover, our catalyst has a higher ORR stability and stronger CO and CH3OH tolerance than Pt/C in alkaline media. Importantly, in acidic media, the catalyst also exhibits good ORR performance and higher ORR stability compared to Pt/C.

  20. Infrared light-assisted preparation of Ag nanoparticles-reduced graphene oxide nanocomposites for non-enzymatic H{sub 2}O{sub 2} sensing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Ye; State Key Laboratory of Transducer Technology, Chinese Academy of Sciences; Zhang, Yong

    2015-12-15

    Graphical abstract: An infrared light irradiation method has been developed for preparation of AgNPs/rGO nanocomposites for electrochemical detection of H{sub 2}O{sub 2}. - Highlights: • AgNPs/rGO nanocomposites have been prepared by photochemical method. • AgNPs/rGO nanocomposites exhibit good sensing performances for detection of H{sub 2}O{sub 2}. • The present work provides a simple and green method for preparation of rGO-based materials. - Abstract: A green method has been developed for preparation of Ag nanoparticles/reduced graphene oxide (AgNPs/rGO) nanocomposites by infrared light irradiation. The characterizations indicate the successful preparation of AgNPs/rGO nanocomposites. Most importantly, AgNPs/rGO nanocomposites exhibit excellent electrocatalytic activity formore » reduction of H{sub 2}O{sub 2}, leading to a high-performance non-enzymatic H{sub 2}O{sub 2} sensor with linear detection range and detection limit about 0.1 mM to 140 mM (r = 0.9896) and 3.0 μM, respectively.« less

  1. Enhanced low-temperature NH3-SCR performance of MnOx/CeO2 catalysts by optimal solvent effect

    NASA Astrophysics Data System (ADS)

    Yao, Xiaojiang; Kong, Tingting; Chen, Li; Ding, Shimin; Yang, Fumo; Dong, Lin

    2017-10-01

    A series of MnOx/CeO2 catalysts were prepared by modulating the solvents (deionized water (DW), anhydrous ethanol (AE), acetic acid (AA), and oxalic acid (OA) solution) with the purpose of improving the low-temperature NH3-SCR performance, broadening the operating temperature window, and enhancing the H2O + SO2 resistance. The synthesized catalysts were characterized by means of N2-physisorption, XRD, EDS mapping, Raman, XPS, H2-TPR, NH3-TPD, and in situ DRIFTS technologies. Furthermore, the catalytic performance and H2O + SO2 resistance were evaluated by NH3-SCR model reaction. The obtained results indicate that MnOx/CeO2 catalyst prepared with oxalic acid solution as a solvent exhibits the best catalytic performance among these catalysts, which shows above 80% NO conversion during a wide operating temperature range of 100-250 °C and good H2O + SO2 resistance for low-temperature NH3-SCR reaction. This is related to that oxalic acid solution can promote the dispersion of MnOx and enhance the electron interaction between MnOx and CeO2, which are beneficial to improving the physicochemical property of MnOx/CeO2 catalyst, and further lead to the enhancement of catalytic performance and good H2O + SO2 resistance.

  2. Carbon materials-functionalized tin dioxide nanoparticles toward robust, high-performance nitrogen dioxide gas sensor.

    PubMed

    Zhang, Rui; Liu, Xiupeng; Zhou, Tingting; Wang, Lili; Zhang, Tong

    2018-08-15

    Carbon (C) materials, which process excellent electrical conductivity and high carrier mobility, are promising sensing materials as active units for gas sensors. However, structural agglomeration caused by chemical processes results in a small resistance change and low sensing response. To address the above issues, structure-derived carbon-coated tin dioxide (SnO 2 ) nanoparticles having distinct core-shell morphology with a 3D net-like structure and highly uniform size are prepared by careful synthesis and fine structural design. The optimum carbon-coated SnO 2 nanoparticles (SnO 2 /C)-based gas sensor exhibits a low working temperature, excellent selectivity and fast response-recovery properties. In addition, the SnO 2 /C-based gas sensor can maintain a sensitivity to nitrogen dioxide (NO 2 ) of 3 after being cycled 4 times at 140 °C for, suggesting its good long-term stability. The structural integrity, good synergistic properties, and high gas-sensing performance of SnO 2 /C render it a promising sensing material for advanced gas sensors. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Identifying a key physical factor sensitive to the performance of Madden-Julian oscillation simulation in climate models

    NASA Astrophysics Data System (ADS)

    Kim, Go-Un; Seo, Kyong-Hwan

    2018-01-01

    A key physical factor in regulating the performance of Madden-Julian oscillation (MJO) simulation is examined by using 26 climate model simulations from the World Meteorological Organization's Working Group for Numerical Experimentation/Global Energy and Water Cycle Experiment Atmospheric System Study (WGNE and MJO-Task Force/GASS) global model comparison project. For this, intraseasonal moisture budget equation is analyzed and a simple, efficient physical quantity is developed. The result shows that MJO skill is most sensitive to vertically integrated intraseasonal zonal wind convergence (ZC). In particular, a specific threshold value of the strength of the ZC can be used as distinguishing between good and poor models. An additional finding is that good models exhibit the correct simultaneous convection and large-scale circulation phase relationship. In poor models, however, the peak circulation response appears 3 days after peak rainfall, suggesting unfavorable coupling between convection and circulation. For an improving simulation of the MJO in climate models, we propose that this delay of circulation in response to convection needs to be corrected in the cumulus parameterization scheme.

  4. Electrochemical properties of lithium iron phosphate cathode material using polymer electrolyte

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Kwang; Choi, Jae-Won; Cheruvally, Gouri; Shin, Yong-Jo; Ahn, Jou-Hyeon; Cho, Kwon-Koo; Ahn, Hyo-Jun; Kim, Ki-Won

    2007-12-01

    Carbon-coated lithium iron phosphate (LiFePO4/C) cathode material was synthesized by mechano-chemical activation method. The performance of LiFePO4/C in lithium battery was tested with an electrospun polymer-based electrolyte. Liquid electrolyte of 1M lithium hexafluorophosphate (LiPF6) in ethylene carbonate/dimethyl carbonate (EC/DMC) (1 : 1vol) was incorporated in electrospun poly(vinylidene fluoride-co-hexafluoropropylene) (P(VdF-HFP)) microfibrous membrane to prepare the polymer electrolyte (PE). The cell based on Li|PE|Li FePO4/C exhibited an initial discharge capacity of 142 mAh g-1 at 0.1 C-rate at room temperature. Good cycling performance even under the high current density of 2 C could be obtained. Impedance spectroscopy was applied to investigate the material behavior during 0.1 C-rate charge-discharge cycling. When the fresh cell and the cell after different cycles were compared, impedance resistance was found to decrease with cycling. Impedance study indicated good cycle life for the cell when tested at room temperature.

  5. One-pot synthesis of carbon-coated nanosized LiTi2(PO4)3 as anode materials for aqueous lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Zhantao; Qin, Xusong; Xu, Hui; Chen, Guohua

    2015-10-01

    In this study, a one-pot sintering process incorporating sol-gel preparation route and in-situ carbon coating was proposed for the synthesis of carbon-coated nanosized LiTi2(PO4)3. Experimental results show that the prepared LiTi2(PO4)3 particles are of high crystallinity and well-coated by turbostratic carbon. Attributed to nanosized particles and enhanced conductivity provided by turbostratic carbon coating, the carbon-coated LiTi2(PO4)3 showed high rate performance and good cycling life in aqueous electrolyte. Particularly, the carbon-coated LiTi2(PO4)3 exhibited initial specific capacities of 103 and 89 mAh g-1, and retained 80.6% and 97% of the initial capacities after 120 cycles at 1C and 10C in aqueous electrolyte, respectively. The high rate performance and good cycling life of carbon-coated LiTi2(PO4)3 in aqueous electrolyte reveal its potential as negative electrode in aqueous lithium-ion batteries for electric vehicles and industrial-scale energy storage systems.

  6. Biodiesel synthesis by TiO2-ZnO mixed oxide nanocatalyst catalyzed palm oil transesterification process.

    PubMed

    Madhuvilakku, Rajesh; Piraman, Shakkthivel

    2013-12-01

    Biodiesel is a promising alternating environmentally benign fuel to mineral diesel. For the development of easier transesterification process, stable and active heterogeneous mixed metal oxide of TiO2-ZnO and ZnO nanocatalysts were synthesized and exploited for the palm oil transesterification process. The synthesized catalysts were characterized by XRD, FT-IR, and FE-SEM studies for their structural and morphological characteristics. It was found that TiO2-ZnO nanocatalyst exhibits good catalytic activity and the catalytic performance was greatly depends on (i) catalyst concentration (ii) methanol to oil molar ratio (iii) reaction temperature and (iv) reaction time. A highest 98% of conversion was obtained at the optimum reaction parameters with 200 mg of catalyst loading and the biodiesel was analyzed by TLC and (1)H NMR techniques. The TiO2-ZnO nanocatalyst shows good catalytic performance over the ZnO catalyst, which could be a potential candidate for the large-scale biodiesel production from palm oil at the reduced temperature and time. Copyright © 2013. Published by Elsevier Ltd.

  7. Valeriana officinalis Dry Plant Extract for Direct Compression: Preparation and Characterization.

    PubMed

    Gallo, Loreana; Ramírez-Rigo, María Veronica; Piña, Juliana; Palma, Santiago; Allemandi, Daniel; Bucalá, Verónica

    2012-01-01

    Valeriana officinalis L. (Valerianaceae) is one of the most widely used plants for the treatment of anxiety and insomnia. Usually dry plant extracts, including V. officinalis, are hygroscopic materials with poor physico-mechanical properties that can be directly compressed.A V. officinalis dry extract with moderate hygroscocity is suitable for direct compression, and was obtained by using a simple and economical technique. The V. officinalis fluid extract was oven-dried with colloidal silicon dioxide as a drying adjuvant. The addition of colloidal silicon dioxide resulted in a dry plant extract with good physico-mechanical properties for direct compression and lower hygroscopicity than the dry extract without the carrier. The dry plant extract glass transition temperature was considerably above room temperature (about 72 °C). The colloidal silicon dioxide also produced an antiplasticizing effect, improving the powder's physical stability.The pharmaceutical performance of the prepared V. officinalis dry extract was studied through the design of tablets. The manufactured tablets showed good compactability, friability, hardness, and disintegration time. Those containing a disintegrant (Avicel PH 101) exhibited the best pharmaceutical performance, having the lowest disintegration time of around 40 seconds.

  8. Nanoarchitectured Nb2O5 hollow, Nb2O5@carbon and NbO2@carbon Core-Shell Microspheres for Ultrahigh-Rate Intercalation Pseudocapacitors

    NASA Astrophysics Data System (ADS)

    Kong, Lingping; Zhang, Chuanfang; Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui

    2016-02-01

    Li-ion intercalation materials with extremely high rate capability will blur the distinction between batteries and supercapacitors. We construct a series of nanoarchitectured intercalation materials including orthorhombic (o-) Nb2O5 hollow microspheres, o-Nb2O5@carbon core-shell microspheres and tetragonal (t-) NbO2@carbon core-shell microspheres, through a one-pot hydrothermal method with different post-treatments. These nanoarchitectured materials consist of small nanocrystals with highly exposed active surface, and all of them demonstrate good Li+ intercalation pseudocapacitive properties. In particular, o-Nb2O5 hollow microspheres can deliver the specific capacitance of 488.3 F g-1, and good rate performance of 126.7 F g-1 at 50 A g-1. The o-Nb2O5@carbon core-shell microspheres show enhanced specific capacitance of 502.2 F g-1 and much improved rate performance (213.4 F g-1 at 50 A g-1). Furthermore, we demonstrate for the first time, t-NbO2 exhibits much higher rate capability than o-Nb2O5. For discharging time as fast as 5.9 s (50 A g-1), it still exhibits a very high specific capacitance of 245.8 F g-1, which is 65.2% retention of the initial capacitance (377.0 F g-1 at 1 A g-1). The unprecedented rate capability is an intrinsic feature of t-NbO2, which may be due to the conductive lithiated compounds.

  9. Nanoarchitectured Nb2O5 hollow, Nb2O5@carbon and NbO2@carbon Core-Shell Microspheres for Ultrahigh-Rate Intercalation Pseudocapacitors

    PubMed Central

    Kong, Lingping; Zhang, Chuanfang; Wang, Jitong; Qiao, Wenming; Ling, Licheng; Long, Donghui

    2016-01-01

    Li-ion intercalation materials with extremely high rate capability will blur the distinction between batteries and supercapacitors. We construct a series of nanoarchitectured intercalation materials including orthorhombic (o-) Nb2O5 hollow microspheres, o-Nb2O5@carbon core-shell microspheres and tetragonal (t-) NbO2@carbon core-shell microspheres, through a one-pot hydrothermal method with different post-treatments. These nanoarchitectured materials consist of small nanocrystals with highly exposed active surface, and all of them demonstrate good Li+ intercalation pseudocapacitive properties. In particular, o-Nb2O5 hollow microspheres can deliver the specific capacitance of 488.3 F g−1, and good rate performance of 126.7 F g−1 at 50 A g−1. The o-Nb2O5@carbon core-shell microspheres show enhanced specific capacitance of 502.2 F g−1 and much improved rate performance (213.4 F g−1 at 50 A g−1). Furthermore, we demonstrate for the first time, t-NbO2 exhibits much higher rate capability than o-Nb2O5. For discharging time as fast as 5.9 s (50 A g−1), it still exhibits a very high specific capacitance of 245.8 F g−1, which is 65.2% retention of the initial capacitance (377.0 F g−1 at 1 A g−1). The unprecedented rate capability is an intrinsic feature of t-NbO2, which may be due to the conductive lithiated compounds. PMID:26880276

  10. Catalytic performance of strong acid catalyst: Methyl modified SBA-15 loaded perfluorinated sulfonic acid obtained by the waste perfluorinated sulfonic acid ion exchange membrane

    NASA Astrophysics Data System (ADS)

    Jiang, Tingshun; Huang, Qiuyan; Li, Yingying; Fang, Minglan; Zhao, Qian

    2018-02-01

    Mesoporous molecular sieve (SBA-15) was modified using the trimethylchlorosilane as functional agent and the silylation SBA-15 mesoporous material was prepared in this work. The alcohol solution of perfluorinated sulfonic acid dissolved from the waste perfluorinated sulfonic acid ion exchange membrane (PFSIEM) was loaded onto the resulting mesoporous material by the impregnation method and their physicochemical properties were characterized by FT-IR, N2-physisorption, XRD, TG-DSC and TEM. The catalytic activities of these synthesized solid acid catalysts were evaluated by alkylation of phenol with tert-butyl alcohol. The influence of reaction temperature, weight hour space velocity (WHSV) and reaction time on the phenol conversion and product selectivity were assessed by means of a series of experiments. The results showed that with the increase of the active component of the catalyst, these catalysts still remained good mesoporous structure, but the mesoporous ordering decreased to some extent. These catalysts exhibited good catalytic performance for the alkylation of phenol with tert-butanol. The maximum phenol conversion of 89.3% with 70.9% selectivity to 4-t-butyl phenol (4-TBP) was achieved at 120 °C and the WHSV is 4 h-1. The methyl group was loaded on the surface of the catalyst by trimethylchlorosilane. This is beneficial to retard the deactivation of the catalyst. In this work, the alkylation of phenol with tert-butyl alcohol were carried out using the methyl modified SBA-15 mesoporous materials loaded perfluorinated sulfonic acid as catalysts. The results show that the resulting catalyst exhibited high catalytic activity.

  11. A review of blended cathode materials for use in Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Chikkannanavar, Satishkumar B.; Bernardi, Dawn M.; Liu, Lingyun

    2014-02-01

    Several commercial automotive battery suppliers have developed lithium ion cells which use cathodes that consist of a mixture of two different active materials. This approach is intended to take advantage of the unique properties of each material and optimize the performance of the battery with respect to the automotive operating requirements. Certain cathode materials have high coulombic capacity and good cycling characteristics, but are costly and exhibit poor thermal stability (e.g., LiNixCo1-x-yAlyO2). Alternately, other cathode materials exhibit good thermal stability, high voltage and high rate capability, but have low capacity (e.g., LiMn2O4). By blending two cathode materials the shortcomings of the parent materials could be minimized and the resultant blend can be tailored to have a higher energy or power density coupled with enhanced stability and lower cost. In this review, we survey the developing field of blended cathode materials from a new perspective. Targeting a range of cathode materials, we survey the advances in the field in the current review. Limitations, such as capacity decay due to metal dissolution are also discussed, as well as how the appropriate balance of characteristics of the blended materials can be optimized for hybrid- and electric-vehicle applications.

  12. A new cryogenic diode thermometer

    NASA Astrophysics Data System (ADS)

    Courts, S. S.; Swinehart, P. R.; Yeager, C. J.

    2002-05-01

    While the introduction of yet another cryogenic diode thermometer is not earth shattering, a new diode thermometer, the DT-600 series, recently introduced by Lake Shore Cryotronics, possesses three features that make it unique among commercial diode thermometers. First, these diodes have been probed at the chip level, allowing for the availability of a bare chip thermometer matching a standard curve-an important feature in situations where real estate is at a premium (IR detectors), or where in-situ calibration is difficult. Second, the thermometry industry has assumed that interchangeability should be best at low temperatures. Thus, good interchangeability at room temperatures implies a very good interchangeability at cryogenic temperature, resulting in a premium priced sensor. The DT-600 series diode thermometer is available in an interchangeability band comparable to platinum RTDs with the added advantage of interchangeability to 2 K. Third, and most important, the DT-600 series diode does not exhibit an instability in the I-V characteristic in the 8 K to 20 K temperature range that is observed in other commercial diode thermometer devices [1]. This paper presents performance characteristics for the DT-600 series diode thermometer along with a comparison of I-V curves for this device and other commercial diode thermometers exhibiting an I-V instability.

  13. Strontium (II)-Selective Potentiometric Sensor Based on Ester Derivative of 4-tert-butylcalix(8)arene in PVC Matrix

    PubMed Central

    Jain, Ajay K.; Gupta, Vinod K.; Raisoni, Jitendra R.

    2004-01-01

    Membranes of 4-tert-butylcalix(8)arene-octaacetic acid octaethyl ester (I) as an electroactive material, sodium tetraphenyl borate (NaTPB) as an anion excluder, and tri-n-butyl phosphate (TBP) as a solvent mediator in poly(vinyl chloride) (PVC) matrix have been tried for a strontium-selective sensor. The best performance was exhibited by the membrane having a composition 5:100:150:2 (I: PVC: TBP: NaTPB (w/w)). This sensor exhibits a good potentiometric response to Sr2+ over a wide concentration range (3.2 × 10 –5 –1.0 × 10 –1 M) with a Nernstian slope (30 mV/ decade). The response time of the sensor is 10 s and it has been used for a period of four months without any drift in potentials. The selectivity coefficient values are in the order of 0.01 for mono-, bi-, and trivalent cations which indicate a good selectivity for Sr2+ over a large number of cations. The useful pH range for the sensor was found to be 3-10 and it works well in mixtures with non-aqueous content up to 25 % (v/v). The sensor has been used as an indicator electrode in the potentiometric titration of Sr2+ against EDTA.

  14. Accelerated GaAs growth through MOVPE for low-cost PV applications

    NASA Astrophysics Data System (ADS)

    Ubukata, Akinori; Sodabanlu, Hassanet; Watanabe, Kentaroh; Koseki, Shuichi; Yano, Yoshiki; Tabuchi, Toshiya; Sugaya, Takeyoshi; Matsumoto, Koh; Nakano, Yoshiaki; Sugiyama, Masakazu

    2018-05-01

    The high growth rate of epitaxial GaAs was investigated using a novel horizontal metalorganic vapor phase epitaxy (MOVPE) reactor, from the point of view of realizing low-cost photovoltaic (PV) solar cells. The GaAs growth rate exhibited an approximately linear relationship with the amount of trimethylgalium (TMGa) supplied, up to a rate of 90 μm/h. The distribution of growth rate was observed for a two-inch wafer, along the flow direction, and the normalized profile of the distribution was found to be independent of the precursor input, from 20 to 70 μm/h. These tendencies indicated that significant parasitic prereaction did not occur in the gaseous phase, for this range of growth rate. GaAs p-n single-junction solar cells were successfully fabricated at growth rates of 20, 60, and 80 μm/h. The conversion efficiency of the cell grown at 80 μm/h was comparable to that of the 20 μm/h cell, indicating the good quality and properties of GaAs. The epitaxial growth exhibited good uniformity, as evidenced by the uniformity of the cell performance across the wafer, from the center to the edge. The result indicated the potential of high-throughput MOVPE for low-cost production, not only for PV devices but also for other semiconductor applications.

  15. Thick Smear is a Good Substitute for the Thin Smear in Parasitological Confirmation of Canine Visceral Leishmaniasis.

    PubMed

    de Mello, Cintia Xavier; Figueiredo, Fabiano Borges; Mendes Júnior, Artur Augusto Velho; Miranda, Luciana de Freitas Campos; de Oliveira, Raquel de Vasconcellos Carvalhaes; Madeira, Maria de Fátima

    2016-07-06

    Although direct examination methods are important for diagnosing leishmaniasis, such methods are often neglected because of their low sensitivity relative to other techniques. Our study aimed to evaluate the performance of bone marrow (BM) thick smears and cytocentrifugation tests as alternatives to direct examination for diagnosing canine visceral leishmaniasis (CVL). Ninety-two dogs exhibiting leishmaniasis seroreactivity were evaluated. The animals were euthanized; and healthy skin, spleen, popliteal lymph node, and BM puncture samples were cultured. BM cultures were used as the reference standard. Of the 92 dogs studied, 85.9% exhibited positive cultures, and Leishmania infantum (synonym Leishmania chagasi) was confirmed in all positive culture cases. The sensitivity rates for cytocentrifugation as well as thin and thick smears were 47.1%, 52.8%, and 77%, respectively. However, no association between the dogs' clinical status and culture or direct examination results was found. To our knowledge, this was the first study to use thick smears and cytocentrifugation for diagnosing CVL. Our results indicate that BM thick smears have a good sensitivity and their use reduces the time required to read slides. Therefore, thick smears can provide a rapid and safe alternative to parasitological confirmation of seroreactive dogs. © The American Society of Tropical Medicine and Hygiene.

  16. Correlating particle hardness with powder compaction performance.

    PubMed

    Cao, Xiaoping; Morganti, Mikayla; Hancock, Bruno C; Masterson, Victoria M

    2010-10-01

    Assessing particle mechanical properties of pharmaceutical materials quickly and with little material can be very important to early stages of pharmaceutical research. In this study, a wide range of pharmaceutical materials were studied using atomic force microscopy (AFM) nanoindentation. A significant amount of particle hardness and elastic modulus data were provided. Moreover, powder compact mechanical properties of these materials were investigated in order to build correlation between the particle hardness and powder compaction performance. It was found that the materials with very low or high particle hardness most likely exhibit poor compaction performance while the materials with medium particle hardness usually have good compaction behavior. Additionally, the results from this study enriched Hiestand's special case concept on particle hardness and powder compaction performance. This study suggests that the use of AFM nanoindentation can help to screen mechanical properties of pharmaceutical materials at early development stages of pharmaceutical research.

  17. Is sperm freezability related to the post-thaw lipid peroxidation and the formation of reactive oxygen species in boars?

    PubMed

    Gómez-Fernández, J; Gómez-Izquierdo, E; Tomás, C; Mocé, E; de Mercado, E

    2013-04-01

    The aim of the present study was to determine whether the levels of reactive oxygen species (ROS) substances production and the levels of lipid peroxidation of the sperm membrane were related to the quality that the ejaculates exhibited after cryopreservation in boars. Ejaculates from 42 healthy boars were used in this study and they were cryopreserved with the lactose-egg yolk extender (LEY). Several sperm quality parameters were assessed by flow cytometry in samples incubated for 30 and 150 min at 37 °C after thawing: the percentage of sperm with intact plasma membrane (SIPM), intracellular reactive oxygen substances production through mean of DCF fluorescence intensity of total sperm (mean-DCF) and the percentage of viable and non-viable sperm containing oxidized BODIPY (VSOB and NVSOB). In addition, the percentages of total motile (TMS) and progressively motile sperm (PMS) were assessed at the same incubation times with a computer-assisted sperm analysis system. The classification of the ejaculates into good or bad freezers was performed through hierarchical cluster analysis from SIPM and TMS at 150 min post-thawing. The ejaculates of those males classified as good freezers exhibited higher (p < 0.05) SPIM, TMS and PMS than the bad freezers, although both groups presented similar (p > 0.05) VSOB, NVSOB and mean-DCF. Therefore, these results show that lipid peroxidation and the amount of reactive oxygen substances in the sperm after cryopreservation are similar between boars classified as good or bad freezers. © 2012 Blackwell Verlag GmbH.

  18. Polycrystalline silicon thin-film transistors with location-controlled crystal grains fabricated by excimer laser crystallization

    NASA Astrophysics Data System (ADS)

    Tsai, Chun-Chien; Lee, Yao-Jen; Chiang, Ko-Yu; Wang, Jyh-Liang; Lee, I.-Che; Chen, Hsu-Hsin; Wei, Kai-Fang; Chang, Ting-Kuo; Chen, Bo-Ting; Cheng, Huang-Chung

    2007-11-01

    In this paper, location-controlled silicon crystal grains are fabricated by the excimer laser crystallization method which employs amorphous silicon spacer structure and prepatterned thin films. The amorphous silicon spacer in nanometer-sized width formed using spacer technology is served as seed crystal to artificially control superlateral growth phenomenon during excimer laser irradiation. An array of 1.8-μm-sized disklike silicon grains is formed, and the n-channel thin-film transistors whose channels located inside the artificially-controlled crystal grains exhibit higher performance of field-effect-mobility reaching 308cm2/Vs as compared with the conventional ones. This position-manipulated silicon grains are essential to high-performance and good uniformity devices.

  19. Nanofiber/ZrO2-based mixed matrix separator for high safety/high-rate lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Xiao, Wei; Liu, Jianguo; Yan, Chuanwei

    2017-10-01

    A novel asymmetric separator based on a thin bacterial cellulose nanofiber (BCF)/nano-ZrO2 composite layer and a non-woven support was prepared by paper-making method. Owing to the relatively polar constituents and well-developed, gradient porous structure, the separator exhibited the advantages of higher thermal resistance, electrolyte wettability, and ionic conductivity in comparison to polyethylene separator. Based on these advantages, the Li/LiFePO4 cells assembled from this composite separator showed excellent performance characteristics, including outstanding C-rate capability, high capacity and cycling performance. Production of the composite separator is simple, environmentally benign and economically viable. Therefore, it's a good candidate for creating improved lithium-ion batteries.

  20. Performance Enhancement of Small Molecular Solar Cells by Bilayer Cathode Buffer.

    PubMed

    Sun, Qinjun; Zhao, Huanbin; Zhou, Miao; Gao, Liyan; Hao, Yuying

    2016-04-01

    An effective composite bilayer cathode buffer structure is proposed for use in small molecular solar cells. CsF was doped in Alq3 to form the first cathode buffer, leading to small serial resistances. BCP was used as the second cathode buffer to block the holes to the electrode. The optimized bilayer cathode buffer significantly increased the short circuit and fill factor of devices. By integrating this bilayer cathode buffer, the CuPc/C60 small molecular heterojunction cell exhibited a power conversion efficiency of up to 0.8%, which was an improvement of 56% compared to a device with only the Alq3 cathode buffer. Meanwhile, the bilayer cathode buffer still has a good protective effect on the performance of the device.

  1. Protective Performance of Polyaniline-Sulfosalicylic Acid/Epoxy Coating for 5083 Aluminum

    PubMed Central

    Liu, Suyun; Liu, Li; Meng, Fandi; Li, Ying; Wang, Fuhui

    2018-01-01

    Epoxy coatings incorporating different content of sulfosalicylic acid doped polyaniline (PANI-SSA) have been investigated for corrosion protection of 5083 aluminum alloy in 3.5% NaCl solution. The performance of the coatings is studied using a combination of electrochemical impedance spectroscopy (EIS), open circuit potential (OCP), gravimetric tests, adhesion tests, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results demonstrate that the content of PANI-SSA not only affects the coating compactness and the transportation of aggressive medium, but also has a significant influence on the-based aluminum. The coating with 2 wt. % PANI-SSA exhibits the best corrosion inhibition due to its good protective properties and the formation of a complete PANI-SSA induced oxide layer. PMID:29438304

  2. Determination of properties of PVE lubricants with HFC refrigerants[PolyVinylEther

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaneko, Masato; Sakanoue, Shuichi; Tazaki, Toshihiro

    1999-07-01

    Polyalkyleneglycol (PAG) and polyol ester (POE) have been developed as refrigeration lubricants, used with HFC134a. PAG is used for automotive air conditioning systems and POE is used for domestic reciprocating refrigerators and for A/C systems. Although PAG exhibits good lubricity performance, it is difficult to use for domestic reciprocating refrigerators due to its low dielectric property. POE is difficult to use for automotive A/C systems, due to hydrolysis and poor lubricity performance. Polyvinylether (PVE) can be used in place of PAG and POE with HFC refrigerants. PVE is used for A/C systems as well as refrigerator and freezer applications. PVEmore » is an ideal lubricant for use with HFCs.« less

  3. An all-solid-state lithium/polyaniline rechargeable cell

    NASA Astrophysics Data System (ADS)

    Changzhi, Li; Xinsheng, Peng; Borong, Zhang; Baochen, Wang

    The performance of an all-solid-state cell having a lithium negative electrode, a modified polyethylene oxide (PEO)—epoxy resin (ER) electrolyte, and a polyaniline (PAn) positive electrode has been studied using cyclic voltammetry, charge/discharge cycling, and polarization curves at various temperatures. The redox reaction of the PAn electrode at the PAn/modifed PEOER interface exhibits good reversibility. At 50-80 °C, the Li/PEOERLiClO 4/PAn cell shows more than 40 charge/discharge cycles, 90% charge/discharge efficiency, and 54 W h kg -1 discharge energy density (on PAn weight basis) at 50 μA between 2 and 4 V. The polarization performance of the battery improves steadily with increase in temperature.

  4. Facile Synthesis of V₂O₅ Hollow Spheres as Advanced Cathodes for High-Performance Lithium-Ion Batteries.

    PubMed

    Zhang, Xingyuan; Wang, Jian-Gan; Liu, Huanyan; Liu, Hongzhen; Wei, Bingqing

    2017-01-18

    Three-dimensional V₂O₅ hollow structures have been prepared through a simple synthesis strategy combining solvothermal treatment and a subsequent thermal annealing. The V₂O₅ materials are composed of microspheres 2-3 μm in diameter and with a distinct hollow interior. The as-synthesized V₂O₅ hollow microspheres, when evaluated as a cathode material for lithium-ion batteries, can deliver a specific capacity as high as 273 mAh·g -1 at 0.2 C. Benefiting from the hollow structures that afford fast electrolyte transport and volume accommodation, the V₂O₅ cathode also exhibits a superior rate capability and excellent cycling stability. The good Li-ion storage performance demonstrates the great potential of this unique V₂O₅ hollow material as a high-performance cathode for lithium-ion batteries.

  5. Electrochemical properties for high surface area and improved electrical conductivity of platinum-embedded porous carbon nanofibers

    NASA Astrophysics Data System (ADS)

    An, Geon-Hyoung; Ahn, Hyo-Jin; Hong, Woong-Ki

    2015-01-01

    Four different types of carbon nanofibers (CNFs) for electrical double-layer capacitors (EDLCs), porous and non-porous CNFs with and without Pt metal nanoparticles, are synthesized by an electrospinning method and their performance in electrical double-layer capacitors (EDLCs) is characterized. In particular, the Pt-embedded porous CNFs (PCNFs) exhibit a high specific surface area of 670 m2 g-1, a large mesopore volume of 55.7%, and a low electrical resistance of 1.7 × 103. The synergistic effects of the high specific surface area with a large mesopore volume, and superior electrical conductivity result in an excellent specific capacitance of 130.2 F g-1, a good high-rate performance, superior cycling durability, and high energy density of 16.9-15.4 W h kg-1 for the performance of EDLCs.

  6. Effect of ZnO:Cs2CO3 on the performance of organic photovoltaics

    PubMed Central

    2014-01-01

    We demonstrate a new solution-processed electron transport layer (ETL), zinc oxide doped with cesium carbonate (ZnO:Cs2CO3), for achieving organic photovoltaics (OPVs) with good operational stability at ambient air. An OPV employing the ZnO:Cs2CO3 ETL exhibits a fill factor of 62%, an open circuit voltage of 0.90 V, and a short circuit current density of −6.14 mA/cm2 along with 3.43% power conversion efficiency. The device demonstrated air stability for a period over 4 weeks. In addition, we also studied the device structure dependence on the performance of organic photovoltaics. Thus, we conclude that ZnO:Cs2CO3 ETL could be employed in a suitable architecture to achieve high-performance OPV. PMID:25045340

  7. Deployment and Performance Characteristics of 5-Foot Diameter (1.5m) Attached Inflatable Decelerators from Mach Numbers 2.2-4.4

    NASA Technical Reports Server (NTRS)

    Bohon, Herman L.; Miserentino, Robert

    1970-01-01

    Deployment characteristics and steady-state performance data were obtained over the Mach number range from 2.2 to 4.4 and at angles of attack from 0 degrees to l0 degrees. All attached inflatable decelerator (AID) models deployed successfully and exhibited flutter-free performance after deployment. Shock loads commonly associated with inflation of parachutes during deployment were not experienced. Force and moment data and ram-air pressure data were obtained throughout the Mach number range and at angles of attack from 0 degrees to l0 degrees. The high drag coefficient of 1.14 was in good agreement with the value predicted by the theory used in the design and indicated other AID shapes may be designed on a rational basis with a high degree of confidence.

  8. Tensorial Basis Spline Collocation Method for Poisson's Equation

    NASA Astrophysics Data System (ADS)

    Plagne, Laurent; Berthou, Jean-Yves

    2000-01-01

    This paper aims to describe the tensorial basis spline collocation method applied to Poisson's equation. In the case of a localized 3D charge distribution in vacuum, this direct method based on a tensorial decomposition of the differential operator is shown to be competitive with both iterative BSCM and FFT-based methods. We emphasize the O(h4) and O(h6) convergence of TBSCM for cubic and quintic splines, respectively. We describe the implementation of this method on a distributed memory parallel machine. Performance measurements on a Cray T3E are reported. Our code exhibits high performance and good scalability: As an example, a 27 Gflops performance is obtained when solving Poisson's equation on a 2563 non-uniform 3D Cartesian mesh by using 128 T3E-750 processors. This represents 215 Mflops per processors.

  9. Electrochemical insertion of magnesium ions into V2O5 from aprotic electrolytes with varied water content.

    PubMed

    Yu, Long; Zhang, Xiaogang

    2004-10-01

    The electrochemical performance of V2O5 has been studied in propylene carbonate (PC)-containing magnesium perchlorate [Mg(ClO4)2] electrolytes in view of their application as positive electrode in the rechargeable magnesium batteries. V2O5 exhibited good properties in hosting magnesium ions and its electrochemical performance depended on the amount of H2O in the electrolytes. The highest first discharge specific capacities of V2O5 electrode was up to 158.6 mAh/g in 1 mol dm(-3) Mg(ClO4)2 + 1.79 mol dm(-3) H2O/PC electrolytes. Electrochemical impedance spectroscopy (EIS) and charging-discharging tests showed that a reasonable amount of H2O in the electrolyte solution facilitated the electrochemical performance of V2O5 electrodes.

  10. Performance of Simplified Acute Physiology Score 3 In Predicting Hospital Mortality In Emergency Intensive Care Unit.

    PubMed

    Ma, Qing-Bian; Fu, Yuan-Wei; Feng, Lu; Zhai, Qiang-Rong; Liang, Yang; Wu, Meng; Zheng, Ya-An

    2017-07-05

    Since the 1980s, severity of illness scoring systems has gained increasing popularity in Intensive Care Units (ICUs). Physicians used them for predicting mortality and assessing illness severity in clinical trials. The objective of this study was to assess the performance of Simplified Acute Physiology Score 3 (SAPS 3) and its customized equation for Australasia (Australasia SAPS 3, SAPS 3 [AUS]) in predicting clinical prognosis and hospital mortality in emergency ICU (EICU). A retrospective analysis of the EICU including 463 patients was conducted between January 2013 and December 2015 in the EICU of Peking University Third Hospital. The worst physiological data of enrolled patients were collected within 24 h after admission to calculate SAPS 3 score and predicted mortality by regression equation. Discrimination between survivals and deaths was assessed by the area under the receiver operator characteristic curve (AUC). Calibration was evaluated by Hosmer-Lemeshow goodness-of-fit test through calculating the ratio of observed-to-expected numbers of deaths which is known as the standardized mortality ratio (SMR). A total of 463 patients were enrolled in the study, and the observed hospital mortality was 26.1% (121/463). The patients enrolled were divided into survivors and nonsurvivors. Age, SAPS 3 score, Acute Physiology and Chronic Health Evaluation Score II (APACHE II), and predicted mortality were significantly higher in nonsurvivors than survivors (P < 0.05 or P < 0.01). The AUC (95% confidence intervals [CI s]) for SAPS 3 score was 0.836 (0.796-0.876). The maximum of Youden's index, cutoff, sensitivity, and specificity of SAPS 3 score were 0.526%, 70.5 points, 66.9%, and 85.7%, respectively. The Hosmer-Lemeshow goodness-of-fit test for SAPS 3 demonstrated a Chi-square test score of 10.25, P = 0.33, SMR (95% CI) = 0.63 (0.52-0.76). The Hosmer-Lemeshow goodness-of-fit test for SAPS 3 (AUS) demonstrated a Chi-square test score of 9.55, P = 0.38, SMR (95% CI) = 0.68 (0.57-0.81). Univariate and multivariate analyses were conducted for biochemical variables that were probably correlated to prognosis. Eventually, blood urea nitrogen (BUN), albumin,lactate and free triiodothyronine (FT3) were selected as independent risk factors for predicting prognosis. The SAPS 3 score system exhibited satisfactory performance even superior to APACHE II in discrimination. In predicting hospital mortality, SAPS 3 did not exhibit good calibration and overestimated hospital mortality, which demonstrated that SAPS 3 needs improvement in the future.

  11. Neutron diffraction studies of laser welding residual stresses

    NASA Astrophysics Data System (ADS)

    Petrov, Peter I.; Bokuchava, Gizo D.; Papushkin, Igor V.; Genchev, Gancho; Doynov, Nikolay; Michailov, Vesselin G.; Ormanova, Maria A.

    2016-01-01

    The residual stress and microstrain distribution induced by laser beam welding of the low-alloyed C45 steel plate was investigated using high-resolution time-of-flight (TOF) neutron diffraction. The neutron diffraction experiments were performed on FSD diffractometer at the IBR-2 pulsed reactor in FLNP JINR (Dubna, Russia). The experiments have shown that the residual stress distribution across weld seam exhibit typical alternating sign character as it was observed in our previous studies. The residual stress level is varying in the range from -60 MPa to 450 MPa. At the same time, the microstrain level exhibits sharp maxima at weld seam position with maximal level of 4.8·10-3. The obtained experimental results are in good agreement with FEM calculations according to the STAAZ model. The provided numerical model validated with measured data enables to study the influence of different conditions and process parameters on the development of residual welding stresses.

  12. Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics

    NASA Astrophysics Data System (ADS)

    Inda, Yasushi; Katoh, Takashi; Baba, Mamoru

    We have developed a high performance lithium-ion conducting glass-ceramics. This glass-ceramics has the crystalline form of Li 1+ x+ yAl xTi 2- xSi yP 3- yO 12 with a NASICON-type structure, and it exhibits a high lithium-ion conductivity of 10 -3 S cm -1 or above at room temperature. Moreover, since this material is stable in the open atmosphere and even to exposure to moist air, it is expected to be applied for various uses. One of applications of this material is as a solid electrolyte for a lithium-ion battery. Batteries were developed by combining a LiCoO 2 positive electrode, a Li 4Ti 5O 12 negative electrode, and a composite electrolyte. The battery using the composite electrolyte with a higher conductivity exhibited a good charge-discharge characteristic.

  13. Electrochemical performance of a solvent-free hybrid ceramic-polymer electrolyte based on Li7La3Zr2O12 in P(EO)15LiTFSI

    NASA Astrophysics Data System (ADS)

    Keller, Marlou; Appetecchi, Giovanni Battista; Kim, Guk-Tae; Sharova, Varvara; Schneider, Meike; Schuhmacher, Jörg; Roters, Andreas; Passerini, Stefano

    2017-06-01

    The preparation of hybrid ceramic-polymer electrolytes, consisting of 70 wt% of Li+ cation conducting Li7La3Zr2O12 (LLZO) and 30 wt% of P(EO)15LiTFSI polymer electrolyte, through a solvent-free procedure is reported. The LLZO-P(EO)15LiTFSI hybrid electrolytes exhibit remarkable improvement in terms of flexibility and processability with respect to pure LLZO ceramic electrolytes. The physicochemical and electrochemical investigation shows the effect of LLZO annealing, resulting in ion conduction gain. However, slow charge transfer at the ceramic-polymer interface is also observed especially at higher temperatures. Nevertheless, improved compatibility with lithium metal anodes and good Li stripping/plating behavior are exhibited by the LLZO-P(EO)15LiTFSI hybrid electrolytes with respect to P(EO)15LiTFSI.

  14. Hydrothermal synthesis of cobalt sulfide nanotubes: The size control and its application in supercapacitors

    NASA Astrophysics Data System (ADS)

    Wan, Houzhao; Ji, Xiao; Jiang, Jianjun; Yu, Jingwen; Miao, Ling; Zhang, Li; Bie, Shaowei; Chen, Haichao; Ruan, Yunjun

    2013-12-01

    Cobalt sulfide nanotubes are synthesized by hydrothermal method. The precursor is characterized by XRD, FTIR and SEM. We study the influence of temperature on the evolution of this special coarse shape nanostructure and analyze relationship between the sizes of cobalt sulfide nanotubes and the capacitive properties of active materials. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) are used to study the effects of microstructure and morphology of the samples on their capacitance and conductivity. The specific capacitance of cobalt sulfide nanotubes (obtained in 80 °C) electrode exhibits a capacitance of 285 F g-1 at the current density of 0.5 A g-1 as well as rather good cycling stability. Moreover, during the cycling process, the coulombic efficiency remains 99%. The as-prepared cobalt sulfide nanotubes electrode exhibits excellent electrochemical performance as electrode materials for supercapacitors.

  15. Retraining Attitudes and Stereotypes to Affect Motivation and Cognitive Capacity under Stereotype Threat

    PubMed Central

    Forbes, Chad E.; Schmader, Toni

    2010-01-01

    A series of experiments used a retraining paradigm to test the effects of attitudes and stereotypes on individuals’ motivation and processing capacity in stereotype threatening contexts. Women trained to have a more positive math attitude exhibited increased math motivation (Study 1). This effect was not observed for men but was magnified among women when negative stereotypes were either primed subtly (Study 2) or indirectly reinforced (Study 3). Although attitudes had no effect on working memory capacity, women retrained to associate their gender with being good at math exhibited increased working memory capacity (Studies 3 and 4) that in turn mediated increased math performance (Study 4) in a stereotype threatening context. Results suggest that although positive attitudes can motivate stigmatized individuals to engage with threatening domains, stereotypes need to be retrained to give them the cognitive capacity critical for success. Implications for interventions to reduce stereotype threat are discussed. PMID:20822288

  16. Asymmetric organic-inorganic hybrid membrane formation via block copolymer-nanoparticle co-assembly.

    PubMed

    Gu, Yibei; Dorin, Rachel M; Wiesner, Ulrich

    2013-01-01

    A facile method for forming asymmetric organic-inorganic hybrid membranes for selective separation applications is developed. This approach combines co-assembly of block copolymer (BCP) and inorganic nanoparticles (NPs) with non-solvent induced phase separation. The method is successfully applied to two distinct molar mass BCPs with different fractions of titanium dioxide (TiO2) NPs. The resulting hybrid membranes exhibit structural asymmetry with a thin nanoporous surface layer on top of a macroporous fingerlike support layer. Key parameters that dictate membrane surface morphology include the fraction of inorganics used and the length of time allowed for surface layer development. The resulting membranes exhibit both good selectivity and high permeability (3200 ± 500 Lm(-2) h(-1) bar(-1)). This fast and straightforward synthesis method for asymmetric hybrid membranes provides a new self-assembly platform upon which multifunctional and high-performance organic-inorganic hybrid membranes can be formed.

  17. Retraining attitudes and stereotypes to affect motivation and cognitive capacity under stereotype threat.

    PubMed

    Forbes, Chad E; Schmader, Toni

    2010-11-01

    In a series of experiments, a retraining paradigm was used to test the effects of attitudes and stereotypes on individuals' motivation and cognitive capacity in stereotype-threatening contexts. Women trained to have a more positive math attitude exhibited increased math motivation (Study 1). This effect was not observed for men but was magnified among women when negative stereotypes were either primed subtly (Study 2) or indirectly reinforced (Study 3). Although attitudes had no effect on working memory capacity, women retrained to associate their gender with being good at math exhibited increased working memory capacity (Studies 3 and 4), which in turn mediated increased math performance (Study 4) in a stereotype-threatening context. Results suggest that although positive attitudes can motivate stigmatized individuals to engage with threatening domains, stereotypes need to be retrained to give them the cognitive capacity critical for success. Implications for interventions to reduce stereotype threat are discussed.

  18. Self-assembly of silver(i)-based high-energy metal-organic frameworks (HE-MOFs) at ambient temperature and pressure: synthesis, structure and superior explosive performance.

    PubMed

    Shen, Cheng; Liu, Yang; Zhu, Zhong-Qin; Xu, Yuan-Gang; Lu, Ming

    2017-07-04

    Two new high-energy metal-organic frameworks (HE-MOFs), {Ag 2 (DNMAF)(H 2 O) 2 } n (1) and {Ag 2 (DNMAF)} n (2) were prepared using potassium 4,4'-bis(dinitromethyl)-3,3'-azofurazanate (K 2 DNMAF) in a self-assembly strategy. Compound 1 exhibits a 3D HE-MOF structure with coordinated water molecules. Compound 2 exhibits compact solvent-free 3D HE-MOFs. Both compounds show good thermostability (decomposition temperature (T d ) of 211 and 218 °C) and superior detonation velocities (D) of 9673 m s -1 and 10 242 m s -1 , detonation pressures (P) of 50.01 GPa and 58.30 GPa, and heat of detonation (Q) of 1.95 kcal g -1 and 2.19 kcal g -1 , respectively, which are even higher than those of RDX and HMX.

  19. Junctionless Thin-Film Transistors Gated by an H₃PO₄-Incorporated Chitosan Proton Conductor.

    PubMed

    Liu, Huixuan; Xun, Damao

    2018-04-01

    We fabricated an H3PO4-incorporated chitosan proton conductor film that exhibited the electric double layer effect and showed a high specific capacitance of 4.42 μF/cm2. Transparent indium tin oxide thin-film transistors gated by H3PO4-incorporated chitosan films were fabricated by sputtering through a shadow mask. The operating voltage was as low as 1.2 V because of the high specific capacitance of the H3PO4-incorporated chitosan dielectrics. The junctionless transparent indium tin oxide thin film transistors exhibited good performance, including an estimated current on/off ratio and field-effect mobility of 1.2 × 106 and 6.63 cm2V-1s-1, respectively. These low-voltage thin-film electric-double-layer transistors gated by H3PO4-incorporated chitosan are promising for next generation battery-powered "see-through" portable sensors.

  20. Amperometric Glucose Biosensor Based on Effective Self-Assembly Technology for Preparation of Poly(allylamine hydrochloride)/Au Nanoparticles Multilayers.

    PubMed

    Ye, Yuhang; Xie, Hangqing; Shao, Xiaobao; Wei, Yuan; Liu, Yuhong; Zhao, Wenbo; Xia, Xinyi

    2016-03-01

    Novel nanomaterials and nanotechnology for use in bioassay applications represent a rapidly advancing field. This study developed a novel method to fabricate the glucose biosensor with good gold nanoparticles (AuNPs) fixed efficiency based on effective self-assembly technology for preparation of multilayers composed of poly(allylamine hydrochloride) (PAH) and AuNPs. The electrochemical properties of the biosensor based on (AuNPs/PAH)n/AuNPs/glucose oxide (GOD) with different multilayers were systematically investigated. Among the resulting glucose biosensors, electrochemical properties of the biosensor with three times self-assembly processes ((AuNPs/PAH)3/AuNPs/GOD) is best. The GOD biosensor exhibited a fast amperometric response (5 s) to glucose, a good linear current-time relation over a wide range of glucose concentrations from 0.05 to 162 mM, and a low detection limit of 0.029 mM. The GOD biosensor modified with (AuNPs/PAH)n layers will have essential significance and practical application in future owing to the simple method of fabrication and good performance.

  1. Extreme Pressure Synergistic Mechanism of Bismuth Naphthenate and Sulfurized Isobutene Additives

    NASA Astrophysics Data System (ADS)

    Xu, Xin; Hu, Jianqiang; Yang, Shizhao; Xie, Feng; Guo, Li

    A four-ball tester was used to evaluate the tribological performances of bismuth naphthenate (BiNap), sulfurized isobutene (VSB), and their combinations. The results show that the antiwear properties of BiNap and VSB are not very visible, but they possess good extreme pressure (EP) properties, particularly sulfur containing bismuth additives. Synergistic EP properties of BiNap with various sulfur-containing additives were investigated. The results indicate that BiNap exhibits good EP synergism with sulfur-containing additives. The surface analytical tools, such as X-ray photoelectron spectrometer (XPS) scanning electron microscope (SEM) and energy dispersive X-ray (EDX), were used to investigate the topography, composition contents, and depth profile of some typical elements on the rubbing surface. Smooth topography of wear scar further confirms that the additive showed good EP capacities, and XPS and EDX analyzes indicate that tribochemical mixed protective films composed of bismuth, bismuth oxides, sulfides, and sulfates are formed on the rubbing surface, which improves the tribological properties of lubricants. In particular, a large number of bismuth atoms and bismuth sulfides play an important role in improving the EP properties of oils.

  2. A Flemion-based actuator with ionic liquid as solvent

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Xu, Chunye; Taya, Minoru; Kuga, Yasuo

    2007-04-01

    A perfluorinated carboxylic acid membrane, i.e. Flemion, shows improved performance as actuator material compared with Nafion (perfluorinated sulfonic acid). Flemion has a higher ion exchange capacity and good mechanical strength. In particular, Flemion will deform with no back relaxation under applied electrical stimulus. However, with water as solvent, the operation of Flemion in air has serious problems, since water would evaporate quickly in air. Moreover, the electrochemical stability for use in water is around 1 V at room temperature. In previous work, investigations on Nafion with ionic liquid as solvents have been carried out by some researchers and good results have been obtained. In this work, we explore the use of highly stable ionic liquid instead of water as solvent in Flemion. Experimental results indicate that Flemion-based actuators with ionic liquid as solvent have improved stability as compared to the water samples. Although the forces exhibited by Flemion-based actuators with the use of ionic liquid decreased dramatically compared to water, these preliminary results suggest good potential for the use of Flemion with ionic liquid in future applications.

  3. Flemion-based actuator with ionic liquid as solvent

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Xu, Chunye; Taya, Minoru; Kuga, Yasuo

    2006-03-01

    A perfluorinated carboxylic acid membrane, i.e. Flemion, shows improved performance as actuator material compared with Nafion (perfluorinated sulfonic acide). Flemion has a higher ion exchange capacity and good mechanical strength. Especially, Flemion will deform with no back relaxation when applied electrical stimulus. However, with water as solvent, the operation of Flemion in air has serious problems. Since water would evaporate quickly in air. Moreover, the electrochemical stability for use in water is around 1V at room temperature. In previous work, investigations on Nafion with ionic liquid as solvents have been carried out and good results have been obtained. In this work, we explore the use of highly stable ionic liquid instead of water as solvent in Flemion. Experimental results indicate that Flemion based actuators with ionic liquid as solvent have improved stability as compared to the water samples. Although the forces exhibited by Flemion based actuators with the use of ionic liquid decreased dramatically as compared to water, these preliminary results suggest a good potential for use of Flemion with ionic liquid in some applications.

  4. Facile synthesis of Nb2O5 nanobelts assembled from nanorods and their applications in lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Liu, Xiaodi; Liu, Guangyin; Chen, Hao; Ma, Jianmin; Zhang, Ruixue

    2017-12-01

    Hierarchical 1D Nb2O5 nanobelts are successfully synthesized via a facile solvothermal method and following thermal treatment. The as-formed Nb2O5 nanobelts are characterized by XRD, FESEM, TEM, and BET, and the results indicate that they possess pseudohexagonal structure and are composed of ultranarrow nanorods with an average diameter of ca. 15 nm. When used as anodic materials for lithium ion batteries, the obtained Nb2O5 nanobelts can deliver initial discharge capacities of 209.3 mAh g-1 at the current density of 0.5 C. In addition, the Nb2O5 nanobelts exhibit a reversible capacity of 95.8 mAh g-1 after 200 cycles at relatively high current density of 5 C. The good electrochemical performance of the Nb2O5 nanobelts may be ascribed to their good monodispersity, high specific surface areas, and narrow rod-like building blocks. The Nb2O5 nanobelts can be developed as promising anodes for high-rate 2 V LIBs with good safety.

  5. Processing of Advanced Ceramics Which Have Potential for Use in Gas Turbine Aero Engines

    DTIC Science & Technology

    1989-02-01

    reaons . Details on the availability of these publications may be obtained from: Graphics Section, National Research Council Canada, National...have been produced by hot isostatic pressing (HIP’ing) have good potential to be used as hot section components in gas turbine aero engines. This...Alumina, for example, maintains good corrosion resistance, good stiffness, and good strength at high temperatures, but exhibits very poor thermal shock

  6. Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity.

    PubMed

    Li, Kai; Wang, Jianhua; He, Yaojia; Abdulrazaq, Miaad Adnan; Yan, Yunjun

    2018-06-19

    Various nanoflowers are synthesized as supports for different methods of enzyme immobilization; however, the activities of these immobilized enzymes are limited because of their confinement in the nanoflowers. In order to increase the performance of nanoflowers, in this study, different protein-phosphate hybrid nanostructures were successfully synthesized and further enhanced by carbon nanotubes (CNTs) under the same conditions. Only Cu 3 (PO 4 ) 2 complex nanostructures exhibited flower-like structures and showed excellent results after enhancement with CNTs in this framework. An esterification reaction between lauric acid and 1-dodecanol was used to test enzyme activity during immobilization, revealing that the Cu 3 (PO 4 ) 2 /CNT/protein complex exhibited 68-fold higher activity relative to free lipase and 51-fold higher than that of Cu 3 (PO 4 ) 2 /Burkholderia cepacia lipase hybrid nanoflowers in the absence of CNTs. All three hybrid nanostructures showed good performance and exhibited excellent reusability in resolution reactions between 1-phenylethanol and vinyl acetate. Additionally, the substrate enantiomeric excess (ee s ) reached 98% in only 10 min, and the corresponding Cu 3 (PO 4 ) 2 /CNT/protein complex could be recycled eight times without obvious loss of activity. This approach involving nanoflowers enhanced with CNTs will be highly beneficial for decreasing mass-transfer resistance and providing enhanced enzyme loading along with promising potential for industrial application. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Transportation Safety of Lithium Iron Phosphate Batteries - A Feasibility Study of Storing at Very Low States of Charge.

    PubMed

    Barai, Anup; Uddin, Kotub; Chevalier, Julie; Chouchelamane, Gael H; McGordon, Andrew; Low, John; Jennings, Paul

    2017-07-11

    In freight classification, lithium-ion batteries are classed as dangerous goods and are therefore subject to stringent regulations and guidelines for certification for safe transport. One such guideline is the requirement for batteries to be at a state of charge of 30%. Under such conditions, a significant amount of the battery's energy is stored; in the event of mismanagement, or indeed an airside incident, this energy can lead to ignition and a fire. In this work, we investigate the effect on the battery of removing 99.1% of the total stored energy. The performance of 8Ah C 6 /LiFePO 4 pouch cells were measured following periods of calendar ageing at low voltages, at and well below the manufacturer's recommended value. Battery degradation was monitored using impedance spectroscopy and capacity tests; the results show that the cells stored at 2.3 V exhibited no change in cell capacity after 90 days; resistance rise was negligible. Energy-dispersive X-ray spectroscopy results indicate that there was no significant copper dissolution. To test the safety of the batteries at low voltages, external short-circuit tests were performed on the cells. While the cells discharged to 2.3 V only exhibited a surface temperature rise of 6 °C, cells at higher voltages exhibited sparks, fumes and fire.

  8. Optical performance of multifocal soft contact lenses via a single-pass method.

    PubMed

    Bakaraju, Ravi C; Ehrmann, Klaus; Falk, Darrin; Ho, Arthur; Papas, Eric

    2012-08-01

    A physical model eye capable of carrying soft contact lenses (CLs) was used as a platform to evaluate optical performance of several commercial multifocals (MFCLs) with high- and low-add powers and a single-vision control. Optical performance was evaluated at three pupil sizes, six target vergences, and five CL-correcting positions using a spatially filtered monochromatic (632.8 nm) light source. The various target vergences were achieved by using negative trial lenses. A photosensor in the retinal plane recorded the image point-spread that enabled the computation of visual Strehl ratios. The centration of CLs was monitored by an additional integrated en face camera. Hydration of the correcting lens was maintained using a humidity chamber and repeated instillations of rewetting saline drops. All the MFCLs reduced performance for distance but considerably improved performance along the range of distance to near target vergences, relative to the single-vision CL. Performance was dependent on add power, design, pupil, and centration of the correcting CLs. Proclear (D) design produced good performance for intermediate vision, whereas Proclear (N) design performed well at near vision (p < 0.05). AirOptix design exhibited good performance for distance and intermediate vision. PureVision design showed improved performance across the test vergences, but only for pupils ≥4 mm in diameter. Performance of Acuvue bifocal was comparable with other MFCLs, but only for pupils >4 mm in diameter. Acuvue Oasys bifocal produced performance comparable with single-vision CL for most vergences. Direct measurement of single-pass images at the retinal plane of a physical model eye used in conjunction with various MFCLs is demonstrated. This method may have utility in evaluating the relative effectiveness of commercial and prototype designs.

  9. Hollow Few-Layer Graphene-Based Structures from Parafilm Waste for Flexible Transparent Supercapacitors and Oil Spill Cleanup.

    PubMed

    Nguyen, Duc Dung; Hsieh, Ping-Yen; Tsai, Meng-Ting; Lee, Chi-Young; Tai, Nyan-Hwa; To, Bao Dong; Vu, Duc Tu; Hsu, Chia Chen

    2017-11-22

    We report a versatile strategy to exploit parafilm waste as a carbon precursor for fabrication of freestanding, hollow few-layer graphene fiber mesh (HFGM) structures without use of any gaseous carriers/promoters via an annealing route. The freestanding HFGMs possess good mechanical flexibility, tailorable transparency, and high electrical conductivity, consequently qualifying them as promising electrochemical electrodes. Because of the hollow spaces, electrolyte ions can easily access into and contact with interior surfaces of the graphene fibers, accordingly increasing electrode/electrolyte interfacial area. As expected, solid-state supercapacitors based on the HFGMs exhibit a considerable enhancement in specific capacitance (20-30 fold) as compared to those employing chemical vapor deposition compact graphene films. Moreover, the parafilm waste is found to be beneficial for one-step fabrication of nanocarbon/few-layer graphene composite meshes with superior electrochemical performance, outstanding superhydrophobic property, good self-cleaning ability, and great promise for oil spill cleanup.

  10. Roll-to-Roll Manufacturing of Robust Superhydrophobic Coating on Metallic Engineering Materials.

    PubMed

    Dong, Shuliang; Wang, Zhenlong; Wang, Yukui; Bai, Xuelin; Fu, Yong Qing; Guo, Bin; Tan, Chaoliang; Zhang, Jia; Hu, PingAn

    2018-01-17

    Creating a robust superhydrophobic surface on the conventional engineering materials at mass production is of great importance for a self-cleaning, anti-icing, nonwetting surface and low flow resistance in industrial applications. Herein, we report a roll-to-roll strategy to create durable and robust superhydrophobic surfaces with designed micro-/nanoscale hierarchical structures on many conventional engineering materials by combining electrical discharge machining and coating of carbon nanoparticles, followed by oil penetration and drying. The treated surface shows good superhydrophobic properties with a static water contact angle of 170 ± 2° and slide angle of 3 ± 1°. The treated surface also exhibits good resilience and maintains the performance after being tested in various harsh conditions, including water flushing for several days, sand abrasion, scratching with sandpapers, and corrosive solution. Significantly, the superhydrophobic surfaces also show a high efficiency of self-cleaning properties even after oil contamination during applications.

  11. Monolithic integration of GaN-based light-emitting diodes and metal-oxide-semiconductor field-effect transistors.

    PubMed

    Lee, Ya-Ju; Yang, Zu-Po; Chen, Pin-Guang; Hsieh, Yung-An; Yao, Yung-Chi; Liao, Ming-Han; Lee, Min-Hung; Wang, Mei-Tan; Hwang, Jung-Min

    2014-10-20

    In this study, we report a novel monolithically integrated GaN-based light-emitting diode (LED) with metal-oxide-semiconductor field-effect transistor (MOSFET). Without additionally introducing complicated epitaxial structures for transistors, the MOSFET is directly fabricated on the exposed n-type GaN layer of the LED after dry etching, and serially connected to the LED through standard semiconductor-manufacturing technologies. Such monolithically integrated LED/MOSFET device is able to circumvent undesirable issues that might be faced by other kinds of integration schemes by growing a transistor on an LED or vice versa. For the performances of resulting device, our monolithically integrated LED/MOSFET device exhibits good characteristics in the modulation of gate voltage and good capability of driving injected current, which are essential for the important applications such as smart lighting, interconnection, and optical communication.

  12. Rapid sucrose monitoring in green coffee samples using multienzymatic biosensor.

    PubMed

    Stredansky, Miroslav; Redivo, Luca; Magdolen, Peter; Stredansky, Adam; Navarini, Luciano

    2018-07-15

    Amperometric biosensor utilizing FAD-dependent glucose dehydrogenase (FAD-GDH) for a specific sucrose monitoring in green coffee is described. FAD-GDH was co-immobilized with invertase and mutarotase on a thin-layer gold planar electrode using chitosan. The biosensor showed a wide linearity (from 10 to 1200 μM), low detection limit (8.4 μM), fast response time (50 s), and appeared to be O2 independent. In addition the biosensors exhibited a good operational (3 days) and storage (1 year) stability. Finally, the results achieved from the biosensor measurements of sucrose in 17 samples of green coffee (Coffea arabica, C. canephora and C. liberica) were compared with those obtained by the standard HPLC method. The good correlation among results of real samples, satisfactory analytical performance and simple use of the presented biosensor make it suitable for application in coffee industry. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Dapson in heterocyclic chemistry, part VIII: synthesis, molecular docking and anticancer activity of some novel sulfonylbiscompounds carrying biologically active 1,3-dihydropyridine, chromene and chromenopyridine moieties.

    PubMed

    Al-Said, Mansour S; Ghorab, Mostafa M; Nissan, Yassin M

    2012-07-02

    Several new sulfonebiscompounds having a biologically active 1,2-dihydropyridine-2-one 3-19, acrylamide 20, chromene 21, 22 and chromenopyridine 23, 24 moieties were synthesized and evaluated as potential anticancer agents. The structures of the products were confirmed via elemental analyses and spectral data. The screening tests showed that many of the biscompounds obtained exhibited good anticancer activity against human breast cell line (MCF7) comparable to doxorubicin which was used as reference drug. Compounds 11, 17 and 24 showed IC50 values 35.40 μM, 29.86 μM and 30.99 μM, respectively. In order to elucidate the mechanism of action of the synthesized compounds as anticancer agents, docking on the active site of farnesyltransferase and arginine methyltransferase was also performed and good results were obtained.

  14. A dual-responsive colorimetric and fluorescent chemosensor based on diketopyrrolopyrrole derivative for naked-eye detection of Fe3 + and its practical application

    NASA Astrophysics Data System (ADS)

    Zhang, Shanshan; Sun, Tao; Xiao, Dejun; Yuan, Fang; Li, Tianduo; Wang, Enhua; Liu, Haixia; Niu, Qingfen

    2018-01-01

    A novel dual-responsive colorimetric and fluorescent chemosensor L based on diketopyrrolopyrrole derivative for Fe3 + detection was designed and synthesized. In presence of Fe3 +, sensor L displayed strong colorimetric response as amaranth to rose pink and significant fluorescence enhancement and chromogenic change, which served as a naked-eye indicator by an obvious color change from purple to red. The binding constant for L-Fe3 + complex was found as 2.4 × 104 with the lower detection limit of 14.3 nM. The sensing mechanism was investigated in detail by fluorescence measurements, IR and 1H NMR spectra. Sensor L for Fe3 + detection also exhibited high anti-interference performance, good reversibility, wide pH response range and instantaneous response time. Furthermore, the sensor L has been used to quantify Fe3 + ions in practical water samples with good recovery.

  15. Natural sunlight irradiated flower-like CuS synthesized from DMF solvothermal treatment

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Wang, Zihao; Zhou, Lei; Liu, Nianqi; Wang, Hongxing

    2016-09-01

    Three-dimensional CuS hierarchical crystals with high catalytic activity had been successfully fabricated using a facile solvothermal process. The CuS microparticles showed different flower-like morphology and good dispersion by optimizing reaction conditions. It was found that using N,N-dimethylformamide (DMF) as the solvent reagent in the proper temperature conditions was favorable for the growth of hierarchically structured CuS. The hexagonal flower-like CuS synthesized at 170°C for 60 min displayed broad-spectrum photocatalytic properties under ultraviolet (UV) and visible irradiation. The as-prepared CuS crystals exhibited good performance to decolorize methylene blue (MB) solution under visible light irradiation. The total organic carbon (TOC) removal of rhodamine B (RhB) solution was nearly 60% after 5 h of the natural sunlight irradiation, and the property was stable after testing over four recycles, demonstrating a potential application in waster water treatment.

  16. Direct growth of cerium oxide nanorods on diverse substrates for superhydrophobicity and corrosion resistance

    NASA Astrophysics Data System (ADS)

    Cho, Young Jun; Jang, Hanmin; Lee, Kwan-Soo; Kim, Dong Rip

    2015-06-01

    Superhydrophobic surfaces with anti-corrosion properties have attracted great interest in many industrial fields, particularly to enhance the thermal performance of offshore applications such as heat exchangers, pipelines, power plants, and platform structures. Nanostructures with hydrophobic materials have been widely utilized to realize superhydrophobicity of surfaces, and cerium oxide has been highlighted due to its good corrosion resistive and intrinsically hydrophobic properties. However, few studies of direct growth of cerium oxide nanostructures on diverse substrates have been reported. Herein we report a facile hydrothermal method to directly grow cerium oxide nanorods on diverse substrates, such as aluminum alloy, stainless steel, titanium, and silicon. Diverse substrates with cerium oxide nanorods exhibited superhydrophobicity with no hydrophobic modifiers on their surfaces, and showed good corrosion resistive properties in corrosive medium. We believe our method could pave the way for realization of scalable and sustainable corrosion resistive superhydrophobic surfaces in many industrial fields.

  17. Preparation of Advanced CuO Nanowires/Functionalized Graphene Composite Anode Material for Lithium Ion Batteries.

    PubMed

    Zhang, Jin; Wang, Beibei; Zhou, Jiachen; Xia, Ruoyu; Chu, Yingli; Huang, Jia

    2017-01-17

    The copper oxide (CuO) nanowires/functionalized graphene (f-graphene) composite material was successfully composed by a one-pot synthesis method. The f-graphene synthesized through the Birch reduction chemistry method was modified with functional group "-(CH₂)₅COOH", and the CuO nanowires (NWs) were well dispersed in the f-graphene sheets. When used as anode materials in lithium-ion batteries, the composite exhibited good cyclic stability and decent specific capacity of 677 mA·h·g -1 after 50 cycles. CuO NWs can enhance the lithium-ion storage of the composites while the f-graphene effectively resists the volume expansion of the CuO NWs during the galvanostatic charge/discharge cyclic process, and provide a conductive paths for charge transportation. The good electrochemical performance of the synthesized CuO/f-graphene composite suggests great potential of the composite materials for lithium-ion batteries anodes.

  18. Three hundred and eight nanometer excimer light therapy for alopecia universalis that is resistant to other treatments: A clinical study of 11 patients.

    PubMed

    Arakawa, Yukiyasu; Nomiyama, Tomoko; Katoh, Norito

    2016-12-01

    Three hundred and eight nanometer excimer light therapy has recently been reported to be effective against patchy alopecia areata (AA) in several clinical studies. However, these studies only included a few patients with severe forms of AA, and all of them exhibited poor outcomes. We further investigated the use of excimer light as a therapeutic option for cases of alopecia universalis (AU) that are resistant to other treatments. Eleven treatment-resistant AU patients were treated with a 308-nm excimer light at 2-week intervals for more than 16 sessions. Four patients achieved good responses and two patients exhibited poor responses. Three patients had Japanese skin type 1 and all of them achieved good responses. The radiation dose was increased until the patients exhibited marked erythema. The patients with Japanese skin type 3 who achieved good responses exhibited strong pigmentation at the irradiated sites. In conclusion, 308-nm excimer light therapy has significant effects on some AU patients who are resistant to other treatments and may be an alternative therapeutic option for AU. During the treatment of AU, high doses of radiation should be administrated until a strong inflammatory skin reaction is seen. © 2016 Japanese Dermatological Association.

  19. Validation of deformable image registration algorithms on CT images of ex vivo porcine bladders with fiducial markers.

    PubMed

    Wognum, S; Heethuis, S E; Rosario, T; Hoogeman, M S; Bel, A

    2014-07-01

    The spatial accuracy of deformable image registration (DIR) is important in the implementation of image guided adaptive radiotherapy techniques for cancer in the pelvic region. Validation of algorithms is best performed on phantoms with fiducial markers undergoing controlled large deformations. Excised porcine bladders, exhibiting similar filling and voiding behavior as human bladders, provide such an environment. The aim of this study was to determine the spatial accuracy of different DIR algorithms on CT images of ex vivo porcine bladders with radiopaque fiducial markers applied to the outer surface, for a range of bladder volumes, using various accuracy metrics. Five excised porcine bladders with a grid of 30-40 radiopaque fiducial markers attached to the outer wall were suspended inside a water-filled phantom. The bladder was filled with a controlled amount of water with added contrast medium for a range of filling volumes (100-400 ml in steps of 50 ml) using a luer lock syringe, and CT scans were acquired at each filling volume. DIR was performed for each data set, with the 100 ml bladder as the reference image. Six intensity-based algorithms (optical flow or demons-based) implemented in theMATLAB platform DIRART, a b-spline algorithm implemented in the commercial software package VelocityAI, and a structure-based algorithm (Symmetric Thin Plate Spline Robust Point Matching) were validated, using adequate parameter settings according to values previously published. The resulting deformation vector field from each registration was applied to the contoured bladder structures and to the marker coordinates for spatial error calculation. The quality of the algorithms was assessed by comparing the different error metrics across the different algorithms, and by comparing the effect of deformation magnitude (bladder volume difference) per algorithm, using the Independent Samples Kruskal-Wallis test. The authors found good structure accuracy without dependency on bladder volume difference for all but one algorithm, and with the best result for the structure-based algorithm. Spatial accuracy as assessed from marker errors was disappointing for all algorithms, especially for large volume differences, implying that the deformations described by the registration did not represent anatomically correct deformations. The structure-based algorithm performed the best in terms of marker error for the large volume difference (100-400 ml). In general, for the small volume difference (100-150 ml) the algorithms performed relatively similarly. The structure-based algorithm exhibited the best balance in performance between small and large volume differences, and among the intensity-based algorithms, the algorithm implemented in VelocityAI exhibited the best balance. Validation of multiple DIR algorithms on a novel physiological bladder phantom revealed that the structure accuracy was good for most algorithms, but that the spatial accuracy as assessed from markers was low for all algorithms, especially for large deformations. Hence, many of the available algorithms exhibit sufficient accuracy for contour propagation purposes, but possibly not for accurate dose accumulation.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding, Ling; Zhong, Jie-Cen; Qiu, Xing-Tai

    Two series of lanthanide-carboxylates, [Ln(2,2′-dtba)(2,2′-Hdtba)(EtOH)]{sub n} (I:Ln=Eu(1a), Dy(1b)) and [Ln(2,2′-dtba)(2,2′-Hdtba)(4,4′-bpy){sub 0.5}]{sub n} (II:Ln=Eu(2a), Dy(2b), Tb(2c) 2,2′-H{sub 2}dtba=2,2′-dithiodibenzoic acid, 4,4′-bpy=4,4′-bipyridine) have been synthesized under hydrothermal conditions. Interestingly, the H{sub 2}dtba organic ligand was generated by in situ S–S reaction of 2-mercaptobenzoic acid. Compounds I and II possess different 2D layered structures based on similar 1D [Ln(2,2′-dtba)]{sup +} chains. Photoluminescence studies reveal that compounds I and II exhibit strong lanthanide characteristic emission bands. Remarkably, Compounds 1b and 2a both exhibit good photocatalytic activity for degradation of Rhodamine-B (Rh-B) under the simulated sunlight irradiation. - Graphical abstract: Two series of lanthanide-carboxylates have beenmore » in situ synthesized under hydrothermal conditions. The lanthanide-carboxylates exhibit strong lanthanide characteristic emission bands and good photocatalytic activity for degradation of Rhodamine-B. - Highlights: • 2D layered lanthanide-carboxylates with 2,2′-dithiodibenzoic acid. • In situ S–S reaction of 2-mercaptobenzoic acid under hydrothermal condition. • The Emission spectra of I and II exhibit the characteristic transition of lanthanide ions. • Compounds 1b and 2a exhibit good photocatalytic activity for degradation of Rhodamine-B.« less

  1. Analysis of anthocyanins in commercial fruit juices by using nano-liquid chromatography-electrospray-mass spectrometry and high-performance liquid chromatography with UV-vis detector.

    PubMed

    Fanali, Chiara; Dugo, Laura; D'Orazio, Giovanni; Lirangi, Melania; Dachà, Marina; Dugo, Paola; Mondello, Luigi

    2011-01-01

    Nano-LC and conventional HPLC techniques were applied for the analysis of anthocyanins present in commercial fruit juices using a capillary column of 100 μm id and a 2.1 mm id narrow-bore C(18) column. Analytes were detected by UV-Vis at 518 nm and ESI-ion trap MS with HPLC and nano-LC, respectively. Commercial blueberry juice (14 anthocyanins detected) was used to optimize chromatographic separation of analytes and other analysis parameters. Qualitative identification of anthocyanins was performed by comparing the recorded mass spectral data with those of published papers. The use of the same mobile phase composition in both techniques revealed that the miniaturized method exhibited shorter analysis time and higher sensitivity than narrow-bore chromatography. Good intra-day and day-to-day precision of retention time was obtained in both methods with values of RSD less than 3.4 and 0.8% for nano-LC and HPLC, respectively. Quantitative analysis was performed by external standard curve calibration of cyanidin-3-O-glucoside standard. Calibration curves were linear in the concentration ranges studied, 0.1-50 and 6-50 μg/mL for HPLC-UV/Vis and nano-LC-MS, respectively. LOD and LOQ values were good for both methods. In addition to commercial blueberry juice, qualitative and quantitative analysis of other juices (e.g. raspberry, sweet cherry and pomegranate) was performed. The optimized nano-LC-MS method allowed an easy and selective identification and quantification of anthocyanins in commercial fruit juices; it offered good results, shorter analysis time and reduced mobile phase volume with respect to narrow-bore HPLC. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. 2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors.

    PubMed

    Qu, Qunting; Yang, Shubin; Feng, Xinliang

    2011-12-08

    2D sandwich-like sheets of iron oxide grown on graphene as high energy anode material for supercapacitors are prepared from the direct growth of FeOOH nanorods on the surface of graphene and the subsequent electrochemical transformation of FeOOH to Fe(3)O(4). The Fe(3)O(4) @RGO nanocomposites exhibit superior capacitance (326 F g(-1)), high energy density (85 Wh kg(-1)), large power, and good cycling performance in 1 mol L(-1) LiOH solution. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Mood states modulate complexity in heartbeat dynamics: A multiscale entropy analysis

    NASA Astrophysics Data System (ADS)

    Valenza, G.; Nardelli, M.; Bertschy, G.; Lanata, A.; Scilingo, E. P.

    2014-07-01

    This paper demonstrates that heartbeat complex dynamics is modulated by different pathological mental states. Multiscale entropy analysis was performed on R-R interval series gathered from the electrocardiogram of eight bipolar patients who exhibited mood states among depression, hypomania, and euthymia, i.e., good affective balance. Three different methodologies for the choice of the sample entropy radius value were also compared. We show that the complexity level can be used as a marker of mental states being able to discriminate among the three pathological mood states, suggesting to use heartbeat complexity as a more objective clinical biomarker for mental disorders.

  4. A POSS based hydrogel with mechanical robustness, cohesiveness and a rapid self-healing ability by electrostatic interaction.

    PubMed

    Pu, Wanfen; Jiang, Feng; Chen, Pei; Wei, Bing

    2017-08-30

    A molecularly dispersed nano-material called POSS-NH 2 -AA was synthesized to construct a hybrid hydrogel with a rapid self-healing ability (stress 8 kPa) and excellent mechanical performance (a strain of 4683% and a stress of 37.8 kPa). The hydrogel also exhibits good cohesiveness to materials, such as plastics, glass and iron. The backbone of the POSS makes the hydrogel much stronger than the hydrogel without POSS, which accounts for the improvement in its properties. This process is facile and useful to construct mechanically strong and self-healable materials.

  5. Self-assembled LiFePO4 nanowires with high rate capability for Li-ion batteries.

    PubMed

    Peng, Lele; Zhao, Yu; Ding, Yu; Yu, Guihua

    2014-08-28

    Controlling the dimensions in the nanometer scale of olivine-type LiFePO4 has been regarded as one of the most effective strategies to improve its electrochemical performance for Li-ion batteries. In this communication, we demonstrate a novel LiFePO4 nanoarchitecture, which is composed of self-assembled single-crystalline nanowires and exhibits good rate capability with a reversible capacity of ∼110 mA h g(-1) at a current rate of 30 C, and a stable capacity retention of ∼86% after 1000 cycles at a current rate of 10 C.

  6. Porous Cobalt Phosphide Polyhedrons with Iron Doping as an Efficient Bifunctional Electrocatalyst.

    PubMed

    Li, Feng; Bu, Yunfei; Lv, Zijian; Mahmood, Javeed; Han, Gao-Feng; Ahmad, Ishfaq; Kim, Guntae; Zhong, Qin; Baek, Jong-Beom

    2017-10-01

    Iron (Fe)-doped porous cobalt phosphide polyhedrons are designed and synthesized as an efficient bifunctional electrocatalyst for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). The synthesis strategy involves one-step route for doping foreign metallic element and forming porous cobalt phosphide polyhedrons. With varying doping levels of Fe, the optimized Fe-doped porous cobalt phosphide polyhedron exhibits significantly enhanced HER and OER performances, including low onset overpotentials, large current densities, as well as small Tafel slopes and good electrochemical stability during HER and OER. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. High-k 3D-barium titanate foam/phenolphthalein poly(ether sulfone)/cyanate ester composites with frequency-stable dielectric properties and extremely low dielectric loss under reduced concentration of ceramics

    NASA Astrophysics Data System (ADS)

    Zheng, Longhui; Yuan, Li; Guan, Qingbao; Liang, Guozheng; Gu, Aijuan

    2018-01-01

    Higher dielectric constant, lower dielectric loss and better frequency stability have been the developing trends for high dielectric constant (high-k) materials. Herein, new composites have been developed through building unique structure by using hyperbranched polysiloxane modified 3D-barium titanate foam (BTF) (BTF@HSi) as the functional fillers and phenolphthalein poly(ether sulfone) (cPES)/cyanate ester (CE) blend as the resin matrix. For BTF@HSi/cPES/CE composite with 34.1 vol% BTF, its dielectric constant at 100 Hz is as high as 162 and dielectric loss is only 0.007; moreover, the dielectric properties of BTF@HSi/cPES/CE composites exhibit excellent frequency stability. To reveal the mechanism behind these attractive performances of BTF@HSi/cPES/CE composites, three kinds of composites (BTF/CE, BTF/cPES/CE, BTF@HSi/CE) were prepared, their structure and integrated performances were intensively investigated and compared with those of BTF@HSi/cPES/CE composites. Results show that the surface modification of BTF is good for preparing composites with improved thermal stability; while introducing flexible cPES to CE is beneficial to fabricate composites with good quality through effectively blocking cracks caused by the stress concentration, and then endowing the composites with good dielectric properties at reduced concentration of ceramics.

  8. Design of Amorphous Manganese Oxide@Multiwalled Carbon Nanotube Fiber for Robust Solid-State Supercapacitor.

    PubMed

    Shi, Peipei; Li, Li; Hua, Li; Qian, Qianqian; Wang, Pengfei; Zhou, Jinyuan; Sun, Gengzhi; Huang, Wei

    2017-01-24

    Solid-state fiber-based supercapacitors have been considered promising energy storage devices for wearable electronics due to their lightweight and amenability to be woven into textiles. Efforts have been made to fabricate a high performance fiber electrode by depositing pseudocapacitive materials on the outer surface of carbonaceous fiber, for example, crystalline manganese oxide/multiwalled carbon nanotubes (MnO 2 /MWCNTs). However, a key challenge remaining is to achieve high specific capacitance and energy density without compromising the high rate capability and cycling stability. In addition, amorphous MnO 2 is actually preferred due to its disordered structure and has been proven to exhibit superior electrochemical performance over the crystalline one. Herein, by incorporating amorphous MnO 2 onto a well-aligned MWCNT sheet followed by twisting, we design an amorphous MnO 2 @MWCNT fiber, in which amorphous MnO 2 nanoparticles are distributed in MWCNT fiber uniformly. The proposed structure gives the amorphous MnO 2 @MWCNT fiber good mechanical reliability, high electrical conductivity, and fast ion-diffusion. Solid-state supercapacitor based on amorphous MnO 2 @MWCNT fibers exhibits improved energy density, superior rate capability, exceptional cycling stability, and excellent flexibility. This study provides a strategy to design a high performance fiber electrode with microstructure control for wearable energy storage devices.

  9. Novel and high-performance asymmetric micro-supercapacitors based on graphene quantum dots and polyaniline nanofibers.

    PubMed

    Liu, Wenwen; Yan, Xingbin; Chen, Jiangtao; Feng, Yaqiang; Xue, Qunji

    2013-07-07

    In comparison with graphene sheets, graphene quantum dots (GQDs) exhibit novel chemical/physical properties including nanometer-size, abundant edge defects, good electrical conductivity, high mobility, chemical inertia, stable photoluminescence and better surface grafting, making them promising for fabricating various novel devices. In the present work, an asymmetric micro-supercapacitor, using GQDs as negative active material and polyaniline (PANI) nanofibers as positive active material, is built for the first time by a simple and controllable two-step electro-deposition on interdigital finger gold electrodes. Electrochemical measurements reveal that the as-made GQDs//PANI asymmetric micro-supercapacitor has a more excellent rate capability (up to 1000 V s(-1)) than previously reported electrode materials, as well as faster power response capability (with a very short relaxation time constant of 115.9 μs) and better cycling stability after 1500 cycles in aqueous electrolyte. On this basis, an all-solid-state GQDs//PANI asymmetric micro-supercapacitor is fabricated using H3PO4-polyvinyl alcohol gel as electrolyte, which also exhibits desirable electrochemical capacitive performances. These encouraging results presented here may open up new insight into GQDs with highly promising applications in high-performance energy-storage devices, and further expand the potential applications of GQDs beyond the energy-oriented application of GQDs discussed above.

  10. Layer-by-layer self-assembled graphene oxide/silica microsphere composites as stationary phase for high performance liquid chromatography.

    PubMed

    Liang, Xiaojing; Liu, Shujuan; Song, Xinwang; Zhu, Yangwen; Jiang, Shengxiang

    2012-11-21

    Graphene oxide (GO) has been layer-by-layer assembled onto silica microspheres to form a GO/SiO(2) composite stationary phase. All the characterizations of GO/SiO(2) by elemental analysis, Raman spectroscopy and Fourier transformed infrared spectrometry confirmed that with the increase of the assembled layer, GO gradually increases on the silica surface. The chromatographic properties of bare SiO(2) and GO/SiO(2) with different GO assembled layers show that the amount of GO plays an important role in the separation of analytes. Only the appropriate amount of GO on SiO(2) can perform a good chromatographic separation. The comparison between chromatographic performances of bare SiO(2) column, GO/SiO(2)-2 column and C18 commercial column clearly show that GO/SiO(2)-2 and C18 columns obtained a better separation; GO/SiO(2)-2 exhibits a large π-electron system and C18 exhibits hydrophobicity. The eluting order, peak width and resolution of analyte on GO/SiO(2)-2 column was highly dependent on the size of its π-electron system, while on the C18 column the decisive factor is its hydrophobic property.

  11. Co3O4 nanorod-supported Pt with enhanced performance for catalytic HCHO oxidation at room temperature

    NASA Astrophysics Data System (ADS)

    Yan, Zhaoxiong; Xu, Zhihua; Cheng, Bei; Jiang, Chuanjia

    2017-05-01

    Formaldehyde (HCHO) removal from air at room (ambient) temperature by effective catalysts is of significance for improving indoor air quality, and catalysts with high efficiency and good recyclability are highly desirable. In this study, platinum (Pt) supported on nanorod-shaped Co3O4 (Pt/Co3O4) was prepared by calcination of microwave-assisted synthesized Co3O4 precursor followed by NaBH4-reduction of Pt precursor. The as-prepared Co3O4 exhibited a morphology of nanorods with lengths of 400-700 nm and diameters of approximately 40-50 nm, which were self-assembled by nanoparticles. The Pt/Co3O4 catalyst exhibited a superior catalytic performance for HCHO oxidation at room temperature compared to Pt supported on commercial Co3O4 (Pt/Co3O4-c) and Pt supported on commercial TiO2 (Pt/TiO2), which is mainly due to the high oxygen mobility resulting from its distinct nanorod morphology, strong metal-support interaction between Pt and Co3O4, and the intrinsic redox nature of the Co3O4 support. This study provides new insights into the fabrication of high-performance catalysts for indoor air purification.

  12. Feasibility of UltraFast Doppler in Post-operative Evaluation of Hepatic Artery in Recipients following Liver Transplantation.

    PubMed

    Kim, Se-Young; Kim, Kyoung Won; Choi, Sang Hyun; Kwon, Jae Hyun; Song, Gi-Won; Kwon, Heon-Ju; Yun, Young Ju; Lee, Jeongjin; Lee, Sung-Gyu

    2017-11-01

    To determine the feasibility of using UltraFast Doppler in post-operative evaluation of the hepatic artery (HA) after liver transplantation (LT), we evaluated 283 simultaneous conventional and UltraFast Doppler sessions in 126 recipients over a 2-mo period after LT, using an Aixplorer scanner The Doppler indexes of the HA (peak systolic velocity [PSV], end-diastolic velocity [EDV], resistive index [RI] and systolic acceleration time [SAT]) by retrospective analysis of retrieved waves from UltraFast Doppler clips were compared with those obtained by conventional spectral Doppler. Correlation, performance in diagnosing the pathologic wave, examination time and reproducibility were evaluated. The PSV, EDV, RI and SAT of spectral and UltraFast Doppler measurements exhibited excellent correlation with favorable diagnostic performance. During the bedside examination, the mean time spent for UltraFast clip storing was significantly shorter than that for conventional Doppler US measurements. Both conventional and UltraFast Doppler exhibited good to excellent inter-analysis consistency. In conclusion, compared with conventional spectral Doppler, UltraFast Doppler values correlated excellently and yielded acceptable pathologic wave diagnostic performance with reduced examination time at the bedside and excellent reproducibility. Copyright © 2017 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  13. Fully Printed Flexible and Stretchable Electronics

    NASA Astrophysics Data System (ADS)

    Zhang, Suoming

    Through this thesis proposal, the author has demonstrated series of flexible or stretchable sensors including strain gauge, pressure sensors, display arrays, thin film transistors and photodetectors fabricated by a direct printing process. By adopting the novel serpentine configuration with conventional non-stretchable materials silver nanoparticles, the fully printed stretchable devices are successfully fabricated on elastomeric substrate with the demonstration of stretchable conductors that can maintain the electrical properties under strain and the strain gauge, which could be used to measure the strain in desired locations and also to monitor individual person's finger motion. And by investigating the intrinsic stretchable materials silver nanowires (AgNWs) with the conventional configuration, the fully printed stretchable conductors are achieved on various substrates including Si, glass, Polyimide, Polydimethylsiloxane (PDMS) and Very High Bond (VHB) tape with the illustration of the capacitive pressure sensor and stretchable electroluminescent displays. In addition, intrinsically stretchable thin-film transistors (TFTs) and integrated logic circuits are directly printed on elastomeric PDMS substrates. The printed devices utilize carbon nanotubes and a type of hybrid gate dielectric comprising PDMS and barium titanate (BaTiO3) nanoparticles. The BaTiO3/PDMS composite simultaneously provides high dielectric constant, superior stretchability, low leakage, as well as good printability and compatibility with the elastomeric substrate. Both TFTs and logic circuits can be stretched beyond 50% strain along either channel length or channel width directions for thousands of cycles while showing no significant degradation in electrical performance. Finally, by applying the SWNTs as the channel layer of the thin film transistor, we successfully fabricate the fully printed flexible photodetector which exhibits good electrical characteristics and the transistors exhibit good reliability under bending conditions owing to the ultrathin polyimide substrate as well as the superior mechanical flexibility of the gate dielectric and carbon nanotube network. Furthermore, we have demonstrated that by using two types of SWCNT samples with different optical absorption characteristics, the photoresponse exhibits unique wavelength selectivity, as manifested by the good correlation between the responsive wavelengths of the devices with the absorption peaks of the corresponding carbon nanotubes. All the proposed materials above together with the unique direct printing process may offer an entry into more sophisticated flexible or stretchable electronic systems with monolithically integrated sensors, actuators, and displays for real life applications.

  14. Novel Nanofiber-based Membrane Separators for Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Yanilmaz, Meltem

    Lithium-ion batteries have been widely used in electronic devices including mobile phones, laptop computers, and cameras due to their high specific energy, high energy density, long cycling lifetime, and low self-discharge rate. Nowadays, lithium-ion batteries are finding new applications in electric/hybrid vehicles and energy storage for smart grids. To be used in these new applications, novel battery components are needed so that lithiumion batteries with higher cell performance, better safety, and lower cost can be developed. A separator is an important component to obtain safe batteries and its primary function is to prevent electronic contact between electrodes while regulating cell kinetics and ionic flow. Currently, microporous membranes are the most commonly used separator type and they have good mechanical properties and chemical stability. However, their wettability and thermal stabilities are not sufficient for applications that require high operating temperature and high performance. Due to the superior properties such as large specific surface area, small pore size and high porosity, electrospun nanofiber membranes can be good separator candidate for highperformance lithium-ion batteries. In this work, we focus our research on fabricating nanofiber-based membranes to design new high-performance separators with good thermal stability, as well as superior electrochemical performance compared to microporous polyolefin membranes. To combine the good mechanical strength of PP nonwovens with the excellent electrochemical properties of SiO2/polyvinylidene fluoride (PVDF) composite nanofibers, SiO 2/PVDF composite nanofiber-coated PP nonwoven membranes were prepared. It was found that the addition of SiO2 nanoparticles played an important role in improving the overall performance of these nanofiber-coated nonwoven membranes. Although ceramic/polymer composites can be prepared by encapsulating ceramic particles directly into polymer nanofibers, the performance of the resultant composite membranes is restricted because these nanoparticles are not exposed to liquid electrolytes and have limited effect on improving the cell performance. Hence, we introduced new nanoparticle-on-nanofiber hybrid membrane separators by combining electrospraying with electrospinning techniques. Electrochemical properties were enhanced due to the increased surface area caused by the unique hybrid structure of SiO2 nanoparticles and PVDF nanofibers. To design a high-performance separator with enhanced mechanical properties and good thermal stability, electrospun SiO2/nylon 6,6 nanofiber membranes were fabricated. It was found that SiO2/nylon 6,6 nanofiber membranes had superior thermal stability and mechanical strength. Electrospinning has serious drawbacks such as low spinning rate and high production cost. Centrifugal spinning is a fast, cost-effective and safe alternative to the electrospinning. SiO2/polyacrylonitrile (PAN) membranes were produced by using centrifugal spinning. Compared with commercial microporous polyolefin membranes, SiO2/PAN membranes had larger liquid electrolyte uptake, higher electrochemical oxidation limit, and lower interfacial resistance with lithium. SiO2/PAN membrane separators were assembled into lithium/lithium iron phosphate cells and these cells exhibited good cycling and C-rate performance.

  15. Use of arginine-glycine-aspartic acid adhesion peptides coupled with a new collagen scaffold to engineer a myocardium-like tissue graft.

    PubMed

    Schussler, O; Coirault, C; Louis-Tisserand, M; Al-Chare, W; Oliviero, P; Menard, C; Michelot, R; Bochet, P; Salomon, D R; Chachques, J C; Carpentier, A; Lecarpentier, Y

    2009-03-01

    Cardiac tissue engineering might be useful in treatment of diseased myocardium or cardiac malformations. The creation of functional, biocompatible contractile tissues, however, remains challenging. We hypothesized that coupling of arginine-glycine-aspartic acid-serine (RGD+) adhesion peptides would improve cardiomyocyte viability and differentiation and contractile performance of collagen-cell scaffolds. Clinically approved collagen scaffolds were functionalized with RGD+ cells and seeded with cardiomyocytes. Contractile performance, cardiomyocyte viability and differentiation were analyzed at days 1 and 8 and/or after culture for 1 month. The method used for the RGD+ cell-collagen scaffold coupling enabled the following features: high coupling yields and complete washout of excess reagent and by-products with no need for chromatography; spectroscopic quantification of RGD+ coupling; a spacer arm of 36 A, a length reported as optimal for RGD+-peptide presentation and favorable for integrin-receptor clustering and subsequent activation. Isotonic and isometric mechanical parameters, either spontaneous or electrostimulated, exhibited good performance in RGD+ constructs. Cell number and viability was increased in RGD+ scaffolds, and we saw good organization of cell contractile apparatus with occurrence of cross-striation. We report a novel method of engineering a highly effective collagen-cell scaffold based on RGD+ peptides cross-linked to a clinically approved collagen matrix. The main advantages were cell contractile performance, cardiomyocyte viability and differentiation.

  16. Understanding low temperature oxidation activity of nanoarray-based monolithic catalysts: from performance observation to structural and chemical insights

    DOE PAGES

    Du, Shoucheng; Tang, Wenxiang; Guo, Yanbing; ...

    2016-12-30

    Monolithic catalysts have been widely used in automotive, chemical, and energy relevant industries. Nano-array based monolithic catalysts have been developed, demonstrating high catalyst utilization efficiency and good thermal/mechanical robustness. Compared with the conventional wash-coat based monolithic catalysts, they have shown advances in precise and optimum microstructure control and feasibility in correlating materials structure with properties. Recently, the nano-array based monolithic catalysts have been studied for low temperature oxidation of automotive engine exhaust and exhibited interesting and promising catalytic activities. Here, this review focuses on discussing the key catalyst structural parameters that affect the catalytic performance from the following aspects, (1)more » geometric shape and crystal planes, (2) guest atom doping and defects, (3) array size and size-assisted active species loading, and (4) the synergy effect of metal oxide in composite nano-arrays. Prior to the discussion, an overview of the current status of synthesis and development of the nano-array based monolithic catalysts is introduced. The performance of these materials in low temperature simulated engine exhaust oxidation is also demonstrated. Finally, we hope this review will elucidate the science and chemistry behind the good oxidation performance of the nanoarray- based monolithic catalysts, and serve as a timely and useful research guide for rational design and further improvement of the nano-array based monolithic catalysts for automobile emission control.« less

  17. Understanding low temperature oxidation activity of nanoarray-based monolithic catalysts: from performance observation to structural and chemical insights

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Shoucheng; Tang, Wenxiang; Guo, Yanbing

    Monolithic catalysts have been widely used in automotive, chemical, and energy relevant industries. Nano-array based monolithic catalysts have been developed, demonstrating high catalyst utilization efficiency and good thermal/mechanical robustness. Compared with the conventional wash-coat based monolithic catalysts, they have shown advances in precise and optimum microstructure control and feasibility in correlating materials structure with properties. Recently, the nano-array based monolithic catalysts have been studied for low temperature oxidation of automotive engine exhaust and exhibited interesting and promising catalytic activities. Here, this review focuses on discussing the key catalyst structural parameters that affect the catalytic performance from the following aspects, (1)more » geometric shape and crystal planes, (2) guest atom doping and defects, (3) array size and size-assisted active species loading, and (4) the synergy effect of metal oxide in composite nano-arrays. Prior to the discussion, an overview of the current status of synthesis and development of the nano-array based monolithic catalysts is introduced. The performance of these materials in low temperature simulated engine exhaust oxidation is also demonstrated. Finally, we hope this review will elucidate the science and chemistry behind the good oxidation performance of the nanoarray- based monolithic catalysts, and serve as a timely and useful research guide for rational design and further improvement of the nano-array based monolithic catalysts for automobile emission control.« less

  18. Synthesis of Reduced Graphene Oxide-Modified LiMn0.75Fe0.25PO4 Microspheres by Salt-Assisted Spray Drying for High-Performance Lithium-Ion Batteries

    PubMed Central

    Kim, Myeong-Seong; Kim, Hyun-Kyung; Lee, Suk-Woo; Kim, Dong-Hyun; Ruan, Dianbo; Chung, Kyung Yoon; Lee, Sang Hyun; Roh, Kwang Chul; Kim, Kwang-Bum

    2016-01-01

    Microsized, spherical, three-dimensional (3D) graphene-based composites as electrode materials exhibit improved tap density and electrochemical properties. In this study, we report 3D LiMn0.75Fe0.25PO4/reduced graphene oxide microspheres synthesized by one-step salt-assisted spray drying using a mixed solution containing a precursor salt and graphene oxide and a subsequent heat treatment. During this process, it was found that the type of metal salt used has significant effects on the morphology, phase purity, and electrochemical properties of the synthesized samples. Furthermore, the amount of the chelating agent used also affects the phase purity and electrochemical properties of the samples. The composite exhibited a high tap density (1.1 g cm−3) as well as a gravimetric capacity of 161 mA h g−1 and volumetric capacity of 281 mA h cm−3 at 0.05 C-rate. It also exhibited excellent rate capability, delivering a discharge capacity of 90 mA h g−1 at 60 C-rate. Furthermore, the microspheres exhibited high energy efficiency and good cyclability, showing a capacity retention rate of 93% after 1000 cycles at 10 C-rate. PMID:27220812

  19. Layer-by-Layer Self-Assembling Gold Nanorods and Glucose Oxidase onto Carbon Nanotubes Functionalized Sol-Gel Matrix for an Amperometric Glucose Biosensor

    PubMed Central

    Wu, Baoyan; Hou, Shihua; Miao, Zhiying; Zhang, Cong; Ji, Yanhong

    2015-01-01

    A novel amperometric glucose biosensor was fabricated by layer-by-layer self-assembly of gold nanorods (AuNRs) and glucose oxidase (GOD) onto single-walled carbon nanotubes (SWCNTs)-functionalized three-dimensional sol-gel matrix. A thiolated aqueous silica sol containing SWCNTs was first assembled on the surface of a cleaned Au electrode, and then the alternate self-assembly of AuNRs and GOD were repeated to assemble multilayer films of AuNRs-GOD onto SWCNTs-functionalized silica gel for optimizing the biosensor. Among the resulting glucose biosensors, the four layers of AuNRs-GOD-modified electrode showed the best performance. The sol-SWCNTs-(AuNRs-GOD)4/Au biosensor exhibited a good linear range of 0.01–8 mM glucose, high sensitivity of 1.08 μA/mM, and fast amperometric response within 4 s. The good performance of the proposed glucose biosensor could be mainly attributed to the advantages of the three-dimensional sol-gel matrix and stereo self-assembly films, and the natural features of one-dimensional nanostructure SWCNTs and AuNRs. This study may provide a new facile way to fabricate the enzyme-based biosensor with high performance. PMID:28347080

  20. Chemically durable polymer electrolytes for solid-state alkaline water electrolysis

    NASA Astrophysics Data System (ADS)

    Park, Eun Joo; Capuano, Christopher B.; Ayers, Katherine E.; Bae, Chulsung

    2018-01-01

    Generation of high purity hydrogen using electrochemical splitting of water is one of the most promising methods for sustainable fuel production. The materials to be used as solid-state electrolytes for alkaline water electrolyzer require high thermochemical stability against hydroxide ion attack in alkaline environment during the operation of electrolysis. In this study, two quaternary ammonium-tethered aromatic polymers were synthesized and investigated for anion exchange membrane (AEM)-based alkaline water electrolyzer. The membranes properties including ion exchange capacity (IEC), water uptake, swelling degree, and anion conductivity were studied. The membranes composed of all C-C bond polymer backbones and flexible side chain terminated by cation head groups exhibited remarkably good chemical stability by maintaining structural integrity in 1 M NaOH solution at 95 °C for 60 days. Initial electrochemical performance and steady-state operation performance were evaluated, and both membranes showed a good stabilization of the cell voltage during the steady-state operation at the constant current density at 200 mA/cm2. Although both membranes in current form require improvement in mechanical stability to afford better durability in electrolysis operation, the next generation AEMs based on this report could lead to potentially viable AEM candidates which can provide high electrolysis performance under alkaline operating condition.

  1. Few-layered Ni(OH)2 nanosheets for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Sun, Wenping; Rui, Xianhong; Ulaganathan, Mani; Madhavi, Srinivasan; Yan, Qingyu

    2015-11-01

    Few-layered Ni(OH)2 nanosheets (4-5 nm in thickness) are synthesized towards high-performance supercapacitors. The ultrathin Ni(OH)2 nanosheets show high specific capacitance and good rate capability in both three-electrode and asymmetric devices. In the three-electrode device, the Ni(OH)2 nanosheets deliver a high capacitance of 2064 F g-1 at 2 A g-1, and the capacitance still has a retention of 1837 F g-1 at a high current density of 20 A g-1. Such excellent performance is by far one of the best for Ni(OH)2 electrodes. In the two-electrode asymmetric device, the specific capacitance is 248 F g-1 at 1 A g-1, and reaches 113 F g-1 at 20 A g-1. The capacitance of the asymmetric device maintains to be 166 F g-1 during the 4000th cycle at 2 A g-1, suggesting good cycling stability of the device. Besides, the asymmetric device exhibits gravimetric energy density of 22 Wh kg-1 at a power density of 0.8 kW kg-1. The present results demonstrate that the ultrathin Ni(OH)2 nanosheets are highly attractive electrode materials for achieving fast charging/discharging and high-capacity supercapacitors.

  2. Durable polydopamine-coated porous sulfur core-shell cathode for high performance lithium-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Deng, Yuanfu; Xu, Hui; Bai, Zhaowen; Huang, Baoling; Su, Jingyang; Chen, Guohua

    2015-12-01

    Lithium-sulfur batteries show fascinating potential for advanced energy system due to their high specific capacity, low-cost, and environmental benignity. However, their wide applications have been plagued by low coulombic efficiency, fast capacity fading and poor rate performance. Herein, a facile method for preparation of S@PDA (PDA = polydopamine) composites with core-shell structure and good electrochemical performance as well as the First-Principles calculations on the interactions of PDA and polysulfides are reported. Taking the advantages of the core-shell structure with porous sulfur core, the high mechanical flexibility of PDA for accommodating the volumetric variation during the discharge/charge processes, the good lithium ion conductivity and the strong chemical interactions between the nitrogen/oxygen atoms with lone electron pair and lithium polysulfides for alleviating their dissolution, the S@PDA composites exhibit high discharge capacities at different current densities (1048 and 869 mAh g-1 at 0.2 and 0.8 A g-1, respectively) and excellent capacity retention capability. A capacity decay as low as 0.021% per cycle and an average coulombic efficiency of 98.5% is observed over a long-term cycling of 890 cycles at 0.8 A g-1. The S@PDA electrode has great potential as a low-cost cathode in high energy Li-S batteries.

  3. Composite of macroporous carbon with honeycomb-like structure from mollusc shell and NiCo(2)O(4) nanowires for high-performance supercapacitor.

    PubMed

    Xiong, Wei; Gao, Yongsheng; Wu, Xu; Hu, Xuan; Lan, Danni; Chen, Yangyang; Pu, Xuli; Zeng, Yan; Su, Jun; Zhu, Zhihong

    2014-01-01

    Novel biological carbon materials with highly ordered microstructure and large pore volume have caused great interest due to their multifunctional properties. Herein, we report the preparation of an interconnected porous carbon material by carbonizing the organic matrix of mollusc shell. The obtained three-dimensional carbon skeleton consists of hexangular and tightly arranged channels, which endow it with efficient electrolyte penetration and fast electron transfer, enable the mollusc shell based macroporous carbon material (MSBPC) to be an excellent conductive scaffold for supercapacitor electrodes. By growing NiCo2O4 nanowires on the obtained MSBPC, NiCo2O4/MSBPC composites were synthesized. When used on supercapacitor electrode, it exhibited anomalously high specific capacitance (∼1696 F/g), excellent rate performance (with the capacity retention of 58.6% at 15 A/g) and outstanding cycling stability (88% retention after 2000 cycles). Furthermore, an all-solid-state symmetric supercapacitor was also assembled based on this NiCo2O4/MSBPC electrode and showed good electrochemical performance with an energy density of 8.47 Wh/kg at 1 A/g, good stability over 10000 cycles. And we believe that more potential applications beyond energy storage can be developed based on this MSBPC.

  4. Nanoporous Tin with a Granular Hierarchical Ligament Morphology as a Highly Stable Li-Ion Battery Anode

    DOE PAGES

    Cook, John B.; Detsi, Eric; Liu, Yijin; ...

    2016-12-07

    Next generation Li-ion batteries will require negative electrode materials with energy densities many-fold higher than that found in the graphitic carbon currently used in commercial Li-ion batteries. While various nanostructured alloying-type anode materials may satisfy that requirement, such materials do not always exhibit long cycle lifetimes and/or their processing routes are not always suitable for large-scale synthesis. Here, we report on a high-performance anode material for next generation Li-ion batteries made of nanoporous Sn powders with hierarchical ligament morphology. This material system combines both long cycle lifetimes (more than 72% capacity retention after 350 cycles), high capacity (693 mAh/g, nearlymore » twice that of commercial graphitic carbon), good charging/discharging capabilities (545 mAh/g at 1 A/g, 1.5C), and a scalable processing route that involves selective alloy corrosion. The good cycling performance of this system is attributed to its nanoporous architecture and its unique hierarchical ligament morphology, which accommodates the large volume changes taking place during lithiation, as confirmed by synchrotron-based ex-situ X-ray 3D tomography analysis. In conclusion, our findings are an important step for the development of high-performance Li-ion batteries.« less

  5. Factors in electrode fabrication for performance enhancement of anion exchange membrane water electrolysis

    NASA Astrophysics Data System (ADS)

    Cho, Min Kyung; Park, Hee-Young; Choe, Seunghoe; Yoo, Sung Jong; Kim, Jin Young; Kim, Hyoung-Juhn; Henkensmeier, Dirk; Lee, So Young; Sung, Yung-Eun; Park, Hyun S.; Jang, Jong Hyun

    2017-04-01

    To improve the cell performance for alkaline anion exchange membrane water electrolysis (AEMWE), the effects of the amount of polytetrafluoroethylene (PTFE) non-ionomeric binder in the anode and the hot-pressing conditions during the fabrication of the membrane electrode assemblies (MEAs) on cell performances are studied. The electrochemical impedance data indicates that hot-pressing at 50 °C for 1 min during MEA construction can reduce the polarization resistance of AEMWE by ∼12%, and increase the initial water electrolysis current density at 1.8 V (from 195 to 243 mA cm-2). The electrochemical polarization and impedance results also suggest that the AEMWE performance is significantly affected by the content of PTFE binder in the anode electrode, and the optimal content is found to be 9 wt% between 5 and 20 wt%. The AEMWE device fabricated with the optimized parameters exhibits good water splitting performance (299 mA cm-2 at 1.8 V) without noticeable degradation in voltage cycling operations.

  6. Maximum correntropy square-root cubature Kalman filter with application to SINS/GPS integrated systems.

    PubMed

    Liu, Xi; Qu, Hua; Zhao, Jihong; Yue, Pengcheng

    2018-05-31

    For a nonlinear system, the cubature Kalman filter (CKF) and its square-root version are useful methods to solve the state estimation problems, and both can obtain good performance in Gaussian noises. However, their performances often degrade significantly in the face of non-Gaussian noises, particularly when the measurements are contaminated by some heavy-tailed impulsive noises. By utilizing the maximum correntropy criterion (MCC) to improve the robust performance instead of traditional minimum mean square error (MMSE) criterion, a new square-root nonlinear filter is proposed in this study, named as the maximum correntropy square-root cubature Kalman filter (MCSCKF). The new filter not only retains the advantage of square-root cubature Kalman filter (SCKF), but also exhibits robust performance against heavy-tailed non-Gaussian noises. A judgment condition that avoids numerical problem is also given. The results of two illustrative examples, especially the SINS/GPS integrated systems, demonstrate the desirable performance of the proposed filter. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  7. The Value of Educators "On the Floor": Comparing Three Modes of Presenting Science on a Sphere®

    ERIC Educational Resources Information Center

    Hayward, Jeff; Hart, Jolene K.

    2015-01-01

    Exhibit experiences at most museums are designed to be self-guided rather than facilitated; and it's certainly a good goal to make exhibit interpretation clear enough to be understood on one's own. The primary rationale for not staffing exhibits is the ongoing personnel cost, but that should be weighed against the value of "on the floor"…

  8. Skeleton/skin structured (RGO/CNTs)@PANI composite fiber electrodes with excellent mechanical and electrochemical performance for all-solid-state symmetric supercapacitors.

    PubMed

    Liu, Dong; Du, Pengcheng; Wei, Wenli; Wang, Hongxing; Wang, Qi; Liu, Peng

    2018-03-01

    Polyaniline coated reduced graphene oxide/carbon nanotube composite fibers ((RGO/CNTs)@PANI, RCP) with skeleton/skin structure are designed as fiber-shaped electrodes for high performance all-solid-state symmetric supercapacitor. The one-dimensional reduced graphene oxide/carbon nanotube composite fibers (RGO/CNTs, RC) are prepared via a simple in-situ reduction of graphene oxide in presence of carbon nanotubes in quartz glass pipes, which exhibit excellent mechanical performance of >193.4 MPa of tensile strength. Then polyaniline is coated onto the RC fibers by electrodepositing technique. The electrochemical properties of the RCP fiber-shaped electrodes are optimized by adjusting the feeding ratio of carbon nanotubes. The optimized one exhibits good electrochemical characteristic such as highest volumetric specific capacitance of 193.1 F cm -3 at 1 A cm -3 , as well as excellent cyclic retention of 92.60% after 2000 cyclic voltammetry cycles. Furthermore, the all-solid-state symmetric supercapacitor, fabricated by using the final composite fiber as both positive and negative electrodes pre-coated with the poly(vinyl alcohol)/H 2 SO 4 gel polyelectrolyte, possesses volumetric capacitance of 36.7 F cm -3 at 0.2 A cm -3 and could light up a red light-emitting diode easily. The excellent mechanical and electrochemical performances make the designed supercapacitor as promising high performance wearable energy storage device. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Antibacterial Effects and Biocompatibility of Titania Nanotubes with Octenidine Dihydrochloride/Poly(lactic-co-glycolic acid).

    PubMed

    Xu, Zhiqiang; Lai, Yingzhen; Wu, Dong; Huang, Wenxiu; Huang, Sijia; Zhou, Lin; Chen, Jiang

    2015-01-01

    Titanium (Ti) implants with long-term antibacterial ability and good biocompatibility are highly desirable materials that can be used to prevent implant-associated infections. In this study, titania nanotubes (TNTs) were synthesized on Ti surfaces through electrochemical anodization. Octenidine dihydrochloride (OCT)/poly(lactic-co-glycolic acid) (PLGA) was infiltrated into TNTs using a simple solvent-casting technique. OCT/PLGA-TNTs demonstrated sustained drug release and maintained the characteristic hollow structures of TNTs. TNTs (200 nm in diameter) alone exhibited slight antibacterial effect and good osteogenic activity but also evidently impaired adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs). OCT/PLGA-TNTs (100 nm in diameter) supported BMSC adhesion and proliferation and showed good osteogenesis-inducing ability. OCT/PLGA-TNTs also exhibited good long-term antibacterial ability within the observation period of 7 d. The synthesized drug carrier with relatively long-term antibacterial ability and enhanced excellent biocompatibility demonstrated significant potential in bone implant applications.

  10. Antibacterial Effects and Biocompatibility of Titania Nanotubes with Octenidine Dihydrochloride/Poly(lactic-co-glycolic acid)

    PubMed Central

    Xu, Zhiqiang; Lai, Yingzhen; Wu, Dong; Huang, Wenxiu; Huang, Sijia; Zhou, Lin; Chen, Jiang

    2015-01-01

    Titanium (Ti) implants with long-term antibacterial ability and good biocompatibility are highly desirable materials that can be used to prevent implant-associated infections. In this study, titania nanotubes (TNTs) were synthesized on Ti surfaces through electrochemical anodization. Octenidine dihydrochloride (OCT)/poly(lactic-co-glycolic acid) (PLGA) was infiltrated into TNTs using a simple solvent-casting technique. OCT/PLGA-TNTs demonstrated sustained drug release and maintained the characteristic hollow structures of TNTs. TNTs (200 nm in diameter) alone exhibited slight antibacterial effect and good osteogenic activity but also evidently impaired adhesion and proliferation of bone marrow mesenchymal stem cells (BMSCs). OCT/PLGA-TNTs (100 nm in diameter) supported BMSC adhesion and proliferation and showed good osteogenesis-inducing ability. OCT/PLGA-TNTs also exhibited good long-term antibacterial ability within the observation period of 7 d. The synthesized drug carrier with relatively long-term antibacterial ability and enhanced excellent biocompatibility demonstrated significant potential in bone implant applications. PMID:26090449

  11. High electrochemical performances of hierarchical hydrangea macrophylla like NiCo{sub 2}O{sub 4} and NiCo{sub 2}S{sub 4} as anode materials for Li-ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Rencheng, E-mail: jinrc427@126.com; Liu, Gang; Liu, Chunping

    2016-08-15

    Graphical abstract: Mesoporous hydrangea macrophylla like NiCo{sub 2}O{sub 4} and NiCo{sub 2}S{sub 4} have been fabricated, which present excellent electrochemical performances as anode materials for Li-ion batteries. - Highlights: • Hierarchical NiCo{sub 2}O{sub 4} is successfully fabricated. • Hierarchical NiCo{sub 2}S{sub 4} is prepared via sulfide anion exchange. • The hierarchical NiCo{sub 2}O{sub 4} and NiCo{sub 2}S{sub 4} exhibit good electrochemical properties. - Abstract: In this work, hierarchical hydrangea macrophylla like NiCo{sub 2}O{sub 4} has been synthesized by solvothermal method followed by calcination treatment in air. By using Na{sub 2}S as sulfur source, the NiCo{sub 2}O{sub 4} is converted intomore » NiCo{sub 2}S{sub 4}. Such hierarchical NiCo{sub 2}O{sub 4} exhibits a high specific capacity and excellent cycling stability (928 mAh g{sup −1} at a current density of 100 mA g{sup −1} after 100 cycles). Even at high current density of 2000 mA g{sup −1}, the electrode still delivers a specific capacity of 371 mAh g{sup −1} after 50 cycles. When the NiCo{sub 2}S{sub 4} is used as anode materials for lithium-ion batteries, a high discharge capacity of 1204 mAh g{sup −1} can be achieved. Meanwhile, the NiCo{sub 2}S{sub 4} electrode displays good cycling stability and rate capability. The excellent electrochemical performances can be attributed to the unique porous structure, which can effectively reduce the diffusion length for lithium ions and electrons, and alleviate volume expansion during the charge-discharge processes.« less

  12. Strong efficiency improvement in dye-sensitized solar cells by novel multi-dimensional TiO2 photoelectrode

    NASA Astrophysics Data System (ADS)

    Zhao, Fengyang; Ma, Rong; Jiang, Yongjian

    2018-03-01

    Titanium dioxide (TiO2) based dye-sensitized solar cells (DSSCs) often exhibit superior power conversion performance. Here we report a DSSC with novel hierarchical TiO2 composite structure (TCS) composed of anatase TiO2 micro-spheres and rutile TiO2 nanobelt framework by hydrothermal approach for high-performance. As photoanode, the TCS based DSSC shows a strong efficiency enhancement by 58% compared with Degussa TiO2 (P25)-DSSC (4.33%). The excellent performance is mainly attribute to its special multi-dimensional structures of TiO2: much active sites of 0D nanoparticle with exposed excellent {001} facet, special electronic transmission channel of 1D nanobelt, good dye adsorption capacity of 2D nanosheet and high light scattering ability of 3D micro-spheres. The novel multi-dimensional TCS materials will open up a new avenue to the electronic devices fields.

  13. Vertically-aligned BCN Nanotube Arrays with Superior Performance in Electrochemical capacitors

    PubMed Central

    Zhou, Junshuang; Li, Na; Gao, Faming; Zhao, Yufeng; Hou, Li; Xu, Ziming

    2014-01-01

    Electrochemical capacitors (EC) have received tremendous interest due to their high potential to satisfy the urgent demand in many advanced applications. The development of new electrode materials is considered to be the most promising approach to enhance the EC performance substantially. Herein, we present a high-capacity capacitor material based on vertically-aligned BC2N nanotube arrays (VA-BC2NNTAs) synthesized by low temperature solvothermal route. The obtained VA-BC2NNTAs display the good aligned nonbuckled tubular structure, which could indeed advantageously enhance capacitor performance. VA-BC2NNTAs exhibit an extremely high specific capacitance, 547 Fg−1, which is about 2–6 times larger than that of the presently available carbon-based materials. Meanwhile, VA-BC2NNTAs maintain an excellent rate capability and high durability. All these characteristics endow VA-BC2NNTAs an alternative promising candidate for an efficient electrode material for electrochemical capacitors (EC). PMID:25124300

  14. New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors.

    PubMed

    Liu, Bin; Liu, Boyang; Wang, Qiufan; Wang, Xianfu; Xiang, Qingyi; Chen, Di; Shen, Guozhen

    2013-10-23

    Hierarchical ZnCo2O4/nickel foam architectures were first fabricated from a simple scalable solution approach, exhibiting outstanding electrochemical performance in supercapacitors with high specific capacitance (∼1400 F g(-1) at 1 A g(-1)), excellent rate capability (72.5% capacity retention at 20 A g(-1)), and good cycling stability (only 3% loss after 1000 cycles at 6 A g(-1)). All-solid-state supercapacitors were also fabricated by assembling two pieces of the ZnCo2O4-based electrodes, showing superior performance in terms of high specific capacitance and long cycling stability. Our work confirms that the as-prepared architectures can not only be applied in high energy density fields, but also be used in high power density applications, such as electric vehicles, flexible electronics, and energy storage devices.

  15. New Redox Polymers that Exhibit Reversible Cleavage of Sulfur Bonds as Cathode Materials.

    PubMed

    Baloch, Marya; Ben Youcef, Hicham; Li, Chunmei; Garcia-Calvo, Oihane; Rodriguez, Lide M; Shanmukaraj, Devaraj; Rojo, Teofilo; Armand, Michel

    2016-11-23

    Two new cathode materials based on redox organosulfur polymers were synthesized and investigated for rechargeable lithium batteries as a proof-of-concept study. These cathodes offered good cycling performance owing to the absence of polysulfide solubility, which plagues Li/S systems. Herein, an aliphatic polyamine or a conjugated polyazomethine was used as the base to tether the redox-active species. The activity comes from the cleavage and formation of S-S or N-S bonds, which is made possible by the rigid conjugated backbone. The synthesized polymers were characterized through FTIR spectroscopy and thermogravimetric analysis (TGA). Galvanostatic measurements were performed to evaluate the discharge/charge cycles and characterize the performance of the lithium-based cells, which displayed initial discharge capacities of approximately 300 mA h g -1 at C/5 over 100 cycles with approximately 98 % Coulombic efficiency. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Performance assessments of vertically aligned carbon nanotubes multi-electrode arrays using Cath.a-differentiated (CAD) cells

    NASA Astrophysics Data System (ADS)

    Jeong, Du Won; Jung, Jongjin; Kim, Gook Hwa; Yang, Cheol-Soo; Kim, Ju Jin; Jung, Sang Don; Lee, Jeong-O.

    2015-08-01

    In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV-ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions.

  17. Performance assessments of vertically aligned carbon nanotubes multi-electrode arrays using Cath.a-differentiated (CAD) cells.

    PubMed

    Jeong, Du Won; Jung, Jongjin; Kim, Gook Hwa; Yang, Cheol-Soo; Kim, Ju Jin; Jung, Sang Don; Lee, Jeong-O

    2015-08-21

    In this work, Cath.a-differentiated (CAD) cells were used in place of primary neuronal cells to assess the performance of vertically aligned carbon nanotubes (VACNTs) multi-electrode arrays (MEA). To fabricate high-performance MEA, VACNTs were directly grown on graphene/Pt electrodes via plasma enhanced chemical deposition technique. Here, graphene served as an intermediate layer lowering contact resistance between VACNTs and Pt electrode. In order to lower the electrode impedance and to enhance the cell adhesion, VACNTs-MEAs were treated with UV-ozone for 20 min. Impedance of VACNTs electrode at 1 kHz frequency exhibits a reasonable value (110 kΩ) for extracellular signal recording, and the signal to noise ratio the is good enough to measure low signal amplitude (15.7). Spontaneous firing events from CAD cells were successfully measured with VACNTs MEAs that were also found to be surprisingly robust toward the biological interactions.

  18. Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Huang, Ming; Zhao, Xiao Li; Li, Fei; Zhang, Li Li; Zhang, Yu Xin

    2015-03-01

    Ultrathin MnO2 nanosheets arrays on Ni foam have been fabricated by a facile hydrothermal approach and further investigated as the binder-free electrode for high-performance supercapacitors. This unique well-designed binder-free electrode exhibits a high specific capacitance (595.2 F g-1 at a current density of 0.5 A g-1), good rate capability (64.1% retention), and excellent cycling stability (89% capacitance retention after 3000 cycles). Moreover, an asymmetric supercapacitor is constructed using the as-prepared MnO2 nanosheets arrays as the positive electrode and activated microwave exfoliated graphite oxide (MEGO) as the negative electrode. The optimized asymmetric supercapacitor displays excellent electrochemical performance with an energy density of 25.8 Wh kg-1 and a maximum power density of 223.2 kW kg-1. These impressive performances suggest that the MnO2 nanosheet array is a promising electrode material for supercapacitors.

  19. A Simple and Reliable Method of Design for Standalone Photovoltaic Systems

    NASA Astrophysics Data System (ADS)

    Srinivasarao, Mantri; Sudha, K. Rama; Bhanu, C. V. K.

    2017-06-01

    Standalone photovoltaic (SAPV) systems are seen as a promoting method of electrifying areas of developing world that lack power grid infrastructure. Proliferations of these systems require a design procedure that is simple, reliable and exhibit good performance over its life time. The proposed methodology uses simple empirical formulae and easily available parameters to design SAPV systems, that is, array size with energy storage. After arriving at the different array size (area), performance curves are obtained for optimal design of SAPV system with high amount of reliability in terms of autonomy at a specified value of loss of load probability (LOLP). Based on the array to load ratio (ALR) and levelized energy cost (LEC) through life cycle cost (LCC) analysis, it is shown that the proposed methodology gives better performance, requires simple data and is more reliable when compared with conventional design using monthly average daily load and insolation.

  20. Electric papers of graphene-coated Co₃O₄ fibers for high-performance lithium-ion batteries.

    PubMed

    Yang, Xiaoling; Fan, Kaicai; Zhu, Yihua; Shen, Jianhua; Jiang, Xin; Zhao, Peng; Luan, Shaorong; Li, Chunzhong

    2013-02-01

    A facile strategy to synthesize the novel composite paper of graphene nanosheets (GNS) coated Co(3)O(4) fibers is reported as an advanced anode material for high-performance lithium-ion batteries (LIBs). The GNS were able to deposit onto Co(3)O(4) fibers and form the coating via electrostatic interactions. The unique hybrid paper is evaluated as an anode electrode for LIBs, and it exhibits a very large reversible capacity (∼840 mA h g(-1) after 40 cycles), excellent cyclic stability and good rate capacity. The substantially excellent electrochemical performance of the graphene/Co(3)O(4) composite paper is the result from its unique features. Notably, the flexible structure of graphenic scaffold and the strong interaction between graphene and Co(3)O(4) fibers are beneficial for providing excellent electronic conductivity, short transportation length for lithium ions, and elastomeric space to accommodate volume varies upon Li(+) insertion/extraction.

  1. Thermal Testing and Analysis of an Efficient High-Temperature Multi-Screen Internal Insulation

    NASA Technical Reports Server (NTRS)

    Weiland, Stefan; Handrick, Karin; Daryabeigi, Kamran

    2007-01-01

    Conventional multi-layer insulations exhibit excellent insulation performance but they are limited to the temperature range to which their components reflective foils and spacer materials are compatible. For high temperature applications, the internal multi-screen insulation IMI has been developed that utilizes unique ceramic material technology to produce reflective screens with high temperature stability. For analytical insulation sizing a parametric material model is developed that includes the main contributors for heat flow which are radiation and conduction. The adaptation of model-parameters based on effective steady-state thermal conductivity measurements performed at NASA Langley Research Center (LaRC) allows for extrapolation to arbitrary stack configurations and temperature ranges beyond the ones that were covered in the conductivity measurements. Experimental validation of the parametric material model was performed during the thermal qualification test of the X-38 Chin-panel, where test results and predictions showed a good agreement.

  2. Growing and testing mycelium bricks as building insulation materials

    NASA Astrophysics Data System (ADS)

    Xing, Yangang; Brewer, Matthew; El-Gharabawy, Hoda; Griffith, Gareth; Jones, Phil

    2018-02-01

    In order to improve energy performance of buildings, insulation materials (such as mineral glass and rock wools, or fossil fuel-based plastic foams) are being used in increasing quantities, which may lead to potential problem with materials depletions and landfill disposal. One sustainable solution suggested is the use of bio-based, biodegradable materials. A number of attempts have been made to develop biomaterials, such as sheep wood, hemcrete or recycled papers. In this paper, a novel type of bio insulation materials - mycelium is examined. The aim is to produce mycelium materials that could be used as insulations. The bio-based material was required to have properties that matched existing alternatives, such as expanded polystyrene, in terms of physical and mechanical characteristics but with an enhanced level of biodegradability. The testing data showed mycelium bricks exhibited good thermal performance. Future work is planned to improve growing process and thermal performance of the mycelium bricks.

  3. Tailoring nanostructured MnO2 as anodes for lithium ion batteries with high reversible capacity and initial Coulombic efficiency

    NASA Astrophysics Data System (ADS)

    Zhang, Lifeng; Song, Jiajia; Liu, Yi; Yuan, Xiaoyan; Guo, Shouwu

    2018-03-01

    Developing high energy storage lithium ion batteries (LIBs) using manganese oxides as anodes is an attractive challenge due to their high theoretical capacity and abundant resources. However, the manganese oxides anodes still suffer from the low initial Coulombic efficiency and poor rate performance. Herein, we demonstrate that nano-sized morphological engineering is a facile and effective strategy to improve the electrochemical performance of the manganese dioxide (MnO2) for LIBs. The tailored MnO2 nanoparticles (NPs) exhibit high reversible capacity (1095 mAh g-1 at 100 mA g-1), high initial Coulombic efficiency (94.5%) and good rate capability (464 mAh g-1 at 2000 mA g-1). The enhanced electrochemical performance of MnO2 NPs can be attributed to the presences of numerous electrochemically active sites and interspaces among the NPs.

  4. Redox-active thionine-graphene oxide hybrid nanosheet: one-pot, rapid synthesis, and application as a sensing platform for uric acid.

    PubMed

    Sun, Zhoumin; Fu, Haiying; Deng, Liu; Wang, Jianxiu

    2013-01-25

    In this paper, we fabricate a sensitive and stable amperometric UA amperometric biosensor using nanobiocomposite derived from thionine modified graphene oxide in this study. A simple wet-chemical strategy for synthesis of thionine-graphene oxide hybrid nanosheets (T-GOs) through π-π stacking has been demonstrated. Various techniques, such as UV-vis absorption spectroscopy, X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), atomic force microscopy (AFM) and electrochemistry have been utilized to characterize the formation of the T-GOs. Due to the synergistic effect between thionine and graphene oxide, the nanosheets exhibited excellent performance toward H(2)O(2) reduction. The incorporation of thionine onto graphene oxide surface resulted in more than a twice increase in the amperometric response to H(2)O(2) of the thionine modified electrode. The as-formed T-GOs also served as a biocompatible matrix for enzyme assembly and a mediator to facilitate the electron transfer between the enzyme and the electrode. Using UOx as a model system, we have developed a simple and effective sensing platform for assay of uric acid at physiological levels. UA has been successfully detected at -0.1 V without any interference due to other electroactive compounds at physiological levels of glucose (5 mM), ascorbic acid (0.1 mM), noradrenalin (0.1 mM), and dopamine (0.1 mM). The response displays a good linear range from 0.02 to 4.5 mM with detection limit 7 μM. The application of this modified electrode in blood and urine UA exhibited a good performance. The robust and advanced hybrid materials might hold great promise in biosensing, energy conversion, and biomedical and electronic systems. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Diagnosis of non-occlusive acute mesenteric ischemia in the intensive care unit.

    PubMed

    Bourcier, Simon; Oudjit, Ammar; Goudard, Geoffrey; Charpentier, Julien; Leblanc, Sarah; Coriat, Romain; Gouya, Hervé; Dousset, Bertrand; Mira, Jean-Paul; Pène, Frédéric

    2016-12-01

    Non-occlusive mesenteric ischemia (NOMI) is a common complication and accounts for a major cause of death in critically ill patients. The diagnosis of NOMI with respect to the eventual indications for surgical treatment is challenging. We addressed the performance of the diagnostic strategy of NOMI in the intensive care unit, with emphasis on contrast-enhanced abdominal CT-scan. This was a retrospective monocenter study. Patients with clinically suspected acute mesenteric ischemia were included if a comprehensive diagnostic workup was carried out including surgical and/or endoscopic digestive explorations. Patients with evidence of occlusive mesenteric ischemia were excluded. A definite diagnosis of NOMI only relied on surgical or endoscopic findings. Abdominal CT-scans were reviewed by two radiologists blinded from the final diagnosis. A diagnosis of NOMI could be definitely confirmed or ruled out through surgical or endoscopic explorations of the digestive tract in 147 patients. With respect to their clinical characteristics, only a history of atrial fibrillation was an independent predictor of NOMI (odds ratio 8.3, 95% confidence interval 2.0-35.2, p = 0.004). Among them, 114 patients (75 with and 39 without NOMI) had previously been subjected to contrast-enhanced abdominal CT-scan. Portal venous gas, pneumatosis intestinalis and, to a lesser extent, abnormal contrast-induced bowel wall enhancement were poorly sensitive, but exhibited good specificities of 95, 85 and 71%, respectively. Nineteen out of 75 patients (25.3%) without any suggestive radiological signs finally exhibited mesenteric ischemia, including ten with intestinal necrosis. The performance of abdominal CT-scan for the diagnosis of NOMI is limited. Radiological signs of advanced-stage ischemia are good predictors of definite mesenteric ischemia, while their absence should not be considered sufficient to rule out the diagnosis.

  6. Iron oxide nanoparticle layer templated by polydopamine spheres: a novel scaffold toward hollow-mesoporous magnetic nanoreactors

    NASA Astrophysics Data System (ADS)

    Huang, Liang; Ao, Lijiao; Xie, Xiaobin; Gao, Guanhui; Foda, Mohamed F.; Su, Wu

    2014-12-01

    Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m2 g-1). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality.Superparamagnetic iron oxide nanoparticle layers with high packing density and controlled thickness were in situ deposited on metal-affinity organic templates (polydopamine spheres), via one-pot thermal decomposition. The as synthesized hybrid structure served as a facile nano-scaffold toward hollow-mesoporous magnetic carriers, through surfactant-assisted silica encapsulation and its subsequent calcination. Confined but accessible gold nanoparticles were successfully incorporated into these carriers to form a recyclable catalyst, showing quick magnetic response and a large surface area (642.5 m2 g-1). Current nano-reactors exhibit excellent catalytic performance and high stability in reduction of 4-nitrophenol, together with convenient magnetic separability and good reusability. The integration of compact iron oxide nanoparticle layers with programmable polydopamine templates paves the way to fabricate magnetic-response hollow structures, with high permeability and multi-functionality. Electronic supplementary information (ESI) available: Fig. S1-S5. See DOI: 10.1039/c4nr05931j

  7. Differentiation of rodent behavioral phenotypes and methylphenidate action in sustained and flexible attention tasks.

    PubMed

    Chu, Richard; Shumsky, Jed; Waterhouse, Barry D

    2016-06-15

    Methyphenidate (MPH) is the primary drug treatment of choice for ADHD. It is also frequently used off-label as a cognitive enhancer by otherwise healthy individuals from all age groups and walks of life. Military personnel, students, and health professionals use MPH illicitly to increase attention and improve workplace performance over extended periods of work activity. Despite the frequency of its use, the efficacy of MPH to enhance cognitive function across individuals and in a variety of circumstances is not well characterized. We sought to better understand MPH׳s cognitive enhancing properties in two different rodent models of attention. We found that MPH could enhance performance in a sustained attention task, but that its effects in this test were subject dependent. More specifically, MPH increased attention in low baseline performing rats but had little to no effect on high performing rats. MPH exerted a similar subject specific effect in a test of flexible attention, i.e. the attention set shifting task. In this test MPH increased behavioral flexibility in animals with poor flexibility but impaired performance in more flexible animals. Overall, our results indicate that the effects of MPH are subject-specific and depend on the baseline level of performance. Furthermore, good performance in in the sustained attention task was correlated with good performance in the flexible attention task; i.e. animals with better vigilance exhibited greater behavioral flexibility. The findings are discussed in terms of potential neurobiological substrates, in particular noradrenergic mechanisms, that might underlie subject specific performance and subject specific responses to MPH. This article is part of a Special Issue entitled SI: Noradrenergic System. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. CeO₂ Enhanced Ethanol Sensing Performance in a CdS Gas Sensor.

    PubMed

    Li, Meishan; Ren, Wei; Wu, Rong; Zhang, Min

    2017-07-05

    CdS nanowires (NWs) were fabricated through a facile low-temperature solvothermal method, following which CeO₂ nanoparticles were modified on the NWs. The ethanol sensing characteristics of pure CdS and decorated ones with different CeO₂ content were studied. It was found that the sensing performance of CdS was significantly improved after CeO₂ decoration. In particular, the 5 at% CeO₂/CdS composite exhibited a much higher response to 100 ppm ethanol (about 52), which was 2.6 times larger than that of pure CdS. A fast response and recovery time (less than 12 s and 3 s, respectively) were obtained as well as an excellent selectivity. These results make the CeO₂-decorated CdS NWs good candidates for ethanol sensing applications.

  9. Mesoporous coaxial titanium nitride-vanadium nitride fibers of core-shell structures for high-performance supercapacitors.

    PubMed

    Zhou, Xinhong; Shang, Chaoqun; Gu, Lin; Dong, Shanmu; Chen, Xiao; Han, Pengxian; Li, Lanfeng; Yao, Jianhua; Liu, Zhihong; Xu, Hongxia; Zhu, Yuwei; Cui, Guanglei

    2011-08-01

    In this study, titanium nitride-vanadium nitride fibers of core-shell structures were prepared by the coaxial electrospinning, and subsequently annealed in the ammonia for supercapacitor applications. These core-shell (TiN-VN) fibers incorporated mesoporous structure into high electronic conducting transition nitride hybrids, which combined higher specific capacitance of VN and better rate capability of TiN. These hybrids exhibited higher specific capacitance (2 mV s(-1), 247.5 F g(-1)) and better rate capability (50 mV s(-1), 160.8 F g(-1)), which promise a good candidate for high-performance supercapacitors. It was also revealed by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) characterization that the minor capacitance fade originated from the surface oxidation of VN and TiN.

  10. Aquarius L-Band Microwave Radiometer: Three Years of Radiometric Performance and Systematic Effects

    NASA Technical Reports Server (NTRS)

    Piepmeier, Jeffrey R.; Hong, Liang; Pellerano, Fernando A.

    2015-01-01

    The Aquarius L-band microwave radiometer is a three-beam pushbroom instrument designed to measure sea surface salinity. Results are analyzed for performance and systematic effects over three years of operation. The thermal control system maintains tight temperature stability promoting good gain stability. The gain spectrum exhibits expected orbital variations with 1f noise appearing at longer time periods. The on-board detection and integration scheme coupled with the calibration algorithm produce antenna temperatures with NEDT 0.16 K for 1.44-s samples. Nonlinearity is characterized before launch and the derived correction is verified with cold-sky calibration data. Finally, long-term drift is discovered in all channels with 1-K amplitude and 100-day time constant. Nonetheless, it is adeptly corrected using an exponential model.

  11. Metric for evaluation of filter efficiency in spectral cameras.

    PubMed

    Nahavandi, Alireza Mahmoudi; Tehran, Mohammad Amani

    2016-11-10

    Although metric functions that show the performance of a colorimetric imaging device have been investigated, a metric for performance analysis of a set of filters in wideband filter-based spectral cameras has rarely been studied. Based on a generalization of Vora's Measure of Goodness (MOG) and the spanning theorem, a single function metric that estimates the effectiveness of a filter set is introduced. The improved metric, named MMOG, varies between one, for a perfect, and zero, for the worst possible set of filters. Results showed that MMOG exhibits a trend that is more similar to the mean square of spectral reflectance reconstruction errors than does Vora's MOG index, and it is robust to noise in the imaging system. MMOG as a single metric could be exploited for further analysis of manufacturing errors.

  12. Fe-Catalyzed Synthesis of Porous Carbons Spheres with High Graphitization Degree for High-Performance Supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhu, Jun; Shi, Hongwei; Zhuo, Xin; Hu, Yalin

    2017-10-01

    We have developed a facile and efficient Fe-catalyzed method for fabrication of porous carbons spheres with high graphitization degree (GNPCs) using glucose as carbon precursor at relatively low carbonization temperature. GNPCs not only have relatively large accessible ion surface area to accommodate greater capacity but also high graphitization degree to accelerate ion diffusion. As a typical application, we demonstrate that GNPCs exhibit excellent electrochemical performance for use in supercapacitors, with high specific capacity of 150.6 F g-1 at current density of 1 A g-1 and good rate capability and superior cycling stability over 10,000 cycles, confirming their potential application for energy storage. Moreover, it is believed that this method offers a new strategy for synthesis of porous carbons with high graphitization degree.

  13. Green and biodegradable composite films with novel antimicrobial performance based on cellulose.

    PubMed

    Wu, Yuehan; Luo, Xiaogang; Li, Wei; Song, Rong; Li, Jing; Li, Yan; Li, Bin; Liu, Shilin

    2016-04-15

    In order to obtain a safe and biodegradable material with antimicrobial properties from cellulose for food packaging, we presented a facile way to graft chitosan onto the oxidized cellulose films. The obtained films had a high transparent property of above 80% transmittance, excellent barrier properties against oxygen and antimicrobial properties against Escherichia coli and Staphylococcus aureus. The antimicrobial properties, mechanical properties, and water vapor permeability of composites are essential characteristics in determining their applicability as food-packaging materials. Moreover, using a sausage model, it was shown that the composites exhibited better performance than traditional polyethylene packaging material and demonstrated good potential as food packaging materials. The results presented a new insight into the development of green materials for food packaging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Novel textile systems for the continuous monitoring of vital signals: design and characterization.

    PubMed

    Trindade, Isabel G; Martins, Frederico; Dias, Rúben; Oliveira, Cristina; Machado da Silva, José

    2015-08-01

    In this article we present a smart textile system for the continuous monitoring of cardiorespiratory signals, produced and integrated with an industrial embroidery unit. The design of a T-shirt system, having embedded textile sensors and interconnects and custom designed circuit for data collection and Bluetooth transmission is presented. The performance of skin-contact textile electrodes, having distinctive electrical characteristics and surface morphologies, was characterized by measurements of signal to noise ratio, under dry and moisture conditions. The influence of the electrodes size and the wear resistance were addressed. Results of an electrocardiogram acquisition with a subject wearing the T-shirt and display on a smartphone are also shown. The presented smart textile systems exhibit good performance and versatility for custom demand production.

  15. Extraction of mercury(II) with sulfurized jojoba oil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisniak, J.; Schorr, G.; Zacovsky, D.

    1990-09-01

    Sulfurized jojoba oil containing 12% by weight S has been tested as an extractant for Hg(II) from aqueous solutions. This paper reports on experiments performed with the extractant dissolved in a solvent (liquid--liquid extraction) or adsorbed in an appropriate resin matrix (solid--liquid extraction). The extraction characteristics of both systems have been measured and show that sulfurized jojoba oil exhibits very good possibilities as an extractant. The performance of several resins treated with sulfurized jojoba oil for adsorbing mercury(II) was studied. The morphology of the different resins was examined by using scanning electron microscopy. The sulfurized oil is attached to themore » resin sites through the sulfur atoms; it is estimated that there are about 2 mol of S active sites per kilogram of resin.« less

  16. A novel quantum LSB-based steganography method using the Gray code for colored quantum images

    NASA Astrophysics Data System (ADS)

    Heidari, Shahrokh; Farzadnia, Ehsan

    2017-10-01

    As one of the prevalent data-hiding techniques, steganography is defined as the act of concealing secret information in a cover multimedia encompassing text, image, video and audio, imperceptibly, in order to perform interaction between the sender and the receiver in which nobody except the receiver can figure out the secret data. In this approach a quantum LSB-based steganography method utilizing the Gray code for quantum RGB images is investigated. This method uses the Gray code to accommodate two secret qubits in 3 LSBs of each pixel simultaneously according to reference tables. Experimental consequences which are analyzed in MATLAB environment, exhibit that the present schema shows good performance and also it is more secure and applicable than the previous one currently found in the literature.

  17. Optimum Conditions for Preparation of High-Performance (Ba0.97Ca0.03)(Ti0.94Sn0.06)O3 Ceramics by Solid-State Combustion

    NASA Astrophysics Data System (ADS)

    Chootin, Suphornphun; Bongkarn, Theerachai

    2017-08-01

    The effects of calcination conditions (950°C to 1200°C for 2 h to 6 h) and sintering temperature (1300°C to 1500°C for 2 h) on phase formation, microstructure, and electrical behavior of lead-free piezoelectric (Ba0.97Ca0.03)(Ti0.94Sn0.06)O3 (BCTS) ceramics produced by solid-state combustion using glycine as fuel have been investigated. BCTS powder with pure perovskite structure was obtained by calcination at 1100°C for 4 h. The microstructure of the BCTS powders showed almost spherical shape with average particle size increasing from 184 nm to 320 nm as the calcination temperature and soaking time were increased. The XRD patterns of all ceramics exhibited single perovskite structure. Rietveld refinement analysis indicated that the BCTS ceramics exhibited coexistence of orthorhombic and tetragonal phase in all samples with increased tetragonal phase content with increasing sintering temperature. The average grain size, density, dielectric constants at room ( ɛ r) and Curie temperature ( ɛ C), remanent polarization ( P r), and piezoelectric constant ( d 33) increased as the sintering temperature was increased up to 1400°C, then decreased. BCTS ceramic sintered at 1400°C exhibited the highest relative density (98%), highest dielectric response ( ɛ r = 4951, ɛ C = 19,185), good ferroelectric behavior ( P r = 12.74 μC/cm2 and coercive field E c = 1.60 kV/cm), and highest d 33 value (528 pC/N). The large piezoelectricity of BCTS ceramics makes them good candidates for use in lead-free applications to replace Pb-based ceramics.

  18. Intermolecular ionic cross-linked sulfonated poly(ether ether ketone) membranes containing diazafluorene for direct methanol fuel cell applications

    NASA Astrophysics Data System (ADS)

    Liang, Yu; Gong, Chenliang; Qi, Zhigang; Li, Hui; Wu, Zhongying; Zhang, Yakui; Zhang, Shujiang; Li, Yanfeng

    2015-06-01

    A series of novel ionic cross-linking sulfonated poly(ether ether ketone) (SPEEK) membranes containing the diazafluorene functional group are synthesized to reduce the swelling ratio and methanol permeability for direct methanol fuel cell (DMFC) applications. The ionic cross-linking is realized by the interaction between sulfonic acid groups and pyridyl in diazafluorene. The prepared membranes exhibit good mechanical properties, adequate thermal stability, good oxidative stability, appropriate water uptake and low swelling ratio. Moreover, the ionic cross-linked membranes exhibit lower methanol permeability in the range between 0.56 × 10-7 cm2 s-1 and 1.8 × 10-7 cm2 s-1, which is lower than Nafion 117, and they exhibit higher selectivity than Nafion 117 at 30 °C on the basis of applicable proton conductivity.

  19. Synthesis and biological screening of 2'-aryl/benzyl-2-aryl-4-methyl-4',5-bithiazolyls as possible anti-tubercular and antimicrobial agents.

    PubMed

    Abhale, Yogita K; Sasane, Amit V; Chavan, Abhijit P; Deshmukh, Keshav K; Kotapalli, Sudha Sravanti; Ummanni, Ramesh; Sayyad, Sadikali F; Mhaske, Pravin C

    2015-04-13

    A series of 2'-aryl/benzyl-2-aryl-4-methyl-4',5-bithiazolyl derivatives, 25-64 were synthesized and evaluated for inhibitory activity against Mycobacterium smegmatis MC(2) 155 strain and antimicrobial activities against four pathogenic bacteria Bacillus subtilis, Staphylococcus aureus, Escherichia coli and Proteus vulgaris. Among them, compounds 40, 49, 50, and 54 exhibited moderate to good inhibition on the growth of the bacteria Mycobacterium smegmatis at the concentration of 30 μM. Compounds 26, 40, 44, 54 and 56 exhibited moderate to good antibacterial activity. Compound 5-(2'-(4-fluorobenzyl)thiazol-4'-yl)-2-(4-fluorophenyl)-4-methyl-thiazole (54) exhibited both antitubercular as well as antimicrobial activity against all tested strains. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  20. Corrosion and Discharge Behaviors of Al-Mg-Sn-Ga-In in Different Solutions

    NASA Astrophysics Data System (ADS)

    Xiong, Hanqing; Yin, Xiang; Yan, Yang; Dai, Yilong; Fan, Sufeng; Qiao, Xueyan; Yu, Kun

    2016-08-01

    Al-0.5 wt.%Mg-0.08 wt.%Sn-0.05 wt.%Ga-0.05 wt.%In and Al-0.5 wt.%Mg-0.08 wt.%Sn-0.05 wt.%Ga alloys were prepared by melting, casting and cold rolling. Corrosion and discharge behaviors of the two experimental alloys were investigated by electrochemical measurement, self-corrosion rate measurement, air battery testing, and scanning electron microscopy. The results showed that Al-Mg-Sn-Ga-In alloy exhibited higher electrochemical activity than Al-Mg-Sn-Ga alloy in 2 M NaCl solution, while it showed lower electrochemical activity than Al-Mg-Sn-Ga alloy in 4 M NaOH solution. By comparison with the air battery based on Al-Mg-Sn-Ga alloy, the battery with Al-Mg-Sn-Ga-In alloy cannot exhibit better discharge performance in 4 M NaOH electrolyte. However, the performance of the air battery based on Al-Mg-Sn-Ga-In alloy was greatly improved due to the In-rich inclusions and the uniform corroded morphology in 2 M NaCl electrolyte. Thus, Al-Mg-Sn-Ga-In alloy was a good anode material for Al-air battery in 2 M NaCl electrolyte.

  1. Preparation and evaluation of ageing effect of Cu-Al-Be-Mn shape memory alloys

    NASA Astrophysics Data System (ADS)

    Shivasiddaramaiah, A. G.; Mallik, U. S.; Mahato, Ranjit; Shashishekar, C.

    2018-04-01

    10-14 wt. % of aluminum, 0.3-0.6 wt. % of beryllium and 0.1-0.4 wt. % of manganese and remaining copper melted in the induction furnace through ingot metallurgy. The prepared SMAs are subjected to homogenization. It was observed that the samples exhibits β-phase at high temperature and shape memory effect after going through step quenching to a low temperature. Scanning Electron Microscope, DSC, bending test were performed on the samples to determine the microstructure, transformation temperatures and shape memory effect respectively. The alloy exhibit good shape memory effect, up to around 96% strain recovery by shape memory effect. The ageing is performed on the specimen prepared according to ASTM standard for testing micro-hardness and tensile test. Precipitation hardening method was employed to age the samples and they were aged at different temperature and at different times followed by quenching. Various forms of precipitates were formed. It was found that the formation rate and transformation temperature increased with ageing time, while the amount of precipitate had an inverse impact on strain recovery by shape memory effect. The result expected is to increase in mechanical properties of the material such as hardness.

  2. Fabrication and evaluation of chitosan/NaYF4:Yb3+/Tm3+ upconversion nanoparticles composite beads based on the gelling of Pickering emulsion droplets.

    PubMed

    Yan, Huiqiong; Chen, Xiuqiong; Shi, Jia; Shi, Zaifeng; Sun, Wei; Lin, Qiang; Wang, Xianghui; Dai, Zihao

    2017-02-01

    The rare earth ion doped upconversion nanoparticles (UCNPs) synthesized by hydrophobic organic ligands possess poor solubility and low fluorescence quantum yield in aqueous media. To conquer this issue, NaYF 4 :Yb 3+ /Tm 3+ UCNPs, synthesized by a hydrothermal method, were coated with F127 and then assembled with chitosan to fabricate the chitosan/NaYF 4 :Yb 3+ /Tm 3+ composite beads (CS/NaYF 4 :Yb 3+ /Tm 3+ CBs) by Pickering emulsion system. The characterization results revealed that the as-synthesized NaYF 4 :Yb 3+ /Tm 3+ UCNPs with an average size of 20nm exhibited spherical morphology, high crystallinity and characteristic emission upconversion fluorescence with an overall blue color output. The NaYF 4 :Yb 3+ /Tm 3+ UCNPs were successfully conjugated on the surface of chitosan beads by the gelling of emulsion droplets. The resultant CS/NaYF 4 :Yb 3+ /Tm 3+ CBs showed good upconversion luminescent property, drug-loading capacity, release performance and excellent biocompatibility, exhibiting great potentials in targeted drug delivery and tissue engineering with potential tracking capability and lasting release performance. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. A new inorganic-organic composite coagulant, consisting of polyferric sulphate (PFS) and polyacrylamide (PAA).

    PubMed

    Moussas, P A; Zouboulis, A I

    2009-08-01

    Currently, research is focused on the synthesis of new composite coagulants, which are constituted of both inorganic and organic materials. In this paper, the development of relevant reagents was investigated, by combining the inorganic pre-polymerised iron-based coagulant Polyferric Sulphate (PFS) with an organic, non-ionic polymer (Polyacrylamide, PAA) under different PAA/Fe (mg/l) and OH/Fe molar ratios. Moreover, the new reagents were characterised in terms of typical properties, stability and morphological analysis (XRD, FTIR, SEM). Their coagulation performance, when treating low or high turbid kaolin-humic acid suspensions, was also investigated, whereas the applied coagulation mechanisms were discussed by using the Photometric Dispersion Analysis (PDA) analysis. The results show that the new coagulation reagents present improved properties, including increased effective polymer species concentration, and they exhibit very good stability. The respective tests using PDA confirmed that the predominant coagulation mechanism of PFS-PAA is the bridge formation mechanism. Coagulation experiments in low or high turbid kaolin-humic acid suspensions reveal that the novel composite reagent PFS-PAA exhibits better coagulation performance, when compared with simple PFS, in terms of zeta-potential reduction, turbidity and organic matter removal and residual iron concentration.

  4. GO-induced assembly of gelatin toward stacked layer-like porous carbon for advanced supercapacitors

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaomeng; Jiao, Yanqing; Sun, Li; Wang, Lei; Wu, Aiping; Yan, Haijing; Meng, Meichen; Tian, Chungui; Jiang, Baojiang; Fu, Honggang

    2016-01-01

    Layer-like nanocarbons with high surface area and good conductivity are promising materials for supercapacitors due to their good ability for effective charge-transfer and mass-transfer. In this paper, stacked layer-like porous carbon containing RGO (reduced graphene oxides) (LPCG) was constructed via the GO-induced assembly of gelatin followed by carbonization and activation processes. Under suitable conditions, LPCG-based materials with a thickness of about 100 nm and a high specific surface area (up to 1476 m2 g-1) could be obtained. In the materials, the closed combination of RGO and porous carbon can be observed, which is favourable for the development of the synergistic effects of both components. The presence of GO can not only enhance the conductivity of LPCG-based materials, but also is essential for the formation of a thin carbon sheet with a stacked structure. Otherwise, the plate-like, non-stacked carbon with a thickness of about 500 nm could be formed in the absence of RGO. The porous structure along with the presence of RGO allows rapid charge-transfer and easy access and diffusion of electrolyte ions. As a result, the materials exhibited a high discharge specific capacitance (455 F g-1 at 0.5 A g-1, 366 F g-1 at 1 A g-1), good rate capability (221 F g-1 at density 30 A g-1) and good cycling stability. In aqueous electrolytes, the energy density could be up to 9.32 W h kg-1 at a relatively low power density of 500 W kg-1 with a good cycling stability (>96% over 5000 cycles). It was found that (1) the rational combination of RGO and porous carbon is essential for enhancing the capacitance performance and improving the cycling stability and (2) the high conductivity is favorable for improving the rate performance of the materials. The LPCG-based materials have extensive potential for practical applications in energy storage and conversion devices.Layer-like nanocarbons with high surface area and good conductivity are promising materials for supercapacitors due to their good ability for effective charge-transfer and mass-transfer. In this paper, stacked layer-like porous carbon containing RGO (reduced graphene oxides) (LPCG) was constructed via the GO-induced assembly of gelatin followed by carbonization and activation processes. Under suitable conditions, LPCG-based materials with a thickness of about 100 nm and a high specific surface area (up to 1476 m2 g-1) could be obtained. In the materials, the closed combination of RGO and porous carbon can be observed, which is favourable for the development of the synergistic effects of both components. The presence of GO can not only enhance the conductivity of LPCG-based materials, but also is essential for the formation of a thin carbon sheet with a stacked structure. Otherwise, the plate-like, non-stacked carbon with a thickness of about 500 nm could be formed in the absence of RGO. The porous structure along with the presence of RGO allows rapid charge-transfer and easy access and diffusion of electrolyte ions. As a result, the materials exhibited a high discharge specific capacitance (455 F g-1 at 0.5 A g-1, 366 F g-1 at 1 A g-1), good rate capability (221 F g-1 at density 30 A g-1) and good cycling stability. In aqueous electrolytes, the energy density could be up to 9.32 W h kg-1 at a relatively low power density of 500 W kg-1 with a good cycling stability (>96% over 5000 cycles). It was found that (1) the rational combination of RGO and porous carbon is essential for enhancing the capacitance performance and improving the cycling stability and (2) the high conductivity is favorable for improving the rate performance of the materials. The LPCG-based materials have extensive potential for practical applications in energy storage and conversion devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07857a

  5. Discounting of Delayed Rewards Is Not Hyperbolic

    ERIC Educational Resources Information Center

    Luhmann, Christian C.

    2013-01-01

    Delay discounting refers to decision-makers' tendency to value immediately available goods more than identical goods available only after some delay. In violation of standard economic theory, decision-makers frequently exhibit dynamic inconsistency; their preferences change simply due to the passage of time. The standard explanation for this…

  6. Carbon dots-decorated multiwalled carbon nanotubes nanocomposites as a high-performance electrochemical sensor for detection of H2O2 in living cells.

    PubMed

    Bai, Jing; Sun, Chunhe; Jiang, Xiue

    2016-07-01

    A novel enzyme-free hydrogen peroxide sensor composed of carbon dots (CDs) and multi-walled carbon nanotubes (MWCNTs) was prepared. It was found that the carbon dots-decorated multi-walled carbon nanotubes nanocomposites (CDs/MWCNTs) modified glassy carbon (GC) electrode (CDs/MWCNTs/GCE) exhibited a significant synergistic electrocatalytic activity towards hydrogen peroxide reduction as compared to carbon dots or multi-walled carbon nanotubes alone, and the CDs/MWCNTs/GCE has shown a low detection limit as well as excellent stability, selectivity, and reproducibility. These remarkable analytical advantages enable the practical application of CDs/MWCNTs/GCE for the real-time tracking of hydrogen peroxide (H2O2) released from human cervical cancer cells with satisfactory results. The enhanced electrochemical activity can be assigned to the edge plane-like defective sites and lattice oxygen in the CDs/MWCNTs nanocomposites due to the small amount of decoration of carbon dots on the multi-walled carbon nanotubes. Based on a facile preparation method and with good electrochemical properties, the CDs/MWCNTs nanocomposites represent a new class of carbon electrode for electrochemical sensor applications. Graphical Abstract CDs/MWCNTs exhibited good electrocatalytic activity and stability to H2O2 reduction and can be used for real-time detection of H2O2 released from living cells.

  7. Anion exchange membrane crosslinked in the easiest way stands out for fuel cells

    NASA Astrophysics Data System (ADS)

    Hossain, Md. Masem; Wu, Liang; Liang, Xian; Yang, Zhengjin; Hou, Jianqiu; Xu, Tongwen

    2018-06-01

    Covalent crosslinking is an effective method to stabilize anion exchange membranes (AEMs) against water swelling and high alkaline environment, yet complicated process is required. We report herein a straightforward approach to prepare highly crosslinked, transparent and flexible AEM by simply immersing a halo-alkylated polymer (e.g., brominated poly-(2,6-dimethyl-phenylene oxide)) based membrane in aqueous dimethylamine solution at room temperature and the following methylation. During this crosslinking process, a robust self-crosslinking network is formed which shows a gel fraction in N-methyl-2-pyrrolidone of (up to) 94%. Self-crosslinked membranes show low water uptakes (20-42%) and dimensional swelling (9-16%) compared to non-crosslinked membrane but good hydroxide conductivities (up to 26 mS cm-1) at room temperature. Besides, the resulting membranes show some interesting features: the membranes do not immensely change its room temperature water swelling properties at high temperature but exhibits good hydroxide conductivities (up to 60 mS cm-1 at 80 °C). Noting that, the self-crosslinked AEM reported here has no β-hydrogens, exhibiting extremely high alkaline stability (no decline in hydroxide conductivity in 1 M KOH at 60 °C for 360h). Membrane electrode assembly consists of fabricated membrane shows moderate fuel cell performance reaching peak power density 31 mW cm-2 at 60 °C in a H2/O2 alkaline fuel cell.

  8. Supercapacitor electrode of nano-Co3O4 decorated with gold nanoparticles via in-situ reduction method

    NASA Astrophysics Data System (ADS)

    Tan, Yongtao; Liu, Ying; Kong, Lingbin; Kang, Long; Ran, Fen

    2017-09-01

    Nano-Co3O4 decorated with gold nanoparticles is synthesized by a simple method of in-situ reduction of HAuCl4 by sodium citrate for energy storage application, and the effect of gold content in the product on electrochemical performance is investigated in detail. Introducing gold nanoparticles into nano-Co3O4 bulk would contribute to reduce internal resistance of charge transmission. The results show that after in-situ reduction reaction gold nanoparticles imbed uniformly into nano-Co3O4 with irregular nanoparticles. The gold nanoparticles decorated nano-Co3O4 exhibits specific capacitance of 681 F g-1 higher than that of pristine Co3O4 of 368 F g-1. It is interesting that a good cycle life with the specific capacitance retention of 83.1% is obtained after 13000 cycles at 5 A g-1, which recovers to initial specific capacitance value when the test current density is turned to 2 A g-1. In addition, the device of asymmetric supercapacitor, assembled with gold nanoparticles decorated nano-Co3O4 as the positive electrode and activated carbon as the negative electrode, exhibits good energy density of 25 Wh kg-1, which is comparable to the asymmetric device assembled with normal nano-Co3O4, or the symmetric device assembled just with activated carbon.

  9. A novel polyester composite nanofiltration membrane formed by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC)

    NASA Astrophysics Data System (ADS)

    Cheng, Jun; Shi, Wenxin; Zhang, Lanhe; Zhang, Ruijun

    2017-09-01

    A novel polyester thin film composite nanofiltration (NF) membrane was prepared by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC) on polyethersulfone (PES) supporting membrane. The performance of the polyester composite NF membrane was optimized by regulating the preparation parameters, including reaction time, pH of the aqueous phase solution, pentaerythritol concentration and TMC concentration. A series of characterization, including permeation experiments, attenuated total reflectance-fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscope (SEM), atomic force microscopy (AFM), zeta potential analyzer and chlorine resistance experiments, were employed to study the properties of the optimized membrane. The results showed that the optimized polyester composite NF membrane exhibited very high rejection of Na2SO4 (98.1%), but the water flux is relatively low (6.1 L/m2 h, 0.5 MPa, 25 °C). The order of salt rejections is Na2SO4 > MgSO4 > MgCl2 > NaCl, which indicated the membrane was negatively charged, just consistent with the membrane zeta potential results. After treating by NaClO solutions with different concentrations (100 ppm, 500 ppm, 1000 ppm, 2000 ppm, 3000 ppm) for 48 h, the results demonstrated that the polyester NF membrane had good chlorine resistance. Additionally, the polyester TFC NF membrane exhibits good long-term stability.

  10. Hydrogen peroxide biosensor based on microperoxidase-11 immobilized in a silica cavity array electrode.

    PubMed

    Tian, Shu; Zhou, Qun; Gu, Zhuomin; Gu, Xuefang; Zhao, Lili; Li, Yan; Zheng, Junwei

    2013-03-30

    Hydrogen peroxide biosensor based on the silica cavity array modified indium-doped tin oxide (ITO) electrode was constructed. An array of silica microcavities was fabricated by electrodeposition using the assembled polystyrene particles as template. Due to the resistance gradient of the silica cavity structure, the silica cavity exhibits a confinement effect on the electrochemical reactions, making the electrode function as an array of "soft" microelectrodes. The covalently immobilized microperoxidase-11(MP-11) inside these SiO2 cavities can keep its physiological activities, the electron transfer between the MP-11 and electrode was investigated through electrochemical method. The cyclic voltammetric curve shows a quasi-reversible electrochemical redox behavior with a pair of well-defined redox peaks, the cathodic and anodic peaks are located at -0.26 and -0.15V. Furthermore, the modified electrode exhibits high electrocatalytic activity toward the reduction of hydrogen peroxide and also shows good analytical performance for the amperometric detection of H2O2 with a linear range from 2×10(-6) to 6×10(-4)M. The good reproducibility and long-term stability of this novel electrode not only offer an opportunity for the detection of H2O2 in low concentration, but also provide a platform to construct various biosensors based on many other enzymes. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Protograph based LDPC codes with minimum distance linearly growing with block size

    NASA Technical Reports Server (NTRS)

    Divsalar, Dariush; Jones, Christopher; Dolinar, Sam; Thorpe, Jeremy

    2005-01-01

    We propose several LDPC code constructions that simultaneously achieve good threshold and error floor performance. Minimum distance is shown to grow linearly with block size (similar to regular codes of variable degree at least 3) by considering ensemble average weight enumerators. Our constructions are based on projected graph, or protograph, structures that support high-speed decoder implementations. As with irregular ensembles, our constructions are sensitive to the proportion of degree-2 variable nodes. A code with too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code with too many such nodes tends to not exhibit a minimum distance that grows linearly in block length. In this paper we also show that precoding can be used to lower the threshold of regular LDPC codes. The decoding thresholds of the proposed codes, which have linearly increasing minimum distance in block size, outperform that of regular LDPC codes. Furthermore, a family of low to high rate codes, with thresholds that adhere closely to their respective channel capacity thresholds, is presented. Simulation results for a few example codes show that the proposed codes have low error floors as well as good threshold SNFt performance.

  12. A facile synthesis of α-MnO2 used as a supercapacitor electrode material: The influence of the Mn-based precursor solutions on the electrochemical performance

    NASA Astrophysics Data System (ADS)

    Li, Wenyao; Xu, Jiani; Pan, Yishuang; An, Lei; Xu, Kaibing; Wang, Guangjin; Yu, Zhishui; Yu, Li; Hu, Junqing

    2015-12-01

    Three types of α-MnO2 nanomaterials are synthesized in different Mn-based precursor solutions by using a facile electrochemical deposition at the same depositional condition. The relationships between the precursor solutions and corresponding MnO2 nanomaterials' morphology as well as the electrochemical performance have been studied. As an electrode, electrochemical measurements show that the MnO2 deposited in MnCl2 precursor solution (MnO2-P3) exhibits an enhanced specific capacitance (318.9 F g-1 at 2 mV s-1). Moreover, this electrode demonstrates a good rate capability with 44% retention, which is higher than the MnO2-P1 deposited with Mn(CH3COOH)2 solution and the MnO2-P2 deposited with Mn(NO3)2 precursor solution. Besides, the specific capacitance of the MnO2-P3 electrode nearly has 98.2% retention after 2000 cycles, showing good long-term cycle stability. These findings show that the MnO2-P3 is a promising electrode material for supercapacitors.

  13. Positively charged and bipolar layered poly(ether imide) nanofiltration membranes for water softening applications

    NASA Astrophysics Data System (ADS)

    Gassara, S.; Abdelkafi, A.; Quémener, D.; Amar, R. Ben; Deratani, A.

    2015-07-01

    Poly(ether imide) (PEI) ultrafiltration membranes were chemically modified with branched poly(ethyleneimine) to obtain nanofiltration (NF) membrane Cat PEI with a positive charge in the pH range below 9. An oppositely charged polyelectrolyte layer was deposited on the resulting membrane surface by using sodium polystyrene sulfonate (PSSNa) and sodium polyvinyl sulfonate (PVSNa) to prepare a bipolar layered membrane NF Cat PEI_PSS and Cat PEI_PVS having a negatively charged surface and positively charged pores. Cat PEI exhibited good performance to remove multivalent cations (more than 90% of Ca2+) from single salt solutions except in presence of sulfate ions. Adding an anionic polyelectrolyte layer onto the positively charged surface resulted in a significant enhancement of rejection performance even in presence of sulfate anions. Application of the prepared membranes in water softening of natural complex mixtures was successful for the different studied membranes and a large decrease of hardness was obtained. Moreover, Cat PEI_PSS showed a good selectivity for nitrate removal. Fouling experiments were carried out with bovine serum albumin, as model protein foulant. Cat PEI_PSS showed much better fouling resistance than Cat PEI with a quantitative flux recovery ratio.

  14. High-Performance Lithium-Sulfur Batteries with a Self-Assembled Multiwall Carbon Nanotube Interlayer and a Robust Electrode-Electrolyte Interface.

    PubMed

    Kim, Hee Min; Hwang, Jang-Yeon; Manthiram, Arumugam; Sun, Yang-Kook

    2016-01-13

    Elemental sulfur electrode has a huge advantage in terms of charge-storage capacity. However, the lack of electrical conductivity results in poor electrochemical utilization of sulfur and performance. This problem has been overcome to some extent previously by using a bare multiwall carbon nanotube (MWCNT) paper interlayer between the sulfur cathode and the polymeric separator, resulting in good electron transport and adsorption of dissolved polysulfides. To advance the interlayer concept further, we present here a self-assembled MWCNT interlayer fabricated by a facile, low-cost process. The Li-S cells fabricated with the self-assembled MWCNT interlayer and a high loading of 3 mg cm(-2) sulfur exhibit a first discharge specific capacity of 1112 mAh g(-1) at 0.1 C rate and retain 95.8% of the capacity at 0.5 C rate after 100 cycles as the self-assembled MWCNT interlayer facilitates good interfacial contact between the interlayer and the sulfur cathode and fast electron and lithium-ion transport while trapping and reutilizing the migrating polysulfides. The approach presented here has the potential to advance the commercialization feasibility of the Li-S batteries.

  15. Core-Shell Coating Silicon Anode Interfaces with Coordination Complex for Stable Lithium-Ion Batteries.

    PubMed

    Zhou, Jinqiu; Qian, Tao; Wang, Mengfan; Xu, Na; Zhang, Qi; Li, Qun; Yan, Chenglin

    2016-03-02

    In situ core-shell coating was used to improve the electrochemical performance of Si-based anodes with polypyrrole-Fe coordination complex. The vast functional groups in the organometallic coordination complex easily formed hydrogen bonds when in situ modifying commercial Si nanoparticles. The incorporation of polypyrrole-Fe resulted in the conformal conductive coating surrounding each Si nanoparticle, not only providing good electrical connection to the particles but also promoting the formation of a stable solid-electrolyte-interface layer on the Si electrode surface, enhancing the cycling properties. As an anode material for Li-ion batteries, modified silicon powders exhibited high reversible capacity (3567 mAh/g at 0.3 A/g), good rate property (549.12 mAh/g at 12 A/g), and excellent cycling performance (reversible capacity of 1500 mAh/g after 800 cycles at 1.2 A/g). The constructed novel concept of core-shell coating Si particles presented a promising route for facile and large-scale production of Si-based anodes for extremely durable Li-ion batteries, which provided a wide range of applications in the field of energy storage of the renewable energy derived from the solar energy, hydropower, tidal energy, and geothermal heat.

  16. SO2-tolerant and H2O-promoting Pt/C catalysts for efficient NO removal via fixed-bed H2-SCR.

    PubMed

    Tu, Baosheng; Shi, Nian; Sun, Wei; Cao, Limei; Yang, Ji

    2017-01-01

    In this paper, Pt supports on carbon black powder (Vulcan XC-72) were synthesized via a hydrothermal method for selective catalytic reduction (SCR) of NO with H 2 in the presence of 2 vol% O 2 over a wide temperature of 20-300 °C. The results showed that the 3 and 5 wt% Pt/C catalysts resulted in high NO conversion (>90 %) over a temperature range of 120 to 300 °C, and the maximum NO conversion of 98.6 % was achieved over 5 wt% Pt/C at 120 °C. Meanwhile, the influence of SO 2 and H 2 O on the catalyst performance of 3 wt% Pt/C was investigated. The catalysts exhibited good SO 2 poisoning resistance when the SO 2 concentration was lower than 260 ppm. Moreover, a positive effect on NO conversion was detected with the addition of 3 and 5 vol% H 2 O in the feed gas stream. Graphical abstract TEM image and good NO conversion performance of the Pt/C catalysts.

  17. Valeriana officinalis Dry Plant Extract for Direct Compression: Preparation and Characterization

    PubMed Central

    Gallo, Loreana; Ramírez-Rigo, María Veronica; Piña, Juliana; Palma, Santiago; Allemandi, Daniel; Bucalá, Verónica

    2012-01-01

    Valeriana officinalis L. (Valerianaceae) is one of the most widely used plants for the treatment of anxiety and insomnia. Usually dry plant extracts, including V. officinalis, are hygroscopic materials with poor physico-mechanical properties that can be directly compressed. A V. officinalis dry extract with moderate hygroscocity is suitable for direct compression, and was obtained by using a simple and economical technique. The V. officinalis fluid extract was oven-dried with colloidal silicon dioxide as a drying adjuvant. The addition of colloidal silicon dioxide resulted in a dry plant extract with good physico-mechanical properties for direct compression and lower hygroscopicity than the dry extract without the carrier. The dry plant extract glass transition temperature was considerably above room temperature (about 72 °C). The colloidal silicon dioxide also produced an antiplasticizing effect, improving the powder’s physical stability. The pharmaceutical performance of the prepared V. officinalis dry extract was studied through the design of tablets. The manufactured tablets showed good compactability, friability, hardness, and disintegration time. Those containing a disintegrant (Avicel PH 101) exhibited the best pharmaceutical performance, having the lowest disintegration time of around 40 seconds. PMID:23264947

  18. Polypyrrole-polyoxometalate/reduced graphene oxide ternary nanohybrids for flexible, all-solid-state supercapacitors.

    PubMed

    Chen, Yuyun; Han, Min; Tang, Yujia; Bao, Jianchun; Li, Shunli; Lan, Yaqian; Dai, Zhihui

    2015-08-11

    Novel polypyrrole-polyoxometalate/reduced graphene oxide ternary nanohybrids (TNHs) are synthesized via a one-pot redox relay strategy. The TNHs exhibit high areal specific capacitance (2.61 mF cm(-2)), and the fabricated solid device also exhibits good rate capability, excellent flexibility and mechanical stability.

  19. 34 CFR 101.74 - Exhibits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Exhibits. 101.74 Section 101.74 Education Regulations of the Offices of the Department of Education OFFICE FOR CIVIL RIGHTS, DEPARTMENT OF EDUCATION... objection thereto is filed prior to the hearing or unless good cause is shown at the hearing for failure to...

  20. The medial prefrontal cortex exhibits money illusion

    PubMed Central

    Weber, Bernd; Rangel, Antonio; Wibral, Matthias; Falk, Armin

    2009-01-01

    Behavioral economists have proposed that money illusion, which is a deviation from rationality in which individuals engage in nominal evaluation, can explain a wide range of important economic and social phenomena. This proposition stands in sharp contrast to the standard economic assumption of rationality that requires individuals to judge the value of money only on the basis of the bundle of goods that it can buy—its real value—and not on the basis of the actual amount of currency—its nominal value. We used fMRI to investigate whether the brain's reward circuitry exhibits money illusion. Subjects received prizes in 2 different experimental conditions that were identical in real economic terms, but differed in nominal terms. Thus, in the absence of money illusion there should be no differences in activation in reward-related brain areas. In contrast, we found that areas of the ventromedial prefrontal cortex (vmPFC), which have been previously associated with the processing of anticipatory and experienced rewards, and the valuation of goods, exhibited money illusion. We also found that the amount of money illusion exhibited by the vmPFC was correlated with the amount of money illusion exhibited in the evaluation of economic transactions. PMID:19307555

  1. Characterization of Low Noise, Precision Voltage Reference REF5025-HT Under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2010-01-01

    The performance of Texas Instruments precision voltage reference REF5025-HT was assessed under extreme temperatures. This low noise, 2.5 V output chip is suitable for use in high temperature down-hole drilling applications, but no data existed on its performance at cryogenic temperatures. The device was characterized in terms of output voltage and supply current at different input voltage levels as a function of temperature between +210 C and -190 C. Line and load regulation characteristics were also established at six load levels and at different temperatures. Restart capability at extreme temperatures and the effects of thermal cycling, covering the test temperature range, on its operation and stability were also investigated. Under no load condition, the voltage reference chip exhibited good stability in its output over the temperature range of -50 C to +200 C. Outside that temperature range, output voltage did change as temperature was changed. For example, at the extreme temperatures of +210 C and - 190 C, the output level dropped to 2.43 V and 2.32 V, respectively as compared to the nominal value of 2.5 V. At cryogenic test temperatures of -100 C and -150 C the output voltage dropped by about 20%. The quiescent supply current of the voltage reference varied slightly with temperature but remained close to its specified value. In terms of line regulation, the device exhibited excellent stability between -50 C and +150 C over the entire input voltage range and load levels. At the other test temperatures, however, while line regulation became poor at cryogenic temperatures of -100 C and below, it suffered slight degradation at the extreme high temperature but only at the high load level of 10 mA. The voltage reference also exhibited very good load regulation with temperature down to -100 C, but its output dropped sharply at +210 C only at the heavy load of 10 mA. The semiconductor chip was able restart at the extreme temperatures of -190 C and +210 C, and the limited thermal cycling did not influence its characteristics and had no impact on its packaging as no structural or physical damage was observed.

  2. A Comparison of Cognitive Flexibility and Metalinguistic Skills in Adult Good and Poor Comprehenders

    ERIC Educational Resources Information Center

    Cartwright, Kelly B.; Bock, Allison M.; Coppage, Elizabeth A.; Hodgkiss, Melinda D.; Nelson, Marisa Isaac

    2017-01-01

    Good and poor comprehenders exhibit different profiles of cognitive abilities, despite comparable decoding skills. Recent work suggests that executive functions, particularly cognitive flexibility, may underlie poor comprehenders' difficulties in childhood and adulthood. However, metalinguistic skills that enable readers to reflect on various…

  3. Study on the Mg-Li-Zn ternary alloy system with improved mechanical properties, good degradation performance and different responses to cells.

    PubMed

    Liu, Yang; Wu, Yuanhao; Bian, Dong; Gao, Shuang; Leeflang, Sander; Guo, Hui; Zheng, Yufeng; Zhou, Jie

    2017-10-15

    Novel Mg-(3.5, 6.5wt%)Li-(0.5, 2, 4wt%)Zn ternary alloys were developed as new kinds of biodegradable metallic materials with potential for stent application. Their mechanical properties, degradation behavior, cytocompatibility and hemocompatibility were studied. These potential biomaterials showed higher ultimate tensile strength than previously reported binary Mg-Li alloys and ternary Mg-Li-X (X=Al, Y, Ce, Sc, Mn and Ag) alloys. Among the alloys studied, the Mg-3.5Li-2Zn and Mg-6.5Li-2Zn alloys exhibited comparable corrosion resistance in Hank's solution to pure magnesium and better corrosion resistance in a cell culture medium than pure magnesium. Corrosion products observed on the corroded surface were composed of Mg(OH) 2 , MgCO 3 and Ca-free Mg/P inorganics and Ca/P inorganics. In vitro cytotoxicity assay revealed different behaviors of Human Umbilical Vein Endothelial Cells (HUVECs) and Human Aorta Vascular Smooth Muscle Cells (VSMCs) to material extracts. HUVECs showed increasing nitric oxide (NO) release and tolerable toxicity, whereas VSMCs exhibited limited decreasing viability with time. Platelet adhesion, hemolysis and coagulation tests of these Mg-Li-Zn alloys showed different degrees of activation behavior, in which the hemolysis of the Mg-3.5Li-2Zn alloy was lower than 5%. These results indicated the potential of the Mg-Li-Zn alloys as good candidate materials for cardiovascular stent applications. Mg-Li alloys are promising as absorbable metallic biomaterials, which however have not received significant attention since the low strength, controversial corrosion performance and the doubts in Li toxicity. The Mg-Li-Zn alloy in the present study revealed much improved mechanical properties higher than most reported binary Mg-Li and ternary Mg-Li-X alloys, with superior corrosion resistance in cell culture media. Surprisingly, the addition of Li and Zn showed increased nitric oxide release. The present study indicates good potential of Mg-Li-Zn alloy as absorbable cardiovascular stent material. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  4. Synthesis of iron oxides nanoparticles with very high saturation magnetization form TEA-Fe(III) complex via electrochemical deposition for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Elrouby, Mahmoud; Abdel-Mawgoud, A. M.; El-Rahman, Rehab Abd

    2017-11-01

    This work is devoted to the synthesis of magnetic iron oxides nanoparticles with very high saturation magnetization to be qualified for supercapacitor applications using, a simple electrodeposition technique. It is found that the electrochemical reduction process depends on concentration, temperature, deposition potential and the scan rate of potential. The nature of electrodeposition process has been characterized via voltammetric and chronoamperometric techniques. The morphology of the electrodeposits has been investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure and phase content of these investigated electrodeposits have been examined and calculated. The obtained iron oxides show a high saturation magnetization (Ms) of about 229 emu g-1. The data exhibited a relation between Ms of electrodeposited iron oxide and specific capacitance. This relation exhibits that the highest Ms value of electrodeposited iron oxides gives also highest specific capacitance of about 725 Fg-1. Moreover, the electrodeposited iron oxides exhibit a very good stability. The new characteristics of the electro synthesized iron oxides at our optimized conditions, strongly qualify them as a valuable material for high-performance supercapacitor applications.

  5. Piezoelectric Active Humidity Sensors Based on Lead-Free NaNbO₃ Piezoelectric Nanofibers.

    PubMed

    Gu, Li; Zhou, Di; Cao, Jun Cheng

    2016-06-07

    The development of micro-/nano-scaled energy harvesters and the self-powered sensor system has attracted great attention due to the miniaturization and integration of the micro-device. In this work, lead-free NaNbO₃ piezoelectric nanofibers with a monoclinic perovskite structure were synthesized by the far-field electrospinning method. The flexible active humidity sensors were fabricated by transferring the nanofibers from silicon to a soft polymer substrate. The sensors exhibited outstanding piezoelectric energy-harvesting performance with output voltage up to 2 V during the vibration process. The output voltage generated by the NaNbO₃ sensors exhibited a negative correlation with the environmental humidity varying from 5% to 80%, where the peak-to-peak value of the output voltage generated by the sensors decreased from 0.40 to 0.07 V. The sensor also exhibited a short response time, good selectively against ethanol steam, and great temperature stability. The piezoelectric active humidity sensing property could be attributed to the increased leakage current in the NaNbO₃ nanofibers, which was generated due to proton hopping among the H₃O⁺ groups in the absorbed H₂O layers under the driving force of the piezoelectric potential.

  6. Nanomechanical Behavior of High Gas Barrier Multilayer Thin Films.

    PubMed

    Humood, Mohammad; Chowdhury, Shahla; Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C; Polycarpou, Andreas A

    2016-05-04

    Nanoindentation and nanoscratch experiments were performed on thin multilayer films manufactured using the layer-by-layer (LbL) assembly technique. These films are known to exhibit high gas barrier, but little is known about their durability, which is an important feature for various packaging applications (e.g., food and electronics). Films were prepared from bilayer and quadlayer sequences, with varying thickness and composition. In an effort to evaluate multilayer thin film surface and mechanical properties, and their resistance to failure and wear, a comprehensive range of experiments were conducted: low and high load indentation, low and high load scratch. Some of the thin films were found to have exceptional mechanical behavior and exhibit excellent scratch resistance. Specifically, nanobrick wall structures, comprising montmorillonite (MMT) clay and polyethylenimine (PEI) bilayers, are the most durable coatings. PEI/MMT films exhibit high hardness, large elastic modulus, high elastic recovery, low friction, low scratch depth, and a smooth surface. When combined with the low oxygen permeability and high optical transmission of these thin films, these excellent mechanical properties make them good candidates for hard coating surface-sensitive substrates, where polymers are required to sustain long-term surface aesthetics and quality.

  7. Surface design and engineering of hierarchical hybrid nanostructures for asymmetric supercapacitors with improved electrochemical performance.

    PubMed

    Achilleos, Demetra S; Hatton, T Alan

    2015-06-01

    With the current rising world demand for energy sufficiency, there is an increased necessity for the development of efficient energy storage devices. To address these needs, the scientific community has focused on the improvement of the electrochemical properties of the most well known energy storage devices; the Li-ion batteries and electrochemical capacitors, also called supercapacitors. Despite the fact that supercapacitors exhibit high power densities, good reversibility and long cycle life, they still exhibit lower energy densities than batteries, which limit their practical application. Various strategies have been employed to circumvent this problem, specifically targetting an increase in the specific capacitance and the broadening of the potential window of operation of these systems. In recent years, sophisticated surface design and engineering of hierarchical hybrid nanostructures has facilitated significant improvements in the specific and volumetric storage capabilities of supercapacitors. These nanostructured electrodes exhibit higher surface areas for ion adsorption and reduced ion diffusion lengths for the electrolyte ions. Significant advances have also been achieved in broadening the electrochemical window of operation of these systems, as realized via the development of asymmetric two-electrode cells consisting of nanocomposite positive and negative electrodes with complementary electrochemical windows, which operate in environmentally benign aqueous media. We provide an overview of the diverse approaches, in terms of chemistry and nanoscale architecture, employed recently for the development of asymmetric supercapacitors of improved electrochemical performance. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Ultrathin porous NiCo2O4 nanosheet arrays on flexible carbon fabric for high-performance supercapacitors.

    PubMed

    Du, Jun; Zhou, Gang; Zhang, Haiming; Cheng, Chao; Ma, Jianmin; Wei, Weifeng; Chen, Libao; Wang, Taihong

    2013-08-14

    NiCo2O4 with higher specific capacitance is an excellent pseudocapacitive material. However, the bulk NiCo2O4 material prevents the achievement of high energy desity and great rate performance due to the limited electroactive surface area. In this work, NiCo2O4 nanosheet arrays were deposited on flexible carbon fabric (CF) as a high-performance electrode for supercapacitors. The NiCo2O4 arrays were constructed by interconnected ultrathin nanosheets (10 nm) with many interparticle pores. The porous feature of NiCo2O4 nanosheets increases the amount of electroactive sites and facilitates the electrolyte penetration. Hence, the NiCo2O4/CF composites exhibited a high specific capacitance of 2658 F g(-1) (2 A g(-1)), good rate performance, and superior cycling life, suggesting the NiCo2O4/CF is a promising electrode material for flexible electrochemical capacitors.

  9. Three-dimensional nitrogen doped holey reduced graphene oxide framework as metal-free counter electrodes for high performance dye-sensitized solar cells

    NASA Astrophysics Data System (ADS)

    Yu, Mei; Zhang, Jindan; Li, Songmei; Meng, Yanbing; Liu, Jianhua

    2016-03-01

    Three-dimensional nitrogen doped holey reduced graphene oxide framework (NHGF) with hierarchical porosity structure was developed as high-performance metal-free counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). With plenty of exposed active sites, efficient electron and ion transport pathways as well as a high surface hydrophilicity, NHGF-CE exhibits good electrocatalytic performances for I- /I3- redox couple and a low charge transfer resistance (Rct). The Rct of NHGF-CE is 1.46 Ω cm2, which is much lower than that of Pt-CE (4.02 Ω cm2). The DSSC with NHGF-CE reaches a power conversion efficiency of 5.56% and a fill factor of 65.5%, while those of the DSSC with Pt-CE are only 5.45% and 62.3%, respectively. The achievement of the highly efficient 3D structure presents a potential way to fabricate low-cost and metal-free counter electrodes with excellent performance.

  10. Porous Graphene Microflowers for High-Performance Microwave Absorption

    NASA Astrophysics Data System (ADS)

    Chen, Chen; Xi, Jiabin; Zhou, Erzhen; Peng, Li; Chen, Zichen; Gao, Chao

    2018-06-01

    Graphene has shown great potential in microwave absorption (MA) owing to its high surface area, low density, tunable electrical conductivity and good chemical stability. To fully realize graphene's MA ability, the microstructure of graphene should be carefully addressed. Here we prepared graphene microflowers (Gmfs) with highly porous structure for high-performance MA filler material. The efficient absorption bandwidth (reflection loss ≤ -10 dB) reaches 5.59 GHz and the minimum reflection loss is up to -42.9 dB, showing significant increment compared with stacked graphene. Such performance is higher than most graphene-based materials in the literature. Besides, the low filling content (10 wt%) and low density (40-50 mg cm-3) are beneficial for the practical applications. Without compounding with magnetic materials or conductive polymers, Gmfs show outstanding MA performance with the aid of rational microstructure design. Furthermore, Gmfs exhibit advantages in facile processibility and large-scale production compared with other porous graphene materials including aerogels and foams.

  11. Sustainable, heat-resistant and flame-retardant cellulose-based composite separator for high-performance lithium ion battery

    PubMed Central

    Zhang, Jianjun; Yue, Liping; Kong, Qingshan; Liu, Zhihong; Zhou, Xinhong; Zhang, Chuanjian; Xu, Quan; Zhang, Bo; Ding, Guoliang; Qin, Bingsheng; Duan, Yulong; Wang, Qingfu; Yao, Jianhua; Cui, Guanglei; Chen, Liquan

    2014-01-01

    A sustainable, heat-resistant and flame-retardant cellulose-based composite nonwoven has been successfully fabricated and explored its potential application for promising separator of high-performance lithium ion battery. It was demonstrated that this flame-retardant cellulose-based composite separator possessed good flame retardancy, superior heat tolerance and proper mechanical strength. As compared to the commercialized polypropylene (PP) separator, such composite separator presented improved electrolyte uptake, better interface stability and enhanced ionic conductivity. In addition, the lithium cobalt oxide (LiCoO2)/graphite cell using this composite separator exhibited better rate capability and cycling retention than that for PP separator owing to its facile ion transport and excellent interfacial compatibility. Furthermore, the lithium iron phosphate (LiFePO4)/lithium cell with such composite separator delivered stable cycling performance and thermal dimensional stability even at an elevated temperature of 120°C. All these fascinating characteristics would boost the application of this composite separator for high-performance lithium ion battery. PMID:24488228

  12. Comparative Evaluation of Biological Performance, Biosecurity, and Availability of Cellulose-Based Absorbable Hemostats.

    PubMed

    Wu, Yadong; Wang, Fang; Huang, Yudong

    2018-05-01

    Hemorrhage remains a leading cause of death after trauma, and developing a hemostat with excellent performance and good biosecurity is an extremely active area of research and commercial product development. Although oxidized regenerated cellulose (ORC) has been developed to address these problems, it is not always efficient and its biosecurity is not perfect. We aimed to refine ORC via a simple and mild neutralization method. The prepared neutralized oxidized regenerated cellulose (NORC) showed a superior gel property due to its chemical structure. The biological performance of both ORC and NORC was systematically evaluated; the results showed that ORC would induce erythema and edema in the irritation test, whereas NORC did not cause any adverse inflammation, indicating NORC had desirable biocompatibility. We further demonstrated that NORC confirmed to the toxicity requirements of International Organization for Standardization (ISO) standards; however, ORC showed an unacceptable cytotoxicity. The rabbit hepatic defect model stated that NORC exhibited better ability of hemostasis, which was attributed to its significant gel performance in physiological environment.

  13. Reach performance while wearing the Space Shuttle launch and entry suit during exposure to launch accelerations

    NASA Technical Reports Server (NTRS)

    Bagian, James P.; Greenisen, M. C.; Schafer, L. E.; Probe, J. D.; Krutz, Robert W., Jr.

    1990-01-01

    A crew of four veteran astronaut/pilots were subjected to sustained linear accelerations of up to 3G(x) in order to quantify crew reach performance while wearing the currently used Launch and Entry Suit (LES). Photogrammetric techniques were used to quantify magnitudes of reach in any direction while subjects rode a centrifuge. Subjects exhibited small changes of reach capability in the +x (forward) direction which ranged from an improvement of 2.04 cm to a decrease of 14.4 cm while reach performance in the +z (overhead) direction was improved in three of four subjects, indicating that any task which could be accomplished under exposure to 1G(x) could definitely be done at 3G(x). The data from this experiment demonstrated that Shuttle crews in training can expect to maintain all of the overhead reach capability evident in good simulator runs and suffer only moderate degradation in the forward reach performance during the launch phase of an actual Shuttle mission.

  14. Electric double layer capacitors employing nitrogen and sulfur co-doped, hierarchically porous graphene electrodes with synergistically enhanced performance

    NASA Astrophysics Data System (ADS)

    Kannan, Aravindaraj G.; Samuthirapandian, Amaresh; Kim, Dong-Won

    2017-01-01

    Hierarchically porous graphene nanosheets co-doped with nitrogen and sulfur are synthesized via a simple hydrothermal method, followed by a pore activation step. Pore architectures are controlled by varying the ratio of chemical activation agents to graphene, and its influence on the capacitive performance is evaluated. The electric double layer capacitor (EDLC) assembled with optimized dual-doped graphene delivers a high specific capacitance of 146.6 F g-1 at a current density of 0.8 A g-1, which is higher than that of cells with un-doped and single-heteroatom doped graphene. The EDLC with dual-doped graphene electrodes exhibits stable cycling performance with a capacitance retention of 94.5% after 25,000 cycles at a current density of 3.2 A g-1. Such a good performance can be attributed to synergistic effects due to co-doping of the graphene nanosheets and the presence of hierarchical porous structures.

  15. Development of dopant-free conductive bioelastomers

    PubMed Central

    Xu, Cancan; Huang, Yihui; Yepez, Gerardo; Wei, Zi; Liu, Fuqiang; Bugarin, Alejandro; Tang, Liping; Hong, Yi

    2016-01-01

    Conductive biodegradable materials are of great interest for various biomedical applications, such as tissue repair and bioelectronics. They generally consist of multiple components, including biodegradable polymer/non-degradable conductive polymer/dopant, biodegradable conductive polymer/dopant or biodegradable polymer/non-degradable inorganic additives. The dopants or additives induce material instability that can be complex and possibly toxic. Material softness and elasticity are also highly expected for soft tissue repair and soft electronics. To address these concerns, we designed a unicomponent dopant-free conductive polyurethane elastomer (DCPU) by chemically linking biodegradable segments, conductive segments, and dopant molecules into one polymer chain. The DCPU films which had robust mechanical properties with high elasticity and conductivity can be degraded enzymatically and by hydrolysis. It exhibited great electrical stability in physiological environment with charge. Mouse 3T3 fibroblasts survived and proliferated on these films exhibiting good cytocompatibility. Polymer degradation products were non-toxic. DCPU could also be processed into a porous scaffold and in an in vivo subcutaneous implantation model, exhibited good tissue compatibility with extensive cell infiltration over 2 weeks. Such biodegradable DCPU with good flexibility and elasticity, processability, and electrical stability may find broad applications for tissue repair and soft/stretchable/wearable bioelectronics. PMID:27686216

  16. Percutaneous bioprosthetic venous valve: a long-term study in sheep.

    PubMed

    Pavcnik, Dusan; Uchida, Barry T; Timmermans, Hans A; Corless, Christopher L; O'Hara, Michael; Toyota, Naoyuki; Moneta, Gregory L; Keller, Frederick S; Rösch, Josef

    2002-03-01

    A long-term evaluation of a new percutaneously placed bioprosthetic, bicuspid venous valve (BVV) consisting of a square stent and small intestinal submucosa (SIS) covering was performed in 12 sheep. Of 26 BVVs placed into the jugular veins, 25 exhibited good valve function on immediate venography and 22 on venograms obtained before the sheep were killed. Gross and histologic examination results demonstrated incorporation of remodeled and endothelialized SIS BVVs into the vein wall. Slight to moderate leaflet thickening was found mostly at their bases. Percutaneously placed SIS BVV is a promising one-way, competent valve that resists venous back-pressure while allowing forward flow.

  17. Heating-rate-induced porous α-Fe2O3 with controllable pore size and crystallinity grown on graphene for supercapacitors.

    PubMed

    Yang, Shuhua; Song, Xuefeng; Zhang, Peng; Gao, Lian

    2015-01-14

    Porous α-Fe2O3/graphene composites (S-PIGCs) have been synthesized by a simple hydrothermal method combined with a slow annealing route. The S-PIGCs as a supercapacitors electrode material exhibit an ultrahigh specific capacitance of 343.7 F g(-1) at a current density of 3 A g(-1), good rate capability, and excellent cycling stability. The enhanced electrochemical performances are attributed to the combined contribution from the optimally architecture of the porous α-Fe2O3, as a result of a slow annealing, and the extraordinary electrical conductivity of the graphene sheets.

  18. Electrothermal actuation based on carbon nanotube network in silicone elastomer

    NASA Astrophysics Data System (ADS)

    Chen, L. Z.; Liu, C. H.; Hu, C. H.; Fan, S. S.

    2008-06-01

    The authors report an electrothermal actuator, which is fabricated by involving carbon nanotube network into the silicone elastomer. The actuators exhibit excellent performances as good as normal dielectric elastomer actuators while working under much lower voltages (e.g., 1.5Vmm-1). They are longitudinal actuators and there is no need for stacking or rolling sheets of materials. In addition, they can satisfy the demand of different voltage applications ranging from dozens of voltages to thousands of voltages by using different carbon nanotube loading composites. Visible maximal strain of 4.4% occurs at an electric power intensity around 0.03Wmm-3.

  19. Graphene based strain sensor with LCP substrate

    NASA Astrophysics Data System (ADS)

    Nie, M.; Yang, H. S.; Xia, Y. H.

    2018-02-01

    A flexible strain sensor constructed by an efficient, low-cost fabrication strategy is presented in this paper. It is assembled by adhering grid-like graphene on LCP substrate. Kinds of measurement setup have been designed to verify that the proposed flexible sensor device is suitable to be used in health monitoring system. From the experiment results, it can be proved that the sensor exhibits the following features: ultra-light, relatively good sensitivity, high reversibility, superior physical robustness, easy fabrication. With the great performance of this flexible strain sensor, it is considered to play an important role in body monitoring, structural health monitoring system, fatigue detection and healthcare systems in the near future.

  20. Si-H induced synthesis of Si/Cu2O nanowire arrays for photoelectrochemical water splitting

    NASA Astrophysics Data System (ADS)

    Zhang, Shaoyang; She, Guangwei; Li, Shengyang; Mu, Lixuan; Shi, Wensheng

    2018-01-01

    We report a facile and low-cost method to synthesize Si/Cu2O heterojunction nanowire arrays, without SiOx, at the Si/Cu2O interface. The reductive Si-H bonds on the surface of Si nanowires plays a key role in situ by reducing Cu(II) ions to Cu2O nanocubes and avoiding the SiOx interface layer. Different pH values would vary the electrochemical potential of reactions and as a result, different products would be formed. Utilized as a photoanode for water splitting, Si/Cu2O nanowire arrays exhibit good photoelectrochemical performance.

  1. Enriched reproducing kernel particle method for fractional advection-diffusion equation

    NASA Astrophysics Data System (ADS)

    Ying, Yuping; Lian, Yanping; Tang, Shaoqiang; Liu, Wing Kam

    2018-06-01

    The reproducing kernel particle method (RKPM) has been efficiently applied to problems with large deformations, high gradients and high modal density. In this paper, it is extended to solve a nonlocal problem modeled by a fractional advection-diffusion equation (FADE), which exhibits a boundary layer with low regularity. We formulate this method on a moving least-square approach. Via the enrichment of fractional-order power functions to the traditional integer-order basis for RKPM, leading terms of the solution to the FADE can be exactly reproduced, which guarantees a good approximation to the boundary layer. Numerical tests are performed to verify the proposed approach.

  2. Transient thermal camouflage and heat signature control

    NASA Astrophysics Data System (ADS)

    Yang, Tian-Zhi; Su, Yishu; Xu, Weikai; Yang, Xiao-Dong

    2016-09-01

    Thermal metamaterials have been proposed to manipulate heat flux as a new way to cloak or camouflage objects in the infrared world. To date, however, thermal metamaterials only operate in the steady-state and exhibit detectable, transient heat signatures. In this letter, the theoretical basis for a thermal camouflaging technique with controlled transient diffusion is presented. This technique renders an object invisible in real time. More importantly, the thermal camouflaging device instantaneously generates a pre-designed heat signature and behaves as a perfect thermal illusion device. A metamaterial coating with homogeneous and isotropic thermal conductivity, density, and volumetric heat capacity was fabricated and very good camouflaging performance was achieved.

  3. Nonflammable perfluoropolyether-based electrolytes for lithium batteries.

    PubMed

    Wong, Dominica H C; Thelen, Jacob L; Fu, Yanbao; Devaux, Didier; Pandya, Ashish A; Battaglia, Vincent S; Balsara, Nitash P; DeSimone, Joseph M

    2014-03-04

    The flammability of conventional alkyl carbonate electrolytes hinders the integration of large-scale lithium-ion batteries in transportation and grid storage applications. In this study, we have prepared a unique nonflammable electrolyte composed of low molecular weight perfluoropolyethers and bis(trifluoromethane)sulfonimide lithium salt. These electrolytes exhibit thermal stability beyond 200 °C and a remarkably high transference number of at least 0.91 (more than double that of conventional electrolytes). Li/LiNi1/3Co1/3Mn1/3O2 cells made with this electrolyte show good performance in galvanostatic cycling, confirming their potential as rechargeable lithium batteries with enhanced safety and longevity.

  4. Synthesis of functional carbon nanospheres by a composite-molten-salt method and amperometric sensing of hydrogen peroxide.

    PubMed

    Wang, Xue; Hu, Chenguo; Xiong, Yufeng; Zhang, Cuiling

    2013-02-01

    Functional carbon nanospheres have been synthesized from analytically pure glucose by a composite-molten-salt (CMS) method. Field emission scanning electron microscopy, transmission electron microscopy, Raman and Fourier transformation infra-red spectroscopy indicate the carbon nanospheres are solid, bond hybridisation (sp2/sp3) and with many functional groups on their surfaces. Amperometric sensor based on the synthesized carbon nanospheres have been fabricated without pretreatment or modification. The detection of hydrogen peroxide exhibits high sensitivity and good selectivity. The electrochemical measurement of these nanospheres demonstrates much superior performance to those of the carbon nanospheres synthesized by hydrothermal method.

  5. Nonflammable perfluoropolyether-based electrolytes for lithium batteries

    PubMed Central

    Wong, Dominica H. C.; Thelen, Jacob L.; Fu, Yanbao; Devaux, Didier; Pandya, Ashish A.; Battaglia, Vincent S.; Balsara, Nitash P.; DeSimone, Joseph M.

    2014-01-01

    The flammability of conventional alkyl carbonate electrolytes hinders the integration of large-scale lithium-ion batteries in transportation and grid storage applications. In this study, we have prepared a unique nonflammable electrolyte composed of low molecular weight perfluoropolyethers and bis(trifluoromethane)sulfonimide lithium salt. These electrolytes exhibit thermal stability beyond 200 °C and a remarkably high transference number of at least 0.91 (more than double that of conventional electrolytes). Li/LiNi1/3Co1/3Mn1/3O2 cells made with this electrolyte show good performance in galvanostatic cycling, confirming their potential as rechargeable lithium batteries with enhanced safety and longevity. PMID:24516123

  6. Properties of nanosheets of 2D-borocarbonitrides related to energy devices, transistors and other areas

    NASA Astrophysics Data System (ADS)

    Sreedhara, M. B.; Gopalakrishnan, K.; Bharath, B.; Kumar, Ram; Kulkarni, G. U.; Rao, C. N. R.

    2016-07-01

    We have prepared borocarbonitrides of various compositions with extended sheet morphology, by the reaction of few-layer graphene with boric acid and urea at 900 °C and characterized them in detail. Supercapacitor performance of the borocarbonitrides has been studied in detail, the composition containing more pyridinc nitrogen exhibiting a specific capacitance of 306 F/g at 0.2 A/g. This composition also shows good oxygen reduction reaction (ORR) activity with an electron transfer number close to 4. The extended sheet structures of the BxCyNz samples has enabled us to fabricate field-effect transistors. These materials also show reasonable UV photoresponse.

  7. Homogenization kinetics of a nickel-based superalloy produced by powder bed fusion laser sintering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fan; Levine, Lyle E.; Allen, Andrew J.

    2017-04-01

    Additively manufactured (AM) metal components often exhibit fine dendritic microstructures and elemental segregation due to the initial rapid solidification and subsequent melting and cooling during the build process, which without homogenization would adversely affect materials performance. In this letter, we report in situ observation of the homogenization kinetics of an AM nickel-based superalloy using synchrotron small angle X-ray scattering. The identified kinetic time scale is in good agreement with thermodynamic diffusion simulation predictions using microstructural dimensions acquired by ex situ scanning electron microscopy. These findings could serve as a recipe for predicting, observing, and validating homogenization treatments in AM materials.

  8. Homogenization Kinetics of a Nickel-based Superalloy Produced by Powder Bed Fusion Laser Sintering.

    PubMed

    Zhang, Fan; Levine, Lyle E; Allen, Andrew J; Campbell, Carelyn E; Lass, Eric A; Cheruvathur, Sudha; Stoudt, Mark R; Williams, Maureen E; Idell, Yaakov

    2017-04-01

    Additively manufactured (AM) metal components often exhibit fine dendritic microstructures and elemental segregation due to the initial rapid solidification and subsequent melting and cooling during the build process, which without homogenization would adversely affect materials performance. In this letter, we report in situ observation of the homogenization kinetics of an AM nickel-based superalloy using synchrotron small angle X-ray scattering. The identified kinetic time scale is in good agreement with thermodynamic diffusion simulation predictions using microstructural dimensions acquired by ex situ scanning electron microscopy. These findings could serve as a recipe for predicting, observing, and validating homogenization treatments in AM materials.

  9. Arsenic Removal from Water by Adsorption on Iron-Contaminated Cryptocrystalline Graphite

    NASA Astrophysics Data System (ADS)

    Yang, Qiang; Yang, Lang; Song, Shaoxian; Xia, Ling

    This work aimed to study the feasibility of using iron-contaminated graphite as an adsorbent for As(V) removal from water. The adsorbent was prepared by grinding graphite concentrate with steel ball. The study was performed through the measurements of adsorption capacity, BET surface area and XPS analysis. The experimental results showed that the iron-contaminated graphite exhibited significantly high adsorption capacity of As(V). The higher the iron contaminated on the graphite surface, the higher the adsorption capacity of As(V) on the material obtained. It was suggested that the ion-contaminated graphite was a good adsorbent for As(V) removal.

  10. Ethylene Gas Sensing Properties of Tin Oxide Nanowires Synthesized via CVD Method

    NASA Astrophysics Data System (ADS)

    Akhir, Maisara A. M.; Mohamed, Khairudin; Rezan, Sheikh A.; Arafat, M. M.; Haseeb, A. S. M. A.; Uda, M. N. A.; Nuradibah, M. A.

    2018-03-01

    This paper studies ethylene gas sensing performance of tin oxide (SnO2) nanowires (NWs) as sensing material synthesized using chemical vapor deposition (CVD) technique. The effect of NWs diameter on ethylene gas sensing characteristics were investigated. SnO2 NWs with diameter of ∼40 and ∼240 nm were deposited onto the alumina substrate with printed gold electrodes and tested for sensing characteristic toward ethylene gas. From the finding, the smallest diameter of NWs (42 nm) exhibit fast response and recovery time and higher sensitivity compared to largest diameter of NWs (∼240 nm). Both sensor show good reversibility features for ethylene gas sensor.

  11. Polyimides Containing Pendent Phosphine Oxide Groups for Space Applications

    NASA Technical Reports Server (NTRS)

    Thompson, C. M.; Smith, J. G., Jr.; Watson, K. A.; Connell, J. W.

    2002-01-01

    As part of an ongoing materials development activity to produce high performance polymers that are durable to the space environment, phosphine oxide containing polyimides have been under investigation. A novel dianhydride was prepared from 2,5-dihydroxyphenyldiphenylphosphine oxide in good yield. The dianhydride was reacted with commercially available diamines, and a previously reported diamine was reacted with commercially available dianhydrides to prepare isomeric polyimides. The physical and mechanical properties, particularly thermal and optical properties, of the polymers were determined. One material exhibited a high glass transition temperature, high tensile properties, and low solar absorptivity. The chemistry, physical, and mechanical properties of these resins will be discussed.

  12. Encapsulating micro-nano Si/SiO x into conjugated nitrogen-doped carbon as binder-free monolithic anodes for advanced lithium ion batteries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Jing; Zhou, Meijuan; Tan, Guoqiang

    2015-01-01

    Silicon monoxide, a promising silicon-based anode candidate for lithium-ion batteries, has recently attracted much attention for its high theoretical capacity, good cycle stability, low cost, and environmental benignity. Currently, the most critical challenge is to improve its low initial coulombic efficiency and significant volume changes during the charge–discharge processes. Herein, we report a binder-free monolithic electrode structure based on directly encapsulating micro-nano Si/SiOx particles into conjugated nitrogen-doped carbon frameworks to form monolithic, multi-core, cross-linking composite matrices. We utilize micro-nano Si/SiOx reduced by high-energy ball-milling SiO as active materials, and conjugated nitrogen-doped carbon formed by the pyrolysis of polyacrylonitrile both asmore » binders and conductive agents. Owing to the high electrochemical activity of Si/SiOx and the good mechanical resiliency of conjugated nitrogen-doped carbon backbones, this specific composite structure enhances the utilization efficiency of SiO and accommodates its large volume expansion, as well as its good ionic and electronic conductivity. The annealed Si/SiOx/polyacrylonitrile composite electrode exhibits excellent electrochemical properties, including a high initial reversible capacity (2734 mA h g-1 with 75% coulombic efficiency), stable cycle performance (988 mA h g-1 after 100 cycles), and good rate capability (800 mA h g-1 at 1 A g-1 rate). Because the composite is naturally abundant and shows such excellent electrochemical performance, it is a promising anode candidate material for lithium-ion batteries. The binder-free monolithic architectural design also provides an effective way to prepare other monolithic electrode materials for advanced lithium-ion batteries.« less

  13. Controllable synthesis of mesoporous Co{sub 3}O{sub 4} nanoflake array and its application for supercapacitor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Anguo, E-mail: hixiaoanguo@126.com; Zhou, Shibiao; Zuo, Chenggang

    Graphical abstract: Electrodeposited mesoporous Co{sub 3}O{sub 4} nanoflake arrays exhibit porous structure composed of mesoporous nanoflakes and high supercapacitor performance. - Highlights: • Mesoporous Co{sub 3}O{sub 4} nanoflake arrays are prepared via electrodeposition method. • Mesoporous nanowall arrays are favorable for fast ion/electron transfer. • Mesoporous Co{sub 3}O{sub 4} nanoflake arrays show excellent supercapacitor performance. - Abstract: A mesoporous Co{sub 3}O{sub 4} nanoflake array grown on carbon cloth is prepared by a facile electrodeposition method with a following annealing process. The as-prepared Co{sub 3}O{sub 4} nanoflake possesses a continuous mesopores ranging from 2 to 5 nm and grows tightly onmore » the substrate forming a porous net-like structure with macropores of 20–200 nm. The electrochemical performance of the mesoporous Co{sub 3}O{sub 4} nanoflake arrays as pseudocapcitor electrode are investigated by cyclic voltammograms and galvanostatic charge/discharge tests in 2 M KOH. The as-prepared Co{sub 3}O{sub 4} array exhibits a high discharge capacitance and excellent rate capability with 450 F g{sup −1}, 436 F g{sup −1}, 408 F g{sup −1}, 380 F g{sup −1}and 363 F g{sup −1} at 1, 2, 4, 10, and 20 A g{sup −1}, respectively. The specific capacitance of 81% is maintained from 1 A g{sup −1} to 20 A g{sup −1}. The electrode also shows rather good cycling stability and exhibits a specific capacitance of 414 F g{sup −1} after 5000 cycles.« less

  14. Doing better to do good: the impact of strategic adaptation on nursing home performance.

    PubMed

    Zinn, Jacqueline S; Mor, Vincent; Feng, Zhanlian; Intrator, Orna

    2007-06-01

    To test the hypothesis that a greater commitment to strategic adaptation, as exhibited by more extensive implementation of a subacute/rehabilitation care strategy in nursing homes, will be associated with superior performance. Online Survey, Certification, and Reporting (OSCAR) data from 1997 to 2004, and the area resource file (ARF). The extent of strategic adaptation was measured by an aggregate weighted implementation score. Nursing home performance was measured by occupancy rate and two measures of payer mix. We conducted multivariate regression analyses using a cross-sectional time series generalized estimating equation (GEE) model to examine the effect of nursing home strategic implementation on each of the three performance measures, controlling for market and organizational characteristics that could influence nursing home performance. DATA COLLECTION/ABSTRACTION METHODS: OSCAR data was merged with relevant ARF data. The results of our analysis provide strong support for the hypothesis. From a theoretical perspective, our findings confirm that organizations that adjust strategies and structures to better fit environmental demands achieve superior performance. From a managerial perspective, these results support the importance of proactive strategic leadership in the nursing home industry.

  15. Multilayer SnSb4-SbSe Thin Films for Phase Change Materials Possessing Ultrafast Phase Change Speed and Enhanced Stability.

    PubMed

    Liu, Ruirui; Zhou, Xiao; Zhai, Jiwei; Song, Jun; Wu, Pengzhi; Lai, Tianshu; Song, Sannian; Song, Zhitang

    2017-08-16

    A multilayer thin film, comprising two different phase change material (PCM) components alternatively deposited, provides an effective means to tune and leverage good properties of its components, promising a new route toward high-performance PCMs. The present study systematically investigated the SnSb 4 -SbSe multilayer thin film as a potential PCM, combining experiments and first-principles calculations, and demonstrated that these multilayer thin films exhibit good electrical resistivity, robust thermal stability, and superior phase change speed. In particular, the potential operating temperature for 10 years is shown to be 122.0 °C and the phase change speed reaches 5 ns in the device test. The good thermal stability of the multilayer thin film is shown to come from the formation of the Sb 2 Se 3 phase, whereas the fast phase change speed can be attributed to the formation of vacancies and a SbSe metastable phase. It is also demonstrated that the SbSe metastable phase contributes to further enhancing the electrical resistivity of the crystalline state and the thermal stability of the amorphous state, being vital to determining the properties of the multilayer SnSb 4 -SbSe thin film.

  16. Nanowire-Assembled Hierarchical ZnCo2O4 Microstructure Integrated with a Low-Power Microheater for Highly Sensitive Formaldehyde Detection.

    PubMed

    Long, Hu; Harley-Trochimczyk, Anna; Cheng, Siyi; Hu, Hao; Chi, Won Seok; Rao, Ameya; Carraro, Carlo; Shi, Tielin; Tang, Zirong; Maboudian, Roya

    2016-11-23

    Nanowire-assembled 3D hierarchical ZnCo 2 O 4 microstructure is synthesized by a facile hydrothermal route and a subsequent annealing process. In comparison to simple nanowires, the resulting dandelion-like structure yields more open spaces between nanowires, which allow for better gas diffusion and provide more active sites for gas adsorption while maintaining good electrical conductivity. The hierarchical ZnCo 2 O 4 microstructure is integrated on a low-power microheater platform without using binders or conductive additives. The hierarchical structure of the ZnCo 2 O 4 sensing material provides reliable electrical connection across the sensing electrodes. The resulting sensor exhibits an ultralow detection limit of 3 ppb toward formaldehyde with fast response and recovery as well as good selectivity to CO, H 2 , and hydrocarbons such as n-pentane, propane, and CH 4 . The sensor only consumes ∼5.7 mW for continuous operation at 300 °C with good long-term stability. The excellent sensing performance of this hierarchical structure based sensor suggests the advantages of combining such structures with microfabricated heaters for practical low-power sensing applications.

  17. Highly sensitive copper fiber-in-tube solid-phase microextraction for online selective analysis of polycyclic aromatic hydrocarbons coupled with high performance liquid chromatography.

    PubMed

    Sun, Min; Feng, Juanjuan; Bu, Yanan; Luo, Chuannan

    2015-08-21

    A fiber-in-tube solid-phase microextraction (SPME) device was developed with copper wire and copper tube, which was served as both the substrate and sorbent with high physical strength and good flexibility. Its morphology and surface properties were characterized by scanning electron microscopy and energy dispersive X-ray spectrometry. It was coupled with high performance liquid chromatography (HPLC) equipment by replacing the sample loop of six-port injection valve, building the online SPME-HPLC system conveniently. Using ten polycyclic aromatic hydrocarbons (PAHs) as model analytes, extraction conditions including sampling rate, extraction time, organic content and desorption time were investigated and optimized. The copper fiber-in-tube exhibits excellent extraction efficiency toward PAHs, with enrichment factors from 268 to 2497. The established online SPME-HPLC method provides good linearity (0.05-100μgL(-1)) and low detection limits (0.001-0.01μgL(-1)) for PAHs. It has been used to determine PAHs in water samples, with recoveries in the range of 86.2-115%. Repeatability on the same extraction tube is in the range of 0.6-3.6%, and repeatability among three tubes is in the range of 5.6-20.1%. Compared with phthalates, anilines and phenols, the copper fiber-in-tube possesses good extraction selectivity for PAHs. The extraction mechanism is probably related to hydrophobic interaction and π-electron-metal interaction. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Facile Method and Novel Dielectric Material Using a Nanoparticle-Doped Thermoplastic Elastomer Composite Fabric for Triboelectric Nanogenerator Applications.

    PubMed

    Zhang, Zhi; Chen, Ying; Debeli, Dereje Kebebew; Guo, Jian Sheng

    2018-04-18

    The trends toward flexible and wearable electronic devices give rise to the attention of triboelectric nanogenerators (TENGs) which can gather tiny energy from human body motions. However, to accommodate the needs, wearable electronics are still facing challenges for choosing a better dielectric material to improve their performance and practicability. As a kind of synthetic rubber, the thermoplastic elastomer (TPE) contains many advantages such as lightweight, good flexibility, high tear strength, and friction resistance, accompanied by good adhesion with fabrics, which is an optimal candidate of dielectric materials. Herein, a novel nanoparticle (NP)-doped TPE composite fabric-based TENG (TF-TENG) has been developed, which operates based on the NP-doped TPE composite fabric using a facile coating method. The performances of the TENG device are systematically investigated under various thicknesses of TPE films, NP kinds, and doping mass. After being composited with a Cu NP-doped TPE film, the TPE composite fabric exhibited superior elastic behavior and good bending property, along with excellent flexibility. Moreover, a maximum output voltage of 470 V, a current of 24 μA, and a power of 12 mW under 3 MΩ can be achieved by applying a force of 60 N on the TF-TENG. More importantly, the TF-TENG can be successfully used to harvest biomechanical energy from human body and provides much more comfort. In general, the TF-TENG has great application prospects in sustainable wearable devices owing to its lightweight, flexibility, and high mechanical properties.

  19. Controllable in situ synthesis of epsilon manganese dioxide hollow structure/RGO nanocomposites for high-performance supercapacitors

    NASA Astrophysics Data System (ADS)

    Lin, Mei; Chen, Bolei; Wu, Xiao; Qian, Jiasheng; Fei, Linfeng; Lu, Wei; Chan, Lai Wa Helen; Yuan, Jikang

    2016-01-01

    Well-organized epsilon-MnO2 hollow spheres/reduced graphene oxide (MnO2HS/RGO) composites have been successfully constructed via a facile and one-pot synthetic route. The ε-MnO2 hollow spheres with the diameter of ~500 nm were grown in situ with homogeneous distribution on both sides of graphene oxide (GO) sheets in aqueous suspensions. The formation mechanism of the MnO2HS/RGO composites has been systematically investigated, and a high specific capacitance and good cycling capability were achieved on using the composites as supercapacitors. The galvanostatic charge/discharge curves show a specific capacitance of 471.5 F g-1 at 0.8 A g-1. The hollow structures of ε-MnO2 and the crumpled RGO sheets can enhance the electroactive surface area and improve the electrical conductivity, thus further facilitating the charge transport. The MnO2HS/RGO composite exhibits a high capacitance of 272 F g-1 at 3 A g-1 (92% retention) even after 1000 cycles. The prominent electrochemical performance might be attributed to the combination of the pseudo-capacitance of the MnO2 nanospheres with a hollow structure and to the good electrical conductivity of the RGO sheets. This work explores a new concept in designing metal oxides/RGO composites as electrode materials.Well-organized epsilon-MnO2 hollow spheres/reduced graphene oxide (MnO2HS/RGO) composites have been successfully constructed via a facile and one-pot synthetic route. The ε-MnO2 hollow spheres with the diameter of ~500 nm were grown in situ with homogeneous distribution on both sides of graphene oxide (GO) sheets in aqueous suspensions. The formation mechanism of the MnO2HS/RGO composites has been systematically investigated, and a high specific capacitance and good cycling capability were achieved on using the composites as supercapacitors. The galvanostatic charge/discharge curves show a specific capacitance of 471.5 F g-1 at 0.8 A g-1. The hollow structures of ε-MnO2 and the crumpled RGO sheets can enhance the electroactive surface area and improve the electrical conductivity, thus further facilitating the charge transport. The MnO2HS/RGO composite exhibits a high capacitance of 272 F g-1 at 3 A g-1 (92% retention) even after 1000 cycles. The prominent electrochemical performance might be attributed to the combination of the pseudo-capacitance of the MnO2 nanospheres with a hollow structure and to the good electrical conductivity of the RGO sheets. This work explores a new concept in designing metal oxides/RGO composites as electrode materials. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr07900d

  20. Validation of deformable image registration algorithms on CT images of ex vivo porcine bladders with fiducial markers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wognum, S., E-mail: s.wognum@gmail.com; Heethuis, S. E.; Bel, A.

    2014-07-15

    Purpose: The spatial accuracy of deformable image registration (DIR) is important in the implementation of image guided adaptive radiotherapy techniques for cancer in the pelvic region. Validation of algorithms is best performed on phantoms with fiducial markers undergoing controlled large deformations. Excised porcine bladders, exhibiting similar filling and voiding behavior as human bladders, provide such an environment. The aim of this study was to determine the spatial accuracy of different DIR algorithms on CT images ofex vivo porcine bladders with radiopaque fiducial markers applied to the outer surface, for a range of bladder volumes, using various accuracy metrics. Methods: Fivemore » excised porcine bladders with a grid of 30–40 radiopaque fiducial markers attached to the outer wall were suspended inside a water-filled phantom. The bladder was filled with a controlled amount of water with added contrast medium for a range of filling volumes (100–400 ml in steps of 50 ml) using a luer lock syringe, and CT scans were acquired at each filling volume. DIR was performed for each data set, with the 100 ml bladder as the reference image. Six intensity-based algorithms (optical flow or demons-based) implemented in theMATLAB platform DIRART, a b-spline algorithm implemented in the commercial software package VelocityAI, and a structure-based algorithm (Symmetric Thin Plate Spline Robust Point Matching) were validated, using adequate parameter settings according to values previously published. The resulting deformation vector field from each registration was applied to the contoured bladder structures and to the marker coordinates for spatial error calculation. The quality of the algorithms was assessed by comparing the different error metrics across the different algorithms, and by comparing the effect of deformation magnitude (bladder volume difference) per algorithm, using the Independent Samples Kruskal-Wallis test. Results: The authors found good structure accuracy without dependency on bladder volume difference for all but one algorithm, and with the best result for the structure-based algorithm. Spatial accuracy as assessed from marker errors was disappointing for all algorithms, especially for large volume differences, implying that the deformations described by the registration did not represent anatomically correct deformations. The structure-based algorithm performed the best in terms of marker error for the large volume difference (100–400 ml). In general, for the small volume difference (100–150 ml) the algorithms performed relatively similarly. The structure-based algorithm exhibited the best balance in performance between small and large volume differences, and among the intensity-based algorithms, the algorithm implemented in VelocityAI exhibited the best balance. Conclusions: Validation of multiple DIR algorithms on a novel physiological bladder phantom revealed that the structure accuracy was good for most algorithms, but that the spatial accuracy as assessed from markers was low for all algorithms, especially for large deformations. Hence, many of the available algorithms exhibit sufficient accuracy for contour propagation purposes, but possibly not for accurate dose accumulation.« less

  1. A rhodamine-based fluorescent probe for colorimetric and fluorescence lighting-up determination of toxic thiophenols in environmental water and living cells.

    PubMed

    Wu, Juanjuan; Ye, Zhuo; Wu, Feng; Wang, Hongying; Zeng, Lintao; Bao, Guang-Ming

    2018-05-01

    Thiophenols are a class of highly toxic environmental pollutant, hence it is very necessary to monitor thiophenols in environment and living cells with an efficient and reliable method. Herein, a novel fluorescent probe for thiophenols has been developed, which exhibited a colorimetric and fluorescence turn-on dual response towards thiophenols with good selectivity and fast response. The sensing mechanism for thiophenols was attributed to nucleophilic substitution reaction, which was confirmed by HPLC. The probe exhibited good recovery (from 90% to 107%) and low limit of detection for thiophenols (37nM) in industrial wastewater. Moreover, the probe has been successfully employed to visualize thiophenol in living cells. Therefore, the fluorescent probe has good capability for monitoring thiophenols in environmental samples and biological systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Highly stable aluminum-based metal-organic frameworks as biosensing platforms for assessment of food safety.

    PubMed

    Liu, Chun-Sen; Sun, Chun-Xiao; Tian, Jia-Yue; Wang, Zhuo-Wei; Ji, Hong-Fei; Song, Ying-Pan; Zhang, Shuai; Zhang, Zhi-Hong; He, Ling-Hao; Du, Miao

    2017-05-15

    Two unique immunosensors made of aluminum-based metal-organic frameworks (MOFs), namely, 515- and 516-MOFs, with 4,4',4''-nitrilotribenzoic acid (H 3 NTB) were successfully obtained to efficiently assess food safety. The as-prepared 515- and 516-MOFs exhibited superior thermal and physicochemical stability, high electrochemical activity, and good biocompatibility. Among these immunosensors, 516-MOF showed a preferable biosensing ability toward analytes determined by electrochemical techniques. The developed 516-MOF-based electrochemical biosensor not only demonstrated high sensitivity with low detection limits of 0.70 and 0.40pgmL -1 toward vomitoxin and salbutamol, respectively, but also showed good selectivity in the presence of other interferences. Therefore, with the advantages of high sensitivity, good selectivity, and simple operation, this new strategy is believed to exhibit great potential for simple and convenient detection of poisonous and harmful residues in food. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. 2D transition metal carbide MXene as a robust biosensing platform for enzyme immobilization and ultrasensitive detection of phenol.

    PubMed

    Wu, Lingxia; Lu, Xianbo; Dhanjai; Wu, Zhong-Shuai; Dong, Yanfeng; Wang, Xiaohui; Zheng, Shuanghao; Chen, Jiping

    2018-06-01

    MXene-Ti 3 C 2 , as a new class of two-dimensional (2D) transition metal carbides (or nitrides), has been synthesized by exfoliating pristine Ti 3 AlC 2 phases with hydrofluoric acid. The SEM and XRD images show that the resultant MXene possesses a graphene-like 2D nanostructure. and the surface of MXene has been partially terminated with -OH, thus providing a favorable microenvironment for enzyme immobilization and retaining their bioactivity and stability. Considering the unique metallic conductivity, biocompatibility and good dispersion in aqueous phase, the as-prepared MXene was explored as a new matrix to immobilize tyrosinase (a model enzyme) for fabricating a mediator-free biosensor for ultrasensitive and rapid detection of phenol. The varying electrochemical measurements were used to investigate the electrochemical performance of MXene-based tyrosinase biosensors. The results revealed that the direct electron transfer between tyrosinase and electrode could be easily achieved via a surface-controlled electrochemical process. The fabricated MXene-based tyrosinase biosensors exhibited good analytical performance over a wide linear range from 0.05 to 15.5 μmol L -1 , with a low detection limit of 12 nmol L -1 and a sensitivity of 414.4 mA M -1 . The proposed biosensing approach also demonstrated good repeatability, reproducibility, long-term stability and high recovery for phenol detection in real water samples. With those excellent performances, MXene with graphene-like structure is proved to be a robust and versatile electrochemical biosensing platform for enzyme-based biosensors and biocatalysis, and has wide potential applications in biomedical detection and environmental analysis. Copyright © 2018. Published by Elsevier B.V.

  4. Objective evaluation of acute adverse events and image quality of gadolinium-based contrast agents (gadobutrol and gadobenate dimeglumine) by blinded evaluation. Pilot study.

    PubMed

    Semelka, Richard C; Hernandes, Mateus de A; Stallings, Clifton G; Castillo, Mauricio

    2013-01-01

    The purpose was to objectively evaluate a recently FDA-approved gadolinium-based contrast agent (GBCA) in comparison to our standard GBCA for acute adverse events and image quality by blinded evaluation. Evaluation was made of a recently FDA-approved GBCA, gadobutrol (Gadavist; Bayer), in comparison to our standard GBCA, gadobenate dimeglumine (MultiHance; Bracco), in an IRB- and HIPAA-compliant study. Both the imaging technologist and patient were not aware of the brand of the GBCA used. A total of 59 magnetic resonance studies were evaluated (59 patients, 31 men, 28 women, age range of 5-85 years, mean age of 52 years). Twenty-nine studies were performed with gadobutrol (22 abdominal and 7 brain studies), and 30 studies were performed with gadobenate dimeglumine (22 abdominal and 8 brain studies). Assessment was made of acute adverse events focusing on objective observations of vomiting, hives, and moderate and severe reactions. Adequacy of enhancement was rated as poor, fair and good by one of two experienced radiologists who were blinded to the type of agent evaluated. No patient experienced acute adverse events with either agent. The target minor adverse events of vomiting or hives, and moderate and severe reactions were not observed in any patient. Adequacy of enhancement was rated as good for both agents in all patients. Objective, blinded evaluation is feasible and readily performable for the evaluation of GBCAs. This proof-of-concept study showed that both GBCAs evaluated exhibited consistent good image quality and no noteworthy adverse events. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. TiO2 Nanorod Arrays Based Self-Powered UV Photodetector: Heterojunction with NiO Nanoflakes and Enhanced UV Photoresponse.

    PubMed

    Gao, Yanyan; Xu, Jianping; Shi, Shaobo; Dong, Hong; Cheng, Yahui; Wei, Chengtai; Zhang, Xiaosong; Yin, Shougen; Li, Lan

    2018-04-04

    The self-powered ultraviolet photodetectors (UV PDs) have attracted increasing attention due to their potential applications without consuming any external power. It is important to obtain the high-performance self-powered UV PDs by a simple method for the practical application. Herein, TiO 2 nanorod arrays (NRs) were synthesized by hydrothermal method, which were integrated with p-type NiO nanoflakes to realize a high performance pn heterojunction for the efficient UV photodetection. TiO x thin film can improve the morphological and carrier transport properties of TiO 2 NRs and decrease the surface and defect states, resulting in the enhanced photocurrent of the devices. NiO/TiO 2 nanostructural heterojunctions show excellent rectifying characteristics (rectification ratio of 2.52 × 10 4 and 1.45 × 10 5 for NiO/TiO 2 NRs and NiO/TiO 2 NRs/TiO x , respectively) with a very low reverse saturation current. The PDs based on the heterojunctions exhibit good spectral selectivity, high photoresponsivity, and fast response and recovery speeds without external applied bias under the weak light radiation. The devices demonstrate good stability and repeatability under UV light radiation. The self-powered performance could be attributed to the proper built-in electric field of the heterojunction. TiO 2 NRs and NiO nanoflakes construct the well-aligned energy-band structure. The enhanced responsivity and detectivity for the devices with TiO x thin films is related to the increased interfacial charge separation efficiency, reduced carrier recombination, and relatively good electron transport of TiO 2 NRs.

  6. Preparation and photoelectrocatalytic performance of N-doped TiO2/NaY zeolite membrane composite electrode material.

    PubMed

    Cheng, Zhi-Lin; Han, Shuai

    2016-01-01

    A novel composite electrode material based on a N-doped TiO2-loaded NaY zeolite membrane (N-doped TiO2/NaY zeolite membrane) for photoelectrocatalysis was presented. X-ray diffraction (XRD), scanning electron microscopy (SEM), UV-visible (UV-vis) and X-ray photoelectron spectroscopy (XPS) characterization techniques were used to analyze the structure of the N-doped TiO2/NaY zeolite membrane. The XRD and SEM results verified that the N-doped TiO2 nanoparticles with the size of ca. 20 nm have been successfully loaded on the porous stainless steel-supported NaY zeolite membrane. The UV-vis result showed that the N-doped TiO2/NaY zeolite membrane exhibited a more obvious red-shift than that of N-TiO2 nanoparticles. The XPS characterization revealed that the doping of N element into TiO2 was successfully achieved. The photoelectrocatalysis performance of the N-doped TiO2/NaY zeolite membrane composite electrode material was evaluated by phenol removal and also the effects of reaction conditions on the catalytic performance were investigated. Owing to exhibiting an excellent catalytic activity and good recycling stability, the N-doped TiO2/NaY zeolite membrane composite electrode material was of promising application for photoelectrocatalysis in wastewater treatment.

  7. Transition metal nitride coated with atomic layers of Pt as a low-cost, highly stable electrocatalyst for the oxygen reduction reaction

    DOE PAGES

    Tian, Xinlong; Adzic, Radoslav R.; Luo, Junming; ...

    2016-02-10

    Here, the main challenges to the commercial viability of polymer electrolyte membrane fuel cells are (i) the high cost associated with using large amounts of Pt in fuel cell cathodes to compensate for the sluggish kinetics of the oxygen reduction reaction, (ii) catalyst degradation, and (iii) carbon-support corrosion. To address these obstacles, our group has focused on robust, carbon-free transition metal nitride materials with low Pt content that exhibit tunable physical and catalytic properties. Here, we report on the high performance of a novel catalyst with low Pt content, prepared by placing several layers of Pt atoms on nanoparticles ofmore » titanium nickel binary nitride. For the ORR, the catalyst exhibited a more than 400% and 200% increase in mass activity and specific activity, respectively, compared with the commercial Pt/C catalyst. It also showed excellent stability/durability, experiencing only a slight performance loss after 10,000 potential cycles, while TEM results showed its structure had remained intact. The catalyst’s outstanding performance may have resulted from the ultrahigh dispersion of Pt (several atomic layers coated on the nitride nanoparticles), and the excellent stability/durability may have been due to the good stability of nitride and synergetic effects between ultrathin Pt layer and the robust TiNiN support.« less

  8. Nanoporous mannitol carrier prepared by non-organic solvent spray drying technique to enhance the aerosolization performance for dry powder inhalation

    PubMed Central

    Peng, Tingting; Zhang, Xuejuan; Huang, Ying; Zhao, Ziyu; Liao, Qiuying; Xu, Jing; Huang, Zhengwei; Zhang, Jiwen; Wu, Chuan-yu; Pan, Xin; Wu, Chuanbin

    2017-01-01

    An optimum carrier rugosity is essential to achieve a satisfying drug deposition efficiency for the carrier based dry powder inhalation (DPI). Therefore, a non-organic spray drying technique was firstly used to prepare nanoporous mannitol with small asperities to enhance the DPI aerosolization performance. Ammonium carbonate was used as a pore-forming agent since it decomposed with volatile during preparation. It was found that only the porous structure, and hence the specific surface area and carrier density were changed at different ammonium carbonate concentration. Furthermore, the carrier density was used as an indication of porosity to correlate with drug aerosolization. A good correlation between the carrier density and fine particle fraction (FPF) (r2 = 0.9579) was established, suggesting that the deposition efficiency increased with the decreased carrier density. Nanoporous mannitol with a mean pore size of about 6 nm exhibited 0.24-fold carrier density while 2.16-fold FPF value of the non-porous mannitol. The enhanced deposition efficiency was further confirmed from the pharmacokinetic studies since the nanoporous mannitol exhibited a significantly higher AUC0-8h value than the non-porous mannitol and commercial product Pulmicort. Therefore, surface modification by preparing nanoporous carrier through non-organic spray drying showed to be a facile approach to enhance the DPI aerosolization performance. PMID:28462948

  9. Performance analyses of Schottky diodes with Au/Pd contacts on n-ZnO thin films as UV detectors

    NASA Astrophysics Data System (ADS)

    Varma, Tarun; Periasamy, C.; Boolchandani, Dharmendar

    2017-12-01

    In this paper, we report fabrication and performance analyses of UV detectors based on ZnO thin film Schottky diodes with Au and Pd contacts. RF magnetron sputtering technique has been used to deposit the nano-crystalline ZnO thin film, at room temperature. Characterization techniques such as XRD, AFM and SEM provided valuable information related to the micro-structural & optical properties of the thin film. The results show that the prepared thin film has good crystalline orientation and minimal surface roughness, with an optical bandgap of 3.1 eV. I-V and C-V characteristics were evaluated that indicate non-linear behaviour of the diodes with rectification ratios (IF/IR) of 19 and 427, at ± 4 V, for Au/ZnO and Pd/ZnO Schottky diodes, respectively. The fabricated Schottky diodes when exposed to a UV light of 365 nm wavelength, at an applied bias of -2 V, exhibited responsivity of 10.16 and 22.7 A/W, for Au and Pd Schottky contacts, respectively. The Pd based Schottky photo-detectors were found to exhibit better performance with superior values of detectivity and photoconductive gain of 1.95 × 1010 cm Hz0.5/W & 77.18, over those obtained for the Au based detectors which were observed to be 1.23 × 1010 cm Hz0.5/W & 34.5, respectively.

  10. Few layer graphene wrapped mixed phase TiO2 nanofiber as a potential electrode material for high performance supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Thirugnanam, Lavanya; Sundara, Ramaprabhu

    2018-06-01

    A combination of favorable composition and optimized anatase/rutile mixed-phase TiO2 (MPTNF)/Hydrogen exfoliated graphene (HEG) composite nanofibers (MPTNF/HEG) and anatase/rutile mixed-phase TiO2/reduced graphene oxide (rGO) composite nanofibers (MPTNF/rGO) have been reported to enhance the electrochemical properties for supercapacitor applications. These composite nanofibers have been synthesized by an efficient route of electrospinning together with the help of easy chemical methods. Both the composites exhibit good charge storage capability with enhanced pseudocapacitance and electric double-layer capacitance (EDLC) as confirmed by cyclic voltammetry studies. MPTNF/HEG composite showed maximum specific capacitance of 210.5 F/g at the current density of 1 A/g, which was mainly due to its availability of the more active sites for ions adsorption on a few layers of graphene wrapped TiO2 nanofiber surface. The synergistic effect of anatase/rutile mixed phase with one dimensional nanostructure and the electronic interaction between TiO2 and few layer graphene provided the subsequent improvement of ion adsorption capacity. Also exhibit excellent electrochemical performance to improve the capacitive properties of TiO2 electrode materials which is required for the development of flexible electrodes in energy storage devices and open up new opportunities for high performance supercapacitors.

  11. Improved perovskite phototransistor prepared using multi-step annealing method

    NASA Astrophysics Data System (ADS)

    Cao, Mingxuan; Zhang, Yating; Yu, Yu; Yao, Jianquan

    2018-02-01

    Organic-inorganic hybrid perovskites with good intrinsic physical properties have received substantial interest for solar cell and optoelectronic applications. However, perovskite film always suffers from a low carrier mobility due to its structural imperfection including sharp grain boundaries and pinholes, restricting their device performance and application potential. Here we demonstrate a straightforward strategy based on multi-step annealing process to improve the performance of perovskite photodetector. Annealing temperature and duration greatly affects the surface morphology and optoelectrical properties of perovskites which determines the device property of phototransistor. The perovskite films treated with multi-step annealing method tend to form highly uniform, well-crystallized and high surface coverage perovskite film, which exhibit stronger ultraviolet-visible absorption and photoluminescence spectrum compare to the perovskites prepared by conventional one-step annealing process. The field-effect mobilities of perovskite photodetector treated by one-step direct annealing method shows mobility as 0.121 (0.062) cm2V-1s-1 for holes (electrons), which increases to 1.01 (0.54) cm2V-1s-1 for that treated with muti-step slow annealing method. Moreover, the perovskite phototransistors exhibit a fast photoresponse speed of 78 μs. In general, this work focuses on the influence of annealing methods on perovskite phototransistor, instead of obtains best parameters of it. These findings prove that Multi-step annealing methods is feasible to prepared high performance based photodetector.

  12. All-solid state symmetric supercapacitors based on compressible and flexible free-standing 3D carbon nanotubes (CNTs)/poly(3,4-ethylenedioxythiophene) (PEDOT) sponge electrodes

    NASA Astrophysics Data System (ADS)

    He, Xin; Yang, Wenyao; Mao, Xiling; Xu, Lu; Zhou, Yujiu; Chen, Yan; Zhao, Yuetao; Yang, Yajie; Xu, Jianhua

    2018-02-01

    Flexible supercapacitors that maintain electrochemical performance under deformation have attracted much attention for the potential application in the flexible electronics market. A compressible and flexible free-standing electrodes sponge and all-solid-state symmetric supercapacitors based on as-prepared electrodes are presented. The carbon nanotubes (CNTs) framework is synthesized by chemical vapor deposition (CVD) method, and then composited with poly (3,4-ethylenedioxythiophene) PEDOT by the electrodeposition. This CNTs/PEDOT sponge electrode shows highest mass-specific capacitance of 147 Fg-1 at 0.5 A g-1, tuned by the PEDOT mass loading, and exhibits good cyclic stability with the evidence that more than 95% of capacitance is remained after 3000 cycles. Furthermore, the symmetric supercapacitor shows the highest energy density of 12.6 Wh kg-1 under the power density of 1 kW kg-1 and highest power density of 10.2 kW kg-1 with energy density of 8 Wh kg-1, which exhibits both high energy density and power density. The electrochemical performance of composite electrode also indicates that the operate voltage of device could be extend to 1.4 V by the n-doping and p-doping process in different potential of PEDOT component. This flexible supercapacitor maintains stable electrochemical performance working on different bending condition, which shows promising prospect for wearable energy storage applications.

  13. Wearable ECG Based on Impulse-Radio-Type Human Body Communication.

    PubMed

    Wang, Jianqing; Fujiwara, Takuya; Kato, Taku; Anzai, Daisuke

    2016-09-01

    Human body communication (HBC) provides a promising physical layer for wireless body area networks (BANs) in healthcare and medical applications, because of its low propagation loss and high security characteristics. In this study, we have developed a wearable electrocardiogram (ECG) which employs impulse radio (IR)-type HBC technology for transmitting vital signals on the human body in a wearable BAN scenario. The HBC-based wearable ECG has two excellent features. First, the wideband performance of the IR scheme contributed to very low radiation power so that the transceiver is easy to satisfy the extremely weak radio laws, which does not need a license. This feature can provide big convenience in the use and spread of the wearable ECG. Second, the realization of common use of sensing and transmitting electrodes based on time sharing and capacitive coupling largely simplified the HBC-based ECG structure and contributed to its miniaturization. To verify the validity of the HBC-based ECG, we evaluated its communication performance and ECG acquisition performance. The measured bit error rate, smaller than 10 -3 at 1.25 Mb/s, showed a good physical layer communication performance, and the acquired ECG waveform and various heart-rate variability parameters in time and frequency domains exhibited good agreement with a commercially available radio-frequency ECG and a Holter ECG. These results sufficiently showed the validity and feasibility of the HBC-based ECG for healthcare applications. This should be the first time to have realized a real-time ECG transmission by using the HBC technology.

  14. Construct validity of tests that measure kick performance for young soccer players based on cluster analysis: exploring the relationship between coaches rating and actual measures.

    PubMed

    Palucci Vieira, Luiz H; de Andrade, Vitor L; Aquino, Rodrigo L; Moraes, Renato; Barbieri, Fabio A; Cunha, Sérgio A; Bedo, Bruno L; Santiago, Paulo R

    2017-12-01

    The main aim of this study was to verify the relationship between the classification of coaches and actual performance in field tests that measure the kicking performance in young soccer players, using the K-means clustering technique. Twenty-three U-14 players performed 8 tests to measure their kicking performance. Four experienced coaches provided a rating for each player as follows: 1: poor; 2: below average; 3: average; 4: very good; 5: excellent as related to three parameters (i.e. accuracy, power and ability to put spin on the ball). The scores interval established from k-means cluster metric was useful to originating five groups of performance level, since ANOVA revealed significant differences between clusters generated (P<0.01). Accuracy seems to be moderately predicted by the penalty kick, free kick, kicking the ball rolling and Wall Volley Test (0.44≤r≤0.56), while the ability to put spin on the ball can be measured by the free kick and the corner kick tests (0.52≤r≤0.61). Body measurements, age and PHV did not systematically influence the performance. The Wall Volley Test seems to be a good predictor of other tests. Five tests showed reasonable construct validity and can be used to predict the accuracy (penalty kick, free kick, kicking a rolling ball and Wall Volley Test) and ability to put spin on the ball (free kick and corner kick tests) when kicking in soccer. In contrast, the goal kick, kicking the ball when airborne and the vertical kick tests exhibited low power of discrimination and using them should be viewed with caution.

  15. STGSTK- PREDICTING MULTISTAGE AXIAL-FLOW COMPRESSOR PERFORMANCE BY A MEANLINE STAGE-STACKING METHOD

    NASA Technical Reports Server (NTRS)

    Steinke, R. J.

    1994-01-01

    The STGSTK computer program was developed for predicting the off-design performance of multistage axial-flow compressors. The axial-flow compressor is widely used in aircraft engines. In addition to its inherent advantage of high mass flow per frontal area, it can exhibit very good aerodynamic performance. However, good aerodynamic performance over an acceptable range of operating conditions is not easily attained. STGSTK provides an analytical tool for the development of new compressor designs. The simplicity of a one-dimensional compressible flow model enables the stage-stacking method used in STGSTK to have excellent convergence properties and short computer run times. Also, the simplicity of the model makes STGSTK a manageable code that eases the incorporation, or modification, of empirical correlations directly linked to test data. Thus, the user can adapt the code to meet varying design needs. STGSTK uses a meanline stage-stacking method to predict off-design performance. Stage and cumulative compressor performance is calculated from representative meanline velocity diagrams located at rotor inlet and outlet meanline radii. STGSTK includes options for the following: 1) non-dimensional stage characteristics may be input directly or calculated from stage design performance input, 2) stage characteristics may be modified for off-design speed and blade reset, and 3) rotor design deviation angle may be modified for off-design flow, speed, and blade setting angle. Many of the code's options use correlations that are normally obtained from experimental data. The STGSTK user may modify these correlations as needed. This program is written in FORTRAN IV for batch execution and has been implemented on an IBM 370 series computer with a central memory requirement of approximately 85K of 8 bit bytes. STGSTK was developed in 1982.

  16. Web-Based Student Art Galleries

    ERIC Educational Resources Information Center

    Burton, David

    2010-01-01

    Exhibition is an important part of the artistic process for students as well as professional artists, but finding enough good places to exhibit can be as difficult for student artists as for adult artists. Venues that are accessible, display art attractively, and provide adequate space for many artists are usually in short supply. There is an…

  17. Hoarders Only Discount Consumables and Are More Patient for Money

    PubMed Central

    Vickers, Brian D.; Preston, Stephanie D.; Gonzalez, Richard; Angott, Andrea M.

    2016-01-01

    Individuals with hoarding disorder (HD) excessively acquire and retain goods while also exhibiting characteristics of impulsivity and addiction. However, HD individuals do not always perform impulsively in experiments, they do not appear interested in money, and they exhibit many features of risk-aversion and future-planning. To examine impulsivity in HD, we compared validated community participants high and low in hoarding tendencies on questionnaire measures of hoarding and impulsivity as well as a standard experimental measure of impulsivity (intertemporal discounting) that was modified to compare decisions about money, pens, and snacks. Common discounting effects were replicated. Compared to the low hoarding group, the high hoarding group was more impatient for consumables (pens and snacks) but they were more patient for money. This increased patience for money in high hoarding individuals is in contrast to all other studies on discounting in disordered populations, but consistent with the phenomenology of HD. HD does not appear to be driven by a fundamental inability to wait, but rather a specific, potent desire for consumable rewards. PMID:26973479

  18. Smart window coating based on F-TiO2-KxWO3 nanocomposites with heat shielding, ultraviolet isolating, hydrophilic and photocatalytic performance

    PubMed Central

    Liu, Tongyao; Liu, Bin; Wang, Jing; Yang, Linfen; Ma, Xinlong; Li, Hao; Zhang, Yihong; Yin, Shu; Sato, Tsugio; Sekino, Tohru; Wang, Yuhua

    2016-01-01

    A series of smart window coated multifunctional NIR shielding-photocatalytic films were fabricated successfully through KxWO3 and F-TiO2 in a low-cost and environmentally friendly process. Based on the synergistic effect of KxWO3 and F-TiO2, the optimal proportion of KxWO3 to F-TiO2 was investigated and the FT/2KWO nanocomposite film exhibited strong near-infrared, ultraviolet light shielding ability, good visible light transmittance, high photocatalytic activity and excellent hydrophilic capacity. This film exhibited better thermal insulation capacity than ITO and higher photocatalytic activity than P25. Meanwhile, the excellent stability of this film was examined by the cycle photocatalytic degradation and thermal insulation experiments. Overall, this work is expected to provide a possibility in integrating KxWO3 with F-TiO2, so as to obtain a multifunctional NIR shielding-photocatalytic nanocomposite film in helping solve the energy crisis and deteriorating environmental issues. PMID:27265778

  19. Unipolar resistive switching behaviors and mechanisms in an annealed Ni/ZrO2/TaN memory device

    NASA Astrophysics Data System (ADS)

    Tsai, Tsung-Ling; Ho, Tsung-Han; Tseng, Tseung-Yuen

    2015-01-01

    The effects of Ni/ZrO2/TaN resistive switching memory devices without and with a 400 °C annealing process on switching properties are investigated. The devices exhibit unipolar resistive switching behaviors with low set and reset voltages because of a large amount of Ni diffusion with no reaction with ZrO2 after the annealing process, which is confirmed by ToF-SIMS and XPS analyses. A physical model based on a Ni filament is constructed to explain such phenomena. The device that undergoes the 400 °C annealing process exhibits an excellent endurance of more than 1.5  ×  104 cycles. The improvement can be attributed to the enhancement of oxygen ion migration along grain boundaries, which result in less oxygen ion consumption during the reset process. The device also performs good retention up to 105 s at 150 °C. Therefore, it has great potential for high-density nonvolatile memory applications.

  20. Flexible, highly efficient all-polymer solar cells

    PubMed Central

    Kim, Taesu; Kim, Jae-Han; Kang, Tae Eui; Lee, Changyeon; Kang, Hyunbum; Shin, Minkwan; Wang, Cheng; Ma, Biwu; Jeong, Unyong; Kim, Taek-Soo; Kim, Bumjoon J.

    2015-01-01

    All-polymer solar cells have shown great potential as flexible and portable power generators. These devices should offer good mechanical endurance with high power-conversion efficiency for viability in commercial applications. In this work, we develop highly efficient and mechanically robust all-polymer solar cells that are based on the PBDTTTPD polymer donor and the P(NDI2HD-T) polymer acceptor. These systems exhibit high power-conversion efficiency of 6.64%. Also, the proposed all-polymer solar cells have even better performance than the control polymer-fullerene devices with phenyl-C61-butyric acid methyl ester (PCBM) as the electron acceptor (6.12%). More importantly, our all-polymer solar cells exhibit dramatically enhanced strength and flexibility compared with polymer/PCBM devices, with 60- and 470-fold improvements in elongation at break and toughness, respectively. The superior mechanical properties of all-polymer solar cells afford greater tolerance to severe deformations than conventional polymer-fullerene solar cells, making them much better candidates for applications in flexible and portable devices. PMID:26449658

  1. Silicon content design of CrSiN films for good anti-corrosion and anti-wear performances in NaOH solution

    NASA Astrophysics Data System (ADS)

    Wang, Haixin; Ye, Yuwei; Wang, Chunting; Zhang, Guangan; Liu, Wei

    2018-06-01

    The CrSiN films with different silicon contents were fabricated by medium frequency magnetron sputtering. The 304L stainless steel and Si (1 0 0) wafer were used for substrate specimens. Film plasticity, corrosion and tribological behaviors in 0.1 M NaOH solution were systematically investigated. Results show that the plasticity of CrN film could be improved by the addition of silicon. During the corrosion test, with the increase of silicon content, the corrosion current density exhibited a descending trend and impedance presented a rising trend. The COF and wear rate of as-prepared CrSiN film initially decreased and then increased as the silicon content increased. The CrSiN film with 12.7 at.% Si exhibited the lowest COF of 0.04 and a wear rate of 6.746  ×  10‑8 mm3 Nm‑1 in 0.1 M NaOH solution.

  2. Hoarders Only Discount Consumables and Are More Patient for Money.

    PubMed

    Vickers, Brian D; Preston, Stephanie D; Gonzalez, Richard; Angott, Andrea M

    2016-01-01

    Individuals with hoarding disorder (HD) excessively acquire and retain goods while also exhibiting characteristics of impulsivity and addiction. However, HD individuals do not always perform impulsively in experiments, they do not appear interested in money, and they exhibit many features of risk-aversion and future-planning. To examine impulsivity in HD, we compared validated community participants high and low in hoarding tendencies on questionnaire measures of hoarding and impulsivity as well as a standard experimental measure of impulsivity (intertemporal discounting) that was modified to compare decisions about money, pens, and snacks. Common discounting effects were replicated. Compared to the low hoarding group, the high hoarding group was more impatient for consumables (pens and snacks) but they were more patient for money. This increased patience for money in high hoarding individuals is in contrast to all other studies on discounting in disordered populations, but consistent with the phenomenology of HD. HD does not appear to be driven by a fundamental inability to wait, but rather a specific, potent desire for consumable rewards.

  3. Acid-functionalized carbon nanofibers for high stability, thermoelectrical and electrochemical properties of nanofluids.

    PubMed

    Said, Zafar; Allagui, Anis; Abdelkareem, Mohammad Ali; Alawadhi, Hussain; Elsaid, Khaled

    2018-06-15

    Carbon-based nanofluids are viewed as promising thermal fluids for heat transfer applications. However, other properties, such as electrical conductivity and electrochemical behavior, are usually overlooked and rarely investigated despite their importance for the overall performance characterization of a given application. In this study, we synthesized PAN-based carbon nanofibers (CNF) by electrospinning, and characterized them using electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, and thermogravimetric analysis. Thermoelectrical and electrochemical measurements were carried out on nanofluids. We found that, although CNF nanofluids exhibit good thermal and electrical properties with a negligible corrosive effect, the suspensions tend to sediment within a few days. However, acid treatment of CNF (F-CNF), which resulted in the shortening of the fibers and the appearance of surface-oxygenated species, made F-CNF-based nanofluids exhibit superior stability in water that extended for more than 90 days, with consistent and superior thermal and electrical properties. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Fabrication and electro-optic characteristics of polymer-stabilized V-mode FLCD and intrinsic H-V-mode FLCD: their application to AM LCDs

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shunsuke; Furuta, Hirokazu; Murakami, Yuji; Xu, Jun; Mochizuki, Akihiro

    2003-04-01

    Defect free polymer-stabilized (PS-)V-mode FLCDs and intrinsic half (H-)V-mode FLCDs have been fabricated; they exhibit high contrast ratio over 700:1 and high reliability for a temperature cycling test by using specially developed polyimide alignment materials, RN-1411 series, from Nissan Chem. Ind., and also by adopting special alignment technique such as appropriate rubbing technique, photoalignment, and ion beam irradiation techniques and also particularly developed polymer-stabilization technique. These FLCDs are shown to be useful for implementing a field sequential type full color (FS-FC) LCDs due to their fast response with the response time of τ = 100μs ~ 500μs that is 10 to 100 times faster that those of LCDs using NLCs. We have developed several prototype models of FS-FC LCDs having VGA specifications that exhibit good performance for displaying fast moving video rate images with wide color gamut.

  5. Rheological properties and baking performance of new oat beta-glucan-rich hydrocolloids.

    PubMed

    Lee, Suyong; Warner, Kathleen; Inglett, George E

    2005-12-14

    Two new oat beta-glucan hydrocolloids (designated C-trim20 and C-trim30) obtained through a thermal-shearing process were evaluated for their potential use in food products as functional ingredients. Their rheological characteristics were investigated using steady and dynamic shear measurements. Both samples exhibited typical shear-thinning and viscoelastic properties of random coil polysaccharides. The Cross equation was also used to examine the dependence of their apparent viscosity on shear rates. Furthermore, the effects of flour replacement with C-trim20 on the physical, rheological, and sensory properties of cookies were studied. The cookies containing C-trim20 exhibited reduced spreading characteristics compared with the control due to their increased elastic properties. Also, higher water content and water activity were observed in the C-trim20 cookies. However, flour replacement with C-trim20 up to 10% produced cookies with instrumental texture properties similar to those of the control, which was in good agreement with the sensory results.

  6. One-step assembly of Fe(III)-CMC chelate hydrogel onto nanoneedle-like CuO@Cu membrane with superhydrophilicity for oil-water separation

    NASA Astrophysics Data System (ADS)

    Dai, Jiangdong; Chang, Zhongshuai; Xie, Atian; Zhang, Ruilong; Tian, Sujun; Ge, Wenna; Yan, Yongsheng; Li, Chunxiang; Xu, Wei; Shao, Rong

    2018-05-01

    The research of superhydrophilic interface is developing rapidly, but the preparations of superhydrophilic surfaces through simple methods are still challenging. Herein, we reported a facile, rapid and environmentally-friendly approach for preparing a novel superhydrophilic and underwater superoleophobic membrane via the thermal oxidation of Cu mesh and one-step coordinated assembly of Fe(III)-CMC chelate hydrogel. Superhydrophilicity was attributed to the hydrophilicity of Fe(III)-CMC chelate hydrogel and nanoneedle-like rough structure of CuO@Cu membrane. The membrane was used to separate a variety of oil/water mixtures and exhibited excellent separation performance. Moreover, the membrane exhibited the excellent durability and superior stability against corrosion conditions. We envision that the Fe(III)-CMC@CuO@Cu membrane with good underwater superoleophobicity could provide a candidate not only for oil/water separation but also many other potential applications such as underwater oil manipulation, self-clean, and bio-adhesion control.

  7. Antibacterial activity of Phyllantus emblica, Coriandrum sativum, Culinaris medic, Lawsonia alba and Cucumis sativus.

    PubMed

    Khan, Dawood Ali; Hassan, Fouzia; Ullah, Hanif; Karim, Sabiha; Baseer, Abdul; Abid, Mobasher Ali; Ubaidi, Muhammad; Khan, Shujaat Ali; Murtaza, Ghulam

    2013-01-01

    Present study deals with the demonstration of the antibacterial activity of very common medicinal plants of Pakistani origin i.e., Phyllantus emblica, Coriandrum sativum, Culinaris medic, Lawsonia alba and Cucumis sativus. The extracts were prepared in crude form by the use of hydro-alcoholic solution and were screened for antibacterial activity against various bacterial species by disk diffusion method. Assay was performed using clinical isolates of B. cereus, S. aureus, P. aeruginosa and E. coli. Crude extract of Phyllantus emblica fruit exhibited strong activity against standard cultures of all studied bacteria. Lawsonia alba showed good activity against standard cultures of all the used microorganisms. Coriandrum sativum was effective only against Bacillus cereus, while Cucumis sativus and Culinaris medic showed poor activity against Pseudomonas aeruginosa only. Hence, Phyllantus emblica exhibited strong antibacterial activity against a wide range of bacteria it means that Phyllantus emblica extract contains some compounds which have broad spectrum of bactericidal activity.

  8. Preparation and characterization of a poly (1, 4-phenylenevinylene) derivative-based hybrid thin film nanocomposites with enhanced performance

    NASA Astrophysics Data System (ADS)

    Belhaj, Marwa; Jemmeli, Dhouha; Dridi, Cherif; Ben Salem, Balkiss; Jaballah, Najmeddine; Majdoub, Mustapha; Yatskiv, Roman; Grym, Jan

    2018-05-01

    In this study, a poly (1, 4-phenylenevinylene) derivative (PPV-C6) was synthesized via Gilch polycondensation, and its electrochemical and optical characteristics were determined by cyclic voltammetry analysis, ultraviolet-visible, and photoluminescence spectroscopy. The polymer exhibited semiconductor behavior with an optical band gap of about 2.02 eV. Thin-film hybrid nanocomposites were prepared based on PPV-C6 with a large range of concentrations of sol-gel synthesized surfactant-free ZnO nanoparticles (n-ZnO). We investigated the photophysical properties of nanocomposites with different weight ratios of n-ZnO. The optical absorption spectra of PPV-C6: n-ZnO nanocomposites exhibited moderate variation in terms of the optical band gap energy with respect to the pristine polymer. Photoluminescence spectra indicated that the optimum n-ZnO concentration was about 50 wt% to achieve photoluminescence quenching, which corresponded to the most homogeneous surface and efficient charge transfer due to optimal exciton dissociation. We established good correlations between the investigated properties.

  9. Validation of a HPLC method for determination of hydroxymethylfurfural in crude palm oil.

    PubMed

    Ariffin, Abdul Azis; Ghazali, H M; Kavousi, Parviz

    2014-07-01

    For the first time 5-hydroxymethyl-2-furaldehyde (HMF) was separated from crude palm oil (CPO), and its authenticity was determined using an RP-HPLC method. Separation was accomplished with isocratic elution of a mobile phase comprising water and methanol (92:8 v/v) on a Purospher Star RP-18e column (250mm×4.6mm, 5.0μm). The flow rate was adjusted to 1ml/min and detection was performed at 284nm. The method was validated, and results obtained exhibit a good recovery (95.58% to 98.39%). Assessment of precision showed that the relative standard deviations (RSD%) of retention times and peak areas of spiked samples were less than 0.59% and 2.66%, respectively. Further, the limit of detection (LOD) and LOQ were 0.02, 0.05mg/kg, respectively, and the response was linear across the applied ranges. The crude palm oil samples analysed exhibited HMF content less than 2.27mg/kg. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Rational Design and Facile Synthesis of Boranophosphate Ionic Liquids as Hypergolic Rocket Fuels.

    PubMed

    Liu, Tianlin; Qi, Xiujuan; Wang, Binshen; Jin, Yunhe; Yan, Chao; Wang, Yi; Zhang, Qinghua

    2018-05-14

    The design and synthesis of new hypergolic ionic liquids (HILs) as replacements for toxic hydrazine derivatives have been the focus of current academic research in the field of liquid bipropellant fuels. In most cases, however, the requirements of excellent ignition performances, good hydrolytic stabilities, and low synthetic costs are often contradictory, which makes the development of high-performance HILs an enormous challenge. Here, we show how a fuel-rich boranophosphate ion was rationally designed and used to synthesize a series of high-performance HILs with excellent comprehensive properties. In the design strategy, we introduced the {BH 3 } moiety into the boranophosphate ion for improving the self-ignition property, whereas the complexation of boron and phosphite was used to improve the hydrolytic activity of the borohydride species. As a result, these boranophosphate HILs exhibited wide liquid operating ranges (>220 °C), high densities (1.00-1.10 g cm -3 ), good hydrolytic stabilities, and short ignition delay times (2.3-9.7 milliseconds) with white fuming nitric acid (WFNA) as the oxidizer. More importantly, these boranophosphate HILs could be readily prepared in high yields from commercial phosphite esters, avoiding complex and time-consuming synthetic routes. This work offers an effective strategy of designing boranophosphate HILs towards safer and greener hypergolic fuels for liquid bipropellant applications. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Facile synthesis of high strength hot-water wood extract films with oxygen-barrier performance

    NASA Astrophysics Data System (ADS)

    Chen, Ge-Gu; Fu, Gen-Que; Wang, Xiao-Jun; Gong, Xiao-Dong; Niu, Ya-Shuai; Peng, Feng; Yao, Chun-Li; Sun, Run-Cang

    2017-01-01

    Biobased nanocomposite films for food packaging with high mechanical strength and good oxygen-barrier performance were developed using a hot-water wood extract (HWE). In this work, a facile approach to produce HWE/montmorillonite (MMT) based nanocomposite films with excellent physical properties is described. The focus of this study was to determine the effects of the MMT content on the structure and mechanical properties of nanocomposites and the effects of carboxymethyl cellulose (CMC) on the physical properties of the HWE-MMT films. The experimental results suggested that the intercalation of HWE and CMC in montmorillonite could produce compact, robust films with a nacre-like structure and multifunctional characteristics. This results of this study showed that the mechanical properties of the film designated FCMC0.05 (91.5 MPa) were dramatically enhanced because the proportion of HWE, MMT and CMC was 1:1.5:0.05. In addition, the optimized films exhibited an oxygen permeability below 2.0 cm3 μm/day·m2·kPa, as well as good thermal stability due to the small amount of CMC. These results provide a comprehensive understanding for further development of high-performance nanocomposites which are based on natural polymers (HWE) and assembled layered clays (MMT). These films offer great potential in the field of sustainable packaging.

  12. A Hybrid Model for Spatially and Temporally Resolved Ozone Exposures in the Continental United States

    PubMed Central

    Di, Qian; Rowland, Sebastian; Koutrakis, Petros; Schwartz, Joel

    2017-01-01

    Ground-level ozone is an important atmospheric oxidant, which exhibits considerable spatial and temporal variability in its concentration level. Existing modeling approaches for ground-level ozone include chemical transport models, land-use regression, Kriging, and data fusion of chemical transport models with monitoring data. Each of these methods has both strengths and weaknesses. Combining those complementary approaches could improve model performance. Meanwhile, satellite-based total column ozone, combined with ozone vertical profile, is another potential input. We propose a hybrid model that integrates the above variables to achieve spatially and temporally resolved exposure assessments for ground-level ozone. We used a neural network for its capacity to model interactions and nonlinearity. Convolutional layers, which use convolution kernels to aggregate nearby information, were added to the neural network to account for spatial and temporal autocorrelation. We trained the model with AQS 8-hour daily maximum ozone in the continental United States from 2000 to 2012 and tested it with left out monitoring sites. Cross-validated R2 on the left out monitoring sites ranged from 0.74 to 0.80 (mean 0.76) for predictions on 1 km×1 km grid cells, which indicates good model performance. Model performance remains good even at low ozone concentrations. The prediction results facilitate epidemiological studies to assess the health effect of ozone in the long term and the short term. PMID:27332675

  13. Facile synthesis of high strength hot-water wood extract films with oxygen-barrier performance

    PubMed Central

    Chen, Ge-Gu; Fu, Gen-Que; Wang, Xiao-Jun; Gong, Xiao-Dong; Niu, Ya-Shuai; Peng, Feng; Yao, Chun-Li; Sun, Run-Cang

    2017-01-01

    Biobased nanocomposite films for food packaging with high mechanical strength and good oxygen-barrier performance were developed using a hot-water wood extract (HWE). In this work, a facile approach to produce HWE/montmorillonite (MMT) based nanocomposite films with excellent physical properties is described. The focus of this study was to determine the effects of the MMT content on the structure and mechanical properties of nanocomposites and the effects of carboxymethyl cellulose (CMC) on the physical properties of the HWE-MMT films. The experimental results suggested that the intercalation of HWE and CMC in montmorillonite could produce compact, robust films with a nacre-like structure and multifunctional characteristics. This results of this study showed that the mechanical properties of the film designated FCMC0.05 (91.5 MPa) were dramatically enhanced because the proportion of HWE, MMT and CMC was 1:1.5:0.05. In addition, the optimized films exhibited an oxygen permeability below 2.0 cm3 μm/day·m2·kPa, as well as good thermal stability due to the small amount of CMC. These results provide a comprehensive understanding for further development of high-performance nanocomposites which are based on natural polymers (HWE) and assembled layered clays (MMT). These films offer great potential in the field of sustainable packaging. PMID:28112259

  14. Poly(vinyl Alcohol) Borate Gel Polymer Electrolytes Prepared by Electrodeposition and Their Application in Electrochemical Supercapacitors.

    PubMed

    Jiang, Mengjin; Zhu, Jiadeng; Chen, Chen; Lu, Yao; Ge, Yeqian; Zhang, Xiangwu

    2016-02-10

    Gel polymer electrolytes (GPEs) have been studied for preparing flexible and compact electrochemical energy storage devices. However, the preparation and use of GPEs are complex, and most GPEs prepared through traditional methods do not have good wettability with the electrodes, which retard them from achieving their performance potential. In this study, these problems are addressed by conceiving and implementing a simple, but effective, method of electrodepositing poly(vinyl alcohol) potassium borate (PVAPB) GPEs directly onto the surfaces of active carbon electrodes for electrochemical supercapacitors. PVAPB GPEs serve as both the electrolyte and the separator in the assembled supercapacitors, and their scale and shape are determined solely by the geometry of the electrodes. PVAPB GPEs have good bonding to the active electrode materials, leading to excellent and stable electrochemical performance of the supercapacitors. The electrochemical performance of PVAPB GPEs and supercapacitors can be manipulated simply by adjusting the concentration of KCl salt used during the electrodeposition process. With a 0.9 M KCl concentration, the as-prepared supercapacitors deliver a specific capacitance of 65.9 F g(-1) at a current density of 0.1 A g(-1) and retain more than 95% capacitance after 2000 charge/discharge cycles at a current density of 1 A g(-1). These supercapacitors also exhibit intelligent high voltage self-protection function due to the electrolysis-induced cross-linking effect of PVAPB GPEs.

  15. Enhanced photocatalytic degradation of 2-propanol over macroporous GaN/ZnO solid solution prepared by a novel sol-gel method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Lizhong; Ouyang, Shuxin; Ren, Bofan

    2015-10-01

    Macroporous GaN/ZnO solid solution photocatalyst is synthesized through a novel sol-gel method under mild conditions. The performance of as-synthesized solid solution photocatalyst is evaluated for decomposition of gaseous 2-propanol (IPA). It is found that due to enhancement in both the adsorption to gaseous IPA and the absorbance to visible light, the porous GaN/ZnO solid solution exhibits a good photocatalytic performance for IPA decomposition. Moreover, the mechanism for photocatalytic degradation IPA over porous GaN/ZnO solid solution is also investigated in comparison with those for the two end materials ZnO and GaN. The trapping effects with different scavengers prove that both themore » photoexcited electrons and holes affect the IPA photodegradation process, simultaneously.« less

  16. Fuzzy controller training using particle swarm optimization for nonlinear system control.

    PubMed

    Karakuzu, Cihan

    2008-04-01

    This paper proposes and describes an effective utilization of particle swarm optimization (PSO) to train a Takagi-Sugeno (TS)-type fuzzy controller. Performance evaluation of the proposed fuzzy training method using the obtained simulation results is provided with two samples of highly nonlinear systems: a continuous stirred tank reactor (CSTR) and a Van der Pol (VDP) oscillator. The superiority of the proposed learning technique is that there is no need for a partial derivative with respect to the parameter for learning. This fuzzy learning technique is suitable for real-time implementation, especially if the system model is unknown and a supervised training cannot be run. In this study, all parameters of the controller are optimized with PSO in order to prove that a fuzzy controller trained by PSO exhibits a good control performance.

  17. Influence of Mixed Solvent on the Electrochemical Property of Hybrid Capacitor.

    PubMed

    Lee, Byunggwan; Yoon, J R

    2015-11-01

    The hybrid capacitors (2245 size, cylindrical type) were prepared by using activated carbon cathode and Li4Ti5O12 anode. In order to improve the cell operation at high temperature range, propylene carbonate (PC) was used in combination with acetonitrile (AN) with volume ratio of 7:3, 5:5, and 3:7, respectively. We investigated the electrochemical behavior of the hybrid capacitors that enabled cell operation with stability at high temperature. The organic electrolyte of hybrid capacitor containing PC and AN with a volume ratio 7:3 intended to exhibit highly reversible cycle performance with good capacity retention at 60 degrees C after 2200 cycles. From this study, it has been found that the very strong influence of the solvent nature on the characteristics of hybrid capacitor, and the difference in performance associated with the two solvents.

  18. Formation of Hierarchical Cu-Doped CoSe2 Microboxes via Sequential Ion Exchange for High-Performance Sodium-Ion Batteries.

    PubMed

    Fang, Yongjin; Yu, Xin-Yao; Lou, Xiong Wen David

    2018-04-06

    Electrode materials based on electrochemical conversion reactions have received considerable interest for high capacity anodes of sodium-ion batteries. However, their practical application is greatly hindered by the poor rate capability and rapid capacity fading. Tuning the structure at nanoscale and increasing the conductivity of these anode materials are two effective strategies to address these issues. Herein, a two-step ion-exchange method is developed to synthesize hierarchical Cu-doped CoSe 2 microboxes assembled by ultrathin nanosheets using Co-Co Prussian blue analogue microcubes as the starting material. Benefitting from the structural and compositional advantages, these Cu-doped CoSe 2 microboxes with improved conductivity exhibit enhanced sodium storage properties in terms of good rate capability and excellent cycling performance. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Nanosheets of earth-abundant jarosite as novel anodes for high-rate and long-life lithium-ion batteries.

    PubMed

    Ding, Yuan-Li; Wen, Yuren; Chen, Chia-Chin; van Aken, Peter A; Maier, Joachim; Yu, Yan

    2015-05-20

    Nanosheets of earth-abundant jarosite were fabricated via a facile template-engaged redox coprecipitation strategy at room temperature and employed as novel anode materials for lithium-ion batteries (LIBs) for the first time. These 2D materials exhibit high capacities, excellent rate capability, and prolonged cycling performance. As for KFe3(SO4)2(OH)6 jarosite nanosheets (KNSs), the reversible capacities of above 1300 mAh g(-1) at 100 mA g(-1) and 620 mAh g(-1) after 4000 cycles at a very high current density of 10 A g(-1) were achieved, respectively. Moreover, the resulting 2D nanomaterials retain good structural integrity upon cycling. These results reveal great potential of jarosite nanosheets as low-cost and high-performance anode materials for next-generation LIBs.

  20. Chromanyl-isoxazolidines as Antibacterial agents: Synthesis, Biological Evaluation, Quantitative Structure Activity Relationship, and Molecular Docking Studies.

    PubMed

    Singh, Gagandeep; Sharma, Anuradha; Kaur, Harpreet; Ishar, Mohan Paul S

    2016-02-01

    Regio- and stereoselective 1,3-dipolar cycloadditions of C-(chrom-4-one-3-yl)-N-phenylnitrones (N) with different mono-substituted, disubstituted, and cyclic dipolarophiles were carried out to obtain substituted N-phenyl-3'-(chrom-4-one-3-yl)-isoxazolidines (1-40). All the synthesized compounds were assayed for their in vitro antibacterial activity and display significant inhibitory potential; in particular, compound 32 exhibited good inhibitory activity against Salmonella typhymurium-1 & Salmonella typhymurium-2 with minimum inhibitory concentration value of 1.56 μg/mL and also showed good potential against methicillin-resistant Staphylococcus aureus with minimum inhibitory concentration 3.12 μg/mL. Quantitative structure activity relationship investigations with stepwise multiple linear regression analysis and docking simulation studies have been performed for validation of the observed antibacterial potential of the investigated compounds for determination of the most important parameters regulating antibacterial activities. © 2015 John Wiley & Sons A/S.

  1. Self-assembled highly ordered ethane-bridged periodic mesoporous organosilica and its application in HPLC.

    PubMed

    Huang, Lili; Lu, Juan; Di, Bin; Feng, Fang; Su, Mengxiang; Yan, Fang

    2011-09-01

    Monodisperse spherical periodic mesoporous organosilicas (PMOs) with ethane integrated in the framework were synthesized and their application as stationary phase for chromatographic separation is demonstrated. The ethane-PMOs were prepared by condensation of 1,2-bis(triethoxysilyl)ethane (BTSE) in basic condition using octadecyltrimethylammonium chloride (C(18)TMACl) as template and ethanol as co-solvent. The morphology and mesoporous structure of ethane-PMOs were controlled under different concentrations of sodium hydroxide (NaOH) and EtOH. The results of scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (XRD), nitrogen sorption measurement, Fourier transform infrared spectroscopy (FT-IR) and elemental analysis showed that ethane-PMOs have spherical morphology, uniform particle distribution, highly ordered pore structure, high surface area and narrow pore-size distribution. The column packed with these materials exhibits good permeability, high chemical stability and good selectivity of mixtures of aromatic hydrocarbons in normal phase high-performance liquid chromatography (HPLC). Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Growth mechanism and optical properties of aligned hexagonal ZnO nanoprisms synthesized by noncatalytic thermal evaporation.

    PubMed

    Umar, Ahmad; Karunagaran, B; Kim, S H; Suh, E-K; Hahn, Y B

    2008-05-19

    Vertically aligned perfectly hexagonal-shaped ZnO nanoprisms have been grown on a Si(100) substrate via a noncatalytic thermal evaporation process by using metallic zinc powder in the presence of oxygen gas. The as-grown nanoprisms consist of ultra smooth Zn-terminated (0001) facets bounded with the {0110} surfaces. The as-synthesized products are single-crystalline with the wurtzite hexagonal phase and grown along the [0001] direction, as confirmed from the detailed structural investigations. The presence of a sharp and strong nonpolar optical phonon high-E2 mode at 437 cm(-1) in the Raman scattering spectrum further confirms good crystallinity and wurtzite hexagonal phase for the as-grown products. The as-grown nanoprisms exhibit a strong near-band-edge emission with a very weak deep-level emission in the room-temperature and low-temperature photoluminescence measurements, confirming good optical properties for the deposited products. Moreover, systematic time-dependent experiments were also performed to determine the growth process of the grown vertically aligned nanoprisms.

  3. A more robust model of the biodiesel reaction, allowing identification of process conditions for significantly enhanced rate and water tolerance.

    PubMed

    Eze, Valentine C; Phan, Anh N; Harvey, Adam P

    2014-03-01

    A more robust kinetic model of base-catalysed transesterification than the conventional reaction scheme has been developed. All the relevant reactions in the base-catalysed transesterification of rapeseed oil (RSO) to fatty acid methyl ester (FAME) were investigated experimentally, and validated numerically in a model implemented using MATLAB. It was found that including the saponification of RSO and FAME side reactions and hydroxide-methoxide equilibrium data explained various effects that are not captured by simpler conventional models. Both the experiment and modelling showed that the "biodiesel reaction" can reach the desired level of conversion (>95%) in less than 2min. Given the right set of conditions, the transesterification can reach over 95% conversion, before the saponification losses become significant. This means that the reaction must be performed in a reactor exhibiting good mixing and good control of residence time, and the reaction mixture must be quenched rapidly as it leaves the reactor. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Peritoneal dialysis is appropriate for elderly patients.

    PubMed

    Teitelbaum, Isaac

    2006-01-01

    The utilization of peritoneal dialysis decreases with age. A number of concerns have been raised regarding the suitability of peritoneal dialysis for elderly patients. The purpose of this review is to determine whether these concerns are medically valid. Literature review and synthesis. Most elderly patients possess the manual and cognitive skills necessary to perform peritoneal dialysis. Elderly patients on peritoneal dialysis exhibit excellent compliance with their treatment regimen and display no increase in the rate of infectious complications though they may have a slight increase in hospital days. They easily achieve adequacy targets, experience good technique survival and their nutritional status is at least as good as that of their hemodialysis counterparts. Patient survival varies around the world but is overall comparable to that of age-matched patients on hemodialysis. Quality of life may be somewhat superior to that of older hemodialysis patients. Elderly patients with end-stage renal disease are appropriate candidates for peritoneal dialysis. It is not medically justifiable to exclude them from consideration for this therapeutic modality.

  5. Nanostructured mesoporous silica: new perspectives for fighting antimicrobial resistance

    NASA Astrophysics Data System (ADS)

    Voicu, Georgeta; Dogaru, Ionuţ; Meliţă, Daniela; Meştercă, Raluca; Spirescu, Vera; Stan, Eliza; Tote, Eliza; Mogoantă, Laurenţiu; Mogoşanu, George Dan; Grumezescu, Alexandru Mihai; Truşcă, Roxana; Vasile, Eugeniu; Iordache, Florin; Chifiriuc, Mariana-Carmen; Holban, Alina Maria

    2015-05-01

    This paper investigates the antimicrobial potential of nanostructured mesoporous silica (NMS) functionalized with essential oils (EOs) and antibiotics (ATBs). The NMS networks were obtained by the basic procedure from cetyltrimethylammonium bromide and tetraethyl orthosilicate in the form of granules with diameters ranging from 100 to 300 nm with an average pore diameter of 2.2 nm, as confirmed by the BET-TEM analyses. The Salvia officinalis (SO) and Coriandrum sativum (CS) EOs and the streptomycin and neomycin ATBs were loaded in the NMS pores. TG analysis was performed in order to estimate the amount of the entrapped volatile EOs. The results of the biological analyses revealed that NMS/SO and NMS/CS exhibited a very good antimicrobial activity to an extent comparable or even superior to the one triggered by ATB, and a good in vitro and in vivo biocompatibility. Due to their regular pores, high biocompatibility, antimicrobial activity, and capacity to stabilize the volatile EOs, the obtained NMS can be used as an efficient drug delivery system for further biomedical applications.

  6. Field programmable analog array based on current differencing transconductance amplifiers and its application to high-order filter

    NASA Astrophysics Data System (ADS)

    He, Haizhen; Luo, Rongming; Hu, Zhenhua; Wen, Lei

    2017-07-01

    A current-mode field programmable analog array(FPAA) is presented in this paper. The proposed FPAA consists of 9 configurable analog blocks(CABs) which are based on current differencing transconductance amplifiers (CDTA) and trans-impedance amplifier (TIA). The proposed CABs interconnect through global lines. These global lines contain some bridge switches, which used to reduce the parasitic capacitance effectively. High-order current-mode low-pass and band-pass filter with transmission zeros based on the simulation of general passive RLC ladder prototypes is proposed and mapped into the FPAA structure in order to demonstrate the versatility of the FPAA. These filters exhibit good performance on bandwidth. Filter's cutoff frequency can be tuned from 1.2MHz to 40MHz.The proposed FPAA is simulated in a standard Charted 0.18μm CMOS process with +/-1.2V power supply to confirm the presented theory, and the results have good agreement with the theoretical analysis.

  7. Wafer-scale Fabrication of Non-Polar Mesoporous GaN Distributed Bragg Reflectors via Electrochemical Porosification.

    PubMed

    Zhu, Tongtong; Liu, Yingjun; Ding, Tao; Fu, Wai Yuen; Jarman, John; Ren, Christopher Xiang; Kumar, R Vasant; Oliver, Rachel A

    2017-03-27

    Distributed Bragg reflectors (DBRs) are essential components for the development of optoelectronic devices. For many device applications, it is highly desirable to achieve not only high reflectivity and low absorption, but also good conductivity to allow effective electrical injection of charges. Here, we demonstrate the wafer-scale fabrication of highly reflective and conductive non-polar gallium nitride (GaN) DBRs, consisting of perfectly lattice-matched non-polar (11-20) GaN and mesoporous GaN layers that are obtained by a facile one-step electrochemical etching method without any extra processing steps. The GaN/mesoporous GaN DBRs exhibit high peak reflectivities (>96%) across the entire visible spectrum and wide spectral stop-band widths (full-width at half-maximum >80 nm), while preserving the material quality and showing good electrical conductivity. Such mesoporous GaN DBRs thus provide a promising and scalable platform for high performance GaN-based optoelectronic, photonic, and quantum photonic devices.

  8. Comparing the field and laboratory emission cell (FLEC) with traditional emissions testing chambers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roache, N.F.; Guo, Z.; Fortmann, R.

    1996-12-31

    A series of tests was designed to evaluate the performance of the field and laboratory emission cell (FLEC) as applied to the testing of emissions from two indoor coating materials, floor wax and latex paint. These tests included validation of the repeatability of the test method, evaluation of the effect of different air velocities on source emissions, and a comparison of FLEC versus small chamber characterization of emissions. The FLEC exhibited good repeatability in characterization of emissions when applied to both sources under identical conditions. Tests with different air velocities showed significant effects on the emissions from latex paint, yetmore » little effect on emissions from the floor wax. Comparisons of data from the FLEC and small chamber show good correlation for measurements involving floor wax, but less favorable results for emissions from latex paint. The procedures and findings are discussed; conclusions are limited and include emphasis on the need for additional study and development of a standard method.« less

  9. Two-dimensional polyaniline nanostructure to the development of microfluidic integrated flexible biosensors for biomarker detection.

    PubMed

    Liu, Pei; Zhu, Yisi; Lee, Seung Hee; Yun, Minhee

    2016-12-01

    In this work, we report a flexible field-effect-transistor (FET) biosensor design based on two-dimensional (2-D) polyaniline (PANI) nanostructure. The flexible biosensor devices were fabricated through a facile and inexpensive method that combines top-down and bottom-up processes. The chemically synthesized PANI nanostructure showed excellent p-type semiconductor properties as well as good compatibility with flexible design. With the 2-D PANI nanostructure being as thin as 80 nm and its extremely large surface-area-to-volume (SA/V) ratio due to the intrinsic properties of PANI chemical synthesis, the developed flexible biosensor exhibited outstanding sensing performance in detecting B-type natriuretic peptide (BNP) biomarkers, and was able to achieve high specificity (averagely 112 folds) with the limit of detection as low as 100 pg/mL. PANI nanostructure under bending condition was also investigated and showed controllable conductance changes being less than 20% with good restorability which may open up the possibility for wearable applications.

  10. Enhancing reproducibility of SALDI MS detection by concentrating analytes within laser spot.

    PubMed

    Teng, Fei; Zhu, Qunyan; Wang, Yalei; Du, Juan; Lu, Nan

    2018-03-01

    Surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI TOF MS) has become one of the most important analytical methods due to its less interference at low molecular weight range. However, it is still a challenge to obtain a good reproducibility of SALDI TOF MS because of the inhomogeneous distribution of analyte molecules induced by coffee ring effect. We propose a universal and reliable method to eliminate the coffee ring effect by concentrating all the analyte molecules within the laser spot. This method exhibits an excellent reproducibility of spot-to-spot and substrate-to-substrate, and the relative standard deviations (RSDs) for different concentrations are lower than 12.6%. It also performs good linear dependency (R 2 > 0.98) in the log-log plot with the concentration range of 1nM to 1μM, and the limit of detection for R6G is down to 1fmol. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Composite of K-doped (NH4)2V3O8/graphene as an anode material for sodium-ion batteries.

    PubMed

    Liu, Xin; Li, Zhiwei; Fei, Hailong; Wei, Mingdeng

    2015-11-21

    A layer structured K-doped (NH4)2V3O8/graphene (K-NVG) was prepared via a hydrothermal route and then used as an anode material for sodium-ion batteries for the first time. The K-NVG nanosheets have a diameter in the range of 200-500 nm. The K-NVG electrode exhibited stable cycling and a good rate performance with a reversible capacity of 235.4 mA h g(-1), which is much higher than the 90.5 mA h g(-1) value of the (NH4)2V3O8/graphene electrode after 100 cycles at a current density of 100 mA g(-1). Simultaneously, the retention rate was maintained at 82% even after 250 cycles at the current density of 300 mA g(-1). Such good electrochemical properties may be attributed to the K-NVG's stable layered structure.

  12. Development of an acoustic filter for parametric loudspeaker using phononic crystals.

    PubMed

    Ji, Peifeng; Hu, Wenlin; Yang, Jun

    2016-04-01

    The spurious signal generated as a result of nonlinearity at the receiving system affects the measurement of the difference-frequency sound in the parametric loudspeaker, especially in the nearfield or near the beam axis. In this paper, an acoustic filter is designed using phononic crystals and its theoretical simulations are carried out by quasi-one- and two-dimensional models with Comsol Multiphysics. According to the simulated transmission loss (TL), an acoustic filter is prototyped consisting of 5×7 aluminum alloy cylinders and its performance is verified experimentally. There is good agreement with the simulation result for TL. After applying our proposed filter in the axial measurement of the parametric loudspeaker, a clear frequency dependence from parametric array effect is detected, which exhibits a good match with the well-known theory described by the Gaussian-beam expansion technique. During the directivity measurement for the parametric loudspeaker, the proposed filter has also proved to be effective and is only needed for small angles. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Preparation of Advanced CuO Nanowires/Functionalized Graphene Composite Anode Material for Lithium Ion Batteries

    PubMed Central

    Zhang, Jin; Wang, Beibei; Zhou, Jiachen; Xia, Ruoyu; Chu, Yingli; Huang, Jia

    2017-01-01

    The copper oxide (CuO) nanowires/functionalized graphene (f-graphene) composite material was successfully composed by a one-pot synthesis method. The f-graphene synthesized through the Birch reduction chemistry method was modified with functional group “–(CH2)5COOH”, and the CuO nanowires (NWs) were well dispersed in the f-graphene sheets. When used as anode materials in lithium-ion batteries, the composite exhibited good cyclic stability and decent specific capacity of 677 mA·h·g−1 after 50 cycles. CuO NWs can enhance the lithium-ion storage of the composites while the f-graphene effectively resists the volume expansion of the CuO NWs during the galvanostatic charge/discharge cyclic process, and provide a conductive paths for charge transportation. The good electrochemical performance of the synthesized CuO/f-graphene composite suggests great potential of the composite materials for lithium-ion batteries anodes. PMID:28772432

  14. A dual-responsive colorimetric and fluorescent chemosensor based on diketopyrrolopyrrole derivative for naked-eye detection of Fe3+ and its practical application.

    PubMed

    Zhang, Shanshan; Sun, Tao; Xiao, Dejun; Yuan, Fang; Li, Tianduo; Wang, Enhua; Liu, Haixia; Niu, Qingfen

    2018-01-15

    A novel dual-responsive colorimetric and fluorescent chemosensor L based on diketopyrrolopyrrole derivative for Fe 3+ detection was designed and synthesized. In presence of Fe 3+ , sensor L displayed strong colorimetric response as amaranth to rose pink and significant fluorescence enhancement and chromogenic change, which served as a naked-eye indicator by an obvious color change from purple to red. The binding constant for L-Fe 3+ complex was found as 2.4×10 4 with the lower detection limit of 14.3nM. The sensing mechanism was investigated in detail by fluorescence measurements, IR and 1 H NMR spectra. Sensor L for Fe 3+ detection also exhibited high anti-interference performance, good reversibility, wide pH response range and instantaneous response time. Furthermore, the sensor L has been used to quantify Fe 3+ ions in practical water samples with good recovery. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Comparison of NiS2 and α-NiS hollow spheres for supercapacitors, non-enzymatic glucose sensors and water treatment.

    PubMed

    Wei, Chengzhen; Cheng, Cheng; Cheng, Yanyan; Wang, Yan; Xu, Yazhou; Du, Weimin; Pang, Huan

    2015-10-21

    NiS2 hollow spheres are successfully prepared by a one-step template free method. Meanwhile, α-NiS hollow spheres can also be synthesized via the calcination of the pre-obtained NiS2 hollow spheres at 400 °C for 1 h in air. The electrochemical performances of the as-prepared NiS2 and α-NiS hollow sphere products are evaluated. When used for supercapacitors, compared with NiS2 hollow spheres, the α-NiS hollow sphere electrode shows a large specific capacitance of 717.3 F g(-1) at 0.6 A g(-1) and a good cycle life. Furthermore, NiS2 and α-NiS hollow spheres are successfully applied to fabricate non-enzymatic glucose sensors. In particular, the α-NiS hollow spheres exhibit good catalytic activity for the oxidation of glucose, a fast amperometric response time of less than 5 s, and the detection limit is estimated to be 0.08 μM. More importantly, compared with other normally co-existing interfering species, such as ascorbic acid, uric acid and dopamine, the electrode modified with α-NiS hollow spheres shows good selectivity. Moreover, the α-NiS hollow spheres also present good capacity to remove Congo red organic pollutants from wastewater by their surface adsorption ability.

  16. Effects of graphene plates' adoption on the microstructure, mechanical properties, and in vivo biocompatibility of calcium silicate coating.

    PubMed

    Xie, Youtao; Li, Hongqin; Ding, Chuanxian; Zheng, Xuebin; Li, Kai

    2015-01-01

    Calcium silicate (CS) ceramic is a good coating candidate for biomedical implants to improve biocompatibility and accelerate early osseointegration. However, the poor fracture toughness and wear resistance of this ceramic material restricts the long-term performance of implants. In this study, graphene plates (GPs) were used as reinforcement to improve the mechanical properties of CS coating. Composite coating containing 1.5 weight % GPs was prepared by vacuum plasma spraying technology. The good survival of the GPs in the composite coating was demonstrated by Raman analysis, although the defects of the GPs were increased after plasma spraying. Effects of the GPs' adoption on the microstructure of the coating were studied by scanning electron microscopy and transmission electron microscopy. Results showed that the GPs were homogenously distributed in the CS grains interface or enwrapped on the particles, and exhibited good wetting behavior with the CS matrix. The wear properties of the composite coating were obviously enhanced by the reinforcement of GPs. The reinforcement mechanism was attributed to the enhanced micro-hardness and interfacial bonding of the particles in the coating. In vivo experiments demonstrated that the composite coating possessed similarly good biocompatibility compared to pure CS coating. The bone-implant contact ratio reached 84.3%±7.4% for GPs/CS coating and 79.6%±9.4% for CS coating after 3 months' implantation.

  17. Effects of graphene plates’ adoption on the microstructure, mechanical properties, and in vivo biocompatibility of calcium silicate coating

    PubMed Central

    Xie, Youtao; Li, Hongqin; Ding, Chuanxian; Zheng, Xuebin; Li, Kai

    2015-01-01

    Calcium silicate (CS) ceramic is a good coating candidate for biomedical implants to improve biocompatibility and accelerate early osseointegration. However, the poor fracture toughness and wear resistance of this ceramic material restricts the long-term performance of implants. In this study, graphene plates (GPs) were used as reinforcement to improve the mechanical properties of CS coating. Composite coating containing 1.5 weight % GPs was prepared by vacuum plasma spraying technology. The good survival of the GPs in the composite coating was demonstrated by Raman analysis, although the defects of the GPs were increased after plasma spraying. Effects of the GPs’ adoption on the microstructure of the coating were studied by scanning electron microscopy and transmission electron microscopy. Results showed that the GPs were homogenously distributed in the CS grains interface or enwrapped on the particles, and exhibited good wetting behavior with the CS matrix. The wear properties of the composite coating were obviously enhanced by the reinforcement of GPs. The reinforcement mechanism was attributed to the enhanced micro-hardness and interfacial bonding of the particles in the coating. In vivo experiments demonstrated that the composite coating possessed similarly good biocompatibility compared to pure CS coating. The bone-implant contact ratio reached 84.3%±7.4% for GPs/CS coating and 79.6%±9.4% for CS coating after 3 months’ implantation. PMID:26089662

  18. The Development of Three Long Universal Nuclear Protein-Coding Locus Markers and Their Application to Osteichthyan Phylogenetics with Nested PCR

    PubMed Central

    Zhang, Peng

    2012-01-01

    Background Universal nuclear protein-coding locus (NPCL) markers that are applicable across diverse taxa and show good phylogenetic discrimination have broad applications in molecular phylogenetic studies. For example, RAG1, a representative NPCL marker, has been successfully used to make phylogenetic inferences within all major osteichthyan groups. However, such markers with broad working range and high phylogenetic performance are still scarce. It is necessary to develop more universal NPCL markers comparable to RAG1 for osteichthyan phylogenetics. Methodology/Principal Findings We developed three long universal NPCL markers (>1.6 kb each) based on single-copy nuclear genes (KIAA1239, SACS and TTN) that possess large exons and exhibit the appropriate evolutionary rates. We then compared their phylogenetic utilities with that of the reference marker RAG1 in 47 jawed vertebrate species. In comparison with RAG1, each of the three long universal markers yielded similar topologies and branch supports, all in congruence with the currently accepted osteichthyan phylogeny. To compare their phylogenetic performance visually, we also estimated the phylogenetic informativeness (PI) profile for each of the four long universal NPCL markers. The PI curves indicated that SACS performed best over the whole timescale, while RAG1, KIAA1239 and TTN exhibited similar phylogenetic performances. In addition, we compared the success of nested PCR and standard PCR when amplifying NPCL marker fragments. The amplification success rate and efficiency of the nested PCR were overwhelmingly higher than those of standard PCR. Conclusions/Significance Our work clearly demonstrates the superiority of nested PCR over the conventional PCR in phylogenetic studies and develops three long universal NPCL markers (KIAA1239, SACS and TTN) with the nested PCR strategy. The three markers exhibit high phylogenetic utilities in osteichthyan phylogenetics and can be widely used as pilot genes for phylogenetic questions of osteichthyans at different taxonomic levels. PMID:22720083

  19. High-performance, polymer-based direct cellular interfaces for electrical stimulation and recording

    NASA Astrophysics Data System (ADS)

    Kim, Seong-Min; Kim, Nara; Kim, Youngseok; Baik, Min-Seo; Yoo, Minsu; Kim, Dongyoon; Lee, Won-June; Kang, Dong-Hee; Kim, Sohee; Lee, Kwanghee; Yoon, Myung-Han

    2018-04-01

    Due to the trade-off between their electrical/electrochemical performance and underwater stability, realizing polymer-based, high-performance direct cellular interfaces for electrical stimulation and recording has been very challenging. Herein, we developed transparent and conductive direct cellular interfaces based on a water-stable, high-performance poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) film via solvent-assisted crystallization. The crystallized PEDOT:PSS on a polyethylene terephthalate (PET) substrate exhibited excellent electrical/electrochemical/optical characteristics, long-term underwater stability without film dissolution/delamination, and good viability for primarily cultured cardiomyocytes and neurons over several weeks. Furthermore, the highly crystallized, nanofibrillar PEDOT:PSS networks enabled dramatically enlarged surface areas and electrochemical activities, which were successfully employed to modulate cardiomyocyte beating via direct electrical stimulation. Finally, the high-performance PEDOT:PSS layer was seamlessly incorporated into transparent microelectrode arrays for efficient, real-time recording of cardiomyocyte action potentials with a high signal fidelity. All these results demonstrate the strong potential of crystallized PEDOT:PSS as a crucial component for a variety of versatile bioelectronic interfaces.

  20. Interlinked multiphase Fe-doped MnO2 nanostructures: a novel design for enhanced pseudocapacitive performance

    NASA Astrophysics Data System (ADS)

    Wang, Ziya; Wang, Fengping; Li, Yan; Hu, Jianlin; Lu, Yanzhen; Xu, Mei

    2016-03-01

    Structure designing and morphology control can lead to high performance pseudocapacitive materials for supercapacitors. In this work, we have designed interlinked multiphase Fe-doped MnO2 nanostructures (α-MnO2/R-MnO2/ε-MnO2) to enhance the electrochemical properties by a facile method. These hierarchical hollow microspheres assembled by interconnected nanoflakes, and with plenty of porous nanorods radiating from the spherical shells were hydrothermally obtained. The supercapacitor electrode prepared from the unique construction exhibits outstanding specific capacitance of 267.0 F g-1 even under a high mass loading (~5 mg cm-2). Obviously improved performances compared to pure MnO2 are also demonstrated with a good rate capability, high energy density (1.30 mW h cm-3) and excellent cycling stability of 100% capacitance retention after 2000 cycles at 2 A g-1. The synergistic effects of alternative crystal structures, appropriate crystallinity and optimal morphology are identified to be responsible for the observations. This rational multiphase composite strategy provides a promising idea for materials scientists to design and prepare scalable electrode materials for energy storage devices.Structure designing and morphology control can lead to high performance pseudocapacitive materials for supercapacitors. In this work, we have designed interlinked multiphase Fe-doped MnO2 nanostructures (α-MnO2/R-MnO2/ε-MnO2) to enhance the electrochemical properties by a facile method. These hierarchical hollow microspheres assembled by interconnected nanoflakes, and with plenty of porous nanorods radiating from the spherical shells were hydrothermally obtained. The supercapacitor electrode prepared from the unique construction exhibits outstanding specific capacitance of 267.0 F g-1 even under a high mass loading (~5 mg cm-2). Obviously improved performances compared to pure MnO2 are also demonstrated with a good rate capability, high energy density (1.30 mW h cm-3) and excellent cycling stability of 100% capacitance retention after 2000 cycles at 2 A g-1. The synergistic effects of alternative crystal structures, appropriate crystallinity and optimal morphology are identified to be responsible for the observations. This rational multiphase composite strategy provides a promising idea for materials scientists to design and prepare scalable electrode materials for energy storage devices. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08857g

Top