Enhanced electron transfer kinetics through hybrid graphene-carbon nanotube films.
Henry, Philémon A; Raut, Akshay S; Ubnoske, Stephen M; Parker, Charles B; Glass, Jeffrey T
2014-11-01
We report the first study of the electrochemical reactivity of a graphenated carbon nanotube (g-CNT) film. The electron transfer kinetics of the ferri-ferrocyanide couple were examined for a g-CNT film and compared to the kinetics to standard carbon nanotubes (CNTs). The g-CNT film exhibited much higher catalytic activity, with a heterogeneous electron-transfer rate constant, k 0 , approximately two orders of magnitude higher than for standard CNTs. Scanning electron microscopy and Raman spectroscopy were used to correlate the higher electron transfer kinetics with the higher edge-density of the g-CNT film.
NASA Astrophysics Data System (ADS)
Erande, Yogesh; Kothavale, Shantaram; Sreenath, Mavila C.; Chitrambalam, Subramaniyan; Joe, Isaac H.; Sekar, Nagaiyan
2017-11-01
Molecules containing methoxy supported triphenylamine as strong electron-donor and dicyanovinyl as electron-acceptor groups interacting via isophorone as a configurationally locked polyene π-conjugated bridge are studied for their nonlinear optical properties. The photophysical study of examined chromophores in non-polar and polar solvents suggest that they exhibit strong emission solvatochromism and significant charge transfer characteristics supported by Lippert-Mataga plots and Generalised Mulliken Hush analysis. Linear and nonlinear optical properties as well as electronic properties measured by spectroscopic methods and cyclic voltametry and supported by DFT calculation were used to elucidate the structure property relationships. All three chromophores exhibit very high thermal stabilities with the decomposition temperatures higher than 340°C. The vibrational motions play very important role in determining the overall NLO response styryl chromophores which was established by DFT study. Dye 3 with maximum nonlinear optical susceptibility among three D-π-A systems proves that the multibranched push-pull chromophores exhibit a higher third order nonlinear susceptibility and justifies the design strategy.
Negative local resistance caused by viscous electron backflow in graphene.
Bandurin, D A; Torre, I; Krishna Kumar, R; Ben Shalom, M; Tomadin, A; Principi, A; Auton, G H; Khestanova, E; Novoselov, K S; Grigorieva, I V; Ponomarenko, L A; Geim, A K; Polini, M
2016-03-04
Graphene hosts a unique electron system in which electron-phonon scattering is extremely weak but electron-electron collisions are sufficiently frequent to provide local equilibrium above the temperature of liquid nitrogen. Under these conditions, electrons can behave as a viscous liquid and exhibit hydrodynamic phenomena similar to classical liquids. Here we report strong evidence for this transport regime. We found that doped graphene exhibits an anomalous (negative) voltage drop near current-injection contacts, which is attributed to the formation of submicrometer-size whirlpools in the electron flow. The viscosity of graphene's electron liquid is found to be ~0.1 square meters per second, an order of magnitude higher than that of honey, in agreement with many-body theory. Our work demonstrates the possibility of studying electron hydrodynamics using high-quality graphene. Copyright © 2016, American Association for the Advancement of Science.
Photoelectrochemical etching measurement of defect density in GaN grown by nanoheteroepitaxy
NASA Astrophysics Data System (ADS)
Ferdous, M. S.; Sun, X. Y.; Wang, X.; Fairchild, M. N.; Hersee, S. D.
2006-05-01
The density of dislocations in n-type GaN was measured by photoelectrochemical etching. A 10× reduction in dislocation density was observed compared to planar GaN grown at the same time. Cross-sectional transmission electron microscopy studies indicate that defect reduction is due to the mutual cancellation of dislocations with equal and opposite Burger's vectors. The nanoheteroepitaxy sample exhibited significantly higher photoluminescence intensity and higher electron mobility than the planar reference sample.
NASA Astrophysics Data System (ADS)
Roubidoux, J. A.; Jackson, J. E.; Lasseigne, A. N.; Mishra, B.; Olson, D. L.
2010-02-01
This paper correlates nonlinear material properties to nondestructive electronic measurements by using wave analysis techniques (e.g. Perturbation Methods) and incorporating higher-order phenomena. The correlations suggest that nondestructive electronic property measurements and practices can be used to assess thin films, surface layers, and other advanced materials that exhibit modified behaviors based on their space-charged interfacial behavior.
NASA Astrophysics Data System (ADS)
Liu, Gang-Hu; Liu, Yong-Xin; Bai, Li-Shui; Zhao, Kai; Wang, You-Nian
2018-02-01
The dependence of the electron density and the emission intensity on external parameters during the transitions of the electron power absorption mode is experimentally studied in asymmetric electropositive (neon) and electronegative (CF4) capacitively coupled radio-frequency plasmas. The spatio-temporal distribution of the emission intensity is measured with phase resolved optical emission spectroscopy and the electron density at the discharge center is measured by utilizing a floating hairpin probe. In neon discharge, the emission intensity increases almost linearly with the rf voltage at all driving frequencies covered here, while the variation of the electron density with the rf voltage behaves differently at different driving frequencies. In particular, the electron density increases linearly with the rf voltage at high driving frequencies, while at low driving frequencies the electron density increases slowly at the low-voltage side and, however, grows rapidly, when the rf voltage is higher than a certain value, indicating a transition from α to γ mode. The rf voltage, at which the mode transition occurs, increases with the decrease of the driving frequency/the working pressure. By contrast, in CF4 discharge, three different electron power absorption modes can be observed and the electron density and emission intensity do not exhibit a simple dependence on the rf voltage. In particular, the electron density exhibits a minimum at a certain rf voltage when the electron power absorption mode is switching from drift-ambipolar to the α/γ mode. A minimum can also be found in the emission intensity at a higher rf voltage when a discharge is switching into the γ mode.
Electron Scattering by Plasmaspheric Hiss in a Nightside Plume
NASA Astrophysics Data System (ADS)
Zhang, Wenxun; Fu, Song; Gu, Xudong; Ni, Binbin; Xiang, Zheng; Summers, Danny; Zou, Zhengyang; Cao, Xing; Lou, Yuequn; Hua, Man
2018-05-01
Plasmaspheric hiss is known to play an important role in radiation belt electron dynamics in high plasma density regions. We present observations of two crossings of a plasmaspheric plume by the Van Allen Probes on 26 December 2012, which occurred unusually at the post-midnight-to-dawn sector between L 4-6 during a geomagnetically quiet period. This plume exhibited pronounced electron densities higher than those of the average plume level. Moderate hiss emissions accompanied the two plume crossings with the peak power at about 100 Hz. Quantification of quasi-linear bounce-averaged electron scattering rates by hiss in the plume demonstrates that the waves are efficient to pitch angle scatter 10-100 keV electrons at rates up to 10-4 s-1 near the loss cone but become gradually insignificant to scatter the higher energy electron population. The resultant timescales of electron loss due to hiss in the nightside plume vary largely with electron kinetic energy over 3 orders of magnitude, that is, from several hours for tens of keV electrons to a few days for hundreds of keV electrons to well above 100 days for >1 MeV electrons. Changing slightly with L-shell and the multiquartile profile of hiss spectral intensity, these electron loss timescales suggest that hiss emissions in the nightside plume act as a viable candidate for the fast loss of the ≲100 keV electrons and the slow decay of higher energy electrons.
Band structure and unconventional electronic topology of CoSi
NASA Astrophysics Data System (ADS)
Pshenay-Severin, D. A.; Ivanov, Y. V.; Burkov, A. A.; Burkov, A. T.
2018-04-01
Semimetals with certain crystal symmetries may possess unusual electronic structure topology, distinct from that of the conventional Weyl and Dirac semimetals. Characteristic property of these materials is the existence of band-touching points with multiple (higher than two-fold) degeneracy and nonzero Chern number. CoSi is a representative of this group of materials exhibiting the so-called ‘new fermions’. We report on an ab initio calculation of the electronic structure of CoSi using density functional methods, taking into account the spin-orbit interactions. The linearized \
FIRST PRINCIPLES STUDY ON ELECTRONIC AND OPTICAL PROPERTIES OF Al-DOPED γ-Ge3N4
NASA Astrophysics Data System (ADS)
Ding, Y. C.; Xiang, A. P.; Zhu, X. H.; Luo, J.; Hu, X. F.
2012-12-01
First principles study of the structural, electronic and optical properties of Al-doped γ-Ge3N4 with different concentration has been reported using the pseudo-potential plane wave method within the generalized gradient approximation (GGA). The binding energy and the formation energy suggest that Aluminum (Al) impurities prefer to substitute Ge at octahedral sites. Different doping concentrations are considered and the corresponding density of states (DOS) are analyzed. Calculated DOS indicates that there are holes in the top of the valance band after doping, meaning a p-type doping. We study the complex dielectric function, the absorption coefficient, and the electron energy loss spectra. It is demonstrated that for the low Al concentration, the material exhibits the dielectric behavior and for the high Al concentration, the material has possibilities to exhibit some metallic behavior. The γ-Ge3N4 doped with Al has a much higher static dielectric constant than undoped γ-Ge3N4, implying its potential applications in electronics and optics.
Theoretical study of porous surfaces derived from graphene and boron nitride
NASA Astrophysics Data System (ADS)
Fabris, G. S. L.; Marana, N. L.; Longo, E.; Sambrano, J. R.
2018-02-01
Porous graphene (PG), graphenylene (GP), inorganic graphenylene (IGP-BN), and porous boron nitride (PBN) single-layer have been studied via periodic density functional theory with a modified B3LYP functional and an all-electron Gaussian basis set. The structural, elastic, electronic, vibrational, and topological properties of the surfaces were investigated. The analysis showed that all porous structures had a nonzero band gap, and only PG exhibited a non-planar shape. All porous structures seem to be more susceptible to longitudinal deformation than their pristine counterparts, and GP exhibits a higher strength than graphene in the transversal direction. In addition, the electron densities of GP and IGP-BN are localized closer to the atoms, in contrast with PG and PBN, whose charge density is shifted towards the pore center; this property could find application in various fields, such as gas adsorption.
Plasma turbulence and coherent structures in the polar cap observed by the ICI-2 sounding rocket
NASA Astrophysics Data System (ADS)
Spicher, A.; Miloch, W. J.; Clausen, L. B. N.; Moen, J. I.
2015-12-01
The electron density data from the ICI-2 sounding rocket experiment in the high-latitude F region ionosphere are analyzed using the higher-order spectra and higher-order statistics. Two regions of enhanced fluctuations are chosen for detailed analysis: the trailing edge of a polar cap patch and an electron density enhancement associated with particle precipitation. While these two regions exhibit similar power spectra, our analysis reveals that their internal structures are significantly different. The structures on the edge of the polar cap patch are likely due to nonlinear wave interactions since this region is characterized by intermittency and significant coherent mode coupling. The plasma enhancement subjected to precipitation, however, exhibits stronger random characteristics with uncorrelated phases of density fluctuations. These results suggest that particle precipitation plays a fundamental role in ionospheric plasma structuring creating turbulent-like structures. We discuss the physical mechanisms that cause plasma structuring as well as the possible processes for the low-frequency part of the spectrum in terms of plasma instabilities.
Vibronic structure and coupling of higher excited electronic states in carotenoids
NASA Astrophysics Data System (ADS)
Krawczyk, Stanisław; Luchowski, Rafał
2013-03-01
Absorption spectra of all-trans carotenoids (lycopene, violaxanthin, ζ-carotene) at low temperature exhibit peculiar features in the UV range. The transition to the 11Ag+ state ('cis-band') weakens on cooling, indicating that it is induced by thermal deformations of the conjugated chain. The higher energy band has unique vibrational structure indicating the vibronic coupling of nBu with another electronic state. The electroabsorption spectra point to the electric field-induced mixing of the nBu state with the vibrational continuum of a lower-lying excited state (Fano effect). These observations widen the basis for elucidation of the vibronic coupling effects in the lower excited states.
Ground and excited states of CaSH through electron propagator calculations
NASA Astrophysics Data System (ADS)
Ortiz, J. V.
1990-05-01
Electron propagator calculations of electron affinities of CaSH + produce ground and excited state energies at the optimized, C s minimum of the neutral ground state and at a C ∞v geometry. Feynman-Dyson amplitudes (FDAs) describe the distribution of the least bound electron in various states. The neutral ground state differs from the cation by the occupation of a one-electron state dominated by Ca s functions. Described by FDAs with Ca-S π pseudosymmetry, corresponding excited states have unpaired electrons in orbitals displaying interference between Ca p and d functions. Above these lies a σ pseudosymmetry FDA with principal contributions from Ca d functions. Two FDAs with σ pseudosymmetry follow. Higher excited states exhibit considerable delocalization onto S.
Zhao, Shijun; Egami, Takeshi; Stocks, G. Malcolm; ...
2018-01-01
Here, the role of d electrons in determining distributions of formation and migration energies for point defects in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys (CSAs) are studied regarding electron density deformation flexibility based on first-principles calculations. The disordered state is taken into account by constructing special quasirandom structures. The migration barriers are determined by directly optimizing the saddle point. It is found that the formation energies of interstitials in CSAs are lower than those in pure Ni, whereas the formation energies of vacancies are higher. In both NiCoCr and NiCoFeCr, Co-related dumbbell interstitials exhibit lower formation energies. Notably,more » the distributions of migration energies for Cr interstitials and vacancies exhibit a remarkable overlap region. A detailed analysis of electronic properties reveals that the electronic charge deformation flexibility regarding e g to t 2g transition has a dominant effect on defect energetics for different elements in CSAs. Thus the electron deformation ability is suggested as a key factor in understanding the peculiar defect behavior in CSAs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Shijun; Egami, Takeshi; Stocks, G. Malcolm
Here, the role of d electrons in determining distributions of formation and migration energies for point defects in equiatomic NiCoCr and NiCoFeCr concentrated solid solution alloys (CSAs) are studied regarding electron density deformation flexibility based on first-principles calculations. The disordered state is taken into account by constructing special quasirandom structures. The migration barriers are determined by directly optimizing the saddle point. It is found that the formation energies of interstitials in CSAs are lower than those in pure Ni, whereas the formation energies of vacancies are higher. In both NiCoCr and NiCoFeCr, Co-related dumbbell interstitials exhibit lower formation energies. Notably,more » the distributions of migration energies for Cr interstitials and vacancies exhibit a remarkable overlap region. A detailed analysis of electronic properties reveals that the electronic charge deformation flexibility regarding e g to t 2g transition has a dominant effect on defect energetics for different elements in CSAs. Thus the electron deformation ability is suggested as a key factor in understanding the peculiar defect behavior in CSAs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardenas, C; The University of Texas Graduate School of Biomedical Sciences, Houston, TX; Nitsch, P
Purpose: To investigate out-of-field electron doses and neutron production from electron beams from modern Varian and Elekta linear accelerators. Methods: Electron dose measurements were made using 10×10cm{sup 2} applicators on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at energies from 6 to 20 MeV. Out-of-field dose profiles and PDD curves were measured in a Wellhofer water phantom using a Farmer chamber. Neutron measurements were made with a combination of moderator buckets and gold activation-foils placed on the treatment couch at various locations in the patient plane on both the 21iX and Versa HD linear accelerators.more » Results: Electron doses were highest for the highest electron energies. Dose profile curves for the Varian units were found to be lower than those from the Versa HD unit, and were lower than photon beams. Elekta’s dose profiles were higher and exhibited a second dose peak around 20–30 cm from central-axis. Electron doses in this region (0.8–1.3% of dmax at central-axis) were close to 5 times (2.5–4.8) greater than doses from photon beams with similar energies. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. Q-values and neutron dose equivalent increased with energy and were typically higher on central-axis. 18 MV photon beam neutron dose equivalents were greater than any electron beam, being approximately 40 times greater than for the 20 MeV electron beam (21iX). Conclusion: The Versa HD exhibited higher than expected out-of-field electron doses in comparison to typical radiotherapy photon beams. Fortunately, out-of-field electron doses can be substantially reduced by applying a water-equivalent bolus with thickness of E(MeV)/4 in cm. Neutron contamination from clinical electron beams can be considered negligible in relation to photon beams but may need to be considered for special cases. This work was supported by Public Health Service Grant CA180803 awarded by the National Cancer Institute, United States Department of Health and Human Services.« less
Biologically derived melanin electrodes in aqueous sodium-ion energy storage devices
Kim, Young Jo; Wu, Wei; Chun, Sang-Eun; Whitacre, Jay F.; Bettinger, Christopher J.
2013-01-01
Biodegradable electronics represents an attractive and emerging paradigm in medical devices by harnessing simultaneous advantages afforded by electronically active systems and obviating issues with chronic implants. Integrating practical energy sources that are compatible with the envisioned operation of transient devices is an unmet challenge for biodegradable electronics. Although high-performance energy storage systems offer a feasible solution, toxic materials and electrolytes present regulatory hurdles for use in temporary medical devices. Aqueous sodium-ion charge storage devices combined with biocompatible electrodes are ideal components to power next-generation biodegradable electronics. Here, we report the use of biologically derived organic electrodes composed of melanin pigments for use in energy storage devices. Melanins of natural (derived from Sepia officinalis) and synthetic origin are evaluated as anode materials in aqueous sodium-ion storage devices. Na+-loaded melanin anodes exhibit specific capacities of 30.4 ± 1.6 mAhg−1. Full cells composed of natural melanin anodes and λ-MnO2 cathodes exhibit an initial potential of 1.03 ± 0.06 V with a maximum specific capacity of 16.1 ± 0.8 mAhg−1. Natural melanin anodes exhibit higher specific capacities compared with synthetic melanins due to a combination of beneficial chemical, electrical, and physical properties exhibited by the former. Taken together, these results suggest that melanin pigments may serve as a naturally occurring biologically derived charge storage material to power certain types of medical devices. PMID:24324163
Lima Neto, Milton C; Lobo, Ana K M; Martins, Marcio O; Fontenele, Adilton V; Silveira, Joaquim Albenisio G
2014-01-01
The relationships between salt tolerance and photosynthetic mechanisms of excess energy dissipation were assessed using two species that exhibit contrasting responses to salinity, Ricinus communis (tolerant) and Jatropha curcas (sensitive). The salt tolerance of R. communis was indicated by unchanged electrolyte leakage (cellular integrity) and dry weight in leaves, whereas these parameters were greatly affected in J. curcas. The leaf Na+ content was similar in both species. Photosynthesis was intensely decreased in both species, but the reduction was more pronounced in J. curcas. In this species biochemical limitations in photosynthesis were more prominent, as indicated by increased C(i) values and decreased Rubisco activity. Salinity decreased both the V(cmax) (in vivo Rubisco activity) and J(max) (maximum electron transport rate) more significantly in J. curcas. The higher tolerance in R. communis was positively associated with higher photorespiratory activity, nitrate assimilation and higher cyclic electron flow. The high activity of these alternative electron sinks in R. communis was closely associated with a more efficient photoprotection mechanism. In conclusion, salt tolerance in R. communis, compared with J. curcas, is related to higher electron partitioning from the photosynthetic electron transport chain to alternative sinks. Copyright © 2013 Elsevier GmbH. All rights reserved.
Xue, Guobiao; Xin, Huolin L.; Wu, Jiake; ...
2015-10-29
Enhancing electron transport to match with the development in hole transport is critical for organic electronics in the future. As electron motion is susceptible to extrinsic factors, seeking these factors and avoiding their negative effects have become the central challenge. Here, the existence of polar solvent residues in solution-grown single-crystals of 6,13-bis(triisopropylsilylethynyl)-5,7,12,14-tetraazapentacene is identified as a factor detrimental to electron motion. Field-effect transistors of the crystals exhibit electron mobility boosted by about 60% after the residues are removed. The average electron mobility reaches up to 8.0 ± 2.2 cm 2 V –1 s –1 with a highest value of 13.3more » cm 2 V –1 s –1; these results are significantly higher than those obtained previously for the same molecule (1.0–5.0 cm 2 V –1 s –1). Furthermore, the achieved mobility is also higher than the maximum reported electron mobility for organic materials (11 cm 2 V –1 s –1). As a result, this work should greatly accelerate the advancement of organic electron-transporting materials.« less
NASA Astrophysics Data System (ADS)
Meng, Zhaoxu; Zhang, Xu; Qin, Jianhua
2013-05-01
We present a novel microfluidic-based photocatalytic microreactor by using electrospun nanofibrous TiO2 as a photocatalyst for the first time. The microreactor exhibits not only a simple fabrication process, but also much higher photocatalytic activity than that achieved by a TiO2 film microreactor.We present a novel microfluidic-based photocatalytic microreactor by using electrospun nanofibrous TiO2 as a photocatalyst for the first time. The microreactor exhibits not only a simple fabrication process, but also much higher photocatalytic activity than that achieved by a TiO2 film microreactor. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr00775h
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yen, Hung-Ju; Tsai, Hsinhan; Zhou, Ming
In this paper, functionalized 3D nanographenes with controlled electronic properties have been synthesized through a multistep organic synthesis method and are further used as promising anode materials for lithium-ion batteries, exhibiting a much increased capacity (up to 950 mAh g -1), three times higher than that of the graphite anode (372 mAh g -1).
Structural and dielectric studies on Ag doped nano ZnSnO3
NASA Astrophysics Data System (ADS)
Deepa, K.; Angel, S. Lilly; Rajamanickam, N.; Jayakumar, K.; Ramachandran, K.
2018-04-01
Undoped and Ag-doped nano Zinc Stannate (ZSO) ternary oxide were prepared by co-precipitation method. The crystallographic, morphological and optical properties of the synthesized nanoparticles were studied using X-ray diffraction (XRD) and UV-Visible spectroscopy (UV-Vis) and Scanning electron microscopy (SEM). The electrical properties of the synthesized samples were studied by dielectric measurements. Higher concentration Ag doped ZSO nanoparticles exhibit higher dielectric constant at low frequency.
NASA Astrophysics Data System (ADS)
Vasko, I.; Agapitov, O. V.; Mozer, F.; Bonnell, J. W.; Krasnoselskikh, V.; Artemyev, A.; Drake, J. F.
2017-12-01
Chorus waves observed in the Earth inner magnetosphere sometimes exhibit significantly distorted (nonharmonic) parallel electric field waveform. In spectrograms these waveform features show up as overtones of chorus wave. In this work we show that the chorus wave parallel electric field is distorted due to finite temperature of electrons. The distortion of the parallel electric field is described analytically and reproduced in the numerical fluid simulations. Due to this effect the chorus energy is transferred to higher frequencies making possible efficient scattering of low ( a few keV) energy electrons.
Plasma properties in electron-bombardment ion thrusters
NASA Technical Reports Server (NTRS)
Matossian, J. N.; Beattie, J. R.
1987-01-01
The paper describes a technique for computing volume-averaged plasma properties within electron-bombardment ion thrusters, using spatially varying Langmuir-probe measurements. Average values of the electron densities are defined by integrating the spatially varying Maxwellian and primary electron densities over the ionization volume, and then dividing by the volume. Plasma properties obtained in the 30-cm-diameter J-series and ring-cusp thrusters are analyzed by the volume-averaging technique. The superior performance exhibited by the ring-cusp thruster is correlated with a higher average Maxwellian electron temperature. The ring-cusp thruster maintains the same fraction of primary electrons as does the J-series thruster, but at a much lower ion production cost. The volume-averaged predictions for both thrusters are compared with those of a detailed thruster performance model.
NASA Astrophysics Data System (ADS)
Rajesh, B.; Ravindranathan Thampi, K.; Bonard, J.-M.; Mathieu, H. J.; Xanthopoulos, N.; Viswanathan, B.
The electronically conducting hybrid material based on transition metal oxide and conducting polymer has been used as the catalyst support for Pt nanoparticles. The Pt nanoparticles loaded hybrid organic (polyaniline)-inorganic (vanadium pentoxide) composite has been used as the electrode material for methanol oxidation, a reaction of importance for the development of direct methanol fuel cells (DMFC). The hybrid material exhibited excellent electrochemical and thermal stability in comparison to the physical mixture of conducting polymer and transition metal oxide. The Pt nanoparticles loaded hybrid material exhibited high electrocatalytic activity and stability for methanol oxidation in comparison to the Pt supported on the Vulcan XC 72R carbon support. The higher activity and stability is attributed to the better CO tolerance of the composite material.
NASA Astrophysics Data System (ADS)
Zhang, Jiankang
2017-06-01
There are two roadmaps of accomplishing exhibition electronic-commerce innovation and development. The first roadmap is that the exhibition organizers should seek mutual benefit cooperation with professional electronic-commerce platform of correspondent area with exhibition projects, thus help exhibitors realize their market object. The second roadmap is to promote innovation and development of electronic-commerce (Business-to-Customer) between both exhibitors and purchasers. Exhibition electronic-commerce must focus on innovative development in the following functions: market research and information service; advertising and business negotiation; online trading and online payment. With the aid of electronic-commerce, exhibition enterprise could have distinctive strengths such as transactions with virtualization, transparency, high efficiency and low cost, enhancing market link during enterprise research and development, promoting the efficiency of internal team collaboration and the individuation of external service, and optimizing resource allocation.
Stacked graphene nanofibers for electrochemical oxidation of DNA bases.
Ambrosi, Adriano; Pumera, Martin
2010-08-21
In this article, we show that stacked graphene nanofibers (SGNFs) demonstrate superior electrochemical performance for oxidation of DNA bases over carbon nanotubes (CNTs). This is due to an exceptionally high number of accessible graphene sheet edges on the surface of the nanofibers when compared to carbon nanotubes, as shown by transmission electron microscopy and Raman spectroscopy. The oxidation signals of adenine, guanine, cytosine, and thymine exhibit two to four times higher currents than on CNT-based electrodes. SGNFs also exhibit higher sensitivity than do edge-plane pyrolytic graphite, glassy carbon, or graphite microparticle-based electrodes. We also demonstrate that influenza A(H1N1)-related strands can be sensitively oxidized on SGNF-based electrodes, which could therefore be applied to label-free DNA analysis.
Huang, Y H; Chen, R S; Zhang, J R; Huang, Y S
2015-12-07
The electronic transport properties of two-dimensional (2D) niobium diselenide (NbSe2) layer materials with two-hexagonal single-crystalline structures grown by chemical vapor transport were investigated. Those NbSe2 nanostructures isolated simply using mechanical exfoliation were found to exhibit lower conductivity and semiconducting properties, compared with their bulk metallic counterparts. Benefiting from lower dark conductivity, NbSe2 nanoflakes exhibit a remarkable photoresponse under different wavelengths and intensity excitations. The photocurrent responsivity and photoconductive gain can reach 3.8 A W(-1) and 300, respectively; these values are higher than those of graphene and MoS2 monolayers and are comparable with those of GaS and GaSe nanosheets. The presence of electron trap states at the surface was proposed as an explanation for the reduced dark conductivity and enhanced photoconductivity in the 2D NbSe2 nanostructures. This work identifies another possibility for the application of a metallic layer material as an optoelectronic component in addition to an ultrathin transparent conducting material.
Thermal degradation and tensile strength of sansevieria trifasciata-polypropylene composites
NASA Astrophysics Data System (ADS)
Abral, H.; Kenedy, E.
2015-07-01
The paper exhibits thermal degradation and tensile strength of Sansevieria Trifasciata (ST) fibers and polypropylene (PP) composites. Thermal degradation of ST fibers PP composites was conducted by using thermogravimetry (TGA) instrument, meanwhile tensile strength of the composite was done by using tensile equipment. The results show that the thermal resistance of ST fibers PP composites was higher than that of virgin PP only. Increases in volume fraction of fibers in the composites enhance the tensile strength. Scanning Electron Microscope (SEM) observation exhibits good interface bonding between ST fibers and PP matrix.
Role of LiCoO 2 Surface Terminations in Oxygen Reduction and Evolution Kinetics
Han, Binghong; Qian, Danna; Risch, Marcel; ...
2015-03-22
Oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities of LiCoO 2 nanorods with sizes in the range from 9 to 40 nm were studied in alkaline solution. The sides of these nanorods were terminated with low-index surfaces such as (003) while the tips were terminated largely with high-index surfaces such as (104) as revealed by high-resolution transmission electron microscopy. Electron energy loss spectroscopy demonstrated that low-spin Co 3+ prevailed on the sides, while the tips exhibited predominantly high- or intermediate-spin Co 3+. We correlated the electronic and atomic structure to higher specific ORR and OER activities at themore » tips as compared to the sides, which was accompanied by more facile redox of Co 2+/3+ and higher charge transferred per unit area. These findings highlight the critical role of surface terminations and electronic structures of transition metal oxides on the ORR and OER activity.« less
On mapping subangstrom electron clouds with force microscopy.
Wright, C Alan; Solares, Santiago D
2011-11-09
In 2004 Hembacher et al. (Science 2004, 305, 380-383) reported simultaneous higher-harmonics atomic force mocroscopy (AFM)/scanning tunneling microscopy (STM) images acquired while scanning a graphite surface with a tungsten tip. They interpreted the observed subatomic features in the AFM images as the signature of lobes of increased electron density at the tungsten tip apex. Although these intriguing images have stirred controversy, an in-depth theoretical feasibility study has not yet been produced. Here we report on the development of a method for simulating higher harmonics AFM images and its application to the same system. Our calculations suggest that four lobes of increased electron density are expected to be present at a W(001) tip apex atom and that the corresponding higher harmonics AFM images of graphite can exhibit 4-fold symmetry features. Despite these promising results, open questions remain since the calculated amplitudes of the higher harmonics generated by the short-range forces are on the order of hundredths of picometers, leading to very small corrugations in the theoretical images. Additionally, the complex, intermittent nature of the tip-sample interaction, which causes constant readjustment of the tip and sample orbitals as the tip approaches and retracts from the surface, prevents a direct quantitative connection between the electron density and the AFM image features.
Coulomb scattering rates of excited states in monolayer electron-doped germanene
NASA Astrophysics Data System (ADS)
Shih, Po-Hsin; Chiu, Chih-Wei; Wu, Jhao-Ying; Do, Thi-Nga; Lin, Ming-Fa
2018-05-01
Excited conduction electrons, conduction holes, and valence holes in monolayer electron-doped germanene exhibit unusual Coulomb decay rates. The deexcitation processes are studied using the screened exchange energy. They might utilize the intraband single-particle excitations (SPEs), the interband SPEs, and the plasmon modes, depending on the quasiparticle states and the Fermi energies. The low-lying valence holes can decay through the undamped acoustic plasmon, so that they present very fast Coulomb deexcitations, nonmonotonous energy dependence, and anisotropic behavior. However, the low-energy conduction electrons and holes are similar to those in a two-dimensional electron gas. The higher-energy conduction states and the deeper-energy valence ones behave similarly in the available deexcitation channels and have a similar dependence of decay rate on the wave vector k .
NASA Astrophysics Data System (ADS)
Pal, Shreyasi; Dutta, Shibsankar; De, Sukanta
2018-05-01
RGO/BiVO4 composites were synthesized by a simple hydrothermal method. The samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and high-resolution transmission electron microscopy (HRTEM) and surface analysis (BET). The photocatalytic activity of the as-prepared samples was evaluated by studying the degradation of model dyes rhodamine B (RhB) under visible light. The prepared rGO/BiVO4 composites exhibited higher photocatalytic activity for the degradation of RhB with a maximum removal rate of 86% under visible light irradiation under visible-light irradiation than pure BiVO4 nanoparticles (63%). This behavior could be associated to their higher specific surface area (BET), increased light absorption intensity and the degradation of electron-hole pair recombination in BiVO4 with the introduction of the rGO.
Higher-than-ballistic conduction of viscous electron flows
Guo, Haoyu; Ilseven, Ekin; Falkovich, Gregory; Levitov, Leonid S.
2017-01-01
Strongly interacting electrons can move in a neatly coordinated way, reminiscent of the movement of viscous fluids. Here, we show that in viscous flows, interactions facilitate transport, allowing conductance to exceed the fundamental Landauer’s ballistic limit Gball. The effect is particularly striking for the flow through a viscous point contact, a constriction exhibiting the quantum mechanical ballistic transport at T=0 but governed by electron hydrodynamics at elevated temperatures. We develop a theory of the ballistic-to-viscous crossover using an approach based on quasi-hydrodynamic variables. Conductance is found to obey an additive relation G=Gball+Gvis, where the viscous contribution Gvis dominates over Gball in the hydrodynamic limit. The superballistic, low-dissipation transport is a generic feature of viscous electronics. PMID:28265079
IMPULSIVE PHASE CORONAL HARD X-RAY SOURCES IN AN X3.9 CLASS SOLAR FLARE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Qingrong; Petrosian, Vahe, E-mail: qrchen@gmail.com, E-mail: vahep@stanford.edu
2012-03-20
We present the analysis of a pair of unusually energetic coronal hard X-ray (HXR) sources detected by the Reuven Ramaty High Energy Solar Spectroscopic Imager during the impulsive phase of an X3.9 class solar flare on 2003 November 3, which simultaneously shows two intense footpoint (FP) sources. A distinct loop top (LT) coronal source is detected up to {approx}150 keV and a second (upper) coronal source up to {approx}80 keV. These photon energies, which were not fully investigated in earlier analysis of this flare, are much higher than commonly observed in coronal sources and pose grave modeling challenges. The LTmore » source in general appears higher in altitude with increasing energy and exhibits a more limited motion compared to the expansion of the thermal loop. The high-energy LT source shows an impulsive time profile and its nonthermal power-law spectrum exhibits soft-hard-soft evolution during the impulsive phase, similar to the FP sources. The upper coronal source exhibits an opposite spatial gradient and a similar spectral slope compared to the LT source. These properties are consistent with the model of stochastic acceleration of electrons by plasma waves or turbulence. However, the LT and FP spectral index difference (varying from {approx}0 to 1) is much smaller than commonly measured and than that expected from a simple stochastic acceleration model. Additional confinement or trapping mechanisms of high-energy electrons in the corona are required. Comprehensive modeling including both kinetic effects and the macroscopic flare structure may shed light on this behavior. These results highlight the importance of imaging spectroscopic observations of the LT and FP sources up to high energies in understanding electron acceleration in solar flares. Finally, we show that the electrons producing the upper coronal HXR source may very likely be responsible for the type III radio bursts at the decimetric/metric wavelength observed during the impulsive phase of this flare.« less
Sol-gel-derived double-layered nanocrystal memory
NASA Astrophysics Data System (ADS)
Ko, Fu-Hsiang; You, Hsin-Chiang; Lei, Tan-Fu
2006-12-01
The authors have used the sol-gel spin-coating method to fabricate a coexisting hafnium silicate and zirconium silicate double-layered nanocrystal (NC) memories. From transmission electron microscopic and x-ray photoelectron spectroscopic analyses, the authors determined that the hafnium silicate and zirconium silicate NCs formed after annealing at 900°C for 1min. When using channel hot electron injection for charging and band-to-band tunneling-induced hot hole injection for discharging, the NC memories exhibited superior Vth shifting because of the higher probability for trapping the charge carrier.
Crystallography and Morphology of Niobium Carbide in As-Cast HP-Niobium Reformer Tubes
NASA Astrophysics Data System (ADS)
Buchanan, Karl G.; Kral, Milo V.
2012-06-01
The microstructures of two as-cast heats of niobium-modified HP stainless steels were characterized. Particular attention was paid to the interdendritic niobium-rich carbides formed during solidification of these alloys. At low magnifications, these precipitates are grouped in colonies of similar lamellae. Higher magnifications revealed that the lamellae actually obtain two distinct morphologies. The type I morphology exhibits broad planar interfaces with a smooth platelike shape. Type II lamellae have undulating interfaces and an overall reticulated shape. To provide further insight into the origin of these two different morphologies, the microstructure and crystallography of each have been studied in detail using high resolution scanning electron microscopy, transmission electron microscopy, various electron diffraction methods (electron backscatter diffraction (EBSD), selected area diffraction (SAD), and convergent beam electron diffraction (CBED)), and energy dispersive X-ray spectroscopy.
Computational insight into the capacitive performance of graphene edge planes
Zhan, Cheng; Zhang, Yu; Cummings, Peter T.; ...
2017-02-01
Recent experiments have shown that electric double-layer capacitors utilizing electrodes consisting of graphene edge plane exhibit higher capacitance than graphene basal plane. However, theoretical understanding of this capacitance enhancement is still limited. Here we applied a self-consistent joint density functional theory calculation on the electrode/electrolyte interface and found that the capacitance of graphene edge plane depends on the edge type: zigzag edge has higher capacitance than armchair edge due to the difference in their electronic structures. We further examined the quantum, dielectric, and electric double-layer (EDL) contributions to the total capacitance of the edge-plane electrodes. Classical molecular dynamics simulation foundmore » that the edge planes have higher EDL capacitance than the basal plane due to better adsorption of counter-ions and higher solvent accessible surface area. Finally, our work therefore has elucidated the capacitive energy storage in graphene edge planes that take into account both the electrode's electronic structure and the EDL structure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hou, Gao-Lei; Li, Lei-Jiao; Li, Shu-Hui
Negative ion photoelectron spectroscopy shows interesting regioisomer-specific electron affinities (EAs) of 2,5– and 7,23– para-adducts of C70 [(ArCH2)2C70] (Ar = Ph, o-, m-, and p-BrC6H4). Their EA values are larger than that of C70 by 5-150 meV with the 2,5– polar adducts’ EAs being higher than their corresponding 7,23– equatorial counterparts, exhibiting appreciable EA tunable ranges and regioisomer specificity. Density functional theory (DFT) calculations reproduce both the experimental EA values and EA trends very well.
Nanosized graphene sheets enhanced photoelectric behavior of carbon film on p-silicon substrate
NASA Astrophysics Data System (ADS)
Yang, Lei; Hu, Gaijuan; Zhang, Dongqing; Diao, Dongfeng
2016-07-01
We found that nanosized graphene sheets enhanced the photoelectric behavior of graphene sheets embedded carbon (GSEC) film on p-silicon substrate, which was deposited under low energy electron irradiation in electron cyclotron resonance plasma. The GSEC/p-Si photodiode exhibited good photoelectric performance with photoresponsivity of 206 mA/W, rise and fall time of 2.2, and 4.3 μs for near-infrared (850 nm) light. The origin of the strong photoelectric behavior of GSEC film was ascribed to the appearance of graphene nanosheets, which led to higher barrier height and photoexcited electron-collection efficiency. This finding indicates that GSEC film has the potential for photoelectric applications.
Pronounced pre-martensitic anomaly in the magnetization on Ni2MnGa thin films
NASA Astrophysics Data System (ADS)
Neckel, I. T.; Müller, C.; Nobrega, K. Z.; Dartora, C. A.; Schreiner, W. H.; Mosca, D. H.
2018-05-01
We have prepared [110]-textured Ni2MnGa thin films exhibiting an unusual pre-martensitic transition accompanied by an extremely large magnetization change. The thin films were grown by molecular beam epitaxy directly on epi-ready GaAs(111)B. Crystalline structure was investigated in situ by reflection high-energy electron diffraction (RHEED) and ex situ by x-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that the film exhibits cubic crystalline structure (L2 1) at room temperature with lattice parameter a = 5.88 Å which undergoes martensitic transition. Magnetic characterization shows ferromagnetic behavior at room temperature with Curie temperature higher than room temperature. Martensitic transformation occurs at TM ∼ 185 K. A phenomenological model based on Landau theory of phase transformation was developed to explain the anomalous pre-martensitic transition at ∼285 K.
NASA Astrophysics Data System (ADS)
Tsuzuki, Toshimitsu; Shirasawa, Nobuhiko; Suzuki, Toshiyasu; Tokito, Shizuo
2005-06-01
We report a novel class of light-emitting materials for use in organic light-emitting diodes (OLEDs): multifunctional phosphorescent dendrimers that have a phosphorescent core and dendrons based on charge-transporting building blocks. We synthesized first-generation and second-generation dendrimers consisting of a fac-tris(2-phenylpyridine)iridium [Ir(ppy)3] core and hole-transporting phenylcarbazole-based dendrons. Smooth amorphous films of these dendrimers were formed by spin-coating them from solutions. The OLEDs using the dendrimer exhibited bright green or yellowish-green emission from the Ir(ppy)3 core. The OLEDs using the film containing a mixture of the dendrimer and an electron-transporting material exhibited higher efficiency than those using the neat dendrimer film. The external quantum efficiency of OLEDs using the film containing a mixture of the first-generation dendrimer and an electron-transporting material was as high as 7.6%.
NASA Astrophysics Data System (ADS)
Gao, Rui; Ge, Wen-jun; Miao, Shu; Zhang, Tao; Wang, Xian-ping; Fang, Qian-feng
2016-03-01
The grain morphology, nano-oxide particles and mechanical properties of oxide dispersion strengthened (ODS)-316L austenitic steel synthesized by electron beam selective melting (EBSM) technique with different post-working processes, were explored in this study. The ODS-316L austenitic steel with superfine nano-sized oxide particles of 30-40 nm exhibits good tensile strength (412 MPa) and large total elongation (about 51%) due to the pinning effect of uniform distributed oxide particles on dislocations. After hot rolling, the specimen exhibits a higher tensile strength of 482 MPa, but the elongation decreases to 31.8% owing to the introduction of high-density dislocations. The subsequent heat treatment eliminates the grain defects induced by hot rolling and increases the randomly orientated grains, which further improves the strength and ductility of EBSM ODS-316L steel.
Higher-than-ballistic conduction of viscous electron flows.
Guo, Haoyu; Ilseven, Ekin; Falkovich, Gregory; Levitov, Leonid S
2017-03-21
Strongly interacting electrons can move in a neatly coordinated way, reminiscent of the movement of viscous fluids. Here, we show that in viscous flows, interactions facilitate transport, allowing conductance to exceed the fundamental Landauer's ballistic limit [Formula: see text] The effect is particularly striking for the flow through a viscous point contact, a constriction exhibiting the quantum mechanical ballistic transport at [Formula: see text] but governed by electron hydrodynamics at elevated temperatures. We develop a theory of the ballistic-to-viscous crossover using an approach based on quasi-hydrodynamic variables. Conductance is found to obey an additive relation [Formula: see text], where the viscous contribution [Formula: see text] dominates over [Formula: see text] in the hydrodynamic limit. The superballistic, low-dissipation transport is a generic feature of viscous electronics.
NASA Astrophysics Data System (ADS)
Chang, C. Y.; Kang, B. S.; Wang, H. T.; Ren, F.; Wang, Y. L.; Pearton, S. J.; Dennis, D. M.; Johnson, J. W.; Rajagopal, P.; Roberts, J. C.; Piner, E. L.; Linthicum, K. J.
2008-06-01
AlGaN /GaN high electron mobility transistors (HEMTs) functionalized with polyethylenimine/starch were used for detecting CO2 with a wide dynamic range of 0.9%-50% balanced with nitrogen at temperatures from 46to220°C. Higher detection sensitivity to CO2 gas was achieved at higher testing temperatures. At a fixed source-drain bias voltage of 0.5V, drain-source current of the functionalized HEMTs showed a sublinear correlation upon exposure to different CO2 concentrations at low temperature. The superlinear relationship was at high temperature. The sensor exhibited a reversible behavior and a repeatable current change of 32 and 47μA with the introduction of 28.57% and 37.5% CO2 at 108°C, respectively.
Effective immobilization of alcohol dehydrogenase on carbon nanoscaffolds for ethanol biofuel cell.
Umasankar, Yogeswaran; Adhikari, Bal-Ram; Chen, Aicheng
2017-12-01
An efficient approach for immobilizing alcohol dehydrogenase (ADH) while enhancing its electron transfer ability has been developed using poly(2-(trimethylamino)ethyl methacrylate) (MADQUAT) cationic polymer and carbon nanoscaffolds. The carbon nanoscaffolds were comprised of single-walled carbon nanotubes (SWCNTs) wrapped with reduced graphene oxide (rGO). The ADH entrapped within the MADQUAT that was present on the carbon nanoscaffolds exhibited a high electron exchange capability with the electrode through its cofactor β-nicotinamide adenine dinucleotide hydrate and β-nicotinamide adenine dinucleotide reduced disodium salt hydrate (NAD + /NADH) redox reaction. The advantages of the carbon nanoscaffolds used as the support matrix and the MADQUAT employed for the entrapment of ADH versus physisorption were demonstrated via cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Our experimental results showed a higher electron transfer, electrocatalytic activity, and rate constant for MADQUAT entrapped ADH on the carbon nanoscaffolds. The immobilization of ADH using both MADQUAT and carbon nanoscaffolds exhibited strong potential for the development of an efficient bio-anode for ethanol powered biofuel cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Highly efficient biosensors by using well-ordered ZnO/ZnS core/shell nanotube arrays
NASA Astrophysics Data System (ADS)
Tarish, Samar; Xu, Yang; Wang, Zhijie; Mate, Faten; Al-Haddad, Ahmed; Wang, Wenxin; Lei, Yong
2017-10-01
We have studied the fabrication of highly efficient glucose sensors using well-ordered heterogeneous ZnO/ZnS core/shell nanotube arrays (CSNAs). The modified electrodes exhibit a superior electrochemical response towards ferrocyanide/ferricyanide and in glucose sensing. Further, the fabricated glucose biosensor exhibited good performance over an acceptable linear range from 2.39 × 10-5 to 2.66 × 10-4 mM, with a sensitivity of 188.34 mA mM-1 cm-2, which is higher than that of the ZnO nanotube array counterpart. A low limit of detection was realized (24 μM), which is good compared with electrodes based on conventional structures. In addition, the enhanced direct electrochemistry of glucose oxidase indicates the fast electron transfer of ZnO/ZnS CSNA electrodes, with a heterogeneous electron transfer rate constant (K s) of 1.69 s-1. The fast electron transfer is attributed to the high conductivity of the modified electrodes. The presented ZnS shell can facilitate the construction of future sensors and enhance the ZnO surface in a biological environment.
Electronic transport in smectic liquid crystals
NASA Astrophysics Data System (ADS)
Shiyanovskaya, I.; Singer, K. D.; Twieg, R. J.; Sukhomlinova, L.; Gettwert, V.
2002-04-01
Time-of-flight measurements of transient photoconductivity have revealed bipolar electronic transport in phenylnaphthalene and biphenyl liquid crystals (LC), which exhibit several smectic mesophases. In the phenylnaphthalene LC, the hole mobility is significantly higher than the electron mobility and exhibits different temperature and phase behavior. Electron mobility in the range ~10-5 cm2/V s is temperature activated and remains continuous at the phase transitions. However, hole mobility is nearly temperature independent within the smectic phases, but is very sensitive to smectic order, 10-3 cm2/V s in the smectic-B (Sm-B) and 10-4 cm2/V s in the smectic-A (Sm-A) mesophases. The different behavior for holes and electron transport is due to differing transport mechanisms. The electron mobility is apparently controlled by rate-limiting multiple shallow trapping by impurities, but hole mobility is not. To explain the lack of temperature dependence for hole mobility within the smectic phases we consider two possible polaron transport mechanisms. The first mechanism is based on the hopping of Holstein small polarons in the nonadiabatic limit. The polaron binding energy and transfer integral values, obtained from the model fit, turned out to be sensitive to the molecular order in smectic mesophases. A second possible scenario for temperature-independent hole mobility involves the competion between two different polaron mechanisms involving so-called nearly small molecular polarons and small lattice polarons. Although the extracted transfer integrals and binding energies are reasonable and consistent with the model assumptions, the limited temperature range of the various phases makes it difficult to distinguish between any of the models. In the biphenyl LCs both electron and hole mobilities exhibit temperature activated behavior in the range of 10-5 cm2/V s without sensitivity to the molecular order. The dominating transport mechanism is considered as multiple trapping in the impurity sites. Temperature-activated mobility was treated within the disorder formalism, and activation energy and width of density of states have been calculated.
Niobium Doping Effects on TiO2 Mesoscopic Electron Transport Layer-Based Perovskite Solar Cells.
Kim, Dong Hoe; Han, Gill Sang; Seong, Won Mo; Lee, Jin-Wook; Kim, Byeong Jo; Park, Nam-Gyu; Hong, Kug Sun; Lee, Sangwook; Jung, Hyun Suk
2015-07-20
Perovskite solar cells (PSCs) are the most promising candidates as next-generation solar energy conversion systems. To design a highly efficient PSC, understanding electronic properties of mesoporous metal oxides is essential. Herein, we explore the effect of Nb doping of TiO2 on electronic structure and photovoltaic properties of PSCs. Light Nb doping (0.5 and 1.0 at %) increased the optical band gap slightly, but heavy doping (5.0 at %) distinctively decreased it. The relative Fermi level position of the conduction band is similar for the lightly Nb-doped TiO2 (NTO) and the undoped TiO2 whereas that of the heavy doped NTO decreased by as much as ∼0.3 eV. The lightly doped NTO-based PSCs exhibit 10 % higher efficiency than PSCs based on undoped TiO2 (from 12.2 % to 13.4 %) and 52 % higher than the PSCs utilizing heavy doped NTO (from 8.8 % to 13.4 %), which is attributed to fast electron injection/transport and preserved electron lifetime, verified by transient photocurrent decay and impedance studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
ERIC Educational Resources Information Center
Koonce, Glenn L.; Hoskins, Joan J.; Goldman, Katie D.
2012-01-01
This study illustrates the development, usability, and advantages of an electronic exhibit for the TEAC (Teacher Education Accreditation Council) academic audit from the perspective of program education faculty. The examination of the successful utilization of electronic exhibits for teacher licensure and educational leadership program IBs…
Avalanche photodiode for measurement of low-energy electrons
NASA Astrophysics Data System (ADS)
Ogasawara, K.; Asamura, K.; Mukai, T.; Saito, Y.
2005-06-01
We report on the performance of an Avalanche Photodiode (APD) produced by Hamamatsu Photonics Co. Ltd. (Type Z7966-20) for measurements of low energy electrons. We have set up an electron gun, which can generate a 1-20 keV electron beam impinging onto the APD in a vacuum chamber. The result shows that the pulse height distribution (PHD) of the APD signal exhibits a significant peak for electrons with energies above 8 keV, and the variation of the PHD peak shows a good linearity with the energy of incident electrons. The energy resolution is quite good, though it slightly depends on the electron energy. In the case of low-energies (lower than 10 keV), the pulse height distribution has a characteristic tail on the low energy side, and the energy resolution becomes a little worse. The position of the peak appears on a slightly lower channel than is expected from data at higher energies (near 20 keV). Qualitatively, the low-energy tail is caused by the dead-layer on the surface of the device. The nonlinearity and the worse resolution of the peaks for higher energy electrons may have resulted from a space-charge effect due to created e-h pairs. For a quantitative understanding, we have made a Monte Carlo particle simulation of charge transport and collection inside the APD.
Electrical properties and subband occupancy at the (La ,Sr ) (Al ,Ta ) O3/SrTi O3 interface
NASA Astrophysics Data System (ADS)
Han, K.; Huang, Z.; Zeng, S. W.; Yang, M.; Li, C. J.; Zhou, W. X.; Wang, X. Renshaw; Venkatesan, T.; Coey, J. M. D.; Goiran, M.; Escoffier, W.; Ariando
2017-06-01
The quasi-two-dimensional electron gas at oxide interfaces provides a platform for investigating quantum phenomena in strongly correlated electronic systems. Here, we study the transport properties at the high-mobility (L a0.3S r0.7 ) (A l0.65T a0.35 ) O3/SrTi O3 interface. Before oxygen annealing, the as-grown interface exhibits a high electron density and electron occupancy of two subbands: higher-mobility electrons (μ1≈104c m2V-1s-1 at 2 K) occupy the lower-energy 3 dxy subband, while lower-mobility electrons (μ1≈103c m2V-1s-1 at 2 K) propagate in the higher-energy 3 dxz /yz -dominated subband. After removing oxygen vacancies by annealing in oxygen, only a single type of 3 dxy electrons remain at the annealed interface, showing tunable Shubnikov-de Haas oscillations below 9 T at 2 K and an effective mass of 0.7 me . By contrast, no oscillation is observed at the as-grown interface even when electron mobility is increased to 50 000 c m2V-1s-1 by gating voltage. Our results reveal the important roles of both carrier mobility and subband occupancy in tuning the quantum transport at oxide interfaces.
Electron Heating and Acceleration in a Reconnecting Magnetotail
NASA Astrophysics Data System (ADS)
El-Alaoui, M.; Zhou, M.; Lapenta, G.; Berchem, J.; Richard, R. L.; Schriver, D.; Walker, R. J.
2017-12-01
Electron heating and acceleration in the magnetotail have been investigated intensively. A major site for this process is the reconnection region. However, where and how the electrons are accelerated in a realistic three-dimensional X-line geometry is not fully understood. In this study, we employed a three-dimensional implicit particle-in-cell (iPIC3D) simulation and large-scale kinetic (LSK) simulation to address these problems. We modeled a magnetotail reconnection event observed by THEMIS in an iPIC3D simulation with initial and boundary conditions given by a global magnetohydrodynamic (MHD) simulation of Earth's magnetosphere. The iPIC3D simulation system includes the region of fast outflow emanating from the reconnection site that drives dipolarization fronts. We found that current sheet electrons exhibit elongated (cigar-shaped) velocity distributions with a higher parallel temperature. Using LSK we then followed millions of test electrons using the electromagnetic fields from iPIC3D. We found that magnetotail reconnection can generate power law spectra around the near-Earth X-line. A significant number of electrons with energies higher than 50 keV are produced. We identified several acceleration mechanisms at different locations that were responsible for energizing these electrons: non-adiabatic cross-tail drift, betatron and Fermi acceleration. Relative contributions to the energy gain of these high energy electrons from the different mechanisms will be discussed.
Zhang, Dongwei; Zhao, Liang; Zhu, Yanan; Li, Aiyuan; He, Chao; Yu, Hongtao; He, Yaowu; Yan, Chaoyi; Goto, Osamu; Meng, Hong
2016-07-20
N,N'-Bis(4-trifluoromethoxyphenyl) naphthalene-1,4,5,8-tetracarboxylic acid diimide (NDI-POCF3) and N,N'-bis(4-trifluoromethoxybenzyl) naphthalene-1,4,5,8-tetracarboxylic acid diimide (NDI-BOCF3) have similar optical and electrochemical properties with a deep LUMO level of approximately 4.2 eV, but exhibit significant differences in electron mobility and molecular packing. NDI-POCF3 exhibits nondetectable charge mobility. Interestingly, NDI-BOCF3 shows air-stable electron transfer performance with enhanced mobility by increasing the deposition temperature onto the octadecyltrichlorosilane (OTS)-modified SiO2/Si substrates and achieves electron mobility as high as 0.7 cm(2) V(-1) s(-1) in air. The different mobilities of those two materials can be explained by several factors including thin-film morphology and crystallinity. In contrast to the poor thin-film morphology and crystallinity of NDI-POCF3, NDI-BOCF3 exhibits larger grain sizes and improved crystallinities due to the higher deposition temperature. In addition, the theoretical calculated transfer integrals of the intermolecular lowest unoccupied molecular orbital (LUMO) of the two materials further show that a large intermolecular orbital overlap of NDI-BOCF3 can transfer electron more efficiently than NDI-POCF3 in thin-film transistors. On the basis of fact that the theoretical calculations are consistent with the experimental results, it can be concluded that the p-(trifluoromethoxy) benzyl (BOCF3) molecular architecture on the former position of the naphthalene tetracarboxylic diimides (NDI) core provides a more effective way to enhance the intermolecular electron transfer property than the p-(trifluoromethoxy) phenyl (POCF3) group for the future design of NDI-related air-stable n-channel semiconductor.
Jiang, Shuai; Jia, Zhihao; Xin, Lusheng; Sun, Ying; Zhang, Ran; Wang, Weilin; Wang, Lingling; Song, Linsheng
2016-08-01
Phagocytes have been proved to play vital roles in the innate immune response. However, the cellular characteristics of phagocytes in invertebrates, especially in molluscs, remain largely unknown. In the present study, fluorescence activated cell sorting (FACS) was employed to sort the phagocytes from the non-phagocytic haemocytes of the Pacific oyster Crassostrea gigas. The cytochemical staining analysis revealed that phagocytes were positive staining for α-naphthyl acetate esterase and myeloperoxidase, while negative staining for toluidine blue and periodic acid-Schiff. The non-phagocytic haemocytes exhibited positive staining for periodic acid-Schiff, weak positive staining for toluidine blue, but negative staining for α-naphthyl acetate esterase and myeloperoxidase. In addition, phagocytes exhibited ultrastructural cellular features similar to those of macrophages, with large cell diameter, rough cell membrane and extended pseudopodia revealed by the scanning electron microscopy, while the non-phagocytic haemocytes exhibited small cell diameter, smooth cell surface and round spherical shape. Transmission electron microscopy further demonstrated that phagocytes were abundant of cytoplasmic bodies and mitochondria, while non-phagocytic haemocytes were characterized as the comparatively large cell nucleus with contorted and condensed heterochromatin adherent to the nuclear envelope. Moreover, compared with non-phagocytic haemocytes, phagocytes exhibited significantly higher levels of intracellular cytokines, including tumor necrosis factor, interferon-like protein and interleukin-17, and significantly higher abundance of lysosome and reactive oxygen species, which were of great importance to the activation of immune response and pathogen clearance. Taken together, these findings revealed the different cytochemical and ultrastructural features between phagocytes and non-phagocytic haemocytes in C. gigas, which would provide an important clue to investigate the mechanism of phagocytosis underlying the innate immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hu, Yue-Houng; Rottmann, Joerg; Fueglistaller, Rony; Myronakis, Marios; Wang, Adam; Huber, Pascal; Shedlock, Daniel; Morf, Daniel; Baturin, Paul; Star-Lack, Josh; Berbeco, Ross
2018-02-01
While megavoltage cone-beam computed tomography (CBCT) using an electronic portal imaging device (EPID) provides many advantages over kilovoltage (kV) CBCT, clinical adoption is limited by its high doses. Multi-layer imager (MLI) EPIDs increase DQE(0) while maintaining high resolution. However, even well-designed, high-performance MLIs suffer from increased electronic noise from each readout, degrading low-dose image quality. To improve low-dose performance, shift-and-bin addition (ShiBA) imaging is proposed, leveraging the unique architecture of the MLI. ShiBA combines hardware readout-binning and super-resolution concepts, reducing electronic noise while maintaining native image sampling. The imaging performance of full-resolution (FR); standard, aligned binned (BIN); and ShiBA images in terms of noise power spectrum (NPS), electronic NPS, modulation transfer function (MTF), and the ideal observer signal-to-noise ratio (SNR)—the detectability index (d‧)—are compared. The FR 4-layer readout of the prototype MLI exhibits an electronic NPS magnitude 6-times higher than a state-of-the-art single layer (SLI) EPID. Although the MLI is built on the same readout platform as the SLI, with each layer exhibiting equivalent electronic noise, the multi-stage readout of the MLI results in electronic noise 50% higher than simple summation. Electronic noise is mitigated in both BIN and ShiBA imaging, reducing its total by ~12 times. ShiBA further reduces the NPS, effectively upsampling the image, resulting in a multiplication by a sinc2 function. Normalized NPS show that neither ShiBA nor BIN otherwise affects image noise. The LSF shows that ShiBA removes the pixilation artifact of BIN images and mitigates the effect of detector shift, but does not quantifiably improve the MTF. ShiBA provides a pre-sampled representation of the images, mitigating phase dependence. Hardware binning strategies lower the quantum noise floor, with 2 × 2 implementation reducing the dose at which DQE(0) degrades by 10% from 0.01 MU to 0.004 MU, representing 20% improvement in d‧.
NASA Astrophysics Data System (ADS)
Reis-Silva, J. C.; Ferreira, D. F. S.; Leal, J. F. P.; Pinheiro, F. A.; Del Nero, J.
2017-02-01
We investigate, by means of ab initio calculations based on non-equilibrium Green's function method coupled to density function theory, electronic transport in molecular junctions composed of biphenyl (BP) and biphenyl within (-2H+) defect (BP2D) molecules attached to metallic (9,0) carbon nanotubes. We demonstrate that the BP2D junction exhibits unprecedented electronic transport properties, and that its conductance can be up to three orders of magnitude higher than biphenyl single-molecule junctions. These findings are explained in terms of the non-planar molecular conformation of BP2D, and of the stronger electronic coupling between the BP2D molecule and the organic electrodes, which confers high stability to the junction. Our results suggest that BP2D attached to carbon nanotubes can be explored as an efficient and highly stable platform in single-molecule electronics with extraordinary transport properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, G.M.; School of Materials Science and Engineering, The University of New South Wales, NSW 2052; Yang, C.C., E-mail: ccyang@unsw.edu.a
2009-12-15
In this work, the tree-like carbon nanotubes (CNTs) with branches of different diameters and the wing-like CNTs with graphitic-sheets of different densities were synthesized by using plasma enhanced chemical vapor deposition. The nanostructures of the as-prepared hybrid carbon materials were characterized by scanning electron microscopy and transmission electron microscopy. The structural dependence of field electron emission (FEE) property was also investigated. It is found that both of the tree- and wing-like CNTs exhibit a lower turn-on field and higher emission current density than the pristine CNTs, which can be ascribed to the effects of branch size, crystal orientation, and graphitic-sheetmore » density. - Graphical abstract: Tree-like carbon nanotubes (CNTs) with branches and the wing-like CNTs with graphitic-sheets were synthesized by using plasma enhanced chemical vapor deposition. The structural dependence of field electron emission property was also investigated.« less
Langmuir Probe Measurements of Inductively Coupled Plasma in CF4/AR/O2 Mixtures
NASA Technical Reports Server (NTRS)
Rao, M. V. V. S.; Cruden, Brett; Sharma, Surendra; Meyyappan, Meyya
2001-01-01
Inductively coupled plasmas of CF4:Ar:O2, which have been of importance to material processing, were studied in the GEC cell at 80:10:10, 60:20:20, and 40:30:30 mixture ratios. Radial distributions of plasma potential (V(sub p)), electron and ion number densities (n(sub e) and n(sub i)), electron temperature (T(sub e)), and electron energy distribution functions (EEDFs) were measured in the mid-plane of plasma across the electrodes in the pressure range of 10-50 mTorr, and RF power of 200 and 300 W. V(sub p), n(sub e) and n(sub i), which peak in the center of the plasma, increase with decrease of pressure. T(sub e) also increases with pressure but peaks toward the electrode edge. Both V(sub p) and T(sub e) remain nearly independent of RF power, whereas n(sub e) and n(sub i) increase with power. In all conditions the EEDFs exhibit non-Maxwellian shape and are more like Druyvesteyn form at higher energies. They exhibit a broad lip in the energy range 0-10 eV suggesting an electron loss mechanism, which could be due to via resonance electron attachment processes producing negative ions in this rich electronegative gas mixture. This behavior is more prominent towards the electrode edge.
Langmuir Probe Measurements of Inductively Coupled Plasmas in CF4/Ar/O2 Mixtures
NASA Technical Reports Server (NTRS)
Rao, M. V. V. S.; Cruden, Brett; Sharma, Surendra; Meyyappan, Meyya
2001-01-01
Inductively coupled plasmas of CF4:Ar:O2, which have been of importance to material processing, were studied in the GEC cell at 80:10:10, 60:20:20, and 40:30:30 mixture ratios. Radial distributions of plasma potential (V(sub p)), electron and ion number densities (n(sub e) and n(sub i), electron temperature (T(sub e)), and electron energy distribution functions (EEDFs) were measured in the mid-plane of plasma across the electrodes in the pressure range of 10-50 mTorr, and RF (radio frequency) power of 200 and 300 W. V(sub p), n(sub e) and n(sub i), which peak in the center of the plasma, increase with decrease of pressure. T(sub e) also increases with pressure but peaks toward the electrode edge. Both V(sub p) and T(sub e) remain nearly independent of RF power, whereas n(sub e) and n(sub i) increase with power. In all conditions the EEDFs exhibit non-Maxwellian shape and are more like Druyvesteyn form at higher energies. They exhibit a broad dip in the energy range 0-10 eV suggesting an electron loss mechanism, which could be due to via resonance electron attachment processes producing negative ions in this rich electronegative gas mixture. This behavior is more prominent towards the electrode edge.
Higher-Than-Ballistic Conduction in Viscous Electron Fluids
NASA Astrophysics Data System (ADS)
Levitov, Leonid
Strongly interacting electrons can move in a neatly coordinated way, reminiscent of the movement of viscous fluids. This talk will argue that in viscous flows interactions facilitate transport, allowing conductance to exceed the fundamental Sharvin-Landauer quantum-ballistic limit. The effect is particularly striking for the flow through a viscous point contact, a constriction exhibiting the quantum-mechanical ballistic transport at T = 0 but governed by electron hydrodynamics at elevated temperatures. Conductance grows as a square of the constriction width, i.e. faster than the linear width dependence for noninteracting fermions. The crossover between the ballistic and viscous regimes occurs when the mean free path for e-e collisions becomes comparable to the constriction width. Further, we will discuss the negative nonlocal response, a signature effect of viscous transport. This response exhibits an interesting nonmonotonic behavior vs. T at the viscous-to-balistic transition. The response is negative but small in the highly viscous regime at elevated temperatures. The value grows as the temperature is lowered and the system becomes less viscous, reaching the most negative values in the crossover region where the mean free path is comparable to the distance between contacts. Subsequently, it reverses sign at even lower temperatures, becoming positive as the system enters the ballistic regime. This peculiar behavior provides a clear signature of the ballistic-to-viscous transition and enables a direct measurement of the electron-electron collision mean free path.
Yen, Hung-Ju; Tsai, Hsinhan; Zhou, Ming; ...
2016-10-10
In this paper, functionalized 3D nanographenes with controlled electronic properties have been synthesized through a multistep organic synthesis method and are further used as promising anode materials for lithium-ion batteries, exhibiting a much increased capacity (up to 950 mAh g -1), three times higher than that of the graphite anode (372 mAh g -1).
Electronic structure basis for the extraordinary magnetoresistance in WTe 2
Pletikosić, I.; Ali, Mazhar N.; Fedorov, A. V.; ...
2014-11-19
The electronic structure basis of the extremely large magnetoresistance in layered non-magnetic tungsten ditelluride has been investigated by angle-resolved photoelectron spectroscopy. Hole and electron pockets of approximately the same size were found at the Fermi level, suggesting that carrier compensation should be considered the primary source of the effect. The material exhibits a highly anisotropic, quasi one-dimensional Fermi surface from which the pronounced anisotropy of the magnetoresistance follows. As a result, a change in the Fermi surface with temperature was found and a high-density-of-states band that may take over conduction at higher temperatures and cause the observed turn-on behavior ofmore » the magnetoresistance in WTe₂ was identified.« less
Gaffney, Betty Jean; Eaton, Gareth R.; Eaton*, Sandra S.
2005-01-01
To optimize simulations of CW EPR spectra for high-spin Fe(III) with zero-field splitting comparable to the EPR quantum, information is needed on the factors that contribute to the line shapes and line widths. Continuous wave electron paramagnetic resonance (EPR) spectra obtained for iron transferrin carbonate from 4 to 150 K and for iron transferrin oxalate from 4 to 100 K did not exhibit significant temperature dependence of the line shape, which suggested that the line shapes were not relaxation determined. To obtain direct information concerning the electron spin relaxation rates, electron spin echo and inversion recovery EPR were used to measure T1 and Tm for the high-spin Fe(III) in iron transferrin carbonate and iron transferrin oxalate between 5 and 20–30 K. For comparison with the data for the transferrin complexes, relaxation times were obtained for tris(oxalato)ferrate(III). The relaxation rates are similar for the three complexes and do not exhibit a strong dependence on position in the spectrum. Extrapolation of the observed temperature dependence of the relaxation rates to higher temperatures gives values consistent with the conclusion that the CW line shapes are not relaxation determined up to 150 K. PMID:16429607
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jolley, Greg; Dehdashti Akhavan, Nima; Umana-Membreno, Gilberto
An electron transfer quantum well infrared photodetector (QWIP) consisting of repeating units of two coupled quantum wells (QWs) is capable of exhibiting a two color voltage dependent spectral response. However, significant electron transfer between the coupled QWs is required for spectral tuning, which may require the application of relatively high electric fields. Also, the band structure of coupled quantum wells is more complicated in comparison to a regular quantum well and, therefore, it is not always obvious if an electron transfer QWIP can be designed such that it meets specific performance characteristics. This paper presents a feasibility study of themore » electron transfer QWIP and its suitability for spectral tuning. Self consistent calculations have been performed of the bandstructure and the electric field that results from electron population within the quantum wells, from which the optical characteristics have been obtained. The band structure, spectral response, and the resonant final state energy locations have been compared with standard QWIPs. It is shown that spectral tuning in the long-wave infrared band can be achieved over a wide wavelength range of several microns while maintaining a relatively narrow spectral response FWHM. However, the total absorption strength is more limited in comparison to a standard QWIP, since the higher QW doping densities require much higher electric fields for electron transfer.« less
NASA Astrophysics Data System (ADS)
Li, Xinlin; Baker, Daniel N.; Kanekal, Shrikanth; Fennell, Joseph; Selesnick, Richard; Claudepierre, Seth; Blake, Bernard; Zhao, Hong; Jaynes, Allison
2016-07-01
Comprehensive measurements of energetic protons (10s of MeV) in the inner belt (L<2) and slot region (2
Skutterudite Compounds For Power Semiconductor Devices
NASA Technical Reports Server (NTRS)
Fleurial, Jean-Pierre; Caillat, Thierry; Borshchevsky, Alexander; Vandersande, Jan
1996-01-01
New semiconducting materials with p-type carrier mobility values much higher than state-of-art semiconductors discovered. Nine compounds, antimonides CoSb(sub3), RhSb(sub3), IrSb(sub3), arsenides CoAs(sub3), RhAs(sub3), IrAs(sub3), and phosphides CoP(sub3), RhP(sub3) and IrP(sub3), exhibit same skutterudite crystallographic structure and form solid solutions of general composition Co(1-x-y)RH(x)Ir(y)P(1-w-z)As(w)Sb(z). Materials exhibit high hole mobilities, high doping levels, and high electronic figures of merit. Some compositions show great potential for application to thermoelectric devices.
Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation
NASA Astrophysics Data System (ADS)
Zhang, Ke; Bin, Duan; Yang, Beibei; Wang, Caiqin; Ren, Fangfang; Du, Yukou
2015-07-01
Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly enhanced cycling stability toward ethanol oxidation in alkaline medium, which are mainly ascribed to the synergetic effect between Pd and Ru. This indicates that the Pd7/Ru1 catalysts should have great potential applications in direct ethanol fuel cells.Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly enhanced cycling stability toward ethanol oxidation in alkaline medium, which are mainly ascribed to the synergetic effect between Pd and Ru. This indicates that the Pd7/Ru1 catalysts should have great potential applications in direct ethanol fuel cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02713f
Physiological and morphological responses of pine and willow saplings to post-fire salvage logging
NASA Astrophysics Data System (ADS)
Millions, E. L.; Letts, M. G.; Harvey, T.; Rood, S. B.
2015-12-01
With global warming, forest fires may be increasing in frequency, and post-fire salvage logging may become more common. The ecophysiological impacts of this practice on tree saplings remain poorly understood. In this study, we examined the physiological and morphological impacts of increased light intensity, due to post-fire salvage logging, on the conifer Pinus contorta (pine) and deciduous broadleaf Salix lucida (willow) tree and shrub species in the Crowsnest Pass region of southern Alberta. Photosynthetic gas-exchange and plant morphological measurements were taken throughout the summer of 2013 on approximately ten year-old saplings of both species. Neither species exhibited photoinhibition, but different strategies were observed to acclimate to increased light availability. Willow saplings were able to slightly elevate their light-saturated rate of net photosynthesis (Amax) when exposed to higher photosynthetic photon flux density (PPFD), thus increasing their growth rate. Willow also exhibited increased leaf inclination angles and leaf mass per unit area (LMA), to decrease light interception in the salvage-logged plot. By contrast, pine, which exhibited lower Amax and transpiration (E), but higher water-use efficiency (WUE = Amax/E) than willow, increased the rate at which electrons were moved through and away from the photosynthetic apparatus in order to avoid photoinhibition. Acclimation indices were higher in willow saplings, consistent with the hypothesis that species with short-lived foliage exhibit greater acclimation. LMA was higher in pine saplings growing in the logged plot, but whole-plant and branch-level morphological acclimation was limited and more consistent with a response to decreased competition in the logged plot, which had much lower stand density.
Wang, Hao; Wang, Baoyuan; Yu, Jichao; Hu, Yunxia; Xia, Chen; Zhang, Jun; Liu, Rong
2015-01-01
The single–crystalline TiO2 nanorod arrays with rutile phase have attracted much attention in the dye sensitized solar cells (DSSCs) applications because of their superior chemical stability, better electron transport properties, higher refractive index and low production cost. However, it suffers from a low surface area as compared with TiO2 nanoparticle films. In order to enlarge the surface area of TiO2 nanorod arrays, the 1D nanorods/3D nanotubes sample was synthesized using a facile two-step hydrothermal process involving hydrothermal growth 1D/3D nanorods and followed by post-etching treatment. In such bi-layer structure, the oriented TiO2 nanorods layer could provide direct pathway for fast electron transportation, and the 3D nanotubes layer offers a higher surface area for dye loading, therefore, the 1D nanorods/3D nanotubes photoanode exhibited faster electron transport and higher surface area than either 1D or 3D nanostructures alone, and an highest efficiency of 7.68% was achieved for the DSSCs based on 1D nanorods/3D nanotubes photoanode with further TiCl4 treatment. PMID:25800933
Žagar, Anamarija; Simčič, Tatjana; Carretero, Miguel A; Vrezec, Al
2015-01-01
Sympatric species from the same ecological guild, that exhibit partial altitudinal segregation, can potentially interact in areas of syntopic occurrence. Besides general species' ecology, physiology can provide important answers about species interactions reflected in altitudinal patterns. Lizards Podarcis muralis and Iberolacerta horvathi exhibit partial altitudinal segregation, while they strongly resemble in overall morphology and ecology (diet, daily and seasonal activity pattern), but show certain degree of physiological dissimilarity. They have similar mean preferred body temperatures and patterns of seasonal and daily variations but differ in the magnitude of seasonal variation. Since an ectotherm metabolism is highly dependent on body temperature, thermoregulation is expected to directly affect their metabolism. We compared metabolic rates of adult males from an area of sympatry, measured under two temperature regimes (20°C and 28°C). Both species increased metabolic rates with temperature in a similar pattern. We also compared electron transport activity from tail tissues which provide values of species' potential metabolic activity (enzymatic capacity). Species clearly differed in potential metabolic activity; I. horvathi attained higher values than P. muralis. No difference was detected in how species exploited this potential (calculated from the ratio of electron transport activity and metabolic rates). However, we observed higher potential metabolic activity I. horvathi which together with the ability to thermoregulate more precisely could represent a higher competitive advantage over P. muralis in thermally more restrictive environments such as higher altitudes. Understanding of metabolism seems to provide valuable information for understanding recent distributional patterns as well as species interactions. Copyright © 2014 Elsevier Inc. All rights reserved.
Long, Run; Prezhdo, Oleg V
2015-07-08
Hybrid organic/inorganic polymer/quantum dot (QD) solar cells are an attractive alternative to the traditional cells. The original, simple models postulate that one-dimensional polymers have continuous energy levels, while zero-dimensional QDs exhibit atom-like electronic structure. A realistic, atomistic viewpoint provides an alternative description. Electronic states in polymers are molecule-like: finite in size and discrete in energy. QDs are composed of many atoms and have high, bulk-like densities of states. We employ ab initio time-domain simulation to model the experimentally observed ultrafast photoinduced dynamics in a QD/polymer hybrid and show that an atomistic description is essential for understanding the time-resolved experimental data. Both electron and hole transfers across the interface exhibit subpicosecond time scales. The interfacial processes are fast due to strong electronic donor-acceptor, as evidenced by the densities of the photoexcited states which are delocalized between the donor and the acceptor. The nonadiabatic charge-phonon coupling is also strong, especially in the polymer, resulting in rapid energy losses. The electron transfer from the polymer is notably faster than the hole transfer from the QD, due to a significantly higher density of acceptor states. The stronger molecule-like electronic and charge-phonon coupling in the polymer rationalizes why the electron-hole recombination inside the polymer is several orders of magnitude faster than in the QD. As a result, experiments exhibit multiple transfer times for the long-lived hole inside the QD, ranging from subpicoseconds to nanoseconds. In contrast, transfer of the short-lived electron inside the polymer does not occur beyond the first picosecond. The energy lost by the hole on its transit into the polymer is accommodated by polymer's high-frequency vibrations. The energy lost by the electron injected into the QD is accommodated primarily by much lower-frequency collective and QD modes. The electron dynamics is exponential, whereas evolution of the injected hole through the low density manifold of states of the polymer is highly nonexponential. The time scale of the electron-hole recombination at the interface is intermediate between those in pristine polymer and QD and is closer to that in the polymer. The detailed atomistic insights into the photoinduced charge and energy dynamics at the polymer/QD interface provide valuable guidelines for optimization of solar light harvesting and photovoltaic efficiency in modern nanoscale materials.
NASA Astrophysics Data System (ADS)
Roh, Jeongkyun; Kim, Hyeok; Park, Myeongjin; Kwak, Jeonghun; Lee, Changhee
2017-10-01
Interface engineering for the improved injection properties of all-solution-processed n-type organic field-effect transistors (OFETs) arising from the use of an inkjet-printed ZnO electron injection layer were demonstrated. The characteristics of ZnO in terms of electron injection and transport were investigated, and then we employed ZnO as the electron injection layer via inkjet-printing during the fabrication of all-solution-processed, n-type OFETs. With the inkjet-printed ZnO electron injection layer, the devices exhibited approximately five-fold increased mobility (0.0058 cm2/V s to 0.030 cm2/V s), more than two-fold increased charge concentration (2.76 × 1011 cm-2 to 6.86 × 1011 cm-2), and two orders of magnitude reduced device resistance (120 MΩ cm to 3 MΩ cm). Moreover, n-type polymer form smoother film with ZnO implying denser packing of polymer, which results in higher mobility.
Short Haul Civil Tiltrotor Contingency Power System Preliminary Design
NASA Technical Reports Server (NTRS)
Eames, David J. H.
2006-01-01
Single Langmuir probe measurements are presented over a two-dimensional array of locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring cusp ion thruster over a range of thruster operating conditions encompassing the high-power half of the NASA throttling table. The Langmuir probe data were analyzed with two separate methods. All data were analyzed initially assuming an electron population consisting of Maxwellian electrons only. The on-axis data were then analyzed assuming both Maxwellian and primary electrons. Discharge plasma data taken with beam extraction exhibit a broadening of the higher electron temperature plume boundary compared to similar discharge conditions without beam extraction. The opposite effect is evident with the electron/ion number density as the data without began, extraction appears to be more collimated than the corresponding data with beam extraction. Primary electron energy and number densities are presented for one operating condition giving an order of magnitude of their value and the error associated with this calculation.
Discharge Chamber Plasma Structure of a 30-cm NSTAR-Type Ion Engine
NASA Technical Reports Server (NTRS)
Herman, Daniel A.; Gallimore, Alec D.
2006-01-01
Single Langmuir probe measurements are presented over a two-dimensional array of locations in the near Discharge Cathode Assembly (DCA) region of a 30-cm diameter ring cusp ion thruster over a range of thruster operating conditions encompassing the high-power half of the NASA throttling table. The Langmuir probe data were analyzed with two separate methods. All data were analyzed initially assuming an electron population consisting of Maxwellian electrons only. The on-axis data were then analyzed assuming both Maxwellian and primary electrons. Discharge plasma data taken with beam extraction exhibit a broadening of the higher electron temperature plume boundary compared to similar discharge conditions without beam extraction. The opposite effect is evident with the electron/ion number density as the data without began, extraction appears to be more collimated than the corresponding data with beam extraction. Primary electron energy and number densities are presented for one operating condition giving an order of magnitude of their value and the error associated with this calculation.
Enhanced stabilization of collagen by furfural.
Lakra, Rachita; Kiran, Manikantan Syamala; Usha, Ramamoorthy; Mohan, Ranganathan; Sundaresan, Raja; Korrapati, Purna Sai
2014-04-01
Furfural (2-furancarboxaldehyde), a product derived from plant pentosans, has been investigated for its interaction with collagen. Introduction of furfural during fibril formation enhanced the thermal and mechanical stability of collagen. Collagen films treated with furfural exhibited higher denaturation temperature (Td) (p<0.04) and showed a 3-fold increase in Young's modulus (p<0.04) at higher concentration. Furfural and furfural treated collagen films did not have any cytotoxic effect. Rheological characterization showed an increase in shear stress and shear viscosity with increasing shear rate for treated collagen. Circular dichroism (CD) studies indicated that the furfural did not have any impact on triple helical structure of collagen. Scanning electron microscopy (SEM) of furfural treated collagen exhibited small sized porous structure in comparison with untreated collagen. Thus this study provides an alternate ecologically safe crosslinking agent for improving the stability of collagen for biomedical and industrial applications. Copyright © 2014 Elsevier B.V. All rights reserved.
Activity inhibition on municipal activated sludge by single-walled carbon nanotubes
NASA Astrophysics Data System (ADS)
Parise, Alex; Thakor, Harshrajsinh; Zhang, Xiaoqi
2014-01-01
The objective of this study was to evaluate the respiratory activity inhibition of activated sludge used in a typical wastewater treatment plant by single-walled carbon nanotubes (SWCNTs) with different length and functionality. Four types of SWCNTs were evaluated: short, functionalized short, long, and functionalized long. Based on the effective concentration (EC50) values obtained, we determined that functionalized SWCNTs resulted in a higher microbial respiratory inhibition than non-functionalized nanotubes, and long SWCNTs gave a higher microbial respiratory inhibition than their short counterparts. Among the four types of SWCNTs studied, functionalized long exhibited the highest respiration inhibition. Scanning electron microscopy imaging indicates that the long SWCNTs dispersed more favorably after sonication than the short variety. The findings demonstrated that the toxicity of CNTs (exhibited by respiratory inhibition) is related to their physical properties; the length and functionality of SWCNTs affected the toxicity of SWCNTs in a mixed-cultured biologic system.
Pitting Initiation and Propagation of X70 Pipeline Steel Exposed to Chloride-Containing Environments
Yang, Zixuan; Kan, Bo; Li, Jinxu; Su, Yanjing; Qiao, Lijie; Volinsky, Alex A.
2017-01-01
Inclusion-induced pitting initiation mechanisms in X70 steel were investigated by scanning electron microscopy, scanning Kelvin probe force microscopy (SKPFM), immersion and electrochemical polarization tests in chloride-containing ion solutions. There are three inclusion types in the X70 steel. Corrosion test results indicated that pitting corrosion resistance of type A inclusion < type C inclusion < type B inclusion, i.e., (Mn, Ca)S < matrix < (Al, Ca)O. SKPFM test results show that the type A inclusion exhibited both lower and higher potentials than the matrix, while the type B inclusion exhibited higher potential than the matrix. The corrosion test and the SKPFM potential test results are consistent. Potentiodynamic polarization results indicate that the type A and C are active inclusions, while the type B is an inactive inclusion. Three kinds of possible mechanisms of inclusion-induced pitting corrosion are established for the X70 steel. PMID:28902156
Two-body Schrödinger wave functions in a plane-wave basis via separation of dimensions
NASA Astrophysics Data System (ADS)
Jerke, Jonathan; Poirier, Bill
2018-03-01
Using a combination of ideas, the ground and several excited electronic states of the helium atom and the hydrogen molecule are computed to chemical accuracy—i.e., to within 1-2 mhartree or better. The basic strategy is very different from the standard electronic structure approach in that the full two-electron six-dimensional (6D) problem is tackled directly, rather than starting from a single-electron Hartree-Fock approximation. Electron correlation is thus treated exactly, even though computational requirements remain modest. The method also allows for exact wave functions to be computed, as well as energy levels. From the full-dimensional 6D wave functions computed here, radial distribution functions and radial correlation functions are extracted—as well as a 2D probability density function exhibiting antisymmetry for a single Cartesian component. These calculations support a more recent interpretation of Hund's rule, which states that the lower energy of the higher spin-multiplicity states is actually due to reduced screening, rather than reduced electron-electron repulsion. Prospects for larger systems and/or electron dynamics applications appear promising.
Two-body Schrödinger wave functions in a plane-wave basis via separation of dimensions.
Jerke, Jonathan; Poirier, Bill
2018-03-14
Using a combination of ideas, the ground and several excited electronic states of the helium atom and the hydrogen molecule are computed to chemical accuracy-i.e., to within 1-2 mhartree or better. The basic strategy is very different from the standard electronic structure approach in that the full two-electron six-dimensional (6D) problem is tackled directly, rather than starting from a single-electron Hartree-Fock approximation. Electron correlation is thus treated exactly, even though computational requirements remain modest. The method also allows for exact wave functions to be computed, as well as energy levels. From the full-dimensional 6D wave functions computed here, radial distribution functions and radial correlation functions are extracted-as well as a 2D probability density function exhibiting antisymmetry for a single Cartesian component. These calculations support a more recent interpretation of Hund's rule, which states that the lower energy of the higher spin-multiplicity states is actually due to reduced screening, rather than reduced electron-electron repulsion. Prospects for larger systems and/or electron dynamics applications appear promising.
Hot deformation characteristics of INCONEL alloy MA 754 and development of a processing map
DOE Office of Scientific and Technical Information (OSTI.GOV)
Somani, M.C.; Muraleedharan, K.; Birla, N.C.
1994-08-01
The characteristics of hot deformation of INCONEL alloy MA 754 have been studies using processing maps obtained on the basis of flow stress data generated in compression in the temperature range 700 C to 1,150 C and strain rate range 0.001 to 100 s[sup [minus]1]. The map exhibited three domains. (1) A domain of dynamic recovery occurs in the temperature range 800 C to 1,075 C and strain rate range 0.02 to 2 s[sup [minus]1], with a peak efficiency of 18 pct occurring at 950 C and 0.1 s [sup [minus]1]. Transmission electron microscope (TEM) micrographs revealed stable subgrain structuremore » in this domain with the subgrain size increasing exponentially with an increase in temperature. (2) A domain exhibiting grain boundary cracking occurs at temperatures lower than 800 C and strain rates lower than 0.01 s[sup [minus]1]. (3) A domain exhibiting intense grain boundary cavitation occurs at temperatures higher than 1075 C. The material did not exhibit a dynamic recrystallization (DRX) domain, unlike other superalloys. At strain rates higher than about 1 s[sup [minus]1], the material exhibits flow instabilities manifesting as kinking of the elongated grains and adiabatic shear bands. The materials may be safely worked in the domain of dynamic recovery but can only be statically recrystallized.« less
NASA Astrophysics Data System (ADS)
Mizugaki, Yoshinao; Takiguchi, Masashi; Tamura, Nobuyuki; Shimada, Hiroshi
2018-03-01
We report electric and magnetic field responses of single-electron transistors (SETs) comprising a superconducting island with ferromagnetic (FM) leads. We fabricated two SETs, one of which had relatively high resistance and the other had relatively low resistance. The SETs had two states for the gate charge: SET-ON or SET-OFF. They also had two states for the FM lead magnetization: parallel (P) or anti-parallel (AP) configuration. Current-voltage characteristics of four SET states (“P & SET-ON,” “P & SET-OFF,” “AP & SET-ON,” and “AP & SET-OFF”) were measured at approximately 0.1 K in a compact dilution refrigerator. Magnetoresistance ratio (MRR) values were obtained for the SET-ON and SET-OFF states, respectively. The higher-resistance SET1 exhibited positive MRR values for all measured bias voltages. The MRR enhancement was confirmed for the SET-OFF state, which agreed well with the co-tunneling model. The lower-resistance SET2, on the other hand, exhibited negative and positive MRR values for higher and lower bias voltage conditions, respectively. The bias voltage for the MRR polarity reversal was changed by the gate voltage. It was also confirmed that the co-tunneling model was partially valid for negative MRR values.
Electrochemical supramolecular recognition of hemin-carbon composites
NASA Astrophysics Data System (ADS)
Le, Hien Thi Ngoc; Jeong, Hae Kyung
2018-04-01
Hemin-graphite oxide-carbon nanotube (hemin-GO-CNT) and hemin-thermally reduced graphite oxide-carbon nanotube (hemin-TRGO-CNT) composites are synthesized and investigated for the electrochemical supramolecular recognition by electron transfer between biomolecules (dopamine and hydrogen peroxide) and the composite electrodes. Redox reaction mechanisms of two composites with dopamine and hydrogen peroxide are explained in detail by using cyclic voltammetry and differential pulse voltammetry. Hemin-TRGO-CNT displays higher electrochemical detection for dopamine and hydrogen peroxide than that of hemin-GO-CNT, exhibiting enhancement of the electron transfer due to the effective immobilization of redox couple of hemin (Fe2+/Fe3+) on the TRGO-CNT surface.
Ion-bombardment of nickel (110) at elevated temperature
NASA Astrophysics Data System (ADS)
Peddinti, Vijay Kumar
The goal of this thesis is to study the behavior of ion-induced defects at the Y point on the Ni (110) surface at elevated temperatures. The electronic structure of the surface is examined using inverse photoemission spectroscopy (IPES), and the geometric structure is observed using low energy electron diffraction (LEED). These measurements lead to a better understanding of the surface properties. The clean Ni (110) surface exhibits a peak ˜ 2.6 eV above the Fermi level, indicating an unoccupied surface state near the Y point of the surface Brillouin zone (SBZ). Defects are induced by low energy ion bombardment at various temperatures, which result in a decrease of the peak intensity. The surface state eventually disappears when bombarded for longer times. We also observed that the surface heals faster when the crystal is being simultaneously sputtered and annealed at higher versus lower temperature. Finally the data for annealing while sputtering versus annealing after sputtering does not seem to exhibit much difference.
NASA Astrophysics Data System (ADS)
Hamad, Bothina
2018-04-01
Ab initio investigations of the electronic and thermoelectric (TE) properties of SnSe1-x S x (x = 0, 0.25, 0.5, 0.75, and 1) alloys are performed using density functional theory. The TE properties are calculated using the semi-classical Boltzmann transport theory within the constant relaxation time approximation. Band gap values are found to range between 0.94 eV and 1.02 eV in agreement with the experimental findings and previous calculations. All alloys tend to exhibit p-type TE properties, indicated by a sharp peak near the Fermi level that indicates a heavy carrier concentration. Electrical conductivity is found to decrease, whereas the Seebeck coefficient and the power factor increase for higher concentrations. The three alloys, SnS, SnSe and SnSe0.75S0.25 alloys exhibit the same power factor of 3.5 × 10-3 W/m K2, which is promising for thermoelectric applications.
NASA Astrophysics Data System (ADS)
Zhang, Yangpeng; Zhan, Dongping; Qi, Xiwei; Jiang, Zhouhua; Zhang, Huishu
2018-05-01
In this study, approximately 0.35% Ti and two different Y contents were added to China low-activation martensitic (CLAM) steel during melting in a vacuum induction melting furnace. Scanning electron microscopy, transmission electron microscopy, x-ray diffraction, tensile tests, and Charpy impact tests were used to investigate the effects of the combined addition of Y and Ti on the second phase and mechanical properties. The results indicated that Y and Fe formed the large intermetallic compound Fe-Y; the compound easily aggregated in the grain boundaries and exhibited the strength of CLAM steel. Ti did not combine with Y to form the Y-Ti-O phase; however, it could combine with Ta and W to form MC precipitates, which were generally in the 20-50 nm size range. The CLAM steel with a higher Y content exhibited lower yield and tensile strengths at room temperature, with both steels yielding almost identical strengths at 600 °C.
NASA Astrophysics Data System (ADS)
Zhang, Yangpeng; Zhan, Dongping; Qi, Xiwei; Jiang, Zhouhua; Zhang, Huishu
2018-04-01
In this study, approximately 0.35% Ti and two different Y contents were added to China low-activation martensitic (CLAM) steel during melting in a vacuum induction melting furnace. Scanning electron microscopy, transmission electron microscopy, x-ray diffraction, tensile tests, and Charpy impact tests were used to investigate the effects of the combined addition of Y and Ti on the second phase and mechanical properties. The results indicated that Y and Fe formed the large intermetallic compound Fe-Y; the compound easily aggregated in the grain boundaries and exhibited the strength of CLAM steel. Ti did not combine with Y to form the Y-Ti-O phase; however, it could combine with Ta and W to form MC precipitates, which were generally in the 20-50 nm size range. The CLAM steel with a higher Y content exhibited lower yield and tensile strengths at room temperature, with both steels yielding almost identical strengths at 600 °C.
NASA Astrophysics Data System (ADS)
Shi, Jingzhi; Meng, Xiangying; Hao, Mengjian; Cao, Zhenzhu; He, Weiyan; Gao, Yanfang; Liu, Jinrong
2018-02-01
In this study, BiPO4/highly (001) facet exposed square BiOBr flake heterojunction photocatalysts with different molar ratios were fabricated via a two-step method. The synergetic effect of the heterojunction and facet engineering was systematically investigated. The physicochemical properties of the BiPO4/square BiOBr flake composites were characterized based on X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, Brunauer-Emmett-Teller method, X-ray photoelectron spectroscopy, ultraviolet-visible diffuse reflectance spectra, photoluminescence, electrochemical impedance spectroscopy, and the photocurrent response. The BiPO4/square BiOBr flake heterojunction photocatalyst exhibited much higher photocatalytic performance compared with the individual BiPO4 and BiOBr. In particular, the BiPO4/BiOBr composite where P/Br = 1/3 exhibited the highest photocatalytic activity. The intensified separation of photoinduced charges at the p-n heterojunction between the BiPO4 nanoparticle and (001) facet of BiOBr was mainly responsible for the enhanced photoactivity.
One-Dimensional Photonic Crystal Superprisms
NASA Technical Reports Server (NTRS)
Ting, David
2005-01-01
Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.
Byles, B. W.; Palapati, N. K. R.; Subramanian, A.; ...
2016-04-29
Single nanowires of two manganese oxide polymorphs (α-MnO 2 and todorokite manganese oxide), which display a controlled size variation in terms of their square structural tunnels, were isolated onto nanofabricated platforms using dielectrophoresis. This platform allowed for the measurement of the electronic conductivity of these manganese oxides, which was found to be higher in α-MnO 2 as compared to that of the todorokite phase by a factor of similar to 46. Despite this observation of substantially higher electronic conductivity in α-MnO 2, the todorokite manganese oxide exhibited better electrochemical rate performance as a Li-ion battery cathode. The relationship between thismore » electrochemical performance, the electronic conductivities of the manganese oxides, and their reported ionic conductivities is discussed for the first time, clearly revealing that the rate performance of these materials is limited by their Li + diffusivity, and not by their electronic conductivity. This result reveals important new insights relevant for improving the power density of manganese oxides, which have shown promise as a low-cost, abundant, and safe alternative for next-generation cathode materials. Moreover, the presented experimental approach is suitable for assessing a broader family of one-dimensional electrode active materials (in terms of their electronic and ionic conductivities) for both Li-ion batteries and for electrochemical systems utilizing charge-carrying ions beyond Li +.« less
TiO2-V2O5 nanocomposites as alternative energy storage substances for photocatalysts.
Ngaotrakanwiwat, Pailin; Meeyoo, Vissanu
2012-01-01
TiO2-V2O5 was prepared and evaluated as an energy storage material for photocatalysts with high capacity and initial charging rate. The compound was successfully obtained by sol-gel technique and effects of compound composition and calcination temperature on the energy storage ability were investigated. The synthesized compounds were characterized by means of X-ray powder diffraction (XRD), scanning electron microscopy equipped with energy-dispersive X-ray analysis (SEM-EDX) and transmission electron microscopy (TEM). The results reveals that the compound of Ti:V molar ratio equal to 1:0.11 calcined at 550 degrees C exhibited superior energy storage ability than parent substances and 1.7-times higher capacity and 2.3-times higher initial charging rate compared to WO3, indicating that the compound is a remarkable alternative to conventional energy storage substances.
Haji Manaf, Noramaliyana; Tennakoon, Kushan; Chandrakanthi, R. L. N.; Lim, Linda Biaw Leng; Bandara, J. M. R. Sarath; Ekanayake, Piyasiri
2015-01-01
Chlorophyll and xanthophyll dyes extracted from a single source of filamentous freshwater green algae (Cladophora sp.) were used to sensitize dye sensitized solar cells and their performances were investigated. A more positive interaction is expected as the derived dyes come from a single natural source because they work mutually in nature. Cell sensitized with mixed chlorophyll and xanthophyll showed synergistic activity with improved cell performance of 1.5- to 2-fold higher than that sensitized with any individual dye. The effect of temperature and the stability of these dyes were also investigated. Xanthophyll dye was found to be more stable compared to chlorophyll that is attributed in the ability of xanthophyll to dissipate extra energy via reversible structural changes. Mixing the dyes resulted to an increase in effective electron life time and reduced the process of electron recombination during solar cell operation, hence exhibiting a synergistic effect. PMID:25688266
Lim, Andery; Haji Manaf, Noramaliyana; Tennakoon, Kushan; Chandrakanthi, R L N; Lim, Linda Biaw Leng; Bandara, J M R Sarath; Ekanayake, Piyasiri
2015-01-01
Chlorophyll and xanthophyll dyes extracted from a single source of filamentous freshwater green algae (Cladophora sp.) were used to sensitize dye sensitized solar cells and their performances were investigated. A more positive interaction is expected as the derived dyes come from a single natural source because they work mutually in nature. Cell sensitized with mixed chlorophyll and xanthophyll showed synergistic activity with improved cell performance of 1.5- to 2-fold higher than that sensitized with any individual dye. The effect of temperature and the stability of these dyes were also investigated. Xanthophyll dye was found to be more stable compared to chlorophyll that is attributed in the ability of xanthophyll to dissipate extra energy via reversible structural changes. Mixing the dyes resulted to an increase in effective electron life time and reduced the process of electron recombination during solar cell operation, hence exhibiting a synergistic effect.
Ecophysiological responses to excess iron in lowland and upland rice cultivars.
Müller, Caroline; Silveira, Solange Ferreira da Silveira; Daloso, Danilo de Menezes; Mendes, Giselle Camargo; Merchant, Andrew; Kuki, Kacilda Naomi; Oliva, Marco Antonio; Loureiro, Marcelo Ehlers; Almeida, Andréa Miyasaka
2017-12-01
Iron (Fe) is an essential nutrient for plants but under high concentrations, such as that found naturally in clay and waterlogged soils, its toxic effect can limit production. This study aimed to investigate the stress tolerance responses exhibited by different rice cultivars. Both lowland and upland cultivars were grown under excess Fe and hypoxic conditions. Lowland cultivars showed higher Fe accumulation in roots compared with upland cultivars suggesting the use of different strategies to tolerate excess Fe. The upland Canastra cultivar displayed a mechanism to limit iron translocation from roots to the shoots, minimizing leaf oxidative stress induced by excess Fe. Conversely, the cultivar Curinga invested in the increase of R1/A, as an alternative drain of electrons. However, the higher iron accumulation in the leaves, was not necessarily related to high toxicity. Nutrient uptake and/or utilization mechanisms in rice plants are in accordance with their needs, which may be defined in relation to crop environments. Alterations in the biochemical parameters of photosynthesis suggest that photosynthesis in rice under excess Fe is primarily limited by biochemical processes rather than by diffusional limitations, particularly in the upland cultivars. The electron transport rate, carboxylation efficiency and electron excess dissipation by photorespiration demonstrate to be good indicators of iron tolerance. Altogether, these chemical and molecular patterns suggests that rice plants grown under excess Fe exhibit gene expression reprogramming in response to the Fe excess per se and in response to changes in photosynthesis and nutrient levels to maintain growth under stress. Copyright © 2017 Elsevier Ltd. All rights reserved.
Mechanical properties and microstructures of glass-ionomer cements.
Xie, D; Brantley, W A; Culbertson, B M; Wang, G
2000-03-01
The objective of this study was to determine the flexural strength (FS), compressive strength (CS), diametral tensile strength (DTS), Knoop hardness (KHN) and wear resistance of ten commercial glass-ionomer cements (GICs). The fracture surfaces of these cements were examined using scanning electron microscopic (SEM) techniques to ascertain relationships between the mechanical properties and microstructures of these cements. Specimens were fabricated according to the instructions from each manufacturer. The FS, CS, DTS, KHN and wear rate were measured after conditioning the specimens for 7 d in distilled water at 37 degrees C. One-way analysis of variance with the post hoc Tukey-Kramer multiple range test was used to determine which specimen groups were significantly different for each test. The fracture surface of one representative specimen of each GIC from the FS tests was examined using a scanning electron microscope. The resin-modified GICs (RM GICs) exhibited much higher FS and DTS, not generally higher CS, often lower Knoop hardness and generally lower wear resistance, compared to the conventional GICs (C GICs). Vitremer (3M) had the highest values of FS and DTS; Fuji II LC (GC International) and Ketac-Molar (ESPE) had the highest CS; Ketac-Fil (ESPE) had the highest KHN. Ketac-Bond (ESPE) had the lowest FS; alpha-Silver (DMG-Hamburg) had the lowest CS. Four GICs (alpha-Fil (DMG-Hamburg), alpha-Silver, Ketac-Bond and Fuji II) had the lowest values of DTS, which were not significantly different from each other; alpha-Silver and Ketac-Silver had the lowest values of KHN. The highest wear resistance was exhibited by alpha-Silver and Ketac-Fil; F2LC had the lowest wear resistance. The C GICs exhibited brittle behavior, whereas the RM GICs underwent substantial plastic deformation in compression. The more integrated the microstructure, the higher were the FS and DTS. Higher CS was correlated with smaller glass particles, and higher KHN was found where there was a combination of smaller glass particles and lower porosity. Larger glass particle sizes and a more integrated microstructure contributed to a higher wear resistance. The mechanical properties of GICs were closely related to their microstructures. Factors such as the integrity of the interface between the glass particles and the polymer matrix, the particle size, and the number and size of voids have important roles in determining the mechanical properties.
Secondary electron emission characteristics of oxide electrodes in flat electron emission lamp
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiang, Chang-Lin, E-mail: CLChiang@itri.org.tw; Li, Chia-Hung; Department of Electrophysics, National Chiao Tung University, 1001 Ta Hsueh Road, Hsinchu 300, Taiwan
2016-01-15
The present study concerns with the secondary electron emission coefficient, γ, of the cathode materials used in the newly developed flat electron emission lamp (FEEL) devices, which essentially integrates the concept of using cathode for fluorescent lamp and anode for cathode ray tube (CRT) to obtain uniform planar lighting. Three different cathode materials, namely fluorine-doped tin oxide (FTO), aluminum oxide coated FTO (Al{sub 2}O{sub 3}/FTO) and magnesium oxide coated FTO (MgO/FTO) were prepared to investigate how the variations of γ and working gases influence the performance of FEEL devices, especially in lowering the breakdown voltage and pressure of the workingmore » gases. The results indicate that the MgO/FTO bilayer cathode exhibited a relatively larger effective secondary electron emission coefficient, resulting in significant reduction of breakdown voltage to about 3kV and allowing the device to be operated at the lower pressure to generate the higher lighting efficiency.« less
Two-dimensional electronic transport and surface electron accumulation in MoS2.
Siao, M D; Shen, W C; Chen, R S; Chang, Z W; Shih, M C; Chiu, Y P; Cheng, C-M
2018-04-12
Because the surface-to-volume ratio of quasi-two-dimensional materials is extremely high, understanding their surface characteristics is crucial for practically controlling their intrinsic properties and fabricating p-type and n-type layered semiconductors. Van der Waals crystals are expected to have an inert surface because of the absence of dangling bonds. However, here we show that the surface of high-quality synthesized molybdenum disulfide (MoS 2 ) is a major n-doping source. The surface electron concentration of MoS 2 is nearly four orders of magnitude higher than that of its inner bulk. Substantial thickness-dependent conductivity in MoS 2 nanoflakes was observed. The transfer length method suggested the current transport in MoS 2 following a two-dimensional behavior rather than the conventional three-dimensional mode. Scanning tunneling microscopy and angle-resolved photoemission spectroscopy measurements confirmed the presence of surface electron accumulation in this layered material. Notably, the in situ-cleaved surface exhibited a nearly intrinsic state without electron accumulation.
Watson, Aaron M; Foster Thompson, Lori; Rudolph, Jane V; Whelan, Thomas J; Behrend, Tara S; Gissel, Amanda L
2013-07-01
Web-based training is frequently used by organizations as a convenient and low-cost way to teach employees new knowledge and skills. As web-based training is typically unproctored, employees may be held accountable to the organization by computer software that monitors their behaviors. The current study examines how the introduction of electronic performance monitoring may provoke negative emotional reactions and decrease learning among certain types of e-learners. Through motivated action theory and trait activation theory, we examine the role of performance goal orientation when e-learners are exposed to asynchronous and synchronous monitoring. We show that some e-learners are more susceptible than others to evaluation apprehension when they perceive their activities are being monitored electronically. Specifically, e-learners higher in avoid performance goal orientation exhibited increased evaluation apprehension if they believed asynchronous monitoring was present, and they showed decreased skill attainment as a result. E-learners higher on prove performance goal orientation showed greater evaluation apprehension if they believed real-time monitoring was occurring, resulting in decreased skill attainment. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Guo, Zhuang; Cao, Hongbin; Wang, Yuxian; Xie, Yongbing; Xiao, Jiadong; Yang, Jin; Zhang, Yi
2018-06-01
Three kinds of graphitic carbon nitride materials (bulk, porous and nanosheet g-C 3 N 4 ) were composited with a multiwall carbon nanotube (MWCNT) by a hydrothermal method, and the obtained b-C 3 N 4 /CNT, p-C 3 N 4 /CNT and n-C 3 N 4 /CNT materials were used in the electrodes for electro-peroxone process. It was found that the n-C 3 N 4 /CNT composite exhibited the highest efficiency in oxalate degradation, though it performed the worst in the oxygen-reduction reaction for H 2 O 2 production. The n-C 3 N 4 /CNT composite exhibited higher activity than CNT and other composites in catalytic ozonation experiments, due to the higher pyrrolic-N content modified on the CNT surface and higher surface area. It also has higher electron transfer ability, which benefited to the electro-reduction of both O 2 and O 3 . The result confirmed that catalytic ozonation process was an important means to enhance the degradation efficiency in the electro-peroxone process, besides peroxone process and O 3 -electrolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Engel-Vosko GGA calculations of the structural, electronic and optical properties of LiYO2
NASA Astrophysics Data System (ADS)
Muhammad, Nisar; Khan, Afzal; Haidar Khan, Shah; Sajjaj Siraj, Muhammad; Shah, Syed Sarmad Ali; Murtaza, Ghulam
2017-09-01
Structural, electronic and optical properties of lithium yttrium oxide (LiYO2) are investigated using density functional theory (DFT). These calculations are based on full potential linearized augmented plane wave (FP-LAPW) method implemented by WIEN2k. The generalized gradient approximation (GGA) is used as an exchange correlation potential with Perdew-Burk-Ernzerhof (PBE) and Engel-Vosko (EV) as exchange correlation functional. The structural properties are calculated with PBE-GGA as it gives the equilibrium lattice constants very close to the experimental values. While, the band structure and optical properties are calculated with EV-GGA obtain much closer results to their experimental values. Our calculations confirm LiYO2 as large indirect band gap semiconductor having band gap of 5.23 eV exhibiting the characteristics of ultrawide band gap materials showing the properties like higher critical breakdown field, higher temperature operation and higher radiation tolerance. In this article, we report the density of states (DOS) in terms of contribution from s, p, and d-states of the constituent atoms, the band structure, the electronic structure, and the frequency-dependent optical properties of LiYO2. The optical properties presented in this article reveal LiYO2 a suitable candidate for the field of optoelectronic and optical devices.
Recent Advances in Understanding Radiation Belt Dynamics in the Earth's Inner Zone and Slot Region
NASA Astrophysics Data System (ADS)
Li, X.
2015-12-01
Comprehensive measurements of the inner belt protons from the Relativistic Electron and Proton Telescope (REPT) onboard Van Allen Probes, in a geo-transfer-like orbit, revealed new features of inner belt protons in terms of their spectrum distribution, spatial distribution, pitch angle distribution, and their different source populations. Concurrent measurements from the Relativistic Electron and Proton Telescope integrated little experiment (REPTile) on board Colorado Student Space Weather Experiment (CSSWE) CubeSat, in a highly inclined low Earth orbit, and REPT demonstrated that there exist sub-MeV electrons in the inner belt and their flux level is orders of magnitude higher than the background associated with the inner belt protons, while higher energy electron (>1.6 MeV) measurements cannot be distinguished from the background. Analysis on sub-MeV electrons data in the inner belt and slot region from the Magnetic Electron Ion Spectrometer (MagEIS) on board Van Allen Probes revealed rather complicated pitch angle distribution of these energetic electrons, with the 90 deg-minimum (butterfly) pitch angle distribution dominating near the magnetic equator. Furthermore, it is clearly shown from MagEIS measurements that 10s - 100s keV electrons are commonly seen penetrating into the inner belt region during geomagnetic active times while protons of similar energies are hardly seen there. These are part of a summary of the most recent measurements and understanding of the dynamics of energetic particles in the inner zone and slot region to be exhibited and discussed in this presentation.
Electronic structure and magnetic properties of disordered Co{sub 2}FeAl Heusler alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jain, Vishal, E-mail: vjain045@gmail.com; Jain, Vivek, E-mail: vjain045@gmail.com; Sudheesh, V. D., E-mail: vjain045@gmail.com
The effects of disorder on the magnetic properties of Co{sub 2}FeAl alloy are reported. X-ray diffraction exhibit A2-type disordered structure. Room temperature Mössbauer studies show the presence of two sextets with hyperfine field values of 31T and 30T along with a nonmagnetic singlet. The electronic structure of ordered and disordered Co{sub 2}FeAl alloys, investigated by means of the KKR Green's-function method shows that the magnetic moment of the ordered structure is 5.08μ{sub B} and is 5.10μ{sub B} when disordered. However, a much higher magnetic moment of 5.74μ{sub B} is observed experimentally.
NASA Astrophysics Data System (ADS)
Sunil Kumar Reddy, N.; Badam, Rajashekar; Sattibabu, Romala; Molli, Muralikrishna; Sai Muthukumar, V.; Siva Sankara Sai, S.; Rao, G. Nageswara
2014-11-01
We report here the nonlinear optical (NLO) properties of eight bis-chalcones of D-π-A-π-D type. These dibenzylideneacetone (DBA) derivatives are synthesized by Claisen-Schmidt reaction. The compounds are characterized by UV-vis, FTIR, 1H NMR, 13C NMR, mass spectroscopy and powder XRD. By substituting different groups (electron withdrawing and electron donating) at 'para' and 'meta' positions of the aromatic ring, we observed an enhancement in second harmonic generation with substitution at 'para' position. These compounds have also showed higher two-photon absorption compared to other chalcones reported in literature. These compounds, exhibiting both second and third order NLO effects, are plausible candidate materials in photonic devices.
Mechanical and microwave absorbing properties of carbon-filled polyurethane.
Kucerová, Z; Zajícková, L; Bursíková, V; Kudrle, V; Eliás, M; Jasek, O; Synek, P; Matejková, J; Bursík, J
2009-01-01
Polyurethane (PU) matrix composites were prepared with various carbon fillers at different filler contents in order to investigate their structure, mechanical and microwave absorbing properties. As fillers, flat carbon microparticles, carbon microfibers and multiwalled carbon nanotubes (MWNT) were used. The microstructure of the composite was examined by scanning electron microscopy and transmission electron microscopy. Mechanical properties, namely universal hardness, plastic hardness, elastic modulus and creep were assessed by means of depth sensing indentation test. Mechanical properties of PU composite filled with different fillers were investigated and the composite always exhibited higher hardness, elastic modulus and creep resistance than un-filled PU. Influence of filler shape, content and dispersion was also investigated.
Watanabe, Satoru; Watanabe, Toshinari; Ito, Kazuhiro; Miyakawa, Naomichi; Ito, Setsuro; Hosono, Hideo; Mikoshiba, Shigeo
2011-06-01
12CaO·7Al 2 O 3 electride, a sub-nanoporous compound having a work function of 2.4 eV, was examined as a candidate cathode material in fluorescent lamps. The electron emission yield was higher and the discharge voltage was lower for 12CaO·7Al 2 O 3 than for existing cathode materials such as Ni, Mo or W; therefore, the energy consumption of the fluorescent lamps can be improved using 12CaO·7Al 2 O 3 cathodes. Prototype glow-discharge lamps using 12CaO·7Al 2 O 3 were constructed and exhibited reasonable durability.
Watanabe, Satoru; Watanabe, Toshinari; Ito, Kazuhiro; Miyakawa, Naomichi; Ito, Setsuro; Hosono, Hideo; Mikoshiba, Shigeo
2011-01-01
12CaO·7Al2O3 electride, a sub-nanoporous compound having a work function of 2.4 eV, was examined as a candidate cathode material in fluorescent lamps. The electron emission yield was higher and the discharge voltage was lower for 12CaO·7Al2O3 than for existing cathode materials such as Ni, Mo or W; therefore, the energy consumption of the fluorescent lamps can be improved using 12CaO·7Al2O3 cathodes. Prototype glow-discharge lamps using 12CaO·7Al2O3 were constructed and exhibited reasonable durability. PMID:27877401
Biosynthesized silver nanoparticles: are they effective antimicrobials?
Peiris, Mudara K; Gunasekara, Chinthika P; Jayaweera, Pradeep M; Arachchi, Nuwan DH; Fernando, Neluka
2017-01-01
BACKGROUND Silver nanoparticles (AgNPs) are increasingly being used in medical applications. Therefore, cost effective and green methods for generating AgNPs are required. OBJECTIVES This study aimed towards the biosynthesis, characterisation, and determination of antimicrobial activity of AgNPs produced using Pseudomonas aeruginosa ATCC 27853. METHODS Culture conditions (AgNO3 concentration, pH, and incubation temperature and time) were optimized to achieve maximum AgNP production. The characterisation of AgNPs and their stability were evaluated by UV-visible spectrophotometry and scanning electron microscopy. FINDINGS The characteristic UV-visible absorbance peak was observed in the 420–430 nm range. Most of the particles were spherical in shape within a size range of 33–300 nm. The biosynthesized AgNPs exhibited higher stability than that exhibited by chemically synthesized AgNPs in the presence of electrolytes. The biosynthesized AgNPs exhibited antimicrobial activity against Escherichia coli, P. aeruginosa, Salmonella typhimurium, Staphylococcus aureus, methicillin-resistant S. aureus, Acinetobacter baumannii, and Candida albicans. MAIN CONCLUSION As compared to the tested Gram-negative bacteria, Gram-positive bacteria required higher contact time to achieve 100% reduction of colony forming units when treated with biosynthesized AgNPs produced using P. aeruginosa. PMID:28767978
Upstream energetic ions and electrons - Bow shock-associated or magnetospheric origin
NASA Technical Reports Server (NTRS)
Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.
1981-01-01
An analysis is made of 35 proton bursts observed with the Max-Planck-Institut/University of Maryland sensor system on ISEE 3 far upstream of the earth's bow shock. These upstream bursts are found to fall into two distinctive groups. The first is accompanied by energetic electrons (more than about 75 keV), and the proton spectrum extends up to energies greater than about 300 keV and higher and bends over toward lower energies (less than about 30 keV). The second group, which is unaccompanied by energetic electron bursts, exhibits spectra which can be represented extremely well by exponentials in energy with a mean e-folding energy of approximately 15 keV. The first group is thought to be of a magnetospheric origin, and the second to be bow-shock associated.
NASA Astrophysics Data System (ADS)
Li, Haoran; Mazumder, Baishakhi; Bonef, Bastien; Keller, Stacia; Wienecke, Steven; Speck, James S.; Denbaars, Steven P.; Mishra, Umesh K.
2017-11-01
In GaN/(Al,Ga)N high-electron-mobility transistors (HEMT), AlN interlayer between GaN channel and AlGaN barrier suppresses alloy scattering and significantly improves the electron mobility of the two-dimensional electron gas. While high concentrations of gallium were previously observed in Al-polar AlN interlayers grown by metal-organic chemical vapor deposition, the N-polar AlN (Al x Ga1-x N) films examined by atom probe tomography in this study exhibited aluminum compositions (x) equal to or higher than 95% over a wide range of growth conditions. The also investigated AlN interlayer in a N-polar GaN/AlN/AlGaN/ S.I. GaN HEMT structure possessed a similarly high x content.
Electronically Transparent Au-N Bonds for Molecular Junctions.
Zang, Yaping; Pinkard, Andrew; Liu, Zhen-Fei; Neaton, Jeffrey B; Steigerwald, Michael L; Roy, Xavier; Venkataraman, Latha
2017-10-25
We report a series of single-molecule transport measurements carried out in an ionic environment with oligophenylenediamine wires. These molecules exhibit three discrete conducting states accessed by electrochemically modifying the contacts. Transport in these junctions is defined by the oligophenylene backbone, but the conductance is increased by factors of ∼20 and ∼400 when compared to traditional dative junctions. We propose that the higher-conducting states arise from in situ electrochemical conversion of the dative Au←N bond into a new type of Au-N contact. Density functional theory-based transport calculations establish that the new contacts dramatically increase the electronic coupling of the oligophenylene backbone to the Au electrodes, consistent with experimental transport data. The resulting contact resistance is the lowest reported to date; more generally, our work demonstrates a facile method for creating electronically transparent metal-organic interfaces.
Atypical Particle Heating at a Supercritical Interplanetary Shock
NASA Technical Reports Server (NTRS)
Wilson, Lynn B., III
2010-01-01
We present the first observations at an interplanetary shock of large amplitude (> 100 mV/m pk-pk) solitary waves and large amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.
Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection
Nazirzadeh, Mohammad Amin; Atar, Fatih Bilge; Turgut, Berk Berkan; Okyay, Ali Kemal
2014-01-01
In this work, we propose Silicon based broad-band near infrared Schottky barrier photodetectors. The devices operate beyond 1200 nm wavelength and exhibit photoresponsivity values as high as 3.5 mA/W with a low dark current density of about 50 pA/µm2. We make use of Au nanoislands on Silicon surface formed by rapid thermal annealing of a thin Au layer. Surface plasmons are excited on Au nanoislands and this field localization results in efficient absorption of sub-bandgap photons. Absorbed photons excite the electrons of the metal to higher energy levels (hot electron generation) and the collection of these hot electrons to the semiconductor results in photocurrent (internal photoemission). Simple and scalable fabrication makes these devices suitable for ultra-low-cost NIR detection applications. PMID:25407509
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Siyuan; Zhang, Shengsen; College of Science, South China Agricultural University, Guangzhou 510642
Graphical abstract: The corncob-like Ag–Cu{sub 2}O nanostructure with suitably exposed Ag surface exhibited much higher photocatalytic activity than Ag@Cu{sub 2}O nanocables and Cu{sub 2}O nanowires. - Highlights: • Ag–Cu{sub 2}O nanocorncobs have been controllably prepared by a simple synthesis. • The possible formation mechanism of Ag–Cu{sub 2}O has been studied. • Ag–Cu{sub 2}O exhibits noticeable improved photocurrent compared with the pure Cu{sub 2}O NWs. • Ag–Cu{sub 2}O with suitably exposed Ag surface shows much higher photocatalytic activity. - Abstract: Novel corncob-like nano-heterostructured Ag–Cu{sub 2}O photocatalyst has been controllably prepared by adjusting the synthetic parameters, and the possible formation mechanism hasmore » been also studied. The photoelectrochemical and photocatalytic performances demonstrated that the as-prepared Ag–Cu{sub 2}O nanocorncobs exhibited higher photocatalytic activity than both pure Cu{sub 2}O nanowires and cable-like Ag@Cu{sub 2}O nano-composites. It was concluded that Ag–Cu{sub 2}O nanocorncobs with suitably exposed Ag surface not only effectively inhibit the recombination of electron–hole pairs but also suitably increase the active sites of electronic conduction, and thus increasing the photocatalytic activity under visible light irradiation.« less
One hundred fold increase in current carrying capacity in a carbon nanotube–copper composite
Subramaniam, Chandramouli; Yamada, Takeo; Kobashi, Kazufumi; Sekiguchi, Atsuko; Futaba, Don N.; Yumura, Motoo; Hata, Kenji
2013-01-01
Increased portability, versatility and ubiquity of electronics devices are a result of their progressive miniaturization, requiring current flow through narrow channels. Present-day devices operate close to the maximum current-carrying-capacity (that is, ampacity) of conductors (such as copper and gold), leading to decreased lifetime and performance, creating demand for new conductors with higher ampacity. Ampacity represents the maximum current-carrying capacity of the object that depends both on the structure and material. Here we report a carbon nanotube–copper composite exhibiting similar conductivity (2.3–4.7 × 105 S cm−1) as copper (5.8 × 105 S cm−1), but with a 100-times higher ampacity (6 × 108 A cm−2). Vacuum experiments demonstrate that carbon nanotubes suppress the primary failure pathways in copper as observed by the increased copper diffusion activation energy (∼2.0 eV) in carbon nanotube–copper composite, explaining its higher ampacity. This is the only material with both high conductivity and high ampacity, making it uniquely suited for applications in microscale electronics and inverters. PMID:23877359
One hundred fold increase in current carrying capacity in a carbon nanotube-copper composite
NASA Astrophysics Data System (ADS)
Subramaniam, Chandramouli; Yamada, Takeo; Kobashi, Kazufumi; Sekiguchi, Atsuko; Futaba, Don N.; Yumura, Motoo; Hata, Kenji
2013-07-01
Increased portability, versatility and ubiquity of electronics devices are a result of their progressive miniaturization, requiring current flow through narrow channels. Present-day devices operate close to the maximum current-carrying-capacity (that is, ampacity) of conductors (such as copper and gold), leading to decreased lifetime and performance, creating demand for new conductors with higher ampacity. Ampacity represents the maximum current-carrying capacity of the object that depends both on the structure and material. Here we report a carbon nanotube-copper composite exhibiting similar conductivity (2.3-4.7 × 105Scm-1) as copper (5.8 × 105Scm-1), but with a 100-times higher ampacity (6 × 108Acm-2). Vacuum experiments demonstrate that carbon nanotubes suppress the primary failure pathways in copper as observed by the increased copper diffusion activation energy (~2.0eV) in carbon nanotube-copper composite, explaining its higher ampacity. This is the only material with both high conductivity and high ampacity, making it uniquely suited for applications in microscale electronics and inverters.
Photocatalytic activity of ZnWO₄: band structure, morphology and surface modification.
Zhang, Cuiling; Zhang, Hulin; Zhang, Kaiyou; Li, Xiaoyan; Leng, Qiang; Hu, Chenguo
2014-08-27
Photocatalytic degradation of organic contaminants is an important application area in solar energy utilization. To improve material photocatalytic properties, understanding their photocatalytic mechanism is indispensable. Here, the photocatalytic performance of ZnWO4 nanocrystals was systematicly investigated by the photodegradation of tetraethylated rhodamine (RhB) under simulated sunlight irradiation, including the influence of morphology, AgO/ZnWO4 heterojunction and comparison with CoWO4 nanowires. The results show that the photocatalytic activity of ZnWO4 is higher than that of CoWO4, and the ZnWO4 nanorods exhibit better photocatalytic activity than that of ZnWO4 nanowires. In addition, the mechanism for the difference of the photocatalytic activity was also investigated by comparison of their photoluminescence and photocurrents. AgO nanoparticles were assembled uniformly on the surface of ZnWO4 nanowires to form a heterojunction that exhibited enhanced photocatalytic activity under irradiation at the initial stage. We found that a good photocatalyst should not only have an active structure for electrons directly to transfer from the valence band to the conduction band without the help of phonons but also a special electronic configuration for the high mobility, to ensure more excited electrons and holes in a catalytic reaction.
Optoelectronic properties of dicyanofluorene-based n-type polymers.
Vijayakumar, Chakkooth; Saeki, Akinori; Seki, Shu
2012-08-01
Three new donor-acceptor-type copolymers (P1-P3) consisting of dicyanofluorene as acceptor and various donor moieties were designed and synthesized. Optoelectronic properties were studied in detail by means of UV-visible absorption and fluorescence spectroscopy, cyclic voltammetry, space-charge-limited current (SCLC), flash-photolysis time-resolved microwave conductivity (FP-TRMC), and density functional theory (DFT). All polymers showed strong absorption in the UV-visible region and the absorption maximum undergoes redshift with an increasing number of thiophene units in the polymer backbone. SCLC analysis showed that the electron mobilities of the polymers in the bulk state were 1 to 2 orders higher than that of the corresponding hole mobilities, which indicated the n-type nature of the materials. By using FP-TRMC, the intrapolymer charge-carrier mobility was assessed and compared with the interpolymer mobility obtained by SCLC. The polymers exhibited good electron-accepting properties sufficiently high enough to oxidize the excited states of regioregular poly(3-hexylthiophene) (P3HT (donor)), as evident from the FP-TRMC analysis. The P3 polymer exhibited the highest FP-TRMC transients in the pristine form as well as when blended with P3HT. Use of these polymers as n-type materials in all-polymer organic solar cells was also explored in combination with P3HT. In accordance with the TRMC results, P3 exhibited superior electron-transport and photovoltaic properties to the other two polymers, which is explained by the distribution of the energy levels of the polymers by using DFT calculations. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Phan, T. L.; Tho, P. T.; Tran, N.; Kim, D. H.; Lee, B. W.; Yang, D. S.; Thiet, D. V.; Cho, S. L.
2018-01-01
Brownmillerite Ca2Fe2O5 has been observed to exhibit many outstanding properties that are applicable to ecotechnology. However, very little work on doped Ca2Fe2O5 compounds has been carried out to widen their application scope. We present herein a detailed study of the crystalline/geometric and electronic structures and magnetic and electrical properties of Ca2- x La x Fe2O5 ( x = 0 to 1) prepared by conventional solid-state reaction. X-ray diffraction patterns indicated that the compounds with x = 0 to 0.05 exhibited brownmillerite-type single phase. La doping with higher content ( x ≥ 0.1) stimulated additive formation of Grenier- (LaCa2Fe3O8) and perovskite-type (LaFeO3) phases. Extended x-ray absorption fine structure spectroscopy at the Fe K-edge and electron spin resonance spectroscopy revealed presence of Fe3+ in the parent Ca2Fe2O5 ( x = 0) and both Fe3+ and Fe4+ in the doped compounds ( x ≥ 0.05). The Fe4+ content tended to increase with increasing x. This stimulates ferromagnetic exchange interactions between Fe3+ and Fe4+ ions and directly influences the magnetic properties of Ca2- x La x Fe2O5. Electrical resistivity ( ρ) measurements in the temperature range of T = 20 K to 400 K revealed that all the compounds exhibit insulator behavior; the ρ( T) data for x ≥ 0.1 could be described based on the adiabatic small polaron hopping model.
Carrier transport dynamics in Mn-doped CdSe quantum dot sensitized solar cells
NASA Astrophysics Data System (ADS)
Poudyal, Uma; Maloney, Francis S.; Sapkota, Keshab; Wang, Wenyong
2017-10-01
In this work quantum dot sensitized solar cells (QDSSCs) were fabricated with CdSe and Mn-doped CdSe quantum dots (QDs) using the SILAR method. QDSSCs based on Mn-doped CdSe QDs exhibited improved incident photon-to-electron conversion efficiency. Carrier transport dynamics in the QDSSCs were studied using the intensity modulated photocurrent/photovoltage spectroscopy technique, from which transport and recombination time constants could be derived. Compared to CdSe QDSSCs, Mn-CdSe QDSSCs exhibited shorter transport time constant, longer recombination time constant, longer diffusion length, and higher charge collection efficiency. These observations suggested that Mn doping in CdSe QDs could benefit the performance of solar cells based on such nanostructures.
NASA Astrophysics Data System (ADS)
Li, Xinlin; Selesnick, Richard; Zhao, Hong; Baker, Dan; Jaynes, Allison; Kanekal, Shrikanth; Bern Blake, J.
2017-04-01
Comprehensive measurements of energetic protons (10s of MeV) in the inner belt (L<2) and slot region (2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ge, Shengsong, E-mail: geshengsong@126.com; Yang, Xiaokun; Shao, Qian
A simple hydrothermal process was adopted to self-assembly prepare high infrared reflective antimony trioxide with three-dimensional flower-like microstructures. The morphologies of antimony trioxide microstructures were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM) respectively. It is also found that experimental parameters, such as NaOH concentration, surfactant concentration and volume ratio of ethanol–water played crucial roles in controlling the morphologies of Sb{sub 2}O{sub 3} microstructures. A possible growth mechanism of flower-like Sb{sub 2}O{sub 3} microstructure was proposed based on the experimental data. UV–vis–NIR spectra verified that the near infraredmore » reflectivity of the obtained flower-like microstructures could averagely achieve as 92% with maximum reflectivity of 98%, obviously higher than that of other different morphologies of antimony trioxide microstructures. It is expected that the flower-like Sb{sub 2}O{sub 3} nanostructures have some applications in optical materials and heat insulation coatings. - Graphical abstract: Flower-like Sb{sub 2}O{sub 3} microstructures that composed of nanosheets with thickness of ca. 100 nm exhibit high reflectivity under UV–vis–NIR spectra. Highlights: ► Uniform flower-like microstructures were synthesized via simple hydrothermal reaction. ► The flower-like Sb{sub 2}O{sub 3} microstructures exhibited higher reflectivity than other morphologies under the UV–vis–NIR light. ► Influencing parameters on the Sb{sub 2}O{sub 3} morphologies have been discussed in detail. ► Possible mechanism leading to flower-like microstructures was proposed.« less
NASA Astrophysics Data System (ADS)
Biermann, Horst; Glage, Alexander; Droste, Matthias
2016-01-01
Metastable austenitic steels can exhibit a fatigue-induced martensitic phase transformation during cyclic loading. It is generally agreed that a certain strain amplitude and a threshold of the cumulated plastic strain must be exceeded to trigger martensitic phase transformation under cyclic loading. With respect to monotonic loading, the martensitic phase transformation takes place up to a critical temperature—the so-called M d temperature. The goal of the present investigation is to determine an M d,c temperature which would be the highest temperature at which a fatigue-induced martensitic phase transformation can take place. For this purpose, fatigue tests controlled by the total strain were performed at different temperatures. The material investigated was a high-alloy metastable austenitic steel X3CrMnNi16.7.7 (16.3Cr-7.2Mn-6.6Ni-0.03C-0.09N-1.0Si) produced using the hot pressing technique. The temperatures were set in the range of 283 K (10 °C) ≤ T ≤ 473 K (200 °C). Depending on the temperature and strain amplitude, the onset of the martensitic phase transformation shifted to different values of the cumulated plastic strain, or was inhibited completely. Moreover, it is known that metastable austenitic CrMnNi steels with higher nickel contents can exhibit the deformation-induced twinning effect. Thus, at higher temperatures and strain amplitudes, a transition from the deformation-induced martensitic transformation to deformation-induced twinning takes place. The fatigue-induced martensitic phase transformation was monitored during cyclic loading using a ferrite sensor. The microstructure after the fatigue tests was examined using the back-scattered electrons, the electron channeling contrast imaging and the electron backscatter diffraction techniques to study the temperature-dependent dislocation structures and phase transformations.
Brace, L H; Theis, R F; Krehbiel, J P; Nagy, A F; Donahue, T M; McElroy, M B; Pedersen, A
1979-02-23
Altitude profiles of electron temperature and density in the ionosphere of Venus have been obtained by the Pioneer Venus orbiter electron temperatutre probe. Elevated temperatutres observed at times of low solar wind flux exhibit height profiles that are consistent with a model in which less than 5 percent of the solar wind energy is deposited at the ionopause and is conducted downward through an unmagnetized ionosphere to the region below 200 kilomneters where electron cooling to the neutral atmosphere proceeds rapidly. When solar wind fluxes are higher, the electron temperatures and densities are highly structured and the ionopause moves to lower altitudes. The ionopause height in the late afternoon sector observed thus far varies so widely from day to (day that any height variation with solar zenith angle is not apparent in the observations. In the neighborhood of the ionopause, measuremnents of plasma temperatures and densities and magnetic field strength indicate that an induced magnetic barrier plays an important role in the pressure transfer between the solar wind and the ionosphere. The bow, shock is marked by a distinct increase in electron current collected by the instrument, a featutre that provides a convenient identification of the bow shock location.
Solar cyclic behavior of trapped energetic electrons in Earth's inner radiation belt
NASA Astrophysics Data System (ADS)
Abel, Bob; Thorne, Richard M.
1994-10-01
Magnetic electron spectrometer data from six satellites (OV3-3, OV1-14, OGO 5, S3-2, S3-3, and CRRES) have been used to study long-term (1966-1991) behavior of trapped energetic electrons in the inner radiation belt. Comparison of the observed energy spectra at L equal to or greater than 1.35 for different phases of the solar cycle reveals a clear trend toward enhanced fluxes during periods of solar maximum for energies below a few hundred keV; we suggest that this is caused by an increase in the rate of inward radial diffusion from a source at higher L. In contrast, for L less than 1.30, where atmospheric collisions become increasingly important, the electron flux is reduced during solar maximum; we attribute this to the expected increase in upper atmospheric densities. The electron flux above 1 MeV exhibits a systematic decay beyond 1979 to values well below the current NASA AE-8 model. This indicates that the natural background of high-energy electrons has previously been overestimated due to the long lasting presence of electrons produced by nuclear detonations in the upper atmosphere in the late 1950s and early 1960s.
Solar cyclic behavior of trapped energetic electrons in Earth's inner radiation belt
NASA Technical Reports Server (NTRS)
Abel, Bob; Thorne, Richard M.
1994-01-01
Magnetic electron spectrometer data from six satellites (OV3-3, OV1-14, OGO 5, S3-2, S3-3, and CRRES) have been used to study long-term (1966-1991) behavior of trapped energetic electrons in the inner radiation belt. Comparison of the observed energy spectra at L equal to or greater than 1.35 for different phases of the solar cycle reveals a clear trend toward enhanced fluxes during periods of solar maximum for energies below a few hundred keV; we suggest that this is caused by an increase in the rate of inward radial diffusion from a source at higher L. In contrast, for L less than 1.30, where atmospheric collisions become increasingly important, the electron flux is reduced during solar maximum; we attribute this to the expected increase in upper atmospheric densities. The electron flux above 1 MeV exhibits a systematic decay beyond 1979 to values well below the current NASA AE-8 model. This indicates that the natural background of high-energy electrons has previously been overestimated due to the long lasting presence of electrons produced by nuclear detonations in the upper atmosphere in the late 1950s and early 1960s.
Electron dynamics and prompt ablation of aluminum surface excited by intense femtosecond laser pulse
NASA Astrophysics Data System (ADS)
Ionin, A. A.; Kudryashov, S. I.; Makarov, S. V.; Seleznev, L. V.; Sinitsyn, D. V.
2014-12-01
Thin aluminum film homogeneously heated by intense IR femtosecond laser pulses exhibits on the excitation timescale consequent fluence-dependent rise and drop of the IR-pump self-reflectivity, followed by its final saturation at higher fluences F > 0.3 J/cm2. This prompt optical dynamics correlates with the initial monotonic increase in the accompanying laser-induced electron emission, which is succeeded by its non-linear (three-photon) increase for F > 0.3 J/cm2. The underlying electronic dynamics is related to the initial saturation of IR resonant interband transitions in this material, followed by its strong instantaneous electronic heating via intraband transitions during the pump pulse resulting in thermionic emission. Above the threshold fluence of 0.3 J/cm2, the surface electronic heating is balanced during the pump pulse by simultaneous cooling via intense plasma removal (prompt ablation). The relationship between the deposited volume energy density in the film and its prompt electronic temperature derived from the self-reflection measurements using a Drude model, demonstrates a kind of electron "liquid-vapor" phase transition, driven by strong cubic optical non-linearity of the photo-excited aluminum.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tong Dongge; Han Xue; Chu Wei
Co-B flowers with mesoporous structure were first prepared via reduction of cobalt acetate by potassium borohydride in the presence of complexing agent ethylenediamine. The as-prepared Co-B flowers were characterized by Fourier transform infrared spectroscopy, X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, inductively coupled plasma atomic emission spectroscopy, X-ray photoelectron spectroscopy, N{sub 2} adsorption-desorption, and magnetic performance test. The Co-B flowers exhibited enhanced coercivity, and weakened saturation magnetization and remanet magnetization as compared with the regular Co-B. During the hydrolysis of KBH{sub 4}, the Co-B flowers exhibited higher catalytic activity than the regular Co-B. It is attributed to themore » larger specific surface area and mesoporous channels. During the successive reactions, the conversion of KBH{sub 4} over Co-B flowers was about 97%. The average H{sub 2} generation rate of Co-B flowers was 4620 mL/min/g-catalyst in 1.5 wt% NaOH + 15 wt% KBH{sub 4} solution, which may give a successive H{sub 2} supply for a 748 W polymer electrolyte membrane fuel cell (PEMFC) at 100% H{sub 2} utilization.« less
93-133 GHz Band InP High-Electron-Mobility Transistor Amplifier with Gain-Enhanced Topology
NASA Astrophysics Data System (ADS)
Sato, Masaru; Shiba, Shoichi; Matsumura, Hiroshi; Takahashi, Tsuyoshi; Nakasha, Yasuhiro; Suzuki, Toshihide; Hara, Naoki
2013-04-01
In this study, we developed a new type of high-frequency amplifier topology using 75-nm-gate-length InP-based high-electron-mobility transistors (InP HEMTs). To enhance the gain for a wide frequency range, a common-source common-gate hybrid amplifier topology was proposed. A transformer-based balun placed at the input of the amplifier generates differential signals, which are fed to the gate and source terminals of the transistor. The amplified signal is outputted at the drain node. The simulation results show that the hybrid topology exhibits a higher gain from 90 to 140 GHz than that of the conventional common-source or common-gate amplifier. The two-stage amplifier fabricated using the topology exhibits a small signal gain of 12 dB and a 3-dB bandwidth of 40 GHz (93-133 GHz), which is the largest bandwidth and the second highest gain reported among those of published 120-GHz-band amplifiers. In addition, the measured noise figure was 5 dB from 90 to 100 GHz.
NASA Astrophysics Data System (ADS)
Akiyoshi, Kazutaka; Saito, Koichiro; Tatsuma, Tetsu
2016-10-01
Plasmon-induced charge separation (PICS), in which an energetic electron is injected from a plasmonic nanoparticle (NP) to a semiconductor on contact, is often inhibited by a protecting agent adsorbed on the NP. We addressed this issue for an Ag nanocube-TiO2 system by coating it with a thin Au layer or by inserting the Au layer between the nanocubes (NCs) and TiO2. Both of the electrodes exhibit much higher photocurrents due to PICS than the electrodes without the Au film or the Ag NCs. These photocurrent enhancements can be explained in terms of PICS with accelerated electron transfer, in which electron injection from the Ag NCs or Ag@Au core-shell NCs to TiO2 is promoted by the Au film, or PICS enhanced by a nanoantenna effect, in which the electron injection from the Au film to TiO2 is enhanced by optical near field generated by the Ag NC.
Ultracompliant Heterogeneous Copper-Tin Nanowire Arrays Making a Supersolder.
Gong, Wei; Li, Pengfei; Zhang, Yunheng; Feng, Xuhui; Major, Joshua; DeVoto, Douglas; Paret, Paul; King, Charles; Narumanchi, Sreekant; Shen, Sheng
2018-06-13
Due to the substantial increase in power density, thermal interface resistance that can constitute more than 50% of the total thermal resistance has generally become a bottleneck for thermal management in electronics. However, conventional thermal interface materials (TIMs) such as solder, epoxy, gel, and grease cannot fulfill the requirements of electronics for high-power and long-term operation. Here, we demonstrate a high-performance TIM consisting of a heterogeneous copper-tin nanowire array, which we term "supersolder" to emulate the role of conventional solders in bonding various surfaces. The supersolder is ultracompliant with a shear modulus 2-3 orders of magnitude lower than traditional solders and can reduce the thermal resistance by two times as compared with the state-of-the-art TIMs. This supersolder also exhibits excellent long-term reliability with >1200 thermal cycles over a wide temperature range. By resolving this critical thermal bottleneck, the supersolder enables electronic systems, ranging from microelectronics and portable electronics to massive data centers, to operate at lower temperatures with higher power density and reliability.
High current polarized electron source
NASA Astrophysics Data System (ADS)
Suleiman, R.; Adderley, P.; Grames, J.; Hansknecht, J.; Poelker, M.; Stutzman, M.
2018-05-01
Jefferson Lab operates two DC high voltage GaAs photoguns with compact inverted insulators. One photogun provides the polarized electron beam at the Continuous Electron Beam Accelerator Facility (CEBAF) up to 200 µA. The other gun is used for high average current photocathode lifetime studies at a dedicated test facility up to 4 mA of polarized beam and 10 mA of un-polarized beam. GaAs-based photoguns used at accelerators with extensive user programs must exhibit long photocathode operating lifetime. Achieving this goal represents a significant challenge for proposed facilities that must operate in excess of tens of mA of polarized average current. This contribution describes techniques to maintain good vacuum while delivering high beam currents, and techniques that minimize damage due to ion bombardment, the dominant mechanism that reduces photocathode yield. Advantages of higher DC voltage include reduced space-charge emittance growth and the potential for better photocathode lifetime. Highlights of R&D to improve the performance of polarized electron sources and prolong the lifetime of strained-superlattice GaAs are presented.
Brunanská, Magdaléna; Scholz, Tomás; Ibraheem, Mohammed Hassan
2004-12-01
The fine structure of the mature spermatozoon of the corallobothriine tapeworm Corallobothrium solidum Fritsch, 1886 (Cestoda: Proteocephalidea) from the electric catfish Malapterurus electricus from the Nile River in Egypt was studied by transmission electron microscopy for the first time. The filiform spermatozoon of C. solidum contains two axonemes of unequal length and a typical 9 + "1" trepaxonematan pattern. A single helicoidal crested body (30-200 nm thick) is localized at the anterior extremity of the gamete. The cortical microtubules line the periphery of the cell, largely parallel to the long axis of the spermatozoon and exhibiting signs of twisting at the beginning of region II. The nucleus, in the form of an electron-dense (largely in gametes of testes) and/or fibrous cord (largely in gametes from male reproductive ducts and seminal vesicle), coils in a spiral through the middle part (region III) of the spermatozoon. The cytoplasm contains electron-dense granules in regions II, III and partly in region IV. The cytoplasm of some spermatozoa exhibits an apparently higher electron-density at the end of the nucleated region (III), and continuously toward the middle part of region IV. The anterior and posterior extremities of the spermatozoa have a single axoneme. The ultrastructural features of the mature spermatozoon of C. solidum mostly coincide with those of the spermatozoon of other proteocephalideans, especially the gangesiine Electrotaenia malopteruri parasitizing the same host.
[Laser Raman spectral investigations of the carbon structure of LiFePO4/C cathode material].
Yang, Chao; Li, Yong-Mei; Zhao, Quan-Feng; Gan, Xiang-Kun; Yao, Yao-Chun
2013-10-01
In the present paper, Laser Raman spectral was used to study the carbon structure of LiFePO4/C positive material. The samples were also been characterized by X-ray diffraction (XRD), scanning electron microscope(SEM), selected area electron diffraction (SEAD) and resistivity test. The result indicated that compared with the sp2/sp3 peak area ratios the I(D)/I(G) ratios are not only more evenly but also exhibited some similar rules. However, the studies indicated that there exist differences of I(D)/ I(G) ratios and sp2/sp3 peak area ratios among different points in the same sample. And compared with the samples using citric acid or sucrose as carbon source, the sample which was synthetized with mixed carbon source (mixed by citric acid and sucrose) exhibited higher I(D)/I(G) ratios and sp2/sp3 peak area ratios. Also, by contrast, the differences of I(D)/I(G) ratios and sp2/sp3 peak area ratios among different points in the same sample are less than the single carbon source samples' datas. In the scanning electron microscopy (sem) and transmission electron microscopy (sem) images, we can observed the uneven distributions of carbon coating of the primary particles and the secondary particles, this may be the main reason for not being uniform of difference data in the same sample. The obvious discreteness will affect the normal use of Raman spectroscopy in these tests.
Subramaniam, Chandramouli; Yasuda, Yuzuri; Takeya, Satoshi; Ata, Seisuke; Nishizawa, Ayumi; Futaba, Don; Yamada, Takeo; Hata, Kenji
2014-03-07
Increasing functional complexity and dimensional compactness of electronic devices have led to progressively higher power dissipation, mainly in the form of heat. Overheating of semiconductor-based electronics has been the primary reason for their failure. Such failures originate at the interface of the heat sink (commonly Cu and Al) and the substrate (silicon) due to the large mismatch in thermal expansion coefficients (∼300%) of metals and silicon. Therefore, the effective cooling of such electronics demands a material with both high thermal conductivity and a similar coefficient of thermal expansion (CTE) to silicon. Addressing this demand, we have developed a carbon nanotube-copper (CNT-Cu) composite with high metallic thermal conductivity (395 W m(-1) K(-1)) and a low, silicon-like CTE (5.0 ppm K(-1)). The thermal conductivity was identical to that of Cu (400 W m(-1) K(-1)) and higher than those of most metals (Ti, Al, Au). Importantly, the CTE mismatch between CNT-Cu and silicon was only ∼10%, meaning an excellent compatibility. The seamless integration of CNTs and Cu was achieved through a unique two-stage electrodeposition approach to create an extensive and continuous interface between the Cu and CNTs. This allowed for thermal contributions from both Cu and CNTs, resulting in high thermal conductivity. Simultaneously, the high volume fraction of CNTs balanced the thermal expansion of Cu, accounting for the low CTE of the CNT-Cu composite. The experimental observations were in good quantitative concurrence with the theoretically described 'matrix-bubble' model. Further, we demonstrated identical in-situ thermal strain behaviour of the CNT-Cu composite to Si-based dielectrics, thereby generating the least interfacial thermal strain. This unique combination of properties places CNT-Cu as an isolated spot in an Ashby map of thermal conductivity and CTE. Finally, the CNT-Cu composite exhibited the greatest stability to temperature as indicated by its low thermal distortion parameter (TDP). Thus, this material presents a viable and efficient alternative to existing materials for thermal management in electronics.
Cardenas, Carlos E; Nitsch, Paige L; Kudchadker, Rajat J; Howell, Rebecca M; Kry, Stephen F
2016-07-08
Out-of-field doses from radiotherapy can cause harmful side effects or eventually lead to secondary cancers. Scattered doses outside the applicator field, neutron source strength values, and neutron dose equivalents have not been broadly investigated for high-energy electron beams. To better understand the extent of these exposures, we measured out-of-field dose characteristics of electron applicators for high-energy electron beams on two Varian 21iXs, a Varian TrueBeam, and an Elekta Versa HD operating at various energy levels. Out-of-field dose profiles and percent depth-dose curves were measured in a Wellhofer water phantom using a Farmer ion chamber. Neutron dose was assessed using a combination of moderator buckets and gold activation foils placed on the treatment couch at various locations in the patient plane on both the Varian 21iX and Elekta Versa HD linear accelerators. Our findings showed that out-of-field electron doses were highest for the highest electron energies. These doses typically decreased with increasing distance from the field edge but showed substantial increases over some distance ranges. The Elekta linear accelerator had higher electron out-of-field doses than the Varian units examined, and the Elekta dose profiles exhibited a second dose peak about 20 to 30 cm from central-axis, which was found to be higher than typical out-of-field doses from photon beams. Electron doses decreased sharply with depth before becoming nearly constant; the dose was found to decrease to a depth of approximately E(MeV)/4 in cm. With respect to neutron dosimetry, Q values and neutron dose equivalents increased with electron beam energy. Neutron contamination from electron beams was found to be much lower than that from photon beams. Even though the neutron dose equivalent for electron beams represented a small portion of neutron doses observed under photon beams, neutron doses from electron beams may need to be considered for special cases.
Unique properties of halide perovskites as possible origins of the superior solar cell performance.
Yin, Wan-Jian; Shi, Tingting; Yan, Yanfa
2014-07-16
Halide perovskites solar cells have the potential to exhibit higher energy conversion efficiencies with ultrathin films than conventional thin-film solar cells based on CdTe, CuInSe2 , and Cu2 ZnSnSe4 . The superior solar-cell performance of halide perovskites may originate from its high optical absorption, comparable electron and hole effective mass, and electrically clean defect properties, including point defects and grain boundaries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Large-Amplitude Electrostatic Waves Observed at a Supercritical Interplanetary Shock
NASA Technical Reports Server (NTRS)
Wilson, L. B., III; Cattell, C. A.; Kellogg, P. J.; Goetz, K.; Kersten, K.; Kasper, J. C.; Szabo, A.; Wilber, M.
2010-01-01
We present the first observations at an interplanetary shock of large-amplitude (> 100 mV/m pk-pk) solitary waves and large-amplitude (approx.30 mV/m pk-pk) waves exhibiting characteristics consistent with electron Bernstein waves. The Bernstein-like waves show enhanced power at integer and half-integer harmonics of the cyclotron frequency with a broadened power spectrum at higher frequencies, consistent with the electron cyclotron drift instability. The Bernstein-like waves are obliquely polarized with respect to the magnetic field but parallel to the shock normal direction. Strong particle heating is observed in both the electrons and ions. The observed heating and waveforms are likely due to instabilities driven by the free energy provided by reflected ions at this supercritical interplanetary shock. These results offer new insights into collisionless shock dissipation and wave-particle interactions in the solar wind.
Electron nematic fluid in a strained S r3R u2O7 film
NASA Astrophysics Data System (ADS)
Marshall, Patrick B.; Ahadi, Kaveh; Kim, Honggyu; Stemmer, Susanne
2018-04-01
S r3R u2O7 belongs to the family of layered strontium ruthenates and exhibits a range of unusual emergent properties, such as electron nematic behavior and metamagnetism. Here, we show that epitaxial film strain significantly modifies these phenomena. In particular, we observe enhanced magnetic interactions and an electron nematic phase that extends to much higher temperatures and over a larger magnetic-field range than in bulk single crystals. Furthermore, the films show an unusual anisotropic non-Fermi-liquid behavior that is controlled by the direction of the applied magnetic field. At high magnetic fields, the metamagnetic transition to a ferromagnetic phase recovers isotropic Fermi-liquid behavior. The results support the interpretation that these phenomena are linked to the special features of the Fermi surface, which can be tuned by both film strain and an applied magnetic field.
NASA Astrophysics Data System (ADS)
Xia, Yingdong; Chen, Yonghua; Smith, Gregory M.; Li, Yuan; Huang, Wenxiao; Carroll, David L.
2013-06-01
In this work, the effects of electrode modification by calcium (Ca) on the performance of AC field induced polymer electroluminescence (FIPEL) devices are studied. The FIPEL device with Ca/Al electrode exhibits 550 cd m-2, which is 27.5 times higher than that of the device with only an Al electrode (20 cd m-2). Both holes and electrons are injected from one electrode in our FIPEL device. We found that the electron injection can be significantly enhanced by a Ca modification on the Al electrode without greatly affecting the hole injection. Therefore, the electrons and holes can be effectively recombined in the emissive layer to form more excitons under the AC voltage, leading to effective light emission. The device emitted much brighter light than other AC-based organic EL devices. This result provides an easy and effective way to improve FIPEL performance.
Photo-Nernst current in graphene
NASA Astrophysics Data System (ADS)
Cao, Helin; Aivazian, Grant; Fei, Zaiyao; Ross, Jason; Cobden, David H.; Xu, Xiaodong
2016-03-01
Photocurrent measurements provide a powerful means of studying the spatially resolved optoelectronic and electrical properties of a material or device. Generally speaking there are two classes of mechanism for photocurrent generation: those involving separation of electrons and holes, and thermoelectric effects driven by electron temperature gradients. Here we introduce a new member in the latter class: the photo-Nernst effect. In graphene devices in a perpendicular magnetic field we observe photocurrent generated uniformly along the free edges, with opposite sign at opposite edges. The signal is antisymmetric in field, shows a peak versus gate voltage at the neutrality point flanked by wings of opposite sign at low fields, and exhibits quantum oscillations at higher fields. These features are all explained by the Nernst effect associated with laser-induced electron heating. This `photo-Nernst’ current provides a simple and clear demonstration of the Shockley-Ramo nature of long-range photocurrent generation in a gapless material.
Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2
NASA Astrophysics Data System (ADS)
Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, D. H.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H.
2013-10-01
Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability.
Direct Growth of High Mobility and Low-Noise Lateral MoS2 -Graphene Heterostructure Electronics.
Behranginia, Amirhossein; Yasaei, Poya; Majee, Arnab K; Sangwan, Vinod K; Long, Fei; Foss, Cameron J; Foroozan, Tara; Fuladi, Shadi; Hantehzadeh, Mohammad Reza; Shahbazian-Yassar, Reza; Hersam, Mark C; Aksamija, Zlatan; Salehi-Khojin, Amin
2017-08-01
Reliable fabrication of lateral interfaces between conducting and semiconducting 2D materials is considered a major technological advancement for the next generation of highly packed all-2D electronic circuitry. This study employs seed-free consecutive chemical vapor deposition processes to synthesize high-quality lateral MoS 2 -graphene heterostructures and comprehensively investigated their electronic properties through a combination of various experimental techniques and theoretical modeling. These results show that the MoS 2 -graphene devices exhibit an order of magnitude higher mobility and lower noise metrics compared to conventional MoS 2 -metal devices as a result of energy band rearrangement and smaller Schottky barrier height at the contacts. These findings suggest that MoS 2 -graphene in-plane heterostructures are promising materials for the scale-up of all-2D circuitry with superlative electrical performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution.
Faber, Hendrik; Das, Satyajit; Lin, Yen-Hung; Pliatsikas, Nikos; Zhao, Kui; Kehagias, Thomas; Dimitrakopulos, George; Amassian, Aram; Patsalas, Panos A; Anthopoulos, Thomas D
2017-03-01
Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In 2 O 3 /ZnO heterojunction. We find that In 2 O 3 /ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In 2 O 3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In 2 O 3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications.
Heterojunction oxide thin-film transistors with unprecedented electron mobility grown from solution
Faber, Hendrik; Das, Satyajit; Lin, Yen-Hung; Pliatsikas, Nikos; Zhao, Kui; Kehagias, Thomas; Dimitrakopulos, George; Amassian, Aram; Patsalas, Panos A.; Anthopoulos, Thomas D.
2017-01-01
Thin-film transistors made of solution-processed metal oxide semiconductors hold great promise for application in the emerging sector of large-area electronics. However, further advancement of the technology is hindered by limitations associated with the extrinsic electron transport properties of the often defect-prone oxides. We overcome this limitation by replacing the single-layer semiconductor channel with a low-dimensional, solution-grown In2O3/ZnO heterojunction. We find that In2O3/ZnO transistors exhibit band-like electron transport, with mobility values significantly higher than single-layer In2O3 and ZnO devices by a factor of 2 to 100. This marked improvement is shown to originate from the presence of free electrons confined on the plane of the atomically sharp heterointerface induced by the large conduction band offset between In2O3 and ZnO. Our finding underscores engineering of solution-grown metal oxide heterointerfaces as an alternative strategy to thin-film transistor development and has the potential for widespread technological applications. PMID:28435867
Finite-T correlations and free exchange-correlation energy of quasi-one-dimensional electron gas
NASA Astrophysics Data System (ADS)
Garg, Vinayak; Sharma, Akariti; Moudgil, R. K.
2018-02-01
We have studied the effect of temperature on static density-density correlations and plasmon excitation spectrum of quasi-one-dimensional electron gas (Q1DEG) using the random phase approximation (RPA). Numerical results for static structure factor, pair-correlation function, static density susceptibility, free exchange-correlation energy and plasmon dispersion are presented over a wide range of temperature and electron density. As an interesting result, we find that the short-range correlations exhibit a non-monotonic dependence on temperature T, initially growing stronger (i.e. the pair-correlation function at small inter-electron spacing assuming relatively smaller values) with increasing T and then weakening above a critical T. The cross-over temperature is found to increase with increasing coupling among electrons. Also, the q = 2kF peak in the static density susceptibility χ(q,ω = 0,T) at T = 0 K smears out with rising T. The free exchange-correlation energy and plasmon dispersion show a significant variation with T, and the trend is qualitatively the same as in higher dimensions.
Kinetics of ion and prompt electron emission from laser-produced plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Farid, N.; Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, School of Physics and Optical Engineering, Dalian University of Technology, Dalian; Harilal, S. S.
2013-07-15
We investigated ion emission dynamics of laser-produced plasma from several elements, comprised of metals and non-metals (C, Al, Si, Cu, Mo, Ta, W), under vacuum conditions using a Faraday cup. The estimated ion flux for various targets studied showed a decreasing tendency with increasing atomic mass. For metals, the ion flux is found to be a function of sublimation energy. A comparison of temporal ion profiles of various materials showed only high-Z elements exhibited multiple structures in the ion time of flight profile indicated by the observation of higher peak kinetic energies, which were absent for low-Z element targets. Themore » slower ions were seen regardless of the atomic number of target material propagated with a kinetic energy of 1–5 keV, while the fast ions observed in high-Z materials possessed significantly higher energies. A systematic study of plasma properties employing fast photography, time, and space resolved optical emission spectroscopy, and electron analysis showed that there existed different mechanisms for generating ions in laser ablation plumes. The origin of high kinetic energy ions is related to prompt electron emission from high-Z targets.« less
Influence of native defects on structural and electronic properties of magnesium silicide
NASA Astrophysics Data System (ADS)
Hirayama, Naomi; Iida, Tsutomu; Nishio, Keishi; Kogo, Yasuo; Takarabe, Kenji; Hamada, Noriaki
2017-05-01
The narrow-gap semiconductor magnesium silicide (Mg2Si) is a promising candidate for mid-temperature (500-800 K) thermoelectric applications. Mg2Si exhibits intrinsic n-type conductivity because of its interstitial Mg defects and is generally doped with n-type dopants; however, the synthesis of p-type Mg2Si has proven difficult. In the present study, we examined several types of defects, such as vacancies and the insertion of constituent atoms (Mg and Si) into crystals, to elucidate their stability in Mg2Si and their influence on its electronic states. A first-principles calculation has revealed that the insertion of Mg into a cell is the most stable and causes n-type conductivity in terms of formation energy. In contrast, the vacancy of Mg produces hole doping although its formation energy per conventional unit cell is approximately 0.07 eV higher than that of the insertion of Mg, at their concentration of 1.04 at. %. Furthermore, the insertion and vacancy of Si atoms generate electrons with higher formation energies compared to the Mg-related defects. As these defects alter the carrier concentration, they can compensate for intentional doping because of the added impurity atoms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prakash, Nisha, E-mail: prakasnisha@gmail.com; Barvat, Arun; Anand, Kritika
2016-05-23
The surface roughness and defect density of GaN epitaxial layers grown on c-plane sapphire substrate are investigated and found to be dependent on nitridation temperature. GaN epitaxial layers grown after nitridation of sapphire at 200°C have a higher defect density and higher surface roughness compared to the GaN layers grown at 646°C nitridation as confirmed by atomic force microscopy (AFM). The persistent photoconductivity (PPC) was observed in both samples and it was found to be decreasing with decreasing temperature in the range 150-300°C due to long carrier lifetime and high electron mobility at low temperature. The photoresponse of the GaNmore » films grown in this study exhibit improved PPC due to their better surface morphology at 646°C nitrided sample. The point defects or extended microstructure defects limits the photocarrier lifetime and electron mobility at 200°C nitrided sample.« less
Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission.
Pan, Zhigang; Zhang, Yong; Cheng, Zhenzhen; Tong, Jiaming; Chen, Qiyu; Zhang, Jianpeng; Zhang, Jiaxiang; Li, Xin; Li, Yunjia
2017-02-27
The existing temperature sensors using carbon nanotubes (CNTs) are limited by low sensitivity, complicated processes, or dependence on microscopy to observe the experimental results. Here we report the fabrication and successful testing of an ionization temperature sensor featuring non-self-sustaining discharge. The sharp tips of nanotubes generate high electric fields at relatively low voltages, lowering the work function of electrons emitted by CNTs, and thereby enabling the safe operation of such sensors. Due to the temperature effect on the electron emission of CNTs, the collecting current exhibited an exponential increase with temperature rising from 20 °C to 100 °C. Additionally, a higher temperature coefficient of 0.04 K -1 was obtained at 24 V voltage applied on the extracting electrode, higher than the values of other reported CNT-based temperature sensors. The triple-electrode ionization temperature sensor is easy to fabricate and converts the temperature change directly into an electrical signal. It shows a high temperature coefficient and good application potential.
Sensing Properties of a Novel Temperature Sensor Based on Field Assisted Thermal Emission
Pan, Zhigang; Zhang, Yong; Cheng, Zhenzhen; Tong, Jiaming; Chen, Qiyu; Zhang, Jianpeng; Zhang, Jiaxiang; Li, Xin; Li, Yunjia
2017-01-01
The existing temperature sensors using carbon nanotubes (CNTs) are limited by low sensitivity, complicated processes, or dependence on microscopy to observe the experimental results. Here we report the fabrication and successful testing of an ionization temperature sensor featuring non-self-sustaining discharge. The sharp tips of nanotubes generate high electric fields at relatively low voltages, lowering the work function of electrons emitted by CNTs, and thereby enabling the safe operation of such sensors. Due to the temperature effect on the electron emission of CNTs, the collecting current exhibited an exponential increase with temperature rising from 20 °C to 100 °C. Additionally, a higher temperature coefficient of 0.04 K−1 was obtained at 24 V voltage applied on the extracting electrode, higher than the values of other reported CNT-based temperature sensors. The triple-electrode ionization temperature sensor is easy to fabricate and converts the temperature change directly into an electrical signal. It shows a high temperature coefficient and good application potential. PMID:28264427
NASA Astrophysics Data System (ADS)
Zhu, Kairuo; Lu, Songhua; Gao, Yang; Zhang, Rui; Tan, Xiaoli; Chen, Changlun
2017-02-01
Novel hierarchical core/shell structured polydopamine@MgAl-layered double hydroxides (PDA@MgAl-LDHs) composites involving MgAl-layered double hydroxide shells and PDA cores were fabricated thought one-pot coprecipitation assembly and methodically characterized by X-ray diffraction, Fourier transformed infrared spectroscopy, scanning/transmission electron microscopy, selected area electron diffraction, elemental mapping, thermogravimetric analysis and X-ray photoelectron spectroscopy technologies. U(VI) and Eu(III) sorption experiments showed that the PDA@MgAl-LDHs exhibited higher sorption ability with a maximum sorption capacity of 142.86 and 76.02 mg/g at 298 K and pH 4.5, respectively. More importantly, according to XPS analyses, U(VI) and Eu(III) were sorbed on PDA@MgAl-LDHs via oxygen-containing functional groups, and the chemical affinity of U(VI) by oxygen-containing functional groups is higher than that of Eu(III). These observations show great expectations in the enrichment of radionuclides from aquatic environments by PDA@MgAl-LDHs.
Sidhik, Siraj; Cerdan Pasarán, Andrea; Esparza, Diego; López Luke, Tzarara; Carriles, Ramón; De la Rosa, Elder
2018-01-31
We for the first time report the incorporation of cobalt into a mesoporous TiO 2 electrode for application in perovskite solar cells (PSCs). The Co-doped PSC exhibits excellent optoelectronic properties; we explain the improvements by passivation of electronic trap or sub-band-gap states arising due to the oxygen vacancies in pristine TiO 2 , enabling faster electron transport and collection. A simple postannealing treatment is used to prepare the cobalt-doped mesoporous electrode; UV-visible spectroscopy, X-ray photoemission spectroscopy, space charge-limited current, photoluminescence, and electrochemical impedance measurements confirm the incorporation of cobalt, enhanced conductivity, and the passivation effect induced in the TiO 2 . An optimized doping concentration of 0.3 mol % results in the maximum power conversion efficiency of 18.16%, 21.7% higher than that of a similar cell with an undoped TiO 2 electrode. Also, the device shows negligible hysteresis and higher stability, retaining 80.54% of the initial efficiency after 200 h.
Morphological impact of zinc oxide layers on the device performance in thin-film transistors.
Faber, Hendrik; Klaumünzer, Martin; Voigt, Michael; Galli, Diana; Vieweg, Benito F; Peukert, Wolfgang; Spiecker, Erdmann; Halik, Marcus
2011-03-01
Zinc oxide thin-films are prepared either by spin coating of an ethanolic dispersion of nanoparticles (NP, diameter 5 nm) or by spray pyrolysis of a zinc acetate dihydrate precursor. High-resolution electron microscopy studies reveal a monolayer of particles for the low temperature spin coating approach and larger crystalline domains of more than 30 nm for the spray pyrolysis technique. Thin-film transistor devices (TFTs) based on spray pyrolysis films exhibit higher electron mobilities of up to 24 cm2 V(-1) s(-1) compared to 0.6 cm2 V(-1) s(-1) for NP based TFTs. These observations were dedicated to a reduced number of grain boundaries within the transistor channel.
Kim, Eun-Ju; Jeong, Yong-Hoon; Choe, Han-Cheol
2013-03-01
In this study, surface phenomena of hydroxyapatite (HA) film on the nanopore formed Ti-29Nb-xZr alloy by anodization for bioimplants have been investigated by electron beam physical vapor deposition (EB-PVD), field emission scanning electron microscope (FE-SEM), X-ray diffractometer (XRD), potentiostat and contact angle. The microstructure of Ti-29Nb-xZr alloys exhibited equiaxed structure and alpha" phase decreased, whereas beta phase increased as Zr content increased. The increment of Zr contents in HA coated nanotubular Ti-29Nb-xZr alloys showed good corrosion potential in 0.9% NaCI solution. The wettability of HA coated nanotubular surface was higher than that of non-coated samples.
Fluorescence and afterglow of Ca2Sn2Al2O9:Mn2+
NASA Astrophysics Data System (ADS)
Takemoto, Minoru; Iseki, Takahiro
2018-03-01
By using a polymerized complex method, we synthesized manganese (Mn)-doped Ca2Sn2Al2O9, which exhibits yellow fluorescence and afterglow at room temperature when excited by UV radiation. The material emits a broad, featureless fluorescence band centered at 564 nm, which we attribute to the presence of Mn2+ ions. The afterglow decay is well fit by a power-law function, rather than an exponential function. In addition, thermoluminescence analyses demonstrate that two different types of electron traps form in this material. Based on experimental results, we conclude that the fluorescence and afterglow both result from thermally assisted tunneling, in which trapped electrons are thermally excited to higher-level traps and subsequently tunnel to recombination centers.
NASA Astrophysics Data System (ADS)
Bartoníček, B.; Plaček, V.; Hnát, V.
2007-05-01
The radiation degradation behavior of commercial low density polyethylene (LDPE) and ethylene-vinylacetate (EVA) cable materials has been investigated. The changes of mechanical properties, thermooxidative stability and density exhibit different radiation stability towards 60Co-gamma radiation and 160 keV electron beam radiation. This difference reflects much higher penetration of the gamma radiation through the polymeric material as a function of sample thickness. These results are discussed with respect to the role of beta radiation during design basis events in a nuclear power plants. In case when total accidental design basis event (DBE) dose (involving about 80% soft beta radiation) is simulated by 60Co-gamma radiation the conservatism is reached.
Metal sulfide electrodes and energy storage devices thereof
Chiang, Yet-Ming; Woodford, William Henry; Li, Zheng; Carter, W. Craig
2017-02-28
The present invention generally relates to energy storage devices, and to metal sulfide energy storage devices in particular. Some aspects of the invention relate to energy storage devices comprising at least one flowable electrode, wherein the flowable electrode comprises an electroactive metal sulfide material suspended and/or dissolved in a carrier fluid. In some embodiments, the flowable electrode further comprises a plurality of electronically conductive particles suspended and/or dissolved in the carrier fluid, wherein the electronically conductive particles form a percolating conductive network. An energy storage device comprising a flowable electrode comprising a metal sulfide electroactive material and a percolating conductive network may advantageously exhibit, upon reversible cycling, higher energy densities and specific capacities than conventional energy storage devices.
Interface states and internal photoemission in p-type GaAs metal-oxide-semiconductor surfaces
NASA Technical Reports Server (NTRS)
Kashkarov, P. K.; Kazior, T. E.; Lagowski, J.; Gatos, H. C.
1983-01-01
An interface photodischarge study of p-type GaAs metal-oxide-semiconductor (MOS) structures revealed the presence of deep interface states and shallow donors and acceptors which were previously observed in n-type GaAs MOS through sub-band-gap photoionization transitions. For higher photon energies, internal photoemission was observed, i.e., injection of electrons to the conduction band of the oxide from either the metal (Au) or from the GaAs valence band; the threshold energies were found to be 3.25 and 3.7 + or - 0.1 eV, respectively. The measured photoemission current exhibited a thermal activation energy of about 0.06 eV, which is consistent with a hopping mechanism of electron transport in the oxide.
Dong, Xiaochen; Huang, Wei; Chen, Peng
2011-12-01
In this study, an in situ chemical synthesis approach has been developed to prepare graphene-Au nanocomposites from chemically reduced graphene oxide (rGO) in aqueous media. UV-Vis absorption, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy were used to demonstrate the successful attachment of Au nanoparticles to graphene sheets. Configured as field-effect transistors (FETs), the as-synthesized single-layered rGO-Au nanocomposites exhibit higher hole mobility and conductance when compared to the rGO sheets, promising its applications in nanoelectronics. Furthermore, we demonstrate that the rGO-Au FETs are able to label-freely detect DNA hybridization with high sensitivity, indicating its potentials in nanoelectronic biosensing.
2011-01-01
In this study, an in situ chemical synthesis approach has been developed to prepare graphene–Au nanocomposites from chemically reduced graphene oxide (rGO) in aqueous media. UV–Vis absorption, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, and Raman spectroscopy were used to demonstrate the successful attachment of Au nanoparticles to graphene sheets. Configured as field-effect transistors (FETs), the as-synthesized single-layered rGO-Au nanocomposites exhibit higher hole mobility and conductance when compared to the rGO sheets, promising its applications in nanoelectronics. Furthermore, we demonstrate that the rGO-Au FETs are able to label-freely detect DNA hybridization with high sensitivity, indicating its potentials in nanoelectronic biosensing. PMID:27502682
Photo-modulation of the spin Hall conductivity of mono-layer transition metal dichalcogenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Parijat; Bellotti, Enrico
2016-05-23
We report on a possible optical tuning of the spin Hall conductivity in mono-layer transition metal dichalcogenides. Light beams of frequencies much higher than the energy scale of the system (the off-resonant condition) do not excite electrons but rearrange the band structure. The rearrangement is quantitatively established using the Floquet formalism. For such a system of mono-layer transition metal dichalcogenides, the spin Hall conductivity (calculated with the Kubo expression in presence of disorder) exhibits a drop at higher frequencies and lower intensities. Finally, we compare the spin Hall conductivity of the higher spin-orbit coupled WSe{sub 2} to MoS{sub 2}; themore » spin Hall conductivity of WSe{sub 2} was found to be larger.« less
Husari, Ahmad; Shihadeh, Alan; Talih, Soha; Hashem, Yasmine
2016-01-01
Abstract Background: Smoking electronic cigarettes (ECIG) is promoted as a safer alternative to smoking combustible cigarettes. This study investigates the effects of ECIG aerosol and cigarette smoke (CS) in an animal model and in human alveolar cell cultures (A549). Methods: Mice were divided into Control, ECIG, and CS. Animals were exposed for 6h/d to either lab air, ECIG or CS, for of 3 days. Total particulate matter exposure for the ECIG was set at higher levels compared to CS. Lung injury was determined by: (1) measurement of wet-to-dry ratio; (2) albumin concentration in the bronchoalveolar lavage fluid; (3) transcriptional expression of inflammatory mediators IL-1β, IL-6, TNF-α; (4) oxidative stress; (5) assessment of cell death; and (6) lung histopathology. Human alveolar cell cultures were treated with various concentrations of ECIG and CS aerosol extracts and the effects on cell proliferation were evaluated. Results: Wet-to-dry ratio was higher in CS when compared to ECIG. Albumin leak in bronchoalveolar lavage fluid was evident in CS but not in ECIG. ECIG exposure was only associated with a significant increase in IL-1β. In contrast, CS exposure resulted in significant increases in IL-1β, IL-6, TNF-α expression, and oxidative stress. TUNEL staining demonstrated significant cell death in CS but not in ECIG. At the cellular level, ECIG and CS extracts reduced cell proliferation, however, CS exhibited effects at lower concentrations. Conclusion: Despite higher exposure conditions, ECIG exhibited less toxic effects on lungs of experimental animals and on A549 cell cultures when compared to CS. PMID:26272212
Husari, Ahmad; Shihadeh, Alan; Talih, Soha; Hashem, Yasmine; El Sabban, Marwan; Zaatari, Ghazi
2016-05-01
Smoking electronic cigarettes (ECIG) is promoted as a safer alternative to smoking combustible cigarettes. This study investigates the effects of ECIG aerosol and cigarette smoke (CS) in an animal model and in human alveolar cell cultures (A549). Mice were divided into Control, ECIG, and CS. Animals were exposed for 6h/d to either lab air, ECIG or CS, for of 3 days. Total particulate matter exposure for the ECIG was set at higher levels compared to CS. Lung injury was determined by: (1) measurement of wet-to-dry ratio; (2) albumin concentration in the bronchoalveolar lavage fluid; (3) transcriptional expression of inflammatory mediators IL-1β, IL-6, TNF-α; (4) oxidative stress; (5) assessment of cell death; and (6) lung histopathology. Human alveolar cell cultures were treated with various concentrations of ECIG and CS aerosol extracts and the effects on cell proliferation were evaluated. Wet-to-dry ratio was higher in CS when compared to ECIG. Albumin leak in bronchoalveolar lavage fluid was evident in CS but not in ECIG. ECIG exposure was only associated with a significant increase in IL-1β. In contrast, CS exposure resulted in significant increases in IL-1β, IL-6, TNF-α expression, and oxidative stress. TUNEL staining demonstrated significant cell death in CS but not in ECIG. At the cellular level, ECIG and CS extracts reduced cell proliferation, however, CS exhibited effects at lower concentrations. Despite higher exposure conditions, ECIG exhibited less toxic effects on lungs of experimental animals and on A549 cell cultures when compared to CS. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Welding Thermal Simulation and Corrosion Study of X-70 Deep Sea Pipeline Steel
NASA Astrophysics Data System (ADS)
Zhang, Weipeng; Li, Zhuoran; Gao, Jixiang; Peng, Zhengwu
2017-12-01
Gleeble thermomechanical processing machine was used to simulate coarse grain heat affected zone (CGHAZ) of API X-70 thick wall pipeline steel used in deep sea. Microstructures and corresponding corrosion behavior of the simulated CGHAZs using different cooling rate were investigated and compared to the as-received material by scanning electron microscope and electrochemical experiments carried out in 3.5 wt. % NaCl solution. Results of this study show that the as-received samples exhibited a little bit higher corrosion resistance than the simulated CGHAZs. Among 3 sets of simulation experiments, the maximum corrosion tendency was exhibited at the t8/5 = 20 s with the most martensite-austensite (M-A) microstructure and highest corrosion potential was shown at the t8/5 = 60 s.
3D polypyrrole structures as a sensing material for glucose detection
NASA Astrophysics Data System (ADS)
Cysewska, Karolina; Szymańska, Magdalena; Jasiński, Piotr
2016-11-01
In this work, 3D polypyrrole (PPy) structures as material for glucose detection is proposed. Polypyrrole was electrochemically polymerized on platinum screen-printed electrode from an aqueous solution of lithium perchlorate and pyrrole. The growth mechanism of such PPy structures was studied by ex-situ scanning electron microscopy. Preliminary studies show that studied here PPy film is a good candidate as a sensing material for glucose biosensor. It exhibits very high sensitivity (28.5 mA·mM-1·cm-2) and can work without any additional dopants, mediators or enzymes. It was also shown that glucose detection depends on the PPy morphology. The same PPy material was immobilized with the glucose oxidase enzyme. Such material exhibited higher signal response, however it lost its stability very fast.
Sampaio, Paula Costa Pinheiro; Kruly, Paula de Castro; Ribeiro, Clara Cabral; Hilgert, Leandro Augusto; Pereira, Patrícia Nóbrega Rodrigues; Scaffa, Polliana Mendes Candia; Di Hipólito, Vinicius; D'Alpino, Paulo Henrique Perlatti; Garcia, Fernanda Cristina Pimentel
2017-11-01
The purpose of this in vitro study was to evaluate the bonding ability and monomer conversion of a universal adhesive system applied to dentin as functions of different curing times and storage. The results were compared among a variety of commercial adhesives. Flat superficial dentin surfaces were exposed on human molars and assigned into one of the following adhesives (n = 15): total-etch Adper Single Bond 2 (SB) and Optibond Solo Plus (OS), self-etch Optibond All in One (OA) and Clearfil SE Bond (CSE), and Scotchbond Universal Adhesive in self-etch mode (SU). The adhesives were applied following the manufacturers' instructions and cured for 10, 20, or 40s. Specimens were processed for the microtensile bond strength (µTBS) test in accordance with the non-trimming technique and tested after 24h and 2 years. The fractured specimens were classified under scanning electron microscopy (SEM). Infrared (IR) spectra were obtained and monomer conversion (%) was calculated by comparing the aliphatic-to-aromatic IR absorption peak ratio before and after polymerization (n=5). Data were analyzed by 2-way ANOVA/Tukey's tests (α = 0.05). At 24-h evaluation, OA and CSE presented similar bond strength means irrespective of the curing time, whereas SB and SU exhibited significantly higher means when cured for 40s as did OS when cured for 20 or 40s (p < 0.05). At 2-year evaluation, only OA exhibited significantly higher bond strength when cured for 20 and 40s (p < 0.05). When the evaluation times were compared, OA also exhibited the same bonding ability when cured for longer periods of time (20 and 40s). All of the adhesives tested exhibited significantly lower monomer conversion when photoactivated according to the manufacturers' instructions (10s). Higher monomer conversions obtained with longer light exposure allow only higher immediate bond strength for most of the adhesives tested. After 2-year storage, only the self-etching adhesive Optibond All-In-One exhibited the same bonding ability when cured for longer periods of time. Copyright © 2017 Elsevier Ltd. All rights reserved.
A single-station empirical model for TEC over the Antarctic Peninsula using GPS-TEC data
NASA Astrophysics Data System (ADS)
Feng, Jiandi; Wang, Zhengtao; Jiang, Weiping; Zhao, Zhenzhen; Zhang, Bingbing
2017-02-01
Compared with regional or global total electron content (TEC) empirical models, single-station TEC empirical models may exhibit higher accuracy in describing TEC spatial and temporal variations for a single station. In this paper, a new single-station empirical total electron content (TEC) model, called SSM-month, for the O'Higgins Station in the Antarctic Peninsula is proposed by using Global Positioning System (GPS)-TEC data from 01 January 2004 to 30 June 2015. The diurnal variation of TEC in the O'Higgins Station may have changing features in different months, sometimes even in opposite forms, because of ionospheric phenomena, such as the Mid-latitude Summer Nighttime Anomaly (MSNA). To avoid the influence of different diurnal variations, the concept of monthly modeling is proposed in this study. The SSM-month model, which is established by month (including 12 submodels that correspond to the 12 months), can effectively describe the diurnal variation of TEC in different months. Each submodel of the SSM-month model exhibits good agreement with GPS-TEC input data. Overall, the SSM-month model fits the input data with a bias of 0.03 TECU (total electron content unit, 1 TECU = 1016 el m-2) and a standard deviation of 2.78 TECU. This model, which benefits from the modeling method, can effectively describe the MSNA phenomenon without implementing any modeling correction. TEC data derived from Center for Orbit Determination in Europe global ionosphere maps (CODE GIMs), International Reference Ionosphere 2012 (IRI2012), and NeQuick are compared with the SSM-month model in the years of 2001 and 2015-2016. Result shows that the SSM-month model exhibits good consistency with CODE GIMs, which is better than that of IRI2012 and NeQuick, in the O'Higgins Station on the test days.
Lyu, Lai; Yan, Dengbiao; Yu, Guangfei; Cao, Wenrui; Hu, Chun
2018-04-03
Carbon nitride compounds (CN) complexed with the in-situ-produced Cu(II) on the surface of CuAlO 2 substrate (CN-Cu(II)-CuAlO 2 ) is prepared via a surface growth process for the first time and exhibits exceptionally high activity and efficiency for the degradation of the refractory pollutants in water through a Fenton-like process in a wide pH range. The reaction rate for bisphenol A removal is ∼25 times higher than that of the CuAlO 2 . According to the characterization, Cu(II) generation on the surface of CuAlO 2 during the surface growth process results in the marked decrease of the surface oxygen vacancies and the formation of the C-O-Cu bridges between CN and Cu(II)-CuAlO 2 in the catalyst. The electron paramagnetic resonance (EPR) analysis and density functional theory (DFT) calculations demonstrate that the dual reaction centers are produced around the Cu and C sites due to the cation-π interactions through the C-O-Cu bridges in CN-Cu(II)-CuAlO 2 . During the Fenton-like reactions, the electron-rich center around Cu is responsible for the efficient reduction of H 2 O 2 to • OH, and the electron-poor center around C captures electrons from H 2 O 2 or pollutants and diverts them to the electron-rich area via the C-O-Cu bridge. Thus, the catalyst exhibits excellent catalytic performance for the refractory pollutant degradation. This study can deepen our understanding on the enhanced Fenton reactivity for water purification through functionalizing with organic solid-phase ligands on the catalyst surface.
NASA Astrophysics Data System (ADS)
Itoh, Eiji; Kanamori, Akira
2016-04-01
In this study, we developed multilayer deposition and patterning processes that can be used to fabricate all-printed, organic field-effect transistors (OFETs) on the basis of vacuum-free, solution-processable soft-lithography techniques. We have used regioregular poly(3-hexylthiophene) (P3HT) as a soluble p-type polymer semiconductor and (6,6)-phenyl C61 butyric acid methyl ester (PCBM) as a soluble n-type semiconductor, and cross-linked poly(vinyl phenol) (CL-PVP) as a low-temperature (<150 °C)-curable soluble polymer gate insulator. We have compared the electrical properties of OFETs with multiwalled carbon nanotubes (MWCNTs), silver nanoparticles (NPs), and their composites (or multilayers) as printed source-drain (S-D) electrodes in order to fabricate vacuum-free, all-printed OFETs. The P3HT-OFETs with MWCNT S-D electrodes exhibited higher hole mobility and on/off ratios than the devices with Ag NP S-D electrodes owing to better contact at the MWCNT/P3HT interface. On the other hand, Ag/molybdenum oxide (MoO3) S-D electrodes considerably enhanced the hole injection and caused the reduction in the on/off ratio and the difficulty in turning off the devices. The PCBM-OFETs with MWCNT S-D electrodes also exhibited higher electron mobility that is almost comparable to that of P3HT-OFETs and lower threshold voltage, which was considered to be due to the enhanced electron injection at the electrode interface.
Lee, Seung-Heon; Lu, Jian; Lee, Seung-Jun; Han, Jae-Hyun; Jeong, Chan-Uk; Lee, Seung-Chul; Li, Xian; Jazbinšek, Mojca; Yoon, Woojin; Yun, Hoseop; Kang, Bong Joo; Rotermund, Fabian; Nelson, Keith A; Kwon, O-Pil
2017-08-01
Highly efficient nonlinear optical organic crystals are very attractive for various photonic applications including terahertz (THz) wave generation. Up to now, only two classes of ionic crystals based on either pyridinium or quinolinium with extremely large macroscopic optical nonlinearity have been developed. This study reports on a new class of organic nonlinear optical crystals introducing electron-accepting benzothiazolium, which exhibit higher electron-withdrawing strength than pyridinium and quinolinium in benchmark crystals. The benzothiazolium crystals consisting of new acentric core HMB (2-(4-hydroxy-3-methoxystyryl)-3-methylbenzo[d]thiazol-3-ium) exhibit extremely large macroscopic optical nonlinearity with optimal molecular ordering for maximizing the diagonal second-order nonlinearity. HMB-based single crystals prepared by simple cleaving method satisfy all required crystal characteristics for intense THz wave generation such as large crystal size with parallel surfaces, moderate thickness and high optical quality with large optical transparency range (580-1620 nm). Optical rectification of 35 fs pulses at the technologically very important wavelength of 800 nm in 0.26 mm thick HMB crystal leads to one order of magnitude higher THz wave generation efficiency with remarkably broader bandwidth compared to standard inorganic 0.5 mm thick ZnTe crystal. Therefore, newly developed HMB crystals introducing benzothiazolium with extremely large macroscopic optical nonlinearity are very promising materials for intense broadband THz wave generation and other nonlinear optical applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zeng, Lingkun
We performed an angle-resolved photoemission spectroscopy (ARPES) study of the CaFe2(As0.935P0.065)2 in the collapse tetragonal(CT) phase and uncollapse tetragonal(UCT) phase. We find in the CT phase the electronic correlation dramatically reduces respective to UCT phase. Meanwhile, the reduction of correlation in CT phase show an orbital selective effect: correlation in dxy reduces the most, and then dxz/yz, while the one in dz2-r2 almost keeps the same. In CT phase, almost all bands sink downwards to higher binding energy, leading to the hole like bands around Brillouin zone(BZ) center sink below EF compared with UCT phase. However, the electron pocket around Brillouin Zone(BZ) corner(M) in UCT phase, forms a hole pocket around BZ center(Z point) in CT phase. Moreover, the dxy exhibits larger movement down to higher binding energy, resulting in farther away from dyz/xz and closer to dxy.We propose the electron filling ,namely high spin state in UCT phase to low spin state in CT phase(due to competing between crystal structure field and Hund's coupling), other than the Fermi surface nesting might be responsible for the absent of magnetic ordering.
Single crystals of the 96 K superconductor (Hg,Cu)Ba2CuO4+δ: Growth, structure and magnetism
NASA Astrophysics Data System (ADS)
Pelloquin, D.; Hardy, V.; Maignan, A.; Raveau, B.
1997-02-01
Single crystals of the 1201 (n = 1) (Hg,Cu)Ba2CuO4+δ mercury based cuprate have been grown by using a simple process without dry box. The as-synthesized crystals exhibit constant Tc(onset) of 96 K with sharp superconducting transitions. The electron microscopy coupled with EDX analyses evidence a ``1201''-type structure while a mercury deficiency is observed balanced by an excess of copper. The structural refinements based on single-crystal X-ray diffraction data confirm the electron deficiency on the Hg site (0,0,0) and show a splitting of the latter along the c axis correlated to the partial substitution of Cu for Hg. This structural study leads to the following formula Hg0.84Cu0.16Ba2CuO4.19. The magnetic study of a large crystal (1.1 × 0.38 × 0.065 mm3) shows that the (Hg,Cu)-1201 crystals exhibit an irreversibility line higher than that of the 1201 Hg0.8Bi0.2Ba2CuO4+δ crystal (Tc = 75 K). From the reversible magnetization, a λab(0) = 2470 Å value can be extrapolated. Using a 3D-2D decoupling formula, we obtain γ = 29 for the electronic anisotropy of this phase.
Bharath, G; Anwer, Shoaib; Mangalaraja, R V; Alhseinat, Emad; Banat, Fawzi; Ponpandian, N
2018-04-09
In this present study, we report the synthesis of Au nanodots on α-Fe 2 O 3 @reduced graphene oxide (RGO) based hetero-photocatalytic nanohybrids through a chlorophyll mediated photochemical synthesis. In this process, chlorophyll induces a rapid reduction (30 min) of Au 3+ ions to Au° metallic nanodots on α-Fe 2 O 3 @RGO surface under sunlight irradiation. The nucleation growth process, photo-induced electron-transfer mechanism and physico-chemical properties of the Au@α-Fe 2 O 3 @RGO ternary nanocomposites were systematically studied with various analytical techniques. This novel photochemical synthesis process is a cost-effective, convenient, surfactant-less, and scalable method. Moreover, the prepared ternary nanocomposites enhanced catalytic activity as compared to pure α-Fe 2 O 3 and α-Fe 2 O 3 @RGO. The advantages and synergistic effect of Au@α-Fe 2 O 3 @RGO exhibit, (i) a broader range of visible-light absorption due to visible light band gap of α-Fe 2 O 3 , (ii) lower recombination possibility of photo-generated electrons and holes due to effect of Au and (iii) faster electron transfer due to higher conductivity of RGO. Therefore, the prepared Au@α-Fe 2 O 3 @RGO hetero-photocatalytic nanohybrids exhibited a remarkable photocatalytic activity, thus enabling potential active hetero-photocatalyst for industrial and environmental applications.
Wang, Kang; Zhao, Wenjing; Liu, Jia; Niu, Jinzhi; Liu, Yucheng; Ren, Xiaodong; Feng, Jiangshan; Liu, Zhike; Sun, Jie; Wang, Dapeng; Liu, Shengzhong Frank
2017-10-04
Perovskite solar cells (PSCs) have received great attention because of their excellent photovoltaic properties especially for the comparable efficiency to silicon solar cells. The electron transport layer (ETL) is regarded as a crucial medium in transporting electrons and blocking holes for PSCs. In this study, CO 2 plasma generated by plasma-enhanced chemical vapor deposition (PECVD) was introduced to modify the TiO 2 ETL. The results indicated that the CO 2 plasma-treated compact TiO 2 layer exhibited better surface hydrophilicity, higher conductivity, and lower bulk defect state density in comparison with the pristine TiO 2 film. The quality of the stoichiometric TiO 2 structure was improved, and the concentration of oxygen-deficiency-induced defect sites was reduced significantly after CO 2 plasma treatment for 90 s. The PSCs with the TiO 2 film treated by CO 2 plasma for 90 s exhibited simultaneously improved short-circuit current (J SC ) and fill factor. As a result, the PSC-based TiO 2 ETL with CO 2 plasma treatment affords a power conversion efficiency of 15.39%, outperforming that based on pristine TiO 2 (13.54%). These results indicate that the plasma treatment by the PECVD method is an effective approach to modify the ETL for high-performance planar PSCs.
NASA Astrophysics Data System (ADS)
Zhang, Dengsong; Zhang, Lei; Shi, Liyi; Fang, Cheng; Li, Hongrui; Gao, Ruihua; Huang, Lei; Zhang, Jianping
2013-01-01
The MnOx and CeOx were in situ supported on carbon nanotubes (CNTs) by a poly(sodium 4-styrenesulfonate) assisted reflux route for the low-temperature selective catalytic reduction (SCR) of NO with NH3. X-Ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD) have been used to elucidate the structure and surface properties of the obtained catalysts. It was found that the in situ prepared catalyst exhibited the highest activity and the most extensive operating-temperature window, compared to the catalysts prepared by impregnation or mechanically mixed methods. The XRD and TEM results indicated that the manganese oxide and cerium oxide species had a good dispersion on the CNT surface. The XPS results demonstrated that the higher atomic concentration of Mn existed on the surface of CNTs and the more chemisorbed oxygen species exist. The H2-TPR results suggested that there was a strong interaction between the manganese oxide and cerium oxide on the surface of CNTs. The NH3-TPD results demonstrated that the catalysts presented a larger acid amount and stronger acid strength. In addition, the obtained catalysts exhibited much higher SO2-tolerance and improved the water-resistance as compared to that prepared by impregnation or mechanically mixed methods.The MnOx and CeOx were in situ supported on carbon nanotubes (CNTs) by a poly(sodium 4-styrenesulfonate) assisted reflux route for the low-temperature selective catalytic reduction (SCR) of NO with NH3. X-Ray diffraction (XRD), transmission electron microscopy (TEM), high-resolution TEM (HRTEM), X-ray photoelectron spectroscopy (XPS), H2 temperature-programmed reduction (H2-TPR) and NH3 temperature-programmed desorption (NH3-TPD) have been used to elucidate the structure and surface properties of the obtained catalysts. It was found that the in situ prepared catalyst exhibited the highest activity and the most extensive operating-temperature window, compared to the catalysts prepared by impregnation or mechanically mixed methods. The XRD and TEM results indicated that the manganese oxide and cerium oxide species had a good dispersion on the CNT surface. The XPS results demonstrated that the higher atomic concentration of Mn existed on the surface of CNTs and the more chemisorbed oxygen species exist. The H2-TPR results suggested that there was a strong interaction between the manganese oxide and cerium oxide on the surface of CNTs. The NH3-TPD results demonstrated that the catalysts presented a larger acid amount and stronger acid strength. In addition, the obtained catalysts exhibited much higher SO2-tolerance and improved the water-resistance as compared to that prepared by impregnation or mechanically mixed methods. Electronic supplementary information (ESI) available: SEM images and EDS analysis, TEM images, and XPS spectrum of samples. See DOI: 10.1039/c2nr33006g
Biologically Derived Soft Conducting Hydrogels Using Heparin-Doped Polymer Networks
2015-01-01
The emergence of flexible and stretchable electronic components expands the range of applications of electronic devices. Flexible devices are ideally suited for electronic biointerfaces because of mechanically permissive structures that conform to curvilinear structures found in native tissue. Most electronic materials used in these applications exhibit elastic moduli on the order of 0.1–1 MPa. However, many electronically excitable tissues exhibit elasticities in the range of 1–10 kPa, several orders of magnitude smaller than existing components used in flexible devices. This work describes the use of biologically derived heparins as scaffold materials for fabricating networks with hybrid electronic/ionic conductivity and ultracompliant mechanical properties. Photo-cross-linkable heparin–methacrylate hydrogels serve as templates to control the microstructure and doping of in situ polymerized polyaniline structures. Macroscopic heparin-doped polyaniline hydrogel dual networks exhibit impedances as low as Z = 4.17 Ω at 1 kHz and storage moduli of G′ = 900 ± 100 Pa. The conductivity of heparin/polyaniline networks depends on the oxidation state and microstructure of secondary polyaniline networks. Furthermore, heparin/polyaniline networks support the attachment, proliferation, and differentiation of murine myoblasts without any surface treatments. Taken together, these results suggest that heparin/polyaniline hydrogel networks exhibit suitable physical properties as an electronically active biointerface material that can match the mechanical properties of soft tissues composed of excitable cells. PMID:24738911
NASA Astrophysics Data System (ADS)
Devidas, T. R.; Abhirami, S.; Sharma, Shilpam; Amaladas, E. P.; Mani, Awadhesh
2018-03-01
Studies on the electrical transport properties of the 3D topological insulators Bi2Se3 under iso-electronic substitution of Te at Se sites and the application of external pressure have been performed to understand the evolution of its ground-state properties and to explore possible electronic phase transitions in Bi2Se3‑x Te x (x=0\\text{--}3 ) systems. While the external pressure suppresses the metallic behaviour of Bi2Se3 arising from defect charge carriers leading ultimately to non-metal behaviour, the effect of pressure on Te-doped samples x=1\\text{--}2 seems to be more striking, and causes multiple electronic phase transitions such as an insulator-to-metal transition (MIT) followed by pressure-induced superconducting transition at higher pressures. All the critical parameters such as critical pressure for the occurrence of MIT (PMIT}) , superconductivity (PSC}) and maximum pressure induced superconducting transition temperature (Tc,max}) for given compositions are seen to exhibit maxima at x=1.6 which is the composition that exhibits the most insulating behaviour with least concentration of defect charge carriers among the samples of Bi2Se3‑x Te x (x=0\\text{--}3 ) series. The superconducting transition temperature (Tc}) decreases with increasing pressure in x=1\\text{--}2 samples, while it remains nearly constant for Bi2Te3. Based on the analysis of the experimental data it is surmised that the pressure-induced superconductivity seen in these systems is of conventional (BCS) type.
Sun, Wei; Wang, Yuhua; Zhang, Yuanyuan; Ju, Xiaomei; Li, Guangjiu; Sun, Zhenfan
2012-11-02
An ionic liquid 1-butylpyridinium hexafluorophosphate based carbon ionic liquid electrode (CILE) was used as the substrate electrode and a poly(methylene blue) (PMB) functionalized graphene (GR) composite film was co-electrodeposited on CILE surface by cyclic voltammetry. The PMB-GR/CILE exhibited better electrochemical performances with higher conductivity and lower electron transfer resistance. Electrochemical behavior of dopamine (DA) was further investigated by cyclic voltammetry and a pair of well-defined redox peaks appeared with the peak-to-peak separation (ΔE(p)) as 0.058V in 0.1 mol L(-1) pH 6.0 phosphate buffer solution, which proved a fast quasi-reversible electron transfer process on the modified electrode. Electrochemical parameters of DA on PMB-GR/CILE were calculated with the electron transfer number as 1.83, the charge transfer coefficients as 0.70, the apparent heterogeneous electron transfer rate constant as 1.72 s(-1) and the diffusional coefficient (D) as 3.45×10(-4) cm(2) s(-1), respectively. Under the optimal conditions with differential pulse voltammetric measurement, the linear relationship between the oxidation peak current of DA and its concentration was obtained in the range from 0.02 to 800.0 μmol L(-1) with the detection limit as 5.6 nmol L(-1) (3σ). The coexisting substances exhibited no interference and PMB-GR/CILE was applied to the detection of DA injection samples and human urine samples with satisfactory results. Copyright © 2012 Elsevier B.V. All rights reserved.
Yan, Dongpeng; Lu, Jun; Ma, Jing; Wei, Min; Wang, Xinrui; Evans, David G; Duan, Xue
2010-05-18
The sulfonated phenylenevinylene polyanion derivate (APPV) and exfoliated Mg-Al-layered double hydroxide (LDH) monolayers were alternatively assembled into ordered ultrathin films (UTFs) employing a layer-by-layer method, which shows uniform yellow luminescence. UV-vis absorption and fluorescence spectroscopy present a stepwise and regular growth of the UTFs upon increasing deposited cycles. X-ray diffraction, atomic force microscopy, and scanning electron microscopy demonstrate that the UTFs are orderly periodical layered structure with a thickness of 3.3-3.5 nm per bilayer. The APPV/LDH UTFs exhibit well-defined polarized photoemission characteristic with the maximum luminescence anisotropy of approximately 0.3. Moreover, the UTF exhibit longer fluorescence lifetime (3-3.85-fold) and higher photostability than the drop-casting APPV film under UV irradiation, suggesting that the existence of a LDH monolayer enhances the optical performance of the APPV polyanion. A combination study of electrochemistry and periodic density functional theory was used to investigate the electronic structure of the APPV/LDH system, illustrating that the APPV/LDH UTF is a kind of organic-inorganic hybrid multiple quantum well (MQW) structure with a low band energy of 1.7-1.8 eV, where the valence electrons of APPV can be confined into the energy wells formed by the LDH monolayers effectively. Therefore, this work not only gives a feasible method for fabricating a luminescence ultrathin film but also provides a detailed understanding of the geometric and electronic structures of photoactive polyanions confined between the LDH monolayers.
NASA Astrophysics Data System (ADS)
Yu, Yongqi; Zhang, Wentao; Gao, Xin; Jiang, Zeming; Miao, Jiaojiao; Zhang, Liping
2017-12-01
Cellulose diacetate (CDA)/cellulose hybrid fibers with nice properties were prepared by dry-jet wet spinning using a tetrabutylammonium acetate/dimethylsulfoxide system as a solvent at 50 °C. Scanning electron microscopy (SEM) images exhibited the hybrid fibers with circular cross section and smooth surface. In addition, SEM and Fourier transform infrared spectroscopy analysis indicated the nice compatibility of CDA and cellulose. The hybrid fibers with the addition of CDA showed higher thermal stability and a wider range of degradation than pure cellulose material. It was found that the elongation at break of the fibers increased from 4.87 to 13.22% with increasing CDA/cellulose ratio from 0 to 4:6, which was comparable with CDA fiber spun from 1-butyl-3-methylimidazolium chloride. The 1095.5/cm Raman characteristic band of the hybrid fibers with lower intensity was observed, while it did not towards a higher wave number compared to that of fibers containing less CDA. In addition, the shear viscosity of the solutions exhibited a character of typical shear-thinning behaviour with variation of shear rates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tony Li, Tian; Abelson, John R.; Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, 1308 W. Main St., Urbana, Illinois 61801
2013-11-11
We report evidence that as-deposited amorphous Ge{sub 2}Sb{sub 2}Te{sub 5} thin films contain nanoscale clusters that exhibit a preferred orientation, attributed to the earliest stages of heterogeneous nucleation. Fluctuation transmission electron microscopy reveals structural order in the samples, but (220)-related contributions are suppressed. When homogeneous nucleation is promoted via electron bombardment, the sample remains diffraction amorphous but the (220) contribution appears. We simulated data for randomly oriented nanoscale order using ab initio molecular-dynamics models of Ge{sub 2}Sb{sub 2}Te{sub 5}. The simulated (220) contribution always has larger magnitude than higher-order signals; thus, the lack of the experimental signal indicates a significantmore » preferred orientation.« less
NASA Astrophysics Data System (ADS)
Chen, Yaping; Liu, Borui; Liu, Qi; Wang, Jun; Li, Zhanshuang; Jing, Xiaoyan; Liu, Lianhe
2015-09-01
Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on CoMoO4 NW arrays for high performance electrode materials. The results show that the CoMoO4/PPy hybrid NW electrode exhibits a high areal specific capacitance of ca. 1.34 F cm-2 at a current density of 2 mA cm-2, which is remarkably better than the corresponding values for a pure CoMoO4 NW electrode of 0.7 F cm-2. An excellent cycling performance of nanocomposites of up to 95.2% (ca. 1.12 F cm-2) is achieved after 2000 cycles compared to pristine CoMoO4 NWs. In addition, we fabricate flexible all-solid-state ASC which can be cycled reversibly in the voltage range of 0-1.7 V, and exhibits a maximum energy density of 104.7 W h kg-1 (3.522 mW h cm-3), demonstrating great potential for practical applications in flexible energy storage electronics.Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on CoMoO4 NW arrays for high performance electrode materials. The results show that the CoMoO4/PPy hybrid NW electrode exhibits a high areal specific capacitance of ca. 1.34 F cm-2 at a current density of 2 mA cm-2, which is remarkably better than the corresponding values for a pure CoMoO4 NW electrode of 0.7 F cm-2. An excellent cycling performance of nanocomposites of up to 95.2% (ca. 1.12 F cm-2) is achieved after 2000 cycles compared to pristine CoMoO4 NWs. In addition, we fabricate flexible all-solid-state ASC which can be cycled reversibly in the voltage range of 0-1.7 V, and exhibits a maximum energy density of 104.7 W h kg-1 (3.522 mW h cm-3), demonstrating great potential for practical applications in flexible energy storage electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02961a
Structural characterization of ZnO thin films grown on various substrates by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Novotný, M.; Čížek, J.; Kužel, R.; Bulíř, J.; Lančok, J.; Connolly, J.; McCarthy, E.; Krishnamurthy, S.; Mosnier, J.-P.; Anwand, W.; Brauer, G.
2012-06-01
ZnO thin films were grown by pulsed laser deposition on three different substrates: sapphire (0 0 0 1), MgO (1 0 0) and fused silica (FS). The structure and morphology of the films were characterized by x-ray diffraction and scanning electron microscopy and defect studies were carried out using slow positron implantation spectroscopy (SPIS). Films deposited on all substrates studied in this work exhibit the wurtzite ZnO structure and are characterized by an average crystallite size of 20-100 nm. However, strong differences in the microstructure of films deposited on various substrates were found. The ZnO films deposited on MgO and sapphire single-crystalline substrates exhibit local epitaxy, i.e. a well-defined relation between film crystallites and the substrate. Domains with different orientation relationships with the substrate were found in both films. On the other hand, the film deposited on the FS substrate exhibits fibre texture with random lateral orientation of crystallites. Extremely high compressive in-plane stress of σ ˜ 14 GPa was determined in the film deposited on the MgO substrate, while the film deposited on sapphire is virtually stress-free, and the film deposited on the FS substrate exhibits a tensile in-plane stress of σ ˜ 0.9 GPa. SPIS investigations revealed that the concentration of open-volume defects in the ZnO films is substantially higher than that in a bulk ZnO single crystal. Moreover, the ZnO films deposited on MgO and sapphire single-crystalline substrates exhibit a significantly higher density of defects than the film deposited on the amorphous FS substrate.
Kim, Jeonggi; Kim, Hyo-Min; Jang, Jin
2018-06-06
We report a low work function (2.81 eV), Rb 2 CO 3 -doped polyethyleneimine ethoxylated (PEIE) which is used for highly efficient and long-lifetime, inverted organic light-emitting diodes (OLEDs). Doping Rb 2 CO 3 into PEIE decreases the work function of Li-doped ZnO (LZO) by 1.0 eV and thus significantly improves electron injection ability into the emission layer (EML). The inverted OLED with PEIE:Rb 2 CO 3 interfacial layer (IL) exhibits higher efficiency and longer operation lifetime than those of the device with a PEIE IL. It is found also that Mg-doped ZnO (MZO) can be used instead of LZO as electron transporting layer. Rb 2 CO 3 shows a low work function of 2.81 eV. The OLED with MZO/PEIE:Rb 2 CO 3 exhibits low operating voltage of 5.0 V at 1000 cd m -2 and low efficiency roll-off of 11.8% at high luminance of 10 000 cd m -2 . The results are due to the suppressed exciton quenching at the MZO/organic EML interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilbur, Jeffrey D.; Gomez, Enrique D.; Ellsworth, Mark W.
A procedure for creating samples that can be repeatedly cycled between weakly aligned and strongly aligned states is described. Poly(styrene-b-isoprene) block copolymer samples were first shear-aligned and then cross-linked using a high energy electron beam. Samples with more than 1.0 cross-links per chain on average showed almost complete recovery of their initial alignment state even after 20 cycles of heating above the order–disorder transition temperature of the un-cross-linked block copolymer. Samples with 1.1 cross-links per chain, which showed over 90% loss of alignment on heating and almost 100% recovery of alignment on cooling, provided the best example of a reversiblemore » aligned-to-unaligned transition. Samples with lower cross-linking densities exhibited irreversible loss of alignment upon heating, while those with higher cross-linking densities exhibited less than 90% loss of alignment upon heating. Alignment was quantified by a technique that we call two color depolarized light scattering (TCDLS), an extension of the traditional depolarized light scattering experiment used to determine the state of order in block copolymers. Qualitative confirmation of our interpretation of TCDLS data was obtained by small-angle X-ray scattering and transmission electron microscopy.« less
Correcting pervasive errors in RNA crystallography through enumerative structure prediction.
Chou, Fang-Chieh; Sripakdeevong, Parin; Dibrov, Sergey M; Hermann, Thomas; Das, Rhiju
2013-01-01
Three-dimensional RNA models fitted into crystallographic density maps exhibit pervasive conformational ambiguities, geometric errors and steric clashes. To address these problems, we present enumerative real-space refinement assisted by electron density under Rosetta (ERRASER), coupled to Python-based hierarchical environment for integrated 'xtallography' (PHENIX) diffraction-based refinement. On 24 data sets, ERRASER automatically corrects the majority of MolProbity-assessed errors, improves the average R(free) factor, resolves functionally important discrepancies in noncanonical structure and refines low-resolution models to better match higher-resolution models.
Anisotropy of electrical resistivity in PVT grown WSe2-x crystals
NASA Astrophysics Data System (ADS)
Solanki, G. K.; Patel, Y. A.; Agarwal, M. K.
2018-05-01
Single crystals of p-type WSe2 and WSe1.9 were grown by a physical vapour transport technique. The anisotropy in d.c. electrical resistivity was investigated in these grown crystals. The off-stoichiometric WSe1.9 exhibited a higher anisotropy ratio as compared to WSe2 crystals. The electron microscopic examination revealed the presence of a large number of stacking faults in these crystals. The resistivity enhancement along the c-axis and anisotropic effective mass ratio explained on the basis of structural disorder introduced due to off-stoichiometry.
Failure analysis of blistered gold plating on spot welded electrical relays
NASA Technical Reports Server (NTRS)
Sokolowski, Witold; O'Donnell, Tim
1989-01-01
Gold-plated stainless-steel sideplates, part of a JPL Galileo spacecraft electronic-relay assembly, exhibited blistering after resistance spot welding. Unacceptable relays had heavy nonuniform gold electrodeposited layers with thicknesses 4.5-11.5 microns. SEM and metallographic investigations indicated much higher heat input generated during the resistance spot welding in unacceptable relays. The attributes of acceptable welded relays are contrasted with unacceptable relays; the possible mechanism of laminar formation of polymeric material in the gold plating is discussed; and some recommendations are provided to prevent similar problems.
Jin, Rencheng; Chen, Gang; Pei, Jian; Sun, Jingxue; Wang, Yang
2011-09-01
The controlled synthesis of one-dimensional and three-dimensional Sb(2)Se(3) nanostructures has been achieved by a facile solvothermal process in the presence of citric acid. By simply controlling the concentration of citric acid, the nucleation, growth direction and exposed facet can be readily tuned, which brings the different morphologies and nanostructures to the final products. The as-prepared products have been characterized by means of X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy (TEM), high-resolution TEM and selected area electron diffraction. Based on the electron microscope observations, a possible growth mechanism of Sb(2)Se(3) with distinctive morphologies including ultralong nanobelts, hierarchical urchin-like nanostructures is proposed and discussed in detail. The electrochemical hydrogen storage measurements reveal that the morphology plays a key role on the hydrogen storage capacity of Sb(2)Se(3) nanostructures. The Sb(2)Se(3) ultralong nanobelts with high percentage of {-111} facets exhibit higher hydrogen storage capacity (228.5 mA h g(-1)) and better cycle stability at room temperature.
Non-linear effects and thermoelectric efficiency of quantum dot-based single-electron transistors.
Talbo, Vincent; Saint-Martin, Jérôme; Retailleau, Sylvie; Dollfus, Philippe
2017-11-01
By means of advanced numerical simulation, the thermoelectric properties of a Si-quantum dot-based single-electron transistor operating in sequential tunneling regime are investigated in terms of figure of merit, efficiency and power. By taking into account the phonon-induced collisional broadening of energy levels in the quantum dot, both heat and electrical currents are computed in a voltage range beyond the linear response. Using our homemade code consisting in a 3D Poisson-Schrödinger solver and the resolution of the Master equation, the Seebeck coefficient at low bias voltage appears to be material independent and nearly independent on the level broadening, which makes this device promising for metrology applications as a nanoscale standard of Seebeck coefficient. Besides, at higher voltage bias, the non-linear characteristics of the heat current are shown to be related to the multi-level effects. Finally, when considering only the electronic contribution to the thermal conductance, the single-electron transistor operating in generator regime is shown to exhibit very good efficiency at maximum power.
NASA Astrophysics Data System (ADS)
Fehr, M.; Schnegg, A.; Rech, B.; Astakhov, O.; Finger, F.; Bittl, R.; Teutloff, C.; Lips, K.
2014-02-01
Light-induced degradation of hydrogenated amorphous silicon (a-Si :H), known as the Staebler-Wronski effect, has been studied by time-domain pulsed electron-paramagnetic resonance. Electron-spin echo relaxation measurements in the annealed and light-soaked state revealed two types of defects (termed type I and II), which can be discerned by their electron-spin echo relaxation. Type I exhibits a monoexponential decay related to indirect flip-flop processes between dipolar coupled electron spins in defect clusters, while the phase relaxation of type II is dominated by H1 nuclear spin dynamics and is indicative for isolated spins. We propose that defects are either located at internal surfaces of microvoids (type I) or are isolated and uniformly distributed in the bulk (type II). The concentration of both defect type I and II is significantly higher in the light-soaked state compared to the annealed state. Our results indicate that in addition to isolated defects, defects on internal surfaces of microvoids play a role in light-induced degradation of device-quality a-Si :H.
Ultracompliant Heterogeneous Copper-Tin Nanowire Arrays Making a Supersolder
DOE Office of Scientific and Technical Information (OSTI.GOV)
Narumanchi, Sreekant V; Feng, Xuhui; Major, Joshua
Due to the substantial increase in power density, thermal interface resistance that can constitute more than 50% of the total thermal resistance has generally become a bottleneck for thermal management in electronics. However, conventional thermal interface materials (TIMs) such as solder, epoxy, gel, and grease cannot fulfill the requirements of electronics for high-power and long-term operation. Here, we demonstrate a high-performance TIM consisting of a heterogeneous copper-tin nanowire array, which we term 'supersolder' to emulate the role of conventional solders in bonding various surfaces. The supersolder is ultracompliant with a shear modulus 2-3 orders of magnitude lower than traditional soldersmore » and can reduce the thermal resistance by two times as compared with the state-of-the-art TIMs. This supersolder also exhibits excellent long-term reliability with >1200 thermal cycles over a wide temperature range. By resolving this critical thermal bottleneck, the supersolder enables electronic systems, ranging from microelectronics and portable electronics to massive data centers, to operate at lower temperatures with higher power density and reliability.« less
Ambipolar Landau levels and strong band-selective carrier interactions in monolayer WSe2
NASA Astrophysics Data System (ADS)
Gustafsson, Martin V.; Yankowitz, Matthew; Forsythe, Carlos; Rhodes, Daniel; Watanabe, Kenji; Taniguchi, Takashi; Hone, James; Zhu, Xiaoyang; Dean, Cory R.
2018-05-01
Monolayers (MLs) of transition-metal dichalcogenides (TMDs) exhibit unusual electrical behaviour under magnetic fields due to their intrinsic spin-orbit coupling and lack of inversion symmetry1-15. Although recent experiments have also identified the critical role of carrier interactions within these materials11,15, a complete mapping of the ambipolar Landau level (LL) sequence has remained elusive. Here we use single-electron transistors (SETs)16,17 to perform LL spectroscopy in ML WSe2, and provide a comprehensive picture of the electronic structure of a ML TMD for both electrons and holes. We find that the LLs differ notably between the two bands, and follow a unique sequence in the valence band (VB) that is dominated by strong Zeeman effects. The Zeeman splitting in the VB is several times higher than the cyclotron energy, far exceeding the predictions of a single-particle model and, moreover, tunes significantly with doping15. This implies exceptionally strong many-body interactions, and suggests that ML WSe2 can serve as a host for new correlated-electron phenomena.
NASA Astrophysics Data System (ADS)
Divya, K. S.; Chandran, Akash; Reethu, V. N.; Mathew, Suresh
2018-06-01
A series of RGO/Ag nanocomposites with different weight addition ratios of graphene oxide (GO) have been successfully prepared in situ through the simultaneous reduction of GO and AgNO3 via a facile microwave irradiation. X-ray diffraction analysis, Fourier Transform Infrared Spectroscopy, UV-vis diffuse reflectance spectra, Scanning electron microscopy, Photoluminescence spectra, Raman spectra, Atomic Force Microscopy, X-ray photoelectron spectroscopy (XPS) and Transmission electron microscopy are employed to determine the properties of the samples. It is found that RGO/Ag nanocomposites with a proper weight addition ratios of GO exhibit higher photocatalytic activity toward liquid phase photodegradation of Rhodamine B under visible light irradiation. The improved photoactivity of RGO/Ag nanocomposites can be ascribed to the integrative synergestic effect of enhanced adsorption capacity, the prolonged lifetime of photogenerated electron-hole pairs and effective interfacial hybridization between RGO and Ag nanoparticles. This study also shows that graphene sheets act as electronic conductive channels to efficiently separate charge carriers from Ag nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mieno, H.; Kabe, R.; Allendorf, M. D.
Here, the first metal–organic framework exhibiting thermally activated delayed fluorescence (TADF) was developed. The zirconium-based framework (UiO-68-dpa) uses a newly designed linker composed of a terphenyl backbone, an electron-accepting carboxyl group, and an electron-donating diphenylamine and exhibits green TADF emission with a photoluminescence quantum yield of 30% and high thermal stability.
Biphasic Kinetic Behavior of Nitrate Reductase from Heterocystous, Nitrogen-Fixing Cyanobacteria 1
Martin-Nieto, José; Flores, Enrique; Herrero, Antonia
1992-01-01
Nitrate reductase activity from filamentous, heterocyst-forming cyanobacteria showed a biphasic kinetic behavior with respect to nitrate as the variable substrate. Two kinetic components were detected, the first showing a higher affinity for nitrate (Km, 0.05-0.25 mm) and a lower catalytic activity and the second showing a lower affinity for nitrate (Km, 5-25 mm) and a higher (3- to 5-fold) catalytic activity. In contrast, among unicellular cyanobacteria, most representatives studied exhibited a monophasic, Michaelis-Menten kinetic pattern for nitrate reductase activity. Biphasic kinetics remained unchanged with the use of different assay conditions (i.e. cell disruption or permeabilization, two different electron donors) or throughout partial purification of the enzyme. PMID:16652939
Sorption of lead ions on diatomite and manganese oxides modified diatomite.
Al-Degs, Y; Khraisheh, M A; Tutunji, M F
2001-10-01
Naturally occurring diatomaceous earth (diatomite) has been tested as a potential sorbent for Pb(II) ions. The intrinsic exchange properties were further improved by modification with manganese oxides. Modified adsorbent (referred to as Mn-diatomite) showed a higher tendency for adsorbing lead ions from solution at pH 4. The high performance exhibited by Mn-diatomite was attributed to increased surface area and higher negative surface charge after modification. Scanning electron microscope pictures revealed a birnessite structure of manganese oxides, which was featured by a plate-like-crystal structure. Diatomite filtration quality was improved after modification by manganese oxides. Good filtration qualities combined with high exchange capacity emphasised the potential use of Mn-diatomite in filtration systems.
Cai, Aijun; Guo, Aiying; Ma, Zichuan
2017-01-01
TiO2 nanoparticles are immobilized on chlorella cells using the hydrothermal method. The morphology, structure, and the visible-light-driven photocatalytic activity of the prepared chlorella/TiO2 composite are investigated by various methods. The chlorella/TiO2 composite is found to exhibit larger average sizes and higher visible-light intensities. The sensitization of the photosynthesis pigment originating from chlorella cells provides the anatase TiO2 with higher photocatalytic activities under the visible-light irradiation. The latter is linked to the highly efficient charge separation of the electron/hole pairs. The results also suggest that the photocatalytic activity of the composite remains substantial after four cycles, suggesting a good stability. PMID:28772899
Lee, Hyunsoo; Lee, Han-Bo-Ram; Kwon, Sangku; Salmeron, Miquel; Park, Jeong Young
2015-04-28
We report on the physical and chemical properties of atomic steps on the surface of highly oriented pyrolytic graphite (HOPG) investigated using atomic force microscopy. Two types of step edges are identified: internal (formed during crystal growth) and external (formed by mechanical cleavage of bulk HOPG). The external steps exhibit higher friction than the internal steps due to the broken bonds of the exposed edge C atoms, while carbon atoms in the internal steps are not exposed. The reactivity of the atomic steps is manifested in a variety of ways, including the preferential attachment of Pt nanoparticles deposited on HOPG when using atomic layer deposition and KOH clusters formed during drop casting from aqueous solutions. These phenomena imply that only external atomic steps can be used for selective electrodeposition for nanoscale electronic devices.
NASA Astrophysics Data System (ADS)
Hazarika, S.; Mohanta, D.
2013-01-01
Naturally available green spinach, which is a rich source of potassium, was used as the key ingredient to extract mixed-phase ferroelectric crystals of nitrite and nitrate derivatives (KNO2 + KNO3). The KNO3 phase was found to be dominant for higher pH values, as revealed by the x-ray diffraction patterns. The characteristic optical absorption spectra exhibited intra-band π-π* electronic transitions, whereas Fourier transform infrared spectra exhibited characteristic N-O stretching vibrations. Differential scanning calorimetry revealed a broad endothermic peak at ˜121.8 °C, highlighting a transition from phase II to I via phase III of KNO3. Obtaining nanoscale ferroelectrics via the adoption of green synthesis is economically viable for large-scale production and possible application in ferroelectric elements/devices.
FeRh ground state and martensitic transformation
Zarkevich, Nikolai A.; Johnson, Duane D.
2018-01-09
Cubic B2 FeRh exhibits a metamagnetic transition [(111) antiferromagnet (AFM) to ferromagnet (FM)] around 353 K and remains structurally stable at higher temperatures. However, the calculated zero-Kelvin phonons of AFM FeRh exhibit imaginary modes at M points in the Brillouin zone, indicating a premartensitic instability, which is a precursor to a martensitic transformation at low temperatures. Combining electronic-structure calculations with ab initio molecular dynamics, conjugate gradient relaxation, and the solid-state nudged-elastic band methods, we predict that AFM B2 FeRh becomes unstable at ambient pressure and transforms without a barrier to an AFM(111) orthorhombic (martensitic) ground state below 90±10K. In conclusion,more » we also consider competing structures, in particular, a tetragonal AFM(100) phase that is not the global ground state, as proposed, but a constrained solution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarkevich, Nikolai A.; Johnson, Duane D.
Cubic B2 FeRh exhibits a metamagnetic transition [(111) antiferromagnet (AFM) to ferromagnet (FM)] around 353 K and remains structurally stable at higher temperatures. However, the calculated zero-Kelvin phonons of AFM FeRh exhibit imaginary modes at M points in the Brillouin zone, indicating a premartensitic instability, which is a precursor to a martensitic transformation at low temperatures. Combining electronic-structure calculations with ab initio molecular dynamics, conjugate gradient relaxation, and the solid-state nudged-elastic band methods, we predict that AFM B2 FeRh becomes unstable at ambient pressure and transforms without a barrier to an AFM(111) orthorhombic (martensitic) ground state below 90±10K. In conclusion,more » we also consider competing structures, in particular, a tetragonal AFM(100) phase that is not the global ground state, as proposed, but a constrained solution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Limiao, E-mail: chenlimiao@csu.edu.cn; College of Chemistry and Chemical Engineering, Central South University, Changsha 410083; Wu, Min
The semiconductor nanostructures decorated with noble metals have attracted increasing attention due to their interesting physical and chemical properties. In this work, urchin-like monoclinic (m-) LaVO{sub 4} microspheres were prepared by a hydrothermal method and used as a template to fabricate Ag nanoparticle-decorated m-LaVO{sub 4} composites. The morphology and structure were characterized by transmission electron microscope, high-resolution transmission electron microscope, scanning electron microscope, and energy-dispersive X-ray. It was found that Ag nanoparticles with narrow size distribution were uniformly loaded on urchin-like m-LaVO{sub 4} microspheres, and the resulted composite microspheres showed distinct surface plasmon absorption band compared to pure m-LaVO{sub 4}more » microspheres. Photocatalytic activities of as-prepared samples were examined by studying the degradation of methyl orange solutions under visible-light irradiation (> 400 nm). Results clearly showed that urchin-like m-LaVO{sub 4}/Ag microspheres possess much higher photocatalytic activity than pure m-LaVO{sub 4} microspheres and P25. - Highlights: • m-LaVO{sub 4}/Ag composites microspheres were fabricated by a hydrothermal method. • m-LaVO{sub 4} microspheres show higher photocatalytic activity than m-LaVO{sub 4} microspheres. • m-LaVO{sub 4}/Ag microspheres exhibit a good stability.« less
Kumar, Anil; Singhal, Aditi
2009-07-22
Silver iron oxide nanoparticles of fairly small size (average diameter approximately 1 nm) with narrow size distribution have been synthesized by the interaction of colloidal beta- Fe2O3 and silver nanoparticles. The surface morphology and size of these particles have been analyzed by using atomic force microscopy (AFM), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). Their structural analysis has been carried out by employing x-ray diffraction (XRD), selected-area electron diffraction (SAED), optical and infrared (IR) spectroscopic techniques. The ageing of these particles exhibits the formation of self-assembly, possibly involving weak supramolecular interactions between Ag(I)O4 and Fe(III)O4 species. These particles display the onset of absorption in the near-infrared region and have higher absorption coefficient in the visible range compared to that of its precursors. Magnetic measurements reveal an interesting transition in their magnetic behavior from diamagnetic to superparamagnetic. The magnetic moment of these particles attains a limiting value of about 0.19 emu cm(-2), which is more than two times higher than that of colloidal beta- Fe2O3. With enhanced optical and magnetic properties, this system is suggested to have possible applications in optoelectronic and magnetic devices.
NASA Astrophysics Data System (ADS)
Alix, K.; David, M.-L.; Dérès, J.; Hébert, C.; Pizzagalli, L.
2018-03-01
The evolution of nanometric helium bubbles in silicon has been investigated using spatially resolved electron energy-loss spectroscopy during in situ annealing in the transmission electron microscope. This approach allows the simultaneous determination of both the morphology and the helium density in the bubbles at each step of the annealing. Structural modification and helium emission from bubbles of various diameters in the range 7.5 to 20 nm and various aspect ratios of 1.1 to 1.9 have been studied. We clearly show that helium emission takes place at temperatures where bubble migration had hardly started. At higher temperatures, the migration (and coalescence) of voids is clearly revealed. For helium density lower than 150 He nm-3 , the Cerofolini's model taking into account the thermodynamical properties of an ultradense fluid reproduces well the helium emission from the bubbles, leading to an activation energy of 1.8 eV. When bubbles exhibit a higher initial helium density, the Cerofolini's model fails to reproduce the helium emission kinetics. We ascribe this to the fact that helium may be in the solid phase and we propose a tentative model to take into account the properties of the solid.
Xu, Zijie; Li, Teng; Zhang, Fayin; Hong, Xiaodan; Xie, Shuyao; Ye, Meidan; Guo, Wenxi; Liu, Xiangyang
2017-03-17
The rapid development of modern electronics has given rise to a higher demand for flexible and wearable energy sources. Flexible transparent conducting electrodes (TCEs) are one of the essential components of flexible/wearable thin-film solar cells (SCs). In this regard, we present highly transparent and conducting CuS-nanosheet (NS) networks with an optimized sheet resistance (R s ) as low as 50 Ω sq -1 at 85% transmittance as a counter electrode (CE) for flexible quantum-dot solar cells (QDSCs). The CuS NS network electrode exhibits remarkable mechanical flexibility under bending tests compared to traditional ITO/plastic substrates and sputtered CuS films. Herein, CuS NS networks not only served as conducting films for collecting electrons from the external circuit, but also served as superior catalysts for reducing polysulfide (S 2- /S x 2- ) electrolytes. A power conversion efficiency (PCE) up to 3.25% was achieved for the QDSCs employing CuS NS networks as CEs, which was much higher than those of the devices based on Pt networks and sputtered CuS films. We believe that such CuS network TCEs with high flexibility, transparency, conductivity and catalytic activity could be widely used in making wearable electronic products.
Bunch, Paul M; Wortman, Jeremy R; Andriole, Katherine P
2016-03-01
Viewers of electronic education exhibits at the 2013 and 2014 Radiological Society of North America meetings had the opportunity to "like" exhibits, as one might "like" a Facebook or an Instagram post. The purposes of this study were (1) to evaluate for a relationship between exhibit popularity and receiving an award or RadioGraphics invitation, (2) to evaluate for a relationship between exhibit recognition and subsequent popularity, and (3) to quantify and compare the electronic education exhibit likes at the 2013 and the 2014 meetings. Exhibit likes were recorded at the midpoints and ends of both meetings. Data analyses were performed by means of one-way analysis of variance and chi-square tests. There were similar numbers of electronic education exhibits at the 2013 (1856) and 2014 (1793) meetings with no significant difference between meeting years in the number of exhibits chosen for awards (423 vs. 404, P = 0.88) or for RadioGraphics solicitation (190 vs. 169, P = 0.46). In both meeting years, there were statistically significant associations between initial and overall exhibit popularity and exhibit recognition, as well as between exhibit recognition and subsequent popularity. A 152% increase in total likes recorded was observed at the 2014 meeting as compared to the 2013 meeting (11074 vs. 4391, P < 0.0001). Popular exhibits were significantly more likely to receive awards and RadioGraphics invitations. Receiving an award or RadioGraphics invitation was associated with subsequent increased exhibit popularity. Significantly more likes were recorded at the 2014 Radiological Society of North America meeting than at the 2013 meeting. Copyright © 2015 The Association of University Radiologists. Published by Elsevier Inc. All rights reserved.
Matteucci, Elena; Consani, Cristina; Masoni, Maria Chiara; Giampietro, Ottavio
2010-10-05
Normotensive non-diabetic relatives of type 1 diabetes (T1D) patients have an abnormal blood pressure response to exercise testing that is associated with indices of metabolic syndrome and increased oxidative stress. The primary aim of this study was to investigate the circadian variability of blood pressure and the ambulatory arterial stiffness index (AASI) in healthy siblings of T1D patients vs healthy control subjects who had no first-degree relative with T1D. Secondary aims of the study were to explore the influence of both cardiovascular autonomic function and erythrocyte electron transfer activity as oxidative marker on the ambulatory blood pressure profile. Twenty-four hour ambulatory blood pressure monitoring (ABPM) was undertaken in 25 controls, 20 T1D patients and 20 siblings. In addition to laboratory examination (including homeostasis model assessment of insulin sensitivity) and clinical testing of autonomic function, we measured the rate of oxidant-induced erythrocyte electron transfer to extracellular ferricyanide (RBC vfcy). Systolic blood pressure (SBP) midline-estimating statistic of rhythm and pulse pressure were higher in T1D patients and correlated positively with diabetes duration and RBC vfcy; autonomic dysfunction was associated with diastolic BP ecphasia and increased AASI. Siblings had higher BMI, lower insulin sensitivity, larger SBP amplitude, and higher AASI than controls. Daytime SBP was positively, independently associated with BMI and RBC vfcy. Among non-diabetic people, there was a significant correlation between AASI and fasting plasma glucose. Siblings of T1D patients exhibited a cluster of sub-clinical metabolic abnormalities associated with consensual perturbations in BP variability. Moreover, our findings support, in a clinical setting, the proposed role of transplasma membrane electron transport systems in vascular pathobiology.
Sulieman, Saad; Schulze, Joachim; Tran, Lam-Son Phan
2013-01-01
Phosphorus (P)-deficiency is a major abiotic stress that limits legume growth in many types of soils. The relationship between Medicago and Sinorhizobium, is known to be affected by different environmental conditions. Recent reports have shown that, in combination with S. meliloti 2011, Medicago truncatula had a lower symbiotic efficiency than Medicago sativa. However, little is known about how Medicago–Sinorhizobium is affected by P-deficiency at the whole-plant level. The objective of the present study was to compare and characterize the symbiotic efficiency of N2 fixation of M. truncatula and M. sativa grown in sand under P-limitation. Under this condition, M. truncatula exhibited a significantly higher rate of N2 fixation. The specific activity of the nodules was much higher in M. truncatula in comparison to M. sativa, partially as a result of an increase in electron allocation to N2versus H+. Although the main organic acid, succinate, exhibited a strong tendency to decrease under P-deficiency, the more efficient symbiotic ability observed in M. truncatula coincided with an apparent increase in the content of malate in its nodules. Our results indicate that the higher efficiency of the M. truncatula symbiotic system is related to the ability to increase malate content under limited P-conditions. PMID:23459233
Examination of the temperature dependent electronic behavior of GeTe for switching applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Champlain, James G.; Ruppalt, Laura B.; Guyette, Andrew C.
2016-06-28
The DC and RF electronic behaviors of GeTe-based phase change material switches as a function of temperature, from 25 K to 375 K, have been examined. In its polycrystalline (ON) state, GeTe behaved as a degenerate p-type semiconductor, exhibiting metal-like temperature dependence in the DC regime. This was consistent with the polycrystalline (ON) state RF performance of the switch, which exhibited low resistance S-parameter characteristics. In its amorphous (OFF) state, the GeTe presented significantly greater DC resistance that varied considerably with bias and temperature. At low biases (<1 V) and temperatures (<200 K), the amorphous GeTe low-field resistance dramatically increased, resulting in exceptionally highmore » amorphous-polycrystalline (OFF-ON) resistance ratios, exceeding 10{sup 9} at cryogenic temperatures. At higher biases and temperatures, the amorphous GeTe exhibited nonlinear current-voltage characteristics that were best fit by a space-charge limited conduction model that incorporates the effect of a defect band. The observed conduction behavior suggests the presence of two regions of localized traps within the bandgap of the amorphous GeTe, located at approximately 0.26–0.27 eV and 0.56–0.57 eV from the valence band. Unlike the polycrystalline state, the high resistance DC behavior of amorphous GeTe does not translate to the RF switch performance; instead, a parasitic capacitance associated with the RF switch geometry dominates OFF state RF transmission.« less
Jia, Zhiyan; Hu, Wentao; Xiang, Jianyong; Wen, Fusheng; Nie, Anmin; Mu, Congpu; Zhao, Zhisheng; Xu, Bo; Tian, Yongjun; Liu, Zhongyuan
2018-06-22
Centimeter-scale continuous monolayer WS 2 film with large tensile strain has been successfully grown on oxidized silicon substrate by chemical vapor deposition, in which monolayer grains can be more than 200 μm in size. Monolayer WS 2 grains are observed to merge together via not only traditional grain boundaries but also non-traditional ones, which are named as grain walls (GWs) due to their nanometer-scale widths. The GWs are revealed to consist of two or three layers. Though not a monolayer, the GWs exhibit significantly enhanced fluorescence and photoluminescence. This enhancement may be attributed to abundant structural defects such as stacking faults and partial dislocations in the GWs, which are clearly observable in atomically resolved high resolution transmission electron microscopy and scanning transmission electron microscopy images. Moreover, GW-based phototransistor is found to deliver higher photocurrent than that based on monolayer film. These features of GWs provide a clue to microstructure engineering of monolayer WS 2 for specific applications in (opto)electronics.
Advanced Graphene-Based Binder-Free Electrodes for High-Performance Energy Storage.
Ji, Junyi; Li, Yang; Peng, Wenchao; Zhang, Guoliang; Zhang, Fengbao; Fan, Xiaobin
2015-09-23
The increasing demand for energy has triggered tremendous research effort for the development of high-performance and durable energy-storage devices. Advanced graphene-based electrodes with high electrical conductivity and ion accessibility can exhibit superior electrochemical performance in energy-storage devices. Among them, binder-free configurations can enhance the electron conductivity of the electrode, which leads to a higher capacity by avoiding the addition of non-conductive and inactive binders. Graphene, a 2D material, can be fabricated into a porous and flexible structure with an interconnected conductive network. Such a conductive structure is favorable for both electron and ion transport to the entire electrode surface. In this review, the main processes used to prepare binder-free graphene-based hybrids with high porosity and well-designed electron conductive networks are summarized. Then, the applications of free-standing binder-free graphene-based electrodes in energy-storage devices are discussed. Future research aspects with regard to overcoming the technological bottlenecks are also proposed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hydrogen production by Tuning the Photonic Band Gap with the Electronic Band Gap of TiO2
Waterhouse, G. I. N.; Wahab, A. K.; Al-Oufi, M.; Jovic, V.; Anjum, D. H.; Sun-Waterhouse, D.; Llorca, J.; Idriss, H.
2013-01-01
Tuning the photonic band gap (PBG) to the electronic band gap (EBG) of Au/TiO2 catalysts resulted in considerable enhancement of the photocatalytic water splitting to hydrogen under direct sunlight. Au/TiO2 (PBG-357 nm) photocatalyst exhibited superior photocatalytic performance under both UV and sunlight compared to the Au/TiO2 (PBG-585 nm) photocatalyst and both are higher than Au/TiO2 without the 3 dimensionally ordered macro-porous structure materials. The very high photocatalytic activity is attributed to suppression of a fraction of electron-hole recombination route due to the co-incidence of the PBG with the EBG of TiO2 These materials that maintain their activity with very small amount of sacrificial agents (down to 0.5 vol.% of ethanol) are poised to find direct applications because of their high activity, low cost of the process, simplicity and stability. PMID:24108361
MAVEN Mapping of Plasma Clouds Near Mars
NASA Astrophysics Data System (ADS)
Hurley, D.; Tran, T.; DiBraccio, G. A.; Espley, J. R.; Soobiah, Y. I. J.
2017-12-01
Brace et al. identified parcels of ionospheric plasma above the nominal ionosphere of Venus, dubbed plasma clouds. These were envisioned as instabilities on the ionopause that evolved to escaping parcels of ionospheric plasma. Mars Global Surveyor (MGS) Electron Reflectometer (ER) also detected signatures of ionospheric plasma above the nominal ionopause of Mars. Initial examination of the MGS ER data suggests that plasma clouds are more prevalent at Mars than at Venus, and similarly exhibit a connection to rotations in the upstream Interplanetary Magnetic Field (IMF) as Zhang et al. showed at Venus. We examine electron data from Mars to determine the locations of plasma clouds in the near-Mars environment using MGS and MAVEN data. The extensive coverage of the MAVEN orbit enables mapping an occurrence rate of the photoelectron spectra in Solar Wind Electron Analyzer (SWEA) data spanning all relevant altitudes and solar zenith angles. Martian plasma clouds are observed near the terminator like at Venus. They move to higher altitude as solar zenith angle increases, consistent with the escaping plasma hypothesis.
Use of an Electronic Tongue System and Fuzzy Logic to Analyze Water Samples
NASA Astrophysics Data System (ADS)
Braga, Guilherme S.; Paterno, Leonardo G.; Fonseca, Fernando J.
2009-05-01
An electronic tongue (ET) system incorporating 8 chemical sensors was used in combination with two pattern recognition tools, namely principal component analysis (PCA) and Fuzzy logic for discriminating/classification of water samples from different sources (tap, distilled and three brands of mineral water). The Fuzzy program exhibited a higher accuracy than the PCA and allowed the ET to classify correctly 4 in 5 types of water. Exception was made for one brand of mineral water which was sometimes misclassified as tap water. On the other hand, the PCA grouped water samples in three clusters, one with the distilled water; a second with tap water and one brand of mineral water, and the third with the other two other brands of mineral water. Samples in the second and third clusters could not be distinguished. Nevertheless, close grouping between repeated tests indicated that the ET system response is reproducible. The potential use of the Fuzzy logic as the data processing tool in combination with an electronic tongue system is discussed.
Xiao, Juan-Ding; Shang, Qichao; Xiong, Yujie; Zhang, Qun; Luo, Yi; Yu, Shu-Hong; Jiang, Hai-Long
2016-08-01
Improving the efficiency of electron-hole separation and charge-carrier utilization plays a central role in photocatalysis. Herein, Pt nanoparticles of ca. 3 nm are incorporated inside or supported on a representative metal-organic framework (MOF), UiO-66-NH2 , denoted as Pt@UiO-66-NH2 and Pt/UiO-66-NH2 , respectively, for photocatalytic hydrogen production via water splitting. Compared with the pristine MOF, both Pt-decorated MOF nanocomposites exhibit significantly improved yet distinctly different hydrogen-production activities, highlighting that the photocatalytic efficiency strongly correlates with the Pt location relative to the MOF. The Pt@UiO-66-NH2 greatly shortens the electron-transport distance, which favors the electron-hole separation and thereby yields much higher efficiency than Pt/UiO-66-NH2 . The involved mechanism has been further unveiled by means of ultrafast transient absorption and photoluminescence spectroscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Jia, Zhiyan; Hu, Wentao; Xiang, Jianyong; Wen, Fusheng; Nie, Anmin; Mu, Congpu; Zhao, Zhisheng; Xu, Bo; Tian, Yongjun; Liu, Zhongyuan
2018-06-01
Centimeter-scale continuous monolayer WS2 film with large tensile strain has been successfully grown on oxidized silicon substrate by chemical vapor deposition, in which monolayer grains can be more than 200 μm in size. Monolayer WS2 grains are observed to merge together via not only traditional grain boundaries but also non-traditional ones, which are named as grain walls (GWs) due to their nanometer-scale widths. The GWs are revealed to consist of two or three layers. Though not a monolayer, the GWs exhibit significantly enhanced fluorescence and photoluminescence. This enhancement may be attributed to abundant structural defects such as stacking faults and partial dislocations in the GWs, which are clearly observable in atomically resolved high resolution transmission electron microscopy and scanning transmission electron microscopy images. Moreover, GW-based phototransistor is found to deliver higher photocurrent than that based on monolayer film. These features of GWs provide a clue to microstructure engineering of monolayer WS2 for specific applications in (opto)electronics.
Zheng, Xin; Yan, Xiaoqin; Sun, Yihui; Bai, Zhiming; Zhang, Guangjie; Shen, Yanwei; Liang, Qijie; Zhang, Yue
2015-02-04
Here we design a nanostructure by embedding Au nanoparticles into ZnO/NiO core-shell composites as supercapacitors electrodes materials. This optimized hybrid electrodes exhibited an excellent electrochemical performance including a long-term cycling stability and a maximum specific areal capacitance of 4.1 F/cm(2) at a current density of 5 mA/cm(2), which is much higher than that of ZnO/NiO hierarchical materials (0.5 F/cm(2)). Such an enhanced property is attributed to the increased electro-electrolyte interfaces, short electron diffusion pathways and good electrical conductivity. Apart from this, electrons can be temporarily trapped and accumulated at the Fermi level (EF') because of the localized schottky barrier at Au/NiO interface in charge process until fill the gap between ZnO and NiO, so that additional electrons can be released during discharge. These results demonstrate that suitable interface engineering may open up new opportunities in the development of high-performance supercapacitors.
NASA Astrophysics Data System (ADS)
Siddiqui, Jamil; Hussain, Tousif; Ahmad, Riaz; Umar, Zeeshan A.; Abdus Samad, Ubair
2016-05-01
The influence of variation in plasma deposition parameters on the structural, morphological and mechanical characteristics of the niobium nitride films grown by plasma-emanated ion and electron beams are investigated. Crystallographic investigation made by X-ray diffractometer shows that the film synthesized at 10 cm axial distance with 15 plasma focus shots (PFS) exhibits better crystallinity when compared to the other deposition conditions. Morphological analysis made by scanning electron microscope reveals a definite granular pattern composed of homogeneously distributed nano-spheroids grown as clustered particles for the film synthesized at 10 cm axial distance for 15 PFS. Roughness analysis demonstrates higher rms roughness for the films synthesized at shorter axial distance and by greater number of PFS. Maximum niobium atomic percentage (35.8) and maximum average hardness (19.4 ± 0.4 GPa) characterized by energy-dispersive spectroscopy and nano-hardness analyzer respectively are observed for film synthesized at 10 cm axial distance with 15 PFS.
A novel fabrication method of carbon electrodes using 3D printing and chemical modification process.
Tian, Pan; Chen, Chaoyang; Hu, Jie; Qi, Jin; Wang, Qianghua; Chen, Jimmy Ching-Ming; Cavanaugh, John; Peng, Yinghong; Cheng, Mark Ming-Cheng
2017-11-23
Three-dimensional (3D) printing is an emerging technique in the field of biomedical engineering and electronics. This paper presents a novel biofabrication method of implantable carbon electrodes with several advantages including fast prototyping, patient-specific and miniaturization without expensive cleanroom. The method combines stereolithography in additive manufacturing and chemical modification processes to fabricate electrically conductive carbon electrodes. The stereolithography allows the structures to be 3D printed with very fine resolution and desired shapes. The resin is then chemically modified to carbon using pyrolysis to enhance electrochemical performance. The electrochemical characteristics of 3D printing carbon electrodes are assessed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The specific capacitance of 3D printing carbon electrodes is much higher than the same sized platinum (Pt) electrode. In-vivo electromyography (EMG) recording, 3D printing carbon electrodes exhibit much higher signal-to-noise ratio (40.63 ± 7.73) than Pt electrodes (14.26 ± 6.83). The proposed biofabrication method is envisioned to enable 3D printing in many emerging applications in biomedical engineering and electronics.
Łabanowska, Maria; Filek, Maria; Kurdziel, Magdalena; Bednarska, Elżbieta; Dłubacz, Aleksandra; Hartikainen, Helina
2012-09-01
Grains of five genotypes of wheat (four Polish and one Finnish), differing in their tolerance to drought stress were chosen for this investigation. Electron paramagnetic resonance spectroscopy allowed observation of transition metal ions (Mn, Fe, Cu) and different types of stable radicals, including semiquinone centers, present in seed coats, as well as several types of carbohydrate radicals found mainly in the inner parts of grains. The content of paramagnetic metal centers was higher in sensitive genotypes (Radunia, Raweta) than in tolerant ones (Parabola, Nawra), whereas the Finnish genotype (Manu) exhibited intermediate amounts. Similarly, the concentrations of both types of radicals, carbohydrates and semiquinone were significantly higher in the grains originating from more sensitive wheat genotypes. The nature of carbohydrate radicals and their concentrations were confronted with the kinds and amounts of sugars found by the biochemical analyses and microscopy observations. It is suggested that some long lived radicals (semiquinone and starch radicals) occurring in grains could be indicators of stress resistance of wheat plants. Copyright © 2012 Elsevier GmbH. All rights reserved.
NASA Astrophysics Data System (ADS)
Lemos, Samantha C. S.; Romeiro, Fernanda C.; de Paula, Leonardo F.; Gonçalves, Rosana F.; de Moura, Ana P.; Ferrer, Mateus M.; Longo, Elson; Patrocinio, Antonio Otavio T.; Lima, Renata C.
2017-05-01
Regular sized nanostructures of indium oxide (In2O3) were homogeneously grown using a facile route, i.e. a microwave-hydrothermal method combined with rapid thermal treatment in a microwave oven. The presence of Er3+ doping plays an important role in controlling the formation of cubic (bcc) and rhombohedral (rh) In2O3 phases. The samples presented broad photoluminescent emission bands in the green-orange region, which were attributed to the recombination of electrons at oxygen vacancies. The photocatalytic activities of pure bcc-In2O3 and a bcc-rh-In2O3 mixture towards the UVA degradation of methylene blue (MB) were also evaluated. The results showed that Er+3 doped In2O3 exhibited the highest photocatalytic activity with a photonic efficiency three times higher than the pure oxide. The improved performance was attributed to the higher surface area, the greater concentration of electron traps due the presence of the dopant and the possible formation of heterojunctions between the cubic and rhombohedral phases.
Pereira, Erika S J; Gomes, Renata O; Leroy, Agnès M F; Singh, Rupinderpal; Peters, Ove A; Bahia, Maria G A; Buono, Vicente T L
2013-12-01
Comparison of physical and mechanical properties of one conventional and a new NiTi wire, which had received an additional thermomechanical treatment. Specimens of both conventional (NiTi) and the new type of wire, called M-Wire (MW), were subjected to tensile and three-point bending tests, Vickers microhardness measurements, and to rotating-bending fatigue tests at a strain-controlled level of 6%. Fracture surfaces were observed by scanning electron microscopy and the non-deformed microstructures by transmission electron microscopy. The thermomechanical treatment applied to produce the M-Wire apparently increased the tensile strength and Vickers microhardness of the material, but its apparent Young modulus was smaller than that of conventionally treated NiTi. The three-point bending tests showed a higher flexibility for MW which also exhibited a significantly higher number of cycles to failure. M-Wire presented mechanical properties that can render endodontic instruments more flexible and fatigue resistant than those made with conventionally processed NiTi wires. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
Itinerant electrons in the Coulomb phase
NASA Astrophysics Data System (ADS)
Jaubert, L. D. C.; Piatecki, Swann; Haque, Masudul; Moessner, R.
2012-02-01
We study the interplay between magnetic frustration and itinerant electrons. For example, how does the coupling to mobile charges modify the properties of a spin liquid, and does the underlying frustration favor insulating or conducting states? Supported by Monte Carlo simulations, our goal is in particular to provide an analytical picture of the mechanisms involved. The models under consideration exhibit Coulomb phases in two and three dimensions, where the itinerant electrons are coupled to the localized spins via double exchange interactions. Because of the Hund coupling, magnetic loops naturally emerge from the Coulomb phase and serve as conducting channels for the mobile electrons, leading to doping-dependent rearrangements of the loop ensemble in order to minimize the electronic kinetic energy. At low electron density ρ, the double exchange coupling mainly tends to segment the very long loops winding around the system into smaller ones while it gradually lifts the extensive degeneracy of the Coulomb phase with increasing ρ. For higher doping, the results are strongly lattice dependent, displaying loop crystals with a given loop length for some specific values of ρ. By varying ρ, they can melt into different mixtures of these loop crystals, recovering extensive degeneracy in the process. Finally, we contrast this to the qualitatively different behavior of analogous models on kagome or triangular lattices.
Dou, Chuandong; Long, Xiaojing; Ding, Zicheng; Xie, Zhiyuan; Liu, Jun; Wang, Lixiang
2016-01-22
A double B←N bridged bipyridyl (BNBP) is a novel electron-deficient building block for polymer electron acceptors in all-polymer solar cells. The B←N bridging units endow BNBP with fixed planar configuration and low-lying LUMO/HOMO energy levels. As a result, the polymer based on BNBP units (P-BNBP-T) exhibits high electron mobility, low-lying LUMO/HOMO energy levels, and strong absorbance in the visible region, which is desirable for polymer electron acceptors. Preliminary all-polymer solar cell (all-PSC) devices with P-BNBP-T as the electron acceptor and PTB7 as the electron donor exhibit a power conversion efficiency (PCE) of 3.38%, which is among the highest values of all-PSCs with PTB7 as the electron donor. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles
Tvrdy, Kevin; Frantsuzov, Pavel A.; Kamat, Prashant V.
2011-01-01
Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO2, TiO2, and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO2) were not the same as those which showed the highest photocurrent (TiO2). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency. PMID:21149685
Photoinduced electron transfer from semiconductor quantum dots to metal oxide nanoparticles.
Tvrdy, Kevin; Frantsuzov, Pavel A; Kamat, Prashant V
2011-01-04
Quantum dot-metal oxide junctions are an integral part of next-generation solar cells, light emitting diodes, and nanostructured electronic arrays. Here we present a comprehensive examination of electron transfer at these junctions, using a series of CdSe quantum dot donors (sizes 2.8, 3.3, 4.0, and 4.2 nm in diameter) and metal oxide nanoparticle acceptors (SnO(2), TiO(2), and ZnO). Apparent electron transfer rate constants showed strong dependence on change in system free energy, exhibiting a sharp rise at small driving forces followed by a modest rise further away from the characteristic reorganization energy. The observed trend mimics the predicted behavior of electron transfer from a single quantum state to a continuum of electron accepting states, such as those present in the conduction band of a metal oxide nanoparticle. In contrast with dye-sensitized metal oxide electron transfer studies, our systems did not exhibit unthermalized hot-electron injection due to relatively large ratios of electron cooling rate to electron transfer rate. To investigate the implications of these findings in photovoltaic cells, quantum dot-metal oxide working electrodes were constructed in an identical fashion to the films used for the electron transfer portion of the study. Interestingly, the films which exhibited the fastest electron transfer rates (SnO(2)) were not the same as those which showed the highest photocurrent (TiO(2)). These findings suggest that, in addition to electron transfer at the quantum dot-metal oxide interface, other electron transfer reactions play key roles in the determination of overall device efficiency.
NASA Astrophysics Data System (ADS)
Nayak, B. B.; Sahu, R. K.; Dash, T.; Pradhan, S.
2018-03-01
Circular graphite discs were treated in arc plasma by varying arcing time. Analysis of the plasma treated discs by field emission scanning electron microscope revealed globular grain morphologies on the surfaces, but when the same were observed at higher magnification and higher resolution under transmission electron microscope, growth of multiwall carbon nanotubes of around 2 nm diameter was clearly seen. In situ growth of carbon nanotube bundles/bunches consisting of around 0.7 nm tube diameter was marked in the case of 6 min treated disc surface. Both the untreated and the plasma treated graphite discs were characterized by X-ray diffraction, energy dispersive spectra of X-ray, X-ray photoelectron spectroscopy, transmission electron microscopy, micro Raman spectroscopy and BET surface area measurement. From Raman spectra, BET surface area and microstructure observed in transmission electron microscope, growth of several layers of graphene was identified. Four-point probe measurements for electrical resistivity/conductivity of the graphite discs treated under different plasma conditions showed significant increase in conductivity values over that of untreated graphite conductivity value and the best result, i.e., around eightfold increase in conductivity, was observed in the case of 6 min plasma treated sample exhibiting carbon nanotube bundles/bunches grown on disc surface. By comparing the microstructures of the untreated and plasma treated graphite discs, the electrical conductivity increase in graphite disc is attributed to carbon nanotubes (including bundles/bunches) growth on disc surface by plasma treatment.
Biswas, Abul Kalam; Barik, Sunirmal; Das, Amitava; Ganguly, Bishwajit
2016-06-01
We have reported a number of new metal-free organic dyes (2-6) that have cyclic asymmetric benzotripyrrole derivatives as donor groups with peripheral nitrogen atoms in the ring, fluorine and thiophene groups as π-spacers, and a cyanoacrylic acid acceptor group. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations were employed to examine the influence of the position of the donor nitrogen atom and π-conjugation on solar cell performance. The calculated electron-injection driving force (ΔG inject), electron-regeneration driving force (ΔG regen), light-harvesting efficiency (LHE), dipole moment (μ normal), and number of electrons transferred (∆q) indicate that dyes 3, 4, and 6 have significantly higher efficiencies than reference dye 1, which exhibits high efficiency. We also extended our comparison to some other reported dyes, 7-9, which have a donor nitrogen atom in the middle of the ring system. The computed results suggest that dye 6 possesses a higher incident photon to current conversion efficiency (IPCE) than reported dyes 7-9. Thus, the use of donor groups with peripheral nitrogen atoms appears to lead to more efficient dyes than those in which the nitrogen atom is present in the middle of the donor ring system. Graphical Abstract The locations of the nitrogen atoms in the donor groups in the designed dye molecules have an important influence on DSSC efficiency.
Nonlinear THz absorption and cyclotron resonance in InSb
NASA Astrophysics Data System (ADS)
Heffernan, Kate; Yu, Shukai; Talbayev, Diyar
The emergence of coherent high-field terahertz (THz) sources in the past decade has allowed the exploration of nonlinear light-matter interaction at THz frequencies. Nonlinear THz response of free electrons in semiconductors has received a great deal of attention. Such nonlinear phenomena as saturable absorption and self-phase modulation have been reported. InSb is a narrow-gap (bandgap 0.17 eV) semiconductor with a very low electron effective mass and high electron mobility. Previous high-field THz work on InSb reported the observation of ultrafast electron cascades via impact ionization. We study the transmission of an intense THz electric field pulse by an InSb wafer at different incident THz amplitudes and 10 K temperature. Contrary to previous reports, we observe an increased transmission at higher THz field. Our observation appears similar to the saturable THz absorption reported in other semiconductors. Along with the increased absorption, we observe a strong modulation of the THz phase at high incident fields, most likely due to the self-phase modulation of the THz pulse. We also study the dependence of the cyclotron resonance on the incident THz field amplitude. The cyclotron resonance exhibits a lower strength and frequency at the higher incident THz field. The work at Tulane was supported by the Louisiana Board of Regents through the Board of Regents Support Fund Contract No. LEQSF(2012-15)-RD-A-23 and through the Pilot Funding for New Research (PFund) Contract No. LEQSF-EPS(2014)-PFUND-378.
UCP2- and non-UCP2-mediated electric current in eukaryotic cells exhibits different properties.
Wang, Ruihua; MoYung, K C; Zhang, M H; Poon, Karen
2015-12-01
Using live eukaryotic cells, including cancer cells, MCF-7 and HCT-116, normal hepatocytes and red blood cells in anode and potassium ferricyanide in cathode of MFC could generate bio-based electric current. Electrons and protons generated from the metabolic reaction in both cytosol and mitochondria contributing to the leaking would mediate the generation of electric current. Both resveratrol (RVT) and 2,4-dinitrophenol (DNP) used to induce proton leak in mitochondria were found to promote electric current production in all cells except red blood cells without mitochondria. Proton leak might be important for electric current production by bringing the charge balance in cells to enhance the further electron leak. The induced electric current by RVT can be blocked by Genipin, an inhibitor of UCP2-mediated proton leak, while that induced by DNP cannot. RVT could reduce reactive oxygen species (ROS) level in cells better than that of DNP. In addition, RVT increased mitochondrial membrane potential (MMP), while DNP decreased it. Results highly suggested the existence of at least two types of electric current that showed different properties. They included UCP2-mediated and non-UCP2-mediated electric current. UCP2-mediated electric current exhibited higher reactive oxygen species (ROS) reduction effect per unit electric current production than that of non-UCP2-mediated electric current. Higher UCP2-mediated electric current observed in cancer cells might contribute to the mechanism of drug resistence. Correlation could not be established between electric current production with either ROS and MMP without distinguishing the types of electric current.
Qiu, Jianhao; Zhang, Xiong-Fei; Zhang, Xingguang; Feng, Yi; Li, Yuxin; Yang, Lvye; Lu, Haiqiang; Yao, Jianfeng
2018-05-05
A novel and highly efficient photocatalyst of Cd 0.5 Zn 0.5 S@ZIF-8 nanocomposite has been developed by a facile self-assembly strategy. This is the first report on the application of Cd x Zn 1-x S and metal-organic framework (MOF) nanocomposite as photocatalysts for the reduction of Cr(VI). The resulting Cd 0.5 Zn 0.5 S@ZIF-8 exhibited higher photocatalytic activity than that of pristine Cd 0.5 Zn 0.5 S and ZIF-8. Particularly, the CZS@Z60 composite with 60 wt% of ZIF-8 exhibited a photocatalytic activity that is about 1.6 times as high as that of Cd 0.5 Zn 0.5 S. The dominant reason for the improved photocatalytic reduction potential is proved to be the newly-formed interfacial SZn bonds that firmly connect Cd 0.5 Zn 0.5 S and ZIF-8 and substantially improve the separation efficiency of photo-excited electrons and holes. The newly-formed chemical bonds are confirmed by XPS analyses, and the prolonged lifetime of photo-excited electrons is evidenced by the electrochemical measurement of photocurrent, which shows that the photocurrent on Cd 0.5 Zn 0.5 S@ZIF-8 is much higher than that of Cd 0.5 Zn 0.5 S and ZIF-8. This study clearly demonstrates that the MOF-based composite nanomaterials hold great promises for applications in the field of environmental remediation and for design of novel photocatalytic materials. Copyright © 2018 Elsevier B.V. All rights reserved.
Nitrided SrTiO3 as charge-trapping layer for nonvolatile memory applications
NASA Astrophysics Data System (ADS)
Huang, X. D.; Lai, P. T.; Liu, L.; Xu, J. P.
2011-06-01
Charge-trapping characteristics of SrTiO3 with and without nitrogen incorporation were investigated based on Al/Al2O3/SrTiO3/SiO2/Si (MONOS) capacitors. A Ti-silicate interlayer at the SrTiO3/SiO2 interface was confirmed by x-ray photoelectron spectroscopy and transmission electron microscopy. Compared with the MONOS capacitor with SrTiO3 as charge-trapping layer (CTL), the one with nitrided SrTiO3 showed a larger memory window (8.4 V at ±10 V sweeping voltage), higher P/E speeds (1.8 V at 1 ms +8 V) and better retention properties (charge loss of 38% after 104 s), due to the nitrided SrTiO3 film exhibiting higher dielectric constant, higher deep-level traps induced by nitrogen incorporation, and suppressed formation of Ti silicate between the CTL and SiO2 by nitrogen passivation.
NASA Astrophysics Data System (ADS)
Nho, Young-Chang; Sohn, Joon-Yong; Shin, Junhwa; Park, Jong-Seok; Lim, Yoon-Mook; Kang, Phil-Hyun
2017-03-01
Although micro-porous membranes made of polyethylene (PE) offer excellent mechanical strength and chemical stability, they exhibit large thermal shrinkage at high temperature, which causes a short circuit between positive and negative electrodes in cases of unusual heat generation. We tried to develop a new technology to reduce the thermal shrinkage of PE separators by introducing γ-Al2O3 particles treated with coupling agent on PE separators. Nanocomposite γ-Al2O3/PE separators were prepared by the dip coating of polyethylene(PE) separators in γ-Al2O3/poly(vinylidenefluoride-hexafluoropropylene) (PVDF-HFP)/crosslinker (1,3,5-trially-1,3,5-triazine-2,4,6(1 H,3 H,5 H)-trione (TTT) solution with humidity control followed by electron beam irradiation. γ-Al2O3/PVDF-HFP/TTT (95/5/2)-coated PE separator showed the highest electrolyte uptake (157%) and ionic conductivity (1.3 mS/cm). On the basis of the thermal shrinkage test, the nanocomposite γ-Al2O3/PE separators containing TTT irradiated by electron beam exhibited a higher thermal resistance. Moreover, a linear sweep voltammetry test showed that the irradiated nanocomposite γ-Al2O3/PE separators have electrochemical stabilities of up to 5.0 V. In a battery performance test, the coin cell assembled with γ-Al2O3/PVDF-HFP/TTT-coated PE separator showed excellent discharge cycle performance.
Moshaverinia, Alireza; Ansari, Sahar; Movasaghi, Zanyar; Billington, Richard W; Darr, Jawwad A; Rehman, Ihtesham U
2008-10-01
The objective of this study was to enhance the mechanical strength of glass-ionomer cements, while preserving their unique clinical properties. Copolymers incorporating several different segments including N-vinylpyrrolidone (NVP) in different molar ratios were synthesized. The synthesized polymers were copolymers of acrylic acid and NVP with side chains containing itaconic acid. In addition, nano-hydroxyapatite and fluoroapatite were synthesized using an ethanol-based sol-gel technique. The synthesized polymers were used in glass-ionomer cement formulations (Fuji II commercial GIC) and the synthesized nanoceramic particles (nano-hydroxy or fluoroapatite) were also incorporated into commercial glass-ionomer powder, respectively. The synthesized materials were characterized using FTIR and Raman spectroscopy and scanning electron microscopy. Compressive, diametral tensile and biaxial flexural strengths of the modified glass-ionomer cements were evaluated. After 24h setting, the NVP modified glass-ionomer cements exhibited higher compressive strength (163-167 MPa), higher diametral tensile strength (DTS) (13-17 MPa) and much higher biaxial flexural strength (23-26 MPa) in comparison to Fuji II GIC (160 MPa in CS, 12MPa in DTS and 15 MPa in biaxial flexural strength). The nano-hydroxyapatite/fluoroapatite added cements also exhibited higher CS (177-179 MPa), higher DTS (19-20 MPa) and much higher biaxial flexural strength (28-30 MPa) as compared to the control group. The highest values for CS, DTS and BFS were found for NVP-nanoceramic powder modified cements (184 MPa for CS, 22 MPa for DTS and 33 MPa for BFS) which were statistically higher than control group. It was concluded that, both NVP modified and nano-HA/FA added glass-ionomer cements are promising restorative dental materials with improved mechanical properties.
NASA Astrophysics Data System (ADS)
Makama, A. B.; Salmiaton, A.; Saion, E. B.; Choong, T. S. Y.; Abdullah, N.
2016-07-01
Porous ZnO/SnS heterojunctions were successfully synthesized via microwave-assisted heating of aqueous solutions containing different amounts of SnS precursors (SnCl2 and Na2S) in the presence of fixed amount of ZnCO3 nanoparticles. The experimental results revealed that the heterojunctions exhibited much higher visible light-driven photocatalytic activity for the degradation of the ciprofloxacin than pure SnS nanocrystals. The photocatalytic degradation efficiency (1-Ct/C0) of the pollutant for the most active heterogeneous nanostructure is about four times more efficient than pure SnS. The enhanced photocatalytic efficiency is ascribed to the synergic effect of high photon absorption and reduction in the recombination of electrons and holes because of efficient separation and electron transfer from the SnS to ZnO nanoparticles.
Spectral and spatial shaping of Smith-Purcell radiation
NASA Astrophysics Data System (ADS)
Remez, Roei; Shapira, Niv; Roques-Carmes, Charles; Tirole, Romain; Yang, Yi; Lereah, Yossi; Soljačić, Marin; Kaminer, Ido; Arie, Ady
2017-12-01
The Smith-Purcell effect, observed when an electron beam passes in the vicinity of a periodic structure, is a promising platform for the generation of electromagnetic radiation in previously unreachable spectral ranges. However, most of the studies of this radiation were performed on simple periodic gratings, whose radiation spectrum exhibits a single peak and its higher harmonics predicted by a well-established dispersion relation. Here, we propose a method to shape the spatial and spectral far-field distribution of the radiation using complex periodic and aperiodic gratings. We show, theoretically and experimentally, that engineering multiple peak spectra with controlled widths located at desired wavelengths is achievable using Smith-Purcell radiation. Our method opens the way to free-electron-driven sources with tailored angular and spectral responses, and gives rise to focusing functionality for spectral ranges where lenses are unavailable or inefficient.
NASA Astrophysics Data System (ADS)
Chien, Feng-Tso; Chen, Jian-Liang; Chen, Chien-Ming; Chen, Chii-Wen; Cheng, Ching-Hwa; Chiu, Hsien-Chin
2017-11-01
In this paper, a novel step gate-overlapped lightly doped drain (GOLDD) with raised source/drain (RSD) structure (SGORSD) is proposed for TFT electronic device application. The new SGORSD structure could obtain a low electric field at channel near the drain side owing to a step GOLDD design. Compared to the conventional device, the SGORSD TFT exhibits a better kink effect and higher breakdown performance due to the reduced drain electric field (D-EF). In addition, the leakage current also can be suppressed. Moreover, the device stability, such as the threshold voltage shift and drain current degradation under a high gate bias, is improved by the design of SGORSD structure. Therefore, this novel step GOLDD structure can be a promising design to be used in active-matrix flat panel electronics.
NASA Astrophysics Data System (ADS)
Liu, Weiping; Lee, Ning-Cheng
2007-07-01
The impact reliability of solder joints in electronic packages is critical to the lifetime of electronic products, especially those portable devices using area array packages such as ball-grid array (BGA) and chip-scale packages (CSP). Currently, SnAgCu (SAC) solders are most widely used for lead-free applications. However, BGA and CSP solder joints using SAC alloys are fragile and prone to premature interfacial failure, especially under shock loading. To further enhance impact reliability, a family of SAC alloys doped with a small amount of additives such as Mn, Ce, Ti, Bi, and Y was developed. The effects of doping elements on drop test performance, creep resistance, and microstructure of the solder joints were investigated, and the solder joints made with the modified alloys exhibited significantly higher impact reliability.
NASA Astrophysics Data System (ADS)
Daud, D.; Abd. Rahman, A.; Shamsuddin, A. H.
2016-03-01
In this work, palm oil biomass consisting of empty fruit bunch (EFB), mesocarp fibre and palm kernel shell (PKS) were chosen as raw material for torrefaction process. Torrefaction process was conducted at various temperatures of 240 °C, 270 °C and 300 °C with a residence time of 60 minutes. The morphology of the raw and torrefied biomass was then observed through Scanning Electron Microscopy (SEM) images. Also, through this experiment the correlation between the torrefaction temperatures with the volatile gases released were studied. From the observation, the morphology structure of the biomass exhibited inter-particle gaps due to the release of volatile gases and it is obviously seen more at higher temperatures. Moreover, the change of the biomass structure is influenced by the alteration of the lignocellulose biomass.
NASA Astrophysics Data System (ADS)
Peng, Tianyou; Dai, Ke; Yi, Huabing; Ke, Dingning; Cai, Ping; Zan, Ling
2008-07-01
Hydrogen production over dye-sensitized Pt/P25 under visible-light irradiation was investigated by using methanol or TEOA as an electron donor. Ru 2(bpy) 4L 1-PF 6 shows the best photosensitization due to its largest conjugation system, widest range of visible-light and 'antenna effect' among the used three Ru(II)-bipyridyl dyes. Ru 2(bpy) 4L 1-PF 6 loosely linked with TiO 2 also exhibit more steady and higher increases in H 2 evolution upon prolonging the irradiation time than the tightly linked N719. The dynamic equilibrium between the linkage of ground dye and divorce of oxidized dye from TiO 2 can enhance the electron-injection and hinder the backward transfer, and then improve the H 2 evolution efficiency.
Cobalt-doped carbon xerogel with different initial pH values toward oxygen reduction
NASA Astrophysics Data System (ADS)
Fitri, Azim; Loh, Kee Shyuan; Puspasari, Ifa; Mohamad, Abu Bakar
2017-12-01
In this study, cobalt-doped carbon xerogel (Co-CX) was synthesized via sol-gel polymerization resorcinol-formaldehyde, catalyzed with cobalt nitrate, followed by drying and carbonization process under nitrogen gas flow. The effect of initial pH value (5.5, 6.5 and 7.5) and the type of carbon precursors on the morphology of Co-CX have been investigated with Field Emission-Transmission Electron Microscopy (FESEM). The catalytic activity of Co-CX for the oxygen reduction reaction (ORR) in 0.1 M KOH has been studied by using a rotating ring-disk electrode (RRDE) technique. FESEM revealed that Co doping promotes the formation of more pores. While the conditions allow obtaining xerogel with higher porosity at pH 7.5. The RRDE result display that Co-CX exhibited good catalytic activity tends to favor two electrons pathway.
Aguado, Daniel; Barat, Ramón; Soto, Juan; Martínez-Mañez, Ramón
2016-10-01
This study demonstrates the feasibility of using a voltammetric electronic tongue to monitor effluent dissolved orthophosphate concentration in a struvite precipitation reactor. The electrochemical response of the electronic tongue to the presence of orthophosphate in samples collected from the effluent of the precipitation reactor is used to predict orthophosphate concentration via a statistical model based on Partial Least Squares (PLS) Regression. PLS predictions were suitable for this monitoring application in which precipitation efficiencies higher than 80% (i.e., effluent dissolved orthophosphate concentrations lower than 40mg P-PO4(3-) L(-1)) could be considered as indicator of good process performance. The electronic tongue consisted of a set of metallic (noble and non-noble) electrodes housed inside a stainless steel cylinder which was used as the body of the electronic tongue system. Fouling problems were prevented via a simple mechanical polishing of the electrodes. The measurement of each sample with the electronic tongue was done in less than 3s. Conductivity of the samples only affected the electronic tongue marginally, being the main electrochemical response due to the orthophosphate concentration in the samples. Copper, silver, iridium and rhodium were the electrodes that exhibited noticeable response correlated with the dissolved orthophosphate concentration variations, while gold, platinum and especially cobalt and nickel were the less useful electrodes for this application. Copyright © 2016 Elsevier B.V. All rights reserved.
Liu, Zonghao; Xiong, Dehua; Xu, Xiaobao; Arooj, Qudsia; Wang, Huan; Yin, Liyuan; Li, Wenhui; Wu, Huaizhi; Zhao, Zhixin; Chen, Wei; Wang, Mingkui; Wang, Feng; Cheng, Yi-Bing; He, Hongshan
2014-03-12
In this study, new pull-push arylamine-fluorene based organic dyes zzx-op1, zzx-op2, and zzx-op3 have been designed and synthesized for p-type dye-sensitized solar cells (p-DSCs). In zzx-op1, a di(p-carboxyphenyl)amine (DCPA) was used as an electron donor, a perylenemonoimide (PMID) as an electron acceptor, and a fluorene (FLU) unit with two aliphatic hexyl chains as a π-conjugated linker. In zzx-op2 and zzx-op3, a 3,4-ethylenedioxythiophene (EDOT) and a thiophene were inserted consecutively between PMID and FLU to tune the energy levels of the frontier molecular orbitals of the dyes. The structural modification broadened the spectral coverage from an onset of 700 nm for zzx-op1 to 750 nm for zzx-op3. The electron-rich EDOT and thiophene lifted up the HOMO (highest occupied molecular orbital) levels of zzx-op2 and zzx-op3, making their potential more negative than zzx-op1. When three dyes were employed in p-type DSCs with I(-)/I3(-) as a redox couple and NiO nanoparticles as hole materials, zzx-op1 exhibited impressive energy conversion efficiency of 0.184% with the open-circuit voltage (VOC) of 112 mV and the short-circuit current density (JSC) of 4.36 mA cm(-2) under AM 1.5G condition. Density functional theory calculations, transient photovoltage decay measurements, and electrochemical impedance spectroscopic studies revealed that zzx-op1 sensitized solar cell exhibited much higher charge injection efficiency (90.3%) than zzx-op2 (53.9%) and zzx-op3 (39.0%), indicating a trade-off between spectral broadening and electron injection driving force in p-type DSCs.
NASA Astrophysics Data System (ADS)
Różycka, Anna; Fryń, Patryk; Iwan, Agnieszka; Bogdanowicz, Krzysztof Artur; Filapek, Michal; Górska, Natalia; Dąbczyński, Paweł; Rysz, Jakub; Pociecha, Damian; Hreniak, Agnieszka; Marzec, Monika
2018-02-01
A new piperazine imine, (7E)-N-((4-((E)-(4-hexadecylphenylimino)methyl)piperazin-1-yl)methylene)-4-dodecylbenzenamine, has been synthesized by the condensation of 1,4-piperazinedicarboxaldehyde with 4-hexadecylaniline. The imine was characterized by cyclic voltammetry, Fourier transform middle-infrared absorption spectroscopy and X-ray diffraction. Thermal properties of imine was analyzed by differential scanning calorimetry method during first and second heating scan at 10 and 20 °C/min. Texture of imine was investigated by polarized optical microscopy and atomic force microscopy. Furthermore, imine was blended with titanium dioxide in anatase form and fully characterized by the same methods. Piperazine imine and its mixture with titanium dioxide exhibited only a transition from crystal to isotropic state. Imine exhibits two-step reduction wave attributed to one-electron transfer in each step as was found by cyclic voltammetry. Both titanium dioxide and poly(3-hexylthiophene) change the electrochemical properties of piperazine imine, however, in different ways. Studied imine blended with titanium dioxide exhibited higher value of energy band gap than pure piperazine imine and lower Eg than pure poly(3-hexylthiophene).
NASA Astrophysics Data System (ADS)
Kang, Na Rae; Lee, So Young; Shin, Dong Won; Hwang, Doo Sung; Lee, Kang Hyuck; Cho, Doo Hee; Kim, Ji Hoon; Lee, Young Moo
2016-03-01
A series of end-group cross-linked membranes (Az-XESPSN) were prepared by click reaction to investigate the effects of cross-linking on the morphology and proton transport properties of proton exchange membranes. The morphological transformations resulting from thermal annealing and cross-linking were observed by means of atomic force microscopy (AFM) and transmission electron microscopy (TEM). Compared to the non-cross-linked ESPSN membranes, the Az-XESPSN membranes exhibited lower water uptake and improved mechanical and chemical stabilities. In addition, the Az-XESPSN membranes exhibited higher proton conductivities (0.018-0.028 S cm-1) compared to those of the ESPSN membranes (0.0044-0.0053 S cm-1) and Nafion 212 (0.0061 S cm-1), particularly in conditions of elevated temperature (120 °C) and low relative humidity (35%). Such enhancements can be attributed to a synergistic effect of well-defined hydrophilic ionic clusters and triazole groups that function as proton carriers under anhydrous conditions. Furthermore, the Az-XESPSN membranes exhibited significantly enhanced single cell performance and long-term stability compared to those of ESPSN membranes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winter, B.; King, S. J.; Vallance, C., E-mail: claire.vallance@chem.ox.ac.uk
2014-02-15
The time resolution achievable using standard position-sensitive ion detectors, consisting of a chevron pair of microchannel plates coupled to a phosphor screen, is primarily limited by the emission lifetime of the phosphor, around 70 ns for the most commonly used P47 phosphor. We demonstrate that poly-para-phenylene laser dyes may be employed extremely effectively as scintillators, exhibiting higher brightness and much shorter decay lifetimes than P47. We provide an extensive characterisation of the properties of such scintillators, with a particular emphasis on applications in velocity-map imaging and microscope-mode imaging mass spectrometry. The most promising of the new scintillators exhibits an electron-to-photonmore » conversion efficiency double that of P47, with an emission lifetime an order of magnitude shorter. The new scintillator screens are vacuum stable and show no signs of signal degradation even over longer periods of operation.« less
FeRh ground state and martensitic transformation
NASA Astrophysics Data System (ADS)
Zarkevich, Nikolai A.; Johnson, Duane D.
2018-01-01
Cubic B 2 FeRh exhibits a metamagnetic transition [(111) antiferromagnet (AFM) to ferromagnet (FM)] around 353 K and remains structurally stable at higher temperatures. However, the calculated zero-Kelvin phonons of AFM FeRh exhibit imaginary modes at M points in the Brillouin zone, indicating a premartensitic instability, which is a precursor to a martensitic transformation at low temperatures. Combining electronic-structure calculations with ab initio molecular dynamics, conjugate gradient relaxation, and the solid-state nudged-elastic band methods, we predict that AFM B 2 FeRh becomes unstable at ambient pressure and transforms without a barrier to an AFM(111) orthorhombic (martensitic) ground state below 90 ±10 K . We also consider competing structures, in particular, a tetragonal AFM(100) phase that is not the global ground state, as proposed [Phys. Rev. B 94, 180407(R) (2016), 10.1103/PhysRevB.94.180407], but a constrained solution.
Electrochemical Corrosion Properties of Commercial Ultra-Thin Copper Foils
NASA Astrophysics Data System (ADS)
Yen, Ming-Hsuan; Liu, Jen-Hsiang; Song, Jenn-Ming; Lin, Shih-Ching
2017-08-01
Ultra-thin electrodeposited Cu foils have been developed for substrate thinning for mobile devices. Considering the corrosion by residual etchants from the lithography process for high-density circuit wiring, this study investigates the microstructural features of ultra-thin electrodeposited Cu foils with a thickness of 3 μm and their electrochemical corrosion performance in CuCl2-based etching solution. X-ray diffraction and electron backscatter diffraction analyses verify that ultra-thin Cu foils exhibit a random texture and equi-axed grains. Polarization curves show that ultra-thin foils exhibit a higher corrosion potential and a lower corrosion current density compared with conventional (220)-oriented foils with fan-like distributed fine-elongated columnar grains. Chronoamperometric results also suggest that ultra-thin foils possess superior corrosion resistance. The passive layer, mainly composed of CuCl and Cu2O, forms and dissolves in sequence during polarization.
NASA Astrophysics Data System (ADS)
Li, Jing; Shi, Qingzhu; Chen, Yan; Song, Ming
2017-12-01
Bi2WO6 was synthesized via a facile hydrothermal method using different inorganic acid or alkali varied pH of the solution at 180℃ for 12 h, and characterized by X-ray diffraction, FESEM and photocurrent. Furthermore, the photocatalytic activity of Bi2WO6 was investigated in the reduction of aqueous Cr(VI) under visible light (λ > 420 nm) irradiation. As a result, assynthesized Bi2WO6 was an orthorhombic phase, and well-crystallized with 3D hierarchical structure constructed by arranged 2D layers of nanoplates. All the as-synthesized Bi2WO6 exhibited the visible light photocatalytic activities on aqueous Cr(VI), and Bi2WO6-(2) exhibited the highest photocatalytic reduction efficiency based on much higher separation and transfer efficiency of photogenerated electrons and holes.
Li, Liang; Han, Qiutong; Tang, Lanqin; Zhang, Yuan; Li, Ping; Zhou, Yong; Zou, Zhigang
2018-01-25
Herein, orthorhombic regular Bi 4 TaO 8 Cl square nanoplates with an edge length of about 500 nm and a thickness of about 100 nm were successfully synthesized using a facile molten salt route. The as-prepared square nanoplates have been proven to be of {001} crystal facets as two dominantly exposed surfaces. The density functional theory calculation and photo-deposition of noble metal experiment demonstrate the electron and hole separation on different crystal facets and reveal that {001} crystal facets are in favor of the reduction reaction. Since the square nanoplate structure exhibits dominant exposure surfaces of the {001} facets, the molten salt route-based samples basically possess an obviously higher photocatalytic activity than those prepared by the solid state reaction (SSR) method. This study may provide inspiration for fabricating efficient photocatalysts.
NASA Astrophysics Data System (ADS)
Cai, Aijun; Guo, Aiying; Du, Liqiang; Chang, Yongfang; Wang, Xiuping
2018-05-01
In this article, fiber-like ZnO-ZnFe2O4 composites are obtained by using nanofibrillated cellulose as a biotemplate. The as-prepared composites exhibit strong absorbance in the visible-light region. The ZnO-ZnFe2O4 composites exhibit a similar bandgap (1.88 eV) compared with the ZnFe2O4 (1.85 eV). The ZnO-ZnFe2O4 composites can be easily collected by an external magnet, which contributes to improving the utilization efficiency of the photocatalysts. The photocatalytic activity of the ZnO-ZnFe2O4 catalysts was evaluated by photodegrading rhodamine B (RhB) under visible-light irradiation. Compared with ZnO and ZnFe2O4, the ZnO-ZnFe2O4 catalysts show higher photocatalytic activity due to the efficient electron-hole separation.
NASA Astrophysics Data System (ADS)
Peng, Hongjian; Luan, Xiangfeng; Qiu, Lixia; Li, Hang; Liu, Ye; Zou, Yingping
2017-10-01
Two new A-D-A small molecules with alkoxyphenyl and alkylthiophenyl-substituted naphtho[1,2-b:5,6-b‧]difuran (NDF) as the central building block named NDFPO-DPP and NDFPS-DPP were synthesized and firstly used as donor materials in organic solar cells (OSCs). The effects of the alkoxyphenyl and alkylthiophenyl side chains on the NDF unit have been investigated. With a single atom variation from O to S, NDFPS-DPP exhibited lower HOMO energy levels than its counterpart NDFPO-DPP, which resulted in enhanced Voc. The device based on NDFPO-DPP with thermal annealing exhibited a better PCE of 3.10% due to the higher and more balanced hole and electron mobilities. The investigations show that NDF could be a promising building block in OSCs via rational molecular structure design and device optimizations.
Zhou, Xinhong; Shang, Chaoqun; Gu, Lin; Dong, Shanmu; Chen, Xiao; Han, Pengxian; Li, Lanfeng; Yao, Jianhua; Liu, Zhihong; Xu, Hongxia; Zhu, Yuwei; Cui, Guanglei
2011-08-01
In this study, titanium nitride-vanadium nitride fibers of core-shell structures were prepared by the coaxial electrospinning, and subsequently annealed in the ammonia for supercapacitor applications. These core-shell (TiN-VN) fibers incorporated mesoporous structure into high electronic conducting transition nitride hybrids, which combined higher specific capacitance of VN and better rate capability of TiN. These hybrids exhibited higher specific capacitance (2 mV s(-1), 247.5 F g(-1)) and better rate capability (50 mV s(-1), 160.8 F g(-1)), which promise a good candidate for high-performance supercapacitors. It was also revealed by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) characterization that the minor capacitance fade originated from the surface oxidation of VN and TiN.
Improved dielectric functions in metallic films obtained via template stripping
NASA Astrophysics Data System (ADS)
Hyuk Park, Jong; Nagpal, Prashant; Oh, Sang-Hyun; Norris, David J.
2012-02-01
We compare the dielectric functions of silver interfaces obtained via thermal evaporation with those obtained with template stripping. Ellipsometry measurements show that the smoother template-stripped surfaces exhibit effective dielectric functions with a more negative real component and a smaller imaginary component, implying higher conductivity and less energy loss, respectively. These results agree with the relation between dielectric function and surface roughness derived from combining the effective-medium model and the Drude-Lorentz model. The improvement in the effective dielectric properties shows that metallic films prepared via template stripping can be favorable for applications in electronics, nanophotonics, and plasmonics.
Quark matter droplets in neutron stars
NASA Technical Reports Server (NTRS)
Heiselberg, H.; Pethick, C. J.; Staubo, E. F.
1993-01-01
We show that, for physically reasonable bulk and surface properties, the lowest energy state of dense matter consists of quark matter coexisting with nuclear matter in the presence of an essentially uniform background of electrons. We estimate the size and nature of spatial structure in this phase, and show that at the lowest densities the quark matter forms droplets embedded in nuclear matter, whereas at higher densities it can exhibit a variety of different topologies. A finite fraction of the interior of neutron stars could consist of matter in this new phase, which would provide new mechanisms for glitches and cooling.
NASA Astrophysics Data System (ADS)
Maaß, Friedrich; Utecht, Manuel; Stremlau, Stephan; Gille, Marie; Schwarz, Jutta; Hecht, Stefan; Klamroth, Tillmann; Tegeder, Petra
2017-07-01
Utilizing suitable precursor molecules, a thermally activated and surface-assisted synthesis results in the formation of defect-free graphene nanoribbons (GNRs), which exhibit electronic properties that are not present in extended graphene. Most importantly, they have a band gap in the order of a few electron volts, depending on the nanoribbon width. In this study, we investigate the electronic structure changes during the formation of GNRs, nitrogen-doped (singly and doubly N-doped) as well as non-N-doped chevron-shaped CGNRs on Au(111). Thus we determine the optical gaps of the precursor molecules, the intermediate nonaromatic polymers, and finally the aromatic GNRs, using high-resolution electron energy loss spectroscopy and density functional theory calculations. As expected, we find no influence of N-doping on the size of the optical gaps. The gap of the precursor molecules is around 4.5 eV. Polymerization leads to a reduction of the gap to a value of 3.2 eV due to elongation and thus enhanced delocalization. The CGNRs exhibit a band gap of 2.8 eV, thus the gap is further reduced in the nanoribbons, since they exhibit an extended delocalized π -electron system.
Simulation of energy-dependent electron diffusion processes in the Earth's outer radiation belt
Ma, Q.; Li, W.; Thorne, R. M.; ...
2016-04-28
The radial and local diffusion processes induced by various plasma waves govern the highly energetic electron dynamics in the Earth's radiation belts, causing distinct characteristics in electron distributions at various energies. In this study, we present our simulation results of the energetic electron evolution during a geomagnetic storm using the University of California, Los Angeles 3-D diffusion code. Following the plasma sheet electron injections, the electrons at different energy bands detected by the Magnetic Electron Ion Spectrometer (MagEIS) and Relativistic Electron Proton Telescope (REPT) instruments on board the Van Allen Probes exhibit a rapid enhancement followed by a slow diffusivemore » movement in differential energy fluxes, and the radial extent to which electrons can penetrate into depends on energy with closer penetration toward the Earth at lower energies than higher energies. We incorporate radial diffusion, local acceleration, and loss processes due to whistler mode wave observations to perform a 3-D diffusion simulation. Here, our simulation results demonstrate that chorus waves cause electron flux increase by more than 1 order of magnitude during the first 18 h, and the subsequent radial extents of the energetic electrons during the storm recovery phase are determined by the coupled radial diffusion and the pitch angle scattering by EMIC waves and plasmaspheric hiss. The radial diffusion caused by ULF waves and local plasma wave scattering are energy dependent, which lead to the observed electron flux variations with energy dependences. Lastly, this study suggests that plasma wave distributions in the inner magnetosphere are crucial for the energy-dependent intrusions of several hundred keV to several MeV electrons.« less
NASA Astrophysics Data System (ADS)
Mahalingam, S.; Abdullah, H.; Ashaari, I.; Shaari, S.; Muchtar, A.
2016-02-01
This study focuses on the influence of an acid treatment process of single-walled carbon nanotubes (SWCNTs) in In2O3-based dye-sensitized solar cells (DSSCs). Pure In2O3, In2O3-SWCNTs with acid treatment and In2O3-SWCNTs without acid treatment were prepared using the sol-gel method via a spin coating technique annealed at 450 °C. The optical, morphology and electrical properties of the photoanodes were characterized by means of UV-Vis analysis, atomic force microscopy and field-emission scanning electron microscopy, and J-V curve measurements, respectively. The optical band gap obtained through UV-Vis analysis showed that the acid treatment process modified the band gap of the photoanode, which enhances the V oc of the DSSCs. In addition, In2O3-SWCNTs with acid treatment possess a porous structure that improves the power conversion efficiency (PCE) of the DSSCs. In addition, the diameter of acid-treated SWCNTs was reduced compared to pristine SWCNTs. In2O3-SWCNTs with acid treatment exhibited the highest PCE of 1.40% with J sc of 7.6 mA cm-2, V oc of 0.51 V, and fill factor of 0.36. The increment in V oc is due to the higher band gap obtained through the UV-Vis absorption spectrum. Moreover, In2O3-SWCNTs with acid treatment has a higher electron lifetime with a higher effective diffusion coefficient that slows down the recombination rate and speeds up the electron transport process.
Roberts, Jennifer D; Rodkey, Lindsey; Ray, Rashawn; Knight, Brandon; Saelens, Brian E
2017-06-01
An objective of the Built Environment and Active Play (BEAP) Study was to examine whether home built environment, bedroom electronic presence, parental rules and demographics predicted children's sedentary behavior (SB). In 2014, BEAP Study questionnaires were mailed to 2000 parents of children (7-12 years) within the Washington DC area. SB-Duration (hours/day) and SB-Frequency (days/week) were assessed by two questions with multiple subparts relating to SB activity type (e.g. car riding) and SB companionship (e.g. friends). Built environment, bedroom electronic presence, parental rules and demographic data were obtained through questionnaire items and ordered logistic regression models were used to examine whether these variables were associated with SB. Study sample included 144 children (female (50%); average age (9.7 years); White (56.3%); Black/African-American (23.7%); Asian-Americans (10.4%)). Nearly 40% of the sample reported daily solitary SB with car riding being the most frequently reported type of SB. Children living on streets without a dead-end/cul-de-sac exhibited a higher odds in SB-Duration using electric media [2.61 (CI: 1.31, 5.18)] and having no television in a child's bedroom was associated with a lower odds in SB-Frequency [0.048 (CI: 0.006, 0.393)] and SB-Duration [0.085 (CI: 0.018, 0.395)]. Non-Hispanic/Latino children were also found to have higher odds in solitary SB-Frequency when parental rules of electronic use were modeled [8.56 (CI: 1.11, 66.01)]. Based on results from this cross-sectional study, home neighborhood built environment, bedroom electronic presence and absence of parental rules can significantly predict children's SB.
NASA Astrophysics Data System (ADS)
Samanta, Piyas; Mandal, Krishna C.
2015-12-01
Hole injection into silicon dioxide (SiO2) films (8-40 nm thick) is investigated for the first time during substrate electron injection via Fowler-Nordheim (FN) tunneling in n-type 4H- and 6H-SiC (silicon carbide) based metal-oxide-semiconductor (MOS) structures at a wide range of temperatures (T) between 298 and 598 K and oxide electric fields Eox from 6 to 10 MV/cm. Holes are generated in heavily doped n-type polycrystalline silicon (n+ -polySi) gate serving as the anode as well as in the bulk silicon dioxide (SiO2) film via hot-electron initiated band-to-band ionization (BTBI). In absence of oxide trapped charges, it is shown that at a given temperature, the hole injection rates from either of the above two mechanisms are higher in n-4H-SiC MOS devices than those in n-6H-SiC MOS structures when compared at a given Eox and SiO2 thickness (tox). On the other hand, relative to n-4H-SiC devices, n-6H-SiC structures exhibit higher hole injection rates for a given tox during substrate electron injection at a given FN current density je,FN throughout the temperature range studied here. These two observations clearly reveal that the substrate material (n-6H-SiC and n-4H-SiC) dependencies on time-to-breakdown (tBD) or injected charge (electron) to breakdown (QBD) of the SiO2 film depend on the mode of FN injections (constant field/voltage and current) from the substrate which is further verified from the rigorous device simulation as well.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Varghese, Jithin J.; Mushrif, Samir H., E-mail: shmushrif@ntu.edu.sg
Small metal clusters exhibit unique size and morphology dependent catalytic activity. The search for alternate minimum energy pathways and catalysts to transform methane to more useful chemicals and carbon nanomaterials led us to investigate collision induced dissociation of methane on small Cu clusters. We report here for the first time, the free energy barriers for the collision induced activation, dissociation, and coupling of methane on small Cu clusters (Cu{sub n} where n = 2–12) using ab initio molecular dynamics and metadynamics simulations. The collision induced activation of the stretching and bending vibrations of methane significantly reduces the free energy barriermore » for its dissociation. Increase in the cluster size reduces the barrier for dissociation of methane due to the corresponding increase in delocalisation of electron density within the cluster, as demonstrated using the electron localisation function topology analysis. This enables higher probability of favourable alignment of the C–H stretching vibration of methane towards regions of high electron density within the cluster and makes higher number of sites available for the chemisorption of CH{sub 3} and H upon dissociation. These characteristics contribute in lowering the barrier for dissociation of methane. Distortion and reorganisation of cluster geometry due to high temperature collision dynamics disturb electron delocalisation within them and increase the barrier for dissociation. Coupling reactions of CH{sub x} (x = 1–3) species and recombination of H with CH{sub x} have free energy barriers significantly lower than complete dehydrogenation of methane to carbon. Thus, competition favours the former reactions at high hydrogen saturation on the clusters.« less
Effects of Charge-Transfer Excitons on the Photophysics of Organic Semiconductors
NASA Astrophysics Data System (ADS)
Hestand, Nicholas J.
The field of organic electronics has received considerable attention over the past several years due to the promise of novel electronic materials that are cheap, flexible and light weight. While some devices based on organic materials have already emerged on the market (e.g. organic light emitting diodes), a deeper understanding of the excited states within the condensed phase is necessary both to improve current commercial products and to develop new materials for applications that are currently in the commercial pipeline (e.g. organic photovoltaics, wearable displays, and field effect transistors). To this end, a model for pi-conjugated molecular aggregates and crystals is developed and analyzed. The model considers two types of electronic excitations, namely Frenkel and charge-transfer excitons, both of which play a prominent role in determining the nature of the excited states within tightly-packed organic systems. The former consist of an electron-hole pair bound to the same molecule while in the later the electron and hole are located on different molecules. The model also considers the important nuclear reorganization that occurs when the system switches between electronic states. This is achieved using a Holstein-style Hamiltonian that includes linear vibronic coupling of the electronic states to the nuclear motion associated with the high frequency vinyl-stretching and ring-breathing modes. Analysis of the model reveals spectroscopic signatures of charge-transfer mediated J- and H-aggregation in systems where the photophysical properties are determined primarily by charge-transfer interactions. Importantly, such signatures are found to be sensitive to the relative phase of the intermolecular electron and hole transfer integrals, and the relative energy of the Frenkel and charge-transfer states. When the charge-transfer integrals are in phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits J-aggregate characteristics including a positive band curvature, a red shifted main absorption peak, and an increase in the ratio of the first two vibronic peaks relative to the monomer. On the other hand, when the charge-transfer integrals are out of phase and the energy of the charge-transfer state is higher than the Frenkel state, the system exhibits H-aggregate characteristics including a negative band curvature, a blue shifted main absorption peak, and a decrease in the ratio of the first two vibronic peaks relative to the monomer. Notably, these signatures are consistent with those exhibited by Coulombically coupled J- and H-aggregates. Additional signatures of charge-transfer J- and H-aggregation are also discovered, the most notable of which is the appearance of a second absorption band when the charge-transfer integrals are in phase and the charge-transfer and Frenkel excitons are near resonance. In such instances, the peak-to-peak spacing is found to be proportional to the sum of the electron and hole transfer integrals. Further analysis of the charge-transfer interactions within the context of an effective Frenkel exciton coupling reveals that the charge-transfer interactions interfere directly with the intermolecular Coulombic coupling. The interference can be either constructive or destructive resulting in either enhanced or suppressed J- or H- aggregate behavior relative to what is expected based on Coulombic coupling alone. Such interferences result in four new aggregate types, namely HH-, HJ-, JH-, and JJ-aggregates, where the first letter indicates the nature of the Coulombic coupling and the second indicates the nature of the charge-transfer coupling. Vibronic signatures of such aggregates are developed and provide a means by which to rapidly screen materials for certain electronic characteristics. Notably, a large total (Coulombic plus charge-transfer) exciton coupling is associated with an absorption spectrum in which the ratio of the first two vibronic peaks deviates significantly from that of the unaggregated monomer. Hence, strongly coupled, high exciton mobility aggregates can be readily distinguished from low mobility aggregates by the ratio of their first two vibronic peaks. (Abstract shortened by ProQuest.).
Thermally activated delayed fluorescence of a Zr-based metal–organic framework
Mieno, H.; Kabe, R.; Allendorf, M. D.; ...
2017-12-22
Here, the first metal–organic framework exhibiting thermally activated delayed fluorescence (TADF) was developed. The zirconium-based framework (UiO-68-dpa) uses a newly designed linker composed of a terphenyl backbone, an electron-accepting carboxyl group, and an electron-donating diphenylamine and exhibits green TADF emission with a photoluminescence quantum yield of 30% and high thermal stability.
Wu, Xi; Singh, Atul K; Wu, Xiaoyu; Lyu, Yuan; Bhunia, Arun K; Narsimhan, Ganesan
2016-07-01
Antimicrobial peptides (AMPs) are relatively short peptides that have the ability to penetrate the cell membrane, form pores leading to cell death. This study compares both antimicrobial activity and cytotoxicity of native melittin and its two mutants, namely, melittin I17K (GIGAVLKVLTTGLPALKSWIKRKRQQ) with a higher charge and lower hydrophobicity and mutant G1I (IIGAVLKVLTTGLPALISWIKRKRQQ) of higher hydrophobicity. The antimicrobial activity against different strains of Listeria was investigated by bioassay, viability studies, fluorescence and transmission electron microscopy. Cytotoxicity was examined by lactate dehydrogenase (LDH) assay on mammalian Caco-2 cells. The minimum inhibitory concentration of native, mutant I17K, mutant G1I against Listeria monocytogenes F4244 was 0.315±0.008, 0.814±0.006 and 0.494±0.037μg/ml respectively, whereas the minimum bactericidal concentration values were 3.263±0.0034, 7.412±0.017 and 5.366±0.019μg/ml respectively. Lag time for inactivation of L. monocytogenes F4244 was observed at concentrations below 0.20 and 0.78μg/ml for native and mutant melittin I17K respectively. The antimicrobial activity against L. monocytogenes F4244 was in the order native>G1I>I17K. Native melittin was cytotoxic to mammalian Caco-2 cells above concentration of 2μg/ml, whereas the two mutants exhibited negligible cytotoxicity up to a concentration of 8μg/ml. Pore formation in cell wall/membrane was observed by transmission electron microscopy. Molecular dynamics (MD) simulation of native and its mutants indicated that (i) surface native melittin and G1I exhibited higher tendency to penetrate a mimic of bacterial cell membrane and (ii) transmembrane native and I17K formed water channel in mimics of bacterial and mammalian cell membranes. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Nor Amalini, A.; Melina Cheah, M. Y.; Wan Rosli, W. D.; Hayati, S.; Mohamad Haafiz, M. K.
2017-12-01
Development of regenerated cellulose (RC) derived from underutilized cellulosic biomass has recently gained attention as potential petroleum-based polymer replacers. The objective of this current work is to evaluate the properties of RC films obtained from oil palm empty fruit bunch microcrystalline cellulose (OPEFB-MCC) through environmental process. The RC films were fabricated by using different amounts of OPEFB-MCC (4, 6 and 8 %) and 1-butyl-3-methylimidazolium chloride (BMIMCl) was used as green OPEFB-MCC dissolving medium. The resultant RC films were then characterized by means of Fourier transform infrared (FTIR) spectroscopy, mechanical, thermal and morphological properties by using tensile test, differential scanning colorimetry (DSC), and scanning electron microscopy (SEM) respectively. Increase in OPEFB-MCC amounts from 4 to 8 % enhanced the tensile strength and elongation at break of RC by 101 and 78 %, respectively, indicating stronger and more flexible films were formed. It is interesting to note that the Tg (101-154 °C) and Tm(130-187 °C) were found shifted to higher temperature with higher proportions of OPEFB-MCC in RC films. Meanwhile, FTIR analysis showed no new peak presented in RC films, suggesting that BMIMCl is a non-derivatizing solvent to OPEFB-MCC. Conspicuous changes in the spectra of RC films compared to OPEFB-MCC at 3200-3600 cm-1, 1430 cm-1, 1162 cm-1, 1111 cm-1, 1020-1040 cm-1 and 896 cm-1 were associated with transformation of cellulose I to cellulose II structure or/and decrease in crystallinity occurred after regeneration process. SEM micrographs of the RC films revealed that higher OPEFB-MCC contents exhibited smoother and more homogeneous surfaces morphology. Overall, OPEFB-MCC exhibited good film forming ability for RC production and may offer potential application in various industries including food packaging, medical goods and electronic devices.
NASA Astrophysics Data System (ADS)
Ettler, Vojtech; Kribek, Bohdan; Mihaljevic, Martin; Vanek, Ales; Penizek, Vit; Sracek, Ondra; Mapani, Ben; Kamona, Fred; Nyambe, Imasiku
2017-04-01
Soils in the vicinity of non-ferrous metal smelters are often highly polluted by inorganic contaminants released from particulate emissions, which undergo weathering processes and release contaminants when deposited in soils. We studied the heavy mineral fraction, separated from mining- and smelter-affected topsoils, from both a humid subtropical area in the Zambian Copperbelt and a hot semi-arid area in the northern Namibia. High concentrations of metal(loid)s were detected in the studied soils: up to 1450 ppm As, 8980 ppm Cu, 4640 ppm Pb, 2620 ppm Zn. A combination of X-ray diffraction analysis (XRD), scanning electron microscopy (SEM/EDS), and electron probe microanalysis (EPMA) helped to identify the phases forming individual metal(loid)-bearing particles. Whereas spherical particles originate from the smelting and flue gas cleaning processes, angular particles either have geogenic origins or they are windblown from the mining operations and mine waste disposal sites. Sulphides from ores and mine tailings often exhibit weathering rims in contrast to smelter-derived high-temperature sulphides (chalcocite [Cu2S], digenite [Cu9S5], covellite [CuS], non-stoichiometric quenched Cu-Fe-S phases). Soils from humid subtropical areas exhibit higher available concentrations of metal(loids), and higher frequencies of weathering features (especially for copper-bearing oxides such as delafossite [CuFeO2]) are observed. In contrast, metal(loid)s are efficiently retained in semi-arid soils, where a high proportion of non-weathered smelter slag particles and low-solubility Ca-Cu-Pb arsenates occur. Our results indicate that compared to semi-arid areas (where inorganic contaminants were rather immobile in soils despite their high concentrations) a higher potential risk exists for agriculture in mine- and smelter-affected humid subtropical areas (where metal(loid) contaminants can be highly available for the uptake by crops). This study was supported by the Czech Science Foundation projects (GACR 13-17501S and 16-13142S).
NASA Astrophysics Data System (ADS)
Adegoke, Oluwasesan; Park, Enoch Y.
2016-06-01
The development of alloyed quantum dot (QD) nanocrystals with attractive optical properties for a wide array of chemical and biological applications is a growing research field. In this work, size-tunable engineered band gap composition-dependent alloying and fixed-composition alloying were employed to fabricate new L-cysteine-capped alloyed quaternary CdZnTeS QDs exhibiting different internal structures. Lattice parameters simulated based on powder X-ray diffraction (PXRD) revealed the internal structure of the composition-dependent alloyed CdxZnyTeS QDs to have a gradient nature, whereas the fixed-composition alloyed QDs exhibited a homogenous internal structure. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) analysis confirmed the size-confined nature and monodispersity of the alloyed nanocrystals. The zeta potential values were within the accepted range of colloidal stability. Circular dichroism (CD) analysis showed that the surface-capped L-cysteine ligand induced electronic and conformational chiroptical changes in the alloyed nanocrystals. The photoluminescence (PL) quantum yield (QY) values of the gradient alloyed QDs were 27-61%, whereas for the homogenous alloyed QDs, the PL QY values were spectacularly high (72-93%). Our work demonstrates that engineered fixed alloying produces homogenous QD nanocrystals with higher PL QY than composition-dependent alloying.
NASA Astrophysics Data System (ADS)
Lin, Yangzheng; Zhao, Zhisheng; Strobel, Timothy A.; Cohen, R. E.
2016-12-01
We investigated the stability and mechanical and electronic properties of 15 metastable mixed s p2-s p3 carbon allotropes in the family of interpenetrating graphene networks (IGNs) using density functional theory (DFT). IGN allotropes exhibit nonmonotonic bulk and linear compressibilities before their structures irreversibly transform into new configurations under large hydrostatic compression. The maximum bulk compressibilities vary widely between structures and range from 3.6 to 306 TPa-1. We find all the IGN allotropes have negative linear compressibilities with maximum values varying from -0.74 to -133 TPa-1. The maximal negative linear compressibility of Z33 (-133 TPa-1 at 3.4 GPa) exceeds previously reported values at pressures higher than 1.0 GPa. IGN allotropes can be classified as either armchair or zigzag type, and these two types of IGNs exhibit different electronic properties. Zigzag-type IGNs are node-line semimetals, while armchair-type IGNs are either semiconductors or node-loop or node-line semimetals. Experimental synthesis of these IGN allotropes might be realized since their formation enthalpies relative to graphite are only 0.1-0.5 eV/atom (that of C60 fullerene is about 0.4 eV/atom), and energetically feasible binary compound pathways are possible.
Extremely correlated Fermi liquid theory of the t-J model in 2 dimensions: low energy properties
NASA Astrophysics Data System (ADS)
Shastry, B. Sriram; Mai, Peizhi
2018-01-01
Low energy properties of the metallic state of the two-dimensional t-J model are presented for second neighbor hopping with hole-doping (t\\prime ≤slant 0) and electron-doping (t\\prime > 0), with various superexchange energy J. We use a closed set of equations for the Greens functions obtained from the extremely correlated Fermi liquid theory. These equations reproduce the known low energies features of the large U Hubbard model in infinite dimensions. The density and temperature dependent quasiparticle weight, decay rate and the peak spectral heights over the Brillouin zone are calculated. We also calculate the resistivity, Hall conductivity, Hall number and cotangent Hall angle. The spectral features display high thermal sensitivity at modest T for density n≳ 0.8, implying a suppression of the effective Fermi-liquid temperature by two orders of magnitude relative to the bare bandwidth. The cotangent Hall angle exhibits a T 2 behavior at low T, followed by an interesting kink at higher T. The Hall number exhibits strong renormalization due to correlations. Flipping the sign of t\\prime changes the curvature of the resistivity versus T curves between convex and concave. Our results provide a natural route for understanding the observed difference in the temperature dependent resistivity of strongly correlated electron-doped and hole-doped matter.
A DFT+U study of A-site and B-site substitution in BaFeO3-δ.
Baiyee, Zarah Medina; Chen, Chi; Ciucci, Francesco
2015-09-28
BaFeO3-δ (BFO)-based perovskites have emerged as cheap and effective oxygen electrocatalysts for oxygen reduction reaction at high temperatures. The BFO cubic phase facilitates a high oxygen deficiency and is commonly stabilised by partial substitution. Understanding the electronic mechanisms of substitution and oxygen deficiency is key to rational material design, and can be realised through DFT analysis. In this work an in-depth first principle DFT+U study is undertaken to determine site distinctive characteristics for 12.5%, Y, La and Ce substitutions in BFO. In particular, it is shown that B-site doped structures exhibit a lower energy cost for oxygen vacancy formation relative to A site doping and pristine BFO. This is attributed to the stabilisation of holes in the oxygen sub-lattice and increased covalency of the Fe-O bonds of the FeO6 octahedra in B-site-substituted BFO. Charge analysis shows that A-site substitution amounts to donor doping and consequently impedes the accommodation of other donors (i.e. oxygen vacancies). However, A-site substitution may also exhibit a higher electronic conductivity due to less lattice distortion for oxygen deficiency compared to B-site doped structures. Furthermore, analysis of the local structural effects provides physical insight into stoichiometric expansions observed for this material.
Millán, María; Zamora, Héctor; Rodrigo, Manuel A; Lobato, Justo
2017-02-22
PtCo alloy catalysts for high temperature PEMFCs (protonic exchange membrane fuel cells) were synthesized on a novel noncarbonaceous support (SiCTiC) using the impregnation method with NaBH 4 as the reducing agent at different synthesis temperatures to evaluate the effect of this variable on their physicochemical and electrochemical properties. The catalysts were characterized by inductively coupled plasma optical emission spectrometry, scanning electron microscopy-energy dispersive X-ray spectroscopy, X-ray diffraction, transmission electron microscope-energy dispersive X-ray,and temperature-programmed reduction. In addition, the electrochemical characterization (i.e., cyclic voltammetry, oxygen reduction reaction, and chronoamperometry) was carried out with a rotating disk electrode. For the cyclic voltammetry investigation, 400 cycles were performed in hot phosphoric acid and a half-cell to evaluate the stability of the synthesized catalysts. The catalyst synthesized on SiCTiC exhibited excellent durability compared to the catalyst synthesized on a Vulcan support. In addition, all synthesized catalysts exhibited better catalytic activity than that of the PtCo/C catalysts. The best results were observed for the catalyst synthesized at 80 °C due to its shorter Pt-Pt nearest-neighbor and higher alloy degree. Finally, a preliminary stability test was conducted in an HT-PEMFC, and promising results in terms of stability and performance were observed.
Electron transport in reduced graphene oxides in high electric field
NASA Astrophysics Data System (ADS)
Jian, Wen-Bin; Lai, Jian-Jhong; Wang, Sheng-Tsung; Tsao, Rui-Wen; Su, Min-Chia; Tsai, Wei-Yu; Rosenstein, Baruch; Zhou, Xufeng; Liu, Zhaoping
Due to a honeycomb structure, charge carriers in graphene exhibit quasiparticles of linear energy-momentum dispersion and phenomena of Schwinger pair creation may be explored. Because graphene is easily broken in high electric fields, single-layer reduced graphene oxides (rGO) are used instead. The rGO shows a small band gap while it reveals a graphene like behavior in high electric fields. Electron transport in rGO exhibits two-dimensional Mott's variable range hopping. The temperature behavior of resistance in low electric fields and the electric field behavior of resistance at low temperatures are all well explained by the Mott model. At temperatures higher than 200 K, the electric field behavior does not agree with the model while it shows a power law behavior with an exponent of 3/2, being in agreement with the Schwinger model. Comparing with graphene, the rGO is more sustainable to high electric field thus presenting a complete high-electric field behavior. When the rGO is gated away from the charge neutral point, the turn-on electric field of Schwinger phenomena is increased. A summary figure is given to present electric field behaviors and power law variations of resistances of single-layer rGO, graphene, and MoS2.
Ko, Tae-Hoon; Devarayan, Kesavan; Seo, Min-Kang; Kim, Hak-Yong; Kim, Byoung-Suhk
2016-01-01
The design and development of an economic and highly active non-precious electrocatalyst for methanol electrooxidation is challenging due to expensiveness of the precursors as well as processes and non-ecofriendliness. In this study, a facile preparation of core-shell-like NiCo2O4 decorated MWCNTs based on a dry synthesis technique was proposed. The synthesized NiCo2O4/MWCNTs were characterized by infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and selected area energy dispersive spectrum. The bimetal oxide nanoparticles with an average size of 6 ± 2 nm were homogeneously distributed onto the surface of the MWCNTs to form a core-shell-like nanostructure. The NiCo2O4/MWCNTs exhibited excellent electrocatalytic activity for the oxidation of methanol in an alkaline solution. The NiCo2O4/MWCNTs exhibited remarkably higher current density of 327 mA/cm2 and a lower onset potential of 0.128 V in 1.0 M KOH with as high as 5.0 M methanol. The impressive electrocatalytic activity of the NiCo2O4/MWCNTs is promising for development of direct methanol fuel cell based on non-Pt catalysts. PMID:26828633
Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy
NASA Technical Reports Server (NTRS)
Bhatia, A. K.; Sinha, Chandana
2010-01-01
We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very loud incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it. The scattering weave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts the exchange approximation has only been considered. We calculate the laser assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.
Free-Free Transitions in the Presence of Laser Fields at Very Low Incident Electron Energy
NASA Technical Reports Server (NTRS)
Bhatia, Anand K.; Sinha, Chandana
2009-01-01
We study the free-free transition in electron-hydrogenic systems in ground state in presence of an external laser field at very low incident energies. The laser field is treated classically while the collision dynamics is treated quantum mechanically. The laser field is chosen to be monochromatic, linearly polarized and homogeneous. The incident electron is considered to be dressed by the laser in a nonperturbative manner by choosing a Volkov wave function for it The scattering wave function for the electron is solved numerically by taking into account the effect of the electron exchange, short-range as well as of the long-range interactions to get the S and P wave phase shifts while for the higher angular momentum phase shifts, the exchange approximation has only been considered. We calculate the laser-assisted differential cross sections (LADCS) for the aforesaid free-free transition process for single photon absorption/emission. The laser intensity is chosen to be much less than the atomic field intensity. A strong suppression is noted in the LADCS as compared to the field free (FF) cross sections. Unlike the FF ones, the LADCS exhibit some oscillations having a distinct maximum at a low value of the scattering angle depending on the laser parameters as well as on the incident energies.
Zeng, Xiaoliang; Sun, Jiajia; Yao, Yimin; Sun, Rong; Xu, Jian-Bin; Wong, Ching-Ping
2017-05-23
With the current development of modern electronics toward miniaturization, high-degree integration and multifunctionalization, considerable heat is accumulated, which results in the thermal failure or even explosion of modern electronics. The thermal conductivity of materials has thus attracted much attention in modern electronics. Although polymer composites with enhanced thermal conductivity are expected to address this issue, achieving higher thermal conductivity (above 10 W m -1 K -1 ) at filler loadings below 50.0 wt % remains challenging. Here, we report a nanocomposite consisting of boron nitride nanotubes and cellulose nanofibers that exhibits high thermal conductivity (21.39 W m -1 K -1 ) at 25.0 wt % boron nitride nanotubes. Such high thermal conductivity is attributed to the high intrinsic thermal conductivity of boron nitride nanotubes and cellulose nanofibers, the one-dimensional structure of boron nitride nanotubes, and the reduced interfacial thermal resistance due to the strong interaction between the boron nitride nanotubes and cellulose nanofibers. Using the as-prepared nanocomposite as a flexible printed circuit board, we demonstrate its potential usefulness in electronic device-cooling applications. This thermally conductive nanocomposite has promising applications in thermal interface materials, printed circuit boards or organic substrates in electronics and could supplement conventional polymer-based materials.
Characterization of radiation belt electron energy spectra from CRRES observations
NASA Astrophysics Data System (ADS)
Johnston, W. R.; Lindstrom, C. D.; Ginet, G. P.
2010-12-01
Energetic electrons in the outer radiation belt and the slot region exhibit a wide variety of energy spectral forms, more so than radiation belt protons. We characterize the spatial and temporal dependence of these forms using observations from the CRRES satellite Medium Electron Sensor A (MEA) and High-Energy Electron Fluxmeter (HEEF) instruments, together covering an energy range 0.15-8 MeV. Spectra were classified with two independent methods, data clustering and curve-fitting analyses, in each case defining categories represented by power law, exponential, and bump-on-tail (BOT) or other complex shapes. Both methods yielded similar results, with BOT, exponential, and power law spectra respectively dominating in the slot region, outer belt, and regions just beyond the outer belt. The transition from exponential to power law spectra occurs at higher L for lower magnetic latitude. The location of the transition from exponential to BOT spectra is highly correlated with the location of the plasmapause. In the slot region during the days following storm events, electron spectra were observed to evolve from exponential to BOT yielding differential flux minima at 350-650 keV and maxima at 1.5-2 MeV; such evolution has been attributed to energy-dependent losses from scattering by whistler hiss.
Lithium formate for EPR dosimetry: radiation-induced radical trapping at low temperatures.
Krivokapić, André; Aalbergsjø, Siv G; De Cooman, Hendrik; Hole, Eli Olaug; Nelson, William H; Sagstuen, Einar
2014-05-01
Radiation-induced primary radicals in lithium formate. A material used in EPR dosimetry have been studied using electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR) and ENDOR-Induced EPR (EIE) techniques. In this study, single crystals were X irradiated at 6-8 K and radical formation at these and higher temperatures were investigated. Periodic density functional theory calculations were used to assist in assigning the radical structures. Mainly two radicals are present at 6 K, the well-known CO2(•-) radical and a protonated electron-gain product. Hyperfine coupling tensors for proton and lithium interactions were obtained for these two radicals and show that the latter radical exists in four conformations with various degrees of bending at the radical center. Pairs of CO2(•-) radicals were also observed and the tensor for the electron-electron dipolar coupling was determined for the strongest coupled pair, which exhibited the largest spectral intensity. Upon warming, both the radical pairs and the reduction product decay, the latter apparently by a transient species. Above 200 K the EPR spectrum was mainly due to the CO2(•-) (mono) radicals, which were previously characterized as the dominant species present at room temperature and which account for the dosimetric EPR signal.
Metallization of vanadium dioxide driven by large phonon entropy
Budai, John D.; Hong, Jiawang; Manley, Michael E.; ...
2014-11-10
Phase competition underlies many remarkable and technologically important phenomena in transition-metal oxides. Vanadium dioxide exhibits a first-order metal-insulator transition (MIT) near room temperature, where conductivity is suppressed and the lattice changes from tetragonal to monoclinic on cooling. Ongoing attempts to explain this coupled structural and electronic transition begin with two classic starting points: a Peierls MIT driven by instabilities in electron-lattice dynamics versus a Mott MIT where strong electron-electron correlations drive charge localization1-10. A key-missing piece of the VO2 puzzle is the role of lattice vibrations. Moreover, a comprehensive thermodynamic treatment must integrate both entropic and energetic aspects of themore » transition. Our measurements establish that the entropy driving the MIT is dominated by strongly anharmonic phonons rather than electronic contributions, and provide a direct determination of phonon dispersions. Our calculations identify softer bonding as the origin of the large vibrational entropy stabilizing the metallic rutile phase. They further reveal how a balance between higher entropy in the metal and orbital-driven lower energy in the insulator fully describes the thermodynamic forces controlling the MIT. This study illustrates the critical role of anharmonic lattice dynamics in metal-oxide phase competition, and provides guidance for the predictive design of new materials.« less
Remote Steric Effect as a Facile Strategy for Improving the Efficiency of Exciplex-Based OLEDs.
Hung, Wen-Yi; Wang, Ting-Chih; Chiang, Pin-Yi; Peng, Bo-Ji; Wong, Ken-Tsung
2017-03-01
This work reports a new strategy of introducing remote steric effect onto the electron donor for giving the better performance of the exciplex-based organic light-emitting device (OLED). The bulky triphenylsilyl group (SiPh 3 ) was introduced onto the fluorene bridge of 4,4'-(9H-fluorene-9,9-diyl)bis(N,N-di-p-tolylaniline) (DTAF) to create remote steric interactions for increasing the possibility of effective contacts between electron-donating chromophores and acceptor molecules, rendering the resulting exciplex to have a higher photoluminescence quantum yield (PLQY). The green exciplex device based on DSDTAF:3N-T2T (1:1) as an emitting layer exhibits a low turn-on voltage of 2.0 V, high maximum efficiencies (13.2%, 42.9 cd A -1 , 45.5 lm W -1 ), which are higher than the device employed DTAF (without SiPh 3 groups) (11.6%, 35.3 cd A -1 , 41.3 lm W -1 ) as donor under the same device structure. This strategy was further examined for blue exciplex, where the EQE was enhanced from 9.5% to 12.5% as the electron acceptor PO-T2T mixed with a tert-butyl group substituted carbazole-based donor (CPTBF) as the emitting exciplex in device. This strategy is simple and useful for developing high performance exciplex OLEDs.
Liu, Yisi; Sun, Qian; Yang, Xiaofei; Liang, Jianneng; Wang, Biqiong; Koo, Alicia; Li, Ruying; Li, Jie; Sun, Xueliang
2018-05-18
Aluminum-air batteries are a promising power supply for electronics due to its low cost and high energy density. However, portable coin-type Al-air batteries operating under ambient air condition for small electronic appliances have rarely been reported. Herein, coin cell-type Al-air batteries using cost-effective and eco-friendly chitosan hydrogel membranes modified by SiO2, SnO2, and ZnO have been prepared and assembled. The Al-air coin cell employing chitosan hydrogel membrane containing 10 wt.% SiO2 as a separator exhibits better discharge performance with a higher flat voltage plateau, longer discharge duration, and higher power density than the cells using a chitosan hydrogel membrane containing SnO2 or ZnO. Moreover, we also demonstrate that the presented Al-air coin cell can be recycled by a series of eco-friendly procedures using food grade ingredients, resulting in recycled products that are environmentally safe and ready for reuse. The Al-air coin cell adopting a recycled cathode from a fully discharged Al-air coin cell using the above-mentioned procedure has shown comparable performance to cells assembled with a new cathode. With these merits of enhanced electrochemical performance and recyclability, this new Al-air coin cell with modified chitosan hydrogel membrane can find wide applications for powering portable and small-size electronics.
Alkali (Li, K and Na) and alkali-earth (Be, Ca and Mg) adatoms on SiC single layer
NASA Astrophysics Data System (ADS)
Baierle, Rogério J.; Rupp, Caroline J.; Anversa, Jonas
2018-03-01
First-principles calculations within the density functional theory (DFT) have been addressed to study the energetic stability, and electronic properties of alkali and alkali-earth atoms adsorbed on a silicon carbide (SiC) single layer. We observe that all atoms are most stable (higher binding energy) on the top of a Si atom, which moves out of the plane (in the opposite direction to the adsorbed atom). Alkali atoms adsorbed give raise to two spin unpaired electronic levels inside the band gap leading the SiC single layer to exhibit n-type semiconductor properties. For alkaline atoms adsorbed there is a deep occupied spin paired electronic level inside the band gap. These finding suggest that the adsorption of alkaline and alkali-earth atoms on SiC layer is a powerful feature to functionalize two dimensional SiC structures, which can be used to produce new electronic, magnetic and optical devices as well for hydrogen and oxygen evolution reaction (HER and OER, respectively). Furthermore, we observe that the adsorption of H2 is ruled by dispersive forces (van der Waals interactions) while the O2 molecule is strongly adsorbed on the functionalized system.
Structural, electronic and magnetic properties of Ti n Mo ( n = 1 - 7) clusters
NASA Astrophysics Data System (ADS)
Zhang, Ge; Zhai, Zhongyuan; Sheng, Yong
2017-04-01
The ground state structures of TinMo and Tin+1 (n = 1 - 7) clusters and their structural, electronic and magnetic properties are investigated with the density functional method at B3LYP/LanL2DZ level. One Mo atom substituted Tin+1 structure is the dominant growth pattern, and the TinMo clusters exhibit enhanced structural stabilities according to the averaged binding energies. The electronic properties are also discussed by investigating chemical hardness and HOMO-LUMO energy gap. The results reveal that Ti3Mo and Ti5Mo keep higher chemical stabilities when compared with the other clusters. For all the studied clusters, the Mo atoms always get electrons from Ti atoms and present negative charges. Moreover, the doping of Mo in the bare titanium clusters can alter the magnetic moments of them. Ti3Mo and Ti5Mo show relatively large total magnetic moments, which may be related to the presence of exchange splitting behavior in their densities of states. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-70589-8
Ligand protons in a frozen solution of copper histidine relax via a T1e-driven three-spin mechanism
NASA Astrophysics Data System (ADS)
Stoll, S.; Epel, B.; Vega, S.; Goldfarb, D.
2007-10-01
Davies electron-nuclear double resonance spectra can exhibit strong asymmetries for long mixing times, short repetition times, and large thermal polarizations. These asymmetries can be used to determine nuclear relaxation rates in paramagnetic systems. Measurements of frozen solutions of copper(L-histidine)2 reveal a strong field dependence of the relaxation rates of the protons in the histidine ligand, increasing from low (g‖) to high (g⊥) field. It is shown that this can be attributed to a concentration-dependent T1e-driven relaxation process involving strongly mixed states of three spins: the histidine proton, the Cu(II) electron spin of the same complex, and another distant electron spin with a resonance frequency differing from the spectrometer frequency approximately by the proton Larmor frequency. The protons relax more efficiently in the g⊥ region, since the number of distant electrons able to participate in this relaxation mechanism is higher than in the g‖ region. Analytical expressions for the associated nuclear polarization decay rate Teen-1 are developed and Monte Carlo simulations are carried out, reproducing both the field and the concentration dependences of the nuclear relaxation.
Lamiel-Garcia, Oriol; Ko, Kyoung Chul; Lee, Jin Yong; Bromley, Stefan T; Illas, Francesc
2017-04-11
All electron relativistic density functional theory (DFT) based calculations using numerical atom-centered orbitals have been carried out to explore the relative stability, atomic, and electronic structure of a series of stoichiometric TiO 2 anatase nanoparticles explicitly containing up to 1365 atoms as a function of size and morphology. The nanoparticles under scrutiny exhibit octahedral or truncated octahedral structures and span the 1-6 nm diameter size range. Initial structures were obtained using the Wulff construction, thus exhibiting the most stable (101) and (001) anatase surfaces. Final structures were obtained from geometry optimization with full relaxation of all structural parameters using both generalized gradient approximation (GGA) and hybrid density functionals. Results show that, for nanoparticles of a similar size, octahedral and truncated octahedral morphologies have comparable energetic stabilities. The electronic structure properties exhibit a clear trend converging to the bulk values as the size of the nanoparticles increases but with a marked influence of the density functional employed. Our results suggest that electronic structure properties, and hence reactivity, for the largest anatase nanoparticles considered in this study will be similar to those exhibited by even larger mesoscale particles or by bulk systems. Finally, we present compelling evidence that anatase nanoparticles become effectively bulklike when reaching a size of ∼20 nm diameter.
Beranová, Jana; Seydlová, Gabriela; Kozak, Halyna; Benada, Oldřich; Fišer, Radovan; Artemenko, Anna; Konopásek, Ivo; Kromka, Alexander
2014-02-01
In this study, the influence of the size and surface termination of diamond nanoparticles (DNPs) on their antibacterial activity against Escherichia coli and Bacillus subtilis was assessed. The average size and distribution of DNPs were determined by dynamic light scattering and X-ray diffraction techniques. The chemical composition of the DNPs studied by X-ray photoelectron spectroscopy showed that DNPs > 5 nm and oxidized particles have a higher oxygen content. The antibacterial potential of DNPs was assessed by the viable count method. In general, E. coli exhibited a higher sensitivity to DNPs than B. subtilis. However, in the presence of all the DNPs tested, the B. subtilis colonies exhibited altered size and morphology. Antibacterial activity was influenced not only by DNP concentration but also by DNP size and form. Whereas untreated 5-nm DNPs were the most effective against E. coli, the antibacterial activity of 18-50-nm DNPs was higher against B. subtilis. Transmission electron microscopy showed that DNPs interact with the bacterial surface, probably affecting vital cell functions. We propose that DNPs interfere with the permeability of the bacterial cell wall and/or membrane and hinder B. subtilis colony spreading. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jinlong, Lv, E-mail: ljltsinghua@126.com; State Key Lab of New Ceramic and Fine Processing, Tsinghua University, Beijing 100084; Tongxiang, Liang, E-mail: txliang@mail.tsinghua.edu.cn
The effects of urea concentration on microstructures of Ni{sub 3}S{sub 2}formed on nickel foam and its hydrogen evolution reaction were investigated. The Ni{sub 3}S{sub 2} nanosheets with porous structure were formed on nickel foam during hydrothermal process due to low urea concentration. While high urea concentration facilitated the forming of Ni{sub 3}S{sub 2} nanotube arrays. The resulting Ni{sub 3}S{sub 2} nanotube arrays exhibited higher catalytic activity than Ni3S2nanosheets for hydrogen evolution reaction. This was mainly attributed to a fact that Ni{sub 3}S{sub 2} nanotube arrays facilitated diffusion of electrolyte for hydrogen evolution reaction. - Graphical abstract: The resulting Ni{sub 3}S{submore » 2} nanotube arrays exhibited higher catalytic activity than Ni{sub 3}S{sub 2} nanosheets for hydrogen evolution reaction. This was mainly attributed to a fact that Ni{sub 3}S{sub 2} nanotube arrays facilitated diffusion of electrolyte for hydrogen evolution reaction and hydrogen evolution. - Highlights: • Urea promoted to forming more Ni{sub 3}S{sub 2} nanotube arrays on nickel foam. • Ni{sub 3}S{sub 2} nanotube arrays showed higher catalytic activity in alkaline solution. • Ni{sub 3}S{sub 2} nanotube arrays promoted electron transport and reaction during the HER.« less
Turbulence evolution and transport behavior during current ramp-up in ITER-like plasmas on DIII-D
McKee, George R.; Austin, Max E.; Boedo, Jose A.; ...
2017-07-12
Low-wavenumber density fluctuations exhibit unique characteristics during the current ramp-up phase of ITER-like discharges that can partially explain the challenges of correctly modeling transport behavior and predicting global plasma parameters during this period. A strong interaction takes place between the evolving transport, safety factor (q) and kinetic profiles as well as the appearance and evolution of low-order rational surfaces. Density fluctuations from 0.75 < ρ < 0.9 are transiently reduced to exceptionally low levels during early times and from 0.8 < ρ < 0.9 at late times in the ramp-up in a manner that is different from behavior observed duringmore » steady-state plasma conditions with similar values of q 95. Turbulence is suppressed as low-order-rational q-surfaces enter the plasma; the local electron temperature likewise exhibits transient increases during these periods of reduced fluctuations indicating changes in transport that impact temperature and consequently the evolution of current density and plasma inductance. These observations can explain discrepancies between CORSICA modelling and the higher electron temperature found previously over the outer half radius. Comparison of turbulence properties with time-varying linear growth rates with GYRO and GENE demonstrate qualitative consistency with measured fluctuation levels, but calculations don’t exhibit reduced growth rates near low-order rational surfaces, which is inconsistent with experimental observations. Here, this indicates a mechanism that can contribute to reconciling observed turbulence behavior with transport models, allowing for the development of more accurate predictive tools.« less
NASA Astrophysics Data System (ADS)
Choi, Jeong-Hee; Ha, Chung-Wan; Choi, Hae-Young; Shin, Heon-Cheol; Lee, Sang-Min
2017-11-01
The electrochemical comparison between Sb2S3 and its composite with carbon (Sb2S3/C) involved by sodium ion carrier are explained by enhanced kinetics, particularly with respect to improved interfacial conductivity by surface modulation by carbon. Sb2S3 and Sb2S3/C are synthesized by a high energy mechanical milling process. The successful synthesis of these materials is confirmed with X-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy (TEM). As an anode material for sodium ion batteries, Sb2S3 exhibits an initial sodiation/desodiation capacity of 1,021/523 mAh g-1 whereas the Sb2S3/C composite exhibits a higher reversible capacity (642 mAh g-1). Furthermore, the cycle performance and rate capability of the Sb2S3/C composite are estimated to be much better than those of Sb and Sb2S3. Electrochemical impedance spectroscopy analysis shows that the Sb2S3/C composite exhibited charge transfer resistance and surface film resistance much lower than Sb2S3. X-ray photoelectron spectroscopy analyses of both electrodes demonstrate that NaF layer on Sb2S3/C composite electrode leads to the better electrochemical performances. In order to clarify the electrochemical reaction mechanism, ex-situ XRD based on differential capacity plots and ex-situ HR-TEM analyses of the Sb2S3/C composite electrode are carried out and its reaction mechanism was established.
Turbulence evolution and transport behavior during current ramp-up in ITER-like plasmas on DIII-D
NASA Astrophysics Data System (ADS)
McKee, G. R.; Austin, M.; Boedo, J.; Bravenec, R.; Holland, C.; Jackson, G.; Luce, T. C.; Rhodes, T. L.; Rudakov, D.; Wang, G.; Yan, Z.; Zeng, L.; Zhao, Y.
2017-08-01
Low-wavenumber density fluctuations exhibit unique characteristics during the current ramp-up phase of ITER-like discharges that can partially explain the challenges of correctly modeling transport behavior and predicting global plasma parameters during this period. A strong interaction takes place between the evolving transport, safety factor (q) and kinetic profiles as well as the appearance and evolution of low-order rational surfaces. Density fluctuations from 0.75 < ρ < 0.9 are transiently reduced to exceptionally low levels during early times and from 0.8 < ρ < 0.9 at late times in the ramp-up in a manner that is different from behavior observed during steady-state plasma conditions with similar values of q 95. Turbulence is suppressed as low-order-rational q-surfaces enter the plasma; the local electron temperature likewise exhibits transient increases during these periods of reduced fluctuations indicating changes in transport that impact temperature and consequently the evolution of current density and plasma inductance. These observations can explain discrepancies between CORSICA modelling and the higher electron temperature found previously over the outer half radius. Comparison of turbulence properties with time-varying linear growth rates with GYRO and GENE demonstrate qualitative consistency with measured fluctuation levels, but calculations don’t exhibit reduced growth rates near low-order rational surfaces, which is inconsistent with experimental observations. This indicates a mechanism that can contribute to reconciling observed turbulence behavior with transport models, allowing for the development of more accurate predictive tools.
NASA Astrophysics Data System (ADS)
Qin, Jiayi; Huo, Jingpei; Zhang, Piyong; Zeng, Jian; Wang, Tingting; Zeng, Heping
2016-01-01
Ag nanoparticles were deposited on the surface of g-C3N4 by a chemical reduction method to increase visible-light absorption via the localized surface plasmon resonance effect, resulting in the reduced recombination of photo-generated electron-holes and enhanced photocatalytic activity. The Ag/g-C3N4 composite with a Ag loading of 3 wt% has the optimum photoactivity that is almost 3.6 and 3.4 times higher than pure g-C3N4 and the same photocatalysis system which has been reported, respectively. Fluorescein was introduced as a photosensitizer and H2 evolution soared to 2014.20 μmol g-1 h-1 and the rate is even about 4.8 times higher than that of the 3 wt% Ag/g-C3N4 composite. The chemical structure, composites, morphologies and optical properties of the obtained products are well-characterized by XRD, FTIR, TEM, EDS, XPS and UV-Vis DRS. Meanwhile, the photocatalyst exhibits high stability and reusability.Ag nanoparticles were deposited on the surface of g-C3N4 by a chemical reduction method to increase visible-light absorption via the localized surface plasmon resonance effect, resulting in the reduced recombination of photo-generated electron-holes and enhanced photocatalytic activity. The Ag/g-C3N4 composite with a Ag loading of 3 wt% has the optimum photoactivity that is almost 3.6 and 3.4 times higher than pure g-C3N4 and the same photocatalysis system which has been reported, respectively. Fluorescein was introduced as a photosensitizer and H2 evolution soared to 2014.20 μmol g-1 h-1 and the rate is even about 4.8 times higher than that of the 3 wt% Ag/g-C3N4 composite. The chemical structure, composites, morphologies and optical properties of the obtained products are well-characterized by XRD, FTIR, TEM, EDS, XPS and UV-Vis DRS. Meanwhile, the photocatalyst exhibits high stability and reusability. Electronic supplementary information (ESI) available: TEM images, TGA curves, PXRD and FTIR spectra, the recycling experiment of 3% Ag/g-C3N4, the specific process for H2 production, the diagram for the rate of hydrogen generation vs. the amount of fluorescein, the figure for the photocatalytic hydrogen production testing system, tables of contrast experiments for photocatalytic hydrogen generation and elemental composition of the CN in all the samples. See DOI: 10.1039/c5nr06346a
NASA Astrophysics Data System (ADS)
Fan, Zhenghua; Meng, Fanming; Zhang, Miao; Wu, Zhenyu; Sun, Zhaoqi; Li, Aixia
2016-01-01
This paper presents controllable growth and photocatalytic activity of TiO2 hierarchical nanostructures by solvothermal method at different temperatures. It is revealed by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) that the morphology of TiO2 can be effectively controlled as rose-like, chrysanthemum-like and sea-urchin-like only changing solvothermal temperature. BET surface area analysis confirms the presence of a mesoporous network in all the nanostructures, and shows high surface area at relatively high temperature. The photocatalytic activities of the photocatalysts are evaluated by the photodegradation of RhB under UV light irradiation. The TiO2 samples exhibit high activity on the photodegradation of RhB, which is higher than that of the commercial P25. The enhancement in photocatalytic performance can be attributed to the synergetic effect of the surface area, crystallinity, band gap and crystalline size.
Effect of Doping Materials on the Low-Level NO Gas Sensing Properties of ZnO Thin Films
NASA Astrophysics Data System (ADS)
Çorlu, Tugba; Karaduman, Irmak; Yildirim, Memet Ali; Ateş, Aytunç; Acar, Selim
2017-07-01
In this study, undoped, Cu-doped, and Ni-doped ZnO thin films have been successfully prepared by successive ionic layer adsorption and reaction method. The structural, compositional, and morphological properties of the thin films are characterized by x-ray diffractometer, energy dispersive x-ray analysis (EDX), and scanning electron microscopy, respectively. Doping effects on the NO gas sensing properties of these thin films were investigated depending on gas concentration and operating temperature. Cu-doped ZnO thin film exhibited a higher gas response than undoped and Ni-doped ZnO thin film at the operating temperature range. The sensor with Cu-doped ZnO thin film gave faster responses and recovery speeds than other sensors, so that is significant for the convenient application of gas sensor. The response and recovery speeds could be associated with the effective electron transfer between the Cu-doped ZnO and the NO molecules.
NASA Astrophysics Data System (ADS)
Sugiyama, Hiroki; Kosugi, Toshihiko; Yokoyama, Haruki; Murata, Koichi; Yamane, Yasuro; Tokumitsu, Masami; Enoki, Takatomo
2008-04-01
This paper reports InGaAs/InP composite-channel (CC) high electron mobility transistors (HEMTs) grown by metal-organic vapor-phase epitaxy (MOVPE) with excellent breakdown and high-speed characteristics. Atomic force microscopy (AFM) reveals high-quality heterointerfaces between In(Ga,Al)As and In(Al)P. Fabricated 80-nm-gate CC HEMTs exhibit on- and off-state breakdown (burnout) voltages estimated at higher than 3 and 8 V. An excellent current-gain cutoff frequency ( fT) of 186 GHz is also obtained in the CC HEMTs. The on-wafer uniformity of CC-HEMT characteristics is comparable to those of our mature 100-nm-gate InGaAs single-channel HEMTs. Bias-stress aging tests reveals that the lifetime of CC HEMTs is expected to be comparable to that of our conventional InGaAs single-channel HEMTs.
NASA Astrophysics Data System (ADS)
Yao, Yao; Yin, Mingli; Yan, Junqing; Liu, Shengzhong (Frank)
2018-05-01
Nanowires assembled sub-WO3 urchin-like nanostructures have been fabricated via a solvothermal method. The detailed structure and morphology features were characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). The results reveal that the individual nanowires are grown along the [0 0 1] direction, and assembled together to form an urchin-like nanostructure. Sensing performance of the sub-WO3 was investigated toward alcohol vapor. At room temperature, the sensor devices based on the WO3-x exhibit significantly higher sensitivity comparing to that of the stoichiometric WO3. The superior sensing performance of this WO3-x sensor is ascribed to the large specific surface area and abundant oxygen vacancies. The obvious enhancement of the gas sensing property can be very useful for the future design and development of room temperature gas sensors for other volatile organic compounds.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rowland, Clare E.; Fedin, Igor; Diroll, Benjamin T.
Elevated temperature optoelectronic performance of semiconductor nanomaterials remains an important issue for applications. Here we examine two-dimensional CdSe nanoplatelets (NPs) and CdS/CdSe/CdS shell/core/shell sandwich NPs at temperatures ranging from 300-700 K using static and transient spectroscopies as well as in-situ transmission electron microscopy. NPs exhibit reversible changes in PL intensity, spectral position, and emission linewidth with temperature elevation up to ~500 K, losing a factor of ~8 to 10 in PL intensity at 400 K relative to ambient. Temperature elevation above ~500 K yields thickness dependent, irreversible degradation in optical properties. Electron microscopy relates stability of the NP morphology upmore » to near 600 K followed by sintering and evaporation at still higher temperatures. The mechanism of reversible PL loss, based on differences in decay dynamics between time-resolved photoluminescence and transient absorption, arise primarily from hole trapping in both NPs and sandwich NPs.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balatsoukas, Ioannis; Kourkoumelis, Nikolaos; Tzaphlidou, Margaret
The Ca/P ratio of normal cortical and trabecular rat bone was measured by Auger electron spectroscopy (AES). Semiquantitative analysis was carried out using ratio techniques to draw conclusions on how age, sex and bone site affect the relative composition of calcium and phosphorus. Results show that Ca/P ratio is not sex dependent; quite the opposite, bone sites exhibit variations in elemental stoichiometry where femoral sections demonstrate higher Ca/P ratio than rear and front tibias. Age-related changes are more distinct for cortical bone in comparison with the trabecular bone. The latter's Ca/P ratio remains unaffected from all the parameters under study.more » This study confirms that AES is able to successfully quantify bone mineral main elements when certain critical points, related to the experimental conditions, are addressed effectively.« less
Pressure-induced superconductivity in the giant Rashba system BiTeI
VanGennep, D.; Linscheid, A.; Jackson, D. E.; ...
2017-01-27
We present that at ambient pressure, BiTeI exhibits a giant Rashba splitting of the bulk electronic bands. At low pressures, BiTeI undergoes a transition from trivial insulator to topological insulator. At still higher pressures, two structural transitions are known to occur. We have carried out a series of electrical resistivity and AC magnetic susceptibility measurements on BiTeI at pressure up to ~40 GPa in an effort to characterize the properties of the high-pressure phases. A previous calculation found that the high-pressure orthorhombic P4/nmm structure BiTeI is a metal. We find that this structure is superconducting with T c values asmore » high as 6 K. AC magnetic susceptibility measurements support the bulk nature of the superconductivity. Using electronic structure and phonon calculations, we compute T c and find that our data is consistent with phonon-mediated superconductivity.« less
High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture.
Zhang, Ye; Wang, Lie; Guo, Ziyang; Xu, Yifan; Wang, Yonggang; Peng, Huisheng
2016-03-24
The lithium-air battery has been proposed as the next-generation energy-storage device with a much higher energy density compared with the conventional lithium-ion battery. However, lithium-air batteries currently suffer enormous problems including parasitic reactions, low recyclability in air, degradation, and leakage of liquid electrolyte. Besides, they are designed into a rigid bulk structure that cannot meet the flexible requirement in the modern electronics. Herein, for the first time, a new family of fiber-shaped lithium-air batteries with high electrochemical performances and flexibility has been developed. The battery exhibited a discharge capacity of 12,470 mAh g(-1) and could stably work for 100 cycles in air; its electrochemical performances were well maintained under bending and after bending. It was also wearable and formed flexible power textiles for various electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Platinum decorated carbon nanotubes for highly sensitive amperometric glucose sensing
NASA Astrophysics Data System (ADS)
Xie, Jining; Wang, Shouyan; Aryasomayajula, L.; Varadan, V. K.
2007-02-01
Fine platinum nanoparticles (1-5 nm in diameter) were deposited on functionalized multi-walled carbon nanotubes (MWNTs) through a decoration technique. A novel type of enzymatic Pt/MWNTs paste-based mediated glucose sensor was fabricated. Electrochemical measurements revealed a significantly improved sensitivity (around 52.7 µA mM-1 cm-2) for glucose sensing without using any picoampere booster or Faraday cage. In addition, the calibration curve exhibited a good linearity in the range of 1-28 mM of glucose concentration. Transmission electron microscopy (TEM) and x-ray photoelectron spectroscopy (XPS) were performed to investigate the nanoscale structure and the chemical bonding information of the Pt/MWNTs paste-based sensing material, respectively. The improved sensitivity of this novel glucose sensor could be ascribed to its higher electroactive surface area, enhanced electron transfer, efficient enzyme immobilization, unique interaction in nanoscale and a synergistic effect on the current signal from possible multi-redox reactions.
Microstructures responsible for the invar and permalloy effects in Fe-Ni alloys
NASA Astrophysics Data System (ADS)
Ustinovshchikov, Yu. I.; Shabanova, I. N.; Lomova, N. V.
2015-05-01
The experimental studies of Fe68Ni32 and Fe23Ni77 alloys by transmission electron microscopy and X-ray electron spectroscopy show that the ordering-separation phase transition in these alloys occurs in a temperature range near 600°C. At temperatures higher than the transition temperature, the ordering energy of the alloy is positive, and the structures contain clusters enriched in one of the components. After heat treatment at the temperatures where the invar effect in the Fe68Ni32 alloy is maximal, a modulated microstructure forms. Below the transition temperature, the ordering energy is negative, which provides a tendency to formation of chemical compounds. After aging at these temperatures (where the Fe23Ni77 alloy exhibits high permalloy properties), highly dispersed completely coherent particles of the FeNi3 phase with structure L12 precipitate in a solid solution.
Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.
Zhao, Jiangqi; Zhang, Wei; Zhang, Xiaodan; Zhang, Xinxing; Lu, Canhui; Deng, Yulin
2013-09-12
The objective of this study was to extract cellulose nanofibrils (CNFs) from dry softwood pulp through a simple and environmentally friendly physical method of refining pretreatment coupled with high shear homogenization. An optical microscopy (OM) clearly showed the morphological development from the cellulose fibers to CNFs under repeated shear forces. The morphology, structure and properties of the obtained CNFs were comprehensively investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transformed infrared (FTIR) spectra, X-ray diffraction (XRD) and thermogravimetric (TG) analysis. The results indicated that the CNFs had diameters mainly ranged from 16 to 28nm. Compared with the pulp fibers, the CNFs exhibited a slightly higher crystallinity and a lower thermal stability. Moreover, a novel nanopaper with high optical transparency was prepared from the obtained CNFs, and a possible mechanism for the high optical transparency was discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Das, A.; Viehrig, H. W.; Bergner, F.; Heintze, C.; Altstadt, E.; Hoffmann, J.
2017-08-01
ODS steels have been known to exhibit anisotropic fracture behaviour and form secondary cracks. In this work, the factors responsible for the anisotropic fracture behaviour have been investigated using scanning electron microscopy and electron backscatter microscopy. Fracture toughness of hot rolled 13Cr ODS steel was determined using unloading compliance method for L-T and T-L orientations at various temperatures. L-T orientation had higher fracture toughness than T-L orientation and also contained more pronounced secondary cracking. Secondary cracks appeared at lower loads than primary cracks in both orientations. Primary crack propagation was found to be preferentially through fine grains in a bimodal microstructure. Grains were aligned and elongated the most towards rolling direction followed by T and S directions resulting in fracture anisotropy. Crystallographic texture and preferential alignment of Ti enriched particles parallel to rolling direction also contributed towards fracture anisotropy.
Influence of surface states of CuInS2 quantum dots in quantum dots sensitized photo-electrodes
NASA Astrophysics Data System (ADS)
Peng, Zhuoyin; Liu, Yueli; Wu, Lei; Zhao, Yinghan; Chen, Keqiang; Chen, Wen
2016-12-01
Surface states are significant factor for the enhancement of electrochemical performance in CuInS2 quantum dot sensitized photo-electrodes. DDT, OLA, MPA, and S2- ligand capped CuInS2 quantum dot sensitized photo-electrodes are prepared by thermolysis, solvethermal and ligand-exchange processes, respectively, and their optical properties and photoelectrochemical properties are investigated. The S2- ligand enhances the UV-vis absorption and electron-hole separation property as well as the excellent charge transfer performance of the photo-electrodes, which is attributed to the fact that the atomic S2- ligand for the interfacial region of quantum dots may improve the electron transfer rate. These S2--capped CuInS2 quantum dot sensitized photo-electrodes exhibit the excellent photoelectrochemical efficiency and IPCE peak value, which is higher than that of the samples with DDT, OLA and MPA ligands.
NASA Astrophysics Data System (ADS)
Yesappa, L.; Niranjana, M.; Ashokkumar, S. P.; Vijeth, H.; Basappa, M.; Ganesh, S.; Devendrappa, H.
2018-05-01
The effect of electron beam (EB) irradiation on polymer electrolyte (PVDF-HFP: LiClO4=90:10, PHL10) films prepared by solution casting method. FT-IR confirms the complexation between salt and polymer upon EB dose. Degradation of polymer and decrease in % of crystallinity from 50.10 to 40.96 at 2θ=19.90° at 120 kGy dose indicates increased amorphousity confirmed by XRD. The TGA result show decrease in Tm from 460 °C to 418 °C is leads to degradation of polymer chain at higher dosage. The dielectric parameters have been determined and observed decreasing trend with increased frequency as well as temperature due to increase the mobility of charge carrier confirms the capacitive nature. I-V plots exhibit an ohmic behavior with applied voltage and irradiation dose. The results notice the change in polymer properties upon irradiation.
NASA Astrophysics Data System (ADS)
Wang, J. F.; Jiang, Y. C.; Chen, M. G.; Gao, J.
2013-12-01
Heterojunctions composed of La0.5Ca0.5MnO3 and Nb doped SrTiO3 were fabricated, and the effects of the Nb doping level on their electronic transport, photoelectric effect, and magnetoresistance were investigated. A lower doping concentration of Nb led to better rectifying properties and higher open circuit voltages. The I-V curves for La0.5Ca0.5MnO3/0.7 wt. % Nb-SrTiO3 showed a negligible response to magnetic fields for all temperatures, whereas La0.5Ca0.5MnO3/0.05 wt. % Nb-SrTiO3 exhibited distinct magnetoresistance, which depended on both the bias voltage and temperature. These results are discussed with the assistance of conventional semiconductor theories.
NASA Astrophysics Data System (ADS)
Singh, Arvind; Sinha, A. S. K.
2018-09-01
Active ternary graphite and alumina-supported cadmium sulphide (CdS) composite was synthesized by impregnation method followed by high-temperature solid-gas reaction and characterized by X-ray diffraction (XRD), photoluminescence spectroscopy (PL), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS) techniques. The ternary CdS-graphite-alumina composite exhibited superior catalytic activity compared with the binary CdS-alumina composite due to its better visible-light absorption and higher charge separation. The ternary composite has a bed-type structure. It permits a greater interaction at the interface due to intimate contact between CdS and graphite in the ternary composite. This composite has a highly efficient visible light-driven photocatalytic activity for sustainable hydrogen production. It is also capable of degrading organic dyes in wastewater.
Effect of Ce doping on structural, optical and photocatalytic properties of ZnO nano-structures.
Selvam, N Clament Sagaya; Vijaya, J Judith; Kennedy, L John
2014-03-01
A novel self-assembled pure and Ce doped ZnO nano-particles (NPs) were successfully synthesized by a simple low temperature co-precipitation method. The prepared photocatalysts were characterized by X-ray diffraction (XRD), High resolution scanning electron microscopy (HR-SEM), High resolution transmission electron microscopy (HR-TEM), diffuse reflectance spectroscopy (DRS) and Photoluminescence (PL) spectroscopy. The results indicated that the prepared photocatalysts shows a novel morphology, high crystallinity, uniform size distribution, and more defects. Photocatalytic degradation (PCD) of nonylphenol, a potent endocrine disrupting chemical in aqueous medium was investigated. Higher amount of oxygen defects exhibits enhanced PCD of nonylphenol. In addition, the influence of the Ce contents on the structure, morphology, absorption, emission and photocatalytic activity of ZnO nanoparticles (NPs) were investigated systematically. The relative PCD efficiency of pure ZnO, Ce-doped ZnO NPs and commercial TiO2 (Degussa P-25) have also been discussed.
Pressure-induced superconductivity in the giant Rashba system BiTeI.
VanGennep, D; Linscheid, A; Jackson, D E; Weir, S T; Vohra, Y K; Berger, H; Stewart, G R; Hennig, R G; Hirschfeld, P J; Hamlin, J J
2017-03-08
At ambient pressure, BiTeI exhibits a giant Rashba splitting of the bulk electronic bands. At low pressures, BiTeI undergoes a transition from trivial insulator to topological insulator. At still higher pressures, two structural transitions are known to occur. We have carried out a series of electrical resistivity and AC magnetic susceptibility measurements on BiTeI at pressure up to ∼40 GPa in an effort to characterize the properties of the high-pressure phases. A previous calculation found that the high-pressure orthorhombic P4/nmm structure BiTeI is a metal. We find that this structure is superconducting with T c values as high as 6 K. AC magnetic susceptibility measurements support the bulk nature of the superconductivity. Using electronic structure and phonon calculations, we compute T c and find that our data is consistent with phonon-mediated superconductivity.
Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability.
Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan
2015-04-14
Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V 4+ and Fe 3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48.
Spherical V-Fe-MCM-48: The Synthesis, Characterization and Hydrothermal Stability
Qian, Wang; Wang, Haiqing; Chen, Jin; Kong, Yan
2015-01-01
Spherical MCM-48 mesoporous sieve co-doped with vanadium and iron was successfully synthesized via one-step hydrothermal method. The material was characterized by X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, inductively coupled plasma (ICP), scanning electron microscopy (SEM), transmission electron microscopy (TEM), diffuse reflectance UV-vis spectra, and X-ray photoelectron spectra (XPS) techniques. Results indicated that the V-Fe-MCM-48 showed an ordered 3D cubic mesostructure with spherical morphology, narrow pore size distribution and high specific surface area. Most of vanadium and iron atoms existing as tetrahedral V4+ and Fe3+ species were co-doped into the silicate framework. The particle sizes of V-Fe-MCM-48 were smaller and the specific area was much higher than those of of V-MCM-48. Additionally, the synthesized V-Fe-MCM-48 exhibited improved hydrothermal stability compared with the pure MCM-48. PMID:28788030
NASA Astrophysics Data System (ADS)
Li, Jian; Han, Xiuxun; Dong, Chen; Fan, Changzeng
2017-12-01
Using first-principles total energy calculations, we have studied the structural, mechanical and electronic properties of GaAs1-xNx ternary semiconductor alloys with the zinc-blende crystal structure over the whole nitrogen concentration range (with x from 0 to 1) within density functional theory (DFT) framework. To obtain the ideal band gap, we employ the semi-empirical approach called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U). The calculated results illustrate the varying lattice constants and band gap in GaAs1-xNx alloys as functions of the nitrogen concentration x. According to the pressure dependence of the lattice constants and volume, the higher N concentration alloy exhibits the better anti-compressibility. In addition, an increasing band gap is predicted under 20 GPa pressure for GaAs1-xNx alloys.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jing Gu; Shiyong Wu; Youqing Wu
2008-11-15
In the study, two fly ash samples from Texaco gasifiers were compared to coal char and the physical and chemical properties and reactivity of samples were investigated by scanning electron microscopy (SEM), SEM-energy-dispersive spectrometry (EDS), X-ray diffraction (XRD), N{sub 2} and CO{sub 2} adsorption method, and isothermal thermogravimetric analysis. The main results were obtained. The carbon content of gasified fly ashes exhibited 31-37%, which was less than the carbon content of 58-59% in the feed coal. The fly ashes exhibited higher Brunauer-Emmett-Teller (BET) surface area, richer meso- and micropores, more disordered carbon crystalline structure, and better CO{sub 2} gasification reactivitymore » than coal char. Ashes in fly ashes occurred to agglomerate into larger spherical grains, while those in coal char do not agglomerate. The minerals in fly ashes, especial alkali and alkaline-earth metals, had a catalytic effect on gasification reactivity of fly ash carbon. In the low-temperature range, the gasification process of fly ashes is mainly in chemical control, while in the high-temperature range, it is mainly in gas diffusion control, which was similar to coal char. In addition, the carbon in fly ashes was partially gasified and activated by water vapor and exhibited higher BET surface area and better gasification activity. Consequently, the fact that these carbons in fly ashes from entrained flow gasifiers are reclaimed and reused will be considered to be feasible. 15 refs., 7 figs., 5 tabs.« less
A BPTTF-based self-assembled electron-donating triangle capable of C60 binding.
Goeb, Sébastien; Bivaud, Sébastien; Dron, Paul Ionut; Balandier, Jean-Yves; Chas, Marcos; Sallé, Marc
2012-03-25
A kinetically stable self-assembled redox-active triangle is isolated. The resulting electron-donating cavity, which incorporates three BPTTF units, exhibits a remarkable binding ability for electron-deficient C(60), supported by a favorable combination of structural and electronic features.
Intermediate coupled superconductivity in yttrium intermetallics
NASA Astrophysics Data System (ADS)
Sharma, Ramesh; Ahmed, Gulzar; Sharma, Yamini
2017-09-01
Non-magnetic YIn3, LaIn3 and LuIn3 with a superconducting transition temperature Tc of 0.78, 0.71 and 0.24 K were investigated for superconductivity. Similarly, rare-earth compound LaSn3 has been reported to exhibit superconductivity around 6.25 K, whereas the non-magnetic YSn3 is a superconductor with Tc of 7 K. The substitution of 13th group In-atoms by 14th group Sn-atoms is seen to enhance Tc by nearly one order, although the lattice parameters increase by ∼1.0% in YSn3 compared to YIn3 compound. It is observed from the ground state properties that the slight difference in the energy band structures of YIn3, YIn2Sn and YSn3 gives rise to various complex Fermi surfaces which are multiply connected and exhibit vast differences. The Fermi level lies on a sharp peak in YSn3 which has a higher density of states N(EF), whereas Fermi level lies on the shoulder of a sharp peak in YIn3. The electron localization function (ELF) and difference charge density maps clearly illustrate the difference in the nature of bonding; the Ysbnd Sn bonds are clearly more ionic (due to larger bond length) than Ysbnd In bonds. These results are consistent with the Bader charges which show loss of charges from Y-atoms and a gain of charges by In/Sn atoms. The dynamical properties also clearly illustrate the difference in the nature of bonds in YX3 intermetallics. A softening of the lowermost acoustic modes is observed in YIn3, whereas all the modes in YSn3 are observed to have positive frequencies which imply its greater stability. Since λel-ph < 1, both YIn3 and YSn3 compounds exhibit type I superconductivity according to BCS theory. However, the smaller N(EF) obtained from the density of states (DOS); the electron-phonon coupling constant λel-ph obtained from the temperature dependent specific heat as well as the instability in phonon modes due to stronger Ysbnd In and Insbnd In bonds in YIn3 may be the cause of lower Tc and filamentary nature of superconductivity. Insertion of Sn-atom in the YIn3 lattice further consolidates the superconducting nature due to increase in N(EF) and γ (electronic component of specific heat), along with lowering of the frequency of imaginary modes from 5.6 THz to 1.5-0.6 THz. Thus Tc is directly related to the valence electron concentration and ternary YIn2Sn may exhibit intermediate superconducting transition temperature.
Phylogenetic Evidence for H2 based Electron Bifurcation In Early Life
NASA Astrophysics Data System (ADS)
Adams, M. W.; Boyd, E. S.; Schut, G.; Peters, J.
2012-12-01
Energy conservation is a fundamental underpinning of all life and is accomplished by electron transport phosphorylation and/or substrate level phosphorylation. A third mechanism, known as flavin-based electron bifurcation, has recently been established as a mechanism by which life can conserve energy. In this mechanism, a flavin-containing multienzyme complex catalyzes the thermodynamically unfavorable reduction of low potential ferredoxin using electron donors with higher potentials, such as NAD(P)H or H2. Such endergonic reactions are driven forward through the simultaneous oxidation of the electron donor with higher potential acceptors such as NAD+ or heterodisulfide. Membrane associated energy converting [NiFe]hydrogenases (Ech, Eha) link the oxidation of ferredoxin with the production of H2 and in the process conserve energy in the form of an ion (Na+/H+) gradient. Ech/Eha exhibit a modular composition represented by a Na+/H+ antiporter domain and a [NiFe] hydrogenase domain. In addition, Ech/Eha can be accompanied by a formate dehyrogenase, carbon monoxide dehydrogenase, or an FAD/NAD(P)H module that enables coupling with these substrates. Representatives of Ech/Eha have been identified among anaerobic Archaea and Bacteria, including deeply rooted methanogens, sulfur-reducing Crenarcheota/Euryarchaeota as well as Thermotogae. Ech exhibit extensive homology to a number of subunits within the NADH quinone oxidoreductase or complex I family (Nuo, Fpo). Metabolically, Ech generally couple the oxidation of carbon monooxide, formate or ferredoxin to the production of H2. In contrast, the Eha complex couples the translocation of Na+ and the oxidation of H2 to the reduction of ferredoxin, which is then available for the reduction of CO2 in methanogens. In the case of Eha, the gradient of Na+/H+ produced through translocation coupled to ferredoxin oxidation can in be used to drive the phosphorylation of ADP via an ATP synthase complex, thereby representing one of the most simple forms of ATP production supporting life. This finding is consistent with phylogenetic analyses which indicate a close phylogenetic relationship between Ech/Eha and Nuo/Fpo, with [NiFe]-hydrogenase typically involved in H2 oxidation forming divergent lineages. This suggests that Ech/Eha are most likely to represent an ancestor of the Complex I family and the [NiFe]-hydrogenase family. A concatenation and phylogenetic analysis of the large and small subunits of Ech and Nuo was performed and and additional modules enabling coupling with CO2 (Eha), CO (Ech-CODH), and formate (Ech-Fdh) through H2-based electron bifurcation were overlaid on this phylogeny. The results suggest an origin for H2-based electron bifurcation via Ech/Eha among CO2 reducing hydrogenotrophic methanogenic Archaea or sulfur-reducing Archaea, with evolution towards coupling with formate and CO. These results provide insight into the evolutionary relationships between electron bifurcation-enabled ionic gradients capable of driving phosphorylation and electron transport-based phosphorylation. Moreover, these observations suggest that electron bifurcation may have been important in overcoming key metabolic bottlenecks and may have enabled life to access small energetic gradients to support metabolism on early Earth.
Coate, J E; Powell, A F; Owens, T G; Doyle, J J
2013-02-01
Allopolyploidy is often associated with increased photosynthetic capacity as well as enhanced stress tolerance. Excess light is a ubiquitous plant stress associated with photosynthetic light harvesting. We show that under chronic excess light, the capacity for non-photochemical quenching (NPQ(max)), a photoprotective mechanism, was higher in a recently formed natural allotetraploid (Glycine dolichocarpa, designated 'T2') than in its diploid progenitors (G. tomentella, 'D3'; and G. syndetika, 'D4'). This enhancement in NPQ(max) was due to an increase in energy-dependent quenching (qE) relative to D3, combined with an increase in zeaxanthin-dependent quenching (qZ) relative to D4. To explore the genetic basis for this phenotype, we profiled D3, D4 and T2 leaf transcriptomes and found that T2 overexpressed genes of the water-water cycle relative to both diploid progenitors, as well as genes involved in cyclic electron flow around photosystem I (CEF-PSI) and the xanthophyll cycle, relative to D4. Xanthophyll pigments have critical roles in NPQ, and the water-water cycle and CEF-PSI are non-photosynthetic electron transport pathways believed to facilitate NPQ formation. In the absence of CO(2), T2 also exhibited greater quantum yield of photosystem II than either diploid, indicating a greater capacity for non-photosynthetic electron transport. We postulate that, relative to its diploid progenitors, T2 is able to achieve higher NPQ(max) due to an increase in xanthophyll pigments coupled with enhanced electron flow through the water-water cycle and CEF-PSI.
Solution processed molecular floating gate for flexible flash memories
NASA Astrophysics Data System (ADS)
Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.
2013-10-01
Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices.
Solution processed molecular floating gate for flexible flash memories
Zhou, Ye; Han, Su-Ting; Yan, Yan; Huang, Long-Biao; Zhou, Li; Huang, Jing; Roy, V. A. L.
2013-01-01
Solution processed fullerene (C60) molecular floating gate layer has been employed in low voltage nonvolatile memory device on flexible substrates. We systematically studied the charge trapping mechanism of the fullerene floating gate for both p-type pentacene and n-type copper hexadecafluorophthalocyanine (F16CuPc) semiconductor in a transistor based flash memory architecture. The devices based on pentacene as semiconductor exhibited both hole and electron trapping ability, whereas devices with F16CuPc trapped electrons alone due to abundant electron density. All the devices exhibited large memory window, long charge retention time, good endurance property and excellent flexibility. The obtained results have great potential for application in large area flexible electronic devices. PMID:24172758
Dielectric surface discharges: Effects of combined low-energy and high-energy incident electrons
NASA Technical Reports Server (NTRS)
Balmain, K. G.; Hirt, W.
1981-01-01
Dielectric surface discharges affected by the addition of high energy electrons at 5 pA/sq cm to a primary 20 keV, 10 nA/sq cm electron beam with the high energy broad spectrum particles coming from the beta decay of Strontium 90 are studied. Kapton exhibits significantly increased discharge strength, increased waiting time between discharges, and a decreased number of discharges per specimen before discharge cessation. Mylar exhibits similar but less pronounced effects, while Teflon is relatively unaffected. With Kapton and Mylar, the high energy electrons act in some way to delay the instant of discharge ignition so that more charge can be accumulated and hence released during discharge.
Yadav, Suman; Jan, Rohi; Roy, Ritwika; Satsangi, P Gursumeeran
2016-12-01
In the present study, metal-facilitated free radical generation in particulate matter (PM) and its association with deoxyribonucleic acid (DNA) damage were studied. The examined data showed that the concentration of fine PM in Pune exhibited seasonal variations. Inductively coupled plasma-atomic emission spectrometry (ICP-AES) was used to examine the metal composition, which showed the presence of metals such as Cu, Zn, Mn, Fe, Co, Cr, Pb, Cd, and Ni. Fe metal was present in the highest concentrations in both the seasons, followed by Zn. The scanning electron microscopy-energy-dispersive spectrometer (SEM-EDS) results also demonstrated that the fine PM particles deposited in summer samples were less than those of winter samples, suggesting that the PM load in winter was higher as compared to that in summer. Elemental mapping of these particles substantiates deposition of metals as Fe, Zn, etc. on particles. The electron paramagnetic species (EPR) technique was utilized for free radical detection, and plasmid DNA assay was utilized to study the genotoxicity of ambient fine PM. Obtained g values show the presence of radicals in PM samples of Pune. PM contains the C-centered radical with a vicinal oxygen atom (g = 2.003). In addition to this, the g value for Fe was also observed. Therefore, we intend that the radicals related with fine PM comprise metal-mediated radicals and produce DNA damage. The plasmid DNA assay results indicated that the TM 50 values (toxic mass of PM causing 50 % of plasmid DNA damage) of PM exhibited seasonal variations with higher TM 50 values for summer and lower TM 50 values during winter.
DNA strand breaks and crosslinks induced by transient anions in the range 2-20 eV.
Luo, Xinglan; Zheng, Yi; Sanche, Léon
2014-04-15
The energy dependence of the yields of single and double strand breaks (SSB and DSB) and crosslinks induced by electron impact on plasmid DNA films is measured in the 2-20 eV range. The yield functions exhibit two strong maxima, which are interpreted to result from the formation of core-excited resonances (i.e., transient anions) of the bases, and their decay into the autoionization channel, resulting in π → π * electronic transitions of the bases followed by electron transfer to the C-O σ * bond in the phosphate group. Occupancy of the σ * orbital ruptures the C-O bond of the backbone via dissociative electron attachment, producing a SSB. From a comparison of our results with those of other works, including theoretical calculations and electron-energy-loss spectra of the bases, the 4.6 eV peak in the SSB yield function is attributed to the resonance decay into the lowest electronically excited states of the bases; in particular, those resulting from the transitions 1 3 A'( π 2 → π 3 *) and 1 3 A″(n 2 → π 3 *) of thymine and 1 3 A'( π → π *) of cytosine. The strongest peak at 9.6 eV in the SSB yield function is also associated with electron captured by excited states of the bases, resulting mostly from a multitude of higher-energy π → π * transitions. The DSB yield function exhibits strong maxima at 6.1 and 9.6 eV. The peak at 9.6 eV is probably related to the same resonance manifold as that leading to SSB, but the other at 6.1 eV may be more restricted to decay into the electronic state 1 3 A' ( π → π *) of cytosine via autoionization. The yield function of crosslinks is dominated by a broad peak extending over the 3.6-11.6 eV range with a sharper one at 17.6 eV. The different line shape of the latter function, compared to that of SSB and DSB, appears to be due to the formation of reactive radical sites in the initial supercoiled configuration of the plasmid, which react with the circular form (i.e., DNA with a SSB) to produce a crosslink.
Plasmonic Ag coated Zn/Ti-LDH with excellent photocatalytic activity
NASA Astrophysics Data System (ADS)
Zhu, Yanping; Zhu, Runliang; Zhu, Gangqiang; Wang, Miaomiao; Chen, Yannan; Zhu, Jianxi; Xi, Yunfei; He, Hongping
2018-03-01
Nowadays, two-dimensional (2D) nanosheets, such as layered double hydroxides (LDH), have received considerable attention for their potential to meeting clean energy demand and solving environmental problems. In this work, novel and efficient photocatalysts of plasmonic Ag nanoparticles coated Zn/Ti-LDH nanosheets have been synthesized through low-temperature reduction method. The structural characteristics of the as-prepared products were investigated by a series of characteristic methods The scanning electron microscopy (SEM) and transmission electron microscope (TEM) images showed that Ag nanoparticles were distributed on the surface of Zn/Ti-LDH uniformly. The UV-vis diffuse reflectance spectra (DRS) showed that the absorbance of Ag/LDH in visible-light region enhanced markedly and presented a broad band at 500-600 nm, which was resulted from the surface plasmon resonance (SPR) effect of Ag nanoparticles. The photocatalytic activities of Ag/LDH were evaluated by degradation of Rhodamine-B (RhB) and NO. The photocatalytic experiments showed that Ag/LDH had higher photocatalytic activity than that of pure LDH, and 2%Ag/LDH exhibited the highest photocatalytic activity. In addition, the 2%Ag/LDH exhibited high photochemical stability after multiple reaction runs. The obtained results from photoluminescence (PL) spectroscopic measurement and transient photocurrent (I-V) analysis both revealed the existence of Schottky barriers between LDH and Ag nanoparticles. The electron spin resonance (ESR) showed that rad OH were the dominant active species in the photo-degradation process. The enhanced photocatalytic performance of the composite should be ascribed to both the SPR effect of Ag nanoparticles in visible light and the Schottky barriers between LDH and Ag nanoparticles.
Electron-Phonon Coupling and Resonant Relaxation from 1D and 1P States in PbS Quantum Dots.
Kennehan, Eric R; Doucette, Grayson S; Marshall, Ashley R; Grieco, Christopher; Munson, Kyle T; Beard, Matthew C; Asbury, John B
2018-05-31
Observations of the hot-phonon bottleneck, which is predicted to slow the rate of hot carrier cooling in quantum confined nanocrystals, have been limited to date for reasons that are not fully understood. We used time-resolved infrared spectroscopy to directly measure higher energy intraband transitions in PbS colloidal quantum dots. Direct measurements of these intraband transitions permitted detailed analysis of the electronic overlap of the quantum confined states that may influence their relaxation processes. In smaller PbS nanocrystals, where the hot-phonon bottleneck is expected to be most pronounced, we found that relaxation of parity selection rules combined with stronger electron-phonon coupling led to greater spectral overlap of transitions among the quantum confined states. This created pathways for fast energy transfer and relaxation that may bypass the predicted hot-phonon bottleneck. In contrast, larger, but still quantum confined nanocrystals did not exhibit such relaxation of the parity selection rules and possessed narrower intraband states. These observations were consistent with slower relaxation dynamics that have been measured in larger quantum confined systems. These findings indicated that, at small radii, electron-phonon interactions overcome the advantageous increase in energetic separation of the electronic states for PbS quantum dots. Selection of appropriately sized quantum dots, which minimize spectral broadening due to electron-phonon interactions while maximizing electronic state separation, is necessary to observe the hot-phonon bottleneck. Such optimization may provide a framework for achieving efficient hot carrier collection and multiple exciton generation.
NASA Astrophysics Data System (ADS)
Zhan, Faqi; Li, Jie; Li, Wenzhang; Yang, Yahui; Liu, Wenhua; Li, Yaomin
2016-09-01
CdS/CdWO4/WO3 heterojunction films on fluorine-doped tin oxide (FTO) substrates are for the first time prepared as an efficient photoanode for photoelectrochemical (PEC) hydrogen generation by an in situ conversion process. The samples are characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet visible spectrometry (UV-vis) and X-ray photoelectron spectroscopy (XPS). The CdS hollow spheres (∼80 nm) sensitized WO3 plate film with a CdWO4 buffer-layer exhibits increased visible light absorption and a significantly improved photoelectrochemical performance. The photocurrent density at 0 V (vs. Ag/AgCl) of the CdS/CdWO4/WO3 anode is ∼3 times higher than that of the CdWO4/WO3 anode, and ∼9 times higher than that of pure WO3 under illumination. The highest incident-photon-to-current-efficiency (IPCE) value increased from 16% to 63% when the ternary heterojunction was formed. This study demonstrates that the synthesis of ternary composite photocatalysts by the in situ conversion process may be a promising approach to achieve high photoelectric conversion efficiency.
Hagen, David A; Saucier, Lauren; Grunlan, Jaime C
2014-12-24
Polymer-clay thin films constructed via layer-by-layer (LbL) assembly, with a nanobrick wall structure (i.e., clay nanoplatelets as bricks surrounded by a polyelectrolyte mortar), are known to exhibit a high oxygen barrier. Further barrier improvement can be achieved by lowering the pH of the clay suspension in the polyethylenimine (PEI) and montmorillonite (MMT) system. In this case, the charge of the deposited PEI layer is increased in the clay suspension environment, which causes more clay to be deposited. At pH 4, MMT platelets deposit with near perfect ordering, observed with transmission electron microscopy, enabling a 5× improvement in the gas barrier for a 10 PEI/MMT bilayer thin film (85 nm) relative to the same film made with pH 10 MMT. This improved gas barrier approaches that achieved with much higher aspect ratio vermiculite clay. In essence, lower pH is generating a higher effective aspect ratio for MMT due to greater induced surface charge in the PEI layers, which causes heavier clay deposition. These flexible, transparent nanocoatings have a wide range of possible applications, from food and electronics packaging to pressurized bladders.
Dielectric and Impedance Characteristics of Nickel-Modified BiFeO3-BaTiO3 Electronic Compound
NASA Astrophysics Data System (ADS)
Das, S. N.; Pardhan, S. K.; Bhuyan, S.; Sahoo, S.; Choudhary, R. N. P.; Goswami, M. N.
2018-01-01
The temperature- and field-dependent capacitive, resistive and conducting characteristics of nickel-modified binary electronic systems of bismuth ferrite (BiFeO3) and barium titanate (BaTiO3) have been investigated using dielectric and impedance spectroscopy techniques. The orthorhombic crystal structures of the solid solution (Bi1-2xNixBax)(Fe1-2xTi0.2x)O3 (with x = 0.10, 0.15, 0.20 and 0.25) have been identified from powder x-ray crystallography. The micrographs exhibit the development of dense samples with reduced grain size for higher percentage of Ni in the BiFeO3-BaTiO3. The stoichiometric content of each sample has been realized using the energy dispersive x-ray technique. The relationship between micro-structural study and frequency-temperature-dependent electrical properties of the compound has revealed a negative temperature coefficient of resistance behavior. A non-Debye-type relaxation process is observed from the Niquist plot. The studied compound presents important dielectric properties for the formulation of electronic devices.
NASA Astrophysics Data System (ADS)
Qing, Rui; Liu, Li; Bohling, Christian; Sigmund, Wolfgang
2015-01-01
TiO2 is one of the most exciting anode candidates for safe application in lithium ion batteries. However, its low intrinsic electronic conductivity limits application. In this paper, a simple sol-gel based route is presented to produce nanosize TiO2 fibers with 119 ± 27 nm diameters via electrospinning. Subsequent calcination in various atmospheres was applied to achieve anatase and anatase-rutile mixed phase crystallites with and without carbon coating. The crystallite size was 5 nm for argon calcined fibers and 13-20 nm for air calcined fibers. Argon calcined TiO2 nanofibers exhibited electronic conductivity orders of magnitude higher than those of air-calcined samples. Lithium diffusivity was increased by one time and specific capacity by 26.9% due to the enhanced conductivity. It also had a different intercalation mechanism of lithium. Hydrogen post heat-treatment was found to benefit electronic conductivity (by 3-4.5 times), lithium diffusivity (1.5-2 times) and consequently the high rate performance of the TiO2 nanofibers (over 80%). The inner mechanism and structure-property relations among these parameters were also discussed.
Liu, Chuyang; Zhang, Yujing; Jia, Jingguo; Sui, Qiang; Ma, Ning; Du, Piyi
2015-01-01
Multiferroic ceramics with extraordinary susceptibilities coexisting are vitally important for the multi-functionality and integration of electronic devices. However, multiferroic composites, as the most potential candidates, will introduce inevitable interface deficiencies and thus dielectric loss from dissimilar phases. In this study, single-phased ferrite ceramics with considerable magnetic and dielectric performances appearing simultaneously were fabricated by doping target ions in higher valence than that of Fe3+, such as Ti4+, Nb5+ and Zr4+, into BaFe12O19. In terms of charge balance, Fe3+/Fe2+ pair dipoles are produced through the substitution of Fe3+ by high-valenced ions. The electron hopping between Fe3+ and Fe2+ ions results in colossal permittivity. Whilst the single-phased ceramics doped by target ions exhibit low dielectric loss naturally due to the diminishment of interfacial polarization and still maintain typical magnetic properties. This study provides a convenient method to attain practicable materials with both outstanding magnetic and dielectric properties, which may be of interest to integration and multi-functionality of electronic devices. PMID:25835175
Liu, Chuyang; Zhang, Yujing; Jia, Jingguo; Sui, Qiang; Ma, Ning; Du, Piyi
2015-04-02
Multiferroic ceramics with extraordinary susceptibilities coexisting are vitally important for the multi-functionality and integration of electronic devices. However, multiferroic composites, as the most potential candidates, will introduce inevitable interface deficiencies and thus dielectric loss from dissimilar phases. In this study, single-phased ferrite ceramics with considerable magnetic and dielectric performances appearing simultaneously were fabricated by doping target ions in higher valence than that of Fe(3+), such as Ti(4+), Nb(5+) and Zr(4+), into BaFe12O19. In terms of charge balance, Fe(3+)/Fe(2+) pair dipoles are produced through the substitution of Fe(3+) by high-valenced ions. The electron hopping between Fe(3+) and Fe(2+) ions results in colossal permittivity. Whilst the single-phased ceramics doped by target ions exhibit low dielectric loss naturally due to the diminishment of interfacial polarization and still maintain typical magnetic properties. This study provides a convenient method to attain practicable materials with both outstanding magnetic and dielectric properties, which may be of interest to integration and multi-functionality of electronic devices.
NASA Astrophysics Data System (ADS)
Liu, Chuyang; Zhang, Yujing; Jia, Jingguo; Sui, Qiang; Ma, Ning; Du, Piyi
2015-04-01
Multiferroic ceramics with extraordinary susceptibilities coexisting are vitally important for the multi-functionality and integration of electronic devices. However, multiferroic composites, as the most potential candidates, will introduce inevitable interface deficiencies and thus dielectric loss from dissimilar phases. In this study, single-phased ferrite ceramics with considerable magnetic and dielectric performances appearing simultaneously were fabricated by doping target ions in higher valence than that of Fe3+, such as Ti4+, Nb5+ and Zr4+, into BaFe12O19. In terms of charge balance, Fe3+/Fe2+ pair dipoles are produced through the substitution of Fe3+ by high-valenced ions. The electron hopping between Fe3+ and Fe2+ ions results in colossal permittivity. Whilst the single-phased ceramics doped by target ions exhibit low dielectric loss naturally due to the diminishment of interfacial polarization and still maintain typical magnetic properties. This study provides a convenient method to attain practicable materials with both outstanding magnetic and dielectric properties, which may be of interest to integration and multi-functionality of electronic devices.
Kessels, M M; Qualmann, B; Sierralta, W D
1996-01-01
Contributing to the rapidly developing field of immunoelectron microscopy a new kind of markers has been created. The element boron, incorporated as very stable carborane clusters into different kinds of peptides, served as a marker detectable by electron spectroscopic imaging (ESI)--an electron microscopic technique with high-resolution potential. Covalently linked immunoreagents conspicuous by the small size of both antigen recognizing part and marker moiety are accessible by using peptide concepts for label construction and their conjugation with Fab' fragments. Due to a specific labeling of the free thiol groups of the Fab' fragments, the antigen binding capacity was not affected by the attachment of the markers and the resulting immunoprobes exhibited an elongated shape with the antigen combining site and the label located at opposite ends. The labeling densities observed with these reagents were found to be significantly higher than those obtained by using conventional colloidal gold methods. Combined with digital image processing and analysis systems, boron-based ESI proved to be a powerful approach in ultrastructural immunocytochemistry employing pre- and post-embedding methods.
NASA Astrophysics Data System (ADS)
Edalati, Sh; Houshangi far, A.; Torabi, N.; Baneshi, Z.; Behjat, A.
2017-02-01
Poly(3,4-ethylendioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) was deposited on a fluoride-doped tin oxide glass substrate using a heuristic method to fabricate platinum-free counter electrodes for dye-sensitized solar cells (DSSCs). In this heuristic method a thin layer of PEDOT:PPS is obtained by spin coating the PEDOT:PSS on a Cu substrate and then removing the substrate with FeCl3. The characteristics of the deposited PEDOT:PSS were studied by energy dispersive x-ray analysis and scanning electron microscopy, which revealed the micro-electronic specifications of the cathode. The aforementioned DSSCs exhibited a solar conversion efficiency of 3.90%, which is far higher than that of DSSCs with pure PEDOT:PSS (1.89%). This enhancement is attributed not only to the micro-electronic specifications but also to the HNO3 treatment through our heuristic method. The results of cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and Tafel polarization plots show the modified cathode has a dual function, including excellent conductivity and electrocatalytic activity for iodine reduction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Dongcheng; Zhou, Hu; Cai, Ping
2014-02-03
A triazine- and pyridinium-containing water-soluble material of 1,1′,1″-(4,4′,4″-(1,3,5-triazine-2,4,6-triyl)tris(benzene-4,1-diyl)) tris(methylene)tripyridinium bromide (TzPyBr) was developed as an organic electron-selective layer in solution-processed inverted organic solar cells due to its strong anti-erosion capacity against non-polar organic solvents commonly used for the active layer. Ohmic-like contact with the adjacent active materials like fullerene derivatives is speculated to be formed, as confirmed by the work-function measurements with scanning Kelvin probe and ultraviolet photoelectron spectroscopy techniques. Besides, considering the deep highest occupied molecular orbital energy level of TzPyBr, excellent hole-blocking property of the electron-selective layer is also anticipated. The inverted organic photovoltaic devices based on themore » TzPyBr/ITO (indium tin oxide) bilayer cathode exhibit dramatically enhanced performance compared to the control devices with bare ITO as the cathode and even higher efficiency than the conventional type devices with ITO and Al as the electrodes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng
2016-06-15
The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under amore » higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.« less
Effect of electron-vibration interactions on the thermoelectric efficiency of molecular junctions.
Hsu, Bailey C; Chiang, Chi-Wei; Chen, Yu-Chang
2012-07-11
From first-principles approaches, we investigate the thermoelectric efficiency of a molecular junction where a benzene molecule is connected directly to the platinum electrodes. We calculate the thermoelectric figure of merit ZT in the presence of electron-vibration interactions with and without local heating under two scenarios: linear response and finite bias regimes. In the linear response regime, ZT saturates around the electrode temperature T(e) = 25 K in the elastic case, while in the inelastic case we observe a non-saturated and a much larger ZT beyond T(e) = 25 K attributed to the tail of the Fermi-Dirac distribution. In the finite bias regime, the inelastic effects reveal the signatures of the molecular vibrations in the low-temperature regime. The normal modes exhibiting structures in the inelastic profile are characterized by large components of atomic vibrations along the current density direction on top of each individual atom. In all cases, the inclusion of local heating leads to a higher wire temperature T(w) and thus magnifies further the influence of the electron-vibration interactions due to the increased number of local phonons.
NASA Astrophysics Data System (ADS)
Su, Guo-Qiang; Wang, Yi-Bo; Song, Bai-Peng; Mu, Hai-Bao; Zhang, Guan-Jun; Li, Feng; Wang, Meng
2016-06-01
The luminescence evolution phenomena from alumina ceramic surface in vacuum under high voltage of direct and alternating current are reported, with the voltage covering a large range from far below to close to the flashover voltage. Its time resolved and spatial distributed behaviors are examined by a photon counting system and an electron-multiplying charge-coupled device (EMCCD) together with a digital camera, respectively. The luminescence before flashover exhibits two stages as voltage increasing, i.e., under a relative low voltage (Stage A), the luminescence is ascribed to radiative recombination of hetero-charges injected into the sample surface layer by Schottky effect; under a higher voltage (Stage B), a stable secondary electron emission process, resulting from the Fowler-Nordheim emission at the cathode triple junction (CTJ), is responsible for the luminescence. Spectrum analysis implies that inner secondary electrons within the surface layer of alumina generated during the SSEE process also participate in the luminescence of Stage B. A comprehensive interpretation of the flashover process is formulated, which might promote a better understanding of flashover issue in vacuum.
NASA Astrophysics Data System (ADS)
Mandal, Ujjwal; Ghosh, Subhadip; Dey, Shantanu; Adhikari, Aniruddha; Bhattacharyya, Kankan
2008-04-01
Ultrafast photoinduced electron transfer (PET) from N,N-dimethylaniline (DMA) to coumarin dyes is studied in the micelle and the gel phase of a triblock copolymer, (PEO)20-(PPO)70-(PEO)20 (Pluronic P123) by picosecond and femtosecond emission spectroscopies. The rate of PET in a P123 micelle and gel is found to be nonexponential and faster than the slow components of solvation dynamics. In a P123 micelle and gel, PET occurs on multiple time scales ranging from a subpicosecond time scale to a few nanoseconds. In the gel phase, the highest rate constant (9.3×109M-1s-1) of ET for C152 is about two times higher than that (3.8×109M-1s-1) observed in micelle phase. The ultrafast components of electron transfer (ET) exhibits a bell shaped dependence with the free energy change which is similar to the Marcus inversion. Possible reasons for slower PET in P123 micelle compared to other micelles and relative to P123 gel are discussed.
NASA Astrophysics Data System (ADS)
Samat, N.; Motsidi, S. N. R.; Lazim, N. H. M.
2018-01-01
The purpose of this research was to evaluate the influence of dose level of electron beam on the compatibilization behavior of recycled polypropylene (rPP) in rPP/microcrystalline cellulose (MCC) composites. Initially, the rPP was irradiated with various dose of electron beam (5 kGy up to 250 kGy) which then mixed with unirradiated rPP (u-rPP) at a ratio of 30:70 respectively. The composites were prepared by incorporating a series wt% of MCC fibers into rPP (u-rPP : i-rPP) using extruder and finally moulded with an injection moulding machine. The compatibility behavior of irradiated rPP (i-rPP) were analysed with mechanical tensile and thermal methods. The results of mechanical analysis showed great improvement in tensile modulus but an increase in radiation dosage gradually decreased this property. Nevertheless, the tensile strength exhibited a minor effect. The thermal stability of composites is lowered with increase in the absorbed dose, more significantly at higher content of MCC. Fracture surface observations reveal adhesion between the cellulose and rPP matrix.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lingerfelt, David B.; Lestrange, Patrick J.; Radler, Joseph J.
Materials and molecular systems exhibiting long-lived electronic coherence can facilitate coherent transport, opening the door to efficient charge and energy transport beyond traditional methods. Recently, signatures of a possible coherent, recurrent electronic motion were identified in femtosecond pump-probe spectroscopy experiments on a binuclear platinum complex, where a persistent periodic beating in the transient absorption signal’s anisotropy was observed. In this study, we investigate the excitonic dynamics that underlie the suspected electronic coherence for a series of binuclear platinum complexes exhibiting a range of interplatinum distances. Results suggest that the long-lived coherence can only result when competitive electronic couplings are inmore » balance. At longer Pt-Pt distances, the electronic couplings between the two halves of the binuclear system weaken, and exciton localization and recombination is favored on short time scales. For short Pt-Pt distances, electronic couplings between the states in the coherent superposition are stronger than the coupling with other excitonic states, leading to long-lived coherence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Hongxia; Feng Jing; Zhang Milin
A novel CuO electrode material with flower-like nanostructures was fabricated at a low temperature (80 deg. C) by a simple chemical precipitation method. Scanning electron microscopy (SEM) results showed that CuO with spherical and flower-like structure can be formed under a weak alkali (C{sub 6}H{sub 12}N{sub 4}), and CuO with sheets structure can be obtained under a strong alkali (NaOH). A possible growth mechanism of CuO nanocrystals was discussed. The flower-like CuO electrode exhibited a higher specific capacitance (133.6 Fg{sup -1}) and an excellent cycle performance at a high current density of 10 mA/cm{sup 2}. Specific capacitance of flower-like CuOmore » was 405.3% higher than globular CuO (26.44 Fg{sup -1}) at 2 mA/cm{sup 2}.« less
Chen, Xingxing; Zhang, Zijian; Ding, Zicheng; Liu, Jun; Wang, Lixiang
2016-08-22
Conjugated polymers are essential for solution-processable organic opto-electronic devices. In contrast to the great efforts on developing new conjugated polymer backbones, research on developing side chains is rare. Herein, we report branched oligo(ethylene glycol) (OEG) as side chains of conjugated polymers. Compared with typical alkyl side chains, branched OEG side chains endowed the resulting conjugated polymers with a smaller π-π stacking distance, higher hole mobility, smaller optical band gap, higher dielectric constant, and larger surface energy. Moreover, the conjugated polymers with branched OEG side chains exhibited outstanding photovoltaic performance in polymer solar cells. A power conversion efficiency of 5.37 % with near-infrared photoresponse was demonstrated and the device performance could be insensitive to the active layer thickness. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wang, Xiansong; Yang, Da-Peng; Huang, Peng; Li, Min; Li, Chao; Chen, Di; Cui, Daxiang
2012-11-01
The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of the resulting products. Two different growth mechanisms are proposed. The study on surface enhanced Raman scattering (SERS) activities is also carried out between Au microspheres and Au sea urchin-like architectures. It is found that Au urchin-like architectures possess much higher SERS activity than the Au microspheres. Our work may shed light on the design and synthesis of hierarchically self-assembled 3D micro/nano-architectures for SERS, catalysis and biosensors.The hierarchically assembled Au microspheres/sea urchin-like structures have been synthesized in aqueous solution at room temperature with and without proteins (bovine serum albumin, BSA) as mediators. The average diameter of an individual Au microsphere is 300-600 nm, which is composed of some compact nanoparticles with an average diameter of about 15 nm. Meanwhile, the sea urchin-like Au architecture exhibits an average diameter of 600-800 nm, which is made up of some nanopricks with an average length of 100-200 nm. These products are characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD) and transmission electronic microscopy (TEM). It is found that the BSA and ascorbic acid (AA) have great effects on the morphology of the resulting products. Two different growth mechanisms are proposed. The study on surface enhanced Raman scattering (SERS) activities is also carried out between Au microspheres and Au sea urchin-like architectures. It is found that Au urchin-like architectures possess much higher SERS activity than the Au microspheres. Our work may shed light on the design and synthesis of hierarchically self-assembled 3D micro/nano-architectures for SERS, catalysis and biosensors. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32405a
ERIC Educational Resources Information Center
American Journal of Play, 2017
2017-01-01
Jon-Paul C. Dyson is vice president for exhibits and director of the International Center for the History of Electronic Games (ICHEG) at The Strong. Trained as a cultural and intellectual historian, he joined The Strong in 1998 and has worked on and supervised the development of dozens of exhibits on play and video games. He initiated the museum's…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Zhe; Cao, Minhua, E-mail: caomh@bit.edu.cn; Key Laboratory of Cluster Science, Ministry of Education of China, Department of Chemistry, Beijing Institute of Technology, Beijing 100081
Research highlights: {yields} Novel Bi{sub 2}S{sub 3} hierarchical nanostructures self-assembled by nanorods are successfully synthesized in mild benzyl alcohol system under hydrothermal conditions. {yields} The hierarchical nanostructures exhibit a flower-like shape. {yields} PVP plays an important role for the formation of the hierarchical nanostructures. {yields} Bi{sub 2}S{sub 3} film prepared from the flower-like hierarchical nanostructures exhibits good hydrophobic properties. -- Abstract: Novel Bi{sub 2}S{sub 3} hierarchical nanostructures self-assembled by nanorods are successfully synthesized in mild benzyl alcohol system under hydrothermal conditions. The hierarchical nanostructures exhibit a flower-like shape. X-ray diffraction (XRD), X-ray photoelectron spectra (XPS), scanning electron microscopy (SEM), transmissionmore » electron microscopy (TEM), high-resolution transmission electron microscopy (HRTEM), and selected area electron diffraction (SAED) were used to characterize the as-synthesized samples. Meanwhile, the effect of various experimental parameters including the concentration of reagents and reaction time on final product has been investigated. In our experiment, PVP plays an important role for the formation of the hierarchical nanostructures and the possible mechanism was proposed. In addition, Bi{sub 2}S{sub 3} film prepared from the flower-like hierarchical nanostructures exhibits good hydrophobic properties, which may bring nontrivial functionalities and may have some promising applications in the future.« less
Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun
2015-01-01
The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I–V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I–V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I–V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I–V behavior of (Nb + In) co-doped TiO2 ceramics. PMID:25656713
NASA Astrophysics Data System (ADS)
Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun
2015-02-01
The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I-V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I-V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I-V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I-V behavior of (Nb + In) co-doped TiO2 ceramics.
Li, Jinglei; Li, Fei; Li, Chao; Yang, Guang; Xu, Zhuo; Zhang, Shujun
2015-02-06
The (Nb + In) co-doped TiO2 ceramics were synthesized by conventional solid-state sintering (CSSS) and spark plasma sintering (SPS) methods. The phases and microstructures were studied by X-ray diffraction, Raman spectra, field-emission scanning electron microscopy and transmission electron microscopy, indicating that both samples were in pure rutile phase while showing significant difference in grain size. The dielectric and I-V behaviors of SPS and CSSS samples were investigated. Though both possess colossal permittivity (CP), the SPS samples exhibited much higher dielectric permittivity/loss factor and lower breakdown electric field when compared to their CSSS counterparts. To further explore the origin of CP in co-doped TiO2 ceramics, the I-V behavior was studied on single grain and grain boundary in CSSS sample. The nearly ohmic I-V behavior was observed in single grain, while GBs showed nonlinear behavior and much higher resistance. The higher dielectric permittivity and lower breakdown electric field in SPS samples, thus, were thought to be associated with the feature of SPS, by which reduced space charges and/or impurity segregation can be achieved at grain boundaries. The present results support that the grain boundary capacitance effect plays an important role in the CP and nonlinear I-V behavior of (Nb + In) co-doped TiO2 ceramics.
Recent High Heat Flux Tests on W-Rod-Armored Mockups
DOE Office of Scientific and Technical Information (OSTI.GOV)
NYGREN,RICHARD E.; YOUCHISON,DENNIS L.; MCDONALD,JIMMIE M.
2000-07-18
In the authors initial high heat flux tests on small mockups armored with W rods, done in the small electron beam facility (EBTS) at Sandia National Laboratories, the mockups exhibited excellent thermal performance. However, to reach high heat fluxes, they reduced the heated area to only a portion ({approximately}25%) of the sample. They have now begun tests in their larger electron beam facility, EB 1200, where the available power (1.2 MW) is more than enough to heat the entire surface area of the small mockups. The initial results indicate that, at a given power, the surface temperatures of rods inmore » the EB 1200 tests is somewhat higher than was observed in the EBTS tests. Also, it appears that one mockup (PW-10) has higher surface temperatures than other mockups with similar height (10mm) W rods, and that the previously reported values of absorbed heat flux on this mockup were too high. In the tests in EB 1200 of a second mockup, PW-4, absorbed heat fluxes of {approximately}22MW/m{sup 2} were reached but the corresponding surface temperatures were somewhat higher than in EBTS. A further conclusion is that the simple 1-D model initially used in evaluating some of the results from the EBTS testing was not adequate, and 3-D thermal modeling will be needed to interpret the results.« less
NASA Astrophysics Data System (ADS)
Ambade, Swapnil B.; Ambade, Rohan B.; Eom, Seung Hun; Baek, Myung-Jin; Bagde, Sushil S.; Mane, Rajaram S.; Lee, Soo-Hyoung
2016-02-01
In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM-ZnO NRs) leads to higher aggregation owing to the weaker solubility of SMs in solutions of ZnO NRs dispersed in chlorobenzene (CB). A prior addition of organic 2-(2-methoxyethoxy)acetic acid (MEA) over ZnO NRs not only inhibits aggregation of SMs over ZnO NRs, but also provides enough sites for the SM to strongly couple with the ZnO NRs to yield transparent SM-MEA-ZnO NRs hybrids that exhibited excellent capability as electron transporting layers (ETLs) in inverted organic solar cells (iOSCs) of P3HT:PC60BM bulk-heterojunction (BHJ) photoactive layers. A strongly coupled SM-MEA-ZnO NR hybrid reduces the series resistance by enhancing the interfacial area and tunes the energy level alignment at the interface between the (indium-doped tin oxide, ITO) cathode and BHJ photoactive layers. A significant enhancement in power conversion efficiency (PCE) was achieved for iOSCs comprising ETLs of SM-MEA-ZnO NRs (3.64%) advancing from 0.9% for pristine ZnO NRs, while the iOSCs of aggregated SM-ZnO NRs ETL exhibited a much lower PCE of 2.6%, thus demonstrating the potential of the co-functionalization approach. The superiority of the co-functionalized SM-MEA-ZnO NRs ETL is also evident from the highest PCE of 7.38% obtained for the iOSCs comprising BHJ of PTB7-Th:PC60BM compared with extremely poor 0.05% for non-functionalized ZnO NRs.In an unprecedented attempt, we present an interesting approach of coupling solution processed ZnO planar nanorods (NRs) by an organic small molecule (SM) with a strong electron withdrawing cyano moiety and the carboxylic group as binding sites by a facile co-functionalization approach. Direct functionalization by SMs (SM-ZnO NRs) leads to higher aggregation owing to the weaker solubility of SMs in solutions of ZnO NRs dispersed in chlorobenzene (CB). A prior addition of organic 2-(2-methoxyethoxy)acetic acid (MEA) over ZnO NRs not only inhibits aggregation of SMs over ZnO NRs, but also provides enough sites for the SM to strongly couple with the ZnO NRs to yield transparent SM-MEA-ZnO NRs hybrids that exhibited excellent capability as electron transporting layers (ETLs) in inverted organic solar cells (iOSCs) of P3HT:PC60BM bulk-heterojunction (BHJ) photoactive layers. A strongly coupled SM-MEA-ZnO NR hybrid reduces the series resistance by enhancing the interfacial area and tunes the energy level alignment at the interface between the (indium-doped tin oxide, ITO) cathode and BHJ photoactive layers. A significant enhancement in power conversion efficiency (PCE) was achieved for iOSCs comprising ETLs of SM-MEA-ZnO NRs (3.64%) advancing from 0.9% for pristine ZnO NRs, while the iOSCs of aggregated SM-ZnO NRs ETL exhibited a much lower PCE of 2.6%, thus demonstrating the potential of the co-functionalization approach. The superiority of the co-functionalized SM-MEA-ZnO NRs ETL is also evident from the highest PCE of 7.38% obtained for the iOSCs comprising BHJ of PTB7-Th:PC60BM compared with extremely poor 0.05% for non-functionalized ZnO NRs. Electronic supplementary information (ESI) available: Fig. S1-S3 and Table S1. See DOI: 10.1039/c5nr08849f
Symmetry and electronic structure of noble-metal nanoparticles and the role of relativity.
Häkkinen, Hannu; Moseler, Michael; Kostko, Oleg; Morgner, Nina; Hoffmann, Margarita Astruc; von Issendorff, Bernd
2004-08-27
We present high resolution UV-photoelectron spectra of cold mass selected Cun-, Agn-, and Aun- with n=53-58. The observed electron density of states is not the expected simple electron shell structure, but is strongly influenced by electron-lattice interactions. Only Cu55- and Ag55- exhibit highly degenerate states. This is a direct consequence of their icosahedral symmetry, as is confirmed by density functional theory calculations. Neighboring sizes exhibit perturbed electronic structures, as they are formed by removal or addition of atoms to the icosahedron and therefore have lower symmetries. Gold clusters in the same size range show completely different spectra with almost no degeneracy, which indicates that they have structures of much lower symmetry. This behavior is related to strong relativistic bonding effects in gold, as demonstrated by ab initio calculations for Au55-.
Coherent electron emission beyond Young-type interference from diatomic molecules
NASA Astrophysics Data System (ADS)
Agueny, H.; Makhoute, A.; Dubois, A.; Hansen, J. P.
2016-01-01
It has been known for more than 15 years that the differential cross section of electrons emitted from diatomic molecules during interaction with energetic charged particles oscillates as a function of electron momentum. The origin of the phenomenon is two-center interference, which naturally relates it back to the Young double-slit experiment. In addition to a characteristic frequency which can be described by lowest-order perturbation theories, the observation and origin of higher-order harmonics of the basic oscillation frequency has been much discussed. Here, we show that high harmonics of the fundamental Young-type oscillation frequency observed in electron spectra in fast ion-molecule collisions can be clearly exposed in numerical solutions of the time-dependent Schrödinger equation within a one-dimensional model. Momentum distribution of the ejected electron is analyzed and shows that the phenomenon emerges when the charged particle beam collides with diatomic molecules with substantial large internuclear distance. Frequency spectra from nonperturbative calculations for electron emission from Rb2+ and Cs2+ exhibit a pronounced high-order oscillation in contrast to similar close-coupling calculations performed on H2 targets. The electron emission from these heavy molecules contains second- and third-order harmonics which are fully reproduced in an analytic model based on the Born series. Extending to triatomic molecular targets displays an increased range of harmonics. This suggests that electron emission spectra from new experiments on heavy diatomic and linear polyatomic molecular targets may provide a unique insight into competing coherent emission mechanisms and their relative strength.
Shit, Arnab; Chal, Pousali; Nandi, Arun K
2018-06-13
In order to tune the band positions of the hole-transporting material (HTM) in an interfacially engineered perovskite solar cell (PSC), random copolymers of poly(3-thiopheneacetic acid) and poly(3-hexylthiophene) (P3TAA-co-P3HT) with different compositions were produced by oxidative polymerization. The copolymers were characterized using 1H NMR, FTIR, and UV-vis spectroscopy and gel permeation chromatography. Here, ZnO nanoparticles were used as the electron-transporting material (ETM) and methylammonium lead iodide (MAPbI3) perovskite was used as the light-absorbing material to form an FTO/ZnO/MAPbI3/copolymer/Ag device, of which the power conversion efficiency (PCE) was found to be dependent on the copolymer composition and reached a maximum (∼10%) at a P3TAA content of 43 mol% in the copolymer (P3). The band gaps of the copolymers as determined from UV-vis spectroscopy and cyclic voltammetry exhibit a staggered-gap hetero-interface configuration in which the HOMO and LUMO of P3 closely match those of MAPbI3 and give rise to the maximum PCE. Time-resolved photoluminescence spectra of MAPbI3/HTM samples indicate that charge transfer across the perovskite/copolymer interface was faster with a reduced recombination rate for a P3 sample. The electrochemical impedance spectra (EIS) of the PSCs exhibit Nyquist plots with two semicircles, which correspond to an equivalent circuit consisting of two parallel R-C and R-CPE circuits connected in series. Analysis of the data indicates that the effective electron lifetime was longest for the P3 copolymer, which indicates that the charge recombination was lower than that in the components and other copolymers. The copolymers exhibited an intermediate stability with respect to their components, and amongst the copolymers P3 exhibited the highest stability.
Dielectric surface discharges - Effects of combined low-energy and high-energy incident electrons
NASA Technical Reports Server (NTRS)
Balmain, K. G.; Hirt, W.
1983-01-01
Dielectric surface discharges affected by the addition of high energy electrons at 5 pA/sq cm to a primary 20 keV, 10 nA/sq cm electron beam with the high energy broad spectrum particles coming from the beta decay of Strontium 90 are studied. Kapton exhibits significantly increased discharge strength, increased waiting time between discharges, and a decreased number of discharges per specimen before discharge cessation. Mylar exhibits similar but less pronounced effects, while Teflon is relatively unaffected. With Kapton and Mylar, the high energy electrons act in some way to delay the instant of discharge ignition so that more charge can be accumulated and hence released during discharge. Previously announced in STAR as N82-14222
NASA Astrophysics Data System (ADS)
Kandemir, B. S.; Gökçek, N.
2017-12-01
We investigate the combined effects of trigonal warping and electron-phonon interactions on the renormalization of the Fermi velocity in graphene. We present an analytical solution to the associated Fröhlich Hamiltonian describing the interaction of doubly degenerate-optical phonon modes of graphene with electrons in the presence of trigonal warp within the framework of Lee-Low-Pines theory. On the basis of our model, it is analytically shown that in addition to its renormalization, Fermi velocity exhibits strong anisotropy due to the trigonal warping. It is also found that in the regime where the trigonal warp starts, distortion of energy bands emerges due to electron-phonon coupling, and the bands exhibit strong anisotropy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huo, Rui; Yang, Jing-Yu; Liu, You-Qin
2016-04-15
Highlights: • W, N, S codoped TiO{sub 2} nanoparticles were synthesized by precipitation-impregnation method. • New linkages N–Ti–O, Ti–O–S and Ti–O–W were formed. • The activity of 0.011W, 0.030(N,S)-TiO{sub 2} is 10 times higher than that of TiO{sub 2}. • The doping enhanced visible light absorbance and accelerated the charge carrier separation. - Abstract: In this work, the preparation and physiochemical characterization of tungsten, nitrogen and sulfur codoping TiO{sub 2} photocatalysts (W, N, S-TiO{sub 2}) was undertaken. W, N, S-TiO{sub 2} nanoparticles were synthesized via the precipitation-impregnation method. To investigate the structural, optical, and electronic properties, the as-prepared W, N,more » S-TiO{sub 2} photocatalysts were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible diffuse reflection spectrum (DRS). W, N, S-TiO{sub 2} samples showed photo-absorption in the visible light region and higher visible light photocatalytic activity than TiO{sub 2}. 0.011W, 0.030(N, S)-TiO{sub 2} exhibited the highest visible light photocatalytic activity, and the photocatalyic degradation activity of 0.011W,0.030(N,S)-TiO{sub 2} is nearly 10 times higher than that of TiO{sub 2}. Compared with the undoped TiO{sub 2}, the improved photocatalytic activity of W, N, S-TiO{sub 2} samples under visible light irradiation is attributed to the increase of the visible light absorption and the reduction in photogenerated electron-hole recombination.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bose, Sumanta; Fan, W. J., E-mail: ewjfan@ntu.edu.sg; Zhang, D. H.
2016-04-14
The effect of lateral size and vertical thickness of CdSe and CdS nanoplatelets (NPLs) on their electronic structure and optical properties are investigated using an effective-mass envelope function theory based on the 8-band k ⋅ p model with valence force field considerations. Volumetrically larger NPLs have lower photon emission energy due to limited quantum confinement, but a greater transition matrix element (TME) due to larger electron-hole wavefunction overlap. The optical gain characteristics depend on several factors such as TME, Fermi factor, carrier density, NPL dimensions, material composition, and dephasing rate. There is a red shift in the peak position, moremore » so with an increase in thickness than lateral size. For an increasing carrier density, the gain spectrum undergoes a slight blue shift due to band filling effect. For a fixed carrier density, the Fermi factor is higher for volumetrically larger NPLs and so is the difference between the quasi-Fermi level separation and the effective bandgap. The transparency injection carrier density (and thus input current density threshold) is dimension dependent and falls for volumetrically larger NPLs, as they can attain the requisite exciton count for transparency with a relatively lower density. Between CdSe and CdS, CdSe has lower emission energy due to smaller bandgap, but a higher TME due to lower effective mass. CdS, however, has a higher so hole contribution due to a lower spin-orbit splitting energy. Both CdSe and CdS NPLs are suitable candidates for short-wavelength LEDs and lasers in the visible spectrum, but CdSe is expected to exhibit better optical performance.« less
Yam, Lily; Lee, Kelly C.
2017-01-01
Objectives. To measure the level of burnout among pharmacy practice faculty members at US colleges and schools of pharmacy and to identify factors associated with burnout. Methods. Using a cross-sectional, electronic, anonymous survey-design, we measured faculty burnout (n=2318) at US colleges and schools of pharmacy using the Maslach Burnout Inventory-Educators Survey (MBI-ES), which measures burnout dimensions: emotional exhaustion, depersonalization, and personal accomplishment. We assessed MBI-ES scores, demographics and possible predictors of burnout. Results. The response rate was 32.7% (n=758). Emotional exhaustion was identified in 41.3% and was higher in women, assistant professors, and those without a hobby. Participants without a mentor had higher scores of depersonalization. Those with children ages 1-12 years had higher emotional exhaustion and depersonalization compared to those with older children. Conclusion. Pharmacy practice faculty members at US colleges and schools of pharmacy are suffering from burnout, exhibited mainly through emotional exhaustion. PMID:28630516
Polyethylenimine-incorporated zeolite 13X with mesoporosity for post-combustion CO2 capture
NASA Astrophysics Data System (ADS)
Chen, Chao; Kim, Su-Sung; Cho, Won-Seung; Ahn, Wha-Seung
2015-03-01
X-type zeolite with mesoporosity (Meso-13X) was prepared by using dimethyloctadecyl[3-(trimethoxysilyl)propyl]ammonium chloride as a mesopore-generating agent, and then modified with polyethylenimine (PEI) through a physical impregnation method to form a hybrid material (Meso-13X-PEI). Meso-13X with and without PEI was characterized by X-ray powder diffraction (XRD), N2 adsorption-desorption isotherm at 77 K, scanning electron microscopy (SEM), and thermogravimetric analysis (TGA). Meso-13X-PEI exhibited higher CO2 capture capacity than PEI-modified zeolite 13X owing to its larger pore volume that accommodates more amine species inside the pore structure, and the mesoporosity also can facilitate dispersion of PEI molecules inside the pore channels. Compared to zeolite 13X, Meso-13X-PEI showed much higher CO2 capture selectivity (against N2) as well as higher CO2 capture capacity at relatively high temperature (e.g. 100 °C) and dilute CO2 concentration relevant to post-combustion conditions.
Bacteriostatic conformal coating for electronic components
NASA Technical Reports Server (NTRS)
Bland, C.; Le Doux, F. N.
1967-01-01
Coating for electronic components used in space applications has bacteriostatic qualities capable of hindering bacterial reproduction, both vegetative and sporulative viable microorganisms. It exhibits high electrical resistivity, a low outgassing rate, and is capable of restraining electronic components when subjected to mechanical vibrations.
Jawad, Mohammed; Nakkash, Rima T; Hawkins, Ben; Akl, Elie A
2016-05-01
The rise in waterpipe tobacco smoking has been accompanied by the emergence of a diverse range of products, such as "herbal" waterpipe tobacco substitutes and electronic waterpipes. The aims of this study were to assess the extent to which emerging waterpipe products are being developed by waterpipe tobacco companies themselves, to understand the key characteristics of the main market players, and to examine the connections between producers of different product categories. In 2014, one researcher attended an international waterpipe trade exhibition in Germany, conducting a survey of products at exhibition stands, and gathering qualitative data on exhibitors and products using participant observation. Cross-tabulations and chi-square tests identified the association between waterpipe tobacco, waterpipe tobacco substitutes, and electronic waterpipe products. We thematically analyzed field notes into information about exhibitors and products. Of 97 exhibitors, 55 displayed waterpipe-related products. Of these, nearly half (45%) displayed electronic waterpipe products, 38% displayed waterpipe tobacco and 23% displayed waterpipe tobacco substitutes. There was an inverse association between the display of waterpipe tobacco and electronic waterpipe products, and a positive association between the display of waterpipe tobacco and waterpipe tobacco substitutes. We found that Japan Tobacco Inc, Philip Morris, and British American Tobacco were partnered or affiliated with exhibitors displaying waterpipe-related products. Electronic waterpipe products were the main feature of this exhibition. Waterpipe tobacco substitutes are likely to be produced by the waterpipe tobacco industry whereas electronic waterpipes are not. There is a developing interest in waterpipe-related products by transnational tobacco corporations. Further industry surveillance is warranted. © The Author 2015. Published by Oxford University Press on behalf of the Society for Research on Nicotine and Tobacco. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Zhu, Youqi; Cao, Chuanbao; Tao, Shi; Chu, Wangsheng; Wu, Ziyu; Li, Yadong
2014-01-01
High-quality ultrathin two-dimensional nanosheets of α-Ni(OH)2 are synthesized at large scale via microwave-assisted liquid-phase growth under low-temperature atmospheric conditions. After heat treatment, non-layered NiO nanosheets are obtained while maintaining their original frame structure. The well-defined and freestanding nanosheets exhibit a micron-sized planar area and ultrathin thickness (<2 nm), suggesting an ultrahigh surface atom ratio with unique surface and electronic structure. The ultrathin 2D nanostructure can make most atoms exposed outside with high activity thus facilitate the surface-dependent electrochemical reaction processes. The ultrathin α-Ni(OH)2 and NiO nanosheets exhibit enhanced supercapacitor performances. Particularly, the α-Ni(OH)2 nanosheets exhibit a maximum specific capacitance of 4172.5 F g−1 at a current density of 1 A g−1. Even at higher rate of 16 A g−1, the specific capacitance is still maintained at 2680 F g−1 with 98.5% retention after 2000 cycles. Even more important, we develop a facile and scalable method to produce high-quality ultrathin transition metal hydroxide and oxide nanosheets and make a possibility in commercial applications. PMID:25168127
Sadaf, S M; Zhao, S; Wu, Y; Ra, Y-H; Liu, X; Vanka, S; Mi, Z
2017-02-08
To date, semiconductor light emitting diodes (LEDs) operating in the deep ultraviolet (UV) spectral range exhibit very low efficiency due to the presence of large densities of defects and extremely inefficient p-type conduction of conventional AlGaN quantum well heterostructures. We have demonstrated that such critical issues can be potentially addressed by using nearly defect-free AlGaN tunnel junction core-shell nanowire heterostructures. The core-shell nanowire arrays exhibit high photoluminescence efficiency (∼80%) in the UV-C band at room temperature. With the incorporation of an epitaxial Al tunnel junction, the p-(Al)GaN contact-free nanowire deep UV LEDs showed nearly one order of magnitude reduction in the device resistance, compared to the conventional nanowire p-i-n device. The unpackaged Al tunnel junction deep UV LEDs exhibit an output power >8 mW and a peak external quantum efficiency ∼0.4%, which are nearly one to two orders of magnitude higher than previously reported AlGaN nanowire devices. Detailed studies further suggest that the maximum achievable efficiency is limited by electron overflow and poor light extraction efficiency due to the TM polarized emission.
Huang, Fei; Li, Zhen; Yan, Aihua; Zhao, Hui; Liang, Huagen; Gao, Qingyu; Qiang, Yinghuai
2017-01-06
Novel semiconductor photocatalysts have been the research focus and received much attention in recent years. The key issues for novel semiconductor photocatalysts are to effectively harvest solar energy and enhance the separation efficiency of the electron-hole pairs. In this work, novel Nb 3 O 7 F/CNTs hybrid nanocomposites with enhanced photocatalytic activity have been successfully synthesized by a facile hydrothermal plus etching technique. The important finding is that appropriate pH values lead to the formation of Nb 3 O 7 F nanocrystal directly. A general strategy to introdue interaction between Nb 3 O 7 F and CNTs markedly enhances the photocatalytic activity of Nb 3 O 7 F. Comparatively, Nb 3 O 7 F/CNTs nanocomposites exhibit higher photodegradation efficiency and faster photodegradation rate in the solution of methylene blue (MB) under visible-light irradiation. The higher photocatalytic activity may be attributed to more exposed active sites, higher carrier migration and narrower bandgap because of good synergistic effect. The results here may inspire more engineering, new design and facile fabrication of novel photocatalysts with highly photocatalytic activity.
Sink property of metallic glass free surfaces
Shao, Lin; Fu, Engang; Price, Lloyd; ...
2015-03-16
When heated to a temperature close to glass transition temperature, metallic glasses (MGs) begin to crystallize. Under deformation or particle irradiation, crystallization occurs at even lower temperatures. Hence, phase instability represents an application limit for MGs. Here, we report that MG membranes of a few nanometers thickness exhibit properties different from their bulk MG counterparts. The study uses in situ transmission electron microscopy with concurrent heavy ion irradiation and annealing to observe crystallization behaviors of MGs. For relatively thick membranes, ion irradiations introduce excessive free volumes and thus induce nanocrystal formation at a temperature linearly decreasing with increasing ion fluences.more » For ultra-thin membranes, however, the critical temperature to initiate crystallization is about 100 K higher than the bulk glass transition temperature. Molecular dynamics simulations indicate that this effect is due to the sink property of the surfaces which can effectively remove excessive free volumes. These findings suggest that nanostructured MGs having a higher surface to volume ratio are expected to have higher crystallization resistance, which could pave new paths for materials applications in harsh environments requiring higher stabilities.« less
Mukherjee, Tamal; Ito, Naoki; Gould, Ian R
2011-03-17
The Mulliken-Hush (M-H) relationship provides the critical link between optical and thermal electron transfer processes, and yet very little direct experimental support for its applicability has been provided. Dicyanovinylazaadamantane (DCVA) represents a simple two-state (neutral/charge-transfer) intramolecular electron transfer system that exhibits charge-transfer absorption and emission spectra that are readily measurable in solvents with a wide range of polarities. In this regard it represents an ideal model system for studying the factors that control both optical charge separation (absorption) and recombination (emission) processes in solution. Here we explore the applicability of the M-H relation to quantitative descriptions of the optical charge-transfer processes in DCVA. For DCVA, the measured radiative rate constants exhibit a linear dependence on transition energy, and transition dipole moments exhibit an inverse dependence on transition energy, consistent with the M-H relationship.
NASA Astrophysics Data System (ADS)
Yuan, Hao-Chih
This research focuses on developing high-performance single-crystal Si-based nanomembranes and high-frequency thin-film transistors (TFTs) using these nanomembranes on flexible plastic substrates. Unstrained Si or SiGe nanomembranes with thickness of several tens to a couple of hundred nanometers are derived from silicon-on-insulator (SOI) or silicon-germanium-on-insulator (SGOI) and are subsequently transferred and integrated with flexible plastic host substrates via a one-step dry printing technique. Biaxial tensile-strained Si membranes that utilize elastic strain-sharing between Si and additionally grown SiGe thin films are also successfully integrated with plastic host substrates and exhibit predicted strain status and negligible density of dislocations. Biaxial tensile strain enhances electron mobility and lowers Schottky contact resistance. As a result, flexible TFTs built on the strained Si-membranes demonstrate much higher electron effective mobility and higher drive current than the unstrained counterpart. The dependence of drive current and transconductance on uniaxial tensile strain introducing by mechanical bending is also discussed. A novel combined "hot-and-cold" TFT fabrication process is developed specifically for realizing a wide spectrum of micro-electronics that can exhibit RF performance and can be integrated on low-temperature plastic substrate. The "hot" process that consists of ion implant and high-temperature annealing for desired doping type, profile, and concentration is realized on the bulk SOI/SGOI substrates followed by the "cold" process that includes room-temperature silicon-monoxide (SiO) deposition as gate dielectric layer to ensure the process compatibility with low-temperature, low-cost plastics. With these developments flexible Si-membrane n-type RF TFTs for analog applications and complementary TFTs for digital applications are demonstrated for the first time. RF TFTs with 1.5-mum channel length have demonstrated record-high f T and fmax values of 2.04 and 7.8 GHz, respectively. A small-signal equivalent circuit model study on the RF TFTs reveals the physics of how device layout affects fT and f max, which paves the way for further performance optimization and realization of integrated circuit on flexible substrate in the future.
CO2-switchable fluorescence of a dendritic polymer and its applications
NASA Astrophysics Data System (ADS)
Gao, Chunmei; Lü, Shaoyu; Liu, Mingzhu; Wu, Can; Xiong, Yun
2015-12-01
The synthesis and properties of CO2 responsive and fluorescent dendritic polymers, poly(amido amine)/Pluronic F127 (PAMAM/F127), are reported in this paper. The morphologies and sizes of PAMAM/F127 dendritic polymers were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). PAMAM/F127 dendritic polymers showed unimolecular micelle morphologies at low concentrations, and changed to multimolecular micelles at higher concentrations. Additionally, fluorescence spectra and confocal laser scanning microscopy images showed that PAMAM/F127 dendritic polymers exhibited a fluorescent enhancement response to the presence of CO2. Apart from that, the release behavior of PAMAM/F127 gels under simulated body fluids was investigated by choosing curcumin as the hydrophobic drug. The results indicated that PAMAM/F127 dendritic polymers can be used to improve the solubility of curcumin, and the drug released faster in the presence of CO2. Such CO2 responsive fluorescent dendritic polymers are potentially applicable in cellular imaging or drug controlled release.The synthesis and properties of CO2 responsive and fluorescent dendritic polymers, poly(amido amine)/Pluronic F127 (PAMAM/F127), are reported in this paper. The morphologies and sizes of PAMAM/F127 dendritic polymers were investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). PAMAM/F127 dendritic polymers showed unimolecular micelle morphologies at low concentrations, and changed to multimolecular micelles at higher concentrations. Additionally, fluorescence spectra and confocal laser scanning microscopy images showed that PAMAM/F127 dendritic polymers exhibited a fluorescent enhancement response to the presence of CO2. Apart from that, the release behavior of PAMAM/F127 gels under simulated body fluids was investigated by choosing curcumin as the hydrophobic drug. The results indicated that PAMAM/F127 dendritic polymers can be used to improve the solubility of curcumin, and the drug released faster in the presence of CO2. Such CO2 responsive fluorescent dendritic polymers are potentially applicable in cellular imaging or drug controlled release. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr06729d
NASA Astrophysics Data System (ADS)
Yu, Gui-Feng; Yan, Xu; Yu, Miao; Jia, Meng-Yang; Pan, Wei; He, Xiao-Xiao; Han, Wen-Peng; Zhang, Zhi-Ming; Yu, Liang-Min; Long, Yun-Ze
2016-01-01
A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10 000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger motion. The results demonstrate promising application of the patterned nanofibrous membrane in flexible electronic fields.A facile fabrication strategy via electrospinning and followed by in situ polymerization to fabricate a patterned, highly stretchable, and conductive polyaniline/poly(vinylidene fluoride) (PANI/PVDF) nanofibrous membrane is reported. Owing to the patterned structure, the nanofibrous PANI/PVDF strain sensor can detect a strain up to 110%, for comparison, which is 2.6 times higher than the common nonwoven PANI/PVDF mat and much larger than the previously reported values (usually less than 15%). Meanwhile, the conductivity of the patterned strain sensor shows a linear response to the applied strain in a wide range from 0% to about 85%. Additionally, the patterned PANI/PVDF strain sensor can completely recover to its original electrical and mechanical values within a strain range of more than 22%, and exhibits good durability over 10 000 folding-unfolding tests. Furthermore, the strain sensor also can be used to detect finger motion. The results demonstrate promising application of the patterned nanofibrous membrane in flexible electronic fields. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr08618c
Enhanced photocatalytic activity of BiOCl by C70 modification and mechanism insight
NASA Astrophysics Data System (ADS)
Ma, Dongmei; Zhong, Junbo; Li, Jianzhang; Wang, Li; Peng, Rufang
2018-06-01
As an excellent photocatalyst which can compete with TiO2, BiOCl has triggered increasing attention. However, the practical application of BiOCl has been significantly limited by the fast recombination of the photoinduced electron-hole charge pairs. In this study, to further enhance the separation efficiency of photoinduced electron-hole charge pairs of BiOCl, a series of efficient BiOCl photocatalysts were prepared by C70 surface modification. The trapping experiments reveal that the main active species were determined to be superoxide radicals (O2rad -) and holes (h+) under simulated sunlight irradiation. The surface photovoltage spectroscopy (SPS) demonstrates that separation of the photoinduced electron-hole pairs has been significantly promoted, forming more radOH, proven by terephthalic acid photoluminescence probing technique. The photocatalytic evaluation results display that the C70/BiOCl photocatalysts exhibit much higher photocatalytic activity in decolorization of rhodamine B (RhB) than that of the bare BiOCl under the simulated sunlight irradiation. The excellent electron acceptability of C70 is conducive to the separation of the photogenerated carriers and results in efficient formation of O2rad -, proven by the results of SPS and electron spin-resonance (ESR), therefore the photocatalytic performance of C70/BiOCl has been greatly improved. Based on all these observations, an enhancement mechanism in photocatalytic performance of C70/BiOCl was proposed.
Stolz, Sebastian; Lemmer, Uli; Hernandez-Sosa, Gerardo; Mankel, Eric
2018-03-14
We investigate three amine-based polymers, polyethylenimine and two amino-functionalized polyfluorenes, as electron injection layers (EILs) in organic light-emitting diodes (OLEDs) and find correlations between the molecular structure of the polymers, the electronic alignment at the emitter/EIL interface, and the resulting device performance. X-ray photoelectron spectroscopy measurements of the emitter/EIL interface indicate that all three EIL polymers induce an upward shift of the Fermi level in the emitting layer close to the interface similar to n-type doping. The absolute value of this Fermi level shift, which can be explained by an electron transfer from the EIL polymers into the emitting layer, correlates with the number of nitrogen-containing groups in the side chains of the polymers. Whereas polyethylenimine (PEI) and one of the investigated polyfluorenes (PFCON-C) have six such groups per monomer unit, the second investigated polyfluorene (PFN) only possesses two. Consequently, we measure Fermi level shifts of 0.5-0.7 eV for PEI and PFCON-C and only 0.2 eV for PFN. As a result of these Fermi level shifts, the energetic barrier for electron injection is significantly lowered and OLEDs which comprise PEI or PFCON-C as an EIL exhibit a more than twofold higher luminous efficacy than OLEDs with PFN.
NASA Astrophysics Data System (ADS)
Govender, G.; Moolla, S.
2018-07-01
Low-frequency ion-acoustic waves are analysed on the ion time-scale, in a three-component electron-ion space plasma. The solitary waves propagate in the positive x direction relative to an ambient magnetic field ěc {B}_0 which forms static background for a configuration consisting of cool fluid ions and both warm and hot Boltzmann-distributed electrons with temperatures T_{ic}, T_{ew} and T_{eh}, respectively. We derive linear dispersion relation for the waves by introducing first-order density, pressure and velocity perturbations into the ion fluid equations. Additionally, the variation in the nonlinear structure of the waves are investigated by carrying out a full parametric analysis utilising our numerical code. Our results reveal that ion-acoustic waves exhibit well-defined nonlinear spikes at speeds of M≥ 2.25 and an electric field amplitude of E_0=0.85. It is also shown that low wave speeds (M≤ 2), higher densities of the hot electrons, antiparallel drifting of the cool fluid ions, and increased ion temperatures all lead to significant dispersive effects. The ion-acoustic plasma waves featured in this paper have forms that are consistent with those classified as the type-A and type-B broadband electrostatic noise (BEN) observed in the data obtained from earlier satellite missions.
Zhang, Zemin; Hu, Weixia; Cui, Jianyu; He, Rongxing; Shen, Wei; Li, Ming
2017-09-20
Conjugated bifluorenylidene and naphthalene central cores are introduced into hole-transporting materials DT1 and DT2 to replace the spiro-core of the reported, highly efficient FDT. The effects of the conjugated core on the geometrics, electronic properties and hole transport properties are investigated by using density functional theory coupled with Marcus theory and the Einstein relation. The calculated results show that DT1 (-5.21 eV) and DT2 (-5.23 eV) have lower HOMO levels than FDT (-5.15 eV), which indicates that the perovskite solar cells with conjugated hole-transporting materials can have higher open-circuit voltages. The introduction of the conjugated core is beneficial to the more efficient face-to-face packing pattern of the dimer, resulting in a larger intermolecular electronic coupling. Importantly, it is found that DT1 (1.6 × 10 -3 cm 2 V -1 s -1 ) and DT2 (2.7 × 10 -2 cm 2 V -1 s -1 ) exhibit relatively higher hole mobilities than FDT (1.3 × 10 -4 cm 2 V -1 s -1 ) owing to the larger electronic coupling. Therefore, enhanced hole transport ability can be achieved by switching from the spiro-core to the conjugated core. The present work provides a new strategy to improve the hole transport properties of hole-transporting materials, which will contribute to the development of conjugated small molecules as hole-transporting materials in efficient perovskite solar cells.
NASA Astrophysics Data System (ADS)
Sharma, Pramod; Das, Soumitra; Vatsa, Rajesh K.
2017-07-01
Systematic manipulation of ionic-outcome in laser-cluster interaction process has been realized for studies carried out on tetramethyltin (TMT) clusters under picosecond laser conditions, determined by choice of laser wavelength and intensity. As a function of laser intensity, TMT clusters exhibit gradual enhancement in overall ionization of its cluster constituents, up to a saturation level of ionization, which was distinct for different wavelengths (266, 355, and 532 nm). Simultaneously, systematic appearance of higher multiply charged atomic ions and shift in relative abundance of multiply charged atomic ions towards higher charge state was observed, using time-of-flight mass spectrometer. At saturation level, multiply charged atomic ions up to (C2+, Sn2+) at 266 nm, (C4+, Sn4+) at 355 nm, and (C4+, Sn6+) at 532 nm were detected. In addition, at 355 nm intra-cluster ion chemistry within the ionized cluster leads to generation of molecular hydrogen ion (H2 +) and triatomic molecular hydrogen ion (H3 +). Generation of multiply charged atomic ions is ascribed to efficient coupling of laser pulse with the cluster media, facilitated by inner-ionized electrons produced within the cluster, at the leading edge of laser pulse. Role of inner-ionized electrons is authenticated by measuring kinetic energy distribution of electrons liberated upon disintegration of excessively ionized cluster, under the influence of picosecond laser pulse.
High-harmonic generation from Bloch electrons in solids
NASA Astrophysics Data System (ADS)
Wu, Mengxi; Ghimire, Shambhu; Reis, David A.; Schafer, Kenneth J.; Gaarde, Mette B.
2015-04-01
We study the generation of high-harmonic radiation by Bloch electrons in a model transparent solid driven by a strong midinfrared laser field. We solve the single-electron time-dependent Schrödinger equation (TDSE) using a velocity-gauge method [M. Korbman et al., New J. Phys. 15, 013006 (2013), 10.1088/1367-2630/15/1/013006] that is numerically stable as the laser intensity and number of energy bands are increased. The resulting harmonic spectrum exhibits a primary plateau due to the coupling of the valence band to the first conduction band, with a cutoff energy that scales linearly with field strength and laser wavelength. We also find a weaker second plateau due to coupling to higher-lying conduction bands, with a cutoff that is also approximately linear in the field strength. To facilitate the analysis of the time-frequency characteristics of the emitted harmonics, we also solve the TDSE in a time-dependent basis set, the Houston states [J. B. Krieger and G. J. Iafrate, Phys. Rev. B 33, 5494 (1986), 10.1103/PhysRevB.33.5494], which allows us to separate interband and intraband contributions to the time-dependent current. We find that the interband and intraband contributions display very different time-frequency characteristics. We show that solutions in these two bases are equivalent under a unitary transformation but that, unlike the velocity-gauge method, the Houston state treatment is numerically unstable when more than a few low-lying energy bands are used.
Triantou, Marianna I; Tarantili, Petroula A; Andreopoulos, Andreas G
2015-05-01
In the present research, blending of polymers used in electrical and electronic equipment, i.e. acrylonitrile-butadiene-styrene terpolymer, polycarbonate and polypropylene, was performed in a twin-screw extruder, in order to explore the effect process parameters on the mixture properties, in an attempt to determine some characteristics of a fast and economical procedure for waste management. The addition of polycarbonate in acrylonitrile-butadiene-styrene terpolymer seemed to increase its thermal stability. Also, the addition of polypropylene in acrylonitrile-butadiene-styrene terpolymer facilitates its melt processing, whereas the addition of acrylonitrile-butadiene-styrene terpolymer in polypropylene improves its mechanical performance. Moreover, the upgrading of the above blends by incorporating 2 phr organically modified montmorillonite was investigated. The prepared nanocomposites exhibit greater tensile strength, elastic modulus and storage modulus, as well as higher melt viscosity, compared with the unreinforced blends. The incorporation of montmorillonite nanoplatelets in polycarbonate-rich acrylonitrile-butadiene-styrene terpolymer/polycarbonate blends turns the thermal degradation mechanism into a two-stage process. Alternatively to mechanical recycling, the energy recovery from the combustion of acrylonitrile-butadiene-styrene terpolymer/polycarbonate and acrylonitrile-butadiene-styrene terpolymer/polypropylene blends was recorded by measuring the gross calorific value. Comparing the investigated polymers, polypropylene presents the higher gross calorific value, followed by acrylonitrile-butadiene-styrene terpolymer and then polycarbonate. The above study allows a rough comparative evaluation of various methodologies for treating plastics from waste from electrical and electronic equipment. © The Author(s) 2015.
Characterization of Platinum Nanoparticles Deposited on Functionalized Graphene Sheets
Chiang, Yu-Chun; Liang, Chia-Chun; Chung, Chun-Ping
2015-01-01
Due to its special electronic and ballistic transport properties, graphene has attracted much interest from researchers. In this study, platinum (Pt) nanoparticles were deposited on oxidized graphene sheets (cG). The graphene sheets were applied to overcome the corrosion problems of carbon black at operating conditions of proton exchange membrane fuel cells. To enhance the interfacial interactions between the graphene sheets and the Pt nanoparticles, the oxygen-containing functional groups were introduced onto the surface of graphene sheets. The results showed the Pt nanoparticles were uniformly dispersed on the surface of graphene sheets with a mean Pt particle size of 2.08 nm. The Pt nanoparticles deposited on graphene sheets exhibited better crystallinity and higher oxygen resistance. The metal Pt was the predominant Pt chemical state on Pt/cG (60.4%). The results from the cyclic voltammetry analysis showed the value of the electrochemical surface area (ECSA) was 88 m2/g (Pt/cG), much higher than that of Pt/C (46 m2/g). The long-term test illustrated the degradation in ECSA exhibited the order of Pt/C (33%) > Pt/cG (7%). The values of the utilization efficiency were calculated to be 64% for Pt/cG and 32% for Pt/C. PMID:28793577
Lei, Hongwei; Yang, Guang; Guo, Yaxiong; Xiong, Liangbin; Qin, Pingli; Dai, Xin; Zheng, Xiaolu; Ke, Weijun; Tao, Hong; Chen, Zhao; Li, Borui; Fang, Guojia
2016-06-28
Efficient planar antimony sulfide (Sb2S3) heterojunction solar cells have been made using chemical bath deposited (CBD) Sb2S3 as the absorber, low-temperature solution-processed tin oxide (SnO2) as the electron conductor and poly (3-hexylthiophene) (P3HT) as the hole conductor. A solar conversion efficiency of 2.8% was obtained at 1 sun illumination using a planar device consisting of F-doped SnO2 substrate/SnO2/CBD-Sb2S3/P3HT/Au, whereas the solar cells based on a titanium dioxide (TiO2) electron conductor exhibited a power conversion efficiency of 1.9%. Compared with conventional Sb2S3 sensitized solar cells, the high-temperature processed mesoscopic TiO2 scaffold is no longer needed. More importantly, a low-temperature solution-processed SnO2 layer was introduced for electron transportation to substitute the high-temperature sintered dense blocking TiO2 layer. Our planar solar cells not only have simple geometry with fewer steps to fabricate but also show enhanced performance. The higher efficiency of planar Sb2S3 solar cell devices based on a SnO2 electron conductor is attributed to their high transparency, uniform surface, efficient electron transport properties of SnO2, suitable energy band alignment, and reduced recombination at the interface of SnO2/Sb2S3.
Kinetic features and non-stationary electron trapping in paraxial magnetic nozzles
NASA Astrophysics Data System (ADS)
Sánchez-Arriaga, G.; Zhou, J.; Ahedo, E.; Martínez-Sánchez, M.; Ramos, J. J.
2018-03-01
The paraxial expansion of a collisionless plasma jet into vacuum, guided by a magnetic nozzle, is studied with an Eulerian and non-stationary Vlasov-Poisson solver. Parametric analyzes varying the magnetic field expansion rate, the size of the simulation box, and the electrostatic potential fall are presented. After choosing the potential fall leading to a zero net current beam, the steady states of the simulations exhibit a quasi-neutral region followed by a downstream sheath. The latter, an unavoidable consequence of the finite size of the computational domain, does not affect the quasi-neutral region if the box size is chosen appropriately. The steady state presents a strong decay of the perpendicular temperature of the electrons, whose profile versus the inverse of the magnetic field does not depend on the expansion rate within the quasi-neutral region. As a consequence, the electron distribution function is highly anisotropic downstream. The simulations revealed that the ions reach a higher velocity during the transient than in the steady state and their distribution functions are not far from mono-energetic. The density percentage of the population of electrons trapped during the transient, which is computed self-consistently by the code, is up to 25% of the total electron density in the quasi-neutral region. It is demonstrated that the exact amount depends on the history of the system and the steady state is not unique. Nevertheless, the amount of trapped electrons is smaller than the one assumed heuristically by kinetic stationary theories.
NASA Astrophysics Data System (ADS)
Wang, Han; Jin, Tingting; Zheng, Xing; Jiang, Bo; Zhu, Chaosheng; Yuan, Xiangdong; Zheng, Jingtang; Wu, Mingbo
2016-11-01
Hollow cadmium sulfide (CdS) nanospheres of about 260 nm average diameters and about 30 nm shell thickness can be easily synthesized via a sonochemical process, in which polystyrene (PS) nanoparticles were employed as templates. In order to remove the PS templates, both etching and calcination were applied in this paper. The influence of the two different template removal methods on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres was carefully performed a comparative study. Results of X-ray diffraction, scanning electron microscopy, transmission electron microscopy, energy dispersive X-ray, FT-IR, thermogravimetric analysis, Brunauer-Emmett-Teller, diffused reflectance spectra, and decolorization experiments showed that the different template removal methods exhibited a significant influence on the surface micromorphology, crystal structure, and photocatalytic activity of hollow CdS nanospheres. The CdS hollow nanospheres as-prepared by etching had pure cubic sphalerite structure, higher -OH content, less defects and exhibited good photocatalytic activity for rhodamine-B, Methylene Blue and methyl orange under UV-vis light irradiation. However, CdS hollow nanospheres obtained by calcination with a hexagonal crystal structure, less -OH content, more defects have shown worse photocatalytic activity. This indicated that surface micromorphology and crystalline phase were mainly factors influencing photocatalytic activity of hollow CdS nanospheres.
Chang, Hsiang; Huang, Hsiang-En; Cheng, Chin-Fu; Ho, Mei-Hsuan; Ger, Mang-Jye
2017-04-01
The plant ferredoxin-like protein (PFLP) gene, cloned from sweet peppers predicted as an electron carrier in photosynthesis, shows high homology to the Fd-I sequence of Arabidopsis thaliana, Lycopersicon esculentum, Oryza sativa and Spinacia oleracea. Most of pflp related studies focused on anti-pathogenic effects, while less understanding for the effects in photosynthesis with physiological aspects, such as photosynthesis rate, and levels of carbohydrate metabolites. This project focuses on the effects of pflp overexpression on photosynthesis by physiological evaluations of carbon assimilation with significant higher levels of carbohydrates with higher photosynthesis efficiency. In this report, two independent transgenic lines of rice plants (designated as pflp-1 and pflp-2) were generated from non-transgenic TNG67 rice plant (WT). Both transgenic pflp rice plants exhibited enhanced photosynthesis efficiency, and gas exchange rates of photosynthesis were 1.3- and 1.2-fold higher for pflp-1 and pflp-2 than WT respectively. Significantly higher electron transport rates of pflp rice plants were observed. Moreover, photosynthetic products, such as fructose, glucose, sucrose and starch contents of pflp transgenic lines were increased accordingly. Molecular evidences of carbohydrate metabolism related genes activities (osHXK5, osHXK6, osAGPL3, osAGPS2α, osSPS, ospFBPase, oscFBPase, and osSBPase) in transgenic lines were higher than those of WT. For performance of crop production, 1000-grain weight for pflp-1 and pflp-2 rice plants were 52.9 and 41.1 g that were both significantly higher than 31.6 g for WT, and panicles weights were 1.4- and 1.2-fold higher than WT. Panicle number, tiller number per plants for pflp rice plants were all significantly higher compared with those of WT where there was no significant difference observed between two pflp rice plants. Taken altogether; this study demonstrated that constitutive pflp expression can improve rice production by enhancing the capacity of photosynthetic carbon assimilation.
Fan, Shuqin; Hou, Chuantao; Liang, Bo; Feng, Ruirui; Liu, Aihua
2015-09-01
In this work, a bacterial surface displaying enzyme based two-compartment biofuel cell for the direct electrical energy conversion from degradation products of lignocellulosic biomass is reported. Considering that the main degradation products of the lignocellulose are glucose and xylose, xylose dehydrogenase (XDH) displayed bacteria (XDH-bacteria) and glucose dehydrogenase (GDH) displayed bacteria (GDH-bacteria) were used as anode catalysts in anode chamber with methylene blue as electron transfer mediator. While the cathode chamber was constructed with laccase/multi-walled-carbon nanotube/glassy-carbon-electrode. XDH-bacteria exhibited 1.75 times higher catalytic efficiency than GDH-bacteria. This assembled enzymatic fuel cell exhibited a high open-circuit potential of 0.80 V, acceptable stability and energy conversion efficiency. Moreover, the maximum power density of the cell could reach 53 μW cm(-2) when fueled with degradation products of corn stalk. Thus, this finding holds great potential to directly convert degradation products of biomass into electrical energy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Rojano-Delgado, Antonia María; Cruz-Hipolito, Hugo; De Prado, Rafael; Luque de Castro, María Dolores; Franco, Antonio Rodríguez
2012-01-01
Velvet bean (Mucuna pruriens, Fabaceae) plants exhibits an innate, very high resistance (i.e., tolerance) to glyphosate similar to that of plants which have acquired resistance to this herbicide as a trait. We analyzed the uptake of [(14)C]-glyphosate by leaves and its translocation to meristematic tissues, and used scanning electron micrographs to further analyze the cuticle and 3D capillary electrophoresis to investigate a putative metabolism capable of degrading the herbicide. Velvet bean exhibited limited uptake of glyphosate and impaired translocation of the compound to meristematic tissues. Also, for the first time in a higher plant, two concurrent pathways capable of degrading glyphosate to AMPA, Pi, glyoxylate, sarcosine and formaldehyde as end products were identified. Based on the results, the innate tolerance of velvet bean to glyphosate is possibly a result of the combined action of the previous three traits, namely: limited uptake, impaired translocation and enhanced degradation. Copyright © 2011 Elsevier Ltd. All rights reserved.
Study of ceria-carbonate nanocomposite electrolytes for low-temperature solid oxide fuel cells.
Fan, L; Wang, C; Di, J; Chen, M; Zheng, J; Zhu, B
2012-06-01
Composite and nanocomposite samarium doped ceria-carbonates powders were prepared by solid-state reaction, citric acid-nitrate combustion and modified nanocomposite approaches and used as electrolytes for low temperature solid oxide fuel cells. X-ray Diffraction, Scanning Electron Microscope, low-temperature Nitrogen Adsorption/desorption Experiments, Electrochemical Impedance Spectroscopy and fuel cell performance test were employed in characterization of these materials. All powders are nano-size particles with slight aggregation and carbonates are amorphous in composites. Nanocomposite electrolyte exhibits much lower impedance resistance and higher ionic conductivity than those of the other electrolytes at lower temperature. Fuel cell using the electrolyte prepared by modified nanocomposite approach exhibits the best performance in the whole operation temperature range and achieves a maximum power density of 839 mW cm(-2) at 600 degrees C with H2 as fuel. The excellent physical and electrochemical performances of nanocomposite electrolyte make it a promising candidate for low-temperature solid oxide fuel cells.
Fabrication and photocatalytic property of magnetic NiFe2O4/Cu2O composites
NASA Astrophysics Data System (ADS)
He, Zuming; Xia, Yongmei; Tang, Bin; Su, Jiangbin
2017-09-01
Magnetically separable NiFe2O4/Cu2O composites were successfully synthesized by a two-step method. The samples were characterized by XRD, XPS, SEM and VSM as well as their PL spectra and UV-vis adsorption spectra. The results showed that the NiFe2O4/Cu2O composites were composed of cubic-structured Cu2O and spinel-structured NiFe2O4, were able to absorb a large amount of visible light, exhibited excellent photocatalytic activity under simulated solar light irradiation and could be easily separated by an external magnetic field. The NiFe2O4/Cu2O composites exhibited higher photocatalytic performance than that of a single semiconductor. It was found that the prominently enhanced photocatalytic performance of NiFe2O4/Cu2O composites was ascribed to the effective separation of photo-generated electron-hole pairs and the effective generation of the hydroxyl radical •OH.
NASA Astrophysics Data System (ADS)
Xie, Kangjun; Zhang, Manman; Yang, Yang; Zhao, Long; Qi, Wei
2018-05-01
The electrochemical property of ordered mesoporous carbon (OMC) can be changed significantly due to the incorporating of electron-donating heteroatoms into OMC. Here, we demonstrate the successful fabrication of nitrogen-doped ordered mesoporous carbon (NOMC) materials to be used as carbon substrates for loading polyaniline (PANI) by in situ polymerization. Compared with NOMC, the PANI/NOMC prepared with a different mass ratio of PANI and NOMC exhibits remarkably higher electrochemical specific capacitance. In a typical three-electrode configuration, the hybrid has a specific capacitance about 276.1 F/g at 0.2 A/g with a specific energy density about 38.4 Wh/kg. What is more, the energy density decreases very slowly with power density increasing, which is a different phenomenon from other reports. PANI/NOMC materials exhibit good rate performance and long cycle stability in alkaline electrolyte ( 80% after 5000 cycles). The fabrication of PANI/NOMC with enhanced electrochemical properties provides a feasible route for promoting its applications in supercapacitors.
Peiris, Sunari; Sarina, Sarina; Han, Chenhui; Xiao, Qi; Zhu, Huai-Yong
2017-08-15
Silver-palladium (Ag-Pd) alloy nanoparticles strongly absorb visible light and exhibit significantly higher photocatalytic activity compared to both pure palladium (Pd) and silver (Ag) nanoparticles. Photocatalysts of Ag-Pd alloy nanoparticles on ZrO 2 and Al 2 O 3 supports are developed to catalyze the nitroaromatic coupling to the corresponding azo compounds under visible light irradiation. Ag-Pd alloy NP/ZrO 2 exhibited the highest photocatalytic activity for nitrobenzene coupling to azobenzene (yield of ∼80% in 3 hours). The photocatalytic efficiency could be optimized by altering the Ag : Pd ratio of the alloy nanoparticles, irradiation light intensity, temperature and wavelength. The rate of the reaction depends on the population and energy of the excited electrons, which can be improved by increasing the light intensity or by using a shorter wavelength. The knowledge developed in this study may inspire further studies on Ag alloy photocatalysts and organic syntheses using Ag-Pd nanoparticle catalysts driven under visible light Irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhu, Chengzhou; Shi, Qiurong; Fu, Shaofang
Delicately engineering the well-defined noble metal aerogels with favorable structural and compositional features is of vital importance for wide applications. Here, we reported one-pot and facile method for synthesizing core-shell PdPb@Pd hydrogels/aerogels with multiply-twinned grains and ordered intermetallic phase using sodium hypophosphite as a multifunctional reducing agent. Due to the accelerated gelation kinetics induced by increased reaction temperature and specific function of sodium hypophosphite, the formation of hydrogels can be completed within 4 hrs, far faster than the previous reports. Owe to their unique porous structure and favorable geometric and electronic effects, the optimized PdPb@Pd aerogels exhibit enhanced electrochemical performancemore » towards ethylene glycol oxidation with a mass activity of 5.8 times higher than Pd black.Core–shell PdPb@Pd aerogels with multiply-twinned grains and an ordered intermetallic phase was synthesized, which exhibited good electrocatalytic activity towards ethanol oxidation.« less
Photocatalytic activity of Fe-doped CaTiO₃ under UV-visible light.
Yang, He; Han, Chong; Xue, Xiangxin
2014-07-01
The photocatalytic degradation of methylene blue (MB) over Fe-doped CaTiO₃ under UV-visible light was investigated. The as-prepared samples were characterized using X-ray diffraction (XRD), scanning electron microscope (SEM) equipped with an energy dispersive spectrometer (EDS) system, Fourier transform infrared spectra (FT-IR), and UV-visible diffuse reflectance spectroscopy (DRS). The results show that the doping with Fe significantly promoted the light absorption ability of CaTiO₃ in the visible light region. The Fe-doped CaTiO₃ exhibited higher photocatalytic activity than CaTiO₃ for the degradation of MB. However, the photocatalytic activity of the Fe-doped CaTiO₃ was greatly influenced by the calcination temperature during the preparation process. The Fe-doped CaTiO₃ prepared at 500°C exhibited the best photocatalytic activity, with degradation of almost 100% MB (10ppm) under UV-visible light for 180 min. Copyright © 2014. Published by Elsevier B.V.
Influence of Different Aluminum Sources on the NH3 Gas-Sensing Properties of ZnO Thin Films
NASA Astrophysics Data System (ADS)
Ozutok, Fatma; Karaduman, Irmak; Demiri, Sani; Acar, Selim
2018-02-01
Herein we report Al-doped ZnO films (AZO) deposited on the ZnO seed layer by chemical bath deposition method. Al powder, Al oxide and Al chloride were used as sources for the deposition process and investigated for their different effects on the NH3 gas-sensing performance. The morphological and microstructural properties were investigated by employing x-ray powder diffraction, scanning electron microscopy analysis and energy-dispersive x-ray spectroscopy. The characterization studies showed that the AZO thin films are crystalline and exhibit a hexagonal wurtzite structure. Ammonia (NH3) gas-sensing measurements of AZO films were performed at different concentration levels and different operation temperatures from 50°C to 210°C. The sample based on powder-Al source showed a higher response, selectivity and short response/recovery time than the remaining samples. The powder Al sample exhibited 33% response to 10-ppm ammonia gas at 190°C, confirming a strong dependence on the dopant source type.
Influence of pectinase treatment on the physicochemical properties of potato flours.
Kim, Eun-Jung; Kim, Hyun-Seok
2015-01-15
Untreated and pectinase-treated potato flours from Atlantic and Superior cultivars were characterised to identify the effects of pectinase treatment on their physicochemical properties. Steam-cooked potato whole-tissues were treated with and without pectinase to prepare the dehydrated potato flours. Untreated and pectinase-treated potato flours were investigated with respect to morphology, chemical composition, starch leaching, swelling power, gelatinization, and pasting viscosity. Upon viewing with scanning electron microscopy and light microscopy, the pectinase-treated (relative to untreated) potato flours revealed that the retrograded starch materials were present in intact parenchyma cells, apparently exhibiting granular structures. Their protein and ash contents were reduced through pectinase treatment. While starch leachate contents were lower for the pectinase-treated potato flours, the opposite trend in swelling powers was observed. Pectinase-treated potato flours exhibited higher melting temperatures and pasting viscosities than untreated counterparts. Overall, the modification of potato flour morphology by pectinase treatment may result in alteration of physicochemical properties of potato flours. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Puthucode, A.; Devaraj, A.; Nag, S.; Bose, S.; Ayyub, P.; Kaufman, M. J.; Banerjee, R.
2014-05-01
Copper and niobium are mutually immiscible in the solid state and exhibit a large positive enthalpy of mixing in the liquid state. Using vapour quenching via magnetron co-sputter deposition, far-from equilibrium amorphous Cu-Nb films have been deposited which exhibit a nanoscale phase separation. Annealing these amorphous films at low temperatures (~200 °C) initiates crystallization via the nucleation and growth of primary nanocrystals of a face-centred cubic Cu-rich phase separated by the amorphous matrix. Interestingly, subsequent annealing at a higher temperature (>300 °C) leads to the polymorphic nucleation and growth of large spherulitic grains of a body-centred cubic Nb-rich phase within the retained amorphous matrix of the partially crystallized film. This sequential two-stage crystallization process has been investigated in detail by combining transmission electron microscopy [TEM] (including high-resolution TEM) and atom probe tomography studies. These results provide new insights into the crystallization behaviour of such unusual far-from equilibrium phase-separated metallic glasses in immiscible systems.
De Harven, E; He, S; Hanna, W; Bootsma, G; Connolly, J G
1987-10-01
The deletion of ABH blood group antigens from the luminal surface of the bladder mucosa in cases of well differentiated transitional cell carcinomata, and the formation of pleomorphic microvilli have both been associated with aggressive biological behaviour and invasiveness of the tumors. We have studied cold cup biopsies from 8 normal mucosae and 17 papillary transitional cell carcinomata of the urinary bladder. The aim of our study was to correlate the formation of uniform or pleomorphic microvilli with the extent of deletion of the ABH blood group antigens on the surface of normal and transformed bladder urothelium. Immunogold scanning electron microscopy (SEM) in the backscattered electron (BE) imaging mode was used for this purpose. In the normal urothelium, uniform labeling of the luminal cells was demonstrated. In well differentiated tumors, the superficial cells exhibited uniform microvilli and a heterogeneous expression of the ABH antigens, giving characteristic 'mosaic' patterns of the antigenic labeling across the mucosal surface. These patterns were sharply delimitated at cell junctions when viewed by SEM; these observations were confirmed by transmission electron microscopy. In higher grade tumors, decreased ABH antigen expression, pleomorphic microvilli and/or featureless luminal cells were observed. In the transformed urothelium, the formation of uniform microvilli appeared to precede the loss of ABH antigen in most cases.
Inelastic X-ray Scattering Studies of Plasmons in Carbon Nanotubes
NASA Astrophysics Data System (ADS)
Upton, M. H.; Casa, D.; Gog, T.; Misewich, J.; Hill, J. P.; Lowndes, D.; Eres, G.
2006-03-01
We report preliminary inelastic x-ray scattering measurements of the plasmon dispersions in oriented multi- and single- walled carbon nanotubes (M- and S- WCNT) and compare them to the plasmon dispersion in graphite. Two plasmon bands are observed dispersing along the nanotubes' axes: the π and π+σ plasmon bands. The π+σ plasmon band exhibits an apparent systematic variation in energy. Specifically, it has a lower energy in MWCNT than in graphite, and a still lower energy in SWCNT. The energy of the π+σ plasmon band is determined by the plasma frequency of the material, which is proportional to the square root of the electron density. We postulate that the energy shift is a result of a surface effect -- the electron wave function extends past the surface, lowering the average electron density in the bulk. The higher surface-to-volume ratio of the mostly SW sample would then lower the plasmon frequency with respect to the MWCNT sample and graphite. Thus, the systematic variation in plasmon frequency may be explained by a lowering of the net electron density by the surfaces in S- and M-WCNT. Work performed at BNL and the Advanced Photon Source was supported by the US DOE under contracts No. DE-AC02-98CH10886 and No. W-31-109-Eng-38 respectively.
Stability and carrier transport properties of phosphorene-based polymorphic nanoribbons
NASA Astrophysics Data System (ADS)
Kaur, Sumandeep; Kumar, Ashok; Srivastava, Sunita; Pandey, Ravindra; Tankeshwar, K.
2018-04-01
Few-layer black phosphorene has recently attracted significant interest in the scientific community. In this paper, we consider several polymorphs of phosphorene nanoribbons (PNRs) and employ deformation potential theory within the effective mass approximation, together with density functional theory, to investigate their structural, mechanical and electronic properties. The results show that the stability of a PNR strongly depends on the direction along which it can be cut from its 2D counterpart. PNRs also exhibit a wide range of line stiffnesses ranging from 6 × 1010 eV m-1 to 18 × 1011 eV m-1, which has little dependence on the edge passivation. Likewise, the calculated electronic properties of PNRs show them to be either a narrow-gap semiconductor (E g < 1 eV) or a wide-gap semiconductor (E g > 1 eV). The carrier mobility of PNRs is found to be comparable to that of black phosphorene. Some of the PNRs show an n-type (p-type) semiconducting character owing to their higher electron (hole) mobility. Passivation of the edges leads to n-type ↔ p-type transition in many of the PNRs considered. The predicted novel characteristics of PNRs, with a wide range of mechanical and electronic properties, make them potentially suitable for use in nanoscale devices.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Amit, E-mail: averma@cornell.edu; Nomoto, Kazuki; School of Electrical and Computer Engineering, Cornell University, Ithaca, New York 14853
2016-05-02
Solid-state modulation of 2-dimensional electron gases (2DEGs) with extreme (∼3.3 × 10{sup 14 }cm{sup −2}) densities corresponding to 1/2 electron per interface unit cell at complex oxide heterointerfaces (such as SrTiO{sub 3}/GdTiO{sub 3} or SrTiO{sub 3}/SmTiO{sub 3}) is challenging because it requires enormous gate capacitances. One way to achieve large gate capacitances is by geometrical capacitance enhancement in fin structures. In this work, we fabricate both Au-gated planar field effect transistors (FETs) and Fin-FETs with varying fin-widths on 60 nm SrTiO{sub 3}/5 nm SmTiO{sub 3} thin films grown by hybrid molecular beam epitaxy. We find that the FinFETs exhibit higher gate capacitance comparedmore » to planar FETs. By scaling down the SrTiO{sub 3}/SmTiO{sub 3} fin widths, we demonstrate further gate capacitance enhancement, almost twice compared to the planar FETs. In the FinFETs with narrowest fin-widths, we demonstrate a record 2DEG electron concentration modulation of ∼2.4 × 10{sup 14 }cm{sup −2}.« less
Pu, Juan; Komvopoulos, Kyriakos
2014-06-01
Bilayer fibrous membranes of poly(l-lactic acid) (PLLA) were fabricated by electrospinning, using a parallel-disk mandrel configuration that resulted in the sequential deposition of a layer with fibers aligned across the two parallel disks and a layer with randomly oriented fibers, both layers deposited in a single process step. Membrane structure and fiber alignment were characterized by scanning electron microscopy and two-dimensional fast Fourier transform. Because of the intricacies of the generated electric field, bilayer membranes exhibited higher porosity than single-layer membranes consisting of randomly oriented fibers fabricated with a solid-drum collector. However, despite their higher porosity, bilayer membranes demonstrated generally higher elastic modulus, yield strength and toughness than single-layer membranes with random fibers. Bilayer membrane deformation at relatively high strain rates comprised multiple abrupt microfracture events characterized by discontinuous fiber breakage. Bilayer membrane elongation yielded excessive necking of the layer with random fibers and remarkable fiber stretching (on the order of 400%) in the layer with fibers aligned in the stress direction. In addition, fibers in both layers exhibited multiple localized necking, attributed to the nonuniform distribution of crystalline phases in the fibrillar structure. The high membrane porosity, good mechanical properties, and good biocompatibility and biodegradability of PLLA (demonstrated in previous studies) make the present bilayer membranes good scaffold candidates for a wide range of tissue engineering applications. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Wellmann, Peter J
2017-11-17
Power electronics belongs to the future key technologies in order to increase system efficiency as well as performance in automotive and energy saving applications. Silicon is the major material for electronic switches since decades. Advanced fabrication processes and sophisticated electronic device designs have optimized the silicon electronic device performance almost to their theoretical limit. Therefore, to increase the system performance, new materials that exhibit physical and chemical properties beyond silicon need to be explored. A number of wide bandgap semiconductors like silicon carbide, gallium nitride, gallium oxide, and diamond exhibit outstanding characteristics that may pave the way to new performance levels. The review will introduce these materials by (i) highlighting their properties, (ii) introducing the challenges in materials growth, and (iii) outlining limits that need innovation steps in materials processing to outperform current technologies.
2017-01-01
Power electronics belongs to the future key technologies in order to increase system efficiency as well as performance in automotive and energy saving applications. Silicon is the major material for electronic switches since decades. Advanced fabrication processes and sophisticated electronic device designs have optimized the silicon electronic device performance almost to their theoretical limit. Therefore, to increase the system performance, new materials that exhibit physical and chemical properties beyond silicon need to be explored. A number of wide bandgap semiconductors like silicon carbide, gallium nitride, gallium oxide, and diamond exhibit outstanding characteristics that may pave the way to new performance levels. The review will introduce these materials by (i) highlighting their properties, (ii) introducing the challenges in materials growth, and (iii) outlining limits that need innovation steps in materials processing to outperform current technologies. PMID:29200530
Superconductivity and Competing Ordered Phase in RuPn (Pn = As, P)
NASA Astrophysics Data System (ADS)
Hirai, Daigorou; Takayama, Tomohiro; Hashizume, Daisuke; Yamamoto, Ayako; Takagi, Hidenori
2011-03-01
Unconventional superconductivity likely manifests itself when some competing electronic phases are suppressed down to zero temperature such as cuprates and iron-pnictide superconductors. Therefore, the correlated metallic state neighboring a competing electronic ordering can be a promising playground for unconventional superconductivity. Here we report superconductivity emerging adjacent to electronically ordered phases of RuPn (Pn = As, P). We found that RuAs(P) exhibits phase transitions at 240 (265) K, which is discerned as a drop of magnetic susceptibility or a resistivity upturn. Such anomalies can be suppressed by substituting Rh to the Ru site. Accompanied by the disappearance of the electronic order, superconductivity was found to emerge below 1.8 K and 3.8 K for RuAs and RuP, respectively. The superconductivity in Rh substituted RuPn, which neighbors a competing electronic order, might exhibit an exotic pairing state as seen in the unconventional superconductors known to date.
Chi, Chih-Wen; Deng, Yu-Lun; Lee, Jyh-Wei; Lin, Chun-Pin
2017-05-01
Dental nickel-titanium (NiTi) rotary instruments are widely used in endodontic therapy because they are efficient with a higher success rate. However, an unpredictable fracture of instruments may happen due to the surface characteristics of imperfection (or irregularity). This study assessed whether a novel surface treatment could increase fatigue fracture resistance of dental NiTi rotary instruments. A 200- or 500-nm thick Ti-zirconium-boron (Ti-Zr-B) thin film metallic glass was deposited on ProTaper Universal F2 files using a physical vapor deposition process. The characteristics of coating were analyzed by scanning electron microscopy, transmission electron microscopy, and X-ray diffractometry. In cyclic fatigue tests, the files were performed in a simulated root canal (radius=5 mm, angulation=60°) under a rotating speed of 300rpm. The fatigue fractured cross sections of the files were analyzed with their fractographic performances through scanning electron microscopy images. The amorphous structure of the Ti-Zr-B coating was confirmed by transmission electron microscopy and X-ray diffractometry. The surface of treated files presented smooth morphologies without grinding irregularity. For the 200- and 500-nm surface treatment groups, the coated files exhibited higher resistance of cyclic fatigue than untreated files. In fractographic analysis, treated files showed significantly larger crack-initiation zone; however, no significant differences in the areas of fatigue propagation and catastrophic fracture were found compared to untreated files. The novel surface treatment of Ti-Zr-B thin film metallic glass on dental NiTi rotary files can effectively improve the fatigue fracture resistance by offering a smooth coated surface with amorphous microstructure. Copyright © 2016. Published by Elsevier B.V.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cao, Ranran; Huang, Hongwei, E-mail: hhw@cugb.edu.cn; Tian, Na
2015-03-15
Visible-light-driven (VLD) Yttrium (Y) ion doped Bi{sub 2}WO{sub 6} photocatalyst has been synthesized via a facile hydrothermal route. Incorporation of Y{sup 3} {sup +} into Bi{sub 2}WO{sub 6} lattice was successfully confirmed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and ICP analysis. The microstructure and optical property of the as-prepared samples have been characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption–desorption isotherm and UV–vis diffuse reflectance spectra (DRS). The photocatalytic experiments indicated that the Y-Bi{sub 2}WO{sub 6} showed a much higher photocatalytic activity than the pristine Bi{sub 2}WO{sub 6} for the degradation of Rhodamine Bmore » (RhB) and photocurrent (PC) generation. This enhancement should be ascribed to the slightly increased band gap and the generated defects by Y{sup 3} {sup +} doping, thus resulting in a much lower recombination rate of the photoinduced electrons and holes. Such a process was verified by the photoluminescence (PL) spectroscopy. In addition, the active species trapping experiments indicated that holes (h{sup +}) and superoxide radicals (·O{sub 2}{sup −}) play important roles in the photocatalytic reaction. - Highlights: • Novel Y-Bi{sub 2}WO{sub 6} photocatalyst has been synthesized by a facile hydrothermal route. • Y-Bi{sub 2}WO{sub 6} exhibits a much higher photocatalytic activity than pristine Bi{sub 2}WO{sub 6}. • Holes (h{sup +}) and superoxide radicals (·O{sub 2}{sup −}) are the two main active species. • Y{sup 3} {sup +} ion can result in a low recombination of photogenerated electron and hole.« less
Yang, Lu; Zhang, Yijia; Chu, Mi; Deng, Wenfang; Tan, Yueming; Ma, Ming; Su, Xiaoli; Xie, Qingji; Yao, Shuozhuo
2014-02-15
We report here on the facile fabrication of network film electrodes with ultrathin Au nanowires (AuNWs) and their electrochemical applications for high-performance nonenzymatic glucose sensing and glucose/O2 fuel cell under physiological conditions (pH 7.4, containing 0.15M Cl(-)). AuNWs with an average diameter of ~7 or 2 nm were prepared and can self-assemble into robust network films on common electrodes. The network film electrode fabricated with 2-nm AuNWs exhibits high sensitivity (56.0 μA cm(-2)mM(-1)), low detection limit (20 μM), short response time (within 10s), excellent selectivity, and good storage stability for nonenzymatic glucose sensing. Glucose/O2 fuel cells were constructed using network film electrodes as the anode and commercial Pt/C catalyst modified glassy carbon electrode as cathode. The glucose/O2 fuel cell using 2-nm AuNWs as anode catalyst output a maximum power density of is 126 μW cm(-2), an open-circuit cell voltage of 0.425 V, and a short-circuit current density of 1.34 mA cm(-2), respectively. Due to the higher specific electroactive surface area of 2-nm AuNWs, the network film electrode fabricated with 2-nm AuNWs exhibited higher electrocatalytic activity toward glucose oxidation than the network film electrode fabricated with 7-nm AuNWs. The network film electrode exhibits high electrocatalytic activity toward glucose oxidation under physiological conditions, which is helpful for constructing implantable electronic devices. © 2013 Elsevier B.V. All rights reserved.
Jamerson, Melissa; da Rocha-Azevedo, Bruno; Cabral, Guy A.
2012-01-01
Naegleria fowleri and Naegleria lovaniensis are closely related free-living amoebae found in the environment. N. fowleri causes primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system, while N. lovaniensis is non-pathogenic. N. fowleri infection occurs when the amoebae access the nasal passages, attach to the nasal mucosa and its epithelial lining, and migrate to the brain. This process involves interaction with components of the host extracellular matrix (ECM). Since the ability to invade tissues can be a characteristic that distinguishes pathogenic from non-pathogenic amoebae, the objective of this study was to assess adhesion to, and invasion of, the ECM by these two related but distinct Naegleria species. N. fowleri exhibited a higher level of adhesion to the ECM components laminin-1, fibronectin and collagen I. Scanning electron microscopy revealed that N. fowleri attached on ECM substrata exhibited a spread-out appearance that included the presence of focal adhesion-like structures. Western immunoblotting revealed two integrin-like proteins for both species, but one of these, with a molecular mass of approximately 70 kDa, was detected at a higher level in N. fowleri. Confocal microscopy indicated that the integrin-like proteins co-localized to the focal adhesion-like structures. Furthermore, anti-integrin antibody decreased adhesion of N. fowleri to ECM components. Finally, N. fowleri disrupted 3D ECM scaffolds, while N. lovaniensis had a minimal effect. Collectively, these results indicate a distinction in adhesion to, and invasion of, ECM proteins between N. fowleri and N. lovaniensis. PMID:22222499
Jamerson, Melissa; da Rocha-Azevedo, Bruno; Cabral, Guy A; Marciano-Cabral, Francine
2012-03-01
Naegleria fowleri and Naegleria lovaniensis are closely related free-living amoebae found in the environment. N. fowleri causes primary amoebic meningoencephalitis (PAM), a rapidly fatal disease of the central nervous system, while N. lovaniensis is non-pathogenic. N. fowleri infection occurs when the amoebae access the nasal passages, attach to the nasal mucosa and its epithelial lining, and migrate to the brain. This process involves interaction with components of the host extracellular matrix (ECM). Since the ability to invade tissues can be a characteristic that distinguishes pathogenic from non-pathogenic amoebae, the objective of this study was to assess adhesion to, and invasion of, the ECM by these two related but distinct Naegleria species. N. fowleri exhibited a higher level of adhesion to the ECM components laminin-1, fibronectin and collagen I. Scanning electron microscopy revealed that N. fowleri attached on ECM substrata exhibited a spread-out appearance that included the presence of focal adhesion-like structures. Western immunoblotting revealed two integrin-like proteins for both species, but one of these, with a molecular mass of approximately 70 kDa, was detected at a higher level in N. fowleri. Confocal microscopy indicated that the integrin-like proteins co-localized to the focal adhesion-like structures. Furthermore, anti-integrin antibody decreased adhesion of N. fowleri to ECM components. Finally, N. fowleri disrupted 3D ECM scaffolds, while N. lovaniensis had a minimal effect. Collectively, these results indicate a distinction in adhesion to, and invasion of, ECM proteins between N. fowleri and N. lovaniensis.
Do, Thu Trang; Pham, Hong Duc; Manzhos, Sergei; Bell, John M; Sonar, Prashant
2017-05-24
We designed, synthesized, and characterized a series of novel electron deficient small molecule nonfullerene acceptors based on 1,8-naphthalimide (NAI) and 9-fluorenone (FN) with different branched alkyl chains using various techniques. These molecules are based on an acceptor-donor-acceptor-donor-acceptor (A1-D-A2-D-A1) molecular design configuration with NAI as the end-capping acceptor (A1), FN as electron-withdrawing central (A2) group, and thiophene ring as a donor (D) unit. These materials are named as NAI-FN-NAI (BO) and NAI-FN-NAI (HD) where BO and HD represent butyloctyl and hexyldecyl alkyl groups, respectively. To further modify energy levels of these materials, we converted the weak electron withdrawing ketonic group (C═O) attached to the FN moiety of NAI-FN-NAI (BO) to a stronger electron withdrawing cyano group (C≡N) to obtain the compound NAI-FCN-NAI (BO) by keeping the same alkyl chain. The optical, electrochemical, and thermal properties of the new acceptors were studied. The materials exhibited higher to medium band gaps, low lowest unoccupied molecular orbital (LUMO) energy levels, and highly thermally stable properties. Organic solar cell devices employing conventional poly(3-hexylthiophene) (P3HT) a donor polymer and the newly designed small molecules as the acceptor were investigated. Among all new materials, organic solar cell devices based on NAI-FN-NAI (BO) as an acceptor exhibit the highest performance with an open circuit voltage (V OC ) of 0.88 V, a short-circuit current density (J SC ) of 9.1 mAcm -2 , a fill factor (FF) of 45%, and an overall power conversion efficiency (PCE) of 3.6%. This is the first report of 9-fluorenone based nonfullerene acceptor with P3HT donor in organic solar cell devices with such a promising performance.
Zhang, Bingjie; Smith, Paul F.; Lee, Seung-Yong; ...
2016-12-01
Efficient conduction of both electrons and cations (e.g., Li +) has a profound effect on the current and capacity of lithium-based batteries. With this study, we focus on cathode effects, with the preparation of pure silver hollandite materials with variable silver ion content within (intra-tunnel) and on the surface of α-MnO 2 tunneled materials, followed by the measurement and analysis of impedance and electrochemistry data. Specifically, pure Ag xMn 8O 16-y materials with low (x = 1.13) and high (x = 1.54) intra-tunnel silver content are compared with Ag xMn 8O 16-y·aAg 2O (a = 0.25, 0.63, 1.43) composites preparedmore » via a new Ag 2O coating strategy. When the Ag 2O (a = 0, 0.25) content is low, the material with higher intra-tunnel silver (x = 1.53) content delivers up to ~5-fold higher capacity accounted for by a ~10-fold lower impedance than its lower intra-tunnel silver (x = 1.13) counterpart. In the presence of high Ag 2O content (a = 0.63, 1.43), both composites exhibit comparable impedance but the lower intra-tunnel silver (x = 1.13) composite delivers up to ~1.5-fold higher capacity than higher intra-tunnel silver composite, highlighting the key role of Li + transport under those conditions. Our results demonstrate material design strategies which can significantly increase electronic and ionic conductivities.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Bingjie; Smith, Paul F.; Lee, Seung-Yong
Efficient conduction of both electrons and cations (e.g., Li +) has a profound effect on the current and capacity of lithium-based batteries. With this study, we focus on cathode effects, with the preparation of pure silver hollandite materials with variable silver ion content within (intra-tunnel) and on the surface of α-MnO 2 tunneled materials, followed by the measurement and analysis of impedance and electrochemistry data. Specifically, pure Ag xMn 8O 16-y materials with low (x = 1.13) and high (x = 1.54) intra-tunnel silver content are compared with Ag xMn 8O 16-y·aAg 2O (a = 0.25, 0.63, 1.43) composites preparedmore » via a new Ag 2O coating strategy. When the Ag 2O (a = 0, 0.25) content is low, the material with higher intra-tunnel silver (x = 1.53) content delivers up to ~5-fold higher capacity accounted for by a ~10-fold lower impedance than its lower intra-tunnel silver (x = 1.13) counterpart. In the presence of high Ag 2O content (a = 0.63, 1.43), both composites exhibit comparable impedance but the lower intra-tunnel silver (x = 1.13) composite delivers up to ~1.5-fold higher capacity than higher intra-tunnel silver composite, highlighting the key role of Li + transport under those conditions. Our results demonstrate material design strategies which can significantly increase electronic and ionic conductivities.« less
NASA Astrophysics Data System (ADS)
García, S.; Íñiguez-de-la-Torre, I.; Mateos, J.; González, T.; Pérez, S.
2016-06-01
In this paper, we present results from the simulations of a submicrometer AlGaN/GaN high-electron-mobility transistor (HEMT) by using an in-house electro-thermal Monte Carlo simulator. We study the temperature distribution and the influence of heating on the transfer characteristics and the transconductance when the device is grown on different substrates (sapphire, silicon, silicon carbide and diamond). The effect of the inclusion of a thermal boundary resistance (TBR) is also investigated. It is found that, as expected, HEMTs fabricated on substrates with high thermal conductivities (diamond) exhibit lower temperatures, but the difference between hot-spot and average temperatures is higher. In addition, devices fabricated on substrates with higher thermal conductivities are more sensitive to the value of the TBR because the temperature discontinuity is greater in the TBR layer.
NASA Astrophysics Data System (ADS)
Miller, E. Kirk; McGehee, Michael; Diaz-Garcia, Maria; Srikant, V.; Heeger, Alan J.
1998-03-01
We report variable angle spectroscopic ellipsometry (VASE) measurements on thin films of poly(2-butyl-5(2-ethyl-hexyl)-1,4- phenylenevinylene) (BuEH-PPV) in the spectral region below the electronic absorption edge. We find that the films are best described as uniaxially anisotropic, with the optical axis perpendicular to the plane of the film, consistent with the notion that the polymer chains lie preferentially in the plane of the film. Due to the anisotropic distribution of chromophores, the in-plane index of refraction is found to be significantly higher and more dispersive than the out-of- plane index, implying a higher effective index for transverse-electric (TE) waveguide modes than for the corresponding transverse- magnetic (TM) modes. The implications of these data for amplified spontaneous emission (ASE) experiments and in-plane laser structures are discussed.
NASA Astrophysics Data System (ADS)
Mulijani, S.
2017-01-01
Polymer membrane and composite polymer for membrane electrode assembly (MEAs) are synthesized and studied for usage in direct methanol fuel cell (DMFC). In this study, we prepared 3 type of MEAs, polystyrene (PS), sulfonated polystyrene (SPS) and composite polymer SPS-alginat membrane via catalyst hot pressed method. The performance and properties of prepared MEAs were evaluated and analyzed by impedance spectrometry and scanning electron microscopy (SEM). The result showed that, water up take of MEA composite polymer SPS-alginate was obtained higher than that in SPS and PS. The proton conductivity of MEA-SPS-alginate was also higher than that PS and PSS. SEM characterization revealed that the intimate contact between the carbon catalyst layers (CL) and the membranes, and the uniformly porous structure correlate positively with the MEAs prepared by hot pressed method, exhibiting high performances for DMFC.
Vibrational spectroscopic and non-linear optical activity studies on nicotinanilide : A DFT approach
NASA Astrophysics Data System (ADS)
Premkumar, S.; Jawahar, A.; Mathavan, T.; Dhas, M. Kumara; Benial, A. Milton Franklin
2015-06-01
The molecular structure of nicotinanilide was optimized by the DFT/B3LYP method with cc-pVTZ basis set using Gaussian 09 program. The first order hyperpolarizability of the molecule was calculated, which exhibits the higher nonlinear optical activity. The natural bond orbital analysis confirms the presence of intramolecular charge transfer and the hydrogen bonding interaction, which leads to the higher nonlinear optical activity of the molecule. The Frontier molecular orbitals analysis of the molecule shows that the delocalization of electron density occurs within the molecule. The lower energy gap indicates that the hydrogen bond formation between the charged species. The vibrational frequencies were calculated and assigned on the basis of potential energy distribution calculation using the VEDA 4.0 program and the corresponding vibrational spectra were simulated. Hence, the nicotinanilide molecule can be a good candidate for second-order NLO material.
NASA Astrophysics Data System (ADS)
Piyadasa, Adimali; Wang, Sibo; Gao, Pu-Xian
2017-07-01
The electronic band structure of a solid state semiconductor determines many of its physical and chemical characteristics such as electrical, optical, physicochemical, and catalytic activity. Alteration or modification of the band structure could lead to significant changes in these physical and chemical characteristics, therefore we introduce new mechanisms of creating novel solid state materials with interesting properties. Over the past three decades, research on band structure engineering has allowed development of various methods to modify the band structure of engineered materials. Compared to bulk counterparts, nanostructures generally exhibit higher band structure modulation capabilities due to the quantum confinement effect, prominent surface effect, and higher strain limit. In this review we will discuss various band structure engineering strategies in semiconductor nanowires and other related nanostructures, mostly focusing on metal oxide systems. Several important strategies of band structure modulation are discussed in detail, such as doping, alloying, straining, interface and core-shell nanostructuring.
High-performance thermoelectric nanocomposites from nanocrystal building blocks
Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V.; Cabot, Andreu
2016-01-01
The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom–up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS–Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS–Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K. PMID:26948987
Novel Co(OH)2 with cotton-like structure as anode material for alkaline secondary batteries
NASA Astrophysics Data System (ADS)
Zhao, W.; Liao, Y. L.; Qiu, S. J.; Chu, H. L.; Zou, Y. J.; Xiang, C. L.; Zhang, H. Z.; Xu, F.; Sun, L. X.
2018-01-01
The cotton-like Co(OH)2 (S-Co(OH)2) was successfully synthesized and its electrochemical performance was systematically investigated. S-Co(OH)2 was prepared through the “destruction” of the newly formed colloid Co(OH)2 by the reduction using sodium borohydride. The crystal structure and surface morphology were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Used as an anode material for alkaline secondary batteries, S-Co(OH)2 sample exhibited better cycle stability, higher electrochemical capacity, and higher rate performance than those of conventional β-Co(OH)2. At a discharge current density of 100 mA/g, the initial discharge capacity of S-Co(OH)2 is 549.3 mAh/g and the discharge capacity is still sustained to be 329.2 mAh/g after 100 charge-discharge cycles with a capacity retention of 59.9%.
High-performance thermoelectric nanocomposites from nanocrystal building blocks.
Ibáñez, Maria; Luo, Zhishan; Genç, Aziz; Piveteau, Laura; Ortega, Silvia; Cadavid, Doris; Dobrozhan, Oleksandr; Liu, Yu; Nachtegaal, Maarten; Zebarjadi, Mona; Arbiol, Jordi; Kovalenko, Maksym V; Cabot, Andreu
2016-03-07
The efficient conversion between thermal and electrical energy by means of durable, silent and scalable solid-state thermoelectric devices has been a long standing goal. While nanocrystalline materials have already led to substantially higher thermoelectric efficiencies, further improvements are expected to arise from precise chemical engineering of nanoscale building blocks and interfaces. Here we present a simple and versatile bottom-up strategy based on the assembly of colloidal nanocrystals to produce consolidated yet nanostructured thermoelectric materials. In the case study on the PbS-Ag system, Ag nanodomains not only contribute to block phonon propagation, but also provide electrons to the PbS host semiconductor and reduce the PbS intergrain energy barriers for charge transport. Thus, PbS-Ag nanocomposites exhibit reduced thermal conductivities and higher charge carrier concentrations and mobilities than PbS nanomaterial. Such improvements of the material transport properties provide thermoelectric figures of merit up to 1.7 at 850 K.
NASA Astrophysics Data System (ADS)
Wang, Min; Bao, Wen-Jing; Wang, Jiong; Wang, Kang; Xu, Jing-Juan; Chen, Hong-Yuan; Xia, Xing-Hua
2014-10-01
3D hierarchical layer double hydroxides (LDHs) have attracted extensive interest due to their unique electronic and catalytic properties. Unfortunately, the existing preparation methods require high temperature or toxic organic compounds, which limits the applications of the 3D hierarchical LDHs in biocatalysis and biomedicine. Herein, we present a green strategy to synthesize ``Desert Rose Stone''-like Mg-Al-CO3 LDH nanoflowers in situ deposited on aluminum substrates via a coprecipitation method using atmospheric carbon dioxide. Using this method, we construct a novel ``Desert Rose Stone''-like nanobiocatalytic system by using HRP as the model enzyme. Compared with the free HRP, the HRP/Mg-Al-LDH nanobiocatalytic system exhibits higher catalytic activity and stability. A smaller apparent Michaelis-Menten constant (0.16 mM) of this system suggests that the encapsulated HRP shows higher affinity towards H2O2.
NASA Astrophysics Data System (ADS)
Xu, Jingjing; Li, Bin; Li, Songmei; Liu, Jianhua
2017-07-01
Development of new and efficient metal-free electrocatalysts for replacing Pt to improve the sluggish kinetics of oxygen reduction reaction (ORR) is of great importance to emerging renewable energy technologies such as metal-air batteries and polymer electrolyte fuel cells. Herein, 3D sulfur-doping carbon nitride (S-CN) as a novel metal-free ORR electrocatalyst was synthesized by exploiting commercial melamine sponge as raw material. The sulfur atoms were doping on CN networks uniformly through numerous S-C bonds which can provide additional active sites. And it was found that the S-CN exhibited high catalytic activity for ORR in term of more positive onset potential, higher electron transfer number and higher cathodic density. This work provides a novel choice of metal-free ORR electrocatalysts and highlights the importance of sulfur-doping CN in metal-free ORR electrocatalysts.
Evaluating focused ion beam patterning for position-controlled nanowire growth using computer vision
NASA Astrophysics Data System (ADS)
Mosberg, A. B.; Myklebost, S.; Ren, D.; Weman, H.; Fimland, B. O.; van Helvoort, A. T. J.
2017-09-01
To efficiently evaluate the novel approach of focused ion beam (FIB) direct patterning of substrates for nanowire growth, a reference matrix of hole arrays has been used to study the effect of ion fluence and hole diameter on nanowire growth. Self-catalyzed GaAsSb nanowires were grown using molecular beam epitaxy and studied by scanning electron microscopy (SEM). To ensure an objective analysis, SEM images were analyzed with computer vision to automatically identify nanowires and characterize each array. It is shown that FIB milling parameters can be used to control the nanowire growth. Lower ion fluence and smaller diameter holes result in a higher yield (up to 83%) of single vertical nanowires, while higher fluence and hole diameter exhibit a regime of multiple nanowires. The catalyst size distribution and placement uniformity of vertical nanowires is best for low-value parameter combinations, indicating how to improve the FIB parameters for positioned-controlled nanowire growth.
Surface and magnetic characteristics of Ni-Mn-Ga/Si (100) thin film
NASA Astrophysics Data System (ADS)
Kumar, S. Vinodh; Raja, M. Manivel; Pandi, R. Senthur; Pandyan, R. Kodi; Mahendran, M.
2016-05-01
Polycrystalline Ni-Mn-Ga thin films have been deposited on Si (100) substrate with different film thickness. The influence of film thickness on the phase structure and magnetic domain of the films has been examined by scanning electron microscope, atomic force microscopy and magnetic force microscopy. Analysis of structural parameters indicates that the film at lower thickness exhibits the coexistence of both austenite and martensite phase, whereas at higher thickness L12 cubic non magnetic phase is noticed. The grains size and the surface roughness increase along with the film thickness and attain the maximum of 45 nm and 34.96 nm, respectively. At lower film thickness, the magnetic stripe domain is found like maze pattern with dark and bright images, while at higher thickness the absence of stripe domains is observed. The magnetic results reveal that the films strongly depend on their phase structure and microstructure which influence by the film thickness.
ERIC Educational Resources Information Center
Capraro, Mary Margaret
An electronic portfolio is a collection of work captured by electronic means that serves as an exhibit of individual efforts, progress, and achievements in one or more areas. Due to rapid growth and updates in technology, keeping electronic portfolios is becoming increasingly common in a variety of educational settings. In fall 2002 at one large…
ERIC Educational Resources Information Center
Capraro, Mary Margaret
2006-01-01
Electronic portfolios are a "collection of work captured by electronic means, that serves as an exhibit of individual efforts, progress, and achievements in one or more areas" (Weidmer, 1998, p. 586). Because of the rapid growth and updates in technology, keeping electronic portfolios is becoming increasingly common in a variety of educational…
Cu(In,Ga)Se2 Solar Cells with Amorphous In2O3-Based Front Contact Layers.
Koida, Takashi; Ueno, Yuko; Nishinaga, Jiro; Higuchi, Hirohumi; Takahashi, Hideki; Iioka, Masayuki; Shibata, Hajime; Niki, Shigeru
2017-09-06
Amorphous (a-) In 2 O 3 -based front contact layers composed of transparent conducting oxide (TCO) and transparent oxide semiconductor (TOS) layers were proved to be effective in enhancing the short-circuit current density (J sc ) of Cu(In,Ga)Se 2 (CIGS) solar cells with a glass/Mo/CIGS/CdS/TOS/TCO structure, while maintaining high fill factor (FF) and open-circuit voltage (V oc ). An n-type a-In-Ga-Zn-O layer was introduced between the CdS and TCO layers. Unlike unintentionally doped ZnO broadly used as TOS layers in CIGS solar cells, the grain-boundary(GB)-free amorphous structure of the a-In-Ga-Zn-O layers allowed high electron mobility with superior control over the carrier density (N). High FF and V oc values were achieved in solar cells containing a-In-Ga-Zn-O layers with N values broadly ranging from 2 × 10 15 to 3 × 10 18 cm -3 . The decrease in FF and V oc produced by the electronic inhomogeneity of solar cells was mitigated by controlling the series resistance within the TOS layer of CIGS solar cells. In addition, a-In 2 O 3 :H and a-In-Zn-O layers exhibited higher electron mobilities than the ZnO:Al layers conventionally used as TCO layers in CIGS solar cells. The In 2 O 3 -based layers exhibited lower free carrier absorption while maintaining similar sheet resistance than ZnO:Al. The TCO and TOS materials and their combinations did not significantly change the V oc of the CIGS solar cells and the mini-modules.
NASA Astrophysics Data System (ADS)
He, Gaihua; Duan, Yuping; Song, Lulu; Zhang, Xuefeng
2018-06-01
Potassium-ion-doped MnO2 has been successfully synthesized using the hydrothermal method, and the influence of the doped potassium ions on the electrical conductivity and permittivity is studied. X-ray powder diffraction, scanning electron microscopy, electron-probe micro-analysis, and a vector network analyzer are used to perform characterization. The densities of states of doped and undoped MnO2 tunnel structures are also discussed based on first-principles calculations. Results show that the conductivity and dielectric resonance of MnO2 can be elevated by means of K+ doping. The conductivity of K+-doped MnO2 prepared at different reaction times shows a decreasing trend and is generally 1 order of magnitude higher than that of pure MnO2. The electrical conductivity of K+-doped MnO2 (R3) shows the highest value of 3.33 × 10-2 S/cm at the reaction time of 24 h, while that of pure MnO2 is 8.50 × 10-4 S/cm. When treated with acid, the conductivity of samples remains basically stable along with the increase of treatment time. In addition, acid treatment plays a very significant role in controlling the amount of K+ ions in crystals. The K+ contents of acid-treated samples are 5 times lower than that of the untreated R1. The dielectric losses of the samples with different reaction times are enhanced markedly with frequency increment. The complex permittivity of pure MnO2 only exhibits a resonance at ˜12 GHz, while K+-doped MnO2 exhibits another resonance behavior at ˜9 GHz. The capacity of the dielectric property in the net structure is enhanced by the interfacial polarization, dielectric relaxation, multiple internal reflections, and multiple scattering benefiting.
Density-Gradient-Driven trapped-electron-modes in improved-confinement RFP plasmas
NASA Astrophysics Data System (ADS)
Duff, James
2016-10-01
Short wavelength density fluctuations in improved-confinement MST plasmas exhibit multiple features characteristic of the trapped-electron-mode (TEM), strong evidence that drift wave turbulence emerges in RFP plasmas when transport associated with MHD tearing is reduced. Core transport in the RFP is normally governed by magnetic stochasticity stemming from long wavelength tearing modes that arise from current profile peaking. Using inductive control, the tearing modes are reduced and global confinement is increased to values expected for a comparable tokamak plasma. The improved confinement is associated with a large increase in the pressure gradient that can destabilize drift waves. The measured density fluctuations have frequencies >50 kHz, wavenumbers k_phi*rho_s<0.14, and propagate in the electron drift direction. Their spectral emergence coincides with a sharp decrease in fluctuations associated with global tearing modes. Their amplitude increases with the local density gradient, and they exhibit a density-gradient threshold at R/L_n 15, higher than in tokamak plasmas by R/a. the GENE code, modified for RFP equilibria, predicts the onset of microinstability for these strong-gradient plasma conditions. The density-gradient-driven TEM is the dominant instability in the region where the measured density fluctuations are largest, and the experimental threshold-gradient is close to the predicted critical gradient for linear stability. While nonlinear analysis shows a large Dimits shift associated with predicted strong zonal flows, the inclusion of residual magnetic fluctuations causes a collapse of the zonal flows and an increase in the predicted transport to a level close to the experimentally measured heat flux. Similar circumstances could occur in the edge region of tokamak plasmas when resonant magnetic perturbations are applied for the control of ELMs. Work supported by US DOE.
Li, Huiyang; Fang, Manman; Hou, Yingqin; Tang, Runli; Yang, Yizhou; Zhong, Cheng; Li, Qianqian; Li, Zhen
2016-05-18
Four organic sensitizers (LI-68-LI-71) bearing various conjugated bridges were designed and synthesized, in which the only difference between LI-68 and LI-69 (or LI-70 and LI-71) was the absence/presence of the CN group as the auxiliary electron acceptor. Interestingly, compared to the reference dye of LI-68, LI-69 bearing the additional CN group exhibited the bad performance with the decreased Jsc and Voc values. However, once one thiophene moiety near the anchor group was replaced by pyrrole with the electron-rich property, the resultant LI-71 exhibited a photoelectric conversion efficiency increase by about 3 folds from 2.75% (LI-69) to 7.95% (LI-71), displaying the synergistic effect of the two moieties (CN and pyrrole). Computational analysis disclosed that pyrrole as the auxiliary electron donor (D') in the conjugated bridge can compensate for the lower negative charge in the electron acceptor, which was caused by the CN group as the electron trap, leading to the more efficient electron injection and better photovoltaic performance.
Low-Energy Charged Particles in Saturn's Magnetosphere: Results from Voyager 1.
Krimigis, S M; Armstrong, T P; Axford, W I; Bostrom, C O; Gloeckler, G; Keath, E P; Lanzerotti, L J; Carbary, J F; Hamilton, D C; Roelof, E C
1981-04-10
The low-energy charged particle instrument on Voyager 1 measured low-energy electrons and ions (energies >/= 26 and >/= 40 kiloelectron volts, respectively) in Saturn's magnetosphere. The first-order ion anisotropies on the dayside are generally in the corotation direction with the amplitude decreasing with decreasing distance to the planet. The ion pitch-angle distributions generally peak at 90 degrees , whereas the electron distributions tend to have field-aligned bidirectional maxima outside the L shell of Rhea. A large decrease in particle fluxes is seen near the L shell of Titan, while selective particle absorption (least affecting the lowest energy ions) is observed at the L shells of Rhea, Dione, and Tethys. The phase space density of ions with values of the first invariant in the range approximately 300 to 1000 million electron volts per gauss is consistent with a source in the outer magnetosphere. The ion population at higher energies (>/= 200 kiloelectron volts per nucleon) consists primarily of protons, molecular hydrogen, and helium. Spectra of all ion species exhibit an energy cutoff at energies >/= 2 million electron volts. The proton-to-helium ratio at equal energy per nucleon is larger (up to approximately 5 x 10(3)) than seen in other magnetospheres and is consistent with a local (nonsolar wind) proton source. In contrast to the magnetospheres of Jupiter and Earth, there are no lobe regions essentially devoid of particles in Saturn's nighttime magnetosphere. Electron pitch-angle distributions are generally bidirectional andfield-aligned, indicating closed field lines at high latitudes. Ions in this region are generally moving toward Saturn, while in the magnetosheath they exhibit strong antisunward streaming which is inconsistent with purely convective flows. Fluxes of magnetospheric ions downstream from the bow shock are present over distances >/= 200 Saturn radii from the planet. Novel features identified in the Saturnian magnetosphere include a mantle of low-energy particles extending inward from the dayside magnetopause to approximately 17 Saturn radii, at least two intensity dropouts occurring approximately 11 hours apart in the nighttime magnetosphere, and a pervasive population of energetic molecular hydrogen.
Lee, Si Woo; Hong, Jong Wook; Lee, Hyunhwa; Wi, Dae Han; Kim, Sun Mi; Han, Sang Woo; Park, Jeong Young
2018-06-14
The intrinsic correlation between an enhancement of catalytic activity and the flow of hot electrons generated at metal-oxide interfaces suggests an intriguing way to control catalytic reactions and is a significant subject in heterogeneous catalysis. Here, we show surface plasmon-induced catalytic enhancement by the peculiar nanocatalyst design of hexoctahedral (HOH) Au nanocrystals (NCs) with Cu2O clusters. We found that this inverse catalyst comprising a reactive oxide for the catalytic portion and a metal as the source of electrons by localized surface plasmon resonance (localized SPR) exhibits a change in catalytic activity by direct hot electron transfer or plasmon-induced resonance energy transfer (PIRET) when exposed to light. We prepared two types of inverse catalysts, Cu2O at the vertex sites of HOH Au NCs (Cu2O/Au vertex site) and a HOH Au NC-Cu2O core-shell structure (HOH Au@Cu2O), to test the structural effect on surface plasmons. Under broadband light illumination, the Cu2O/Au vertex site catalyst showed 30-90% higher catalytic activity and the HOH Au@Cu2O catalyst showed 10-30% higher catalytic activity than when in the dark. Embedding thin SiO2 layers between the HOH Au NCs and the Cu2O verified that the dominant mechanism for the catalytic enhancement is direct hot electron transfer from the HOH Au to the Cu2O. Finite-difference time domain calculations show that a much stronger electric field was formed on the vertex sites after growing the Cu2O on the HOH Au NCs. These results imply that the catalytic activity is enhanced when hot electrons, created from photon absorption on the HOH Au metal and amplified by the presence of surface plasmons, are transferred to the reactive Cu2O.
Multi-scale gyrokinetic simulation of Alcator C-Mod tokamak discharges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard, N. T., E-mail: nthoward@psfc.mit.edu; White, A. E.; Greenwald, M.
2014-03-15
Alcator C-Mod tokamak discharges have been studied with nonlinear gyrokinetic simulation simultaneously spanning both ion and electron spatiotemporal scales. These multi-scale simulations utilized the gyrokinetic model implemented by GYRO code [J. Candy and R. E. Waltz, J. Comput. Phys. 186, 545 (2003)] and the approximation of reduced electron mass (μ = (m{sub D}/m{sub e}){sup .5} = 20.0) to qualitatively study a pair of Alcator C-Mod discharges: a low-power discharge, previously demonstrated (using realistic mass, ion-scale simulation) to display an under-prediction of the electron heat flux and a high-power discharge displaying agreement with both ion and electron heat flux channels [N. T. Howard et al.,more » Nucl. Fusion 53, 123011 (2013)]. These multi-scale simulations demonstrate the importance of electron-scale turbulence in the core of conventional tokamak discharges and suggest it is a viable candidate for explaining the observed under-prediction of electron heat flux. In this paper, we investigate the coupling of turbulence at the ion (k{sub θ}ρ{sub s}∼O(1.0)) and electron (k{sub θ}ρ{sub e}∼O(1.0)) scales for experimental plasma conditions both exhibiting strong (high-power) and marginally stable (low-power) low-k (k{sub θ}ρ{sub s} < 1.0) turbulence. It is found that reduced mass simulation of the plasma exhibiting marginally stable low-k turbulence fails to provide even qualitative insight into the turbulence present in the realistic plasma conditions. In contrast, multi-scale simulation of the plasma condition exhibiting strong turbulence provides valuable insight into the coupling of the ion and electron scales.« less
Characterization of winter airborne particles at Emperor Qin's Terra-cotta Museum, China.
Hu, Tafeng; Lee, Shuncheng; Cao, Junji; Chow, Judith C; Watson, John G; Ho, Kinfai; Ho, Wingkei; Rong, Bo; An, Zhisheng
2009-10-01
Daytime and nighttime total suspended particulate matters (TSP) were collected inside and outside Emperor Qin's Terra-cotta Museum, the most popular on-site museum in China, in winter 2008. The purpose of this study was to investigate the contribution of visitors to indoor airborne particles in two display halls with different architectural and ventilating conditions, including Exhibition Hall and Pit No.1. Morphological and elemental analyses of 7-day individual particle samples were performed with scanning electron microscopy and energy dispersive X-ray spectrometer (SEM-EDX). Particle mass concentrations in Exhibition Hall and Pit No.1 were in a range of 54.7-291.7 microg m(-3) and 95.3-285.4 microg m(-3) with maximum diameters of 17.5 microm and 26.0 microm, respectively. In most sampling days, daytime/nighttime particle mass ratios in Exhibition Hall (1.30-3.12) were higher than those in Pit No.1 (0.96-2.59), indicating more contribution of the tourist flow in Exhibition Hall than in Pit No. 1. The maximum of particle size distributions were in a range of 0.5-1.0 microm, with the highest abundance (43.4%) occurred in Exhibition Hall at night. The majority of airborne particles at the Museum was composed of soil dust, S-containing particles, and low-Z particles like soot aggregate and biogenic particles. Both size distributions and particle types were found to be associated with visitor numbers in Exhibition Hall and with natural ventilation in Pit No.1. No significant influence of visitors on indoor temperature and relative humidity (RH) was found in either display halls. Those baseline data on the nature of the airborne particles inside the Museum can be incorporated into the maintenance criteria, display management, and ventilation strategy by conservators of the museum.
Cheng, X Y; Li, S J; Murr, L E; Zhang, Z B; Hao, Y L; Yang, R; Medina, F; Wicker, R B
2012-12-01
Ti-6Al-4V alloy with two kinds of open cellular structures of stochastic foam and reticulated mesh was fabricated by additive manufacturing (AM) using electron beam melting (EBM), and microstructure and mechanical properties of these samples with high porosity in the range of 62%∼92% were investigated. Optical observations found that the cell struts and ligaments consist of primary α' martensite. These cellular structures have comparable compressive strength (4∼113 MPa) and elastic modulus (0.2∼6.3 GPa) to those of trabecular and cortical bone. The regular mesh structures exhibit higher specific strength than other reported metallic foams under the condition of identical specific stiffness. During the compression, these EBM samples have a brittle response and undergo catastrophic failure after forming crush band at their peak loading. These bands have identical angle of ∼45° with compression axis for the regular reticulated meshes and such failure phenomenon was explained by considering the cell structure. Relative strength and density follow a linear relation as described by the well-known Gibson-Ashby model but its exponential factor is ∼2.2, which is relative higher than the idea value of 1.5 derived from the model. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Zhao, Qinqin; Ju, Dianxing; Deng, Xiaolong; Huang, Jinzhao; Cao, Bingqiang; Xu, Xijin
2015-01-01
The morphology of SnO2 nanospheres was transformed into ultrathin nanosheets assembled architectures after Zn doping by one-step hydrothermal route. The as-prepared samples were characterized in detail by various analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and nitrogen adsorption-desorption technique. The Zn-doped SnO2 nanostructures proved to be the efficient gas sensing materials for a series of flammable and explosive gases detection, and photocatalysts for the degradation of methyl orange (MO) under UV irradiation. It was observed that both of the undoped and Zn-doped SnO2 after calcination exhibited tremendous gas sensing performance toward glycol. The response (S = Ra/Rg) of Zn-doped SnO2 can reach to 90 when the glycol concentration is 100 ppm, which is about 2 times and 3 times higher than that of undoped SnO2 sensor with and without calcinations, respectively. The result of photocatalytic activities demonstrated that MO dye was almost completely degraded (~92%) by Zn-doped SnO2 in 150 min, which is higher than that of others (MO without photocatalyst was 23%, undoped SnO2 without and with calcination were 55% and 75%, respectively).
Crystal structure and composition of BAlN thin films: Effect of boron concentration in the gas flow
NASA Astrophysics Data System (ADS)
Wang, Shuo; Li, Xiaohang; Fischer, Alec M.; Detchprohm, Theeradetch; Dupuis, Russell D.; Ponce, Fernando A.
2017-10-01
We have investigated the microstructure of BxAl1-xN films grown by flow-modulated epitaxy at 1010 °C, with B/(B + Al) gas-flow ratios ranging from 0.06 to 0.18. The boron content obtained from X-ray diffraction (XRD) patterns ranges from x = 0.02 to 0.09. On the other hand, boron content deduced from the aluminum signal in the Rutherford backscattering spectra (RBS) ranges from x = 0.06 to 0.16, closely following the gas-flow ratios. Transmission electron microscopy indicates the sole presence of a wurtzite crystal structure in the BAlN films, and a tendency towards columnar growth for B/(B + Al) gas-flow ratios below 0.12. For higher ratios, the BAlN films exhibit a tendency towards twin formation and finer microstructure. Electron energy loss spectroscopy has been used to profile spatial variations in the composition of the films. The RBS data suggest that the incorporation of B is highly efficient for our growth method, while the XRD data indicate that the epitaxial growth may be limited by a solubility limit in the crystal phase at about 9%, for the range of B/(B + Al) gas-flow ratios that we have studied, which is significantly higher than previously thought.
Zhao, Qinqin; Ju, Dianxing; Deng, Xiaolong; Huang, Jinzhao; Cao, Bingqiang; Xu, Xijin
2015-01-01
The morphology of SnO2 nanospheres was transformed into ultrathin nanosheets assembled architectures after Zn doping by one-step hydrothermal route. The as-prepared samples were characterized in detail by various analytical techniques including scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and nitrogen adsorption-desorption technique. The Zn-doped SnO2 nanostructures proved to be the efficient gas sensing materials for a series of flammable and explosive gases detection, and photocatalysts for the degradation of methyl orange (MO) under UV irradiation. It was observed that both of the undoped and Zn-doped SnO2 after calcination exhibited tremendous gas sensing performance toward glycol. The response (S = Ra/Rg) of Zn-doped SnO2 can reach to 90 when the glycol concentration is 100 ppm, which is about 2 times and 3 times higher than that of undoped SnO2 sensor with and without calcinations, respectively. The result of photocatalytic activities demonstrated that MO dye was almost completely degraded (~92%) by Zn-doped SnO2 in 150 min, which is higher than that of others (MO without photocatalyst was 23%, undoped SnO2 without and with calcination were 55% and 75%, respectively). PMID:25597269
Thermoelectric properties of SnSe2 monolayer.
Li, Guanpeng; Ding, Guangqian; Gao, Guoying
2017-01-11
The 2H (MoS 2 -type) phase of 2D transition metal dichalcogenides (TMDCs) has been extensively studied and exhibits excellent electronic and optoelectronic properties, but the high phonon thermal conductivity is detrimental to the thermoelectric performances. Here, we use first-principles methods combined with Boltzmann transport theory to calculate the electronic and phononic transport properties of 1T (CdI 2 -type) SnSe 2 monolayer, a recently realized 2D metal dichalcogenide semiconductor. The calculated band gap is 0.85 eV, which is a little larger than the bulk value. Lower phonon thermal conductivity and higher power factor are obtained in 1T-SnSe 2 monolayer compared to 2H-TMDCs monolayers. The low phonon thermal conductivity (3.27 W mK -1 at room temperature) is mainly due to the low phonon frequency of acoustic modes and the coupling of acoustic modes with optical modes. We also find that the p-type has better thermoelectric performance than the n-type, and the figure of merit within p-type can reach 0.94 at 600 K for 1T-SnSe 2 monolayer, which is higher than those of most 2H-TMDCs monolayers, making 1T-SnSe 2 monolayer a promising candidate for thermoelectric applications.
Method to protect charge recombination in the back-contact dye-sensitized solar cell.
Yoo, Beomjin; Kim, Kang-Jin; Lee, Doh-Kwon; Kim, Kyungkon; Ko, Min Jae; Kim, Yong Hyun; Kim, Won Mok; Park, Nam-Gyu
2010-09-13
We prepared a back-contact dye-sensitized solar cell and investigated effect of the sputter deposited thin TiO₂ film on the back-contact ITO electrode on photovoltaic property. The nanocrystalline TiO₂ layer with thickness of about 11 μm formed on a plain glass substrate in the back-contact structure showed higher optical transmittance than that formed on an ITO-coated glass substrate, which led to an improved photocurrent density by about 6.3%. However, photovoltage was found to decrease from 817 mV to 773 mV. The photovoltage recovered after deposition of a 35 nm-thick thin TiO₂ film on the surface of the back-contact ITO electrode. Little difference in time constant for electron transport was found for the back-contact ITO electrodes with and without the sputter deposited thin TiO₂ film. Whereas, time constant for charge recombination increased after introduction of the thin TiO₂ film, indicating that such a thin TiO₂ film protected back electron transfer, associated with the recovery of photovoltage. As the result of the improved photocurrent density without deterioration of photovoltage, the back-contact dye-sensitized solar cell exhibited 13.6% higher efficiency than the ITO-coated glass substrate-based dye-sensitized solar cell.
Mogaki, Rina
2015-01-01
Water-soluble bioadhesive polymers bearing multiple guanidinium ion (Gu+) pendants at their side-chain termini (Gluen–BA, n = 10 and 29) that were conjugated with benzamidine (BA) as a trypsin inhibitor were developed. The Gluen–BA molecules are supposed to adhere to oxyanionic regions of the trypsin surface, even in buffer, via a multivalent Gu+/oxyanion salt-bridge interaction, such that their BA group properly blocks the substrate-binding site. In fact, Glue10–BA and Glue29–BA exhibited 35- and 200-fold higher affinities for trypsin, respectively, than a BA derivative without the glue moiety (TEG–BA). Most importantly, Glue10–BA inhibited the protease activity of trypsin 13-fold more than TEG–BA. In sharp contrast, mGlue27–BA, which bears 27 Gu+ units along the main chain and has a 5-fold higher affinity than TEG–BA for trypsin, was inferior even to TEG–BA for trypsin inhibition. PMID:28706668
Baba, Kamal; Bulou, Simon; Quesada-Gonzalez, Miguel; Bonot, Sébastien; Collard, Delphine; Boscher, Nicolas D; Choquet, Patrick
2017-11-29
UV and visible light photocatalytic composite Pt and Au-TiO 2 coatings have been deposited on silicon and glass substrates at low temperature using a hybrid ECWR-PECVD/MS-PVD process. Methylene blue, stearic acid, and sulfamethoxazole were used as dye, organic, and antibiotic model pollutants, respectively, to demonstrate the efficiency of these nanocomposite coatings for water decontamination or self-cleaning surfaces applications. Raman investigations revealed the formation of anatase polymorph of TiO 2 in all synthesized coatings with a shifting of the main vibrational mode peak to higher wavenumber in the case of Au-TiO 2 coating, indicating an increase number of crystalline defects within this coating. Because of the difference of the chemical potentials of each of the investigated noble metals, the sputtered metal layers exhibit different morphology. Pt sputtered atoms, with high surface adhesion, promote formation of a smooth 2D layer. On the other hand, Au sputtered atoms with higher cohesive forces promote the formation of 5-10 nm nanoparticles. As a result, the surface plasmon resonance phenomenon was observed in the Au-TiO 2 coatings. UV photoactivity of the nanocomposite coatings was enhanced 1.5-3 times and 1.3 times for methylene blue and stearic acid, respectively, thanks to the enhancement of electron trapping in the noble metal layer. This electron trapping phenomenon is higher in the Pt-TiO 2 coating because of its larger work function. On the other hand, the enhancement of the visible photoactivity was more pronounced (3 and 7 times for methylene blue and stearic acid, respectively) in the case of Au-TiO 2 thanks to the surface plasmon resonance. Finally, these nanocomposite TiO 2 coatings exhibited also a good ability for the degradation of antibiotics usually found in wastewater such as sulfamethoxazole. However, a complementary test have showed an increase of the toxicity of the liquid medium after photocatalysis, which could be due the presence of sulfamethoxazole's transformation byproducts.
DNA strand breaks and crosslinks induced by transient anions in the range 2-20 eV
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luo, Xinglan; Zheng, Yi, E-mail: Yizheng@fzu.edu.cn; Sanche, Léon
2014-04-21
The energy dependence of the yields of single and double strand breaks (SSB and DSB) and crosslinks induced by electron impact on plasmid DNA films is measured in the 2-20 eV range. The yield functions exhibit two strong maxima, which are interpreted to result from the formation of core-excited resonances (i.e., transient anions) of the bases, and their decay into the autoionization channel, resulting in π → π{sup *} electronic transitions of the bases followed by electron transfer to the C–O σ{sup *} bond in the phosphate group. Occupancy of the σ{sup *} orbital ruptures the C–O bond of themore » backbone via dissociative electron attachment, producing a SSB. From a comparison of our results with those of other works, including theoretical calculations and electron-energy-loss spectra of the bases, the 4.6 eV peak in the SSB yield function is attributed to the resonance decay into the lowest electronically excited states of the bases; in particular, those resulting from the transitions 1{sup 3}A{sup ′} (π{sub 2} → π{sub 3}{sup *}) and 1{sup 3}A{sup ″} (n{sub 2} → π{sub 3}{sup *}) of thymine and 1{sup 3}A{sup ′} (π → π{sup *}) of cytosine. The strongest peak at 9.6 eV in the SSB yield function is also associated with electron captured by excited states of the bases, resulting mostly from a multitude of higher-energy π → π{sup *} transitions. The DSB yield function exhibits strong maxima at 6.1 and 9.6 eV. The peak at 9.6 eV is probably related to the same resonance manifold as that leading to SSB, but the other at 6.1 eV may be more restricted to decay into the electronic state 1{sup 3}A{sup ′} (π → π{sup *}) of cytosine via autoionization. The yield function of crosslinks is dominated by a broad peak extending over the 3.6-11.6 eV range with a sharper one at 17.6 eV. The different line shape of the latter function, compared to that of SSB and DSB, appears to be due to the formation of reactive radical sites in the initial supercoiled configuration of the plasmid, which react with the circular form (i.e., DNA with a SSB) to produce a crosslink.« less
Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing
Van Calcar, Pamela; Mackay, Richard; Sammells, Anthony F.
2002-01-01
The invention relates to mixed phase materials for the preparation of catalytic membranes which exhibit ionic and electronic conduction and which exhibit improved mechanical strength compared to single phase ionic and electronic conducting materials. The mixed phase materials are useful for forming gas impermeable membranes either as dense ceramic membranes or as dense thin films coated onto porous substrates. The membranes and materials of this invention are useful in catalytic membrane reactors in a variety of applications including synthesis gas production. One or more crystalline second phases are present in the mixed phase material at a level sufficient to enhance the mechanical strength of the mixture to provide membranes for practical application in CMRs.
NASA Astrophysics Data System (ADS)
Kohno, Masanori
2018-04-01
A fundamental issue of the Mott transition is how electrons behaving as single particles carrying spin and charge in a metal change into those exhibiting separated spin and charge excitations (low-energy spin excitation and high-energy charge excitation) in a Mott insulator. This issue has attracted considerable attention particularly in relation to high-temperature cuprate superconductors, which exhibit electronic states near the Mott transition that are difficult to explain in conventional pictures. Here, from a new viewpoint of the Mott transition based on analyses of the Hubbard model, we review anomalous features observed in high-temperature cuprate superconductors near the Mott transition.
A high-speed pnCCD detector system for optical applications
NASA Astrophysics Data System (ADS)
Hartmann, R.; Buttler, W.; Gorke, H.; Herrmann, S.; Holl, P.; Meidinger, N.; Soltau, H.; Strüder, L.
2006-11-01
Measurements of a frame-store pnCCD detector system, optimized for high-speed applications in the optical and near infrared (NIR) region, will be presented. The device with an image area of 13.5 mm by 13.5 mm and a pixelsize of 51 μm by 51 μm exhibits a readout time faster than 1100 frames per second with an overall electronic noise contribution of less than three electrons. Variable operation modes of the detector system allow for even higher readout speeds by a pixel binning in transfer direction or, at slightly slower readout speeds, a further improvement in noise performance. We will also present the concept of a data acquisition system being able to handle pixel rates of more than 75 megapixel per second. The application of an anti-reflective coating on the ultra-thin entrance window of the back illuminated detector together with the large sensitive volume ensures a high and uniform detection efficiency from the ultra violet to the NIR.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thompson, J.; Nichols, John A.; Lee, Shinbuhm
Metal electrodes are a universal element of all electronic devices. Conducting SrRuO 3 (SRO) epitaxial thin films have been extensively used as electrodes in complex-oxide heterostructures due to good lattice mismatches with perovskite substrates. However, when compared to SRO single crystals, SRO thin films have shown reduced conductivity and Curie temperatures (T C), which can lead to higher Joule heating and energy loss in the devices. In this paper, we report that high-quality SRO thin films can be synthesized by controlling the plume dynamics and growth rate of pulsed laser epitaxy (PLE) with real-time optical spectroscopic monitoring. The SRO thinmore » films grown under the kinetically controlled conditions, down to ca. 16 nm in thickness, exhibit both enhanced conductivity and T C as compared to bulk values, due to their improved stoichiometry and a strain-mediated increase of the bandwidth of Ru 4d electrons. Finally, this result provides a direction for enhancing the physical properties of PLE-grown thin films and paves a way to improved device applications.« less
NASA Astrophysics Data System (ADS)
Sun, Qing; Li, Hui; Zheng, Shuilin; Sun, Zhiming
2014-08-01
In this paper, the TiO2 nanoparticles were immobilized on diatomite (DIA) via a typical hydrolysis precipitation process using TiCl4 as precursor. The as-prepared composites were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). TiO2 nanoparticles with the average grain size of around 7-14 nm were well deposited on the surface of diatomite. The photocatalytic activity toward the reduction of aqueous Cr (VI) was demonstrated under UV light. The influence of initial pH values, catalyst amount, illumination intensity and initial concentration of Cr (VI) on photocatalytic reduction of Cr (VI) were investigated. Compared with the commercial TiO2 (P25, Degussa), the TiO2/DIA composites had better reactive activity because of their relatively higher adsorption capacity. Furthermore, the prepared photocatalyst exhibited relatively good photocatalytic stability depending on the reusability tests.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Persson, P. O. A.; Ryves, L.; Tucker, M. D.
2008-10-01
Ti/C and TiC/C multilayers with periods ranging from 2 to 18 nm were grown by filtered high current pulsed cathodic arc. The growth was monitored in situ by ellipsometry and cantilever stress measurements. The ellipsometry results reveal that the optical properties of the carbon vary as a function of thickness. Correspondingly, the stress in each carbon layer as measured in situ exhibits two well defined values: initially the stress is low and then takes on a higher value for the remainder of the layer. Transmission electron microscopy shows that the initial growth of carbon on Ti or TiC layer ismore » oriented with graphitic basal planes aligned parallel to the interface. After 2-4 nm of growth, the graphitic structure transforms to amorphous carbon. Electron energy loss spectroscopy shows that the carbon layer simultaneously undergoes a transition from sp{sup 2} rich to sp{sup 3} rich material.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jia, Bo Wen; Tan, Kian Hua; Loke, Wan Khai
The relationship between growth temperature and the formation of periodic interfacial misfit (IMF) dislocations via the anion exchange process in InSb/GaAs heteroepitaxy was systematically investigated. The microstructural and electrical properties of the epitaxial layer were characterized using atomic force microscope, high-resolution x-ray diffraction, transmission electron microscopy, and Hall resistance measurement. The formation of interfacial misfit (IMF) dislocation arrays depended on growth temperature. A uniformly distributed IMF array was found in a sample grown at 310 °C, which also exhibited the lowest threading dislocation density. The analysis suggested that an incomplete As-for-Sb anion exchange process impeded the formation of IMF on samplemore » grown above 310 °C. At growth temperature below 310 °C, island coalescence led to the formation of 60° dislocations and the disruption of periodic IMF array. All samples showed higher electron mobility at 300 K than at 77 K.« less
NASA Astrophysics Data System (ADS)
Liu, Ying; Yan, De; Zhuo, Renfu; Li, Shuankui; Wu, Zhiguo; Wang, Jun; Ren, Pingyuan; Yan, Pengxun; Geng, Zhongrong
2013-11-01
MnO2-graphene hybrid with a unique structure of porous birnessite-type manganese dioxide (MnO2) nanosheets on graphene has been designed and synthesized by a simple hydrothermal method. The formation mechanism of the hybrid is discussed based on a series of time-dependent experiments. Electrochemical measurements reveal that the MnO2-graphene electrode exhibits much higher specific capacitance (315 F g-1 at a current density of 0.2 A g-1) and better rate capability (even 193 F g-1 at 6 A g-1) compared with both the graphene and MnO2 electrodes. Moreover, the capacitance of MnO2-graphene electrode is still 87% retained after 2000 cycles at a charging rate of 3 A g-1. The superior capacitive performance of the hybrid is attributed to its unique structure, which provides good electronic conductivity, fast electron and ion transport, and high utilization of MnO2.
Resonantly enhanced method for generation of tunable, coherent vacuum ultraviolet radiation
Glownia, James H.; Sander, Robert K.
1985-01-01
Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but to higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.
Synthesis and visible light photocatalytic properties of iron oxide–silver orthophosphate composites
DOE Office of Scientific and Technical Information (OSTI.GOV)
Febiyanto,; Eliani, Irma Vania; Riapanitra, Anung
2016-04-19
The iron oxide-silver orthophosphate composites were successfully synthesized by co-precipitation method using Fe(NO{sub 3}){sub 3}.9H{sub 2}O, AgNO{sub 3}, and Na{sub 2}HPO{sub 4}.12 H{sub 2}O, followed by calcination at 500°C for 5 hours. The Fe/Ag mole ratios of iron oxide-silver orthophosphate composites were designed at 0, 0.1, 0.2, 0.3 and 0.4. The samples were characterized using X-ray Diffraction, Diffuse Reflectance Spectroscopy, Scanning Electron Microscopy and Specific Surface Area. The photocatalytic activities were evaluated using Rhodamine B degradation under visible light irradiation. The iron oxide-silver orthophosphate composite with the Fe/Ag mole ratio of 0.2 exhibited higher photocatalytic activity compared to the puremore » Ag{sub 3}PO{sub 4} under visible light irradiation. The enhanced photocatalytic activity could be attributed to the effective separation of hole (+) and electron pairs in the iron oxide-silver orthophosphate composite.« less
NASA Astrophysics Data System (ADS)
Xu, Yun-qiang; Zhou, Guo-wei; Wu, Cui-cui; Li, Tian-duo; Song, Hong-bin
2011-05-01
Ordered mesoporous SBA-15 was prepared by hydrothermal process and was functionalized with(3-aminopropyl) triethoxysilane (APTES) by post-synthesis-grafting method. The materials were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive spectrometer (EDS), small-angle X-ray powder diffraction (SAXRD), N 2 adsorption-desorption and Fourier transform infrared spectroscopy (FT-IR). The results indicated that SBA-15 had a 2-dimensional hexagonal p6 mm mesoscopic structure and the mesoscopic structure was remained after the functionalization procedure. The activities of porcine pancreatic lipase (PPL) immobilized in SBA-15 by physical adsorption and in APTES functionalized SBA-15 by chemical adsorption were studied by hydrolysis of triacetin. Chemically adsorbed PPL showed higher loading amount and catalytic activity comparing with physically adsorbed PPL. The stability of immobilized PPL against thermal and pH of reaction medium was significantly improved. Recycling experiments showed that chemically adsorbed PPL exhibited better reusability than physically adsorbed PPL.
Resonantly enhanced method for generation of tunable, coherent vacuum-ultraviolet radiation
Glownia, J.H.; Sander, R.K.
1982-06-29
Carbon Monoxide vapor is used to generate coherent, tunable vacuum ultraviolet radiation by third-harmonic generation using a single tunable dye laser. The presence of a nearby electronic level resonantly enhances the nonlinear susceptibility of this molecule allowing efficient generation of the vuv light at modest pump laser intensities, thereby reducing the importance of a six-photon multiple-photon ionization process which is also resonantly enhanced by the same electronic level but no higher order. By choosing the pump radiation wavelength to be of shorter wavelength than individual vibronic levels used to extend tunability stepwise from 154.4 to 124.6 nm, and the intensity to be low enough, multiple-photon ionization can be eliminated. Excitation spectra of the third-harmonic emission output exhibit shifts to shorter wavelength and broadening with increasing CO pressure due to phase matching effects. Increasing the carbon monoxide pressure, therefore, allows the substantial filling in of gaps arising from the stepwise tuning thereby providing almost continuous tunability over the quoted range of wavelength emitted.
NASA Astrophysics Data System (ADS)
Zhang, Jingyi; Feng, Anni; Bai, Jie; Tan, Zhibing; Shao, Wenyao; Yang, Yang; Hong, Wenjing; Xiao, Zongyuan
2017-09-01
The synergetic effect of alloy and morphology of nanocatalysts play critical roles towards ethanol electrooxidation. In this work, we developed a novel electrocatalyst fabricated by one-pot synthesis of hierarchical flower-like palladium (Pd)-copper (Cu) alloy nanocatalysts supported on reduced graphene oxide (Pd-Cu(F)/RGO) for direct ethanol fuel cells. The structures of the catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrometer (XPS). The as-synthesized Pd-Cu(F)/RGO nanocatalyst was found to exhibit higher electrocatalytic performances towards ethanol electrooxidation reaction in alkaline medium in contrast with RGO-supported Pd nanocatalyst and commercial Pd black catalyst in alkaline electrolyte, which could be attributed to the formation of alloy and the morphology of nanoparticles. The high performance of nanocatalyst reveals the great potential of the structure design of the supporting materials for the future fabrication of nanocatalysts.
Zhang, Jingyi; Feng, Anni; Bai, Jie; Tan, Zhibing; Shao, Wenyao; Yang, Yang; Hong, Wenjing; Xiao, Zongyuan
2017-09-02
The synergetic effect of alloy and morphology of nanocatalysts play critical roles towards ethanol electrooxidation. In this work, we developed a novel electrocatalyst fabricated by one-pot synthesis of hierarchical flower-like palladium (Pd)-copper (Cu) alloy nanocatalysts supported on reduced graphene oxide (Pd-Cu (F) /RGO) for direct ethanol fuel cells. The structures of the catalysts were characterized by using scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrometer (XPS). The as-synthesized Pd-Cu (F) /RGO nanocatalyst was found to exhibit higher electrocatalytic performances towards ethanol electrooxidation reaction in alkaline medium in contrast with RGO-supported Pd nanocatalyst and commercial Pd black catalyst in alkaline electrolyte, which could be attributed to the formation of alloy and the morphology of nanoparticles. The high performance of nanocatalyst reveals the great potential of the structure design of the supporting materials for the future fabrication of nanocatalysts.
Confined Doping for Control of Transport Properties in Nanowires and Nanofilms
NASA Astrophysics Data System (ADS)
Zhong, Jianxin; Stocks, G. Malcolm
2006-03-01
Doping, an essential element for manipulation of electronic transport in traditional semiconductor industry, is widely expected to play important role as well in control of transport properties in nanostructures. However, traditional theory of electronic disorder predicts that doping in one-dimensional and two-dimensional systems leads to carrier localization, limiting practical applications due to poor carrier mobility. Here, a novel concept is proposed that offers the possibility to significantly increase carrier mobility by confining the distribution of dopants within a particular region [1]. Thus, the doped nanostructure becomes a coupled system comprising a doped subsystem and a perfect crystalline subsystem. We showed that carrier mobility in such a dopped nanowire or a nanofilm exhibits counterintuitive behavior in the regime of heavy doping. In particular, the larger the dopant concentration the higher the carrier mobility; we trace this transition to the existence of quasi-mobility-edges in the nanowires and mobility edges in nanofilms. *J.X. Zhong and G.M. Stocks, Nano Lett., in press, (2005)
NASA Astrophysics Data System (ADS)
Dhanalakshmi, J.; Pathinettam Padiyan, D.
2017-09-01
TiO2 nanoparticles were prepared by a sol-gel method using titanium tetra isopropoxide as a precursor. The structural, optical, morphological and electrical properties were studied by x-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), a high resolution scanning electron microscope (HR-SEM), a transmission electron microscope (TEM), Raman analysis, Photoluminescence (PL) and impedance spectroscopy. The XRD and Raman spectra revealed that the synthesized samples are in pure anatase phase with an average crystallite size of 18 nm. Photocatalytic activity of the TiO2 nanoparticles was investigated for the degradation of 10 ppm methyl orange (MO) and bromophenol blue (BPB) dye using 10 mg of catalyst. Anatase TiO2 exhibited the removal of 67.12% and 85.51% of MO and BPB, respectively, within 240 min. The photocatalytic degradation process is explained using pseudo second order kinetics and fits well with the higher correlation coefficient.
A comparative DFT study on the antioxidant activity of apigenin and scutellarein flavonoid compounds
NASA Astrophysics Data System (ADS)
Sadasivam, K.; Kumaresan, R.
2011-03-01
The potent antioxidant activity of flavonoids relevant to their ability to scavenge reactive oxygen species is the most important function of flavonoids. Density functional theory calculations were explored to investigate the antioxidant activity of flavonoid compounds such as apigenin and scutellarein. The biological characteristics are dependent on electronic parameters, describing the charge distribution on the rings of the flavonoid molecules. The computation of structural and various molecular descriptors such as polarizability, dipole moment, energy gap, homolytic O-H bond dissociation enthalpies (BDEs), ionization potential (IP), electron affinity, hardness, softness, electronegativity, electrophilic index and density plot of molecular orbital for neutral as well as radical species were carried out and studied. The B3LYP/6-311G(d,p) basis set was adopted for all the computations. This computation reveals that scutellarein exhibits higher degree of antioxidant activity than apigenin. Their dipole moment and polarizability analysis show that both the compounds are polar in nature and have the capacity to polarize other atoms.
Synthesis, optical properties and efficient photocatalytic activity of CdO/ZnO hybrid nanocomposite
NASA Astrophysics Data System (ADS)
Reddy, Ch Venkata; Babu, B.; Shim, Jaesool
2018-01-01
Pure CdO, ZnO and CdO/ZnO hybrid nanocomposite photocatalyst were synthesized using simple co-precipitation technique and studied in detail. The synthesized photocatalysts were characterized using several measurements such as X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), surface analysis (BET), diffuse reflectance UV-vis spectroscopy, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, FT-IR, TG-DTA and photoluminescence (PL). The XRD results revealed that the hexagonal and cubic crystal structure of CdO and ZnO nanoparticles. The optical response for the composite showed the presence of separate absorption signature for CdO and ZnO in the visible region at about 510 nm and 360 nm respectively. The CdO/ZnO hybrid nanocomposite photocatalyst exhibited enhanced photocatalytic degradation activity compared to pristine CdO and ZnO. The enhanced photocatalytic activity may be due to the higher specific surface area and significantly reduced the electron-hole recombination rate.
Inkjet-Printed Graphene/PEDOT:PSS Temperature Sensors on a Skin-Conformable Polyurethane Substrate.
Vuorinen, Tiina; Niittynen, Juha; Kankkunen, Timo; Kraft, Thomas M; Mäntysalo, Matti
2016-10-18
Epidermal electronic systems (EESs) are skin-like electronic systems, which can be used to measure several physiological parameters from the skin. This paper presents materials and a simple, straightforward fabrication process for skin-conformable inkjet-printed temperature sensors. Epidermal temperature sensors are already presented in some studies, but they are mainly fabricated using traditional photolithography processes. These traditional fabrication routes have several processing steps and they create a substantial amount of material waste. Hence utilizing printing processes, the EES may become attractive for disposable systems by decreasing the manufacturing costs and reducing the wasted materials. In this study, the sensors are fabricated with inkjet-printed graphene/PEDOT:PSS ink and the printing is done on top of a skin-conformable polyurethane plaster (adhesive bandage). Sensor characterization was conducted both in inert and ambient atmosphere and the graphene/PEDOT:PSS temperature sensors (thermistors) were able reach higher than 0.06% per degree Celsius sensitivity in an optimal environment exhibiting negative temperature dependence.
Blaik, Rita A; Lan, Esther; Huang, Yu; Dunn, Bruce
2016-01-26
Glucose oxidase-based biofuel cells are a promising source of alternative energy for small device applications, but still face the challenge of achieving robust electrical contact between the redox enzymes and the current collector. This paper reports on the design of an electrode consisting of glucose oxidase covalently attached to gold nanoparticles that are assembled onto a genetically engineered M13 bacteriophage using EDC-NHS chemistry. The engineered phage is modified at the pIII protein to attach onto a gold substrate and serves as a high-surface-area template. The resulting "nanomesh" architecture exhibits direct electron transfer (DET) and achieves a higher peak current per unit area of 1.2 mA/cm(2) compared to most other DET attachment schemes. The final enzyme surface coverage on the electrode was calculated to be approximately 4.74 × 10(-8) mol/cm(2), which is a significant improvement over most current glucose oxidase (GOx) DET attachment methods.
Zhang, Liqiu; Liu, Lichun; Wang, Hongdan; Shen, Hongxia; Cheng, Qiong; Yan, Chao; Park, Sungho
2017-01-01
This work reports on the electrodeposition of rhodium (Rh) nanowires with a controlled surface morphology synthesized using an anodic aluminum oxide (AAO) template. Vertically aligned Rh nanowires with a smooth and coarse morphology were successfully deposited by adjusting the electrode potential and the concentration of precursor ions and by involving a complexing reagent in the electrolyte solution. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses were used to follow the morphological evolution of Rh nanowires. As a heterogeneous electrocatalyst for hydrogen evolution reactions (HER), the coarse Rh nanowire array exhibited an enhanced catalytic performance respect to smooth ones due to the larger surface area to mass ratio and the higher density of catalytically active defects, as evidenced by voltammetric measurements and TEM. Results suggest that the morphology of metallic nanomaterials could be readily engineered by electrodeposition. The controlled electrodeposition offers great potential for the development of an effective synthesis tool for heterogeneous catalysts with a superior performance for wide applications. PMID:28467375
Fabrication of flexible MoS2 thin-film transistor arrays for practical gas-sensing applications.
He, Qiyuan; Zeng, Zhiyuan; Yin, Zongyou; Li, Hai; Wu, Shixin; Huang, Xiao; Zhang, Hua
2012-10-08
By combining two kinds of solution-processable two-dimensional materials, a flexible transistor array is fabricated in which MoS(2) thin film is used as the active channel and reduced graphene oxide (rGO) film is used as the drain and source electrodes. The simple device configuration and the 1.5 mm-long MoS(2) channel ensure highly reproducible device fabrication and operation. This flexible transistor array can be used as a highly sensitive gas sensor with excellent reproducibility. Compared to using rGO thin film as the active channel, this new gas sensor exhibits much higher sensitivity. Moreover, functionalization of the MoS(2) thin film with Pt nanoparticles further increases the sensitivity by up to ∼3 times. The successful incorporation of a MoS(2) thin-film into the electronic sensor promises its potential application in various electronic devices. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ultraviolet detection using TiO2 nanowire array with Ag Schottky contact
NASA Astrophysics Data System (ADS)
Chinnamuthu, P.; Dhar, J. C.; Mondal, A.; Bhattacharyya, A.; Singh, N. K.
2012-04-01
The glancing angle deposition technique has been employed to synthesize TiO2 nanowire (NW) arrays which have been characterized by x-ray diffraction, field emission-scanning electron microscopy and high resolution transmission electron microscopy. Optical absorption measurements show the absorption edge at 3.42 eV and 3.48 eV for TiO2 thin film (TF) and NW, respectively. The blue shift in absorption band is attributed to quantum confinement in NW structures. Photoluminescence measurement revealed oxygen-defect-related emission at 425 nm (˜2.9 eV). Ag/TiO2 (NW) and Ag/TiO2 (TF) contacts exhibit Schottky behaviour, and a higher turn-on voltage (˜6.5 V) was observed for NW devices than that of TF devices (˜5.25 V) under dark condition. In addition, TiO2-NW-based devices show twofold improvement in photodetection efficiency in the UV region, compared with TiO2-TF-based devices.
Nanocarbon-Based Materials for Flexible All-Solid-State Supercapacitors.
Lv, Tian; Liu, Mingxian; Zhu, Dazhang; Gan, Lihua; Chen, Tao
2018-04-01
Because of the rapid development of flexible electronics, it is important to develop high-performance flexible energy-storage devices, such as supercapacitors and metal-ion batteries. Compared with metal-ion batteries, supercapacitors exhibit higher power density, longer cycling life, and excellent safety, and they can be easily fabricated into all-solid-state devices by using polymer gel electrolytes. All-solid-state supercapacitors (ASSSCs) have the advantages of being lightweight and flexible, thus showing great potential to be used as power sources for flexible portable electronics. Because of their high specific surface area and excellent electrical and mechanical properties, nanocarbon materials (such as carbon nanotubes, graphene, carbon nanofibers, and so on) have been widely used as efficient electrode materials for flexible ASSSCs, and great achievements have been obtained. Here, the recent advances in flexible ASSSCs are summarized, from design strategies to fabrication techniques for nanocarbon electrodes and devices. Current challenges and future perspectives are also discussed. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Super-diffusion of excited carriers in semiconductors
Najafi, Ebrahim; Ivanov, Vsevolod; Zewail, Ahmed; Bernardi, Marco
2017-01-01
The ultrafast spatial and temporal dynamics of excited carriers are important to understanding the response of materials to laser pulses. Here we use scanning ultrafast electron microscopy to image the dynamics of electrons and holes in silicon after excitation with a short laser pulse. We find that the carriers exhibit a diffusive dynamics at times shorter than 200 ps, with a transient diffusivity up to 1,000 times higher than the room temperature value, D0≈30 cm2s−1. The diffusivity then decreases rapidly, reaching a value of D0 roughly 500 ps after the excitation pulse. We attribute the transient super-diffusive behaviour to the rapid expansion of the excited carrier gas, which equilibrates with the environment in 100−150 ps. Numerical solution of the diffusion equation, as well as ab initio calculations, support our interpretation. Our findings provide new insight into the ultrafast spatial dynamics of excited carriers in materials. PMID:28492283
NASA Astrophysics Data System (ADS)
Wippermann, Stefan; Voros, Marton; Somogyi, Balint; Gali, Adam; Rocca, Dario; Gygi, Francois; Zimanyi, Gergely; Galli, Giulia
2014-03-01
The efficiency of nanoparticle (NP) solar cells may substantially exceed the Shockley-Queisser limit by exploiting multi-exciton generation. However, (i) quantum confinement tends to increase the electronic gap and thus the MEG threshold beyond the solar spectrum and (ii) charge extraction through NP networks may be hindered by facile recombination. Using ab initio calculations we found that (i) Ge NPs with exotic core structures such as BC8 exhibit significantly lower gaps and MEG thresholds than particles with diamond cores, and an order of magnitude higher MEG rates. (ii) We also investigated Si NPs embedded in a ZnS host matrix and observed complementary charge transport networks, where electron transport occurs by hopping between NPs and hole transport through the ZnS-matrix. Such complementary pathways may substantially reduce recombination, as was indeed observed in recent experiments. We employed several levels of theory, including DFT with hybrid functionals and GW calculations.
Preferential orientation of NV defects in CVD diamond films grown on (113)-oriented substrates
NASA Astrophysics Data System (ADS)
Lesik, M.; Plays, T.; Tallaire, A.; Achard, J.; Brinza, O.; William, L.; Chipaux, M.; Toraille, L.; Debuisschert, T.; Gicquel, A.; Roch, J. F.; Jacques, V.
2015-06-01
Thick CVD diamond layers were successfully grown on (113)-oriented substrates. They exhibited smooth surface morphologies and a crystalline quality comparable to (100) electronic grade material, and much better than (111)-grown layers. High growth rates (15-50 {\\mu}m/h) were obtained while nitrogen doping could be achieved in a fairly wide range without seriously imparting crystalline quality. Electron spin resonance measurements were carried out to determine NV centers orientation and concluded that one specific orientation has an occurrence probability of 73 % when (100)-grown layers show an equal distribution in the 4 possible directions. A spin coherence time of around 270 {\\mu}s was measured which is equivalent to that reported for material with similar isotopic purity. Although a higher degree of preferential orientation was achieved with (111)-grown layers (almost 100 %), the ease of growth and post-processing of the (113) orientation make it a potentially useful material for magnetometry or other quantum mechanical applications.
NASA Astrophysics Data System (ADS)
Buruga, Kezia; Kalathi, Jagannathan T.
2018-04-01
Halloysite nanotubes (HNTs) were modified with γ-methacryloxypropyltrimethoxysilane (γ-MPS) to improve their interaction with the polymer, and the modified HNTs (MHNTs) were subsequently used for the synthesis of MHNT-polymethylmethacrylate (PMMA) nanocomposites by miniemulsion polymerization assisted by ultrasound. Reduced agglomeration of HNTs due to modification with γ-MPS was evident from scanning electron microscopy analysis. Modification of HNTs and exfoliation of MHNTs in the polymer nanocomposite were confirmed by the presence of their respective characteristic peaks in Fourier-transform infrared spectra and x-ray diffraction patterns. Transmission electron microscopic analysis showed that the surface of the MHNTs differed significantly from that of unmodified HNTs. MHNT-PMMA nanocomposite exhibited significantly higher glass-transition temperature (T g) compared with neat PMMA or unmodified HNT-PMMA nanocomposite. Hence, such modification of HNTs along with miniemulsion polymerization assisted by ultrasound is a promising approach to achieve better dispersion of HNTs in the polymer and to obtain nanocomposites with enhanced properties.
NASA Astrophysics Data System (ADS)
Wang, Wei; Ding, Zui; Zhao, Xiruo; Wu, Sizhu; Li, Feng; Yue, Ming; Liu, J. Ping
2015-05-01
Three kinds of spinel ferrite nanocrystals, MFe2O4 (M = Co, Ni, and Mn), are synthesized using colloid mill and hydrothermal method. During the synthesis process, a rapid mixing and reduction of cations with sodium borohydride (NaBH4) take place in a colloid mill then through a hydrothermal reaction, a slow oxidation and structural transformation of the spinel ferrite nanocrystals occur. The phase purity and crystal lattice parameters are estimated by X-ray diffraction studies. Scanning electron microscopy and transmission electron microscopy images show the morphology and particle size of the as-synthesized ferrite nanocrystals. Raman spectrum reveals active phonon modes at room temperature, and a shifting of the modes implies cation redistribution in the tetrahedral and octahedral sites. Magnetic measurements show that all the obtained samples exhibit higher saturation magnetization (Ms). Meanwhile, experiments demonstrate that the hydrothermal reaction time has significant effects on microstructure, morphologies, and magnetic properties of the as-synthesized ferrite nanocrystals.
Charge density wave transition in single-layer titanium diselenide
Chen, P.; Chan, Y. -H.; Fang, X. -Y.; ...
2015-11-16
A single molecular layer of titanium diselenide (TiSe 2) is a promising material for advanced electronics beyond graphene--a strong focus of current research. Such molecular layers are at the quantum limit of device miniaturization and can show enhanced electronic effects not realizable in thick films. We show that single-layer TiSe 2 exhibits a charge density wave (CDW) transition at critical temperature T C=232±5 K, which is higher than the bulk T C=200±5 K. Angle-resolved photoemission spectroscopy measurements reveal a small absolute bandgap at room temperature, which grows wider with decreasing temperature T below T C in conjunction with the emergencemore » of (2 × 2) ordering. The results are rationalized in terms of first-principles calculations, symmetry breaking and phonon entropy effects. The behavior of the Bardeen-Cooper-Schrieffer (BCS) gap implies a mean-field CDW order in the single layer and an anisotropic CDW order in the bulk.« less
NASA Astrophysics Data System (ADS)
Scott, Riccardo; Heckmann, Jan; Prudnikau, Anatol V.; Antanovich, Artsiom; Mikhailov, Aleksandr; Owschimikow, Nina; Artemyev, Mikhail; Climente, Juan I.; Woggon, Ulrike; Grosse, Nicolai B.; Achtstein, Alexander W.
2017-12-01
Intrinsically directional light emitters are potentially important for applications in photonics including lasing and energy-efficient display technology. Here, we propose a new route to overcome intrinsic efficiency limitations in light-emitting devices by studying a CdSe nanoplatelets monolayer that exhibits strongly anisotropic, directed photoluminescence. Analysis of the two-dimensional k-space distribution reveals the underlying internal transition dipole distribution. The observed directed emission is related to the anisotropy of the electronic Bloch states governing the exciton transition dipole moment and forming a bright plane. The strongly directed emission perpendicular to the platelet is further enhanced by the optical local density of states and local fields. In contrast to the emission directionality, the off-resonant absorption into the energetically higher 2D-continuum of states is isotropic. These contrasting optical properties make the oriented CdSe nanoplatelets, or superstructures of parallel-oriented platelets, an interesting and potentially useful class of semiconductor-based emitters.
Proton irradiation effects on gallium nitride-based devices
NASA Astrophysics Data System (ADS)
Karmarkar, Aditya P.
Proton radiation effects on state-of-the-art gallium nitride-based devices were studied using Schottky diodes and high electron-mobility transistors. The device degradation was studied over a wide range of proton fluences. This study allowed for a correlation between proton irradiation effects between different types of devices and enhanced the understanding of the mechanisms responsible for radiation damage in GaN-based devices. Proton irradiation causes reduced carrier concentration and increased series resistance and ideality factor in Schottky diodes. 1.0-MeV protons cause greater degradation than 1.8-MeV protons because of their higher non-ionizing energy loss. The displacement damage in Schottky diodes recovers during annealing. High electron-mobility transistors exhibit extremely high radiation tolerance, continuing to perform up to a fluence of ˜1014 cm-2 of 1.8-MeV protons. Proton irradiation creates defect complexes in the thin-film structure. Decreased sheet carrier mobility due to increased carrier scattering and decreased sheet carrier density due to carrier removal by the defect centers are the primary damage mechanisms. Interface disorder at either the Schottky or the Ohmic contact plays a relatively unimportant part in overall device degradation in both Schottky diodes and high electron-mobility transistors.
Molybdenum Oxide Nitrides of the Mo2(O,N,□)5 Type: On the Way to Mo2O5.
Weber, Dominik; Huber, Manop; Gorelik, Tatiana E; Abakumov, Artem M; Becker, Nils; Niehaus, Oliver; Schwickert, Christian; Culver, Sean P; Boysen, Hans; Senyshyn, Anatoliy; Pöttgen, Rainer; Dronskowski, Richard; Ressler, Thorsten; Kolb, Ute; Lerch, Martin
2017-08-07
Blue-colored molybdenum oxide nitrides of the Mo 2 (O,N,□) 5 type were synthesized by direct nitridation of commercially available molybdenum trioxide with a mixture of gaseous ammonia and oxygen. Chemical composition, crystal structure, and stability of the obtained and hitherto unknown compounds are studied extensively. The average oxidation state of +5 for molybdenum is proven by Mo K near-edge X-ray absorption spectroscopy; the magnetic behavior is in agreement with compounds exhibiting Mo V O 6 units. The new materials are stable up to ∼773 K in an inert gas atmosphere. At higher temperatures, decomposition is observed. X-ray and neutron powder diffraction, electron diffraction, and high-resolution transmission electron microscopy reveal the structure to be related to VNb 9 O 24.9 -type phases, however, with severe disorder hampering full structure determination. Still, the results demonstrate the possibility of a future synthesis of the potential binary oxide Mo 2 O 5 . On the basis of these findings, a tentative suggestion on the crystal structure of the potential compound Mo 2 O 5 , backed by electronic-structure and phonon calculations from first principles, is given.
NASA Astrophysics Data System (ADS)
Zou, Long; Lu, Zhisong; Huang, Yunhong; Long, Zhong-er; Qiao, Yan
2017-08-01
An efficient microbial electrocatalysis in microbial fuel cells (MFCs) needs both high loading of microbes (biocatalysts) and robust interfacial electron transfer from microbes to electrode. Herein a nanoporous molybdenum carbide (Mo2C) functionalized carbon felt electrode with rich 3D hierarchical porous architecture is applied as MFC anode to achieve superior electrocatalytic performance. The nanoporous Mo2C functionalized anode exhibits strikingly improved microbial electrocatalysis in MFCs with 5-fold higher power density and long-term stability of electricity production. The great enhancement is attributed to the introduction of rough Mo2C nanostructural interface into macroporous carbon architecture for promoting microbial growth with great excretion of endogenous electron shuttles (flavins) and rich available nanopores for enlarging electrochemically active surface area. Importantly, the nanoporous Mo2C functionalized anode is revealed for the first time to have unique electrocatalytic activity towards redox reaction of flavins with more negative redox potential, indicating a more favourable thermodynamic driving force for anodic electron transfer. This work not only provides a promising electrode for high performance MFCs but also brings up a new insight into the effect of nanostructured materials on interfacial bioelectrocatalysis.
Progress in low light-level InAs detectors- towards Geiger-mode detection
NASA Astrophysics Data System (ADS)
Tan, Chee Hing; Ng, Jo Shien; Zhou, Xinxin; David, John; Zhang, Shiyong; Krysa, Andrey
2017-05-01
InAs avalanche photodiodes (APDs) can be designed such that only electrons are allowed to initiate impact ionization, leading to the lowest possible excess noise factor. Optimization of wet chemical etching and surface passivation produced mesa APDs with bulk dominated dark current and responsivity that are comparable and higher, respectively, than a commercial InAs detector. Our InAs electron-APDs also show high stability with fluctuation of 0.1% when operated at a gain of 11.2 over 60 s. These InAs APDs can detect very weak signal down to 35 photons per pulse. Fabrication of planar InAs by Be implantation produced planar APDs with bulk dominated dark current. Annealing at 550 °C was necessary to remove implantation damage and to activate Be dopants. Due to minimal diffusion of Be, thick depletion of 8 μm was achieved. Since the avalanche gain increases exponentially with the thickness of avalanche region, our planar APD achieved high gain > 300 at 200 K. Our work suggest that both mesa and planar InAs APDs can exhibit high gain. When combined with a suitable preamplifier, single photon detection using InAs electron-APDs could be achieved.
NASA Astrophysics Data System (ADS)
Suresh, C.; Nagabhushana, H.; Basavaraj, R. B.; Prasad, B. Daruka
2017-05-01
For the first time Tb3+ (1-5 mol %) doped LaOF nanophosphors using Aloe vera (AV) leaves extract as bio-surfactant were synthesized by facile ultrasound supported sonochemical route at relatively high temperature (700°C) and short duration of 3h. The powder X-ray diffraction (PXRD) profiles of LaOF nanophosphors showed tetragonal structure. The morphological features of LaOF with effect of Sonication time and concentration of bio-surfactant were studied by scanning electron microscope (SEM). The particle size were estimated from transmission electron microscope (TEM) image was found to be in the range of 20-30 nm. The characteristic photoluminescence emission peaks at 487, 541, 586 and 620 nm in green region corresponding to 5D4→7Fj (j=6, 5, 4, 3) transitions of Tb3+ were observed. The LaOF: Tb3+ nanophosphors exhibit green luminescence with better chromaticity coordinates, colour purity and higher intensity under low-voltage electron beam excitation were observed by Commission International De I'Eclairage (CIE) along with colour correlated temperature (CCT). All results indicate that these obtained nanophosphors have potential applications in field emission display device.
Yang, Gui; Yang, Jueming; Yan, Yuli; Wang, Yuanxu
2014-03-28
The electronic structure and the thermoelectric properties of M2Zn5As4 (M = K, Rb) are studied by the first principles and the semiclassical BoltzTraP theory. It is determined that they are semiconductors with an indirect band gap of about 1 eV, which is much larger than that of Ca5Al2Sb6 (0.50 eV). The calculated electronic localization function indicates that they are typical Zintl bonding compounds. The combination of heavy and light bands near the valence band maximum may improve their thermoelectric performance. Rb2Zn5As4 exhibits relatively large Seebeck coefficients, high electrical conductivities, and the large "maximum" thermoelectric figures of merit (ZeT). Compared with Ca5Al2Sb6, the highest ZeT of Rb2Zn5As4 appears at relatively low carrier concentration. For Rb2Zn4As5, the p-type doping may achieve a higher thermoelectric performance than n-type doping. The thermoelectric properties of Rb2Zn5As4 are possibly superior to those of Ca5Al2Sb6.
Hu, Xiangang; Mu, Li; Lu, Kaicheng; Kang, Jia; Zhou, Qixing
2014-06-25
The demethylation of methylmercury has received substantial attention. Here, a novel chemical method for the demethylation of methylmercury is proposed. The low-toxicity graphene-fulvic acid (FA, a ubiquitous material in the environment) was synthesized without the use of a chemical reagent. The hybridized graphene-FA presented an indirect open band gap of 2.25-2.87 eV as well as adequate aqueous dispersion. More importantly, the hybridized graphene-FA exhibited 6- and 10-fold higher photocatalytic efficiencies for the demethylation of methylmercury than FA and free FA with graphene, respectively. This result implies that immobilized, rather than free, FA accelerated the catalysis. Furthermore, inorganic mercuric ion, elemental mercury, and mercuric oxide were identified as the primary demethylation products. For free FA with graphene, graphene quenches the excited-state FA, inhibiting the demethylation by electron transfer. In contrast, the graphene of the self-assembled graphene-FA serves as an electron reservoir, causing electron-hole pair separation. Graphene-FA showed a negligible toxicity toward microalgae compared to graphene. The above results reveal that the green synthesis of graphene and organic molecules is a convenient strategy for obtaining effective cocatalysts.
Low-energy electron diffraction study of Si(111)-(√3x √3)R30∘ -B
NASA Astrophysics Data System (ADS)
Marino, K. E.; Huang, Y. T.; Diehl, R. D.; Tu, Weison; Mulugeta, Daniel; Snijders, P. C.; Weitering, H. H.
2014-03-01
Metal-semiconductor interfaces are important for the function and manufacture of advanced electronics, such as those used in computers, tablets and phones. They also exhibit many interesting physical phenomena that are interesting from a fundamental point of view, including exotic phases and phase transitions. This study involves the analysis and modeling of the surface structure of a thin film of boron on the Si(111) surface. The addition of metal atoms to the surface of Si(111) simplifies its structure by removing a ``rippling'' that is present on the clean surface. The low-energy electron diffraction (LEED) data were measured at a surface temperature of 80 K at ORNL. The LEED analysis utilized the SATLEED analysis programs. The results are similar to those obtained in an earlier LEED study for this interface, but the precision is higher due to the larger dataset employed., The results of this study will be compared to other studies of this and similar systems. We acknowledge the Eberly College of Science for funding this project. González, Guo, Ortega, Flores, Weitering. Phys. Rev. Lett. 102, 115501 (2009)
NASA Astrophysics Data System (ADS)
Sang, Xiahan; Lupini, Andrew R.; Ding, Jilai; Kalinin, Sergei V.; Jesse, Stephen; Unocic, Raymond R.
2017-03-01
Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. “Archimedean” spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.
Sang, Xiahan; Lupini, Andrew R; Ding, Jilai; Kalinin, Sergei V; Jesse, Stephen; Unocic, Raymond R
2017-03-08
Atomic-resolution imaging in an aberration-corrected scanning transmission electron microscope (STEM) can enable direct correlation between atomic structure and materials functionality. The fast and precise control of the STEM probe is, however, challenging because the true beam location deviates from the assigned location depending on the properties of the deflectors. To reduce these deviations, i.e. image distortions, we use spiral scanning paths, allowing precise control of a sub-Å sized electron probe within an aberration-corrected STEM. Although spiral scanning avoids the sudden changes in the beam location (fly-back distortion) present in conventional raster scans, it is not distortion-free. "Archimedean" spirals, with a constant angular frequency within each scan, are used to determine the characteristic response at different frequencies. We then show that such characteristic functions can be used to correct image distortions present in more complicated constant linear velocity spirals, where the frequency varies within each scan. Through the combined application of constant linear velocity scanning and beam path corrections, spiral scan images are shown to exhibit less scan distortion than conventional raster scan images. The methodology presented here will be useful for in situ STEM imaging at higher temporal resolution and for imaging beam sensitive materials.
Magnetic-breakdown oscillations of the thermoelectric field in layered conductors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peschanskii, V. G., E-mail: vpeschansky@ilt.kharkov.ua; Galbova, O.; Hasan, R.
2016-12-15
The response of an electron system to nonuniform heating of layered conductors with an arbitrary quasi-two-dimensional electron energy spectrum in a strong magnetic field B is investigated theoretically in the case when cyclotron frequency ω{sub c} is much higher than the frequency 1/τ of collisions between charge carriers. In the case of a multisheet Fermi surface (FS), we calculate the dependence of the thermoelectric coefficients on the magnitude and orientation of the magnetic field in the vicinity of the Lifshitz topological transition when the FS connectivity changes under the action of an external force (e.g., pressure) on the conductor. Uponmore » a decrease in the spacing between individual pockets (sheets) of the FS, conduction electrons can tunnel as a result of the magnetic breakdown from one FS sheet to another; their motion over magneticbreakdown trajectories becomes complicated and entangled. The thermoelectric field exhibits a peculiar dependence on the magnetic field: for a noticeable deviation of vector B from the normal through angle ϑ to the layers, the thermoelectric field oscillates as a function of tanϑ. The period of these oscillations contains important information on the distance between individual FS sheets and their corrugation.« less
Theory of the magnetism in La2NiMnO6
NASA Astrophysics Data System (ADS)
Sanyal, Prabuddha
2017-12-01
The magnetism of ordered and disordered La2NiMnO6 is explained using a model involving double exchange and superexchange. An important feature of this model is the majority spin hybridization in the large coupling limit, which results in ferromagnetism rather than ferrimagnetism as in Sr2FeMoO6 . The ferromagnetic insulating ground state in the ordered phase is explained. The essential role played by the Ni-Mn superexchange between the Ni eg electron spins and the Mn t2 g core electron spins in realizing this ground state is outlined. In the presence of antisite disorder, the model system is found to exhibit a tendency of becoming a spin glass at low temperatures, while it continues to retain a ferromagnetic transition at higher temperatures, similar to recent experimental observations [D. Choudhury et al., Phys. Rev. Lett. 108, 127201 (2012), 10.1103/PhysRevLett.108.127201]. This reentrant spin glass or reentrant ferromagnetic behavior is explained in terms of the competition of the ferromagnetic double exchange between the Ni eg and the Mn eg electrons, and the ferromagnetic Ni-Mn superexchange, with the antiferromagnetic antisite Mn-Mn superexchange.
NASA Astrophysics Data System (ADS)
Senthil Kumar, V.; Kavitha, L.; Boopathy, C.; Gopi, D.
2017-10-01
Nonlinear interaction of electromagnetic solitons leads to a plethora of interesting physical phenomena in the diverse area of science that include magneto-optics based data storage industry. We investigate the nonlinear magnetization dynamics of a one-dimensional anisotropic ferromagnetic nanowire. The famous Landau-Lifshitz-Gilbert equation (LLG) describes the magnetization dynamics of the ferromagnetic nanowire and the Maxwell's equations govern the propagation dynamics of electromagnetic wave passing through the axis of the nanowire. We perform a uniform expansion of magnetization and magnetic field along the direction of propagation of electromagnetic wave in the framework of reductive perturbation method. The excitation of magnetization of the nanowire is restricted to the normal plane at the lowest order of perturbation and goes out of plane for higher orders. The dynamics of the ferromagnetic nanowire is governed by the modified Korteweg-de Vries (mKdV) equation and the perturbed modified Korteweg-de Vries (pmKdV) equation for the lower and higher values of damping respectively. We invoke the Hirota bilinearization procedure to mKdV and pmKdV equation to construct the multi-soliton solutions, and explicitly analyze the nature of collision phenomena of the co-propagating EM solitons for the above mentioned lower and higher values of Gilbert-damping due to the precessional motion of the ferromagnetic spin. The EM solitons appearing in the higher damping regime exhibit elastic collision thus yielding the fascinating state restoration property, whereas those of lower damping regime exhibit inelastic collision yielding the solitons of suppressed intensity profiles. The propagation of EM soliton in the nanoscale magnetic wire has potential technological applications in optimizing the magnetic storage devices and magneto-electronics.
Wettability of graphene-laminated micropillar structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bong, Jihye; Seo, Keumyoung; Ju, Sanghyun, E-mail: jrahn@skku.edu, E-mail: shju@kgu.ac.kr
2014-12-21
The wetting control of graphene is of great interest for electronic, mechanical, architectural, and bionic applications. In this study, the wettability of graphene-laminated micropillar structures was manipulated by changing the height of graphene-laminated structures and employing the trichlorosilane (HDF-S)-based self-assembly monolayer. Graphene-laminated micropillar structures with HDF-S exhibited higher hydrophobicity (contact angle of 129.5°) than pristine graphene thin film (78.8°), pristine graphene-laminated micropillar structures (97.5°), and HDF-S self-assembled graphene thin film (98.5°). Wetting states of the graphene-laminated micropillar structure with HDF-S was also examined by using a urea solution, which flowed across the surface without leaving any residues.
Myneni, Ganapati Rao [Yorktown, VA; Hjorvarsson, Bjorgvin [Lagga Arby, SE; Ciovati, Gianluigi [Newport News, VA
2006-12-19
A niobium cavity exhibiting high quality factors at high gradients is provided by treating a niobium cavity through a process comprising: 1) removing surface oxides by plasma etching or a similar process; 2) removing hydrogen or other gases absorbed in the bulk niobium by high temperature treatment of the cavity under ultra high vacuum to achieve hydrogen outgassing; and 3) assuring the long term chemical stability of the niobium cavity by applying a passivating layer of a superconducting material having a superconducting transition temperature higher than niobium thereby reducing losses from electron (cooper pair) scattering in the near surface region of the interior of the niobium cavity. According to a preferred embodiment, the passivating layer comprises niobium nitride (NbN) applied by reactive sputtering.
NASA Astrophysics Data System (ADS)
van Roekeghem, Ambroise; Richard, Pierre; Shi, Xun; Wu, Shangfei; Zeng, Lingkun; Saparov, Bayrammurad; Ohtsubo, Yoshiyuki; Qian, Tian; Sefat, Athena S.; Biermann, Silke; Ding, Hong
2016-06-01
We present a study of the tetragonal to collapsed-tetragonal transition of CaFe2As2 using angle-resolved photoemission spectroscopy and dynamical mean field theory-based electronic structure calculations. We observe that the collapsed-tetragonal phase exhibits reduced correlations and a higher coherence temperature due to the stronger Fe-As hybridization. Furthermore, a comparison of measured photoemission spectra and theoretical spectral functions shows that momentum-dependent corrections to the density functional band structure are essential for the description of low-energy quasiparticle dispersions. We introduce those using the recently proposed combined "screened exchange + dynamical mean field theory" scheme.
Electronic transport with dielectric confinement in degenerate InN nanowires.
Blömers, Ch; Lu, J G; Huang, L; Witte, C; Grützmacher, D; Lüth, H; Schäpers, Th
2012-06-13
In this Letter, we present the size effects on charge conduction in InN nanowires by comprehensive transport studies supported by theoretical analysis. A consistent model for highly degenerate narrow gap semiconductor nanowires is developed. In contrast to common knowledge of InN, there is no evidence of an enhanced surface conduction, however, high intrinsic doping exists. Furthermore, the room-temperature resistivity exhibits a strong increase when the lateral size becomes smaller than 80 nm and the temperature dependence changes from metallic to semiconductor-like. This effect is modeled by donor deactivation due to dielectric confinement, yielding a shift of the donor band to higher ionization energies as the size shrinks.
Magnetic susceptibility of DHCP NpPd3
NASA Astrophysics Data System (ADS)
Walker, H. C.; McEwen, K. A.; Boulet, P.; Colineau, E.; Wastin, F.
2005-04-01
We have measured the magnetic susceptibility and magnetisation of the double-hexagonal close-packed (DHCP) phase of NpPd3 from T=2-300 K in magnetic fields up to 7 T. Our results clearly indicate the presence of two phase transitions in this compound, at 10 and 30 K. At higher temperatures, the susceptibility exhibits Curie-Weiss behaviour, with an effective moment of 2.8 μB/Np atom. This result implies that the Np ions are trivalent, with a 5f4 electronic configuration. Below the 30 K transition, the magnetisation of NpPd3 displays hysteresis in fields below 0.1 T with a residual ferromagnetic moment of the order of 0.06 μB/Np atom.
Evaluate humidity sensing properties of novel TiO{sub 2}–WO{sub 3} composite material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Wang-De; Department of Center for General Education, St. Mary's Junior College of Medicine, Nursing and Management, Yilan 26644 Taiwan, ROC; Lai, De-Sheng
2013-10-15
Graphical abstract: TiO{sub 2}–WO{sub 3} (1:1) showed better humidity sensing properties than others within the range of 12–90% relative humidity (RH), the response and recovery time were about 20 s and 160 s, respectively. Compared to the previous studies, the prepared sensor exhibits higher sensitivity (S = 451) and the low hysteresis value was around 0.13% at 32% RH. - Highlights: • Novel TiO{sub 2}–WO{sub 3} composite material was prepared for humidity sensor. • The sensor exhibits higher sensitivity (S = 451). • Low hysteresis value was around 0.13% at 32% RH. - Abstract: A novel TiO{sub 2}–WO{sub 3} compositemore » material was prepared using a different proportion of TiO{sub 2} and WO{sub 3} to that investigated in previous studies. The obtained mesoporous material was characterized using X-ray diffraction, Fourier transform infrared spectrometry, transmission electron microscopy, energy dispersive X-ray spectroscopy, and N{sub 2} adsorption-desorption techniques. The humidity-sensing properties were measured using an inductance, capacitance and resistance analyzer. The results demonstrated that the TiO{sub 2}–WO{sub 3} sample with a ratio of 1:1 showed better humidity sensing properties. Compared to previous studies, the prepared sensor exhibited higher sensitivity (S = 451) and the lower hysteresis value was around 0.13% at 32% RH. Complex impedance analysis indicated that the enhanced humidity sensitivity was probably due to spherical Brunauer–Emmett–Teller surface area and the hetero-junction between TiO{sub 2}–WO{sub 3} thin films, while the impedance varied about three orders of magnitude. Our results demonstrated the potential application of TiO{sub 2}–WO{sub 3} composite for fabricating high performance humidity sensors.« less
Kazak, Lawrence; Chouchani, Edward T; Stavrovskaya, Irina G; Lu, Gina Z; Jedrychowski, Mark P; Egan, Daniel F; Kumari, Manju; Kong, Xingxing; Erickson, Brian K; Szpyt, John; Rosen, Evan D; Murphy, Michael P; Kristal, Bruce S; Gygi, Steven P; Spiegelman, Bruce M
2017-07-25
Brown adipose tissue (BAT) mitochondria exhibit high oxidative capacity and abundant expression of both electron transport chain components and uncoupling protein 1 (UCP1). UCP1 dissipates the mitochondrial proton motive force (Δp) generated by the respiratory chain and increases thermogenesis. Here we find that in mice genetically lacking UCP1, cold-induced activation of metabolism triggers innate immune signaling and markers of cell death in BAT. Moreover, global proteomic analysis reveals that this cascade induced by UCP1 deletion is associated with a dramatic reduction in electron transport chain abundance. UCP1-deficient BAT mitochondria exhibit reduced mitochondrial calcium buffering capacity and are highly sensitive to mitochondrial permeability transition induced by reactive oxygen species (ROS) and calcium overload. This dysfunction depends on ROS production by reverse electron transport through mitochondrial complex I, and can be rescued by inhibition of electron transfer through complex I or pharmacologic depletion of ROS levels. Our findings indicate that the interscapular BAT of Ucp1 knockout mice exhibits mitochondrial disruptions that extend well beyond the deletion of UCP1 itself. This finding should be carefully considered when using this mouse model to examine the role of UCP1 in physiology.
Photoinduced Nonequilibrium Topological States in Strained Black Phosphorus
NASA Astrophysics Data System (ADS)
Liu, Hang; Sun, Jia-Tao; Cheng, Cai; Liu, Feng; Meng, Sheng
2018-06-01
Black phosphorus (BP), an elemental semiconductor, has attracted tremendous interest because it exhibits a wealth of interesting electronic and optoelectronic properties in equilibrium condition. The nonequilibrium electronic structures of bulk BP under a periodic field of laser remain unexplored, but can lead to intriguing topological optoelectronic properties. Here we show that, under the irradiation of circularly polarized light (CPL), BP exhibits a photon-dressed Floquet-Dirac semimetal state, which can be continuously tuned by changing the direction, intensity, and frequency of the incident laser. The topological phase transition from type-I to type-II Floquet-Dirac fermions manifests a new form of type-III phase, which exists in a wide range of intensities and frequencies of the incident laser. Furthermore, topological surface states exhibit nonequilibrium electron transport in a direction locked by the helicity of CPL. Our findings not only deepen our understanding of fundamental properties of BP in relation to topology but also extend optoelectronic device applications of BP to the nonequilibrium regime.
NASA Astrophysics Data System (ADS)
Yao, Hiroshi; Shiratsu, Taisuke
2016-05-01
Large magneto-optical (MO) responses at the energy of localized surface plasmon resonance (LSPR), namely, surface magnetoplasmons, are demonstrated for the first time in thiolate-protected silver nanoparticles with magnetic circular dichroism (MCD) spectroscopy. The samples examined are decanethiol (DT)-, azobenzenethiol (ABT)-, and ABT/DT mixed-monolayer-protected Ag nanoparticles. ABT-protected Ag nanoparticles are somewhat aggregated and thus exhibit a broad, collective mode of plasmonic absorption, whereas other samples with highly-dispersed nanoparticles show an individual mode of LSPR absorption. In all Ag nanoparticles, a derivative-like MCD signal is observed under an applied magnetic field of 1.6 T, which can be explained in terms of two circular modes of magnetoplasmon caused by the increase (or decrease) in the Lorentz force imparted on the free electrons that oscillate in the left (or right) circular orbits in the nanosphere. For the Ag nanoparticles exhibiting an individual LSPR mode, in particular, simultaneous deconvolution analysis of UV-vis absorption and MCD spectra reveal that (i) the amplitude of the magnetoplasmonic component with lower frequency (ω-), resulting from the reduction in the confinement strength of collective electrons by the Lorentz force, is stronger than that with a higher frequency (ω+) (ii) the accurate shift or cyclotron frequency between two magnetoplasmonic modes (ωc = ω+ - ω-) is size-dependent, and presents a very large value with implications for the apparent enhancement of the local magnetic-field in the Ag nanoparticles. These results strongly suggest that the Ag-thiolate layer or Ag-S bonding on the nanoparticle surface plays a significant role in the MO enhancement.Large magneto-optical (MO) responses at the energy of localized surface plasmon resonance (LSPR), namely, surface magnetoplasmons, are demonstrated for the first time in thiolate-protected silver nanoparticles with magnetic circular dichroism (MCD) spectroscopy. The samples examined are decanethiol (DT)-, azobenzenethiol (ABT)-, and ABT/DT mixed-monolayer-protected Ag nanoparticles. ABT-protected Ag nanoparticles are somewhat aggregated and thus exhibit a broad, collective mode of plasmonic absorption, whereas other samples with highly-dispersed nanoparticles show an individual mode of LSPR absorption. In all Ag nanoparticles, a derivative-like MCD signal is observed under an applied magnetic field of 1.6 T, which can be explained in terms of two circular modes of magnetoplasmon caused by the increase (or decrease) in the Lorentz force imparted on the free electrons that oscillate in the left (or right) circular orbits in the nanosphere. For the Ag nanoparticles exhibiting an individual LSPR mode, in particular, simultaneous deconvolution analysis of UV-vis absorption and MCD spectra reveal that (i) the amplitude of the magnetoplasmonic component with lower frequency (ω-), resulting from the reduction in the confinement strength of collective electrons by the Lorentz force, is stronger than that with a higher frequency (ω+) (ii) the accurate shift or cyclotron frequency between two magnetoplasmonic modes (ωc = ω+ - ω-) is size-dependent, and presents a very large value with implications for the apparent enhancement of the local magnetic-field in the Ag nanoparticles. These results strongly suggest that the Ag-thiolate layer or Ag-S bonding on the nanoparticle surface plays a significant role in the MO enhancement. Electronic supplementary information (ESI) available: EDX spectroscopic analysis of various Ag nanoparticle samples; MCD signals normalized to absorbance for the Ag(DT)L and Ag(DT)S samples; deconvolution of UV-vis absorption and MCD spectra using three Lorentzian components; IR spectral changes upon photoisomerization; thermal cis-to-trans relaxation of azobenzene in the Ag(ABT) sample; UV-vis absorption spectra of Ag nanoparticle samples in the presence/absence of a magnetic field of 1.6 T. See DOI: 10.1039/c6nr00631k
47 CFR 1.10007 - What applications can I file electronically?
Code of Federal Regulations, 2011 CFR
2011-10-01
... list of applications or notifications that must be filed electronically, see the IBFS Web site at http://www.fcc.gov/ibfs. (b) Many applications require exhibits or attachments. If attachments are required...
Synthesis and catalytic activity of the metastable phase of gold phosphide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernando, Deshani; Nigro, Toni A.E.; Dyer, I.D.
Recently, transition metal phosphides have found new applications as catalysts for the hydrogen evolution reaction that has generated an impetus to synthesize these materials at the nanoscale. In this work, Au{sub 2}P{sub 3} was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous. Gold nanorods were used as morphological templates with the aim of controlling the shape and size of the resulting gold phosphide particles. We demonstrate that the surface capping ligand of the gold nanoparticle precursors can influence the purity and extent to which the gold phosphide phase will form. Gold nanorods functionalized withmore » 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanorods are used instead. The Au{sub 2}P{sub 3} nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction. - Graphical abstract: Au{sub 2}P{sub 3} was synthesized utilizing the high temperature decomposition of tri-n-octylphosphine as a source of elemental phosphorous and gold nanoparticles as reactants. We demonstrate that the surface capping ligand of the gold nanoparticle precursors influence the purity and extent to which the Au{sub 2}P{sub 3} phase will form. Gold nanorods functionalized with 1-dodecanethiol undergo digestive ripening to produce discrete spherical particles that exhibit reduced reactivity towards phosphorous, resulting in low yields of the gold phosphide. In contrast, gold phosphide was obtained as a phase pure product when cetyltrimethylammonium bromide functionalized gold nanoparticles are used instead. The Au{sub 2}P{sub 3} nanoparticles exhibited higher activity than polycrystalline gold towards the hydrogen evolution reaction. - Highlights: • The surface chemistry of gold affects the synthetic yields of Au{sub 2}P{sub 3}. • Imaging of Au{sub 2}P{sub 3} with transmission electron microscopy results in decomposition. • Au{sub 2}P{sub 3} nanoparticles exhibit activity towards the hydrogen evolution reaction.« less
Electron Mobility in γ -Al2O3/SrTiO3
NASA Astrophysics Data System (ADS)
Christensen, D. V.; Frenkel, Y.; Schütz, P.; Trier, F.; Wissberg, S.; Claessen, R.; Kalisky, B.; Smith, A.; Chen, Y. Z.; Pryds, N.
2018-05-01
One of the key issues in engineering oxide interfaces for electronic devices is achieving high electron mobility. SrTiO3 -based interfaces with high electron mobility have gained a lot of interest due to the possibility of combining quantum phenomena with the many functionalities exhibited by SrTiO3 . To date, the highest electron mobility (140 000 cm2/V s at 2 K) is obtained by interfacing perovskite SrTiO3 with spinel γ -Al2O3 . The origin of the high mobility, however, remains poorly understood. Here, we investigate the scattering mechanisms limiting the mobility in γ -Al2O3/SrTiO3 at temperatures between 2 and 300 K and over a wide range of sheet carrier densities. For T >150 K , we find that the mobility is limited by longitudinal optical phonon scattering. For large sheet carrier densities (>8 ×1013 cm-2 ), the screened electron-phonon coupling leads to room-temperature mobilities up to μ ˜12 cm2/V s . For 5 K
Vacher, Antoine; Auffray, Morgan; Barrière, Frédéric; Roisnel, Thierry; Lorcy, Dominique
2017-11-17
A bis(TTF-butadiynyl) ruthenium D-D'-D complex, with intramolecular electronic interplay between the three electron-donating electrophores, was easily converted through a cycloaddition-retroelectrocyclization with TCNQ into a D-A-D'-A-D pentad complex, which exhibits an intense intramolecular charge transfer together with an electronic interplay between the two acceptors along the conjugated organometallic bridge.
Helical edge states and fractional quantum Hall effect in a graphene electron-hole bilayer
NASA Astrophysics Data System (ADS)
Sanchez-Yamagishi, Javier D.; Luo, Jason Y.; Young, Andrea F.; Hunt, Benjamin M.; Watanabe, Kenji; Taniguchi, Takashi; Ashoori, Raymond C.; Jarillo-Herrero, Pablo
2017-02-01
Helical 1D electronic systems are a promising route towards realizing circuits of topological quantum states that exhibit non-Abelian statistics. Here, we demonstrate a versatile platform to realize 1D systems made by combining quantum Hall (QH) edge states of opposite chiralities in a graphene electron-hole bilayer at moderate magnetic fields. Using this approach, we engineer helical 1D edge conductors where the counterpropagating modes are localized in separate electron and hole layers by a tunable electric field. These helical conductors exhibit strong non-local transport signals and suppressed backscattering due to the opposite spin polarizations of the counterpropagating modes. Unlike other approaches used for realizing helical states, the graphene electron-hole bilayer can be used to build new 1D systems incorporating fractional edge states. Indeed, we are able to tune the bilayer devices into a regime hosting fractional and integer edge states of opposite chiralities, paving the way towards 1D helical conductors with fractional quantum statistics.
Mouldable all-carbon integrated circuits
NASA Astrophysics Data System (ADS)
Sun, Dong-Ming; Timmermans, Marina Y.; Kaskela, Antti; Nasibulin, Albert G.; Kishimoto, Shigeru; Mizutani, Takashi; Kauppinen, Esko I.; Ohno, Yutaka
2013-08-01
A variety of plastic products, ranging from those for daily necessities to electronics products and medical devices, are produced by moulding techniques. The incorporation of electronic circuits into various plastic products is limited by the brittle nature of silicon wafers. Here we report mouldable integrated circuits for the first time. The devices are composed entirely of carbon-based materials, that is, their active channels and passive elements are all fabricated from stretchable and thermostable assemblies of carbon nanotubes, with plastic polymer dielectric layers and substrates. The all-carbon thin-film transistors exhibit a mobility of 1,027cm2V-1s-1 and an ON/OFF ratio of 105. The devices also exhibit extreme biaxial stretchability of up to 18% when subjected to thermopressure forming. We demonstrate functional integrated circuits that can be moulded into a three-dimensional dome. Such mouldable electronics open new possibilities by allowing for the addition of electronic/plastic-like functionalities to plastic/electronic products, improving their designability.
Electronic and optical properties of pristine and oxidized borophene
NASA Astrophysics Data System (ADS)
Lherbier, Aurélien; Botello-Méndez, Andrés Rafael; Charlier, Jean-Christophe
2016-12-01
Borophene, a two-dimensional monolayer of boron atoms, was recently synthesized experimentally and was shown to exhibit polymorphism. In its closed-packed triangular form, borophene is expected to exhibit anisotropic metallic character with relatively high electron velocities. At the same time, very low optical conductivities in the infrared-visible light region were predicted. Based on its promising electronic transport properties and its high transparency, borophene could become a genuine lego piece in the 2D materials assembling game known as the van der Waals heterocrystal approach. However, borophene is naturally degraded in ambient conditions and it is therefore important to assess the mechanisms and the effects of oxidation on borophene monolayers. Optical and electronic properties of pristine and oxidized borophene are here investigated by first-principles approaches. The transparent and conductive properties of borophene are elucidated by analyzing the electronic structure and its interplay with light. Optical response of borophene is found to be strongly affected by oxidation, suggesting that optical measurements can serve as an efficient probe for borophene surface contamination.