Finn, Amy S; Minas, Jennifer E; Leonard, Julia A; Mackey, Allyson P; Salvatore, John; Goetz, Calvin; West, Martin R; Gabrieli, Christopher F O; Gabrieli, John D E
2017-09-01
Working memory (WM) capacity reflects executive functions associated with performance on a wide range of cognitive tasks and education outcomes, including mathematics achievement, and is associated with dorsolateral prefrontal and parietal cortices. Here we asked if family income is associated with variation in the functional brain organization of WM capacity among adolescents, and whether that variation is associated with performance on a statewide test of academic achievement in mathematics. Participants were classified into higher-income and lower-income groups based on family income, and performed a WM task with a parametric manipulation of WM load (N-back task) during functional magnetic resonance imaging (fMRI). Behaviorally, the higher-income group had greater WM capacity and higher mathematics achievement scores. Neurally, the higher-income group showed greater activation as a function of WM load in bilateral prefrontal, parietal, and other regions, although the lower-income group exhibited greater activation at the lowest load. Both groups exhibited positive correlations between parietal activations and mathematics achievement scores, but only the higher-income group exhibited a positive correlation between prefrontal activations and mathematics scores. Most of these findings were maintained when higher- and lower-income groups were matched on WM task performance or nonverbal IQ. Findings indicate that the functional neural architecture of WM varies with family income and is associated with education measures of mathematics achievement. © 2016 John Wiley & Sons Ltd.
Effects of organizational citizenship behaviors on selection decisions in employment interviews.
Podsakoff, Nathan P; Whiting, Steven W; Podsakoff, Philip M; Mishra, Paresh
2011-03-01
This article reports on an experiment examining the effects of job candidates' propensity to exhibit organizational citizenship behaviors (OCBs) on selection decisions made in the context of a job interview. We developed videos that manipulated candidate responses to interview questions tapping task performance and citizenship behavior content in 2 administrative positions. Results obtained from 480 undergraduates provided support for our hypotheses that job candidates who exhibited higher levels of helping, voice, and loyalty behaviors were generally rated as more competent, received higher overall evaluations, and received higher salary recommendations than job candidates who exhibited lower levels of these behaviors. These effects held even after taking into account candidate responses regarding task performance. We also found that candidate responses to OCB-related questions tended to have a greater effect on selection decisions for the higher level position (supervisor of administrative personnel) than for the lower level one (administrative assistant). Finally, content analyses of open-ended responses indicated that participants' selection decisions were particularly sensitive to candidates who exhibited low levels of voice and helping behaviors. Implications and future research are discussed. PsycINFO Database Record (c) 2011 APA, all rights reserved.
Lyle, Mark A; Valero-Cuevas, Francisco J; Gregor, Robert J; Powers, Christopher M
2014-01-22
Controlling dynamic interactions between the lower limb and ground is important for skilled locomotion and may influence injury risk in athletes. It is well known that female athletes sustain anterior cruciate ligament (ACL) tears at higher rates than male athletes, and exhibit lower extremity biomechanics thought to increase injury risk during sport maneuvers. The purpose of this study was to examine whether lower extremity dexterity (LED)--the ability to dynamically control endpoint force magnitude and direction as quantified by compressing an unstable spring with the lower limb at submaximal forces--is a potential contributing factor to the "at-risk" movement behavior exhibited by female athletes. We tested this hypothesis by comparing LED-test performance and single-limb drop jump biomechanics between 14 female and 14 male high school soccer players. We found that female athletes exhibited reduced LED-test performance (p=0.001) and higher limb stiffness during landing (p=0.008) calculated on average within 51 ms of foot contact. Females also exhibited higher coactivation at the ankle (p=0.001) and knee (p=0.02) before landing. No sex differences in sagittal plane joint angles and center of mass velocity at foot contact were observed. Collectively, our results raise the possibility that the higher leg stiffness observed in females during landing is an anticipatory behavior due in part to reduced lower extremity dexterity. The reduced lower extremity dexterity and compensatory stiffening strategy may contribute to the heightened risk of ACL injury in this population. © 2013 Published by Elsevier Ltd.
Lyle, Mark A.; Valero-Cuevas, Francisco J.; Gregor, Robert J.; Powers, Christopher M.
2014-01-01
Controlling dynamic interactions between the lower limb and ground is important for skilled locomotion and may influence injury risk in athletes. It is well known that female athletes sustain anterior cruciate ligament (ACL) tears at higher rates than male athletes, and exhibit lower extremity biomechanics thought to increase injury risk during sport maneuvers. The purpose of this study was to examine whether lower extremity dexterity (LED) – the ability to dynamically control endpoint force magnitude and direction as quantified by compressing an unstable spring with the lower limb at submaximal forces – is a potential contributing factor to the “at-risk” movement behavior exhibited by female athletes. We tested this hypothesis by comparing LED-test performance and single-limb drop jump biomechanics between 14 female and 14 male high school soccer players. We found that female athletes exhibited reduced LED-test performance (p=0.001) and higher limb stiffness during landing (p=0.008) calculated on average within 51 ms of foot contact. Females also exhibited higher coactivation at the ankle (p=0.001) and knee (p=0.02) before landing. No sex differences in sagittal plane joint angles and center of mass velocity at foot contact were observed. Collectively, our results raise the possibility that the higher leg stiffness observed in females during landing is an anticipatory behavior due in part to reduced lower extremity dexterity. The reduced lower extremity dexterity and compensatory stiffening strategy may contribute to the heightened risk of ACL injury in this population. PMID:24275440
Developmental trajectory of contextual learning and 24-h acetylcholine release in the hippocampus
Takase, Kenkichi; Sakimoto, Yuya; Kimura, Fukuko; Mitsushima, Dai
2014-01-01
To determine the developmental trajectory of hippocampal function in rats, we examined 24-h changes in extracellular acetylcholine (ACh) levels and contextual learning performance. Extracellular ACh significantly correlated with spontaneous behavior, exhibiting a 24-h rhythm in juvenile (4-week-old), pubertal (6-week-old), and adult (9- to 12-week-old) rats. Although juveniles of both sexes exhibited low ACh levels, adult males had higher ACh levels than adult females. Moreover, juveniles exhibited much more spontaneous activity than adults when they showed equivalent ACh levels. Similarly, juveniles of both sexes exhibited relatively low contextual learning performance. Because contextual learning performance was significantly increased only in males, adult males exhibited better performance than adult females. We also observed a developmental relationship between contextual learning and ACh levels. Scopolamine pretreatment blocked contextual learning and interrupted the correlation. Since long-term scopolamine treatment after weaning impaired contextual learning in juveniles, the cholinergic input may participate in the development of hippocampus. PMID:24435246
Synthesis of belt-like BiOBr hierarchical nanostructure with high photocatalytic performance
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Haiping; Liu, Jingyi; Hu, Tingxia
2016-05-15
Highlights: • BiOBr hierarchical nanobelts (NBs) were solvothermally prepared. • NBs show higher specific surface area and photoabsorption than BiOBr nanosheets. • NBs exhibit higher photoactivity than the nanosheets. - Abstract: One-dimensional (1D) bismuth oxyhalide (BiOX) hierarchical nanostructures are always difficult to prepare. Herein, we report, for the first time, a simple synthesis of BiOBr nanobelts (NBs) via a facile solvothermal route, using bismuth subsalicylate as the template and bismuth source. The BiOBr nanobelts are composed of irregular single crystal nanoparticles with highly exposed (0 1 0) facets. Compared with the BiOBr nanosheets (NSs) with dominant exposed (0 0 1)more » facets, they exhibit higher photocatalytic activity toward degradation of Rhodamine B and Methylene Blue under visible light irradiation. The higher photocatalytic performance of BiOBr NBs arises from their larger specific surface area and higher photoabsorption capability. This study provides a simple route for synthesis of belt-like Bi-based hierarchical nanostructures.« less
Dependence of crystal size on the catalytic performance of a porous coordination polymer.
Kiyonaga, Tomokazu; Higuchi, Masakazu; Kajiwara, Takashi; Takashima, Yohei; Duan, Jingui; Nagashima, Kazuro; Kitagawa, Susumu
2015-02-14
Submicrosized MOF-76(Yb) exhibits a higher catalytic performance for esterification than microsized MOF-76(Yb). Control of the crystal size of porous heterogeneous catalysts, such as PCP/MOFs, offers a promising approach to fabricating high-performance catalysts based on accessibility to the internal catalytic sites.
NASA Astrophysics Data System (ADS)
Li, Yajie; Pu, Hongting
2018-04-01
Polypropylene (PP)/polyethylene (PE) multilayer separators with cellular-like submicron pore structure for lithium-ion battery are efficiently fabricated by the combination of multilayer coextrusion (MC) and thermal induced phase separation (TIPS). The as-prepared separators, referred to as MC-TIPS PP/PE, not only show efficacious thermal shutdown function and wider shutdown temperature window, but also exhibit higher thermal stability than the commercial separator with trilayer construction of PP and PE (Celgard® 2325). The dimensional shrinkage of MC-TIPS PP/PE can be negligible until 160 °C. In addition, compared to the commercial separator, MC-TIPS PP/PE exhibits higher porosity and electrolyte uptake, leading to higher ionic conductivity and better battery performances. The above-mentioned fascinating characteristics with the convenient preparation process make MC-TIPS PP/PE a promising candidate for the application as high performance lithium-ion battery separators.
NASA Astrophysics Data System (ADS)
Wang, Zhen; Tan, Yongtao; Yang, Yunlong; Zhao, Xiaoning; Liu, Ying; Niu, Lengyuan; Tichnell, Brandon; Kong, Lingbin; Kang, Long; Liu, Zhen; Ran, Fen
2018-02-01
In this work, biomass pomelo peel is used to fabricate the porous activated carbon microsheets, and diammonium hydrogen phosphate (DHP) is employed to dual-dope carbon with nitrogen and phosphorus elements. With the benefit of DHP inducement and dual-doping of nitrogen and phosphorus, the prepared carbon material has a higher carbon yield, and exhibits higher specific surface area (about 807.7 m2/g), and larger pore volume (about 0.4378 cm3/g) with hierarchically structure of interconnected thin microsheets compared to the pristine carbon. The material exhibits not only high specific capacitance (240 F/g at 0.5 A/g), but also superior cycling performance (approximately 100% of capacitance retention after 10,000 cycles at 2 A/g) in 2 M KOH aqueous electrolyte. Furthermore, the assembled symmetric electrochemical capacitor in 1 M Na2SO4 aqueous electrolyte exhibits a high energy density of 11.7 Wh/kg at a power density of 160 W/kg.
Silicon/copper dome-patterned electrodes for high-performance hybrid supercapacitors.
Liu, Xuyan; Jung, Hun-Gi; Kim, Sang-Ok; Choi, Ho-Suk; Lee, Sangwha; Moon, Jun Hyuk; Lee, Joong Kee
2013-12-02
This study proposes a method for manufacturing high-performance electrode materials in which controlling the shape of the current collector and electrode material for a Li-ion capacitor (LIC). In particular, the proposed LIC manufacturing method maintains the high voltage of a cell by using a microdome-patterned electrode material, allowing for reversible reactions between the Li-ion and the active material for an extended period of time. As a result, the LICs exhibit initial capacities of approximately 42 F g⁻¹, even at 60 A g⁻¹. The LICs also exhibit good cycle performance up to approximately 15,000 cycles. In addition, these advancements allow for a considerably higher energy density than other existing capacitor systems. The energy density of the proposed LICs is approximately nine, two, and 1.5 times higher than those of the electrochemical double layer capacitor (EDLC), AC/LiMn₂O₄ hybrid capacitor, and intrinsic Si/AC LIC, respectively.
Silicon/copper dome-patterned electrodes for high-performance hybrid supercapacitors
NASA Astrophysics Data System (ADS)
Liu, Xuyan; Jung, Hun-Gi; Kim, Sang-Ok; Choi, Ho-Suk; Lee, Sangwha; Moon, Jun Hyuk; Lee, Joong Kee
2013-12-01
This study proposes a method for manufacturing high-performance electrode materials in which controlling the shape of the current collector and electrode material for a Li-ion capacitor (LIC). In particular, the proposed LIC manufacturing method maintains the high voltage of a cell by using a microdome-patterned electrode material, allowing for reversible reactions between the Li-ion and the active material for an extended period of time. As a result, the LICs exhibit initial capacities of approximately 42 F g-1, even at 60 A g-1. The LICs also exhibit good cycle performance up to approximately 15,000 cycles. In addition, these advancements allow for a considerably higher energy density than other existing capacitor systems. The energy density of the proposed LICs is approximately nine, two, and 1.5 times higher than those of the electrochemical double layer capacitor (EDLC), AC/LiMn2O4 hybrid capacitor, and intrinsic Si/AC LIC, respectively.
Hong, Hye-Jin; Kim, Byoung-Gyu; Ryu, Jungho; Park, In-Su; Chung, Kang-Sup; Lee, Sang Moon; Lee, Jin-Bae; Jeong, Hyeon Su; Kim, Hyunchul; Ryu, Taegong
2018-01-01
Alginate bead is a promising strontium (Sr) adsorbent in seawater, but highly concentrated Na ions caused over-swelling and damaged the hydrogel bead. To improve the mechanical stability of alginate bead, flexible foam-type zeolite-alginate composite was synthesized and Sr adsorption performance was evaluated in seawater; 1-10% zeolite immobilized alginate foams were prepared by freeze-dry technique. Immobilization of zeolite into alginate foam converted macro-pores to meso-pores which lead to more compact structure. It resulted in less swollen composite in seawater medium and exhibited highly improved mechanical stability compared with alginate bead. Besides, Sr adsorption efficiency and selectivity were enhanced by immobilization of zeolite in alginate foam due to the increase of Sr binding sites (zeolite). In particular, Sr selectivity against Na was highly improved. The 10% zeolite-alginate foam exhibited a higher log K d of 3.3, while the pure alginate foam exhibited 2.7 in the presence of 0.1 M Na. Finally, in the real seawater, the 10% zeolite-alginate foam exhibited 1.5 times higher Sr adsorption efficiency than the pure alginate foam. This result reveals that zeolite-alginate foam composite is appropriate material for Sr removal in seawater due to its swelling resistance as well as improved Sr adsorption performance in complex media. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Xiaomeng; Bartol, Kathryn M
2010-09-01
Integrating theories addressing attention and activation with creativity literature, we found an inverted U-shaped relationship between creative process engagement and overall job performance among professionals in complex jobs in an information technology firm. Work experience moderated the curvilinear relationship, with low-experience employees generally exhibiting higher levels of overall job performance at low to moderate levels of creative process engagement and high-experience employees demonstrating higher overall performance at moderate to high levels of creative process engagement. Creative performance partially mediated the relationship between creative process engagement and job performance. These relationships were tested within a moderated mediation framework. Copyright 2010 APA, all rights reserved
Valladares, Macarena; Ramírez-Tagle, Rodrigo; Muñoz, Miss Alexandra; Obregón, Ana María
2018-04-01
A chronotype is an individual trait that determines circadian rhythm (dark/light cycle) characteristics, associated with bedtime, waking, and other daily activities. A chronotype is classified as morning, intermediate, and evening. The objective is to associate chronotypes with academic performance in university students. A cross-sectional study was performed to evaluate the chronotype of university students (n = 703) by Horne-Ostberg questionnaire and associated with academic performance. The group with higher GPAs had higher chronotype scores (p = 0.002). Morning and intermediate chronotypes exhibited better academic performance; however, more studies are necessary to determine the underlying causes, which could influence cognitive aspects.
NASA Astrophysics Data System (ADS)
Choudhury, Nurul A.; Ma, Jia; Sahai, Yogeshwar; Buchheit, Rudolph G.
Novel, cost-effective, high-performance, and environment-friendly electrode binders, comprising polyvinyl alcohol chemical hydrogel (PCH) and chitosan chemical hydrogel (CCH), are reported for direct borohydride fuel cells (DBFCs). PCH and CCH binders-based electrodes have been fabricated using a novel, simple, cost-effective, time-effective, and environmentally benign technique. Morphologies and electrochemical performance in DBFCs of the chemical hydrogel binder-based electrodes have been compared with those of Nafion ® binder-based electrodes. Relationships between the performance of binders in DBFCs with structural features of the polymers and the polymer-based chemical hydrogels are discussed. The CCH binder exhibited better performance than a Nafion ® binder whereas the PCH binder exhibited comparable performance to Nafion ® in DBFCs operating at elevated cell temperatures. The better performance of CCH binder at higher operating cell temperatures has been ascribed to the hydrophilic nature and water retention characteristics of chitosan. DBFCs employing CCH binder-based electrodes and a Nafion ®-117 membrane as an electrolyte exhibited a maximum peak power density of about 589 mW cm -2 at 70 °C.
Relation of Knowledge and Performance in Boys' Tennis: Age and Expertise.
ERIC Educational Resources Information Center
McPherson, Sue L.; Thomas, Jerry R.
1989-01-01
Examined 10- to 13-year-old boys' development of knowledge structure and sport performance in tennis by comparing skills and knowledge of experts and novices. Experts focused on higher concepts and exhibited greater decision-making ability because of their more highly developed knowledge structure. (SAK)
NASA Astrophysics Data System (ADS)
Kim, Jihoon; Lee, Yongkyu; Jeon, Jae-Deok; Kwak, Seung-Yeop
2018-04-01
A series of ion-exchange membranes for vanadium redox flow batteries (VRBs) are prepared by filling the pores of a poly(tetrafluoroethylene) (PTFE) substrate with sulfonated poly(ether ether ketone) (SPEEK) and microporous Engelhard titanosilicate-10 (ETS-10). The effects of ETS-10 incorporation and PTFE reinforcement on membrane properties and VRB single-cell performance are investigated using various characterization tools. The results show that these composite membranes exhibit improved mechanical properties and reduced vanadium-ion permeabilities owing to the interactions between ETS-10 and SPEEK, the suppressed swelling of PTFE, and the unique ETS-10 framework. The composite membrane with 3 wt% ETS-10 (referred to as "SE3/P") exhibits the best membrane properties and highest ion selectivity. The VRB system with the SE3/P membrane exhibits higher cell capacity, higher cell efficiency, and lower capacity decay than that with a Nafion membrane. These results indicate that this composite membrane has potential as an alternative to Nafion in VRB systems.
Silicon/copper dome-patterned electrodes for high-performance hybrid supercapacitors
Liu, Xuyan; Jung, Hun-Gi; Kim, Sang-Ok; Choi, Ho-Suk; Lee, Sangwha; Moon, Jun Hyuk; Lee, Joong Kee
2013-01-01
This study proposes a method for manufacturing high-performance electrode materials in which controlling the shape of the current collector and electrode material for a Li-ion capacitor (LIC). In particular, the proposed LIC manufacturing method maintains the high voltage of a cell by using a microdome-patterned electrode material, allowing for reversible reactions between the Li-ion and the active material for an extended period of time. As a result, the LICs exhibit initial capacities of approximately 42 F g−1, even at 60 A g−1. The LICs also exhibit good cycle performance up to approximately 15,000 cycles. In addition, these advancements allow for a considerably higher energy density than other existing capacitor systems. The energy density of the proposed LICs is approximately nine, two, and 1.5 times higher than those of the electrochemical double layer capacitor (EDLC), AC/LiMn2O4 hybrid capacitor, and intrinsic Si/AC LIC, respectively. PMID:24292725
Suzuki, Kei; Kato, Yutaka; Yui, Arashi; Yamamoto, Shuji; Ando, Syota; Rubaba, Owen; Tashiro, Yosuke; Futamata, Hiroyuki
2018-05-01
We investigated how bacterial communities adapted to external resistances and exhibited the performance of electricity production in microbial fuel cells (MFCs) with external resistance of 10 Ω (LR-MFC) and 1000 Ω (HR-MFC). The HR-MFC exhibited better performance than the LR-MFC. The power densities of the LR-MFC and the HR-MFC were 5.2 ± 1.6 mW m -2 and 28 ± 9.6 mW m -2 after day 197, respectively. Low-scan cyclic voltammetry analyses indicated that the onset potential of the HR-MFC was more negative than that of the LR-MFC, suggesting that the higher external resistance led to enrichment of the highly current producing bacteria on the anode surface. All clones of Geobacter retrieved from the LR-MFC and the HR-MFC were members of the Geobacter metallireducens clade. Although the population density of Geobacter decreased from days 366-427 in the HR-MFC, the current density was almost maintained. Multidimensional scaling analyses based on denaturing gradient gel electrophoresis profiles indicated that the dynamics of the biofilm and anolytic communities changed synchronously in the two MFCs, but the dynamics of the bacterial communities in the LR-MFC and the HR-MFC were different from each other, reflecting different processes in adaptation to the different external resistances. The results suggest that the microbial community structure was formed by adapting to higher external resistance, exhibiting more negative onset potential and higher performance of the HR-MFC through collaborating with anode-respiring bacteria and fermenters. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Ang; He, Renyue; Bian, Zhuo; Song, Huaihe; Chen, Xiaohong; Zhou, Jisheng
2018-06-01
Self-assembled hierarchical CuO nanostructures with fractal structures were prepared by a mild method and exhibited excellent lithium storage properties, certain of which even demonstrated a high reversible capacity of 827 mAh g-1 at a rate of 0.1 C. An interesting phenomenon was observed that the electrochemical performance varies along with the structure complexity, and the products with higher surface factal dimensions exhibited larger capability and better cyclability. Structural and electrochemical analysis methods were used to explore the lithiation kinetics of the samples and the reasons for the outstanding electrochemical performances related to the complexities of hierarchical nanostructures and the irregularities of surface and mass distribution.
In situ growth of NiCo(2)S(4) nanosheets on graphene for high-performance supercapacitors.
Peng, Shengjie; Li, Linlin; Li, Chengchao; Tan, Huiteng; Cai, Ren; Yu, Hong; Mhaisalkar, Subodh; Srinivasan, Madhavi; Ramakrishna, Seeram; Yan, Qingyu
2013-10-03
We demonstrate a facile hydrothermal method for growth of ultrathin NiCo2S4 nanosheets on reduced graphene oxide (RGO), which exhibit remarkable electrochemical performance with higher capacitance and longer cycle life than the bare NiCo2S4 hollow spheres (HSs).
Chen, Chao; Yang, Seung-Tae; Ahn, Wha-Seung; Ryoo, Ryong
2009-06-28
A polyethylenimine-impregnated hierarchical silica monolith exhibited significantly higher CO(2) capturing capacity than other silica-supported amine sorbents, and produced a reversible and durable sorption performance.
NASA Astrophysics Data System (ADS)
Subramaniam, M. N.; Goh, P. S.; Abdullah, N.; Lau, W. J.; Ng, B. C.; Ismail, A. F.
2017-06-01
Removal of methylene blue (MB) via adsorption and photocatalysis using titanate nanotubes (TNTs) with different surface areas were investigated and compared to commercial titanium dioxide (TiO2) P25 Degussa nanoparticles. The TNTs with surface area ranging from 20 m2/g to 200 m2/g were synthesized via hydrothermal method with different reaction times. TEM imaging confirmed the tubular structure of TNT while XRD spectra indicated all TNTs exhibited anatase crystallinity. Batch adsorption rate showed linearity with surface properties of TNTs, where materials with higher surface area showed higher adsorption rate. The highest MB adsorption (70%) was achieved by TNT24 in 60 min whereas commercial TiO2 exhibited the lowest adsorption of only 10% after 240 min. Adsorption isotherm studies indicated that adsorption using TNT is better fitted into Langmuir adsorption isotherm than Freundlich isotherm model. Furthermore, TNT24 was able to perform up to 90% removal of MB within 120 min, demonstrating performance that is 2-fold better compared to commercial TiO2. The high surface area and surface Bronsted acidity are the main reasons for the improvement in MB removal performance exhibited by TNT24. The improvement in surface acidity enhanced the adsorption properties of all the nanotubes prepared in this study.
NASA Astrophysics Data System (ADS)
Mitschker, F.; Schücke, L.; Hoppe, Ch; Jaritz, M.; Dahlmann, R.; de los Arcos, T.; Hopmann, Ch; Grundmeier, G.; Awakowicz, P.
2018-06-01
The effect of the selection of hexamethyldisiloxane (HMDSO) and hexamethyldisilazane (HMDSN) as a precursor in a microwave driven low pressure plasma on the deposition of silicon oxide barrier coatings and silicon based organic interlayers on polyethylene terephthalate (PET) and polypropylene (PP) substrates is investigated. Mass spectrometry is used to quantify the absolute gas density and the degree of depletion of neutral precursor molecules under variation of oxygen admixture. On average, HMDSN shows a smaller density, a higher depletion and the production of smaller fragments. Subsequently, this is correlated with barrier performance and chemical structure as a function of barrier layer thickness and oxygen admixture on PET. For this purpose, the oxygen transmission rate (OTR) is measured and Fourier transformed infrared (FTIR) spectroscopy as well as x-ray photoelectron spectroscopy (XPS) is performed. HMDSN based coatings exhibit significantly higher barrier performances for high admixtures of oxygen (200 sccm). In comparison to HMDSO based processes, however, a higher supply of oxygen is necessary to achieve a sufficient degree of oxidation, cross-linking and, therefore, barrier performance. FTIR and XPS reveal a distinct carbon content for low oxygen admixtures (10 and 20 sccm) in case of HMDSN based coatings. The variation of interlayer thickness also reveals significantly higher OTR for HMDSO based coatings on PET and PP. Barrier performance of HMDSO based coatings improves with increasing interlayer thickness up to 10 nm for PET and PP. HMDSN based coatings exhibit a minimum of OTR without interlayer on PP and for 2 nm interlayer thickness on PET. Furthermore, HMDSN based coatings show distinctly higher bond strengths to the PP substrate.
NASA Astrophysics Data System (ADS)
Tariq, Vicki N.; Qualter, Pamela; Roberts, Sian; Appleby, Yvon; Barnes, Lynne
2013-12-01
This empirical study explores the roles that Emotional Intelligence (EI) and Emotional Self-Efficacy (ESE) play in undergraduates' mathematical literacy, and the influence of EI and ESE on students' attitudes towards and beliefs about mathematics. A convenience sample of 93 female and 82 male first-year undergraduates completed a test of mathematical literacy, followed by an online survey designed to measure the students' EI, ESE and factors associated with mathematical literacy. Analysis of the data revealed significant gender differences. Males attained a higher mean test score than females and out-performed the females on most of the individual questions and the associated mathematical tasks. Overall, males expressed greater confidence in their mathematical skills, although both males' and females' confidence outweighed their actual mathematical proficiency. Correlation analyses revealed that males and females attaining higher mathematical literacy test scores were more confident and persistent, exhibited lower levels of mathematics anxiety and possessed higher mathematics qualifications. Correlation analyses also revealed that in male students, aspects of ESE were associated with beliefs concerning the learning of mathematics (i.e. that intelligence is malleable and that persistence can facilitate success), but not with confidence or actual performance. Both EI and ESE play a greater role with regard to test performance and attitudes/beliefs regarding mathematics amongst female undergraduates; higher EI and ESE scores were associated with higher test scores, while females exhibiting higher levels of ESE were also more confident and less anxious about mathematics, believed intelligence to be malleable, were more persistent and were learning goal oriented. Moderated regression analyses confirmed mathematics anxiety as a negative predictor of test performance in males and females, but also revealed that in females EI and ESE moderate the effects of anxiety on test performance, with the relationship between anxiety and test performance linked more to emotional management (EI) than to ESE.
Root, James C; Andreotti, Charissa; Tsu, Loretta; Ellmore, Timothy M; Ahles, Tim A
2016-06-01
Our previous retrospective analysis of clinically referred breast cancer survivors' performance on learning and memory measures found a primary weakness in initial encoding of information into working memory with intact retention and recall of this same information at a delay. This suggests that survivors may misinterpret cognitive lapses as being due to forgetting when, in actuality, they were not able to properly encode this information at the time of initial exposure. Our objective in this study was to replicate and extend this pattern of performance to a research sample to increase the generalizability of this finding in a sample in which subjects were not clinically referred for cognitive issues. We contrasted learning and memory performance between breast cancer survivors on endocrine therapy 2 to 6 years post-treatment with age- and education-matched healthy controls. We then stratified lower- and higher-performing breast cancer survivors to examine specific patterns of learning and memory performance. Contrasts were generated for four aggregate visual and verbal memory variables from the California Verbal Learning Test-2 (CVLT-2) and the Brown Location Test (BLT): Single-trial Learning: Trial 1 performance, Multiple-trial Learning: Trial 5 performance, Delayed Recall: Long-delay Recall performance, and Memory Errors: False-positive errors. As predicted, breast cancer survivors' performance as a whole was significantly lower on Single-trial Learning than the healthy control group but exhibited no significant difference in Delayed Recall. In the secondary analysis contrasting lower- and higher-performing survivors on cognitive measures, the same pattern of lower Single-trial Learning performance was exhibited in both groups, with the additional finding of significantly weaker Multiple-trial Learning performance in the lower-performing breast cancer group and intact Delayed Recall performance in both groups. As with our earlier finding of weaker initial encoding with intact recall in a cohort of clinically referred breast cancer survivors, our results indicate this same profile in a research sample of breast cancer survivors. Further, when the breast cancer group was stratified by lower and higher performance, both groups exhibited significantly lower performance on initial encoding, with more pronounced encoding weakness in the lower-performing group. As in our previous research, survivors did not lose successfully encoded information over longer delays, either in the lower- or higher-performing group, again arguing against memory decay in survivors. The finding of weaker initial encoding of information together with intact delayed recall in survivors points to specific treatment interventions in rehabilitation of cognitive dysfunction. The finding of weaker initial encoding of information together with intact delayed recall in survivors points to specific treatment interventions in rehabilitation of cognitive dysfunction and is discussed.
Jiang, Zhong-Jie; Jiang, Zhongqing; Tian, Xiaoning; Luo, Lijuan; Liu, Meilin
2017-06-14
Sulfonated holey graphene oxides (SHGOs) have been synthesized by the etching of sulfonated graphene oxides with concentrated HNO 3 under the assistance of ultrasonication. These SHGOs could be used as fillers for the sulfonated aromatic poly(ether ether ketone) (SPEEK) membrane. The obtained SHGO-incorporated SPEEK membrane has a uniform and dense structure, exhibiting higher performance as proton exchange membranes (PEMs), for instance, higher proton conductivity, lower activation energy for proton conduction, and comparable methanol permeability, as compared to Nafion 112. The sulfonated graphitic structure of the SHGOs is believed to be one of the crucial factors resulting in the higher performance of the SPEEK/SHGO membrane, since it could increase the local density of the -SO 3 H groups in the membrane and induce a strong interfacial interaction between SHGO and the SPEEK matrix, which improve the proton conductivity and lower the swelling ratio of the membrane, respectively. Additionally, the proton conductivity of the membrane could be further enhanced by the presence of the holes in the graphitic planes of the SHGOs, since it provides an additional channel for transport of the protons. When used, direct methanol fuel cell with the SPEEK/SHGO membrane is found to exhibit much higher performance than that with Nafion 112, suggesting potential use of the SPEEK/SHGO membrane as the PEMs.
NASA Astrophysics Data System (ADS)
Kondo, Shuhei; Shibata, Tadashi; Ohmi, Tadahiro
1995-02-01
We have investigated the learning performance of the hardware backpropagation (HBP) algorithm, a hardware-oriented learning algorithm developed for the self-learning architecture of neural networks constructed using neuron MOS (metal-oxide-semiconductor) transistors. The solution to finding a mirror symmetry axis in a 4×4 binary pixel array was tested by computer simulation based on the HBP algorithm. Despite the inherent restrictions imposed on the hardware-learning algorithm, HBP exhibits equivalent learning performance to that of the original backpropagation (BP) algorithm when all the pertinent parameters are optimized. Very importantly, we have found that HBP has a superior generalization capability over BP; namely, HBP exhibits higher performance in solving problems that the network has not yet learnt.
Lee, Jong Won; Choi, Yoon Suk; Ahn, Hyungju; Jo, Won Ho
2016-05-04
Ternary blends composed of two donor absorbers with complementary absorptions provide an opportunity to enhance the short-circuit current and thus the power conversion efficiency (PCE) of organic solar cells. In addition to complementary absorption of two donors, ternary blends may exhibit favorable morphology for high-performance solar cells when one chooses properly the donor pair. For this purpose, we develop a ternary blend with two donors (diketopyrrolopyrrole-based polymer (PTDPP2T) and small molecule ((TDPP)2Ph)) and one acceptor (PC71BM). The solar cell made of a ternary blend with 10 wt % (TDPP)2Ph exhibits higher PCE of 7.49% as compared with the solar cells with binary blends, PTDPP2T:PC71BM (6.58%) and (TDPP)2Ph:PC71BM (3.21%). The higher PCE of the ternary blend solar cell is attributed mainly to complementary absorption of two donors. However, a further increase in (TDPP)2Ph content in the ternary blend (>10 wt %) decreases the PCE. The ternary blend with 10 wt % (TDPP)2Ph exhibits well-developed morphology with narrow-sized fibrils while the blend with 15 wt % (TDPP)2Ph shows phase separation with large-sized domains, demonstrating that the phase morphology and compatibility of ternary blend are important factors to achieve a high-performance solar cell made of ternary blends.
Adsorption contributions of graphene to sodium ion storage performance
NASA Astrophysics Data System (ADS)
Fu, Hao; Xu, Zhanwei; Guan, Weiwei; Shen, Xuetao; Cao, Liyun; Huang, Jianfeng
2018-05-01
Graphene derivates, including graphite, graphene oxide (GO), and reduced graphene oxide (rGO), are employed as sodium ion battery anodes to investigate the effect of adsorption reactions on their electrochemical performance. GO and rGO exhibit the reversible capacity of 230, 192 mAh g‑1 at a low current density of 100 mA g‑1. However, when tested at higher current densities of 200, 500, and 1000 mA g‑1, the GO electrodes deliver 136, 76, and 38 mAh g‑1, respectively. As a comparison, rGO exhibits capacity as high as 168, 133, and 117 mAh g‑1 at the same conditions—23.5%, 75.0%, and 207.9% higher, respectively, than the capacities of GO. These analyses, based on the cyclic voltammetry curves, discharge/charge voltage profiles, rate and cycle performance, as well as infrared spectroscopy analysis, show the contributions of the capacity from reversible physical and chemical adsorption. The main behavior type of rGO is physical adsorption, which meets the requirements of the fast charge/discharge process, while the predominant behavior of GO is chemical adsorption.
Breakfast is associated with the metabolic syndrome and school performance among Taiwanese children.
Ho, Chia-Yi; Huang, Yi-Chen; Lo, Yuan-Ting C; Wahlqvist, Mark L; Lee, Meei-Shyuan
2015-01-01
Skipping breakfast is associated with adverse child health profiles including obesity, higher blood pressure, higher serum cholesterol, and poor cognitive function. We aimed to explore the association between breakfast with school performance and the metabolic syndrome (MetS) in Taiwanese children. Participants were enrolled from the representative Elementary School Children's Nutrition and Health Survey in Taiwan (2001-2002). Diet, waist circumference, blood pressure, blood glucose, triglyceride, and high-density lipoprotein cholesterol concentrations were assessed in 1287 boys and 1114 girls. Their school and social performances were examined using the modified Scale for Assessing Emotional Disturbance questionnaire. Logistic and linear regression analyses were used to estimate the risk of MetS and also the association between breakfast consumption frequency and school or social performance. When breakfast consumption was regular, overall dietary quality was better. Children who consumed breakfast daily exhibited lower risks of high blood pressure (OR=0.37, 95% CI=0.19-0.71) and of MetS (OR=0.22, 95% CI=0.09-0.51) compared with children who consumed breakfast 0-4 times per week. Furthermore, children who consumed breakfast daily exhibited a higher overall competence (OC) score (β=0.71, p<0.05) in a dose-response manner (p for trend=0.02). This association was not dependent on overall diet or MetS. In conclusion, consuming breakfast daily is associated with better school performance, a lower risk of high blood pressure, and MetS independent of overall dietary quality. Thus, breakfast on school days is a factor in school performance and health. Copyright © 2015 Elsevier Ltd. All rights reserved.
Van Bergen, Saskia; Jelicic, Marko; Merckelbach, Harald
2009-01-01
The relationship between subjective memory beliefs and suggestibility, compliance, false memories, and objective memory performance was studied in a community sample of young and middle-aged people (N = 142). We hypothesized that people with subjective memory problems would exhibit higher suggestibility and compliance levels and would be more susceptible to false recollections than those who are optimistic about their memory. In addition, we expected a discrepancy between subjective memory judgments and objective memory performance. We found that subjective memory judgments correlated significantly with compliance, with more negative memory judgments accompanying higher levels of compliance. Contrary to our expectation, subjective memory problems did not correlate with suggestibility or false recollections. Furthermore, participants were accurate in estimating their objective memory performance.
Effect of fuel properties on performance of a single aircraft turbojet combustor
NASA Technical Reports Server (NTRS)
Butze, H. F.; Ehlers, R. C.
1975-01-01
The performance of a single-can JT8D combustor was investigated with a number of fuels exhibiting wide variations in chemical composition and volatility. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons and NOx, as well as liner temperatures and smoke. At the simulated idle condition no significant differences in performance were observed. At cruise, liner temperatures and smoke increased sharply with decreasing hydrogen content of the fuel. No significant differences were observed in the performance of an oil-shale derived JP-5 and a petroleum-based Jet A fuel except for emissions of NOx which were higher with the oil-shale JP-5. The difference is attributed to the higher concentration of fuel-bound nitrogen in the oil-shale JP-5.
Mechanical, Thermal and Acoustic Properties of Open-pore Phenolic Multi-structured Cryogel
NASA Astrophysics Data System (ADS)
Yao, Rui; Yao, Zhengjun; Zhou, Jintang; Liu, Peijiang; Lei, Yiming
2017-09-01
Open-pore phenolic cryogel acoustic multi-structured plates (OCMPs) were prepared via modified sol gel polymerization and freeze-dried methods. The pore morphology, mechanical, thermal and acoustic properties of the cryogels were investigated. From the experimental results, the cryogels exhibited a porous sandwich microstructure: A nano-micron double-pore structure was observed in the core layer of the plates, and nanosized pores were observed in the inner part of the micron pores. In addtion, compared with cryogel plates with uniform-pore (OCPs), the OCMPs had lower thermal conductivities. What’s more, the compressive and tensile strength of the OCMPs were much higher than those of OCPs. Finally, the OCMPs exhibited superior acoustic performances (20% solid content OCMPs performed the best) as compared with those of OCPs. Moreover, the sound insulation value and sound absorption bandwidth of OCMPs exhibited an improvement of approximately 3 and 2 times as compared with those of OCPs, respectively.
Stacked graphene nanofibers for electrochemical oxidation of DNA bases.
Ambrosi, Adriano; Pumera, Martin
2010-08-21
In this article, we show that stacked graphene nanofibers (SGNFs) demonstrate superior electrochemical performance for oxidation of DNA bases over carbon nanotubes (CNTs). This is due to an exceptionally high number of accessible graphene sheet edges on the surface of the nanofibers when compared to carbon nanotubes, as shown by transmission electron microscopy and Raman spectroscopy. The oxidation signals of adenine, guanine, cytosine, and thymine exhibit two to four times higher currents than on CNT-based electrodes. SGNFs also exhibit higher sensitivity than do edge-plane pyrolytic graphite, glassy carbon, or graphite microparticle-based electrodes. We also demonstrate that influenza A(H1N1)-related strands can be sensitively oxidized on SGNF-based electrodes, which could therefore be applied to label-free DNA analysis.
Mechanism-Based Design for High-Temperature, High-Performance Composites. Book 1
1997-09-01
with low thermal expansion and stiffness. Despite their importance in determining the performance of CMC structures, thermal properties have...continuous fibers Cox and Zok 669 account for degradation in the thermal expansion and conductivity of cross-ply laminates in the presence of...inherent disadvantages persist. Oxides generally exhibit higher thermal expansion and lower thermal conductivity than SiC-based CMCs and will
Moore, R. Davis; Drollette, Eric S.; Scudder, Mark R.; Bharij, Aashiv; Hillman, Charles H.
2014-01-01
The current study investigated the influence of cardiorespiratory fitness on arithmetic cognition in forty 9–10 year old children. Measures included a standardized mathematics achievement test to assess conceptual and computational knowledge, self-reported strategy selection, and an experimental arithmetic verification task (including small and large addition problems), which afforded the measurement of event-related brain potentials (ERPs). No differences in math achievement were observed as a function of fitness level, but all children performed better on math concepts relative to math computation. Higher fit children reported using retrieval more often to solve large arithmetic problems, relative to lower fit children. During the arithmetic verification task, higher fit children exhibited superior performance for large problems, as evidenced by greater d' scores, while all children exhibited decreased accuracy and longer reaction time for large relative to small problems, and incorrect relative to correct solutions. On the electrophysiological level, modulations of early (P1, N170) and late ERP components (P3, N400) were observed as a function of problem size and solution correctness. Higher fit children exhibited selective modulations for N170, P3, and N400 amplitude relative to lower fit children, suggesting that fitness influences symbolic encoding, attentional resource allocation and semantic processing during arithmetic tasks. The current study contributes to the fitness-cognition literature by demonstrating that the benefits of cardiorespiratory fitness extend to arithmetic cognition, which has important implications for the educational environment and the context of learning. PMID:24829556
Necka, Elizabeth A.; Sokolowski, H. Moriah; Lyons, Ian M.
2015-01-01
Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals’ self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one’s self – self-math overlap – may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated. PMID:26528210
Necka, Elizabeth A; Sokolowski, H Moriah; Lyons, Ian M
2015-01-01
Recent work has demonstrated that math anxiety is more than just the product of poor math skills. Psychosocial factors may play a key role in understanding what it means to be math anxious, and hence may aid in attempts to sever the link between math anxiety and poor math performance. One such factor may be the extent to which individuals integrate math into their sense of self. We adapted a well-established measure of this degree of integration (i.e., self-other overlap) to assess individuals' self-math overlap. This non-verbal single-item measure showed that identifying oneself with math (having higher self-math overlap) was strongly associated with lower math anxiety (r = -0.610). We also expected that having higher self-math overlap would leave one especially susceptible to the threat of poor math performance to the self. We identified two competing hypotheses regarding how this plays out in terms of math anxiety. Those higher in self-math overlap might be more likely to worry about poor math performance, exacerbating the negative relation between math anxiety and math ability. Alternatively, those higher in self-math overlap might exhibit self-serving biases regarding their math ability, which would instead predict a decoupling of the relation between their perceived and actual math ability, and in turn the relation between their math ability and math anxiety. Results clearly favored the latter hypothesis: those higher in self-math overlap exhibited almost no relation between math anxiety and math ability, whereas those lower in self-math overlap showed a strong negative relation between math anxiety and math ability. This was partially explained by greater self-serving biases among those higher in self-math overlap. In sum, these results reveal that the degree to which one integrates math into one's self - self-math overlap - may provide insight into how the pernicious negative relation between math anxiety and math ability may be ameliorated.
Pellicer-Chenoll, Maite; Garcia-Massó, Xavier; Morales, Jose; Serra-Añó, Pilar; Solana-Tramunt, Mònica; González, Luis-Millán; Toca-Herrera, José-Luis
2015-06-01
The relationship among physical activity, physical fitness and academic achievement in adolescents has been widely studied; however, controversy concerning this topic persists. The methods used thus far to analyse the relationship between these variables have included mostly traditional lineal analysis according to the available literature. The aim of this study was to perform a visual analysis of this relationship with self-organizing maps and to monitor the subject's evolution during the 4 years of secondary school. Four hundred and forty-four students participated in the study. The physical activity and physical fitness of the participants were measured, and the participants' grade point averages were obtained from the five participant institutions. Four main clusters representing two primary student profiles with few differences between boys and girls were observed. The clustering demonstrated that students with higher energy expenditure and better physical fitness exhibited lower body mass index (BMI) and higher academic performance, whereas those adolescents with lower energy expenditure exhibited worse physical fitness, higher BMI and lower academic performance. With respect to the evolution of the students during the 4 years, ∼25% of the students originally clustered in a negative profile moved to a positive profile, and there was no movement in the opposite direction. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please email: journals.permissions@oup.com.
Chen, Chen; Zhang, Ning; He, Yulu; Liang, Bo; Ma, Renzhi; Liu, Xiaohe
2016-09-07
Incorporation of two transition metals offers an effective method to enhance the electrochemical performance in supercapacitors for transition metal compound based electrodes. However, such a configuration is seldom concerned in pyrophosphates. Here, amorphous phase Co-Ni pyrophosphates are fabricated as electrodes in supercapacitors. Through controllably adjusting the ratios of Co and Ni as well as the calcination temperature, the electrochemical performance can be tuned. An optimized amorphous Ni-Co pyrophosphate exhibits much higher specific capacitance than monometallic Ni and Co pyrophosphates and shows excellent cycling ability. When employing Ni-Co pyrophosphates as positive electrode and activated carbon as a negative electrode, the fabricated asymmetric supercapacitor cell exhibits favorable capacitance and cycling ability. This study provides facile methods to improve the transition metal pyrophosphate electrodes for efficient electrodes in electrochemical energy storage devices.
NASA Astrophysics Data System (ADS)
Srinivasa, H. T.; Palakshamurthy, B. S.; Mohammad, AbdulKarim-Talaq
2018-03-01
Two sets of new ethyl 7-hydroxycoumarin-3-carboxylate derivatives were synthesized and characterized to study the liquid crystalline properties. Chemical structures were confirmed by IR, NMR, CHN analysis techniques. Mesomarphic properties were accomplished by DSC, POM and X-ray studies. Density functional theory calculations and photophysical studies also performed. In the first set, smaller homologues of alkoxybenzoic acid derivatives exhibit monotropic smectic A (SmA) and higher homologous exhibit enantiotropic smectic A mesophase. The second set alkyl biphenyl derivatives exhibit stable SmA and nematic (N) mesophases. The well defined focal conic texture for SmA and threaded texture for nematic mesophases have been observed.
NASA Technical Reports Server (NTRS)
Butze, H. F.; Ehlers, R. C.
1975-01-01
The performance of a single-can JT8D combustor was investigated with a number of fuels exhibiting wide variations in chemical composition and volatility. Performance parameters investigated were combustion efficiency, emissions of CO, unburned hydrocarbons and NOx, as well as liner temperatures and smoke. At the simulated idle condition no significant differences in performance were observed. At cruise, liner temperatures and smoke increased sharply with decreasing hydrogen content of the fuel. No significant differences were observed in the performance of an oil-shale derived JP-5 and a petroleum-based Jet A fuel except for emissions of NOx which were higher with the oil-shale JP-5. The difference is attributed to the higher concentration of fuel-bound nitrogen in the oil-shale JP-5.
Correlated evolution of personality, morphology and performance
Kern, Elizabeth M. A.; Robinson, Detric; Gass, Erika; Godwin, John; Langerhans, R. Brian
2018-01-01
Evolutionary change in one trait can elicit evolutionary changes in other traits due to genetic correlations. This constrains the independent evolution of traits and can lead to unpredicted ecological and evolutionary outcomes. Animals might frequently exhibit genetic associations among behavioural and morphological-physiological traits, because the physiological mechanisms behind animal personality can have broad multitrait effects and because many selective agents influence the evolution of multiple types of traits. However, we currently know little about genetic correlations between animal personalities and nonbehavioural traits. We tested for associations between personality, morphology and locomotor performance by comparing zebrafish (Danio rerio) collected from the wild and then selectively bred for either a proactive or reactive stress coping style (‘bold’ or ‘shy’ phenotypes). Based on adaptive hypotheses of correlational selection in the wild, we predicted that artificial selection for boldness would produce correlated evolutionary responses of larger caudal regions and higher fast-start escape performance (and the opposite for shyness). After four to seven generations, morphology and locomotor performance differed between personality lines: bold zebrafish exhibited a larger caudal region and higher fast-start performance than fish in the shy line, matching predictions. Individual-level phenotypic correlations suggested that pleiotropy or physical gene linkage likely explained the correlated response of locomotor performance, while the correlated response of body shape may have reflected linkage disequilibrium, which is breaking down each generation in the laboratory. Our results indicate that evolution of personality can result in concomitant changes in morphology and whole-organism performance, and vice versa. PMID:29398712
Market Orientation and Its Measurement in Universities
ERIC Educational Resources Information Center
Niculescu, Mihai; Xu, Bing; Hampton, Gerald M.; Peterson, Robin T.
2013-01-01
Historically, the measurement of market orientation has proved to be difficult, due to the low external validity of the concept. Existing scales exhibit acceptable properties in measuring market orientation in business organizations, but are less accurate in the context of higher education institutions. This paper compares the performance of three…
2014-08-01
Novel functionalized carbon nanotube supercapacitor materials Contribution to the supercapacitor TIF Trisha Huber...Novel functionalized carbon nanotube supercapacitor materials Contribution to the supercapacitor TIF Trisha Huber...presented as a log-log plot. As illustrated, supercapacitors offer performance intermediate between batteries and capacitors in that they exhibit higher
A Longitudinal Study on Dysgraphic Handwriting in Primary School.
ERIC Educational Resources Information Center
Hamstra-Bletz, Lisa; Blote, Anke W.
1993-01-01
Annual evaluation for 5 years of the handwriting of 121 Dutch primary school children revealed that children with dysgraphic handwriting had lower fine motor ability, exhibited poorer structural performance, and, in higher grades, showed less preference for a personal style, than did other writers. Children with and without dysgraphic handwriting…
Mixed matrix membranes (MMMs) consisting of ZSM-5 zeolite particles dispersed in silicone rubber exhibited ethanol-water pervaporation permselectivities up to 5 times that of silicone rubber alone and 3 times higher than simple vapor-liquid equilibrium (VLE). A number of conditi...
NASA Astrophysics Data System (ADS)
Lv, Jinlong; Wang, Zhuqing; Miura, Hideo
2018-01-01
Many NiO platelets were formed on Ni foam after hydrothermal process, while flower-like NiO with many small mesoporous nanoflakes was obtained on the surface of graphene foam. Electrochemical results showed that the NiO/graphene composites exhibited very high specific capacitance 1062 F g-1 at 1 A g-1 and excellent cycling stability (90.6% capacitance retention after 5000 cycles at 1 A g-1). The promising NiO/graphene composites exhibited higher supercapacitor performance than NiO platelets on Ni foam. The excellent supercapacitor performance of the former should be attributed to the 3D graphene conductive network and the mesoporous NiO nanoflakes which promoted efficient charge transport and electrolyte diffusion.
Wang, Shibin; Tang, Hongbiao; Guo, Jianchun; Wang, Kunjie
2016-08-20
pH is an important factor affecting the performance of polymer fluid. The rheological properties of hydroxypropyl guar gum (HPG) base fluid and the structural strength, rheological properties, viscoelastic properties and thixotropy properties of HPG gel depend largely on the pH values. For the base fluid, an apparent viscosity-increasing effect was observed over the pH range from 7 to 11, and the apparent viscosity gradually decreased at pH 11.5-14, exhibiting electrostatic repulsion behavior and steric effects. For the HPG gel, at pH 7-12.5, the gel possessed higher apparent viscosity, higher elastic modulus (G'), lower tanδ (the ratio of the viscous modulus to the elastic modulus) and an "8"-shaped hysteresis loop, indicating stronger gel structure strength and the elastic dominant property. At pH 13-13.5, the gel samples exhibited the transition from a pseudoplastic fluid to a Newtonian fluid, and their viscosity, elastic modulus decreased but tanδ increased with the increase in pH values, exhibiting gradually weakened elastic properties. When the pH was 14, the gel mainly exhibited viscous characteristics. Copyright © 2016 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wei, J. Q.; Chen, X. J.; Wang, P. F.; Han, Y. B.; Xu, J. C.; Hong, B.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Li, J.; Yang, Y. T.; Ge, H. L.; Wang, X. Q.
2018-06-01
Mesoporous SBA-15 was used to anchor TiO2 nanoparticles into the mesopores to form high surface area TiO2/SBA-15 nanocomposites, and then the influence of mesoporous-structure on the photocatalytic performance was investigated. TiO2/SBA-15 nanocomposites possessed the high specific surface area and appropriate pore size, indicating the excellent adsorption performance. TiO2/SBA-15 nanocomposites exhibited the higher photocatalytic activity to degrade dyes (methylene blue: MB) than TiO2 (removing SBA-15), which should attributed to the excellent adsorption performance of the nanocomposites. MB was absorbed to form the higher concentration near TiO2/SBA-15 photocatalysts, and the photocatalytic degradation for MB was improved.
Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Wei, Yuxue; Zhao, Chengji; Na, Hui
2016-09-14
Novel sulfonated poly(arylene ether ketones) (SDN-PAEK-x), consisting of dual naphthalene and flexible sulfoalkyl groups, were prepared via polycondensation, demethylation, and sulfobutylation grafting reaction. Among them, SDN-PAEK-1.94 membrane with the highest ion exchange capacity (IEC = 2.46 mequiv·g(-1)) exhibited the highest proton conductivity, which was 0.147 S· cm(-1) at 25 °C and 0.271 S·cm(-1) at 80 °C, respectively. The introduction of dual naphthalene moieties is expected to achieve much enhanced properties compared to those of sulfonated poly(arylene ether ketones) (SNPAEK-x), consisting of single naphthalene and flexible sulfoalkyl groups. Compared with SNPAEK-1.60 with a similar IEC, SDN-PAEK-1.74 membrane showed higher proton conductivity, higher IEC normalized conductivity, and higher effective proton mobility, although it had lower analytical acid concentration. The SDN-PAEK-x membranes with IECs higher than 1.96 mequiv·g(-1) also exhibited higher proton conductivity than that of recast Nafion membrane. Furthermore, SDN-PAEK-1.94 displayed a better single cell performance with a maximum power density of 60 mW·cm(-2) at 80 °C. Considering its high proton conductivity, excellent single cell performance, good mechanical stabilities, low membrane swelling, and methanol permeability, SDN-PAEK-x membranes are promising candidates as alternative polymer electrolyte membranes to Nafion for direct methanol fuel cell applications.
Mangalam, Madhur; Desai, Nisarg; Singh, Mewa
2015-01-01
A practical approach to understanding lateral asymmetries in body, brain, and cognition would be to examine the performance advantages/disadvantages associated with the corresponding functions and behavior. In the present study, we examined whether the division of labor in hand usage, marked by the preferential usage of the two hands across manual operations requiring maneuvering in three-dimensional space (e.g., reaching for food, grooming, and hitting an opponent) and those requiring physical strength (e.g., climbing), is associated with higher hand performance in free-ranging bonnet macaques, Macaca radiata. We determined the extent to which the macaques exhibit laterality in hand usage in an experimental unimanual and a bimanual food-reaching task, and the extent to which manual laterality is associated with hand performance in an experimental hand-performance-differentiation task. We observed negative relationships between (a) the latency in food extraction by the preferred hand in the hand-performance-differentiation task (wherein, lower latency implies higher performance), the preferred hand determined using the bimanual food-reaching task, and the normalized difference between the performance of the two hands, and (b) the normalized difference between the performance of the two hands and the absolute difference between the laterality in hand usage in the unimanual and the bimanual food-reaching tasks (wherein, lesser difference implies higher manual specialization). Collectively, these observations demonstrate that the division of labor between the two hands is associated with higher hand performance. PMID:25806511
Yang, Yingchang; Ji, Xiaobo; Lu, Fang; Chen, Qiyuan; Banks, Craig E
2013-09-28
Porous activated graphene sheets have been for the first time exploited herein as encapsulating substrates for lithium ion battery (LIB) anodes. The as-fabricated SnO2 nanocrystals-porous activated graphene sheet (AGS) composite electrode exhibits improved electrochemical performance as an anode material for LIBs, such as better cycle performance and higher rate capability in comparison with graphene sheets, activated graphene sheets, bare SnO2 and SnO2-graphene sheet composites. The superior electrochemical performances of the designed anode can be ascribed to the porous AGS substrate, which improves the electrical conductivity of the electrode, inhibits agglomeration between particles and effectively buffers the strain from the volume variation during Li(+)-intercalation-de-intercalation and provides more cross-plane diffusion channels for Li(+) ions. As a result, the designed anode exhibits an outstanding capacity of up to 610 mA h g(-1) at a current density of 100 mA g(-1) after 50 cycles and a good rate performance of 889, 747, 607, 482 and 372 mA h g(-1) at a current density of 100, 200, 500, 1000, and 2000 mA g(-1), respectively. This work is of importance for energy storage as it provides a new substrate for the design and implementation of next-generation LIBs exhibiting exceptional electrochemical performances.
Finite Element Modelling Full Vehicle Side Impact with Ultrahigh Strength Hot Stamped Steels
NASA Astrophysics Data System (ADS)
Taylor, T.; Fourlaris, G.; Cafolla, J.
2016-10-01
"Hot stamped boron steel" 22MnB5 has been imperative in meeting the automotive industry's demand for materials exhibiting higher tensile strength in the final component. In this paper, the crash performance of three experimental grades developed for automotive hot stamping technologies, exhibiting wider tensile property ranges than 22MnB5, was validated by finite element modelling full vehicle side impact with the experimental material data applied to the B-pillar reinforcement. The superior anti-intrusive crash performance of grade 38MnB5 was demonstrated, with 11 mm less intrusion of the B-pillar reinforcement compared to 22MnB5. Moreover, the superior "impact-energy absorptive" crash performance of grade 15MnCr5 was demonstrated, with 0.15 kJ greater impact-energy absorption by the B-pillar reinforcement compared to 22MnB5.
Declarative memory performance is associated with the number of sleep spindles in elderly women.
Seeck-Hirschner, Mareen; Baier, Paul Christian; Weinhold, Sara Lena; Dittmar, Manuela; Heiermann, Steffanie; Aldenhoff, Josef B; Göder, Robert
2012-09-01
Recent evidence suggests that the sleep-dependent consolidation of declarative memory relies on the nonrapid eye movement rather than the rapid eye movement phase of sleep. In addition, it is known that aging is accompanied by changes in sleep and memory processes. Hence, the purpose of this study was to investigate the overnight consolidation of declarative memory in healthy elderly women. Sleep laboratory of University. Nineteen healthy elderly women (age range: 61-74 years). We used laboratory-based measures of sleep. To test declarative memory, the Rey-Osterrieth Complex Figure Test was performed. Declarative memory performance in elderly women was associated with Stage 2 sleep spindle density. Women characterized by high memory performance exhibited significantly higher numbers of sleep spindles and higher spindle density compared with women with generally low memory performance. The data strongly support theories suggesting a link between sleep spindle activity and declarative memory consolidation.
NASA Astrophysics Data System (ADS)
Tsai, Jung-Hui; Chen, Jeng-Shyan; Chu, Yu-Jui
2005-01-01
The influence of δ-doping channels on the performance of n +-GaAs/p +-InGaP/n-GaAs camel-gate field effect transistors is investigated by theoretical analysis and experimental results. The depleted pn junction of the camel gate and the existence of considerable conduction band discontinuity at the InGaP/GaAs heterojunction enhance the potential barrier height and the forward gate voltage. As the concentration-thickness products of the n-GaAs layer and δ-doping layer are fixed, the higher δ-doping device exhibits a higher potential barrier height, a larger drain current, and a broader gate voltage swing, whereas the transconductance is somewhat lower. For a n +=5.5×10 12 cm -2δ-doping device, the experimental result exhibits a maximum transconductance of 240 mS/mm and a gate voltage swing of 3.5 V. Consequently, the studied devices provide a good potential for large signal and linear circuit applications.
Shin, Minjeong; Wu, Heng-Liang; Narayanan, Badri; See, Kimberly A; Assary, Rajeev S; Zhu, Lingyang; Haasch, Richard T; Zhang, Shuo; Zhang, Zhengcheng; Curtiss, Larry A; Gewirth, Andrew A
2017-11-15
We evaluate hydrofluoroether (HFE) cosolvents with varying degrees of fluorination in the acetonitrile-based solvate electrolyte to determine the effect of the HFE structure on the electrochemical performance of the Li-S battery. Solvates or sparingly solvating electrolytes are an interesting electrolyte choice for the Li-S battery due to their low polysulfide solubility. The solvate electrolyte with a stoichiometric ratio of LiTFSI salt in acetonitrile, (MeCN) 2 -LiTFSI, exhibits limited polysulfide solubility due to the high concentration of LiTFSI. We demonstrate that the addition of highly fluorinated HFEs to the solvate yields better capacity retention compared to that of less fluorinated HFE cosolvents. Raman and NMR spectroscopy coupled with ab initio molecular dynamics simulations show that HFEs exhibiting a higher degree of fluorination coordinate to Li + at the expense of MeCN coordination, resulting in higher free MeCN content in solution. However, the polysulfide solubility remains low, and no crossover of polysulfides from the S cathode to the Li anode is observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, Minjeong; Wu, Heng-Liang; Narayanan, Badri
We evaluate hydrofluoroether (HFE) cosolvents with varying degrees of fluorination in the acetonitrile-based solvate electrolyte to determine the effect of the HFE structure on the electrochemical performance of the Li-S battery. Solvates or sparingly solvating electrolytes are an interesting electrolyte choice for the Li-S battery due to their low polysulfide solubility. The solvate electrolyte with a stoichiometric ratio of LiTFSI salt in acetonitrile, (MeCN)(2)-LiTFSI, exhibits limited polysulfide solubility due to the high concentration of LiTFSI. We demonstrate that the addition of highly fluorinated HFEs to the solvate yields better capacity retention compared to that of less fluorinated HFE cosolvents. Ramanmore » and NMR spectroscopy coupled with ab initio molecular dynamics simulations show that HFEs exhibiting a higher degree of fluorination coordinate to Li+ at the expense of MeCN coordination, resulting in higher free MeCN content in solution. However, the polysulfide solubility remains low, and no crossover of polysulfides from the S cathode to the Li anode is observed.« less
Zhou, Huang; Zhang, Jian; Amiinu, Ibrahim Saana; Zhang, Chenyu; Liu, Xiaobo; Tu, Wenmao; Pan, Mu; Mu, Shichun
2016-04-21
Porous nitrogen-doped graphene with a very high surface area (1152 m(2) g(-1)) is synthesized by a novel strategy using intrinsically porous biomass (soybean shells) as a carbon and nitrogen source via calcination and KOH activation. To redouble the oxygen reduction reaction (ORR) activity by tuning the doped-nitrogen content and type, ammonia (NH3) is injected during thermal treatment. Interestingly, this biomass-derived graphene catalyst exhibits the unique properties of mesoporosity and high pyridine-nitrogen content, which contribute to the excellent oxygen reduction performance. As a result, the onset and half-wave potentials of the new metal-free non-platinum catalyst reach -0.009 V and -0.202 V (vs. SCE), respectively, which is very close to the catalytic activity of the commercial Pt/C catalyst in alkaline media. Moreover, our catalyst has a higher ORR stability and stronger CO and CH3OH tolerance than Pt/C in alkaline media. Importantly, in acidic media, the catalyst also exhibits good ORR performance and higher ORR stability compared to Pt/C.
Resting State Network Topology of the Ferret Brain
Zhou, Zhe Charles; Salzwedel, Andrew P.; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K.; Gilmore, John H.; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei
2016-01-01
Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4 tesla MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. PMID:27596024
Multiscale calculations of thermoelectric properties of n-type Mg2Si1-xSnx solid solutions
NASA Astrophysics Data System (ADS)
Tan, X. J.; Liu, W.; Liu, H. J.; Shi, J.; Tang, X. F.; Uher, C.
2012-05-01
The band structure of Mg2Si1-xSnx solid solutions with 0.250 ⩽ x ⩽ 0.875 is calculated using the first-principles pseudopotential method. It is found that the low-lying light and heavy conduction bands converge and the effective mass reaches a maximum value near x = 0.625. Using the semiclassical Boltzmann transport theory and relaxation-time approximation, we find that the system with x = 0.625 exhibits both higher Seebeck coefficient and higher electrical conductivity than other solid solutions at intermediate temperatures. By fitting first-principles total energy calculations, a modified Morse potential is constructed, which is used to predicate the lattice thermal conductivity via equilibrium molecular dynamics simulations. Due to relatively higher power factor and lower thermal conductivity, the Mg2Si0.375Sn0.625 is found to exhibit enhanced thermoelectric performance at 800 K, and additional Sb doping is considered in order to make a better comparison with experiment results.
Carbon nanotube-lipase hybrid nanoflowers with enhanced enzyme activity and enantioselectivity.
Li, Kai; Wang, Jianhua; He, Yaojia; Abdulrazaq, Miaad Adnan; Yan, Yunjun
2018-06-19
Various nanoflowers are synthesized as supports for different methods of enzyme immobilization; however, the activities of these immobilized enzymes are limited because of their confinement in the nanoflowers. In order to increase the performance of nanoflowers, in this study, different protein-phosphate hybrid nanostructures were successfully synthesized and further enhanced by carbon nanotubes (CNTs) under the same conditions. Only Cu 3 (PO 4 ) 2 complex nanostructures exhibited flower-like structures and showed excellent results after enhancement with CNTs in this framework. An esterification reaction between lauric acid and 1-dodecanol was used to test enzyme activity during immobilization, revealing that the Cu 3 (PO 4 ) 2 /CNT/protein complex exhibited 68-fold higher activity relative to free lipase and 51-fold higher than that of Cu 3 (PO 4 ) 2 /Burkholderia cepacia lipase hybrid nanoflowers in the absence of CNTs. All three hybrid nanostructures showed good performance and exhibited excellent reusability in resolution reactions between 1-phenylethanol and vinyl acetate. Additionally, the substrate enantiomeric excess (ee s ) reached 98% in only 10 min, and the corresponding Cu 3 (PO 4 ) 2 /CNT/protein complex could be recycled eight times without obvious loss of activity. This approach involving nanoflowers enhanced with CNTs will be highly beneficial for decreasing mass-transfer resistance and providing enhanced enzyme loading along with promising potential for industrial application. Copyright © 2018 Elsevier B.V. All rights reserved.
Yang, Dewei; Jing, Huijuan; Wang, Zhaowu; Li, Jiaheng; Hu, Mingxiang; Lv, Ruitao; Zhang, Rui; Chen, Deliang
2018-05-19
Activated carbon (AC) based supercapacitors exhibit intrinsic advantages in energy storage. Traditional two-step synthesis (carbonization and activation) of AC faces difficulties in precisely regulating its pore-size distribution and thoroughly removing residual impurities like silicon oxide. This paper reports a novel coupled ultrasonication-milling (CUM) process for the preparation of hierarchically porous carbon (HPC) using corn cobs as the carbon resource. The as-obtained HPC is of a large surface area (2288 m 2 g -1 ) with a high mesopore ratio of ∼44.6%. When tested in a three-electrode system, the HPC exhibits a high specific capacitance of 465 F g -1 at 0.5 Ag -1 , 2.7 times higher than that (170 F g -1 ) of the commercial AC (YP-50F). In the two-electrode test system, the HPC device exhibits a specific capacitance of 135 F g -1 at 1 A g -1 , twice higher than that (68 F g -1 ) of YP-50F. The above excellent energy-storage properties are resulted from the CUM process which efficiently removes the impurities and modulates the mesopore/micropore structures of the AC samples derived from the agricultural resides of corn cobs. The CUM process is an efficient method to prepare high-performance biomass-derived AC materials. Copyright © 2018 Elsevier Inc. All rights reserved.
Isokinetic knee joint evaluation in track and field events.
Deli, Chariklia K; Paschalis, Vassilis; Theodorou, Anastasios A; Nikolaidis, Michalis G; Jamurtas, Athanasios Z; Koutedakis, Yiannis
2011-09-01
The purpose of this study was to evaluate maximal torque of the knee flexors and extensors, flexor/extensor ratios, and maximal torque differences between the 2 lower extremities in young track and field athletes. Forty male track and field athletes 13-17 years old and 20 male nonathletes of the same age participated in the study. Athletes were divided into 4 groups according to their age and event (12 runners and 10 jumpers 13-15 years old, 12 runners and 6 jumpers 16-17 years old) and nonathletes into 2 groups of the same age. Maximal torque evaluation of knee flexors and extensors was performed on an isokinetic dynamometer at 60°·s(-1). At the age of 16-17 years, jumpers exhibited higher strength values at extension than did runners and nonathletes, whereas at the age of 13-15 years, no significant differences were found between events. Younger athletes were weaker than older athletes at flexion. Runners and jumpers were stronger than nonathletes in all relative peak torque parameters. Nonathletes exhibited a higher flexor/extensor ratio compared with runners and jumpers. Strength imbalance in athletes was found between the 2 lower extremities in knee flexors and extensors and also at flexor/extensor ratio of the same extremity. Young track and field athletes exhibit strength imbalances that could reduce their athletic performance, and specific strength training for the weak extremity may be needed.
NASA Astrophysics Data System (ADS)
Asha, S.; Ananth, A. Nimrodh; Jose, Sujin P.; Rajan, M. A. Jothi
2018-05-01
Reduced Graphene Oxide aerogels (A-RGO), functionalized with chitosan, were found to induce and/or accelerate the mineralization of hydroxyapatite. The functionalized chitosan acts as a soft interfacial template on the surface of A-RGO assisting the growth of hydroxyapatite particles. The mineralization on these soft aerogel networks was performed by soaking the aerogels in simulated body fluid, relative to time. Polymer-induced mineralization exhibited an ordered arrangement of hydroxyapatite particles on reduced graphene oxide aerogel networks with a higher crystalline index (IC) of 1.7, which mimics the natural bone formation indicating the importance of the polymeric interfacial template. These mineralized aerogels which mimic the structure and composition of natural bone exhibit relatively higher rate of cell proliferation, osteogenic differentiation and osteoid matrix formation proving it to be a potential scaffold for bone tissue regeneration.
InP nanopore arrays for photoelectrochemical hydrogen generation.
Li, Qiang; Zheng, Maojun; Zhang, Bin; Zhu, Changqing; Wang, Faze; Song, Jingnan; Zhong, Miao; Ma, Li; Shen, Wenzhong
2016-02-19
We report a facile and large-scale fabrication of highly ordered one-dimensional (1D) indium phosphide (InP) nanopore arrays (NPs) and their application as photoelectrodes for photoelectrochemical (PEC) hydrogen production. These InP NPs exhibit superior PEC performance due to their excellent light-trapping characteristics, high-quality 1D conducting channels and large surface areas. The photocurrent density of optimized InP NPs is 8.9 times higher than that of planar counterpart at an applied potential of +0.3 V versus RHE under AM 1.5G illumination (100 mW cm(-2)). In addition, the onset potential of InP NPs exhibits 105 mV of cathodic shift relative to planar control. The superior performance of the nanoporous samples is further explained by Mott-Schottky and electrochemical impedance spectroscopy ananlysis.
A series of BCN nanosheets with enhanced photoelectrochemical performances
NASA Astrophysics Data System (ADS)
Li, Junqi; Lei, Nan; Hao, Hongjuan; Zhou, Jian
2017-03-01
A series of flake-like BCN compounds were produced by calcination at different reaction temperatures via thermal substitution of C atoms with B atoms of boric acid substructures in graphitic carbon nitrides (g-C3N4). The structural and optical properties of the samples were characterized by XRD, TEM, HRTEM, XPS and UV-vis absorption. The photoelectrochemical (PEC) performance of all samples were characterized through photocurrent and electrochemical impedance spectroscopy (EIS) measurement. The test results demonstrated that BCN nanosheets exhibited higher PEC performance with increasing substituted amount of boron.
Peroxidase-like activity of apoferritin paired gold clusters for glucose detection.
Jiang, Xin; Sun, Cuiji; Guo, Yi; Nie, Guangjun; Xu, Li
2015-02-15
The discovery and application of noble metal nanoclusters have received considerable attention. In this paper, we reported that apoferritin paired gold clusters (Au-Ft) could efficiently catalyze oxidation of 3.3',5.5'-tetramethylbenzidine (TMB) by H2O2 to produce a blue color reaction. Compared with natural enzyme, Au-Ft exhibited higher activity near acidic pH and could be used over a wide range of temperatures. Apoferritin nanocage enhanced the reaction activity of substrate TMB by H2O2. The reaction catalyzed by Au-Ft was found to follow a typical Michaelis-Menten kinetics. The kinetic parameters exhibited a lower K(m) value (0.097 mM) and a higher K(cat) value (5.8 × 10(4) s(-1)) for TMB than that of horse radish peroxidase (HRP). Base on these findings, Au-Ft, acting as a peroxidase mimetic, performed enzymatic spectrophotometric analysis of glucose. This system exhibited acceptable reproducibility and high selectivity in biosening, suggesting that it could have promising applications in the future. Copyright © 2014 Elsevier B.V. All rights reserved.
Photoelectrochemical performance of W-doped BiVO4 thin films deposited by spray pyrolysis
NASA Astrophysics Data System (ADS)
Holland, S. Keith; Dutter, Melissa R.; Lawrence, David J.; Reisner, Barbara A.; DeVore, Thomas C.
2014-01-01
The effects of tungsten doping and hydrogen annealing on the photoelectrochemical (PEC) performance of bismuth vanadate (BiVO4) photoanodes for solar water splitting were studied. Thin films of BiVO were deposited on indium tin oxide-coated glass slides by ultrasonic spray pyrolysis of an aqueous solution containing bismuth nitrate and vanadium oxysulfate. Tungsten doping was achieved by adding either silicotungstic acid (STA) or ammonium metatungstate (AMT) to the precursor. The 1.7- to 2.2-μm-thick films exhibited a highly porous microstructure. Undoped films that were reduced at 375°C in 3% H exhibited the largest photocurrent densities under 0.1 W cm-2 AM1.5 illumination, where photocurrent densities of up to 1.3 mA cm-2 at 0.5 V with respect to Ag/AgCl were achieved. Films doped with 1% or 5% (atomic percent) tungsten from either STA or AMT exhibited reduced PEC performance and greater sample-to-sample performance variations. Powder x-ray diffraction data indicated that the films continue to crystallize in the monoclinic polymorph at low doping levels but crystallize in the tetragonal scheelite structure at higher doping. It is surmised that the phase and morphology differences promoted by the addition of W during the deposition process reduced the PEC performance as measured by photovoltammetry.
Higher integrity of the motor and visual pathways in long-term video game players.
Zhang, Yang; Du, Guijin; Yang, Yongxin; Qin, Wen; Li, Xiaodong; Zhang, Quan
2015-01-01
Long term video game players (VGPs) exhibit superior visual and motor skills compared with non-video game control subjects (NVGCs). However, the neural basis underlying the enhanced behavioral performance remains largely unknown. To clarify this issue, the present study compared the whiter matter integrity within the corticospinal tracts (CST), the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the inferior fronto-occipital fasciculus (IFOF) between the VGPs and the NVGCs using diffusion tensor imaging. Compared with the NVGCs, voxel-wise comparisons revealed significantly higher fractional anisotropy (FA) values in some regions within the left CST, left SLF, bilateral ILF, and IFOF in VGPs. Furthermore, higher FA values in the left CST at the level of cerebral peduncle predicted a faster response in visual attention tasks. These results suggest that higher white matter integrity in the motor and higher-tier visual pathways is associated with long-term video game playing, which may contribute to the understanding on how video game play influences motor and visual performance.
Higher integrity of the motor and visual pathways in long-term video game players
Du, Guijin; Yang, Yongxin; Qin, Wen; Li, Xiaodong; Zhang, Quan
2015-01-01
Long term video game players (VGPs) exhibit superior visual and motor skills compared with non-video game control subjects (NVGCs). However, the neural basis underlying the enhanced behavioral performance remains largely unknown. To clarify this issue, the present study compared the whiter matter integrity within the corticospinal tracts (CST), the superior longitudinal fasciculus (SLF), the inferior longitudinal fasciculus (ILF), and the inferior fronto-occipital fasciculus (IFOF) between the VGPs and the NVGCs using diffusion tensor imaging. Compared with the NVGCs, voxel-wise comparisons revealed significantly higher fractional anisotropy (FA) values in some regions within the left CST, left SLF, bilateral ILF, and IFOF in VGPs. Furthermore, higher FA values in the left CST at the level of cerebral peduncle predicted a faster response in visual attention tasks. These results suggest that higher white matter integrity in the motor and higher-tier visual pathways is associated with long-term video game playing, which may contribute to the understanding on how video game play influences motor and visual performance. PMID:25805981
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ogawa, Makoto, E-mail: waseda.ogawa@gmail.com; Department of Earth Sciences, Waseda University, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050; Morita, Masashi, E-mail: m-masashi@y.akane.waseda.jp
2013-10-15
A layered titanate, potassium lithium titanate, with the size range from 0.1 to 30 µm was prepared to show the effects of the particle size on the materials performance. The potassium lithium titanate was prepared by solid-state reaction as reported previously, where the reaction temperature was varied. The reported temperature for the titanate preparation was higher than 800 °C, though 600 °C is good enough to obtain single-phase potassium lithium titanate. The lower temperature synthesis is cost effective and the product exhibit better performance as photocatalysts due to surface reactivity. - Graphical abstract: Finite particle of a layered titanate, potassiummore » lithium titanate, was prepared by solid-state reaction at lower temperature to show modified materials performance. Display Omitted - Highlights: • Potassium lithium titanate was prepared by solid-state reaction. • Lower temperature reaction resulted in smaller sized particles of titanate. • 600 °C was good enough to obtain single phased potassium lithium titanate. • The product exhibited better performance as photocatalyst.« less
ERIC Educational Resources Information Center
Lesmana, Cokorda Bagus J.; Suryani, Luh Ketut; Tiliopoulos, Niko
2015-01-01
Childhood and adolescence sexual abuse can have long-lasting and devastating effects on personal and interpersonal growth and development. Sexually abused children tend to exhibit higher rates of poor school performance, aggressive behavior, PTSD (posttraumatic stress disorder), or depressive symptomatology, as well as social and relational…
Scribner, Kenneth J.
1985-01-01
Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants.
ERIC Educational Resources Information Center
Babb, Corbett A.
2012-01-01
The purpose of this exploratory quantitative research study was to determine if middle schools in which higher levels of servant leadership are evident perform better on school effectiveness measures than middle schools that exhibit lower degrees of servant leadership. Furthermore, it sought to identify contextual factors that were correlated with…
Detailed performance analysis of the A.A.D. - concept B
NASA Technical Reports Server (NTRS)
Sekar, R.; Tozzi, L.
1983-01-01
New concepts for engine performance improvement are seen through the adoption of heat regeneration techniques; advanced methods to enhance the combustion; and higher efficiency air handling machinery, such as the positive displacement helical screw expander and compressor. Each of these concepts plays a particular role in engine performance improvement. First regeneration has a great potential for achieving higher engine thermal efficiency through the recovery of waste energy. Although the concept itself is not new (this technique is used in the gas turbine), the application to reciprocating internal combustion engines is quite unusual and presents conceptual difficulties. The second important area is better control of the combustion process in terms of heat transfer characteristics, combustion products, and heat release rate. The third area for performance improvement is in the adoption of high efficiency air handling machinery. In particular, positive displacement helical expander and compressor exhibit an extremely high efficiency over a wide range of operating conditions.
Wang, Kun; Tang, Rong-Yu; Zhao, Xiao-Bo; Li, Jun-Jie; Lang, Yi-Ran; Jiang, Xiao-Xia; Sun, Hong-Ji; Lin, Qiu-Xia; Wang, Chang-Yong
2015-11-28
The development of coating materials for neural interfaces has been a pursued to improve the electrical, mechanical and biological performances. For these goals, a bioactive coating was developed in this work featuring a poly(3,4-ethylenedioxythiophene) (PEDOT)/carbon nanotube (CNT) composite and covalently bonded YIGSR and RGD. Its biological effect and electrical characteristics were assessed in vivo on microwire arrays (MWA). The coated electrodes exhibited a significantly higher charge storage capacity (CSC) and lower electrochemical impedance at 1 kHz which are desired to improve the stimulating and recording performances, respectively. Acute neural recording experiments revealed that coated MWA possess a higher signal/noise ratio capturing spikes undetected by uncoated electrodes. Moreover, coated MWA possessed more active sites and single units, and the noise floor of coated electrodes was lower than that of uncoated electrodes. There is little information in the literature concerning the chronic performance of bioactively modified neural interfaces in vivo. Therefore in this work, chronic in vivo tests were conducted and the PEDOT/PSS/MWCNT-polypeptide coated arrays exhibited excellent performances with the highest mean maximal amplitude from day 4 to day 12 during which the acute response severely compromised the performance of the electrodes. In brief, we developed a simple method of covalently bonding YIGSR and RGD to a PEDOT/PSS/MWCNT-COOH composite improving both the biocompatibility and electrical performance of the neural interface. Our findings suggest that YIGSR and RGD modified PEDOT/PSS/MWCNT is a promising bioactivated composite coating for neural recording and stimulating.
Unique properties of halide perovskites as possible origins of the superior solar cell performance.
Yin, Wan-Jian; Shi, Tingting; Yan, Yanfa
2014-07-16
Halide perovskites solar cells have the potential to exhibit higher energy conversion efficiencies with ultrathin films than conventional thin-film solar cells based on CdTe, CuInSe2 , and Cu2 ZnSnSe4 . The superior solar-cell performance of halide perovskites may originate from its high optical absorption, comparable electron and hole effective mass, and electrically clean defect properties, including point defects and grain boundaries. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of Fatigue Crack Paths in Cold Drawn Pearlitic Steel
Toribio, Jesús; González, Beatriz; Matos, Juan-Carlos
2015-01-01
In this paper, a fracto-metallographic analysis was performed on the cracked specimens of cold drawn pearlitic steel subjected to fatigue tests. Fatigue cracks are transcollonial and exhibit a preference for fracturing pearlitic lamellae, with non-uniform crack opening displacement values, micro-discontinuities, branchings, bifurcations and frequent local deflections that create microstructural roughness. At the micro-level, the cold drawn pearlitic steel exhibits higher micro-roughness than the hot rolled bar (this is a consequence of the manufacturing process by cold drawing), so that the actual fractured surface in the cold drawn wire is greater than that in the hot rolled bar, due to the fact that the crack deflection events are more frequent and with higher angle in the former (the heavily drawn prestressing steel wire). These findings show the relevant role on the manufacturing process by cold drawing in the fatigue crack propagation in pearlitic steel. PMID:28793647
Analysis of Fatigue Crack Paths in Cold Drawn Pearlitic Steel.
Toribio, Jesús; González, Beatriz; Matos, Juan-Carlos
2015-11-04
In this paper, a fracto-metallographic analysis was performed on the cracked specimens of cold drawn pearlitic steel subjected to fatigue tests. Fatigue cracks are transcollonial and exhibit a preference for fracturing pearlitic lamellae, with non-uniform crack opening displacement values, micro-discontinuities, branchings, bifurcations and frequent local deflections that create microstructural roughness. At the micro-level, the cold drawn pearlitic steel exhibits higher micro-roughness than the hot rolled bar (this is a consequence of the manufacturing process by cold drawing), so that the actual fractured surface in the cold drawn wire is greater than that in the hot rolled bar, due to the fact that the crack deflection events are more frequent and with higher angle in the former (the heavily drawn prestressing steel wire). These findings show the relevant role on the manufacturing process by cold drawing in the fatigue crack propagation in pearlitic steel.
NASA Technical Reports Server (NTRS)
Matheny, N. W.; Gatlin, D. H.
1978-01-01
A TF-8A airplane was equipped with a transport type supercritical wing and fuselage fairings to evaluate predicted performance improvements for cruise at transonic speeds. A comparison of aerodynamic derivatives extracted from flight and wind tunnel data showed that static longitudinal stability, effective dihedral, and aileron effectiveness, were higher than predicted. The static directional stability derivative was slower than predicted. The airplane's handling qualities were acceptable with the stability augmentation system on. The unaugmented airplane exhibited some adverse lateral directional characteristics that involved low Dutch roll damping and low roll control power at high angles of attack and roll control power that was greater than satisfactory for transport aircraft at cruise conditions. Longitudinally, the aircraft exhibited a mild pitchup tendency. Leading edge vortex generators delayed the onset of flow separation, moving the pitchup point to a higher lift coefficient and reducing its severity.
Guo, Zhuang; Cao, Hongbin; Wang, Yuxian; Xie, Yongbing; Xiao, Jiadong; Yang, Jin; Zhang, Yi
2018-06-01
Three kinds of graphitic carbon nitride materials (bulk, porous and nanosheet g-C 3 N 4 ) were composited with a multiwall carbon nanotube (MWCNT) by a hydrothermal method, and the obtained b-C 3 N 4 /CNT, p-C 3 N 4 /CNT and n-C 3 N 4 /CNT materials were used in the electrodes for electro-peroxone process. It was found that the n-C 3 N 4 /CNT composite exhibited the highest efficiency in oxalate degradation, though it performed the worst in the oxygen-reduction reaction for H 2 O 2 production. The n-C 3 N 4 /CNT composite exhibited higher activity than CNT and other composites in catalytic ozonation experiments, due to the higher pyrrolic-N content modified on the CNT surface and higher surface area. It also has higher electron transfer ability, which benefited to the electro-reduction of both O 2 and O 3 . The result confirmed that catalytic ozonation process was an important means to enhance the degradation efficiency in the electro-peroxone process, besides peroxone process and O 3 -electrolysis. Copyright © 2018 Elsevier Ltd. All rights reserved.
Exploration of Piezoelectric Bimorph Deflection in Synthetic Jet Actuators
NASA Astrophysics Data System (ADS)
Housley, Kevin; Amitay, Michael
2017-11-01
The design of piezoelectric bimorphs for synthetic jet actuators could be improved by greater understanding of the deflection of the bimorphs; both their mode shapes and the resulting volume change inside the actuator. The velocity performance of synthetic jet actuators is dependent on this volume change and the associated internal pressure changes. Knowledge of these could aid in refining the geometry of the cavity to improve efficiency. Phase-locked jet velocities and maps of displacement of the surface of the bimorph were compared between actuators of varying diameter. Results from a bimorph of alternate stiffness were also compared. Bimorphs with higher stiffness exhibited a more desirable (0,1) mode shape, which produced a high volume change inside of the actuator cavity. Those with lower stiffness allowed for greater displacement of the surface, initially increasing the volume change, but exhibited higher mode shapes at certain frequency ranges. These higher node shapes sharply reduced the volume change and negatively impacted the velocity of the jet at those frequencies. Adjustments to the distribution of stiffness along the radius of the bimorph could prevent this and allow for improved deflection without the risk of reaching higher modes.
Haque, Md Moinul; Pramanik, Habibur Rahman; Biswas, Jiban Krishna; Iftekharuddaula, K M; Hasanuzzaman, Mirza
2015-01-01
Hybrid rice varieties have higher yield potential over inbred varieties. This improvement is not always translated to the grain yield and its physiological causes are still unclear. In order to clarify it, two field experiments were conducted including two popular indica hybrids (BRRI hybrid dhan2 and Heera2) and one elite inbred (BRRI dhan45) rice varieties. Leaf area index, chlorophyll status, and photosynthetic rate of flag leaf, postheading crop growth rate, shoot reserve translocation, source-sink relation and yield, and its attributes of each variety were comprehensively analyzed. Both hybrid varieties outyielded the inbred. However, the hybrids and inbred varieties exhibited statistically identical yield in late planting. Both hybrids accumulated higher amount of biomass before heading and exhibited greater remobilization of assimilates to the grain in early plantings compared to the inbred variety. Filled grain (%) declined significantly at delayed planting in the hybrids compared to elite inbred due to increased temperature impaired-inefficient transport of assimilates. Flag leaf photosynthesis parameters were higher in the hybrid varieties than those of the inbred variety. Results suggest that greater remobilization of shoot reserves to the grain rendered higher yield of hybrid rice varieties.
Horowitz-Kraus, Tzipi
2014-01-01
Adolescents with dyslexia exhibit well-established impairments in executive abilities. The Wisconsin card sorting test (WCST) is an executive test that yields surprisingly inconsistent results with this population. The current study aimed to shed light on the contradictory findings in the literature regarding the performance levels by individuals with dyslexia in WCST. We used a computerized-WCST (named the 'Madrid-Card Sorting Test') assessing executive functions using the Event-Related Potentials (ERPs) methodology. Adolescents with dyslexia exhibited a higher error rate and slower reaction times. This was most evident in the later trials of the series. However, differences in ERPs between the two groups were found only in the "target-locked" conditions, where individuals with dyslexia displayed decreased ERP components (N100, P300) compared to skilled readers. The changes between the groups in the "shift" compared to the "stay" conditions suggest the central role of working memory both in basic (e.g., shifting) and higher order (e.g., reading) processes in individuals with dyslexia. These findings suggest the central role of working memory both in basic (e.g., shifting) and higher order (e.g., reading) processes in individuals with dyslexia. The intact shifting mechanism and the working memory deficit may guide the building of more efficient intervention programs for individuals with dyslexia in the future.
NASA Astrophysics Data System (ADS)
Rewari, Sonam; Nath, Vandana; Haldar, Subhasis; Deswal, S. S.; Gupta, R. S.
2016-12-01
In this paper for the first time, the noise immunity and analog performance of nanotube junctionless field effect transistor (NJLFET) has been investigated. Small signal AC performance metrics namely Scattering parameters (S-parameters) have been analyzed along with analog parameters to validate the suitability of NJLFET for RFIC design. NJLFET performance is examined by comparing its performance with junctionless gate-all-around (JLGAA) MOSFET. It has been inferred that NJLFET has improved I on/ I off ratio directing improved digital performance at higher channel lengths, reduced channel resistance ( R ch) which enables the MOSFET to provide a low resistance path to current and improved early voltage ( V EA) which shows the capability for high-gain amplification and higher g m/ g d directing high intrinsic dc gain. Higher f Tmax for NJLFET has been observed posing its potential for terahertz applications. Higher gain transconductance frequency product makes NJLFET an ultimate device for high-speed switching applications. Higher maximum transducer power gain in NJLFET implies higher power gain than JLGAA MOSFET. Also, NJLFET exhibits lower harmonic distortion and it has been explained by significant reduction in third-order derivative of transconductance, g m3. Reduction in g m3 shows that NJLFET provides better linearity over JLGAA and is more suitable for RFIC design. Also the S-parameters namely S11, S12, S21 and S22 have been analyzed to verify the small signal performance. A lower magnitude for reflection coefficients S11 and S22 depicts minimum reflection and higher matching between ports in NJLFET than JLGAA MOSFET. Higher voltage gains S12 and S21 are present in NJLFET than its counterpart which shows the higher gains that can be achieved using nanotube architecture. The noise metrics which are noise figure and noise conductance show significant reduction for NJLFET justifying its noise immunity.
Anderson, Afrouz A; Parsa, Kian; Geiger, Sydney; Zaragoza, Rachel; Kermanian, Riley; Miguel, Helga; Dashtestani, Hadis; Chowdhry, Fatima A; Smith, Elizabeth; Aram, Siamak; Gandjbakhche, Amir H
2018-01-01
Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score). While controlling for age, results indicated that high performance (HP) subjects (accuracy > 90%) showed task dependent lower activation compared to normal performance subjects in PFC region Specifically HP groups showed lower activation in left dorsolateral PFC (DLPFC) region during performance of auditory task whereas during visual task they showed lower activation in the right DLPFC. After accounting for learning style, we found a correlation between visual and aural VARK score and level of activation in the PFC. Subjects with higher visual VARK scores displayed lower activation during auditory task in left DLPFC, while those with higher visual scores exhibited higher activation during visual task in bilateral DLPFC. During performance of auditory task, HP subjects had higher visual VARK scores compared to NP subjects indicating an effect of learning style on the task performance and activation. The results of this study show that learning style and task performance can influence PFC activation, with applications toward neurological implications of learning style and populations with deficits in auditory or visual processing.
Anderson, Afrouz A.; Parsa, Kian; Geiger, Sydney; Zaragoza, Rachel; Kermanian, Riley; Miguel, Helga; Chowdhry, Fatima A.; Smith, Elizabeth; Aram, Siamak; Gandjbakhche, Amir H.
2018-01-01
Existing literature outlines the quality and location of activation in the prefrontal cortex (PFC) during working memory (WM) tasks. However, the effects of individual differences on the underlying neural process of WM tasks are still unclear. In this functional near infrared spectroscopy study, we administered a visual and auditory n-back task to examine activation in the PFC while considering the influences of task performance, and preferred learning strategy (VARK score). While controlling for age, results indicated that high performance (HP) subjects (accuracy > 90%) showed task dependent lower activation compared to normal performance subjects in PFC region Specifically HP groups showed lower activation in left dorsolateral PFC (DLPFC) region during performance of auditory task whereas during visual task they showed lower activation in the right DLPFC. After accounting for learning style, we found a correlation between visual and aural VARK score and level of activation in the PFC. Subjects with higher visual VARK scores displayed lower activation during auditory task in left DLPFC, while those with higher visual scores exhibited higher activation during visual task in bilateral DLPFC. During performance of auditory task, HP subjects had higher visual VARK scores compared to NP subjects indicating an effect of learning style on the task performance and activation. The results of this study show that learning style and task performance can influence PFC activation, with applications toward neurological implications of learning style and populations with deficits in auditory or visual processing. PMID:29870536
Scribner, K.J.
1985-01-29
Improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst are disclosed. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.
Scribner, K.J.
1985-11-26
Disclosed is an improved, multiphase, high performance, high energy, extrusion cast explosive compositions, comprising, a crystalline explosive material; an energetic liquid plasticizer; a urethane prepolymer, comprising a blend of polyvinyl formal, and polycaprolactone; a polyfunctional isocyanate; and a catalyst. These new explosive compositions exhibit higher explosive content, a smooth detonation front, excellent stability over long periods of storage, and lower sensitivity to mechanical stimulants. 1 fig.
Zhang, Changbo; Yan, Cong; Xue, Zhenjie; Yu, Wei; Xie, Yinde; Wang, Tie
2016-10-01
Copper sulfides (Cu 2-x S), are a novel kind of photothermal material exhibiting significant photothermal conversion efficiency, making them very attractive in various energy conversion related devices. Preparing high quality uniform Cu 2-x S nanocrystals (NCs) is a top priority for further energy-and sustainability relevant nanodevices. Here, a shape-controlled high quality Cu 7 S 4 NCs synthesis strategy is reported using sulfur in 1-octadecene as precursor by varying the heating temperature, as well as its forming mechanism. The performance of the Cu 7 S 4 NCs is further explored for light-driven water evaporation without the need of heating the bulk liquid to the boiling point, and the results suggest that as-synthesized highly monodisperse NCs perform higher evaporation rate than polydisperse NCs under the identical morphology. Furthermore, disk-like NCs exhibit higher water evaporation rate than spherical NCs. The water evaporation rate can be further enhanced by assembling the organic phase Cu 7 S 4 NCs into a dense film on the aqueous solution surface. The maximum photothermal conversion efficiency is as high as 77.1%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Resting state network topology of the ferret brain.
Zhou, Zhe Charles; Salzwedel, Andrew P; Radtke-Schuller, Susanne; Li, Yuhui; Sellers, Kristin K; Gilmore, John H; Shih, Yen-Yu Ian; Fröhlich, Flavio; Gao, Wei
2016-12-01
Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4T MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function. Copyright © 2016 Elsevier Inc. All rights reserved.
Study of ceria-carbonate nanocomposite electrolytes for low-temperature solid oxide fuel cells.
Fan, L; Wang, C; Di, J; Chen, M; Zheng, J; Zhu, B
2012-06-01
Composite and nanocomposite samarium doped ceria-carbonates powders were prepared by solid-state reaction, citric acid-nitrate combustion and modified nanocomposite approaches and used as electrolytes for low temperature solid oxide fuel cells. X-ray Diffraction, Scanning Electron Microscope, low-temperature Nitrogen Adsorption/desorption Experiments, Electrochemical Impedance Spectroscopy and fuel cell performance test were employed in characterization of these materials. All powders are nano-size particles with slight aggregation and carbonates are amorphous in composites. Nanocomposite electrolyte exhibits much lower impedance resistance and higher ionic conductivity than those of the other electrolytes at lower temperature. Fuel cell using the electrolyte prepared by modified nanocomposite approach exhibits the best performance in the whole operation temperature range and achieves a maximum power density of 839 mW cm(-2) at 600 degrees C with H2 as fuel. The excellent physical and electrochemical performances of nanocomposite electrolyte make it a promising candidate for low-temperature solid oxide fuel cells.
Fabrication of bioinspired nanostructured materials via colloidal self-assembly
NASA Astrophysics Data System (ADS)
Huang, Wei-Han
Through millions of years of evolution, nature creates unique structures and materials that exhibit remarkable performance on mechanicals, opticals, and physical properties. For instance, nacre (mother of pearl), bone and tooth show excellent combination of strong minerals and elastic proteins as reinforced materials. Structured butterfly's wing and moth's eye can selectively reflect light or absorb light without dyes. Lotus leaf and cicada's wing are superhydrophobic to prevent water accumulation. The principles of particular biological capabilities, attributed to the highly sophisticated structures with complex hierarchical designs, have been extensively studied. Recently, a large variety of novel materials have been enabled by natural-inspired designs and nanotechnologies. These advanced materials will have huge impact on practical applications. We have utilized bottom-up approaches to fabricate nacre-like nanocomposites with "brick and mortar" structures. First, we used self-assembly processes, including convective self-assembly, dip-coating, and electrophoretic deposition to form well oriented layer structure of synthesized gibbsite (aluminum hydroxide) nanoplatelets. Low viscous monomer was permeated into layered nanoplatelets and followed by photo-curing. Gibbsite-polymer composite displays 2 times higher tensile strength and 3 times higher modulus when compared with pure polymer. More improvement occurred when surface-modified gibbsite platelets were cross-linked with the polymer matrix. We observed ˜4 times higher strength and nearly 1 order of magnitude higher modulus than pure polymer. To further improve the mechanical strength and toughness of inorganicorganic nanocomposites, we exploited ultrastrong graphene oxide (GO), a single atom thick hexagonal carbon sheet with pendant oxidation groups. GO nanocomposite is made by co-filtrating GO/polyvinyl alcohol suspension on 0.2 im pore-sized membrane. It shows ˜2 times higher strength and ˜15 times higher ultimate strains than nacre and pure GO paper (also synthesized by filtration). Specifically, it exhibits ˜30 times higher fracture energy than filtrated graphene paper and nacre, ˜100 times tougher than filtrated GO paper. Besides reinforced nanocomposites, we further explored the self-assembly of spherical colloids and the templating nanofabrication of moth-eye-inspired broadband antireflection coatings. Binary crystalline structures can be easily accomplished by spin-coating double-layer nonclose-packed colloidal crystals as templates, followed by colloidal templating. The polymer matrix between self-assembled colloidal crystal has been used as a sacrificial template to define the resulting periodic binary nanostructures, including intercalated arrays of silica spheres and polymer posts, gold nanohole arrays with binary sizes, and dimple-nipple antireflection coatings. The binary-structured antireflection coatings exhibit better antireflective properties than unitary coatings. Natural optical structures and nanocomposites teach us a great deal on how to create high performance artificial materials. The bottom-up technologies developed in this thesis are scalable and compatible with standard industrial processes, promising for manufacturing high-performance materials for the benefits of human beings.
Low-temperature irradiation behavior of uranium-molybdenum alloy dispersion fuel
NASA Astrophysics Data System (ADS)
Meyer, M. K.; Hofman, G. L.; Hayes, S. L.; Clark, C. R.; Wiencek, T. C.; Snelgrove, J. L.; Strain, R. V.; Kim, K.-H.
2002-08-01
Irradiation tests have been conducted to evaluate the performance of a series of high-density uranium-molybdenum (U-Mo) alloy, aluminum matrix dispersion fuels. Fuel plates incorporating alloys with molybdenum content in the range of 4-10 wt% were tested. Two irradiation test vehicles were used to irradiate low-enrichment fuels to approximately 40 and 70 at.% 235U burnup in the advanced test reactor at fuel temperatures of approximately 65 °C. The fuel particles used to fabricate dispersion specimens for most of the test were produced by generating filings from a cast rod. In general, fuels with molybdenum contents of 6 wt% or more showed stable in-reactor fission gas behavior, exhibiting a distribution of small, stable gas bubbles. Fuel particle swelling was moderate and decreased with increasing alloy content. Fuel particles with a molybdenum content of 4 wt% performed poorly, exhibiting extensive fuel-matrix interaction and the growth of relatively large fission gas bubbles. Fuel particles with 4 or 6 wt% molybdenum reacted more rapidly with the aluminum matrix than those with higher-alloy content. Fuel particles produced by an atomization process were also included in the test to determine the effect of fuel particle morphology and microstructure on fuel performance for the U-10Mo composition. Both of the U-10Mo fuel particle types exhibited good irradiation performance, but showed visible differences in fission gas bubble nucleation and growth behavior.
NASA Astrophysics Data System (ADS)
Shin, Joong-Won; Cho, Won-Ju
2017-07-01
In this paper, we investigate a low thermal budget post-deposition-annealing (PDA) process for amorphous In-Ga-ZnO (a-IGZO) oxide semiconductor thin-film-transistors (TFTs). To evaluate the electrical characteristics and reliability of the TFTs after the PDA process, microwave annealing (MWA) and rapid thermal annealing (RTA) methods were applied, and the results were compared with those of the conventional annealing (CTA) method. The a-IGZO TFTs fabricated with as-deposited films exhibited poor electrical characteristics; however, their characteristics were improved by the proposed PDA process. The CTA-treated TFTs had excellent electrical properties and stability, but the CTA method required high temperatures and long processing times. In contrast, the fabricated RTA-treated TFTs benefited from the lower thermal budget due to the short process time; however, they exhibited poor stability. The MWA method uses a low temperature (100 °C) and short annealing time (2 min) because microwaves transfer energy directly to the substrate, and this method effectively removed the defects in the a-IGZO TFTs. Consequently, they had a higher mobility, higher on-off current ratio, lower hysteresis voltage, lower subthreshold swing, and higher interface trap density than TFTs treated with CTA or RTA, and exhibited excellent stability. Based on these results, low thermal budget MWA is a promising technology for use on various substrates in next generation displays.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Siyuan; Zhang, Shengsen; College of Science, South China Agricultural University, Guangzhou 510642
Graphical abstract: The corncob-like Ag–Cu{sub 2}O nanostructure with suitably exposed Ag surface exhibited much higher photocatalytic activity than Ag@Cu{sub 2}O nanocables and Cu{sub 2}O nanowires. - Highlights: • Ag–Cu{sub 2}O nanocorncobs have been controllably prepared by a simple synthesis. • The possible formation mechanism of Ag–Cu{sub 2}O has been studied. • Ag–Cu{sub 2}O exhibits noticeable improved photocurrent compared with the pure Cu{sub 2}O NWs. • Ag–Cu{sub 2}O with suitably exposed Ag surface shows much higher photocatalytic activity. - Abstract: Novel corncob-like nano-heterostructured Ag–Cu{sub 2}O photocatalyst has been controllably prepared by adjusting the synthetic parameters, and the possible formation mechanism hasmore » been also studied. The photoelectrochemical and photocatalytic performances demonstrated that the as-prepared Ag–Cu{sub 2}O nanocorncobs exhibited higher photocatalytic activity than both pure Cu{sub 2}O nanowires and cable-like Ag@Cu{sub 2}O nano-composites. It was concluded that Ag–Cu{sub 2}O nanocorncobs with suitably exposed Ag surface not only effectively inhibit the recombination of electron–hole pairs but also suitably increase the active sites of electronic conduction, and thus increasing the photocatalytic activity under visible light irradiation.« less
Examining the Academic Achievement-Delinquency Relationship Among Southeast Asian Americans.
Bui, Laura
2018-05-01
The extent to which poor academic achievement is strongly related to delinquency among Southeast Asian Americans (SEAA) remains unclear; reasons are methodological limitations and aggregated findings for Asian Americans, which mask evidence that SEAA have a higher prevalence of criminality and poor academic performance than other Asian American groups. The present study examines the academic achievement-delinquency relationship in a diverse group of 1,214 SEAA using data from the Children of Immigrants Longitudinal Study (CILS). Propensity score matching (PSM) was used to make causal inferences and assess whether poor academic achieving SEAA, after being matched with higher academic achieving SEAA, displayed a higher prevalence of delinquency. Findings showed that, even after matching, poor academic achieving SEAA were still more likely to exhibit delinquent behavior than those who performed academically better. Interventions targeting SEAA communities will need to focus more on improving academic achievement to directly prevent and decrease delinquent behavior.
Performance comparison between p–i–n and p–n junction tunneling field-effect transistors
NASA Astrophysics Data System (ADS)
Yoon, Young Jun; Seo, Jae Hwa; Kang, In Man
2018-06-01
In this study, we investigated the direct-current (DC) and radio-frequency (RF) performances of p–i–n and p–n junction tunneling field-effect transistors (TFETs). Compared to the p–i–n junction TFET, the p–n junction TFET exhibited higher on-state current (I on) because the channel formation mechanism of the p–n junction TFET resulted in a narrower tunneling barrier and an expanded tunneling area. Further, the reduction of I on of the p–n junction TFET by the interface trap was smaller. Moreover, the p–n junction TFET exhibited lower gate-to-drain capacitance (C gd) because a depletion capacitance (C gd,dep) was formed by the depletion region under gate dielectric. Consequently, the p–n junction TFET achieved an improvement of cut-off frequency (f T) and intrinsic delay time (τ), which are related to the current performance and total gate capacitance (C gg). We confirmed the enhancement of device performances in terms of I on, f T, and τ by the conduction mechanism of the p–n junction TFET.
Murakami, Takurou N; Miyadera, Tetsuhiko; Funaki, Takashi; Cojocaru, Ludmila; Kazaoui, Said; Chikamatsu, Masayuki; Segawa, Hiroshi
2017-10-25
Perovskite solar cells (PSCs) without a mesoporous TiO 2 layer, that is, planar-type PSCs exhibit poorer cell performance as compared to PSCs with a porous TiO 2 layer, owing to inefficient electron transfer from the perovskite layer to the compact TiO 2 layer in the former case. The matching of the conduction band levels of perovskite and the compact TiO 2 layer is thus essential for enhancing PSC performance. In this study, we demonstrate the shifting of the conduction band edge (CBE) of the compact TiO 2 layer through a TiCl 4 treatment, with the aim of improving PSC performance. The CBE of the compact TiO 2 layer was shifted to a higher level through the TiCl 4 treatment and then shifted in the opposite direction, that is, to a lower level, through a subsequent heat treatment. These shifts in the CBE were reflected in the PSC performance. The TiCl 4 -treated PSC showed an increase in the open-circuit voltage of more than 150 mV, as well as a decrease of 100 mV after being heated at 450 °C. On the other hand, the short-circuit current decreased after the treatment but increased after heating at temperatures higher than 300 °C. The treated PSC subjected to subsequent heating at 300 °C exhibited the best performance, with the power conversion efficiency of the PSC being 17% under optimized conditions.
Effects of deer on the photosynthetic performance of invasive and native forest herbs.
Heberling, J Mason; Brouwer, Nathan L; Kalisz, Susan
2017-03-01
Overabundant generalist herbivores can facilitate non-native plant invasions, presumably through direct and indirect modifications to the environment that affect plant performance. However, ecophysiological mechanisms behind ungulate-mediated plant invasions have not been well-studied. At a long-term Odocoileus virginianus (white-tailed deer) exclusion site in a temperate deciduous forest, we quantified deer-mediated ecophysiological impacts on an invasive biennial Alliaria petiolata (garlic mustard) and two palatable native herbaceous perennials, Maianthemum racemosum and Trillium grandiflorum . In mid-summer, we found that leaf-level light availability was higher in unfenced areas compared with areas fenced to exclude deer. Alliaria in unfenced areas exhibited 50 % higher mean maximum photosynthetic rates compared with fenced areas. Further, specific leaf area decreased by 48 % on average in unfenced areas, suggesting leaf structural responses to higher light levels. Similarly, Maianthemum had 42 % higher mean photosynthetic rates and 33 % decreased mean specific leaf area in unfenced areas, but these functional advantages were likely countered by high rates of deer herbivory. By contrast, Trillium exhibited significantly lower (26 %) maximum photosynthetic rates in unfenced areas, but SLA did not differ. Deer-mediated differences in light saturated photosynthetic rates for all three species were only significant during months with overstory tree canopy cover, when light availability in the herb layer was significantly lower in fenced areas. Alliaria 's enhanced photosynthetic rates implicate overabundant deer, a situation that is nearly ubiquitous across its invaded range. Collectively, our results provide empirical evidence that generalist herbivores can alter non-native plant physiology to facilitate invasion.
Semerjian, Lucy; Damaj, Ahmad; Salam, Darine
2015-11-01
The current study aims at investigating the efficiency of electrocoagulation for the removal of humic acid from contaminated waters. In parallel, conventional chemical coagulation was conducted to asses humic acid removal patterns. The effect of varying contributing parameters (matrix pH, humic acid concentration, type of electrode (aluminum vs. iron), current density, solution conductivity, and distance between electrodes) was considered to optimize the electrocoagulation process for the best attainable humic acid removal efficiencies. Optimum removals were recorded at pH of 5.0-5.5, an electrical conductivity of 3000 μS/cm at 25 °C, and an electrode distance of 1 cm for both electrode types. With aluminum electrodes, a current density of 0.05 mA/cm2 outperformed 0.1 mA/cm2 yet not higher densities, whereas a current density of 0.8 mA/cm2 was needed for iron electrodes to exhibit comparable performance. With both electrode types, higher initial humic acid concentrations were removed at a slower rate but ultimately attained almost complete removals. On the other hand, the best humic acid removals (∼90%) by chemical coagulation were achieved at 4 mg/L for both coagulants. Also, higher removals were attained at elevated initial humic acid concentrations. Humic acid removals of 90% or higher at an initial HA concentration of 40 mg/L were exhibited, yet alum performed better at the highest experimented concentration. It was evident that iron flocs were larger, denser, and more geometrical in shape compared to aluminum flocs.
Geng, Xin; Li, Lixiang; Zhang, Meiling; An, Baigang; Zhu, Xiaoming
2013-12-01
Coconut shell-based activated carbon (AC) were prepared by CO2 activation, and then the ACs with higher mesopore ratio were obtained by steam activation and by impregnating iron catalyst followed by steam activation, respectively. The AC with the highest mesopore ratio (AChmr) shows superior capacitive behavior, power output and high-frequency performance in supercapacitors. The results should attribute to the connection of its wide micropores and mesopores larger than 3 nm, which is more favorable for fast ionic transportation. The pore size distribution exhibits that the mesopore ratios of the ACs are significantly increased by reactivation of steam or catalyst up to 75% and 78%, respectively. As evidenced by cyclic voltammetry, electrochemical impedance spectroscopy, and galvanostatic measurements, the AChmr shows superior capacitive behaviors, conductivity and performance of electrolytic ionic transportation. The response current densities are evidently enhanced through the cyclic voltammery test at 50 mV/sec scan rate. The electrochemical impedance spectroscopy demonstrates that the conductivity and ion transport performance of the ACs are improved. The specific capacitances of the ACs were increased from 140 to 240 F/g at 500 mA/g current density. The AChmr can provide much higher power density while still maintaining good energy density, and demonstrate excellent high-frequency performances. The pore structure and conductivity of the AChmr also improve the cycleability and self-discharge of supercapacitors. Such AChmr exhibits a great potential in supercapacitors, particularly for applications where high power output and good high-frequency capacitive performances are required. Copyright © 2013 The Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V. All rights reserved.
Effects of Age-Related Macular Degeneration on Driving Performance
Wood, Joanne M.; Black, Alex A.; Mallon, Kerry; Kwan, Anthony S.; Owsley, Cynthia
2018-01-01
Purpose To explore differences in driving performance of older adults with age-related macular degeneration (AMD) and age-matched controls, and to identify the visual determinants of driving performance in this population. Methods Participants included 33 older drivers with AMD (mean age [M] = 76.6 ± 6.1 years; better eye Age-Related Eye Disease Study grades: early [61%] and intermediate [39%]) and 50 age-matched controls (M = 74.6 ± 5.0 years). Visual tests included visual acuity, contrast sensitivity, visual fields, and motion sensitivity. On-road driving performance was assessed in a dual-brake vehicle by an occupational therapist (masked to drivers' visual status). Outcome measures included driving safety ratings (scale of 1–10, where higher values represented safer driving), types of driving behavior errors, locations at which errors were made, and number of critical errors (CE) requiring an instructor intervention. Results Drivers with AMD were rated as less safe than controls (4.8 vs. 6.2; P = 0.012); safety ratings were associated with AMD severity (early: 5.5 versus intermediate: 3.7), even after adjusting for age. Drivers with AMD had higher CE rates than controls (1.42 vs. 0.36, respectively; rate ratio 3.05, 95% confidence interval 1.47–6.36, P = 0.003) and exhibited more observation, lane keeping, and gap selection errors and made more errors at traffic light–controlled intersections (P < 0.05). Only motion sensitivity was significantly associated with driving safety in the AMD drivers (P = 0.005). Conclusions Drivers with early and intermediate AMD can exhibit impairments in their driving performance, particularly during complex driving situations; motion sensitivity was most strongly associated with driving performance. These findings have important implications for assessing the driving ability of older drivers with visual impairment. PMID:29340641
Yoon, K Lira; Kutz, Amanda M; LeMoult, Joelle; Joormann, Jutta
2017-12-01
Individuals with social anxiety disorder (SAD) engage in post-event processing, a form of perseverative thinking. Given that deficits in working memory might underlie perseverative thinking, we examined working memory in SAD with a particular focus on the effects of stimulus valence. SAD (n = 31) and healthy control (n = 20) participants either maintained (forward trials) or reversed (backward trials) in working memory the order of four emotional or four neutral pictures, and we examined sorting costs, which reflect the extent to which performance deteriorated on the backward trials compared to the forward trials. Emotionality of stimuli affected performance of the two groups differently. Whereas control participants exhibited higher sorting costs for emotional stimuli compared to neutral stimuli, SAD participants exhibited the opposite pattern. Greater attention to emotional stimuli in SAD might facilitate the processing of emotional (vs. neutral) stimuli in working memory.
Effects of aeroconvective environments on 2D reinforced ceramic matrix composites
NASA Technical Reports Server (NTRS)
Riccitiello, Salvatore R.; Love, Wendell L.; Balter-Peterson, Aliza; Hood, Thomas; Chang, William
1991-01-01
The effect of aeroconvective heating environment similar to that observed a spacecraft ascent or reentry from orbit, on the performance of a commercial carbon-reinforced ceramic matrix material specimens of two configurations (orthotropic and quasi-isotropic), fabricated by the Societe Europenne Propulsion (SEP) process was investigated using the NASA Ames Research Center 20 Megawatt Panel Test facility. The performance of the commercial material was compared with the SEP prepared materials. It was found that, whereas the quasi-isotropic SEP specimens exhibited a much higher mass loss rate and a significant dimensional change upon exposure to the thermal environment than did the orthotropic ones, the commercial SEP-like materials did not exhibit these characteristics. There was no greater mass loss rate for the quasi-isotropic specimens, and no dimension changes were observed. The Nicalon reinforced materials in both configurations, as fabricated by SEP or by the commercial source, showed no mass changes and no dimensional changes.
Regression analysis of traction characteristics of traction fluids
NASA Technical Reports Server (NTRS)
Loewenthal, S. H.; Rohn, D. A.
1983-01-01
Traction data for Santotrac 50 and TDF-88 over a wide range of operating conditions were analyzed. An eight term correlation equation to predict the maximum traction coefficient and a six term correlation equation to predict the initial slope of the traction curve were developed. The slope correlation was corrected for size effect considering the compliance of the disks. The effects of different operating conditions on the traction performance of each traction fluid were studied. Both fluids exhibited a loss in traction with increases in spin, but the losses with the TDF-88 fluid were not as severe as those with Santotrac 50. Overall, both fluids exhibited similar performance, showing an increase in traction with contact pressure up to about 2.0 GPa, and a reduction in traction with higher surface speeds up to about 100 m/sec. The apparent stiffness of the traction contact, that is, film disk combination, increases with contact pressure and decreases with speed.
Noise and range considerations for close-range radar sensing of life signs underwater.
Hafner, Noah; Lubecke, Victor
2011-01-01
Close-range underwater sensing of motion-based life signs can be performed with low power Doppler radar and ultrasound techniques. Corresponding noise and range performance trade-offs are examined here, with regard to choice of frequency and technology. The frequency range examined includes part of the UHF and microwave spectrum. Underwater detection of motion by radar in freshwater and saltwater are demonstrated. Radar measurements exhibited reduced susceptibility to noise as compared to ultrasound. While higher frequency radar exhibited better signal to noise ratio, propagation was superior for lower frequencies. Radar detection of motion through saltwater was also demonstrated at restricted ranges (1-2 cm) with low power transmission (10 dBm). The results facilitate the establishment of guidelines for optimal choice in technology for the underwater measurement motion-based life signs, with respect to trade offs involving range and noise.
NASA Astrophysics Data System (ADS)
Cao, Shuying; Sun, Shuaishuai; Zheng, Jiaju; Wang, Bowen; Wan, Lili; Pan, Ruzheng; Zhao, Ran; Zhang, Changgeng
2018-05-01
Galfenol traditional cantilever energy harvesters (TCEHs) have bigger electrical output only at resonance and exhibit nonlinear mechanical-magnetic-electric coupled (NMMEC) behaviors. To increase low-frequency broadband performances of a TCEH, an improved CEH (ICEH) with magnetic repulsive force is studied. Based on the magnetic dipole model, the nonlinear model of material, the Faraday law and the dynamic principle, a lumped parameter NMMEC model of the devices is established. Comparisons between the calculated and measured results show that the proposed model can provide reasonable data trends of TCEH under acceleration, bias field and different loads. Simulated results show that ICEH exhibits low-frequency resonant, hard spring and bistable behaviors, thus can harvest more low-frequency broadband vibration energy than TCEH, and can elicit snap-through and generate higher voltage even under weak noise. The proposed structure and model are useful for improving performances of the devices.
Farh, Crystal I C Chien; Seo, Myeong-Gu; Tesluk, Paul E
2012-07-01
We advance understanding of the role of ability-based emotional intelligence (EI) and its subdimensions in the workplace by examining the mechanisms and context-based boundary conditions of the EI-performance relationship. Using a trait activation framework, we theorize that employees with higher overall EI and emotional perception ability exhibit higher teamwork effectiveness (and subsequent job performance) when working in job contexts characterized by high managerial work demands because such contexts contain salient emotion-based cues that activate employees' emotional capabilities. A sample of 212 professionals from various organizations and industries indicated support for the salutary effect of EI, above and beyond the influence of personality, cognitive ability, emotional labor job demands, job complexity, and demographic control variables. Theoretical and practical implications of the potential value of EI for workplace outcomes under contexts involving managerial complexity are discussed. (PsycINFO Database Record (c) 2012 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Mulijani, S.
2017-01-01
Polymer membrane and composite polymer for membrane electrode assembly (MEAs) are synthesized and studied for usage in direct methanol fuel cell (DMFC). In this study, we prepared 3 type of MEAs, polystyrene (PS), sulfonated polystyrene (SPS) and composite polymer SPS-alginat membrane via catalyst hot pressed method. The performance and properties of prepared MEAs were evaluated and analyzed by impedance spectrometry and scanning electron microscopy (SEM). The result showed that, water up take of MEA composite polymer SPS-alginate was obtained higher than that in SPS and PS. The proton conductivity of MEA-SPS-alginate was also higher than that PS and PSS. SEM characterization revealed that the intimate contact between the carbon catalyst layers (CL) and the membranes, and the uniformly porous structure correlate positively with the MEAs prepared by hot pressed method, exhibiting high performances for DMFC.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albo, Asaf, E-mail: asafalbo@gmail.com; Hu, Qing; Reno, John L.
The mechanisms that limit the temperature performance of GaAs/Al{sub 0.15}GaAs-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated LO-phonon scattering and leakage of charge carriers into the continuum. Consequently, the combination of highly diagonal optical transition and higher barriers should significantly reduce the adverse effects of both mechanisms and lead to improved temperature performance. Here, we study the temperature performance of highly diagonal THz-QCLs with high barriers. Our analysis uncovers an additional leakage channel which is the thermal excitation of carriers into bounded higher energy levels, rather than the escape into the continuum. Based on this understanding,more » we have designed a structure with an increased intersubband spacing between the upper lasing level and excited states in a highly diagonal THz-QCL, which exhibits negative differential resistance even at room temperature. This result is a strong evidence for the effective suppression of the aforementioned leakage channel.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albo, Asaf; Hu, Qing; Reno, John L.
The mechanisms that limit the temperature performance of GaAs/Al 0.15GaAs-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated LO-phonon scattering and leakage of charge carriers into the continuum. Consequently, the combination of highly diagonal optical transition and higher barriers should significantly reduce the adverse effects of both mechanisms and lead to improved temperature performance. Here, we study the temperature performance of highly diagonal THz-QCLs with high barriers. Our analysis uncovers an additional leakage channel which is the thermal excitation of carriers into bounded higher energy levels, rather than the escape into the continuum. Based on this understanding,more » we have designed a structure with an increased intersubband spacing between the upper lasing level and excited states in a highly diagonal THz-QCL, which exhibits negative differential resistance even at room temperature. Furthermore, this result is a strong evidence for the effective suppression of the aforementioned leakage channel.« less
Haji Manaf, Noramaliyana; Tennakoon, Kushan; Chandrakanthi, R. L. N.; Lim, Linda Biaw Leng; Bandara, J. M. R. Sarath; Ekanayake, Piyasiri
2015-01-01
Chlorophyll and xanthophyll dyes extracted from a single source of filamentous freshwater green algae (Cladophora sp.) were used to sensitize dye sensitized solar cells and their performances were investigated. A more positive interaction is expected as the derived dyes come from a single natural source because they work mutually in nature. Cell sensitized with mixed chlorophyll and xanthophyll showed synergistic activity with improved cell performance of 1.5- to 2-fold higher than that sensitized with any individual dye. The effect of temperature and the stability of these dyes were also investigated. Xanthophyll dye was found to be more stable compared to chlorophyll that is attributed in the ability of xanthophyll to dissipate extra energy via reversible structural changes. Mixing the dyes resulted to an increase in effective electron life time and reduced the process of electron recombination during solar cell operation, hence exhibiting a synergistic effect. PMID:25688266
Lim, Andery; Haji Manaf, Noramaliyana; Tennakoon, Kushan; Chandrakanthi, R L N; Lim, Linda Biaw Leng; Bandara, J M R Sarath; Ekanayake, Piyasiri
2015-01-01
Chlorophyll and xanthophyll dyes extracted from a single source of filamentous freshwater green algae (Cladophora sp.) were used to sensitize dye sensitized solar cells and their performances were investigated. A more positive interaction is expected as the derived dyes come from a single natural source because they work mutually in nature. Cell sensitized with mixed chlorophyll and xanthophyll showed synergistic activity with improved cell performance of 1.5- to 2-fold higher than that sensitized with any individual dye. The effect of temperature and the stability of these dyes were also investigated. Xanthophyll dye was found to be more stable compared to chlorophyll that is attributed in the ability of xanthophyll to dissipate extra energy via reversible structural changes. Mixing the dyes resulted to an increase in effective electron life time and reduced the process of electron recombination during solar cell operation, hence exhibiting a synergistic effect.
Carotid Artery Stenting – Strategies to Improve Procedural Performance and Reduce the Learning Curve
Van Herzeele, Isabelle
2013-01-01
Carotid artery stenting (CAS) remains an appealing intervention to reduce the stroke risk because of its minimal invasive nature. Nevertheless, landmark randomised controlled trials have not been able to resolve the controversies surrounding this complex procedure as the peri-operative stroke risk in a non-selected patient population still seems to be higher after CAS in comparison to carotid endarterectomy. What is more, these trials have highlighted that patient outcome after CAS is influenced by patient- and operator-dependant factors. The CAS procedure exhibits a definitive learning curve resulting in higher complication rates if the procedure is performed by inexperienced interventionists or in low-volume centres. This article will outline strategies to improve the performance of physicians carrying out the CAS procedure by means of proficiency-based training, credentialing, virtual reality rehearsal and optimal patient selection. PMID:29588751
Hahn, Sowon; Buttaccio, Daniel R; Hahn, Jungwon; Lee, Taehun
2015-01-01
The present study demonstrates that levels of extraversion and neuroticism can predict attentional performance during a change detection task. After completing a change detection task built on the flicker paradigm, participants were assessed for personality traits using the Revised Eysenck Personality Questionnaire (EPQ-R). Multiple regression analyses revealed that higher levels of extraversion predict increased change detection accuracies, while higher levels of neuroticism predict decreased change detection accuracies. In addition, neurotic individuals exhibited decreased sensitivity A' and increased fixation dwell times. Hierarchical regression analyses further revealed that eye movement measures mediate the relationship between neuroticism and change detection accuracies. Based on the current results, we propose that neuroticism is associated with decreased attentional control over the visual field, presumably due to decreased attentional disengagement. Extraversion can predict increased attentional performance, but the effect is smaller than the relationship between neuroticism and attention.
Effects of Nanoimprinted Structures on the Performance of Organic Solar Cells
Gill, Hardeep Singh; Li, Lian; Ren, Haizhou; ...
2018-01-01
The effect of nanoimprinted structures on the performance of organic bulk heterojunction solar cells was investigated. The nanostructures were formed over the active layer employing the soft lithographic technique. The measured incident photon-to-current efficiency revealed that the nanostructured morphology over the active layer can efficiently enhance both light harvesting and charge carrier collection due to improvement of the absorption of incident light and the buried nanostructured cathode, respectively. The devices prepared with the imprinted nanostructures exhibited significantly higher power conversion efficiencies as compared to those of the control cells.
Effects of Nanoimprinted Structures on the Performance of Organic Solar Cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gill, Hardeep Singh; Li, Lian; Ren, Haizhou
The effect of nanoimprinted structures on the performance of organic bulk heterojunction solar cells was investigated. The nanostructures were formed over the active layer employing the soft lithographic technique. The measured incident photon-to-current efficiency revealed that the nanostructured morphology over the active layer can efficiently enhance both light harvesting and charge carrier collection due to improvement of the absorption of incident light and the buried nanostructured cathode, respectively. The devices prepared with the imprinted nanostructures exhibited significantly higher power conversion efficiencies as compared to those of the control cells.
Balancing Performance and Sustainability in Next-Generation PMR Technologies for OMC Structures
2016-05-26
Additionally, the reactive intermediates can form an elimination product that conjugates with glutathione, thereby depleting the concentration of...thermomechanical properties of polyimides, but due to its truncated molecular weight, is processable, thus enabling the fabrication of fiber reinforced polymer ...degradation of the remaining polymer . The oligomers possessing anilines with a higher degree of aliphatic character (PMR-1, -6, and -7), exhibit significant
Physiologic and anti-G suit performance data from YF-16 flight tests
NASA Technical Reports Server (NTRS)
Gillingham, K. K.; Winter, W. R.
1976-01-01
Biomedical data were collected during high-G portions of 11 YF-16 test flights. Test pilots monitored revealed increased respiratory rate and volume, decreased tidal volume, and increased heart rate at higher G levels, with one pilot exhibiting various cardiac arrhythmias. Anti-G suit inflation and pressurization lags varied inversely with G-onset rate, and suit pressurization slope was near the design value.
Influence of the anisotropy on the performance of D-band SiC IMPATT diodes
NASA Astrophysics Data System (ADS)
Chen, Qing; Yang, Lin'an; Wang, Shulong; Zhang, Yue; Dai, Yang; Hao, Yue
2015-03-01
Numerical simulation has been made to predict the RF performance of <0001> direction and <> direction p+/n/n-/n+ (single drift region) 4H silicon carbide (4H-SiC) impact-ionization-avalanche-transit-time (IMPATT) diodes for operation at D-band frequencies. We observed that the output performance of 4H-SiC IMPATT diode is sensitive to the crystal direction of the one-dimensional current flow. The simulation results show that <0001> direction 4H-SiC IMPATT diode provides larger breakdown voltage for its lower electron and hole ionization rates and higher dc-to-rf conversion efficiency (η) for its higher ratio of drift zone voltage drop (VD) to breakdown voltage (VB) compared with those for <> direction 4H-SiC IMPATT diode, which lead to higher-millimeter-wave power output for <0001> direction 4H-SiC IMPATT compared to <> direction. However, the quality factor Q for the <> direction 4H-SiC IMPATT diode is lower than that of <0001> direction, which implies that the <> direction 4H-SiC IMPATT diode exhibits better stability and higher growth rate of microwave oscillation compared with <0001> direction 4H-SiC IMPATT diode.
Status of the NEXT Ion Engine Wear Test
NASA Technical Reports Server (NTRS)
Soulas, George C.; Domonkos, Matthew T.; Kamhawi, Hani; Patterson, Michael J.; Gardner, Michael M.
2003-01-01
The status of the NEXT 2000 hour wear test is presented. This test is being conducted with a 40 cm engineering model ion engine, designated EM1, at a beam current higher than listed on the NEXT throttle table. Pretest performance assessments demonstrated that EM1 satisfies all thruster performance requirements. As of 7/3/03, the ion engine has accumulated 406 hours of operation at a thruster input power of 6.9 kW. Overall ion engine performance, which includes thrust, thruster input power, specific impulse, and thrust efficiency, has been steady to date with no indications of performance degradation. Images of the downstream discharge cathode, neutralizer, and accelerator aperture surfaces have exhibited no significant erosion to date.
NASA Astrophysics Data System (ADS)
Afonina, Natalie Petrovna
To withstand the high temperature (>700°C) and pressure demands of steam turbines and boilers used for energy applications, metal alloys must be economically viable and have the necessary material properties, such as high-temperature creep strength, oxidation and corrosion resistance, to withstand such conditions. One promising class of alloys potentially capable of withstanding the rigors of aggressive environments, are alumina-forming austenitic stainless steels (AFAs) alloyed with aluminum to improve corrosion and oxidation resistance. The effect of aging on the microstructure, high temperature constant-stress creep behavior and mechanical properties of the AFA-type alloy Fe-20Cr-30Ni-2Nb-5Al (at.%) were investigated in this study. The alloy's microstructural evolution with increased aging time was observed prior to creep testing. As aging time increased, the alloy exhibited increasing quantities of fine Fe2Nb Laves phase dispersions, with a precipitate-free zone appearing in samples with higher aging times. The presence of the L1 2 phase gamma'-Ni3Al precipitate was detected in the alloy's matrix at 760°C. A constant-stress creep rig was designed, built and its operation validated. Constant-stress creep tests were performed at 760°C and 35MPa, and the effects of different aging conditions on creep rate were investigated. Specimens aged for 240 h exhibited the highest creep rate by a factor of 5, with the homogenized sample having the second highest rate. Samples aged for 2.4 h and 24 h exhibited similar low secondary creep rates. Creep tests conducted at 700oC exhibited a significantly lower creep rate compared to those at 760oC. Microstructural analysis was performed on crept samples to explore high temperature straining properties. The quantity and size of Fe2Nb Laves phase and NiAl particles increased in the matrix and on grain boundaries with longer aging time. High temperature tensile tests were performed and compared to room temperature results. The high temperature results were significantly lower when compared to room temperature values. Higher creep rates were correlated with lower yield strengths.
Zhou, Xinhong; Shang, Chaoqun; Gu, Lin; Dong, Shanmu; Chen, Xiao; Han, Pengxian; Li, Lanfeng; Yao, Jianhua; Liu, Zhihong; Xu, Hongxia; Zhu, Yuwei; Cui, Guanglei
2011-08-01
In this study, titanium nitride-vanadium nitride fibers of core-shell structures were prepared by the coaxial electrospinning, and subsequently annealed in the ammonia for supercapacitor applications. These core-shell (TiN-VN) fibers incorporated mesoporous structure into high electronic conducting transition nitride hybrids, which combined higher specific capacitance of VN and better rate capability of TiN. These hybrids exhibited higher specific capacitance (2 mV s(-1), 247.5 F g(-1)) and better rate capability (50 mV s(-1), 160.8 F g(-1)), which promise a good candidate for high-performance supercapacitors. It was also revealed by electrochemical impedance spectroscopy (EIS) and X-ray photoelectron spectroscopy (XPS) characterization that the minor capacitance fade originated from the surface oxidation of VN and TiN.
A modified error correction protocol for CCITT signalling system no. 7 on satellite links
NASA Astrophysics Data System (ADS)
Kreuer, Dieter; Quernheim, Ulrich
1991-10-01
Comite Consultatif International des Telegraphe et Telephone (CCITT) Signalling System No. 7 (SS7) provides a level 2 error correction protocol particularly suited for links with propagation delays higher than 15 ms. Not being originally designed for satellite links, however, the so called Preventive Cyclic Retransmission (PCR) Method only performs well on satellite channels when traffic is low. A modified level 2 error control protocol, termed Fix Delay Retransmission (FDR) method is suggested which performs better at high loads, thus providing a more efficient use of the limited carrier capacity. Both the PCR and the FDR methods are investigated by means of simulation and results concerning throughput, queueing delay, and system delay, respectively. The FDR method exhibits higher capacity and shorter delay than the PCR method.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mabe, Andrew N.; Glenn, Andrew M.; Carman, M. Leslie
Transparent plastic scintillators with pulse shape discrimination containing 6Li salicylate have been synthesized by bulk polymerization with a maximum 6Li loading of 0.40 wt%. Photoluminescence and scintillation responses to gamma-rays and neutrons are reported in this paper. Plastics containing 6Li salicylate exhibit higher light yields and permit a higher loading of 6Li as compared to previously reported plastics based on lithium 3-phenylsalicylate. However, pulse shape discrimination performance is reduced in lithium salicylate plastics due to the requirement of adding more nonaromatic monomers to the polymer matrix as compared to those based on lithium 3-phenylsalicylate. Finally, reduction in light yield andmore » pulse shape discrimination performance in lithium-loaded plastics as compared to pulse shape discrimination plastics without lithium is interpreted in terms of energy transfer interference by the aromatic lithium salts.« less
NASA Astrophysics Data System (ADS)
Dong, Peng; Yan, Jianchang; Wang, Junxi; Zhang, Yun; Geng, Chong; Wei, Tongbo; Cong, Peipei; Zhang, Yiyun; Zeng, Jianping; Tian, Yingdong; Sun, Lili; Yan, Qingfeng; Li, Jinmin; Fan, Shunfei; Qin, Zhixin
2013-06-01
We first report AlGaN-based deep ultraviolet light-emitting diodes (UV-LEDs) grown on nano-patterned sapphire substrates (NPSS) prepared through a nanosphere lithography technique. The AlN coalescence thickness on NPSS is only 3 μm due to AlN's nano-scaled lateral growth, which also leads to low dislocation densities in AlN and epi-layers above. On NPSS, the light-output power of a 282-nm UV-LED reaches 3.03 mW at 20 mA with external quantum efficiency of 3.45%, exhibiting 98% better performance than that on flat sapphire. Temperature-dependent photoluminescence reveals this significant enhancement to be a combination of higher internal quantum efficiency and higher light extraction efficiency.
Chen, F; Zhu, L; Qiu, H; Qin, S
2017-04-01
One hundred and fifty 7-day-old Arbor Acres broilers were randomly assigned into five groups: group 1 served as a control that was fed a basal diet without selenium (Se) supplementation; groups 2, 3 and 4 were fed the basal diet supplemented with 0.15, 0.5 and 1.5 mg Se as Se-enriched Saccharomyces cerevisiae (SSC) per kg of diet; and group 5 was fed the basal diet supplemented with 0.15 mg per kg of Se as sodium selenite (SS). Growth performance, glutathione peroxidase (GP X ) and superoxide dismutase (SOD) activities, total antioxidant capacity (T-AOC), and malondialdehyde (MDA) content in plasma and liver, and cellular glutathione peroxidase (GP X -1) and phospholipid hydroperoxide glutathione peroxidase (GP X -4) mRNA levels in liver were determined. Compared with group 1, groups 2-4 exhibited higher body weights (p < 0.05), lower feed/gain ratios, and higher GP X activities in plasma (p < 0.05) and GP X and SOD activities and GP X -1 and GP X -4 mRNA levels in liver (p < 0.05). Compared with group 5, group 2 exhibited higher GP X activity in plasma on day 21 (p < 0.05). Compared with group 2 and 5, group 3 exhibited lower MDA content in plasma on day 7 (p < 0.05), higher GP X activity in plasma, SOD activity and GP X -1 mRNA levels in liver on day 14 and 21 (p < 0.05), and higher GP X -4 mRNA levels on day 14 (p < 0.05). Compared with group 4, group 3 exhibited lower MDA contents in plasma on day 14 (p < 0.05) and in liver on day 21 (p < 0.05), higher T-AOC in plasma and higher GP X -1 mRNA levels on day 14 and 21 (p < 0.05), and higher SOD activity in plasma and higher SOD and GP X activities in liver on day 21 (p < 0.05). Thus, SSC improves growth and antioxidant status of broilers; the short-term bioavailability of SS was faster than that of SSC, but the long-term bioavailability of SSC was greater than SS. Journal of Animal Physiology and Animal Nutrition © 2016 Blackwell Verlag GmbH.
Dada, Esther O; Anderson, Morgan K; Grier, Tyson; Alemany, Joseph A; Jones, Bruce H
2017-11-01
To determine the age- and sex-specific differences of physical fitness performances and Body Mass Index (BMI) in basic training and the operational Army. Cross-sectional Study. This secondary analysis utilizes retrospective surveys of U.S. Army Soldiers in Basic Combat Training (BCT) and operational units to compare physical performances between men and women as measured by the Army Physical Readiness Test (APFT). An ANOVA was used to compare mean differences in APFT results and BMI within sex-specific populations. A post hoc Tukey test identified specific mean differences. Adjusting for age, an ANCOVA was used to compare sex and occupation (infantry and non-infantry) differences in APFT results. Surveyed populations consisted of 2216 BCT Soldiers (1573 men and 643 women) and 5515 Operational Soldiers (4987 men and 528 women). Male and female operational Soldiers had greater muscular performance (79%-125% higher APFT push-ups, 66%-85% higher APFT sit-ups) and cardiorespiratory performance (22%-24% faster APFT 2-mile run times) than BCT Soldiers. Male BCT and operational Soldiers outperform their female counterparts on tests of muscular and cardiorespiratory endurance. Sex differences in physical performances attenuated among female Soldiers in operational units compared to BCT. Among male operational Soldiers, infantry Soldiers exhibited greater cardiorespiratory and muscular performance than non-infantry Soldiers. Higher BMI was associated with higher age groups, except for female BCT Soldiers. Gaps in cardiorespiratory and muscular performances between men and women should be addressed through targeted physical training programs that aim to minimize physiological differences. Published by Elsevier Ltd.
Jafarzadeh, Tahereh-Sadat; Erfan, Mohammad; Behroozibakhsh, Marjan; Fatemi, Mostafa; Masaeli, Reza; Rezaei, Yashar; Bagheri, Hossein; Erfan, Yasaman
2015-01-01
Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR) spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm). Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length) were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan) was performed at the top and bottom (depth=2 mm) surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness.
Jafarzadeh, Tahereh-Sadat; Erfan, Mohammad; Behroozibakhsh, Marjan; Fatemi, Mostafa; Masaeli, Reza; Rezaei, Yashar; Bagheri, Hossein; Erfan, Yasaman
2015-01-01
Background and aims. Polymerization efficacy affects the properties and performance of composite resin restorations.The purpose of this study was to evaluate the effectiveness of polymerization of two micro-hybrid, two nano-hybrid and one nano-filled ormocer-based composite resins, cured by two different light-curing systems, using Fourier transformation infrared (FT-IR) spectroscopy and Vickers microhardness testing at two different depths (top surface, 2 mm). Materials and methods. For FT-IR spectrometry, five cylindrical specimens (5mm in diameter × 2 mm in length) were prepared from each composite resin using Teflon molds and polymerized for 20 seconds. Then, 70-μm wafers were sectioned at the top surface and at2mm from the top surface. The degree of conversion for each sample was calculated using FT-IR spectroscopy. For Vickers micro-hardness testing, three cylindrical specimens were prepared from each composite resin and polymerized for 20 seconds. The Vickers microhardness test (Shimadzu, Type M, Japan) was performed at the top and bottom (depth=2 mm) surfaces of each specimen. Three-way ANOVA with independent variables and Tukey tests were performed at 95% significance level. Results. No significant differences were detected in degree of conversion and microhardness between LED and QTH light-curing units except for the ormocer-based specimen, CeramX, which exhibited significantly higher DC by LED. All the composite resins showed a significantly higher degree of conversion at the surface. Microhardness was not significantly affected by depth, except for Herculite XRV Ultra and CeramX, which showed higher values at the surface. Conclusion. Composite resins containing nano-particles generally exhibited more variations in degree of conversion and microhardness. PMID:26889359
A real-time comparison of mercury accumulation on noble metal thin films using gravimetric device
NASA Astrophysics Data System (ADS)
Kabir, K. M. Mohibul; Kandjani, Ahmad Esmaielzadeh; Harrison, Christopher J.; Ippolito, Samuel J.; Sabri, Ylias M.; Bhargava, Suresh K.
2016-12-01
We simultaneously compared and analyzed the mercury sorption and sensing performance of gold, silver, palladium and platinum using quartz crystal microbalance (QCM). Overall, the Au- and Ag-QCM showed superior Hg sensing performance over the Pd- and Pt-counterparts when tested toward a range of concentrations (24-365 ppbv) at various operating temperatures (35-105 °C). However, it was also found that the Hg sensing performance of each metal varied significantly with the operating temperature and is dependent on the concentration tested. For instance, the Ag-QCM exhibited 57% higher response magnitude than the Au-QCM when exposed toward 24 ppbv of Hg0 vapor at 35 °C; however, the opposite trend was observed when the same concentration of Hg0 vapor was tested at 105 °C, with Au-QCM showing 104% higher response magnitudes compared to the Ag-QCM. Moreover, the Ag-QCM showed higher response magnitudes than the Au-QCM for exposure toward 365 ppbv of Hg0 vapor regardless of the operating temperature.
Rheological and fracturing characteristics of a novel sulfonated hydroxypropyl guar gum.
Qiu, Liewei; Shen, Yiding; Wang, Tao; Wang, Chen
2018-05-15
A series of sulfonated hydroxypropyl guar gum (SHG) samples with different degrees of substitution (DSs) were prepared, and the SHG solution and SHG fracturing fluid were prepared and analyzed. The SHG aqueous solutions with different DSs all exhibit shear thinning behavior, which is well correlated with the Ostwald-deWaele model. Owing to the electrostatic repulsion of SHG molecular chains, SHG solutions with a higher DS will exhibit weaker thixotropic performance and strong anti-salinity ability. In addition, the SHG fracturing fluids, which were formed by interactions between SHG and organic zirconium, exhibit good temperature- and shear-resistant properties, proppant suspension properties, and salt tolerance. Furthermore, SHG gel-breaking fluids show low interfacial and surface tensions, with low residue content and small core permeability damage. These results provide useful indicators for the applications of SHG in the oil field industry. Copyright © 2017. Published by Elsevier B.V.
Watanabe, Tetsuya; Shinoda, Yukinori; Ikeoka, Kuniyasu; Inui, Hirooki; Fukuoka, Hidetada; Sunaga, Akihiro; Kanda, Takashi; Uematsu, Masaaki; Hoshida, Shiro
2017-03-01
The presence of spontaneous echo contrast (SEC) in the left atrium has been reported to be an independent predictor of thromboembolic risk in patients with atrial fibrillation (AF). Dabigatran was associated with lower rates of stroke and systemic embolism as compared with warfarin when administered at a higher dose. Between July 2011 and October 2015, nonvalvular AF patients treated with warfarin or dabigatran who had transesophageal echocardiography prior to ablation therapy for AF were enrolled. The intensity of SEC was classified into four grades, from 0 to 3. Univariate and multivariate analysis was performed to analyze factors associated with SEC. Sixty-five patients were on dabigatran and 65 were on warfarin, with the prothrombin time in therapeutic range. There were no significant differences in the age, CHADS2 score, left atrial dimension, and left atrial appendage flow between the two groups. However, there were more grade 2 or higher patients with left atrial SEC in the warfarin group (n = 20) than in the dabigatran group (n = 2) (p < 0.001). When multivariate regression analysis was performed, grade 2 or higher left atrial SEC was independently associated with no dabigatran usage in addition to high brain natriuretic peptide level and high incidence of diabetes mellitus or persistent AF. Thus, dabigatran exhibited low intensity of left atrial SEC in nonvalvular AF patients as compared with warfarin.
NASA Astrophysics Data System (ADS)
Quintano, Endika; Ganzedo, Unai; Díez, Isabel; Figueroa, Félix L.; Gorostiaga, José M.
2013-10-01
Gelidium corneum (Hudson) J.V. Lamouroux is a very important primary producer in the Cantabrian coastal ecosystem. Some local declines in their populations have been recently detected in the Basque coast. Occurrences of yellowing and an unusual branch breakdown pattern have also been reported for some G. corneum populations. In order to gain further insight into those environmental stressors operating at a local scale, here we investigate if shallow subtidal populations of G. corneum living under potentially different conditions of irradiance (PAR and UVA) and water temperature exhibit differences in some biochemical indicators of stress, namely C:N, antioxidant activity (radical cation of 2,2‧-azino-bis (3-ethylbenzothiazoline-6-sulfonate); ABTS+ assay) and mycosporine-like amino acids (MAAs) (Asterine 330 and Palythine). We hypothesised that G. corneum subjected to higher ambient levels of irradiance and water temperature would show higher C:N ratios, lower antioxidant activity and higher MAA concentrations. Our results partially support this hypothesis. We found that G. corneum exposed to increased levels of irradiance (PAR, UVA) exhibited greater C:N ratios and lower antioxidant activity (higher IC50), whereas no relationship was found regarding MAAs. No differences in biochemical performance in relation to temperature were detected among G. corneum exposed to comparable high light. Similarly, G. corneum growing under lower UVA radiation levels showed no differences in any of the measured biochemical variables with regard to PAR and water temperature. These findings suggest that, among the environmental factors examined, UVA radiation may be an important driver in regulating the along-shore variation in G. corneum biochemical performance. Therefore, the role of irradiance, especially UV radiation, in potential future alterations in Cantabrian G. corneum populations cannot be ruled out as a potential underlying factor.
Analysis of fuel options for the breakeven core configuration of the Advanced Recycling Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stauff, N.E.; Klim, T.K.; Taiwo, T.A.
2013-07-01
A trade-off study is performed to determine the impacts of various fuel forms on the core design and core physics characteristics of the sodium-cooled Toshiba- Westinghouse Advanced Recycling Reactor (ARR). The fuel forms include oxide, nitride, and metallic forms of U and Th. The ARR core configuration is redesigned with driver and blanket regions in order to achieve breakeven fissile breeding performance with the various fuel types. State-of-the-art core physics tools are used for the analyses. In addition, a quasi-static reactivity balance approach is used for a preliminary comparison of the inherent safety performances of the various fuel options. Thorium-fueledmore » cores exhibit lower breeding ratios and require larger blankets compared to the U-fueled cores, which is detrimental to core compactness and increases reprocessing and manufacturing requirements. The Th cores also exhibit higher reactivity swings through each cycle, which penalizes reactivity control and increases the number of control rods required. On the other hand, using Th leads to drastic reductions in void and coolant expansion coefficients of reactivity, with the potential for enhancing inherent core safety. Among the U-fueled ARR cores, metallic and nitride fuels result in higher breeding ratios due to their higher heavy metal densities. On the other hand, oxide fuels provide a softer spectrum, which increases the Doppler effect and reduces the positive sodium void worth. A lower fuel temperature is obtained with the metallic and nitride fuels due to their higher thermal conductivities and compatibility with sodium bonds. This is especially beneficial from an inherent safety point of view since it facilitates the reactor cool-down during loss of power removal transients. The advantages in terms of inherent safety of nitride and metallic fuels are maintained when using Th fuel. However, there is a lower relative increase in heavy metal density and in breeding ratio going from oxide to metallic or nitride Th fuels relative to the U counterpart fuels. (authors)« less
Higher spin conformal geometry in three dimensions and prepotentials for higher spin gauge fields
NASA Astrophysics Data System (ADS)
Henneaux, Marc; Hörtner, Sergio; Leonard, Amaury
2016-01-01
We study systematically the conformal geometry of higher spin bosonic gauge fields in three spacetime dimensions. We recall the definition of the Cotton tensor for higher spins and establish a number of its properties that turn out to be key in solving in terms of prepotentials the constraint equations of the Hamiltonian (3 + 1) formulation of four-dimensional higher spin gauge fields. The prepotentials are shown to exhibit higher spin conformal symmetry. Just as for spins 1 and 2, they provide a remarkably simple, manifestly duality invariant formulation of the theory. While the higher spin conformal geometry is developed for arbitrary bosonic spin, we explicitly perform the Hamiltonian analysis and derive the solution of the constraints only in the illustrative case of spin 3. In a separate publication, the Hamiltonian analysis in terms of prepotentials is extended to all bosonic higher spins using the conformal tools of this paper, and the same emergence of higher spin conformal symmetry is confirmed.
Sex differences in the fetal heart rate variability indices of twins.
Tendais, Iva; Figueiredo, Bárbara; Gonçalves, Hernâni; Bernardes, João; Ayres-de-Campos, Diogo; Montenegro, Nuno
2015-03-01
To evaluate the differences in linear and complex heart rate dynamics in twin pairs according to fetal sex combination [male-female (MF), male-male (MM), and female-female (FF)]. Fourteen twin pairs (6 MF, 3 MM, and 5 FF) were monitored between 31 and 36.4 weeks of gestation. Twenty-six fetal heart rate (FHR) recordings of both twins were simultaneously acquired and analyzed with a system for computerized analysis of cardiotocograms. Linear and nonlinear FHR indices were calculated. Overall, MM twins presented higher intrapair average in linear indices than the other pairs, whereas FF twins showed higher sympathetic-vagal balance. MF twins exhibited higher intrapair average in entropy indices and MM twins presented lower entropy values than FF twins considering the (automatically selected) threshold rLu. MM twin pairs showed higher intrapair differences in linear heart rate indices than MF and FF twins, whereas FF twins exhibited lower intrapair differences in entropy indices. The results of this exploratory study suggest that twins have sex-specific differences in linear and nonlinear indices of FHR. MM twins expressed signs of a more active autonomic nervous system and MF twins showed the most active complexity control system. These results suggest that fetal sex combination should be taken into consideration when performing detailed evaluation of the FHR in twins.
NASA Astrophysics Data System (ADS)
Ahiale, Godwin Kwame; Oh, Yong-Jun; Choi, Won-Doo; Lee, Kwang-Bok; Jung, Jae-Gyu; Nam, Soo Woo
2013-09-01
This study presents the microstructure and high cycle fatigue performance of lap shear joints of dual phase steel (DP590) welded using gas metal arc welding (GMAW) and plasma arc welding (PAW) processes. High cycle fatigue tests were conducted on single and double lap joints under a load ratio of 0.1 and a frequency of 20 Hz. In order to establish a basis for comparison, both weldments were fabricated to have the same weld depth in the plate thickness. The PAW specimens exhibited a higher fatigue life, a gentle S-N slope, and a higher fatigue limit than the GMAW specimens. The improvement in the fatigue life of the PAW specimens was primarily attributed to the geometry effect that exhibited lower and wider beads resulting in a lower stress concentration at the weld toe where cracks initiate and propagate. Furthermore, the microstructural constituents in the heat-affected zone (HAZ) of the PAW specimens contributed to the improvement. The higher volume fraction of acicular ferrite in the HAZ beneath the weld toe enhanced the PAW specimen's resistance to fatigue crack growth. The double lap joints displayed a higher fatigue life than the single lap joints without changing the S-N slope.
NASA Technical Reports Server (NTRS)
Smith, J. G., Jr.; Connell, J. W.; Hergenrother, P. M.
1997-01-01
As part of a program to develop high temperature/high performance structural resins for aeronautical applications, imide oligomers containing terminal phenylethynyl groups with calculated number average molecular weights of 1250, 2500 and 5000 g/mol were prepared, characterized, and evaluated as adhesives and composite matrix resins. The goal of this work was to develop resin systems that are processable using conventional processing equipment into void free composites that exhibit high mechanical properties with long term high temperature durability, and are not affected by exposure to common aircraft fluids. The imide oligomers containing terminal phenylethynyl groups were fabricated into titanium adhesive specimens and IM-7 carbon fiber laminates under 0.1 - 1.4 MPa for 1 hr at 350-371 C. The lower molecular weight oligomers exhibited higher cured Tg, better processability, and better retention of mechanical properties at elevated temperature without significantly sacrificing toughness or damage tolerance than the higher molecular weight oligomer. The neat resin, adhesive and composite properties of the cured polymers will be presented.
Video game players show higher performance but no difference in speed of attention shifts.
Mack, David J; Wiesmann, Helene; Ilg, Uwe J
2016-09-01
Video games have become both a widespread leisure activity and a substantial field of research. In a variety of tasks, video game players (VGPs) perform better than non-video game players (NVGPs). This difference is most likely explained by an alteration of the basic mechanisms underlying visuospatial attention. More specifically, the present study hypothesizes that VGPs are able to shift attention faster than NVGPs. Such alterations in attention cannot be disentangled from changes in stimulus-response mappings in reaction time based measurements. Therefore, we used a spatial cueing task with varying cue lead times (CLTs) to investigate the speed of covert attention shifts of 98 male participants divided into 36 NVGPs and 62 VGPs based on their weekly gaming time. VGPs exhibited higher peak and mean performance than NVGPs. However, we did not find any differences in the speed of covert attention shifts as measured by the CLT needed to achieve peak performance. Thus, our results clearly rule out faster stimulus-response mappings as an explanation for the higher performance of VGPs in line with previous studies. More importantly, our data do not support the notion of faster attention shifts in VGPs as another possible explanation. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhu, Youqi; Cao, Chuanbao; Tao, Shi; Chu, Wangsheng; Wu, Ziyu; Li, Yadong
2014-01-01
High-quality ultrathin two-dimensional nanosheets of α-Ni(OH)2 are synthesized at large scale via microwave-assisted liquid-phase growth under low-temperature atmospheric conditions. After heat treatment, non-layered NiO nanosheets are obtained while maintaining their original frame structure. The well-defined and freestanding nanosheets exhibit a micron-sized planar area and ultrathin thickness (<2 nm), suggesting an ultrahigh surface atom ratio with unique surface and electronic structure. The ultrathin 2D nanostructure can make most atoms exposed outside with high activity thus facilitate the surface-dependent electrochemical reaction processes. The ultrathin α-Ni(OH)2 and NiO nanosheets exhibit enhanced supercapacitor performances. Particularly, the α-Ni(OH)2 nanosheets exhibit a maximum specific capacitance of 4172.5 F g−1 at a current density of 1 A g−1. Even at higher rate of 16 A g−1, the specific capacitance is still maintained at 2680 F g−1 with 98.5% retention after 2000 cycles. Even more important, we develop a facile and scalable method to produce high-quality ultrathin transition metal hydroxide and oxide nanosheets and make a possibility in commercial applications. PMID:25168127
Gold nanoparticle-embedded silk protein-ZnO nanorod hybrids for flexible bio-photonic devices
NASA Astrophysics Data System (ADS)
Gogurla, Narendar; Kundu, Subhas C.; Ray, Samit K.
2017-04-01
Silk protein has been used as a biopolymer substrate for flexible photonic devices. Here, we demonstrate ZnO nanorod array hybrid photodetectors on Au nanoparticle-embedded silk protein for flexible optoelectronics. Hybrid samples exhibit optical absorption at the band edge of ZnO as well as plasmonic energy due to Au nanoparticles, making them attractive for selective UV and visible wavelength detection. The device prepared on Au-silk protein shows a much lower dark current and a higher photo to dark-current ratio of ∼105 as compared to the control sample without Au nanoparticles. The hybrid device also exhibits a higher specific detectivity due to higher responsivity arising from the photo-generated hole trapping by Au nanoparticles. Sharp pulses in the transient photocurrent have been observed in devices prepared on glass and Au-silk protein substrates due to the light induced pyroelectric effect of ZnO, enabling the demonstration of self-powered photodetectors at zero bias. Flexible hybrid detectors have been demonstrated on Au-silk/polyethylene terephthalate substrates, exhibiting characteristics similar to those fabricated on rigid glass substrates. A study of the performance of photodetectors with different bending angles indicates very good mechanical stability of silk protein based flexible devices. This novel concept of ZnO nanorod array photodetectors on a natural silk protein platform provides an opportunity to realize integrated flexible and self-powered bio-photonic devices for medical applications in near future.
Neural sources of performance decline during continuous multitasking
Al-Hashimi, Omar; Zanto, Theodore P.; Gazzaley, Adam
2018-01-01
Multitasking performance costs have largely been characterized by experiments that involve two overlapping and punctuated perceptual stimuli, as well as punctuated responses to each task. Here, participants engaged in a continuous performance paradigm during fMRI recording to identify neural signatures associated with multitasking costs under more natural conditions. Our results demonstrated that only a single brain region, the superior parietal lobule (SPL), exhibited a significant relationship with multitasking performance, such that increased activation in the multitasking condition versus the singletasking condition was associated with higher task performance (i.e., least multitasking cost). Together, these results support previous research indicating that parietal regions underlie multitasking abilities and that performance costs are related to a bottleneck in control processes involving the SPL that serves to divide attention between two tasks. PMID:26159323
Liu, Haihong; Liu, Sha; Wang, Suju; Liu, Chang; Kong, Ying; Zhang, Ning; Li, Shujing; Yang, Yilin; Han, Demin; Zhang, Luo
2013-01-01
The purpose of this study was to examine the open-set word recognition performance of Mandarin Chinese-speaking children who had received a multichannel cochlear implant (CI) and examine the effects of lexical characteristics and demographic factors (i.e., age at implantation and duration of implant use) on Mandarin Chinese open-set word recognition in these children. Participants were 230 prelingually deafened children with CIs. Age at implantation ranged from 0.9 to 16.0 years, with a mean of 3.9 years. The Standard-Chinese version of the Monosyllabic Lexical Neighborhood test and the Multisyllabic Lexical Neighborhood test were used to evaluate the open-set word identification abilities of the children. A two-way analysis of variance was performed to delineate the lexical effects on the open-set word identification, with word difficulty and syllable length as the two main factors. The effects of age at implantation and duration of implant use on open-set, word-recognition performance were examined using correlational/regressional models. First, the average percent-correct scores for the disyllabic "easy" list, disyllabic "hard" list, monosyllabic "easy" list, and monosyllabic "hard" list were 65.0%, 51.3%, 58.9%, and 46.2%, respectively. For both the easy and hard lists, the percentage of words correctly identified was higher for disyllabic words than for monosyllabic words, Second, the CI group scored 26.3%, 31.3%, and 18.8 % points lower than their hearing-age-matched normal-hearing peers for 4, 5, and 6 years of hearing age, respectively. The corresponding gaps between the CI group and the chronological-age-matched normal-hearing group were 47.6, 49.6, and 42.4, respectively. The individual variations in performance were much greater in the CI group than in the normal-hearing group, Third, the children exhibited steady improvements in performance as the duration of implant use increased, especially 1 to 6 years postimplantation. Last, age at implantation had significant effects on postimplantation word-recognition performance. The benefit of early implantation was particularly evident in children 5 years old or younger. First, Mandarin Chinese-speaking pediatric CI users' open-set word recognition was influenced by the lexical characteristics of the stimuli. The score was higher for easy words than for hard words and was higher for disyllabic words than for monosyllabic words, Second, Mandarin-Chinese-speaking pediatric CI users exhibited steady progress in open-set word recognition as the duration of implant use increased. However, the present study also demonstrated that, even after 6 years of CI use, there was a significant deficit in open-set, word-recognition performance in the CI children compared with their normal-hearing peers. Third, age at implantation had significant effects on open-set, word-recognition performance. Early implanted children exhibited better performance than children implanted later.
2017-06-01
dc converter-based test system was built to intentionally introduce inductor current harmonics by varying the filter capacitance and parasitic...the inclusion of distorted waveforms obtained by varying filter capacitance. At higher frequencies, the Metglas cores were found to exhibit greater...was built to intentionally introduce inductor current harmonics by varying the filter capacitance and parasitic inductance of the test system. Both
A comparative study of fungal and bacterial biofiltration treating a VOC mixture.
Estrada, José M; Hernández, Sergio; Muñoz, Raúl; Revah, Sergio
2013-04-15
Bacterial biofilters usually exhibit a high microbial diversity and robustness, while fungal biofilters have been claimed to better withstand low moisture contents and pH values, and to be more efficient coping with hydrophobic volatile organic compounds (VOCs). However, there are only few systematic evaluations of both biofiltration technologies. The present study compared fungal and bacterial biofiltration for the treatment of a VOC mixture (propanal, methyl isobutyl ketone-MIBK, toluene and hexanol) under the same operating conditions. Overall, fungal biofiltration supported lower elimination capacities than its bacterial counterpart (27.7 ± 8.9 vs 40.2 ± 5.4 gCm(-3) reactor h(-1)), which exhibited a final pressure drop 60% higher than that of the bacterial biofilter due to mycelial growth. The VOC mineralization ratio was also higher in the bacterial bed (≈ 63% vs ≈ 43%). However, the substrate biodegradation preference order was similar for both biofilters (propanal>hexanol>MIBK>toluene) with propanal partially inhibiting the consumption of the rest of the VOCs. Both systems supported an excellent robustness versus 24h VOC starvation episodes. The implementation of a fungal/bacterial coupled system did not significantly improve the VOC removal performance compared to the individual biofilter performances. Copyright © 2013 Elsevier B.V. All rights reserved.
Libon, David J.; Bondi, Mark W.; Price, Catherine C.; Lamar, Melissa; Eppig, Joel; Wambach, Denene M.; Nieves, Christine; Delano-Wood, Lisa; Giovannetti, Tania; Lippa, Carol; Kabasakalian, Anahid; Cosentino, Stephanie; Swenson, Rod; Penney, Dana L.
2012-01-01
Using cluster analysis Libon et al. (2010) found three verbal serial list-learning profiles involving delay memory test performance in patients with mild cognitive impairment (MCI). Amnesic MCI (aMCI) patients presented with low scores on delay free recall and recognition tests; mixed MCI (mxMCI) patients scored higher on recognition compared to delay free recall tests; and dysexecutive MCI (dMCI) patients generated relatively intact scores on both delay test conditions. The aim of the current research was to further characterize memory impairment in MCI by examining forgetting/savings, interference from a competing word list, intrusion errors/perseverations, intrusion word frequency, and recognition foils in these three statistically determined MCI groups compared to normal control (NC) participants. The aMCI patients exhibited little savings, generated more highly prototypic intrusion errors, and displayed indiscriminate responding to delayed recognition foils. The mxMCI patients exhibited higher saving scores, fewer and less prototypic intrusion errors, and selectively endorsed recognition foils from the interference list. dMCI patients also selectively endorsed recognition foils from the interference list but performed similarly compared to NC participants. These data suggest the existence of distinct memory impairments in MCI and caution against the routine use of a single memory test score to operationally define MCI. PMID:21880171
Brockway, Lance; Vasiraju, Venkata; Vaddiraju, Sreeram
2014-03-28
Recent studies indicated that nanowire format of materials is ideal for enhancing the thermoelectric performance of materials. Most of these studies were performed using individual nanowires as the test elements. It is not currently clear whether bulk assemblies of nanowires replicate this enhanced thermoelectric performance of individual nanowires. Therefore, it is imperative to understand whether enhanced thermoelectric performance exhibited by individual nanowires can be extended to bulk assemblies of nanowires. It is also imperative to know whether the addition of metal nanoparticle to semiconductor nanowires can be employed for enhancing their thermoelectric performance further. Specifically, it is important to understand the effect of microstructure and composition on the thermoelectric performance on bulk compound semiconductor nanowire-metal nanoparticle composites. In this study, bulk composites composed of mixtures of copper nanoparticles with either unfunctionalized or 1,4-benzenedithiol (BDT) functionalized Zn₃P₂ nanowires were fabricated and analyzed for their thermoelectric performance. The results indicated that use of BDT functionalized nanowires for the fabrication of composites leads to interface-engineered composites that have uniform composition all across their cross-section. The interface engineering allows for increasing their Seebeck coefficients and electrical conductivities, relative to the Zn₃P₂ nanowire pellets. In contrast, the use of unfunctionalized Zn₃P₂ nanowires for the fabrication of composite leads to the formation of composites that are non-uniform in composition across their cross-section. Ultimately, the composites were found to have Zn₃P₂ nanowires interspersed with metal alloy nanoparticles. Such non-uniform composites exhibited very high electrical conductivities, but slightly lower Seebeck coefficients, relative to Zn₃P₂ nanowire pellets. These composites were found to show a very high zT of 0.23 at 770 K, orders of magnitude higher than either interface-engineered composites or Zn₃P₂ nanowire pellets. The results indicate that microstructural composition of semiconductor nanowire-metal nanoparticle composites plays a major role in determining their thermoelectric performance, and such composites exhibit enhanced thermoelectric performance.
NASA Astrophysics Data System (ADS)
Liu, Tao; Jiang, Chuanjia; Cheng, Bei; You, Wei; Yu, Jiaguo
2017-08-01
Nickel (II) oxide (NiO) nanosheet grown on N-doped carbon hollow spheres (NiO/NCHS) with hierarchical pore structure are obtained via facile chemical bath deposition followed by calcination at 350 °C under nitrogen atmosphere. Phase structure measurements indicate that the material is composed of NiO and N-doped carbon. The NiO/NCHS composite exhibits a unique flower-like morphology, where ultrathin NiO nanosheets are vertically grown on the surface of NCHS. This hierarchical nanostructure is beneficial for facilitating electron and electrolyte ion transport and accelerating the reversible redox reaction. The specific capacitance of the NiO/NCHS composite (585 F g-1 at 1 A g-1) is higher than that of pure NiO particle (453 F g-1 at 1 A g-1). Meanwhile, the NiO/NCHS composite exhibits excellent rate performance and superior cycling stability over 6000 cycles. The enhanced supercapacitive performance of the NiO/NCHS nanocomposite indicates that it can be an appealing candidate electrode material for supercapacitors.
Mizokuro, Toshiko; Tanigaki, Nobutaka; Miyadera, Tetsuhiko; Shibata, Yousei; Koganezawa, Tomoyuki
2018-04-01
The molecular orientation of π-conjugated molecules has been reported to significantly affect the performance of organic photovoltaic devices (OPVs) based on molecular films. Hence, the control of molecular orientation is a key issue toward the improvement of OPV performance. In this research, oriented thin films of an n-type molecule, 3,4,9,10-Perylenetetracarboxylic Bisbenzimida-zole (PTCBI), were formed by deposition on in-plane oriented polythiophene (PT) films. Orientation of the PTCBI films was evaluated by polarized UV-vis spectroscopy and 2D-Grazing incidence X-ray diffraction. Results indicated that PTCBI molecules on PT film exhibit nearly edge-on and in-plane orientation (with molecular long axis along the substrate), whereas PTCBI molecules without PT film exhibit neither. OPVs composed of PTCBI molecular film with and without PT were fabricated and evaluated for correlation of orientation with performance. The OPVs composed of PTCBI film with PT showed higher power conversion efficiency (PCE) than that of film without PT. The experiment indicated that in-plane orientation of PTCBI molecules absorbs incident light more efficiently, leading to increase in PCE.
Li, Song; Feng, Guang; Fulvio, Pasquale F; Hillesheim, Patrick C; Liao, Chen; Dai, Sheng; Cummings, Peter T
2012-09-06
An equimolar mixture of 1-methyl-1-propylpyrrolidinium bis(trifluoromethylsulfonyl)imide ([C3mpy][Tf2N]), 1-methyl-1-butylpiperidinium bis(trifluoromethylsulfonyl)imide ([C4mpip][Tf2N]) was investigated by classic molecular dynamics (MD) simulation. Differential scanning calorimetry (DSC) measurements verified that the binary mixture exhibited lower glass transition temperature than either of the pure room-temperature ionic liquids (RTILs). Moreover, the binary mixture gave rise to higher conductivity than the neat RTILs at lower temperature range. In order to study its capacitive performance in supercapacitors, simulations were performed of the mixture, and the neat RTILs used as electrolytes near an onion-like carbon (OLC) electrode at varying temperatures. The differential capacitance exhibited independence of the electrical potential applied for three electrolytes, which is in agreement with previous work on OLC electrodes in a different RTILs. Positive temperature dependence of the differential capacitance was observed, and it was dominated by the electrical double layer (EDL) thickness, which is for the first time substantiated in MD simulation.
Peng, Jinyun; Huang, Qing; Zhuge, Wenfeng; Liu, Yuxia; Zhang, Cuizong; Yang, Wei; Xiang, Gang
2018-05-30
In this study, we developed a novel photoelectrochemical (PEC) sensor for the highly sensitive detection of erythromycin by functionalising graphene oxide (GO) with nickel tetra-amined phthalocyanine (NiTAPc) through covalent bonding, which resulted in the formation of NiTAPc-Gr. The fabricated sensor showed a higher PEC efficiency under blue light, exhibiting a peak wavelength of 456 nm, as compared to that of the monomer. Further, the NiTAPc-Gr/indium tin oxide (ITO) sensor exhibited a photocurrent that was 50-fold higher than that for a GO/ITO sensor under the same conditions. Under optimal conditions, the NiTAPc-Gr PEC sensor showed a linear response for erythromycin concentrations ranging from 0.40 to 120.00 μmol L -1 , with the minimum limit for detection being 0.08 μmol L -1 . Thus, the NiTAPc-Gr sensor exhibited superior performance and excellent PEC characteristics, high stability, and good reproducibility with respect to the sensing of erythromycin. Moreover, it is convenient to use, fast, small, and cheap to produce. Hence, it should find wide use in the analysis of erythromycin in real-world applications. Copyright © 2018 Elsevier B.V. All rights reserved.
Lamsal, Nirmal; Angel, S Michael
2017-06-01
In earlier works, we demonstrated a high-resolution spatial heterodyne Raman spectrometer (SHRS) for deep-ultraviolet (UV) Raman measurements, and showed its ability to measure UV light-sensitive compounds using a large laser spot size. We recently modified the SHRS by replacing the cube beam splitter (BS) with a custom plate beam splitter with higher light transmission, an optimized reflectance/transmission ratio, higher surface flatness, and better refractive index homogeneity than the cube beam splitter. Ultraviolet Raman measurements were performed using a SHRS modified to use the plate beam splitter and a matching compensator plate and compared to the previously described cube beam splitter setup. Raman spectra obtained using the modified SHRS exhibit much higher signals and signal-to-noise (S/N) ratio and show fewer spectral artifacts. In this paper, we discuss the plate beam splitter SHRS design features, the advantages over previous designs, and discuss some general SHRS issues such as spectral bandwidth, S/N ratio characteristics, and optical efficiency.
NASA Astrophysics Data System (ADS)
Zhang, Yulong; Fan, Zhiqiang; Zhang, Weijia; Ma, Qiang; Jiang, Zhaoyi; Ma, Denghao
2018-05-01
High performance silicon combined structure (micropillar with Cu nanoparticles) solar cell has been synthesized from N-type silicon substrates based on the micropillar array. The combined structure solar cell exhibited higher short circuit current rather than the silicon miropillar solar cell, which the parameters of micropillar array are the same. Due to the Cu nanoparticles were decorated on the surface of silicon micropillar array, the photovoltaic properties of cells have been improved. In addition, the optimal efficiency of 11.5% was measured for the combined structure solar cell, which is better than the silicon micropillar cell.
Nonlinear absorption enhancement of AuNPs based polymer nanocomposites
NASA Astrophysics Data System (ADS)
Zulina, Natalia A.; Baranov, Mikhail A.; Kniazev, Kirill I.; Kaliabin, Viacheslav O.; Denisyuk, Igor Yu.; Achor, Susan U.; Sitnikova, Vera E.
2018-07-01
Au nanoparticles (AuNPs) based polymer nanocomposites with high nonlinear absorption coefficient were synthesized by UV-photocuring. AuNPs were synthesized by laser ablation method in liquid monomer isodecyl acrylate (IDA). In this research, two colloids with 70 nm and 20 nm nanoparticles average sizes were studied. Size control was performed with SEM and STEM. Prepared nanomaterials exhibit strong third-order nonlinear optical responses under CW laser irradiation at 532 nm, which was estimated by using z-scan technique performed with open aperture. It was found experimentally that nonlinear absorption β is almost twice higher for nanocomposites with smaller AuNPs.
Chen, Xingxing; Zhang, Zijian; Ding, Zicheng; Liu, Jun; Wang, Lixiang
2016-08-22
Conjugated polymers are essential for solution-processable organic opto-electronic devices. In contrast to the great efforts on developing new conjugated polymer backbones, research on developing side chains is rare. Herein, we report branched oligo(ethylene glycol) (OEG) as side chains of conjugated polymers. Compared with typical alkyl side chains, branched OEG side chains endowed the resulting conjugated polymers with a smaller π-π stacking distance, higher hole mobility, smaller optical band gap, higher dielectric constant, and larger surface energy. Moreover, the conjugated polymers with branched OEG side chains exhibited outstanding photovoltaic performance in polymer solar cells. A power conversion efficiency of 5.37 % with near-infrared photoresponse was demonstrated and the device performance could be insensitive to the active layer thickness. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Arifin, Mukh; Ni'matullah Al-Baarri, Ahmad; Etza Setiani, Bhakti; Fazriyati Siregar, Risa
2018-02-01
This study was done for analysing the texture profile and colour performance in local and imported meat in Semarang, Indonesia. Two types of available meat were compared in the hardness, cohesiveness, springiness, adhesiveness and the colour L*a*b* performance. Five fresh beef cut of round meats from local and imported meat were used in this experiments. Data were analysed statistically using T-test. The results showed that local beef exhibit higher in the springiness than imported beef resulting in the remarkable differences. The colour analysis showed that imported beef provided remarkable higher in L* value than local beef. Resulting significant differences among two types of beef. As conclusion, these value might provide the notable of differences among local and imported meat and may give preferences status to the user for further application in meat processing.
Enhancement of Gas Barrier Properties of CFRP Laminates Fabricated Using Thin-Ply Prepregs
NASA Astrophysics Data System (ADS)
横関, 智弘; 高木, 智宏; 吉村, 彰記; Ogasawara, Toshio; 荻原, 慎二
Composite laminates manufactured using thin-ply prepregs are expected to have superior resistance properties against microcracking compared to those using standard prepregs. In this study, comparative investigations are presented on the microcrack accumulation and gas leakage characteristics of CFRP laminates fabricated using standard and thin-ply prepregs, consisting of high-performance carbon fiber and toughened epoxy, as a fundamental research on the cryogenic composite tanks for future space vehicles. It was shown that laminates using thin-ply prepregs exhibited much higher strain at microcrack initiation compared to those using standard prepregs at room and cryogenic temperatures. In addition, helium gas leak tests using CFRP laminated tubular specimens subjected to quasi-static tension loadings were performed. It was demonstrated that CFRP laminates using thin-ply prepregs have higher gas barrier properties than those using standard prepregs.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song, Ping; Barkholtz, Heather M.; Wang, Ying
We demonstrate a new and simple method for pre-treating the carbon material and iron precursor to prepare oxygen reduction reaction (ORR) catalysts, which can produce super-high performance and stability in alkaline solution, with high performance in acid solution. This strategy using cheap materials is simply controllable. Moreover, it has achieved smaller uniform nanoparticles to exhibit high stability, and the synergetic effect of Fe and N offered much higher performance in ORR than commercial Pt/C, with high maximum power density in alkaline and acid fuel cell test. So it can make this kind of catalysts be the most promising alternatives ofmore » Pt-based catalysts with best performance/price.« less
Ille, Rottraut; Lahousen, Theresa; Schweiger, Stefan; Hofmann, Peter; Kapfhammer, Hans-Peter
2007-01-01
Cardiac surgery may account for complications such as cognitive impairment, depression, and delay of convalescence. This study investigated the influence of different risk factors on cognitive performance, emotional state, and convalescence. We included 83 patients undergoing cardiac surgery who had no indication of postoperative delirium. Psychometric testing was performed 1 day before and 7 days after surgery. Neuron-specific enolase (NSE) levels were measured 1 day before and 36 h after surgery. Depression score increased after surgery, but patients showed no clinically significant depression. Postoperative cognitive performance correlated with postoperative depression level and preoperative cognitive performance. Forty-three percent of patients showed postoperative decline. Older patients exhibited a higher postoperative increase in NSE concentrations. Patients undergoing coronary artery bypass grafts or combined procedures exhibited more medical risk factors than those undergoing valve surgery alone. The number of bypass grafts was associated with time of hospitalization, and the number of patient-related risk factors correlated with stay in intensive care unit. For elderly patients undergoing cardiac surgery, older age, total preexisting medical risk factors, and surgery duration seem to be the most important factors influencing cognitive outcome and convalescence. Results show that, also for patients without postoperative delirium, medical risk factors and intraoperative parameters can result in delay of convalescence.
Carrier transport dynamics in Mn-doped CdSe quantum dot sensitized solar cells
NASA Astrophysics Data System (ADS)
Poudyal, Uma; Maloney, Francis S.; Sapkota, Keshab; Wang, Wenyong
2017-10-01
In this work quantum dot sensitized solar cells (QDSSCs) were fabricated with CdSe and Mn-doped CdSe quantum dots (QDs) using the SILAR method. QDSSCs based on Mn-doped CdSe QDs exhibited improved incident photon-to-electron conversion efficiency. Carrier transport dynamics in the QDSSCs were studied using the intensity modulated photocurrent/photovoltage spectroscopy technique, from which transport and recombination time constants could be derived. Compared to CdSe QDSSCs, Mn-CdSe QDSSCs exhibited shorter transport time constant, longer recombination time constant, longer diffusion length, and higher charge collection efficiency. These observations suggested that Mn doping in CdSe QDs could benefit the performance of solar cells based on such nanostructures.
Schaubroeck, John; Lam, Simon S K; Cha, Sandra E
2007-07-01
The authors investigated the relationship between transformational leadership behavior and group performance in 218 financial services teams that were branches of a bank in Hong Kong and the United States. Transformational leadership influenced team performance through the mediating effect of team potency. The effect of transformational leadership on team potency was moderated by team power distance and team collectivism, such that higher power distance teams and more collectivistic teams exhibited stronger positive effects of transformational leadership on team potency. The model was supported by data in both Hong Kong and the United States, which suggests a convergence in how teams function in the East and West and highlights the importance of team values.
Overview of NASA Glenn Seal Project
NASA Technical Reports Server (NTRS)
Steinetz, Bruce M.; Dunlap, Patrick H., Jr.; Proctor, Margaret; Delgado, Irebert; Finkbeiner,Joshua; deGroh, Henry; Ritzert, Frank; Daniels, Christopher; DeMange, Jeff; Taylor, Shawn;
2009-01-01
NASA Glenn is currently performing seal research supporting both advanced turbine engine development and advanced space vehicle/propulsion system development. Studies have shown that decreasing parasitic leakage by applying advanced seals will increase turbine engine performance and decrease operating costs. Studies have also shown that higher temperature, long life seals are critical in meeting next generation space vehicle and propulsion system goals in the areas of performance, reusability, safety, and cost. Advanced docking system seals need to be very robust resisting space environmental effects while exhibiting very low leakage and low compression and adhesion forces. NASA Glenn is developing seal technology and providing technical consultation for the Agencys key aero- and space technology development programs.
Surfactant-treated graphene covered polyaniline nanowires for supercapacitor electrode
NASA Astrophysics Data System (ADS)
Rajagopalan, Balasubramaniyan; Hur, Seung Hyun; Chung, Jin Suk
2015-04-01
Surfactant-treated graphene/polyaniline (G/PANI) nanocomposites were prepared by the MnO2 template-aided oxidative polymerization of aniline (ANI) on the surfactant-treated graphene sheets. The electrochemical performances of the G/PANI nanocomposites in a three-electrode system using an aqueous sulfuric acid as an electrolyte exhibited a specific capacitance of 436 F g-1 at 1 A g-1, which is much higher than the specific capacitance of pure PANI (367 F g-1). Such a higher specific capacitance of the G/PANI nanocomposite inferred an excellent synergistic effect of respective pseudocapacitance and electrical double-layer capacitance of PANI and graphene.
Arsenic Removal from Water by Adsorption on Iron-Contaminated Cryptocrystalline Graphite
NASA Astrophysics Data System (ADS)
Yang, Qiang; Yang, Lang; Song, Shaoxian; Xia, Ling
This work aimed to study the feasibility of using iron-contaminated graphite as an adsorbent for As(V) removal from water. The adsorbent was prepared by grinding graphite concentrate with steel ball. The study was performed through the measurements of adsorption capacity, BET surface area and XPS analysis. The experimental results showed that the iron-contaminated graphite exhibited significantly high adsorption capacity of As(V). The higher the iron contaminated on the graphite surface, the higher the adsorption capacity of As(V) on the material obtained. It was suggested that the ion-contaminated graphite was a good adsorbent for As(V) removal.
Lin, Chun-Yu; Chiu, Chun-Ching; Cheng, Ju; Lin, Chia-Yun; Shi, Ya-Fang; Tsai, Chun-Chou; Tzang, Bor-Show; Hsu, Tsai-Ching
2018-01-01
Mounting evidence suggests a connection between human parvovirus B19 (B19) and autoimmune diseases, and especially an association between the B19-VP1 unique region (VP1u) and anti-phospholipid syndrome (APS). However, little is known about the antigenicity of B19-VP1u in the induction of APS-like syndrome. To elucidate the antigenicity of B19-VP1u in the induction of APS, N-terminal truncated B19-VP1u (tVP1u) proteins were prepared to immunize Balb/c mice to generate antibodies against B19-tVP1u proteins. The secreted phospholipase A2 (sPLA2) activities and binding specificity of mice anti-B19-tVP1u antibodies with cardiolipin (CL) and beta-2-glycoprotein I (β2GPI) were evaluated by performing immunoblot, ELISA and absorption experiments. A mice model of passively induced APS was adopted. Although sPLA2 activities were identified in all B19-tVP1u proteins, only amino acid residues 61-227 B19-tVP1u exhibited a higher sPLA2 activity. Autoantibodies against CL and β2GPI exhibited binding activities with all B19-tVP1u proteins. IgG that was purified from mice that had been immunized with amino acid residues 21-227 to 121-227 B19-tVP1u proteins exhibited significantly higher binding activity with CL. IgG that was purified from mice that had been immunized with amino acid residues 21-227, 31-227, 82-227 and 91-227 B19-tVP1u proteins exhibited significantly higher binding activity with β2GPI. Accordingly, significantly higher binding inhibition of CL was detected in the presence of amino acid residues 61-227 and 101-227 B19-tVP1u. Significantly higher binding inhibition of β2GPI was detected in the presence of amino acid residues 21-227, 31-227, 82-227 and 91-227 B19-tVP1u. The mice that received amino acid residues 31-227 or 61-227 anti-tB19-VP1u IgG revealed significant thrombocytopenia and those that received amino acid residues 21-227, 31-227, 61-227, 71-227, 82-227, 91-227, 101-227 or 114-227 anti-tB19-VP1u IgG exhibited significantly prolonged aPTT. These findings provide further information concerning the role of B19-VP1u antigenicity in APS-like autoimmunity.
Neural sources of performance decline during continuous multitasking.
Al-Hashimi, Omar; Zanto, Theodore P; Gazzaley, Adam
2015-10-01
Multitasking performance costs have largely been characterized by experiments that involve two overlapping and punctuated perceptual stimuli, as well as punctuated responses to each task. Here, participants engaged in a continuous performance paradigm during fMRI recording to identify neural signatures associated with multitasking costs under more natural conditions. Our results demonstrated that only a single brain region, the superior parietal lobule (SPL), exhibited a significant relationship with multitasking performance, such that increased activation in the multitasking condition versus the singletasking condition was associated with higher task performance (i.e., least multitasking cost). Together, these results support previous research indicating that parietal regions underlie multitasking abilities and that performance costs are related to a bottleneck in control processes involving the SPL that serves to divide attention between two tasks. Copyright © 2015. Published by Elsevier Ltd.
Griffin, Michael B.; Baddour, Frederick G.; Habas, Susan E.; ...
2017-06-06
Here, the production of hydrocarbon fuels from biomass pyrolysis requires the development of effective deoxygenation catalysts, and insight into how the properties of the support influence performance is critical for catalyst design. In this report, nanoparticles of Ni and Rh 2P were synthesized using solution-phase techniques and dispersed on high surface area supports. The supports included a relatively inert material (C), an acidic reducible metal-oxide (TiO 2), an acidic irreducible metal-oxide (Al 2O 3), and a basic irreducible metal-oxide (MgO). The eight active phase/support combinations were investigated for the deoxygenation of guaiacol, a pyrolysis vapor model compound, under ex situmore » catalytic fast pyrolysis conditions (350 °C, 0.44 MPa H 2). Compared to the baseline performance of the C-supported catalysts, Ni/TiO 2 and Rh 2P/TiO 2 exhibited higher guaiacol conversion and lower O : C ratios for C 5+ products, highlighting the enhanced activity and greater selectivity to deoxygenated products derived from the use of an acidic reducible metal-oxide support. The Al 2O 3-supported catalysts also exhibited higher conversion than the C-supported catalysts and promoted alkylation reactions, which improve carbon efficiency and increase the carbon number of the C 5+ products. However, Ni/Al 2O 3 and Rh 2P/Al 2O 3 were less selective towards deoxygenated products than the C-supported catalysts. The MgO-supported catalyst exhibited lower conversion and decreased yield of deoxygenated products compared to the C-supported catalysts. The results reported here suggest that basic metal-oxide supports may inhibit deoxygenation of phenolics under CFP conditions. Contrastingly, support acidity and reducibility were demonstrated to promote conversion and selectivity to deoxygenated products, respectively.« less
2017-01-01
Objective To prospectively assess the association between impoverished sensorimotor integration of the tongue and lips and post-extubation dysphagia (PED). Methods This cross-sectional study included non-neurologic critically ill adult patients who required endotracheal intubation and underwent videofluoroscopic swallowing study (VFSS) between October and December 2016. Participants underwent evaluation for tongue and lip performance, and oral somatosensory function. Demographic and clinical data were retrieved from medical records. Results Nineteen patients without a definite cause of dysphagia were divided into the non-dysphagia (n=6) and the PED (n=13) groups based on VFSS findings. Patients with PED exhibited greater mean duration of intubation (11.85±3.72 days) and length of stay in the intensive care unit (LOS-ICU; 13.69±3.40 days) than those without PED (6.83±5.12 days and 9.50±5.96 days; p=0.02 and p=0.04, respectively). The PED group exhibited greater incidence of pneumonia, higher videofluoroscopy swallow study dysphagia scale score, higher oral transit time, and lower tongue power and endurance and lip strength than the non-dysphagia groups. The differences in two-point discrimination and sensations of light touch and taste among the two groups were insignificant. Patients intubated for more than 7 days exhibited lower maximal tongue power and tongue endurance than those intubated for less than a week. Conclusion Duration of endotracheal intubation, LOS-ICU, and oromotor degradation were associated with PED development. Oromotor degradation was associated with the severity of dysphagia. Bedside oral performance evaluation might help identify patients who might experience post-extubation swallowing difficulty. PMID:29354572
Li, Yang; Kim, Jeonghun; Wang, Jie; Liu, Nei-Ling; Bando, Yoshio; Alshehri, Abdulmohsen Ali; Yamauchi, Yusuke; Hou, Chia-Hung; Wu, Kevin C-W
2018-06-05
Zeolitic imidazolate framework (ZIF) composite-derived carbon exhibiting large surface area and high micropore volume is demonstrated to be a promising electrode material for the capacitive deionization (CDI) application. However, some inherent serious issues (e.g., low electrical conductivity, narrow pore size, relatively low pore volume, etc.) are still observed for nitrogen-doped porous carbon particles, which restrict their CDI performance. To solve the above-mentioned problems, herein, we prepared gold-nanoparticle-embedded ZIF-8-derived nitrogen-doped carbon calcined at 800 °C (Au@NC800) and PEDOT doped-NC-800 (NC800-PEDOT). The newly generated NC800-PEDOT and Au@NC800 electrodes exhibited notably increased conductivity, and they also achieved high electrosorption capacities of 16.18 mg g-1 and 14.31 mg g-1, respectively, which were much higher than that of NC800 (8.36 mg g-1). Au@NC800 and NC800-PEDOT can be promisingly applicable as highly efficient CDI electrode materials.
Fabrication and photocatalytic property of magnetic NiFe2O4/Cu2O composites
NASA Astrophysics Data System (ADS)
He, Zuming; Xia, Yongmei; Tang, Bin; Su, Jiangbin
2017-09-01
Magnetically separable NiFe2O4/Cu2O composites were successfully synthesized by a two-step method. The samples were characterized by XRD, XPS, SEM and VSM as well as their PL spectra and UV-vis adsorption spectra. The results showed that the NiFe2O4/Cu2O composites were composed of cubic-structured Cu2O and spinel-structured NiFe2O4, were able to absorb a large amount of visible light, exhibited excellent photocatalytic activity under simulated solar light irradiation and could be easily separated by an external magnetic field. The NiFe2O4/Cu2O composites exhibited higher photocatalytic performance than that of a single semiconductor. It was found that the prominently enhanced photocatalytic performance of NiFe2O4/Cu2O composites was ascribed to the effective separation of photo-generated electron-hole pairs and the effective generation of the hydroxyl radical •OH.
NASA Astrophysics Data System (ADS)
Xie, Kangjun; Zhang, Manman; Yang, Yang; Zhao, Long; Qi, Wei
2018-05-01
The electrochemical property of ordered mesoporous carbon (OMC) can be changed significantly due to the incorporating of electron-donating heteroatoms into OMC. Here, we demonstrate the successful fabrication of nitrogen-doped ordered mesoporous carbon (NOMC) materials to be used as carbon substrates for loading polyaniline (PANI) by in situ polymerization. Compared with NOMC, the PANI/NOMC prepared with a different mass ratio of PANI and NOMC exhibits remarkably higher electrochemical specific capacitance. In a typical three-electrode configuration, the hybrid has a specific capacitance about 276.1 F/g at 0.2 A/g with a specific energy density about 38.4 Wh/kg. What is more, the energy density decreases very slowly with power density increasing, which is a different phenomenon from other reports. PANI/NOMC materials exhibit good rate performance and long cycle stability in alkaline electrolyte ( 80% after 5000 cycles). The fabrication of PANI/NOMC with enhanced electrochemical properties provides a feasible route for promoting its applications in supercapacitors.
Influence of Different Aluminum Sources on the NH3 Gas-Sensing Properties of ZnO Thin Films
NASA Astrophysics Data System (ADS)
Ozutok, Fatma; Karaduman, Irmak; Demiri, Sani; Acar, Selim
2018-02-01
Herein we report Al-doped ZnO films (AZO) deposited on the ZnO seed layer by chemical bath deposition method. Al powder, Al oxide and Al chloride were used as sources for the deposition process and investigated for their different effects on the NH3 gas-sensing performance. The morphological and microstructural properties were investigated by employing x-ray powder diffraction, scanning electron microscopy analysis and energy-dispersive x-ray spectroscopy. The characterization studies showed that the AZO thin films are crystalline and exhibit a hexagonal wurtzite structure. Ammonia (NH3) gas-sensing measurements of AZO films were performed at different concentration levels and different operation temperatures from 50°C to 210°C. The sample based on powder-Al source showed a higher response, selectivity and short response/recovery time than the remaining samples. The powder Al sample exhibited 33% response to 10-ppm ammonia gas at 190°C, confirming a strong dependence on the dopant source type.
Highly Ordered TiO2 Microcones with High Rate Performance for Enhanced Lithium-Ion Storage.
Rhee, Oonhee; Lee, Gibaek; Choi, Jinsub
2016-06-15
The perpendicularly oriented anatase TiO2 microcones for Li-ion battery application were synthesized via anodization of a Ti foil in aqueous HF + H3PO4 solution. The TiO2 microcones exhibited a high active surface area with a hollow core depending on applied voltage and reaction time, confirmed by SEM, XRD and TEM with EDS mapping. Li insertion/desertion into TiO2 microcones was evaluated for the first time in half-cell configuration in terms of various current density and long-term cyclability. The electrochemical experiments demonstrated that the as-prepared TiO2 microcones as anode material exhibited 3 times higher capacity as compared with TiO2 nanotubular structures, excellent rate performance (0.054 mAhcm(-2) even at 50 C) and reliable capacity retention during 500 cycles, which was attributed to facile diffusion of Li-ions induced in hollow anatase TiO2 microcones structure with multilayered nanofragment.
Sputtered boron indium oxide thin-film transistors
NASA Astrophysics Data System (ADS)
Stewart, Kevin A.; Gouliouk, Vasily; Keszler, Douglas A.; Wager, John F.
2017-11-01
Boron indium oxide (BIO) is studied for thin-film transistor (TFT) channel layer applications. Sputtered BIO thin films exhibit an amorphous phase over a wide range of B2O3/In2O3 ratios and remain amorphous up to 500 °C. The band gap decreases linearly with decreasing boron content, whereas device performance generally improves with decreasing boron content. The best amorphous BIO TFT exhibits a field-effect mobility of 10 cm2 V-1 s-1, turn-on voltage of 2.5 V, and sub-threshold swing of 0.72 V/dec. Decreasing the boron content to 12.5% leads to a polycrystalline phase, but further increases the mobility up to 20-40 cm2 V-1 s-1. TCAD simulation results suggest that the reason for higher performance after increasing the anneal temperature from 200 to 400 °C is due to a lower defect density in the sub-bandgap region of the BIO channel layer.
NASA Astrophysics Data System (ADS)
Liu, Runru; Wen, Dongdong; Zhang, Xueyu; Wang, Dejun; Yang, Qiang; Yuan, Beilei; Lü, Wei
2018-06-01
In this work, three-Dimensional nitrogen-doped graphene/MnO2 (NG/MnO2) was prepared by plasma treatment, which provides a high specific surface area due to porous structure and exhibits enhanced supercapacitor performance. The advantage of NG/MnO2 electrode was obvious compared with reduced graphene oxide/MnO2 (RGO/MnO2) which was prepared by traditional hydrothermal method, such as improved electrochemical property and better cycling stability. The specific capacitance of NG/MnO2 at the scan rate of 5 mV s‑1 (393 F g‑1) is higher than that of RGO/MnO2 (260 F g‑1). In addition, NG/MnO2 showed higher durability with 90.2% capacitance retention than that of RGO/MnO2 (82%) after 5000 cycles. Such cheap and high-performance supercapacitor electrodes are available by our feasible plasma treatment, which give promise in large-scale commercial energy storage devices.
Room temperature negative differential resistance in terahertz quantum cascade laser structures
Albo, Asaf; Hu, Qing; Reno, John L.
2016-08-24
The mechanisms that limit the temperature performance of GaAs/Al 0.15GaAs-based terahertz quantum cascade lasers (THz-QCLs) have been identified as thermally activated LO-phonon scattering and leakage of charge carriers into the continuum. Consequently, the combination of highly diagonal optical transition and higher barriers should significantly reduce the adverse effects of both mechanisms and lead to improved temperature performance. Here, we study the temperature performance of highly diagonal THz-QCLs with high barriers. Our analysis uncovers an additional leakage channel which is the thermal excitation of carriers into bounded higher energy levels, rather than the escape into the continuum. Based on this understanding,more » we have designed a structure with an increased intersubband spacing between the upper lasing level and excited states in a highly diagonal THz-QCL, which exhibits negative differential resistance even at room temperature. Furthermore, this result is a strong evidence for the effective suppression of the aforementioned leakage channel.« less
Decision-Making in Patients with Hyperthyroidism: A Neuropsychological Study.
Yuan, Lili; Tian, Yanghua; Zhang, Fangfang; Ma, Huijuan; Chen, Xingui; Dai, Fang; Wang, Kai
2015-01-01
Cognitive and behavioral impairments are common in patients with abnormal thyroid function; these impairments cause a reduction in their quality of life. The current study investigates the decision making performance in patients with hyperthyroidism to explore the possible mechanism of their cognitive and behavioral impairments. Thirty-eight patients with hyperthyroidism and forty healthy control subjects were recruited to perform the Iowa Gambling Task (IGT), which assessed decision making under ambiguous conditions. Patients with hyperthyroidism had a higher score on the Zung Self-Rating Anxiety Scale (Z-SAS), and exhibited poorer executive function and IGT performance than did healthy control subjects. The patients preferred to choose decks with a high immediate reward, despite a higher future punishment, and were not capable of effectively using feedback information from previous choices. No clinical characteristics were associated with the total net score of the IGT in the current study. Patients with hyperthyroidism had decision-making impairment under ambiguous conditions. The deficits may result from frontal cortex and limbic system metabolic disorders and dopamine dysfunction.
Niu, Xiao-Qing; Wang, Xiu-Li; Xie, Dong; Wang, Dong-Huang; Zhang, Yi-Di; Li, Yi; Yu, Ting; Tu, Jiang-Ping
2015-08-05
Tailored sulfur cathode is vital for the development of a high performance lithium-sulfur (Li-S) battery. A surface modification on the sulfur/carbon composite would be an efficient strategy to enhance the cycling stability. Herein, we report a nickel hydroxide-modified sulfur/conductive carbon black composite (Ni(OH)2@S/CCB) as the cathode material for the Li-S battery through the thermal treatment and chemical precipitation method. In this composite, the sublimed sulfur is stored in the CCB, followed by a surface modification of Ni(OH)2 nanoparticles with size of 1-2 nm. As a cathode for the Li-S battery, the as-prepared Ni(OH)2@S/CCB electrode exhibits better cycle stability and higher rate discharge capacity, compared with the bare S/CCB electrode. The improved performance is largely due to the introduction of Ni(OH)2 surface modification, which can effectively suppress the "shuttle effect" of polysulfides, resulting in enhanced cycling life and higher capacity.
A fast elitism Gaussian estimation of distribution algorithm and application for PID optimization.
Xu, Qingyang; Zhang, Chengjin; Zhang, Li
2014-01-01
Estimation of distribution algorithm (EDA) is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA) is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA.
A Fast Elitism Gaussian Estimation of Distribution Algorithm and Application for PID Optimization
Xu, Qingyang; Zhang, Chengjin; Zhang, Li
2014-01-01
Estimation of distribution algorithm (EDA) is an intelligent optimization algorithm based on the probability statistics theory. A fast elitism Gaussian estimation of distribution algorithm (FEGEDA) is proposed in this paper. The Gaussian probability model is used to model the solution distribution. The parameters of Gaussian come from the statistical information of the best individuals by fast learning rule. A fast learning rule is used to enhance the efficiency of the algorithm, and an elitism strategy is used to maintain the convergent performance. The performances of the algorithm are examined based upon several benchmarks. In the simulations, a one-dimensional benchmark is used to visualize the optimization process and probability model learning process during the evolution, and several two-dimensional and higher dimensional benchmarks are used to testify the performance of FEGEDA. The experimental results indicate the capability of FEGEDA, especially in the higher dimensional problems, and the FEGEDA exhibits a better performance than some other algorithms and EDAs. Finally, FEGEDA is used in PID controller optimization of PMSM and compared with the classical-PID and GA. PMID:24892059
Watson, Aaron M; Foster Thompson, Lori; Rudolph, Jane V; Whelan, Thomas J; Behrend, Tara S; Gissel, Amanda L
2013-07-01
Web-based training is frequently used by organizations as a convenient and low-cost way to teach employees new knowledge and skills. As web-based training is typically unproctored, employees may be held accountable to the organization by computer software that monitors their behaviors. The current study examines how the introduction of electronic performance monitoring may provoke negative emotional reactions and decrease learning among certain types of e-learners. Through motivated action theory and trait activation theory, we examine the role of performance goal orientation when e-learners are exposed to asynchronous and synchronous monitoring. We show that some e-learners are more susceptible than others to evaluation apprehension when they perceive their activities are being monitored electronically. Specifically, e-learners higher in avoid performance goal orientation exhibited increased evaluation apprehension if they believed asynchronous monitoring was present, and they showed decreased skill attainment as a result. E-learners higher on prove performance goal orientation showed greater evaluation apprehension if they believed real-time monitoring was occurring, resulting in decreased skill attainment. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Inlet Trade Study for a Low-Boom Aircraft Demonstrator
NASA Technical Reports Server (NTRS)
Heath, Christopher M.; Slater, John W.; Rallabhandi, Sriram K.
2016-01-01
Propulsion integration for low-boom supersonic aircraft requires careful inlet selection, placement, and tailoring to achieve acceptable propulsive and aerodynamic performance, without compromising vehicle sonic boom loudness levels. In this investigation, an inward-turning streamline-traced and axisymmetric spike inlet are designed and independently installed on a conceptual low-boom supersonic demonstrator aircraft. The airframe was pre-shaped to achieve a target ground under-track loudness of 76.4 PLdB at cruise using an adjoint-based design optimization process. Aircraft and inlet performance characteristics were obtained by solution of the steady-state Reynolds-averaged Navier-Stokes equations. Isolated cruise inlet performance including total pressure recovery and distortion were computed and compared against installed inlet performance metrics. Evaluation of vehicle near-field pressure signatures, along with under- and off-track propagated loudness levels is also reported. Results indicate the integrated axisymmetric spike design offers higher inlet pressure recovery, lower fan distortion, and reduced sonic boom. The vehicle with streamline-traced inlet exhibits lower external wave drag, which translates to a higher lift-to-drag ratio and increased range capability.
Parameters for screening music performance anxiety.
Barbar, Ana E; Crippa, José A; Osório, Flávia L
2014-09-01
To assess the discriminative capacity of the Kenny Music Performance Anxiety Inventory (K-MPAI), in its version adapted for Brazil, in a sample of 230 Brazilian adult musicians. The Social Phobia Inventory (SPIN) was used to assess the presence of social anxiety indicators, adopting it as the gold standard. The Mann-Whitney U test and the receiver operating characteristic (ROC) curve were used for statistical analysis, with p ≤ 0.05 set as the significance level. Subjects with social anxiety indicators exhibited higher mean total K-MPAI scores, as well as higher individual scores on 62% of its items. The area under the ROC curve was 0.734 (p = 0.001), and considered appropriate. Within the possible cutoff scores presented, the score -15 had the best balance of sensitivity and specificity values. However, the score -7 had greater specificity and accuracy. The K-MPAI showed appropriate discriminant validity, with a marked association between music performance anxiety and social anxiety. The cutoff scores presented in the study have both clinical and research value, allowing screening for music performance anxiety and identification of possible cases.
Krukow, Paweł; Szaniawska, Ola; Harciarek, Michał; Plechawska-Wójcik, Małgorzata; Jonak, Kamil
2017-03-01
Bipolar patients show high intra-individual variability during cognitive processing. However, it is not known whether there are a specific fluctuations of variability contributing to the overall high cognitive inconsistency. The objective was to compare dynamic profiles of patients and healthy controls to identify hypothetical differences and their associations with overall variability and processing speed. Changes of reaction times iSD during processing speed test performance over time was measured by dividing the iSD for whole task into four consecutive parts. Motor speed and cognitive effort were controlled. Patients with BD exhibited significantly lower results regarding processing speed and higher intra-individual variability comparing with HC. The profile of intra-individual variability changes over time of performance was significantly different in BD versus HC groups: F(3, 207)=8.60, p<0.0001, η p 2 =0.11. iSD of BD patients in the initial phase of performance was three times higher than in the last. There was no significant differences between four intervals in HC group. Inter-group difference in the initial part of the profiles was significant also after controlling for several cognitive and clinical variables. Applied computer version of Cognitive Speed Test was relatively new and, thus, replication studies are needed. Effect seen in the present study is driven mainly by the BD type I. Patients with BD exhibits problems with setting a stimulus-response association in starting phase of cognitive processing. This deficit may negatively interfere with the other cognitive functions, decreasing level of psychosocial functioning, therefore should be explored in future studies. Copyright © 2017 Elsevier B.V. All rights reserved.
Smith, Emilie Phillips; Atkins, Jacqueline; Connell, Christian M
2003-09-01
This study examined family, school, and community factors and the relationships to racial-ethnic attitudes and academic achievement among 98 African American fourth-grade children. It has been posited that young people who feel better about their racial-ethnic background have better behavioral and academic outcomes, yet there is a need for more empirical tests of this premise. Psychometric information is reported on measures of parent, teacher, and child racial-ethnic attitudes. Path analysis was used to investigate ecological variables potentially related to children's racial-ethnic attitudes and achievement. Parental education and level of racial-ethnic pride were correlated and both were related to children's achievement though in the final path model, only the path from parental education level was statistically significant. Children whose teachers exhibited higher levels of racial-ethnic trust and perceived fewer barriers due to race and ethnicity evidenced more trust and optimism as well. Children living in communities with higher proportions of college-educated residents also exhibited more positive racial-ethnic attitudes. For children, higher racial-ethnic pride was related to higher achievement measured by grades and standardized test scores, while racial distrust and perception of barriers due to race were related to reduced performance. This study suggests that family, school, and community are all important factors related to children's racial-ethnic attitudes and also to their academic achievement.
NASA Astrophysics Data System (ADS)
Díaz-Barradas, Mari Cruz; Zunzunegui, María; Collantes, Marta; Álvarez-Cansino, Leonor; García Novo, Francisco
2014-10-01
Following the theory on costs of reproduction, sexually dimorphic plants may exhibit several trade-offs in energy and resources that can determine gender dimorphism in morphological or physiological traits, especially during the reproductive period. In this study we assess whether the sexes of the dioecious species Empetrum rubrum differ in morphological and ecophysiological traits related to water economy and photochemical efficiency and whether these differences change in nearby populations with contrasting plant communities. We conducted physiological, morphological, sex ratio, and cover measurements in E. rubrum plants in the Magellanic steppe, North-Eastern part of Tierra del Fuego (Argentina), from two types of heathlands with differing community composition. We found differences between sites in soil pH and wind speed at the canopy level. E. rubrum plants exhibited lower photosynthetic height and higher LAI (leaf area index), lower RWC (relative water content) and higher water-use efficiency (lower Δ13C) in the heathland with harsher environmental conditions. Gender dimorphism in the physiological response was patent for photochemical efficiency and water use (RWC and Δ13C discrimination), with males showing a more conservative strategy in relation to females. Accordingly, male-biased sex ratio in the stress-prone community suggested a better performance of male plants under stressful environmental conditions. The integrated analysis of all variables (photochemical efficiency, RWC, leaf dry matter content (LDMC), pigments, and Δ13C) indicated an interaction between gender and heathland community effects in the physiological response. We suggest that female plants may exhibit compensatory mechanisms to face their higher reproductive costs.
Bellehumeur, Karyne; Lapointe, Dominique; Cooke, Steven J; Moon, Thomas W
2016-09-01
Polychlorinated biphenyls (PCBs) are recognized physiological stressors to fish which over time may impair individual performance and perhaps fitness by inducing changes that could have population-level consequences. PCB-126 (3,3',4,4',5-pentachlorobiphenyl) accumulates in lipids and can subsequently be released into the bloodstream during periods of high activity that involve the mobilization of stored fuels to meet with increasing energy demands. The goal of this study was to determine if a sublethal exposure to PCB-126 altered the content of tissue energy supplies (carbohydrates, proteins, amino acids, triglycerides) and impaired swimming performance as well as oxygen consumption in rainbow trout (Oncorhynchus mykiss). Trout were injected intraperitoneally with a single Low (100μgkg(-1)) or High (400μgkg(-1)) dose of PCB-126 then swimming performance and metabolic rates from 1 to 9days post-injection were compared to Control (non-dosed) fish. Liver ethoxyresorufin-O-deethylase (EROD) activity was assessed as an indication of PCB-126 intoxication while plasma and white muscle tissue metabolites were analyzed as an index of physiological disturbance. Swimming performance, assessed using two successive modified critical swimming speed (Ucrit) tests, was highest for fish in the High PCB-126 treatment; however, their initial condition factor (K) was also higher, largely due to their greater body mass. Trout in the High and Low PCB-126 treatments exhibited impaired recovery following intense exercise as they swam comparatively poorly when provided a second challenge. PCB-exposed fish exhibited reduced spleen somatic indices as well as muscle glucose and glycogen contents; whereas plasma cortisol and glucose levels were elevated, indicating higher metabolic costs during recovery and muscle restoration. Overall, this research provides insights into the sublethal effects of a toxic organic compound on swimming performance in trout. Copyright © 2016 Elsevier Inc. All rights reserved.
Lamont, B T; Marlin, D; Hoffman, J J
1993-12-01
Changes in generic strategies in response to discontinuous environments have been relatively ignored in the management literature. This study reports an examination of the relationships between Porter's (1980) generic strategies, discontinuous environments, and performance. Archival data for 1984 and 1988 were collected for 172 acute care hospitals in Florida in order to test these relationships. To examine fully the performance impact of changes in strategy in a discontinuous environment, a longitudinal research design that identified a firm's strategy at two points in time, 1984 and 1988, was used. Results indicate that firms with a proper strategy environment fit performed the highest, firms that did not change their strategy had no change in performance, and firms that changed their strategy toward a proper strategy environment showed an increase in performance. Findings support the notion that hospitals with appropriate strategy-environment combinations will exhibit higher performance.
Confidence mediates the sex difference in mental rotation performance.
Estes, Zachary; Felker, Sydney
2012-06-01
On tasks that require the mental rotation of 3-dimensional figures, males typically exhibit higher accuracy than females. Using the most common measure of mental rotation (i.e., the Mental Rotations Test), we investigated whether individual variability in confidence mediates this sex difference in mental rotation performance. In each of four experiments, the sex difference was reliably elicited and eliminated by controlling or manipulating participants' confidence. Specifically, confidence predicted performance within and between sexes (Experiment 1), rendering confidence irrelevant to the task reliably eliminated the sex difference in performance (Experiments 2 and 3), and manipulating confidence significantly affected performance (Experiment 4). Thus, confidence mediates the sex difference in mental rotation performance and hence the sex difference appears to be a difference of performance rather than ability. Results are discussed in relation to other potential mediators and mechanisms, such as gender roles, sex stereotypes, spatial experience, rotation strategies, working memory, and spatial attention.
NASA Astrophysics Data System (ADS)
Wen, Xianfei; Enqvist, Andreas
2017-09-01
Cs2LiYCl6:Ce3+ (CLYC) detectors have demonstrated the capability to simultaneously detect γ-rays and thermal and fast neutrons with medium energy resolution, reasonable detection efficiency, and substantially high pulse shape discrimination performance. A disadvantage of CLYC detectors is the long scintillation decay times, which causes pulse pile-up at moderate input count rate. Pulse processing algorithms were developed based on triangular and trapezoidal filters to discriminate between neutrons and γ-rays at high count rate. The algorithms were first tested using low-rate data. They exhibit a pulse-shape discrimination performance comparable to that of the charge comparison method, at low rate. Then, they were evaluated at high count rate. Neutrons and γ-rays were adequately identified with high throughput at rates of up to 375 kcps. The algorithm developed using the triangular filter exhibits discrimination capability marginally higher than that of the trapezoidal filter based algorithm irrespective of low or high rate. The algorithms exhibit low computational complexity and are executable on an FPGA in real-time. They are also suitable for application to other radiation detectors whose pulses are piled-up at high rate owing to long scintillation decay times.
Goldstein, Brandon L.; Hayden, Elizabeth P.; Klein, Daniel N.
2014-01-01
Depressed individuals exhibit memory biases on the self-referent encoding task (SRET), such that those with depression exhibit poorer recall of positive, and enhanced recall of negative, trait adjectives (referred to as positive and negative processing biases). However, it is unclear when SRET biases emerge, whether they are stable, and if biases predict, or are predicted by, depressive symptoms. To address this, a community sample of 434 children completed the SRET and a depressive symptoms measure at ages 6 and 9. Negative and positive processing exhibited low, but significant, stability. At ages 6 and 9, depressive symptoms correlated with higher negative, and lower positive, SRET processing. Importantly, lower positive processing at age 6 predicted increased symptoms at age 9. However, negative processing at age 6 did not predict depressive symptoms at age 9, and depressive symptoms at age 6 did not predict SRET processing scores at age 9. This suggests that less positive processing may reflect vulnerability for future depressive symptoms. PMID:25530070
NASA Astrophysics Data System (ADS)
Lai, Yi-Chen; Ho, Hsin-Chia; Shih, Bo-Wei; Tsai, Feng-Yu; Hsueh, Chun-Hway
2018-05-01
Surface-enhanced Raman scattering (SERS) substrate with a higher surface area, enhanced light harvesting, multiple hot spots and strong electromagnetic field enhancements would exhibit enhanced Raman signals. Herein, the Ag nanoparticle/ZnO nanowire heterostructure decorated periodic silicon nanotube (Ag@ZnO@SiNT) substrate was proposed and fabricated. The proposed structure employed as SERS-active substrate was examined, and the results showed both the high performance in terms of high sensitivity and good reproducibility. Furthermore, the Ag@ZnO@SiNT substrate demonstrated the self-cleaning performance through the photocatalytic degradation of probed molecules upon UV-irradiation. The results showed that the proposed nanostructure had high performance, good reproducibility and reusability, and it is a promising SERS-active substrate for molecular sensing and cleaning.
Effects of Muslims praying (Salat) on EEG gamma activity.
Doufesh, Hazem; Ibrahim, Fatimah; Safari, Mohammad
2016-08-01
This study investigates the difference of mean gamma EEG power between actual and mimic Salat practices in twenty healthy Muslim subjects. In the actual Salat practice, the participants were asked to recite and performing the physical steps in all four stages of Salat; whereas in the mimic Salat practice, they were instructed to perform only the physical steps without recitation. The gamma power during actual Salat was statistically higher than during mimic Salat in the frontal and parietal regions in all stages. In the actual Salat practice, the left hemisphere exhibited significantly higher mean gamma power in all cerebral regions and all stages, except the central-parietal region in the sitting position, and the frontal area in the bowing position. Increased gamma power during Salat, possibly related to an increase in cognitive and attentional processing, supports the concept of Salat as a focus attention meditation. Copyright © 2016 Elsevier Ltd. All rights reserved.
Transparent plastic scintillators for neutron detection based on lithium salicylate
Mabe, Andrew N.; Glenn, Andrew M.; Carman, M. Leslie; ...
2015-10-14
Transparent plastic scintillators with pulse shape discrimination containing 6Li salicylate have been synthesized by bulk polymerization with a maximum 6Li loading of 0.40 wt%. Photoluminescence and scintillation responses to gamma-rays and neutrons are reported in this paper. Plastics containing 6Li salicylate exhibit higher light yields and permit a higher loading of 6Li as compared to previously reported plastics based on lithium 3-phenylsalicylate. However, pulse shape discrimination performance is reduced in lithium salicylate plastics due to the requirement of adding more nonaromatic monomers to the polymer matrix as compared to those based on lithium 3-phenylsalicylate. Finally, reduction in light yield andmore » pulse shape discrimination performance in lithium-loaded plastics as compared to pulse shape discrimination plastics without lithium is interpreted in terms of energy transfer interference by the aromatic lithium salts.« less
High performance porous Si@C anodes synthesized by low temperature aluminothermic reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishra, Kuber; Zheng, Jianming; Patel, Rajankumar
A low temperature (210°C) aluminothermic reduction reaction process has been developed to synthesis porous silicon (Si) as an anode for Li ion battery applications. An eutectic mixture of AlCl3 and ZnCl2 is used as the mediator to reduce the reaction temperature. With carbon pre-coated on the porous SiO2 precursor, porous Si@C core shell structured anodes could be obtained with structure and morphology similar to that of the porous precursor. In addition, carbon coated porous Si also exhibits superior cyclic stability, higher rate performance, and higher coulombic efficiency. The porous Si anode demonstrates a high specific capacity of ~2100 mAh/g atmore » the current density of 1.2 A/g and has a good cycling stability with ~76% capacity retention over 250 cycles. Therefore, it will be a good candidate for anode used in high energy density Li-ion batteries.« less
Novel Co(OH)2 with cotton-like structure as anode material for alkaline secondary batteries
NASA Astrophysics Data System (ADS)
Zhao, W.; Liao, Y. L.; Qiu, S. J.; Chu, H. L.; Zou, Y. J.; Xiang, C. L.; Zhang, H. Z.; Xu, F.; Sun, L. X.
2018-01-01
The cotton-like Co(OH)2 (S-Co(OH)2) was successfully synthesized and its electrochemical performance was systematically investigated. S-Co(OH)2 was prepared through the “destruction” of the newly formed colloid Co(OH)2 by the reduction using sodium borohydride. The crystal structure and surface morphology were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive spectrometry (EDS). Used as an anode material for alkaline secondary batteries, S-Co(OH)2 sample exhibited better cycle stability, higher electrochemical capacity, and higher rate performance than those of conventional β-Co(OH)2. At a discharge current density of 100 mA/g, the initial discharge capacity of S-Co(OH)2 is 549.3 mAh/g and the discharge capacity is still sustained to be 329.2 mAh/g after 100 charge-discharge cycles with a capacity retention of 59.9%.
Methane biofiltration using autoclaved aerated concrete as the carrier material.
Ganendra, Giovanni; Mercado-Garcia, Daniel; Hernandez-Sanabria, Emma; Boeckx, Pascal; Ho, Adrian; Boon, Nico
2015-09-01
The methane removal capacity of mixed methane-oxidizing bacteria (MOB) culture in a biofilter setup using autoclaved aerated concrete (AAC) as a highly porous carrier material was tested. Batch experiment was performed to optimize MOB immobilization on AAC specimens where optimum methane removal was obtained when calcium chloride was not added during bacterial inoculation step and 10-mm-thick AAC specimens were used. The immobilized MOB could remove methane at low concentration (~1000 ppmv) in a biofilter setup for 127 days at average removal efficiency (RE) of 28.7 %. Unlike a plug flow reactor, increasing the total volume of the filter by adding a biofilter in series did not result in higher total RE. MOB also exhibited a higher abundance at the bottom of the filter, in proximity with the methane gas inlet where a high methane concentration was found. Overall, an efficient methane biofilter performance could be obtained using AAC as the carrier material.
Tertiary and Quaternary Ammonium-Phosphate Ionic Liquids as Lubricant Additives
Barnhill, William C.; Luo, Huimin; Meyer, III, Harry M; ...
2016-06-23
In this work we investigated the feasibility of five quaternary (aprotic) and four tertiary (protic) ammonium ionic liquids (ILs) with an identical organophosphate anion as lubricant antiwear additives. Viscosity, oil solubility, thermal stability, and corrosivity of the candidate ILs were characterized and correlated to the molecular structure. The protic group exhibits higher oil solubility than the aprotic group, and longer alkyl chains seem to provide better oil solubility and higher thermal stability. Selected ILs were applied as oil additives in steel-cast iron tribological tests and demonstrated promising anti-scuffing and anti-wear functionality. The thickness, nanostructure, coverage and composition of the tribofilmmore » formed by the besting performing IL were revealed by surface characterization for mechanistic understanding of the tribochemical interactions between the IL and metal surface. Results provide fundamental insights of the correlations among the molecular structure, physiochemical properties and lubricating performance for ammonium-phosphate ILs.« less
NASA Astrophysics Data System (ADS)
Li, Qin; Berman, Benjamin P.; Schumacher, Justin; Liang, Yongguang; Gavrielides, Marios A.; Yang, Hao; Zhao, Binsheng; Petrick, Nicholas
2017-03-01
Tumor volume measured from computed tomography images is considered a biomarker for disease progression or treatment response. The estimation of the tumor volume depends on the imaging system parameters selected, as well as lesion characteristics. In this study, we examined how different image reconstruction methods affect the measurement of lesions in an anthropomorphic liver phantom with a non-uniform background. Iterative statistics-based and model-based reconstructions, as well as filtered back-projection, were evaluated and compared in this study. Statistics-based and filtered back-projection yielded similar estimation performance, while model-based yielded higher precision but lower accuracy in the case of small lesions. Iterative reconstructions exhibited higher signal-to-noise ratio but slightly lower contrast of the lesion relative to the background. A better understanding of lesion volumetry performance as a function of acquisition parameters and lesion characteristics can lead to its incorporation as a routine sizing tool.
Tertiary and Quaternary Ammonium-Phosphate Ionic Liquids as Lubricant Additives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnhill, William C.; Luo, Huimin; Meyer, III, Harry M
In this work we investigated the feasibility of five quaternary (aprotic) and four tertiary (protic) ammonium ionic liquids (ILs) with an identical organophosphate anion as lubricant antiwear additives. Viscosity, oil solubility, thermal stability, and corrosivity of the candidate ILs were characterized and correlated to the molecular structure. The protic group exhibits higher oil solubility than the aprotic group, and longer alkyl chains seem to provide better oil solubility and higher thermal stability. Selected ILs were applied as oil additives in steel-cast iron tribological tests and demonstrated promising anti-scuffing and anti-wear functionality. The thickness, nanostructure, coverage and composition of the tribofilmmore » formed by the besting performing IL were revealed by surface characterization for mechanistic understanding of the tribochemical interactions between the IL and metal surface. Results provide fundamental insights of the correlations among the molecular structure, physiochemical properties and lubricating performance for ammonium-phosphate ILs.« less
Li, Chen; Zhang, Xiong; Wang, Kai; Sun, Xianzhong; Liu, Guanghua; Li, Jiangtao; Tian, Huanfang; Li, Jianqi; Ma, Yanwei
2017-02-01
An ultrafast self-propagating high-temperature synthesis technique offers scalable routes for the fabrication of mesoporous graphene directly from CO 2 . Due to the excellent electrical conductivity and high ion-accessible surface area, supercapacitor electrodes based on the obtained graphene exhibit superior energy and power performance. The capacitance retention is higher than 90% after one million charge/discharge cycles. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Wang, Shoupei; Zhang, Jianan; Shang, Pei; Li, Yuanyuan; Chen, Zhimin; Xu, Qun
2014-10-18
N-doped carbon spheres with hierarchical micropore-nanosheet networks (HPSCSs) were facilely fabricated by a one-step carbonization and activation process of N containing polymer spheres by KOH. With the synergy effect of the multiple structures, HPSCSs exhibit a very high specific capacitance of 407.9 F g(-1) at 1 mV s(-1) (1.2 times higher than that of porous carbon spheres) and a robust cycling stability for supercapacitors.
NASA Astrophysics Data System (ADS)
Aziz, Md. Abdul; Shanmugam, Sangaraju
2017-01-01
A high-performance composite membrane for vanadium redox flow battery (VRB) consisting of ZrO2 nanotubes (ZrNT) and perfluorosulfonic acid (Nafion) was fabricated. The VRB operated with a composite (Nafion-ZrNT) membrane showed the improved ion-selectivity (ratio of proton conductivity to permeability), low self-discharge rate, high discharge capacity and high energy efficiency in comparison with a pristine commercial Nafion-117 membrane. The incorporation of zirconium oxide nanotubes in the Nafion matrix exhibits high proton conductivity (95.2 mS cm-1) and high oxidative stability (99.9%). The Nafion-ZrNT composite membrane exhibited low vanadium ion permeability (3.2 × 10-9 cm2 min-1) and superior ion selectivity (2.95 × 107 S min cm-3). The VRB constructed with a Nafion-ZrNT composite membrane has lower self-discharge rate maintaining an open-circuit voltage of 1.3 V for 330 h relative to a pristine Nafion membrane (29 h). The discharge capacity of Nafion-ZrNT membrane (987 mAh) was 3.5-times higher than Nafion-117 membrane (280 mAh) after 100 charge-discharge cycles. These superior properties resulted in higher coulombic and voltage efficiencies with Nafion-ZrNT membranes compared to VRB with Nafion-117 membrane at a 40 mA cm-2 current density.
Occhialini, Alessandro; Lin, Myat T.; Andralojc, P. John; Hanson, Maureen R.; Parry, Martin A. J.
2015-01-01
SUMMARY Introducing a carbon concentrating mechanism and a faster Rubisco from cyanobacteria into higher plant chloroplasts could improve photosynthetic performance by increasing the rate of CO2 fixation while decreasing losses caused by photorespiration. We previously demonstrated that tobacco plants will grow photoautotrophically using Synechococcus elongatus Rubisco, although the plants exhibited considerably slower growth than wild-type and required supplementary CO2. Because of concerns that vascular plant assembly factors might not be adequate for assembly of a cyanobacterial Rubisco, prior transgenic plants included the cyanobacterial chaperone RbcX or the carboxysomal protein CcmM35. Here we show that neither RbcX nor CcmM35 is needed for assembly of active cyanobacterial Rubisco. Furthermore, by altering the gene regulatory sequences on the Rubisco transgenes, cyanobacterial Rubisco expression was enhanced and the transgenic plants grew at near wild-type growth rates, though still requiring elevated CO2. We performed detailed kinetic characterization of the enzymes produced with and without the RbcX and CcmM35 cyanobacterial proteins. These transgenic plants exhibit photosynthetic characteristics that confirm the predicted benefits of non-native forms of Rubisco with higher carboxylation rate constants in vascular plants and the potential nitrogen use efficiency that may be gained provided that adequate CO2 can be concentrated near the enzyme. PMID:26662726
Screening and comparison of antioxidant activities of polysaccharides from Coriolus versicolor.
Sun, Xiaowen; Sun, Yanping; Zhang, Qingbo; Zhang, Hongwei; Yang, Bingyou; Wang, Zhibin; Zhu, Weiguo; Li, Bin; Wang, Qiuhong; Kuang, Haixue
2014-08-01
Six polysaccharide fractions (Coriolus versicolor polysaccharides: CVPS-1, CVPS-2, CVPS-3, CVPS-4, CVPS-5 and CVPS-6) were isolated and purified from the fruiting bodies of C. versicolor by ion exchange chromatography and gel chromatography. Their chemical and physical characteristics were determined by chemical methods, high performance liquid chromatography, and high-performance gel-permeation chromatography. Finally, 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical assay, superoxide radical assay, and hydroxyl radical assay were carried out to test the antioxidant activities of CVPS in vitro. The results indicated that the six CVPS fractions were acidic heteropolysaccharides, composed of mannose, rhamnose, glucuronic acid, glucose and fructose with different ratios. The molecular weights of CVPS-1, CVPS-2, CVPS-3, CVPS-4, CVPS-5 and CVPS-6 were 1740, 1480, 568, 880, 1260 and 1840kDa and the protein contents were 4.2%, 6.4%, 8.5%, 7.8%, 6.5% and 3.9%, respectively. Among the six fractions, CVPS with lower molecular weight, higher protein content and larger uronic acid amount, basically exhibited higher radical scavenging effects at the same concentration. Compared with other fractions, CVPS-3 exhibited the highest antioxidant activities. The effects of the molecular weight, protein content and uronic acid amount of the polysaccharides appeared to be significant on the improvement of the bioactivities. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Kai; Li, Ruixin; Jiang, Wenxue, E-mail: jiangortholivea@sina.cn
In this study, the performances of different preparation methods of the scaffolds were analyzed for chondrocyte tissue engineering. Silk fibroin/collagen (SF/C) was fabricated using a vacuum freeze-dried technique and by 3D printing. The porosity, water absorption expansion rates, mechanical properties, and pore sizes of the resulting materials were evaluated. The proliferation and metabolism of the cells was detected at different time points using an MTT assay. Cell morphologies and distributions were observed by histological analysis and scanning electron microscopy (SEM). The porosity, water absorption expansion rate, and Young’s modulus of the material obtained via 3D printing were significantly higher thanmore » those obtained by the freeze-dried method, while the pore size did not differ significantly between the two methods. MTT assay results showed that the metabolism of cells seeded on the 3D printed scaffolds was more viable than the metabolism on the freeze-dried material. H&E staining of the scaffolds revealed that the number of cells in the 3D printed scaffold was higher in comparison to a similar measurement on the freeze-dried material. Consequently, stem cells grew well inside the 3D printed scaffolds, as measured by SEM, while the internal structure of the freeze-dried scaffold was disordered. Compared with the freeze-dried technique, the 3D printed scaffold exhibited better overall performance and was more suitable for cartilage tissue engineering. - Highlights: • Silk fibroin/collagen was fabricated using 3D printing. • Physical characterization and Cell compatibility were compared. • 3D printed scaffold exhibited better overall performance.« less
Ohtani, S; Leeson, S
2000-02-01
Experiments were conducted to compare the effects of an intermittent lighting (IL) schedule with repeated cycles of 1 h light and 2 h darkness with a continuous lighting (CL) schedule on the performance, ME intake, and heat production of male broiler chickens. Body weight gain and feed intake were temporarily reduced after the changing from CL to IL; however, they were significantly higher in IL vs CL chickens during the subsequent period of 3 to 6 wk of age. The IL chickens exhibited a higher ME intake at 6 and 8 wk of age than did CL chickens. Total heat production in IL chickens was higher than for CL chickens, although heat production during the dark period was less than that during the light period for IL chickens. The higher feed intake observed in IL chickens appears to explain the superior body weight gain in IL broilers in simple terms.
Structural Design Parameters for Germanium
NASA Technical Reports Server (NTRS)
Salem, Jon; Rogers, Richard; Baker, Eric
2017-01-01
The fracture toughness and slow crack growth parameters of germanium supplied as single crystal beams and coarse grain disks were measured. Although germanium is anisotropic (A* 1.7), it is not as anisotropic as SiC, NiAl, or Cu. Thus the fracture toughness was similar on the 100, 110, and 111 planes, however, measurements associated with randomly oriented grinding cracks were 6 to 30 higher. Crack extension in ring loaded disks occurred on the 111 planes due to both the lower fracture energy and the higher stresses on stiff 111 planes. Germanium exhibits a Weibull scale effect, but does not exhibit significant slow crack growth in distilled water. (n 100), implying that design for quasi static loading can be performed with scaled strength statistics. Practical values for engineering design are a fracture toughness of 0.69 0.02 MPam (megapascals per square root meter) and a Weibull modulus of m 6 2. For well ground and reasonable handled coupons, average fracture strength should be greater than 40 megapascals. Aggregate, polycrystalline elastic constants are Epoly 131 gigapascals, vpoly 0.22.
Campanella, Salvatore; Peigneux, Philippe; Petit, Géraldine; Lallemand, Frédéric; Saeremans, Mélanie; Noël, Xavier; Metens, Thierry; Nouali, Mustapha; De Tiège, Xavier; De Witte, Philippe; Ward, Roberta; Verbanck, Paul
2013-01-01
Background Cerebral dysfunction is a common feature of both chronic alcohol abusers and binge drinkers. Here, we aimed to study whether, at equated behavioral performance levels, binge drinkers exhibited increased neural activity while performing simple cognitive tasks. Methods Thirty-two participants (16 binge drinkers and 16 matched controls) were scanned using functional magnetic resonance imaging (fMRI) while performing an n-back working memory task. In the control zero-back (N0) condition, subjects were required to press a button with the right hand when the number “2″ was displayed. In the two-back (N2) condition, subjects had to press a button when the displayed number was identical to the number shown two trials before. Results fMRI analyses revealed higher bilateral activity in the pre-supplementary motor area in binge drinkers than matched controls, even though behavioral performances were similar. Moreover, binge drinkers showed specific positive correlations between the number of alcohol doses consumed per occasion and higher activity in the dorsomedial prefrontal cortex, as well as between the number of drinking occasions per week and higher activity in cerebellum, thalamus and insula while performing the N2 memory task. Conclusions Binge alcohol consumption leads to possible compensatory cerebral changes in binge drinkers that facilitate normal behavioral performance. These changes in cerebral responses may be considered as vulnerability factors for developing adult substance use disorders. PMID:23638017
NASA Astrophysics Data System (ADS)
Zhang, Xiaojuan; He, Mingqian; He, Ping; Liu, Hongtao; Bai, Hongmei; Chen, Jingchao; He, Shaoying; Zhang, Xingquan; Dong, Faqing; Chen, Yang
2017-12-01
By a simple and cost effective chemical precipitation-hydrothermal method, novel hierarchical structured Sm2O3 modified CuO nanoflowers are prepared and investigated as electrode materials for supercapacitors. The physical properties of prepared materials are characterized by XRD, FE-SEM, EDX and FTIR techniques. Furthermore, electrochemical performances of prepared materials are investigated by cyclic voltammetry, galvanostatic charge/discharge and electrochemical impedance spectrum in 1.0 M KOH electrolyte. The resulting Sm2O3 modified CuO based electrodes exhibit obviously enhanced capacitive properties owing to the unique nanostructures and strong synergistic effects. It is worth noting that the optimized SC-3 based electrode exhibits the best electrochemical performances in all prepared electrodes, including higher specific capacitance (383.4 F g-1 at 0.5 A g-1) and good rate capability (393.2 F g-1 and 246.3 F g-1 at 0.3 A g-1 and 3.0 A g-1, respectively), as well as excellent cycling stability (84.6% capacitance retention after 2000 cycles at 1.0 A g-1). The present results show that Sm2O3 is used as a promising modifier to change the morphology and improve electrochemical performances of CuO materials.
Plachy, T; Mrlik, M; Kozakova, Z; Suly, P; Sedlacik, M; Pavlinek, V; Kuritka, I
2015-02-18
This paper concerns the preparation of novel electrorheological (ER) materials using microwave-assisted synthesis as well as utilizing a suitable shell-providing system with enhanced ER performance. Lithium titanate nanoparticles were successfully synthesized, and their composition was confirmed via X-ray diffraction. Rheological properties were investigated in the absence as well as in the presence of an external electric field. Dielectric properties clarified the response of the particles to the application of an electric field. The urea-coated lithium titanate nanoparticle-based suspension exhibits higher ER performance in comparison to suspensions based on bare particles.
Apollo 16, LM-11 descent propulsion system final flight evaluation
NASA Technical Reports Server (NTRS)
Avvenire, A. T.
1974-01-01
The performance of the LM-11 descent propulsion system during the Apollo 16 missions was evaluated and found satisfactory. The average engine effective specific impulse was 0.1 second higher than predicted, but well within the predicted one sigma uncertainty of 0.2 seconds. Several flight measurement discrepancies existed during the flight as follows: (1) the chamber pressure transducer had a noticeable drift, exhibiting a maximum error of about 1.5 psi at approximately 130 seconds after engine ignition, (2) the fuel and oxidizer interface pressure measurements appeared to be low during the entire flight, and (3) the fuel propellant quantity gaging system did not perform within expected accuracies.
Design and optimization of liquid core optical ring resonator for refractive index sensing.
Lin, Nai; Jiang, Lan; Wang, Sumei; Xiao, Hai; Lu, Yongfeng; Tsai, Hai-Lung
2011-07-10
This study performs a detailed theoretical analysis of refractive index (RI) sensors based on whispering gallery modes (WGMs) in liquid core optical ring resonators (LCORRs). Both TE- and TM-polarized WGMs of various orders are considered. The analysis shows that WGMs of higher orders need thicker walls to achieve a near-zero thermal drift, but WGMs of different orders exhibit a similar RI sensing performance at the thermostable wall thicknesses. The RI detection limit is very low at the thermostable thickness. The theoretical predications should provide a general guidance in the development of LCORR-based thermostable RI sensors. © 2011 Optical Society of America
Accelerated tooth eruption in children with diabetes mellitus.
Lal, Shantanu; Cheng, Bin; Kaplan, Selma; Softness, Barney; Greenberg, Ellen; Goland, Robin S; Lalla, Evanthia; Lamster, Ira B
2008-05-01
The objective of this study was to evaluate tooth eruption in 6- to 14-year-old children with diabetes mellitus. Tooth eruption status was assessed for 270 children with diabetes and 320 control children without diabetes. Data on important diabetes-related variables were collected. Analyses were performed using logistic regression models. Children with diabetes exhibited accelerated tooth eruption in the late mixed dentition period (10-14 years of age) compared to healthy children. For both case patients and control subjects the odds of a tooth being in an advanced eruptive stage were significantly higher among girls than boys. There was also a trend associating gingival inflammation with expedited tooth eruption in both groups. No association was found between the odds of a tooth being in an advanced stage of eruption and hemoglobin A(1c) or duration of diabetes. Patients with higher body mass index percentile demonstrated statistically higher odds for accelerated tooth eruption, but the association was not clinically significant. Children with diabetes exhibit accelerated tooth eruption. Future studies need to ascertain the role of such aberrations in dental development and complications such as malocclusion, impaired oral hygiene, and periodontal disease. The standards of care for children with diabetes should include screening and referral programs aimed at oral health promotion and disease prevention.
NASA Astrophysics Data System (ADS)
Guo, Daoyou; Qin, Xinyuan; Lv, Ming; Shi, Haoze; Su, Yuanli; Yao, Guosheng; Wang, Shunli; Li, Chaorong; Li, Peigang; Tang, Weihua
2017-11-01
Highly (201) oriented Zn-doped β-Ga2O3 thin films with different dopant concentrations were grown on (0001) sapphire substrates by radio frequency magnetron sputtering. With the increase of Zn dopant concentration, the crystal lattice expands, the energy band gap shrinks, and the oxygen vacancy concentration decreases. Both the metal semiconductor metal (MSM) structure photodetectors based on the pure and Zn-doped β-Ga2O3 thin films exhibit solar blind UV photoelectric property. Compared to the pure β-Ga2O3 photodetector, the Zn-doped one exhibits a lower dark current, a higher photo/dark current ratio, a faster photoresponse speed, which can be attributed to the decreases of oxygen vacancy concentration.[Figure not available: see fulltext.
NASA Astrophysics Data System (ADS)
Rajesh, B.; Ravindranathan Thampi, K.; Bonard, J.-M.; Mathieu, H. J.; Xanthopoulos, N.; Viswanathan, B.
The electronically conducting hybrid material based on transition metal oxide and conducting polymer has been used as the catalyst support for Pt nanoparticles. The Pt nanoparticles loaded hybrid organic (polyaniline)-inorganic (vanadium pentoxide) composite has been used as the electrode material for methanol oxidation, a reaction of importance for the development of direct methanol fuel cells (DMFC). The hybrid material exhibited excellent electrochemical and thermal stability in comparison to the physical mixture of conducting polymer and transition metal oxide. The Pt nanoparticles loaded hybrid material exhibited high electrocatalytic activity and stability for methanol oxidation in comparison to the Pt supported on the Vulcan XC 72R carbon support. The higher activity and stability is attributed to the better CO tolerance of the composite material.
Experimental characterization of shape memory alloy actuator cables
NASA Astrophysics Data System (ADS)
Biggs, Daniel B.; Shaw, John A.
2016-04-01
Wire rope (or cables) are a fundamental structural element in many engineering applications. Recently, there has been growing interest in stranding NiTi wires into cables to scale up the adaptive properties of NiTi tension elements and to make use of the desirable properties of wire rope. Exploratory experiments were performed to study the actuation behavior of two NiTi shape memory alloy cables and straight monofilament wire of the same material. The specimens were held under various dead loads ranging from 50 MPa to 400 MPa and thermally cycled 25 times from 140°C to 5°C at a rate of 12°C/min. Performance metrics of actuation stroke, residual strain, and work output were measured and compared between specimen types. The 7x7 cable exhibited similar actuation to the single straight wire, but with slightly longer stroke and marginally more shakedown, while maintaining equivalent specific work output. This leads to the conclusion that the 7x7 cable effectively scaled up the adaptive properties the straight wire. Under loads below 150 MPa, the 1x27 cable had up to double the actuation stroke and work output, but exhibited larger shakedown and poorer performance when loaded higher.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Hui; Wu, Ping, E-mail: zjuwuping@njnu.edu.cn; Shi, Huimin
2014-07-01
Highlights: • In situ magnesiothermic reduction route for the formation of porous Si@C spheres. • Unique microstructural characteristics of both porous sphere and carbon matrix. • Enhanced anodic performance in term of cycling stability for lithium-ion batteries. - Abstract: A novel type of porous Si–C micro/nano-hybrids, i.e., porous Si spheres encapsulated in carbon shells (porous Si@C spheres), has been constructed through the pyrolysis of polyvinylidene fluoride (PVDF) and subsequent magnesiothermic reduction methodology by using SiO{sub 2} spheres as precursors. The as-synthesized porous Si@C spheres have been applied as anode materials for lithium-ion batteries (LIBs), and exhibit enhanced anodic performance inmore » term of cycling stability compared with bare Si spheres. For example, the porous Si@C spheres are able to exhibit a high reversible capacity of 900.0 mA h g{sup −1} after 20 cycles at a current density of 0.05 C (1 C = 4200 mA g{sup −1}), which is much higher than that of bare Si spheres (430.7 mA h g{sup −1})« less
Performance and control study of a low-pressure-ratio turbojet engine for a drone aircraft
NASA Technical Reports Server (NTRS)
Seldner, K.; Geyser, L. C.; Gold, H.; Walker, D.; Burgner, G.
1972-01-01
The results of analog and digital computer studies of a low-pressure-ratio turbojet engine system for use in a drone vehicle are presented. The turbojet engine consists of a four-stage axial compressor, single-stage turbine, and a fixed area exhaust nozzle. Three simplified fuel schedules and a generalized parameter fuel control for the engine system are presented and evaluated. The evaluation is based on the performance of each schedule or control during engine acceleration from a windmill start at Mach 0.8 and 6100 meters to 100 percent corrected speed. It was found that, because of the higher acceleration margin permitted by the control, the generalized parameter control exhibited the best dynamic performance.
Vortex Formation and Foraging in Polyphenic Spadefoot Toad Tadpoles.
Bazazi, Sepideh; Pfennig, Karin S; Handegard, Nils Olav; Couzin, Iain D
2012-06-01
Animal aggregations are widespread in nature and can exhibit complex emergent properties not found at an individual level. We investigate one such example here, collective vortex formation by congeneric spadefoot toad tadpoles: Spea bombifrons and S. multiplicata. Tadpoles of these species develop into either an omnivorous or a carnivorous (cannibalistic) morph depending on diet. Previous studies show S. multiplicata are more likely to develop into omnivores and feed on suspended organic matter in the water body. The omnivorous morph is frequently social, forming aggregates that move and forage together, and form vortices in which they adopt a distinctive slowly-rotating circular formation. This behaviour has been speculated to act as a means to agitate the substratum in ponds and thus could be a collective foraging strategy. Here we perform a quantitative investigation of the behaviour of tadpoles within aggregates. We found that only S. multiplicata groups exhibited vortex formation, suggesting that social interactions differ between species. The probability of collectively forming a vortex, in response to introduced food particles, increased for higher tadpole densities and when tadpoles were hungry. Individuals inside a vortex moved faster and exhibited higher (by approximately 27%) tailbeat frequencies than those outside the vortex, thus incurring a personal energetic cost. The resulting environmental modification, however, suggests vortex behaviour may be an adaptation to actively create, and exploit, a resource patch within the environment.
Synthesis and characterization of CrCN-DLC composite coatings by cathodic arc ion-plating
NASA Astrophysics Data System (ADS)
Wang, R. Y.; Wang, L. L.; Liu, H. D.; Yan, S. J.; Chen, Y. M.; Fu, D. J.; Yang, B.
2013-07-01
CrCN-DLC composite coatings were deposited onto silicon (1 0 0) and cemented carbides substrates using pure Cr targets under C2H2 ambient by cathodic arc ion plating system. The influence of C2H2 flow rate on the structure and mechanical properties of the coatings was investigated systemically. The coatings structure and bonding state were characterized by XRD, Raman and X-ray photoelectron spectroscopy. The chemical composition was measured by EDS. The mechanical performance and tribological behaviour of the coatings were studied by a hardness tester and ball-on-disc wear tester. The results showed that with increasing C2H2 flow rate from 50 to 100 sccm, the corresponding hardness of coatings increased firstly and then decreased with further addition of C2H2 flow rate. The coatings deposited at lower C2H2 flow rate (less than 200 sccm) exhibited a relatively higher hardness value (more than HV0.0252000) and then the hardness decrease with increasing C2H2 flow rate. The friction coefficient also exhibited similar variation trend, when the C2H2 flow rate was higher than 100 sccm, the friction coefficient decreased and then maintained in a relatively lower value from 0.18 to 0.24, which may be attribute to the increasing carbon content and the coating exhibited more diamond-like structure.
Learning and cognition in insects.
Giurfa, Martin
2015-01-01
Insects possess small brains but exhibit sophisticated behavioral performances. Recent works have reported the existence of unsuspected cognitive capabilities in various insect species, which go beyond the traditional studied framework of simple associative learning. In this study, I focus on capabilities such as attention, social learning, individual recognition, concept learning, and metacognition, and discuss their presence and mechanistic bases in insects. I analyze whether these behaviors can be explained on the basis of elemental associative learning or, on the contrary, require higher-order explanations. In doing this, I highlight experimental challenges and suggest future directions for investigating the neurobiology of higher-order learning in insects, with the goal of uncovering l architectures underlying cognitive processing. © 2015 John Wiley & Sons, Ltd.
Chimeric Plastics : a new class of thermoplastic
NASA Astrophysics Data System (ADS)
Sonnenschein, Mark
A new class of thermoplastics (dubbed ``Chimerics'') is described that exhibits a high temperature glass transition followed by high performance elastomer properties, prior to melting. These transparent materials are comprised of co-continuous phase-separated block copolymers. One block is an amorphous glass with a high glass transition temperature, and the second is a higher temperature phase transition block creating virtual thermoreversible crosslinks. The material properties are highly influenced by phase separation on the order of 10-30 nanometers. At lower temperatures the polymer reflects the sum of the block copolymer properties. As the amorphous phase glass transition is exceeded, the virtual crosslinks of the higher temperature second phase dominate the plastic properties, resulting in rubber-like elasticity.
Song, Inho; Lee, Seung-Chul; Shang, Xiaobo; Ahn, Jaeyong; Jung, Hoon-Joo; Jeong, Chan-Uk; Kim, Sang-Wook; Yoon, Woojin; Yun, Hoseop; Kwon, O-Pil; Oh, Joon Hak
2018-04-11
This study investigates the performance of single-crystalline nanomaterials of wide-band gap naphthalene diimide (NDI) derivatives with methylene-bridged aromatic side chains. Such materials are found to be easily used as high-performance, visible-blind near-UV light detectors. NDI single-crystalline nanoribbons are assembled using a simple solution-based process (without solvent-inclusion problems), which is then applied to organic phototransistors (OPTs). Such OPTs exhibit excellent n-channel transistor characteristics, including an average electron mobility of 1.7 cm 2 V -1 s -1 , sensitive UV detection properties with a detection limit of ∼1 μW cm -2 , millisecond-level responses, and detectivity as high as 10 15 Jones, demonstrating the highly sensitive organic visible-blind UV detectors. The high performance of our OPTs originates from the large face-to-face π-π stacking area between the NDI semiconducting cores, which is facilitated by methylene-bridged aromatic side chains. Interestingly, NDI-based nanoribbon OPTs exhibit a distinct visible-blind near-UV detection with an identical detection limit, even under intense visible light illumination (for example, 10 4 times higher intensity than UV light intensity). Our findings demonstrate that wide-band gap NDI-based nanomaterials are highly promising for developing high-performance visible-blind UV photodetectors. Such photodetectors could potentially be used for various applications including environmental and health-monitoring systems.
Hammer, Rubi; Tennekoon, Michael; Cooke, Gillian E; Gayda, Jessica; Stein, Mark A; Booth, James R
2015-08-01
We tested the interactive effect of feedback and reward on visuospatial working memory in children with ADHD. Seventeen boys with ADHD and 17 Normal Control (NC) boys underwent functional magnetic resonance imaging (fMRI) while performing four visuospatial 2-back tasks that required monitoring the spatial location of letters presented on a display. Tasks varied in reward size (large; small) and feedback availability (no-feedback; feedback). While the performance of NC boys was high in all conditions, boys with ADHD exhibited higher performance (similar to those of NC boys) only when they received feedback associated with large-reward. Performance pattern in both groups was mirrored by neural activity in an executive function neural network comprised of few distinct frontal brain regions. Specifically, neural activity in the left and right middle frontal gyri of boys with ADHD became normal-like only when feedback was available, mainly when feedback was associated with large-reward. When feedback was associated with small-reward, or when large-reward was expected but feedback was not available, boys with ADHD exhibited altered neural activity in the medial orbitofrontal cortex and anterior insula. This suggests that contextual support normalizes activity in executive brain regions in children with ADHD, which results in improved working memory. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Implicit Coordination Strategies for Effective Team Communication.
Butchibabu, Abhizna; Sparano-Huiban, Christopher; Sonenberg, Liz; Shah, Julie
2016-06-01
We investigated implicit communication strategies for anticipatory information sharing during team performance of tasks with varying degrees of complexity. We compared the strategies used by teams with the highest level of performance to those used by the lowest-performing teams to evaluate the frequency and methods of communications used as a function of task structure. High-performing teams share information by anticipating the needs of their teammates rather than explicitly requesting the exchange of information. As the complexity of a task increases to involve more interdependence among teammates, the impact of coordination on team performance also increases. This observation motivated us to conduct a study of anticipatory information sharing as a function of task complexity. We conducted an experiment in which 13 teams of four people performed collaborative search-and-deliver tasks with varying degrees of complexity in a simulation environment. We elaborated upon prior characterizations of communication as implicit versus explicit by dividing implicit communication into two subtypes: (a) deliberative/goal information and (b) reactive status updates. We then characterized relationships between task structure, implicit communication, and team performance. We found that the five teams with the fastest task completion times and lowest idle times exhibited higher rates of deliberative communication versus reactive communication during high-complexity tasks compared with the five teams with the slowest completion times and longest idle times (p = .039). Teams in which members proactively communicated information about their next goal to teammates exhibited improved team performance. The findings from our work can inform the design of communication strategies for team training to improve performance of complex tasks. © 2016, Human Factors and Ergonomics Society.
Aghwan, Zeiad Amjad; Sazili, Awis Qurni; Kadhim, Khalid Kamil; Alimon, Abdul Razak; Goh, Yong Meng; Adeyemi, Kazeem Dauda
2016-05-01
This study assessed the effects of dietary selenium (Se), iodine (I) and a combination of both on growth performance, thyroid gland activity, carcass characteristics and the concentration of iodine and selenium in Longissimus lumborum (LL) muscle in goats. Twenty-four bucks were randomly assigned to four dietary treatments: control (CON), basal diet without supplementation, basal diet + 0.6 mg Se/kg dry matter (DM) (SS), 0.6 mg I/kg DM (IP), or combination of 0.6 mg/kg DM Se and 0.6 mg/kg DM I (SSIP) and fed for 100 days. Animals fed diet SSIP exhibited higher (P < 0.05) body weight and better feed conversion ratio (FCR) than those fed other diets. Dressing percentage of goats fed the supplemented diets was higher (P < 0.05) than that of the control. Carcasses from the IP group had higher (P < 0.05) total fat proportion than the SSIP group. The levels of both elements were significantly elevated (P < 0.05) in LL muscle in supplemented goats. Thyroid follicular epithelial cells of IP and SSIP animals were significantly higher than those of CON and SS groups. The study demonstrated that the combined Se and I dietary supplementation improves growth performance, carcass dressing percentage and increases the retention of Se and I in goat meat. © 2015 Japanese Society of Animal Science.
Irreversible Brownian Heat Engine
NASA Astrophysics Data System (ADS)
Taye, Mesfin Asfaw
2017-10-01
We model a Brownian heat engine as a Brownian particle that hops in a periodic ratchet potential where the ratchet potential is coupled with a linearly decreasing background temperature. We show that the efficiency of such Brownian heat engine approaches the efficiency of endoreversible engine η =1-√{{Tc/Th}} [23]. On the other hand, the maximum power efficiency of the engine approaches η ^{MAX}=1-({Tc/Th})^{1\\over 4}. It is shown that the optimized efficiency always lies between the efficiency at quasistatic limit and the efficiency at maximum power while the efficiency at maximum power is always less than the optimized efficiency since the fast motion of the particle comes at the expense of the energy cost. If the heat exchange at the boundary of the heat baths is included, we show that such a Brownian heat engine has a higher performance when acting as a refrigerator than when operating as a device subjected to a piecewise constant temperature. The role of time on the performance of the motor is also explored via numerical simulations. Our numerical results depict that the time t and the external load dictate the direction of the particle velocity. Moreover, the performance of the heat engine improves with time. At large t (steady state), the velocity, the efficiency and the coefficient of performance of the refrigerator attain their maximum value. Furthermore, we study the effect of temperature by considering a viscous friction that decreases exponentially as the background temperature increases. Our result depicts that the Brownian particle exhibits a fast unidirectional motion when the viscous friction is temperature dependent than that of constant viscous friction. Moreover, the efficiency of this motor is considerably enhanced when the viscous friction is temperature dependent. On the hand, the motor exhibits a higher performance of the refrigerator when the viscous friction is taken to be constant.
Number of graphene layers exhibiting an influence on oxidation of DNA bases: analytical parameters.
Goh, Madeline Shuhua; Pumera, Martin
2012-01-20
This article investigates the analytical performance of double-, few- and multi-layer graphene upon oxidation of adenine and guanine. We observed that the sensitivity of differential pulse voltammetric response of guanine and adenine is significantly higher at few-layer graphene surface than single-layer graphene. We use glassy carbon electrode as substrate coated with graphenes. Our findings shall have profound influence on construction of graphene based genosensors. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Negi, Deepchand Singh; Pattamatta, Arvind
2015-04-01
The present study deals with shape optimization of dimples on the target surface in multi-jet impingement heat transfer. Bezier polynomial formulation is incorporated to generate profile shapes for the dimple profile generation and a multi-objective optimization is performed. The optimized dimple shape exhibits higher local Nusselt number values compared to the reference hemispherical dimpled plate optimized shape which can be used to alleviate local temperature hot spots on target surface.
High-efficiency AlGaAs-GaAs Cassegrainian concentrator cells
NASA Technical Reports Server (NTRS)
Werthen, J. G.; Hamaker, H. C.; Virshup, G. F.; Lewis, C. R.; Ford, C. W.
1985-01-01
AlGaAs-GaAs heteroface space concentrator solar cells have been fabricated by metalorganic chemical vapor deposition. AMO efficiencies as high as 21.1% have been observed both for p-n and np structures under concentration (90 to 100X) at 25 C. Both cell structures are characterized by high quantum efficiencies and their performances are close to those predicted by a realistic computer model. In agreement with the computer model, the n-p cell exhibits a higher short-circuit current density.
7 CFR Exhibit G to Subpart A of... - Performance Bond
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 12 2012-01-01 2012-01-01 false Performance Bond G Exhibit G to Subpart A of Part.... 1924, Subpt. A, Exh. G Exhibit G to Subpart A of Part 1924—Performance Bond KNOW ALL PERSONS BY THESE... and faithful performance of the CONTRACT as so amended. The term “Amendment”, wherever used in this...
7 CFR Exhibit G to Subpart A of... - Performance Bond
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 12 2010-01-01 2010-01-01 false Performance Bond G Exhibit G to Subpart A of Part.... 1924, Subpt. A, Exh. G Exhibit G to Subpart A of Part 1924—Performance Bond KNOW ALL PERSONS BY THESE... and faithful performance of the CONTRACT as so amended. The term “Amendment”, wherever used in this...
7 CFR Exhibit G to Subpart A of... - Performance Bond
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 12 2011-01-01 2011-01-01 false Performance Bond G Exhibit G to Subpart A of Part.... 1924, Subpt. A, Exh. G Exhibit G to Subpart A of Part 1924—Performance Bond KNOW ALL PERSONS BY THESE... and faithful performance of the CONTRACT as so amended. The term “Amendment”, wherever used in this...
7 CFR Exhibit G to Subpart A of... - Performance Bond
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 12 2014-01-01 2013-01-01 true Performance Bond G Exhibit G to Subpart A of Part 1924.... A, Exh. G Exhibit G to Subpart A of Part 1924—Performance Bond KNOW ALL PERSONS BY THESE PRESENTS... and faithful performance of the CONTRACT as so amended. The term “Amendment”, wherever used in this...
Rietsch, Katrin; Godina, Elena; Scheffler, Christiane
2013-01-01
Obesity and a reduced physical activity are global developments. Physical activity affects the external skeletal robustness which decreased in German children. It was assumed that the negative trend of decreased external skeletal robustness can be found in other countries. Therefore anthropometric data of Russian and German children from the years 2000 and 2010 were compared. Russian (2000/2010 n = 1023/268) and German (2000/2010 n = 2103/1750) children aged 6-10 years were investigated. Height, BMI and external skeletal robustness (Frame-Index) were examined and compared for the years and the countries. Statistical analysis was performed by Mann-Whitney-Test. Comparison 2010 and 2000: In Russian children BMI was significantly higher; boys were significantly taller and exhibited a decreased Frame-Index (p = .002) in 2010. German boys showed significantly higher BMI in 2010. In both sexes Frame-Index (p = .001) was reduced in 2010. Comparison Russian and German children in 2000: BMI, height and Frame-Index were different between Russian and German children. German children were significantly taller but exhibited a lower Frame-Index (p<.001). Even German girls showed a significantly higher BMI. Comparison Russian and German children in 2010: BMI and Frame-Index were different. Russian children displayed a higher Frame-Index (p<.001) compared with Germans. In Russian children BMI has increased in recent years. Frame-Index is still higher in Russian children compared with Germans however in Russian boys Frame-Index is reduced. This trend and the physical activity should be observed in the future.
Higher modulus compositions incorporating particulate rubber
Bauman, B.D.; Williams, M.A.; Bagheri, R.
1997-12-02
Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figs.
Higher modulus compositions incorporating particulate rubber
McInnis, E.L.; Scharff, R.P.; Bauman, B.D.; Williams, M.A.
1995-01-17
Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figures.
Higher modulus compositions incorporating particulate rubber
McInnis, E.L.; Bauman, B.D.; Williams, M.A.
1996-04-09
Rubber particles, to be used as fillers or extenders for various composite polymer systems, are chlorinated by a gas-solid phase reaction with a chlorine-containing gas. A composite polymer containing the chlorinated rubber fillers or extenders exhibits a higher flexural modulus than if prepared using an unchlorinated rubber filler or extender. Chlorination of the rubber particles is carried out by contacting the finely divided rubber particles with a chlorine-containing gas comprising at least about 5 volume percent chlorine. Advantageously, the chlorine can be diluted with air, nitrogen or other essentially inert gases and may contain minor amounts of fluorine. Improved performance is obtained with nitrogen dilution of the chlorine gas over air dilution. Improved polymer composite systems having higher flexural modulus result from the use of the chlorinated rubber particles as fillers instead of unchlorinated rubber particles. 2 figs.
CrossFit athletes exhibit high symmetry of fundamental movement patterns. A cross-sectional study
Tafuri, Silvio; Notarnicola, Angela; Monno, Antonello; Ferretti, Francesco; Moretti, Biagio
2016-01-01
Summary Background even if CrossFit training programs accounted actually more than 7500 gyms affiliated in the USA and more than 2000 in Europe and involved today more than 1 million of people, actually there were not several studies about the effect of the CrossFit on the health and sport performance. The aim of these research was to evaluate the performance in 7 fundamental movement patterns using a standardized methods, the Functional Movement Screen (FMS). Methods we enrolled three groups of athletes (age 17–40 years; >6 months of training programs): CrossFitters, body builders and professional weightlifters. FMS test was performed to all people enrolled. Scores of FMS test was examined comparing three groups. Results no differences in the three groups were showed in the mean score values of each test and in total score, except for shoulder mobility test (higher among CrossFitters) and trunk stability push-up test (higher among weightlifter). Agreement between the test performed on the two sides was higher in CrossFit groups for hurdle step (93.2%), in line lung (86%), rotary stability test (95.3%) and shoulder mobility (90.7%; p<0.001). Conclusions CrossFitters seem to have a high level of concordance in the scores achieved in bilateral test. CrossFit seems to produce marked symmetry in some fundamental movements compared to weightlifting and bodybuilding. PMID:27331045
CrossFit athletes exhibit high symmetry of fundamental movement patterns. A cross-sectional study.
Tafuri, Silvio; Notarnicola, Angela; Monno, Antonello; Ferretti, Francesco; Moretti, Biagio
2016-01-01
even if CrossFit training programs accounted actually more than 7500 gyms affiliated in the USA and more than 2000 in Europe and involved today more than 1 million of people, actually there were not several studies about the effect of the CrossFit on the health and sport performance. The aim of these research was to evaluate the performance in 7 fundamental movement patterns using a standardized methods, the Functional Movement Screen (FMS). we enrolled three groups of athletes (age 17-40 years; >6 months of training programs): CrossFitters, body builders and professional weightlifters. FMS test was performed to all people enrolled. Scores of FMS test was examined comparing three groups. no differences in the three groups were showed in the mean score values of each test and in total score, except for shoulder mobility test (higher among CrossFitters) and trunk stability push-up test (higher among weightlifter). Agreement between the test performed on the two sides was higher in CrossFit groups for hurdle step (93.2%), in line lung (86%), rotary stability test (95.3%) and shoulder mobility (90.7%; p<0.001). CrossFitters seem to have a high level of concordance in the scores achieved in bilateral test. CrossFit seems to produce marked symmetry in some fundamental movements compared to weightlifting and bodybuilding.
NASA Astrophysics Data System (ADS)
Xiong, Shanxin; Li, Shuaishuai; Zhang, Xiangkai; Wang, Ru; Zhang, Runlan; Wang, Xiaoqin; Wu, Bohua; Gong, Ming; Chu, Jia
2018-02-01
The molecular architecture of conducting polymers has a significant impact on their conjugated structure and electrochemical properties. We have investigated the influence of star-shaped structure on the electrochemical and electrochromic properties of polyaniline (PANI). Star-shaped PANI (SPANI) was prepared by copolymerization of aniline with triphenylamine (TPA) using an emulsion polymerization method. With addition of less than 4.0 mol.% TPA, the resulting SPANI exhibited good solubility in xylene with dodecylbenzenesulfonic acid (DBSA) as doping acid. The structure and thermal stability of the SPANI were characterized using Fourier-transform infrared spectroscopy, Raman spectroscopy, and thermogravimetric analysis, and the electrochemical behavior was analyzed by cyclic voltammetry (CV). The electrochromic properties of SPANI were tested using an electrochemical workstation combined with an ultraviolet-visible (UV-Vis) spectrometer. The results show that, with increasing TPA loading, the thermal stability of SPANI increased. With addition of 4.0 mol.% TPA, the weight loss of SPANI was 36.9% at 700°C, much lower than the value of 71.2% for PANI at the same temperature. The low oxidation potential and large enclosed area of the CV curves indicate that SPANI possesses higher electrochemical activity than PANI. Enhanced electrochromic properties including higher optical contrast and better electrochromic stability of SPANI were also obtained. SPANI with 1.6 mol.% TPA loading exhibited the highest optical contrast of 0.71, higher than the values of 0.58 for PANI, 0.66 for SPANI-0.4%, or 0.63 for SPANI-4.0%. Overdosing of TPA resulted in slow switching speed due to slow ion transport in short branched chains of star-shaped PANI electrochromic material. Long-term stability testing confirmed that all the SPANI-based devices exhibited better stability than the PANI-based device.
Role of CB2 receptors in social and aggressive behavior in male mice.
Rodríguez-Arias, Marta; Navarrete, Francisco; Blanco-Gandia, M Carmen; Arenas, M Carmen; Aguilar, María A; Bartoll-Andrés, Adrián; Valverde, Olga; Miñarro, José; Manzanares, Jorge
2015-08-01
Male CB1KO mice exhibit stronger aggressive responses than wild-type mice. This study was designed to examine the role of cannabinoid CB2r in social and aggressive behavior. The social interaction test and resident-intruder paradigm were performed in mice lacking CB2r (CB2KO) and in wild-type (WT) littermates. The effects of the CB2r selective agonist JWH133 (1 and 2 mg/kg) on aggression were also evaluated in Oncins France 1 (OF1) mice. Gene expression analyses of monoamine oxidase-A (MAO-A), catechol-o-methyltransferase (COMT), 5-hydroxytryptamine transporter (5-HTT), and 5-HT1B receptor (5HT1Br) in the dorsal raphe nuclei (DR) and the amygdala (AMY) were carried out using real-time PCR. Group-housed CB2KO mice exhibited higher levels of aggression in the social interaction test and displayed more aggression than resident WT mice. Isolation increased aggressive behavior in WT mice but did not affect CB2KO animals; however, the latter mice exhibited higher levels of social interaction with their WT counterparts. MAO-A and 5-HTT gene expression was significantly higher in grouped CB2KO mice. The expression of 5HT1Br, COMT, and MAO-A in the AMY was more pronounced in CB2KO mice than in WT counterparts. Acute administration of the CB2 agonist JWH133 significantly reduced the level of aggression in aggressive isolated OF1 mice, an effect that decreased after pretreatment with the CB2 receptor antagonist AM630. Our results suggest that CB2r is implicated in social interaction and aggressive behavior and deserves further consideration as a potential new target for the management of aggression.
Obese Patients With a Binge Eating Disorder Have an Unfavorable Metabolic and Inflammatory Profile.
Succurro, Elena; Segura-Garcia, Cristina; Ruffo, Mariafrancesca; Caroleo, Mariarita; Rania, Marianna; Aloi, Matteo; De Fazio, Pasquale; Sesti, Giorgio; Arturi, Franco
2015-12-01
To evaluate whether obese patients with a binge eating disorder (BED) have an altered metabolic and inflammatory profile related to their eating behaviors compared with non-BED obese.A total of 115 White obese patients consecutively recruited underwent biochemical, anthropometrical evaluation, and a 75-g oral glucose tolerance test. Patients answered the Binge Eating Scale and were interviewed by a psychiatrist. The patients were subsequently divided into 2 groups according to diagnosis: non-BED obese (n = 85) and BED obese (n = 30). Structural equation modeling analysis was performed to elucidate the relation between eating behaviors and metabolic and inflammatory profile.BED obese exhibited significantly higher percentages of altered eating behaviors, body mass index (P < 0.001), waist circumference (P < 0.01), fat mass (P < 0.001), and a lower lean mass (P < 0.001) when compared with non-BED obese. Binge eating disorder obese also had a worse metabolic and inflammatory profile, exhibiting significantly lower high-density lipoprotein cholesterol levels (P < 0.05), and higher levels of glycated hemoglobin (P < 0.01), uric acid (P < 0.05), erythrocyte sedimentation rate (P < 0.001), high-sensitive C-reactive protein (P < 0.01), and white blood cell counts (P < 0.01). Higher fasting insulin (P < 0.01) and higher insulin resistance (P < 0.01), assessed by homeostasis model assessment index and visceral adiposity index (P < 0.001), were observed among BED obese. All differences remained significant after adjusting for body mass index. No significant differences in fasting plasma glucose or 2-hour postchallenge plasma glucose were found. Structural equation modeling analysis confirmed the relation between the altered eating behaviors of BED and the metabolic and inflammatory profile.Binge eating disorder obese exhibited an unfavorable metabolic and inflammatory profile, which is related to their characteristic eating habits.
Obese Patients With a Binge Eating Disorder Have an Unfavorable Metabolic and Inflammatory Profile
Succurro, Elena; Segura-Garcia, Cristina; Ruffo, Mariafrancesca; Caroleo, Mariarita; Rania, Marianna; Aloi, Matteo; De Fazio, Pasquale; Sesti, Giorgio; Arturi, Franco
2015-01-01
Abstract To evaluate whether obese patients with a binge eating disorder (BED) have an altered metabolic and inflammatory profile related to their eating behaviors compared with non-BED obese. A total of 115 White obese patients consecutively recruited underwent biochemical, anthropometrical evaluation, and a 75-g oral glucose tolerance test. Patients answered the Binge Eating Scale and were interviewed by a psychiatrist. The patients were subsequently divided into 2 groups according to diagnosis: non-BED obese (n = 85) and BED obese (n = 30). Structural equation modeling analysis was performed to elucidate the relation between eating behaviors and metabolic and inflammatory profile. BED obese exhibited significantly higher percentages of altered eating behaviors, body mass index (P < 0.001), waist circumference (P < 0.01), fat mass (P < 0.001), and a lower lean mass (P < 0.001) when compared with non-BED obese. Binge eating disorder obese also had a worse metabolic and inflammatory profile, exhibiting significantly lower high-density lipoprotein cholesterol levels (P < 0.05), and higher levels of glycated hemoglobin (P < 0.01), uric acid (P < 0.05), erythrocyte sedimentation rate (P < 0.001), high-sensitive C-reactive protein (P < 0.01), and white blood cell counts (P < 0.01). Higher fasting insulin (P < 0.01) and higher insulin resistance (P < 0.01), assessed by homeostasis model assessment index and visceral adiposity index (P < 0.001), were observed among BED obese. All differences remained significant after adjusting for body mass index. No significant differences in fasting plasma glucose or 2-hour postchallenge plasma glucose were found. Structural equation modeling analysis confirmed the relation between the altered eating behaviors of BED and the metabolic and inflammatory profile. Binge eating disorder obese exhibited an unfavorable metabolic and inflammatory profile, which is related to their characteristic eating habits. PMID:26717356
NASA Astrophysics Data System (ADS)
Sali, S.; Boumaour, M.; Kermadi, S.; Keffous, A.; Kechouane, M.
2012-09-01
We investigated the structural; optical and electrical properties of ZnO thin films as the n-type semiconductor for silicon a-Si:H/Si heterojunction photodiodes. The ZnO film forms the front contact of the super-strata solar cell and has to exhibit good electrical (high conductivity) and optical (high transmittance) properties. In this paper we focused our attention on the influence of doping on device performance. The results show that the X-ray diffraction (XRD) spectra revealed a preferred orientation of the crystallites along c-axis. SEM images show that all films display a granular, polycrystalline morphology and the ZnO:Al exhibits a better grain uniformity. The transmittance of the doped films was found to be higher when compared to undoped ZnO. A low resistivity of the order of 2.8 × 10-4 Ω cm is obtained for ZnO:Al using 0.4 M concentration of zinc acetate. The photoluminescence (PL) spectra exhibit a blue band with two peaks centered at 442 nm (2.80 eV) and 490 nm (2.53 eV). It is noted that after doping the ZnO films a shift of the band by 22 nm (0.15 eV) is recorded and a high luminescence occurs when using Al as a dopant. Dark I-V curves of ZnO/a-Si:H/Si structure showed large difference, which means there is a kind of barrier to current flow between ZnO and a-Si:H layer. Doping films was applied and the turn-on voltages are around 0.6 V. Under reverse bias, the current of the ZnO/a-Si:H/Si heterojunction is larger than that of ZnO:Al/a-Si:H/Si. The improvement with ZnO:Al is attributed to a higher number of generated carriers in the nanostructure (due to the higher transmittance and a higher luminescence) that increases the probability of collisions.
Toxicity and oxidative stress induced by semiconducting polymer dots in RAW264.7 mouse macrophages
NASA Astrophysics Data System (ADS)
Ye, Fangmao; White, Collin C.; Jin, Yuhui; Hu, Xiaoge; Hayden, Sarah; Zhang, Xuanjun; Gao, Xiaohu; Kavanagh, Terrance J.; Chiu, Daniel T.
2015-05-01
The rapid development and acceptance of PDots for biological applications depends on an in depth understanding of their cytotoxicity. In this paper, we performed a comprehensive study of PDot cytotoxicity at both the gross cell effect level (such as cell viability, proliferation and necrosis) and more subtle effects (such as redox stress) on RAW264.7 cells, a murine macrophage cell line with high relevance to in vivo nanoparticle disposition. The redox stress measurements assessed were inner mitochondrial membrane lipid peroxidation (nonyl-acridine orange, NAO), total thiol level (monobromobimane, MBB), and pyridine nucleotide redox status (NAD(P)H autofluorescence). Because of the extensive work already performed with QDots on nanotoxicity and also because of their comparable size, QDots were chosen as a comparison/reference nanoparticle for this study. The results showed that PDots exhibit cytotoxic effects to a much lesser degree than their inorganic analogue (QDots) and are much brighter, allowing for much lower concentrations to be used in various biological applications. In addition, at lower dose levels (2.5 nM to 10 nM) PDot treatment resulted in higher total thiol level than those found with QDots. At higher dose levels (20 nM to 40 nM) QDots caused significantly higher thiol levels in RAW264.7 cells, than was seen with PDots, suggesting that QDots elicit compensation to oxidative stress by upregulating GSH synthesis. At the higher concentrations of QDots, NAD(P)H levels showed an initial depletion, then repletion to a level that was greater than vehicle controls. PDots showed a similar trend but this was not statistically significant. Because PDots elicit less oxidative stress and cytotoxicity at low concentrations than QDots, and because they exhibit superior fluorescence at these low concentrations, PDots are predicted to have enhanced utility in biomedical applications.
Van Doorn, Judy R; Van Doorn, John D
2014-01-01
The pedagogical paradigm shift in higher education to 24-h learning environments composed of teaching delivery methods of online courses, blended/hybrid formats, and face-to-face (f2f) classes is increasing access to global, lifelong learning. Online degrees have been offered at 62.4% of 2800 colleges and universities. Students can now design flexible, life-balanced course schedules. Higher knowledge transfer rates may exist with blended course formats with online quizzes and valuable class time set for Socratic, quality discussions and creative team presentations. Research indicates that younger, traditional students exhibit heightened performance goal orientations and prefer entertaining professors who are funny, whereas non-traditional students exhibit mastery profiles and prefer courses taught by flexible, yet organized, professors. A 5-year study found that amongst 51,000 students taking both f2f and online courses, higher online failure rates occurred. Competing life roles for non-traditional students and reading and writing needs for at-risk students suggest that performance may be better if programs are started in f2f courses. Models on effective knowledge transfer consider the planning process, delivery methods, and workplace application, but a gap exists for identifying the diversity of learner needs. Higher education enrollments are being compromised with lower online retention rates. Therefore, the main purpose of this review is to delineate disparate learning styles and present a typology for the learning needs of traditional and non-traditional students. Secondly, psychology as a science may need more rigorous curriculum markers like mapping APA guidelines to knowledge objectives, critical assignments, and student learning outcomes (SLOs) (e.g., online rubric assessments for scoring APA style critical thinking essays on selected New York Times books). Efficacious knowledge transfer to diverse, 21st century students should be the Academy's focus.
Van Doorn, Judy R.; Van Doorn, John D.
2014-01-01
The pedagogical paradigm shift in higher education to 24-h learning environments composed of teaching delivery methods of online courses, blended/hybrid formats, and face-to-face (f2f) classes is increasing access to global, lifelong learning. Online degrees have been offered at 62.4% of 2800 colleges and universities. Students can now design flexible, life-balanced course schedules. Higher knowledge transfer rates may exist with blended course formats with online quizzes and valuable class time set for Socratic, quality discussions and creative team presentations. Research indicates that younger, traditional students exhibit heightened performance goal orientations and prefer entertaining professors who are funny, whereas non-traditional students exhibit mastery profiles and prefer courses taught by flexible, yet organized, professors. A 5-year study found that amongst 51,000 students taking both f2f and online courses, higher online failure rates occurred. Competing life roles for non-traditional students and reading and writing needs for at-risk students suggest that performance may be better if programs are started in f2f courses. Models on effective knowledge transfer consider the planning process, delivery methods, and workplace application, but a gap exists for identifying the diversity of learner needs. Higher education enrollments are being compromised with lower online retention rates. Therefore, the main purpose of this review is to delineate disparate learning styles and present a typology for the learning needs of traditional and non-traditional students. Secondly, psychology as a science may need more rigorous curriculum markers like mapping APA guidelines to knowledge objectives, critical assignments, and student learning outcomes (SLOs) (e.g., online rubric assessments for scoring APA style critical thinking essays on selected New York Times books). Efficacious knowledge transfer to diverse, 21st century students should be the Academy's focus. PMID:24860517
Matzek, Virginia
2012-01-01
The question of why some introduced species become invasive and others do not is the central puzzle of invasion biology. Two of the principal explanations for this phenomenon concern functional traits: invasive species may have higher values of competitively advantageous traits than non-invasive species, or they may have greater phenotypic plasticity in traits that permits them to survive the colonization period and spread to a broad range of environments. Although there is a large body of evidence for superiority in particular traits among invasive plants, when compared to phylogenetically related non-invasive plants, it is less clear if invasive plants are more phenotypically plastic, and whether this plasticity confers a fitness advantage. In this study, I used a model group of 10 closely related Pinus species whose invader or non-invader status has been reliably characterized to test the relative contribution of high trait values and high trait plasticity to relative growth rate, a performance measure standing in as a proxy for fitness. When grown at higher nitrogen supply, invaders had a plastic RGR response, increasing their RGR to a much greater extent than non-invaders. However, invasive species did not exhibit significantly more phenotypic plasticity than non-invasive species for any of 17 functional traits, and trait plasticity indices were generally weakly correlated with RGR. Conversely, invasive species had higher values than non-invaders for 13 of the 17 traits, including higher leaf area ratio, photosynthetic capacity, photosynthetic nutrient-use efficiency, and nutrient uptake rates, and these traits were also strongly correlated with performance. I conclude that, in responding to higher N supply, superior trait values coupled with a moderate degree of trait variation explain invasive species' superior performance better than plasticity per se. PMID:23119098
Flores, Angel; Nisola, Grace M; Cho, Eulsaeng; Gwon, Eun-Mi; Kim, Hern; Lee, Changhee; Park, Shinjung; Chung, Wook-Jin
2007-05-01
The performance of enriched sludge augmented with the B21 strain of Alcaligenes defragrans was compared with that of enriched sludge, as well as with pure Alcaligenes defragrans B21, in the context of a sulfur-oxidizing denitrification (SOD) process. In synthetic wastewater treatment containing 100-1,000 mg NO3-N/L, the single strain-seeded system exhibited superior performance, featuring higher efficiency and a shorter startup period, provided nitrate loading rate was less than 0.2 kg NO3-N/m(3) per day. At nitrate loading rate of more than 0.5 kg NO3-N/m(3) per day, the bioaugmented sludge system showed higher resistance to shock loading than two other systems. However, no advantage of the bioaugmented system over the enriched sludge system without B21 strain was observed in overall efficiency of denitrification. Both the bioaugmented sludge and enriched sludge systems obtained stable denitrification performance of more than 80% at nitrate loading rate of up to 2 kg NO3-N/m(3) per day.
Improving Photovoltaic Performance of a Fused-Ring Azepinedione Copolymer via a D-A-A Design.
Zhang, Honghong; Li, Ting; Xiao, Zuo; Lei, Zhongli; Ding, Liming
2018-04-01
Two conjugated copolymer donors, PTTABDT and PBTTABDT, based on a fused-ring azepinedione acceptor unit, 5-(2-octyldodecyl)-4H-thieno[2',3':4,5]thieno[3,2-c]thieno[2',3':4,5]thieno[2,3-e]azepine-4,6(5H)-dione (TTA), are prepared. PTTABDT possesses a conventional donor-acceptor (D-A) structure with one TTA in the repeat unit, while PBTTABDT has a D-A-A structure with two TTAs in the repeat unit. Compared with PTTABDT, PBTTABDT shows a deeper highest occupied molecular orbital (HOMO) level, a narrower bandgap, and a higher hole mobility, and exhibits better performance in bulk heterojunction solar cells. Power conversion efficiencies of 6.18% and 7.81% are achieved from PTTABDT:PC 71 BM and PBTTABDT:PC 71 BM solar cells, respectively. The higher performance of PBTTABDT:PC 71 BM solar cells results from the enhanced open-circuit voltage (V oc ) and short-circuit current density ( J sc ). © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Decision-Making in Patients with Hyperthyroidism: A Neuropsychological Study
Zhang, Fangfang; Ma, Huijuan; Chen, Xingui; Dai, Fang; Wang, Kai
2015-01-01
Introduction Cognitive and behavioral impairments are common in patients with abnormal thyroid function; these impairments cause a reduction in their quality of life. The current study investigates the decision making performance in patients with hyperthyroidism to explore the possible mechanism of their cognitive and behavioral impairments. Methods Thirty-eight patients with hyperthyroidism and forty healthy control subjects were recruited to perform the Iowa Gambling Task (IGT), which assessed decision making under ambiguous conditions. Results Patients with hyperthyroidism had a higher score on the Zung Self-Rating Anxiety Scale (Z-SAS), and exhibited poorer executive function and IGT performance than did healthy control subjects. The patients preferred to choose decks with a high immediate reward, despite a higher future punishment, and were not capable of effectively using feedback information from previous choices. No clinical characteristics were associated with the total net score of the IGT in the current study. Conclusions Patients with hyperthyroidism had decision-making impairment under ambiguous conditions. The deficits may result from frontal cortex and limbic system metabolic disorders and dopamine dysfunction. PMID:26090955
Hybrid fuel formulation and technology development
NASA Technical Reports Server (NTRS)
Dean, D. L.
1995-01-01
The objective was to develop an improved hybrid fuel with higher regression rate, a regression rate expression exponent close to 0.5, lower cost, and higher density. The approach was to formulate candidate fuels based on promising concepts, perform thermomechanical analyses to select the most promising candidates, develop laboratory processes to fabricate fuel grains as needed, fabricate fuel grains and test in a small lab-scale motor, select the best candidate, and then scale up and validate performance in a 2500 lbf scale, 11-inch diameter motor. The characteristics of a high performance fuel have been verified in 11-inch motor testing. The advanced fuel exhibits a 15% increase in density over an all hydrocarbon formulation accompanied by a 50% increase in regression rate, which when multiplied by the increase in density yields a 70% increase in fuel mass flow rate; has a significantly lower oxidizer-to-fuel (O/F) ratio requirement at 1.5; has a significantly decreased axial regression rate variation making for more uniform propellant flow throughout motor operation; is very clean burning; extinguishes cleanly and quickly; and burns with a high combustion efficiency.
Santoro, Carlo; Gokhale, Rohan; Mecheri, Barbara; D'Epifanio, Alessandra; Licoccia, Silvia; Serov, Alexey; Artyushkova, Kateryna; Atanassov, Plamen
2017-08-24
Iron(II) phthalocyanine (FePc) deposited onto two different carbonaceous supports was synthesized through an unconventional pyrolysis-free method. The obtained materials were studied in the oxygen reduction reaction (ORR) in neutral media through incorporation in an air-breathing cathode structure and tested in an operating microbial fuel cell (MFC) configuration. Rotating ring disk electrode (RRDE) analysis revealed high performances of the Fe-based catalysts compared with that of activated carbon (AC). The FePc supported on Black-Pearl carbon black [Fe-BP(N)] exhibits the highest performance in terms of its more positive onset potential, positive shift of the half-wave potential, and higher limiting current as well as the highest power density in the operating MFC of (243±7) μW cm -2 , which was 33 % higher than that of FePc supported on nitrogen-doped carbon nanotubes (Fe-CNT(N); 182±5 μW cm -2 ). The power density generated by Fe-BP(N) was 92 % higher than that of the MFC utilizing AC; therefore, the utilization of platinum group metal-free catalysts can boost the performances of MFCs significantly. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Willems, E; Wang, Y; Willemsen, H; Lesuisse, J; Franssens, L; Guo, X; Koppenol, A; Buyse, J; Decuypere, E; Everaert, N
2013-07-01
To examine the importance of albumen as a protein source during embryonic development on the posthatch performance of laying hens, 3 mL of the albumen was removed. At hatch, no difference in BW could be observed. Chicks from the albumen-deprived group had a lower residual yolk weight due to higher yolk utilization. During the rearing phase (hatch to 17 wk of age), the BW of the albumen-deprived pullets was lower compared with the control and sham pullets. The feed intake of the albumen-deprived pullets was also lower than the control pullets. However, during the laying phase (18 to 55 wk of age) these hens exceeded the control and sham hens in BW, although this was not accompanied by a higher feed intake. The albumen-deprived hens exhibited a lower egg production capacity as demonstrated by the reduced egg weight, laying rate, and egg mass and increased number of second grade eggs. In addition, the eggs laid by the albumen-deprived hens had a higher proportional yolk and lower proportional albumen weight. In conclusion, prenatal protein deprivation by albumen removal caused a long-lasting programming effect, possibly by differences in energy allocation, in favor of growth and maintenance and impairing reproductive performance.
On the Cutting Performance of Segmented Diamond Blades when Dry-Cutting Concrete
Martynenko, V.; Martínez Krahmer, D.; Benítez, A.; Genovese, G.
2018-01-01
The objective of the present study is to analyze and compare the cutting performance of segmented diamond blades when dry-cutting concrete. A cutting criteria is proposed to characterize the wear of the blades by measuring the variation of the external diameter and the weight loss of the blade. The results exhibit the cutting blade SB-A, which has twice the density of diamonds and large contact area, exhibits less wear even though the material removal rate is higher compared with the other two cutting blades. Additionally, the surface topography of the different blades is evaluated to examine the impact of wear depending on the surface profile and the distribution of the diamonds in the blade’s matrix. Large number of diamonds pull-out are found in blades type SB-C, which additionally shows the worst wear resistant capability. As a conclusion, the cutting efficiency of the blade is found to be related to the density of embedded diamonds and the type of the surface profile of the cutting blade after reaching the stop criteria. PMID:29425125
Baran, Talat
2018-07-01
This study describes (i) an eco-friendly approach for design of Pd(0) nanoparticles on a natural composite, which is composed of carboxymethyl cellulose/agar polysaccharides (CMC/AG), without using any toxic reducing agents and (ii) development of ultrasound assisted simple protocol for synthesis of biphenyl compounds. Chemical characterization studies of Pd(0) nanoparticles (Pd NPs@CMC/AG) revealed that size of the particles were in the range of 37-55 nm. Catalytic performance of Pd NPs@CMC/AG was evaluated in synthesis of various biphenyl compounds by using the ultrasound-assisted method that was developed in this study. Pd NPs@CMC/AG exhibited excellent catalytic performance by producing high reaction yields. In addition, Pd NPs@CMC/AG was successfully used up to six reaction cycles without losing its catalytic activity, indicating high reproducibility of Pd NPs@CMC/AG. Additionally, compared to conventional the methods, new ultrasound-assisted synthesis technique that was followed in this study exhibited some advantages such as shorter reaction time, greener reaction conditions, higher yields and easier work-up. Copyright © 2018 Elsevier B.V. All rights reserved.
On the Cutting Performance of Segmented Diamond Blades when Dry-Cutting Concrete.
Sánchez Egea, A J; Martynenko, V; Martínez Krahmer, D; López de Lacalle, L N; Benítez, A; Genovese, G
2018-02-09
The objective of the present study is to analyze and compare the cutting performance of segmented diamond blades when dry-cutting concrete. A cutting criteria is proposed to characterize the wear of the blades by measuring the variation of the external diameter and the weight loss of the blade. The results exhibit the cutting blade SB-A, which has twice the density of diamonds and large contact area, exhibits less wear even though the material removal rate is higher compared with the other two cutting blades. Additionally, the surface topography of the different blades is evaluated to examine the impact of wear depending on the surface profile and the distribution of the diamonds in the blade's matrix. Large number of diamonds pull-out are found in blades type SB-C, which additionally shows the worst wear resistant capability. As a conclusion, the cutting efficiency of the blade is found to be related to the density of embedded diamonds and the type of the surface profile of the cutting blade after reaching the stop criteria.
Coupled s-p-d Exchange in Facet-Controlled Pd 3 Pb Tripods Enhances Oxygen Reduction Catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bu, Lingzheng; Shao, Qi; Pi, Yecan
Efficient oxygen reduction reaction (ORR) catalysts are the key in developing high-performance fuel cells. Palladium (Pd) is a promising catalyst system for ORR with its potential to replace platinum (Pt), however it usually exhibits lower activity than Pt. Herein, we report a class of ordered Pd3Pb tripods (TPs) with dominated {110} facets that show extremely high ORR performance in alkaline medium. Totally different from the well-known knowledge that excellent ORR activity of Pt catalyst is caused by its partially-filled d-orbital, our first principle calculations suggest that the strong charge exchange between Pd-4d and Pb-(sp) orbitals on Pd3Pb TPs {110} facetmore » results in the Pd-Pb local bonding unit with the orbital configuration similar to Pt. Consequently, the Pd3Pb TPs exhibit much higher ORR activities than commercial Pt/C and commercial Pd/C. The Pd3Pb TPs are rather endurable and sustain over 20,000 potential cycles with negligible structural and compositional changes.« less
Coupled s-p-d Exchange in Facet-Controlled Pd 3 Pb Tripods Enhances Oxygen Reduction Catalysis
Bu, Lingzheng; Shao, Qi; Pi, Yecan; ...
2018-02-01
Efficient oxygen reduction reaction (ORR) catalysts are the key in developing high-performance fuel cells. Palladium (Pd) is a promising catalyst system for ORR with its potential to replace platinum (Pt), however it usually exhibits lower activity than Pt. Herein, we report a class of ordered Pd3Pb tripods (TPs) with dominated {110} facets that show extremely high ORR performance in alkaline medium. Totally different from the well-known knowledge that excellent ORR activity of Pt catalyst is caused by its partially-filled d-orbital, our first principle calculations suggest that the strong charge exchange between Pd-4d and Pb-(sp) orbitals on Pd3Pb TPs {110} facetmore » results in the Pd-Pb local bonding unit with the orbital configuration similar to Pt. Consequently, the Pd3Pb TPs exhibit much higher ORR activities than commercial Pt/C and commercial Pd/C. The Pd3Pb TPs are rather endurable and sustain over 20,000 potential cycles with negligible structural and compositional changes.« less
High performance twisted and coiled soft actuator with spandex fiber for artificial muscles
NASA Astrophysics Data System (ADS)
Yang, Sang Yul; Cho, Kyeong Ho; Kim, Youngeun; Song, Min-Geun; Jung, Ho Sang; Yoo, Ji Wang; Moon, Hyungpil; Koo, Ja Choon; Nam, Jae-do; Ryeol Choi, Hyouk
2017-10-01
This paper reports the twisted and coiled soft actuator (abbreviated with STCA) with spandex fiber. The STCA exhibits higher actuation strain at lower temperature than the previous nylon twisted and coiled soft actuators (abbreviated with NTCAs). While NTCAs are fabricated using a twist-insertion process until coils are formed, a new method is developed to fabricate the STCA using the ultra-stretch of spandex, whereby the STCA is twisted again after the coil has been formed. A 6-gear-twist-insertion device that increases the stability and the fabrication speed is developed to fabricate the STCA. The superior performance exhibited by the STCA is due to the 14% contraction strain of the bare spandex (bare nylon: 4%) and the low spring constant of 0.0115 N mm-1. The maximum tensile actuation strain of STCA was 45% at 130 °C, and the maximum specific work was 1.523 kJ kg-1 at 130 °C. STCA could repeatedly actuate 100 times with a strain change of less than 0.4%.
Cao, Ai-hua; Yu, Lin; Wang, Yu-wei; Wang, Jun-mei; Yang, Le-jin; Lei, Ge-Fei
2012-02-28
Although deficits of attentional set-shifting have been reported in individuals with attention deficit/hyperactivity disorder (ADHD), it is rarely examined in animal models. This study compared spontaneously hypertensive rats (SHRs; a genetic animal model of ADHD) and Wistar-Kyoto (WKY) and Sprague-Dawley (SD) rats (normoactive control strains), on attentional set-shifting task (ASST) performance. Furthermore, the dose-effects of methylphenidate (MPH) on attentional set-shifting of SHR were investigated. In experiment 1, ASST procedures were conducted in SHR, WKY and SD rats of 8 each at the age of 5 weeks. Mean latencies at the initial phase, error types and numbers, and trials to criteria at each stage were recorded. In experiment 2, 24 SHR rats were randomly assigned to 3 groups of 8 each-- MPH-L (lower dose), MPH-H (higher dose), and SHR-vehicle groups. From 3 weeks, they were administered 2.5 mg/kg or 5 mg/kg MPH or saline respectively for 14 consecutive days. All rats were tested in the ASST at the age of 5 weeks. The SHRs generally exhibited poorer performance on ASST than the control WKY and SD rats. Significant strain effects on mean latency [F (2, 21) = 639.636, p < 0.001] and trials to criterion [F (2, 21) = 114.118, p < 0.001] were observed. The SHRs were found to have more perseverative and regressive errors than the control strains (p < 0.001). After MPH treatment, the two MPH treated groups exhibited significantly longer latency and fewer trials to reach criterion than the SHR-vehicle group and the MPH-L group exhibited fewer trials to reach criterion in more stages compared with the MPH-H group. Significant main effects of treatment [F (2, 21) = 52.174, p < 0.001] and error subtype [F (2, 42) = 221.635, p < 0.01] were found. The SHR may be impaired in discrimination learning, reversal learning and attentional set-shifting. Our study provides evidence that MPH may improve the SHR's performance on attentional set-shifting and lower dose is more effective than higher dose.
2012-01-01
Background Although deficits of attentional set-shifting have been reported in individuals with attention deficit/hyperactivity disorder (ADHD), it is rarely examined in animal models. Methods This study compared spontaneously hypertensive rats (SHRs; a genetic animal model of ADHD) and Wistar-Kyoto (WKY) and Sprague-Dawley (SD) rats (normoactive control strains), on attentional set-shifting task (ASST) performance. Furthermore, the dose-effects of methylphenidate (MPH) on attentional set-shifting of SHR were investigated. In experiment 1, ASST procedures were conducted in SHR, WKY and SD rats of 8 each at the age of 5 weeks. Mean latencies at the initial phase, error types and numbers, and trials to criteria at each stage were recorded. In experiment 2, 24 SHR rats were randomly assigned to 3 groups of 8 each-- MPH-L (lower dose), MPH-H (higher dose), and SHR-vehicle groups. From 3 weeks, they were administered 2.5 mg/kg or 5 mg/kg MPH or saline respectively for 14 consecutive days. All rats were tested in the ASST at the age of 5 weeks. Results The SHRs generally exhibited poorer performance on ASST than the control WKY and SD rats. Significant strain effects on mean latency [F (2, 21) = 639.636, p < 0.001] and trials to criterion [F (2, 21) = 114.118, p < 0.001] were observed. The SHRs were found to have more perseverative and regressive errors than the control strains (p < 0.001). After MPH treatment, the two MPH treated groups exhibited significantly longer latency and fewer trials to reach criterion than the SHR-vehicle group and the MPH-L group exhibited fewer trials to reach criterion in more stages compared with the MPH-H group. Significant main effects of treatment [F (2, 21) = 52.174, p < 0.001] and error subtype [F (2, 42) = 221.635, p < 0.01] were found. Conclusions The SHR may be impaired in discrimination learning, reversal learning and attentional set-shifting. Our study provides evidence that MPH may improve the SHR's performance on attentional set-shifting and lower dose is more effective than higher dose. PMID:22369105
Nursing home quality and financial performance: does the racial composition of residents matter?
Chisholm, Latarsha; Weech-Maldonado, Robert; Laberge, Alex; Lin, Feng-Chang; Hyer, Kathryn
2013-12-01
To examine the effects of the racial composition of residents on nursing homes' financial and quality performance. The study examined Medicare and Medicaid-certified nursing homes across the United States that submitted Medicare cost reports between the years 1999 and 2004 (11,472 average per year). Data were obtained from the Minimum Data Set, the On-Line Survey Certification and Reporting, Medicare Cost Reports, and the Area Resource File. Panel data regression with random intercepts and negative binomial regression were conducted with state and year fixed effects. Financial and quality performance differed between nursing homes with high proportions of black residents and nursing homes with no or medium proportions of black residents. Nursing homes with no black residents had higher revenues and higher operating margins and total profit margins and they exhibited better processes and outcomes than nursing homes with high proportions of black residents. Nursing homes' financial viability and quality of care are influenced by the racial composition of residents. Policy makers should consider initiatives to improve both the financial and quality performance of nursing homes serving predominantly black residents. © Health Research and Educational Trust.
NASA Astrophysics Data System (ADS)
Hang, Yang; Zhang, Chaofeng; Luo, Xiaoman; Xie, Yingshen; Xin, Sen; Li, Yutao; Zhang, Dawei; Goodenough, John B.
2018-07-01
Synthesis of α-MnO2 nanorods grown on porous graphitic carbon nitride (g-C3N4) sheets via a facile hydrothermal treatment gives a porous composite exhibiting higher activity for an air cathode than the individual component of α-MnO2 or porous g-C3N4 for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). The porous g-C3N4/α-MnO2 composite also exhibits better performance in a Li-air battery than pure α-MnO2 or XC-72 carbon catalysts, which includes superior discharge capacity, low voltage gap and high cycle stability. The α-MnO2 nanorods catalyze the OER and the porous g-C3N4 sheets catalyze the ORR.
Wang, Lei; Wang, Yueqing; Wu, Mingguang; Wei, Zengxi; Cui, Chunyu; Mao, Minglei; Zhang, Jintao; Han, Xiaopeng; Liu, Quanhui; Ma, Jianmin
2018-05-01
Zinc-air batteries with high-density energy are promising energy storage devices for the next generation of energy storage technologies. However, the battery performance is highly dependent on the efficiency of oxygen electrocatalyst in the air electrode. Herein, the N, F, and B ternary doped carbon fibers (TD-CFs) are prepared and exhibited higher catalytic properties via the efficient 4e - transfer mechanism for oxygen reduction in comparison with the single nitrogen doped CFs. More importantly, the primary and rechargeable Zn-air batteries using TD-CFs as air-cathode catalysts are constructed. When compared to batteries with Pt/C + RuO 2 and Vulcan XC-72 carbon black catalysts, the TD-CFs catalyzed batteries exhibit remarkable battery reversibility and stability over long charging/discharging cycles. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhou, Long; Chang, Jingjing; Liu, Ziye; Sun, Xu; Lin, Zhenhua; Chen, Dazheng; Zhang, Chunfu; Zhang, Jincheng; Hao, Yue
2018-02-08
Perovskite/PCBM heterojunctions are efficient for fabricating perovskite solar cells with high performance and long-term stability. In this study, an efficient perovskite/PCBM heterojunction was formed via conventional sequential deposition and one-step formation processes. Compared with conventional deposition, the one-step process was more facile, and produced a perovskite thin film of substantially improved quality due to fullerene passivation. Moreover, the resulting perovskite/PCBM heterojunction exhibited more efficient carrier transfer and extraction, and reduced carrier recombination. The perovskite solar cell device based on one-step perovskite/PCBM heterojunction formation exhibited a higher maximum PCE of 17.8% compared with that from the conventional method (13.7%). The device also showed exceptional stability, retaining 83% of initial PCE after 60 days of storage under ambient conditions.
NASA Astrophysics Data System (ADS)
Chen, Yaping; Liu, Borui; Liu, Qi; Wang, Jun; Li, Zhanshuang; Jing, Xiaoyan; Liu, Lianhe
2015-09-01
Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on CoMoO4 NW arrays for high performance electrode materials. The results show that the CoMoO4/PPy hybrid NW electrode exhibits a high areal specific capacitance of ca. 1.34 F cm-2 at a current density of 2 mA cm-2, which is remarkably better than the corresponding values for a pure CoMoO4 NW electrode of 0.7 F cm-2. An excellent cycling performance of nanocomposites of up to 95.2% (ca. 1.12 F cm-2) is achieved after 2000 cycles compared to pristine CoMoO4 NWs. In addition, we fabricate flexible all-solid-state ASC which can be cycled reversibly in the voltage range of 0-1.7 V, and exhibits a maximum energy density of 104.7 W h kg-1 (3.522 mW h cm-3), demonstrating great potential for practical applications in flexible energy storage electronics.Flexible all-solid-state supercapacitors have offered promising applications as novel energy storage devices based on their merits, such as small size, low cost, light weight and high wearability for high-performance portable electronics. However, one major challenge to make flexible all-solid-state supercapacitors depends on the improvement of electrode materials with higher electrical conductivity properties and longer cycling stability. In this article, we put forward a simple strategy to in situ synthesize 1D CoMoO4 nanowires (NWs), using highly conductive CC and an electrically conductive PPy wrapping layer on CoMoO4 NW arrays for high performance electrode materials. The results show that the CoMoO4/PPy hybrid NW electrode exhibits a high areal specific capacitance of ca. 1.34 F cm-2 at a current density of 2 mA cm-2, which is remarkably better than the corresponding values for a pure CoMoO4 NW electrode of 0.7 F cm-2. An excellent cycling performance of nanocomposites of up to 95.2% (ca. 1.12 F cm-2) is achieved after 2000 cycles compared to pristine CoMoO4 NWs. In addition, we fabricate flexible all-solid-state ASC which can be cycled reversibly in the voltage range of 0-1.7 V, and exhibits a maximum energy density of 104.7 W h kg-1 (3.522 mW h cm-3), demonstrating great potential for practical applications in flexible energy storage electronics. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02961a
Functional and cognitive changes in community-dwelling elderly: longitudinal study.
Figueiredo, Carolina S; Assis, Marcella G; Silva, Silvia L A; Dias, Rosângela C; Mancini, Marisa C
2013-01-01
The relationship between aging and increased life expectancy in the overall population likely contributes to a higher frequency rate and incidence of illnesses and functional disabilities. Physical dependence and cognitive impairment might hinder the performance of activities and result in an overload of care duties for the patient's family and the healthcare system. The aim of this study was to compare the functional and cognitive changes exhibited by the elderly over a 6-month period. This longitudinal and observational study was conducted in a sample of 167 elderly people, who were selected from the database of the Network of Studies on Frailty in Brazilian Elderly, Universidade Federal de Minas Gerais - UFMG. The participants submitted to the Mini Mental State Examination (MMSE), Katz Index, Lawton and Brody's scale and responded to items on Advanced Activities of Daily Living (AADLs). We analyzed the data using multivariate regression models. The participants' functional capacity exhibited reduced performance of specific instrumental activities of daily living (IADLs), p=0.002, and basic activities of daily living (BADLs), p=0.038. Living alone (odds ratio (OR), 2.53; 95% confidence interval (CI), 1.09-5.87) and work status (OR, 2.52; 95% CI, 1.18-5.41) were associated with changes in the IADLs. The scores in the AADL scale (p=0.163) and MMSE (p=0.059) did not exhibit any significant difference during the study period. The participants with better cognitive function were more independent in their performance of AADLs and IADLs. The results depict specific patterns of loss and stability of functional capacity in community-dwelling elderly.
NASA Astrophysics Data System (ADS)
Choi, Jeong-Hee; Ha, Chung-Wan; Choi, Hae-Young; Shin, Heon-Cheol; Lee, Sang-Min
2017-11-01
The electrochemical comparison between Sb2S3 and its composite with carbon (Sb2S3/C) involved by sodium ion carrier are explained by enhanced kinetics, particularly with respect to improved interfacial conductivity by surface modulation by carbon. Sb2S3 and Sb2S3/C are synthesized by a high energy mechanical milling process. The successful synthesis of these materials is confirmed with X-ray diffraction (XRD), scanning electron microscopy, and transmission electron microscopy (TEM). As an anode material for sodium ion batteries, Sb2S3 exhibits an initial sodiation/desodiation capacity of 1,021/523 mAh g-1 whereas the Sb2S3/C composite exhibits a higher reversible capacity (642 mAh g-1). Furthermore, the cycle performance and rate capability of the Sb2S3/C composite are estimated to be much better than those of Sb and Sb2S3. Electrochemical impedance spectroscopy analysis shows that the Sb2S3/C composite exhibited charge transfer resistance and surface film resistance much lower than Sb2S3. X-ray photoelectron spectroscopy analyses of both electrodes demonstrate that NaF layer on Sb2S3/C composite electrode leads to the better electrochemical performances. In order to clarify the electrochemical reaction mechanism, ex-situ XRD based on differential capacity plots and ex-situ HR-TEM analyses of the Sb2S3/C composite electrode are carried out and its reaction mechanism was established.
NASA Astrophysics Data System (ADS)
Xie, Xiaoyin; Liu, Guanchen; Chen, Li; Li, Shuangcui; Liu, Zhihai
2017-11-01
We investigated the effect of the morphology of 2,2‧,7,7‧-tetrakis-(N,N-di-p-methoxyphenylamine)-9,9‧-spirobifluorene (spiro-OMeTAD) prepared using chlorobenzene (CB) and 1,2-dichlorobenzene (DCB) on the performance of perovskite solar cells (PSCs). We find that a more uniform and smoother spiro-OMeTAD layer was obtained using DCB than CB. The PSCs prepared using DCB exhibited a higher power conversion efficiency (PCE = 16.2%) than those obtained using CB (PCE = 14.5%). The hysteresis was reduced from 4.8% to 0.6%, with improved stability. The highest PCE of PSCs prepared using DCB was 16.6%, indicating that the use of DCB for spiro-OMeTAD processing enables the fabrication of high-performance PSCs.
Barai, Anup; Uddin, Kotub; Chevalier, Julie; Chouchelamane, Gael H; McGordon, Andrew; Low, John; Jennings, Paul
2017-07-11
In freight classification, lithium-ion batteries are classed as dangerous goods and are therefore subject to stringent regulations and guidelines for certification for safe transport. One such guideline is the requirement for batteries to be at a state of charge of 30%. Under such conditions, a significant amount of the battery's energy is stored; in the event of mismanagement, or indeed an airside incident, this energy can lead to ignition and a fire. In this work, we investigate the effect on the battery of removing 99.1% of the total stored energy. The performance of 8Ah C 6 /LiFePO 4 pouch cells were measured following periods of calendar ageing at low voltages, at and well below the manufacturer's recommended value. Battery degradation was monitored using impedance spectroscopy and capacity tests; the results show that the cells stored at 2.3 V exhibited no change in cell capacity after 90 days; resistance rise was negligible. Energy-dispersive X-ray spectroscopy results indicate that there was no significant copper dissolution. To test the safety of the batteries at low voltages, external short-circuit tests were performed on the cells. While the cells discharged to 2.3 V only exhibited a surface temperature rise of 6 °C, cells at higher voltages exhibited sparks, fumes and fire.
Soysal, Deniz; Cibik, Recep; Aydin, Cenk; Ak, İbrahim
2011-04-01
Growth performance, carcass characteristics, post-slaughtering and haematological parameters of Kivircik and Karacabey Merino male lambs in conventional and organic management systems were compared. The animals which were weaned at 7 weeks of age were divided into Kivircik conventional, Kivircik organic (KO), Karacabey Merino conventional and Karacabey Merino organic (MO) groups containing 12 lambs each. Fattening was ended when lambs attained 35 kg of live weight. The time to attain the determined fattening weight was significantly different among the groups, and Merino lambs having higher live weight gain were earlier than Kivircik lambs (p < 0.05). Overall conventional (CG) and organic group lambs were also compared. Live weight gain, intra-abdominal fat amount, external fat thickness and visceral organ weight were significantly higher in CG lambs (p < 0.05). Higher haematocrit and erythrocyte counts were obtained with the CG group (p < 0.05), whilst triglyceride, total plasma cholesterol and lipoprotein (HDL, LDL, VLDL) levels between groups were not significant. Pneumonia was the unique infection, with an incidence of 50% (six lambs) and 16.6% (two lambs) for MO and KO animals, respectively. The mortality rate was 16.6% (two lambs) for MO group, whilst no mortality was recorded for KO group animals. The present study has shown that although Karacabey merino lambs had higher growth performance compared to Kivircik lambs, organically fattened lambs in whole exhibited inferior growth performance. Lower infection and mortality observed with Kivircik lambs suggested that they could be more resistant to infections and outdoor environmental conditions.
Davis, M A; Freeman, J W; Kirby, E C
1998-01-01
OBJECTIVE: To examine the effect of case mix-adjusted reimbursement policy and market factors on nursing home performance. DATA SOURCES AND STUDY SETTING: Data from Medicaid certification inspection surveys, Medicaid cost reports, and the Kentucky State Center for Health Statistics for the years 1989 and 1991, to examine changes in nursing home performance stemming from the adoption of case mix-adjusted reimbursement in 1990. STUDY DESIGN: In addition to cross-sectional regressions, a first-difference approach to fixed-effects regression analyses was employed to control for facility differences that were essentially fixed during the survey years and to estimate the effects of time-varying predictors on changes in facility expenditures, efficiency, and profitability. PRINCIPAL FINDINGS: Facilities that increased the proportion of Medicaid residents and eliminated excess capacity experienced higher profitability gains during the beginning phase of case-mix reimbursement. Having a heavy-care resident population was positively related to expenditures prior to reimbursement reform, and it was negatively related to expenditures after the case-mix reimbursement policy was introduced. While facility-level changes in case mix had no reliable influence on costs or profits, nursing homes showing an increased prevalence of poor-quality nursing practices exhibited increases in efficiency and profitability. At the market level, reductions in excess or empty nursing home beds were accompanied by a significant growth in home health services. Moreover, nursing homes located in markets with expanding home health services exhibited higher increases in costs per case-mix unit. CONCLUSIONS: Characteristics of the reimbursement system appear to reward a cost minimization orientation with potentially detrimental effects on quality of care. These effects, exacerbated by a supply-constrained market, may be mitigated by policies that encourage the expansion of home health service availability. PMID:9776938
Davis, M A; Freeman, J W; Kirby, E C
1998-10-01
To examine the effect of case mix-adjusted reimbursement policy and market factors on nursing home performance. Data from Medicaid certification inspection surveys, Medicaid cost reports, and the Kentucky State Center for Health Statistics for the years 1989 and 1991, to examine changes in nursing home performance stemming from the adoption of case mix-adjusted reimbursement in 1990. In addition to cross-sectional regressions, a first-difference approach to fixed-effects regression analyses was employed to control for facility differences that were essentially fixed during the survey years and to estimate the effects of time-varying predictors on changes in facility expenditures, efficiency, and profitability. Facilities that increased the proportion of Medicaid residents and eliminated excess capacity experienced higher profitability gains during the beginning phase of case-mix reimbursement. Having a heavy-care resident population was positively related to expenditures prior to reimbursement reform, and it was negatively related to expenditures after the case-mix reimbursement policy was introduced. While facility-level changes in case mix had no reliable influence on costs or profits, nursing homes showing an increased prevalence of poor-quality nursing practices exhibited increases in efficiency and profitability. At the market level, reductions in excess or empty nursing home beds were accompanied by a significant growth in home health services. Moreover, nursing homes located in markets with expanding home health services exhibited higher increases in costs per case-mix unit. Characteristics of the reimbursement system appear to reward a cost minimization orientation with potentially detrimental effects on quality of care. These effects, exacerbated by a supply-constrained market, may be mitigated by policies that encourage the expansion of home health service availability.
Bacterial chemoreceptors: high-performance signaling in networked arrays.
Hazelbauer, Gerald L; Falke, Joseph J; Parkinson, John S
2008-01-01
Chemoreceptors are crucial components in the bacterial sensory systems that mediate chemotaxis. Chemotactic responses exhibit exquisite sensitivity, extensive dynamic range and precise adaptation. The mechanisms that mediate these high-performance functions involve not only actions of individual proteins but also interactions among clusters of components, localized in extensive patches of thousands of molecules. Recently, these patches have been imaged in native cells, important features of chemoreceptor structure and on-off switching have been identified, and new insights have been gained into the structural basis and functional consequences of higher order interactions among sensory components. These new data suggest multiple levels of molecular interactions, each of which contribute specific functional features and together create a sophisticated signaling device.
Fracture Response Enhancement Of Aluminum Using In-Situ Selective Reinforcement
NASA Technical Reports Server (NTRS)
Abada, Christopher H.; Farley, Gary L.; Hyer, Michael W.
2006-01-01
A computer-based parametric study of the effect of reinforcement architectures on fracture response of aluminum compact-tension (CT) specimens is performed. Eleven different reinforcement architectures consisting of rectangular and triangular cross-section reinforcements were evaluated. Reinforced specimens produced between 13 and 28 percent higher fracture load than achieved with the unreinforced case. Reinforcements with blunt leading edges (rectangular reinforcements) exhibited superior performance relative to the triangular reinforcements with sharp leading edges. Relative to the rectangular reinforcements, the most important architectural feature was reinforcement thickness. At failure, the reinforcements carried between 58 and 85 percent of the load applied to the specimen, suggesting that there is considerable load transfer between the base material and the reinforcement.
Bacterial chemoreceptors: high-performance signaling in networked arrays
Hazelbauer, Gerald L.; Falke, Joseph J.; Parkinson, John S.
2010-01-01
Chemoreceptors are crucial components in the bacterial sensory systems that mediate chemotaxis. Chemotactic responses exhibit exquisite sensitivity, extensive dynamic range and precise adaptation. The mechanisms that mediate these high-performance functions involve not only actions of individual proteins but also interactions among clusters of components, localized in extensive patches of thousands of molecules. Recently, these patches have been imaged in native cells, important features of chemoreceptor structure and on–off switching have been identified, and new insights have been gained into the structural basis and functional consequences of higher order interactions among sensory components. These new data suggest multiple levels of molecular interactions, each of which contribute specific functional features and together create a sophisticated signaling device. PMID:18165013
Occhialini, Alessandro; Lin, Myat T; Andralojc, P John; Hanson, Maureen R; Parry, Martin A J
2016-01-01
Introducing a carbon-concentrating mechanism and a faster Rubisco enzyme from cyanobacteria into higher plant chloroplasts may improve photosynthetic performance by increasing the rate of CO2 fixation while decreasing losses caused by photorespiration. We previously demonstrated that tobacco plants grow photoautotrophically using Rubisco from Synechococcus elongatus, although the plants exhibited considerably slower growth than wild-type and required supplementary CO2 . Because of concerns that vascular plant assembly factors may not be adequate for assembly of a cyanobacterial Rubisco, prior transgenic plants included the cyanobacterial chaperone RbcX or the carboxysomal protein CcmM35. Here we show that neither RbcX nor CcmM35 is needed for assembly of active cyanobacterial Rubisco. Furthermore, by altering the gene regulatory sequences on the Rubisco transgenes, cyanobacterial Rubisco expression was enhanced and the transgenic plants grew at near wild-type growth rates, although still requiring elevated CO2 . We performed detailed kinetic characterization of the enzymes produced with and without the RbcX and CcmM35 cyanobacterial proteins. These transgenic plants exhibit photosynthetic characteristics that confirm the predicted benefits of introduction of non-native forms of Rubisco with higher carboxylation rate constants in vascular plants and the potential nitrogen-use efficiency that may be achieved provided that adequate CO2 is available near the enzyme. © 2015 The Authors The Plant Journal © 2015 John Wiley & Sons Ltd.
Application of permanents of square matrices for DNA identification in multiple-fatality cases
2013-01-01
Background DNA profiling is essential for individual identification. In forensic medicine, the likelihood ratio (LR) is commonly used to identify individuals. The LR is calculated by comparing two hypotheses for the sample DNA: that the sample DNA is identical or related to a reference DNA, and that it is randomly sampled from a population. For multiple-fatality cases, however, identification should be considered as an assignment problem, and a particular sample and reference pair should therefore be compared with other possibilities conditional on the entire dataset. Results We developed a new method to compute the probability via permanents of square matrices of nonnegative entries. As the exact permanent is known as a #P-complete problem, we applied the Huber–Law algorithm to approximate the permanents. We performed a computer simulation to evaluate the performance of our method via receiver operating characteristic curve analysis compared with LR under the assumption of a closed incident. Differences between the two methods were well demonstrated when references provided neither obligate alleles nor impossible alleles. The new method exhibited higher sensitivity (0.188 vs. 0.055) at a threshold value of 0.999, at which specificity was 1, and it exhibited higher area under a receiver operating characteristic curve (0.990 vs. 0.959, P = 9.6E-15). Conclusions Our method therefore offers a solution for a computationally intensive assignment problem and may be a viable alternative to LR-based identification for closed-incident multiple-fatality cases. PMID:23962363
Stahlschmidt, Z R; French, S S; Ahn, A; Webb, A; Butler, M W
Animals will continue to encounter increasingly warm environments, including more frequent and intense heat waves. Yet the physiological consequences of heat waves remain equivocal, potentially because of variation in adaptive plasticity (reversible acclimation) and/or aspects of experimental design. Thus, we measured a suite of physiological variables in the corn snake (Pantherophis guttatus) after exposure to field-parameterized, fluctuating temperature regimes (moderate temperature and heat wave treatments) to address two hypotheses: (1) a heat wave causes physiological stress, and (2) thermal performance of immune function exhibits adaptive plasticity in response to a heat wave. We found little support for our first hypothesis because a simulated heat wave had a negative effect on body mass, but it also reduced oxidative damage and did not affect peak performance of three immune metrics. Likewise, we found only partial support for our second hypothesis. After exposure to a simulated heat wave, P. guttatus exhibited greater performance breadth and reduced temperature specialization (the standardized difference between peak performance and performance breadth) for only one of three immune metrics and did so in a sex-dependent manner. Further, a simulated heat wave did not elicit greater performance of any immune metric at higher temperatures. Yet a heat wave likely reduced innate immune function in P. guttatus because each metric of innate immune performance in this species (as in most vertebrates) was lower at elevated temperatures. Together with previous research, our study indicates that a heat wave may have complex, modest, and even positive physiological effects in some taxa.
Bell, M A; Fox, N A
1997-12-01
This work was designed to investigate individual differences in hands-and-knees crawling and frontal brain electrical activity with respect to object permanence performance in 76 eight-month-old infants. Four groups of infants (one prelocomotor and 3 with varying lengths of hands-and-knees crawling experience) were tested on an object permanence scale in a research design similar to that used by Kermoian and Campos (1988). In addition, baseline EEG was recorded and used as an indicator of brain development, as in the Bell and Fox (1992) longitudinal study. Individual differences in frontal and occipital EEG power and in locomotor experience were associated with performance on the object permanence task. Infants successful at A-not-B exhibited greater frontal EEG power and greater occipital EEG power than unsuccessful infants. In contrast to Kermoian and Campos (1988), who noted that long-term crawling experience was associated with higher performance on an object permanence scale, infants in this study with any amount of hands and knees crawling experience performed at a higher level on the object permanence scale than prelocomotor infants. There was no interaction among brain electrical activity, locomotor experience, and object permanence performance. These data highlight the value of electrophysiological research and the need for a brain-behavior model of object permanence performance that incorporates both electrophysiological and behavioral factors.
Lamont, B T; Marlin, D; Hoffman, J J
1993-01-01
OBJECTIVE. Changes in generic strategies in response to discontinuous environments have been relatively ignored in the management literature. This study reports an examination of the relationships between Porter's (1980) generic strategies, discontinuous environments, and performance. DATA SOURCES. Archival data for 1984 and 1988 were collected for 172 acute care hospitals in Florida in order to test these relationships. STUDY DESIGN. To examine fully the performance impact of changes in strategy in a discontinuous environment, a longitudinal research design that identified a firm's strategy at two points in time, 1984 and 1988, was used. PRINCIPAL FINDINGS. Results indicate that firms with a proper strategy environment fit performed the highest, firms that did not change their strategy had no change in performance, and firms that changed their strategy toward a proper strategy environment showed an increase in performance. CONCLUSION. Findings support the notion that hospitals with appropriate strategy-environment combinations will exhibit higher performance. PMID:8270424
7 CFR Exhibit E to Subpart N of... - Guide For Quarterly Performance Report
Code of Federal Regulations, 2011 CFR
2011-01-01
... 7 Agriculture 13 2011-01-01 2009-01-01 true Guide For Quarterly Performance Report E Exhibit E to Subpart N of Part 1944 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING.... 1944, Subpt. N, Exh. E Exhibit E to Subpart N of Part 1944—Guide For Quarterly Performance Report...
7 CFR Exhibit G to Subpart A of... - Performance Bond
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 12 2013-01-01 2013-01-01 false Performance Bond G Exhibit G to Subpart A of Part 1924 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL.... 1924, Subpt. A, Exh. G Exhibit G to Subpart A of Part 1924—Performance Bond KNOW ALL PERSONS BY THESE...
7 CFR Exhibit E to Subpart N of... - Guide For Quarterly Performance Report
Code of Federal Regulations, 2010 CFR
2010-01-01
... 7 Agriculture 13 2010-01-01 2009-01-01 true Guide For Quarterly Performance Report E Exhibit E to Subpart N of Part 1944 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING.... 1944, Subpt. N, Exh. E Exhibit E to Subpart N of Part 1944—Guide For Quarterly Performance Report...
7 CFR Exhibit E to Subpart N of... - Guide For Quarterly Performance Report
Code of Federal Regulations, 2012 CFR
2012-01-01
... 7 Agriculture 13 2012-01-01 2012-01-01 false Guide For Quarterly Performance Report E Exhibit E to.... 1944, Subpt. N, Exh. E Exhibit E to Subpart N of Part 1944—Guide For Quarterly Performance Report...: (___% Rate) ___ This Quarter Total ___ B. Use of Program Funds: Budgeted Amount ___ Expended Thru Last...
7 CFR Exhibit E to Subpart N of... - Guide For Quarterly Performance Report
Code of Federal Regulations, 2013 CFR
2013-01-01
... 7 Agriculture 13 2013-01-01 2013-01-01 false Guide For Quarterly Performance Report E Exhibit E to.... 1944, Subpt. N, Exh. E Exhibit E to Subpart N of Part 1944—Guide For Quarterly Performance Report...: (___% Rate) ___ This Quarter Total ___ B. Use of Program Funds: Budgeted Amount ___ Expended Thru Last...
7 CFR Exhibit E to Subpart N of... - Guide For Quarterly Performance Report
Code of Federal Regulations, 2014 CFR
2014-01-01
... 7 Agriculture 13 2014-01-01 2013-01-01 true Guide For Quarterly Performance Report E Exhibit E to.... 1944, Subpt. N, Exh. E Exhibit E to Subpart N of Part 1944—Guide For Quarterly Performance Report...: (___% Rate) ___ This Quarter Total ___ B. Use of Program Funds: Budgeted Amount ___ Expended Thru Last...
NASA Astrophysics Data System (ADS)
Ma, Biao; Zhou, Xiao; Bao, Hua; Li, Xingwei; Wang, Gengchao
2012-10-01
Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods (sGNS/PANI) are successfully synthesized via interfacial polymerization of aniline monomers in the presence of sulfonated graphene nanosheets (sGNS). The FE-SEM images indicate that the morphologies of sGNS/PANI composites can be controlled by adjusting the concentration of aniline monomers. FTIR and Raman spectra reveal that aligned PANI nanorod arrays for sGNS/PANI exhibit higher degree of conjugation compared with pristine PANI nanorods. The hierarchical composite based on the two-electrode cell possesses higher specific capacitance (497 F g-1 at 0.2 A g-1), better rate capability and cycling stability (5.7% capacitance loss after 2000 cycles) than those of pristine PANI nanorods.
On the relationships between higher and lower bit-depth system measurements
NASA Astrophysics Data System (ADS)
Burks, Stephen D.; Haefner, David P.; Doe, Joshua M.
2018-04-01
The quality of an imaging system can be assessed through controlled laboratory objective measurements. Currently, all imaging measurements require some form of digitization in order to evaluate a metric. Depending on the device, the amount of bits available, relative to a fixed dynamic range, will exhibit quantization artifacts. From a measurement standpoint, measurements are desired to be performed at the highest possible bit-depth available. In this correspondence, we described the relationship between higher and lower bit-depth measurements. The limits to which quantization alters the observed measurements will be presented. Specifically, we address dynamic range, MTF, SiTF, and noise. Our results provide guidelines to how systems of lower bit-depth should be characterized and the corresponding experimental methods.
Sorption of lead ions on diatomite and manganese oxides modified diatomite.
Al-Degs, Y; Khraisheh, M A; Tutunji, M F
2001-10-01
Naturally occurring diatomaceous earth (diatomite) has been tested as a potential sorbent for Pb(II) ions. The intrinsic exchange properties were further improved by modification with manganese oxides. Modified adsorbent (referred to as Mn-diatomite) showed a higher tendency for adsorbing lead ions from solution at pH 4. The high performance exhibited by Mn-diatomite was attributed to increased surface area and higher negative surface charge after modification. Scanning electron microscope pictures revealed a birnessite structure of manganese oxides, which was featured by a plate-like-crystal structure. Diatomite filtration quality was improved after modification by manganese oxides. Good filtration qualities combined with high exchange capacity emphasised the potential use of Mn-diatomite in filtration systems.
Adapting Wave-front Algorithms to Efficiently Utilize Systems with Deep Communication Hierarchies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerbyson, Darren J.; Lang, Michael; Pakin, Scott
2011-09-30
Large-scale systems increasingly exhibit a differential between intra-chip and inter-chip communication performance especially in hybrid systems using accelerators. Processorcores on the same socket are able to communicate at lower latencies, and with higher bandwidths, than cores on different sockets either within the same node or between nodes. A key challenge is to efficiently use this communication hierarchy and hence optimize performance. We consider here the class of applications that contains wavefront processing. In these applications data can only be processed after their upstream neighbors have been processed. Similar dependencies result between processors in which communication is required to pass boundarymore » data downstream and whose cost is typically impacted by the slowest communication channel in use. In this work we develop a novel hierarchical wave-front approach that reduces the use of slower communications in the hierarchy but at the cost of additional steps in the parallel computation and higher use of on-chip communications. This tradeoff is explored using a performance model. An implementation using the Reverse-acceleration programming model on the petascale Roadrunner system demonstrates a 27% performance improvement at full system-scale on a kernel application. The approach is generally applicable to large-scale multi-core and accelerated systems where a differential in system communication performance exists.« less
Adapting wave-front algorithms to efficiently utilize systems with deep communication hierarchies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerbyson, Darren J; Lang, Michael; Pakin, Scott
2009-01-01
Large-scale systems increasingly exhibit a differential between intra-chip and inter-chip communication performance. Processor-cores on the same socket are able to communicate at lower latencies, and with higher bandwidths, than cores on different sockets either within the same node or between nodes. A key challenge is to efficiently use this communication hierarchy and hence optimize performance. We consider here the class of applications that contain wave-front processing. In these applications data can only be processed after their upstream neighbors have been processed. Similar dependencies result between processors in which communication is required to pass boundary data downstream and whose cost ismore » typically impacted by the slowest communication channel in use. In this work we develop a novel hierarchical wave-front approach that reduces the use of slower communications in the hierarchy but at the cost of additional computation and higher use of on-chip communications. This tradeoff is explored using a performance model and an implementation on the Petascale Roadrunner system demonstrates a 27% performance improvement at full system-scale on a kernel application. The approach is generally applicable to large-scale multi-core and accelerated systems where a differential in system communication performance exists.« less
NASA Astrophysics Data System (ADS)
Kim, Byoungsu; Hillman, Febrian; Ariyoshi, Miho; Fujikawa, Shigenori; Kenis, Paul J. A.
2016-04-01
With the development of better catalysts, mass transport limitations are becoming a challenge to high throughput electrochemical reduction of CO2 to CO. In contrast to optimization of electrodes for fuel cells, optimization of gas diffusion electrodes (GDE) - consisting of a carbon fiber substrate (CFS), a micro porous layer (MPL), and a catalyst layer (CL) - for CO2 reduction has not received a lot of attention. Here, we studied the effect of the MPL and CFS composition on cathode performance in electroreduction of CO2 to CO. In a flow reactor, optimized GDEs exhibited a higher partial current density for CO production than Sigracet 35BC, a commercially available GDE. By performing electrochemical impedance spectroscopy in a CO2 flow reactor we determined that a loading of 20 wt% PTFE in the MPL resulted in the best performance. We also investigated the influence of the thickness and wet proof level of CFS with two different feeds, 100% CO2 and the mixture of 50% CO2 and N2, determining that thinner and lower wet proofing of the CFS yields better cathode performance than when using a thicker and higher wet proof level of CFS.
NASA Astrophysics Data System (ADS)
Wang, L.; Xu, H. W.; Chen, P. C.; Zhang, D. W.; Ding, C. X.; Chen, C. H.
Iron oxide materials are attractive anode materials for lithium-ion batteries for their high capacity and low cost compared with graphite and most of other transition metal oxides. Porous carbon-free α-Fe 2O 3 films with two types of pore size distribution were prepared by electrostatic spray deposition, and they were characterized by X-ray diffraction, scanning electron microscopy and X-ray absorption near-edge spectroscopy. The 200 °C-deposited thin film exhibits a high reversible capacity of up to 1080 mAh g -1, while the initial capacity loss is at a remarkable low level (19.8%). Besides, the energy efficiency and energy specific average potential (E av) of the Fe 2O 3 films during charge/discharge process were also investigated. The results indicate that the porous α-Fe 2O 3 films have significantly higher energy density than Li 4Ti 5O 12 while it has a similar E av of about 1.5 V. Due to the porous structure that can buffer the volume changes during lithium intercalation/de-intercalation, the films exhibit stable cycling performance. As a potential anode material for high performance lithium-ion batteries that can be applied on electric vehicle and energy storage, rate capability and electrochemical performance under high-low temperatures were also investigated.
Serum Metabonomics of Mild Acute Pancreatitis.
Xu, Hongmin; Zhang, Lei; Kang, Huan; Zhang, Jiandong; Liu, Jie; Liu, Shuye
2016-11-01
Mild acute pancreatitis (MAP) is a common acute abdominal disease, and exhibits rising incidence in recent decades. As an important component of systemic biology, metabonomics is a new discipline developed following genomics and proteomics. In this study, the objective was to analyze the serum metabonomics of patients with MAP, aiming to screen metabolic markers with potential diagnostic values. An analysis platform with ultra performance liquid chromatography-high-resolution mass spectrometry was used to screen the difference metabolites related to MAP diagnosis and disease course monitoring. A total of 432 endogenous metabolites were screened out from 122 serum samples, and 49 difference metabolites were verified, among which 12 difference metabolites were identified by nonparametric test. After material identification, eight metabolites exhibited reliable results, and their levels in MAP serum were higher than those in healthy serum. Four metabolites exhibited gradual downward trend with treatment process going on, and the differences were statistically significant (P < 0.05). Metabonomic analysis has revealed eight metabolites with potential diagnostic values toward MAP, among which four metabolites can be used to monitor the disease course. © 2016 Wiley Periodicals, Inc.
Pappas, Evangelos; Kremenic, Ian; Liederbach, Marijeanne; Orishimo, Karl F; Hagins, Marshall
2011-07-01
To determine the effect of gender and inclined floor on time to stability (TTS) after landing from a vertical jump. This study used a repeated measures design with male and female professional dancers landing on a flat and 4 inclined floors. A repeated measures univariate analysis of variance (gender × floor) was performed on TTS in the anterior-posterior and medial-lateral directions. Biomechanics laboratory. Twenty-three female and 13 male professional dancers. Gender and floor inclination (flat, posterior, anterior, lateral, and medial). Time to stability in the anterior-posterior and medial-lateral directions after landing from a vertical jump. Female dancers exhibited longer TTS in both directions (P ≤ 0.05). Floor inclination or the interaction of gender × floor did not have an effect on TTS (P > 0.3). Female dancers exhibited longer TTS after landing from a vertical jump compared with their male counterparts. This balance difference may be a factor related to the higher rate of ankle sprain among female dancers. Additionally, professional dancers exhibited similar TTS when landing on flat and inclined floors.
NASA Astrophysics Data System (ADS)
Kang, Na Rae; Lee, So Young; Shin, Dong Won; Hwang, Doo Sung; Lee, Kang Hyuck; Cho, Doo Hee; Kim, Ji Hoon; Lee, Young Moo
2016-03-01
A series of end-group cross-linked membranes (Az-XESPSN) were prepared by click reaction to investigate the effects of cross-linking on the morphology and proton transport properties of proton exchange membranes. The morphological transformations resulting from thermal annealing and cross-linking were observed by means of atomic force microscopy (AFM) and transmission electron microscopy (TEM). Compared to the non-cross-linked ESPSN membranes, the Az-XESPSN membranes exhibited lower water uptake and improved mechanical and chemical stabilities. In addition, the Az-XESPSN membranes exhibited higher proton conductivities (0.018-0.028 S cm-1) compared to those of the ESPSN membranes (0.0044-0.0053 S cm-1) and Nafion 212 (0.0061 S cm-1), particularly in conditions of elevated temperature (120 °C) and low relative humidity (35%). Such enhancements can be attributed to a synergistic effect of well-defined hydrophilic ionic clusters and triazole groups that function as proton carriers under anhydrous conditions. Furthermore, the Az-XESPSN membranes exhibited significantly enhanced single cell performance and long-term stability compared to those of ESPSN membranes.
Lei, Ying; Wang, Yang; Ahola, Virpi; Luo, Shiqi; Xu, Chongren; Wang, Rongjiang
2016-12-01
The Glanville fritillary butterfly (Melitaea cinxia; Nymphalidae) has been extensively studied as a model species in metapopulation ecology. We investigated in the earlier studies that female butterflies exhibit higher thermal tolerance than males in the Tianshan Mountains of China. We aim to understand the molecular mechanism of differences of thermal responses between sexes. We used RNA-seq approach and performed de novo assembly of transcriptome to compare the gene expression patterns between two sexes after heat stress. All the reads were assembled into 84,376 transcripts and 72,701 unigenes. The number of differential expressed genes (DEGs) between control and heat shock samples was 175 and 268 for males and females, respectively. Heat shock proteins genes (hsps) were up-regulated in response to heat stress in both males and females. Most of the up-regulated hsps showed higher fold changes in males than in females. Females expressed more ribosomal subunit protein genes, transcriptional elongation factor genes, and methionine-rich storage protein genes, participating in protein synthesis. It indicated that protein synthesis is needed for females to replace the damaged proteins due to heat shock. In addition, aspartate decarboxylase might contribute to thermal tolerance in females. These differences in gene expression may at least partly explain the response to high temperature stress, and the fact that females exhibit higher thermal tolerance.
Observations on Side-Swimming Rainbow Trout in Water Recirculation Aquaculture Systems
Good, Christopher; Davidson, John; Kinman, Christin; Kenney, P. Brett; Bæverfjord, Grete; Summerfelt, Steven
2014-01-01
Abstract During a controlled 6-month study using six replicated water recirculation aquaculture systems (WRASs), it was observed that Rainbow Trout Oncorhynchus mykiss in all WRASs exhibited a higher-than-normal prevalence of side swimming (i.e., controlled, forward swimming but with misaligned orientation such that the fish's sagittal axis is approximately parallel to the horizontal plane). To further our understanding of this abnormality, a substudy was conducted wherein side swimmers and normally swimming fish were selectively sampled from each WRAS and growth performance (length, weight), processing attributes (fillet yield, visceral index, ventrum [i.e., thickness of the ventral “belly flap”] index), blood gas and chemistry parameters, and swim bladder morphology and positioning were compared. Side swimmers were found to be significantly smaller in length and weight and had less fillet yield but higher ventrum indices. Whole-blood analyses demonstrated that, among other things, side swimmers had significantly lower whole-blood pH and higher Pco 2. Side swimmers typically exhibited swim bladder malformations, although the positive predictive value of this subjective assessment was only 73%. Overall, this study found several anatomical and physiological differences between side-swimming and normally swimming Rainbow Trout. Given the reduced weight and fillet yield of market-age side swimmers, producers would benefit from additional research to reduce side-swimming prevalence in their fish stocks. Received March 20, 2014; accepted May 20, 2014 PMID:25250476
Herbort, Maike C; Soch, Joram; Wüstenberg, Torsten; Krauel, Kerstin; Pujara, Maia; Koenigs, Michael; Gallinat, Jürgen; Walter, Henrik; Roepke, Stefan; Schott, Björn H
2016-01-01
Patients with borderline personality disorder (BPD) frequently exhibit impulsive behavior, and self-reported impulsivity is typically higher in BPD patients when compared to healthy controls. Previous functional neuroimaging studies have suggested a link between impulsivity, the ventral striatal response to reward anticipation, and prediction errors. Here we investigated the striatal neural response to monetary gain and loss anticipation and their relationship with impulsivity in 21 female BPD patients and 23 age-matched female healthy controls using functional magnetic resonance imaging (fMRI). Participants performed a delayed monetary incentive task in which three categories of objects predicted a potential gain, loss, or neutral outcome. Impulsivity was assessed using the Barratt Impulsiveness Scale (BIS-11). Compared to healthy controls, BPD patients exhibited significantly reduced fMRI responses of the ventral striatum/nucleus accumbens (VS/NAcc) to both reward-predicting and loss-predicting cues. BIS-11 scores showed a significant positive correlation with the VS/NAcc reward anticipation responses in healthy controls, and this correlation, while also nominally positive, failed to reach significance in BPD patients. BPD patients, on the other hand, exhibited a significantly negative correlation between ventral striatal loss anticipation responses and BIS-11 scores, whereas this correlation was significantly positive in healthy controls. Our results suggest that patients with BPD show attenuated anticipation responses in the VS/NAcc and, furthermore, that higher impulsivity in BPD patients might be related to impaired prediction of aversive outcomes.
Hao, Shu-Meng; Qu, Jin; Yang, Jing; Gui, Chen-Xi; Wang, Qian-Qian; Li, Qian-Jie; Li, Xiaofeng; Yu, Zhong-Zhen
2016-03-01
Ion diffusion efficiency at the solid-liquid interface is an important factor for energy storage and adsorption from aqueous solution. Although K 2 Mn 4 O 8 (KMO) exhibits efficient ion diffusion and ion-exchange capacities, due to its high interlayer space of 0.70 nm, how to enhance its mass transfer performance is still an issue. Herein, novel layered KMO/reduced graphene oxide (RGO) nanocomposites are fabricated through the anchoring of KMO nanoplates on RGO with a mild solution process. The face-to-face structure facilitates fast transfer of lithium and lead ions; thus leading to excellent lithium storage and lead ion adsorption. The anchoring of KMO on RGO not only increases electrical conductivity of the layered nanocomposites, but also effectively prevents aggregation of KMO nanoplates. The KMO/RGO nanocomposite with an optimal RGO content exhibits a first cycle charge capacity of 739 mA h g -1 , which is much higher than that of KMO (326 mA h g -1 ). After 100 charge-discharge cycles, it still retains a charge capacity of 664 mA h g -1 . For the adsorption of lead ions, the KMO/RGO nanocomposite exhibits a capacity of 341 mg g -1 , which is higher than those of KMO (305 mg g -1 ) and RGO (63 mg g -1 ) alone. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Elhanan, Gai; Ochs, Christopher; Mejino, Jose L V; Liu, Hao; Mungall, Christopher J; Perl, Yehoshua
2017-06-01
To examine whether disjoint partial-area taxonomy, a semantically-based evaluation methodology that has been successfully tested in SNOMED CT, will perform with similar effectiveness on Uberon, an anatomical ontology that belongs to a structurally similar family of ontologies as SNOMED CT. A disjoint partial-area taxonomy was generated for Uberon. One hundred randomly selected test concepts that overlap between partial-areas were matched to a same size control sample of non-overlapping concepts. The samples were blindly inspected for non-critical issues and presumptive errors first by a general domain expert whose results were then confirmed or rejected by a highly experienced anatomical ontology domain expert. Reported issues were subsequently reviewed by Uberon's curators. Overlapping concepts in Uberon's disjoint partial-area taxonomy exhibited a significantly higher rate of all issues. Clear-cut presumptive errors trended similarly but did not reach statistical significance. A sub-analysis of overlapping concepts with three or more relationship types indicated a much higher rate of issues. Overlapping concepts from Uberon's disjoint abstraction network are quite likely (up to 28.9%) to exhibit issues. The results suggest that the methodology can transfer well between same family ontologies. Although Uberon exhibited relatively few overlapping concepts, the methodology can be combined with other semantic indicators to expand the process to other concepts within the ontology that will generate high yields of discovered issues. Copyright © 2017 Elsevier B.V. All rights reserved.
Ko, Chih-Yuan; Chen, Xiao-Yu; Chang, Wen-Chang; Zeng, Yi-Ming; Lin, Ru-Hai; Zhang, Xiao-Bin; Wu, James Swi-Bea; Shen, Szu-Chuan
2018-04-12
Marinating meat with alcohol, such as wine and beer, is a common culinary practice in cultures worldwide. This study we use a model marination solution comprising 0.2 M glucose-0.2 M glycine buffered to pH 4.3 containing either 0% or 50% ethanol and mimicked the cooking process by heating for 12 h. Antioxidative and antimutagenic characteristics of Maillard reaction products (MRPs) were investigated. Reducing power, antioxidant activity (Fe 2+ chelating ability) and free radical neutralization ability generated from DPPH and ABTS were determined. Ames testing was performed. Results indicate that MRPs from aqueous and alcoholic solution exhibit four antioxidative assays in a dose-dependent manner from 0.16 to 10.00 mg mL -1 . However, MRPs from the alcoholic model was superior. In Ames testing, MRPs from both models are neither toxic nor mutagenic at the test concentrations of 0.63-10.00 mg plate -1 . However, MRPs from the alcoholic model exhibited a higher inhibitory effect on the direct-acting mutagen 4-NQNO compared to the aqueous model. This result is consistent with the observation that MRPs with higher antioxidative capacity exhibit superior antimutagenic activity, suggesting that there are more different products in the alcoholic model. Our results add to the current knowledge about the antioxidative and antimutagenic properties of Maillard reaction products arising when food is cooked in the presence of ethanol. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Leung, Juliana Y.; Srinivasan, Sanjay
2016-09-01
Modeling transport process at large scale requires proper scale-up of subsurface heterogeneity and an understanding of its interaction with the underlying transport mechanisms. A technique based on volume averaging is applied to quantitatively assess the scaling characteristics of effective mass transfer coefficient in heterogeneous reservoir models. The effective mass transfer coefficient represents the combined contribution from diffusion and dispersion to the transport of non-reactive solute particles within a fluid phase. Although treatment of transport problems with the volume averaging technique has been published in the past, application to geological systems exhibiting realistic spatial variability remains a challenge. Previously, the authors developed a new procedure where results from a fine-scale numerical flow simulation reflecting the full physics of the transport process albeit over a sub-volume of the reservoir are integrated with the volume averaging technique to provide effective description of transport properties. The procedure is extended such that spatial averaging is performed at the local-heterogeneity scale. In this paper, the transport of a passive (non-reactive) solute is simulated on multiple reservoir models exhibiting different patterns of heterogeneities, and the scaling behavior of effective mass transfer coefficient (Keff) is examined and compared. One such set of models exhibit power-law (fractal) characteristics, and the variability of dispersion and Keff with scale is in good agreement with analytical expressions described in the literature. This work offers an insight into the impacts of heterogeneity on the scaling of effective transport parameters. A key finding is that spatial heterogeneity models with similar univariate and bivariate statistics may exhibit different scaling characteristics because of the influence of higher order statistics. More mixing is observed in the channelized models with higher-order continuity. It reinforces the notion that the flow response is influenced by the higher-order statistical description of heterogeneity. An important implication is that when scaling-up transport response from lab-scale results to the field scale, it is necessary to account for the scale-up of heterogeneity. Since the characteristics of higher-order multivariate distributions and large-scale heterogeneity are typically not captured in small-scale experiments, a reservoir modeling framework that captures the uncertainty in heterogeneity description should be adopted.
Trust and terrorism: citizen responses to anti-terrorism performance history.
Johnson, Branden B
2010-09-01
The "intuitive detection theorists" model of trust posits greater trust for correctly distinguishing danger from safety and an activist response under uncertainty about danger. An American sample evaluated U.S. Department of Homeland Security (DHS) performance after two possible terrorism events in which DHS has the same activist or nonactivist response bias. Outcomes were two successes (bombing prevented or lack of threat accurately foretold), two failures (bombing or DHS action against high school prank leads to student deaths), or a mix. Hindsight empathy (a belief one would have made the same decision) differed across treatments but trust less so; contrary to a similar one-event experiment in Germany, an active but incorrect response did not raise trust relative to passive incorrect action. Political conservatives were much more trusting and empathetic than liberals, and all ideological groups (including moderates) exhibited little internal variation reflecting experimental conditions. Consistently accurate outcomes rated significantly higher in empathy than either inconsistent results or consistent inaccuracy (the lowest rated); trust exhibited no significant differences. Results in this study show actual (experimentally manipulated) performance being trumped by the interpretive screen of political ideology, but this seemed less the case in the earlier German study, despite its finding of a strong moderating effect of right-wing authoritarianism. Trust scholars need to attend more to effects of performance history (i.e., a sequence of events) and their limiting factors. More systematic testing of effects of ideology and performance history would enhance future research on trust. © 2010 Society for Risk Analysis.
Electromyographic analysis of three different types of lat pull-down.
Sperandei, Sandro; Barros, Marcos A P; Silveira-Júnior, Paulo C S; Oliveira, Carlos G
2009-10-01
The purpose of this work was to evaluate the activity of the primary motor muscles during the performance of 3 lat pull-down techniques through surface electromyography (EMG). Twenty-four trained adult men performed 5 repetitions of behind-the-neck (BNL), front-of-the-neck (FNL), and V-bar exercises at 80% of 1 repetition maximum. For each technique, the root mean square from the EMG signal was registered from the pectoralis major (PM), latissimus dorsi (LD), posterior deltoid (PD), and biceps brachii (BB) and further normalized in respect to that which presented the highest value of all the techniques. A series of two-way repeated measures analysis of variance was used to compare the results, with Tukey-Kramer as the post hoc test and alpha = 0.05. During the concentric phase, PM value showed the FNL to be significantly higher than V-bar/BNL and V-bar higher than BNL. During the eccentric phase, FNL/V-bar was higher than BNL. For LD, there was no difference between techniques. PD presented BNL higher than FNL/V-bar and FNL higher than V-bar in the concentric phase and BNL higher than V-bar in the eccentric phase. BB exhibited BNL higher than V-bar/FNL and V-bar higher than FNL in both concentric and eccentric phases. Considering the main objectives of lat pull-down, we concluded that FNL is the better choice, whereas BNL is not a good lat pull-down technique and should be avoided. V-bar could be used as an alternative.
NASA Astrophysics Data System (ADS)
Chen, Dongdong; Yi, Jianxin
2018-03-01
Using nanostructured composite materials is an effective way to obtain high-performance gas sensors. This work used p-type LaMnO3 perovskite-structured semiconductor as a novel promoter for SnO2 nanofibers and studied the gas-sensing characteristics. Nanofibers of 0-2.5-mol% LaMnO3/SnO2 were synthesized via one-pot electrospinning. Compared with pristine SnO2, LaMnO3/SnO2 composite nanofibers exhibited smaller particle size (10-30 nm) and higher BET surface area. XPS revealed that oxygen surface absorption decreased with increasing LaMnO3 content. 0.3-mol% LaMnO3/SnO2 exhibited significantly enhanced ethanol sensitivity relative to pristine SnO2. A response of 20 was obtained at the optimum temperature of 260 °C for 100-ppm ethanol. Higher LaMnO3 loading led to decrease of the ethanol response. The impact of LaMnO3 loading on the sensing behavior of SnO2 nanofibers was discussed in terms of p-n heterojunction formation and changes in the microstructure and catalytic properties.
Qin, Xin-Sheng; Luo, Zhi-Gang; Peng, Xi-Chun
2018-05-02
The natural quinoa protein isolate (QPI) was largely reflected in the nanoparticle form at pH 7.0 (∼401 nm), and the ultrasound at 20 min progressively improved the contact angle (wettability) and surface hydrophobicity of the nanoparticles. Ultrasound process also modified the type of intraparticle interaction, and the internal forces of sonicated particles were largely maintained by both disulfide bonds and hydrophobic interaction forces. In emulsion system, the ultrasound progressively increased the emulsification efficiency of the QPI nanoparticles, particularly at high protein concentration ( c > 1%, w/ v) and higher emulsion stability against coalescence. As compared with the natural QPI-stabilized emulsions, the 20 min sonicated emulsions exhibited higher packing and adsorption at the protein interface. The microstructure of emulsions that occurs is bridging flocculation of droplets at low c (≤1%, w/ v), while the amount of protein particles could be high enough to cover the droplet surface at high c ( >1%, w/ v) with hexagonal array model arrangement. Thus these results illustrated that both natural and sonicated QPI nanoparticles could be performed as effective food-grade stabilizer for Pickering emulsion; however, the sonicated QPI nanoparticles exhibited much better emulsifying and interfacial properties.
NASA Astrophysics Data System (ADS)
Tan, Qunyou; Wu, Jianyong; Li, Yi; Mei, Hu; Zhao, Chunjing; Zhang, Jingqing
2013-01-01
The supermolecular curcumin (SMCCM) exhibiting remarkably improved solubility and release characteristics was fabricated to increase the oral bioavailability in rat as well as the antiproliferative and proapoptotic activities of curcumin (CCM) against human lung adenocarcinoma cell A549. SMCCM was characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, morphology and structure, aqueous solubility, and release behavior in vitro. Computer modeling of the supermolecular structure was performed. The pharmacokinetics, antiproliferative and proapoptotic activities of SMCCM were evaluated. The mechanisms by which SMCCM inhibited proliferation and induced apoptosis were identified. The formation of SMCCM was testified and the supermolecular structure was studied by a computer modeling technique. Compared to free CCM, SMCCM with much higher aqueous solubility exhibited obviously enhanced release and more favorable pharmacokinetic profiles, and, furthermore, SMCCM showed higher anticancer efficacy, enhanced induction of G2/M-phase arrest and apoptosis in A549 cells, which might be involved with the increases in reactive oxygen species production and intracellular Ca2+ accumulation, and a decrease in mitochondrial membrane potential. SMCCM remarkably enhanced not only the oral bioavailability but also the antiproliferative and proapoptotic activities of CCM along with improved solubility and release characteristics of CCM.
NASA Astrophysics Data System (ADS)
Li, Yujiao; Shi, Shaoyuan; Cao, Hongbin; Zhao, Zhijuan; Wen, Hao
2018-06-01
The heterogeneous anion exchange membranes (AEMs) were modified by electrodeposition of graphene oxide (GO) under different conditions. The physicochemical properties of GO-modified membranes were characterized systemically to obtain the optimized conditions for the electrodeposition of GO on the surface of AEMs. The results indicated that the contact angle and zeta potential of the modified AEMs decreased when increasing the concentration of GO from 0.05 g/L to 0.1 g/L. The higher concentration of NaCl, as the supporting electrolyte, could hinder the electrodeposition of GO on the AEMs for the competitive migration between the GO and Cl- ions. The increase of current density had a positive effect on properties of GO-modified membranes in the range of 1-5 mA/cm2. Compared with the pristine AEM, all the GO-modified AEMs exhibited smoother surface, higher hydrophilicity and negative zeta potential. It was also found that the GO modifying layer did not increase electrical resistance and had only a negligible effect on the desalination performance of AEMs. In the fouling experiments with sodium dodecyl benzene sulfonate (SDBS) as the model foulant, the GO-modified AEMs exhibited improved fouling resistance to SDBS.
General Trends of Dihedral Conformational Transitions in a Globular Protein
Miao, Yinglong; Baudry, Jerome; Smith, Jeremy C.; McCammon, J. Andrew
2017-01-01
Dihedral conformational transitions are analyzed systematically in a model globular protein, cytochrome P450cam, to examine their structural and chemical dependences through combined conventional molecular dynamics (cMD), accelerated molecular dynamics (aMD) and Adaptive Biasing Force (ABF) simulations. The aMD simulations are performed at two acceleration levels, using dihedral and dual boost, respectively. In comparison with cMD, aMD samples protein dihedral transitions ~2 times faster on average using dihedral boost, and ~3.5 times faster using dual boost. In the protein backbone, significantly higher dihedral transition rates are observed in the Bend, Coil and Turn flexible regions, followed by the β bridge and β sheet, and then the helices. Moreover, protein sidechains of greater length exhibit higher transition rates on average in the aMD-enhanced sampling. Sidechains of the same length (particularly Nχ = 2) exhibit decreasing transition rates with residues when going from hydrophobic to polar, then charged and aromatic chemical types. The reduction of dihedral transition rates is found to be correlated with increasing energy barriers as identified through ABF free energy calculations. These general trends of dihedral conformational transitions provide important insights into the hierarchical dynamics and complex free energy landscapes of functional proteins. PMID:26799251
Tan, Qunyou; Wu, Jianyong; Li, Yi; Mei, Hu; Zhao, Chunjing; Zhang, Jingqing
2013-01-25
The supermolecular curcumin (SMCCM) exhibiting remarkably improved solubility and release characteristics was fabricated to increase the oral bioavailability in rat as well as the antiproliferative and proapoptotic activities of curcumin (CCM) against human lung adenocarcinoma cell A549. SMCCM was characterized by differential scanning calorimetry, Fourier transform infrared spectroscopy, morphology and structure, aqueous solubility, and release behavior in vitro. Computer modeling of the supermolecular structure was performed. The pharmacokinetics, antiproliferative and proapoptotic activities of SMCCM were evaluated. The mechanisms by which SMCCM inhibited proliferation and induced apoptosis were identified. The formation of SMCCM was testified and the supermolecular structure was studied by a computer modeling technique. Compared to free CCM, SMCCM with much higher aqueous solubility exhibited obviously enhanced release and more favorable pharmacokinetic profiles, and, furthermore, SMCCM showed higher anticancer efficacy, enhanced induction of G2/M-phase arrest and apoptosis in A549 cells, which might be involved with the increases in reactive oxygen species production and intracellular Ca(2+) accumulation, and a decrease in mitochondrial membrane potential. SMCCM remarkably enhanced not only the oral bioavailability but also the antiproliferative and proapoptotic activities of CCM along with improved solubility and release characteristics of CCM.
NASA Astrophysics Data System (ADS)
Miyake, Michihiro; Iwami, Makoto; Takeuchi, Mizue; Nishimoto, Shunsuke; Kameshima, Yoshikazu
2018-06-01
The electrochemical performance of layered Ni0.8Cu0.2/Ce0.8Gd0.2O1.9 (GDC) cermet anodes is investigated for intermediate-temperature solid oxide fuel cells (IT-SOFCs) at 600 °C using humidified (3% H2O) model syngas with a molar ratio of H2/CO = 3/2 as the fuel. From the results obtained, the electrochemical performance of the functionally graded multi-layered anodes is found to be superior to the mono-layered anodes. The test cell with a bi-layered anode consisting of 100 mass% Ni0.8Cu0.2/0 mass% GDC (10M/0E) and 70 mass% Ni0.8Cu0.2/30 mass% GDC (7M/3E) exhibits high power density. The test cell with a tri-layered anode consisting of 10M/0E, 7M/3E, and 50 mass% Ni0.8Cu0.2/50 mass% GDC (5M/5E) exhibits an even higher power density, suggesting that 10M/0E and 5M/5E layers contribute to the current collecting part and active part, respectively.
UiO-66-NH₂/GO Composite: Synthesis, Characterization and CO₂ Adsorption Performance.
Cao, Yan; Zhang, Hongmei; Song, Fujiao; Huang, Tao; Ji, Jiayu; Zhong, Qin; Chu, Wei; Xu, Qi
2018-04-11
In this work, a new composite materials of graphene oxide (GO)-incorporated metal-organic framework (MOF)(UiO-66-NH₂/GO) were in-situ synthesized, and were found to exhibit enhanced high performances for CO₂ capture. X-ray diffraction (XRD), scanning electron microscope (SEM), N₂ physical adsorption, and thermogravimetric analysis (TGA) were applied to investigate the crystalline structure, pore structure, thermal stability, and the exterior morphology of the composite. We aimed to investigate the influence of the introduction of GO on the stability of the crystal skeleton and pore structure. Water, acid, and alkali resistances were tested for physical and chemical properties of the new composites. CO₂ adsorption isotherms of UiO-66, UiO-66-NH₂, UiO-66/GO, and UiO-66-NH₂/GO were measured at 273 K, 298 K, and 318 K. The composite UiO-66-NH₂/GO exhibited better optimized CO₂ uptake of 6.41 mmol/g at 273 K, which was 5.1% higher than that of UiO-66/GO (6.10 mmol/g). CO₂ adsorption heat and CO₂/N₂ selectivity were then calculated to further evaluate the CO₂ adsorption performance. The results indicated that UiO-66-NH₂/GO composites have a potential application in CO₂ capture technologies to alleviate the increase in temperature of the earth's atmosphere.
Gender Differences in Physical Performance Characteristics of Elite Surfers.
Parsonage, Joanna R; Secomb, Josh L; Tran, Tai T; Farley, Oliver R L; Nimphius, Sophia; Lundgren, Lina; Sheppard, Jeremy M
2017-09-01
Parsonage, JR, Secomb, JL, Tran, TT, Farley, ORL, Nimphius, S, Lundgren, L, and Sheppard, JM. Gender differences in physical performance characteristics of elite surfers. J Strength Cond Res 31(9): 2417-2422, 2017-The purpose of this study was to describe and compare the gender differences in physical performance characteristics of elite surfers. Twenty competitive female surfers (CFS) and 20 competitive male surfers (CMS) performed a battery of physical performance tests: squat jump (SJ), isometric midthigh pull (IMTP), 15-m sprint paddle, and 400-m endurance paddle during a single testing session. All performance measures were significantly different between CFS and CMS (p < 0.01). Specifically, CMS produced greater peak force production (28.5%) and jumped higher (27.7%) in the SJ and produced greater normalized peak force during the IMTP (18.9%) compared with CFS. For paddling performance, CMS were faster over 5, 10, and 15 m (12.4%, 9.7%, and 10.9%), possessed a higher peak paddling velocity (11.3%), and recorded faster paddle times over 400 m (11.8%). The results of this study suggest that CMS exhibit superior physical performance characteristics than CFS, in relation to both the lower and upper body. Strength and conditioning practitioners should therefore implement a structured and periodized program to facilitate strength qualities that underpin surfing performance for all participants, but as highlighted in the current investigation, female surfers may have a greater window for adaptation and therefore vast benefit of targeting their underdeveloped physical qualities.
Scudder, Mark R.; Federmeier, Kara D.; Raine, Lauren B.; Direito, Artur; Boyd, Jeremy K.; Hillman, Charles H.
2014-01-01
Event-related brain potentials (ERPs) have been instrumental for discerning the relationship between children’s aerobic fitness and aspects of cognition, yet language processing remains unexplored. ERPs linked to the processing of semantic information (the N400) and the analysis of language structure (the P600) were recorded from higher and lower aerobically fit children as they read normal sentences and those containing semantic or syntactic violations. Results revealed that higher fit children exhibited greater N400 amplitude and shorter latency across all sentence types, and a larger P600 effect for syntactic violations. Such findings suggest that higher fitness may be associated with a richer network of words and their meanings, and a greater ability to detect and/or repair syntactic errors. The current findings extend previous ERP research explicating the cognitive benefits associated with greater aerobic fitness in children and may have important implications for learning and academic performance. PMID:24747513
NASA Technical Reports Server (NTRS)
Yushin, Gleb; Evanoff, Kara; Magasinski, Alexander
2012-01-01
Thin Si films coated on porous 3D particles composed of curved 2D graphene sheets have been synthesized utilizing techniques that allow for tunable properties. Since graphene exhibits specific surface area up to 100 times higher than carbon black or graphite, the deposition of the same mass of Si on graphene is much faster in comparison -- a factor which is important for practical applications. In addition, the distance between graphene layers is tunable and variation in the thickness of the deposited Si film is feasible. Both of these characteristics allow for optimization of the energy and power characteristics. Thicker films will allow higher capacity, but slower rate capabilities. Thinner films will allow more rapid charging, or higher power performance. In this innovation, uniform deposition of Si and C layers on high-surface area graphene produced granules with specific surface area (SSA) of 5 sq. m/g.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Min; Xiao, Teng; Liu, Rui
2011-10-11
Efficient indium tin oxide (ITO)-free small molecule organic light-emitting diodes (SMOLEDs) with multilayered highly conductive poly(3,4-ethylenedioxy thiophene):poly(styrenesulfonate) (PEDOT:PSS) as the anode are demonstrated. PEDOT:PSS/MoO{sub 3}/N,N'-diphenyl- N,N'-bis(1-naphthylphenyl)-1,1'-biphenyl-4,4'-diamine (NPD)/tris(8-hydroxyquinoline) Al (Alq{sub 3})/4,7-diphenyl-1,10-phenanthroline (BPhen)/LiF/Al SMOLEDs exhibited a peak power efficiency of 3.82 lm/W, 81% higher than that of similar ITO-based SMOLEDs (2.11 lm/W). The improved performance is believed to be due to the higher work function, lower refractive index, and decreased surface roughness of PEDOT:PSS vs ITO, and to Ohmic hole injection from PEDOT:PSS to the NPD layer via the MoO{sub 3} interlayer. The results demonstrate that PEDOT:PSS can substitute ITO in SMOLEDsmore » with strongly improved device performance.« less
Jiang, Bei; Shi, Shengnan; Song, Lun; Tan, Liang; Li, Meidi; Liu, Jiaxin; Xue, Lanlan
2016-10-01
A novel integrated system in which magnetically immobilized cells coupled with a pair of stainless iron meshes-graphite plate electrodes has been designed and operated to enhance the treatment performance of phenolic wastewater under high salinity. With NaCl concentration increased, phenol, o-cresol, m-cresol, p-cresol and COD removal rates by integrated system increased significantly, which were obviously higher than the sum of removal rates by single magnetically immobilized cells and electrode reaction. This integrated system exhibited higher removal rates for all the compounds than that by single magnetically immobilized cells during six cycles for reuse, and it still performed better, even when the voltage was cut off. These results indicated that there was a coupling effect between biodegradation and electrode reaction. The investigation of phenol hydroxylase activity and cells concentration confirmed that electrode reaction played an important role in this coupling effect. Copyright © 2016 Elsevier Ltd. All rights reserved.
Effect of Al doping on performance of ZnO thin film transistors
NASA Astrophysics Data System (ADS)
Dong, Junchen; Han, Dedong; Li, Huijin; Yu, Wen; Zhang, Shendong; Zhang, Xing; Wang, Yi
2018-03-01
In this work, we investigate the Aluminum-doped Zinc Oxide (AZO) thin films and their feasibility as the active layer for thin film transistors (TFTs). A comparison on performance is made between the AZO TFTs and ZnO TFTs. The electrical properties such as saturation mobility, subthreshold swing, and on-to-off current ratio are improved when AZO is utilized as the active layer. Oxygen component of the thin film materials indicates that Al is the suppressor for oxygen defect in active layer, which improves the subthreshold swing. Moreover, based on band structure analyzation, we observe that the carrier concentration of AZO is higher than ZnO, leading to the enhancement of saturation mobility. The microstructure of the thin films convey that the AZO films exhibit much smaller grain boundaries than ZnO films, which results in the lower off-state current and higher on-to-off current ratio of AZO TFTs. The AZO thin films show huge potential to be the active layer of TFTs.
Coordination patterns related to high clinical performance in a simulated anesthetic crisis.
Manser, Tanja; Harrison, Thomas Kyle; Gaba, David M; Howard, Steven K
2009-05-01
Teamwork is an integral component in the delivery of safe patient care. Several studies highlight the importance of effective teamwork and the need for teams to respond dynamically to changing task requirements, for example, during crisis situations. In this study, we address one of the many facets of "effective teamwork" in medical teams by investigating coordination patterns related to high performance in the management of a simulated malignant hyperthermia (MH) scenario. We hypothesized that (a) anesthesia crews dynamically adapt their work and coordination patterns to the occurrence of a simulated MH crisis and that (b) crews with higher clinical performance scores (based on a time-based scoring system for critical MH treatment steps) exhibit different coordination patterns. This observational study investigated differences in work and coordination patterns of 24 two-person anesthesia crews in a simulated MH scenario. Clinical and coordination behavior were coded using a structured observation system consisting of 36 mutually exclusive observation categories for clinical activities, coordination activities, teaching, and other communication. Clinical performance scores for treating the simulated episode of MH were calculated using a time-based scoring system for critical treatment steps. Coordination patterns in response to the occurrence of a crisis situation were analyzed using multivariate analysis of variance and the relationship between coordination patterns and clinical performance was investigated using hierarchical regression analyses. Qualitative analyses of the three highest and lowest performing crews were conducted to complement the quantitative analysis. First, a multivariate analysis of variance revealed statistically significant changes in the proportion of time spent on clinical and coordination activities once the MH crisis was declared (F [5,19] = 162.81, P < 0.001, eta(p)(2) = 0.98). Second, hierarchical regression analyses controlling for the effects of cognitive aid use showed that higher performing anesthesia crews exhibit statistically significant less task distribution (beta = -0.539, P < 0.01) and significantly more situation assessment (beta = 0.569, P < 0.05). Additional qualitative video analysis revealed, for example, that lower scoring crews were more likely to split into subcrews (i.e., both anesthesiologists worked with other members of the perioperative team without maintaining a shared plan among the two-person anesthesia crew). Our results of the relationship of coordination patterns and clinical performance will inform future research on adaptive coordination in medical teams and support the development of specific training to improve team coordination and performance.
Computational insight into the capacitive performance of graphene edge planes
Zhan, Cheng; Zhang, Yu; Cummings, Peter T.; ...
2017-02-01
Recent experiments have shown that electric double-layer capacitors utilizing electrodes consisting of graphene edge plane exhibit higher capacitance than graphene basal plane. However, theoretical understanding of this capacitance enhancement is still limited. Here we applied a self-consistent joint density functional theory calculation on the electrode/electrolyte interface and found that the capacitance of graphene edge plane depends on the edge type: zigzag edge has higher capacitance than armchair edge due to the difference in their electronic structures. We further examined the quantum, dielectric, and electric double-layer (EDL) contributions to the total capacitance of the edge-plane electrodes. Classical molecular dynamics simulation foundmore » that the edge planes have higher EDL capacitance than the basal plane due to better adsorption of counter-ions and higher solvent accessible surface area. Finally, our work therefore has elucidated the capacitive energy storage in graphene edge planes that take into account both the electrode's electronic structure and the EDL structure.« less
Kim, L U; Kim, J W; Kim, C K
2006-09-01
To prepare a dental composite that has a low amount of curing shrinkage and excellent mechanical strength, various 2,2-bis[4-(2-hydroxy-3-methacryloyloxy propoxy) phenyl] propane (Bis-GMA) derivatives were synthesized via molecular structure design, and afterward, properties of their mixtures were explored. Bis-GMA derivatives, which were obtained by substituting methyl groups for hydrogen on the phenyl ring in the Bis-GMA, exhibited lower curing shrinkage than Bis-GMA, whereas their viscosities were higher than that of Bis-GMA. Other Bis-GMA derivatives, which contained a glycidyl methacrylate as a molecular end group exhibited reduced curing shrinkage and viscosity. Methoxy substitution for hydroxyl groups on the Bis-GMA derivatives was performed for the further reduction of the viscosity and curing shrinkage. Various resin mixtures, which had the same viscosity as the commercial one, were prepared, and their curing shrinkage was examined. A resin mixture containing 2,2-bis[3,5-dimethyl, 4-(2-methoxy-3-methacryloyloxy propoxy) phenyl] propane] (TMBis-M-GMA) as a base resin and 4-tert-butylphenoxy-2-methyoxypropyl methacrylate (t-BP-M-GMA) as a diluent exhibited the lowest curing shrinkage among them. The composite prepared from this resin mixture also exhibited the lowest curing shrinkage along with enhanced mechanical properties.
Ghadge, Shrinath Dattatray; Patel, Prasad Prakash; Datta, Moni Kanchan; ...
2017-03-20
Identification and development of high performance with reduced overpotential (i.e. reduced operating electricity cost) oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) based water electrolysis with ultra-low noble metal content (i.e. reduced materials cost) is of significant interest for economic hydrogen production, thus increasing the commercialization potential of PEM water electrolysis. Accordingly, a novel electrocatalyst should exhibit low overpotential, excellent electrochemical activity and durability superior to state of the art noble metal based electro-catalysts (e.g. Pt, IrO 2, RuO 2). Here in this paper, for the very first time to the best of our knowledge, exploiting first-principles theoreticalmore » calculations of the total energies and electronic structures, we have identified a reduced noble metal content fluorine doped solid solution of MnO 2 and IrO 2, denoted as (Mn 1-xIr x)O 2:F (x = 0.2, 0.3, 0.4), OER electrocatalyst system exhibiting lower overpotential and higher current density than the state of the art IrO 2 and other previously reported systems for PEM water electrolysis. The doped solid solution displays an excellent electrochemical performance with a lowest reported onset potential to date of ~1.35 V (vs. RHE), ~80 mV lower than that of IrO 2 (~1.43 V vs. RHE) and ~15 fold (x = 0.3 and 0.4) higher electrochemical activity compared to pure IrO 2. In addition, the system displays excellent long term electrochemical durability, similar to that of IrO 2 in harsh acidic OER operating conditions. Our study therefore demonstrates remarkable, ~60–80% reduction in noble metal content along with lower overpotential and excellent electrochemical performance clearly demonstrating the potential of the (Mn 1-xIr x)O 2:F system as an OER electro-catalyst for PEM water electrolysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghadge, Shrinath Dattatray; Patel, Prasad Prakash; Datta, Moni Kanchan
Identification and development of high performance with reduced overpotential (i.e. reduced operating electricity cost) oxygen evolution reaction (OER) electrocatalysts for proton exchange membrane (PEM) based water electrolysis with ultra-low noble metal content (i.e. reduced materials cost) is of significant interest for economic hydrogen production, thus increasing the commercialization potential of PEM water electrolysis. Accordingly, a novel electrocatalyst should exhibit low overpotential, excellent electrochemical activity and durability superior to state of the art noble metal based electro-catalysts (e.g. Pt, IrO 2, RuO 2). Here in this paper, for the very first time to the best of our knowledge, exploiting first-principles theoreticalmore » calculations of the total energies and electronic structures, we have identified a reduced noble metal content fluorine doped solid solution of MnO 2 and IrO 2, denoted as (Mn 1-xIr x)O 2:F (x = 0.2, 0.3, 0.4), OER electrocatalyst system exhibiting lower overpotential and higher current density than the state of the art IrO 2 and other previously reported systems for PEM water electrolysis. The doped solid solution displays an excellent electrochemical performance with a lowest reported onset potential to date of ~1.35 V (vs. RHE), ~80 mV lower than that of IrO 2 (~1.43 V vs. RHE) and ~15 fold (x = 0.3 and 0.4) higher electrochemical activity compared to pure IrO 2. In addition, the system displays excellent long term electrochemical durability, similar to that of IrO 2 in harsh acidic OER operating conditions. Our study therefore demonstrates remarkable, ~60–80% reduction in noble metal content along with lower overpotential and excellent electrochemical performance clearly demonstrating the potential of the (Mn 1-xIr x)O 2:F system as an OER electro-catalyst for PEM water electrolysis.« less
A comparison of GPS broadcast and DMA precise ephemerides
NASA Technical Reports Server (NTRS)
Weiss, Marc A.; Petit, Gerard; Shattil, Steve
1994-01-01
We compare the broadcast ephemerides from Global Positioning Satellites (GPS) to the postprocessed ephemerides from the Defense Mapping Agency (DMA). We find significant energy in the spectrum of the residuals at 1 cycle/day and higher multiples. We estimate the time variance of the residuals and show that the short term residuals, from 15 min, exhibit power law processes with greater low frequency perturbations than white phase modulation. We discuss the significance of these results for the performance of the GPS Kalman filter which estimates the broadcast orbits.
Guided transmission for 10 micron tunable lasers
NASA Technical Reports Server (NTRS)
Yu, C.; Sabzali, A.; Yekrangian, A.
1986-01-01
Performance characteristics are reported for two types of IR tunable laser guided transmission, one of which incorporates a CO2 laser, metallic piping or fiber-optics, and a detector system, while the other employs a tunable diode laser, fiber-optics, and a detector system. While existing technology furnishes low loss, rugged, near-single mode piping, fiber-optics exhibits appreciably higher loss, and its multimode fibers are fragile and chemically unstable. Studies have accordingly concentrated on such relevant fiber parameters as loss, toxicity, hygroscopicity, refractive index, flexibility, and thermal behavior at low temperature.
Sacko, Ryan S; McIver, Kerry; Brian, Ali; Stodden, David F
2018-04-02
This study examined the metabolic cost (METs) of performing object projection skills at three practice trial intervals (6, 12, and 30 seconds). Forty adults (female n = 20) aged 18-30 (M = 23.7 ± 2.9 years) completed three, nine-minute sessions of skill trials performed at 6, 12, and 30 second intervals. Participants performed kicking, throwing and striking trials in a blocked schedule with maximal effort. Average METs during each session were measured using a COSMED K4b2. A three (interval condition) X two (sex) ANOVA was conducted to examine differences in METs across interval conditions and by sex. Results indicated a main effect for interval condition (F(5,114) = 187.02, p < .001, η 2 = 0.76) with decreased interval times yielding significantly higher METs [30 sec = 3.45, 12 sec = 5.68, 6 sec = 8.21]. A main effect for sex (F(5, 114) = 35.39, p < .001, η 2 = 0.24) also was found with men demonstrating higher METs across all intervals. At a rate of only two trials/min, participants elicited moderate physical activity, with 12 and 6-second intervals exhibiting vigorous PA. Demonstrating MVPA during the performance of object projection skill performance has potential implications for PA interventions.
A Biomechanical Comparison of Allograft Tendons for Ligament Reconstruction.
Palmer, Jeremiah E; Russell, Joseph P; Grieshober, Jason; Iacangelo, Abigail; Ellison, Benjamin A; Lease, T Dylan; Kim, Hyunchul; Henn, R Frank; Hsieh, Adam H
2017-03-01
Allograft tendons are frequently used for ligament reconstruction about the knee, but they entail availability and cost challenges. The identification of other tissues that demonstrate equivalent performance to preferred tendons would improve limitations. Hypothesis/Purpose: We compared the biomechanical properties of 4 soft tissue allograft tendons: tibialis anterior (TA), tibialis posterior (TP), peroneus longus (PL), and semitendinosus (ST). We hypothesized that allograft properties would be similar when standardized by the looped diameter. Controlled laboratory study. This study consisted of 2 arms evaluating large and small looped-diameter grafts: experiment A consisted of TA, TP, and PL tendons (n = 47 each) with larger looped diameters of 9.0 to 9.5 mm, and experiment B consisted of TA, TP, PL, and ST tendons (n = 53 each) with smaller looped diameters of 7.0 to 7.5 mm. Each specimen underwent mechanical testing to measure the modulus of elasticity (E), ultimate tensile force (UTF), maximal elongation at failure, ultimate tensile stress (UTS), and ultimate tensile strain (UTε). Experiment A: No significant differences were noted among tendons for UTF, maximal elongation at failure, and UTϵ. UTS was significantly higher for the PL (54 MPa) compared with the TA (44 MPa) and TP (43 MPa) tendons. E was significantly higher for the PL (501 MPa) compared with the TP (416 MPa) tendons. Equivalence testing showed that the TP and PL tendon properties were equivalent or superior to those of the TA tendons for all outcomes. Experiment B: All groups exhibited a similar E. UTF was again highest in the PL tendons (2294 N) but was significantly different from only the ST tendons (1915 N). UTϵ was significantly higher for the ST (0.22) compared with the TA (0.19) and TP (0.19) tendons. Equivalence testing showed that the TA, TP, and PL tendon properties were equivalent or superior to those of the ST tendons. Compared with TA tendons, TP and PL tendons of a given looped diameter exhibited noninferior initial biomechanical strength and stiffness characteristics. ST tendons were mostly similar to TA tendons but exhibited a significantly higher elongation/UTϵ and smaller cross-sectional area. For smaller looped-diameter grafts, all tissues were noninferior to ST tendons. In contrast to previous findings, PL tendons proved to be equally strong. The results of this study should encourage surgeons to use these soft tissue allografts interchangeably, which is important as the number of ligament reconstructions performed with allografts continues to rise.
Lipid and liver abnormalities in haemoglobin A1c-defined prediabetes and type 2 diabetes.
Calanna, S; Scicali, R; Di Pino, A; Knop, F K; Piro, S; Rabuazzo, A M; Purrello, F
2014-06-01
We aimed to investigate lipid abnormalities and liver steatosis in patients with HbA1c-defined prediabetes and type 2 diabetes compared to individuals with HbA1c-defined normoglycaemia. Ninety-one subjects with prediabetes according to HbA1c, i.e. from 5.7 to 6.4% (39-46 mmol/mol), 50 newly diagnosed patients with HbA1c-defined type 2 diabetes (HbA1c ≥6.5% [≥48 mmol/mol]), and 67 controls with HbA1c lower than 5.7% (<39 mmol/mol), were studied. Fasting blood samples for lipid profiles, fatty liver index (FLI), bioimpedance analysis, ultrasound scan of the liver, and BARD (body mass index, aspartate aminotransferase/alanine aminotransferase ratio, diabetes) score for evaluation of liver fibrosis, were performed in all subjects. In comparison to controls, subjects with prediabetes were characterised by: lower apolipoprotein AI and HDL cholesterol levels, higher blood pressure, triglycerides levels and apolipoprotein B/apolipoprotein AI ratio, higher FLI, increased prevalence of and more severe hepatic steatosis, similar BARD score, and higher total body fat mass. In comparison to subjects with diabetes, subjects with prediabetes exhibited: similar blood pressure and apolipoprotein B/apolipoprotein AI ratio, similar FLI, reduced prevalence of and less severe hepatic steatosis, lower BARD score, increased percent fat and lower total body muscle mass. In comparison to controls, subjects with diabetes showed: lower apolipoprotein AI and HDL cholesterol levels, higher blood pressure and triglycerides levels, higher FLI, increased prevalence of and more severe hepatic steatosis, higher BARD score, and higher total body muscle mass. Moreover, HbA1c was correlated with BMI, HOMA-IR, triglycerides, HDL cholesterol, AST, and ALT. Subjects with HbA1c-defined prediabetes and type 2 diabetes, respectively, are characterised by abnormalities in lipid profile and liver steatosis, thus exhibiting a severe risk profile for cardiovascular and liver diseases. Copyright © 2014 Elsevier B.V. All rights reserved.
Soldier-relevant body borne loads increase knee joint contact force during a run-to-stop maneuver.
Ramsay, John W; Hancock, Clifford L; O'Donovan, Meghan P; Brown, Tyler N
2016-12-08
The purpose of this study was to understand the effects of load carriage on human performance, specifically during a run-to-stop (RTS) task. Using OpenSim analysis tools, knee joint contact force, grounds reaction force, leg stiffness and lower extremity joint angles and moments were determined for nine male military personnel performing a RTS under three load configurations (light, ~6kg, medium, ~20kg, and heavy, ~40kg). Subject-based means for each biomechanical variable were submitted to repeated measures ANOVA to test the effects of load. During the RTS, body borne load significantly increased peak knee joint contact force by 1.2 BW (p<0.001) and peak vertical (p<0.001) and anterior-posterior (p=0.002) ground reaction forces by 0.6 BW and 0.3 BW, respectively. Body borne load also had a significant effect on hip (p=0.026) posture with the medium load and knee (p=0.046) posture with the heavy load. With the heavy load, participants exhibited a substantial, albeit non-significant increase in leg stiffness (p=0.073 and d=0.615). Increases in joint contact force exhibited during the RTS were primarily due to greater GRFs that impact the soldier with each incremental addition of body borne load. The stiff leg, extended knee and large braking force the soldiers exhibited with the heavy load suggests their injury risk may be greatest with that specific load configuration. Further work is needed to determine if the biomechanical profile exhibited with the heavy load configuration translates to unsafe shear forces at the knee joint and consequently, a higher likelihood of injury. Published by Elsevier Ltd.
NASA Astrophysics Data System (ADS)
Li, Lun; Dou, Liguang; Zhang, Hui
2014-03-01
M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h-1) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen.M3Al-layered double hydroxide (LDH, M = Mg, Ni, Co) supported Au nanoclusters (AuNCs) catalysts have been prepared for the first time by using water-soluble glutathione-capped Au nanoclusters as precursor. Detailed characterizations show that the ultrafine Au nanoclusters (ca. 1.5 +/- 0.6 nm) were well dispersed on the surface of LDH with a loading of Au below ~0.23 wt% upon synergetic interaction between AuNCs and M3Al-LDH. AuNCs/Mg3Al-LDH-0.23 exhibits much higher catalytic performance for the oxidation of 1-phenylethanol in toluene than Au/Mg3Al-LDH(DP) by the conventional deposition precipitation method and can be applied for a wide range of alcohols without basic additives. This catalyst can also be reused without loss of activity or selectivity. The AuNCs/M(= Ni, Co)3Al-LDH catalysts present even higher alcohol oxidation activity than AuNCs/Mg3Al-LDH. Particularly, AuNCs/Ni3Al-LDH-0.22 exhibits the highest activity (46 500 h-1) for the aerobic oxidation of 1-phenylethanol under solvent-free conditions attributed to its strongest Au-support synergy. The excellent activity and stability of AuNCs/M3Al-LDH catalysts render these materials promising candidates for green base-free selective oxidation of alcohols by molecular oxygen. Electronic supplementary information (ESI) available: Details in experimental and further characterization. See DOI: 10.1039/c3nr05604j
Mesoporous LiFeBO3/C hollow spheres for improved stability lithium-ion battery cathodes
NASA Astrophysics Data System (ADS)
Chen, Zhongxue; Cao, Liufei; Chen, Liang; Zhou, Haihui; Zheng, Chunman; Xie, Kai; Kuang, Yafei
2015-12-01
Polyanionic compounds are regarded as one of the most promising cathode materials for the next generation lithium-ion batteries due to their abundant resource and thermal stability. LiFeBO3 has a relatively higher capacity than olivine LiFePO4, however, moisture sensitivity and low conductivity hinder its further development. Here, we design and synthesize mesoporous LiFeBO3/C (LFB/C) hollow spheres to enhance its structural stability and electric conductivity, two LiFeBO3/C electrodes with different carbon content are prepared and tested. The experimental results show that mesoporous LiFeBO3/C hollow spheres with higher carbon content exhibit superior lithium storage capacity, cycling stability and rate capability. Particularly, the LFB/C electrode with higher carbon content demonstrates good structural stability, which can maintain its original crystal structure and Li storage properties even after three months of air exposure at room temperature. The exceptional structural stability and electrochemical performance may justify their potential use as high-performance cathode materials for advanced lithium-ion batteries. In addition, the synthesis strategy demonstrated herein is simple and versatile for the fabrication of other polyanionic cathode materials with mesoporous hollow spherical structure.
MEI, LIE-JUN; WANG, LIN-WEI; HUANG, CHAO-QUN; YANG, XIAO-JUN; LI, YAN
2015-01-01
This study was conducted to evaluate the functional impact of peritoneal carcinomatosis (PC) on the gastrointestinal system by oral gastrografin radiography (OGR). OGR was performed on 105 patients with PC from abdominal malignancies. The OGR characteristics were analyzed and compared with intraoperative observations. OGR provided real-time dynamic information on the functional impacts of PC. The OGR findings were normal in 9 (8.6%) and abnormal in 96 (91.4%) cases. In terms of frequency, 33 cases (31.4%) exhibited mild intestinal aggregation and flattening of the intestinal mucosa; 29 cases (27.6%) exhibited limited intestinal invasion, marginally stenotic small bowel and mucosal deformities; 26 cases (24.8%) exhibited only mild mesenteric contracture and mild slowing of gastrointestinal peristalsis; 5 cases (4.8%) exhibited obvious mesenteric contracture, ball-like changes, fixed position and disappearance of the intestinal mucosa; 2 cases (1.9%) exhibited complete pyloric obstruction; and 1 case (0.9%) exhibited duodenal obstruction. Gastric PC was associated with a higher percentage of stomach filling defects and small intestinal aggregates compared with PC from other malignancies (P<0.01 for both). In 87 cases, the ORG findings were in accordance with the intraoperative findings (κ=0.726, P<0.001), whereas 17 cases (16.2%) were underestimated and 1 (0.9%) was overestimated by OGR. This study indicated that OGR may be a useful technique for the evaluation of the functional impacts of PC on the gastrointestinal system and may help optimize the selection of patients for treatment. PMID:26623037
Aspartate protects Lactobacillus casei against acid stress.
Wu, Chongde; Zhang, Juan; Du, Guocheng; Chen, Jian
2013-05-01
The aim of this study was to investigate the effect of aspartate on the acid tolerance of L. casei. Acid stress induced the accumulation of intracellular aspartate in L. casei, and the acid-resistant mutant exhibited 32.5 % higher amount of aspartate than that of the parental strain at pH 4.3. Exogenous aspartate improved the growth performance and acid tolerance of Lactobacillus casei during acid stress. When cultivated in the presence of 50 mM aspartate, the biomass of cells increased 65.8 % compared with the control (without aspartate addition). In addition, cells grown at pH 4.3 with aspartate addition were challenged at pH 3.3 for 3 h, and the survival rate increased 42.26-fold. Analysis of the physiological data showed that the aspartate-supplemented cells exhibited higher intracellular pH (pHi), intracellular NH4 (+) content, H(+)-ATPase activity, and intracellular ATP pool. In addition, higher contents of intermediates involved in glycolysis and tricarboxylic acid cycle were observed in cells in the presence of aspartate. The increased contents of many amino acids including aspartate, arginine, leucine, isoleucine, and valine in aspartate-added cells may contribute to the regulation of pHi. Transcriptional analysis showed that the expression of argG and argH increased during acid stress, and the addition of aspartate induced 1.46- and 3.06-fold higher expressions of argG and argH, respectively, compared with the control. Results presented in this manuscript suggested that aspartate may protect L. casei against acid stress, and it may be used as a potential protectant during the production of probiotics.
NASA Astrophysics Data System (ADS)
Jiang, Zaixing; Zhang, Dongjie; Li, Yue; Cheng, Hao; Wang, Mingqiang; Wang, Xueqin; Bai, Yongping; Lv, Haibao; Yao, Yongtao; Shao, Lu; Huang, Yudong
2014-10-01
Graphene with extraordinary thermal, mechanical and electrical properties offers possibilities in a variety of applications. Recent advances in the synthesis of graphene composites using supercritical fluids are highlighted. Supercritical fluids exhibit unique features for the synthesis of composites due to its low viscosity, high diffusivity, near-zero surface tension, and tunability. Here, we report the preparation of tin dioxide (SnO2)/graphene nanocomposite through supercritical CO2 method. It demonstrates that the SnO2 nanoparticles are homogeneously dispersed on the surface of graphene sheets with a particle size of 2.3-2.6 nm. The SnO2/graphene nanocomposites exhibit higher lithium storage capacity and better cycling performance compared to that of the similar CNT nanocomposites. The reported synthetic procedure is straightforward, green and inexpensive. And it may be readily adopted to produce large quantities of graphene based nanocomposites.
Development of all-solid lithium-ion battery using Li-ion conducting glass-ceramics
NASA Astrophysics Data System (ADS)
Inda, Yasushi; Katoh, Takashi; Baba, Mamoru
We have developed a high performance lithium-ion conducting glass-ceramics. This glass-ceramics has the crystalline form of Li 1+ x+ yAl xTi 2- xSi yP 3- yO 12 with a NASICON-type structure, and it exhibits a high lithium-ion conductivity of 10 -3 S cm -1 or above at room temperature. Moreover, since this material is stable in the open atmosphere and even to exposure to moist air, it is expected to be applied for various uses. One of applications of this material is as a solid electrolyte for a lithium-ion battery. Batteries were developed by combining a LiCoO 2 positive electrode, a Li 4Ti 5O 12 negative electrode, and a composite electrolyte. The battery using the composite electrolyte with a higher conductivity exhibited a good charge-discharge characteristic.
NASA Astrophysics Data System (ADS)
Keller, Marlou; Appetecchi, Giovanni Battista; Kim, Guk-Tae; Sharova, Varvara; Schneider, Meike; Schuhmacher, Jörg; Roters, Andreas; Passerini, Stefano
2017-06-01
The preparation of hybrid ceramic-polymer electrolytes, consisting of 70 wt% of Li+ cation conducting Li7La3Zr2O12 (LLZO) and 30 wt% of P(EO)15LiTFSI polymer electrolyte, through a solvent-free procedure is reported. The LLZO-P(EO)15LiTFSI hybrid electrolytes exhibit remarkable improvement in terms of flexibility and processability with respect to pure LLZO ceramic electrolytes. The physicochemical and electrochemical investigation shows the effect of LLZO annealing, resulting in ion conduction gain. However, slow charge transfer at the ceramic-polymer interface is also observed especially at higher temperatures. Nevertheless, improved compatibility with lithium metal anodes and good Li stripping/plating behavior are exhibited by the LLZO-P(EO)15LiTFSI hybrid electrolytes with respect to P(EO)15LiTFSI.
A Novel Nanowire Assembly Process for the Fabrication of CO Sensor
Cheng, Biyao; Yang, Shuming; Liu, Tao; Vazinishayan, Ali
2018-01-01
Nanowires have been widely studied due to their outstanding mechanical and electrical properties; however, their practical applications are limited to the lack of an effective technique for controlled assembly. In the present work, zinc oxide (ZnO) nanowire arrays were assembled via a combing process using a makeup brush and the nanodevice was fabricated. The current–voltage (I–V) and ultraviolet (UV) characteristics of the device indicate stable and repeatable electrical properties. The carbon monoxide (CO) sensing properties were tested at operating temperatures of 200, 300 and 400 °C. It was found that ZnO based sensor exhibited the highest sensitivity to CO at 300 °C due to the change of dominant oxygen species. Comparing with others result, the sensitivity of the fabricated sensor exhibits higher sensing performance. The sensing mechanism of the CO sensor is also discussed. PMID:29673203
2014-01-01
In this paper, TiO2 nanowires (NWs) on Ti foils were prepared using a simple hydrothermal approach and annealing treatment. CdS quantum dots (QDs) were assembled onto the crystallized TiO2 NWs by sequential chemical bath deposition. Ultraviolet-visible absorption spectra showed that CdS adds bands in the visible to the TiO2 absorption and exhibited a broad absorption band in the visible region, which extended the scope of absorption spectrum and helped improve the photocatalytic degradation efficiency. The results of photocatalytic experiment revealed that CdS-TiO2 NWs possessed higher photocatalytic activities toward methyl orange than pure TiO2 nanowires. The degradation efficiency of 96.32% after ten cycles indicated that the as-prepared CdS-TiO2 composite exhibited excellent long-time recyclable ability and can be reused for the degradation of contaminants. PMID:24936164
Teten, Amy F; Dagenais, Paul A; Friehe, Mary J
2015-01-01
This study compared the effectiveness of auditory and visual redirections in facilitating topic coherence for persons with Dementia of Alzheimer's Type (DAT). Five persons with moderate stage DAT engaged in conversation with the first author. Three topics related to activities of daily living, recreational activities, food, and grooming, were broached. Each topic was presented three times to each participant: once as a baseline condition, once with auditory redirection to topic, and once with visual redirection to topic. Transcripts of the interactions were scored for overall coherence. Condition was a significant factor in that the DAT participants exhibited better topic maintenance under visual and auditory conditions as opposed to baseline. In general, the performance of the participants was not affected by the topic, except for significantly higher overall coherence ratings for the visually redirected interactions dealing with the topic of food.
Electrochemical Corrosion Properties of Commercial Ultra-Thin Copper Foils
NASA Astrophysics Data System (ADS)
Yen, Ming-Hsuan; Liu, Jen-Hsiang; Song, Jenn-Ming; Lin, Shih-Ching
2017-08-01
Ultra-thin electrodeposited Cu foils have been developed for substrate thinning for mobile devices. Considering the corrosion by residual etchants from the lithography process for high-density circuit wiring, this study investigates the microstructural features of ultra-thin electrodeposited Cu foils with a thickness of 3 μm and their electrochemical corrosion performance in CuCl2-based etching solution. X-ray diffraction and electron backscatter diffraction analyses verify that ultra-thin Cu foils exhibit a random texture and equi-axed grains. Polarization curves show that ultra-thin foils exhibit a higher corrosion potential and a lower corrosion current density compared with conventional (220)-oriented foils with fan-like distributed fine-elongated columnar grains. Chronoamperometric results also suggest that ultra-thin foils possess superior corrosion resistance. The passive layer, mainly composed of CuCl and Cu2O, forms and dissolves in sequence during polarization.
"Hits" emerge through self-organized coordination in collective response of free agents
NASA Astrophysics Data System (ADS)
Chakrabarti, Anindya S.; Sinha, Sitabhra
2016-10-01
Individuals in free societies frequently exhibit striking coordination when making independent decisions en masse. Examples include the regular appearance of hit products or memes with substantially higher popularity compared to their otherwise equivalent competitors or extreme polarization in public opinion. Such segregation of events manifests as bimodality in the distribution of collective choices. Here we quantify how apparently independent choices made by individuals result in a significantly polarized but stable distribution of success in the context of the box-office performance of movies and show that it is an emergent feature of a system of noninteracting agents who respond to sequentially arriving signals. The aggregate response exhibits extreme variability amplifying much smaller differences in individual cost of adoption. Due to self-organization of the competitive landscape, most events elicit only a muted response but a few stimulate widespread adoption, emerging as "hits".
"Hits" emerge through self-organized coordination in collective response of free agents.
Chakrabarti, Anindya S; Sinha, Sitabhra
2016-10-01
Individuals in free societies frequently exhibit striking coordination when making independent decisions en masse. Examples include the regular appearance of hit products or memes with substantially higher popularity compared to their otherwise equivalent competitors or extreme polarization in public opinion. Such segregation of events manifests as bimodality in the distribution of collective choices. Here we quantify how apparently independent choices made by individuals result in a significantly polarized but stable distribution of success in the context of the box-office performance of movies and show that it is an emergent feature of a system of noninteracting agents who respond to sequentially arriving signals. The aggregate response exhibits extreme variability amplifying much smaller differences in individual cost of adoption. Due to self-organization of the competitive landscape, most events elicit only a muted response but a few stimulate widespread adoption, emerging as "hits".
A Novel Nanowire Assembly Process for the Fabrication of CO Sensor.
Cheng, Biyao; Yang, Shuming; Liu, Tao; Vazinishayan, Ali
2018-04-17
Nanowires have been widely studied due to their outstanding mechanical and electrical properties; however, their practical applications are limited to the lack of an effective technique for controlled assembly. In the present work, zinc oxide (ZnO) nanowire arrays were assembled via a combing process using a makeup brush and the nanodevice was fabricated. The current–voltage (I–V) and ultraviolet (UV) characteristics of the device indicate stable and repeatable electrical properties. The carbon monoxide (CO) sensing properties were tested at operating temperatures of 200, 300 and 400 °C. It was found that ZnO based sensor exhibited the highest sensitivity to CO at 300 °C due to the change of dominant oxygen species. Comparing with others result, the sensitivity of the fabricated sensor exhibits higher sensing performance. The sensing mechanism of the CO sensor is also discussed.
Nanotribological performance of fullerene-like carbon nitride films
NASA Astrophysics Data System (ADS)
Flores-Ruiz, Francisco Javier; Enriquez-Flores, Christian Ivan; Chiñas-Castillo, Fernando; Espinoza-Beltrán, Francisco Javier
2014-09-01
Fullerene-like carbon nitride films exhibit high elastic modulus and low friction coefficient. In this study, thin CNx films were deposited on silicon substrate by DC magnetron sputtering and the tribological behavior at nanoscale was evaluated using an atomic force microscope. Results show that CNx films with fullerene-like structure have a friction coefficient (CoF ∼ 0.009-0.022) that is lower than amorphous CNx films (CoF ∼ 0.028-0.032). Analysis of specimens characterized by X-ray photoelectron spectroscopy shows that films with fullerene-like structure have a higher number of sp3 CN bonds and exhibit the best mechanical properties with high values of elastic modulus (E > 180 GPa) and hardness (H > 20 GPa). The elastic recovery determined on specimens with a fullerene-like CNx structure was of 95% while specimens of amorphous CNx structure had only 75% elastic recovery.
Shen, Cheng; Liu, Yang; Zhu, Zhong-Qin; Xu, Yuan-Gang; Lu, Ming
2017-07-04
Two new high-energy metal-organic frameworks (HE-MOFs), {Ag 2 (DNMAF)(H 2 O) 2 } n (1) and {Ag 2 (DNMAF)} n (2) were prepared using potassium 4,4'-bis(dinitromethyl)-3,3'-azofurazanate (K 2 DNMAF) in a self-assembly strategy. Compound 1 exhibits a 3D HE-MOF structure with coordinated water molecules. Compound 2 exhibits compact solvent-free 3D HE-MOFs. Both compounds show good thermostability (decomposition temperature (T d ) of 211 and 218 °C) and superior detonation velocities (D) of 9673 m s -1 and 10 242 m s -1 , detonation pressures (P) of 50.01 GPa and 58.30 GPa, and heat of detonation (Q) of 1.95 kcal g -1 and 2.19 kcal g -1 , respectively, which are even higher than those of RDX and HMX.
Auditory and Visual Cues for Topic Maintenance with Persons Who Exhibit Dementia of Alzheimer's Type
Teten, Amy F.; Dagenais, Paul A.; Friehe, Mary J.
2015-01-01
This study compared the effectiveness of auditory and visual redirections in facilitating topic coherence for persons with Dementia of Alzheimer's Type (DAT). Five persons with moderate stage DAT engaged in conversation with the first author. Three topics related to activities of daily living, recreational activities, food, and grooming, were broached. Each topic was presented three times to each participant: once as a baseline condition, once with auditory redirection to topic, and once with visual redirection to topic. Transcripts of the interactions were scored for overall coherence. Condition was a significant factor in that the DAT participants exhibited better topic maintenance under visual and auditory conditions as opposed to baseline. In general, the performance of the participants was not affected by the topic, except for significantly higher overall coherence ratings for the visually redirected interactions dealing with the topic of food. PMID:26171273
Merchant, James A; Kelly, Kevin M; Burmeister, Leon F; Lozier, Matt J; Amendola, Alison; Lind, David P; KcKeen, Arlinda; Slater, Tom; Hall, Jennifer L; Rohlman, Diane S; Buikema, Brenda S
2014-07-01
To estimate quality-of-life (QoL), primary care, health insurance, prevention behaviors, absenteeism, and presenteeism in a statewide sample of the unemployed, self-employed, and organizationally employed. A statewide survey of 1602 Iowans included items from the Centers for Disease Control and Prevention QoL and Behavioral Risk Factor Surveillance System Survey prevention behavior questionnaires used to assess employee well-being; their indicator results are related to World Health Organization's Health and Work Performance Questionnaire-derived absenteeism and presenteeism scores. The unemployed exhibited poorer QoL and prevention behaviors; the self-employed exhibited many better QoL scores due largely to better prevention behaviors than those employed by organizations. Higher QoL measures and more prevention behaviors are associated with lower absenteeism and lower presenteeism. Employment status is related to measures of well-being, which are also associated with absenteeism and presenteeism.
Removal of Carbon Dioxide from Gas Mixtures Using Ion-Exchanged Silicoaluminophosphates
NASA Technical Reports Server (NTRS)
Hernandez-Maldonado, Arturo J (Inventor); Rivera-Ramos, Milton E (Inventor); Arevalo-Hidalgo, Ana G (Inventor)
2017-01-01
Na+-SAPO-34 sorbents were ion-exchanged with several individual metal cations for CO2 absorption at different temperatures (273-348 K) and pressures (<1 atm). In general, the overall adsorption performance of the exchanged materials increased as follows: Ce3+
Digestive capacities, inbreeding and growth capacities in juvenile Arctic charr Salvelinus alpinus.
Ditlecadet, D; Blier, P U; Le François, N R; Dufresne, F
2009-12-01
Genetic variation in growth performance was estimated in 26 families from two commercial strains of Arctic charr Salvelinus alpinus. Physiological determinants of growth and metabolic capacities were also assessed through enzymatic assays. A relatedness coefficient was attributed to each family using parental genotypes at seven microsatellite loci. After 15 months of growth, faster growing families had significantly lower relatedness coefficients than slower growing families, suggesting their value as indicators of growth potential. Individual fish that exhibited higher trypsin activity also displayed higher growth rate, suggesting that superior protein digestion capacities can be highly advantageous at early stages. Capacities to use amino acids as expressed by glutamate dehydrogenase (GDH) activities were lower in the liver of fast-growing fish (13-20%), whereas white muscle of fast-growing fish showed higher activities than that of slow-growing fish for amino acid metabolism and aerobic capacity [22-32% increase for citrate synthase (CS), aspartate aminotransferase (AAT) and GDH]. The generally higher glycolytic capacities (PK and LDH) in white muscle of fast-growing fish indicated higher burst swimming capacities and hence better access to food.
Analysis of soft x-ray/VUV transmission characteristics of Si and Al filters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Joseph, Aby; Modi, Mohammed H.; Singh, Amol
Ultrathin filters of Al (1500A) and Si (1200A) should exhibit more than 65% transmission above their Labsorption edges in the soft x-ray/vacuum ultra violet region(Si L-edge: 124 A and Al L-edge: 170 A). However, the measured transmission characteristics of these filters showed {approx}40% transmission. The transmission measurements of these filters were carried at the reflectivity beamline of Indus-1 synchrotron source out over a large wavelength range of 120-360A. In order to understand the measured transmission performance a detailed model fitting is performed using the Paratt formalism. It is found that the oxidation of the surface region of the filters ismore » responsible for the reduced transmission performance. Effects of higher harmonics of the toroidal grating monochromator are also considered in the data analysis.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Jing; Jeong, Young Gyu, E-mail: ygjeong@cnu.ac.kr
High performance elastomeric electric heating elements were prepared by incorporating various contents of pristine multiwalled carbon nanotube (MWCNT) in polydimethylsiloxane (PDMS) matrix by using an efficient solution-casting and curing technique. The pristine MWCNTs were identified to be uniformly dispersed in the PDMS matrix and the electrical percolation of MWCNTs was evaluated to be at ∼0.27 wt. %, where the electrical resistivity of the MWCNT/PDMS composite films dropped remarkably. Accordingly, the composite films with higher MWCNT contents above 0.3 wt. % exhibit excellent electric heating performance in terms of temperature response rapidity and electric energy efficiency at constant applied voltages. In addition, the composite films,more » which were thermally stable up to 250 °C, showed excellent heating-cooling cyclic performance, which was associated with operational stability in actual electric heating applications.« less
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-27
... DEPARTMENT OF STATE [Public Notice: 7311] Culturally Significant Objects Imported for Exhibition Determinations: ``Bali: Art, Ritual, Performance'' SUMMARY: Notice is hereby given of the following... objects to be included in the exhibition ``Bali: Art, Ritual, Performance,'' imported from abroad for...
Jurick, S M; Crocker, L D; Keller, A V; Hoffman, S N; Bomyea, J; Jacobson, M W; Jak, A J
2018-05-30
This study examined the Minnesota Multiphasic Personality Inventory-Second Edition-Restructured Form (MMPI-2-RF) to better understand symptom presentation in a sample of treatment-seeking Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Veterans with self-reported history of mild traumatic brain injury (mTBI). Participants underwent a comprehensive clinical neuropsychological battery including performance and symptom validity measures and self-report measures of depressive, posttraumatic, and post-concussive symptomatology. Those with possible symptom exaggeration (SE+) on the MMPI-2-RF were compared with those without (SE-) with regard to injury, psychiatric, validity, and cognitive variables. Between 50% and 87% of participants demonstrated possible symptom exaggeration on one or more MMPI-2-RF validity scales, and a large majority were elevated on content scales related to cognitive, somatic, and emotional complaints. The SE+ group reported higher depressive, posttraumatic, and post-concussive symptomatology, had higher scores on symptom validity measures, and performed more poorly on neuropsychological measures compared with the SE- group. There were no group differences with regard to injury variables or performance validity measures. Participants were more likely to exhibit possible symptom exaggeration on cognitive/somatic compared with traditional psychopathological validity scales. A sizable portion of treatment-seeking OEF/OIF Veterans demonstrated possible symptom exaggeration on MMPI-2-RF validity scales, which was associated with elevated scores on self-report measures and poorer cognitive performance, but not higher rates of performance validity failure, suggesting symptom and performance validity are distinct concepts. These findings have implications for the interpretation of clinical data in the context of possible symptom exaggeration and treatment in Veterans with persistent post-concussive symptoms.
High performance nonvolatile memory devices based on Cu2-xSe nanowires
NASA Astrophysics Data System (ADS)
Wu, Chun-Yan; Wu, Yi-Liang; Wang, Wen-Jian; Mao, Dun; Yu, Yong-Qiang; Wang, Li; Xu, Jun; Hu, Ji-Gang; Luo, Lin-Bao
2013-11-01
We report on the rational synthesis of one-dimensional Cu2-xSe nanowires (NWs) via a solution method. Electrical analysis of Cu2-xSe NWs based memory device exhibits a stable and reproducible bipolar resistive switching behavior with a low set voltage (0.3-0.6 V), which can enable the device to write and erase data efficiently. Remarkably, the memory device has a record conductance switching ratio of 108, much higher than other devices ever reported. At last, a conducting filaments model is introduced to account for the resistive switching behavior. The totality of this study suggests that the Cu2-xSe NWs are promising building blocks for fabricating high-performance and low-consumption nonvolatile memory devices.
NASA Technical Reports Server (NTRS)
Weinberg, I.; Stupica, J. W.; Swartz, C. K.; Goradia, C.
1986-01-01
Lithium-counterdoped n(+)p silicon solar cells were irradiated by 10-MeV protons, and their performance was determined as a function of fluence. It was found that the cell with the highest lithium concentration exhibited the higher radiation resistance. Deep-level transient spectroscopy studies of deep-level defects were used to identify two lithium-related defects. Defect energy levels obtained after the present 10-MeV irradiations were found to be markedly different than those observed after previous 1-MeV electron irradiations. However, the present DLTS data are consistent with previous suggestion by Weinberg et al. (1984) of a lithium-oxygen interaction which tends to inhibit formation of an interstitial boron-oxygen defect.
NASA Astrophysics Data System (ADS)
Tsai, Chun-Chien; Lee, Yao-Jen; Chiang, Ko-Yu; Wang, Jyh-Liang; Lee, I.-Che; Chen, Hsu-Hsin; Wei, Kai-Fang; Chang, Ting-Kuo; Chen, Bo-Ting; Cheng, Huang-Chung
2007-11-01
In this paper, location-controlled silicon crystal grains are fabricated by the excimer laser crystallization method which employs amorphous silicon spacer structure and prepatterned thin films. The amorphous silicon spacer in nanometer-sized width formed using spacer technology is served as seed crystal to artificially control superlateral growth phenomenon during excimer laser irradiation. An array of 1.8-μm-sized disklike silicon grains is formed, and the n-channel thin-film transistors whose channels located inside the artificially-controlled crystal grains exhibit higher performance of field-effect-mobility reaching 308cm2/Vs as compared with the conventional ones. This position-manipulated silicon grains are essential to high-performance and good uniformity devices.
Nanofiber/ZrO2-based mixed matrix separator for high safety/high-rate lithium-ion batteries
NASA Astrophysics Data System (ADS)
Xiao, Wei; Liu, Jianguo; Yan, Chuanwei
2017-10-01
A novel asymmetric separator based on a thin bacterial cellulose nanofiber (BCF)/nano-ZrO2 composite layer and a non-woven support was prepared by paper-making method. Owing to the relatively polar constituents and well-developed, gradient porous structure, the separator exhibited the advantages of higher thermal resistance, electrolyte wettability, and ionic conductivity in comparison to polyethylene separator. Based on these advantages, the Li/LiFePO4 cells assembled from this composite separator showed excellent performance characteristics, including outstanding C-rate capability, high capacity and cycling performance. Production of the composite separator is simple, environmentally benign and economically viable. Therefore, it's a good candidate for creating improved lithium-ion batteries.
NASA Technical Reports Server (NTRS)
Abada, Christopher H.; Farley, Gary L.; Hyer, Michael W.
2006-01-01
A computer-based parametric study of the effect of reinforcement architectures on fracture response of aluminum compact-tension (CT) specimens is performed. Eleven different reinforcement architectures consisting of rectangular and triangular cross-section reinforcements were evaluated. Reinforced specimens produced between 13 and 28 percent higher fracture load than achieved with the non-reinforced case. Reinforcements with blunt leading edges (rectangular reinforcements) exhibited superior performance relative to the triangular reinforcements with sharp leading edges. Relative to the rectangular reinforcements, the most important architectural feature was reinforcement thickness. At failure, the reinforcements carried between 58 and 85 percent of the load applied to the specimen, suggesting that there is considerable load transfer between the base material and the reinforcement.
NASA Astrophysics Data System (ADS)
Shanmugam, Vinoth; Manoharan, Subbaiah; Anandan, Sambandam; Murugan, Ramaswamy
2013-03-01
Natural dyes extracted from fruits of ivy gourd and flowers of red frangipani were used as sensitizers to fabricate dye sensitized solar cells (DSSCs). The UV-Vis absorption spectroscopy, Fourier transform infrared (FTIR), Fourier transform Raman (FT-Raman) and liquid chromatography-mass spectrometry (LC-MS) studies indicated the presence of β-carotene in the fruits of ivy gourd and anthocyanins in the flowers of red frangipani. The extract of the flowers of red frangipani exhibits higher photosensitized performance compared to the fruits of ivy gourd and this is due to the better charge transfer between the dyes of flowers of red frangipani and the TiO2 photoanode surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naskar, Amit K; Bi,; Saha, Dipendu
2014-01-01
Morphologically tailored pyrolysis-recovered carbon black is utilized in lithium-ion batteries as a potential solution for adding value to waste tire-rubber-derived materials. Micronized tire rubber was digested in a hot oleum bath to yield a sulfonated rubber slurry that was then filtered, washed, and compressed into a solid cake. Carbon was recovered from the modified rubber cake by pyrolysis in a nitrogen atmosphere. The chemical pretreatment of rubber produced a carbon monolith with higher yield than that from the control (a fluffy tire-rubber-derived carbon black). The carbon monolith showed a very small volume fraction of pores of widths 3 4 nm,more » reduced specific surface area, and an ordered assembly of graphitic domains. Electrochemical studies on the recovered-carbon-based anode revealed an improved Li-ion battery performance with higher reversible capacity than that of commercial carbon materials. Anodes made with a sulfonated tire-rubber-derived carbon and a control tire-rubber-derived carbon, respectively, exhibited an initial coulombic efficiency of 80% and 45%, respectively. The reversible capacity of the cell with the sulfonated carbon as anode was 400 mAh/g after 100 cycles, with nearly 100% coulombic efficiency. Our success in producing higher performance carbon material from waste tire rubber for potential use in energy storage applications adds a new avenue to tire rubber recycling.« less
Li, Xiuming; Zhang, Yaoguang; Li, Xiaojin; Zheng, Hua; Peng, Jianglan
2018-01-01
ABSTRACT The objectives of this study were to examine whether sustained exercise training at four water velocities, i.e. nearly still water (control), 1 body length (BL) s−1, 2 BL s−1 and 4 BL s−1, has effects on swimming performance and digestive metabolism in juvenile black carp (Mylopharyngodon piceus). The results demonstrated that fish subjected to sustained training at 2 and 4 BL s−1 showed significantly higher critical swimming speed (Ucrit) and maximum metabolic rate (MMR) over the control group. Fish subjected to sustained training at 1 and 2 BL s−1 showed a significantly (30 and 54%) prolonged duration, 14 and 17% higher postprandial ṀO2 increment (i.e. ṀO2peak), and 62 and 92% more energy expended on specific dynamic action (SDA), respectively, after consuming a similar meal over fish kept in nearly still water. These results suggest that (1) sustained exercise training at a higher speed (2 or 4 BL s−1) had a positive influence on the aerobic swimming performance of juvenile M. piceus, which may be associated with improved aerobic metabolism; and (2) sustained exercise training at a lower speed (1 or 2 BL s−1) resulted in elevated postprandial metabolic responses in juvenile M. piceus. PMID:29463516
Wu, Qingxia; Shi, Dapeng; Cheng, Tianming; Liu, Hongming; Hu, Niuniu; Chang, Xiaowan; Guo, Ying; Wang, Meiyun
2018-06-19
To (a) assess the diagnostic performance of material decomposition (MD) water (iodine) images for the evaluation of cervical intervertebral discs (IVDs) in patients who underwent dual-energy head and neck CT angiography (HNCTA) compared with 70-keV images and (b) to explore the correlation of water concentration with the T2 relaxation time of IVDs. Twenty-four consecutive patients who underwent dual-energy HNCTA and cervical spine MRI were studied. The diagnostic performance of water (iodine), 70-keV and MR images for IVD bulge and herniation was assessed. A subjective image score for each image set was recorded. The signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) of IVDs to the cervical spinal cord were compared between water (iodine) and 70-keV images. Disc water concentration as measured on water (iodine) images was correlated with T2 relaxation time. IVD evaluations for bulge and herniation did not differ significantly among the three image sets (pairwise comparisons; all p > 0.05). SNR and CNR were significantly improved on water (iodine) images compared with those on 70-keV images (p < 0.001). Although water (iodine) images showed higher image quality scores when evaluating IVDs compared with 70-keV images, the difference is not significant (all adjusted p > 0.05). IVD water concentration exhibited no correlation with relative T2 relaxation time (all p > 0.05). Water (iodine) images facilitated analysis of cervical IVDs by providing higher SNR and CNR compared with 70-keV images. The disc water concentration measured on water (iodine) images exhibited no correlation with relative T2 relaxation time. • There was no significant difference in cervical IVD evaluations for bulge and herniation among water (iodine) images, 70-keV images and MR images. • Water (iodine) images provided higher objective and subjective image quality than 70-keV images, though the difference of subjective evaluation was not statistically significant. • The disc water concentration exhibited no correlation with relative T2 relaxation time, which reflects the inferiority of the water (iodine) images in evaluating disc water content compared with T2 maps.
Effect of LPSO and SFs on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy
NASA Astrophysics Data System (ADS)
Xu, Chao; Nakata, Taiki; Qiao, Xiaoguang; Zheng, Mingyi; Wu, Kun; Kamado, Shigeharu
2017-01-01
High performance Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy with high strength and excellent ductility has been successfully developed by hot extrusion. The effect of plate-shaped long period stacking ordered (LPSO) phases and solute-segregated stacking faults (SFs) on the dynamically recrystallization (DRX) behavior was analyzed. The plate-shaped LPSO phases stimulate the DRX by particle stimulated nucleation mechanism, leading to higher DRX ratio and weaker basal texture. While for the alloy with dense fine SFs inside the original grains, discontinuous DRX initially occurs at the original grain boundaries, and the DRX is obviously restricted. Consequently, alloy containing dense SFs exhibits higher strength but lower ductility compared with alloy with plated-shaped LPSO phases.
Amphiphilic block copolymer membrane for vanadium redox flow battery
NASA Astrophysics Data System (ADS)
Wang, Fei; Sylvia, James M.; Jacob, Monsy M.; Peramunage, Dharmasena
2013-11-01
An amphiphilic block copolymer comprised of hydrophobic polyaryletherketone (PAEK) and hydrophilic sulfonated polyaryletherketone (SPAEK) blocks has been synthesized and characterized. A membrane prepared from the block copolymer is used as the separator in a single cell vanadium redox flow battery (VRB). The proton conductivity, mechanical property, VO2+ permeability and single VRB cell performance of this block copolymer membrane are investigated and compared to Nafion™ 117. The block copolymer membrane showed significantly improved vanadium ion selectivity, higher mechanical strength and lower conductivity than Nafion™ 117. The VRB containing the block copolymer membrane exhibits higher coulombic efficiency and similar energy efficiency compared to a VRB using Nafion™ 117. The better vanadium ion selectivity of the block copolymer membrane has led to a much smaller capacity loss during 50 charge-discharge cycles for the VRB.
Effect of LPSO and SFs on microstructure evolution and mechanical properties of Mg-Gd-Y-Zn-Zr alloy
Xu, Chao; Nakata, Taiki; Qiao, Xiaoguang; Zheng, Mingyi; Wu, Kun; Kamado, Shigeharu
2017-01-01
High performance Mg-8.2Gd-3.8Y-1.0Zn-0.4Zr alloy with high strength and excellent ductility has been successfully developed by hot extrusion. The effect of plate-shaped long period stacking ordered (LPSO) phases and solute-segregated stacking faults (SFs) on the dynamically recrystallization (DRX) behavior was analyzed. The plate-shaped LPSO phases stimulate the DRX by particle stimulated nucleation mechanism, leading to higher DRX ratio and weaker basal texture. While for the alloy with dense fine SFs inside the original grains, discontinuous DRX initially occurs at the original grain boundaries, and the DRX is obviously restricted. Consequently, alloy containing dense SFs exhibits higher strength but lower ductility compared with alloy with plated-shaped LPSO phases. PMID:28134297
Comparative bone tissue integration of nanostructured and microroughened dental implants.
Salou, Laëtitia; Hoornaert, Alain; Stanovici, Julien; Briand, Sylvain; Louarn, Guy; Layrolle, Pierre
2015-01-01
The aim was to compare osteointegration of nanostructured implants to a microsurface widely used for titanium dental implants. Commercial titanium dental implants with smooth or microroughened surfaces were nanostructured. Implants were inserted into the femoral condyles of rabbits. After 2 and 4 weeks, histomorphometry calculation was performed. Nanotubes measuring 60 nm in diameter were observed on both S-NANO (roughness: 0.05 μm) and R-NANO (roughness: 0.40 μm) surfaces. The MICRO surface exhibited typical random cavities (roughness: 2.09 μm). At 4 weeks, bone-to-implant contact values were significantly higher for the R-NANO than for the MICRO surface while no differences were observed at 2 weeks. Overall, this study shows that the nanostructured surfaces improved osteointegration similar or higher than the MICRO.
Owens-Illinois liquid solar collector materials assessment
NASA Technical Reports Server (NTRS)
Nichols, R. L.
1978-01-01
From the beginning, it was noted that the baseline drawings for the liquid solar collector exhibited a distinct weakness concerning materials specification where elastomers, plastics, and foam insulation materials were utilized. A relatively small effort by a competent design organization would alleviate this deficiency. Based on results obtained from boilout and stagnation tests on the solar simulator, it was concluded that proof testing of the collector tubes prior to use helps to predict their performance for limited service life. Fracture mechanics data are desirable for predicting extended service life and establishing a minimum proof pressure level requirement. The temperature capability of this collector system was increased as the design matured and the coating efficiency improved. This higher temperature demands the use of higher temperature materials at critical locations in the collector.
Biophysical and biochemical analysis of semen in infertile Nigerian males.
Adejuwon, C A; Ilesanmi, A O; Ode, E O; Akinlade, K S
1996-09-01
Biophysical analysis of semen was performed in fifty-eight Nigerian male partners of infertile marriages. Sperm count concentration was significantly higher (P < 0.001) in oligospermics compared to normospermics as expected. However, there was no significant difference in sperm volume or motility percentage between the normospermics and the oligospermics; of course, no sperms were seen in the azoospermics. Biochemical analyses of serum zinc, copper, magnesium, and manganese by atomic absorption spectrophotometry [8] were further correlated in fifty-two patients. There were no statistically significant differences observed in the serum levels of zinc, magnesium, and copper among the normospermics, oligospermics, and azoospermics. The normospermic infertile patients, however, exhibited higher serum manganese when compared with oligospermics and azoospermics (P < 0.001). This finding suggests a potential role for manganese in the evaluation of infertile males.
Evaluation of study design variables and their impact on food-maintained operant responding in mice.
Haluk, Desirae M; Wickman, Kevin
2010-03-05
Operant conditioning paradigms are useful for studying factors involved in reward, particularly when combined with the tools of genetic manipulation in mice. Published operant studies involving mice vary widely with respect to design, and insight into the consequences of design choices on performance in mice is limited. Here, we evaluated the impact of five design variables on the performance of inbred male mice in operant tasks involving solid food pellets as reinforcing agents. We found that the use of lever-press or nose-poke during FR1 sessions did not impact the performance of C57BL/6 mice, but that the lever-press approach correlated with enhanced performance during PR testing. While FR1 session duration had a notable impact on the rate of acquisition of food-maintained responding, performance during FR1 and PR sessions was largely unaffected. Higher order schedules of reinforcement (FR3 and FR5) led to elevated responding during both FR and PR sessions, and improved the correspondence between rewards earned and consumed. Single and group-housed mice performed indistinguishably during FR1 and PR sessions, while environmental enrichment combined with group housing accelerated the rate of acquisition of food-maintained responding while decreasing responding during PR testing. Finally, while C57BL/6 and 129/Sv mice exhibited comparable behavior during FR1 sessions, C57BL/6 mice tended to acquire food-maintained responding faster than 129/Sv counterparts, and exhibited elevated responding during PR testing. Altogether, our findings indicate that while operant performance for food in mice is relatively insensitive to many study parameters, experimental outcomes can be shaped predictably with proper design decisions. Copyright 2009 Elsevier B.V. All rights reserved.
Ober, Gordon T; Thornber, Carol; Grear, Jason; Kolbe, Jason J
2017-02-01
Temperature strongly affects performance in ectotherms. As ocean warming continues, performance of marine species will be impacted. Many studies have focused on how warming will impact physiology, life history, and behavior, but few studies have investigated how ecological and behavioral traits of organisms will affect their response to changing thermal environments. Here, we assessed the thermal tolerances and thermal sensitivity of swimming performance of two sympatric mysid shrimp species of the Northwest Atlantic. Neomysis americana and Heteromysis formosa overlap in habitat and many aspects of their ecological niche, but only N. americana exhibits vertical migration. In temperate coastal ecosystems, temperature stratification of the water column exposes vertical migrators to a wider range of temperatures on a daily basis. We found that N. americana had a significantly lower critical thermal minimum (CT min ) and critical thermal maximum (CT max ). However, both mysid species had a buffer of at least 4°C between their CT max and the 100-year projection for mean summer water temperatures of 28°C. Swimming performance of the vertically migrating species was more sensitive to temperature variation, and this species exhibited faster burst swimming speeds. The generalist performance curve of H. formosa and specialist curve of N. americana are consistent with predictions based on the exposure of each species to temperature variation such that higher within-generation variability promotes specialization. However, these species violate the assumption of the specialist-generalist tradeoff in that the area under their performance curves is not constant. Our results highlight the importance of incorporating species-specific responses to temperature based on the ecology and behavior of organisms into climate change prediction models. Copyright © 2016. Published by Elsevier Ltd.
Al2O3 Nanoparticle Addition to Commercial Magnesium Alloys: Multiple Beneficial Effects
Paramsothy, Muralidharan; Chan, Jimmy; Kwok, Richard; Gupta, Manoj
2012-01-01
The multiple beneficial effects of Al2O3 nanoparticle addition to cast magnesium based systems (followed by extrusion) were investigated, constituting either: (a) enhanced strength; or (b) simultaneously enhanced strength and ductility of the corresponding magnesium alloys. AZ31 and ZK60A nanocomposites containing Al2O3 nanoparticle reinforcement were each fabricated using solidification processing followed by hot extrusion. Compared to monolithic AZ31 (tension levels), the corresponding nanocomposite exhibited higher yield strength (0.2% tensile yield strength (TYS)), ultimate strength (UTS), failure strain and work of fracture (WOF) (+19%, +21%, +113% and +162%, respectively). Compared to monolithic AZ31 (compression levels), the corresponding nanocomposite exhibited higher yield strength (0.2% compressive yield strength (CYS)) and ultimate strength (UCS), lower failure strain and higher WOF (+5%, +5%, −4% and +11%, respectively). Compared to monolithic ZK60A (tension levels), the corresponding nanocomposite exhibited lower 0.2% TYS and higher UTS, failure strain and WOF (−4%, +13%, +170% and +200%, respectively). Compared to monolithic ZK60A (compression levels), the corresponding nanocomposite exhibited lower 0.2% CYS and higher UCS, failure strain and WOF (−10%, +7%, +15% and +26%, respectively). The capability of Al2O3 nanoparticles to enhance the properties of cast magnesium alloys in a way never seen before with micron length scale reinforcements is clearly demonstrated. PMID:28348301
Li, Jinchao; Yuan, Xiaodong; Liu, Suqin; He, Zhen; Zhou, Zhi; Li, Aikui
2017-09-27
A novel side-chain-type fluorinated sulfonated polyimide (s-FSPI) membrane is synthesized for vanadium redox batteries (VRBs) by high-temperature polycondensation and grafting reactions. The s-FSPI membrane has a vanadium ion permeability that is over an order of magnitude lower and has a proton selectivity that is 6.8 times higher compared to those of the Nafion 115 membrane. The s-FSPI membrane possesses superior chemical stability compared to most of the linear sulfonated aromatic polymer membranes reported for VRBs. Also, the vanadium redox flow/static batteries (VRFB/VRSB) assembled with the s-FSPI membranes exhibit stable battery performance over 100- and 300-time charge-discharge cycling tests, respectively, with significantly higher battery efficiencies and lower self-discharge rates than those with the Nafion 115 membranes. The excellent physicochemical properties and VRB performance of the s-FSPI membrane could be attributed to the specifically designed molecular structure with the hydrophobic trifluoromethyl groups and flexible sulfoalkyl pendants being introduced on the main chains of the membrane. Moreover, the cost of the s-FSPI membrane is only one-fourth that of the commercial Nafion 115 membrane. This work opens up new possibilities for fabricating high-performance proton-conductive membranes at low costs for VRBs.
Online Information Search Performance and Search Strategies in a Health Problem-Solving Scenario.
Sharit, Joseph; Taha, Jessica; Berkowsky, Ronald W; Profita, Halley; Czaja, Sara J
2015-01-01
Although access to Internet health information can be beneficial, solving complex health-related problems online is challenging for many individuals. In this study, we investigated the performance of a sample of 60 adults ages 18 to 85 years in using the Internet to resolve a relatively complex health information problem. The impact of age, Internet experience, and cognitive abilities on measures of search time, amount of search, and search accuracy was examined, and a model of Internet information seeking was developed to guide the characterization of participants' search strategies. Internet experience was found to have no impact on performance measures. Older participants exhibited longer search times and lower amounts of search but similar search accuracy performance as their younger counterparts. Overall, greater search accuracy was related to an increased amount of search but not to increased search duration and was primarily attributable to higher cognitive abilities, such as processing speed, reasoning ability, and executive function. There was a tendency for those who were younger, had greater Internet experience, and had higher cognitive abilities to use a bottom-up (i.e., analytic) search strategy, although use of a top-down (i.e., browsing) strategy was not necessarily unsuccessful. Implications of the findings for future studies and design interventions are discussed.
Ding, Yanli; Lyu, Tao; Bai, Shaoyuan; Li, Zhenling; Ding, Haijing; You, Shaohong; Xie, Qinglin
2018-01-01
This study investigates the influence of multilayer substrate configuration in horizontal subsurface flow constructed wetlands (HSCWs) on their treatment performance, biofilm development, and solids accumulation. Three pilot-scale HSCWs were built to treat campus sewage and have been operational for 3 years. The HSCWs included monolayer (CW1), three-layer (CW3), and six-layer (CW6) substrate configurations with hydraulic conductivity of the substrate increasing from the surface to bottom in the multilayer CWs. It was demonstrated the pollutant removal performance after a 3-year operation improved in the multilayer HSCWs (49-80%) compared to the monolayer HSCW (29-41%). Simultaneously, the multilayer HSCWs exhibited significant features that prevented clogging compared to the monolayer configuration. The amount of accumulated solids was notably higher in the monolayer CW compared to multilayer CWs. Further, multilayer HSCWs could delay clogging by providing higher biofilm development for organics removal and consequently, lesser solids accumulations. Principal component analysis strongly supported the visualization of the performance patterns in the present study and showed that multilayer substrate configuration, season, and sampling locations significantly influenced biofilm growth and solids accumulation. Finally, the present study provided important information to support the improved multilayer configured HSCW implication in the future.
Online Information Search Performance and Search Strategies in a Health Problem-Solving Scenario
Sharit, Joseph; Taha, Jessica; Berkowsky, Ronald W.; Profita, Halley; Czaja, Sara J.
2017-01-01
Although access to Internet health information can be beneficial, solving complex health-related problems online is challenging for many individuals. In this study, we investigated the performance of a sample of 60 adults ages 18 to 85 years in using the Internet to resolve a relatively complex health information problem. The impact of age, Internet experience, and cognitive abilities on measures of search time, amount of search, and search accuracy was examined, and a model of Internet information seeking was developed to guide the characterization of participants’ search strategies. Internet experience was found to have no impact on performance measures. Older participants exhibited longer search times and lower amounts of search but similar search accuracy performance as their younger counterparts. Overall, greater search accuracy was related to an increased amount of search but not to increased search duration and was primarily attributable to higher cognitive abilities, such as processing speed, reasoning ability, and executive function. There was a tendency for those who were younger, had greater Internet experience, and had higher cognitive abilities to use a bottom-up (i.e., analytic) search strategy, although use of a top-down (i.e., browsing) strategy was not necessarily unsuccessful. Implications of the findings for future studies and design interventions are discussed. PMID:29056885
Examination of the temperature dependent electronic behavior of GeTe for switching applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Champlain, James G.; Ruppalt, Laura B.; Guyette, Andrew C.
2016-06-28
The DC and RF electronic behaviors of GeTe-based phase change material switches as a function of temperature, from 25 K to 375 K, have been examined. In its polycrystalline (ON) state, GeTe behaved as a degenerate p-type semiconductor, exhibiting metal-like temperature dependence in the DC regime. This was consistent with the polycrystalline (ON) state RF performance of the switch, which exhibited low resistance S-parameter characteristics. In its amorphous (OFF) state, the GeTe presented significantly greater DC resistance that varied considerably with bias and temperature. At low biases (<1 V) and temperatures (<200 K), the amorphous GeTe low-field resistance dramatically increased, resulting in exceptionally highmore » amorphous-polycrystalline (OFF-ON) resistance ratios, exceeding 10{sup 9} at cryogenic temperatures. At higher biases and temperatures, the amorphous GeTe exhibited nonlinear current-voltage characteristics that were best fit by a space-charge limited conduction model that incorporates the effect of a defect band. The observed conduction behavior suggests the presence of two regions of localized traps within the bandgap of the amorphous GeTe, located at approximately 0.26–0.27 eV and 0.56–0.57 eV from the valence band. Unlike the polycrystalline state, the high resistance DC behavior of amorphous GeTe does not translate to the RF switch performance; instead, a parasitic capacitance associated with the RF switch geometry dominates OFF state RF transmission.« less
Parametric study of plasma-mediated thermoluminescence produced by Al2O3 sub-micron powders
NASA Astrophysics Data System (ADS)
Morávek, T.; Ambrico, P. F.; Ambrico, M.; Schiavulli, L.; Ráheľ, J.
2017-10-01
Sub-micron Al2O3 powders with a surface activated by dielectric barrier discharge exhibit improved performance in wet deposition of ceramic layers. In addressing the possible mechanisms responsible for the observed improvement, a comprehensive thermoluminescence (TL) study of plasma-activated powders was performed. TL offers the unique possibility of exploring the population of intrinsic electrons/holes in the charge trapping states. This study covers a wide range of experimental conditions affecting the TL of powders: treatment time, plasma working gas composition, change of discharge configuration, step-annealing of powder, exposure to laser irradiation and aging time. Deconvoluted TL spectra were followed for the changes in their relative contributions. The TL spectra of all tested gases (air, Ar, N2 and 5% He in N2) consist of the well-known main dosimetric peak at 450 K and a peak of similar magnitude at higher temperatures, centered between 700 and 800 K depending on the working gas used. N2 plasma treatment gave rise to a new specific TL peak at 510 K, which exhibited several peculiarities. Initial thermal annealing of Al2O3 powders led to its significant amplification (unlike the other peaks); the peak was insensitive to optical bleaching, and it exhibited slow gradual growth during the long-term aging test. Besides its relevance to the ceramic processing studies, a comprehensive set of data is presented that provides a useful and unconventional view on plasma-mediated material changes.
Achilleos, Demetra S; Hatton, T Alan
2015-06-01
With the current rising world demand for energy sufficiency, there is an increased necessity for the development of efficient energy storage devices. To address these needs, the scientific community has focused on the improvement of the electrochemical properties of the most well known energy storage devices; the Li-ion batteries and electrochemical capacitors, also called supercapacitors. Despite the fact that supercapacitors exhibit high power densities, good reversibility and long cycle life, they still exhibit lower energy densities than batteries, which limit their practical application. Various strategies have been employed to circumvent this problem, specifically targetting an increase in the specific capacitance and the broadening of the potential window of operation of these systems. In recent years, sophisticated surface design and engineering of hierarchical hybrid nanostructures has facilitated significant improvements in the specific and volumetric storage capabilities of supercapacitors. These nanostructured electrodes exhibit higher surface areas for ion adsorption and reduced ion diffusion lengths for the electrolyte ions. Significant advances have also been achieved in broadening the electrochemical window of operation of these systems, as realized via the development of asymmetric two-electrode cells consisting of nanocomposite positive and negative electrodes with complementary electrochemical windows, which operate in environmentally benign aqueous media. We provide an overview of the diverse approaches, in terms of chemistry and nanoscale architecture, employed recently for the development of asymmetric supercapacitors of improved electrochemical performance. Copyright © 2014 Elsevier Inc. All rights reserved.
Reliability Studies of Ceramic Capacitors.
1987-03-01
with barium/ titanium ratios of greater than one exhibit higher current levels and enhanced degradation compared to the excess titanium compositions. This...essentially insoluble in BaTiO -4- 3. Compositions with barium/ titanium ratios less than one exhibit higher current levels and enhanced degradation compared...this process is shown in figure 1. The cationic sources which have been successfully used are carbonates, hydroxides, isopropoxides , and nitrates. The
Hardesty, Kelly; Hegedus, Eric J.; Ford, Kevin R.; Nguyen, Anh‐Dung
2017-01-01
Background ACL injury prevention programs are less successful in female basketball players than in soccer players. Previous authors have identified anthropometric and biomechanical differences between the athletes and different sport‐specific demands, including a higher frequency of frontal plane activities in basketball. Current injury risk screening and preventive training practices do not place a strong emphasis on frontal plane activities. The medial and lateral triple hop for distance tests may be beneficial for use in the basketball population. Hypothesis/Purpose To 1) establish normative values for the medial and lateral triple hop tests in healthy female collegiate athletes, and 2) analyze differences in test scores between female basketball and soccer players. It was hypothesized that due to the frequent frontal plane demands of their sport, basketball players would exhibit greater performance during these frontal plane performance tests. Study Design Cross‐sectional. Methods Thirty‐two NCAA Division‐1 female athletes (20 soccer, 12 basketball) performed three trials each of a medial and lateral triple hop for distance test. Distances were normalized to height and mass in order to account for anthropometric differences. Repeated measures ANOVAs were performed to identify statistically significant main effects of sport (basketball vs. soccer), and side (right vs. left), and sport x side interactions. Results After accounting for anthropometric differences, soccer players exhibited significantly better performance than basketball players in the medial and lateral triple hop tests (p < 0.05). Significant side differences (p = 0.02) were identified in the entire population for the medial triple hop test, such that participants jumped farther on their left (400.3 ± 41.5 cm) than right (387.9 ± 43.4 cm) limbs, but no side differences were identified in the lateral triple hop. No significant side x sport interactions were identified. Conclusions Women's basketball players exhibit decreased performance of frontal plane hop tests when compared to women's soccer players. Additionally, the medial triple hop for distance test may be effective at identifying side‐to‐side asymmetries Level of Evidence 3 PMID:28515972
Coe, Kirsten K.; Belnap, Jayne; Grote, Edmund E.; Sparks, Jed P.
2012-01-01
In arid regions, biomes particularly responsive to climate change, mosses play an important biogeochemical role as key components of biocrusts. Using the biocrust moss Syntrichia caninervis collected from the Nevada Desert Free Air CO2 Enrichment Facility, we examined the physiological effects of 10 years of exposure to elevated CO2, and the effect of high temperature events on the photosynthetic performance of moss grown in CO2-enriched air. Moss exposed to elevated CO2 exhibited a 46% decrease in chlorophyll, a 20% increase in carbon and no difference in either nitrogen content or photosynthetic performance. However, when subjected to high temperatures (35–40°C), mosses from the elevated CO2 environment showed higher photosynthetic performance and photosystem II (PSII) efficiency compared to those grown in ambient conditions, potentially reflective of a shift in nitrogen allocation to components that offer a higher resistance of PSII to heat stress. This result suggests that mosses may respond to climate change in markedly different ways than vascular plants, and observed CO2-induced photosynthetic thermotolerance in S. caninervis will likely have consequences for future desert biogeochemistry.
NASA Astrophysics Data System (ADS)
Nageswaran, Shubha; Keppeler, Miriam; Kim, Sung-Jin; Srinivasan, Madhavi
2017-04-01
Well-crystallized, microspherical LiNi0.5Mn1.5-nSinO4 (0.05 < n < 0.2) is successfully synthesized by a template directed approach in combination with the partial substitution of manganese by silicon. Structural and electrochemical characteristics are investigated through FE-SEM, XRD, EDX, cyclic voltammetry and galvanostatic charge/discharge testing. Spherical shape and incorporation of silicon into the crystal leads to higher proportion of the disordered Fd-3m phase, and electrochemical performance is significantly improved. High capacity retention of 99.4% after 100 cycles at 1 C rate for LiNi0.5Mn1.45Si0.05O4 microspheres is achieved, which is superior compared to 93.1% capacity retention of the pristine LiNi0.5Mn1.5O4 microspheres. Since the Sisbnd O bond exhibits higher dissociation energy compared to the dissociation energies of the Mnsbnd O or Nisbnd O bonds, the excellent electrochemical performance might be associated with an increased structural and chemical stability caused by incorporation of silicon into the oxygen rich crystal lattice.
Ceber, Esin; Yücel, Ummahan; Mermer, Gülengül; Ozentürk, Gülsün
2009-01-01
The purpose of this study was to evaluate health beliefs and BSE behavior of female academicians in a Turkish university. This descriptive study was conducted at various faculties located in Ege University, Izmir, Turkey, in 2005. The sample consisted of 224 female academicians. Data were collected using a self-administered questionnaire and the Turkish version of Champion's Health Belief Model Scales (HBM). Descriptive statistics, t-test and Mann Whitney u analysis were conducted. The percentage of participants who regularly performed BSE was 27.7 %. Benefits and health motivation related to BSE ranked either first or second, along with confidence. Perceived barriers to BSE had the lowest item mean subscale score in academicians. Single academicians perceived susceptibility and seriousness higher than their married counterparts. Family history of breast cancer of participants affected their health beliefs subscale. BSE performance among participants was more likely in women academicians who exhibited higher confidence and those who perceived fewer barriers related to BSE performance, complying with the conceptual structure of the HBM. Therefore, it is recommended that in order to increase the rates of regular breast cancer screening, mass health protective programs based on the HBM should be executed for women.
NASA Astrophysics Data System (ADS)
Zuo, Quan; Zhao, Pingping; Luo, Wei; Cheng, Gongzhen
2016-07-01
Developing high-performance non-precious catalysts to replace platinum as oxygen reduction reaction (ORR) catalysts is still a big scientific and technological challenge. Herein, we report a simple method for the synthesis of a FeNC catalyst with a 3D hierarchically micro/meso/macro porous network and high surface area through a simple carbonization method by taking the advantages of a high specific surface area and diverse pore dimensions in 3D porous covalent-organic material. The resulting FeNC-900 electrocatalyst with improved reactant/electrolyte transport and sufficient active site exposure, exhibits outstanding ORR activity with a half-wave potential of 0.878 V, ca. 40 mV more positive than Pt/C for ORR in alkaline solution, and a half-wave potential of 0.72 V, which is comparable to that of Pt/C in acidic solution. In particular, the resulting FeNC-900 exhibits a much higher stability and methanol tolerance than those of Pt/C, which makes it among the best non-precious catalysts ever reported for ORR.Developing high-performance non-precious catalysts to replace platinum as oxygen reduction reaction (ORR) catalysts is still a big scientific and technological challenge. Herein, we report a simple method for the synthesis of a FeNC catalyst with a 3D hierarchically micro/meso/macro porous network and high surface area through a simple carbonization method by taking the advantages of a high specific surface area and diverse pore dimensions in 3D porous covalent-organic material. The resulting FeNC-900 electrocatalyst with improved reactant/electrolyte transport and sufficient active site exposure, exhibits outstanding ORR activity with a half-wave potential of 0.878 V, ca. 40 mV more positive than Pt/C for ORR in alkaline solution, and a half-wave potential of 0.72 V, which is comparable to that of Pt/C in acidic solution. In particular, the resulting FeNC-900 exhibits a much higher stability and methanol tolerance than those of Pt/C, which makes it among the best non-precious catalysts ever reported for ORR. Electronic supplementary information (ESI) available: Fig. S1-S12 and Tables S1 and S2. See DOI: 10.1039/c6nr03273g
Takeoff/approach noise for a model counterrotation propeller with a forward-swept upstream rotor
NASA Technical Reports Server (NTRS)
Woodward, Richard P.; Hall, David G.; Podboy, Gary G.; Jeracki, Robert J.
1993-01-01
A scale model of a counterrotating propeller with forward-swept blades in the forward rotor and aft-swept blades in the aft rotor (designated F39/A31) has been tested in the NASA Lewis 9- by 15-Foot Anechoic Wind Tunnel. This paper presents aeroacoustic results at a takeoff/approach condition of Mach 0.20. Laser Doppler velocimeter results taken in a plane between the two rotors are also included to quantify the interaction flow field. The intention of the forward-swept design is to reduce the magnitude of the forward rotor tip vortex and/or wakes which impinge on the aft rotor, thus lowering the interaction tone levels. A reference model propeller (designated F31/A31), having aft-swept blades in both rotors, was also tested. Aeroelastic performance of the F39/A31 propeller was disappointing. The forward rotor tip region tended to untwist toward higher effective blade angles under load. The forward rotor also exhibited steady state blade flutter at speeds and loadings well below the design condition. The noise results, based on sideline acoustic data, show that the interaction tone levels were up to 8 dB higher with the forward-swept design compared to those for the reference propeller at similar operating conditions, with these tone level differences extending down to lower propeller speeds where flutter did not occur. These acoustic results are for a poorly-performing forward-swept propeller. It is quite possible that a properly-designed forward-swept propeller would exhibit substantial interaction tone level reductions.
NASA Astrophysics Data System (ADS)
Ancillotto, Leonardo; Russo, Danilo
2014-03-01
Bats are highly social mammals that often form large groups and represent good models to test the role played by individual status in shaping social relationships. Social cohesion relies on the ability of group and individual recognition, which is mediated by a range of sensorial cues. In this study, we selected the European free-tailed bat Tadarida teniotis as a model species to test the effects of familiarity, sex and age on aggressiveness and mutual tolerance. We hypothesize that T. teniotis is able to recognize group members and exhibit selective aggressiveness, and thus we predict fewer aggressive events and more amicable encounters between colony mates than between strangers. As female bats are generally more sociable and perform prolonged parental care to juveniles even after weaning, we hypothesize that sex and age of bats have significant influences on aggressive behaviours and thus predict that females will perform more amicable behaviours than males and that adults of both sexes will be less aggressive towards juveniles. Our results confirm that T. teniotis is able to discriminate between familiar and stranger individuals, showing higher rates of aggressive behaviours towards the latter. Females are more prone to exhibit amicable behaviours, particularly during same-sex interactions, while males show higher level of aggressiveness. Juveniles are subjected to fewer aggressive behaviours by adults of both sexes. Familiarity appears crucial for T. teniotis in determining the degree of aggressiveness during social interactions but the rate of aggressive events is also influenced by intrinsic individual factors such as sex and age.
Corrosion and Discharge Behaviors of Al-Mg-Sn-Ga-In in Different Solutions
NASA Astrophysics Data System (ADS)
Xiong, Hanqing; Yin, Xiang; Yan, Yang; Dai, Yilong; Fan, Sufeng; Qiao, Xueyan; Yu, Kun
2016-08-01
Al-0.5 wt.%Mg-0.08 wt.%Sn-0.05 wt.%Ga-0.05 wt.%In and Al-0.5 wt.%Mg-0.08 wt.%Sn-0.05 wt.%Ga alloys were prepared by melting, casting and cold rolling. Corrosion and discharge behaviors of the two experimental alloys were investigated by electrochemical measurement, self-corrosion rate measurement, air battery testing, and scanning electron microscopy. The results showed that Al-Mg-Sn-Ga-In alloy exhibited higher electrochemical activity than Al-Mg-Sn-Ga alloy in 2 M NaCl solution, while it showed lower electrochemical activity than Al-Mg-Sn-Ga alloy in 4 M NaOH solution. By comparison with the air battery based on Al-Mg-Sn-Ga alloy, the battery with Al-Mg-Sn-Ga-In alloy cannot exhibit better discharge performance in 4 M NaOH electrolyte. However, the performance of the air battery based on Al-Mg-Sn-Ga-In alloy was greatly improved due to the In-rich inclusions and the uniform corroded morphology in 2 M NaCl electrolyte. Thus, Al-Mg-Sn-Ga-In alloy was a good anode material for Al-air battery in 2 M NaCl electrolyte.
NASA Astrophysics Data System (ADS)
Zhou, Junli; Yu, Lin; Liu, Wei; Zhang, Xiaodan; Mu, Wei; Du, Xu; Zhang, Zhe; Deng, Yulin
2015-12-01
In recent years, thin, lightweight and flexible solid supercapacitors are of considerable interest as energy storage devices. Here we demonstrated all-solid supercapacitors (SSCs) with high electrochemical properties, low self-discharge characteristics based on manganese dioxide/polyaniline (MNW/PANI) coaxial nanowire networks. The synergistic effect of MnO2/PANI plus the unique coaxial nanostructure of the ultralong nanowires with a highly interconnected network effectively enhance the conductivity and capacitive performance of the SSCs device. The MNW/PANI composite with 62.5% MnO2 exhibits an outstanding areal specific capacitance reaching 346 mF/cm2 at 5 mV s-1 which is significant higher than most previously reported solid supercapacitors (15.3 mF/cm2-109 mF/cm2) and is close to the that of the best graphene films solid state supercapacitors (372 mF/cm2). In contrast, only 190 mF/cm2 of areal specific capacitance was obtained for the pure MnO2 NW network. The supercapacitors also exhibited low leakage current as small as 20.1 μA, which demonstrated that the MNW/PANI SSCs have great potential for practical applications.
Treeing phenomenon of thermoplastic polyethylene blends for recyclable cable insulation materials
NASA Astrophysics Data System (ADS)
Li, Lunzhi; Zhang, Kai; Zhong, Lisheng; Gao, Jinghui; Xu, Man; Chen, Guanghui; Fu, Mingli
2017-02-01
Owing to its good recyclability and low processing energy consumption, non-crosslinked polyethylene blends (e.g. LLDPE-HDPE blends) are considered as one of potential environmental-friendly substitutions for crosslinked polyethylene (XLPE) as cable insulation material. Although extensive work has been performed for measuring the basic dielectric properties, there is a lack of the investigations on the aging properties for such a material system, which hinders the evaluation of reliability and lifetime of the material for cable insulation. In this paper, we study the electric aging phenomenon of 0.7LLDPE-0.3HDPE blending material by investigating the treeing behavior, and its comparison with XLPE and LLDPE. Treeing tests show that the 0.7LLDPE-0.3HDPE blends have lower probability for treeing as well as smaller treeing dimensions. Further thermal analysis and microstructure study results suggest that the blends exhibit larger proportion of thick lamellae and higher crystallinity with homogeneously-distributed amorphous region, which is responsible for good anti-treeing performance. Our finding provides the evidence that the 0.7LLDPE-0.3HDPE blends exhibits better electric-aging-retardance properties than XLPE, which may result in a potential application for cable insulation.
You, Linna; He, Man; Chen, Beibei; Hu, Bin
2017-11-17
In this work, zeolitic imidazolate framework-8 (ZIF-8)/poly (methyl methacrylate-ethyleneglycol dimethacrylate) (MMA-EGDMA) composite monolith was in situ synthesized on stir bar by one-pot polymerization. Compared with the neat monolith, ZIF-8/poly(MMA-EGDMA) composite monolith has larger surface area and pore volume. It also exhibits higher extraction efficiency for target phytohormones than poly(MMA-EGDMA) monolith and commercial polyethylene glycol (PEG) coated stir bar. Based on it, a method of ZIF-8/poly(MMA-EGDMA) monolith coated stir bar sorptive extraction (SBSE)-high performance liquid chromatography-ultraviolet detection (HPLC-UV) was established for the analysis of five phytohormones in apple and pear samples. The developed method exhibited low limits of detection (0.11-0.51μg/L), wide linear range (0.5-500μg/L) and good recoveries (82.7-111%), which demonstrated good application potential of the ZIF-8/monolith coated stir bar in trace analysis of organic compounds. Copyright © 2017 Elsevier B.V. All rights reserved.
Di, Xin; Gohel, Suril; Kim, Eun H; Biswal, Bharat B
2013-01-01
There is a growing interest in studies of human brain networks using resting-state functional magnetic resonance imaging (fMRI). However, it is unclear whether and how brain networks measured during the resting-state exhibit comparable properties to brain networks during task performance. In the present study, we investigated meta-analytic coactivation patterns among brain regions based upon published neuroimaging studies, and compared the coactivation network configurations with those in the resting-state network. The strength of resting-state functional connectivity between two regions were strongly correlated with the coactivation strength. However, the coactivation network showed greater global efficiency, smaller mean clustering coefficient, and lower modularity compared with the resting-state network, which suggest a more efficient global information transmission and between system integrations during task performing. Hub shifts were also observed within the thalamus and the left inferior temporal cortex. The thalamus and the left inferior temporal cortex exhibited higher and lower degrees, respectively in the coactivation network compared with the resting-state network. These results shed light regarding the reconfiguration of the brain networks between task and resting-state conditions, and highlight the role of the thalamus in change of network configurations in task vs. rest.
Di, Xin; Gohel, Suril; Kim, Eun H.; Biswal, Bharat B.
2013-01-01
There is a growing interest in studies of human brain networks using resting-state functional magnetic resonance imaging (fMRI). However, it is unclear whether and how brain networks measured during the resting-state exhibit comparable properties to brain networks during task performance. In the present study, we investigated meta-analytic coactivation patterns among brain regions based upon published neuroimaging studies, and compared the coactivation network configurations with those in the resting-state network. The strength of resting-state functional connectivity between two regions were strongly correlated with the coactivation strength. However, the coactivation network showed greater global efficiency, smaller mean clustering coefficient, and lower modularity compared with the resting-state network, which suggest a more efficient global information transmission and between system integrations during task performing. Hub shifts were also observed within the thalamus and the left inferior temporal cortex. The thalamus and the left inferior temporal cortex exhibited higher and lower degrees, respectively in the coactivation network compared with the resting-state network. These results shed light regarding the reconfiguration of the brain networks between task and resting-state conditions, and highlight the role of the thalamus in change of network configurations in task vs. rest. PMID:24062654
Smart Fluid System Dually Responsive to Light and Electric Fields: An Electrophotorheological Fluid.
Yoon, Chang-Min; Jang, Yoonsun; Noh, Jungchul; Kim, Jungwon; Jang, Jyongsik
2017-10-24
Electrophotorheological (EPR) fluids, whose rheological activity is dually responsive to light and electric fields (E fields), is formulated by mixing photosensitive spiropyran-decorated silica (SP-sSiO 2 ) nanoparticles with zwitterionic lecithin and mineral oil. A reversible photorheological (PR) activity of the EPR fluid is developed via the binding and releasing mechanism of lecithin and merocyanine (MC, a photoisomerized form of SP) under ultraviolet (UV) and visible (VIS) light applications. Moreover, the EPR fluid exhibits an 8-fold higher electrorheological (ER) performance compared to the SP-sSiO 2 nanoparticle-based ER fluid (without lecithin) under an E field, which is attributed to the enhanced dielectric properties facilitated by the binding of the lecithin and SP molecules. Upon dual application of UV light and an E field, the EPR fluid exhibits high EPR performance (ca. 115.3 Pa) that far exceeds its separate PR (ca. 0.8 Pa) and ER (ca. 57.5 Pa) activities, because of the synergistic contributions of the PR and ER effects through rigid and fully connected fibril-like structures. Consequently, this study offers a strategy on formulation of dual-stimuli responsive smart fluid systems.
Reig, Marta; Bagdziunas, Gintautas; Ramanavicius, Arunas; Puigdollers, Joaquim; Velasco, Dolores
2018-06-21
Inspired by the excellent device performance of triindole-based semiconductors in electronic and optoelectronic devices, the relationship between the solid-state organization and the charge-transporting properties of an easily accessible series of triindole derivatives is reported herein. The vacuum-evaporated organic thin-film transistors (OTFTs) exhibited a non ideal behaviour with a double slope in the saturation curves. Moreover, the treatment of the gate insulator of the OTFT device with either a self-assembled monolayer (SAM) or a polymer controls the molecular growth and the film morphology of the semiconducting layer, as shown by X-ray diffraction (XRD) analyses, atomic force microscopy (AFM) and theoretical calculations. N-Trihexyltriindole exhibited the best device performance with hole mobilities up to 0.1 cm2 V-1 s-1 at the low VG range and up to 0.01 cm2 V-1 s-1 at high VG, as well as enhanced Ion/Ioff ratios of around 106. The results suggest that the non-ideal behaviour of the here studied OTFT devices could be related to the higher interfacial disorder in comparison to that in the bulk.
Kannan, M Bobby; Wallipa, O
2013-03-01
In this study, a magnesium alloy (AZ91) was coated with calcium phosphate using potentiostatic pulse-potential and constant-potential methods and the in vitro corrosion behaviour of the coated samples was compared with the bare metal. In vitro corrosion studies were carried out using electrochemical impedance spectroscopy and potentiodynamic polarization in simulated body fluid (SBF) at 37 °C. Calcium phosphate coatings enhanced the corrosion resistance of the alloy, however, the pulse-potential coating performed better than the constant-potential coating. The pulse-potential coating exhibited ~3 times higher polarization resistance than that of the constant-potential coating. The corrosion current density obtained from the potentiodynamic polarization curves was significantly less (~60%) for the pulse-deposition coating as compared to the constant-potential coating. Post-corrosion analysis revealed only slight corrosion on the pulse-potential coating, whereas the constant-potential coating exhibited a large number of corrosion particles attached to the coating. The better in vitro corrosion performance of the pulse-potential coating can be attributed to the closely packed calcium phosphate particles. Copyright © 2012 Elsevier B.V. All rights reserved.
Suarez-Sharp, Sandra; Delvadia, Poonam R; Dorantes, Angelica; Duan, John; Externbrink, Anna; Gao, Zongming; Ghosh, Tapash; Miksinski, Sarah Pope; Seo, Paul
2016-05-01
Dissolution profile comparisons are used by the pharmaceutical industry to assess the similarity in the dissolution characteristics of two formulations to decide whether the implemented changes, usually minor/moderate in nature, will have an impact on the in vitro/in vivo performance of the drug product. When similarity testing is applied to support the approval of lower strengths of the same formulation, the traditional approach for dissolution profile comparison is not always applicable for drug products exhibiting strength-dependent dissolution and may lead to incorrect conclusions about product performance. The objective of this article is to describe reasonable biopharmaceutic approaches for developing a biowaiver strategy for low solubility, proportionally similar/non-proportionally similar in composition immediate release drug products that exhibit strength-dependent dissolution profiles. The paths highlighted in the article include (1) approaches to address biowaiver requests, such as the use of multi-unit dissolution testing to account for sink condition differences between the higher and lower strengths; (2) the use of a single- vs. strength-dependent dissolution method; and (3) the use of single- vs. strength-dependent dissolution acceptance criteria. These approaches are cost- and time-effective and can avoid unnecessary bioequivalence studies.
Zhou, Junli; Yu, Lin; Liu, Wei; Zhang, Xiaodan; Mu, Wei; Du, Xu; Zhang, Zhe; Deng, Yulin
2015-12-08
In recent years, thin, lightweight and flexible solid supercapacitors are of considerable interest as energy storage devices. Here we demonstrated all-solid supercapacitors (SSCs) with high electrochemical properties, low self-discharge characteristics based on manganese dioxide/polyaniline (MNW/PANI) coaxial nanowire networks. The synergistic effect of MnO2/PANI plus the unique coaxial nanostructure of the ultralong nanowires with a highly interconnected network effectively enhance the conductivity and capacitive performance of the SSCs device. The MNW/PANI composite with 62.5% MnO2 exhibits an outstanding areal specific capacitance reaching 346 mF/cm(2) at 5 mV s(-1) which is significant higher than most previously reported solid supercapacitors (15.3 mF/cm(2)-109 mF/cm(2)) and is close to the that of the best graphene films solid state supercapacitors (372 mF/cm(2)). In contrast, only 190 mF/cm(2) of areal specific capacitance was obtained for the pure MnO2 NW network. The supercapacitors also exhibited low leakage current as small as 20.1 μA, which demonstrated that the MNW/PANI SSCs have great potential for practical applications.
Hsieh, Shulan; Wu, Mengyao; Tang, Chien-Hui
2016-01-01
This study aimed to differentiate whether or not older adults are more prone to distraction or conflict, as induced by irrelevant and conflict no-go stimuli (irNOGO and cfNOGO), respectively. This study also aimed to determine whether or not older adults would devote more effort to withholding a no-go trial in the higher-control demand condition (20% no-go trials’ probability) as compared to the lower-control demand condition (50 and 80% no-go trials’ probability). A total of 96 individuals were recruited, and each of the three no-go trials’ probability conditions included 32 participants (16 younger adults and 16 older adults). Both behavioral and event-related potential (ERP) data were measured. The behavioral results showed that the older adults performed more poorly than the younger adults for the go trials, as reflected by slower reaction times (RTs) and higher numbers of omission errors in the go trials. In contrast, in the no-go trials, the older adults counter-intuitively exhibited similar behavioral performance (i.e., equivalent commission errors) as compared to the younger adults. The ERP data further showed that the older adults (but not the younger adults) exhibited larger P3 peak amplitudes for the irNOGO than cfNOGO trials. Yet, on the other hand, the older adults performed more poorly (i.e., had more commission errors) in the cfNOGO than irNOGO trials. These results seem to suggest that the older adults recruited more control processes in order to conquer the commitment of responses in the no-go trials, especially in the irNOGO trials. This age-related compensatory response of recruiting more control processes was specifically seen in the 20% no-go trial probability condition. This study therefore provides a deeper understanding into how older adults adopt strategies for performing the go/no-go task such as devoting more control processes to inhibiting the irNOGO trials compared to the cfNOGO trials in order to cope with their deficient inhibition ability. PMID:26779012
Takahashi, Motomichi; McCartney, Elinor; Knox, Anne; Francesch, Maria; Oka, Kentaro; Wada, Kaoruko; Ideno, Marie; Uno, Koji; Kozłowski, Krzysztof; Jankowski, Jan; Gracia, Marta I; Morales, Joaquin; Kritas, Spyridon K; Esteve-Garcia, Enric; Kamiya, Shigeru
2018-06-01
The objective of this study was to assess the effects of a probiotic strain Clostridium butyricumMIYAIRI 588 (CBM588) on broiler and weaned piglet health and zootechnical performance. Five field studies were carried out in broilers and five in weaned piglets under European feed additive guidelines. Each study followed a randomized blocked design with two treatments: Control (basal diet) and CBM588 supplemented groups. The zootechnical performance parameters selected were body weight, daily gain, feed intake and feed efficiency (feed:gain). Broilers fed diets with CBM588 gained significantly more weight (+2%, p < .001) and exhibited significantly better feed efficiency (-1.6%, p < .001) in comparison with Controls. Similarly, analysis of pooled data of weaned piglet trials showed that CBM588-fed piglets were significantly heavier than Controls (+2.6%, p = .014), exhibited significantly higher mean daily gain (+4.7%; p = .004), and significantly improved feed efficiency (-4.2%, p = .001). In addition to the zootechnical efficacy studies, the preventive effect of CBM588 on necrotic enteritis (NE) was assessed in a natural challenge model in broilers where CBM588 reduced the incidence and severity of NE lesions. These data indicate the potential of CBM588 to improve broiler and weaned piglet zootechnical performance, and to make a positive contribution to animal health. © 2018 Japanese Society of Animal Science.
High Performance Li4Ti5O12/Si Composite Anodes for Li-Ion Batteries
Chen, Chunhui; Agrawal, Richa; Wang, Chunlei
2015-01-01
Improving the energy capacity of spinel Li4Ti5O12 (LTO) is very important to utilize it as a high-performance Li-ion battery (LIB) electrode. In this work, LTO/Si composites with different weight ratios were prepared and tested as anodes. The anodic and cathodic peaks from both LTO and silicon were apparent in the composites, indicating that each component was active upon Li+ insertion and extraction. The composites with higher Si contents (LTO:Si = 35:35) exhibited superior specific capacity (1004 mAh·g−1) at lower current densities (0.22 A·g−1) but the capacity deteriorated at higher current densities. On the other hand, the electrodes with moderate Si contents (LTO:Si = 50:20) were able to deliver stable capacity (100 mAh·g−1) with good cycling performance, even at a very high current density of 7 A·g−1. The improvement in specific capacity and rate performance was a direct result of the synergy between LTO and Si; the former can alleviate the stresses from volumetric changes in Si upon cycling, while Si can add to the capacity of the composite. Therefore, it has been demonstrated that the addition of Si and concentration optimization is an easy yet an effective way to produce high performance LTO-based electrodes for lithium-ion batteries. PMID:28347076
The effect of microstructure on the performance of Li-ion porous electrodes
NASA Astrophysics Data System (ADS)
Chung, Ding-Wen
By combining X-ray tomography data and computer-generated porous elec- trodes, the impact of microstructure on the energy and power density of lithium-ion batteries is analyzed. Specifically, for commercial LiMn2O4 electrodes, results indi- cate that a broad particle size distribution of active material delivers up to two times higher energy density than monodisperse-sized particles for low discharge rates, and a monodisperse particle size distribution delivers the highest energy and power density for high discharge rates. The limits of traditionally used microstructural properties such as tortuosity, reactive area density, particle surface roughness, morphological anisotropy were tested against degree of particle size polydispersity, thus enabling the identification of improved porous architectures. The effects of critical battery processing parameters, such as layer compaction and carbon black, were also rationalized in the context of electrode performance. While a monodisperse particle size distribution exhibits the lowest possible tortuosity and three times higher surface area per unit volume with respect to an electrode conformed of a polydisperse particle size distribution, a comparable performance can be achieved by polydisperse particle size distributions with degrees of polydispersity less than 0.2 of particle size standard deviation. The use of non-spherical particles raises the tortuosity by as much as three hundred percent, which considerably lowers the power performance. However, favorably aligned particles can maximize power performance, particularly for high discharge rate applications.
Pang, Xu; Fu, Shi-Jian; Zhang, Yao-Guang
2016-09-01
Individual variation in growth, metabolism and swimming performance, their possible interrelationships, and the effects of temperature were investigated in 30 juvenile common carp (Cyprinus carpio) at two acclimation temperatures (15 and 25°C). We measured body mass, critical swimming speed (Ucrit), resting metabolic rate (RMR), active metabolic rate (AMR) and metabolic scope (MS) twice (28days apart) in both temperature groups. Fish acclimated to 25°C showed a 204% higher specific growth rate (SGR) than those acclimated to 15°C due to a 97% higher feeding rate (FR) and a 46% higher feed efficiency (FE). Among individuals, SGR was positively correlated with the FR and FE at both low and high temperatures. All measured variables (Ucrit, RMR and AMR) related to swimming except MS showed a high repeatability after adjusting for body mass (mass-independent). Fish acclimated to 25°C had a 40% higher Ucrit compared with 15°C acclimated fish, which was at least partially due to an improved metabolic capacity. AMR showed a 97% increase, and MS showed a 104% parallel increase with the higher acclimation temperature. Residual (mass-independent) Ucrit was positively correlated with residual RMR, AMR and MS, except for the residual RMR at high temperature. When acclimated to the lower temperature, both the residual and absolute Ucrit were negatively correlated with FR and FE and, hence, with SGR, suggesting a functional trade-off between growth and locomotion in fish acclimated to low temperatures. However, when acclimated to the higher temperature, this trade-off no longer existed; absolute Ucrit was positively correlated with SGR because individuals with rapid growth exhibited greatly increased body mass. The higher metabolic capacity at 25°C showed a positive effect on both swimming performance and growth rate (because of improved digestive efficiency) under the high-temperature condition, which we did not anticipate. Overall, these results indicate that temperature alters the relationship between growth and swimming performance of juvenile common carp. This change may be an adaptive strategy to seasonal temperature variation during their life history. Copyright © 2016 Elsevier Inc. All rights reserved.
Yang, Lu; Zhang, Yijia; Chu, Mi; Deng, Wenfang; Tan, Yueming; Ma, Ming; Su, Xiaoli; Xie, Qingji; Yao, Shuozhuo
2014-02-15
We report here on the facile fabrication of network film electrodes with ultrathin Au nanowires (AuNWs) and their electrochemical applications for high-performance nonenzymatic glucose sensing and glucose/O2 fuel cell under physiological conditions (pH 7.4, containing 0.15M Cl(-)). AuNWs with an average diameter of ~7 or 2 nm were prepared and can self-assemble into robust network films on common electrodes. The network film electrode fabricated with 2-nm AuNWs exhibits high sensitivity (56.0 μA cm(-2)mM(-1)), low detection limit (20 μM), short response time (within 10s), excellent selectivity, and good storage stability for nonenzymatic glucose sensing. Glucose/O2 fuel cells were constructed using network film electrodes as the anode and commercial Pt/C catalyst modified glassy carbon electrode as cathode. The glucose/O2 fuel cell using 2-nm AuNWs as anode catalyst output a maximum power density of is 126 μW cm(-2), an open-circuit cell voltage of 0.425 V, and a short-circuit current density of 1.34 mA cm(-2), respectively. Due to the higher specific electroactive surface area of 2-nm AuNWs, the network film electrode fabricated with 2-nm AuNWs exhibited higher electrocatalytic activity toward glucose oxidation than the network film electrode fabricated with 7-nm AuNWs. The network film electrode exhibits high electrocatalytic activity toward glucose oxidation under physiological conditions, which is helpful for constructing implantable electronic devices. © 2013 Elsevier B.V. All rights reserved.
Laccase mediated-synthesis of hydroxycinnamoyl-peptide from ferulic acid and carnosine.
Aljawish, Abdulhadi; Chevalot, Isabelle; Madad, Nidal; Paris, Cédric; Muniglia, Lionel
2016-06-10
Carnosine (CAR) dipeptide was functionalized with ferulic acid (FA) as substrate using laccase from Myceliophtora thermophila as biocatalyst. The enzymatic reaction was performed in aqueous medium under mild conditions (pH 7.5, 30°C) as an eco-friendly procedure. Results showed that this enzymatic process led to the synthesis of two new derivatives (P1, P2), from the coupling between CAR and FA derived products. Conditions allowing a high production of P1, P2 derivatives were determined with an optimal ratio of (FA: CAR) of (1:1.6) at optimal time reaction of 8h. Under these optimal conditions, the coupling between CAR and FA-products was demonstrated, resulting in the decrease of -NH2 groups (almost 50%) as quantified via derivatization. Due to the presence of FA in the structure of these new derivatives, they exhibited higher hydrophobic property than carnosine. Structural analyses by mass spectrometry showed that P1 and P2 (FA-CAR) derivatives exhibited the same molecular mass (MM 770g/mol) containing one CAR-molecule and three FA-molecules but with different chemical structures. Furthermore, these derivatives presented improved antioxidant (almost 10 times) and anti-proliferative (almost 18 times) properties in comparison with CAR. Moreover, P1 derivative exhibited higher antioxidant and anti-proliferative activities than P2 derivative, which confirmed the different structures of P1 and P2. These results suggested that the oxidized phenols coupling with carnosine is a promising process to enhance the CAR-properties. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Peng
2012-01-01
Background Universal nuclear protein-coding locus (NPCL) markers that are applicable across diverse taxa and show good phylogenetic discrimination have broad applications in molecular phylogenetic studies. For example, RAG1, a representative NPCL marker, has been successfully used to make phylogenetic inferences within all major osteichthyan groups. However, such markers with broad working range and high phylogenetic performance are still scarce. It is necessary to develop more universal NPCL markers comparable to RAG1 for osteichthyan phylogenetics. Methodology/Principal Findings We developed three long universal NPCL markers (>1.6 kb each) based on single-copy nuclear genes (KIAA1239, SACS and TTN) that possess large exons and exhibit the appropriate evolutionary rates. We then compared their phylogenetic utilities with that of the reference marker RAG1 in 47 jawed vertebrate species. In comparison with RAG1, each of the three long universal markers yielded similar topologies and branch supports, all in congruence with the currently accepted osteichthyan phylogeny. To compare their phylogenetic performance visually, we also estimated the phylogenetic informativeness (PI) profile for each of the four long universal NPCL markers. The PI curves indicated that SACS performed best over the whole timescale, while RAG1, KIAA1239 and TTN exhibited similar phylogenetic performances. In addition, we compared the success of nested PCR and standard PCR when amplifying NPCL marker fragments. The amplification success rate and efficiency of the nested PCR were overwhelmingly higher than those of standard PCR. Conclusions/Significance Our work clearly demonstrates the superiority of nested PCR over the conventional PCR in phylogenetic studies and develops three long universal NPCL markers (KIAA1239, SACS and TTN) with the nested PCR strategy. The three markers exhibit high phylogenetic utilities in osteichthyan phylogenetics and can be widely used as pilot genes for phylogenetic questions of osteichthyans at different taxonomic levels. PMID:22720083
Hysong, Sylvia J; Best, Richard G; Pugh, Jacqueline A
2007-01-01
Background The Department of Veterans Affairs (VA) mandated the system-wide implementation of clinical practice guidelines (CPGs) in the mid-1990s, arming all facilities with basic resources to facilitate implementation; despite this resource allocation, significant variability still exists across VA facilities in implementation success. Objective This study compares CPG implementation strategy patterns used by high and low performing primary care clinics in the VA. Research Design Descriptive, cross-sectional study of a purposeful sample of six Veterans Affairs Medical Centers (VAMCs) with high and low performance on six CPGs. Subjects One hundred and two employees (management, quality improvement, clinic personnel) involved with guideline implementation at each VAMC primary care clinic. Measures Participants reported specific strategies used by their facility to implement guidelines in 1-hour semi-structured interviews. Facilities were classified as high or low performers based on their guideline adherence scores calculated through independently conducted chart reviews. Findings High performing facilities (HPFs) (a) invested significantly in the implementation of the electronic medical record and locally adapting it to provider needs, (b) invested dedicated resources to guideline-related initiatives, and (c) exhibited a clear direction in their strategy choices. Low performing facilities exhibited (a) earlier stages of development for their electronic medical record, (b) reliance on preexisting resources for guideline implementation, with little local adaptation, and (c) no clear direction in their strategy choices. Conclusion A multifaceted, yet targeted, strategic approach to guideline implementation emphasizing dedicated resources and local adaptation may result in more successful implementation and higher guideline adherence than relying on standardized resources and taxing preexisting channels. PMID:17355583
Guo, Jin-Zhi; Wang, Peng-Fei; Wu, Xing-Long; Zhang, Xiao-Hua; Yan, Qingyu; Chen, Hong; Zhang, Jing-Ping; Guo, Yu-Guo
2017-09-01
Sodium-ion batteries (SIBs) are still confronted with several major challenges, including low energy and power densities, short-term cycle life, and poor low-temperature performance, which severely hinder their practical applications. Here, a high-voltage cathode composed of Na 3 V 2 (PO 4 ) 2 O 2 F nano-tetraprisms (NVPF-NTP) is proposed to enhance the energy density of SIBs. The prepared NVPF-NTP exhibits two high working plateaux at about 4.01 and 3.60 V versus the Na + /Na with a specific capacity of 127.8 mA h g -1 . The energy density of NVPF-NTP reaches up to 486 W h kg -1 , which is higher than the majority of other cathode materials previously reported for SIBs. Moreover, due to the low strain (≈2.56% volumetric variation) and superior Na transport kinetics in Na intercalation/extraction processes, as demonstrated by in situ X-ray diffraction, galvanostatic intermittent titration technique, and cyclic voltammetry at varied scan rates, the NVPF-NTP shows long-term cycle life, superior low-temperature performance, and outstanding high-rate capabilities. The comparison of Ragone plots further discloses that NVPF-NTP presents the best power performance among the state-of-the-art cathode materials for SIBs. More importantly, when coupled with an Sb-based anode, the fabricated sodium-ion full-cells also exhibit excellent rate and cycling performances, thus providing a preview of their practical application. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
The effects of anxious responding on mental arithmetic and lexical decision task performance.
Hopko, Derek R; McNeil, Daniel W; Lejuez, C W; Ashcraft, Mark H; Eifert, Georg H; Riel, Jim
2003-01-01
Anxiety-related responding and skill deficits historically are associated with performance-based problems such as mathematics anxiety, yet the relative contribution of these variables to substandard performance remains poorly understood. Utilizing a 7% carbon dioxide (CO2) gas to induce anxiety, the present study examined the impact of anxious responding on two performance tasks, mental arithmetic and lexical decision. Independent variables included math anxiety group, gender, and gas condition. Dependent variables included task performance and physiological and self-report indices of anxiety. A total of 64 university undergraduate students participated. Physiological and verbal-report measures of anxiety supported the utility of 7% carbon dioxide-enriched air as an anxiety-inducing stimulus. Behavioral disruption on performance tasks, however, did not differ as a function of carbon dioxide inhalation. Performance did differ as a function of math anxiety. High math anxious individuals generally exhibited higher error rates on mathematical tasks, particularly on tasks designed to measure advanced math skill and those requiring working memory resources. These findings are discussed with reference to processing efficiency theory, discordance among anxiety response systems, and the intricacies associated with skill measurement.
Hamiltonian structures for systems of hyperbolic conservation laws
NASA Astrophysics Data System (ADS)
Olver, Peter J.; Nutku, Yavuz
1988-07-01
The bi-Hamiltonian structure for a large class of one-dimensional hyberbolic systems of conservation laws in two field variables, including the equations of gas dynamics, shallow water waves, one-dimensional elastic media, and the Born-Infeld equation from nonlinear electrodynamics, is exhibited. For polytropic gas dynamics, these results lead to a quadri-Hamiltonian structure. New higher-order entropy-flux pairs (conservation laws) and higher-order symmetries are exhibited.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferris, F. Grant
2003-06-01
A suite of experiments were performed to investigate the partitioning of Sr2+ (to mimic the radionuclide 90Sr) between calcite and artificial groundwater in response to the hydrolysis of urea by Bacillus pasteurii under conditions that simulate in-situ aquifer conditions. Experiments were performed at 10, 15 and 20 C over 7 days in microcosms inoculated with B. pasteurii ATCC 11859 and containing an artificial groundwater and urea (AGW), and an AGW including a Sr contaminant treatment. During the experiments ammonium concentration from bacterial urea hydrolysis increased asymptotically, and derived rate constants (kurea) that were between 13 and 10 times greater atmore » 20 C, than at 15 and 10 C. Calcite precipitation was initiated after similar amounts of urea had been hydrolysed ({approx} 4.0 mmoles L-1) and a similar critical saturation state (mean Scritical = 53, variation = 20%) had been reached, independent of temperature and Sr treatment. Because of the positive relationship between urea hydrolysis rate and temperature, precipitation began by the end of day 1 at 20 C, and between days 1 and 2 at 15 and 10 C. The rate of calcite precipitation increased with, and was fundamentally controlled by S, irrespective of temperature, which connects the dissimilar patterns of urea hydrolysis and dissolved concentrations which are exhibited at the different experiments. The presence of Sr slightly slowed calcite precipitation rates at equivalent values of S, which may reflect the screening of active nucleation and crystal growth sites by Sr. Instantaneous heterogeneous partitioning coefficients (DSr) exhibited a positive association with calcite precipitation rates, but were greater at higher experimental temperatures at equivalent precipitation rates (20 C mean = 0.46; 15 C mean = 0.24; 10 C mean = 0.29). This is likely to reflect the large ionic radius of the Sr ion, which cannot fully co-ordinate relative to ions smaller than Ca at equilibrium conditions, but i s increasingly co-precipitated as all ions are indiscriminately incorporated at higher precipitation rates. The temperature dependence is likely to reflect the higher miscibility of ions in minerals, commonly observed in geochemical systems at higher temperatures.« less
Kimoto, Hideyuki; Yoshimune, Kazuaki; Matsuyma, Hidetoshi; Yumoto, Isao
2012-01-01
A psychrotolerant bacterium, strain T-3 (identified as Psychrobacter piscatorii), that exhibited an extraordinarily high catalase activity was isolated from the drain pool of a plant that uses H2O2 as a bleaching agent. Its cell extract exhibited a catalase activity (19,700 U·mg protein−1) that was higher than that of Micrococcus luteus used for industrial catalase production. Catalase was approximately 10% of the total proteins in the cell extract of the strain. The catalase (PktA) was purified homogeneously by only two purification steps, anion exchange and hydrophobic chromatographies. The purified catalase exhibited higher catalytic efficiency and higher sensitivity of activity at high temperatures than M. luteus catalase. The deduced amino acid sequence showed the highest homology with catalase of Psycrobacter cryohalolentis, a psychrotolelant bacterium obtained from Siberian permafrost. These findings suggest that the characteristics of the PktA molecule reflected the taxonomic relationship of the isolate as well as the environmental conditions (low temperatures and high concentrations of H2O2) under which the bacterium survives. Strain T-3 efficiently produces a catalase (PktA) at a higher rate than Exiguobacterium oxidotolerans, which produces a very strong activity of catalase (EktA) at a moderate rate, in order to adapt to high concentration of H2O2. PMID:22408420
Effect of morphology and solvent on two-photon absorption of nano zinc oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kavitha, M.K.; Haripadmam, P.C.; Gopinath, Pramod
Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novelmore » precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.« less
Microstructural optimization of solid-state sintered silicon carbide
NASA Astrophysics Data System (ADS)
Vargas-Gonzalez, Lionel R.
Silicon carbide armor, manufactured through solid-state sintering, liquid-phase sintering, and hot-pressing, is being used by the United States Armed Forces for personal and vehicle protection. There is a lack of consensus, however, on which process results in the best-performing ballistic armor. Previous studies have shown that hot-pressed ceramics processed with secondary oxide and/or rare earth oxides, which exhibit high fracture toughness, perform well in handling and under ballistic impact. This high toughness is due to the intergranular nature of the fracture, creating a tortuous path for cracks and facilitating crack deflection and bridging. However, it has also been shown that higher-hardness sintered SiC materials might perform similarly or better to hot-pressed armor, in spite of the large fracture toughness deficit, if the microstructure (density, grain size, purity) of these materials are improved. In this work, the development of theoretically-dense, clean grain boundary, high hardness solid-state sintered silicon carbide (SiC) armor was pursued. Boron carbide and graphite (added as phenolic resin to ensure the carbon is finely dispersed throughout the microstructure) were used as the sintering aids. SiC batches between 0.25--4.00 wt.% carbon were mixed and spray dried. Cylindrical pellets were pressed at 13.7 MPa, cold-isostatically pressed (CIP) at 344 MPa, sintered under varying sintering soaking temperatures and heating rates, and varying post hot-isostatic pressing (HIP) parameters. Carbon additive amounts between 2.0--2.5 wt.% (based on the resin source), a 0.36 wt.% B4C addition, and a 2050°C sintering soak yielded parts with high sintering densities (˜95.5--96.5%) and a fine, equiaxed microstructure (d50 = 2.525 mum). A slow ramp rate (10°C/min) prevented any occurrence of abnormal grain growth. Post-HIPing at 1900°C removed the remaining closed porosity to yield a theoretically-dense part (3.175 g/cm3, according to rule of mixtures). These parts exhibited higher density and finer microstructure than a commercially-available sintered SiC from Saint-Gobain (Hexoloy Enhanced, 3.153 g/cm3 and d50 = 4.837 mum). Due to the optimized microstructure, Verco SiC parts exhibited the highest Vickers (2628.30 +/- 44.13 kg/mm 2) and Knoop (2098.50 +/- 24.8 kg/mm2) hardness values of any SiC ceramic, and values equal to those of the "gold standard" hot-pressed boron carbide (PAD-B4C). While the fracture toughness of hot-pressed SiC materials (˜4.5 MPa m ) are almost double that of Verco SiC (2.4 MPa m ), Verco SiC is a better performing ballistic product, implying that the higher hardness of the theoretically-dense, clean-grain boundary, fine-grained SiC is the defining mechanical property for optimization of ballistic behavior.
Evaluate humidity sensing properties of novel TiO{sub 2}–WO{sub 3} composite material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, Wang-De; Department of Center for General Education, St. Mary's Junior College of Medicine, Nursing and Management, Yilan 26644 Taiwan, ROC; Lai, De-Sheng
2013-10-15
Graphical abstract: TiO{sub 2}–WO{sub 3} (1:1) showed better humidity sensing properties than others within the range of 12–90% relative humidity (RH), the response and recovery time were about 20 s and 160 s, respectively. Compared to the previous studies, the prepared sensor exhibits higher sensitivity (S = 451) and the low hysteresis value was around 0.13% at 32% RH. - Highlights: • Novel TiO{sub 2}–WO{sub 3} composite material was prepared for humidity sensor. • The sensor exhibits higher sensitivity (S = 451). • Low hysteresis value was around 0.13% at 32% RH. - Abstract: A novel TiO{sub 2}–WO{sub 3} compositemore » material was prepared using a different proportion of TiO{sub 2} and WO{sub 3} to that investigated in previous studies. The obtained mesoporous material was characterized using X-ray diffraction, Fourier transform infrared spectrometry, transmission electron microscopy, energy dispersive X-ray spectroscopy, and N{sub 2} adsorption-desorption techniques. The humidity-sensing properties were measured using an inductance, capacitance and resistance analyzer. The results demonstrated that the TiO{sub 2}–WO{sub 3} sample with a ratio of 1:1 showed better humidity sensing properties. Compared to previous studies, the prepared sensor exhibited higher sensitivity (S = 451) and the lower hysteresis value was around 0.13% at 32% RH. Complex impedance analysis indicated that the enhanced humidity sensitivity was probably due to spherical Brunauer–Emmett–Teller surface area and the hetero-junction between TiO{sub 2}–WO{sub 3} thin films, while the impedance varied about three orders of magnitude. Our results demonstrated the potential application of TiO{sub 2}–WO{sub 3} composite for fabricating high performance humidity sensors.« less
Collar, Concha; Conte, Paola; Fadda, Costantino; Piga, Antonio
2015-10-01
The capability of different gluten-free (GF) basic formulations made of flour (rice, amaranth and chickpea) and starch (corn and cassava) blends, to make machinable and viscoelastic GF-doughs in absence/presence of single hydrocolloids (guar gum, locust bean and psyllium fibre), proteins (milk and egg white) and surfactants (neutral, anionic and vegetable oil) have been investigated. Macroscopic (high deformation) and macromolecular (small deformation) mechanical, viscometric (gelatinization, pasting, gelling) and thermal (gelatinization, melting, retrogradation) approaches were performed on the different matrices in order to (a) identify similarities and differences in GF-doughs in terms of a small number of rheological and thermal analytical parameters according to the formulations and (b) to assess single and interactive effects of basic ingredients and additives on GF-dough performance to achieve GF-flat breads. Larger values for the static and dynamic mechanical characteristics and higher viscometric profiles during both cooking and cooling corresponded to doughs formulated with guar gum and Psyllium fibre added to rice flour/starch and rice flour/corn starch/chickpea flour, while surfactant- and protein-formulated GF-doughs added to rice flour/starch/amaranth flour based GF-doughs exhibited intermediate and lower values for the mechanical parameters and poorer viscometric profiles. In addition, additive-free formulations exhibited higher values for the temperature of both gelatinization and retrogradation and lower enthalpies for the thermal transitions. Single addition of 10% of either chickpea flour or amaranth flour to rice flour/starch blends provided a large GF-dough hardening effect in presence of corn starch and an intermediate effect in presence of cassava starch (chickpea), and an intermediate reinforcement of GF-dough regardless the source of starch (amaranth). At macromolecular level, both chickpea and amaranth flours, singly added, determined higher values of the storage modulus, being strengthening effects more pronounced in presence of corn starch and cassava starch, respectively. © The Author(s) 2014.
Wang, Baolong; Hong, Lihua; Li, Yunfeng; Zhao, Liang; Zhao, Chengji; Na, Hui
2017-09-20
Nafion/SNPAEK-x composite membranes were prepared by blending raw Nafion and synthesized side-chain-type naphthalene-based sulfonated poly(arylene ether ketone) with a sulfonation degree of 1.35 (SNPAEK-1.35). The incorporation of SNPAEK-1.35 polymer with ion exchange capacity (IEC) of 2.01 mequiv·g -1 into a Nafion matrix has the property enhancement effects, such as increasing IECs, improving proton conductivity, enhancing mechanical properties, reducing methanol crossover, and improving single cell performance of Nafion. Morphology studies show that Nafion/SNPAEK-x composite membranes exhibit a well-defined microphase separation structure depending on the contents of SNPAEK-1.35 polymer. Among them, Nafion/SNPAEK-7.5% with a bicontinuous morphology exhibits the best comprehensive properties. For example, it shows the highest proton conductivities of 0.092 S cm -1 at 25 °C and 0.163 S cm -1 at 80 °C, which are higher than those of recast Nafion with 0.073 S cm -1 at 25 °C and 0.133 S cm -1 at 80 °C, respectively. Nafion/SNPAEK-5.0% and Nafion/SNPAEK-7.5% membranes display an open circuit voltage of 0.77 V and a maximum power density of 47 mW cm -2 at 80 °C, which are much higher than those of recast Nafion of 0.63 V and 24 mW cm -2 under the same conditions. Nafion/SNPAEK-5.0% membrane also has comparable tensile strength (12.7 MPa) to recast Nafion (13.7 MPa), and higher Young's modulus (330 MPa) than that of recast Nafion (240 MPa). By combining their high proton conductivities, comparable mechanical properties, and good single cell performance, Nafion/SNPAEK-x composite membranes have the potential to be polymer electrolyte materials for direct methanol fuel cell applications.
Physicochemical, melissopalynological and antioxidant properties of artisanal honeys from Lebanon.
Jaafar, Katherine; Haidar, Janay; Kuraydiyyah, Sawsan; Ghaddar, Tarek; Knio, Khouzama; Ismail, Baraem; Toufeili, Imad
2017-07-01
Sixteen honeydew and 15 floral honeys from Lebanon were analyzed for pollen spectra and physicochemical parameters. A total of 37 families and 67 taxa were recorded with the honeybees producing honeydew honey exhibiting a more diverse foraging behavior than those making floral honeys. The honeydew and floral honeys exhibited differences in moisture content, pH, electrical conductivity, color, protein and Maillard reaction products. The honeydew honeys contained more total phenols, had higher antioxidant contents, and displayed higher antioxidant capacities than the floral samples in the Trolox equivalent antioxidant capacity, oxygen radical absorbance capacity, inhibition of superoxide dismutase activity and protection of red blood cells against hemolysis assays. The honey samples exhibited higher antioxidant capacities, in the aforementioned assays, than their corresponding methanol-extractable phenol fractions although the differences did not reach statistical significance in the floral samples. The relative antioxidant capacity indices which integrate measures of antioxidant capacity from the different assays of the honey samples and their corresponding extracts exhibited similar patterns ( r = 0.9774, 0.9937) thereby indicating that the antioxidative behavior of the entire honeys is mirrored by their methanol-extractable phenolic fractions.
Zhang, Zhi-Peng; Ma, Jun; He, Yuan-Yuan; Lu, Jun; Ren, Di-Feng
2018-06-01
Diospyros lotus, a member of the Ebenaceae family, has long been used as a traditional sedative in China. In this study, the antioxidant and hypoglycemic effects of non-fermented and microorganism-fermented D. lotus were explored. The total phenolic and vitamin C contents of microorganism-fermented D. lotus for 24-72 h were less than those of non-fermented. High-performance liquid chromatography showed that the tannic, catechinic, and ellagic acid contents increased significantly upon fermentation for 24 h. D. lotus fermented with Microbacterium flavum for 24 h exhibited the highest DPPH radical scavenging activity (IC 50 = 4.18 μg mL -1 ), and the highest ABTS radical scavenging activity was exhibited at 72 h of fermentation (IC 50 = 29.18 μg mL -1 ). The anti-α-glucosidase activity of fermented D. lotus was higher (2.06-4.73-fold) than that of non-fermented one. Thus, fermented D. lotus is a useful source of natural antioxidants, and a valuable food, exhibiting antioxidant and hypoglycemic properties. Copyright © 2018 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.
Bahali, K; Tahiroglu, A Y; Avci, A; Seydaoglu, G
2011-12-01
To assess the levels of psychological symptoms in the parents of children with school refusal and determine the familial risk factors in its development. This study was performed on 55 pairs of parents who had children exhibiting school refusal and were compared with a control group. A socio-demographic data form, the Beck Depression Inventory, the State-Trait Anxiety Inventory, and the Symptom Checklist-90 revised were applied to these parents. Parents of the school refusal group had higher anxiety and depression scores than the controls. Among the risk factors for school refusal, physical punishment by the parents, a history of organic disease in the parents or children, and a history of psychiatric disorders in the parents or other relatives were found to be significant. Depending on genetic and environmental factors, parents with psychiatric disorders appeared to be associated with development of psychiatric disorders in their children. Moreover, psychiatric disorders in parents negatively affected the treatment of their children and adolescents who exhibited school refusal. It is therefore vital to treat psychiatric disorders of parents with the children having psychiatric disorders, and thus increase parent participation in their children's therapeutic process.
Global-scale modes of surface temperature variability on interannual to century timescales
NASA Technical Reports Server (NTRS)
Mann, Michael E.; Park, Jeffrey
1994-01-01
Using 100 years of global temperature anomaly data, we have performed a singluar value decomposition of temperature variations in narrow frequency bands to isolate coherent spatio-temporal modes of global climate variability. Statistical significance is determined from confidence limits obtained by Monte Carlo simulations. Secular variance is dominated by a globally coherent trend; with nearly all grid points warming in phase at varying amplitude. A smaller, but significant, share of the secular variance corresponds to a pattern dominated by warming and subsequent cooling in the high latitude North Atlantic with a roughly centennial timescale. Spatial patterns associated with significant peaks in variance within a broad period range from 2.8 to 5.7 years exhibit characteristic El Nino-Southern Oscillation (ENSO) patterns. A recent transition to a regime of higher ENSO frequency is suggested by our analysis. An interdecadal mode in the 15-to-18 years period and a mode centered at 7-to-8 years period both exhibit predominantly a North Atlantic Oscillation (NAO) temperature pattern. A potentially significant decadal mode centered on 11-to-12 years period also exhibits an NAO temperature pattern and may be modulated by the century-scale North Atlantic variability.
Peng, Tingting; Zhang, Xuejuan; Huang, Ying; Zhao, Ziyu; Liao, Qiuying; Xu, Jing; Huang, Zhengwei; Zhang, Jiwen; Wu, Chuan-yu; Pan, Xin; Wu, Chuanbin
2017-01-01
An optimum carrier rugosity is essential to achieve a satisfying drug deposition efficiency for the carrier based dry powder inhalation (DPI). Therefore, a non-organic spray drying technique was firstly used to prepare nanoporous mannitol with small asperities to enhance the DPI aerosolization performance. Ammonium carbonate was used as a pore-forming agent since it decomposed with volatile during preparation. It was found that only the porous structure, and hence the specific surface area and carrier density were changed at different ammonium carbonate concentration. Furthermore, the carrier density was used as an indication of porosity to correlate with drug aerosolization. A good correlation between the carrier density and fine particle fraction (FPF) (r2 = 0.9579) was established, suggesting that the deposition efficiency increased with the decreased carrier density. Nanoporous mannitol with a mean pore size of about 6 nm exhibited 0.24-fold carrier density while 2.16-fold FPF value of the non-porous mannitol. The enhanced deposition efficiency was further confirmed from the pharmacokinetic studies since the nanoporous mannitol exhibited a significantly higher AUC0-8h value than the non-porous mannitol and commercial product Pulmicort. Therefore, surface modification by preparing nanoporous carrier through non-organic spray drying showed to be a facile approach to enhance the DPI aerosolization performance. PMID:28462948
NASA Astrophysics Data System (ADS)
Rana, Moumita; Arora, Gunjan; Gautam, Ujjal K.
2015-02-01
Highly stable, cost-effective electrocatalysts facilitating oxygen reduction are crucial for the commercialization of membrane-based fuel cell and battery technologies. Herein, we demonstrate that protein-rich soya chunks with a high content of N, S and P atoms are an excellent precursor for heteroatom-doped highly graphitized carbon materials. The materials are nanoporous, with a surface area exceeding 1000 m2 g-1, and they are tunable in doping quantities. These materials exhibit highly efficient catalytic performance toward oxygen reduction reaction (ORR) with an onset potential of -0.045 V and a half-wave potential of -0.211 V (versus a saturated calomel electrode) in a basic medium, which is comparable to commercial Pt catalysts and is better than other recently developed metal-free carbon-based catalysts. These exhibit complete methanol tolerance and a performance degradation of merely ˜5% as compared to ˜14% for a commercial Pt/C catalyst after continuous use for 3000 s at the highest reduction current. We found that the fraction of graphitic N increases at a higher graphitization temperature, leading to the near complete reduction of oxygen. It is believed that due to the easy availability of the precursor and the possibility of genetic engineering to homogeneously control the heteroatom distribution, the synthetic strategy is easily scalable, with further improvement in performance.
NASA Astrophysics Data System (ADS)
Shukla, M. J.; Kumar, D. S.; Mahato, K. K.; Rathore, D. K.; Prusty, R. K.; Ray, B. C.
2015-02-01
Glass Fiber Reinforced Polymer (GFRP) composites have been widely accepted as high strength, low weight structural material as compared to their metallic counterparts. Some specific advanced high performance applications such as aerospace components still require superior specific strength and specific modulus. Carbon Fiber Reinforced Polymer (CFRP) composites exhibit superior specific strength and modulus but have a lower failure strain and high cost. Hence, the combination of both glass and carbon fiber in polymer composite may yield optimized mechanical properties. Further the in-service environment has a significant role on the mechanical performance of this class of materials. Present study aims to investigate the mechanical property of GFRP and Glass/Carbon (G/C hybrid) composites at room temperature, in-situ and ex-situ temperature conditions. In-situ testing at +70°C and +100°C results in significant loss in inter-laminar shear strength (ILSS) for both the composites as compared to room temperature. The ILSS was nearly equal for both the composite systems tested in-situ at +100°C and effect of fiber hybridisation was completely diminished there. At low temperature ex-situ conditioning significant reduction in ILSS was observed for both the systems. Further at -60°C G/C hybrid exhibited 32.4 % higher ILSS than GFRP. Hence this makes G/C hybrid a better choice of material in low temperature environmental applications.
Rana, Moumita; Arora, Gunjan; Gautam, Ujjal K
2015-01-01
Highly stable, cost-effective electrocatalysts facilitating oxygen reduction are crucial for the commercialization of membrane-based fuel cell and battery technologies. Herein, we demonstrate that protein-rich soya chunks with a high content of N, S and P atoms are an excellent precursor for heteroatom-doped highly graphitized carbon materials. The materials are nanoporous, with a surface area exceeding 1000 m2 g−1, and they are tunable in doping quantities. These materials exhibit highly efficient catalytic performance toward oxygen reduction reaction (ORR) with an onset potential of −0.045 V and a half-wave potential of −0.211 V (versus a saturated calomel electrode) in a basic medium, which is comparable to commercial Pt catalysts and is better than other recently developed metal-free carbon-based catalysts. These exhibit complete methanol tolerance and a performance degradation of merely ∼5% as compared to ∼14% for a commercial Pt/C catalyst after continuous use for 3000 s at the highest reduction current. We found that the fraction of graphitic N increases at a higher graphitization temperature, leading to the near complete reduction of oxygen. It is believed that due to the easy availability of the precursor and the possibility of genetic engineering to homogeneously control the heteroatom distribution, the synthetic strategy is easily scalable, with further improvement in performance. PMID:27877746
NASA Astrophysics Data System (ADS)
Mert, Mehmet Erman; Mert, Başak Doğru; Kardaş, Gülfeza; Yazıcı, Birgül
2017-11-01
In this study, titanium oxide nano-tubes are doped with Ni and Mo particles with various chemical compositions, in order to put forth the efficiency of single and binary coatings on hydrogen evolution reaction (HER) in 1 M KOH. The characterization was achieved by cyclic voltammetry, scanning electron microscopy and energy dispersive X-ray analysis. The water wettability characteristics of electrode surfaces were investigated using contact angle. The long-term catalyst stability and corrosion performance were determined by current-potential curves and electrochemical impedance spectroscopy. Furthermore, photoelectrochemical behavior was determined via linear sweep voltammetry. Results showed that, nano-structured Ni and Mo deposited titanium oxide nano-tubes decrease the hydrogen over potential and increase HER efficiency, it is stable over 168 h electrolysis and it exhibits higher corrosion performance.
Experimental and Numerical Investigation of Losses in Low-Pressure Turbine Blade Rows
NASA Technical Reports Server (NTRS)
Dorney, Daniel J.; Lake, James P.; King, Paul I.; Ashpis, David E.
2000-01-01
Experimental data and numerical simulations of low-pressure turbines have shown that unsteady blade row interactions and separation can have a significant impact on the turbine efficiency. Measured turbine efficiencies at takeoff can be as much as two points higher than those at cruise conditions. Several recent studies have revealed that the performance of low-pressure turbine blades is a strong function of the Reynolds number. In the current investigation, experiments and simulations have been performed to study the behavior of a low-pressure turbine blade at several Reynolds numbers. Both the predicted and experimental results indicate increased cascade losses as the Reynolds number is reduced to the values associated with aircraft cruise conditions. In addition, both sets of data show that tripping the boundary layer helps reduce the losses at lower Reynolds numbers. Overall, the predicted aerodynamic and performance results exhibit fair agreement with experimental data.
Effects of (Oxy-)Fluorination on Various High-Performance Yarns.
Kruppke, Iris; Bartusch, Matthias; Hickmann, Rico; Hund, Rolf-Dieter; Cherif, Chokri
2016-08-26
In this work, typical high-performance yarns are oxy-fluorinated, such as carbon fibers, ultra-high-molecular-weight polyethylene, poly(p-phenylene sulfide) and poly(p-phenylene terephthalamide). The focus is on the property changes of the fiber surface, especially the wetting behavior, structure and chemical composition. Therefore, contact angle, XPS and tensile strength measurements are performed on treated and untreated fibers, while SEM is utilized to evaluate the surface structure. Different results for the fiber materials are observed. While polyethylene exhibits a relevant impact on both surface and bulk properties, polyphenylene terephthalamide and polyphenylene sulfide are only affected slightly by (oxy-)fluorination. The wetting of carbon fiber needs higher treatment intensities, but in contrast to the organic fibers, even its textile-physical properties are enhanced by the treatment. Based on these findings, the capability of (oxy-)fluorination to improve the adhesion of textiles in fiber-reinforced composite materials can be derived.
Quantum key distribution using basis encoding of Gaussian-modulated coherent states
NASA Astrophysics Data System (ADS)
Huang, Peng; Huang, Jingzheng; Zhang, Zheshen; Zeng, Guihua
2018-04-01
The continuous-variable quantum key distribution (CVQKD) has been demonstrated to be available in practical secure quantum cryptography. However, its performance is restricted strongly by the channel excess noise and the reconciliation efficiency. In this paper, we present a quantum key distribution (QKD) protocol by encoding the secret keys on the random choices of two measurement bases: the conjugate quadratures X and P . The employed encoding method can dramatically weaken the effects of channel excess noise and reconciliation efficiency on the performance of the QKD protocol. Subsequently, the proposed scheme exhibits the capability to tolerate much higher excess noise and enables us to reach a much longer secure transmission distance even at lower reconciliation efficiency. The proposal can work alternatively to strengthen significantly the performance of the known Gaussian-modulated CVQKD protocol and serve as a multiplier for practical secure quantum cryptography with continuous variables.
High-Performance Lithium-Air Battery with a Coaxial-Fiber Architecture.
Zhang, Ye; Wang, Lie; Guo, Ziyang; Xu, Yifan; Wang, Yonggang; Peng, Huisheng
2016-03-24
The lithium-air battery has been proposed as the next-generation energy-storage device with a much higher energy density compared with the conventional lithium-ion battery. However, lithium-air batteries currently suffer enormous problems including parasitic reactions, low recyclability in air, degradation, and leakage of liquid electrolyte. Besides, they are designed into a rigid bulk structure that cannot meet the flexible requirement in the modern electronics. Herein, for the first time, a new family of fiber-shaped lithium-air batteries with high electrochemical performances and flexibility has been developed. The battery exhibited a discharge capacity of 12,470 mAh g(-1) and could stably work for 100 cycles in air; its electrochemical performances were well maintained under bending and after bending. It was also wearable and formed flexible power textiles for various electronic devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Wei, Meng; Jiang, Min; Liu, Xiaobo; Wang, Min; Mu, Shichun
2016-09-01
A rational electrode structure can allow proton exchange membrane (PEM) fuel cells own high performance with a low noble metal loading and an optimal transport pathway for reaction species. In this study, we develop a graphene doped polyacrylonitile (PAN)/polyvinylident fluoride (PVDF) (GPP) electrospun nanofiber electrode with improved electrical conductivity and high porosity, which could enhance the triple reaction boundary and promote gas and water transport throughout the porous electrode. Thus the increased electrochemical active surface area (ECSA) of Pt catalysts and fuel cell performance can be expected. As results, the ECSA of hot-pressed electrospun electrodes with 2 wt% graphene oxide (GO) is up to 84.3 m2/g, which is greatly larger than that of the conventional electrode (59.5 m2/g). Significantly, the GPP nanofiber electrospun electrode with Pt loading of 0.2 mg/cm2 exhibits higher fuel cell voltage output and stability than the conventional electrode.
NASA Astrophysics Data System (ADS)
Xia, Yingdong; Chen, Yonghua; Smith, Gregory M.; Li, Yuan; Huang, Wenxiao; Carroll, David L.
2013-06-01
In this work, the effects of electrode modification by calcium (Ca) on the performance of AC field induced polymer electroluminescence (FIPEL) devices are studied. The FIPEL device with Ca/Al electrode exhibits 550 cd m-2, which is 27.5 times higher than that of the device with only an Al electrode (20 cd m-2). Both holes and electrons are injected from one electrode in our FIPEL device. We found that the electron injection can be significantly enhanced by a Ca modification on the Al electrode without greatly affecting the hole injection. Therefore, the electrons and holes can be effectively recombined in the emissive layer to form more excitons under the AC voltage, leading to effective light emission. The device emitted much brighter light than other AC-based organic EL devices. This result provides an easy and effective way to improve FIPEL performance.
Shin, Mikyung; Bryant, Diane Pedrotty
2015-01-01
The purpose of this study was to synthesize the findings from 23 articles that compared the mathematical and cognitive performances of students with mathematics learning disabilities (LD) to (a) students with LD in mathematics and reading, (b) age- or grade-matched students with no LD, and (c) mathematical-ability-matched younger students with no LD. Overall results revealed that students with mathematics LD exhibited higher word problem-solving abilities and no significant group differences on working memory, long-term memory, and metacognition measures compared to students with LD in mathematics and reading. Findings also revealed students with mathematics LD demonstrated significantly lower performance compared to age- or grade-matched students with no LD on both mathematical and cognitive measures. Comparison between students with mathematics LD and younger students with no LD revealed mixed outcomes on mathematical measures and generally no significant group differences on cognitive measures. © Hammill Institute on Disabilities 2013.
Design of a new nozzle for direct current plasma guns with improved spraying parameters
NASA Astrophysics Data System (ADS)
Jankovic, M.; Mostaghimi, J.; Pershin, V.
2000-03-01
A new design is proposed for direct current plasma spray gas-shroud attachments. It has curvilinearly shaped internal walls aimed toward elimination of the cold air entrainment, recorded for commercially available conical designs of the shrouded nozzle. The curvilinear nozzle design was tested; it proved to be capable of withstanding high plasma temperatures and enabled satisfactory particle injection. Parallel measurements with an enthalpy probe were performed on the jet emerging from two different nozzles. Also, corresponding calculations were made to predict the plasma flow parameters and the particle parameters. Adequate spray tests were performed by spraying iron-aluminum and MCrAlY coatings onto stainless steel substrates. Coating analyses were performed, and coating qualities, such as microstructure, open porosity, and adhesion strength, were determined. The results indicate that the coatings sprayed with a curvilinear nozzle exhibited lower porosity, higher adhesion strength, and an enhanced microstructure.
A scalable silicon photonic chip-scale optical switch for high performance computing systems.
Yu, Runxiang; Cheung, Stanley; Li, Yuliang; Okamoto, Katsunari; Proietti, Roberto; Yin, Yawei; Yoo, S J B
2013-12-30
This paper discusses the architecture and provides performance studies of a silicon photonic chip-scale optical switch for scalable interconnect network in high performance computing systems. The proposed switch exploits optical wavelength parallelism and wavelength routing characteristics of an Arrayed Waveguide Grating Router (AWGR) to allow contention resolution in the wavelength domain. Simulation results from a cycle-accurate network simulator indicate that, even with only two transmitter/receiver pairs per node, the switch exhibits lower end-to-end latency and higher throughput at high (>90%) input loads compared with electronic switches. On the device integration level, we propose to integrate all the components (ring modulators, photodetectors and AWGR) on a CMOS-compatible silicon photonic platform to ensure a compact, energy efficient and cost-effective device. We successfully demonstrate proof-of-concept routing functions on an 8 × 8 prototype fabricated using foundry services provided by OpSIS-IME.
Characterization of winter airborne particles at Emperor Qin's Terra-cotta Museum, China.
Hu, Tafeng; Lee, Shuncheng; Cao, Junji; Chow, Judith C; Watson, John G; Ho, Kinfai; Ho, Wingkei; Rong, Bo; An, Zhisheng
2009-10-01
Daytime and nighttime total suspended particulate matters (TSP) were collected inside and outside Emperor Qin's Terra-cotta Museum, the most popular on-site museum in China, in winter 2008. The purpose of this study was to investigate the contribution of visitors to indoor airborne particles in two display halls with different architectural and ventilating conditions, including Exhibition Hall and Pit No.1. Morphological and elemental analyses of 7-day individual particle samples were performed with scanning electron microscopy and energy dispersive X-ray spectrometer (SEM-EDX). Particle mass concentrations in Exhibition Hall and Pit No.1 were in a range of 54.7-291.7 microg m(-3) and 95.3-285.4 microg m(-3) with maximum diameters of 17.5 microm and 26.0 microm, respectively. In most sampling days, daytime/nighttime particle mass ratios in Exhibition Hall (1.30-3.12) were higher than those in Pit No.1 (0.96-2.59), indicating more contribution of the tourist flow in Exhibition Hall than in Pit No. 1. The maximum of particle size distributions were in a range of 0.5-1.0 microm, with the highest abundance (43.4%) occurred in Exhibition Hall at night. The majority of airborne particles at the Museum was composed of soil dust, S-containing particles, and low-Z particles like soot aggregate and biogenic particles. Both size distributions and particle types were found to be associated with visitor numbers in Exhibition Hall and with natural ventilation in Pit No.1. No significant influence of visitors on indoor temperature and relative humidity (RH) was found in either display halls. Those baseline data on the nature of the airborne particles inside the Museum can be incorporated into the maintenance criteria, display management, and ventilation strategy by conservators of the museum.
Judge, Timothy A; Simon, Lauren S; Hurst, Charlice; Kelley, Ken
2014-03-01
Historically, organizational and personality psychologists have ignored within-individual variation in personality across situations or have treated it as measurement error. However, we conducted a 10-day experience sampling study consistent with whole trait theory (Fleeson, 2012), which conceptualizes personality as a system of stable tendencies and patterns of intraindividual variation along the dimensions of the Big Five personality traits (Costa & McCrae, 1992). The study examined whether (a) internal events (i.e., motivation), performance episodes, and interpersonal experiences at work predict deviations from central tendencies in trait-relevant behavior, affect, and cognition (i.e., state personality), and (b) there are individual differences in responsiveness to work experiences. Results revealed that personality at work exhibited both stability and variation within individuals. Trait measures predicted average levels of trait manifestation in daily behavior at work, whereas daily work experiences (i.e., organizational citizenship, interpersonal conflict, and motivation) predicted deviations from baseline tendencies. Additionally, correlations of neuroticism with standard deviations in the daily personality variables suggest that, although work experiences influence state personality, people higher in neuroticism exhibit higher levels of intraindividual variation in personality than do those who are more emotionally stable.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Azam, M.A., E-mail: asyadi@utem.edu.my; Jantan, N.H.; Dorah, N.
2015-09-15
Highlights: • Activated carbon and single-walled CNT based electrochemical capacitor. • Electrochemical analysis by means of CV, charge/discharge and impedance. • 1 M LiPF{sub 6} non-aqueous solution as an electrolyte. • AC/SWCNT electrode exhibits a maximum capacitance of 60.97 F g{sup −1}. - Abstract: Carbon nanotubes have been extensively studied because of their wide range of potential application such as in nanoscale electric circuits, textiles, transportation, health, and the environment. Carbon nanotubes feature extraordinary properties, such as electrical conductivities higher than those of copper, hardness and thermal conductivity higher than those of diamond, and strength surpassing that of steel, amongmore » others. This research focuses on the fabrication of an energy storage device, namely, an electrochemical capacitor, by using carbon materials, i.e., activated carbon and single-walled carbon nanotubes, of a specific weight ratio as electrode materials. The electrolyte functioning as an ion carrier is 1 M lithium hexafluorophosphate. Variations in the electrochemical performance of the device, including its capacitance, charge/discharge characteristics, and impedance, are reported in this paper. The electrode proposed in this work exhibits a maximum capacitance of 60.97 F g{sup −1} at a scan rate of 1 mV s{sup −1}.« less
General trends of dihedral conformational transitions in a globular protein.
Miao, Yinglong; Baudry, Jerome; Smith, Jeremy C; McCammon, J Andrew
2016-04-01
Dihedral conformational transitions are analyzed systematically in a model globular protein, cytochrome P450cam, to examine their structural and chemical dependences through combined conventional molecular dynamics (cMD), accelerated molecular dynamics (aMD) and adaptive biasing force (ABF) simulations. The aMD simulations are performed at two acceleration levels, using dihedral and dual boost, respectively. In comparison with cMD, aMD samples protein dihedral transitions approximately two times faster on average using dihedral boost, and ∼ 3.5 times faster using dual boost. In the protein backbone, significantly higher dihedral transition rates are observed in the bend, coil, and turn flexible regions, followed by the β bridge and β sheet, and then the helices. Moreover, protein side chains of greater length exhibit higher transition rates on average in the aMD-enhanced sampling. Side chains of the same length (particularly Nχ = 2) exhibit decreasing transition rates with residues when going from hydrophobic to polar, then charged and aromatic chemical types. The reduction of dihedral transition rates is found to be correlated with increasing energy barriers as identified through ABF free energy calculations. These general trends of dihedral conformational transitions provide important insights into the hierarchical dynamics and complex free energy landscapes of functional proteins. © 2016 Wiley Periodicals, Inc.
Zhang, Xiaoyan; Xu, You; Zhang, Junjie; Dong, Shuai; Shen, Liming; Gupta, Arunava; Bao, Ningzhong
2018-01-10
Two-dimensional (2D) semiconducting nanomaterials have generated much interest both because of fundamental scientific interest and technological applications arising from the unique properties in two dimensions. However, the colloidal synthesis of 2D quaternary chalcogenide nanomaterials remains a great challenge owing to the lack of intrinsic driving force for its anisotropic growth. 2D wurtzite Cu 2 ZnSnS 4 nanosheets (CZTS-NS) with high-energy (002) facets have been obtained for the first time via a simple one-pot thermal decomposition method. The CZTS-NS exhibits superior photoelectrochemical activity as compared to zero-dimensional CZTS nanospheres and comparable performance to Pt counter electrode for dye sensitized solar cells. The improved catalytic activity can be attributed to additional reactive catalytic sites and higher catalytic reactivity in high-energy (002) facets of 2D CZTS-NS. This is in accordance with the density functional theory (DFT) calculations, which indicates that the (002) facets of wurtzite CZTS-NS possess higher surface energy and exhibits remarkable reducibility for I 3 - ions. The developed synthetic method and findings will be helpful for the design and synthesis of 2D semiconducting nanomaterials, especially eco-friendly copper chalcogenide nanocrystals for energy harvesting and photoelectric applications.
General trends of dihedral conformational transitions in a globular protein
Miao, Yinglong; Baudry, Jerome; Smith, Jeremy C.; ...
2016-02-15
In this paper, dihedral conformational transitions are analyzed systematically in a model globular protein, cytochrome P450cam, to examine their structural and chemical dependences through combined conventional molecular dynamics (cMD), accelerated molecular dynamics (aMD) and adaptive biasing force (ABF) simulations. The aMD simulations are performed at two acceleration levels, using dihedral and dual boost, respectively. In comparison with cMD, aMD samples protein dihedral transitions approximately two times faster on average using dihedral boost, and ~3.5 times faster using dual boost. In the protein backbone, significantly higher dihedral transition rates are observed in the bend, coil, and turn flexible regions, followed bymore » the β bridge and β sheet, and then the helices. Moreover, protein side chains of greater length exhibit higher transition rates on average in the aMD-enhanced sampling. Side chains of the same length (particularly Nχ = 2) exhibit decreasing transition rates with residues when going from hydrophobic to polar, then charged and aromatic chemical types. The reduction of dihedral transition rates is found to be correlated with increasing energy barriers as identified through ABF free energy calculations. In conclusion, these general trends of dihedral conformational transitions provide important insights into the hierarchical dynamics and complex free energy landscapes of functional proteins.« less
Ear Advantage for Musical Location and Relative Pitch: Effects of Musical Training and Attention.
Hutchison, Joanna L; Hubbard, Timothy L; Hubbard, Nicholas A; Rypma, Bart
2017-06-01
Trained musicians have been found to exhibit a right-ear advantage for high tones and a left-ear advantage for low tones. We investigated whether this right/high, left/low pattern of musical processing advantage exists in listeners who had varying levels of musical experience, and whether such a pattern might be modulated by attentional strategy. A dichotic listening paradigm was used in which different melodic sequences were presented to each ear, and listeners attended to (a) the left ear or the right ear or (b) the higher pitched tones or the lower pitched tones. Listeners judged whether tone-to-tone transitions within each melodic sequence moved upward or downward in pitch. Only musically experienced listeners could adequately judge the direction of successive pitch transitions when attending to a specific ear; however, all listeners could judge the direction of successive pitch transitions within a high-tone stream or a low-tone stream. Overall, listeners exhibited greater accuracy when attending to relatively higher pitches, but there was no evidence to support a right/high, left/low bias. Results were consistent with effects of attentional strategy rather than an ear advantage for high or low tones. Implications for a potential performer/audience paradox in listening space are considered.
NASA Astrophysics Data System (ADS)
Chang, KwangHyun; Cho, Seonghun; Lim, Eun Ja; Park, Seok-Hee; Yim, Sung-Dae
2018-03-01
Rambutan-like CNT-Al2O3 scaffolds are introduced as a potential candidate for CNT-based catalyst supports to overcome the CNT issues, such as the easy bundling in catalyst ink and the poor pore structure of the CNT-based catalyst layers, and to achieve high MEA performance in PEFCs. Non-porous α-phase Al2O3 balls are introduced to enable the growth of multiwalled CNTs, and Pt nanoparticles are loaded onto the CNT surfaces. In a half-cell, the Pt/CNT-Al2O3 catalyst shows much higher durability than those of a commercial Pt/C catalyst even though it shows lower oxygen reduction reaction (ORR) activity than Pt/C. After using the decal process for MEA formation, the Pt/CNT-Al2O3 shows comparable initial performance characteristics to Pt/C, overcoming the lower ORR activity, mainly due to the facile oxygen transport in the cathode catalyst layers fabricated with the CNT-Al2O3 scaffolds. The Pt/CNT-Al2O3 also exhibits much higher durability against carbon corrosion than Pt/C owing to the durable characteristics of CNTs. Systematic analysis of single cell performance for both initial and after degradation is provided to understand the origin of the high initial performance and durable behavior of Pt/CNT-Al2O3-based catalyst layers. This will provide insights into the design of electrocatalysts for high-performance MEAs in PEFCs.
Sandbakk, Oyvind; Ettema, Gertjan; Leirdal, Stig; Holmberg, Hans-Christer
2012-03-01
Gender differences in performance by elite endurance athletes, including runners, track cyclists and speed skaters, have been shown to be approximately 12%. The present study was designed to examine gender differences in physiological responses and kinematics associated with sprint cross-country skiing. Eight male and eight female elite sprint cross-country skiers, matched for performance, carried out a submaximal test, a test of maximal aerobic capacity (VO(2max)) and a shorter test of maximal treadmill speed (V (max)) during treadmill roller skiing utilizing the G3 skating technique. The men attained 17% higher speeds during both the VO(2max) and the V (max) tests (P < 0.05 in both cases), differences that were reduced to 9% upon normalization for fat-free body mass. Furthermore, the men exhibited 14 and 7% higher VO(2max) relative to total and fat-free body mass, respectively (P < 0.05 in both cases). The gross efficiency was similar for both gender groups. At the same absolute speed, men employed 11% longer cycles at lower rates, and at peak speed, 21% longer cycle lengths (P < 0.05 in all cases). The current study documents approximately 5% larger gender differences in performance and VO(2max) than those reported for comparable endurance sports. These differences reflect primarily the higher VO(2max) and lower percentage of body fat in men, since no gender differences in the ability to convert metabolic rate into work rate and speed were observed. With regards to kinematics, the gender difference in performance was explained by cycle length, not by cycle rate.
Zheng, Xing; Ernst, Mathias; Jekel, Martin
2010-05-01
Natural biofiltration processes have been verified as effective pre-treatment choice improving the performance of low-pressure membranes (MF/UF) in wastewater reclamation. In the present work, pilot-scale slow sand filtration (SSF) was used to simulate bank filtration at high filtration rates (from 0.25m/h to 0.5m/h) to filter secondary effluent prior to UF. The results showed that SSF improved the performance of UF to a large extent. Related to previous work biopolymers are considered as major dissolved organic foulants in treated wastewater. The removal of these organic foulants in slow sand filters and factors affecting the performance of SSF were investigated. It was observed that the removal of biopolymers took place mainly at the upper sand layer and was related to biological degradation. Tests on the degradability of biopolymers verified that they are biodegradable. Sixteen months monitoring of biopolymer concentration in the secondary effluent indicated that it varied seasonally. In winter season the concentration was much higher than during the summer months. Higher temperature and lower biopolymer concentration led to more effective foulants removal and more sustainable operation of SSF. During the whole experimental period, the performance of SSF was always better at filtration rate of 0.25m/h than at 0.5m/h. Under the present experimental conditions, SSF exhibited stable and effective biopolymer removal at temperatures higher than 15 degrees C, at biopolymer concentrations lower than 0.5mg C/L and with sufficient oxygen available.
Photopyroelectric response of PTCa∕PEEK composite.
Estevam, Giuliano Pierre; de Melo, Washington Luiz Barros; Sakamoto, Walter Katsumi
2011-02-01
A pyroelectric composite made of calcium modified lead titanate ceramic and polyether-ether-ketone high performance polymer was obtained in the film form by hot pressing the ceramic/polymer mixture into the desired composition. After polarization with a suitable electric field, a ceramic composite film (60% vol.) exhibited a pyroelectric figure of merit three times higher than that of a lead zirconate titanate ceramic. The material was used as infrared radiation sensor. The voltage responsivity decreases with the inverse of the frequency showing the same behavior of the thermally thick sensor. The reproducibility of the sensor responses was observed.
Thiolate/disulfide organic redox couples for efficient organic dye-sensitized solar cells
NASA Astrophysics Data System (ADS)
Li, Wen-Yan; Zheng, Hai-Kuo; Wang, Jian-Wen; Zhang, Le-Le; Han, Hui-Min; Wu, Ming-Xing
2017-08-01
A series of organic thiolate/disulfide redox couples based on benz-imidazole/othiazole/oxazole have been synthesized and applied to dye-sensitized solar cells (DSCs). Platinum (Pt) and carbon material are introduced as counter electrode (CE) catalysts towards this kind of organic redox couples regeneration and the photovoltaic performance of the DSCs using this organic redox couples has been investigated. The carbon CE shows high catalytic activity than Pt for the organic redox couples and the DSCs using carbon CE exhibit much higher efficiencies than those of the Pt CE-based devices.
Microtube strip heat exchanger
NASA Astrophysics Data System (ADS)
Doty, F. D.
1991-10-01
This progress report is for the September-October 1991 quarter. We have demonstrated feasibility of higher specific conductance by a factor of five than any other work in high-temperature gas-to-gas exchangers. These laminar-flow, microtube exchangers exhibit extremely low pressure drop compared to alternative compact designs under similar conditions because of their much shorter flow length and larger total flow area for lower flow velocities. The design appears to be amenable to mass production techniques, but considerable process development remains. The reduction in materials usage and the improved heat exchanger performance promise to be of enormous significance in advanced engine designs and in cryogenics.
Sympathetic arousal as a marker of chronicity in childhood stuttering.
Zengin-Bolatkale, Hatun; Conture, Edward G; Walden, Tedra A; Jones, Robin M
2018-01-01
This study investigated whether sympathetic activity during a stressful speaking task was an early marker for stuttering chronicity. Participants were 9 children with persisting stuttering, 23 children who recovered, and 17 children who do not stutter. Participants performed a stress-inducing picture-naming task and skin conductance was measured across three time points. Findings indicated that at the initial time point, children with persisting stuttering exhibited higher sympathetic arousal during the stressful speaking task than children whose stuttering recovered. Findings are taken to suggest that sympathetic activity may be an early marker of heightened risk for chronic stuttering.
NASA Astrophysics Data System (ADS)
Senthil Kumar, V.; Kavitha, L.; Boopathy, C.; Gopi, D.
2017-10-01
Nonlinear interaction of electromagnetic solitons leads to a plethora of interesting physical phenomena in the diverse area of science that include magneto-optics based data storage industry. We investigate the nonlinear magnetization dynamics of a one-dimensional anisotropic ferromagnetic nanowire. The famous Landau-Lifshitz-Gilbert equation (LLG) describes the magnetization dynamics of the ferromagnetic nanowire and the Maxwell's equations govern the propagation dynamics of electromagnetic wave passing through the axis of the nanowire. We perform a uniform expansion of magnetization and magnetic field along the direction of propagation of electromagnetic wave in the framework of reductive perturbation method. The excitation of magnetization of the nanowire is restricted to the normal plane at the lowest order of perturbation and goes out of plane for higher orders. The dynamics of the ferromagnetic nanowire is governed by the modified Korteweg-de Vries (mKdV) equation and the perturbed modified Korteweg-de Vries (pmKdV) equation for the lower and higher values of damping respectively. We invoke the Hirota bilinearization procedure to mKdV and pmKdV equation to construct the multi-soliton solutions, and explicitly analyze the nature of collision phenomena of the co-propagating EM solitons for the above mentioned lower and higher values of Gilbert-damping due to the precessional motion of the ferromagnetic spin. The EM solitons appearing in the higher damping regime exhibit elastic collision thus yielding the fascinating state restoration property, whereas those of lower damping regime exhibit inelastic collision yielding the solitons of suppressed intensity profiles. The propagation of EM soliton in the nanoscale magnetic wire has potential technological applications in optimizing the magnetic storage devices and magneto-electronics.
Imtiaz, Muhammad; Mushtaq, Muhammad Adnan; Nawaz, Muhammad Amjad; Ashraf, Muhammad; Rizwan, Muhammad Shahid; Mehmood, Sajid; Aziz, Omar; Rizwan, Muhammad; Virk, Muhammad Safiullah; Shakeel, Qaiser; Ijaz, Raina; Androutsopoulos, Vasilis P; Tsatsakis, Aristides M; Coleman, Michael D
2018-06-13
The present study aimed to elucidate the photosynthetic performance, antioxidant enzyme activities, anthocyanin contents, anthocyanin biosynthetic gene expression, and vanadium uptake in mustard genotypes (purple and green) that differ in photosynthetic capacity under vanadium stress. The results indicated that vanadium significantly reduced photosynthetic activity in both genotypes. The activities of the antioxidant enzymes were increased significantly in response to vanadium in both genotypes, although the purple exhibited higher. The anthocyanin contents were also reduced under vanadium stress. The anthocyanin biosynthetic genes were highly expressed in the purple genotype, notably the genes TT8, F3H, and MYBL2 under vanadium stress. The results indicate that induction of TT8, F3H, and MYBL2 genes was associated with upregulation of the biosynthetic genes required for higher anthocyanin biosynthesis in purple compared with the green mustard. The roots accumulated higher vanadium than shoots in both mustard genotypes. The results indicate that the purple mustard had higher vanadium tolerance. Copyright © 2018 Elsevier B.V. All rights reserved.
Pistón, Mariela; Knochen, Moisés
2012-01-01
Two flow methods, based, respectively, on flow-injection analysis (FIA) and on multicommutated flow analysis (MCFA), were compared with regard to their use for the determination of total selenium in infant formulas by hydride-generation atomic absorption spectrometry. The method based on multicommutation provided lower detection and quantification limits (0.08 and 0.27 μg L−1 compared to 0.59 and 1.95 μ L−1, resp.), higher sampling frequency (160 versus. 70 samples per hour), and reduced reagent consumption. Linearity, precision, and accuracy were similar for the two methods compared. It was concluded that, while both methods proved to be appropriate for the purpose, the MCFA-based method exhibited a better performance. PMID:22505923
CeO₂ Enhanced Ethanol Sensing Performance in a CdS Gas Sensor.
Li, Meishan; Ren, Wei; Wu, Rong; Zhang, Min
2017-07-05
CdS nanowires (NWs) were fabricated through a facile low-temperature solvothermal method, following which CeO₂ nanoparticles were modified on the NWs. The ethanol sensing characteristics of pure CdS and decorated ones with different CeO₂ content were studied. It was found that the sensing performance of CdS was significantly improved after CeO₂ decoration. In particular, the 5 at% CeO₂/CdS composite exhibited a much higher response to 100 ppm ethanol (about 52), which was 2.6 times larger than that of pure CdS. A fast response and recovery time (less than 12 s and 3 s, respectively) were obtained as well as an excellent selectivity. These results make the CeO₂-decorated CdS NWs good candidates for ethanol sensing applications.
Programmable logic controller performance enhancement by field programmable gate array based design.
Patel, Dhruv; Bhatt, Jignesh; Trivedi, Sanjay
2015-01-01
PLC, the core element of modern automation systems, due to serial execution, exhibits limitations like slow speed and poor scan time. Improved PLC design using FPGA has been proposed based on parallel execution mechanism for enhancement of performance and flexibility. Modelsim as simulation platform and VHDL used to translate, integrate and implement the logic circuit in FPGA. Xilinx's Spartan kit for implementation-testing and VB has been used for GUI development. Salient merits of the design include cost-effectiveness, miniaturization, user-friendliness, simplicity, along with lower power consumption, smaller scan time and higher speed. Various functionalities and applications like typical PLC and industrial alarm annunciator have been developed and successfully tested. Results of simulation, design and implementation have been reported. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Lang, Xingyou; Zhang, Ling; Fujita, Takeshi; Ding, Yi; Chen, Mingwei
2012-01-01
We report three-dimensional bicontinuous nanoporous Au/polyaniline (PANI) composite films made by one-step electrochemical polymerization of PANI shell onto dealloyed nanoporous gold (NPG) skeletons for the applications in electrochemical supercapacitors. The NPG/PANI based supercapacitors exhibit ultrahigh volumetric capacitance (∼1500 F cm-3) and energy density (∼0.078 Wh cm-3), which are seven and four orders of magnitude higher than these of electrolytic capacitors, with the same power density up to ∼190 W cm-3. The outstanding capacitive performances result from a novel nanoarchitecture in which pseudocapacitive PANI shells are incorporated into pore channels of highly conductive NPG, making them promising candidates as electrode materials in supercapacitor devices combing high-energy storage densities with high-power delivery.
Research on mechanical and sensoric set-up for high strain rate testing of high performance fibers
NASA Astrophysics Data System (ADS)
Unger, R.; Schegner, P.; Nocke, A.; Cherif, C.
2017-10-01
Within this research project, the tensile behavior of high performance fibers, such as carbon fibers, is investigated under high velocity loads. This contribution (paper) focuses on the clamp set-up of two testing machines. Based on a kinematic model, weight optimized clamps are designed and evaluated. By analyzing the complex dynamic behavior of conventional high velocity testing machines, it has been shown that the impact typically exhibits an elastic characteristic. This leads to barely predictable breaking speeds and will not work at higher speeds when acceleration force exceeds material specifications. Therefore, a plastic impact behavior has to be achieved, even at lower testing speeds. This type of impact behavior at lower speeds can be realized by means of some minor test set-up adaptions.
Plasma properties in electron-bombardment ion thrusters
NASA Technical Reports Server (NTRS)
Matossian, J. N.; Beattie, J. R.
1987-01-01
The paper describes a technique for computing volume-averaged plasma properties within electron-bombardment ion thrusters, using spatially varying Langmuir-probe measurements. Average values of the electron densities are defined by integrating the spatially varying Maxwellian and primary electron densities over the ionization volume, and then dividing by the volume. Plasma properties obtained in the 30-cm-diameter J-series and ring-cusp thrusters are analyzed by the volume-averaging technique. The superior performance exhibited by the ring-cusp thruster is correlated with a higher average Maxwellian electron temperature. The ring-cusp thruster maintains the same fraction of primary electrons as does the J-series thruster, but at a much lower ion production cost. The volume-averaged predictions for both thrusters are compared with those of a detailed thruster performance model.
VLSI design of lossless frame recompression using multi-orientation prediction
NASA Astrophysics Data System (ADS)
Lee, Yu-Hsuan; You, Yi-Lun; Chen, Yi-Guo
2016-01-01
Pursuing an experience of high-end visual quality drives human to demand a higher display resolution and a higher frame rate. Hence, a lot of powerful coding tools are aggregated together in emerging video coding standards to improve coding efficiency. This also makes video coding standards suffer from two design challenges: heavy computation and tremendous memory bandwidth. The first issue can be properly solved by a careful hardware architecture design with advanced semiconductor processes. Nevertheless, the second one becomes a critical design bottleneck for a modern video coding system. In this article, a lossless frame recompression using multi-orientation prediction technique is proposed to overcome this bottleneck. This work is realised into a silicon chip with the technology of TSMC 0.18 µm CMOS process. Its encoding capability can reach full-HD (1920 × 1080)@48 fps. The chip power consumption is 17.31 mW@100 MHz. Core area and chip area are 0.83 × 0.83 mm2 and 1.20 × 1.20 mm2, respectively. Experiment results demonstrate that this work exhibits an outstanding performance on lossless compression ratio with a competitive hardware performance.
Splitting CO2 with a ceria‐based redox cycle in a solar‐driven thermogravimetric analyzer
Takacs, M.; Ackermann, S.; Bonk, A.; Neises‐von Puttkamer, M.; Haueter, Ph.; Scheffe, J. R.; Vogt, U. F.
2016-01-01
Thermochemical splitting of CO2 via a ceria‐based redox cycle was performed in a solar‐driven thermogravimetric analyzer. Overall reaction rates, including heat and mass transport, were determined under concentrated irradiation mimicking realistic operation of solar reactors. Reticulated porous ceramic (RPC) structures and fibers made of undoped and Zr4+‐doped CeO2, were endothermally reduced under radiative fluxes of 1280 suns in the temperature range 1200–1950 K and subsequently re‐oxidized with CO2 at 950–1400 K. Rapid and uniform heating was observed for 8 ppi ceria RPC with mm‐sized porosity due to its low optical thickness and volumetric radiative absorption, while ceria fibers with μm‐sized porosity performed poorly due to its opacity to incident irradiation. The 10 ppi RPC exhibited higher fuel yield because of its higher sample density. Zr4+‐doped ceria showed increasing reduction extents with dopant concentration but decreasing specific CO yield due to unfavorable oxidation thermodynamics and slower kinetics. © 2016 American Institute of Chemical Engineers AIChE J, 63: 1263–1271, 2017 PMID:28405030
NASA Astrophysics Data System (ADS)
Li, Shumin; Xu, Hui; Xiong, Zhiping; Zhang, Ke; Wang, Caiqin; Yan, Bo; Guo, Jun; Du, Yukou
2017-11-01
Designing and tuning the bimetallic nanoparticles with desirable morphology and structure can embody them with greatly enhanced electrocatalytic activity and stability towards liquid fuel oxidation. We herein reported a facile one-pot method for the controlled synthesis of monodispersed binary PtAu nanoflowers with abundant exposed surface area. Owing to its fantastic structure, synergistic and electronic effect, such as-prepared PtAu nanoflowers exhibited outstandingly high electrocatalytic activity with the mass activity of 6482 mA mg-1 towards ethanol oxidation, which is 28.3 times higher than that of commercial Pt/C (227 mA mg-1). More interesting, the present PtAu nanoflower catalysts are more stable for the ethanol oxidation reaction in the alkaline with lower current density decay and retained a much higher current density after successive CVs of 500 cycles than that of commercial Pt/C. This work may open a new way for maximizing the catalytic performance of electrocatalysts towards ethanol oxidation by synthesizing shape-controlled alloy nanoparticles with more surface active sites to enhance the performances of direct fuel cells reaction, chemical conversion, and beyond.
Yang, Guorui; Wang, Ling; Peng, Shengjie; Wang, Jianan; Ji, Dongxiao; Yan, Wei; Ramakrishna, Seeram
2017-12-01
1D branched TiO 2 nanomaterials play a significant role in efficient photocatalysis and high-performance lithium ion batteries. In contrast to the typical methods which generally have to employ epitaxial growth, the direct in situ growth of hierarchically branched TiO 2 nanofibers by a combination of the electrospinning technique and the alkali-hydrothermal process is presented in this work. Such the branched nanofibers exhibit improvement in terms of photocatalytic hydrogen evolution (0.41 mmol g -1 h -1 ), in comparison to the conventional TiO 2 nanofibers (0.11 mmol g -1 h -1 ) and P25 (0.082 mmol g -1 h -1 ). Furthermore, these nanofibers also deliver higher lithium specific capacity at different current densities, and the specific capacity at the rate of 2 C is as high as 201. 0 mAh g -1 , roughly two times higher than that of the pristine TiO 2 nanofibers. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Armistead, J. S.; Arias, J. R.; Nishimura, N.; Lounibos, L. P.
2008-01-01
Aedes albopictus (Skuse) and Aedes japonicus (Theobald) are two of the most recent and widespread invasive mosquito species to have become established in the United States. The two species co-occur in water-filled artificial containers, where crowding and limiting resources are likely to promote inter- or intraspecific larval competition. The performance of northern Virginia populations of Ae. japonicus and Ae. albopictus competing as larvae under field conditions was evaluated. Per capita rates of population increase for each species were estimated, and the effects of species composition and larval density were determined. In water-containing cups provided with oak leaves, Ae. albopictus larvae exhibited a competitive advantage over Ae. japonicus as a consequence of higher survivorship, shorter developmental time, and a significantly higher estimated population growth rate under conditions of interspecific competition. Intraspecific competition constrained population performance of Ae. albopictus significantly more than competition with Ae. japonicus. In the context of the Lotka-Volterra model of competition, these findings suggest competitive exclusion of Ae. japonicus in those habitats where this species co-occurs with Ae. albopictus. PMID:18714861
Armistead, J S; Arias, J R; Nishimura, N; Lounibos, L P
2008-07-01
Aedes albopictus (Skuse) and Aedes japonicus (Theobald) are two of the most recent and widespread invasive mosquito species to have become established in the United States. The two species co-occur in water-filled artificial containers, where crowding and limiting resources are likely to promote inter- or intraspecific larval competition. The performance of northern Virginia populations of Ae. japonicus and Ae. albopictus competing as larvae under field conditions was evaluated. Per capita rates of population increase for each species were estimated, and the effects of species composition and larval density were determined. In water-containing cups provided with oak leaves, Ae. albopictus larvae exhibited a competitive advantage over Ae. japonicus as a consequence of higher survivorship, shorter developmental time, and a significantly higher estimated population growth rate under conditions of interspecific competition. Intraspecific competition constrained population performance of Ae. albopictus significantly more than competition with Ae. japonicus. In the context of the Lotka-Volterra model of competition, these findings suggest competitive exclusion of Ae. japonicus in those habitats where this species co-occurs with Ae. albopictus.
Wang, Junjie; Tian, Pei; Li, Kexun; Ge, Baochao; Liu, Di; Liu, Yi; Yang, Tingting; Ren, Rong
2016-12-01
This study investigated the performance of nano spinel nest-like oxygen-deficient Cu 1.5 Mn 1.5 O 4 doping activated carbon (AC) as air cathode in microbial fuel cell (MFC). The Cu 1.5 Mn 1.5 O 4 was synthesized via hydrothermal method and subsequent annealed. The maximum power density (MPD) of MFC with oxygen-deficient Cu 1.5 Mn 1.5 O 4 modified cathode was 1928±18mWm -2 , which was 1.53 times higher than the bare cathode. The electrochemical studies showed that Cu 1.5 Mn 1.5 O 4 doping AC exhibited higher kinetic activity and lower resistance. The mechanism of oxygen reduction for the catalyst was a four electron pathway. The oxygen deficient of Cu 1.5 Mn 1.5 O 4 played an important role in catalytic activity. So Cu 1.5 Mn 1.5 O 4 would be an excellent promising catalyst for ORR in MFC. Copyright © 2016 Elsevier Ltd. All rights reserved.
Performance of an iodine-fueled radio-frequency ion-thruster
NASA Astrophysics Data System (ADS)
Holste, Kristof; Gärtner, Waldemar; Zschätzsch, Daniel; Scharmann, Steffen; Köhler, Peter; Dietz, Patrick; Klar, Peter J.
2018-01-01
Two sets of performance data of the same radio-frequency ion-thruster (RIT) have been recorded using iodine and xenon, respectively, as propellant. To characterize the thruster's performance, we have recorded the radio-frequency DC-power, required for yielding preset values of the extracted ion-beam currents, as a function of mass flow. For that purpose, an iodine mass flow system had to be developed, calibrated, and integrated into a newly-built test facility for studying corrosive propellants. The performance mappings for iodine and xenon differ significantly despite comparable operation conditions. At low mass flows, iodine exhibits the better performance. The situation changes at higher mass flows where the performance of iodine is significantly poorer than that of xenon. The reason is very likely related to the molecular nature of iodine. Our results show that iodine as propellant is compatible with RIT technology. Furthermore, it is a viable alternative as propellant for dedicated space missions. In particular, when taking into account additional benefits such as possible storage as a solid and its low price the use of iodine as propellant in ion thrusters is competitive.
NASA Astrophysics Data System (ADS)
Jeon, Yukwon; Kim, Dong Jun; Koh, Jong Kwan; Ji, Yunseong; Kim, Jong Hak; Shul, Yong-Gun
2015-11-01
Polymer electrolyte membrane fuel cell is a promising zero-emission power generator for stationary/automotive applications. However, key issues, such as performance and costs, are still remained for an economical commercialization. Here, we fabricated a high-performance membrane electrode assembly (MEA) using an interfacial design based on well-arrayed micro-patterned membranes including circles, squares and hexagons with different sizes, which are produced by a facile elastomeric mold method. The best MEA performance is achieved using patterned Nafion membrane with a circle 2 μm in size, which exhibited a very high power density of 1906 mW/cm2 at 75 °C and Pt loading of 0.4 mg/cm2 with 73% improvement compared to the commercial membrane. The improved performance are attributed to the decreased MEA resistances and increased surface area for higher Pt utilization of over 80%. From these enhanced properties, it is possible to operate at lower Pt loading of 0.2 mg/cm2 with an outstanding performance of 1555 mW/cm2 and even at air/low humidity operations.
COMPARISON OF ATHLETES WITH AND WITHOUT BURNOUT USING THE STROOP COLOR AND WORD TEST.
Ryu, Kwangmin; Kim, Jingu; Ali, Asif; Choi, Sungmook; Kim, Hyunji; Radlo, Steven J
2015-10-01
The present study compared brain activity of adolescents with or without burnout during their responses to a computerized version of the Stroop Color and Word Test. The Sport Adaptation of the Maslach Burnout Inventory was administered to 460 Korean high school student athletes. Electroencephalographic data were recorded from frontal, central, parietal, and occipital brain regions while these participants were performing the Stroop Color and Word Test. A 2 (group) × 2 (condition) × 15 (electrodes) three-way analysis of variance was used to analyze the data. Results indicated that the athletes without burnout exhibited significantly higher accuracy than their counterparts with burnout on the Stroop Color and Word Test. The athletes without burnout also showed higher amplitudes for theta, alpha, and beta power in the frontal areas than the athletes with burnout.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Hongxia; Feng Jing; Zhang Milin
A novel CuO electrode material with flower-like nanostructures was fabricated at a low temperature (80 deg. C) by a simple chemical precipitation method. Scanning electron microscopy (SEM) results showed that CuO with spherical and flower-like structure can be formed under a weak alkali (C{sub 6}H{sub 12}N{sub 4}), and CuO with sheets structure can be obtained under a strong alkali (NaOH). A possible growth mechanism of CuO nanocrystals was discussed. The flower-like CuO electrode exhibited a higher specific capacitance (133.6 Fg{sup -1}) and an excellent cycle performance at a high current density of 10 mA/cm{sup 2}. Specific capacitance of flower-like CuOmore » was 405.3% higher than globular CuO (26.44 Fg{sup -1}) at 2 mA/cm{sup 2}.« less
Bioaccumulation of chromium in aquatic macrophyte Borreria scabiosoides Cham. & Schltdl.
NASA Astrophysics Data System (ADS)
Mangabeira, P. A.; Mielke, M. S.; Arantes, I.; Dutruch, L.; Silva, D. da. C.; Barbier, F.; de Almeida, A.-A. F.; Oliveira, A. H.; Severo, M. I. G.; Labejof, L.; Rocha, D. C.; Rosa, T. S.; Santana, K. B.; Gavrilov, K. L.; Galle, P.; Levi-Setti, R.; Grenier-Loustalot, M. F.
2006-07-01
The capacity of Borreria scabiosoides Cham. & Schltdl. growing in hydroponics solutions to remove Cr (III) from water was evaluated. This macrophytes efficiently removed Cr from water at concentrations of 25 and 50 mg/l Cr -1. High resolution imaging secondary ion mass-spectrometry (HRI-SIMS) measurements were performed using scanning ion microprobe at the University of Chicago (UC-SIM). The inductively coupled plasma sector type mass spectrometer (HR-ICP-MS) was used to analyse all samples. In general, plant roots exhibited higher metal concentrations than the aerial plants parts. Borreria shows promise for the removal and store Cr from contaminated wastewater. The ion images demonstrated that Cr is preferentially accumulated in cell walls and in some vacuoles of cortical roots cells. The number of Cr deposits are higher in cortical parenchyma, particularly in vacuoles and cell walls, compared to stellar tissue.
Du, Jun; Zhou, Gang; Zhang, Haiming; Cheng, Chao; Ma, Jianmin; Wei, Weifeng; Chen, Libao; Wang, Taihong
2013-08-14
NiCo2O4 with higher specific capacitance is an excellent pseudocapacitive material. However, the bulk NiCo2O4 material prevents the achievement of high energy desity and great rate performance due to the limited electroactive surface area. In this work, NiCo2O4 nanosheet arrays were deposited on flexible carbon fabric (CF) as a high-performance electrode for supercapacitors. The NiCo2O4 arrays were constructed by interconnected ultrathin nanosheets (10 nm) with many interparticle pores. The porous feature of NiCo2O4 nanosheets increases the amount of electroactive sites and facilitates the electrolyte penetration. Hence, the NiCo2O4/CF composites exhibited a high specific capacitance of 2658 F g(-1) (2 A g(-1)), good rate performance, and superior cycling life, suggesting the NiCo2O4/CF is a promising electrode material for flexible electrochemical capacitors.
NASA Astrophysics Data System (ADS)
Gu, Jianmin; Liu, Xin; Wang, Zhuang; Bian, Zhenpan; Jin, Cuihong; Sun, Xiao; Yin, Baipeng; Wu, Tianhui; Wang, Lin; Tang, Shoufeng; Wang, Hongchao; Gao, Faming
2017-08-01
The electrochemical performance of supercapacitors might be associated with the homogeneous structure of the electrode materials. However, the relationship between the degree of uniformity for the electrode materials and the electrochemical performance of the supercapacitor is not clear. Herein, we synthesize two types of nickel bicarbonate nanocrystals with different degrees of uniformity to investigate this relationship. As the electroactive material, the nickel bicarbonate nanocrystals with a homogeneous structure could provide a larger space and offer more exposed atoms for the electrochemical reaction than the nanocrystals with a heterogeneous structure. The homogeneous nickel bicarbonate nanocrystals exhibit better electrochemical performance and show excellent specific capacitance (1596 F g-1 at 2 A g-1 and 1260 F g-1 at 30 A g-1), which is approximately twice that of the heterogeneous nickel bicarbonate nanocrystals. The cycling stability for the homogeneity (˜80%) is higher than the inhomogeneity (˜61%) at a high current density of 5 A g-1.
Creep and fatigue behavior of a novel 2-component paste-like formulation of acrylic bone cements.
Köster, Ulrike; Jaeger, Raimund; Bardts, Mareike; Wahnes, Christian; Büchner, Hubert; Kühn, Klaus-Dieter; Vogt, Sebastian
2013-06-01
The fatigue and creep performance of two novel acrylic bone cement formulations (one bone cement without antibiotics, one with antibiotics) was compared to the performance of clinically used bone cements (Osteopal V, Palacos R, Simplex P, SmartSet GHV, Palacos R+G and CMW1 with Gentamicin). The preparation of the novel bone cement formulations involves the mixing of two paste-like substances in a static mixer integrated into the cartridge which is used to apply the bone cement. The fatigue performance of the two novel bone cement formulations is comparable to the performance of the reference bone cements. The creep compliance of the bone cements is significantly influenced by the effects of physical ageing. The model parameters of Struik's creep law are used to compare the creep behavior of different bone cements. The novel 2-component paste-like bone cement formulations are in the group of bone cements which exhibit a higher creep resistance.
Porous Graphene Microflowers for High-Performance Microwave Absorption
NASA Astrophysics Data System (ADS)
Chen, Chen; Xi, Jiabin; Zhou, Erzhen; Peng, Li; Chen, Zichen; Gao, Chao
2018-06-01
Graphene has shown great potential in microwave absorption (MA) owing to its high surface area, low density, tunable electrical conductivity and good chemical stability. To fully realize graphene's MA ability, the microstructure of graphene should be carefully addressed. Here we prepared graphene microflowers (Gmfs) with highly porous structure for high-performance MA filler material. The efficient absorption bandwidth (reflection loss ≤ -10 dB) reaches 5.59 GHz and the minimum reflection loss is up to -42.9 dB, showing significant increment compared with stacked graphene. Such performance is higher than most graphene-based materials in the literature. Besides, the low filling content (10 wt%) and low density (40-50 mg cm-3) are beneficial for the practical applications. Without compounding with magnetic materials or conductive polymers, Gmfs show outstanding MA performance with the aid of rational microstructure design. Furthermore, Gmfs exhibit advantages in facile processibility and large-scale production compared with other porous graphene materials including aerogels and foams.
NASA Astrophysics Data System (ADS)
Kannan, Aravindaraj G.; Samuthirapandian, Amaresh; Kim, Dong-Won
2017-01-01
Hierarchically porous graphene nanosheets co-doped with nitrogen and sulfur are synthesized via a simple hydrothermal method, followed by a pore activation step. Pore architectures are controlled by varying the ratio of chemical activation agents to graphene, and its influence on the capacitive performance is evaluated. The electric double layer capacitor (EDLC) assembled with optimized dual-doped graphene delivers a high specific capacitance of 146.6 F g-1 at a current density of 0.8 A g-1, which is higher than that of cells with un-doped and single-heteroatom doped graphene. The EDLC with dual-doped graphene electrodes exhibits stable cycling performance with a capacitance retention of 94.5% after 25,000 cycles at a current density of 3.2 A g-1. Such a good performance can be attributed to synergistic effects due to co-doping of the graphene nanosheets and the presence of hierarchical porous structures.
Stable Fe/ZSM-5 Nanosheet Zeolite Catalysts for the Oxidation of Benzene to Phenol
2017-01-01
Fe/ZSM-5 nanosheet zeolites of varying thickness were synthesized with di- and tetraquaternary ammonium structure directing agents and extensively characterized for their textural, structural, and catalytic properties. Introduction of Fe3+ ions in the framework of nanosheet zeolites was slightly less effective than in bulk ZSM-5 zeolite. Steaming was necessary to activate all catalysts for N2O decomposition and benzene oxidation. The higher the Fe content, the higher the degree of Fe aggregation was after catalyst activation. The degree of Fe aggregation was lower when the crystal domain size of the zeolite or the Fe content was decreased. These two parameters had a substantial influence on the catalytic performance. Decreasing the number of Fe sites along the b-direction strongly suppressed secondary reactions of phenol and, accordingly, catalyst deactivation. This together with the absence of diffusional limitations in nanosheet zeolites explains the much higher phenol productivity obtainable with nanostructured Fe/ZSM-5. Steamed Fe/ZSM-5 zeolite nanosheet synthesized using C22-6-3·Br2 (domain size in b-direction ∼3 nm) and containing 0.24 wt % Fe exhibited the highest catalytic performance. During the first 24 h on stream, this catalyst produced 185 mmolphenol g–1. Calcination to remove the coke deposits completely restored the initial activity. PMID:28413693
Decomposition and Mineralization of Dimethyl Phthalate in an Aqueous Solution by Wet Oxidation
Ji, Dar-Ren; Chang, Chia-Chi; Chen, Shih-Yun; Chiu, Chun-Yu; Tseng, Jyi-Yeong; Chang, Ching-Yuan; Chang, Chiung-Fen; Chiang, Sheng-Wei; Hung, Zang-Sie; Shie, Je-Lueng; Yuan, Min-Hao
2015-01-01
Dimethyl phthalate (DMP) was treated via wet oxygen oxidation process (WOP). The decomposition efficiency η DMP of DMP and mineralization efficiency η TOC of total organic carbons were measured to evaluate the effects of operation parameters on the performance of WOP. The results revealed that reaction temperature T is the most affecting factor, with a higher T offering higher η DMP and η TOC as expected. The η DMP increases as rotating speed increases from 300 to 500 rpm with stirring enhancement of gas liquid mass transfer. However, it exhibits reduction effect at 700 rpm due to purging of dissolved oxygen by overstirring. Regarding the effects of pressure P T, a higher P T provides more oxygen for the forward reaction with DMP, while overhigh P T increases the absorption of gaseous products such as CO2 and decomposes short-chain hydrocarbon fragments back into the solution thus hindering the forward reaction. For the tested P T of 2.41 to 3.45 MPa, the results indicated that 2.41 MPa is appropriate. A longer reaction time of course gives better performance. At 500 rpm, 483 K, 2.41 MPa, and 180 min, the η DMP and η TOC are 93 and 36%, respectively. PMID:26236768
Antisense RNA Strategies for Metabolic Engineering of Clostridium acetobutylicum
Desai, Ruchir P.; Papoutsakis, Eleftherios T.
1999-01-01
We examined the effectiveness of antisense RNA (as RNA) strategies for metabolic engineering of Clostridium acetobutylicum. Strain ATCC 824(pRD4) was developed to produce a 102-nucleotide asRNA with 87% complementarity to the butyrate kinase (BK) gene. Strain ATCC 824(pRD4) exhibited 85 to 90% lower BK and acetate kinase specific activities than the control strain. Strain ATCC 824(pRD4) also exhibited 45 to 50% lower phosphotransbutyrylase (PTB) and phosphotransacetylase specific activities than the control strain. This strain exhibited earlier induction of solventogenesis, which resulted in 50 and 35% higher final concentrations of acetone and butanol, respectively, than the concentrations in the control. Strain ATCC 824(pRD1) was developed to putatively produce a 698-nucleotide asRNA with 96% complementarity to the PTB gene. Strain ATCC 824(pRD1) exhibited 70 and 80% lower PTB and BK activities, respectively, than the control exhibited. It also exhibited 300% higher levels of a lactate dehydrogenase activity than the control exhibited. The growth yields of ATCC 824(pRD1) were 28% less than the growth yields of the control. While the levels of acids were not affected in ATCC 824(pRD1) fermentations, the acetone and butanol concentrations were 96 and 75% lower, respectively, than the concentrations in the control fermentations. The lower level of solvent production by ATCC 824(pRD1) was compensated for by ∼100-fold higher levels of lactate production. The lack of any significant impact on butyrate formation fluxes by the lower PTB and BK levels suggests that butyrate formation fluxes are not controlled by the levels of the butyrate formation enzymes. PMID:10049845
Antisense RNA strategies for metabolic engineering of Clostridium acetobutylicum.
Desai, R P; Papoutsakis, E T
1999-03-01
We examined the effectiveness of antisense RNA (as RNA) strategies for metabolic engineering of Clostridium acetobutylicum. Strain ATCC 824(pRD4) was developed to produce a 102-nucleotide asRNA with 87% complementarity to the butyrate kinase (BK) gene. Strain ATCC 824(pRD4) exhibited 85 to 90% lower BK and acetate kinase specific activities than the control strain. Strain ATCC 824(pRD4) also exhibited 45 to 50% lower phosphotransbutyrylase (PTB) and phosphotransacetylase specific activities than the control strain. This strain exhibited earlier induction of solventogenesis, which resulted in 50 and 35% higher final concentrations of acetone and butanol, respectively, than the concentrations in the control. Strain ATCC 824(pRD1) was developed to putatively produce a 698-nucleotide asRNA with 96% complementarity to the PTB gene. Strain ATCC 824(pRD1) exhibited 70 and 80% lower PTB and BK activities, respectively, than the control exhibited. It also exhibited 300% higher levels of a lactate dehydrogenase activity than the control exhibited. The growth yields of ATCC 824(pRD1) were 28% less than the growth yields of the control. While the levels of acids were not affected in ATCC 824(pRD1) fermentations, the acetone and butanol concentrations were 96 and 75% lower, respectively, than the concentrations in the control fermentations. The lower level of solvent production by ATCC 824(pRD1) was compensated for by approximately 100-fold higher levels of lactate production. The lack of any significant impact on butyrate formation fluxes by the lower PTB and BK levels suggests that butyrate formation fluxes are not controlled by the levels of the butyrate formation enzymes.
Marigo, Luca; D' Arcangelo, Camillo; DE Angelis, Francesco; Cordaro, Massimo; Vadini, Mirco; Lajolo, Carlo
2017-02-01
The purpose of this study was to evaluate the push-out bond strengths of four commercially available adhesive luting systems (two self-adhesive and two etch-and-rinse systems) after mechanical aging. Forty single-rooted anterior teeth were divided into four groups according to the luting cement system used: Cement-One (Group 1); One-Q-adhesive Bond + Axia Core Dual (Group 2); SmartCem® 2 (Group 3); and XP Bond® + Core-X™ Flow (Group 4). Anatomical Post was cemented in groups 1 and 2, and D.T. Light-Post Illusion was cemented in groups 3 and 4. All samples were subjected to masticatory stress simulation consisting of 300,000 cycles applied with a computer-controlled chewing simulator. Push-out bond strength values (MPa) were calculated at cervical, middle, and apical each level, and the total bond strengths were calculated as the averages of the three levels. Statistical analysis was performed with data analysis software and significance was set at P<0.05. Statistically significant differences in total bond strength were detected between the cements (Group 4: 3.28 MPa, Group 1: 2.77 MPa, Group 2: 2.36 MPa, Group 3: 1.13 MPa; P<0.05). Specifically, Group 1 exhibited a lower bond strength in the apical zone, Group 3 exhibited a higher strength in this zone, and groups 2 and 4 exhibited more homogeneous bonding strengths across the different anatomical zones. After artificial aging, etch-and-rinse luting systems exhibited more homogeneous bond strengths; nevertheless, Cement-One exhibited a total bond strength second only to Core-X Flow.
Factors influencing physical and technical variability in the English Premier League.
Bush, Michael D; Archer, David T; Hogg, Robert; Bradley, Paul S
2015-10-01
To investigate match-to-match variability of physical and technical performances in English Premier League players and quantify the influence of positional and contextual factors. Match data (N = 451) were collected using a multicamera computerized tracking system across multiple seasons (2005-06 to 2012-13). The coefficient of variation (CV) was calculated from match to match for physical and technical performances in selected positions across different match contexts (location, standard, and result). Wide midfielders demonstrated the greatest CVs for total distance (4.9% ± 5.9%) and central midfielders the smallest (3.6% ± 2.0%); nevertheless, all positions exhibited CVs <5% (P > .05, effect size [ES] 0.1-0.3). Central defenders demonstrated the greatest CVs and wide midfielders the lowest for both high-intensity running (20.2% ± 8.8% and 13.7% ± 7.7%, P < .05, ES 0.4-0.8) and sprint distance (32.3% ± 13.8% and 22.6% ± 11.2%, P < .05, ES 0.5-0.8). Technical indicators such as tackles (83.7% ± 42.3%), possessions won (47.2% ± 27.9%), and interceptions (59.1% ± 37.3%) illustrated substantial variability for attackers compared with all other positions (P < .05, ES 0.4-1.1). Central defenders demonstrated large variability for the number of times tackled per match (144.9% ± 58.3%) and passes attempted and received compared with other positions (39.2% ± 17.5% and 46.9% ± 20.2%, P < .001, ES 0.6-1.8). Contextual factors had limited impact on the variability of physical and technical parameters. The data demonstrate that technical parameters varied more from match to match than physical parameters. Defensive players (fullbacks and central defenders) displayed higher CVs for offensive technical variables, while attacking players (attackers and wide midfielders) exhibited higher CVs for defensive technical variables. Physical and technical performances are variable per se regardless of context.
Lin, Zhongqiang; Zhou, Deliang; Hoag, Stephen; Qiu, Yihong
2016-03-01
Bioequivalence (BE) studies are often required to ensure therapeutic equivalence for major product and manufacturing changes. Waiver of a BE study (biowaiver) is highly desired for such changes. Current regulatory guidelines allow for biowaiver of proportionally similar lower strengths of an extended release (ER) product provided it exhibits similar dissolution to the higher strength in multimedia. The objective of this study is to demonstrate that (1) proportionally similar strengths of ER tablets exhibiting similar in vitro dissolution profiles do not always assure BE and (2) different strengths that do not meet the criteria for dissolution profile similarity may still be bioequivalent. Four marketed ER tablets were used as model drug products. Higher and lower (half) strength tablets were prepared or obtained from commercial source. In vitro drug release was compared using multi-pH media (pH 1.2, 4.5, 6.8) per regulatory guidance. In vivo performance was assessed based on the available in vivo BE data or established in vitro-in vivo relationships. This study demonstrated that the relationship between in vitro dissolution and in vivo performance is complex and dependent on the characteristics of specific drug molecules, product design, and in vitro test conditions. As a result, proportionally similar strengths of ER dosage forms that meet biowaiver requirements per current regulatory guidelines cannot ensure bioequivalence in all cases. Thus, without an established relationship between in vitro and in vivo performance, granting biowaiver based on passing in vitro tests may result in the approval of certain bioinequivalent products, presenting risks to patients. To justify any biowaiver using in vitro test, it is essential to understand the effects of drug properties, formulation design, product characteristics, test method, and its in vivo relevance. Therefore, biowaiver requirements of different strengths of ER dosage forms specified in the current regulatory guidance should be reevaluated to assure consistent safety and efficacy among different strengths.
Autonomic Cardiovascular Control and Executive Function in Chronic Hypotension.
Duschek, Stefan; Hoffmann, Alexandra; Reyes Del Paso, Gustavo A; Ettinger, Ulrich
2017-06-01
Chronic low blood pressure (hypotension) is characterized by complaints such as fatigue, reduced drive, dizziness, and cold limbs. Additionally, deficits in attention and memory have been observed. Autonomic dysregulation is considered to be involved in the origin of this condition. The study explored autonomic cardiovascular control in the context of higher cognitive processing (executive function) in hypotension. Hemodynamic recordings were performed in 40 hypotensive and 40 normotensive participants during execution of four classical executive function tasks (number-letter task, n-back task, continuous performance test, and flanker task). Parameters of cardiac sympathetic control, i.e., stroke volume, cardiac output, pre-ejection period, total peripheral resistance, and parasympathetic control, i.e., respiratory sinus arrhythmia and baroreflex sensitivity, were obtained. The hypotensive group exhibited lower stroke volume and cardiac output, as well as higher pre-ejection period and baroreflex sensitivity during task execution. Increased error rates in hypotensive individuals were observed in the n-back and flanker tasks. In the total sample, there were positive correlations of error rates with pre-ejection period, baroreflex sensitivity and respiratory sinus arrhythmia, and negative correlations with cardiac output. Group differences in stroke volume, cardiac output, and pre-ejection period suggest diminished beta-adrenergic myocardial drive during executive function processing in hypotension, in addition to increased baroreflex function. Although further research is warranted to quantify the extent of executive function impairment in hypotension, the results from correlation analysis add evidence to the notion that higher sympathetic inotropic influences and reduced parasympathetic cardiac influences are accompanied by better cognitive performance.
Stewart, Jennifer L.; Flagan, Taru M.; May, April C.; Reske, Martina; Simmons, Alan N.; Paulus, Martin P.
2012-01-01
Background While stimulant dependent individuals continue to make risky decisions in spite of poor outcomes, much less is known about decision-making characteristics of occasional stimulant users (OSU) at risk for developing stimulant dependence. This study examines whether OSU exhibit inefficient learning and execution of reinforced decision-outcome contingencies. Methods OSU (n=161) and stimulant-naïve comparison subjects (CTL; n=48) performed a Paper Scissors Rock task during functional magnetic resonance imaging. Selecting a particular option was associated with a pre-determined probability of winning, which was altered repeatedly to examine neural and behavioral characteristics of reinforced contingencies. Results OSU displayed greater anterior insula, inferior frontal gyrus (IFG), and dorsal striatum activation than CTL during late trials when contingencies were familiar (as opposed to being learned) in the presence of comparable behavioral performance in both groups. Follow-up analyses demonstrated that during late trials: (1) OSU with high cannabis use displayed greater activation in these brain regions than CTL, whereas OSU with low cannabis use did not differ from the other two groups; and (2) OSU preferring cocaine exhibited greater anterior insula, IFG, and dorsal striatum activation than CTL and also displayed higher activation in the former two regions than OSU who preferred prescription stimulants. Conclusions OSU exhibit inefficient resource allocation during the execution of reinforced contingencies that may be a result of additive effects of cocaine and cannabis use. A critical next step is to establish whether this inefficiency predicts transition to stimulant dependence. PMID:23021534
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhao, Xinyu; School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang 111003; Cao, Minhua, E-mail: caomh@bit.edu.cn
2013-06-01
Graphical abstract: MoO{sub 3} hollow microspheres were synthesized via a facile and template-free solvothermal route and subsequent heat treatment in air. The MoO{sub 3} hollow microspheres exhibit an improved lithium storage and gas-sensing performance. Highlights: ► Hollow MoO{sub 3} microspheres were synthesized by thermal oxidation of hollow MoO{sub 2}. ► The MoO{sub 3} hollow microspheres have a relatively high specific surface area. ► The MoO{sub 3} hollow microspheres exhibit improved lithium storage performance. ► The MoO{sub 3} hollow microspheres show good responses to ammonia gas. - Abstract: In this paper, MoO{sub 3} hollow microspheres were synthesized via a facile andmore » template-free solvothermal route and subsequent heat treatment in air. The MoO{sub 3} hollow microspheres have a relatively high specific surface area, and with such a feature, the as-synthesized MoO{sub 3} hollow microspheres have potential applications in Li-ion battery and gas-sensor. When tested as a Li-storage anode material, the MoO{sub 3} hollow microspheres show a higher discharge capacity of 1377.1 mA h g{sup −1} in the first discharge and a high reversible capacity of 780 mA h g{sup −1} after 100 cycles at a rate of 1 C. Furthermore, as a gas sensing material, the MoO{sub 3} hollow microspheres exhibit an improved sensitivity and short response/recovery time to trace levels of ammonia gas.« less
BiVO4 Photoanode with Exposed (040) Facets for Enhanced Photoelectrochemical Performance
NASA Astrophysics Data System (ADS)
Xia, Ligang; Li, Jinhua; Bai, Jing; Li, Linsen; Chen, Shuai; Zhou, Baoxue
2018-03-01
A BiVO4 photoanode with exposed (040) facets was prepared to enhance its photoelectrochemical performance. The exposure of the (040) crystal planes of the BiVO4 film was induced by adding NaCl to the precursor solution. The as-prepared BiVO4 photoanode exhibits higher solar-light absorption and charge-separation efficiency compared to those of an anode prepared without adding NaCl. To our knowledge, the photocurrent density (1.26 mA cm-2 at 1.23 V vs. RHE) of as-prepared BiVO4 photoanode is the highest according to the reports for bare BiVO4 films under simulated AM1.5G solar light, and the incident photon-to-current conversion efficiency is above 35% at 400 nm. The photoelectrochemical (PEC) water-splitting performance was also dramatically improved with a hydrogen evolution rate of 9.11 μmol cm-2 h-1, which is five times compared with the BiVO4 photoanode prepared without NaCl (1.82 μmol cm-2 h-1). Intensity-modulated photocurrent spectroscopy and transient photocurrent measurements show a higher charge-carrier-transfer rate for this photoanode. These results demonstrate a promising approach for the development of high-performance BiVO4 photoanodes which can be used for efficient PEC water splitting and degradation of organic pollutants. [Figure not available: see fulltext.
Liu, Yisi; Sun, Qian; Yang, Xiaofei; Liang, Jianneng; Wang, Biqiong; Koo, Alicia; Li, Ruying; Li, Jie; Sun, Xueliang
2018-05-18
Aluminum-air batteries are a promising power supply for electronics due to its low cost and high energy density. However, portable coin-type Al-air batteries operating under ambient air condition for small electronic appliances have rarely been reported. Herein, coin cell-type Al-air batteries using cost-effective and eco-friendly chitosan hydrogel membranes modified by SiO2, SnO2, and ZnO have been prepared and assembled. The Al-air coin cell employing chitosan hydrogel membrane containing 10 wt.% SiO2 as a separator exhibits better discharge performance with a higher flat voltage plateau, longer discharge duration, and higher power density than the cells using a chitosan hydrogel membrane containing SnO2 or ZnO. Moreover, we also demonstrate that the presented Al-air coin cell can be recycled by a series of eco-friendly procedures using food grade ingredients, resulting in recycled products that are environmentally safe and ready for reuse. The Al-air coin cell adopting a recycled cathode from a fully discharged Al-air coin cell using the above-mentioned procedure has shown comparable performance to cells assembled with a new cathode. With these merits of enhanced electrochemical performance and recyclability, this new Al-air coin cell with modified chitosan hydrogel membrane can find wide applications for powering portable and small-size electronics.
Control order and visuomotor strategy development for joystick-steered underground shuttle cars.
Cloete, Steven; Zupanc, Christine; Burgess-Limerick, Robin; Wallis, Guy
2014-09-01
In this simulator-based study, we aimed to quantify performance differences between joystick steering systems using first-order and second-order control, which are used in underground coal mining shuttle cars. In addition, we conducted an exploratory analysis of how users of the more difficult, second-order system changed their behavior over time. Evidence from the visuomotor control literature suggests that higher-order control devices are not intuitive, which could pose a significant risk to underground mine personnel, equipment, and infrastructure. Thirty-six naive participants were randomly assigned to first- and second-order conditions and completed three experimental trials comprising sequences of 90 degrees turns in a virtual underground mine environment, with velocity held constant at 9 km/h(-1). Performance measures were lateral deviation, steering angle variability, high-frequency steering content, joystick activity, and cumulative time in collision with the virtual mine wall. The second-order control group exhibited significantly poorer performance for all outcome measures. In addition, a series of correlation analyses revealed that changes in strategy were evident in the second-order group but not the first-order group. Results were consistent with previous literature indicating poorer performance with higher-order control devices and caution against the adoption of the second-order joystick system for underground shuttle cars. Low-cost, portable simulation platforms may provide an effective basis for operator training and recruitment.
Byles, B. W.; Palapati, N. K. R.; Subramanian, A.; ...
2016-04-29
Single nanowires of two manganese oxide polymorphs (α-MnO 2 and todorokite manganese oxide), which display a controlled size variation in terms of their square structural tunnels, were isolated onto nanofabricated platforms using dielectrophoresis. This platform allowed for the measurement of the electronic conductivity of these manganese oxides, which was found to be higher in α-MnO 2 as compared to that of the todorokite phase by a factor of similar to 46. Despite this observation of substantially higher electronic conductivity in α-MnO 2, the todorokite manganese oxide exhibited better electrochemical rate performance as a Li-ion battery cathode. The relationship between thismore » electrochemical performance, the electronic conductivities of the manganese oxides, and their reported ionic conductivities is discussed for the first time, clearly revealing that the rate performance of these materials is limited by their Li + diffusivity, and not by their electronic conductivity. This result reveals important new insights relevant for improving the power density of manganese oxides, which have shown promise as a low-cost, abundant, and safe alternative for next-generation cathode materials. Moreover, the presented experimental approach is suitable for assessing a broader family of one-dimensional electrode active materials (in terms of their electronic and ionic conductivities) for both Li-ion batteries and for electrochemical systems utilizing charge-carrying ions beyond Li +.« less
Glucose Uptake and Triacylglycerol Synthesis Are Increased in Barth Syndrome Lymphoblasts.
Mejia, Edgard M; Zinko, James C; Hauff, Kristin D; Xu, Fred Y; Ravandi, Amir; Hatch, Grant M
2017-02-01
Barth syndrome (BTHS) is an X-linked genetic disease resulting in loss of cardiolipin (Ptd 2 Gro). Patients may be predisposed to hypoglycemia and exhibit increases in whole-body glucose disposal rates and a higher fat mass percentage. We examined the reasons for this in BTHS lymphoblasts. BTHS lymphoblasts exhibited a 60% increase (p < 0.004) in 2-[1,2- 3 H(N)]deoxy-D-glucose uptake, a 40% increase (p < 0.01) in glucose transporter-3 protein expression, an increase in phosphorylated-adenosine monophosphate kinase (AMPK) and a 58% increase (p < 0.001) in the phosphorylated-AMPK/AMPK ratio compared to controls. In addition, BTHS lymphoblasts exhibited a 90% (p < 0.001) increase in D-[U- 14 C]glucose incorporated into 1,2,3-triacyl-sn-glycerol (TAG) and a 29% increase (p < 0.025) in 1,2-diacyl-sn-glycerol acyltransferase-2 activity compared to controls. Thus, BTHS lymphoblasts exhibit increased glucose transport and increased glucose utilization for TAG synthesis. These results may, in part, explain why BTHS patients exhibit an increase in whole-body glucose disposal rates, may be predisposed to hypoglycemia and exhibit a higher fat mass percentage.
Zhang, Jian; Zhou, Huang; Zhu, Jiawei; Hu, Pei; Hang, Chao; Yang, Jinlong; Peng, Tao; Mu, Shichun; Huang, Yunhui
2017-07-26
Developing facile and low-cost porous graphene-based catalysts for highly efficient oxygen reduction reaction (ORR) remains an important matter for fuel cells. Here, a defect-enriched and dual heteroatom (S and N) doped hierarchically porous graphene-like carbon nanomaterial (D-S/N-GLC) was prepared by a simple and scalable strategy, and exhibits an outperformed ORR activity and stability as compared to commercial Pt/C catalyst in an alkaline condition (its half-wave potential is nearly 24 mV more positive than Pt/C). The excellent ORR performance of the catalyst can be attributed to the synergistic effect, which integrates the novel graphene-like architectures, 3D hierarchically porous structure, superhigh surface area, high content of active dopants, and abundant defective sites in D-S/N-GLC. As a result, the developed catalysts are used as the air electrode for primary and all-solid-state Zn-air batteries. The primary batteries demonstrate a higher peak power density of 252 mW cm -2 and high voltage of 1.32 and 1.24 V at discharge current densities of 5 and 20 mA cm -2 , respectively. Remarkably, the all-solid-state battery also exhibits a high peak power density of 81 mW cm -2 with good discharge performance. Moreover, such catalyst possesses a comparable ORR activity and higher stability than Pt/C in acidic condition. The present work not only provides a facile but cost-efficient strategy toward preparation of graphene-based materials, but also inspires an idea for promoting the electrocatalytic activity of carbon-based materials.
López-López, Linnette; Nieves-Plaza, Mariely; Castro, María del R.; Font, Yvonne M.; Torres-Ramos, Carlos; Vilá, Luis M.; Ayala-Peña, Sylvette
2014-01-01
Objective To determine the extent of mitochondrial DNA (mtDNA) damage in systemic lupus erythematosus (SLE) patients compared to healthy subjects and to determine the factors associated with mtDNA damage among SLE patients. Methods A cross-sectional study was performed in 86 SLE patients (per American College of Rheumatology classification criteria) and 86 healthy individuals matched for age and gender. Peripheral blood mononuclear cells (PBMCs) were collected from subjects to assess the relative amounts of mtDNA damage. Quantitative polymerase chain reaction assay was used to measure the frequency of mtDNA lesions and mtDNA abundance. Socioeconomic-demographic features, clinical manifestations, pharmacologic treatment, disease activity, and damage accrual were determined. Statistical analyses were performed using t test, pairwise correlation, and Pearson’s chi-square test (or Fisher’s exact test) as appropriate. Results Among SLE patients, 93.0% were women. The mean (SD) age was 38.0 (10.4) years and the mean (SD) disease duration was 8.7 (7.5) years. SLE patients exhibited increased levels of mtDNA damage as shown by higher levels of mtDNA lesions and decreased mtDNA abundance as compared to healthy individuals. There was a negative correlation between disease damage and mtDNA abundance and a positive correlation between mtDNA lesions and disease duration. No association was found between disease activity and mtDNA damage. Conclusion PBMCs from SLE patients exhibited more mtDNA damage compared to healthy subjects. Higher levels of mtDNA damage were observed among SLE patients with major organ involvement and damage accrual. These results suggest that mtDNA damage have a potential role in the pathogenesis of SLE. PMID:24899636
López-López, L; Nieves-Plaza, M; Castro, M del R; Font, Y M; Torres-Ramos, C A; Vilá, L M; Ayala-Peña, S
2014-10-01
To determine the extent of mitochondrial DNA (mtDNA) damage in systemic lupus erythematosus (SLE) patients compared to healthy subjects and to determine the factors associated with mtDNA damage among SLE patients. A cross-sectional study was performed in 86 SLE patients (per American College of Rheumatology classification criteria) and 86 healthy individuals matched for age and gender. Peripheral blood mononuclear cells (PBMCs) were collected from subjects to assess the relative amounts of mtDNA damage. Quantitative polymerase chain reaction assay was used to measure the frequency of mtDNA lesions and mtDNA abundance. Socioeconomic-demographic features, clinical manifestations, pharmacologic treatment, disease activity, and damage accrual were determined. Statistical analyses were performed using t test, pairwise correlation, and Pearson's chi-square test (or Fisher's exact test) as appropriate. Among SLE patients, 93.0% were women. The mean (SD) age was 38.0 (10.4) years and the mean (SD) disease duration was 8.7 (7.5) years. SLE patients exhibited increased levels of mtDNA damage as shown by higher levels of mtDNA lesions and decreased mtDNA abundance as compared to healthy individuals. There was a negative correlation between disease damage and mtDNA abundance and a positive correlation between mtDNA lesions and disease duration. No association was found between disease activity and mtDNA damage. PBMCs from SLE patients exhibited more mtDNA damage compared to healthy subjects. Higher levels of mtDNA damage were observed among SLE patients with major organ involvement and damage accrual. These results suggest that mtDNA damage have a potential role in the pathogenesis of SLE. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.