Sample records for exhibited concentration dependent

  1. Cl(-) concentration dependence of photovoltage generation by halorhodopsin from Halobacterium salinarum.

    PubMed Central

    Muneyuki, Eiro; Shibazaki, Chie; Wada, Yoichiro; Yakushizin, Manabu; Ohtani, Hiroyuki

    2002-01-01

    The photovoltage generation by halorhodopsin from Halobacterium salinarum (shR) was examined by adsorbing shR-containing membranes onto a thin polymer film. The photovoltage consisted of two major components: one with a sub-millisecond range time constant and the other with a millisecond range time constant with different amplitudes, as previously reported. These components exhibited different Cl(-) concentration dependencies (0.1-9 M). We found that the time constant for the fast component was relatively independent of the Cl(-) concentration, whereas the time constant for the slow component increased sigmoidally at higher Cl(-) concentrations. The fast and the slow processes were attributed to charge (Cl(-)) movements within the protein and related to Cl(-) ejection, respectively. The laser photolysis studies of shR-membrane suspensions revealed that they corresponded to the formation and the decay of the N intermediate. The photovoltage amplitude of the slow component exhibited a distorted bell-shaped Cl(-) concentration dependence, and the Cl(-) concentration dependence of its time constant suggested a weak and highly cooperative Cl(-)-binding site(s) on the cytoplasmic side (apparent K(D) of approximately 5 M and Hill coefficient > or =5). The Cl(-) concentration dependence of the photovoltage amplitude and the time constant for the slow process suggested a competition between spontaneous relaxation and ion translocation. The time constant for the relaxation was estimated to be >100 ms. PMID:12324398

  2. Viscoelastic properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover were investigated. The corn stover MFC gels exhibited concentration-dependent viscoelastic properties. Higher corn stover MFC concentrations resulted in stronger viscoelastic properties. Th...

  3. Viscoelastic properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of microfibrillated cellulose (MFC) produced from agricultural residue corn stover were investigated. The corn stover MFC gels exhibited concentration-dependent viscoelastic solid properties. Higher corn stover MFC concentrations resulted in stronger viscoelastic propertie...

  4. Uniform modeling of bacterial colony patterns with varying nutrient and substrate

    NASA Astrophysics Data System (ADS)

    Schwarcz, Deborah; Levine, Herbert; Ben-Jacob, Eshel; Ariel, Gil

    2016-04-01

    Bacteria develop complex patterns depending on growth condition. For example, Bacillus subtilis exhibit five different patterns depending on substrate hardness and nutrient concentration. We present a unified integro-differential model that reproduces the entire experimentally observed morphology diagram at varying nutrient concentrations and substrate hardness. The model allows a comprehensive and quantitative comparison between experimental and numerical variables and parameters, such as colony growth rate, nutrient concentration and diffusion constants. As a result, the role of the different physical mechanisms underlying and regulating the growth of the colony can be evaluated.

  5. Formal water oxidation turnover frequencies from MIL-101(Cr) anchored Ru(bda) depend on oxidant concentration.

    PubMed

    Bhunia, Asamanjoy; Johnson, Ben A; Czapla-Masztafiak, Joanna; Sá, Jacinto; Ott, Sascha

    2018-06-21

    The molecular water oxidation catalyst [Ru(bda)(L)2] has been incorporated into pyridine-decorated MIL-101(Cr) metal-organic frameworks. The resulting MIL-101@Ru materials exhibit turnover frequencies (TOFs) up to ten times higher compared to the homogenous reference. An unusual dependence of the formal TOFs on oxidant concentration is observed that ultimately arises from differing amounts of catalysts in the MOF crystals being active.

  6. Mechanistic explanation of time-dependent cross-phenomenon based on quorum sensing: A case study of the mixture of sulfonamide and quorum sensing inhibitor to bioluminescence of Aliivibrio fischeri.

    PubMed

    Sun, Haoyu; Pan, Yongzheng; Gu, Yue; Lin, Zhifen

    2018-07-15

    Cross-phenomenon in which the concentration-response curve (CRC) for a mixture crosses the CRC for the reference model has been identified in many studies, expressed as a heterogeneous pattern of joint toxic action. However, a mechanistic explanation of the cross-phenomenon has thus far been extremely insufficient. In this study, a time-dependent cross-phenomenon was observed, in which the cross-concentration range between the CRC for the mixture of sulfamethoxypyridazine (SMP) and (Z-)-4-Bromo-5-(bromomethylene)-2(5H)-furanone (C30) to the bioluminescence of Aliivibrio fischeri (A. fischeri) and the CRC for independent action model with 95% confidence bands varied from low-concentration to higher-concentration regions in a timely manner expressed the joint toxic action of the mixture changing with an increase of both concentration and time. Through investigating the time-dependent hormetic effects of SMP and C30 (by measuring the expression of protein mRNA, simulating the bioluminescent reaction and analyzing the toxic action), the underlying mechanism was as follows: SMP and C30 acted on the quorum sensing (QS) system of A. fischeri, which induced low-concentration stimulatory effects and high-concentration inhibitory effects; in the low-concentration region, the stimulatory effects of SMP and C30 made the mixture produce a synergistic stimulation on the bioluminescence; thus, the joint toxic action exhibited antagonism. In the high-concentration region, the inhibitory effects of SMP and C30 in the mixture caused a double block in the loop circuit of the QS system; thus, the joint toxic action exhibited synergism. With the increase of time, these stimulatory and inhibitory effects of SMP and C30 were changed by the variation of the QS system at different growth phases, resulting in the time-dependent cross-phenomenon. This study proposes an induced mechanism for time-dependent cross-phenomenon based on QS, which may provide new insight into the mechanistic investigation of time-dependent cross-phenomenon, benefitting the environmental risk assessment of mixtures. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Cytotoxicity of protein corona-graphene oxide nanoribbons on human epithelial cells

    NASA Astrophysics Data System (ADS)

    Mbeh, Doris A.; Akhavan, Omid; Javanbakht, Taraneh; Mahmoudi, Morteza; Yahia, L.'Hocine

    2014-11-01

    Graphene oxide nanoribbons (GONRs) were synthesized using an oxidative unzipping of multi-walled carbon nanotubes. The interactions of the GONRs with various concentrations of fetal bovine serum or human plasma serum indicated that the GONRs were functionalized substantially by the albumin originated from the two different protein sources. Then, concentration-dependent cytotoxicity of the protein-functionalized GONRs on human epithelial cells was studied. Although the GONRs with concentrations ≤50 μg/mL did not exhibit significant cytotoxicity on the cells (with the cell viability >85%), the concentration of 100 μg/mL exhibited significant cytotoxicity including prevention of cell proliferation and induction of cell apoptosis. These results can provide more in-depth understanding about cytotoxic effects of graphene nanostructures which can be functionalized by the proteins of media.

  8. Calculations of critical micelle concentration by dissipative particle dynamics simulations: the role of chain rigidity.

    PubMed

    Lee, Ming-Tsung; Vishnyakov, Aleksey; Neimark, Alexander V

    2013-09-05

    Micelle formation in surfactant solutions is a self-assembly process governed by complex interplay of solvent-mediated interactions between hydrophilic and hydrophobic groups, which are commonly called heads and tails. However, the head-tail repulsion is not the only factor affecting the micelle formation. For the first time, we present a systematic study of the effect of chain rigidity on critical micelle concentration and micelle size, which is performed with the dissipative particle dynamics simulation method. Rigidity of the coarse-grained surfactant molecule was controlled by the harmonic bonds set between the second-neighbor beads. Compared to flexible molecules with the nearest-neighbor bonds being the only type of bonded interactions, rigid molecules exhibited a lower critical micelle concentration and formed larger and better-defined micelles. By varying the strength of head-tail repulsion and the chain rigidity, we constructed two-dimensional diagrams presenting how the critical micelle concentration and aggregation number depend on these parameters. We found that the solutions of flexible and rigid molecules that exhibited approximately the same critical micelle concentration could differ substantially in the micelle size and shape depending on the chain rigidity. With the increase of surfactant concentration, primary micelles of more rigid molecules were found less keen to agglomeration and formation of nonspherical aggregates characteristic of flexible molecules.

  9. The immitigable nature of assembly bias: the impact of halo definition on assembly bias

    NASA Astrophysics Data System (ADS)

    Villarreal, Antonio S.; Zentner, Andrew R.; Mao, Yao-Yuan; Purcell, Chris W.; van den Bosch, Frank C.; Diemer, Benedikt; Lange, Johannes U.; Wang, Kuan; Campbell, Duncan

    2017-11-01

    Dark matter halo clustering depends not only on halo mass, but also on other properties such as concentration and shape. This phenomenon is known broadly as assembly bias. We explore the dependence of assembly bias on halo definition, parametrized by spherical overdensity parameter, Δ. We summarize the strength of concentration-, shape-, and spin-dependent halo clustering as a function of halo mass and halo definition. Concentration-dependent clustering depends strongly on mass at all Δ. For conventional halo definitions (Δ ∼ 200 - 600 m), concentration-dependent clustering at low mass is driven by a population of haloes that is altered through interactions with neighbouring haloes. Concentration-dependent clustering can be greatly reduced through a mass-dependent halo definition with Δ ∼ 20 - 40 m for haloes with M200 m ≲ 1012 h-1M⊙. Smaller Δ implies larger radii and mitigates assembly bias at low mass by subsuming altered, so-called backsplash haloes into now larger host haloes. At higher masses (M200 m ≳ 1013 h-1M⊙) larger overdensities, Δ ≳ 600 m, are necessary. Shape- and spin-dependent clustering are significant for all halo definitions that we explore and exhibit a relatively weaker mass dependence. Generally, both the strength and the sense of assembly bias depend on halo definition, varying significantly even among common definitions. We identify no halo definition that mitigates all manifestations of assembly bias. A halo definition that mitigates assembly bias based on one halo property (e.g. concentration) must be mass dependent. The halo definitions that best mitigate concentration-dependent halo clustering do not coincide with the expected average splashback radii at fixed halo mass.

  10. Concentration-Induced Association in a Protein System Caused by a Highly Directional Patch Attraction.

    PubMed

    Li, Weimin; Persson, Björn A; Lund, Mikael; Bergenholtz, Johan; Zackrisson Oskolkova, Malin

    2016-09-01

    Self-association of the protein lactoferrin is studied in solution using small-angle X-ray scattering techniques. Effective static structure factors have been shown to exhibit either a monotonic or a nonmonotonic dependence on protein concentration in the small wavevector limit, depending on salt concentration. The behavior correlates with a nonmonotonic dependence of the second virial coefficient on salt concentration, such that a maximum appears in the structure factor at a low protein concentration when the second virial coefficient is negative and close to a minimum. The results are interpreted in terms of an integral equation theory with explicit dimers, formulated by Wertheim, which provides a consistent framework able to explain the behavior in terms of a monomer-dimer equilibrium that appears because of a highly directional patch attraction. Short attraction ranges preclude trimer formation, which explains why the protein system behaves as if it were subject to a concentration-dependent isotropic protein-protein attraction. Superimposing an isotropic interaction, comprising screened Coulomb repulsion and van der Waals attraction, on the patch attraction allows for a semiquantitative modeling of the complete transition pathway from monomers in the dilute limit to monomer-dimer systems at somewhat higher protein concentrations.

  11. Photosynthesis is differently regulated during and after copper-induced nutritional stress in citrus trees.

    PubMed

    Hippler, Franz W R; Dovis, Veronica L; Boaretto, Rodrigo M; Quaggio, Jose A; Azevedo, Ricardo A; Williams, Lorraine E; Mattos, Dirceu

    2018-04-17

    Antioxidant enzymatic responses in Citrus leaves under Cu-induced stress depends on rootstock genotypes. However, there is a lack of information about how woody plants recover growth capacity after exposure to elevated Cu and whether growth is affected by the redistribution of the metal to new vegetative parts and consequently whether photosynthesis is affected. Therefore, the biomass of plants and Cu concentrations in new leaf flushes were determined in young citrus trees grafted onto contrasting rootstocks [Swingle citrumelo (SW) and Rangpur lime (RL)]. Photosynthetic rate, chlorophyll fluorescence and antioxidant enzymatic systems were evaluated in plants previously grown in nutrient solution with Cu varying from low to high levels and with no added Cu. Both rootstocks exhibited reduced plant growth under Cu toxicity. However, trees grafted onto RL exhibited better growth recovery after Cu excess, which was dependent on the modulation of antioxidant enzyme activities in roots and leaves that maintained the integrity of the photosynthetic apparatus. In contrast, plants grafted onto SW exhibited a lower photosynthetic rate at the lowest available Cu concentration. Although the highest accumulation of Cu occurred in citrus roots, the redistribution of the nutrient to new vegetative parts was proportional to the Cu concentration in the roots. This article is protected by copyright. All rights reserved.

  12. Magnetization at high pressure in CeP

    NASA Astrophysics Data System (ADS)

    Naka, T.; Matsumoto, T.; Okayama, Y.; Môri, N.; Haga, Y.; Suzuki, T.

    1995-02-01

    We have investigated the pressure dependence of magnetization below 60 K up to 1.6 GPa in the low-carrier concentration system CeP showing two step transitions at T = TL and TH under high pressure. At high pressure, M( P, T) exhibits a maximum at around the lower transition temperature TL. This behavior implies that the magnetic state changes at TL. The pressure dependence of isothermal magnetization M( P) is different above and below TL. In fact, M( P) below TL exhibits a maximum at around 1.4 GPa, whereas M( P) above TL increases steeply with pressure up to 1.6 GPa.

  13. Concentration dependent switch in the kinetic pathway of lysozyme fibrillation: Spectroscopic and microscopic analysis

    NASA Astrophysics Data System (ADS)

    Kiran Kumar, E.; Prasad, Deepak Kumar; Prakash Prabhu, N.

    2017-08-01

    Formation of amyloid fibrils is found to be a general tendency of many proteins. Investigating the kinetic mechanisms and structural features of the intermediates and the final fibrillar state is essential to understand their role in amyloid diseases. Lysozyme, a notable model protein for amyloidogenic studies, readily formed fibrils in vitro at neutral pH in the presence of urea. It, however, showed two different kinetic pathways under varying urea concentrations when probed with thioflavin T (ThT) fluorescence. In 2 M urea, lysozyme followed a nucleation-dependent fibril formation pathway which was not altered by varying the protein concentration from 2 mg/ml to 8 mg/ml. In 4 M urea, the protein exhibited concentration dependent change in the mechanism. At lower protein concentrations, lysozyme formed fibrils without any detectable nuclei (nucleation-independent polymerization pathway). When the concentration of the protein was increased above 3 mg/ml, the protein followed nucleation-dependent polymerization pathway as observed in the case of 2 M urea condition. This was further verified using microscopic images of the fibrils. The kinetic parameters such as lag time, elongation rate, and fibrillation half-time, which were derived from ThT fluorescence changes, showed linear dependency against the initial protein concentration suggested that under the nucleation-dependent pathway conditions, the protein followed primary-nucleation mechanism without any significant secondary nucleation events. The results also suggested that the differences in the initial protein conformation might alter the mechanism of fibrillation; however, at the higher protein concentrations lysozyme shifted to nucleation-dependent pathway.

  14. Powerful bacterial killing by buckwheat honeys is concentration-dependent, involves complete DNA degradation and requires hydrogen peroxide.

    PubMed

    Brudzynski, Katrina; Abubaker, Kamal; Wang, Tony

    2012-01-01

    Exposure of bacterial cells to honey inhibits their growth and may cause cell death. Our previous studies showed a cause-effect relationship between hydroxyl radical generated from honey hydrogen peroxide and growth arrest. Here we explored the role of hydroxyl radicals as inducers of bacterial cells death. The bactericidal effect of ·OH on antibiotic-resistant clinical isolates of MRSA and VRE and standard bacterial strains of E. coli and B. subtiles was examined using a broth microdilution assay supplemented with 3'-(p-aminophenyl) fluorescein (APF) as the ·OH trap, followed by colony enumeration. Bactericidal activities of eight honeys (six varieties of buckwheat, blueberry and manuka honeys) were analyzed. The MBC/MIC ratio ≤4 and the killing curves indicated that honeys exhibited powerful, concentration-dependent bactericidal effect. The extent of killing depended on the ratio of honey concentration to bacterial load, indicating that honey dose was critical for its bactericidal efficacy. The killing rate and potency varied between honeys and ranged from over a 6-log(10) to 4-log(10) CFU/ml reduction of viable cells, equivalent to complete bacterial eradication. The maximal killing was associated with the extensive degradation of bacterial DNA. Honey concentration at which DNA degradation occurred correlated with cell death observed in the concentration-dependent cell-kill on agar plates. There was no quantitative relationship between the ·OH generation by honey and bactericidal effect. At the MBC, where there was no surviving cells and no DNA was visible on agarose gels, the ·OH levels were on average 2-3x lower than at Minimum Inhibitory Concentration (MICs) (p < 0.0001). Pre-treatment of honey with catalase, abolished the bactericidal effect. This raised possibilities that either the abrupt killing prevented accumulation of ·OH (dead cells did not generate ·OH) or that DNA degradation and killing is the actual footprint of ·OH action. In conclusion, honeys of buckwheat origin exhibited powerful, concentration-dependent bactericidal effect. The killing and DNA degradation showed a cause-effect relationship. Hydrogen peroxide was an active part of honey killing mechanism.

  15. The effects of layering in ferroelectric Si-doped HfO{sub 2} thin films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lomenzo, Patrick D.; Nishida, Toshikazu, E-mail: nishida@ufl.edu; Takmeel, Qanit

    2014-08-18

    Atomic layer deposited Si-doped HfO{sub 2} thin films approximately 10 nm thick are deposited with various Si-dopant concentrations and distributions. The ferroelectric behavior of the HfO{sub 2} thin films are shown to be dependent on both the Si mol. % and the distribution of Si-dopants. Metal-ferroelectric-insulator-semiconductor capacitors are shown to exhibit a tunable remanent polarization through the adjustment of the Si-dopant distribution at a constant Si concentration. Inhomogeneous layering of Si-dopants within the thin films effectively lowers the remanent polarization. A pinched hysteresis loop is observed for higher Si-dopant concentrations and found to be dependent on the Si layering distribution.

  16. Electro-osmosis of non-Newtonian fluids in porous media using lattice Poisson-Boltzmann method.

    PubMed

    Chen, Simeng; He, Xinting; Bertola, Volfango; Wang, Moran

    2014-12-15

    Electro-osmosis in porous media has many important applications in various areas such as oil and gas exploitation and biomedical detection. Very often, fluids relevant to these applications are non-Newtonian because of the shear-rate dependent viscosity. The purpose of this study was to investigate the behaviors and physical mechanism of electro-osmosis of non-Newtonian fluids in porous media. Model porous microstructures (granular, fibrous, and network) were created by a random generation-growth method. The nonlinear governing equations of electro-kinetic transport for a power-law fluid were solved by the lattice Poisson-Boltzmann method (LPBM). The model results indicate that: (i) the electro-osmosis of non-Newtonian fluids exhibits distinct nonlinear behaviors compared to that of Newtonian fluids; (ii) when the bulk ion concentration or zeta potential is high enough, shear-thinning fluids exhibit higher electro-osmotic permeability, while shear-thickening fluids lead to the higher electro-osmotic permeability for very low bulk ion concentration or zeta potential; (iii) the effect of the porous medium structure depends significantly on the constitutive parameters: for fluids with large constitutive coefficients strongly dependent on the power-law index, the network structure shows the highest electro-osmotic permeability while the granular structure exhibits the lowest permeability on the entire range of power law indices considered; when the dependence of the constitutive coefficient on the power law index is weaker, different behaviors can be observed especially in case of strong shear thinning. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Some endocrinological aspects of barbiturate dependence.

    PubMed

    Norton, P R

    1971-02-01

    1. Hypophysectomized rats become dependent on barbitone and show the same withdrawal syndrome as intact animals.2. Barbitone dependent rats have larger thyroid and adrenal glands, a larger liver, smaller gonads and larger secondary sex organs than untreated animals. The levator ani muscle of the males is smaller.3. In contrast, dependent female hypophysectomized rats only showed a decreased gonad weight and increased liver weight.4. Histologically, the thyroid gland of dependent rats appears more active, but the concentration of iodine bound to plasma protein, basal metabolic rate and body temperature are similar in dependent and untreated animals.5. Resting plasma corticosterone concentration appears to be unchanged in barbitone dependent animals, but stress induced increases in the concentration of corticosterone in plasma are less in dependent animals.6. Immature barbitone dependent rats grow at a faster rate than untreated animals, but hypophysectomized rats of similar age receiving barbitone do not.7. The additional body weight gained by barbitone dependent animals is of normal body composition.8. Administration of growth hormone has an identical growth inducing effect in dependent hypophysectomized animals and in untreated hypophysectomized animals.9. Barbitone dependent rats do not exhibit the ;frustration effect' in a double runway. In barbitone dependent rats approach to a potentially ;frustrating' situation is slower than in untreated animals.

  18. Concentration- and time-dependent genotoxicity profiles of isoprene monoepoxides and diepoxide, and the cross-linking potential of isoprene diepoxide in cells.

    PubMed

    Li, Yan; Pelah, Avishay; An, Jing; Yu, Ying-Xin; Zhang, Xin-Yu

    2014-01-01

    Isoprene, a possible carcinogen, is a petrochemical and a natural product being primarily produced by plants. It is biotransformed to 2-ethenyl-2-methyloxirane (IP-1,2-O) and 2-(1-methylethenyl)oxirane (IP-3,4-O), both of which can be further metabolized to 2-methyl-2,2'-bioxirane (MBO). MBO is mutagenic, but IP-1,2-O and IP-3,4-O are not. While IP-1,2-O has been reported being genotoxic, the genotoxicity of IP-3,4-O and MBO, and the cross-linking potential of MBO have not been examined. In the present study, we used the comet assay to investigate the concentration- and time-dependent genotoxicity profiles of the three metabolites and the cross-linking potential of MBO in human hepatocyte L02 cells. For the incubation time of 1 h, all metabolites showed positive concentration-dependent profiles with a potency rank order of IP-3,4-O > MBO > IP-1,2-O. In human hepatocellular carcinoma (HepG2) and human leukemia (HL60) cells, IP-3,4-O was still more potent in inducing DNA breaks than MBO at high concentrations (>200 μM), although at low concentrations (≤200 μM) IP-3,4-O exhibited slightly lower or similar potency to MBO. Interestingly, their time-dependent genotoxicity profiles (0.5-4 h) in L02 cells were different from each other: IP-1,2-O and MBO (200 μM) exhibited negative and positive profiles, respectively, with IP-3,4-O lying in between, namely, IP-3,4-O-caused DNA breaks did not change over the exposure time. Further experiments demonstrated that hydrolysis of IP-1,2-O contributed to the negative profile and MBO induced cross-links at high concentrations and long incubation times. Collectively, the results suggested that IP-3,4-O might play a significant role in the toxicity of isoprene.

  19. Impact of thiamine deficiency on T-cell dependent and T-cell independent antibody production in lake trout

    USGS Publications Warehouse

    Ottinger, Christopher A.; Honeyfield, Dale C.; Densmore, Christine L.; Iwanowicz, Luke R.

    2012-01-01

    Lake trout Salvelinus namaycush on thiamine-replete and thiamine-depleted diets were evaluated for the effects of thiamine status on in vivo responses to the T-dependent antigen trinitophenol (TNP)-keyhole limpet hemocyanin (TNP-KLH), the T-independent antigen trinitrophenol-lipolysaccaharide (TNP-LPS), or Dulbecco's phosphate-buffered saline (DPBS; negative control fish). Plasma antibody concentrations were evaluated for possible differences in total anti-TNP activity as well as differences in response kinetics. Associations between anti-TNP activity and muscle and liver thiamine concentrations as well as ratios of muscle-to-liver thiamine to anti-TNP activity were also examined. Thiamine-depleted lake trout that were injected with TNP-LPS exhibited significantly more anti-TNP activity than thiamine-replete fish. The depleted fish injected with TNP-LPS also exhibited significantly different response kinetics relative to thiamine-replete lake trout. No differences in activity or kinetics were observed between the thiamine-replete and -depleted fish injected with TNP-KLH or in the DPBS negative controls. Anti-TNP activity in thiamine-depleted lake trout injected with TNP-KLH was positively associated with muscle thiamine pyrophosphate (thiamine diphosphate; TPP) concentration. A negative association was observed between the ratio of muscle-to-liver TPP and T-independent responses. No significant associations between anti-TNP activity and tissue thiamine concentration were observed in the thiamine-replete fish. We demonstrated that thiamine deficiency leads to alterations in both T-dependent and T-independent immune responses in lake trout.

  20. Impact of thiamine deficiency on T-cell dependent and T-cell independent antibody production in lake trout.

    PubMed

    Ottinger, Christopher A; Honeyfield, Dale C; Densmore, Christine L; Iwanowicz, Luke R

    2012-12-01

    Lake trout Salvelinus namaycush on thiamine-replete and thiamine-depleted diets were evaluated for the effects of thiamine status on in vivo responses to the T-dependent antigen trinitophenol (TNP)-keyhole limpet hemocyanin (TNP-KLH), the T-independent antigen trinitrophenol-lipolysaccaharide (TNP-LPS), or Dulbecco's phosphate-buffered saline (DPBS; negative control fish). Plasma antibody concentrations were evaluated for possible differences in total anti-TNP activity as well as differences in response kinetics. Associations between anti-TNP activity and muscle and liver thiamine concentrations as well as ratios of muscle-to-liver thiamine to anti-TNP activity were also examined. Thiamine-depleted lake trout that were injected with TNP-LPS exhibited significantly more anti-TNP activity than thiamine-replete fish. The depleted fish injected with TNP-LPS also exhibited significantly different response kinetics relative to thiamine-replete lake trout. No differences in activity or kinetics were observed between the thiamine-replete and -depleted fish injected with TNP-KLH or in the DPBS negative controls. Anti-TNP activity in thiamine-depleted lake trout injected with TNP-KLH was positively associated with muscle thiamine pyrophosphate (thiamine diphosphate; TPP) concentration. A negative association was observed between the ratio of muscle-to-liver TPP and T-independent responses. No significant associations between anti-TNP activity and tissue thiamine concentration were observed in the thiamine-replete fish. We demonstrated that thiamine deficiency leads to alterations in both T-dependent and T-independent immune responses in lake trout.

  1. The influence of drop size-dependent fog chemistry on aerosol processing by San Joaquin Valley fogs

    NASA Astrophysics Data System (ADS)

    Hoag, Katherine J.; Collett, Jeffrey L., Jr.; Pandis, Spyros N.

    Drop size-resolved measurements of fog chemistry in California's San Joaquin Valley during the 1995 Integrated Monitoring Study reveal that fog composition varies with drop size. Small fog drops were less alkaline and typically contained higher major ion (nitrate, sulfate, ammonium) concentrations than large drops. Small drops often contained higher concentrations of Fe and Mn than large drops while H 2O 2 concentrations exhibited no strong drop size dependence. Simulation of an extended fog episode in Fresno, California revealed the capability of a drop size-resolved fog chemistry model to reproduce the measured (based on two drop size categories) drop size dependence of several key species. The model was also able to satisfactorily reproduce measured species-dependent deposition rates (ammonium>sulfate>nitrate) resulting from fog drop sedimentation. Both the model simulation and direct analysis of size-resolved fog composition observations and measured gas-phase oxidant concentrations indicate the importance of ozone as an aqueous-phase S(IV) oxidant in these high pH fogs. Due to the nonlinear dependence of the rate law for the ozone pathway on the hydrogen ion concentration, use of the average fog drop composition can lead to significant underprediction of aqueous phase sulfate production rates in these chemically heterogeneous fogs.

  2. Anti-tumour-promoting and thermal-induced protein denaturation inhibitory activities of β-sitosterol and lupeol isolated from Diospyros lotus L.

    PubMed

    Rauf, Abdur; Uddin, Ghias; Khan, Haroon; Raza, Muslim; Zafar, Muhammad; Tokuda, Harukuni

    2016-01-01

    In this study, the anti-tumour-promoting and thermal-induced protein denaturation inhibitory activities of β-sitosterol (1) and lupeol (2), isolated from Diospyros lotus L., were explored. Compound 1 showed a marked concentration-dependent inhibition against 12-O-tetradecanoylphorbol-13-acetate (20 ng/32 pmol)-induced Epstein-Barr virus early antigen activation in Raji cells with IC50 of 270 μg/ml, without significant toxicity (70% viability). Compound 2 showed significant anti-tumour-promoting effect with IC50 of 412 μg/ml, without significant toxicity (60% viability). In heat-induced protein denaturation assay, compound 1 exhibited a concentration-dependent attenuation with a maximum effect of 73.5% at 500 μg/ml with EC50 of 117 μg/ml, while compound 2 exhibited a maximum effect of 59.2% at 500 μg/ml with EC50 of 355 μg/ml. Moreover, in silico docking studies against the phosphoinositide 3-kinase enzyme also show the inhibitory potency of these compounds. In short, both the compounds exhibited a marked anti-tumour-promoting and potent inhibitory effect on thermal-induced protein denaturation.

  3. Environmentally Realistic Mixtures of Haloacetic Acids Exhibit Concentration-Dependent Departures from Dose Additivity

    EPA Science Inventory

    Disinfection byproducts (DBPs), including haloacetic acids (HAAs), are formed when oxidizing disinfectants react with inorganic and organic matter in water. Drinking water is assayed routinely for 9 HAAs (HAA9): chloro-, dichloro-, trichloro-, bromo-, dibromo-, tribrorno-, bromoc...

  4. Nine and Ten chemical haloacetic acid mixtures exhibit concentration-dependent departure from dose additivity

    EPA Science Inventory

    Disinfection of water greatly decreases waterborne disease. Disinfection byproducts (DBPs), including haloacetic acids (HAAs), are formed when oxidizing disinfectants react with inorganic and organic matter in water. Water providers routinely assay for 9 HAAs in finished drinking...

  5. Dependence of Non-Prestonian Behavior of Ceria Slurry with Anionic Surfactant on Abrasive Concentration and Size in Shallow Trench Isolation Chemical Mechanical Polishing

    NASA Astrophysics Data System (ADS)

    Kang, Hyun‑Goo; Kim, Dae‑Hyeong; Katoh, Takeo; Kim, Sung‑Jun; Paik, Ungyu; Park, Jea‑Gun

    2006-05-01

    The dependencies of the non-Prestonian behavior of ceria slurry with anionic surfactant on the size and concentration of abrasive particles were investigated by performing chemical mechanical polishing (CMP) experiments using blanket wafers. We found that not only the abrasive size but also the abrasive concentration with surfactant addition influences the non-Prestonian behavior. Such behavior is clearly exhibited with small abrasive sizes and a higher concentrations of abrasives with surfactant addition, because the abrasive particles can locally contact the film surface more effectively with applied pressure. We introduce a factor to quantify these relations with the non-Prestonian behavior of a slurry. For ceria slurry, this non-Prestonian factor, βNP, was determined to be almost independent of the abrasive concentration for a larger size and a smaller weight conentration of abrasive particles, but it increased with the surfactant concentration for a smaller size and a higher concentration of abrasives with surfactant addition.

  6. The composition dependence of magnetic, electronic and optical properties of Mn-doped SixGe1-x nanowires

    NASA Astrophysics Data System (ADS)

    Wei, Jianglin; Lan, Mu; Zhang, Xi; Xiang, Gang

    2017-07-01

    Mn-doped SixGe1-x nanowires (NWs) with different Ge concentrations have been studied by first-principles calculations. It is found that the spin dependent energy bands of the NWs show rich variations both in bandgap width and type (from indirect to direct) as the Ge concentration changes. The Mn-doped SixGe1-x NWs exhibit half-metallic characteristics for all Ge concentrations, and the ground states of the NWs are found to be ferromagnetic (FM). The net magnetization mapping and spin density of states calculations reveal that Mn 3d electrons have a strong hybridization effect with nearest Ge 4p electrons, which results in the Ge’s nontrivial contribution to the magnetic moment of the NWs. Further magnon dispersion studies show that the magnetic order stability of the NWs is influenced by Ge concentrations. Finally, the dependence of the optical properties of the magnetic NWs on the Ge concentration is demonstrated. Our results suggest that Mn-doped SixGe1-x NWs may be useful in spintronic and optoelectronic devices.

  7. Guest concentration, bias current, and temperature-dependent sign inversion of magneto-electroluminescence in thermally activated delayed fluorescence devices

    NASA Astrophysics Data System (ADS)

    Deng, Junquan; Jia, Weiyao; Chen, Yingbing; Liu, Dongyu; Hu, Yeqian; Xiong, Zuhong

    2017-03-01

    Non-emissive triplet excited states in devices that undergo thermally activated delayed fluorescence (TADF) can be up-converted to singlet excited states via reverse intersystem crossing (RISC), which leads to an enhanced electroluminescence efficiency. Exciton-based fluorescence devices always exhibit a positive magneto-electroluminescence (MEL) because intersystem crossing (ISC) can be suppressed effectively by an external magnetic field. Conversely, TADF devices should exhibit a negative MEL because RISC is suppressed by the external magnetic field. Intriguingly, we observed a positive MEL in TADF devices. Moreover, the sign of the MEL was either positive or negative, and depended on experimental conditions, including doping concentration, current density and temperature. The MEL observed from our TADF devices demonstrated that ISC in the host material and RISC in the guest material coexisted. These competing processes were affected by the experimental conditions, which led to the sign change of the MEL. This work gives important insight into the energy transfer processes and the evolution of excited states in TADF devices.

  8. Evidence of Electron-Hole Imbalance in WTe2 from High-Resolution Angle-Resolved Photoemission Spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Chen-Lu; Zhang, Yan; Huang, Jian-Wei; Liu, Guo-Dong; Liang, Ai-Ji; Zhang, Yu-Xiao; Shen, Bing; Liu, Jing; Hu, Cheng; Ding, Ying; Liu, De-Fa; Hu, Yong; He, Shao-Long; Zhao, Lin; Yu, Li; Hu, Jin; Wei, Jiang; Mao, Zhi-Qiang; Shi, You-Guo; Jia, Xiao-Wen; Zhang, Feng-Feng; Zhang, Shen-Jin; Yang, Feng; Wang, Zhi-Min; Peng, Qin-Jun; Xu, Zu-Yan; Chen, Chuang-Tian; Zhou, Xing-Jiang

    2017-08-01

    WTe2 has attracted a great deal of attention because it exhibits extremely large and nonsaturating magnetoresistance. The underlying origin of such a giant magnetoresistance is still under debate. Utilizing laser-based angle-resolved photoemission spectroscopy with high energy and momentum resolutions, we reveal the complete electronic structure of WTe2. This makes it possible to determine accurately the electron and hole concentrations and their temperature dependence. We find that, with increasing the temperature, the overall electron concentration increases while the total hole concentration decreases. It indicates that the electron-hole compensation, if it exists, can only occur in a narrow temperature range, and in most of the temperature range there is an electron-hole imbalance. Our results are not consistent with the perfect electron-hole compensation picture that is commonly considered to be the cause of the unusual magnetoresistance in WTe2. We identified a flat band near the Brillouin zone center that is close to the Fermi level and exhibits a pronounced temperature dependence. Such a flat band can play an important role in dictating the transport properties of WTe2. Our results provide new insight on understanding the origin of the unusual magnetoresistance in WTe2.

  9. Role of Lon, an ATP-Dependent Protease Homolog, in Resistance of Pseudomonas aeruginosa to Ciprofloxacin▿

    PubMed Central

    Brazas, Michelle D.; Breidenstein, Elena B. M.; Overhage, Joerg; Hancock, Robert E. W.

    2007-01-01

    With few novel antimicrobials in the pharmaceutical pipeline, resistance to the current selection of antibiotics represents a significant therapeutic challenge. Microbial persistence in subinhibitory antibiotic environments has been proposed to contribute to the development of resistance. Pseudomonas aeruginosa cultures pretreated with subinhibitory concentrations of ciprofloxacin were found to exhibit an adaptive resistance phenotype when cultures were subsequently exposed to suprainhibitory ciprofloxacin concentrations. Microarray experiments revealed candidate genes involved in such adaptive resistance. Screening of 10,000 Tn5-luxCDABE mutants identified several mutants with increased or decreased ciprofloxacin susceptibilities, including mutants in PA1803, a close homolog of the ATP-dependent lon protease, which were found to exhibit ≥4-fold-increased susceptibilities to ciprofloxacin and other fluoroquinolones, but not to gentamicin or imipenem, as well as a characteristic elongated morphology. Complementation of the lon mutant restored wild-type antibiotic susceptibility and cell morphology. Expression of the lon mutant, as monitored through a luciferase reporter fusion, was found to increase over time in the presence of subinhibitory ciprofloxacin concentrations. The data are consistent with the hypothesis that the induction of Lon by ciprofloxacin is involved in adaptive resistance. PMID:17893152

  10. Concentration and size dependence of peak wavelength shift on quantum dots in colloidal suspension

    NASA Astrophysics Data System (ADS)

    Rinehart, Benjamin S.; Cao, Caroline G. L.

    2016-08-01

    Quantum dots (QDs) are semiconductor nanocrystals that have significant advantages over organic fluorophores, including their extremely narrow Gaussian emission bands and broad absorption bands. Thus, QDs have a wide range of potential applications, such as in quantum computing, photovoltaic cells, biological sensing, and electronics. For these applications, aliasing provides a detrimental effect on signal identification efficiency. This can be avoided through characterization of the QD fluorescence signals. Characterization of the emissivity of CdTe QDs as a function of concentration (1 to 10 mg/ml aqueous) was conducted on 12 commercially available CdTe QDs (emission peaks 550 to 730 nm). The samples were excited by a 50-mW 405-nm laser with emission collected via a free-space CCD spectrometer. All QDs showed a redshift effect as concentration increased. On average, the CdTe QDs exhibited a maximum shift of +35.6 nm at 10 mg/ml and a minimum shift of +27.24 nm at 1 mg/ml, indicating a concentration dependence for shift magnitude. The concentration-dependent redshift function can be used to predict emission response as QD concentration is changed in a complex system.

  11. Different patterns of nuclear and mitochondrial penetration by the G3 PAMAM dendrimer and its biotin–pyridoxal bioconjugate BC-PAMAM in normal and cancer cells in vitro

    PubMed Central

    Uram, Łukasz; Szuster, Magdalena; Filipowicz, Aleksandra; Gargasz, Krzysztof; Wołowiec, Stanisław; Wałajtys-Rode, Elżbieta

    2015-01-01

    The intracellular localization and colocalization of a fluorescently labeled G3 amine-terminated cationic polyamidoamine (PAMAM) dendrimer and its biotin–pyridoxal (BC-PAMAM) bioconjugate were investigated in a concentration-dependent manner in normal human fibroblast (BJ) and squamous epithelial carcinoma (SCC-15) cell lines. After 24 hours treatment, both cell lines revealed different patterns of intracellular dendrimer accumulation depending on their cytotoxic effects. Cancer cells exhibited much higher (20-fold) tolerance for native PAMAM treatment than fibroblasts, whereas BC-PAMAM was significantly toxic only for fibroblasts at 50 µM concentration. Fibroblasts accumulated the native and bioconjugated dendrimers in a concentration-dependent manner at nontoxic range of concentration, with significantly lower bioconjugate loading. After reaching the cytotoxicity level, fluorescein isothiocyanate-PAMAM accumulation remains at high, comparable level. In cancer cells, native PAMAM loading at higher, but not cytotoxic concentrations, was kept at constant level with a sharp increase at toxic concentration. Mander’s coefficient calculated for fibroblasts and cancer cells confirmed more efficient native PAMAM penetration as compared to BC-PAMAM. Significant differences in nuclear dendrimer penetration were observed for both cell lines. In cancer cells, PAMAM signals amounted to ~25%–35% of the total nuclei area at all investigated concentrations, with lower level (15%–25%) observed for BC-PAMAM. In fibroblasts, the dendrimer nuclear signal amounted to 15% at nontoxic and up to 70% at toxic concentrations, whereas BC-PAMAM remained at a lower concentration-dependent level (0.3%–20%). Mitochondrial localization of PAMAM and BC-PAMAM revealed similar patterns in both cell lines, depending on the extracellular dendrimer concentration, and presented significantly lower signals from BC-PAMAM, which correlated well with the cytotoxicity. PMID:26379435

  12. Alpha-amylase inhibitor, CS-1036 binds to serum amylase in a concentration-dependent and saturable manner.

    PubMed

    Honda, Tomohiro; Kaneno-Urasaki, Yoko; Ito, Takashi; Kimura, Takako; Matsushima, Nobuko; Okabe, Hiromi; Yamasaki, Atsushi; Izumi, Takashi

    2014-03-01

    (2R,3R,4R)-4-hydroxy-2-(hydroxymethyl)pyrrolidin-3-yl 4-O-(6-deoxy-β-D-glucopyranosyl)-α-D-glucopyranoside (CS-1036), which is an α-amylase inhibitor, exhibited biphasic and sustained elimination with a long t1/2 (18.4-30.0 hours) in rats and monkeys, but exhibited a short t1/2 (3.7-7.9 hours) in humans. To clarify the species differences in the t1/2, the plasma protein binding of CS-1036 was evaluated by ultrafiltration. A concentration-dependent and saturable plasma protein binding of CS-1036 was observed in rats and monkeys with the dissociation rate constant (KD) of 8.95 and 27.2 nM, and maximal binding capacity (Bmax) of 52.8 and 22.1 nM, respectively. By the assessments of the recombinant amylase and immunoprecipitation, the major binding protein of CS-1036 in rats was identified as salivary amylase (KD 5.64 nM). CS-1036 also showed concentration-dependent and saturable binding to human salivary and pancreatic amylase, with similar binding affinity in rats. However, the protein binding of CS-1036 was constant in human plasma (≤10.2%) due to the lower serum amylase level compared with rats and monkeys. From the calculation of the unbound fraction (fu) in plasma based on in vitro KD and Bmax, the dose-dependent increase in fu after oral administration is speculated to lead to a dose-dependent increase in total body clearance and a high area under the curve/dose at lower doses, such as 0.3 mg/kg in rats.

  13. Measuring milk fat content by random laser emission

    NASA Astrophysics Data System (ADS)

    Abegão, Luis M. G.; Pagani, Alessandra A. C.; Zílio, Sérgio C.; Alencar, Márcio A. R. C.; Rodrigues, José J.

    2016-10-01

    The luminescence spectra of milk containing rhodamine 6G are shown to exhibit typical signatures of random lasing when excited with 532 nm laser pulses. Experiments carried out on whole and skim forms of two commercial brands of UHT milk, with fat volume concentrations ranging from 0 to 4%, presented lasing threshold values dependent on the fat concentration, suggesting that a random laser technique can be developed to monitor such important parameter.

  14. Measuring milk fat content by random laser emission.

    PubMed

    Abegão, Luis M G; Pagani, Alessandra A C; Zílio, Sérgio C; Alencar, Márcio A R C; Rodrigues, José J

    2016-10-12

    The luminescence spectra of milk containing rhodamine 6G are shown to exhibit typical signatures of random lasing when excited with 532 nm laser pulses. Experiments carried out on whole and skim forms of two commercial brands of UHT milk, with fat volume concentrations ranging from 0 to 4%, presented lasing threshold values dependent on the fat concentration, suggesting that a random laser technique can be developed to monitor such important parameter.

  15. Transgalactosylation and hydrolytic activities of commercial preparations of β-galactosidase for the synthesis of prebiotic carbohydrates.

    PubMed

    Guerrero, Cecilia; Vera, Carlos; Conejeros, Raúl; Illanes, Andrés

    2015-03-01

    β-Galactosidases exhibit both hydrolytic and transgalactosylation activities; the former has been used traditionally for the production of delactosed milk and dairies, while the latter is being increasingly used for the synthesis of lactose-derived oligosaccharides: balance between both activities was highly dependent on the enzyme origin: β-galactosidases from Aspegillus oryzae and Bacillus circulans exhibited high transgalactosylation activity, while those from one from Kluyveromyces exhibited high hydrolytic activity but quite low transgalactosylation activity. Also the affinity for the donors (lactose or lactulose) and the acceptors (lactose, lactulose or fructose) of transgalactosylated galactose was dependent on the enzyme origin, as reflected by the Michaelis constants obtained in the synthesis of galacto-oligosaccharides, fructosyl-galacto-oligosaccharides and lactulose. Finally, the balance between transgalactosylation and hydrolytic activities of β-galactosidases could be tuned by changing the concentration of galactose donor. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. 90Sr in teeth of cattle abandoned in evacuation zone: Record of pollution from the Fukushima-Daiichi Nuclear Power Plant accident

    NASA Astrophysics Data System (ADS)

    Koarai, Kazuma; Kino, Yasushi; Takahashi, Atsushi; Suzuki, Toshihiko; Shimizu, Yoshinaka; Chiba, Mirei; Osaka, Ken; Sasaki, Keiichi; Fukuda, Tomokazu; Isogai, Emiko; Yamashiro, Hideaki; Oka, Toshitaka; Sekine, Tsutomu; Fukumoto, Manabu; Shinoda, Hisashi

    2016-04-01

    Here we determined the 90Sr concentrations in the teeth of cattle abandoned in the evacuation area of the Fukushima-Daiichi Nuclear Power Plant (FNPP) accident. 90Sr activity concentrations in the teeth varied from 6-831 mBq (g Ca)-1 and exhibited a positive relationship with the degree of radioactive contamination that the cattle experienced. Even within an individual animal, the specific activity of 90Sr (Bq (g Sr)-1) varied depending on the development stage of the teeth during the FNPP accident: teeth that were early in development exhibited high 90Sr specific activities, while teeth that were late in development exhibited low specific activities. These findings demonstrate that 90Sr is incorporated into the teeth during tooth development; thus, tooth 90Sr activity concentrations reflect environmental 90Sr levels during tooth formation. Assessment of 90Sr in teeth could provide useful information about internal exposure to 90Sr radiation and allow for the measurement of time-course changes in the degree of environmental 90Sr pollution.

  17. (90)Sr in teeth of cattle abandoned in evacuation zone: Record of pollution from the Fukushima-Daiichi Nuclear Power Plant accident.

    PubMed

    Koarai, Kazuma; Kino, Yasushi; Takahashi, Atsushi; Suzuki, Toshihiko; Shimizu, Yoshinaka; Chiba, Mirei; Osaka, Ken; Sasaki, Keiichi; Fukuda, Tomokazu; Isogai, Emiko; Yamashiro, Hideaki; Oka, Toshitaka; Sekine, Tsutomu; Fukumoto, Manabu; Shinoda, Hisashi

    2016-04-05

    Here we determined the (90)Sr concentrations in the teeth of cattle abandoned in the evacuation area of the Fukushima-Daiichi Nuclear Power Plant (FNPP) accident. (90)Sr activity concentrations in the teeth varied from 6-831 mBq (g Ca)(-1) and exhibited a positive relationship with the degree of radioactive contamination that the cattle experienced. Even within an individual animal, the specific activity of (90)Sr (Bq (g Sr)(-1)) varied depending on the development stage of the teeth during the FNPP accident: teeth that were early in development exhibited high (90)Sr specific activities, while teeth that were late in development exhibited low specific activities. These findings demonstrate that (90)Sr is incorporated into the teeth during tooth development; thus, tooth (90)Sr activity concentrations reflect environmental (90)Sr levels during tooth formation. Assessment of (90)Sr in teeth could provide useful information about internal exposure to (90)Sr radiation and allow for the measurement of time-course changes in the degree of environmental (90)Sr pollution.

  18. 90Sr in teeth of cattle abandoned in evacuation zone: Record of pollution from the Fukushima-Daiichi Nuclear Power Plant accident

    PubMed Central

    Koarai, Kazuma; Kino, Yasushi; Takahashi, Atsushi; Suzuki, Toshihiko; Shimizu, Yoshinaka; Chiba, Mirei; Osaka, Ken; Sasaki, Keiichi; Fukuda, Tomokazu; Isogai, Emiko; Yamashiro, Hideaki; Oka, Toshitaka; Sekine, Tsutomu; Fukumoto, Manabu; Shinoda, Hisashi

    2016-01-01

    Here we determined the 90Sr concentrations in the teeth of cattle abandoned in the evacuation area of the Fukushima-Daiichi Nuclear Power Plant (FNPP) accident. 90Sr activity concentrations in the teeth varied from 6–831 mBq (g Ca)−1 and exhibited a positive relationship with the degree of radioactive contamination that the cattle experienced. Even within an individual animal, the specific activity of 90Sr (Bq (g Sr)−1) varied depending on the development stage of the teeth during the FNPP accident: teeth that were early in development exhibited high 90Sr specific activities, while teeth that were late in development exhibited low specific activities. These findings demonstrate that 90Sr is incorporated into the teeth during tooth development; thus, tooth 90Sr activity concentrations reflect environmental 90Sr levels during tooth formation. Assessment of 90Sr in teeth could provide useful information about internal exposure to 90Sr radiation and allow for the measurement of time-course changes in the degree of environmental 90Sr pollution. PMID:27045764

  19. Analysis of performance losses of direct ethanol fuel cells with the aid of a reference electrode

    NASA Astrophysics Data System (ADS)

    Li, Guangchun; Pickup, Peter G.

    The performances of direct ethanol fuel cells with different anode catalysts, different ethanol concentrations, and at different operating temperatures have been studied. The performance losses of the cell have been separated into individual electrode performance losses with the aid of a reference electrode, ethanol crossover has been quantified, and CO 2 and acetic acid production have been measured by titration. It has been shown that the cell performance strongly depends on the anode catalyst, ethanol concentration, and operating temperature. It was found that the cathode and anode exhibit different dependences on ethanol concentration and operating temperature. The performance of the cathode is very sensitive to the rate of ethanol crossover. Product analysis provides insights into the mechanisms of electro-oxidation of ethanol.

  20. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicatemore » that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.« less

  1. Fermentation Temperature Modulates Phosphatidylethanolamine and Phosphatidylinositol Levels in the Cell Membrane of Saccharomyces cerevisiae

    PubMed Central

    Henderson, Clark M.; Zeno, Wade F.; Lerno, Larry A.; Longo, Marjorie L.

    2013-01-01

    During alcoholic fermentation, Saccharomyces cerevisiae is exposed to a host of environmental and physiological stresses. Extremes of fermentation temperature have previously been demonstrated to induce fermentation arrest under growth conditions that would otherwise result in complete sugar utilization at “normal” temperatures and nutrient levels. Fermentations were carried out at 15°C, 25°C, and 35°C in a defined high-sugar medium using three Saccharomyces cerevisiae strains with diverse fermentation characteristics. The lipid composition of these strains was analyzed at two fermentation stages, when ethanol levels were low early in stationary phase and in late stationary phase at high ethanol concentrations. Several lipids exhibited dramatic differences in membrane concentration in a temperature-dependent manner. Principal component analysis (PCA) was used as a tool to elucidate correlations between specific lipid species and fermentation temperature for each yeast strain. Fermentations carried out at 35°C exhibited very high concentrations of several phosphatidylinositol species, whereas at 15°C these yeast strains exhibited higher levels of phosphatidylethanolamine and phosphatidylcholine species with medium-chain fatty acids. Furthermore, membrane concentrations of ergosterol were highest in the yeast strain that experienced stuck fermentations at all three temperatures. Fluorescence anisotropy measurements of yeast cell membrane fluidity during fermentation were carried out using the lipophilic fluorophore diphenylhexatriene. These measurements demonstrate that the changes in the lipid composition of these yeast strains across the range of fermentation temperatures used in this study did not significantly affect cell membrane fluidity. However, the results from this study indicate that fermenting S. cerevisiae modulates its membrane lipid composition in a temperature-dependent manner. PMID:23811519

  2. Effect of concentrated growth factors on beagle periodontal ligament stem cells in vitro.

    PubMed

    Yu, Bohan; Wang, Zuolin

    2014-01-01

    Identifying a reliable and effective cytokine or growth factor group has been the focus of stem cell osteogenic induction studies. Concentrated growth factors (CGFs) as the novel generation of platelet concentrate products, appear to exhibit a superior clinical and biotechnological application potential, however, there are few studies that have demonstrated this effect. This study investigated the proliferation and differentiation of periodontal ligament stem cells (PDLSCs) co‑cultured with CGFs. The rate of proliferation was analyzed by cell counting and an MTT assay. Mineralization nodule counts, alkaline phosphatase activity detection, qPCR, western blot analysis and immunohistochemistry were used to analyze mineralization effects. The results showed that CGF significantly promoted the proliferation of PDLSCs, and exhibited a dose‑dependent effect on the activation and differentiation of the stem cells. The application of CGF on PDLSC proliferation and osteoinduction may offer numerous clinical and biotechnological application strategies.

  3. Properties of starch-polyglutamic acid (PGA) graft copolymer prepared by microwave irradiation - Fourier transform infrared spectroscopy (FTIR) and rheology studies

    USDA-ARS?s Scientific Manuscript database

    The rheological properties of waxy starch-'-polygutamic acid (PGA) graft copolymers were investigated. Grafting was confirmed by FTIR spectroscopy. The starch-PGA copolymers absorbed water and formed gels, which exhibited concentration-dependent viscoelastic solid properties. Higher starch-PGA conce...

  4. Environmentally Realistic Mixtures of the Five Regulated Haloacetic Acids Exhibit Concentration-Dependent Departures from Dose Additivity

    EPA Science Inventory

    Disinfection of water decreases waterborne disease. Disinfection byproducts (DBPs) are formed by the reaction of oxidizing disinfectants with inorganic and organic materials in the source water. The U.S. EPA regulates five haloacetic acid (HAA) DBPs as a mixture. The objective ...

  5. Electrothermal adsorption and desorption of volatile organic compounds on activated carbon fiber cloth.

    PubMed

    Son, H K; Sivakumar, S; Rood, M J; Kim, B J

    2016-01-15

    Adsorption is an effective means to selectively remove volatile organic compounds (VOCs) from industrial gas streams and is particularly of use for gas streams that exhibit highly variable daily concentrations of VOCs. Adsorption of such gas streams by activated carbon fiber cloths (ACFCs) and subsequent controlled desorption can provide gas streams of well-defined concentration that can then be more efficiently treated by biofiltration than streams exhibiting large variability in concentration. In this study, we passed VOC-containing gas through an ACFC vessel for adsorption and then desorption in a concentration-controlled manner via electrothermal heating. Set-point concentrations (40-900 ppm(v)) and superficial gas velocity (6.3-9.9 m/s) were controlled by a data acquisition and control system. The results of the average VOC desorption, desorption factor and VOC in-and-out ratio were calculated and compared for various gas set-point concentrations and superficial gas velocities. Our results reveal that desorption is strongly dependent on the set-point concentration and that the VOC desorption rate can be successfully equalized and controlled via an electrothermal adsorption system. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Experimental Study of Hysteresis behavior of Foam Generation in Porous Media.

    PubMed

    Kahrobaei, S; Vincent-Bonnieu, S; Farajzadeh, R

    2017-08-21

    Foam can be used for gas mobility control in different subsurface applications. The success of foam-injection process depends on foam-generation and propagation rate inside the porous medium. In some cases, foam properties depend on the history of the flow or concentration of the surfactant, i.e., the hysteresis effect. Foam may show hysteresis behavior by exhibiting multiple states at the same injection conditions, where coarse-textured foam is converted into strong foam with fine texture at a critical injection velocity or pressure gradient. This study aims to investigate the effects of injection velocity and surfactant concentration on foam generation and hysteresis behavior as a function of foam quality. We find that the transition from coarse-foam to strong-foam (i.e., the minimum pressure gradient for foam generation) is almost independent of flowrate, surfactant concentration, and foam quality. Moreover, the hysteresis behavior in foam generation occurs only at high-quality regimes and when the pressure gradient is below a certain value regardless of the total flow rate and surfactant concentration. We also observe that the rheological behavior of foam is strongly dependent on liquid velocity.

  7. Debris flow rheology: Experimental analysis of fine-grained slurries

    USGS Publications Warehouse

    Major, Jon J.; Pierson, Thomas C.

    1992-01-01

    The rheology of slurries consisting of ≤2-mm sediment from a natural debris flow deposit was measured using a wide-gap concentric-cylinder viscometer. The influence of sediment concentration and size and distribution of grains on the bulk rheological behavior of the slurries was evaluated at concentrations ranging from 0.44 to 0.66. The slurries exhibit diverse rheological behavior. At shear rates above 5 s−1 the behavior approaches that of a Bingham material; below 5 s−1, sand exerts more influence and slurry behavior deviates from the Bingham idealization. Sand grain interactions dominate the mechanical behavior when sand concentration exceeds 0.2; transient fluctuations in measured torque, time-dependent decay of torque, and hysteresis effects are observed. Grain rubbing, interlocking, and collision cause changes in packing density, particle distribution, grain orientation, and formation and destruction of grain clusters, which may explain the observed behavior. Yield strength and plastic viscosity exhibit order-of-magnitude variation when sediment concentration changes as little as 2–4%. Owing to these complexities, it is unlikely that debris flows can be characterized by a single rheological model.

  8. Segregation of chlorine in n-type tin monosulfide ceramics: Actual chlorine concentration for carrier-type conversion

    NASA Astrophysics Data System (ADS)

    Iguchi, Yuki; Sugiyama, Taiki; Inoue, Kazutoshi; Yanagi, Hiroshi

    2018-05-01

    Tin monosulfide (SnS) is an attractive material for photovoltaic cells because of its suitable band-gap energy, high absorption coefficient, and non-toxic and abundant constituent elements. The primary drawback of this material is the lack of n-type SnS. We recently demonstrated n-type SnS by doping with Cl. However, the Cl-doped n-type SnS bulk ceramics exhibited an odd behavior in which carrier-type conversion but not electron carrier concentration depended on the Cl concentration. In this study, the electron probe microanalysis (EPMA) elemental mapping of Cl-doped SnS revealed continuous homogeneous regions with a relatively low Cl concentration along with the islands of high Cl concentration in which Sn/S is far from unity. The difference between the Cl concentration in the homogeneous region (determined by EPMA) and the bulk Cl concentration (determined by wavelength-dispersive X-ray fluorescence spectroscopy) increased with the increasing Cl doping amount. The carrier concentration and the Hall coefficient clearly depended on the Cl concentration in the homogeneous region. Carrier-type conversion was observed at the Cl concentration of 0.26 at. % (in the homogeneous region).

  9. Growth promotion effect of steelmaking slag on Spirulina platensis

    NASA Astrophysics Data System (ADS)

    Nogami, R.; Tam, L. T.; Anh, H. T. L.; Quynh, H. T. H.; Thom, L. T.; Nhat, P. V.; Thu, N. T. H.; Hong, D. D.; Wakisaka, M.

    2016-04-01

    A growth promotion effect of steelmaking slag on Spirulina platensis M135 was investigated. The growth promotion effect was obtained that was 1.27 times greater than that obtained by the control by adding 500 mg L-1 of steelmaking slag and culturing for 60 days. The lipid content decreased in a concentration-dependent manner with steelmaking slag, whereas the carbohydrate content remained constant. The protein content of S. platensis M135 increased in a concentration-dependent manner with steelmaking slag when cultured at day 45. The superoxide dismutase activity of S. platensis M135 exhibited a decreasing trend in a time-dependent manner and an increasing trend in the control. The superoxide dismutase activity was lower than that of the control at day 1 but was higher at day 30. No genetic damage was observed up to 500 mg L-1 of steelmaking slag at 30 days of culture. Recovery from genetic damage was observed at 1,000 mg L-1 of steelmaking slag but not at higher concentrations.

  10. Electroactive Self-Assembled Monolayers Detect Micelle Formation.

    PubMed

    Dionne, Eric R; Badia, Antonella

    2017-02-15

    The interfacial electrochemistry of self-assembled monolayers (SAMs) of ferrocenyldodecanethiolate on gold (FcC 12 SAu) electrodes is applied to detect the micellization of some common anionic surfactants, sodium n-alkyl sulfates, sodium n-alkyl sulfonates, sodium diamyl sulfosuccinate, and sodium dodecanoate, in aqueous solution by cyclic voltammetry. The apparent formal redox potential (E°' SAM ) of the FcC 12 SAu SAM is used to track changes in the concentration of the unaggregated surfactant anions and determine the critical micelle concentration (cmc). The effect of added salt (NaF) on the sodium alkyl sulfate concentration dependence of E°' SAM is also investigated. Weakly hydrated anions, such as ClO 4 - , pair with the electrogenerated SAM-bound ferroceniums to neutralize the excess positive charge created at the SAM/electrolyte solution interface and stabilize the oxidized cations. E°' SAM exhibits a Nernstian-type dependence on the anion activity in solution. Aggregation of the surfactant anions into micelles above the cmc causes the free surfactant anion activity to deviate from the molar concentration of added surfactant, resulting in a break in the plot of E°' SAM versus the logarithm of the concentration of anionic surfactant. The concentration at which this deviation occurs is in good agreement with literature or experimentally determined values of the cmc. The effects of Ohmic potential drop, liquid junction potential, and surfactant adsorption behavior on E°' SAM are addressed. Ultimately, the E°' SAM response as a function of the anionic surfactant concentration exhibits the same features reported using potentiometry and surfactant ion-selective electrodes, which provide a direct measure of the free surfactant anion activity, thus making FcC 12 SAu SAM electrodes useful for the detection of surfactant aggregation and micelle formation.

  11. Intrinsic viscosity and rheological properties of natural and substituted guar gums in seawater.

    PubMed

    Wang, Shibin; He, Le; Guo, Jianchun; Zhao, Jinzhou; Tang, Hongbiao

    2015-05-01

    The intrinsic viscosity and rheological properties of guar gum (GG), hydroxypropyl guar (HPG) and carboxymethyl guar (CMG) in seawater and the effects of shear rate, concentration, temperature and pH on these properties were investigated. An intrinsic viscosity-increasing effect was observed with GG and HPG in seawater (SW) compared to deionized water (DW), whereas the intrinsic viscosity of CMG in seawater was much lower than that in DW due to a screening effect that reduced the repulsion between the polymer chains. Regardless of the functional groups, all sample solutions was well characterized by a modified Cross model that exhibited the transition from Newtonian to pseudoplastic in the low shear rate range at the concentrations of interest to industries, and their viscosity increased with the increase in their concentration but decreased with the increase in temperature. In contrast to nonionic GG or HPG, anionic CMG had a slightly decreased viscosity property in SW, exhibiting polyelectrolyte viscosity behavior. The α value in the zero-shear rate viscosity vs. concentration power-law equation for the samples gave the order of CMG>HPG>GG while the SW solution of CMG had the lowest viscous flow activation energy and exhibited a strong pH-dependent viscosity by a different shear rate. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Synchrotron SAXS/WAXD and rheological studies of clay suspensions in silicone fluid.

    PubMed

    Zhang, Li-Ming; Jahns, Christopher; Hsiao, Benjamin S; Chu, Benjamin

    2003-10-15

    Suspensions of two commercial smectite clays, montmorillonite KSF and montmorillonite K10, in a low-viscosity silicone oil (Dow Corning 245 Fluid) were studied by simultaneous synchrotron small-angle X-ray scattering (SAXS)/wide-angle X-ray diffraction (WAXD) techniques and rheological measurements. In the 0.5% (w/v) KSF clay suspension and two K10 clay suspensions (0.5% and 1.0%), WAXD profiles below 2theta=10.0 degrees did not display any characteristic reflection peaks associated with the chosen montmorillonite clays, while corresponding SAXS profiles exhibited distinct scattering maxima, indicating that both clays were delaminated by the silicone oil. In spite of the large increase in viscosity, the clay suspensions exhibited no gel characteristics. Dynamic rheological experiments indicated that the clay/silicone oil suspensions exhibited the behavior of viscoelasticity, which could be influenced by the type and the concentration of the clay. For the K10 clay suspensions, the frequency-dependent loss modulus (G") was greater in magnitude than the storage modulus (G') in the concentration range from 0.5 to 12.0%. The increase in the clay concentration shifted the crossover point between G' and G" into the accessible frequency range, indicating that the system became more elastic. In contrast, the KSF clay suspension exhibited lower G' and G" values, indicating a weaker viscoelastic response. The larger viscoelasticity response in the K10 clay suspension may be due to the acid treatment generating a higher concentration of silanol groups on the clay surface.

  13. Small-Angle Neutron Scattering and Neutron Spin Echo Characterization of Monoclonal Antibody Self-Associations at High Concentrations

    NASA Astrophysics Data System (ADS)

    Yearley, Eric; Zarraga, Isidro (Dan); Godfrin, Paul (Doug); Perevozchikova, Tatiana; Wagner, Norman; Liu, Yun

    2013-03-01

    Concentrated therapeutic protein formulations offer numerous delivery and stability challenges. In particular, it has been found that several therapeutic proteins exhibit a large increase in viscosity as a function of concentration that may be dependent on the protein-protein interactions. Small-Angle Neutron Scattering (SANS) and Neutron Spin Echo (NSE) investigations have been performed to probe the protein-protein interactions and diffusive properties of highly concentrated MAbs. The SANS data demonstrate that the inter-particle interactions for a highly viscous MAb at high concentrations (MAb1) are highly attractive, anisotropic and change significantly with concentration while the viscosity and interactions do not differ considerably for MAb2. The NSE results furthermore indicate that MAb1 and MAb2 have strong concentration dependencies of dynamics at high Q that are correlated to the translational motion of the proteins. Finally, it has also been revealed that the individual MAb1 proteins form small clusters at high concentrations in contrast to the MAb2 proteins, which are well-dispersed. It is proposed that the formation of these clusters is the primary cause of the dramatic increase in viscosity of MAb1 in crowded or concentrated environments.

  14. Effect of Trisodium Citrate Concentration on the Structural and Photodiode Performance of CdO Thin Films

    NASA Astrophysics Data System (ADS)

    Ravikumar, M.; Valanarasu, S.; Chandramohan, R.; Jacob, S. Santhosh Kumar; Kathalingam, A.

    2015-08-01

    CdO thin films were deposited on glass and silicon substrates by simple perfume atomizer at 350°C using cadmium acetate and trisodium citrate (TSC). The effect of the TSC concentration on the structural, morphological, optical, and photoconductive properties of the prepared CdO thin films was investigated. X-Ray diffraction (XRD) studies of the deposited films revealed improvement in crystalline nature with increase of TSC concentration. Films prepared without TSC showed porous nature, not fully covering the substrate, whereas films prepared using TSC exhibited full coverage of the substrate with uniform particles. Optical transmittance study of the films showed high transmittance (50% to 60%), and the absorption edge was found to shift towards the red region depending on the TSC concentration. The films exhibited a direct band-to-band transition with bandgap varying between 2.31 eV and 2.12 eV. Photoconductivity studies of the n-CdO/ p-Si structure for various TSC concentrations were also carried out. I- V characteristics of this n-CdO/ p-Si structure revealed the formation of rectifying junctions, and its photoconductivity was found to increase with the TSC concentration.

  15. Analgesia or addiction?: implications for morphine use after spinal cord injury.

    PubMed

    Woller, Sarah A; Moreno, Georgina L; Hart, Nigel; Wellman, Paul J; Grau, James W; Hook, Michelle A

    2012-05-20

    Opioid analgesics are among the most effective agents for treatment of moderate to severe pain. However, the use of morphine after a spinal cord injury (SCI) can potentiate the development of paradoxical pain symptoms, and continuous administration can lead to dependence, tolerance, and addiction. Although some studies suggest that the addictive potential of morphine decreases when it is used to treat neuropathic pain, this has not been studied in a SCI model. Accordingly, the present studies investigated the addictive potential of morphine in a rodent model of SCI using conditioned place preference (CPP) and intravenous self-administration paradigms. A contusion injury significantly increased the expression of a CPP relative to sham and intact controls in the acute phase of injury. However, contused animals self-administered significantly less morphine than sham and intact controls, but this was dose-dependent; at a high concentration, injured rats exhibited an increase in drug-reinforced responses over time. Exposure to a high concentration of morphine impeded weight gain and locomotor recovery. We suggest that the increased preference observed in injured rats reflects a motivational effect linked in part to the drug's anti-nociceptive effect. Further, although injured rats exhibited a suppression of opiate self-administration, when given access to a high concentration, addictive-like behavior emerged and was associated with poor recovery.

  16. Quantification of Kinetic Rate Law Parameters of Uranium Release from Sodium Autunite as a Function of Aqueous Bicarbonate Concentrations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gudavalli, Ravi; Katsenovich, Yelena; Wellman, Dawn M.

    2013-09-05

    ABSTRACT: Hydrogen carbonate is one of the most significant components within the uranium geochemical cycle. In aqueous solutions, hydrogen carbonate forms strong complexes with uranium. As such, aqueous bicarbonate may significantly increase the rate of uranium release from uranium minerals. Quantifying the relationship of aqueous hydrogen carbonate solutions to the rate of uranium release during dissolution is critical to understanding the long-term fate of uranium within the environment. Single-pass flow-through (SPTF) experiments were conducted to estimate the rate of uranium release from Na meta-autunite as a function of bicarbonate solutions (0.0005-0.003 M) under the pH range of 6-11 and temperaturesmore » of 5-60oC. Consistent with the results of previous investigation, the rate of uranium release from sodium autunite exhibited minimal dependency on temperature; but were strongly dependent on pH and increasing concentrations of bicarbonate solutions. Most notably at pH 7, the rate of uranium release exhibited 370 fold increases relative to the rate of uranium release in the absence of bicarbonate. However, the effect of increasing concentrations of bicarbonate solutions on the release of uranium was significantly less under higher pH conditions. It is postulated that at high pH values, surface sites are saturated with carbonate, thus the addition of more bicarbonate would have less effect on uranium release. Results indicate the activation energies were unaffected by temperature and bicarbonate concentration variations, but were strongly dependent on pH conditions. As pH increased from 6 to 11, activation energy values were observed to decrease from 29.94 kJ mol-1 to 13.07 kJ mol-1. The calculated activation energies suggest a surface controlled dissolution mechanism.« less

  17. TRIBUTYLTIN AND DEXAMETHASONE INDUCE APOPTOSIS IN RAT THYMOCYTES BY MUTUALLY ANTAGONISTIC MECHANISMS

    EPA Science Inventory

    We observed that rat thymocyte cultures exposed to 1.O'- 2. 5 uM tri-n-butyltin methoxide (TBT) exhibiteda rapid time- and concentration-dependent induction of apoptosis, with > 85% of cells exhibiting reduced DNAcontent within 1 hr after ensure to 2.0 - 2,5 uM TBT. Moreover, wit...

  18. Migration of bisphenol A into canned tomatoes produced in Italy: dependence on temperature and storage conditions.

    PubMed

    Errico, Sonia; Bianco, Mariangela; Mita, Luigi; Migliaccio, Marina; Rossi, Sergio; Nicolucci, Carla; Menale, Ciro; Portaccio, Marianna; Gallo, Pasquale; Mita, Damiano G; Diano, Nadia

    2014-10-01

    A method based on solid-phase extraction followed by liquid chromatography, coupled to UV-visible and fluorescence spectrophotometry, has been developed for determination of bisphenol A (BPA) in canned tomatoes. The limit of quantification (LOQ) of the procedure used is 0.03 μM (0.26 μg BPA/kg tomato). For each of three different tomato based products (peeled, cherry and concentrated paste), 16 samples belonging to six commercial brands, retailed in Italian markets, were tested for migration of BPA epoxy-coating cans. All the tomato samples exhibited migration levels below 0.4 μg/kg, while samples subjected to heating process and/or can's damage by denting, exhibited a significant increase in the migration levels. In any case, no sample contained BPA exceeding the European Union limit for migration, set at 600 μg/kg of food. By comparing the results for each brand, no relevant difference in BPA concentration was found depending on the kind of tomato products. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Threonine deaminase from extremely halophilic bacteria - Cooperative substrate kinetics and salt dependence.

    NASA Technical Reports Server (NTRS)

    Lieberman, M. M.; Lanyi, J. K.

    1972-01-01

    The effect of salt on the activity, stability, and allosteric properties of catabolic threonine deaminase from Halobacterium cutirubrum was studied. The enzyme exhibits sigmoidal kinetics with the substrate, threonine. The Hill slope is 1.55 at pH 10. The enzyme is activated by ADP at low substrate concentrations. In the presence of this effector, sigmoidal kinetics are no longer observed. At pH 10, in the absence of ADP, enzyme activity increases with increasing NaCl concentration from 0 to 4 M.

  20. Excited state intramolecular charge transfer reaction in nonaqueous electrolyte solutions: Temperature dependence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pradhan, Tuhin; Gazi, Harun Al Rasid; Biswas, Ranjit

    2009-08-07

    Temperature dependence of the excited state intramolecular charge transfer reaction of 4-(1-azetidinyl)benzonitrile (P4C) in ethyl acetate (EA), acetonitrile (ACN), and ethanol at several concentrations of lithium perchlorate (LiClO{sub 4}) has been investigated by using the steady state and time resolved fluorescence spectroscopic techniques. The temperature range considered is 267-343 K. The temperature dependent spectral peak shifts and reaction driving force (-{Delta}G{sub r}) in electrolyte solutions of these solvents can be explained qualitatively in terms of interaction between the reactant molecule and ion-atmosphere. Time resolved studies indicate that the decay kinetics of P4C is biexponential, regardless of solvents, LiClO{sub 4} concentrations,more » and temperatures considered. Except at higher electrolyte concentrations in EA, reaction rates in solutions follow the Arrhenius-type temperature dependence where the estimated activation energy exhibits substantial electrolyte concentration dependence. The average of the experimentally measured activation energies in these three neat solvents is found to be in very good agreement with the predicted value based on data in room temperature solvents. While the rate constant in EA shows a electrolyte concentration induced parabolic dependence on reaction driving force (-{Delta}G{sub r}), the former in ethanol and ACN increases only linearly with the increase in driving force (-{Delta}G{sub r}). The data presented here also indicate that the step-wise increase in solvent reorganization energy via sequential addition of electrolyte induces the ICT reaction in weakly polar solvents to crossover from the Marcus inverted region to the normal region.« less

  1. A non-modular type B feruloyl esterase from Neurospora crassa exhibits concentration-dependent substrate inhibition.

    PubMed Central

    Crepin, Valerie F; Faulds, Craig B; Connerton, Ian F

    2003-01-01

    Feruloyl esterases, a subclass of the carboxylic acid esterases (EC 3.1.1.1), are able to hydrolyse the ester bond between the hydroxycinnamic acids and sugars present in the plant cell wall. The enzymes have been classified as type A or type B, based on their substrate specificity for aromatic moieties. We show that Neurospora crassa has the ability to produce multiple ferulic acid esterase activities depending upon the length of fermentation with either sugar beet pulp or wheat bran substrates. A gene identified on the basis of its expression on sugar beet pulp has been cloned and overexpressed in Pichia pastoris. The gene encodes a single-domain ferulic acid esterase, which represents the first report of a non-modular type B enzyme (fae-1 gene; GenBank accession no. AJ293029). The purified recombinant protein has been shown to exhibit concentration-dependent substrate inhibition (K(m) 0.048 mM, K (i) 2.5 mM and V(max) 8.2 units/mg against methyl 3,4-dihydroxycinnamate). The kinetic behaviour of the non-modular enzyme is discussed in terms of the diversity in the roles of the feruloyl esterases in the mobilization of plant cell wall materials and their respective modes of action. PMID:12435269

  2. Effects of quercetin on hemoglobin-dependent redox reactions: relationship to iron-overload rat liver injury.

    PubMed

    Lu, Nai-Hao; Chen, Chao; He, Ying-Jie; Tian, Rong; Xiao, Qiang; Peng, Yi-Yuan

    2013-01-01

    Flavonoids have been widely reported to protect liver injury in iron-overload diseases, where the mechanism of this therapeutic action is dependent on their antioxidant effects, including free radical scavenging and metal-chelating. In this study, in contrast to the significant decrease in iron content, quercetin (Qu) from lower diet (0.3%, w/w) showed pro-oxidant ability on protein carbonyl formation and exhibited unobvious effect on iron-overload rat liver injury. Furthermore, the anti- and pro-oxidant activities of Qu on hemoglobin (Hb)-dependent redox reactions (i.e. the oxidative stability of Hb and its cytotoxic ferryl intermediate, Hb-induced protein oxidation) were investigated to illustrate the elevated protein oxidation in lower Qu-treated iron-overload rat. It was found that superoxide (O₂·⁻) and hydrogen peroxide (H₂O₂) were generated during the reaction between Qu and Hb. Qu, however, effectively reduced ferryl intermediate back to ferric Hb in a biphasic kinetic reaction. Moreover, Qu could significantly aggravate Hb-H₂O₂-induced protein oxidation at low concentrations and exhibit protective effects at high concentrations. Different from the classic antioxidant mechanisms of Qu, the dual effects on Hb redox reactions in vitro, therefore, may provide new insights into the physiological and pharmacological implications of Qu with iron-overload disease.

  3. Carrier concentration dependent photoluminescence properties of Si-doped InAs nanowires

    NASA Astrophysics Data System (ADS)

    Sonner, M.; Treu, J.; Saller, K.; Riedl, H.; Finley, J. J.; Koblmüller, G.

    2018-02-01

    We report the effects of intentional n-type doping on the photoluminescence (PL) properties of InAs nanowires (NWs). Employing silicon (Si) as a dopant in molecular beam epitaxy grown NWs, the n-type carrier concentration is tuned between 1 × 1017 cm-3 and 3 × 1018 cm-3 as evaluated from Fermi-tail fits of the high-energy spectral region. With the increasing carrier concentration, the PL spectra exhibit a distinct blueshift (up to ˜50 meV), ˜2-3-fold peak broadening, and a redshift of the low-energy tail, indicating both the Burstein-Moss shift and bandgap narrowing. The low-temperature bandgap energy (EG) decreases from ˜0.44 eV (n ˜ 1017 cm-3) to ˜0.41 eV (n ˜ 1018 cm-3), following a ΔEG ˜ n1/3 dependence. Simultaneously, the PL emission is quenched nearly 10-fold, while the pump-power dependent analysis of the integrated PL intensity evidences a typical 2/3-power-law scaling, indicative of non-radiative Auger recombination at high carrier concentrations. Carrier localization and activation at stacking defects are further observed in undoped InAs NWs by temperature-dependent measurements but are absent in Si-doped InAs NWs due to the increased Fermi energy.

  4. Detergent sclerosants at sub-lytic concentrations induce endothelial cell apoptosis through a caspase dependent pathway.

    PubMed

    Cooley-Andrade, Osvaldo; Cheung, Kelvin; Chew, An-Ning; Connor, David Ewan; Parsi, Kurosh

    2016-07-01

    To investigate the apoptotic effects of detergent sclerosants sodium tetradecylsulphate (STS) and polidocanol (POL) on endothelial cells at sub-lytic concentrations. Human umbilical vein endothelial cells (HUVECs) were isolated and labelled with antibodies to assess for apoptosis and examined with confocal microscopy and flow cytometry. Isolated HUVECs viability was assessed using propidium iodide staining. Early apoptosis was determined by increased phosphatidylserine exposure by lactadherin binding. Caspase 3, 8, 9 and Bax activation as well as inhibitory assays with Pan Caspase (Z-VAD-FMK) and Bax (BI-6C9) were assessed to identify apoptotic pathways. Porimin activation was used to assess cell membrane permeability. Cell lysis reached almost 100 % with STS at 0.3 % and with POL at 0.6 %. Apoptosis was seen with both STS and POL at concentrations ranging from 0.075 to 0.15 %. PS exposure increased with both STS and POL and exhibited a dose-dependent trend. Active Caspase 3, 8 and 9 but not Bax were increased in HUVECs stimulated with low concentrations of both STS and POL. Inhibitory assays demonstrated Caspase 3, 8, 9 inhibition at low concentrations (0.075 to 0.6 %) with both STS and POL. Both agents increased the activation of porimin at all concentrations. Both sclerosants induced endothelial cell (EC) apoptosis at sub-lytic concentrations through a caspase-dependant pathway. Both agents induced EC oncosis.

  5. Response of phase I and II detoxification enzymes, glutathione, metallothionein and acetylcholine esterase to mercury and dimethoate in signal crayfish (Pacifastacus leniusculus).

    PubMed

    Gunderson, Mark P; Nguyen, Brandon T; Cervantes Reyes, Juan C; Holden, Laura L; French, John M T; Smith, Brandon D; Lineberger, Connor

    2018-05-30

    Metals and pesticides are common pollutants and the modulation of biomarkers can indicate sub-lethal influences on the physiology of organisms inhabiting impacted aquatic systems. We examined the effects of mercury and the organophosphate pesticide dimethoate on EROD, MROD, glutathione S-transferase (GST), acetylcholine esterase (AChE), metallothionein (MT) and glutathione (GSH) in the signal crayfish (Pacifastacus leniusculus). Crayfish were injected with mercury chloride or dimethoate (0.3, 0.6, 0.9 μg kg -1 ) and dissected after 72 h. EROD activity in the hepatopancreas did not change in response to mercury chloride treatment but exhibited a dose dependent decrease at all concentrations of dimethoate tested. MROD (hepatopancreas) exhibited a significant decrease at the 0.9 μg kg -1 treatment for both chemicals. GST (hepatopancreas) demonstrated a significant dose dependent decrease at all concentrations of both mercury chloride and dimethoate. AChE (tail muscle) decreased at the 0.6 and 0.9 μg kg -1 concentrations of dimethoate and 0.9 μg kg -1 mercury chloride. In gill tissue, MT increased in response to 0.3 and 0.6 μg kg -1 of mercury chloride but no effect was observed at the 0.9 μg kg -1 concentration of mercury chloride or any concentrations of dimethoate tested. MT did not change in response to mercury or dimethoate in tail tissue. Furthermore, neither chemical modulated GSH concentrations. Our results indicate that, apart from GSH, these markers are sensitive to the pollutants tested and that animals exposed in the wild are potentially compromised in their ability to detoxify environmental contaminants and carry out normal cellular processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Cathodoluminescence of InP

    NASA Technical Reports Server (NTRS)

    Gatos, C. H.; Vaughan, J. J.; Lagowski, J.; Gatos, H. C.

    1981-01-01

    Cathodoluminescence studies were carried out on p-type InP having carrier concentrations ranging from 7.2 x 10 to the 16th to 7.4 x 10 to the 18th per cu cm in the temperature range of 80-580 K. It was found that low-temperature spectra exhibited peaks at 1.41 and 1.38 eV. These peaks were attributed to band-to-band and band-acceptor transitions, respectively. The dependence of the band-to-band peak on temperature was used to extend knowledge of the temperature dependence of the energy gap of InP to 550 K. It was shown that the half-width of the cathodoluminescence peak can be used for the determination of carrier concentration and carrier-concentration inhomogeneities in the material. The variations of the cathodoluminescence peak height with temperature indicated the possibility of Auger recombination for high carrier concentrations (7.4 x 10 to the 18th per cu cm) at temperatures above 450 K.

  7. Statistical persistence of air pollutants (O3,SO2,NO2 and PM10) in Mexico City

    NASA Astrophysics Data System (ADS)

    Meraz, M.; Rodriguez, E.; Femat, R.; Echeverria, J. C.; Alvarez-Ramirez, J.

    2015-06-01

    The rescaled range (R / S) analysis was used for analyzing the statistical persistence of air pollutants in Mexico City. The air-pollution time series consisted of hourly observations of ozone, nitrogen dioxide, sulfur dioxide and particulate matter obtained at the Mexico City downtown monitoring station during 1999-2014. The results showed that long-range persistence is not a uniform property over a wide range of time scales, from days to months. In fact, although the air pollutant concentrations exhibit an average persistent behavior, environmental (e.g., daily and yearly) and socio-economic (e.g., daily and weekly) cycles are reflected in the dependence of the persistence strength as quantified in terms of the Hurst exponent. It was also found that the Hurst exponent exhibits time variations, with the ozone and nitrate oxide concentrations presenting some regularity, such as annual cycles. The persistence dynamics of the pollutant concentrations increased during the rainy season and decreased during the dry season. The time and scale dependences of the persistence properties provide some insights in the mechanisms involved in the internal dynamics of the Mexico City atmosphere for accumulating and dissipating dangerous air pollutants. While in the short-term individual pollutants dynamics seems to be governed by specific mechanisms, in the long-term (for monthly and higher scales) meteorological and seasonal mechanisms involved in atmospheric recirculation seem to dominate the dynamics of all air pollutant concentrations.

  8. Izalpinin from fruits of Alpinia oxyphylla with antagonistic activity against the rat bladder contractility.

    PubMed

    Yuan, Yuan; Tan, Yin-Feng; Xu, Peng; Li, Hailong; Li, Yong-Hui; Chen, Wen-Ya; Zhang, Jun-Qing; Chen, Feng; Huang, Guo-Jun

    2014-01-01

    Alpinia oxyphylla (Zingiberaceae), an herbaceous perennial plant, its capsular fruit is commonly used in traditional Chinese medicine for the treatment of different urinary incontinence symptoms including frequency, urgency and nocturia. These symptoms are similar to the overactive bladder syndrome. In our lab, we found that the 95% ethanol extract of the capsular fruits exhibited significant anti-muscarinic activity. Some constituents in capsular fruits including flavonoids (e.g., izalpinin and tectochrysin), diarylheptanoids (e.g., yakuchinone A and yakuchinone B) and sesquiterpenes (e.g., nootkatone), are regarded as representative chemicals with putative pharmacological activities. This study aimed to evaluate the in vitro antagonistic actions of izalpinin on carbachol-induced contraction of the rat detrusor muscle. In vitro inhibition of rat detrusor contractile response to carbachol was used to study the functional activity of izalpinin. The isolated detrusor strips of rats were mounted in organ baths containing oxygenated Krebs' solution. The cumulative consecutive concentration-response curves to carbachol-evoked contractions in strips of rat bladder were obtained. Carbachol induced concentration-dependent contractions of isolated rat bladder detrusor strips. The vehicle DMSO had no impact on the contraction response. The contraction effects were concentration-dependently antagonized by izalpinin, with a mean EC50 value of 0.35 µM. The corresponding cumulative agonist concentration-response curves shifted right-ward. Izalpinin exhibits inhibitory role of muscarinic receptor-related detrusor contractile activity, and it may be a promising lead compound to treat overactive bladder.

  9. Spectroscopic Study of Deep Level Emissions from Acceptor Defects in ZnO Thin Films with Oxygen Rich Stoichiometry

    NASA Astrophysics Data System (ADS)

    Ilyas, Usman; Rawat, R. S.; Tan, T. L.

    2013-10-01

    This paper reports the tailoring of acceptor defects in oxygen rich ZnO thin films at different post-deposition annealing temperatures (500-800°C) and Mn doping concentrations. The XRD spectra exhibited the nanocrystalline nature of ZnO thin films along with inconsistent variation in lattice parameters suggesting the temperature-dependent activation of structural defects. Photoluminescence emission spectra revealed the temperature dependent variation in deep level emissions (DLE) with the presence of acceptors as dominating defects. The concentration of native defects was estimated to be increased with temperature while a reverse trend was observed for those with increasing doping concentration. A consistent decrease in DLE spectra, with increasing Mn content, revealed the quenching of structural defects in the optical band gap of ZnO favorable for good quality thin films with enhanced optical transparency.

  10. Systematic study of the spin stiffness dependence on phosphorus alloying in the ferromagnetic semiconductor (Ga,Mn)As

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shihab, S.; Thevenard, L.; Bardeleben, H. J. von

    2015-04-06

    We study the dependence of the spin stiffness constant on the phosphorus concentration in the ferromagnetic semiconductor (Ga,Mn)(As,P) with the aim of determining whether alloying with phosphorus is detrimental, neutral, or advantageous to the spin stiffness. Time-resolved magneto-optical experiments are carried out in thin epilayers. Laser pulses excite two perpendicular standing spin wave modes, which are exchange related. We show that the first mode is spatially uniform across the layer corresponding to a k≈0 wavevector. From the two frequencies and k-vector spacings we obtain the spin stiffness constant for different phosphorus concentrations using weak surface pinning conditions. The mode assessmentmore » is checked by comparison to the spin stiffness obtained from domain pattern analysis for samples with out-of-plane magnetization. The spin stiffness is found to exhibit little variation with phosphorus concentration in contradiction with ab-initio predictions.« less

  11. Investigating enhanced thermoelectric performance of graphene-based nano-structures.

    PubMed

    Hossain, Md Sharafat; Huynh, Duc Hau; Jiang, Liming; Rahman, Sharmin; Nguyen, Phuong Duc; Al-Dirini, Feras; Hossain, Faruque; Bahk, Je-Hyeong; Skafidas, Efstratios

    2018-03-08

    Recently, it has been demonstrated that graphene nano-ribbons (GNRs) exhibit superior thermoelectric performance compared to graphene sheets. However, the underlying mechanism behind this enhancement has not been systematically investigated and significant opportunity remains for further enhancement of the thermoelectric performance of GNRs by optimizing their charge carrier concentration. In this work, we modulate the carrier concentration of graphene-based nano-structures using a gate voltage and investigate the resulting carrier-concentration-dependent thermoelectric parameters using the Boltzmann transport equations. We investigate the effect of energy dependent scattering time and the role of substrate-induced charge carrier fluctuation in optimizing the Seebeck coefficient and power factor. Our approach predicts the scattering mechanism and the extent of the charge carrier fluctuation in different samples and explains the enhancement of thermoelectric performance of GNR samples. Subsequently, we propose a route towards the enhancement of thermoelectric performance of graphene-based devices which can also be applied to other two-dimensional materials.

  12. Concentration dependent requirement for local protein synthesis in motor neuron subtype specific response to axon guidance cues

    PubMed Central

    Nedelec, Stephane; Peljto, Mirza; Shi, Peng; Amoroso, Mackenzie W.; Kam, Lance C.; Wichterle, Hynek

    2012-01-01

    Formation of functional motor circuits relies on the ability of distinct spinal motor neuron subtypes to project their axons with high precision to appropriate muscle targets. While guidance cues contributing to motor axon pathfinding have been identified, the intracellular pathways underlying subtype specific responses to these cues remain poorly understood. In particular, it remains controversial whether responses to axon guidance cues depend on axonal protein synthesis. Using a growth cone collapse assay, we demonstrate that mouse embryonic stem cell (ESC) derived spinal motor neurons (ES-MNs) respond to ephrin-A5, Sema3f and Sema3a in a concentration dependent manner. At low doses, ES-MNs exhibit segmental or subtype specific responses, while this selectivity is lost at higher concentrations. Response to high doses of semaphorins and to all doses of ephrin-A5 is protein synthesis independent. In contrast, using microfluidic devices and stripe assays, we show that growth cone collapse and guidance at low concentrations of semaphorins relies on local protein synthesis in the axonal compartment. Similar bimodal response to low and high concentrations of guidance cues is observed in human ES-MNs, pointing to a general mechanism by which neurons increase their repertoire of responses to the limited set of guidance cues involved in neural circuit formation. PMID:22279234

  13. Arylamine N-acetyltransferase 2 genotype-dependent N-acetylation of isoniazid in cryopreserved human hepatocytes.

    PubMed

    Doll, Mark A; Salazar-González, Raúl A; Bodduluri, Srineil; Hein, David W

    2017-07-01

    Cryopreserved human hepatocytes were used to investigate the role of arylamine N -acetyltransferase 2 (NAT2; EC 2.3.1.5) polymorphism on the N -acetylation of isoniazid (INH). NAT2 genotype was determined by Taqman allelic discrimination assay and INH N -acetylation was measured by high performance liquid chromatography. INH N -acetylation rates in vitro exhibited a robust and highly significant ( P <0.005) NAT2 phenotype-dependent metabolism. N -acetylation rates in situ were INH concentration- and time-dependent. Following incubation for 24 h with 12.5 or 100 µmol/L INH, acetyl-INH concentrations varied significantly ( P = 0.0023 and P = 0.0002) across cryopreserved human hepatocytes samples from rapid, intermediate, and slow acetylators, respectively. The clear association between NAT2 genotype and phenotype supports use of NAT2 genotype to guide INH dosing strategies in the treatment and prevention of tuberculosis.

  14. Engineered Gold Nanoparticles and Plant Adaptation Potential

    NASA Astrophysics Data System (ADS)

    Siddiqi, Khwaja Salahuddin; Husen, Azamal

    2016-09-01

    Use of metal nanoparticles in biological system has recently been recognised although little is known about their possible effects on plant growth and development. Nanoparticles accumulation, translocation, growth response and stress modulation in plant system is not well understood. Plants exposed to gold and gold nanoparticles have been demonstrated to exhibit both positive and negative effects. Their growth and yield vary from species to species. Cytoxicity of engineered gold nanoparticles depends on the concentration, particle size and shape. They exhibit increase in vegetative growth and yield of fruit/seed at lower concentration and decrease them at higher concentration. Studies have shown that the gold nanoparticles exposure has improved free radical scavenging potential and antioxidant enzymatic activities and alter micro RNAs expression that regulate different morphological, physiological and metabolic processes in plants. These modulations lead to improved plant growth and yields. Prior to the use of gold nanoparticles, it has been suggested that its cost may be calculated to see if it is economically feasible.

  15. Temperature dependence of the multistability of lactose utilization network of Escherichia coli

    NASA Astrophysics Data System (ADS)

    Nepal, Sudip; Kumar, Pradeep

    Biological systems are capable of producing multiple states out of a single set of inputs. Multistability acts like a biological switch that allows organisms to respond differently to different environmental conditions and hence plays an important role in adaptation to changing environment. One of the widely studied gene regulatory networks underlying the metabolism of bacteria is the lactose utilization network, which exhibits a multistable behavior as a function of lactose concentration. We have studied the effect of temperature on multistability of the lactose utilization network at various concentrations of thio-methylgalactoside (TMG), a synthetic lactose. We find that while the lactose utilization network exhibits a bistable behavior for temperature T >20° C , a graded response arises for temperature T <=20° C. Furthermore, we construct a phase diagram of the graded and bistable response of lactose utilization network as a function of temperature and TMG concentration. Our results suggest that environmental conditions, in this case temperature, can alter the nature of cellular regulation of metabolism.

  16. Concentration dependence of biotransformation in fish liver S9: Optimizing substrate concentrations to estimate hepatic clearance for bioaccumulation assessment.

    PubMed

    Lo, Justin C; Allard, Gayatri N; Otton, S Victoria; Campbell, David A; Gobas, Frank A P C

    2015-12-01

    In vitro bioassays to estimate biotransformation rate constants of contaminants in fish are currently being investigated to improve bioaccumulation assessments of hydrophobic contaminants. The present study investigates the relationship between chemical substrate concentration and in vitro biotransformation rate of 4 environmental contaminants (9-methylanthracene, pyrene, chrysene, and benzo[a]pyrene) in rainbow trout (Oncorhynchus mykiss) liver S9 fractions and methods to determine maximum first-order biotransformation rate constants. Substrate depletion experiments using a series of initial substrate concentrations showed that in vitro biotransformation rates exhibit strong concentration dependence, consistent with a Michaelis-Menten kinetic model. The results indicate that depletion rate constants measured at initial substrate concentrations of 1 μM (a current convention) could underestimate the in vitro biotransformation potential and may cause bioconcentration factors to be overestimated if in vitro biotransformation rates are used to assess bioconcentration factors in fish. Depletion rate constants measured using thin-film sorbent dosing experiments were not statistically different from the maximum depletion rate constants derived using a series of solvent delivery-based depletion experiments for 3 of the 4 test chemicals. Multiple solvent delivery-based depletion experiments at a range of initial concentrations are recommended for determining the concentration dependence of in vitro biotransformation rates in fish liver fractions, whereas a single sorbent phase dosing experiment may be able to provide reasonable approximations of maximum depletion rates of very hydrophobic substances. © 2015 SETAC.

  17. Nitric oxide signaling depends on biotin in Jurkat human lymphoma cells.

    PubMed

    Rodriguez-Melendez, Rocio; Zempleni, Janos

    2009-03-01

    Biotin affects gene expression through a diverse array of cell signaling pathways. Previous studies provided evidence that cGMP-dependent signaling also depends on biotin, but the mechanistic sequence of cGMP regulation by biotin is unknown. Here we tested the hypothesis that the effects of biotin in cGMP-dependent cell signaling are mediated by nitric oxide (NO). Human lymphoid (Jurkat) cells were cultured in media containing deficient (0.025 nmol/L), physiological (0.25 nmol/L), and pharmacological (10 nmol/L) concentrations of biotin for 5 wk. Both levels of intracellular biotin and NO exhibited a dose-dependent relationship in regard to biotin concentrations in culture media. Effects of biotin on NO levels were disrupted by the NO synthase (NOS) inhibitor N-monomethyl-arginine. Biotin-dependent production of NO was linked with biotin-dependent expression of endothelial and neuronal NOS, but not inducible NOS. Previous studies revealed that NO is an activator of guanylate cyclase. Consistent with these previous observations, biotin-dependent generation of NO increased the abundance of cGMP in Jurkat cells. Finally, the biotin-dependent generation of cGMP increased protein kinase G activity. Collectively, the results of this study are consistent with the hypothesis that biotin-dependent cGMP signaling in human lymphoid cells is mediated by NO.

  18. Evaluation of Populus and Salix continuously irrigated with landfill leachate I. Genotype-specific elemental phytoremediation.

    PubMed

    Zalesny, Ronald S; Bauer, Edmund O

    2007-01-01

    There is a need for the identification and selection of specific tree genotypes that can sequester elements from contaminated soils, with elevated rates of uptake. We irrigated Populus (DN17, DN182, DN34, NM2, NM6) and Salix (94003, 94012, S287, S566, SX61) genotypes planted in large soil-filled containers with landfill leachate or municipal water and tested for differences in inorganic element concentrations (P, K, Ca, Mg, S, Zn, B, Mn, Fe, Cu, Al, Na, and Cl) in the leaves, stems, and roots. Trees were irrigated with leachate or water during the final 12 wk of the 18-wk study. Genotype-specific uptake existed. For genera, tissue concentrations exhibited four responses. First, Populus had the greatest uptake of P, K, S, Cu, and Cl. Second, Salix exhibited the greatest uptake of Zn, B, Fe, and Al. Third, Salix had greater concentrations of Ca and Mg in leaves, while Populus had greater concentrations in stems and roots. Fourth, Populus had greater concentrations of Mn and Na in leaves and stems, while Salix had greater concentrations in roots. Populus deltoides x P. nigra clones exhibited better overall phytoremediation than the P. nigra x P. maximowiczii genotypes tested. Phytoremediation for S. purpurea clones 94003 and 94012 was generally less than for other Salix genotypes. Overall, concentrations of elements in the leaves, stems, and roots corroborated those in the plant-sciences literature. Uptake was dependent upon the specific genotype for most elements. Our results corroborated the need for further testing and selecting of specific clones for various phytoremediation needs, while providing a baseline for future researchers developing additional studies and resource managers conducting on-site remediation.

  19. Size- and shape-dependent clinical and mycological efficacy of silver nanoparticles on dandruff.

    PubMed

    Anwar, Mohammad F; Yadav, Deepak; Jain, Swati; Kapoor, Sumeet; Rastogi, Shweta; Arora, Indu; Samim, Mohammed

    2016-01-01

    Dandruff is a prominent scalp problem caused by the growth of fungus Malassezia furfur, potentially cascading into dermal inflammation, itching, and tissue damage. The present work outlines a detailed analysis of the treatment of scalp infection using silver nanomaterials (Ag NMs), and focuses on biocidal activity owing to manipulation of size, shape, and structure. Monodisperse silver spherical nanoparticles (NPs) and nanorods (NRs) were synthesized by chemical routes that were characterized using analytical and spectroscopic techniques. Ag NMs demonstrated enhanced biocidal tendencies compared to market available drugs, itracanozole and ketoconazole, showing greater zones of inhibition. The obtained 20 nm and 50 nm spherical-shaped NPs and 50 nm NRs showed concentration-, size-, and shape-dependent antifungal activity, with 20 nm spherical-shaped NPs exhibiting excellent potency. Minimum inhibitory concentration for 20 nm was lowest at 0.2 mg/mL in comparison to 0.3 mg/mL for NRs. Primary irritation index was 0.33 and 0.16 for 20 nm and 50 nm spherical-shaped NPs, respectively, while 50 nm rod-shaped NMs exhibited negligible redness. An in vivo model for M. furfur infection was generated by passing fungi subcutaneously in rats' skin. Again, 20 nm particles showed best normalization of skin after 10 days on regular dosing, in comparison with bigger and rod-shaped particles. The statistical clinical score was highest for Ag nanorods, followed by 50 nm Ag NPs-treated animals. It was observed that 20 nm spherical particles exhibited the lowest score (0) compared with others as well as with antifungal drugs. Biochemical analysis performed by checking antioxidant enzymatic activities indicated tissue repair and normalization of enzymes and protein concentration by Ag NPs.

  20. Size- and shape-dependent clinical and mycological efficacy of silver nanoparticles on dandruff

    PubMed Central

    Anwar, Mohammad F; Yadav, Deepak; Jain, Swati; Kapoor, Sumeet; Rastogi, Shweta; Arora, Indu; Samim, Mohammed

    2016-01-01

    Dandruff is a prominent scalp problem caused by the growth of fungus Malassezia furfur, potentially cascading into dermal inflammation, itching, and tissue damage. The present work outlines a detailed analysis of the treatment of scalp infection using silver nanomaterials (Ag NMs), and focuses on biocidal activity owing to manipulation of size, shape, and structure. Monodisperse silver spherical nanoparticles (NPs) and nanorods (NRs) were synthesized by chemical routes that were characterized using analytical and spectroscopic techniques. Ag NMs demonstrated enhanced biocidal tendencies compared to market available drugs, itracanozole and ketoconazole, showing greater zones of inhibition. The obtained 20 nm and 50 nm spherical-shaped NPs and 50 nm NRs showed concentration-, size-, and shape-dependent antifungal activity, with 20 nm spherical-shaped NPs exhibiting excellent potency. Minimum inhibitory concentration for 20 nm was lowest at 0.2 mg/mL in comparison to 0.3 mg/mL for NRs. Primary irritation index was 0.33 and 0.16 for 20 nm and 50 nm spherical-shaped NPs, respectively, while 50 nm rod-shaped NMs exhibited negligible redness. An in vivo model for M. furfur infection was generated by passing fungi subcutaneously in rats’ skin. Again, 20 nm particles showed best normalization of skin after 10 days on regular dosing, in comparison with bigger and rod-shaped particles. The statistical clinical score was highest for Ag nanorods, followed by 50 nm Ag NPs-treated animals. It was observed that 20 nm spherical particles exhibited the lowest score (0) compared with others as well as with antifungal drugs. Biochemical analysis performed by checking antioxidant enzymatic activities indicated tissue repair and normalization of enzymes and protein concentration by Ag NPs. PMID:26792991

  1. Differential state-dependent modification of rat Na{sub v}1.6 sodium channels expressed in human embryonic kidney (HEK293) cells by the pyrethroid insecticides tefluthrin and deltamethrin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Bingjun; Soderlund, David M., E-mail: dms6@cornell.edu

    2011-12-15

    We expressed rat Na{sub v}1.6 sodium channels in combination with the rat {beta}1 and {beta}2 auxiliary subunits in human embryonic kidney (HEK293) cells and evaluated the effects of the pyrethroid insecticides tefluthrin and deltamethrin on expressed sodium currents using the whole-cell patch clamp technique. Both pyrethroids produced concentration-dependent, resting modification of Na{sub v}1.6 channels, prolonging the kinetics of channel inactivation and deactivation to produce persistent 'late' currents during depolarization and tail currents following repolarization. Both pyrethroids also produced concentration dependent hyperpolarizing shifts in the voltage dependence of channel activation and steady-state inactivation. Maximal shifts in activation, determined from the voltagemore » dependence of the pyrethroid-induced late and tail currents, were {approx} 25 mV for tefluthrin and {approx} 20 mV for deltamethrin. The highest attainable concentrations of these compounds also caused shifts of {approx} 5-10 mV in the voltage dependence of steady-state inactivation. In addition to their effects on the voltage dependence of inactivation, both compounds caused concentration-dependent increases in the fraction of sodium current that was resistant to inactivation following strong depolarizing prepulses. We assessed the use-dependent effects of tefluthrin and deltamethrin on Na{sub v}1.6 channels by determining the effect of trains of 1 to 100 5-ms depolarizing prepulses at frequencies of 20 or 66.7 Hz on the extent of channel modification. Repetitive depolarization at either frequency increased modification by deltamethrin by {approx} 2.3-fold but had no effect on modification by tefluthrin. Tefluthrin and deltamethrin were equally potent as modifiers of Na{sub v}1.6 channels in HEK293 cells using the conditions producing maximal modification as the basis for comparison. These findings show that the actions of tefluthrin and deltamethrin of Na{sub v}1.6 channels in HEK293 cells differ from the effects of these compounds on Na{sub v}1.6 channels in Xenopus oocytes and more closely reflect the actions of pyrethroids on channels in their native neuronal environment. -- Highlights: Black-Right-Pointing-Pointer We expressed rat Na{sub v}1.6 voltage-gated sodium channels in HEK293 cells. Black-Right-Pointing-Pointer Tefluthrin and deltamethrin caused resting modification of Na{sub v}1.6 channels. Black-Right-Pointing-Pointer Only deltamethrin exhibited use-dependent enhancement of modification. Black-Right-Pointing-Pointer State-dependent effects of pyrethroids are influenced by the cellular context. Black-Right-Pointing-Pointer Channels in HEK293 cells exhibit properties similar to native neuronal channels.« less

  2. Tunable Assembly of Gold Nanorods in Polymer Solutions To Generate Controlled Nanostructured Materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poling-Skutvik, Ryan; Lee, Jonghun; Narayanan, Suresh

    In this study, gold nanorods grafted with short chain polymers are assembled into controlled open structures using polymer-induced depletion interactions and structurally characterized using small angle x-ray scattering. When the nanorod diameter is smaller than the radius of gyration of the depletant polymer, the depletion interaction depends solely on the correlation length of the polymer solution and not directly on the polymer molecular weight. As the polymer concentration increases, the stronger depletion interactions increasingly compress the grafted chains and push the gold nanorods closer together. By contrast, other structural characteristics such as the number of nearest neighbors and fractal dimensionmore » exhibit a non-monotonic dependence on polymer concentration. These parameters are maximal at intermediate concentrations, which are attributed to a crossover from reaction-limited to diffusion-limited aggregation. Finally, the control over structural properties of anisotropic nanoscale building blocks demonstrated here will be beneficial to designing and producing materials in situ with specific direction-dependent nanoscale properties and provides a crucial route for advances in additive manufacturing.« less

  3. Tunable Assembly of Gold Nanorods in Polymer Solutions To Generate Controlled Nanostructured Materials

    DOE PAGES

    Poling-Skutvik, Ryan; Lee, Jonghun; Narayanan, Suresh; ...

    2018-01-17

    In this study, gold nanorods grafted with short chain polymers are assembled into controlled open structures using polymer-induced depletion interactions and structurally characterized using small angle x-ray scattering. When the nanorod diameter is smaller than the radius of gyration of the depletant polymer, the depletion interaction depends solely on the correlation length of the polymer solution and not directly on the polymer molecular weight. As the polymer concentration increases, the stronger depletion interactions increasingly compress the grafted chains and push the gold nanorods closer together. By contrast, other structural characteristics such as the number of nearest neighbors and fractal dimensionmore » exhibit a non-monotonic dependence on polymer concentration. These parameters are maximal at intermediate concentrations, which are attributed to a crossover from reaction-limited to diffusion-limited aggregation. Finally, the control over structural properties of anisotropic nanoscale building blocks demonstrated here will be beneficial to designing and producing materials in situ with specific direction-dependent nanoscale properties and provides a crucial route for advances in additive manufacturing.« less

  4. Creating diversified response profiles from a single quenchometric sensor element by using phase-resolved luminescence.

    PubMed

    Tehan, Elizabeth C; Bukowski, Rachel M; Chodavarapu, Vamsy P; Titus, Albert H; Cartwright, Alexander N; Bright, Frank V

    2015-01-05

    We report a new strategy for generating a continuum of response profiles from a single luminescence-based sensor element by using phase-resolved detection. This strategy yields reliable responses that depend in a predictable manner on changes in the luminescent reporter lifetime in the presence of the target analyte, the excitation modulation frequency, and the detector (lock-in amplifier) phase angle. In the traditional steady-state mode, the sensor that we evaluate exhibits a linear, positive going response to changes in the target analyte concentration. Under phase-resolved conditions the analyte-dependent response profiles: (i) can become highly non-linear; (ii) yield negative going responses; (iii) can be biphasic; and (iv) can exhibit super sensitivity (e.g., sensitivities up to 300 fold greater in comparison to steady-state conditions).

  5. Subunit Dissociation and Metal Binding by Escherichia coli apo-Manganese Superoxide Dismutase

    PubMed Central

    Whittaker, Mei M.; Lerch, Thomas F.; Kirillova, Olga; Chapman, Michael S.; Whittaker, James W.

    2010-01-01

    Metal binding by apo-manganese superoxide dismutase (apo-MnSOD) is essential for functional maturation of the enzyme. Previous studies have demonstrated that metal binding by apo-MnSOD is conformationally gated, requiring protein reorganization for the metal to bind. We have now solved the X-ray crystal structure of apo-MnSOD at 1.9 Å resolution. The organization of active site residues is independent of the presence of the metal cofactor, demonstrating that protein itself templates the unusual metal coordination geometry. Electrophoretic analysis of mixtures of apo- and (Mn2)-MnSOD, dye-conjugated protein, or C-terminal Strep-tag II fusion protein reveals a dynamic subunit exchange process associated with cooperative metal binding by the two subunits of the dimeric protein. In contrast, (S126C) (SS) apo-MnSOD, which contains an inter-subunit covalent disulfide crosslink, exhibits anticooperative metal binding. The protein concentration dependence of metal uptake kinetics implies that protein dissociation is involved in metal binding by the wild type apo-protein, although other processes may also contribute to gating metal uptake. Protein concentration dependent small-zone size exclusion chromatography is consistent with apo-MnSOD dimer dissociation at low protein concentration (KD = 1×10−6 M). Studies on metal uptake by apo-MnSOD in Escherichia coli cells show that the protein exhibits similar behavior in vivo and in vitro. PMID:21044611

  6. Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel.

    PubMed

    Nelson, Peter Hugo

    2003-12-01

    The potassium channel from Streptomyces lividans (KcsA) is an integral membrane protein with sequence similarity to all known potassium channels, particularly in the selectivity filter region. A recently proposed model for ion channels containing either n or (n-1) single-file ions in their selectivity filters [P. H. Nelson, J. Chem. Phys. 177, 11396 (2002)] is applied to published KcsA channel K+ permeation data that exhibit a high-affinity process at low concentrations and a low-affinity process at high concentrations [M. LeMasurier et al., J. Gen. Physiol. 118, 303 (2001)]. The kinetic model is shown to provide a reasonable first-order explanation for both the high- and low-concentration permeation modes observed experimentally. The low-concentration mode ([K+]<200 mM) has a 200-mV dissociation constant of 56 mM and a conductance of 88 pS. The high-concentration mode ([K+]>200 mM) has a 200-mV dissociation constant of 1100 mM and a conductance of 500 pS. Based on the permeation model, and x-ray analysis [J. H. Morais-Cabral et al., Nature (London) 414, 37 (2001)], it is suggested that the experimentally observed K+ permeation modes correspond to an n=3 mechanism at high concentrations and an n=2 mechanism at low concentrations. The ratio of the electrical dissociation distances for the high- and low-concentration modes is 3:2, also consistent with the proposed n=3 and n=2 modes. Model predictions for K+ channels that exhibit asymmetric current-voltage (I-V) curves are presented, and further validation of the kinetic model via molecular simulation and experiment is discussed. The qualitatively distinct I-V characteristics exhibited experimentally by Tl+, NH+4, and Rb+ ions at 100 mM concentration can also be explained using the model, but more extensive experimental tests are required for quantitative validation of the model predictions.

  7. Modeling the concentration-dependent permeation modes of the KcsA potassium ion channel

    NASA Astrophysics Data System (ADS)

    Nelson, Peter Hugo

    2003-12-01

    The potassium channel from Streptomyces lividans (KcsA) is an integral membrane protein with sequence similarity to all known potassium channels, particularly in the selectivity filter region. A recently proposed model for ion channels containing either n or (n-1) single-file ions in their selectivity filters [P. H. Nelson, J. Chem. Phys. 177, 11396 (2002)] is applied to published KcsA channel K+ permeation data that exhibit a high-affinity process at low concentrations and a low-affinity process at high concentrations [M. LeMasurier et al., J. Gen. Physiol. 118, 303 (2001)]. The kinetic model is shown to provide a reasonable first-order explanation for both the high- and low-concentration permeation modes observed experimentally. The low-concentration mode ([K+]<200 mM) has a 200-mV dissociation constant of 56 mM and a conductance of 88 pS. The high-concentration mode ([K+]>200 mM) has a 200-mV dissociation constant of 1100 mM and a conductance of 500 pS. Based on the permeation model, and x-ray analysis [J. H. Morais-Cabral et al., Nature (London) 414, 37 (2001)], it is suggested that the experimentally observed K+ permeation modes correspond to an n=3 mechanism at high concentrations and an n=2 mechanism at low concentrations. The ratio of the electrical dissociation distances for the high- and low-concentration modes is 3:2, also consistent with the proposed n=3 and n=2 modes. Model predictions for K+ channels that exhibit asymmetric current-voltage (I-V) curves are presented, and further validation of the kinetic model via molecular simulation and experiment is discussed. The qualitatively distinct I-V characteristics exhibited experimentally by Tl+, NH+4, and Rb+ ions at 100 mM concentration can also be explained using the model, but more extensive experimental tests are required for quantitative validation of the model predictions.

  8. Maternal effects on offspring stress physiology in wild chimpanzees.

    PubMed

    Murray, Carson M; Stanton, Margaret A; Wellens, Kaitlin R; Santymire, Rachel M; Heintz, Matthew R; Lonsdorf, Elizabeth V

    2018-01-01

    Early life experiences are known to influence hypothalamic-pituitary-adrenal (HPA) axis development, which can impact health outcomes through the individual's ability to mount appropriate physiological reactions to stressors. In primates, these early experiences are most often mediated through the mother and can include the physiological environment experienced during gestation. Here, we investigate stress physiology of dependent offspring in wild chimpanzees for the first time and examine whether differences in maternal stress physiology are related to differences in offspring stress physiology. Specifically, we explore the relationship between maternal rank and maternal fecal glucocorticoid metabolite (FGM) concentration during pregnancy and early lactation (first 6 months post-partum) and examine whether differences based on maternal rank are associated with dependent offspring FGM concentrations. We found that low-ranking females exhibited significantly higher FGM concentrations during pregnancy than during the first 6 months of lactation. Furthermore, during pregnancy, low-ranking females experienced significantly higher FGM concentrations than high-ranking females. As for dependent offspring, we found that male offspring of low-ranking mothers experienced stronger decreases in FGM concentrations as they aged compared to males with high-ranking mothers or their dependent female counterparts. Together, these results suggest that maternal rank and FGM concentrations experienced during gestation are related to offspring stress physiology and that this relationship is particularly pronounced in males compared to females. Importantly, this study provides the first evidence for maternal effects on the development of offspring HPA function in wild chimpanzees, which likely relates to subsequent health and fitness outcomes. Am. J. Primatol. 80:e22525, 2018. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. A kinetic model for beta-amyloid adsorption at the air/solution interface and its implication to the beta-amyloid aggregation process.

    PubMed

    Jiang, Dianlu; Dinh, Kim Lien; Ruthenburg, Travis C; Zhang, Yi; Su, Lei; Land, Donald P; Zhou, Feimeng

    2009-03-12

    At the air/buffer solution interface the kinetics of adsorption of amyloid beta peptide, Abeta(1-42), whose bulk concentration (submicromolar) is more than 2 orders of magnitude lower than that typically used in other in vitro aggregation studies, has been studied using a Langmuir-Blodgett trough. The pressure-time curves exhibit a lag phase, wherein the surface pressure essentially remains at zero, and a rising phase, corresponding to the Abeta adsorption at the interface. The duration of the lag phase was found to be highly dependent on both the Abeta bulk concentration and the solution temperature. A large activation energy (62.2 +/- 4.1 KJ/mol) was determined and the apparent adsorption rate constant was found to be linearly dependent on the Abeta bulk concentration. Attenuated total reflection-IR spectra of the adsorbed Abeta transferred to a solid substrate and circular dichroism measurements of Abeta in the solution layer near the interface reveal that the natively unstructured Abeta in the bulk undergo a conformation change (folding) to mainly the alpha-helical structure. The results suggest that, prior to the adsorption step, an equilibrium between Abeta conformations is established within the subsurface. The kinetic equation derived from this model confirms that the overall Abeta adsorption is kinetically controlled and the apparent rate constant is proportional to the Abeta bulk concentration. This model also indicates that interfaces such as cell membranes and lipid bilayers may facilitate Abeta aggregation/ fibrillation by providing a thin hydrophobic layer adjacent to the interface for the initial A/beta conformation change (misfolding) and accumulation. Such a preconcentration effect offers a plausible explanation of the fact that Abeta fibrillation occurs in vivo at nanomolar concentrations. Another important biological implication from our work is that Abeta misfolding may occur before its adsorption onto a cell membrane. This general kinetic model should also find applications in adsorption studies of other types of biomolecules whose overall kinetics exhibits a lag phase that is dependent on the bulk concentration of the adsorbate.

  10. A Kinetic Model for β-Amyloid Adsorption at the Air/Solution Interface and Its Implication to the β-Amyloid Aggregation Process

    PubMed Central

    Jiang, Dianlu; Dinh, Kim Lien; Ruthenburg, Travis; Zhang, Yi; Su, Lei; Land, Donald; Zhou, Feimeng

    2011-01-01

    The kinetics of adsorption at the air/buffer solution interface of amyloid beta peptide, Aβ(1–42), whose bulk concentration (submicromolar) is more than two orders of magnitude lower than that typically used in other in vitro aggregation studies, has been studied using a Langmuir-Blodgett trough. The pressure–time curves exhibit a lag phase, wherein the surface pressure essentially remains at zero, and a rising phase, corresponding to the Aβ adsorption at the interface. The duration of the lag phase was found to be highly dependent on both the Aβ bulk concentration and the solution temperature. A large activation energy (62.2 ± 4.1 KJ/mol) was determined and the apparent adsorption rate constant was found to be linearly dependent on the Aβ bulk concentration. Attenuated total reflection-IR spectra of the adsorbed Aβ transferred to a solid substrate and circular dichroism measurements of Aβ in the solution layer near the interface reveal that the natively unstructured Aβ in the bulk undergo a conformation change (folding) to mainly the α-helical structure. The results suggest that, prior to the adsorption step, an equilibrium between Aβ conformations is established within the subsurface. The kinetic equation derived from this model confirms that the overall Aβ adsorption is kinetically controlled and the apparent rate constant is proportional to the Aβ bulk concentration. This model also indicates that interfaces such as cell membranes and lipid bilayers may facilitate Aβ aggregation/fibrillation by providing a thin hydrophobic layer adjacent to the interface for the initial Aβ conformation change (misfolding) and accumulation. Such a preconcentration effect offers a plausible explanation of the fact that Aβ fibrillation occurs in vivo at nanomolar concentrations. Another important biological implication from our work is that Aβ misfolding may occur before its adsorption onto a cell membrane. This general kinetic model should also find applications in adsorption studies of other types of biomolecules whose overall kinetics exhibits a lag phase that is dependent on the bulk concentration of the adsorbate. PMID:19260715

  11. Cadmium neurotoxicity to a freshwater planarian.

    PubMed

    Wu, Jui-Pin; Lee, Hui-Ling; Li, Mei-Hui

    2014-11-01

    Although freshwater planarians are evolutionarily primitive, they are some of the simplest bilateral animals possessing integrated neural networks similar to those in vertebrates. We attempted to develop planarian Dugesia japonica as a model for investigating the neurotoxicity of environmental pollutants such as cadmium (Cd). This study was therefore designed to study the effects of Cd on the locomotor activity, neurobehavior, and neurological enzymes of D. japonica. After planarians were exposed to Cd at high concentrations, altered neurobehavior was observed that exhibited concentration-dependent patterns. Morphological alterations in Cd-treated planarians included irregular shape, body elongation, screw-like hyperkinesia, and bridge-like position. To study the direct effects of Cd on neurological enzymes, tissue homogenates of planarians were incubated in vitro with Cd before their activity was measured. Results showed that acetylcholinesterase (AChE), adenosine triphosphatase (ATPase), and monoamine oxidase A (MAO-A) activities were inhibited in a concentration-dependent manner. MAO-B activity was significantly induced by Cd at low concentrations and inhibited at high concentrations. Changes in the in vivo activity of AChE and ATPase were also found after planarians were treated with Cd at a sublethal concentration (5.56 μM). These observations indicate that neurotransmission systems in planarians are disturbed after Cd exposure.

  12. Ultra-wide detectable concentration range of GMR biosensors using Fe3O4 microspheres

    NASA Astrophysics Data System (ADS)

    Xu, Jie; Li, Qiang; Zong, Weihua; Zhang, Yongcheng; Li, Shandong

    2016-11-01

    Exchange-biased GMR sensors were employed for biodetection using a DC in-plane measuring method and a magnetic label of Fe3O4 microspheres. It was revealed that an ultra-wide concentration span covering five orders from 10 ng/mL to 1000 μg/mL was achieved in a home-made biodetection device. The concentration x dependence of output voltage difference |ΔV| between with and without magnetic labels, exhibits nonlinear futures, which undergoes two functions depending on the concentration region. For the low concentration region from 10 ng/mL to 10 μg/mL, a logarithmic relation of |ΔV|=26.3lgx+91.4 fits well, while for the high concentration region, a negative exponential function of |ΔV|=3113(1-e-x/250) describes the |ΔV|~x relation better. For the former, the "coffee ring" effect, formed during the solvent evaporation, was considered as the main reason for the nonlinear relation. While for the latter with high concentration, the overlap among the particles and the enhanced interaction of the magnetic dipole were responsible for the nonlinear |ΔV|~x relationship. Moreover, the calculated detectable concentration limit is agreed well with the experimental data.

  13. Gold Nanoparticles on Functionalized Silicon Substrate under Coulomb Blockade Regime: An Experimental and Theoretical Investigation.

    PubMed

    Pluchery, Olivier; Caillard, Louis; Dollfus, Philippe; Chabal, Yves J

    2018-01-18

    Single charge electronics offer a way for disruptive technology in nanoelectronics. Coulomb blockade is a realistic way for controlling the electric current through a device with the accuracy of one electron. In such devices the current exhibits a step-like increase upon bias which reflects the discrete nature of the fundamental charge. We have assembled a double tunnel junction on an oxide-free silicon substrate that exhibits Coulomb staircase characteristics using gold nanoparticles (AuNPs) as Coulomb islands. The first tunnel junction is an insulating layer made of a grafted organic monolayer (GOM) developed for this purpose. The GOM also serves for attaching AuNPs covalently. The second tunnel junction is made by the tip of an STM. We show that this device exhibits reproducible Coulomb blockade I-V curves at 40 K in vacuum. We also show that depending on the doping of the silicon substrate, the whole Coulomb staircase can be adjusted. We have developed a simulation approach based on the orthodox theory that was completed by calculating the bias dependent tunnel barriers and by including an accurate calculation of the band bending. This model accounts for the experimental data and the doping dependence of Coulomb oscillations. This study opens new perspectives toward designing new kind of single electron transistors (SET) based on this dependence of the Coulomb staircase with the charge carrier concentration.

  14. Effect of Excipients on Liquid-Liquid Phase Separation and Aggregation in Dual Variable Domain Immunoglobulin Protein Solutions.

    PubMed

    Raut, Ashlesha S; Kalonia, Devendra S

    2016-03-07

    Liquid-liquid phase separation (LLPS) and aggregation can reduce the physical stability of therapeutic protein formulations. On undergoing LLPS, the protein-rich phase can promote aggregation during storage due to high concentration of the protein. Effect of different excipients on aggregation in protein solution is well documented; however data on the effect of excipients on LLPS is scarce in the literature. In this study, the effect of four excipients (PEG 400, Tween 80, sucrose, and hydroxypropyl beta-cyclodextrin (HPβCD)) on liquid-liquid phase separation and aggregation in a dual variable domain immunoglobulin protein solution was investigated. Sucrose suppressed both LLPS and aggregation, Tween 80 had no effect on either, and PEG 400 increased LLPS and aggregation. Attractive protein-protein interactions and liquid-liquid phase separation decreased with increasing concentration of HPβCD, indicating its specific binding to the protein. However, HPβCD had no effect on the formation of soluble aggregates and fragments in this study. LLPS and aggregation are highly temperature dependent; at low temperature protein exhibits LLPS, at high temperature protein exhibits aggregation, and at an intermediate temperature both phenomena occur simultaneously depending on the solution conditions.

  15. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    PubMed Central

    Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.; Svoboda, Kurt R.

    2015-01-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMN). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30µM). Previous work showed that the paralytic mutant zebrafish known as sofa potato, exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. PMID:25668718

  16. Anti-HER2 immunoliposomes for selective delivery of electron paramagnetic resonance imaging probes to HER2-overexpressing breast tumor cells

    PubMed Central

    Burks, Scott R.; Macedo, Luciana F.; Barth, Eugene D.; Tkaczuk, Katherine H.; Martin, Stuart S.; Rosen, Gerald M.; Halpern, Howard J.; Brodie, Angela M.

    2014-01-01

    Electron paramagnetic resonance (EPR) imaging is an emerging modality that can detect and localize paramagnetic molecular probes (so-called spin probes) in vivo. We previously demonstrated that nitroxide spin probes can be encapsulated in liposomes at concentrations exceeding 100 mM, at which nitroxides exhibit a concentration-dependent quenching of their EPR signal that is analogous to the self-quenching of fluorescent molecules. Therefore, intact liposomes encapsulating high concentrations of nitroxides exhibit greatly attenuated EPR spectral signals, and endocytosis of such liposomes represents a cell-activated contrast-generating mechanism. After endocytosis, the encapsulated nitroxide is liberated and becomes greatly diluted in the intracellular milieu. This dequenches the nitroxides to generate a robust intracellular EPR signal. It is therefore possible to deliver a high concentration of nitroxides to cells while minimizing background signal from unendocytosed liposomes. We report here that intracellular EPR signal can be selectively generated in a specific cell type by exploiting its expression of Human Epidermal Growth Factor Receptor 2 (HER2). When targeted by anti-HER2 immunoliposomes encapsulating quenched nitroxides, Hc7 cells, which are novel HER2-overexpressing cells derived from the MCF7 breast tumor cell line, endocytose the liposomes copiously, in contrast to the parent MCF7 cells or control CV1 cells, which do not express HER2. HER2-dependent liposomal delivery enables Hc7 cells to accumulate 750 μM nitroxide intracellularly. Through the use of phantom models, we verify that this concentration of nitroxides is more than sufficient for EPR imaging, thus laying the foundation for using EPR imaging to visualize HER2-overexpressing Hc7 tumors in animals. PMID:20066490

  17. Honey shows potent inhibitory activity against the bovine testes hyaluronidase.

    PubMed

    Kolayli, Sevgi; Sahin, Huseyin; Can, Zehra; Yildiz, Oktay; Sahin, Kübra

    2016-08-01

    The purpose of this study was to investigate the anti-hyaluronidase activities of honeys from different botanical origins honeys in order to determine their anti-inflammatory properties. The total phenolic contents, total flavonoids and total tannin levels of six types of honey, chestnut, oak, heather, pine, buckwheat and mixed blossom, were determined. Concentration-related inhibition values were tested turbidimetrically on bovine testis hyaluronidase (BTHase) as IC50 (mg/mL). All honeys exhibited various concentration-dependent degrees of inhibition against BTHase. Inhibition values varied significantly depending on honeys' levels of phenolic contents, flavonoid and tannin. The honeys with the highest anti-hyaluronidase activity were oak, chestnut and heather. In conclusion, polyphenol-rich honeys have high anti-hyaluronidase activity, and these honeys have high protective and complementary potential against hyaluronidase-induced anti-inflammatory failures.

  18. Pixantrone can be activated by formaldehyde to generate a potent DNA adduct forming agent

    PubMed Central

    Evison, Ben J.; Mansour, Oula C.; Menta, Ernesto; Phillips, Don R.; Cutts, Suzanne M.

    2007-01-01

    Mitoxantrone is an anti-cancer agent used in the treatment of breast and prostate cancers. It is classified as a topoisomerase II poison, however can also be activated by formaldehyde to generate drug–DNA adducts. Despite identification of this novel form of mitoxantrone–DNA interaction, excessively high, biologically irrelevant drug concentrations are necessary to generate adducts. A search for mitoxantrone analogues that could potentially undergo this reaction with DNA more efficiently identified Pixantrone as an ideal candidate. An in vitro crosslinking assay demonstrated that Pixantrone is efficiently activated by formaldehyde to generate covalent drug–DNA adducts capable of stabilizing double-stranded DNA in denaturing conditions. Pixantrone–DNA adduct formation is both concentration and time dependent and the reaction exhibits an absolute requirement for formaldehyde. In a direct comparison with mitoxantrone–DNA adduct formation, Pixantrone exhibited a 10- to 100-fold greater propensity to generate adducts at equimolar formaldehyde and drug concentrations. Pixantrone–DNA adducts are thermally and temporally labile, yet they exhibit a greater thermal midpoint temperature and an extended half-life at 37°C when compared to mitoxantrone–DNA adducts. Unlike mitoxantrone, this enhanced stability, coupled with a greater propensity to form covalent drug–DNA adducts, may endow formaldehyde-activated Pixantrone with the attributes required for Pixantrone–DNA adducts to be biologically active. PMID:17483512

  19. Elevated Plasma Moxifloxacin Concentrations and SLCO1B1 g.−11187G>A Polymorphism in Adults with Pulmonary Tuberculosis

    PubMed Central

    Gelfond, Jon; Johnson-Pais, Teresa L.; Engle, Melissa; Peloquin, Charles A.; Johnson, John L.; Sizemore, Erin E.; Mac Kenzie, William R.

    2018-01-01

    ABSTRACT Moxifloxacin exhibits concentration-dependent prolongation of human QTc intervals and bactericidal activity against Mycobacterium tuberculosis. However, moxifloxacin plasma concentrations are variable between patients. We evaluated whether human gene polymorphisms affect moxifloxacin plasma concentrations in tuberculosis patients from two geographic regions. We enrolled a convenience sample of 49 adults with drug-sensitive pulmonary tuberculosis from Africa and the United States enrolled in two treatment trials of moxifloxacin as part of multidrug therapy. Pharmacokinetic parameters were evaluated by noncompartmental techniques. Human single-nucleotide polymorphisms of transporter genes were evaluated by analysis of covariance (ANCOVA) on moxifloxacin exposure and the peak (maximum) concentration (Cmax). The moxifloxacin area under the concentration-time curve from 0 to 24 h (AUC0–24) and Cmax were significantly increased by the drug milligram-per-kilogram dosage and the genotype of variant g.−11187G>A in the SLCO1B1 gene (rs4149015) but not by geographic region. The median moxifloxacin AUC0–24 was 46% higher and the median Cmax was 30% higher in 4 (8%) participants who had the SLCO1B1 g.−11187 AG genotype than in 45 participants who had the wild-type GG genotype (median AUC0–24 from the model, 34.4 versus 23.6 μg · h/ml [P = 0.005, ANCOVA]; median Cmax from the model, 3.5 versus 2.7 μg/ml [P = 0.009, ANCOVA]). Because moxifloxacin exhibits concentration-dependent prolongation of human QTc intervals and prolonged QTc intervals are associated with cardiac arrhythmia, further study is needed to evaluate the risk associated with the SLCO1B1 g.−11187G>A variant. (This study has been registered at ClinicalTrials.gov under identifier NCT00164463.) PMID:29463526

  20. Non-domestic phosphorus release in rivers during low-flow: Mechanisms and implications for sources identification

    NASA Astrophysics Data System (ADS)

    Dupas, Rémi; Tittel, Jörg; Jordan, Phil; Musolff, Andreas; Rode, Michael

    2018-05-01

    A common assumption in phosphorus (P) load apportionment studies is that P loads in rivers consist of flow independent point source emissions (mainly from domestic and industrial origins) and flow dependent diffuse source emissions (mainly from agricultural origin). Hence, rivers dominated by point sources will exhibit highest P concentration during low-flow, when flow dilution capacity is minimal, whereas rivers dominated by diffuse sources will exhibit highest P concentration during high-flow, when land-to-river hydrological connectivity is maximal. Here, we show that Soluble Reactive P (SRP) concentrations in three forested catchments free of point sources exhibited seasonal maxima during the summer low-flow period, i.e. a pattern expected in point source dominated areas. A load apportionment model (LAM) is used to show how point sources contribution may have been overestimated in previous studies, because of a biogeochemical process mimicking a point source signal. Almost twenty-two years (March 1995-September 2016) of monthly monitoring data of SRP, dissolved iron (Fe) and nitrate-N (NO3) were used to investigate the underlying mechanisms: SRP and Fe exhibited similar seasonal patterns and opposite to that of NO3. We hypothesise that Fe oxyhydroxide reductive dissolution might be the cause of SRP release during the summer period, and that NO3 might act as a redox buffer, controlling the seasonality of SRP release. We conclude that LAMs may overestimate the contribution of P point sources, especially during the summer low-flow period, when eutrophication risk is maximal.

  1. Low pH-Induced Pore Formation by the T Domain of Botulinum Toxin Type A is Dependent upon NaCl Concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lai, B.; Swaminathan, S.; Agarwal, R.

    2010-07-19

    Botulinum neurotoxins (BoNTs) undergo low pH-triggered membrane insertion, resulting in the translocation of their light (catalytic) chains into the cytoplasm. The T (translocation) domain of the BoNT heavy chain is believed to carry out translocation. Here, the behavior of isolated T domain from BoNT type A has been characterized, both in solution and when associated with model membranes. When BoNT T domain prepared in the detergent dodecylmaltoside was diluted into aqueous solution, it exhibited a low pH-dependent conformational change below pH 6. At low pH the T domain associated with, and formed pores within, model membrane vesicles composed of 30more » mol% dioleoylphosphatidylglycerol/70 mol% dioleoylphosphatidylcholine. Although T domain interacted with vesicles at low (50 mM) and high (400 mM) NaCl concentrations, the interaction required much less lipid at low salt. However, even at high lipid concentrations pore formation was much more pronounced at low NaCl concentrations than at high NaCl concentration. Increasing salt concentration after insertion in the presence of 50 mM NaCl did not decrease pore formation. A similar effect of NaCl concentration upon pore formation was observed in vesicles composed solely of dioleoylphosphatidylcholine, showing that the effect of NaCl did not solely involve modulation of electrostatic interactions between protein and anionic lipids. These results indicate that some feature of membrane-bound T domain tertiary structure critical for pore formation is highly dependent upon salt concentration.« less

  2. Coexpression of human somatostatin receptor-2 (SSTR2) and SSTR3 modulates antiproliferative signaling and apoptosis

    PubMed Central

    2012-01-01

    Background Somatostatin (SST) via five Gi coupled receptors namely SSTR1-5 is known to inhibit cell proliferation by cytostatic and cytotoxic mechanisms. Heterodimerization plays a crucial role in modulating the signal transduction pathways of SSTR subtypes. In the present study, we investigated human SSTR2/SSTR3 heterodimerization, internalization, MAPK signaling, cell proliferation and apoptosis in HEK-293 cells in response to SST and specific agonists for SSTR2 and SSTR3. Results Although in basal conditions, SSTR2 and SSTR3 colocalize at the plasma membrane and exhibit heterodimerization, the cell surface distribution of both receptors decreased upon agonist activation and was accompanied by a parallel increase in intracellular colocalization. Receptors activation by SST and specific agonists significantly decreased cAMP levels in cotransfected cells in comparison to control. Agonist-mediated modulation of pERK1/2 was time and concentration-dependent, and pronounced in serum-deprived conditions. pERK1/2 was inhibited in response to SST; conversely receptor-specific agonist treatment caused inhibition at lower concentration and activation at higher concentration. Strikingly, ERK1/2 phosphorylation was sustained upon prolonged treatment with SST but not with receptor-specific agonists. On the other hand, SST and receptor-specific agonists modulated p38 phosphorylation time-dependently. The receptor activation in cotransfected cells exhibits Gi-dependent inhibition of cell proliferation attributed to increased PARP-1 expression and TUNEL staining, whereas induction of p21 and p27Kip1 suggests a cytostatic effect. Conclusion Our study provides new insights in SSTR2/SSTR3 mediated signaling which might help in better understanding of the molecular interactions involving SSTRs in tumor biology. PMID:22651821

  3. Minimum inhibitory concentration and killing properties of rifampicin against canine Staphylococcus pseudintermedius isolates from dogs in the southeast USA.

    PubMed

    Ho, Karen K; Conley, Austin C; Kennis, Robert A; Hathcock, Terri L; Boothe, Dawn M; White, Amelia G

    2018-05-29

    Meticillin-resistant (MR) staphylococcal pyoderma in dogs has led to increased use of alternate antibiotics such as rifampicin (RFP). However, little information exists regarding its pharmacodynamics in MR Staphylococcus pseudintermedius. To determine the minimum inhibitory concentration (MIC) and killing properties of RFP for canine Staphylococcus pseudintermedius isolates. The MIC of RFP was determined using the ETEST ® for 50 meticillin-susceptible (MS) and 50 MR S. pseudintermedius isolates collected from dogs. From these isolates, two MS isolates (RFP MIC of 0.003 and 0.008 μg/mL, respectively) and two MR isolates (RFP MIC of 0.003 and 0.012 μg/mL, respectively) were subjected to time-kill studies. Mueller-Hinton broth was supplemented with RFP at 0, 0.5, 1, 2, 4, 8, 16 and 32 times the MIC for 0, 2, 4, 10, 16 and 24 h. The number of viable colony forming units in each sample was determined using a commercial luciferase assay kit. The MIC 50 and MIC 90 were the same for MS and MR isolates, at 0.004 μg/mL and 0.008 μg/mL, respectively. Rifampicin kill curves were not indicative of concentration-dependency, suggesting time-dependent activity. Two isolates (MS 0.003 and 0.008 μg/mL) exhibited bacteriostatic activity, whereas two others (MR 0.003 and 0.012 μg/mL) exhibited bactericidal activity. This study demonstrated that MS and MR S. pseudintermedius isolates were equally susceptible to rifampicin and that dosing intervals should be designed for time-dependent efficacy. These data can support pharmacokinetic studies of RFP in dogs with susceptible infections caused by S. pseudintermedius. © 2018 ESVD and ACVD.

  4. Factors influencing the atmospheric concentrations of PCBs at an abandoned e-waste recycling site in South China.

    PubMed

    Wang, Yan; Wu, Xiaowei; Hou, Minmin; Zhao, Hongxia; Chen, Ruize; Luo, Chunling; Zhang, Gan

    2017-02-01

    The diurnal atmospheric concentrations of polychlorinated biphenyls (PCBs) were investigated at an abandoned e-waste recycling site in South China during winter and summer. Total PCB concentrations during winter and summer were 27.6-212 and 368-1704pg/m 3 in the particulate phase and 270-697 and 3000-15,500pg/m 3 in the gaseous phase, respectively. Both gaseous and particulate PCB concentrations and compositions exhibited significant difference between winter and summer samples, but no diurnal variations during the measurement period. The correlation analysis between PCB concentrations and meteorological conditions, including atmospheric temperature, humidity, and mixing layer height, suggested that the seasonal variability of atmospheric PCB concentrations was strongly temperature-dependent, while the diurnal variability was probably source-dependent. The temperature-driven variations can also be proved by the significant linear correlation between ln P and 1/T in the Clausius-Clapeyron plot. Although government has implemented controls to reduce e-waste pollution, both the relatively high concentrations of PCBs and the diurnal variation in the air suggested that emissions from occasional e-waste recycling activities may still exist in this recycling area. These results underline the importance of continuing e-waste recycling site management long after abandonment. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Intravenous infusion of PAF affects ovulation, fertilization and preimplantation embryonic development in NZB x NZW F1 hybrid mice.

    PubMed

    Sakellariou, Maria; Drakakis, Peter; Antonopoulou, Smaragdi; Anagnostou, Elli; Loutradis, Dimitris; Patargias, Theoxaris

    2008-03-01

    Platelet Activating Factor (PAF) is a bioactive phospholipid, which exhibits a variety of biological activities and plays a significant role in all aspects of reproduction. In this work, a single intravenous injection of various concentrations of PAF shortly after Human Chorionic Gonadotropin (HCG) administration as well as 24 and 48 h before HCG administration was studied in NZB x NZW F1 hybrid mice. Optimum results were observed when PAF was injected just after the administration of HCG. In this protocol, the concentrations of PAF exhibited bell-shaped response to every stage of development. Any concentration of PAF between 5.5 x 10(-11) and 5.5 x 10(-15)g/g b.w., caused an improved ovulation rate, an increased fertilization rate, an increased rate of cell cycle and an enhanced hatching blastocyst rate (P<0.05 for all stages). Injection of lyso-PAF had no effect in any stage. Our data show that the effect of PAF on early stages of embryo development in vitro is dependent on its way of administration, on the concentrations used as well as on the time PAF is injected.

  6. Time-dependent oral absorption models

    NASA Technical Reports Server (NTRS)

    Higaki, K.; Yamashita, S.; Amidon, G. L.

    2001-01-01

    The plasma concentration-time profiles following oral administration of drugs are often irregular and cannot be interpreted easily with conventional models based on first- or zero-order absorption kinetics and lag time. Six new models were developed using a time-dependent absorption rate coefficient, ka(t), wherein the time dependency was varied to account for the dynamic processes such as changes in fluid absorption or secretion, in absorption surface area, and in motility with time, in the gastrointestinal tract. In the present study, the plasma concentration profiles of propranolol obtained in human subjects following oral dosing were analyzed using the newly derived models based on mass balance and compared with the conventional models. Nonlinear regression analysis indicated that the conventional compartment model including lag time (CLAG model) could not predict the rapid initial increase in plasma concentration after dosing and the predicted Cmax values were much lower than that observed. On the other hand, all models with the time-dependent absorption rate coefficient, ka(t), were superior to the CLAG model in predicting plasma concentration profiles. Based on Akaike's Information Criterion (AIC), the fluid absorption model without lag time (FA model) exhibited the best overall fit to the data. The two-phase model including lag time, TPLAG model was also found to be a good model judging from the values of sum of squares. This model also described the irregular profiles of plasma concentration with time and frequently predicted Cmax values satisfactorily. A comparison of the absorption rate profiles also suggested that the TPLAG model is better at prediction of irregular absorption kinetics than the FA model. In conclusion, the incorporation of a time-dependent absorption rate coefficient ka(t) allows the prediction of nonlinear absorption characteristics in a more reliable manner.

  7. The H2 receptor antagonist nizatidine is a P-glycoprotein substrate: characterization of its intestinal epithelial cell efflux transport.

    PubMed

    Dahan, Arik; Sabit, Hairat; Amidon, Gordon L

    2009-06-01

    The aim of this study was to elucidate the intestinal epithelial cell efflux transport processes that are involved in the intestinal transport of the H(2) receptor antagonist nizatidine. The intestinal epithelial efflux transport mechanisms of nizatidine were investigated and characterized across Caco-2 cell monolayers, in the concentration range 0.05-10 mM in both apical-basolateral (AP-BL) and BL-AP directions, and the transport constants of P-glycoprotein (P-gp) efflux activity were calculated. The concentration-dependent effects of various P-gp (verapamil, quinidine, erythromycin, ketoconazole, and cyclosporine A), multidrug resistant-associated protein 2 (MRP2; MK-571, probenecid, indomethacin, and p-aminohipuric acid), and breast cancer resistance protein (BCRP; Fumitremorgin C) inhibitors on nizatidine bidirectional transport were examined. Nizatidine exhibited 7.7-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion. All P-gp inhibitors investigated displayed concentration-dependent inhibition on nizatidine secretion in both directions. The IC(50) of verapamil on nizatidine P-gp secretion was 1.2 x 10(-2) mM. In the absence of inhibitors, nizatidine displayed concentration-dependent secretion, with one saturable (J(max) = 5.7 x 10(-3) nmol cm(-2) s(-1) and K(m) = 2.2 mM) and one nonsaturable component (K(d) = 7 x 10(-4) microL cm(-2) s(-1)). Under complete P-gp inhibition, nizatidine exhibited linear secretory flux, with a slope similar to the nonsaturable component. V(max) and K(m) estimated for nizatidine P-gp-mediated secretion were 4 x 10(-3) nmol cm(-2) s(-1) and 1.2 mM, respectively. No effect was obtained with the MRP2 or the BCRP inhibitors. Being a drug commonly used in pediatrics, adults, and elderly, nizatidine susceptibility to efflux transport by P-gp revealed in this paper may be of significance in its absorption, distribution, and clearance, as well as possible drug-drug interactions.

  8. Characteristic Vertical Profiles of Cloud Water Composition in Marine Stratocumulus Clouds and Relationships With Precipitation

    NASA Astrophysics Data System (ADS)

    MacDonald, Alexander B.; Dadashazar, Hossein; Chuang, Patrick Y.; Crosbie, Ewan; Wang, Hailong; Wang, Zhen; Jonsson, Haflidi H.; Flagan, Richard C.; Seinfeld, John H.; Sorooshian, Armin

    2018-04-01

    This study uses airborne cloud water composition measurements to characterize the vertical structure of air-equivalent mass concentrations of water-soluble species in marine stratocumulus clouds off the California coast. A total of 385 cloud water samples were collected in the months of July and August between 2011 and 2016 and analyzed for water-soluble ionic and elemental composition. Three characteristic profiles emerge: (i) a reduction of concentration with in-cloud altitude for particulate species directly emitted from sources below cloud without in-cloud sources (e.g., Cl- and Na+), (ii) an increase of concentration with in-cloud altitude (e.g., NO2- and formate), and (iii) species exhibiting a peak in concentration in the middle of cloud (e.g., non-sea-salt SO42-, NO3-, and organic acids). Vertical profiles of rainout parameters such as loss frequency, lifetime, and change in concentration with respect to time show that the scavenging efficiency throughout the cloud depth depends strongly on the thickness of the cloud. Thin clouds exhibit a greater scavenging loss frequency at cloud top, while thick clouds have a greater scavenging loss frequency at cloud base. The implications of these results for treatment of wet scavenging in models are discussed.

  9. Characteristic Vertical Profiles of Cloud Water Composition in Marine Stratocumulus Clouds and Relationships With Precipitation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, Alexander B.; Dadashazar, Hossein; Chuang, Patrick Y.

    This study uses airborne cloud water composition measurements to characterize the vertical structure of air-equivalent mass concentrations of water-soluble species in marine stratocumulus clouds off the California coast. A total of 385 cloud water samples were collected in the months of July and August between 2011 and 2016 and analyzed for water-soluble ionic and elemental composition. Three characteristic profiles emerge: (i) a reduction of concentration with in-cloud altitude for particulate species directly emitted from sources below cloud without in-cloud sources (e.g., Cl-, Na+); (ii) an increase of concentration with in-cloud altitude (e.g., NO2-, formate); and (iii) species exhibiting a peakmore » in concentration in the middle of cloud (e.g., non-sea salt SO42-, NO3-, organic acids). Vertical profiles of rainout parameters such as loss frequency, lifetime, and change in concentration with respect to time show that the scavenging efficiency throughout the cloud depth depends strongly on the thickness of the cloud. Thin clouds exhibit a greater scavenging loss frequency at cloud top, while thick clouds have a greater scavenging loss frequency at cloud base. The implications of these results for treatment of wet scavenging in models are discussed.« less

  10. Effect of water on structure and dynamics of [BMIM][PF6] ionic liquid: An all-atom molecular dynamics simulation investigation.

    PubMed

    Sharma, Anirban; Ghorai, Pradip Kr

    2016-03-21

    Composition dependent structural and dynamical properties of aqueous hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]) ionic liquid (IL) have been investigated by using all-atom molecular dynamics simulation. We observe that addition of water does not increase significant number of dissociated ions in the solution over the pure state. As a consequence, self-diffusion coefficient of the cation and anion is comparable to each other at all water concentration similar to that is observed for the pure state. Voronoi polyhedra analysis exhibits strong dependence on the local environment of IL concentration. Void and neck distributions in Voronoi tessellation are approximately Gaussian for pure IL but upon subsequent addition of water, we observe deviation from the Gaussian behaviour with an asymmetric broadening with long tail of exponential decay at large void radius, particularly at higher water concentrations. The increase in void space and neck size at higher water concentration facilitates ionic motion, thus, decreasing dynamical heterogeneity and IL reorientation time and increases self-diffusion coefficient significantly.

  11. Effect of water on structure and dynamics of [BMIM][PF{sub 6}] ionic liquid: An all-atom molecular dynamics simulation investigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharma, Anirban; Ghorai, Pradip Kr., E-mail: pradip@iiserkol.ac.in

    2016-03-21

    Composition dependent structural and dynamical properties of aqueous hydrophobic 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF{sub 6}]) ionic liquid (IL) have been investigated by using all-atom molecular dynamics simulation. We observe that addition of water does not increase significant number of dissociated ions in the solution over the pure state. As a consequence, self-diffusion coefficient of the cation and anion is comparable to each other at all water concentration similar to that is observed for the pure state. Voronoi polyhedra analysis exhibits strong dependence on the local environment of IL concentration. Void and neck distributions in Voronoi tessellation are approximately Gaussian for pure ILmore » but upon subsequent addition of water, we observe deviation from the Gaussian behaviour with an asymmetric broadening with long tail of exponential decay at large void radius, particularly at higher water concentrations. The increase in void space and neck size at higher water concentration facilitates ionic motion, thus, decreasing dynamical heterogeneity and IL reorientation time and increases self-diffusion coefficient significantly.« less

  12. Prediction of hourly PM2.5 using a space-time support vector regression model

    NASA Astrophysics Data System (ADS)

    Yang, Wentao; Deng, Min; Xu, Feng; Wang, Hang

    2018-05-01

    Real-time air quality prediction has been an active field of research in atmospheric environmental science. The existing methods of machine learning are widely used to predict pollutant concentrations because of their enhanced ability to handle complex non-linear relationships. However, because pollutant concentration data, as typical geospatial data, also exhibit spatial heterogeneity and spatial dependence, they may violate the assumptions of independent and identically distributed random variables in most of the machine learning methods. As a result, a space-time support vector regression model is proposed to predict hourly PM2.5 concentrations. First, to address spatial heterogeneity, spatial clustering is executed to divide the study area into several homogeneous or quasi-homogeneous subareas. To handle spatial dependence, a Gauss vector weight function is then developed to determine spatial autocorrelation variables as part of the input features. Finally, a local support vector regression model with spatial autocorrelation variables is established for each subarea. Experimental data on PM2.5 concentrations in Beijing are used to verify whether the results of the proposed model are superior to those of other methods.

  13. Inelastic behaviour of collagen networks in cell-matrix interactions and mechanosensation.

    PubMed

    Mohammadi, Hamid; Arora, Pamma D; Simmons, Craig A; Janmey, Paul A; McCulloch, Christopher A

    2015-01-06

    The mechanical properties of extracellular matrix proteins strongly influence cell-induced tension in the matrix, which in turn influences cell function. Despite progress on the impact of elastic behaviour of matrix proteins on cell-matrix interactions, little is known about the influence of inelastic behaviour, especially at the large and slow deformations that characterize cell-induced matrix remodelling. We found that collagen matrices exhibit deformation rate-dependent behaviour, which leads to a transition from pronounced elastic behaviour at fast deformations to substantially inelastic behaviour at slow deformations (1 μm min(-1), similar to cell-mediated deformation). With slow deformations, the inelastic behaviour of floating gels was sensitive to collagen concentration, whereas attached gels exhibited similar inelastic behaviour independent of collagen concentration. The presence of an underlying rigid support had a similar effect on cell-matrix interactions: cell-induced deformation and remodelling were similar on 1 or 3 mg ml(-1) attached collagen gels while deformations were two- to fourfold smaller in floating gels of high compared with low collagen concentration. In cross-linked collagen matrices, which did not exhibit inelastic behaviour, cells did not respond to the presence of the underlying rigid foundation. These data indicate that at the slow rates of collagen compaction generated by fibroblasts, the inelastic responses of collagen gels, which are influenced by collagen concentration and the presence of an underlying rigid foundation, are important determinants of cell-matrix interactions and mechanosensation. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Inelastic behaviour of collagen networks in cell–matrix interactions and mechanosensation

    PubMed Central

    Mohammadi, Hamid; Arora, Pamma D.; Simmons, Craig A.; Janmey, Paul A.; McCulloch, Christopher A.

    2015-01-01

    The mechanical properties of extracellular matrix proteins strongly influence cell-induced tension in the matrix, which in turn influences cell function. Despite progress on the impact of elastic behaviour of matrix proteins on cell–matrix interactions, little is known about the influence of inelastic behaviour, especially at the large and slow deformations that characterize cell-induced matrix remodelling. We found that collagen matrices exhibit deformation rate-dependent behaviour, which leads to a transition from pronounced elastic behaviour at fast deformations to substantially inelastic behaviour at slow deformations (1 μm min−1, similar to cell-mediated deformation). With slow deformations, the inelastic behaviour of floating gels was sensitive to collagen concentration, whereas attached gels exhibited similar inelastic behaviour independent of collagen concentration. The presence of an underlying rigid support had a similar effect on cell–matrix interactions: cell-induced deformation and remodelling were similar on 1 or 3 mg ml−1 attached collagen gels while deformations were two- to fourfold smaller in floating gels of high compared with low collagen concentration. In cross-linked collagen matrices, which did not exhibit inelastic behaviour, cells did not respond to the presence of the underlying rigid foundation. These data indicate that at the slow rates of collagen compaction generated by fibroblasts, the inelastic responses of collagen gels, which are influenced by collagen concentration and the presence of an underlying rigid foundation, are important determinants of cell–matrix interactions and mechanosensation. PMID:25392399

  15. Temperature Dependence of Inorganic Nitrogen Uptake: Reduced Affinity for Nitrate at Suboptimal Temperatures in Both Algae and Bacteria

    PubMed Central

    Reay, David S.; Nedwell, David B.; Priddle, Julian; Ellis-Evans, J. Cynan

    1999-01-01

    Nitrate utilization and ammonium utilization were studied by using three algal isolates, six bacterial isolates, and a range of temperatures in chemostat and batch cultures. We quantified affinities for both substrates by determining specific affinities (specific affinity = maximum growth rate/half-saturation constant) based on estimates of kinetic parameters obtained from chemostat experiments. At suboptimal temperatures, the residual concentrations of nitrate in batch cultures and the steady-state concentrations of nitrate in chemostat cultures both increased. The specific affinity for nitrate was strongly dependent on temperature (Q10 ≈ 3, where Q10 is the proportional change with a 10°C temperature increase) and consistently decreased at temperatures below the optimum temperature. In contrast, the steady-state concentrations of ammonium remained relatively constant over the same temperature range, and the specific affinity for ammonium exhibited no clear temperature dependence. This is the first time that a consistent effect of low temperature on affinity for nitrate has been identified for psychrophilic, mesophilic, and thermophilic bacteria and algae. The different responses of nitrate uptake and ammonium uptake to temperature imply that there is increasing dependence on ammonium as an inorganic nitrogen source at low temperatures. PMID:10347046

  16. Antioxidant activity via DPPH, gram-positive and gram-negative antimicrobial potential in edible mushrooms.

    PubMed

    Ahmad, Nisar; Mahmood, Fazal; Khalil, Shahid Akbar; Zamir, Roshan; Fazal, Hina; Abbasi, Bilal Haider

    2014-10-01

    Edible mushrooms (EMs) are nutritionally rich source of proteins and essential amino acids. In the present study, the antioxidant activity via 1,1-diphenyl-2-picrylhydrazyl (DPPH) and antimicrobial potential in EMs (Pleurotus ostreatus, Morchella esculenta, P. ostreatus (Black), P. ostreatus (Yellow) and Pleurotus sajor-caju) were investigated. The DPPH radical scavenging activity revealed that the significantly higher activity (66.47%) was observed in Morchella esculenta at a maximum concentration. Similarly, the dose-dependent concentrations (200, 400, 600, 800 and 1000 µg) were also used for other four EMs. Pleurotus ostreatus exhibited 36.13% activity, P. ostreatus (Black (B)) exhibited 30.64%, P. ostreatus (Yellow (Y)) exhibited 40.75% and Pleurotus sajor-caju exhibited 47.39% activity at higher concentrations. Furthermore, the antimicrobial potential were investigated for its toxicity against gram-negative bacterial strains (Escherichia coli, Pseudomonas aeroginosa, Salmonella typhi, Klebsiella pneumonia, Erwinia carotovora and Agrobacterium tumifaciens), gram-positive bacterial strains (Bacillus subtilis, Bacillus atrophaeus and Staphylococcus aureus) and a fungal strain (Candida albicans) in comparison with standard antibiotics. Antimicrobial screening revealed that the ethanol extract of P. ostreatus was active against all microorganism tested except E. coli. Maximum zone of inhibition (13 mm) was observed against fungus and A. tumifaciens. P. sajor-caju showed best activities (12.5 mm) against B. subtilis, B. atrophaeus and K. pneumonia. P. ostreatus (Y) showed best activities against P. aeroginosa (21.83 mm), B. atrophaeus (20 mm) and C. albicans (21 mm). P. ostreatus (B) exhibited best activities against C. albicans (16 mm) and slightly lower activities against all other microbes except S. typhi. M. esculenta possess maximum activities in terms of inhibition zone against all microorganisms tested except S. typhi. © The Author(s) 2012.

  17. Bacteriolytic Activity Of Human Interleukin-2, Chicken Egg Lysozyme In The Presence Of Potential Effectors

    PubMed Central

    Levashov, P. A.; Matolygina, D. A.; Ovchinnikova, E. D.; Atroshenko, D. L.; Savin, S. S.; Belogurova, N. G.; Smirnov, S. A.; Tishkov, V. I.; Levashov, A. V.

    2017-01-01

    The bacteriolytic activity of interleukin-2 and chicken egg lysozyme in the presence of various substances has been studied. Glycine and lysine do not affect the activity of interleukin-2 but increase that of lysozyme, showing a bell-shape concentration dependence peaking at 1.5 mM glycine and 18 mM lysine. Arginine and glutamate activate both interleukin-2 and lysozyme with a concentration dependence of the saturation type. Aromatic amino acids have almost no effect on the activity of both interleukin-2 and lysozyme. Aromatic amines, tryptamine, and tyramine activate interleukin-2 but inhibit lysozyme. Peptide antibiotics affect interleukin and lysozyme similarly and exhibit maximum activity in the micromolar range of antibiotics. Taurine has no effect on the activity of interleukin-2 and lysozyme. Mildronate showed no influence on lysozyme, but it activated interleukin-2 with the activity maximum at 3 mM. EDTA activates both interleukin-2 and lysozyme at concentrations above 0.15 mM. PMID:28740730

  18. Volume and Surface Properties of a Bismuth-Containing Separating Nickel Melt

    NASA Astrophysics Data System (ADS)

    Filippov, K. S.

    2017-11-01

    The influence of a bismuth impurity on the properties of solid and liquid alloys in the concentration range that obeys Henry's law is considered. The structural and physicochemical properties, specifically, the density and the surface tension, of real melts are studied on relatively pure metals. The changes in the properties of the melts are estimated from changes in the temperature dependences of the density and the surface tension upon heating and cooling and in the concentration dependences of these parameters at a constant temperature. These dependences exhibit a correlation between the volume and surface properties of the melts: the density and the surface tension increase or decrease simultaneously. The introduction of bismuth in the nickel melt is accompanied by the appearance of a relatively strong compression effect (i.e., a decrease in the melt volume). At a certain bismuth content in the melt, the compression effect weakens because of the appearance of an excess phase or its associates and melt separation.

  19. Cysteine Inhibits Mercury Methylation by Geobacter sulfurreducens PCA Mutant Δ omcBESTZ

    DOE PAGES

    Lin, Hui; Lu, Xia; Liang, Liyuan; ...

    2015-04-21

    For cysteine enhances Hg uptake and methylation by Geobacter sulfurreducens PCA wild type (WT) strain in short-term assays. The prevalence of this enhancement in other strains remains poorly understood. We examined the influence of cysteine concentration on time-dependent Hg(II) reduction, sorption and methylation by PCA-WT and its c-type cytochrome-deficient mutant ( omcBESTZ) in phosphate buffered saline. Without cysteine, the mutant methylated twice as much Hg(II) as the PCA-WT, whereas addition of cysteine inhibited Hg methylation, regardless of the reaction time. PCA-WT, but, exhibited both time-dependent and cysteine concentration-dependent methylation. In 144 hour assay, nearly complete sorption of the Hg(II) bymore » PCA-WT occurred in the presence of 1 mM cysteine, resulting in our highest observed methylmercury production. Moreover, the chemical speciation modeling and experimental data suggest that uncharged Hg(II) species are more readily taken up, and that this uptake is kinetic limiting, thereby affecting Hg methylation by both mutant and WT.« less

  20. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Menelaou, Evdokia; Paul, Latoya T.; Perera, Surangi N.

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at differentmore » developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner. • The nicotine-induced secondary motoneuron axonal pathfinding errors can occur independent of any muscle fiber alterations. • Nicotine exposure primarily affects dorsal projecting secondary motoneurons axons. • Nicotine-induced primary motoneuron axon pathfinding errors can influence secondary motoneuron axon morphology.« less

  1. Implications of the bedform phase diagram for size-dependent changes of ooid cortical fabric

    NASA Astrophysics Data System (ADS)

    Anderson, N. T.; Cowan, C. A.

    2017-12-01

    Preliminary petrographic and electron microprobe analyses of well-preserved concentric and radial-concentric ooids in Late Cambrian carbonates of the Port au Port Group, western Newfoundland, Canada, show no Sr enrichment indicative of an aragonite precursor for ooid cortices. Dissolution features such as elephantine ooids, spalled cortices, and dropped nuclei reported by other authors in these and equivalent carbonates elsewhere were not analyzed in this study. It is likely that the pristine concentric and radial-concentric ooids studied here were originally calcite and may exhibit a "banded-radial" fabric (sensu Medwedeff and Wilkinson 1983). Thus, the change in petrographic fabric does not correspond to a change in mineralogy in these ooids. Furthermore, ooids in these rocks and in previous studies of similar rocks exhibit a change from radial to concentric fabric at locally consistent diameters. These two observations suggest that hydrodynamic conditions are the causal mechanism for shifts in ooid cortical fabric. Previous workers have taken this size-dependent shift in cortical fabric to represent increased abrasion that occurs with the transition from suspended load to bedload transport, but disregard bedform stability. We note that at a given flow velocity and depth, ooid growth can trigger a shift from the ripple stability field to the dune stability field. Observations of the rate of migration of modern meter-scale ooid tidal dunes in the Bahamas can be used to constrain ooid transport, and suggest that ooids in these settings may be transported for only minutes to hours twice per year. Therefore, the duration of ooid "sleep" (the time spent buried within the dune) may be 105 greater in dunes compared to ripples. This prolonged subsurface residence time may be a heretofore unconsidered control on the development of ooid cortices. It may dictate radial vs. concentric fabric; drastically diminish abrasion; sequester ooids chemically (and biochemically) from the surrounding seawater; and may influence precipitate mineralogy.

  2. Nanoparticle agglomeration in an evaporating levitated droplet for different acoustic amplitudes

    NASA Astrophysics Data System (ADS)

    Tijerino, Erick; Basu, Saptarshi; Kumar, Ranganathan

    2013-01-01

    Radiatively heated levitated functional droplets with nanosilica suspensions exhibit three distinct stages namely pure evaporation, agglomeration, and finally structure formation. The temporal history of the droplet surface temperature shows two inflection points. One inflection point corresponds to a local maximum and demarcates the end of transient heating of the droplet and domination of vaporization. The second inflection point is a local minimum and indicates slowing down of the evaporation rate due to surface accumulation of nanoparticles. Morphology and final precipitation structures of levitated droplets are due to competing mechanisms of particle agglomeration, evaporation, and shape deformation. In this work, we provide a detailed analysis for each process and propose two important timescales for evaporation and agglomeration that determine the final diameter of the structure formed. It is seen that both agglomeration and evaporation timescales are similar functions of acoustic amplitude (sound pressure level), droplet size, viscosity, and density. However, we show that while the agglomeration timescale decreases with initial particle concentration, the evaporation timescale shows the opposite trend. The final normalized diameter can be shown to be dependent solely on the ratio of agglomeration to evaporation timescales for all concentrations and acoustic amplitudes. The structures also exhibit various aspect ratios (bowls, rings, spheroids) which depend on the ratio of the deformation timescale (tdef) and the agglomeration timescale (tg). For tdef

  3. Microscopic diffusion and hydrodynamic interactions of hemoglobin in red blood cells.

    PubMed

    Doster, Wolfgang; Longeville, Stéphane

    2007-08-15

    The cytoplasm of red blood cells is congested with the oxygen storage protein hemoglobin occupying a quarter of the cell volume. The high protein concentration leads to a reduced mobility; the self-diffusion coefficient of hemoglobin in blood cells is six times lower than in dilute solution. This effect is generally assigned to excluded volume effects in crowded media. However, the collective or gradient diffusion coefficient of hemoglobin is only weakly dependent on concentration, suggesting the compensation of osmotic and friction forces. This would exclude hydrodynamic interactions, which are of dynamic origin and do not contribute to the osmotic pressure. Hydrodynamic coupling between protein molecules is dominant at short time- and length scales before direct interactions are fully established. Employing neutron spin-echo-spectroscopy, we study hemoglobin diffusion on a nanosecond timescale and protein displacements on the scale of a few nanometers. A time- and wave-vector dependent diffusion coefficient is found, suggesting the crossover of self- and collective diffusion. Moreover, a wave-vector dependent friction function is derived, which is a characteristic feature of hydrodynamic interactions. The wave-vector and concentration dependence of the long-time self-diffusion coefficient of hemoglobin agree qualitatively with theoretical results on hydrodynamics in hard spheres suspensions. Quantitative agreement requires us to adjust the volume fraction by including part of the hydration shell: Proteins exhibit a larger surface/volume ratio compared to standard colloids of much larger size. It is concluded that hydrodynamic and not direct interactions dominate long-range molecular transport at high concentration.

  4. Effects of different surface modifying agents on the cytotoxic and antimicrobial properties of ZnO nanoparticles.

    PubMed

    Esparza-González, S C; Sánchez-Valdés, S; Ramírez-Barrón, S N; Loera-Arias, M J; Bernal, J; Meléndez-Ortiz, H Iván; Betancourt-Galindo, R

    2016-12-01

    Zinc oxide (ZnO) nanoparticles (NPs) have received considerable attention in the medical field because of their antibacterial properties, primarily for killing and reducing the activity of numerous microorganisms. The purpose of this study was to determine whether surface-modified ZnO NPs exhibit different properties compared with unmodified ZnO. The antimicrobial and cytotoxic properties of modified ZnO NPs as well as their effects on inflammatory cytokine production were evaluated. ZnO NPs were prepared using a wet chemical method. Then, the surfaces of these NPs were modified using 3-aminopropyltriethoxysilane (APTES) and dimethyl sulfoxide (DMSO) as modifying agents via a chemical hydrolysis method. According to infrared spectroscopy analysis (FTIR), the structure of the ZnO remained unchanged after modification. Antibacterial assays demonstrated that APTES modification is more effective at inducing an antimicrobial effect against Gram-negative bacteria than against Gram-positive bacteria. Cytotoxicity studies showed that cell viability was dose-dependent; moreover, pristine and APTES-modified ZnO exhibited low cytotoxicity, whereas DMSO-modified ZnO exhibited toxicity even at a low NP concentration. An investigation of inflammatory cytokine production demonstrated that the extent of stimulation was related to the ZnO NP concentration but not to the surface modification, except for IFN-γ and IL-10, which were not detected even at high NP concentrations. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Effect of different soil washing solutions on bioavailability of residual arsenic in soils and soil properties.

    PubMed

    Im, Jinwoo; Yang, Kyung; Jho, Eun Hea; Nam, Kyoungphile

    2015-11-01

    The effect of soil washing used for arsenic (As)-contaminated soil remediation on soil properties and bioavailability of residual As in soil is receiving increasing attention due to increasing interest in conserving soil qualities after remediation. This study investigates the effect of different washing solutions on bioavailability of residual As in soils and soil properties after soil washing. Regardless of washing solutions, the sequential extraction revealed that the residual As concentrations and the amount of readily labile As in soils were reduced after soil washing. However, the bioassay tests showed that the washed soils exhibited ecotoxicological effects - lower seed germination, shoot growth, and enzyme activities - and this could largely be attributed to the acidic pH and/or excessive nutrient contents of the washed soils depending on washing solutions. Overall, this study showed that treated soils having lower levels of contaminants could still exhibit toxic effects due to changes in soil properties, which highly depended on washing solutions. This study also emphasizes that data on the As concentrations, the soil properties, and the ecotoxicological effects are necessary to properly manage the washed soils for reuses. The results of this study can, thus, be utilized to select proper post-treatment techniques for the washed soils. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Investigation of nepetolide as a novel lead compound: Antioxidant, antimicrobial, cytotoxic, anticancer, anti-inflammatory, analgesic activities and molecular docking evaluation.

    PubMed

    Ur Rehman, Tanzeel; Khan, Arif-Ullah; Abbas, Azar; Hussain, Javid; Khan, Farman Ullah; Stieglitz, Kimberly; Ali, Shamsher

    2018-03-01

    In the present study, we describe various pharmacological effects and computational analysis of nepetolide, a tricyclic clerodane-type diterpene, isolated from Nepeta suavis . Nepetolide concentration-dependently (1.0-1000 µg/mL) exhibited 1,1-diphenyl,2-picrylhydrazyl free radical scavenging activity with maximum effect of 87.01 ± 1.85%, indicating its antioxidant potential, as shown by standard drug, ascorbic acid. It was moderately active against bacterial strain of Staphylococcus aureus . In brine shrimp's lethality model, nepetolide potently showed cytotoxic effect, with LC 50 value of 8.7 µg/mL. When evaluated for antitumor activity in potato disc tumor assay, nepetolide exerted tumor inhibitory effect of 56.5 ± 1.5% at maximum tested concentration of 1000 µg/mL. Nepetolide at 20 mg/kg reduced carrageenan-induced inflammation (P < .001 vs. saline group) in rat paw. Nepetolide dose-dependently (100-500 mg/kg) decreased acetic acid evoked writhes, as exhibited by diclofenac sodium. In-silico investigation of nepetolide was carried out against cyclooxygenase-2, epidermal growth factor receptor and lipoxygenase-2 targets. Virtual screening through Patchdock online docking server identified primarily hydrophobic interactions between ligand nepetolide and receptors proteins. Enhanced hydrogen bonding was predicted with Autodock showing 6-8 hydrogen bonds per target. These results indicate that nepetolide exhibits antioxidant, antibacterial, cytotoxic, anticancer, anti-inflammatory and analgesic activities and should be considered as a lead compound for developing drugs for the remedy of oxidative stress-induced disorders, microbial infections, cancers, inflammations and pain.

  7. Antibacterial Synthetic Peptides Derived from Bovine Lactoferricin Exhibit Cytotoxic Effect against MDA-MB-468 and MDA-MB-231 Breast Cancer Cell Lines.

    PubMed

    Vargas Casanova, Yerly; Rodríguez Guerra, Jorge Antonio; Umaña Pérez, Yadi Adriana; Leal Castro, Aura Lucía; Almanzar Reina, Giovanni; García Castañeda, Javier Eduardo; Rivera Monroy, Zuly Jenny

    2017-09-29

    Linear, dimeric, tetrameric, and cyclic peptides derived from lactoferricin B, containing the RRWQWR motif, were designed, synthesized, purified, and characterized using RP-HPLC chromatography and MALDI-TOF mass spectrometry. The antibacterial activity of the designed peptides against E. coli (ATCC 11775 and 25922) and their cytotoxic effect against MDA-MB-468 and MDA-MB-231 breast cancer cell lines were evaluated. Dimeric and tetrameric peptides showed higher antibacterial activity in both bacteria strains than linear peptides. The dimeric peptide (RRWQWR)₂K-Ahx exhibited the highest antibacterial activity against the tested bacterial strains. Furthermore, the peptides with high antibacterial activity exhibited significant cytotoxic effect against the tested breast cancer cell lines. This cytotoxic effect was fast and dependent on the peptide concentration. The tetrameric molecule containing RRWQWR motif has an optimal cytotoxic effect at a concentration of 22 µM. The evaluated dimeric and tetrameric peptides could be considered as candidates for developing new therapeutic agents against breast cancer. Polyvalence of linear sequences could be considered as a novel and versatile strategy for obtaining molecules with high anticancer activity.

  8. pH Dependent but not P-gp Dependent Bidirectional Transport Study of S-propranolol: The Importance of Passive Diffusion.

    PubMed

    Zheng, Yi; Benet, Leslie Z; Okochi, Hideaki; Chen, Xijing

    2015-08-01

    Recent controversial publications, citing studies purporting to show that P-gp mediates the transport of propranolol, proposed that passive biological membrane transport is negligible. Based on the BDDCS, the extensively metabolized-highly permeable-highly soluble BDDCS class 1 drug, propranolol, shows a high passive permeability at concentrations unrestricted by solubility that can overwhelm any potential transporter effects. Here we reinvestigate the effects of passive diffusion and carrier-mediated transport on S-propranolol. Bidirectional permeability and inhibition of efflux transport studies were carried out in MDCK, MDCK-MDR1 and Caco-2 cell lines at different concentrations. Transcellular permeability studies were conducted at different apical pHs in the rat jejunum Ussing chamber model and PAMPA system. S-propranolol exhibited efflux ratios lower than 1 in MDCK, MDCK-MDR1 and Caco-2 cells. No significant differences of Papp, B->A in the presence and absence of the efflux inhibitor GG918 were observed. However, an efflux ratio of 3.63 was found at apical pH 6.5 with significant decrease in Papp, A->B and increase in Papp, B->A compared to apical pH 7.4 in Caco-2 cell lines. The pH dependent permeability was confirmed in the Ussing chamber model. S-propranolol flux was unchanged during inhibition by verapamil and rifampin. Furthermore, pH dependent permeability was also observed in the PAMPA system. S-propranolol does not exhibit active transport as proposed previously. The "false" positive efflux ratio can be explained by the pH partition theory. As expected, passive diffusion, but not active transport, plays the primary role in the permeability of the BDDCS class 1 drug propranolol.

  9. pH dependent but not P-gp dependent bidirectional transport study of S-propranolol: the importance of passive diffusion

    PubMed Central

    Zheng, Yi; Benet, Leslie Z.; Okochi, Hideaki; Chen, Xijing

    2016-01-01

    Purpose Recent controversial publications, citing studies purporting to show that P-gp mediates the transport of propranolol, proposed that passive biological membrane transport is negligible. Based on the BDDCS, the extensively metabolized-highly permeable-highly soluble BDDCS class 1 drug, propranolol, shows a high passive permeability at concentrations unrestricted by solubility that can overwhelm any potential transporter effects. Here we reinvestigate the effects of passive diffusion and carrier-mediated transport on S-propranolol. Methods Bidirectional permeability and inhibition of efflux transport studies were carried out in MDCK, MDCK-MDR1 and Caco-2 cell lines at different concentrations. Transcellular permeability studies were conducted at different apical pHs in the rat jejunum Ussing chamber model and PAMPA system. Results S-propranolol exhibited efflux ratios lower than 1 in MDCK, MDCK-MDR1 and Caco-2 cells. No significant differences of Papp, B->A in the presence and absence of the efflux inhibitor GG918 were observed. However, an efflux ratio of 3.63 was found at apical pH 6.5 with significant decrease in Papp, A->B and increase in Papp, B->A compared to apical pH 7.4 in Caco-2 cell lines. The pH dependent permeability was confirmed in the Ussing chamber model. S-propranolol flux was unchanged during inhibition by verapamil and rifampin. Furthermore, pH dependent permeability was also observed in the PAMPA system. Conclusions S-propranolol does not exhibit active transport as proposed previously. The "false" positive efflux ratio can be explained by the pH partition theory. As expected, passive diffusion, but not active transport, plays the primary role in the permeability of the BDDCS class 1 drug propranolol. PMID:25690341

  10. Inferring Cirrus Size Distributions Through Satellite Remote Sensing and Microphysical Databases

    NASA Technical Reports Server (NTRS)

    Mitchell, David; D'Entremont, Robert P.; Lawson, R. Paul

    2010-01-01

    Since cirrus clouds have a substantial influence on the global energy balance that depends on their microphysical properties, climate models should strive to realistically characterize the cirrus ice particle size distribution (PSD), at least in a climatological sense. To date, the airborne in situ measurements of the cirrus PSD have contained large uncertainties due to errors in measuring small ice crystals (D<60 m). This paper presents a method to remotely estimate the concentration of the small ice crystals relative to the larger ones using the 11- and 12- m channels aboard several satellites. By understanding the underlying physics producing the emissivity difference between these channels, this emissivity difference can be used to infer the relative concentration of small ice crystals. This is facilitated by enlisting temperature-dependent characterizations of the PSD (i.e., PSD schemes) based on in situ measurements. An average cirrus emissivity relationship between 12 and 11 m is developed here using the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite instrument and is used to retrieve the PSD based on six different PSD schemes. The PSDs from the measurement-based PSD schemes are compared with corresponding retrieved PSDs to evaluate differences in small ice crystal concentrations. The retrieved PSDs generally had lower concentrations of small ice particles, with total number concentration independent of temperature. In addition, the temperature dependence of the PSD effective diameter De and fall speed Vf for these retrieved PSD schemes exhibited less variability relative to the unmodified PSD schemes. The reduced variability in the retrieved De and Vf was attributed to the lower concentrations of small ice crystals in the retrieved PSD.

  11. Concentration-dependent photophysical switching in mixed self-assembled monolayers of pentacene and perylenediimide on gold nanoclusters.

    PubMed

    Kato, Daiki; Sakai, Hayato; Araki, Yasuyuki; Wada, Takehiko; Tkachenko, Nikolai V; Hasobe, Taku

    2018-03-28

    Photophysical control and switching on organic-inorganic hybrid interfaces are of great interest in diverse fundamental and applicative research areas. 6,13-Bis(triisopropylsilylethynyl)pentacene (TP) is well-known to exhibit efficient singlet fission (SF) for generation of high-yield triplet excited states in aggregated forms, whereas perylenediimide (PDI) ensembles show the characteristic excimer formation. Additionally, a combination of pentacene (electron donor: D) and PDI (electron acceptor: A) is expected to undergo an efficient photoinduced electron transfer (PET), and absorption of two chromophores combined covers the entire visible region. Therefore, the concentration-dependent mixed self-assembled monolayers (SAMs) composed of two chromophores enable us to control and switch the photophysical processes on a surface. In this work, a series of mixed SAMs composed of TP and PDI units on gold nanoclusters (GNCs) were newly synthesized by changing the relative molecular concentration ratios. Structural control of mixed SAMs on a gold surface based on the concentration ratios was successfully achieved. Time-resolved femtosecond and nanosecond transient absorption measurements clearly demonstrate photophysical control and switching of the above competitive reactions such as SF, electron transfer (ET) and excimer formation. The maximum quantum yields of triplet states (ΦT = ∼170%) and electron transfer (ΦET = ∼95%) were quantitatively evaluated by changing the concentration ratios. The rate constants of SF and excimer processes are largely dependent on the concentration ratios, whereas the rate constants of ET processes approximately remain constant. These findings are also discussed based on the statistical framework of the assembly of chromophores on the gold surface.

  12. Magnetically tunable liquid dielectric with giant dielectric permittivity based on core-shell superparamagnetic iron oxide.

    PubMed

    Vinayasree, S; Nitha, T S; Tiwary, C S; Ajayan, P M; Joy, P A; Anantharaman, M R

    2018-06-29

    A liquid dielectric based on a core-shell architecture having a superparamagnetic iron oxide core and a shell of silicon dioxide was synthesized. The frequency dependence of dielectric properties was evaluated for different concentrations of iron oxide. The dependence of magnetic field on the dielectric properties was also studied. Aqueous ferrofluid exhibited a giant dielectric constant of 6.4 × 10 5 at 0.1 MHz at a concentration of 0.2 vol% and the loss tangent was 3. The large rise in dielectric constant at room temperature is modelled and explained using percolation theory and Maxwell-Wagner-Sillars type polarization. The ferrofluid is presumed to consist of nanocapacitor networks which are wired in series along the lateral direction and parallel along longitudinal direction. On the application of an external magnetic field, the chain formation and its alignment results in the variation of dielectric permittivity.

  13. Dual role of betel leaf extract on thyroid function in male mice.

    PubMed

    Panda, S; Kar, A

    1998-12-01

    The effects of betel leaf extract (0.10, 0.40, 0.80 and 2.0 g kg-1 day-1 for 15 days) on the alterations in thyroid hormone concentrations. lipid peroxidation (LPO) and on the activities of superoxide dismutase (SOD) and catalase (CAT) were investigated in male Swiss mice. Administration of betel leaf extract exhibited a dual role, depending on the different doses. While the lowest dose decreased thyroxine (T4) and increased serum triiodothyronine (T3) concentrations, reverse effects were observed at two higher doses. Higher doses also increased LPO with a concomitant decrease in SOD and CAT activities. However, with the lowest dose most of these effects were reversed. These findings suggest that betel leaf can be both stimulatory and inhibitory to thyroid function, particularly for T3 generation and lipid peroxidation in male mice, depending on the amount consumed.

  14. Spatiotemporal variation of radon and carbon dioxide concentrations in an underground quarry: coupled processes of natural ventilation, barometric pumping and internal mixing.

    PubMed

    Perrier, Frédéric; Richon, Patrick

    2010-04-01

    Radon-222 and carbon dioxide concentrations have been measured during several years at several points in the atmosphere of an underground limestone quarry located at a depth of 18 m in Vincennes, near Paris, France. Both concentrations showed a seasonal cycle. Radon concentration varied from 1200 to 2000 Bq m(-3) in summer to about 800-1400 Bq m(-3) in winter, indicating winter ventilation rates varying from 0.6 to 2.5 x 10(-6) s(-1). Carbon dioxide concentration varied from 0.9 to 1.0% in summer, to about 0.1-0.3% in winter. Radon concentration can be corrected for natural ventilation using temperature measurements. The obtained model also accounts for the measured seasonal variation of carbon dioxide. After correction, radon concentrations still exhibit significant temporal variation, mostly associated with the variation of atmospheric pressure, with coupling coefficients varying from -7 to -26 Bq m(-3) hPa(-1). This variation can be accounted for using a barometric pumping model, coupled with natural ventilation in winter, and including internal mixing as well. After correction, radon concentrations exhibit residual temporal variation, poorly correlated between different points, with standard deviations varying from 3 to 6%. This study shows that temporal variation of radon concentrations in underground cavities can be understood to a satisfactory level of detail using non-linear and time-dependent modelling. It is important to understand the temporal variation of radon concentrations and the limitations in their modelling to monitor the properties of natural or artificial underground settings, and to be able to assess the existence of new processes, for example associated with the preparatory phases of volcanic eruptions or earthquakes. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Accumulation of Mn(II) in Deinococcus radiodurans Facilitates Gamma-Radiation Resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daly, Michael J.; Gaidamakova, E; Matrosova, V

    2004-11-05

    Deinococcus radiodurans is extremely resistant to ionizing radiation. How this bacterium can grow under chronic gamma-radiation (50 Gy/hour) or recover from acute doses greater than 10 kGy is unknown. We show that D. radiodurans accumulates very high intracellular manganese and low iron levels compared to radiation sensitive bacteria, and resistance exhibits a concentration-dependent response to Mn(II). Among the most radiation-resistant bacterial groups reported, Deinococcus, Enterococcus, Lactobacillus and cyanobacteria spp. accumulate Mn(II). In contrast, Shewanella oneidensis and Pseudomonas putida have high Fe but low intracellular Mn concentrations and are very sensitive. We propose that Mn(II) accumulation facilitates recovery from radiation injury.

  16. Determination of the absolute internal quantum efficiency of photoluminescence in GaN co-doped with Si and Zn

    NASA Astrophysics Data System (ADS)

    Reshchikov, M. A.; Foussekis, M.; McNamara, J. D.; Behrends, A.; Bakin, A.; Waag, A.

    2012-04-01

    The optical properties of high-quality GaN co-doped with silicon and zinc are investigated by using temperature-dependent continuous-wave and time-resolved photoluminescence measurements. The blue luminescence band is related to the ZnGa acceptor in GaN:Si,Zn, which exhibits an exceptionally high absolute internal quantum efficiency (IQE). An IQE above 90% was calculated for several samples having different concentrations of Zn. Accurate and reliable values of the IQE were obtained by using several approaches based on rate equations. The concentrations of the ZnGa acceptors and free electrons were also estimated from the photoluminescence measurements.

  17. Anatase phase stability and doping concentration dependent refractivity in codoped transparent conducting TiO2 films

    NASA Astrophysics Data System (ADS)

    Chen, T. L.; Furubayashi, Y.; Hirose, Y.; Hitosugi, T.; Shimada, T.; Hasegawa, T.

    2007-10-01

    Nb0.06SnxTi0.94-xO2 (x <= 0.3) thin films were grown by a pulsed-laser deposition method with varying Sn concentration. Through a combinatorial technique, we find that Sn concentration can reach a maximum of about x = 0.3 while maintaining the stable anatase phase and epitaxy. A doping concentration dependence of the refractivity is revealed, in which refractivity reduction at a wavelength of λ = 500 nm is estimated to be 12.4% for Nb0.06Sn0.3 Ti0.64O2 thin film. Sn doping induced band-gap blue shift can be contributed to the mixing of extended Sn 5s orbitals with the conduction band of TiO2. Low resistivity on the order of 10-4 Ω cm at room temperature and high internal transmittance of more than 95% in the visible light region are exhibited for Nb0.06Snx Ti0.94-xO2 thin films (x <= 0.2). Optical and transport analyses demonstrate that doping Sn into Nb0.06 Ti0.94O2 can reduce the refractivity while maintaining low resistivity and high transparency.

  18. Ion selectivity of the Vibrio alginolyticus flagellar motor.

    PubMed Central

    Liu, J Z; Dapice, M; Khan, S

    1990-01-01

    The marine bacterium, Vibrio alginolyticus, normally requires sodium for motility. We found that lithium will substitute for sodium. In neutral pH buffers, the membrane potential and swimming speed of glycolyzing bacteria reached maximal values as sodium or lithium concentration was increased. While the maximal potentials obtained in the two cations were comparable, the maximal swimming speed was substantially lower in lithium. Over a wide range of sodium concentration, the bacteria maintained an invariant sodium electrochemical potential as determined by membrane potential and intracellular sodium measurements. Over this range the increase of swimming speed took Michaelis-Menten form. Artificial energization of swimming motility required imposition of a voltage difference in concert with a sodium pulse. The cation selectivity and concentration dependence exhibited by the motile apparatus depended on the viscosity of the medium. In high-viscosity media, swimming speeds were relatively independent of either ion type or concentration. These facts parallel and extend observations of the swimming behavior of bacteria propelled by proton-powered flagella. In particular, they show that ion transfers limit unloaded motor speed in this bacterium and imply that the coupling between ion transfers and force generation must be fairly tight. PMID:2394685

  19. The apoptotic and anti-proliferative activity of Origanum majorana extracts on human leukemic cell line.

    PubMed

    Abdel-Massih, Roula M; Fares, Rida; Bazzi, Samer; El-Chami, Nisrine; Baydoun, Elias

    2010-08-01

    Scientists are constantly searching for phytochemicals and compounds with anti-cancer and antioxidant activity. In this study, the anti-proliferative activity of plant extracts from Origanum majorana (marjoram) was tested on human lymphoblastic leukemia cell line Jurkat. Cytotoxicity was examined using non-radioactive cytotoxicity assay and the IC(50) was calculated. At non-cytotoxic concentrations, the viability of cells decreased with increase of concentration of plant extract. The anti-proliferative effect was also found to be dose-dependent. Analysis via flow cytometry shows that marjoram extracts stimulated apoptosis. Induction of apoptosis was caused by an up-regulation of p53 protein levels and down-regulation of Bcl-2alpha. Marjoram exhibited a strong scavenging activity (SC(50)=0.03mg dry weight). The conclusions from this study suggest that marjoram extracts exhibit anti-proliferative effect and high antioxidant activity. For that it merits further investigation as a potential therapeutic agent. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  20. Cystic fibrosis airway secretions exhibit mucin hyperconcentration and increased osmotic pressure

    PubMed Central

    Henderson, Ashley G.; Ehre, Camille; Button, Brian; Abdullah, Lubna H.; Cai, Li-Heng; Leigh, Margaret W.; DeMaria, Genevieve C.; Matsui, Hiro; Donaldson, Scott H.; Davis, C. William; Sheehan, John K.; Boucher, Richard C.; Kesimer, Mehmet

    2014-01-01

    The pathogenesis of mucoinfective lung disease in cystic fibrosis (CF) patients likely involves poor mucus clearance. A recent model of mucus clearance predicts that mucus flow depends on the relative mucin concentration of the mucus layer compared with that of the periciliary layer; however, mucin concentrations have been difficult to measure in CF secretions. Here, we have shown that the concentration of mucin in CF sputum is low when measured by immunologically based techniques, and mass spectrometric analyses of CF mucins revealed mucin cleavage at antibody recognition sites. Using physical size exclusion chromatography/differential refractometry (SEC/dRI) techniques, we determined that mucin concentrations in CF secretions were higher than those in normal secretions. Measurements of partial osmotic pressures revealed that the partial osmotic pressure of CF sputum and the retained mucus in excised CF lungs were substantially greater than the partial osmotic pressure of normal secretions. Our data reveal that mucin concentration cannot be accurately measured immunologically in proteolytically active CF secretions; mucins are hyperconcentrated in CF secretions; and CF secretion osmotic pressures predict mucus layer–dependent osmotic compression of the periciliary liquid layer in CF lungs. Consequently, mucin hypersecretion likely produces mucus stasis, which contributes to key infectious and inflammatory components of CF lung disease. PMID:24892808

  1. Nondeterministic self-assembly of two tile types on a lattice.

    PubMed

    Tesoro, S; Ahnert, S E

    2016-04-01

    Self-assembly is ubiquitous in nature, particularly in biology, where it underlies the formation of protein quaternary structure and protein aggregation. Quaternary structure assembles deterministically and performs a wide range of important functions in the cell, whereas protein aggregation is the hallmark of a number of diseases and represents a nondeterministic self-assembly process. Here we build on previous work on a lattice model of deterministic self-assembly to investigate nondeterministic self-assembly of single lattice tiles and mixtures of two tiles at varying relative concentrations. Despite limiting the simplicity of the model to two interface types, which results in 13 topologically distinct single tiles and 106 topologically distinct sets of two tiles, we observe a wide variety of concentration-dependent behaviors. Several two-tile sets display critical behaviors in the form of a sharp transition from bound to unbound structures as the relative concentration of one tile to another increases. Other sets exhibit gradual monotonic changes in structural density, or nonmonotonic changes, while again others show no concentration dependence at all. We catalog this extensive range of behaviors and present a model that provides a reasonably good estimate of the critical concentrations for a subset of the critical transitions. In addition, we show that the structures resulting from these tile sets are fractal, with one of two different fractal dimensions.

  2. Activity-dependent stochastic resonance in recurrent neuronal networks

    NASA Astrophysics Data System (ADS)

    Volman, Vladislav

    2009-03-01

    An important source of noise for neuronal networks is that of the stochastic nature of synaptic transmission. In particular, there can occur spontaneous asynchronous release of neurotransmitter at a rate that is strongly dependent on the presynaptic Ca2+ concentration and hence strongly dependent on the rate of spike induced Ca2+. Here it is shown that this noise can lead to a new form of stochastic resonance for local circuits consisting of roughly 100 neurons - a ``microcolumn''- coupled via noisy plastic synapses. Furthermore, due to the plastic coupling and activity-dependent noise component, the detection of weak stimuli will also depend on the structure of the latter. In addition, the circuit can exhibit short-term memory, by which we mean that spiking will continue to occur for a transient period following removal of the stimulus. These results can be directly tested in experiments on cultured networks.

  3. Persistent organic pollutants in Mediterranean seawater and processes affecting their accumulation in plankton.

    PubMed

    Berrojalbiz, Naiara; Dachs, Jordi; Del Vento, Sabino; Ojeda, María José; Valle, María Carmen; Castro-Jiménez, Javier; Mariani, Giulio; Wollgast, Jan; Hanke, Georg

    2011-05-15

    The Mediterranean and Black Seas are unique marine environments subject to important anthropogenic pressures due to riverine and atmospheric inputs of organic pollutants. Here, we report the results obtained during two east-west sampling cruises in June 2006 and May 2007 from Barcelona to Istanbul and Alexandria, respectively, where water and plankton samples were collected simultaneously. Both matrixes were analyzed for hexaclorochyclohexanes (HCHs), hexachlorobenzene (HCB), and 41 polychlorinated biphenyl (PCB) congeners. The comparison of the measured HCB and HCHs concentrations with previously reported dissolved phase concentrations suggests a temporal decline in their concentrations since the 1990s. On the contrary, PCB seawater concentrations did not exhibit such a decline, but show a significant spatial variability in dissolved concentrations with lower levels in the open Western and South Eastern Mediterranean, and higher concentrations in the Black, Marmara, and Aegean Seas and Sicilian Strait. PCB and OCPs (organochlorine pesticides) concentrations in plankton were higher at lower plankton biomass, but the intensity of this trend depended on the compound hydrophobicity (K(OW)). For the more persistent PCBs and HCB, the observed dependence of POP concentrations in plankton versus biomass can be explained by interactions between air-water exchange, particle settling, and/or bioaccumulation processes, whereas degradation processes occurring in the photic zone drive the trends shown by the more labile HCHs. The results presented here provide clear evidence of the important physical and biogeochemical controls on POP occurrence in the marine environment.

  4. Stimulus-Dependent State Transition between Synchronized Oscillation and Randomly Repetitive Burst in a Model Cerebellar Granular Layer

    PubMed Central

    Tanaka, Shigeru; Nagao, Soichi; Nishino, Tetsuro

    2011-01-01

    Information processing of the cerebellar granular layer composed of granule and Golgi cells is regarded as an important first step toward the cerebellar computation. Our previous theoretical studies have shown that granule cells can exhibit random alternation between burst and silent modes, which provides a basis of population representation of the passage-of-time (POT) from the onset of external input stimuli. On the other hand, another computational study has reported that granule cells can exhibit synchronized oscillation of activity, as consistent with observed oscillation in local field potential recorded from the granular layer while animals keep still. Here we have a question of whether an identical network model can explain these distinct dynamics. In the present study, we carried out computer simulations based on a spiking network model of the granular layer varying two parameters: the strength of a current injected to granule cells and the concentration of Mg2+ which controls the conductance of NMDA channels assumed on the Golgi cell dendrites. The simulations showed that cells in the granular layer can switch activity states between synchronized oscillation and random burst-silent alternation depending on the two parameters. For higher Mg2+ concentration and a weaker injected current, granule and Golgi cells elicited spikes synchronously (synchronized oscillation state). In contrast, for lower Mg2+ concentration and a stronger injected current, those cells showed the random burst-silent alternation (POT-representing state). It is suggested that NMDA channels on the Golgi cell dendrites play an important role for determining how the granular layer works in response to external input. PMID:21779155

  5. Assessing Nutritional Differences in Household Level Production and Consumption in African Villages

    NASA Astrophysics Data System (ADS)

    Markey, K.; Palm, C.; Wood, S.

    2015-12-01

    Studies of agriculture often focus on yields and calories, but overlook the production of diverse nutrients needed for human health. Nutritional production is particularly important in low-income countries, where foods produced correspond largely to those consumed. Through an analysis of crops, livestock, and animal products, this study aims to quantify the nutritional differences between household-level production and consumption in the Millennium Village at Bonsaaso, Ghana. By converting food items into their nutritional components it became clear that certain nutritional disparities existed between the two categories. In Bonsasso, 64-78% of households exhibited deficiencies in the consumption of Calcium, Fat, and/or Vitamin A despite less than 30% of households showing deficiencies on the production side. To better understand these differences, k-means clustering analysis was performed, placing households into groups characterized by nutritional means. By comparing the households in these groupings, it was clear that clusters formed around certain nutritional deficiencies. The socioeconomic characteristics of these groupings were then studied for correlations, concentrating on number of people at the household, sex and age of household head, and dependency ratio. It was found that clusters with high dependency ratios (the number of working persons in the household to non-working persons) exhibited a large variety of, and often drastic, nutritional deficiencies. In fact, the cluster with the highest average dependency ratio exhibited deficiencies in every nutrient. In light of these findings, regional policies may look to target households with a large number of dependents, and package nutrients for household distribution based on the characteristics of these clusters.

  6. Long-term observations of cloud condensation nuclei in the Amazon rain forest – Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pöhlker, Mira L.; Pöhlker, Christopher; Ditas, Florian

    Size-resolved long-term measurements of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations and hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO) in the central Amazon Basin over a 1-year period and full seasonal cycle (March 2014–February 2015). Our measurements provide a climatology of CCN properties characteristic of a remote central Amazonian rain forest site.The CCN measurements were continuously cycled through 10 levels of supersaturation ( S=0.11 to 1.10 %) and span the aerosol particle size range from 20 to 245 nm. The mean critical diameters of CCN activation range from 43 nm at S = 1.10 % to 172more » nm at S = 0.11 %. Furthermore, the particle hygroscopicity exhibits a pronounced size dependence with lower values for the Aitken mode ( κ Ait = 0.14 ± 0.03), higher values for the accumulation mode ( κ Acc = 0.22 ± 0.05), and an overall mean value of κ mean = 0.17 ± 0.06, consistent with high fractions of organic aerosol.The hygroscopicity parameter, κ, exhibits remarkably little temporal variability: no pronounced diurnal cycles, only weak seasonal trends, and few short-term variations during long-range transport events. In contrast, the CCN number concentrations exhibit a pronounced seasonal cycle, tracking the pollution-related seasonality in total aerosol concentration. Here, we find that the variability in the CCN concentrations in the central Amazon is mostly driven by aerosol particle number concentration and size distribution, while variations in aerosol hygroscopicity and chemical composition matter only during a few episodes.For modeling purposes, we compare different approaches of predicting CCN number concentration and present a novel parametrization, which allows accurate CCN predictions based on a small set of input data.« less

  7. Long-term observations of cloud condensation nuclei in the Amazon rain forest – Part 1: Aerosol size distribution, hygroscopicity, and new model parametrizations for CCN prediction

    DOE PAGES

    Pöhlker, Mira L.; Pöhlker, Christopher; Ditas, Florian; ...

    2016-12-20

    Size-resolved long-term measurements of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations and hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO) in the central Amazon Basin over a 1-year period and full seasonal cycle (March 2014–February 2015). Our measurements provide a climatology of CCN properties characteristic of a remote central Amazonian rain forest site.The CCN measurements were continuously cycled through 10 levels of supersaturation ( S=0.11 to 1.10 %) and span the aerosol particle size range from 20 to 245 nm. The mean critical diameters of CCN activation range from 43 nm at S = 1.10 % to 172more » nm at S = 0.11 %. Furthermore, the particle hygroscopicity exhibits a pronounced size dependence with lower values for the Aitken mode ( κ Ait = 0.14 ± 0.03), higher values for the accumulation mode ( κ Acc = 0.22 ± 0.05), and an overall mean value of κ mean = 0.17 ± 0.06, consistent with high fractions of organic aerosol.The hygroscopicity parameter, κ, exhibits remarkably little temporal variability: no pronounced diurnal cycles, only weak seasonal trends, and few short-term variations during long-range transport events. In contrast, the CCN number concentrations exhibit a pronounced seasonal cycle, tracking the pollution-related seasonality in total aerosol concentration. Here, we find that the variability in the CCN concentrations in the central Amazon is mostly driven by aerosol particle number concentration and size distribution, while variations in aerosol hygroscopicity and chemical composition matter only during a few episodes.For modeling purposes, we compare different approaches of predicting CCN number concentration and present a novel parametrization, which allows accurate CCN predictions based on a small set of input data.« less

  8. Long-term observations of cloud condensation nuclei in the Amazon rain forest

    NASA Astrophysics Data System (ADS)

    Pöhlker, Mira L.; Pöhlker, Christopher; Ditas, Florian; Klimach, Thomas; Hrabe de Angelis, Isabella; Brito, Joel; Carbone, Samara; Cheng, Yafang; Martin, Scot T.; Moran-Zuloaga, Daniel; Rose, Diana; Saturno, Jorge; Su, Hang; Thalman, Ryan; Walter, David; Wang, Jian; Barbosa, Henrique; Artaxo, Paulo; Andreae, Meinrat O.; Pöschl, Ulrich

    2017-04-01

    Size-resolved long-term measurements of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations and hygroscopicity were conducted at the remote Amazon Tall Tower Observatory (ATTO) in the central Amazon Basin over a full seasonal cycle (Mar 2014 - Feb 2015). The measurements provide a climatology of CCN properties characteristic of a remote central Amazonian rain forest site [1,2]. The CCN measurements were continuously cycled through 10 levels of supersaturation (S = 0.11 to 1.10 %) and span the aerosol particle size range from 20 to 245 nm. The particle hygroscopicity exhibits a pronounced size dependence with lower values for the Aitken mode (κAit = 0.14 ± 0.03), higher values for the accumulation mode (κAcc = 0.22 ± 0.05), and an overall mean value of κmean = 0.17 ± 0.06, consistent with high fractions of organic aerosol. The hygroscopicity parameter, κ, exhibits remarkably little temporal variability: no pronounced diurnal cycles, only weak seasonal trends, and few short-term variations during long-range transport events. In contrast, the CCN number concentrations exhibit a pronounced seasonal cycle, tracking the pollution-related seasonality in total aerosol concentration. We find that the variability in the CCN concentrations in the central Amazon is mostly driven by aerosol particle number concentration and size distribution, while variations in aerosol hygroscopicity and chemical composition matter only during a few episodes. For modelling purposes, we compare different approaches of predicting CCN number concentration and present a novel parameterization, which allows accurate CCN predictions based on a small set of input data. In addition, we analyzed the CCN short-term variability in relation to air mass changes as well as aerosol emission and transformation processes. The CCN short term variability is presented for selected case studies, which analyze particularly interesting and characteristic events/conditions in the Amazon region. References: [1] Andreae, M. O., et al. (2015), Atmos. Chem. Phys., 15, 10723-10776. [2] Pöhlker, M. L.., et al. (2016), Atmos. Chem. Phys., 16, 15709-15740.

  9. Extensive ionic partitioning in interfaces that membranous and biomimetic surfaces form with electrolytes: Antitheses of the gold-electrolyte interface

    NASA Astrophysics Data System (ADS)

    Chilcott, Terry; Guo, Chuan; Coster, Hans

    2013-04-01

    Maxwell-Wagner modeling of electrical impedance measurements of tetradecane-electrolyte systems yielded three interfacial layers between the tetradecane layer and the bulk electrolytes of concentration ranging from 1-300 mM KCl whereas the gold-electrolyte system yielded only one layer. The conductivity and thickness for the surface layer were orders of magnitude different from that expected for the Gouy-Chapman layer and did not reflect dependencies of the Debye length on concentration. Conductivity values for the three layers were less than those of the bulk electrolyte but exhibited a dependency on concentration similar to that expected for the bulk. Thickness values for the layers indicate an interface extending ~106 Å into the bulk electrolyte, which contrasts with the gold-electrolyte interface that extended only 20-30 Å into the bulk. Maxwell-Wagner characterizations of both interfaces were consistent with spatial distributions of ionic partitioning arising from the Born energy as determined by the dielectric properties of the substrates and electrolyte. The distributions for the membranous and silicon interfaces were similar but the antitheses of that for the gold interface.

  10. Terpene arms race in the Seiridium cardinale - Cupressus sempervirens pathosystem

    NASA Astrophysics Data System (ADS)

    Achotegui-Castells, Ander; Della Rocca, Gianni; Llusià, Joan; Danti, Roberto; Barberini, Sara; Bouneb, Mabrouk; Simoni, Sauro; Michelozzi, Marco; Peñuelas, Josep

    2016-01-01

    The canker-causing fungus Seiridium cardinale is the major threat to Cupressus sempervirens worldwide. We investigated the production of terpenes by canker-resistant and susceptible cypresses inoculated with S. cardinale, the effect of these terpenes on fungal growth, and the defensive biotransformation of the terpenes conducted by the fungus. All infected trees produced de novo terpenes and strongly induced terpenic responses, but the responses were stronger in the canker-resistant than the susceptible trees. In vitro tests for the inhibition of fungal growth indicated that the terpene concentrations of resistant trees were more inhibitory than those of susceptible trees. The highly induced and de novo terpenes exhibited substantial inhibition (more than a fungicide reference) and had a high concentration-dependent inhibition, whereas the most abundant terpenes had a low concentration-dependent inhibition. S. cardinale biotransformed three terpenes and was capable of detoxifying them even outside the fungal mycelium, in its immediate surrounding environment. Our results thus indicated that terpenes were key defences efficiently used by C. sempervirens, but also that S. cardinale is ready for the battle.

  11. Studies on aqueous two phase polymer systems useful for partitioning of biological materials

    NASA Technical Reports Server (NTRS)

    Brooks, D. E.; Bamberger, S.

    1982-01-01

    The two phase systems that result when aqueous solutions of dextran and poly(ethylene glycol) (PEG) are mixed above a critical concentration of a few percent provide a useful medium for the separation of biological cell subpopulations via partition between the top, PEG-rich phase and the liquid-liquid phase boundary. Interfacial tensions of such systems have been measured by the rotating drop technique and found to range between 0.1-100 micro-N/m. The tension was found to depend on the length of the tie line describing the system on a phase diagram, via a power law relationship which differed depending on the concentration of Na phosphate buffer present. The electrokinetic properties of drops of one phase suspended in the other were studied for a variety of systems. It was found that the droplet electrophoretic mobility increased monotonically with phosphate concentration and drop diameter but exhibited the opposite sign from that anticipated from phosphate partition measurements. It was possible to take advantage of these electrokinetic properties and dramatically enhance the speed of phase separation through application of relatively small electric fields.

  12. In Vitro Analysis of the Role of Replication Protein A (RPA) and RPA Phosphorylation in ATR-mediated Checkpoint Signaling*

    PubMed Central

    Lindsey-Boltz, Laura A.; Reardon, Joyce T.; Wold, Marc S.; Sancar, Aziz

    2012-01-01

    Replication protein A (RPA) plays essential roles in DNA metabolism, including replication, checkpoint, and repair. Recently, we described an in vitro system in which the phosphorylation of human Chk1 kinase by ATR (ataxia telangiectasia mutated and Rad3-related) is dependent on RPA bound to single-stranded DNA. Here, we report that phosphorylation of other ATR targets, p53 and Rad17, has the same requirements and that RPA is also phosphorylated in this system. At high p53 or Rad17 concentrations, RPA phosphorylation is inhibited and, in this system, RPA with phosphomimetic mutations cannot support ATR kinase function, whereas a non-phosphorylatable RPA mutant exhibits full activity. Phosphorylation of these ATR substrates depends on the recruitment of ATR and the substrates by RPA to the RPA-ssDNA complex. Finally, mutant RPAs lacking checkpoint function exhibit essentially normal activity in nucleotide excision repair, revealing RPA separation of function for checkpoint and excision repair. PMID:22948311

  13. In vitro analysis of the role of replication protein A (RPA) and RPA phosphorylation in ATR-mediated checkpoint signaling.

    PubMed

    Lindsey-Boltz, Laura A; Reardon, Joyce T; Wold, Marc S; Sancar, Aziz

    2012-10-19

    Replication protein A (RPA) plays essential roles in DNA metabolism, including replication, checkpoint, and repair. Recently, we described an in vitro system in which the phosphorylation of human Chk1 kinase by ATR (ataxia telangiectasia mutated and Rad3-related) is dependent on RPA bound to single-stranded DNA. Here, we report that phosphorylation of other ATR targets, p53 and Rad17, has the same requirements and that RPA is also phosphorylated in this system. At high p53 or Rad17 concentrations, RPA phosphorylation is inhibited and, in this system, RPA with phosphomimetic mutations cannot support ATR kinase function, whereas a non-phosphorylatable RPA mutant exhibits full activity. Phosphorylation of these ATR substrates depends on the recruitment of ATR and the substrates by RPA to the RPA-ssDNA complex. Finally, mutant RPAs lacking checkpoint function exhibit essentially normal activity in nucleotide excision repair, revealing RPA separation of function for checkpoint and excision repair.

  14. A stochastic reaction-diffusion model for protein aggregation on DNA

    NASA Astrophysics Data System (ADS)

    Voulgarakis, Nikolaos K.

    Vital functions of DNA, such as transcription and packaging, depend on the proper clustering of proteins on the double strand. The present study investigates how the interplay between DNA allostery and electrostatic interactions affects protein clustering. The statistical analysis of a simple but transparent computational model reveals two major consequences of this interplay. First, depending on the protein and salt concentration, protein filaments exhibit a bimodal DNA stiffening and softening behavior. Second, within a certain domain of the control parameters, electrostatic interactions can cause energetic frustration that forces proteins to assemble in rigid spiral configurations. Such spiral filaments might trigger both positive and negative supercoiling, which can ultimately promote gene compaction and regulate the promoter. It has been experimentally shown that bacterial histone-like proteins assemble in similar spiral patterns and/or exhibit the same bimodal behavior. The proposed model can, thus, provide computational insights into the physical mechanisms used by proteins to control the mechanical properties of the DNA.

  15. Comparative study of cyanotoxins affecting cytoskeletal and chromatin structures in CHO-K1 cells.

    PubMed

    Gácsi, Mariann; Antal, Otilia; Vasas, Gábor; Máthé, Csaba; Borbély, György; Saker, Martin L; Gyori, János; Farkas, Anna; Vehovszky, Agnes; Bánfalvi, Gáspár

    2009-06-01

    In this study we compared the effects of the two frequently occuring and most dangerous cyanobacterial toxins on the cellular organization of microfilaments, microtubules and on the chromatin structure in Chinese hamster ovary (CHO-K1) cells. These compounds are the widely known microcystin-LR (MC-LR) and cylindrospermopsin (CYN) classified as the highest-priority cyanotoxin. Toxic effects were tested in a concentration and time dependent manner. The hepatotoxic MC-LR did not cause significant cytotoxicity on CHO-K1 cells under 20 microM, but caused apoptotic changes at higher concentrations. Apoptotic shrinkage was associated with the shortening and loss of actin filaments and with a concentration dependent depolymerization of microtubules. No necrosis was observed over the concentration range (1-50 microM MC-LR) tested. Cylindrospermopsin did cause apoptosis at low concentrations (1-2 microM) and over short exposure periods (12h). Necrosis was observed at higher concentrations (5-10 microM) and following longer exposure periods (24 or 48h). Cyanotoxins also affected the chromatin structure. The condensation process was inhibited by MC-LR at a later stage and manifested as broken elongated prechromosomes. CYN inhibited chromatin condensation at the early fibrillary stage leading to blurred fluorescent images of apoptotic bodies and preventing the formation of metaphase chromosomes. Cylindrospermopsin exhibited a more pronounced toxic effect causing cytoskeletal and nuclear changes as well as apoptotic and necrotic alterations.

  16. Analysis of concentration-dependent effects of copper and PCB on different Chattonella spp. microalgae (raphidophyceae) cultivated in artificial seawater medium

    PubMed Central

    Niestroy, Jeanette; Martínez, Alfonso Bárbara; Band-Schmidt, Christine J.

    2014-01-01

    In the present study, the effect on the chlorophyll a and the total protein content as well as the Chattonella spp. cell viability were examined after concentration-dependent exposure to CuCl2 and Aroclor 1242. The comparison between various raphidophyte strains provides an insight into the different susceptibilities to contaminants of Chattonella subsalsa (CSNAV-1), C. marina var. marina (CMCV-1) and C. marina var. ovata (COPV-2). The microalgae were cultivated in artificial seawater medium. Exponentially growing microalgae (8-10 days in culture) were used for exposure experiments. We observed in all three raphidophyte species cytotoxicity-mediated modifications beginning at concentrations of 150 and 200 µM of the heavy metal copper after 24 hours exposure. But interestingly, the three strains exhibited only slight differences in their susceptibility to CuCl2. C. subsalsa and C. marina var. marina cells were first affected at the chlorophyll a level and in cell viability. The total protein amount was reduced significantly only after exposure to 300 µM of CuCl2. However, C. marina var. ovata microalgae showed similar reduction curves for all three analysed cytotoxicity endpoints after heavy metal exposure. On the other hand, after Aroclor 1242 incubation the cytotoxic modification pattern indicated clearly the different susceptibilities of the three raphidophyte strains. C. subsalsa cells noticeably exhibited a decrease in the analysed pigment amount (30-20 % compared to that of the control) already after 0.007 mg/L PCB exposure. In contrast, cell viability and total protein content were slightly reduced and fell below the 50 % threshold after 0.7 and 3.3 mg/L of Aroclor 1242, respectively. Interestingly, C. marina var. ovata showed almost no cytotoxic modification caused by the PCB mixture. Only the concentration of 0.7 mg/L Aroclor 1242 clearly affected the cell viability. As opposed to that we observed a concentration-dependent decrease of cell viability and chlorophyll a amount in CMCV-1 microalgae. These observations confirmed that the susceptibility of the raphidophytes strains CSNAV-1, CMCV-1 and COPV-2 is contaminant-dependent. We showed differences even between two variants of Chattonella (Chattonella marina var. marina and C. marina var. ovata). Furthermore, we were able to show the different mode of action of two common pollutants by simple cytotoxic parameters like total protein and chlorophyll a content as well as by cell counting analysis. PMID:26417254

  17. Analysis of concentration-dependent effects of copper and PCB on different Chattonella spp. microalgae (raphidophyceae) cultivated in artificial seawater medium.

    PubMed

    Niestroy, Jeanette; Martínez, Alfonso Bárbara; Band-Schmidt, Christine J

    2014-01-01

    In the present study, the effect on the chlorophyll a and the total protein content as well as the Chattonella spp. cell viability were examined after concentration-dependent exposure to CuCl2 and Aroclor 1242. The comparison between various raphidophyte strains provides an insight into the different susceptibilities to contaminants of Chattonella subsalsa (CSNAV-1), C. marina var. marina (CMCV-1) and C. marina var. ovata (COPV-2). The microalgae were cultivated in artificial seawater medium. Exponentially growing microalgae (8-10 days in culture) were used for exposure experiments. We observed in all three raphidophyte species cytotoxicity-mediated modifications beginning at concentrations of 150 and 200 µM of the heavy metal copper after 24 hours exposure. But interestingly, the three strains exhibited only slight differences in their susceptibility to CuCl2. C. subsalsa and C. marina var. marina cells were first affected at the chlorophyll a level and in cell viability. The total protein amount was reduced significantly only after exposure to 300 µM of CuCl2. However, C. marina var. ovata microalgae showed similar reduction curves for all three analysed cytotoxicity endpoints after heavy metal exposure. On the other hand, after Aroclor 1242 incubation the cytotoxic modification pattern indicated clearly the different susceptibilities of the three raphidophyte strains. C. subsalsa cells noticeably exhibited a decrease in the analysed pigment amount (30-20 % compared to that of the control) already after 0.007 mg/L PCB exposure. In contrast, cell viability and total protein content were slightly reduced and fell below the 50 % threshold after 0.7 and 3.3 mg/L of Aroclor 1242, respectively. Interestingly, C. marina var. ovata showed almost no cytotoxic modification caused by the PCB mixture. Only the concentration of 0.7 mg/L Aroclor 1242 clearly affected the cell viability. As opposed to that we observed a concentration-dependent decrease of cell viability and chlorophyll a amount in CMCV-1 microalgae. These observations confirmed that the susceptibility of the raphidophytes strains CSNAV-1, CMCV-1 and COPV-2 is contaminant-dependent. We showed differences even between two variants of Chattonella (Chattonella marina var. marina and C. marina var. ovata). Furthermore, we were able to show the different mode of action of two common pollutants by simple cytotoxic parameters like total protein and chlorophyll a content as well as by cell counting analysis.

  18. Diminution of oxalate induced renal tubular epithelial cell injury and inhibition of calcium oxalate crystallization in vitro by aqueous extract of Tribulus terrestris.

    PubMed

    Aggarwal, A; Tandon, S; Singla, S K; Tandon, C

    2010-01-01

    Recurrence and persistent side effects of present day treatment for urolithiasis restrict their use, so an alternate solution, using phytotherapy is being sought. The present study attempted to evaluate the antilithiatic properties of Tribulus terrestris commonly called as "gokhru" which is often used in ayurveda to treat various urinary diseases including urolithiasis. The activity of Tribulus terrestris was investigated on nucleation and the growth of the calcium oxalate (CaOx) crystals as well as on oxalate induced cell injury of NRK 52E renal epithelial cells. Tribulus terrestris extract exhibited a concentration dependent inhibition of nucleation and the growth of CaOx crystals. When NRK-52E cells were injured by exposure to oxalate for 72 h, Tribulus terrestris extract prevented the injury in a dose-dependent manner. On treatment with the different concentrations of the plant, the cell viability increased and lactate dehydrogenase release decreased in a concentration dependent manner. The current data suggests that Tribulus terrestris extract not only has a potential to inhibit nucleation and the growth of the CaOx crystals but also has a cytoprotective role. Our results indicate that it could be a potential candidate for phytotherapy against urolithiasis.

  19. Thermal conductivity of electron-irradiated graphene

    NASA Astrophysics Data System (ADS)

    Weerasinghe, Asanka; Ramasubramaniam, Ashwin; Maroudas, Dimitrios

    2017-10-01

    We report results of a systematic analysis of thermal transport in electron-irradiated, including irradiation-induced amorphous, graphene sheets based on nonequilibrium molecular-dynamics simulations. We focus on the dependence of the thermal conductivity, k, of the irradiated graphene sheets on the inserted irradiation defect density, c, as well as the extent of defect passivation with hydrogen atoms. While the thermal conductivity of irradiated graphene decreases precipitously from that of pristine graphene, k0, upon introducing a low vacancy concentration, c < 1%, in the graphene lattice, further reduction of the thermal conductivity with the increasing vacancy concentration exhibits a weaker dependence on c until the amorphization threshold. Beyond the onset of amorphization, the dependence of thermal conductivity on the vacancy concentration becomes significantly weaker, and k practically reaches a plateau value. Throughout the range of c and at all hydrogenation levels examined, the correlation k = k0(1 + αc)-1 gives an excellent description of the simulation results. The value of the coefficient α captures the overall strength of the numerous phonon scattering centers in the irradiated graphene sheets, which include monovacancies, vacancy clusters, carbon ring reconstructions, disorder, and a rough nonplanar sheet morphology. Hydrogen passivation increases the value of α, but the effect becomes very minor beyond the amorphization threshold.

  20. [Chemical Exchange Saturation Transfer Imaging of Creatine Metabolites: a 3.0 T MRI Pilot].

    PubMed

    Guo, Ying-kun; Li, Zhen-lin; Rong, Yu; Xia, Chun-chao; Zhang, Li-zhi; Peng, Wan-ling; Liu, Xi; Xu, Hua-yan; Zhang, Ti-jiang; Zuo, Pan-li; Schmitt, Benjamin

    2016-03-01

    To determine the feasibility of using chemical exchange saturation transfer (CEST) imaging to measure creatine (Cr) metabolites with 3.0 T MR. Phantoms containing different concentrations of Cr under various pH conditions were studied with CEST sequence on 3.0 T MR imaging. CEST effect and Z spectra were analyzed. Cr exhibited significant CEST effect (± 1.8 ppm, F = 99.08, P < 0.001) on 3.0 T MR imaging, and positive correlation was found between the signal intensity and concentration of Cr (r = 0.963, P < 0.001). The CEST effect showed pH dependency of Cr (r = 0.41, P = 0.035). Creatine CEST imaging can be performed on 3.0 T MR imaging. Creatine concentrations and pH influence CEST effect.

  1. Methanolic extract of Pterocarpus santalinus induces apoptosis in HeLa cells.

    PubMed

    Kwon, H J; Hong, Y K; Kim, K H; Han, C H; Cho, S H; Choi, J S; Kim, Byung-Woo

    2006-04-21

    Ptercarpus santalinus (Fabaceae) has been used as a folk remedy in Korea, and it has been shown to exhibit antiinflammations, antiulcers and anticancer effects. In this study, therefore, we report the cytotoxic activity and the mechanism of cell death exhibited by the methanol extract of Ptercarpus santalinus (MEPS) against human cervical adenocarcinoma cell line, HeLa. Treatment of HeLa cells with various concentrations of MEPS resulted in growth inhibition and induction of apoptosis in a dose-dependent manner as determined by cell viability, chromatin condensation, DNA fragmentation and sub-G1 phase accumulation. In Western blot analysis, apoptosis in the HeLa cells was associated with the release of cytochrome C from mitochondria into the cytosol, activation of caspases-3, -8, -9 and proteolytic cleavage of PARP. These results suggest that MEPS exhibits antiproliferative effect on HeLa cells via apoptosis, and it may be a potential candidate in field of anticancer drug discovery.

  2. Chemical composition, antioxidative and anti-inflammatory activity of extracts prepared from aerial parts of Oenothera biennis L. and Oenothera paradoxa Hudziok obtained after seeds cultivation.

    PubMed

    Granica, Sebastian; Czerwińska, Monika E; Piwowarski, Jakub P; Ziaja, Maria; Kiss, Anna K

    2013-01-30

    In the present study we investigated the chemical composition of extracts prepared from aerial parts of Oenothera paradoxa Hudziok and Oenothera biennis L. and their antioxidative and anti-inflammatory activities. Ultra high pressure liquid chromatography (UHPLC)-DAD-MS/MS studies showed that both extracts contain a wide variety of polyphenols (39 identified constituents) among which macrocyclic ellagitannin turned out to be the main constituent. During the in vitro studies, using noncellular models, both extracts scavenged reactive oxygen species (ROS) in a concentration-dependent manner, and the lowest SC(50) values were obtained for O(2)(-) and H(2)O(2). Both extracts inhibited ROS production by stimulated human neutrophils. The stronger activity in the case of formyl-met-leu-phenylalanine stimulation suggests that both extracts may act through the receptor-dependent pathway. O. paradoxa extract and O. biennis extract exhibited anti-inflammatory activity by the inhibition of hyaluronidase and lipoxygenase in a concentration-dependent manner. The stronger activity of O.biennis extract toward lipoxygenase may be explained by its higher oenothein B content.

  3. Electromechanical properties of Na0.5Bi0.5TiO3-SrTiO3-PbTiO3 solid solutions

    NASA Astrophysics Data System (ADS)

    Svirskas, Šarūnas; Dunce, Marija; Birks, Eriks; Sternberg, Andris; Banys, Jūras

    2018-03-01

    Thorough studies of electric field-induced strain are presented in 0.4Na1/2Bi1/2TiO3-(0.6-x)SrTiO3-xPbTiO3 (NBT-ST-PT) ternary solid solutions. The increase of concentration of lead x induces crossover from relaxor to ferroelectric. Strain in a relaxor state can be described by electrostrictive behavior. The electrostrictive coefficients correspond to other well-known relaxor ferroelectrics. The concentration region with a stable ferroelectric phase revealed that the polarization dependence of strain does not exhibit nonlinearity, although they are inherent to the electric field dependence of strain. In this case, electric field dependence of strain is described in terms of the Rayleigh law and the role of domain wall contribution is extracted. Finally, the character of strain at the electric field-induced phase transition between the nonpolar and the ferroelectric states is studied. The data shows that in the vicinity of the electric field induced phase transition the strain vs. electric field displays electrostrictive character.

  4. The Role of CYP2C8 and CYP2C9 Genotypes in Losartan-Dependent Inhibition of Paclitaxel Metabolism in Human Liver Microsomes.

    PubMed

    Mukai, Yuji; Senda, Asuna; Toda, Takaki; Eliasson, Erik; Rane, Anders; Inotsume, Nobuo

    2016-06-01

    The aim of the present study was to further investigate a previously identified metabolic interaction between losartan and paclitaxel, which is one of the marker substrates of CYP2C8, by using human liver microsomes (HLMs) from donors with different CYP2C8 and CYP2C9 genotypes. Although CYP2C8 and CYP2C9 exhibit genetic linkage, previous studies have yet to determine whether losartan or its active metabolite, EXP-3174 which is specifically generated by CYP2C9, is responsible for CYP2C8 inhibition. Concentrations of 6α-hydroxypaclitaxel and EXP-3174 were measured by high-performance liquid chromatography after incubations with paclitaxel, losartan or EXP-3174 in HLMs from seven donors with different CYP2C8 and CYP2C9 genotypes. The half maximal inhibitory concentration (IC50 ) values were not fully dependent on CYP2C8 genotypes. Although the degree of inhibition was small, losartan significantly inhibited the production of 6α-hydroxypaclitaxel at a concentration of 1 μmol/L in only HL20 with the CYP2C8*3/*3 genotype. HLMs with either CYP2C9*2/*2 or CYP2C9*1/*3 exhibited a lower losartan intrinsic clearance (Vmax /Km ) than other HLMs including those with CYP2C9*1/*1 and CYP2C9*1/*2. Significant inhibition of 6α-hydroxypaclitaxel formation by EXP-3174 could only be found at levels that were 50 times higher (100 μmol/L) than the maximum concentration generated in the inhibition study using losartan. These results suggest that the metabolic interaction between losartan and paclitaxel is dependent on losartan itself rather than its metabolite and that the CYP2C8 inhibition by losartan is not affected by the CYP2C9 genotype. Further study is needed to define the effect of CYP2C8 genotypes on losartan-paclitaxel interaction. © 2015 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  5. Impact of spherical nanoparticles on nematic order parameters

    NASA Astrophysics Data System (ADS)

    Kyrou, C.; Kralj, S.; Panagopoulou, M.; Raptis, Y.; Nounesis, G.; Lelidis, I.

    2018-04-01

    We study experimentally the impact of spherical nanoparticles on the orientational order parameters of a host nematic liquid crystal. We use spherical core-shell quantum dots that are surface functionalized to promote homeotropic anchoring on their interface with the liquid crystal host. We show experimentally that the orientational order may be strongly affected by the presence of spherical nanoparticles even at low concentrations. The orientational order of the composite system is probed by means of polarized micro-Raman spectroscopy and by optical birefringence measurements as function of temperature and concentration. Our data show that the orientational order depends on the concentration in a nonlinear way, and the existence of a crossover concentration χc≈0.004 pw . It separates two different regimes exhibiting pure-liquid crystal like (χ <χc ) and distorted-nematic ordering (χ >χc ), respectively. In the latter phase the degree of ordering is lower with respect to the pure-liquid crystal nematic phase.

  6. Comparison of quasistatic to impact mechanical properties of multiwall carbon nanotube/polycarbonate composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brühwiler, Paul A.; Barbezat, Michel; Necola, Adly

    2010-10-22

    We report the quasistatic tensile and impact penetration properties (falling dart test) of injection-molded polycarbonate samples, as a function of multiwall carbon nanotube (MWNT) concentration (0.0-2.5%). The MWNT were incorporated by dilution of a commercial MWNT/polycarbonate masterbatch. The stiffness and quasistatic yield strength of the composites increased approximately linearly with MWNT concentration in all measurements. The energy absorbed in fracture was, however, a negative function of the MWNT concentration, and exhibited different dependencies in quasistatic and impact tests. Small-angle x-ray scattering (SAXS) showed that the dispersion of the MWNT was similar at all concentrations. The negative effects on energy absorptionmore » are attributed to agglomerates remaining in the samples, which were observed in optical microscopy and SAXS. Overall, there was a good correspondence between static and dynamic energy absorption.« less

  7. Asymmetric correlations in the ozone concentration dynamics of the Mexico City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Meraz, M.; Alvarez-Ramirez, J.; Echeverria, J. C.

    2017-04-01

    Mexico City is a megalopolis with severe pollution problems caused by vehicles and industrial activity. This condition imposes important risks to human health and economic activity. Based on hourly-sampled data during the last decade, in a recent work (Meraz et al., 2015) we showed that the pollutant dynamics in Mexico City exhibits long-term and scale-dependent persistence effects resulting from the combination of pollutants generation by vehicles and removal by advection mechanisms. In this work, we analyzed the dynamics of ozone, a key component reflecting the degree of atmospheric contamination, to determine if its long-term correlations are asymmetric in relation to the actual concentration trend (increasing or decreasing). The analysis is conducted with detrended fluctuation analysis. The results showed that the average ozone dynamics is uncorrelated when the concentration is increasing. In contrast, the ozone dynamics shows long-term anti-persistence effects when the concentration is decreasing.

  8. Protein unfolding in detergents: effect of micelle structure, ionic strength, pH, and temperature.

    PubMed Central

    Otzen, Daniel E

    2002-01-01

    The 101-residue monomeric protein S6 unfolds in the anionic detergent sodium dodecyl sulfate (SDS) above the critical micelle concentration, with unfolding rates varying according to two different modes. Our group has proposed that spherical micelles lead to saturation kinetics in unfolding (mode 1), while cylindrical micelles prevalent at higher SDS concentrations induce a power-law dependent increase in the unfolding rate (mode 2). Here I investigate in more detail how micellar properties affect protein unfolding. High NaCl concentrations, which induce cylindrical micelles, favor mode 2. This is consistent with our model, though other effects such as electrostatic screening cannot be discounted. Furthermore, unfolding does not occur in mode 2 in the cationic detergent LTAB, which is unable to form cylindrical micelles. A strong retardation of unfolding occurs at higher LTAB concentrations, possibly due to the formation of dead-end protein-detergent complexes. A similar, albeit much weaker, effect is seen in SDS in the absence of salt. Chymotrypsin inhibitor 2 exhibits the same modes of unfolding in SDS as S6, indicating that this type of protein unfolding is not specific for S6. The unfolding process in mode 1 has an activation barrier similar in magnitude to that in water, while the activation barrier in mode 2 is strongly concentration-dependent. The strong pH-dependence of unfolding in SDS and LTAB suggests that the rate of unfolding in anionic detergent is modulated by repulsion between detergent headgroups and anionic side chains, while cationic side chains modulate unfolding rates in cationic detergents. PMID:12324439

  9. Dysregulated mTORC1 renders cells critically dependent on desaturated lipids for survival under tumor-like stress

    PubMed Central

    Young, Regina M.; Ackerman, Daniel; Quinn, Zachary L.; Mancuso, Anthony; Gruber, Michaela; Liu, Liping; Giannoukos, Dionysios N.; Bobrovnikova-Marjon, Ekaterina; Diehl, J. Alan; Keith, Brian; Simon, M. Celeste

    2013-01-01

    Solid tumors exhibit heterogeneous microenvironments, often characterized by limiting concentrations of oxygen (O2), glucose, and other nutrients. How oncogenic mutations alter stress response pathways, metabolism, and cell survival in the face of these challenges is incompletely understood. Here we report that constitutive mammalian target of rapamycin complex 1 (mTORC1) activity renders hypoxic cells dependent on exogenous desaturated lipids, as levels of de novo synthesized unsaturated fatty acids are reduced under low O2. Specifically, we demonstrate that hypoxic Tsc2−/− (tuberous sclerosis complex 2−/−) cells deprived of serum lipids exhibit a magnified unfolded protein response (UPR) but fail to appropriately expand their endoplasmic reticulum (ER), leading to inositol-requiring protein-1 (IRE1)-dependent cell death that can be reversed by the addition of unsaturated lipids. UPR activation and apoptosis were also detected in Tsc2-deficient kidney tumors. Importantly, we observed this phenotype in multiple human cancer cell lines and suggest that cells committed to unregulated growth within ischemic tumor microenvironments are unable to balance lipid and protein synthesis due to a critical limitation in desaturated lipids. PMID:23699409

  10. Tryptophan availability modulates serotonin release from rat hypothalamic slices

    NASA Technical Reports Server (NTRS)

    Schaechter, Judith D.; Wurtman, Richard J.

    1989-01-01

    The relationship between the tryptophan availability and serononin release from rat hypothalamus was investigated using a new in vitro technique for estimating rates at which endogenous serotonin is released spontaneously or upon electrical depolarization from hypothalamic slices superfused with a solution containing various amounts of tryptophan. It was found that the spontaneous, as well as electrically induced, release of serotonin from the brain slices exhibited a dose-dependent relationship with the tryptophan concentration of the superfusion medium.

  11. Assimilation of elements and digestion in grass shrimp pre-exposed to dietary mercury.

    PubMed

    Seebaugh, David R; Wallace, William G; L'amoreaux, William J; Stewart, Gillian M

    2012-08-01

    Grass shrimp Palaemonetes pugio were fed mercury (Hg)-contaminated oligochaetes for 15 days and analyzed for Hg, cadmium (Cd), and carbon assimilation efficiencies (AE) as well as toxicological end points related to digestion. Disproportionate increases in stable Hg concentrations in shrimp did not appear to be related to partitioning to trophically available Hg in worms. Hg AE by pre-exposed shrimp reached a plateau (approximately 53 %), whereas Cd AE varied (approximately 40-60 %) in a manner that was not dose-dependent. Carbon AE did not differ among treatments (approximately 69 %). Gut residence time was not impacted significantly by Hg pre-exposure (grand median approximately 465 min), however, there was a trend between curves showing percentages of individuals with markers in feces over time versus treatment. Feces-elimination rate did not vary with dietary pre-exposure. Extracellular protease activity varied approximately 1.9-fold but did not exhibit dose-dependency. pH increased over the range of Hg pre-exposures within the anterior (pH approximately 5.33-6.51) and posterior (pH approximately 5.29-6.25) regions of the cardiac proventriculus and Hg assimilation exhibited a negative relationship to hydrogen ion concentrations. The results of this study indicate that previous Hg ingestion can elicit post-assimilatory impacts on grass shrimp digestive physiology, which may, in turn, influence Hg assimilation during subsequent digestive cycles.

  12. Potential anti-cholinesterase and β-site amyloid precursor protein cleaving enzyme 1 inhibitory activities of cornuside and gallotannins from Cornus officinalis fruits.

    PubMed

    Bhakta, Himanshu Kumar; Park, Chan Hum; Yokozawa, Takako; Tanaka, Takashi; Jung, Hyun Ah; Choi, Jae Sue

    2017-07-01

    Cholinesterase (ChE) and β-site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitors are promising agents for the treatment of Alzheimer's disease (AD). In the present study, we examined the inhibitory activity of seven compounds isolated from the fruits of Cornus officinalis, cornuside, polymeric proanthocyanidins, 1,2,3-tri-O-galloyl-β-D-glucose, 1,2,3,6-tetra-O-galloyl-β-D-glucose, tellimagrandin I, tellimagrandin II, and isoterchebin, against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and BACE1. All of the compounds displayed concentration-dependent in vitro inhibitory activity toward the ChEs and BACE1. Among them, tellimagrandin II exhibited the best inhibitory activity toward ChEs, whereas the best BACE1 inhibitor was 1,2,3,6-tetra-O-galloyl-β-D-glucose. Isoterchebin and polymeric proanthocyanidins were also significant ChE inhibitors. The kinetic and docking studies demonstrated that all compounds interacted with both the catalytic active sites and the peripheral anionic sites of the ChEs and BACE1. Tellimagrandin II, isoterchebin, and the polymeric proanthocyanidins exhibited concentration-dependent inhibition of peroxynitrite-mediated protein tyrosine nitration. In conclusion, we identified significant ChE and BACE1 inhibitors from Corni Fructus that could have value as new multi-targeted compounds for anti-AD agents.

  13. An introductory study using impedance spectroscopy technique with polarizable microelectrode for amino acids characterization

    NASA Astrophysics Data System (ADS)

    Chin, K. B.; Chi, I.; Pasalic, J.; Huang, C.-K.; Barge, Laura M.

    2018-04-01

    Portable, low power, yet ultra-sensitive life detection instrumentations are vital to future astrobiology flight programs at NASA. In this study, initial attempts to characterize amino acids in an aqueous environment by electrochemical impedance spectroscopy (EIS) using polarizable (blocking) electrodes in order to establish a means of detection via their electrical properties. Seven amino acids were chosen due to their scientific importance in demonstrating sensitivity levels in the range of part per billion concentration. Albeit more challenging in real systems of analyst mixtures, we found individual amino acids in aqueous environment do exhibit some degree of chemical and physical uniqueness to warrant characterization by EIS. The polar amino acids (Asp, Glu, and His) exhibited higher electrochemical activity than the non-polar amino acids (Ala, Gly, Val, and Leu). The non-polar amino acids (Gly and Ala) also exhibited unique electrical properties which appeared to be more dependent on physical characteristics such as molecular weight and structure. At concentrations above 1 mM where the amino acids play a more dominant transport role within the water, the conductivity was found to be more sensitive to concentrations. At lower concentrations <1 mM, however, the polar amino acid solution conductivity remained constant, suggesting poor chemical activity with water. As revealed by equivalent circuit modeling, the relaxation times showed a 1-2 order of magnitude difference between polar and non-polar amino acids. The pseudo-capacitance from EIS measurements on sample mixtures containing salt water and individual amino acids revealed the possibility for improvement in amino acid selectivity using gold nanoporous surface enhanced electrodes. This work establishes important methodologies for characterizing amino acids using EIS combined with microscale electrodes, supporting the case for instrumentation development for life detection and origin of life programs.

  14. An introductory study using impedance spectroscopy technique with polarizable microelectrode for amino acids characterization.

    PubMed

    Chin, K B; Chi, I; Pasalic, J; Huang, C-K; Barge, Laura M

    2018-04-01

    Portable, low power, yet ultra-sensitive life detection instrumentations are vital to future astrobiology flight programs at NASA. In this study, initial attempts to characterize amino acids in an aqueous environment by electrochemical impedance spectroscopy (EIS) using polarizable (blocking) electrodes in order to establish a means of detection via their electrical properties. Seven amino acids were chosen due to their scientific importance in demonstrating sensitivity levels in the range of part per billion concentration. Albeit more challenging in real systems of analyst mixtures, we found individual amino acids in aqueous environment do exhibit some degree of chemical and physical uniqueness to warrant characterization by EIS. The polar amino acids (Asp, Glu, and His) exhibited higher electrochemical activity than the non-polar amino acids (Ala, Gly, Val, and Leu). The non-polar amino acids (Gly and Ala) also exhibited unique electrical properties which appeared to be more dependent on physical characteristics such as molecular weight and structure. At concentrations above 1 mM where the amino acids play a more dominant transport role within the water, the conductivity was found to be more sensitive to concentrations. At lower concentrations <1 mM, however, the polar amino acid solution conductivity remained constant, suggesting poor chemical activity with water. As revealed by equivalent circuit modeling, the relaxation times showed a 1-2 order of magnitude difference between polar and non-polar amino acids. The pseudo-capacitance from EIS measurements on sample mixtures containing salt water and individual amino acids revealed the possibility for improvement in amino acid selectivity using gold nanoporous surface enhanced electrodes. This work establishes important methodologies for characterizing amino acids using EIS combined with microscale electrodes, supporting the case for instrumentation development for life detection and origin of life programs.

  15. Constitutive NADPH-dependent electron transferase activity of the Nox4 dehydrogenase domain.

    PubMed

    Nisimoto, Yukio; Jackson, Heather M; Ogawa, Hisamitsu; Kawahara, Tsukasa; Lambeth, J David

    2010-03-23

    NADPH oxidase 4 (Nox4) is constitutively active, while Nox2 requires the cytosolic regulatory subunits p47(phox) and p67(phox) and activated Rac with activation by phorbol 12-myristate 13-acetate (PMA). This study was undertaken to identify the domain on Nox4 that confers constitutive activity. Lysates from Nox4-expressing cells exhibited constitutive NADPH- but not NADH-dependent hydrogen peroxide production with a K(m) for NADPH of 55 +/- 10 microM. The concentration of Nox4 in cell lysates was estimated using Western blotting and allowed calculation of a turnover of approximately 200 mol of H(2)O(2) min(-1) (mol of Nox4)(-1). A chimeric protein (Nox2/4) consisting of the Nox2 transmembrane (TM) domain and the Nox4 dehydrogenase (DH) domain showed H(2)O(2) production in the absence of cytosolic regulatory subunits. In contrast, chimera Nox4/2, consisting of the Nox4 TM and Nox2 DH domains, exhibited PMA-dependent activation that required coexpression of regulatory subunits. Nox DH domains from several Nox isoforms were purified and evaluated for their electron transferase activities. Nox1 DH, Nox2 DH, and Nox5 DH domains exhibited barely detectable activities toward artificial electron acceptors, while the Nox4 DH domain exhibited significant rates of reduction of cytochrome c (160 min(-1), largely superoxide dismutase-independent), ferricyanide (470 min(-1)), and other electron acceptors (artificial dyes and cytochrome b(5)). Rates were similar to those observed for H(2)O(2) production by the Nox4 holoenzyme in cell lysates. The activity required added FAD and was seen with NADPH but not NADH. These results indicate that the Nox4 DH domain exists in an intrinsically activated state and that electron transfer from NADPH to FAD is likely to be rate-limiting in the NADPH-dependent reduction of oxygen by holo-Nox4.

  16. Enterobactin-mediated iron transport in Pseudomonas aeruginosa.

    PubMed Central

    Poole, K; Young, L; Neshat, S

    1990-01-01

    A pyoverdine-deficient strain of Pseudomonas aeruginosa was unable to grow in an iron-deficient minimal medium in the presence of the nonmetabolizable iron chelator ethylene diamine-di(omega-hydroxyphenol acetic acid) (EDDHA), although addition of enterobactin to EDDHA-containing minimal media did restore growth of the pyoverdine-deficient P. aeruginosa. Consistent with the apparent ability of enterobactin to provide iron to P. aeruginosa, enterobactin-dependent 55Fe3+ uptake was observed in cells of P. aeruginosa previously grown in an iron-deficient medium containing enterobactin (or enterobactin-containing Escherichia coli culture supernatant). This uptake was energy dependent, was observable at low concentrations (60 nM) of FeCl3, and was absent in cells cultured without enterobactin. A novel protein with a molecular weight of approximately 80,000 was identified in the outer membranes of cells grown in iron-deficient minimal medium containing enterobactin, concomitant with the induction of enterobactin-dependent iron uptake. A Tn501 insertion mutant lacking this protein was isolated and shown to be deficient in enterobactin-mediated iron transport at 60 nM FeCl3, although it still exhibited enterobactin-dependent growth in iron-deficient medium containing EDDHA. It was subsequently observed that the mutant was, however, capable of enterobactin-mediated iron transport at much higher concentrations (600 nM) of FeCl3. Indeed, enterobactin-dependent iron uptake at this concentration of iron was observed in both the mutant and parent strains irrespective of whether they had been cultured in the presence of enterobactin.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:2174865

  17. Nobiletin and its related flavonoids with CRE-dependent transcription-stimulating and neuritegenic activities.

    PubMed

    Nagase, Hiroyuki; Omae, Naoki; Omori, Akiko; Nakagawasai, Osamu; Tadano, Takeshi; Yokosuka, Akihito; Sashida, Yutaka; Mimaki, Yoshihiro; Yamakuni, Tohru; Ohizumi, Yasushi

    2005-12-02

    cAMP response element (CRE) transcription is dysregulated in neurodegenerative disorders in the central nervous system (CNS), including polyglutamine diseases. As the first step to find natural compounds with protective action against neurodegeneration in the CNS, we here examined whether six citrus flavonoids, namely nobiletin, 5-demethylnobiletin, tangeretin, sinensetin, 6-demethoxytangeretin, and 6-demethoxynobiletin, stimulated CRE-dependent transcription and induced neurite outgrowth in PC12D cells. Among the compounds, nobiletin most potently enhanced CRE-dependent transcription and neurite outgrowth by activating ERK/MAP kinase-dependent signalling to increase CREB phosphorylation. The transcription and neurite outgrowth were stimulated by nobiletin in a concentration-dependent manner, with a strong correlation between them. Furthermore, a 11-day oral administration of nobiletin rescued impaired memory in olfactory-bulbectomized mice documented to be accompanied by a cholinergic neurodegeneration. These results suggest that nobiletin with the activity to improve impaired memory may become a potential leading compound for drug development for neurodegenerative disorders exhibiting the dysregulated CRE-dependent transcription.

  18. Effects of pH and Oxygen on Photosynthetic Reactions of Intact Chloroplasts 1

    PubMed Central

    Heber, Ulrich; Andrews, T. John; Boardman, N. Keith

    1976-01-01

    Oxygen inhibition of photosynthesis was studied with intact spinach (Spinacia oleracea L.) chloroplasts which exhibited very high rates of photosynthetic CO2 reduction and were insensitive to additions of photosynthetic intermediates when CO2 was available at saturating concentrations. Photosynthetic rates were measured polarographically as O2 evolution, and the extent of the reduction of substrate was estimated from the amount of O2 evolved. With CO2 as substrate, inhibition of photosynthesis by O2 was dependent on pH. At pH values above 8, rates of O2 evolution were strongly inhibited by O2 and only a fraction of the added bicarbonate was reduced before O2 evolution ceased. The extent of O2 evolution declined with increasing O2 concentration and decreasing initial bicarbonate concentration. At pH 7.2, the initial photosynthetic rate was inhibited about 30% at high O2 levels, but the extent of O2 evolution was unaffected and most of the added bicarbonate was reduced. Photosynthetic O2 evolution with 3-phosphoglycerate as substrate was similarly dependent on pH and O2 concentration. In contrast, there was little effect of O2 and pH on oxaloacetate-dependent oxygen evolution. Acid-base shift experiments with osmotically shocked chloroplasts showed that ATP formation was not affected by O2. The results are discussed in terms of a balance between photosynthetic O2 evolution and O2 consumption by the ribulose diphosphate oxygenase reaction. PMID:16659466

  19. High-Intensity Locomotor Exercise Increases Brain-Derived Neurotrophic Factor in Individuals with Incomplete Spinal Cord Injury.

    PubMed

    Leech, Kristan A; Hornby, T George

    2017-03-15

    High-intensity locomotor exercise is suggested to contribute to improved recovery of locomotor function after neurological injury. This may be secondary to exercise-intensity-dependent increases in neurotrophin expression demonstrated previously in control subjects. However, rigorous examination of intensity-dependent changes in neurotrophin levels is lacking in individuals with motor incomplete spinal cord injury (SCI). Therefore, the primary aim of this study was to evaluate the effect of locomotor exercise intensity on peripheral levels of brain-derived neurotrophic factor (BDNF) in individuals with incomplete SCI. We also explored the impact of the Val66Met single-nucleotide polymorphism (SNP) on the BDNF gene on intensity-dependent changes. Serum concentrations of BDNF and insulin-like growth factor-1 (IGF-1), as well as measures of cardiorespiratory dynamics, were evaluated across different levels of exercise intensity achieved during a graded-intensity, locomotor exercise paradigm in 11 individuals with incomplete SCI. Our results demonstrate a significant increase in serum BDNF at high, as compared to moderate, exercise intensities (p = 0.01) and 15 and 30 min post-exercise (p < 0.01 for both), with comparison to changes at low intensity approaching significance (p = 0.05). Serum IGF-1 demonstrated no intensity-dependent changes. Significant correlations were observed between changes in BDNF and specific indicators of exercise intensity (e.g., rating of perceived exertion; R = 0.43; p = 0.02). Additionally, the data suggest that Val66Met SNP carriers may not exhibit intensity-dependent changes in serum BDNF concentration. Given the known role of BDNF in experience-dependent neuroplasticity, these preliminary results suggest that exercise intensity modulates serum BDNF concentrations and may be an important parameter of physical rehabilitation interventions after neurological injury.

  20. High-Intensity Locomotor Exercise Increases Brain-Derived Neurotrophic Factor in Individuals with Incomplete Spinal Cord Injury

    PubMed Central

    Leech, Kristan A.

    2017-01-01

    Abstract High-intensity locomotor exercise is suggested to contribute to improved recovery of locomotor function after neurological injury. This may be secondary to exercise-intensity–dependent increases in neurotrophin expression demonstrated previously in control subjects. However, rigorous examination of intensity-dependent changes in neurotrophin levels is lacking in individuals with motor incomplete spinal cord injury (SCI). Therefore, the primary aim of this study was to evaluate the effect of locomotor exercise intensity on peripheral levels of brain-derived neurotrophic factor (BDNF) in individuals with incomplete SCI. We also explored the impact of the Val66Met single-nucleotide polymorphism (SNP) on the BDNF gene on intensity-dependent changes. Serum concentrations of BDNF and insulin-like growth factor-1 (IGF-1), as well as measures of cardiorespiratory dynamics, were evaluated across different levels of exercise intensity achieved during a graded-intensity, locomotor exercise paradigm in 11 individuals with incomplete SCI. Our results demonstrate a significant increase in serum BDNF at high, as compared to moderate, exercise intensities (p = 0.01) and 15 and 30 min post-exercise (p < 0.01 for both), with comparison to changes at low intensity approaching significance (p = 0.05). Serum IGF-1 demonstrated no intensity-dependent changes. Significant correlations were observed between changes in BDNF and specific indicators of exercise intensity (e.g., rating of perceived exertion; R = 0.43; p = 0.02). Additionally, the data suggest that Val66Met SNP carriers may not exhibit intensity-dependent changes in serum BDNF concentration. Given the known role of BDNF in experience-dependent neuroplasticity, these preliminary results suggest that exercise intensity modulates serum BDNF concentrations and may be an important parameter of physical rehabilitation interventions after neurological injury. PMID:27526567

  1. Perinatal methadone exposure produces physical dependence and altered behavioral development in the rat.

    PubMed

    Kunko, P M; Smith, J A; Wallace, M J; Maher, J R; Saady, J J; Robinson, S E

    1996-06-01

    Pregnant rats were implanted with osmotic minipumps containing either methadone hydrochloride (9 mg/kg/day) or sterile water. Their offspring were cross-fostered so that the following prenatal/postnatal exposure groups were obtained: water/water, methadone/water, water/methadone and methadone/methadone. Methadone slightly reduced litter size, particularly the number of male offspring, and reduced litter birth weight. The induction or maintenance of physical dependence in the postnatal methadone exposure groups was confirmed by an experiment in which PD19 pups were challenged with naloxone (1 mg/kg, s.c.). Methadone concentrations were assayed in pup brain on postnatal days 4, 10 and 22. Postnatal exposure to methadone via maternal milk produced measurable levels of methadone which decreased with age. Neuromuscular and physical development were assessed. Exposure to methadone accelerated acquisition of the righting reflex, but tended to delay the acquisition of the negative geotaxic response. Postnatal exposure to methadone was associated with decreased somatic growth as measured through postnatal day 21. The older pups (postnatal day 21) exposed to methadone exhibited variations in activity levels: pups exposed to methadone both prenatally and postnatally exhibited the least amount of spontaneous locomotor activity and pups exposed only postnatally exhibited the most activity. Therefore, it is possible to induce and/or maintain physical dependence via lactation in rat pups fostered to methadone-treated dams. Perinatal exposure to methadone by this route produces several subtle disruptions of pup development in the absence of gross maternal or fetal toxicity.

  2. Negligible carrier freeze-out facilitated by impurity band conduction in highly p-type GaN

    NASA Astrophysics Data System (ADS)

    Gunning, Brendan; Lowder, Jonathan; Moseley, Michael; Alan Doolittle, W.

    2012-08-01

    Highly p-type GaN films with hole concentrations exceeding 6 × 1019 cm-3 grown by metal-modulated epitaxy are electrically characterized. Temperature-dependent Hall effect measurements at cryogenic temperatures reveal minimal carrier freeze-out in highly doped samples, while less heavily doped samples exhibited high resistivity and donor-compensated conductivity as is traditionally observed. Effective activation energies as low as 43 meV were extracted, and a maximum Mg activation efficiency of 52% was found. In addition, the effective activation energy was found to be negatively correlated to the hole concentration. These results indicate the onset of the Mott-Insulator transition leading to impurity band conduction.

  3. Leaching of nitrogen, phosphorus, TOC and COD from the biosolids of the municipal wastewater treatment plant of Thessaloniki.

    PubMed

    Batziaka, V; Fytianos, K; Voudrias, E

    2008-05-01

    Biosolids from the WWTP of Thessaloniki were examined for the leaching of phosphorus (as PO4(3-) -P), nitrogen (as NH4+ (-N) and NO3- (-N)), and organic matter (as TOC and COD), using two tests: (1) a pH static leaching test and (2) a characterization test, relating contaminant release to the liquid to solid (L/S) ratio. Moreover, a Microtox toxicity test was conducted, to examine the pH dependency of the toxicity of the sludge leachate on the Vibrio fischeri bacterium. Maximum phosphorus release was observed at pH < 3 and at pH > 10. Ammonium nitrogen exhibited maximum leachability at near neutral pH conditions, while nitrate nitrogen exhibited a mild increase in the leachate, as the leachant pH increased from 2 to 12. Both TOC and COD exhibited an increase in the leachate concentration, as the leachant pH was increased from 2 to 12. Ecotoxicological analysis showed that maximum toxicity occurred at very low and very high pH-conditions. As liquid-to-solid ratio increased, the leachate concentration (in mg/l) of all parameters studied decreased. The results of the study were used to conduct a release assessment estimate for the case of Thessaloniki.

  4. Cellulose nanocrystals with tunable surface charge for nanomedicine

    NASA Astrophysics Data System (ADS)

    Hosseinidoust, Zeinab; Alam, Md Nur; Sim, Goeun; Tufenkji, Nathalie; van de Ven, Theo G. M.

    2015-10-01

    Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For applications in imaging and drug delivery, surface charge is one of the most important factors affecting the performance of nanocarriers. However, current methods of preparation offer little flexibility for controlling the surface charge of cellulose nanocrystals, leading to compromised colloidal stability under physiological conditions. We report a synthesis method that results in nanocrystals with remarkably high carboxyl content (6.6 mmol g-1) and offers continuous control over surface charge without any adjustment to the reaction conditions. Six fractions of nanocrystals with various surface carboxyl contents were synthesized from a single sample of softwood pulp with carboxyl contents varying from 6.6 to 1.7 mmol g-1 and were fully characterized. The proposed method resulted in highly stable colloidal nanocrystals that did not aggregate when exposed to high salt concentrations or serum-containing media. Interactions of these fractions with four different tissue cell lines were investigated over a wide range of concentrations (50-300 μg mL-1). Darkfield hyperspectral imaging and confocal microscopy confirmed the uptake of nanocrystals by selected cell lines without any evidence of membrane damage or change in cell density; however a charge-dependent decrease in mitochondrial activity was observed for charge contents higher than 3.9 mmol g-1. A high surface carboxyl content allowed for facile conjugation of fluorophores to the nanocrystals without compromising colloidal stability. The cellular uptake of fluoresceinamine-conjugated nanocrystals exhibited a time-dose dependent relationship and increased significantly with doubling of the surface charge.Crystalline nanoparticles of cellulose exhibit attractive properties as nanoscale carriers for bioactive molecules in nanobiotechnology and nanomedicine. For applications in imaging and drug delivery, surface charge is one of the most important factors affecting the performance of nanocarriers. However, current methods of preparation offer little flexibility for controlling the surface charge of cellulose nanocrystals, leading to compromised colloidal stability under physiological conditions. We report a synthesis method that results in nanocrystals with remarkably high carboxyl content (6.6 mmol g-1) and offers continuous control over surface charge without any adjustment to the reaction conditions. Six fractions of nanocrystals with various surface carboxyl contents were synthesized from a single sample of softwood pulp with carboxyl contents varying from 6.6 to 1.7 mmol g-1 and were fully characterized. The proposed method resulted in highly stable colloidal nanocrystals that did not aggregate when exposed to high salt concentrations or serum-containing media. Interactions of these fractions with four different tissue cell lines were investigated over a wide range of concentrations (50-300 μg mL-1). Darkfield hyperspectral imaging and confocal microscopy confirmed the uptake of nanocrystals by selected cell lines without any evidence of membrane damage or change in cell density; however a charge-dependent decrease in mitochondrial activity was observed for charge contents higher than 3.9 mmol g-1. A high surface carboxyl content allowed for facile conjugation of fluorophores to the nanocrystals without compromising colloidal stability. The cellular uptake of fluoresceinamine-conjugated nanocrystals exhibited a time-dose dependent relationship and increased significantly with doubling of the surface charge. Electronic supplementary information (ESI) available: Additional results are presented in the ESI in Fig. S1 through S4. See DOI: 10.1039/c5nr02506k

  5. The Effect of Sericin from Various Extraction Methods on Cell Viability and Collagen Production

    PubMed Central

    Aramwit, Pornanong; Kanokpanont, Sorada; Nakpheng, Titpawan; Srichana, Teerapol

    2010-01-01

    Silk sericin (SS) can accelerate cell proliferation and attachment; however, SS can be extracted by various methods, which result in SS exhibiting different physical and biological properties. We found that SS produced from various extraction methods has different molecular weights, zeta potential, particle size and amino acid content. The MTT assay indicated that SS from all extraction methods had no toxicity to mouse fibroblast cells at concentrations up to 40 μg/mL after 24 h incubation, but SS obtained from some extraction methods can be toxic at higher concentrations. Heat-degraded SS was the least toxic to cells and activated the highest collagen production, while urea-extracted SS showed the lowest cell viability and collagen production. SS from urea extraction was severely harmful to cells at concentrations higher than 100 μg/mL. SS from all extraction methods could still promote collagen production in a concentration-dependent manner, even at high concentrations that are toxic to cells. PMID:20559510

  6. Cucurbitacin E as a new inhibitor of cofilin phosphorylation in human leukemia U937 cells.

    PubMed

    Nakashima, Souichi; Matsuda, Hisashi; Kurume, Ai; Oda, Yoshimi; Nakamura, Seikou; Yamashita, Masayuki; Yoshikawa, Masayuki

    2010-05-01

    Cucurbitane-type triterpenes, cucurbitacins B and E, were reported to exhibit cytotoxic effects in several cell lines mediated by JAK/STAT3 signaling. However, neither compound inhibited phosphorylation of STAT3 in human leukemia (U937) cells at low concentrations. We therefore synthesized a biotin-linked cucurbitacin E to isolate target proteins based on affinity for the molecule. As a result, cofilin, which regulates the depolymerization of actin, was isolated and suggested to be a target. Cucurbitacins E and I inhibited the phosphorylation of cofilin in a concentration-dependent manner, and their effective concentrations having the same range as the concentrations at which they had cytotoxic effects in U937 cells. In addition, the fibrous-/globular-actin ratio was decreased after treatment with cucurbitacin E in HT1080 cells. These findings suggested that the inhibition of cofilin's phosphorylation increased the severing activity of cofilin, and then the depolymerization of actin was enhanced after treatment with cucurbitacin E at lower concentrations. 2010 Elsevier Ltd. All rights reserved.

  7. Effect of thread shape on screw stress concentration by photoelastic measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dragoni, E.

    1994-11-01

    The screw stress concentration for six nut-bolt connections embodying three different thread profiles and two nut shapes is measured photoelastically. Buttress (nearly zero flank angle), trapezoidal (15-deg flank angle), and triangular (30-deg flank angle) thread forms are examined in combination with standard and lip-type nuts. The effect of the thread profile on the screw stress concentration appears to be dependent upon the kind of nut considered. If the fastening incorporates a standard nut, the buttress thread is stronger than the triangular one, which, in turn, behaves better than the trapezoidal contour. The improvement is roughly a 20% reduction in themore » stress concentration factor from the trapezoidal to the buttress thread. In the case of lip nut, conversely, this tendency is somewhat reversed, with the trapezoidal thread performing slightly (but not decidedly) better than the other two shapes. Finally, averaged over all three thread forms, the lip nut exhibits a stress concentration factor which is about 50% lower than that of the standard nut.« less

  8. NMR Water Self–Diffusion and Relaxation Studies on Sodium Polyacrylate Solutions and Gels in Physiologic Ionic Solutions

    PubMed Central

    Bai, Ruiliang; Basser, Peter J.; Briber, Robert M.; Horkay, Ferenc

    2013-01-01

    Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca2+ and Na+. Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na+ on the mobility of water molecules was practically undetectable. By contrast, addition of Ca2+ strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced. PMID:24409001

  9. NMR Water Self-Diffusion and Relaxation Studies on Sodium Polyacrylate Solutions and Gels in Physiologic Ionic Solutions.

    PubMed

    Bai, Ruiliang; Basser, Peter J; Briber, Robert M; Horkay, Ferenc

    2014-03-15

    Water self-diffusion coefficients and longitudinal relaxation rates in sodium polyacrylate solutions and gels were measured by NMR, as a function of polymer content and structure in a physiological concentration range of monovalent and divalent cations, Ca 2+ and Na + . Several physical models describing the self-diffusion of the solvent were applied and compared. A free-volume model was found to be in good agreement with the experimental results over a wide range of polymer concentrations. The longitudinal relaxation rate exhibited linear dependence on polymer concentration below a critical concentration and showed non-linear behavior at higher concentrations. Both the water self-diffusion and relaxation were less influenced by the polymer in the gel state than in the uncrosslinked polymer solutions. The effect of Na + on the mobility of water molecules was practically undetectable. By contrast, addition of Ca 2+ strongly increased the longitudinal relaxation rate while its effect on the self-diffusion coefficient was much less pronounced.

  10. Analysis and generation of groundwater concentration time series

    NASA Astrophysics Data System (ADS)

    Crăciun, Maria; Vamoş, Călin; Suciu, Nicolae

    2018-01-01

    Concentration time series are provided by simulated concentrations of a nonreactive solute transported in groundwater, integrated over the transverse direction of a two-dimensional computational domain and recorded at the plume center of mass. The analysis of a statistical ensemble of time series reveals subtle features that are not captured by the first two moments which characterize the approximate Gaussian distribution of the two-dimensional concentration fields. The concentration time series exhibit a complex preasymptotic behavior driven by a nonstationary trend and correlated fluctuations with time-variable amplitude. Time series with almost the same statistics are generated by successively adding to a time-dependent trend a sum of linear regression terms, accounting for correlations between fluctuations around the trend and their increments in time, and terms of an amplitude modulated autoregressive noise of order one with time-varying parameter. The algorithm generalizes mixing models used in probability density function approaches. The well-known interaction by exchange with the mean mixing model is a special case consisting of a linear regression with constant coefficients.

  11. Lipophilic Compound-Mediated Gene Expression and Implication for Intervention in Reactive Oxygen Species (ROS)-Related Diseases: Mini-review

    PubMed Central

    Nakamura, Yukiko K.; Omaye, Stanley T.

    2010-01-01

    In addition to exhibiting antioxidant properties, conjugated linoleic acid (CLA) and vitamin E may modulate gene expression of endogenous antioxidant enzymes. Depending on cellular microenvironments, such modulation reflects either antioxidant or prooxidant outcomes. Although epidemiological/experimental studies have indicated that CLA and vitamin E have health promoting properties, recent findings from clinical trials have been inconclusive. Discrepancies between the results found from prospective studies and recent clinical trials might be attributed to concentration-dependent cellular microenvironment alterations. We give a perspective of possible molecular mechanisms of actions of these lipophilic compounds and their implications for interventions of reactive oxygen species (ROS)-related diseases. PMID:22254050

  12. Lifetime and linewidth of individual quantum dots interfaced with graphene.

    PubMed

    Miao, Xin; Gosztola, David J; Sumant, Anirudha V; Grebel, Haim

    2018-04-19

    We report on luminescence lifetimes and linewidths from an array of individual quantum dots (QDs) that were either interfaced with graphene surface guides or dispersed on aluminum electrodes. The observed fluorescence quenching is consistent with screening by charge carriers. Fluorescence quenching is typically mentioned as a sign that chromophores are interfacing with a conductive surface (metal or graphene); we find that the QDs interfaced with the metal film exhibit shortened lifetime and line-broadening but not necessarily fluorescence quenching as the latter may be impacted by molecular concentration, reflectivity and conductor imperfections. We also comment on angle-dependent lifetime measurements, which we postulate depend on the specifics of the local density-of-states involved.

  13. Long-range electrostatic screening in ionic liquids

    PubMed Central

    Gebbie, Matthew A.; Dobbs, Howard A.; Valtiner, Markus; Israelachvili, Jacob N.

    2015-01-01

    Electrolyte solutions with high concentrations of ions are prevalent in biological systems and energy storage technologies. Nevertheless, the high interaction free energy and long-range nature of electrostatic interactions makes the development of a general conceptual picture of concentrated electrolytes a significant challenge. In this work, we study ionic liquids, single-component liquids composed solely of ions, in an attempt to provide a novel perspective on electrostatic screening in very high concentration (nonideal) electrolytes. We use temperature-dependent surface force measurements to demonstrate that the long-range, exponentially decaying diffuse double-layer forces observed across ionic liquids exhibit a pronounced temperature dependence: Increasing the temperature decreases the measured exponential (Debye) decay length, implying an increase in the thermally driven effective free-ion concentration in the bulk ionic liquids. We use our quantitative results to propose a general model of long-range electrostatic screening in ionic liquids, where thermally activated charge fluctuations, either free ions or correlated domains (quasiparticles), take on the role of ions in traditional dilute electrolyte solutions. This picture represents a crucial step toward resolving several inconsistencies surrounding electrostatic screening and charge transport in ionic liquids that have impeded progress within the interdisciplinary ionic liquids community. More broadly, our work provides a previously unidentified way of envisioning highly concentrated electrolytes, with implications for diverse areas of inquiry, ranging from designing electrochemical devices to rationalizing electrostatic interactions in biological systems. PMID:26040001

  14. Correlation between plasma levels of arginine and citrulline in preterm and full-term neonates: Therapeutical implications.

    PubMed

    Contreras, Mike T; Gallardo, Maria J; Betancourt, Luis R; Rada, Pedro V; Ceballos, Gerardo A; Hernandez, Luis E; Hernandez, Luis F

    2017-11-01

    Preterm neonates exhibit several deficiencies that endanger their lives. Understanding those disturbances will provide tools for the management of preterm neonates. The present work focuses on arginine and citrulline which has been flagged among the biochemical landmarks of prematurity. We examined blood samples of preterm newborns as compared with mature neonates to determine the levels of arginine and citrulline by capillary zone electrophoresis with laser induced fluorescence detection (CZE-LIFD). Significantly lower levels of arginine and citrulline were found in preterm neonates than in mature neonates (P<.01). Interestingly there was a highly significant correlation between the two amino acids in mature neonates (P<.0001). Such correlation was present in preterm neonates too (P<.01). Pearson coefficient showed that 60% of the citrulline concentration depends on arginine concentration in mature neonates. Only 20% of the citrulline concentration depends on arginine concentration in preterm neonates. Although the ratio arginine/citrulline was lower in preterm neonates than in mature neonates the difference was not statistically significant. These results suggest that less arginine is converted to citrulline to form nitric oxide in preterm than in full-term neonates. The result is discussed in terms of the immature enzymatic systems in the preterm neonate. © 2017 Wiley Periodicals, Inc.

  15. WITHAFERIN A INDUCES APOPTOSIS IN RAT C6 GLIOMA CELLS THROUGH REGULATING NF-KB NUCLEAR TRANSLOCATION AND ACTIVATION OF CASPASE CASCADE.

    PubMed

    Hou, Wei-Chen; Miao, Xiao-Hui; Ma, Lian-Jun; Bai, Xiao-Xue; Liu, Qun; Song, Lei

    2017-01-01

    The demand for the chemopreventive drug from the plant source is increasing in recent times, owing to its various biological activities without any adverse effect. The intention of this current study was to examine the anti-glioma effect of Withaferin A (WFA) on C6 glioma cell line model. C6 glioma cells were administrated with different concentration of WFA (50, 100, 200 and 500 μg/mL) and DMSO (control) group to examine its anti-proliferative, anti-inflammatory and pro-apoptotic activities. Treatment with WFA showed a significant decline in the glioma cell count in a dose-dependent manner and thus proving its anti-proliferative effect. Similarly, inflammatory markers were also substantially lowered upon treatment with different concentration of WFA. However, DNA fragmentation and apoptotic markers like Caspase-3 and 9 were concomitantly enhanced after co-cultured with different concentration of WFA and thus exhibiting its cytotoxicity efficacy. Furthermore, the protein expression of Bcl2 and Bax were markedly downregulated and upregulated respectively; upon treatment with WFA on C6 glioma cells. The outcome of this study evidently demonstrates that C6 glioma cells co-cultured with increased concentration of WFA, showed an anti-proliferative, anti-inflammatory and pro-apoptotic effect in a dose-dependent fashion.

  16. Copper retention, calcium release and ultrastructural evidence indicate specific Cuprolinic Blue uptake and peculiar modifications in mineralizing aortic valves.

    PubMed

    Ortolani, F; Tubaro, F; Petrelli, L; Gandaglia, A; Spina, M; Marchini, M

    2002-01-01

    Previously, reactions with copper phthalocyanines at 0.05 M critical electrolyte concentration were found to cause demineralization in calcifying porcine aortic valves after subdermal implantation in rat, as well as simultaneous visualization of peculiar phthalocyanine-positive layers around cells and cell-derived matrix vesicles. In the present investigation, an appraisal was made of the mechanism and specificity of reactions with Cuprolinic Blue by comparing quantitatively calcium release and copper retention by calcified aortic valves reacted with this phthalocyanine under different critical electrolyte concentration conditions, and the corresponding ultrastructural patterns. It was found that (i) decalcifying properties are inversely proportional to salt molarity; (ii) reactivity to Cuprolinic Blue is critical electrolyte concentration-dependent, since the greatest copper retention occurred in 0.05 M critical electrolyte concentration Cuprolinic Blue-reacted samples, the only ones that also exhibited phthalocyanine-positive layers; (iii) the appearance of phthalocyanine-positive layers depends on Cuprolinic Blue uptake, revealing pericellular clustering of calcium-binding, anionic molecules; and (iv) minor Cuprolinic Blue uptake occurs by residual proteoglycans which still remain in the extracellular matrix after 6-week-long subdermal implantation. The present results indicate that this method is appropriate for the study of mineralized tissues and illustrate peculiar tissue modifications occurring at least in the experimental conditions used here.

  17. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L.

    PubMed

    Ali, Intzar; Khan, Farrah G; Suri, Krishan A; Gupta, Bishan D; Satti, Naresh K; Dutt, Prabhu; Afrin, Farhat; Qazi, Ghulam N; Khan, Inshad A

    2010-02-03

    Hydroxychavicol, isolated from the chloroform extraction of the aqueous leaf extract of Piper betle L., (Piperaceae) was investigated for its antifungal activity against 124 strains of selected fungi. The leaves of this plant have been long in use tropical countries for the preparation of traditional herbal remedies. The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of hydroxychavicol were determined by using broth microdilution method following CLSI guidelines. Time kill curve studies, post-antifungal effects and mutation prevention concentrations were determined against Candida species and Aspergillus species "respectively". Hydroxychavicol was also tested for its potential to inhibit and reduce the formation of Candida albicans biofilms. The membrane permeability was measured by the uptake of propidium iodide. Hydroxychavicol exhibited inhibitory effect on fungal species of clinical significance, with the MICs ranging from 15.62 to 500 microg/ml for yeasts, 125 to 500 microg/ml for Aspergillus species, and 7.81 to 62.5 microg/ml for dermatophytes where as the MFCs were found to be similar or two fold greater than the MICs. There was concentration-dependent killing of Candida albicans and Candida glabrata up to 8 x MIC. Hydroxychavicol also exhibited an extended post antifungal effect of 6.25 to 8.70 h at 4 x MIC for Candida species and suppressed the emergence of mutants of the fungal species tested at 2 x to 8 x MIC concentration. Furthermore, it also inhibited the growth of biofilm generated by C. albicans and reduced the preformed biofilms. There was increased uptake of propidium iodide by C. albicans cells when exposed to hydroxychavicol thus indicating that the membrane disruption could be the probable mode of action of hydroxychavicol. The antifungal activity exhibited by this compound warrants its use as an antifungal agent particularly for treating topical infections, as well as gargle mouthwash against oral Candida infections.

  18. In vitro antifungal activity of hydroxychavicol isolated from Piper betle L

    PubMed Central

    2010-01-01

    Background Hydroxychavicol, isolated from the chloroform extraction of the aqueous leaf extract of Piper betle L., (Piperaceae) was investigated for its antifungal activity against 124 strains of selected fungi. The leaves of this plant have been long in use tropical countries for the preparation of traditional herbal remedies. Methods The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of hydroxychavicol were determined by using broth microdilution method following CLSI guidelines. Time kill curve studies, post-antifungal effects and mutation prevention concentrations were determined against Candida species and Aspergillus species "respectively". Hydroxychavicol was also tested for its potential to inhibit and reduce the formation of Candida albicans biofilms. The membrane permeability was measured by the uptake of propidium iodide. Results Hydroxychavicol exhibited inhibitory effect on fungal species of clinical significance, with the MICs ranging from 15.62 to 500 μg/ml for yeasts, 125 to 500 μg/ml for Aspergillus species, and 7.81 to 62.5 μg/ml for dermatophytes where as the MFCs were found to be similar or two fold greater than the MICs. There was concentration-dependent killing of Candida albicans and Candida glabrata up to 8 × MIC. Hydroxychavicol also exhibited an extended post antifungal effect of 6.25 to 8.70 h at 4 × MIC for Candida species and suppressed the emergence of mutants of the fungal species tested at 2 × to 8 × MIC concentration. Furthermore, it also inhibited the growth of biofilm generated by C. albicans and reduced the preformed biofilms. There was increased uptake of propidium iodide by C. albicans cells when exposed to hydroxychavicol thus indicating that the membrane disruption could be the probable mode of action of hydroxychavicol. Conclusions The antifungal activity exhibited by this compound warrants its use as an antifungal agent particularly for treating topical infections, as well as gargle mouthwash against oral Candida infections. PMID:20128889

  19. Ethanol up-regulates nucleus accumbens neuronal activity dependent pentraxin (Narp): implications for alcohol-induced behavioral plasticity.

    PubMed

    Ary, Alexis W; Cozzoli, Debra K; Finn, Deborah A; Crabbe, John C; Dehoff, Marlin H; Worley, Paul F; Szumlinski, Karen K

    2012-06-01

    Neuronal activity dependent pentraxin (Narp) interacts with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors to facilitate excitatory synapse formation by aggregating them at established synapses. Alcohol is well-characterized to influence central glutamatergic transmission, including AMPA receptor function. Herein, we examined the influence of injected and ingested alcohol upon Narp protein expression, as well as basal Narp expression in mouse lines selectively bred for high blood alcohol concentrations under limited access conditions. Alcohol up-regulated accumbens Narp levels, concomitant with increases in levels of the GluR1 AMPA receptor subunit. However, accumbens Narp or GluR1 levels did not vary as a function of selectively bred genotype. We next employed a Narp knock-out (KO) strategy to begin to understand the behavioral relevance of alcohol-induced changes in protein expression in several assays of alcohol reward. Compared to wild-type mice, Narp KO animals: fail to escalate daily intake of high alcohol concentrations under free-access conditions; shift their preference away from high alcohol concentrations with repeated alcohol experience; exhibit a conditioned place-aversion in response to the repeated pairing of 3 g/kg alcohol with a distinct environment and fail to exhibit alcohol-induced locomotor hyperactivity following repeated alcohol treatment. Narp deletion did not influence the daily intake of either food or water, nor did it alter any aspect of spontaneous or alcohol-induced motor activity, including the development of tolerance to its motor-impairing effects with repeated treatment. Taken together, these data indicate that Narp induction, and presumably subsequent aggregation of AMPA receptors, may be important for neuroplasticity within limbic subcircuits mediating or maintaining the rewarding properties of alcohol. Published by Elsevier Inc.

  20. Can diet-dependent factors help explain fish-to-fish variation in thiamine-dependent early mortality syndrome?

    USGS Publications Warehouse

    Brown, S.B.; Arts, M.T.; Brown, L.R.; Brown, M.; Moore, K.; Villella, M.; Fitzsimons, J.D.; Honeyfield, D.C.; Tillitt, D.E.; Zajicek, J.L.; Wolgamood, M.; Hnath, J.G.

    2005-01-01

    To provide insight into the reasons why offspring of certain salmonine females exhibit early mortality syndrome (EMS) in the Great Lakes whereas others do not, we measured the egg concentrations of potential biochemical markers (stable isotopes of nitrogen and carbon, fatty acid signatures, and lipid-soluble carotenoids and vitamins) that are indicative of differing food web and trophic structure. To corroborate the presence of EMS, we also measured the egg content of thiamine vitamers. For all the stocks of coho salmon Oncorhynchus kisutch and Chinook salmon O. tshawytscha we studied, there was a very high correspondence between EMS and low concentrations of unphosphorylated thiamine in unfertilized eggs. For salmonine stocks in the Platte River, Thompson Creek, and the Swan River, Michigan, small but significant shifts occurred in measures of egg carotenoids, retinoids, ??15N depletion, and fatty acid profiles of fish producing normal offspring relative to those exhibiting EMS. Egg thiamine concentrations in Chinook salmon from the Little Manistee River, Michigan, in the low-EMS group were only marginally above the threshold for EMS induction. Along with this small thiamine differential, there was no evidence of differing food web or dietary factors between EMS-positive and normal Chinook salmon from the Little Manistee River. Further investigations are required to determine the potential dietary sources for the observed differences in biochemical markers between EMS-positive and normal fish. These findings are generally consistent with the hypothesis that a more diverse forage base may help to limit overall dietary content of species that contain thiaminase, such as alewives Alosa pseudoharengus, and may lead to improved embryonic survival for feral salmonids. ?? Copyright by the American Fisheries Society 2005.

  1. Ethanol up-regulates nucleus accumbens neuronal activity dependent pentraxin (Narp): implications for alcohol-induced behavioral plasticity

    PubMed Central

    Ary, Alexis W.; Cozzoli, Debra K.; Finn, Deborah A.; Crabbe, John C.; Dehoff, Marlin H.; Worley, Paul F.; Szumlinski, Karen K.

    2012-01-01

    Neuronal activity-dependent pentraxin (Narp) interacts with α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors to facilitate excitatory synapse formation by aggregating them at established synapses. Alcohol is well-characterized to influence central glutamatergic transmission, including AMPA receptor function. Herein, we examined the influence of injected and ingested alcohol upon Narp protein expression, as well as basal Narp expression in mouse lines selectively bred for high blood alcohol concentrations under limited access conditions. Alcohol up-regulated accumbens Narp levels, concomitant with increases in levels of the GluR1 AMPA receptor subunit. However, accumbens Narp or GluR1 levels did not vary as a function of selectively bred genotype. We next employed a Narp knock-out (KO) strategy to begin to understand the behavioral relevance of alcohol-induced changes in protein expression in several assays of alcohol reward. Compared to wild-type mice, Narp KO animals: fail to escalate daily intake of high alcohol concentrations under free-access conditions; shift their preference away from high alcohol concentrations with repeated alcohol experience; exhibit a conditioned place-aversion in response to the repeated pairing of 3 g/kg alcohol with a distinct environment and fail to exhibit alcohol-induced locomotor hyperactivity following repeated alcohol treatment. Narp deletion did not influence the daily intake of either food or water, nor did it alter any aspect of spontaneous or alcohol-induced motor activity, including the development of tolerance to its motor-impairing effects with repeated treatment. Taken together, these data indicate that Narp induction, and presumably subsequent aggregation of AMPA receptors, may be important for neuroplasticity within limbic subcircuits mediating or maintaining the rewarding properties of alcohol. PMID:22444953

  2. Respiratory response to toluene diisocyanate depends on prior frequency and concentration of dermal sensitization in mice.

    PubMed

    Vanoirbeek, Jeroen A J; Tarkowski, Maciej; Ceuppens, Jan L; Verbeken, Erik K; Nemery, Benoit; Hoet, Peter H M

    2004-08-01

    Occupational asthma is the principal cause of work-related respiratory disease in the industrial world. In the absence of satisfactory models for predicting the potential of low molecular weight chemicals to cause asthma, we verified that dermal sensitization prior to intranasal challenge influences the respiratory response using toluene diisocyanate (TDI), a known respiratory sensitizer. BALB/c mice received TDI or vehicle (acetone/olive oil) on each ear on three consecutive days (days 1, 2, and 3; 0.3 or 3% TDI) or only once (day 1, 1% TDI). On day 7, the mice received similar dermal applications of vehicle or the same concentration of TDI as before ("boost"). On day 10, they received an intranasal dose of TDI (0.1%) or vehicle. Ventilatory function was monitored by whole body plethysmography for 40 min after intranasal application, and reactivity to inhaled methacholine was assessed 24 h later. Pulmonary inflammation was assessed by bronchoalveolar lavage and histology. Mice that received an intranasal dose of TDI without having received a prior dermal application of TDI did not exhibit any ventilatory response or inflammatory changes compared to vehicle controls. In contrast, mice that had received prior application(s) of TDI, even if only on day 7, exhibited the following: ventilatory responses, compatible with bronchoconstriction, immediately after intranasal application with TDI; enhanced methacholine responsiveness 24 h later; and pulmonary inflammation characterized by neutrophils. This was, however, not the case in mice that received the highest dermal amount of TDI (3% on days 1, 2, and 3). These findings suggest that respiratory response to TDI depends on prior frequency and concentration of dermal sensitization in mice.

  3. Interacting shells in AdS spacetime and chaos

    NASA Astrophysics Data System (ADS)

    Brito, Richard; Cardoso, Vitor; Rocha, Jorge V.

    2016-07-01

    We study the simplest two-body problem in asymptotically anti-de Sitter spacetime: two, infinitely thin, concentric spherical shells of matter. We include only gravitational interaction between the two shells, but we show that the dynamics of this system is highly nontrivial. We observe prompt collapse to a black hole, delayed collapse and even perpetual oscillatory motion, depending on the initial location of the shells (or their energy content). The system exhibits critical behavior, and we show strong hints that it is also chaotic.

  4. Polarographic study of cadmium 5-hydroxy 2-(hydroxymethyl) 4H-pyran-4-one complex

    NASA Technical Reports Server (NTRS)

    Wilson, Ray F.; Daniels, Robert C.

    1989-01-01

    A polarographic study was performed on the products formed in the interaction of cadmium (II) with a 5-hydroxy 2-(hydroxymethyl) 4H-Pyran-4-one, using varying conditions of pH, supporting electrolytes, and concentrations. Measurements using the differential pulse method show that cadmium (II) exhibits a molar combining ratio of complexing agents to cation ranging from 1 to 1 to 3 to 1 depending on the pH and the supporting electrolyte employed.

  5. Molecular imaging with targeted perfluorocarbon nanoparticles: Quantification of the concentration dependence of contrast enhancement for binding to sparse cellular epitopes

    PubMed Central

    Marsh, Jon N.; Partlow, Kathryn C.; Abendschein, Dana R.; Scott, Michael J.; Lanza, Gregory M.; Wickline, Samuel A.

    2007-01-01

    Targeted, liquid perfluorocarbon nanoparticles are effective agents for acoustic contrast enhancement of abundant cellular epitopes (e.g. fibrin in thrombi) and for lower prevalence binding sites, such as integrins associated with tumor neovasculature. In this study we sought to delineate the quantitative relationship between the extent of contrast enhancement of targeted surfaces and the density (and concentration) of bound perfluorocarbon (PFC) nanoparticles. Two dramatically different substrates were utilized for targeting. In one set of experiments, the surfaces of smooth, flat, avidin-coated agar disks were exposed to biotinylated nanoparticles to yield a thin layer of targeted contrast. For the second set of measurements, we targeted PFC nanoparticles applied in thicker layers to cultured smooth muscle cells expressing the transmembrane glycoprotein “tissue factor” at the cell surface. An acoustic microscope was used to characterize reflectivity for all samples as a function of bound PFC (determined via gas chromatography). We utilized a formulation of low-scattering nanoparticles having oil-based cores to compete against high-scattering PFC nanoparticles for binding, to elucidate the dependence of contrast enhancement on PFC concentration. The relationship between reflectivity enhancement and bound PFC content varied in a curvilinear fashion, and exhibited an apparent asymptote (approximately 16 dB and 9 dB enhancement for agar and cell samples, respectively) at the maximum concentrations (~150 μg and ~1000 μg PFOB for agar and cell samples, respectively). Samples targeted with only oil-based nanoparticles exhibited mean backscatter values that were nearly identical to untreated samples (<1 dB difference), confirming the oil particles’ low-scattering behavior. The results of this study indicate that substantial contrast enhancement with liquid perfluorocarbon nanoparticles can be realized even in cases of partial surface coverage (as might be encountered when targeting sparsely populated epitopes), or when targeting surfaces with locally irregular topography. Furthermore, it may be possible to assess the quantity of bound cellular epitopes through acoustic means. PMID:17434667

  6. Inhibition of Isolated Mycobacterium tuberculosis Fatty Acid Synthase I by Pyrazinamide Analogs▿

    PubMed Central

    Ngo, Silvana C.; Zimhony, Oren; Chung, Woo Jin; Sayahi, Halimah; Jacobs, William R.; Welch, John T.

    2007-01-01

    An analog of pyrazinamide (PZA), 5-chloropyrazinamide (5-Cl-PZA), has previously been shown to inhibit mycobacterial fatty acid synthase I (FASI). FASI has been purified from a recombinant strain of M. smegmatis (M. smegmatis Δfas1 attB::M. tuberculosis fas1). Following purification, FASI activity and inhibition were assessed spectrophotometrically by monitoring NADPH oxidation. The observed inhibition was both concentration and structure dependent, being affected by both substitution at the 5 position of the pyrazine nucleus and the nature of the ester or N-alkyl group. Under the conditions studied, both 5-Cl-PZA and PZA exhibited concentration and substrate dependence consistent with competitive inhibition of FASI with Kis of 55 to 59 μM and 2,567 to 2,627 μM, respectively. The results were validated utilizing a radiolabeled fatty acid synthesis assay. This assay showed that FASI was inhibited by PZA and pyrazinoic acid as well as by a series of PZA analogs. PMID:17485499

  7. Room temperature ammonia and VOC sensing properties of CuO nanorods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhuvaneshwari, S.; Gopalakrishnan, N., E-mail: ngk@nitt.edu

    Here, we report a NH{sub 3} and Volatile Organic Compounds (VOCs) sensing prototype of CuO nanorods with peculiar sensing characteristics at room temperature. High quality polycrystalline nanorods were synthesized by a low temperature hydrothermal method. The rods are well oriented with an aspect ratio of 5.71. Luminescence spectrum of CuO nanorods exhibited a strong UV-emission around 415 nm (2.98 eV) which arises from the electron-hole recombination phenomenon. The absence of further deep level emissions establishes the lack of defects such as oxygen vacancies and Cu interstitials. At room temperature, the sensor response was recorded over a range of gas concentrations frommore » 100-600 ppm of ammonia, ethanol and methanol. The sensor response showed power law dependence with the gas concentration. This low temperature sensing can be validated by the lower value of calculated activation energy of 1.65 eV observed from the temperature dependent conductivity measurement.« less

  8. Ion transport properties of magnesium bromide/dimethyl sulfoxide non-aqueous liquid electrolyte

    PubMed Central

    Sheha, E.

    2015-01-01

    Nonaqueous liquid electrolyte system based dimethyl sulfoxide DMSO and magnesium bromide (MgBr2) is synthesized via ‘Solvent-in-Salt’ method for the application in magnesium battery. Optimized composition of MgBr2/DMSO electrolyte exhibits high ionic conductivity of 10−2 S/cm at ambient temperature. This study discusses different concentrations from 0 to 5.4 M of magnesium salt, representing low, intermediate and high concentrations of magnesium salt which are examined in frequency dependence conductivity studies. The temperature dependent conductivity measurements have also been carried out to compute activation energy (Ea) by least square linear fitting of Arrhenius plot: ‘log σ − 1/T. The transport number of Mg2+ ion determined by means of a combination of d.c. and a.c. techniques is ∼0.7. A prototype cell was constructed using nonaqueous liquid electrolyte with Mg anode and graphite cathode. The Mg/graphite cell shows promising cycling. PMID:26843967

  9. Up-conversion green emission of Yb3+/Er3+ ions doped YVO4 nanocrystals obtained via modified Pechini's method

    NASA Astrophysics Data System (ADS)

    Szczeszak, Agata; Runowski, Marcin; Wiglusz, Rafal J.; Grzyb, Tomasz; Lis, Stefan

    2017-12-01

    A series of lanthanide doped yttrium vanadates were prepared by Pechini's method (sol-gel process). The as-prepared precursors, in the presence of citric acid, were calcined in the temperature range of 600-900 °C. The obtained products were composed of small nanoparticles, in the size range of 20-50 nm, depending on the annealing temperature, exhibiting a bright green up-conversion emission, under NIR laser irradiation, and emission lifetimes in the range of 4.7-18.3 μs. Their structural, morphological and spectroscopic properties were investigated in detail by XRD, HR-TEM including FFT analysis, EDX and spectroscopic techniques (emission, power dependence and emission kinetics). The luminescence quenching phenomenon, manifested in a decrease of up-conversion intensity and shortening of emission lifetime, was observed with increasing of the Yb3+ ion concentration and decreasing the particle size. The optimal concentration of the Yb3+ ions was found to be 15 mol% (YVO4: Yb3+ 15 mol%, Er3+ 2 mol%).

  10. Effect of Silver Doping on Transport Properties of Bi2Se3: AgxBi2Se3 and Bi2-xAgxSe3

    NASA Astrophysics Data System (ADS)

    Zhang, Min; Wei, Zhan-Tao

    2018-05-01

    Ag-doped Bi2Se3 with the formula AgxBi2Se3 and Bi2-xAgxSe3 were prepared and their electrical and magnetic transport properties have been investigated to study the influence of silver doping on transport properties of Bi2Se3 with different Ag-doped method. All samples exhibited metallic resistivity and the resistivity increased with increasing Ag concentration. The lattice parameter c of Ag-substituted and Ag-intercalated samples displays a contrary change as the Ag concentration increased. For the Ag-intercalated samples, both the resistance upturn were observed in the curves of temperature dependent of resistivity and temperature dependent of magnetoresistance, respectively, indicating that the enhanced surface effect was obtained in those samples. Monotonously, field-induced MR peaks around 200 K were also observed in those samples. Similar behaviors were not observed in the Ag-substituted samples.

  11. Myosin concentration underlies cell size–dependent scalability of actomyosin ring constriction

    PubMed Central

    Wright, Graham D.; Leong, Fong Yew; Chiam, Keng-Hwee; Chen, Yinxiao; Jedd, Gregory; Balasubramanian, Mohan K.

    2011-01-01

    In eukaryotes, cytokinesis is accomplished by an actomyosin-based contractile ring. Although in Caenorhabditis elegans embryos larger cells divide at a faster rate than smaller cells, it remains unknown whether a similar mode of scalability operates in other cells. We investigated cytokinesis in the filamentous fungus Neurospora crassa, which exhibits a wide range of hyphal circumferences. We found that N. crassa cells divide using an actomyosin ring and larger rings constricted faster than smaller rings. However, unlike in C. elegans, the total amount of myosin remained constant throughout constriction, and there was a size-dependent increase in the starting concentration of myosin in the ring. We predict that the increased number of ring-associated myosin motors in larger rings leads to the increased constriction rate. Accordingly, reduction or inhibition of ring-associated myosin slows down the rate of constriction. Because the mechanical characteristics of contractile rings are conserved, we predict that these findings will be relevant to actomyosin ring constriction in other cell types. PMID:22123864

  12. Binding mechanism of PicoGreen to DNA characterized by magnetic tweezers and fluorescence spectroscopy.

    PubMed

    Wang, Ying; Schellenberg, Helene; Walhorn, Volker; Toensing, Katja; Anselmetti, Dario

    2017-09-01

    Fluorescent dyes are broadly used in many biotechnological applications to detect and visualize DNA molecules. However, their binding to DNA alters the structural and nanomechanical properties of DNA and, thus, interferes with associated biological processes. In this work we employed magnetic tweezers and fluorescence spectroscopy to investigate the binding of PicoGreen to DNA at room temperature in a concentration-dependent manner. PicoGreen is an ultrasensitive quinolinium nucleic acid stain exhibiting hardly any background signal from unbound dye molecules. By means of stretching and overwinding single, torsionally constrained, nick-free double-stranded DNA molecules, we acquired force-extension and supercoiling curves which allow quantifying DNA contour length, persistence length and other thermodynamical binding parameters, respectively. The results of our magnetic tweezers single-molecule binding study were well supported through analyzing the fluorescent spectra of stained DNA. On the basis of our work, we could identify a concentration-dependent bimodal binding behavior, where, apparently, PicoGreen associates to DNA as an intercalator and minor-groove binder simultaneously.

  13. Kinetics of the substitution of dehydroacetic acid in tris (dehydroacetato) Fe(III) complex by 8-hydroxyquinoline, di- and tetra-hydroxyquinone

    NASA Astrophysics Data System (ADS)

    Fouad, D. M.; Ismail, N. M.; El-Gahami, M. A.; Ibrahim, S. A.

    2007-06-01

    The ligand substitution reactions of dehydroacetic acid (Hdha) in [Fe(dha) 3] with second ligand such as 8-hydroxyquinoline (Hquin), 1,4-dihydroxyanthraquinone (H 2dhaq) and 1,4,5,8-tetra-hydroxyanthraquinone (H 4thaq) were investigated spectrophotometrically by in low polarity solvents like benzene, chloroform and dichloromethane. It is deduced that the substitution reaction takes place through one successive step. The reaction was performed at four different temperatures (5-25) °C, and it exhibits a first order dependence on the concentration of the starting complex. The observed rate constant depends on the concentration of both leaving and entering ligands. The evaluation of the kinetic data gives activation parameters which support an associative mechanism in the transition states and the higher rate of substitution of the dha in Fe(dha) 3 complex is due to entropy effect. The solid complexes were synthesized and characterized by elemental analysis, IR and UV-vis spectral techniques.

  14. Experimental demonstration of bindingless signal delivery in human cells via microfluidics

    NASA Astrophysics Data System (ADS)

    Kuo, Ching-Te; Chuang, Fang-Tzu; Wu, Pei-Yi; Lin, Yueh-Chien; Liu, Hao-Kai; Huang, Guan-Syuan; Tsai, Tzu-Ching; Chi, Cheng-Yu; Wo, Andrew M.; Lee, Hsinyu; Lee, Si-Chen

    2014-07-01

    The cellular signal transduction is commonly believed to rely on the direct "contact" or "binding" of the participating molecule reaction that depends positively on the corresponding molecule concentrations. In living systems, however, it is somewhat difficult to precisely match the corresponding rapid "binding," depending on the probability of molecular collision, existing in the cellular receptor-ligand interactions. Thus, a question arises that if there is another mechanism (i.e., bindingless) that could promote this signal communication. According to this hypothesis, we report a cellular model based on the examination of intracellular calcium concentration to explore whether the unidentified signal delivery in cells exists, via a microfluidic device. This device was designed to isolate the cells from directly contacting with the corresponding ligands/molecules by the particular polydimethylsiloxane (PDMS) membranes with different thicknesses. Results show a significant increment of calcium mobilization in human prostate cancer PC-3 cells by the stimulation of endothelin-1, even up to a separated distance of 95 μm. In addition, these stimulated signals exhibited a bump-shaped characteristics depending on the membrane thickness. When the PDMS membrane is capped by SiO2, a particular trait that resembles the ballistic signal conduction was observed. A theoretical model was developed to describe the signal transport process across the PDMS membrane. Taken together, these results indicate that the unidentified signal (ligand structural information) delivery could occur in cells and be examined by the proposed approach, exhibiting a bindingless communication manner. Moreover, this approach and our finding may offer new opportunities to establish a robust and cost-effective platform for the study of cellular biology and new drug development.

  15. Abciximab, eptifibatide, and tirofiban exhibit dose-dependent potencies to dissolve platelet aggregates.

    PubMed

    Moser, Martin; Bertram, Ulf; Peter, Karlheinz; Bode, Christoph; Ruef, Johannes

    2003-04-01

    Platelet GPIIb/IIIa antagonists are not only used to prevent platelet aggregation, but also in combination with thrombolytic agents for the treatment of coronary thrombi. Recent data indicate a potential of abciximab alone to dissolve thrombi in vivo. We investigated the potential of abciximab, eptifibatide, and tirofiban to dissolve platelet aggregates in vitro. Adenosine diphosphate (ADP)-induced platelet aggregation could be reversed in a concentration-dependent manner by all three GPIIb/IIIa antagonists when added after the aggregation curve reached half-maximal aggregation. The concentrations chosen are comparable with in vivo plasma concentrations in clinical applications. Disaggregation reached a maximum degree of 72.4% using 0.5 microg/ml tirofiban, 91.5% using 3.75 microg/ml eptifibatide, and 48.4% using 50 microg/ml abciximab (P < 0.05, respectively). A potential fibrinolytic activity of the GPIIb/IIIa antagonists was ruled out by preincubation with aprotinin or by a plasma clot assay. A stable model Chinese hamster ovary (CHO) cell line expressing the activated form of GPIIb/IIIa was used to confirm the disaggregation capacity of GPIIb/IIIa antagonists found in platelets. Not only abciximab, but also eptifibatide and tirofiban have the potential to disaggregate newly formed platelet clusters in vitro. Because enzyme-dependent fibrinolysis does not appear to be involved, competitive removal of fibrinogen by the receptor antagonists is the most likely mechanism.

  16. Effect of surfactants and manufacturing methods on the electrical and thermal conductivity of carbon nanotube/silicone composites.

    PubMed

    Vilčáková, Jarmila; Moučka, Robert; Svoboda, Petr; Ilčíková, Markéta; Kazantseva, Natalia; Hřibová, Martina; Mičušík, Matej; Omastová, Mária

    2012-11-05

    The effect of ionic surfactants and manufacturing methods on the separation and distribution of multi-wall carbon nanotubes (CNTs) in a silicone matrix are investigated. The CNTs are dispersed in an aqueous solution of the anionic surfactant dodecylbenzene sulfonic acid (DBSA), the cationic surfactant cetyltrimethylammonium bromide (CTAB), and in a DBSA/CTAB surfactant mixture. Four types of CNT-based composites of various concentrations from 0 to 6 vol.% are prepared by simple mechanical mixing and sonication. The morphology, electrical and thermal conductivity of the CNT-based composites are analyzed. The incorporation of both neat and modified CNTs leads to an increase in electrical and thermal conductivity. The dependence of DC conductivity versus CNT concentration shows percolation behaviour with a percolation threshold of about 2 vol.% in composites with neat CNT. The modification of CNTs by DBSA increases the percolation threshold to 4 vol.% due to the isolation/separation of individual CNTs. This, in turn, results in a significant decrease in the complex permittivity of CNT–DBSA-based composites. In contrast to the percolation behaviour of DC conductivity, the concentration dependence of thermal conductivity exhibits a linear dependence, the thermal conductivity of composites with modified CNTs being lower than that of composites with neat CNTs. All these results provide evidence that the modification of CNTs by DBSA followed by sonication allows one to produce composites with high homogeneity.

  17. Evaluation of diffusion coefficients by means of an approximate steady-state condition in sedimentation velocity distributions.

    PubMed

    Scott, David J; Harding, Stephen E; Winzor, Donald J

    2015-12-01

    This investigation examined the feasibility of manipulating the rotor speed in sedimentation velocity experiments to spontaneously generate an approximate steady-state condition where the extent of diffusional spreading is matched exactly by the boundary sharpening arising from negative s-c dependence. Simulated sedimentation velocity distributions based on the sedimentation characteristics for a purified mucin preparation were used to illustrate a simple procedure for determining the diffusion coefficient from such steady-state distributions in situations where the concentration dependence of the sedimentation coefficient, s = s(0)/(1 + Kc), was quantified in terms of the limiting sedimentation coefficient as c → 0 (s(0)) and the concentration coefficient (K). Those simulations established that spontaneous generation of the approximate steady state could well be a feature of sedimentation velocity distributions for many unstructured polymer systems because the requirement that Kcoω(2)s(0)/D be between 46 and 183 cm(-2) is not unduly restrictive. Although spontaneous generation of the approximate steady state is also a theoretical prediction for structured macromolecular solutes exhibiting linear concentration dependence of the sedimentation coefficient, s = s(0)(1 - kc), the required value of k is far too large for any practical advantage to be taken of this approach with globular proteins. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Engineered Biomimetic Polymers as Tunable Agents for Controlling CaCO₃ Mineralization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Chun-Long; Qi, Jiahui; Zuckermann, Ronald N.

    2011-01-01

    In nature, living organisms use peptides and proteins to precisely control the nucleation and growth of inorganic minerals and sequester CO₂ via mineralization of CaCO₃. Here we report the exploitation of a novel class of sequence-specific non-natural polymers called peptoids as tunable agents that dramatically control CaCO₃ mineralization. We show that amphiphilic peptoids composed of hydrophobic and anionic monomers exhibit both a high degree of control over calcite growth morphology and an unprecedented 23-fold acceleration of growth at a peptoid concentration of only 50 nM, while acidic peptides of similar molecular weight exhibited enhancement factors of only ~2 or less.more » We further show that both the morphology and rate controls depend on peptoid sequence, side-chain chemistry, chain length, and concentration. These findings provide guidelines for developing sequence-specific non-natural polymers that mimic the functions of natural peptides or proteins in their ability to direct mineralization of CaCO₃, with an eye toward their application to sequestration of CO₂ through mineral trapping.« less

  19. Antioxidant properties of methanol extract and its solvent fractions obtained from selected Indian red seaweeds.

    PubMed

    Ganesan, P; Kumar, Chandini S; Bhaskar, N

    2008-05-01

    In vitro antioxidant activities of three selected Indian red seaweeds - viz., Euchema kappaphycus, Gracilaria edulis and Acanthophora spicifera were evaluated. Total phenolic content and reducing power of crude methanol extract were determined. The antioxidant activities of total methanol extract and five different solvent fractions (viz., petroleum ether (PE), ethyl acetate (EA), dichloromethane (DCM), butanol (BuOH) and aqueous) were also evaluated. EA fraction of A. spicifera exhibited higher total antioxidant activity (32.01 mg ascorbic acid equivalent/g extract) among all the fractions. Higher phenolic content (16.26 mg gallic acid equivalent/g extract) was noticed in PE fraction of G. edulis. Reducing power of crude methanol extract increased with increasing concentration of the extract. Reducing power and hydroxyl radical scavenging activity of E. kappaphycus were higher compared to standard antioxidant (alpha-tocopherol). The total phenol content of all the seaweeds was significantly different (P<0.05). In vitro antioxidant activities of methanol extracts of all the three seaweeds exhibited dose dependency; and increased with increasing concentration of the extract.

  20. Effect of capping agent on selectivity and sensitivity of CdTe quantum dots optical sensor for detection of mercury ions

    NASA Astrophysics Data System (ADS)

    Labeb, Mohmed; Sakr, Abdel-Hamed; Soliman, Moataz; Abdel-Fettah, Tarek M.; Ebrahim, Shaker

    2018-05-01

    Cadmium telluride (CdTe) quantum dots (QDs) were prepared from an aqueous solution containing CdCl2 and Te precursor in the presence of thioglycolic acid (TGA) or L-cysteine as capping agents. Two optical sensors have been developed for Hg2+ ions with very low concentration in the range of nanomolar (nM) or picomolar (pM) depending on the type of capping agents and based on photoluminescence (PL) quenching of CdTe QDs. It was observed that low concentrations of Hg2+ ions quench the fluorescence spectra of CdTe QDs and TGA capped CdTe QDs exhibited a linear response to Hg2+ ions in the concentration range from 1.25 to 10 nM. Moreover, it was found that L-cysteine capped CdTe QDs optical sensor with a sensitivity of 6 × 109 M-1, exhibited a linear coefficient of 0.99 and showed a detection limit of 2.7 pM in range from 5 to 25 pM of Hg2+ ions was achieved. In contrast to the significant response that was observed for Hg2+, a weak signal response was noted upon the addition of other metal ions indicating an excellent selectivity of CdTe QDs towards Hg2+.

  1. Quantitative Determination of Fluorinated Alkyl Substances by Large-Volume-Injection LC/MS/MS—Characterization of Municipal Wastewaters

    PubMed Central

    Schultz, Melissa M.; Barofsky, Douglas F.; Field, Jennifer A.

    2008-01-01

    A quantitative method was developed for the determination of fluorinated alkyl substances in municipal wastewater influents and effluents. The method consisted of centrifugation followed by large-volume injection (500 μL) of the supernatant onto a liquid chromatograph with a reverse-phase column and detection by electrospray ionization, and tandem mass spectrometry (LC/MS/MS). The fluorinated analytes studied include perfluoroalkyl sulfonates, fluorotelomer sulfonates, perfluorocarboxylates, and select fluorinated alkyl sulfonamides. Recoveries of the fluorinated analytes from wastewater treatment plant (WWTP) raw influents and final effluent ranged from 77% – 96% and 80% – 99%, respectively. The lower limit of quantitation ranged from 0.5 to 3.0 ng/L depending on the analyte. The method was applied to flow-proportional composites of raw influent and final effluent collected over a 24 hr period from ten WWTPs nationwide. Fluorinated alkyl substances were observed in wastewater at all treatment plants and each plant exhibited unique distributions of fluorinated alkyl substances despite similarities in treatment processes. In nine out of the ten plants sampled, at least one class of fluorinated alkyl substances exhibited increased concentrations in the effluent as compared to the influent concentrations. In some instances, decreases in certain fluorinated analyte concentrations were observed and attributed to sorption to sludge. PMID:16433363

  2. Chromium nanoparticle exhibits higher absorption efficiency than chromium picolinate and chromium chloride in Caco-2 cell monolayers.

    PubMed

    Zha, L-Y; Xu, Z-R; Wang, M-Q; Gu, L-Y

    2008-04-01

    This study was conducted to determine whether chromium nanoparticle (CrNano) exhibited higher absorption efficiency and possessed unique absorption mechanism in comparison to chromium picolinate (CrPic) and chromium chloride (CrCl(3)), as was postulated by previous reports. Twenty-one-day-old Caco-2 cell monolayers grown on semipermeable membranes in Snapwell tissue culture bichambers were incubated with CrNano, CrPic or CrCl(3) to examine their transport and uptake respectively. In the concentration range of 0.2-20 micromol/l, transport of CrNano, CrPic and CrCl(3) across Caco-2 monolayers both in apical-to-basolateral and basolateral-to-apical direction was concentration-, and time-dependent, and temperature independent. The apparent permeability coefficient (P(app)) of CrNano was between 5.89 and 7.92 x 10(-6) cm/s and that of CrPic and CrCl(3) was between 3.52 and 5.31 x 10(-6) cm/s and between 0.97 and 1.37 x 10(-6) cm/s respectively. Uptake of CrNano, CrPic and CrCl(3) by both apical and basolateral membranes was concentration- and time-dependent. Uptake of CrNano by apical membrane was significantly (p < 0.05) decreased when the incubation temperature was reduced from 37 degrees C to 4 degrees C. The transport efficiency of CrNano, CrPic and CrCl(3) after incubation for 120 min at 37 degrees C was 15.83% +/- 0.76%, 9.08% +/- 0.25% and 2.11% +/- 0.53% respectively. The uptake efficiency of CrNano, CrPic and CrCl(3) was 10.08% +/- 0.76%, 4.73% +/- 0.60% and 0.88% +/- 0.08% respectively. It was concluded that the epithelial transport of CrNano, CrPic and CrCl(3) across the Caco-2 cell monolayers was mainly via passive transport pathways. In addition, CrNano exhibited considerably higher absorption efficiency than both CrPic and CrCl(3) in Caco-2 cell monolayers.

  3. Determination of activity coefficient of lanthanum chloride in molten LiCl-KCl eutectic salt as a function of cesium chloride and lanthanum chloride concentrations using electromotive force measurements

    NASA Astrophysics Data System (ADS)

    Bagri, Prashant; Simpson, Michael F.

    2016-12-01

    The thermodynamic behavior of lanthanides in molten salt systems is of significant scientific interest for the spent fuel reprocessing of Generation IV reactors. In this study, the apparent standard reduction potential (apparent potential) and activity coefficient of LaCl3 were determined in a molten salt solution of eutectic LiCl-KCl as a function of concentration of LaCl3. The effect of adding up to 1.40 mol % CsCl was also investigated. These properties were determined by measuring the open circuit potential of the La-La(III) redox couple in a high temperature molten salt electrochemical cell. Both the apparent potential and activity coefficient exhibited a strong dependence on concentration. A low concentration (0.69 mol %) of CsCl had no significant effect on the measured properties, while a higher concentration (1.40 mol %) of CsCl caused an increase (become more positive) in the apparent potential and activity coefficient at the higher range of LaCl3 concentrations.

  4. Short-term temperature-dependent air-surface exchange and atmospheric concentrations of polychlorinated naphthalenes and organochlorine pesticides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, R.G.M.; Burnett, V.; Harner, T.

    2000-02-01

    Atmospheric concentrations of five organochlorine (OC) pesticides, some of which have been banned for a number of years, and polychlorinated naphthalenes (PCNs) were measured at a U.K. site over periods of 6 h for 7 days resulting in 28 samples. Mean concentrations of the pesticides were {alpha}-HCH 90 pg m{sup {minus}3}, {gamma}-HCH 500, {rho},{rho}{prime}-DDE 8, dieldrin 63, endrin 22, and HCB 39. PCN mean homologue concentrations were {sub 3}CNs 67 pg m{sup {minus}3}, {sub 4}CNs 78, {sub 5}CNs 5, {sub 6}CNs 0.6, {sub 7}CNs 0.6, and {Sigma}PCNs 152. TEQ concentrations for those PCNs ascribed TEF values ranged between 0.36 andmore » 3.6 fg m{sup {minus}3} which corresponds to {approximately}3.0--30% of the TEQ concentrations of PCDD/Fs at the same site. All the compounds measured, except HCB, exhibited a strong temperature-dependent diurnal cycling. Results from Clausius-Clapeyron plots show that pesticide concentrations were controlled by temperature-driven air-surface recycling throughout the first 5 days when stable atmospheric conditions were dominant, while during the last 2 days advection became more influential as more unstable and cooler weather started to influence the site. PCN concentrations were controlled primarily by a mixture of recycling and advection throughout the first 5 days and then by advection in the final 2 days, suggesting that there are ongoing emissions from diffuse point sources of PCNs into the U.K. atmosphere. This study provides further evidence of the rapid air-surface exchange of semivolatile organic compounds (SOCs) and shows how different factors alone or in combination can produce rapid changes in the atmospheric concentrations of past and present SOCs.« less

  5. Removal of pharmaceuticals and personal care products during water recycling: microbial community structure and effects of substrate concentration.

    PubMed

    Onesios-Barry, Kathryn M; Berry, David; Proescher, Jody B; Sivakumar, I K Ashok; Bouwer, Edward J

    2014-04-01

    Many pharmaceuticals and personal care products (PPCPs) have been shown to be biotransformed in water treatment systems. However, little research exists on the effect of initial PPCP concentration on PPCP biotransformation or on the microbial communities treating impacted water. In this study, biological PPCP removal at various concentrations was assessed using laboratory columns inoculated with wastewater treatment plant effluent. Pyrosequencing was used to examine microbial communities in the columns and in soil from a soil aquifer treatment (SAT; a method of water treatment prior to reuse) site. Laboratory columns were supplied with different concentrations (0.25, 10, 100, or 1,000 μg liter(-1)) of each of 15 PPCPs. Five PPCPs (4-isopropyl-3-methylphenol [biosol], p-chloro-m-xylenol, gemfibrozil, ketoprofen, and phenytoin) were not removed at any tested concentrations. Two PPCPs (naproxen and triclosan) exhibited removals independent of PPCP concentration. PPCP removal efficiencies were dependent on initial concentrations for biphenylol, p-chloro-m-cresol, chlorophene, diclofenac, 5-fluorouracil, ibuprofen, and valproic acid, showing that PPCP concentration can affect biotransformation. Biofilms from sand samples collected from the 0.25- and 10-μg liter(-1) PPCP columns were pyrosequenced along with SAT soil samples collected on three consecutive days of a wetting and drying cycle to enable comparison of these two communities exposed to PPCPs. SAT communities were similar to column communities in taxonomy and phylotype composition, and both were found to contain close relatives of known PPCP degraders. The efficiency of biological removal of PPCPs was found to be dependent on the concentration at which the contamination occurs for some, but not all, PPCPs.

  6. Removal of Pharmaceuticals and Personal Care Products during Water Recycling: Microbial Community Structure and Effects of Substrate Concentration

    PubMed Central

    Onesios-Barry, Kathryn M.; Berry, David; Proescher, Jody B.; Sivakumar, I. K. Ashok

    2014-01-01

    Many pharmaceuticals and personal care products (PPCPs) have been shown to be biotransformed in water treatment systems. However, little research exists on the effect of initial PPCP concentration on PPCP biotransformation or on the microbial communities treating impacted water. In this study, biological PPCP removal at various concentrations was assessed using laboratory columns inoculated with wastewater treatment plant effluent. Pyrosequencing was used to examine microbial communities in the columns and in soil from a soil aquifer treatment (SAT; a method of water treatment prior to reuse) site. Laboratory columns were supplied with different concentrations (0.25, 10, 100, or 1,000 μg liter−1) of each of 15 PPCPs. Five PPCPs (4-isopropyl-3-methylphenol [biosol], p-chloro-m-xylenol, gemfibrozil, ketoprofen, and phenytoin) were not removed at any tested concentrations. Two PPCPs (naproxen and triclosan) exhibited removals independent of PPCP concentration. PPCP removal efficiencies were dependent on initial concentrations for biphenylol, p-chloro-m-cresol, chlorophene, diclofenac, 5-fluorouracil, ibuprofen, and valproic acid, showing that PPCP concentration can affect biotransformation. Biofilms from sand samples collected from the 0.25- and 10-μg liter−1 PPCP columns were pyrosequenced along with SAT soil samples collected on three consecutive days of a wetting and drying cycle to enable comparison of these two communities exposed to PPCPs. SAT communities were similar to column communities in taxonomy and phylotype composition, and both were found to contain close relatives of known PPCP degraders. The efficiency of biological removal of PPCPs was found to be dependent on the concentration at which the contamination occurs for some, but not all, PPCPs. PMID:24509919

  7. Chronic Intermittent Ethanol Inhalation Increases Ethanol Self-administration in both C57BL/6J and DBA/2J Mice

    PubMed Central

    McCool, Brian A.; Chappell, Ann M.

    2015-01-01

    Inbred mouse strains provide significant opportunities to understand the genetic mechanisms controlling ethanol-directed behaviors and neurobiology. They have been specifically employed to understand cellular mechanisms contributing to ethanol consumption, acute intoxication, and sensitivities to chronic effects. However, limited ethanol consumption by some strains has restricted our understanding of clinically relevant endpoints such as dependence-related ethanol intake. Previous work with a novel tastant-substitution procedure using monosodium glutamate (MSG or umami flavor) has shown that the procedure greatly enhances ethanol consumption by mouse strains that express limited drinking phenotypes using other methods. In the current study, we employ this MSG-substitution procedure to examine how ethanol dependence, induced with passive vapor inhalation, modifies ethanol drinking in C57BL/6J and DBA/2J mice. These strains represent ‘high’ and ‘low’ drinking phenotypes, respectively. We found that the MSG substitution greatly facilitates ethanol drinking in both strains, and likewise, ethanol dependence increased ethanol consumption regardless of strain. However, DBA/2J mice exhibited greater sensitivity dependence-enhanced drinking, as represented by consumption behaviors directed at lower ethanol concentrations and relative to baseline intake levels. DBA/2J mice also exhibited significant withdrawal-associated anxiety-like behavior while C57BL/6J mice did not. These findings suggest that the MSG-substitution procedure can be employed to examine dependence-enhanced ethanol consumption across a range of drinking phenotypes, and that C57BL/6J and DBA/2J mice may represent unique neurobehavioral pathways for developing dependence-enhanced ethanol consumption. PMID:25659650

  8. Laser scattering method applied to determine the concentration of alfa 1-antitrypsin

    NASA Astrophysics Data System (ADS)

    Riquelme, Bibiana D.; Foresto, Patricia; Valverde, Juana R.; Rasia, Rodolfo J.

    2000-04-01

    An optical method has been developed to find (alpha) 1- antitrypsin unknown concentrations in human serum samples. This method applies light scattering properties exhibited by initially formed enzyme-inhibitor complexes and uses the curves of aggregation kinetics. It is independent of molecular hydrodynamics. Theoretical approaches showed that scattering properties of transient complexes obey the Rayleigh-Debie conditions. Experiments were performed on the Trypsin/(alpha) 1-antitrypsin system. Measurements were performed in newborn, adult and pregnant sera containing (alpha) 1-antitrypsin in the Trypsin excess region. The solution was excite by a He-Ne laser beam. SO, the particles formed during the reaction are scattering centers for the interacting light. The intensity of the scattered light at 90 degrees from incident beam depends on the nature of those scattering centers. Th rate of increase in scattered intensity depends on the variation in size and shape of the scatterers, being independent of its original size. Peak values of the first derivative linearly correlate with the concentration of (alpha) 1-antitrypsin originally present in the sample. Results are displayed 5 minutes after the initiation of the experimental process. Such speed is of great importance in the immuno-biochemistry determinations.

  9. Formaldehyde sorption and desorption characteristics of gypsum wallboard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, T.G.; Hawthorne, A.R.; Thompson, C.V.

    1987-07-01

    The sorption and subsequent desorption of formaldehyde (CH/sub 2/O) vapor from unpainted gypsum wallboard have been investigated in environmental chamber experiments conducted at 23 /sup 0/C, 50% relative humidity, an air exchange to board loading ratio of 0.43 m/h, and CH/sub 2/O concentrations ranging from 0 to 0.50 mg/m/sup 3/. Both CH/sub 2/O sorption and CH/sub 2/O desorption processes are described by a three-parameter, single-exponential model with an exponential lifetime of 2.9 +/- 0.1 days. The storage capacity of gypsum board for CH/sub 2/O vapor results in a time-dependent buffer to changes in CH/sub 2/O vapor concentration surrounding the boardmore » but appears to cause only a weak, permanent loss mechanism for CH/sub 2/O vapor. Prior to significant depletion of sorbed CH/sub 2/O, desorption rates from CH/sub 2/O-exposed gypsum board exhibit a linear dependence with negative slope on CH/sub 2/O vapor concentration. Analogous CH/sub 2/O emissions properties have been observed for pressed-wood products bonded with urea-formaldehyde resins. 17 references, 5 figures.« less

  10. Formaldehyde sorption and desorption characteristics of gypsum wallboard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matthews, T.G.; Hawthorne, A.R.; Thompson, C.V.

    1986-01-01

    The sorption and subsequent desorption of formaldehyde (CH/sub 2/O) vapor from unpainted gypsum wallboard has been investigated in environmental chamber experiments conducted at 23/sup 0/C, 50% relative humidity, an air exchange to board loading ratio of 0.43 m/h, and CH/sub 2/O concentrations ranging from 0 to 0.50 mg/m/sup 3/. Both CH/sub 2/O sorption and desorption processes are described using a three-parameter, single-exponential model with an exponential lifetime of 2.9 +- 0.1 days. The storage capacity of gypsum board for CH/sub 2/O vapor results in a time-dependent buffer to changes in CH/sub 2/O vapor concentration surrounding the board, but appears tomore » cause only a weak, permanent loss mechanism for CH/sub 2/O vapor. Short-term CH/sub 2/O desorption rates from CH/sub 2/O-exposed gypsum board (prior to significant depletion of sorbed CH/sub 2/O) exhibit a linear dependence with negative slope on CH/sub 2/O vapor concentration analogous to CH/sub 2/O emissions from pressed-wood products bonded with urea-formaldehyde resins.« less

  11. Practical concept of pharmacokinetics/pharmacodynamics in the management of skin and soft tissue infections.

    PubMed

    Pea, Federico

    2016-04-01

    This article gives an overview of the practical concept of pharmacokinetic/pharmacodynamic principles useful for clinicians in the management of skin and soft tissue infections (SSTIs). Recent studies suggest that distinguishing between bacteriostatic or bactericidal activity when choosing an antimicrobial for the treatment of severe infections could probably be clinically irrelevant. Conversely, what could help clinicians in maximizing the therapeutic efficacy of the various drugs in routine practice is taking care of some pharmacokinetic/pharmacodynamic principles. Concentration-dependent agents may exhibit more rapid bacterial killing than observed with time-dependent agents. Serum concentrations may not always adequately predict tissue exposure in patients with SSTIs, and measuring concentrations at the infection site is preferable. Hydrophilic antimicrobials showed generally lower penetration rates than the lipophilic ones and might require alternative dosing approaches in the presence of severe sepsis or septic shock. Conversely, tissue penetration of lipophilic antimicrobials is often unaffected by the pathophysiological status. Real-time therapeutic drug monitoring may be a very helpful tool for optimizing therapy of severe infections. Taking care of pharmacokinetic/pharmacodynamic principles deriving from the most recent findings may help clinicians in maximizing treatment of SSTIs with antimicrobials in every situation.

  12. Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes.

    PubMed

    Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric

    2016-04-15

    In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1/3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given pH.

  13. Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric

    2016-04-01

    In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1 /3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given p H .

  14. Time-dependent mobility and recombination of the photoinduced charge carriers in conjugated polymer/fullerene bulk heterojunction solar cells

    NASA Astrophysics Data System (ADS)

    Mozer, A. J.; Dennler, G.; Sariciftci, N. S.; Westerling, M.; Pivrikas, A.; Österbacka, R.; Juška, G.

    2005-07-01

    Time-dependent mobility and recombination in the blend of poly[2-methoxy-5-(3,7-dimethyloctyloxy)-phenylene vinylene] (MDMO-PPV) and 1-(3-methoxycarbonyl)propyl-1-phenyl-(6,6)- C61 (PCBM) is studied simultaneously using the photoinduced charge carrier extraction by linearly increasing voltage technique. The charge carriers are photogenerated by a strongly absorbed, 3 ns laser flash, and extracted by the application of a reverse bias voltage pulse after an adjustable delay time (tdel) . It is found that the mobility of the extracted charge carriers decreases with increasing delay time, especially shortly after photoexcitation. The time-dependent mobility μ(t) is attributed to the energy relaxation of the charge carriers towards the tail states of the density of states distribution. A model based on a dispersive bimolecular recombination is formulated, which properly describes the concentration decay of the extracted charge carriers at all measured temperatures and concentrations. The calculated bimolecular recombination coefficient β(t) is also found to be time-dependent exhibiting a power law dependence as β(t)=β0t-(1-γ) with increasing slope (1-γ) with decreasing temperatures. The temperature dependence study reveals that both the mobility and recombination of the photogenerated charge carriers are thermally activated processes with activation energy in the range of 0.1 eV. Finally, the direct comparison of μ(t) and β(t) shows that the recombination of the long-lived charge carriers is controlled by diffusion.

  15. Anticancer potential of pyrrole (1, 2, a) pyrazine 1, 4, dione, hexahydro 3-(2-methyl propyl) (PPDHMP) extracted from a new marine bacterium, Staphylococcus sp. strain MB30.

    PubMed

    Lalitha, P; Veena, V; Vidhyapriya, P; Lakshmi, Pragna; Krishna, R; Sakthivel, N

    2016-05-01

    Marine bacterium, strain MB30 isolated from the deep sea sediment of Bay of Bengal, India, exhibited antimicrobial activity against human pathogenic bacteria. Based on the 16S rRNA sequence homology and subsequent phylogenetic tree analysis, the strain MB30 was identified as Staphylococcus sp. The bioactive metabolite produced by the strain MB30 was purified through silica gel column chromatography and preparative HPLC. Purified metabolite was further characterized by FT-IR, LC-MS and NMR analyses. On the basis of spectroscopic data, the metabolite was identified as pyrrole (1, 2, a) pyrazine 1, 4, dione, hexahydro 3-(2-methyl propyl) (PPDHMP). The PPDHMP exhibited in vitro anticancer potential against lung (A549) and cervical (HeLa) cancer cells in a dose-dependent manner with the IC50 concentration of 19.94 ± 1.23 and 16.73 ± 1.78 μg ml(-1) respectively. The acridine orange (AO)/ethidium bromide (EB) and 4,6-diamidino-2-phenylindole dihydrochloride (DAPI) staining of the IC50 concentration of PPDHMP-treated cancer cells exhibited an array of morphological changes such as nuclear condensation, cell shrinkage and formation of apoptotic bodies. The PPDHMP-treated cancer cells induced the progressive accumulation of fragmented DNA in a time-dependent manner. Based on the flow cytometric analysis, it has become evident that the compound was also effective in arresting the cell cycle at G1 phase. Further, the Western blotting analysis confirmed the down-regulation of cyclin-D1, cyclin dependent kinase (CDK-2), anti-apoptotic Bcl-2 family proteins (Bcl-2 and Bcl-xL), activation of caspase-9 and 3 with the cleavage of PARP. The PPDHMP-treated cancer cells also showed the inhibition of migration and invasive capacity of cancer cells. In the present investigation, for the first time, we have reported the extraction, purification and characterization of an anticancer metabolite, PPDHMP from a new marine bacterium, Staphylococcus sp. strain MB30.

  16. Ligand protons in a frozen solution of copper histidine relax via a T1e-driven three-spin mechanism

    NASA Astrophysics Data System (ADS)

    Stoll, S.; Epel, B.; Vega, S.; Goldfarb, D.

    2007-10-01

    Davies electron-nuclear double resonance spectra can exhibit strong asymmetries for long mixing times, short repetition times, and large thermal polarizations. These asymmetries can be used to determine nuclear relaxation rates in paramagnetic systems. Measurements of frozen solutions of copper(L-histidine)2 reveal a strong field dependence of the relaxation rates of the protons in the histidine ligand, increasing from low (g‖) to high (g⊥) field. It is shown that this can be attributed to a concentration-dependent T1e-driven relaxation process involving strongly mixed states of three spins: the histidine proton, the Cu(II) electron spin of the same complex, and another distant electron spin with a resonance frequency differing from the spectrometer frequency approximately by the proton Larmor frequency. The protons relax more efficiently in the g⊥ region, since the number of distant electrons able to participate in this relaxation mechanism is higher than in the g‖ region. Analytical expressions for the associated nuclear polarization decay rate Teen-1 are developed and Monte Carlo simulations are carried out, reproducing both the field and the concentration dependences of the nuclear relaxation.

  17. Subordinated continuous-time AR processes and their application to modeling behavior of mechanical system

    NASA Astrophysics Data System (ADS)

    Gajda, Janusz; Wyłomańska, Agnieszka; Zimroz, Radosław

    2016-12-01

    Many real data exhibit behavior adequate to subdiffusion processes. Very often it is manifested by so-called ;trapping events;. The visible evidence of subdiffusion we observe not only in financial time series but also in technical data. In this paper we propose a model which can be used for description of such kind of data. The model is based on the continuous time autoregressive time series with stable noise delayed by the infinitely divisible inverse subordinator. The proposed system can be applied to real datasets with short-time dependence, visible jumps and mentioned periods of stagnation. In this paper we extend the theoretical considerations in analysis of subordinated processes and propose a new model that exhibits mentioned properties. We concentrate on the main characteristics of the examined subordinated process expressed mainly in the language of the measures of dependence which are main tools used in statistical investigation of real data. We present also the simulation procedure of the considered system and indicate how to estimate its parameters. The theoretical results we illustrate by the analysis of real technical data.

  18. Self-assembly of active colloidal molecules with dynamic function

    NASA Astrophysics Data System (ADS)

    Soto, Rodrigo; Golestanian, Ramin

    2015-05-01

    Catalytically active colloids maintain nonequilibrium conditions in which they produce and deplete chemicals and hence effectively act as sources and sinks of molecules. While individual colloids that are symmetrically coated do not exhibit any form of dynamical activity, the concentration fields resulting from their chemical activity decay as 1 /r and produce gradients that attract or repel other colloids depending on their surface chemistry and ambient variables. This results in a nonequilibrium analog of ionic systems, but with the remarkable novel feature of action-reaction symmetry breaking. We study solutions of such chemically active colloids in dilute conditions when they join up to form molecules via generalized ionic bonds and discuss how we can achieve structures with time-dependent functionality. In particular, we study a molecule that adopts a spontaneous oscillatory pattern of conformations and another that exhibits a run-and-tumble dynamics similar to bacteria. Our study shows that catalytically active colloids could be used for designing self-assembled structures that possess dynamical functionalities that are determined by their prescribed three-dimensional structures, a strategy that follows the design principle of proteins.

  19. Microbiome-Derived Tryptophan Metabolites and Their Aryl Hydrocarbon Receptor-Dependent Agonist and Antagonist Activities

    PubMed Central

    Jin, Un-Ho; Lee, Syng-Ook; Sridharan, Gautham; Lee, Kyongbum; Davidson, Laurie A.; Jayaraman, Arul; Chapkin, Robert S.; Alaniz, Robert

    2014-01-01

    The tryptophan metabolites indole, indole-3-acetate, and tryptamine were identified in mouse cecal extracts and fecal pellets by mass spectrometry. The aryl hydrocarbon receptor (AHR) agonist and antagonist activities of these microbiota-derived compounds were investigated in CaCo-2 intestinal cells as a model for understanding their interactions with colonic tissue, which is highly aryl hydrocarbon (Ah)–responsive. Activation of Ah-responsive genes demonstrated that tryptamine and indole 3-acetate were AHR agonists, whereas indole was an AHR antagonist that inhibited TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin)–induced CYP1A1 expression. In contrast, the tryptophan metabolites exhibited minimal anti-inflammatory activities, whereas TCDD decreased phorbol ester-induced CXCR4 [chemokine (C-X-C motif) receptor 4] gene expression, and this response was AHR dependent. These results demonstrate that the tryptophan metabolites indole, tryptamine, and indole-3-acetate modulate AHR-mediated responses in CaCo-2 cells, and concentrations of indole that exhibit AHR antagonist activity (100–250 μM) are detected in the intestinal microbiome. PMID:24563545

  20. The impact of the oxygen scavenger on the dose-rate dependence and dose sensitivity of MAGIC type polymer gels

    NASA Astrophysics Data System (ADS)

    Khan, Muzafar; Heilemann, Gerd; Kuess, Peter; Georg, Dietmar; Berg, Andreas

    2018-03-01

    Recent developments in radiation therapy aimed at more precise dose delivery along with higher dose gradients (dose painting) and more efficient dose delivery with higher dose rates e.g. flattening filter free (FFF) irradiation. Magnetic-resonance-imaging based polymer gel dosimetry offers 3D information for precise dose delivery techniques. Many of the proposed polymer gels have been reported to exhibit a dose response, measured as relaxation rate ΔR2(D), which is dose rate dependent. A lack of or a reduced dose-rate sensitivity is very important for dosimetric accuracy, especially with regard to the increasing clinical use of FFF irradiation protocols with LINACs at high dose rates. Some commonly used polymer gels are based on Methacrylic-Acid-Gel-Initiated-by-Copper (MAGIC). Here, we report on the dose sensitivity (ΔR2/ΔD) of MAGIC-type gels with different oxygen scavenger concentration for their specific dependence on the applied dose rate in order to improve the dosimetric performance, especially for high dose rates. A preclinical x-ray machine (‘Yxlon’, E  =  200 kV) was used for irradiation to cover a range of dose rates from low \\dot{D} min  =  0.6 Gy min-1 to high \\dot{D} max  =  18 Gy min-1. The dose response was evaluated using R2-imaging of the gel on a human high-field (7T) MR-scanner. The results indicate that all of the investigated dose rates had an impact on the dose response in polymer gel dosimeters, being strongest in the high dose region and less effective for low dose levels. The absolute dose rate dependence \\frac{(Δ R2/Δ D)}{Δ \\dot{D}} of the dose response in MAGIC-type gel is significantly reduced using higher concentrations of oxygen scavenger at the expense of reduced dose sensitivity. For quantitative dose evaluations the relative dose rate dependence of a polymer gel, normalized to its sensitivity is important. Based on this normalized sensitivity the dose rate sensitivity was reduced distinctly using an increased oxygen scavenger concentration with reference to standard MAGIC-type gel formulation at high dose rate levels. The proposed gel composition with high oxygen scavenger concentration exhibits a larger linear active dose response and might be used especially in FFF-radiation applications and preclinical dosimetry at high dose rates. We propose in general to use high dose rates for calibration and evaluation as the change in relative dose sensitivity is reduced at higher dose rates in all of the investigated gel types.

  1. Antimicrobial and antioxidant effect of methanolic Crinum jagus bulb extract in wound healing

    PubMed Central

    Udegbunam, Sunday Ositadimma; Udegbunam, Rita Ijeoma; Nnaji, Theophilus Okafor; Anyanwu, Madubuike Umunna; Kene, Raphel Okoli Chukwujekwu; Anika, Silavanus Maduka

    2015-01-01

    Aim: The aim of this study was to evaluate the antimicrobial and antioxidant effects of Crinum jagus (J. Thomps.) Dandy methanolic bulb extract in wound healing. Materials and Methods: Phytochemical screening revealed the presence of alkaloids, glycosides, tannins, and saponins in the extract. In vitro antimicrobial activity of the extract was determined by agar well diffusion method. In vivo antimicrobial activity of the extract was determined by microbial assay of excision wound in rats contaminated with Staphylococcus aureus, Bacillus subtilis, Pseudomonas areuginosa, and Candida albicans and treated with 300 mg/kg body weight (bw) of 10 and 5% methanolic C. jagus bulb extract ointment (MCJBEO), respectively. Enzymatic antioxidant effect of the extract was determined in vivo by assaying superoxide dismutase (SOD) and catalase (CAT) activity, and malondialdehyde (MDA) level in excision wound biopsies of rats treated with 10 and 5% MCJBEO, respectively, following standard methods. Non-enzymatic antioxidant effect of the extract was determined in vitro using diphenylpicrylhydrazyl (DPPH) method following standard procedure. Results: The extract exhibited in vitro antimicrobial effect in a concentration-dependent manner with one hundred (100) mg/ml concentration of the extract having the highest inhibitory zone diameter for B. subtilis (25 mm), S. aureus (21 mm), and C. albicans (14 mm) followed by the 50, 25 and 12.5 mg/ml concentrations, respectively. B. subtilis, S. aureus, and C. albicans were not isolated from wounds of animals treated with both extract concentrations 10% and 5% MCJBEO, and reference drug (framycetin sulfate/clotrimazole). Activities of the enzymatic antioxidants SOD and CAT in wound biopsies treated with 10% MCJBEO were significantly (P < 0.05) higher when compared with those treated with 5% MCJBEO. Significantly (P < 0.05) decreased MDA level of wound biopsies from extract-treated rats was observed. The extract exhibited non-enzymatic antioxidant (DPPH) effect in a concentration-dependent manner. Conclusion: This study has shown that an anti-microbial and antioxidant effects could possibly be part of mechanism by which C. jagus bulb extract promote wound healing process. PMID:26401415

  2. Influence of compositional complexity on interdiffusion in Ni-containing concentrated solid-solution alloys

    DOE PAGES

    Jin, Ke; Zhang, Chuan; Zhang, Fan; ...

    2018-03-07

    To investigate the compositional effects on thermal-diffusion kinetics in concentrated solid-solution alloys, interdiffusion in seven diffusion couples with alloys from binary to quinary is systematically studied. The alloys with higher compositional complexity exhibit in general lower diffusion coefficients against homologous temperature, however, an exception is found that diffusion in NiCoFeCrPd is faster than in NiCoFeCr and NiCoCr. While the derived diffusion parameters suggest that diffusion in medium and high entropy alloys is overall more retarded than in pure metals and binary alloys, they strongly depend on specific constituents. The comparative features are captured by computational thermodynamics approaches using a self-consistentmore » database.« less

  3. Optical transmission measurements for in-line monitoring of turbid oil-water emulsions

    NASA Astrophysics Data System (ADS)

    Metz, Philipp; Dopf, Katja; Aichholz, Markus; Riedel, Boris; Lemmer, Uli; Freudig, Barbara; Zimmermann, Clifton; Gerken, Martina

    2014-05-01

    For absorbing media the concentration may be calculated directly from the optical transmission following the logarithmic dependence given in the Lambert-Beer law. Due to multiple scattering events in oil-water emulsions (e.g. milk, cream, etc.), these exhibit a nonlinear relationship between the attenuation and the oil concentration. We demonstrate that for increasing oil content in oil-water emulsions the attenuation first increases, then levels out, and finally even decreases for a fat content of 60%. Single-wavelength optical transmission measurements are found to be well suited for the in-line monitoring of oil-water emulsions of fat contents below 20%, e.g., for the in-line fat content monitoring of milk. Using experiments and ray-tracing simulations we evaluate system optimization.

  4. Intrinsic ferromagnetism in nanocrystalline Mn-doped ZnO depending on Mn concentration.

    PubMed

    Subramanian, Munisamy; Tanemura, Masaki; Hihara, Takehiko; Soga, Tetsuo; Jimbo, Takashi

    2011-04-01

    The physical properties of Zn(1-x)Mn(x)O nanoparticles synthesized by thermal decomposition are extensively investigated by X-ray diffraction (XRD), Transmission Electron Microscopy (TEM), X-ray photoelectron spectroscopy (XPS), Raman light scattering and Hysteresis measurements. XRD and XPS spectra reveal the absence of secondary phase in nanocrystalline ZnO doped with 5% or less Mn; and, later confirms that the valance state of Mn to be 2+ for all the samples. Raman spectra exhibit a peak at 660 cm(-1) which we attribute to the intrinsic lattice defects of ZnO with increasing Mn concentration. Overall, our results demonstrate that ferromagnetic properties can be realized while Mn-doped ZnO obtained in the nanocrystalline form.

  5. Effect of AOT Microemulsion Composition on the Hydrodynamic Diameter and Electrophoretic Mobility of Titanium Oxide Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shaparenko, N. O.; Beketova, D. I.; Demidova, M. G.; Bulavchenko, A. I.

    2018-05-01

    The hydrodynamic diameter and electrophoretic mobility of titania nanoparticles in AOT microemulsions are studied depending on their water content (from 0 to 1.5 vol %), chloroform content in n-decane-chloroform mixture (from 0 to 30 vol %) and temperature (from 0 to 60°C). Considerable changes in diameter (from 20 to 400 nm) are detected upon adding water to the microemulsion. The electrophoretic mobility grows by 2-3 times upon adding chloroform, or as the temperature falls. The observed features allow us to halve the time of electrophoretic concentration for 140 nm TiO2 nanoparticles, and to concentrate 14 nm nanoparticles that do not exhibit electrophoretic mobility in the absence of chloroform.

  6. Surface active properties of lipid nanocapsules

    PubMed Central

    Mouzouvi, Celia R. A.; Bigot, André K.; Saulnier, Patrick

    2017-01-01

    Lipid nanocapsules (LNCs) are biomimetic nanocarriers used for the encapsulation of a broad variety of active ingredients. Similar to surface active compounds, LNCs contain both hydrophilic and hydrophobic parts in their structure. Moreover, the components of LNCs, macrogol 15 hydroxystearate (MHS) and lecithin, are known for their surface active properties. Therefore, the aim of this paper was to investigate the capability of the LNCs to decrease surface tension using two techniques: drop tensiometry and the Wilhelmy plate method. LNCs with diameters ranging from 30 to 100 nm were successfully obtained using a phase inversion technique. The LNCs’ properties, such as size and zeta potential, depend on the composition. LNCs exhibit a lower limiting surface tension compared to MHS (34.8–35.0 mN/m and 37.7–38.8 mN/m, respectively), as confirmed by both drop tensiometry and the Wilhelmy plate method. LNCs have exhibited a saturated interfacial concentration (SIC) that was 10-fold higher than the critical micellar concentration (CMC) of MHS or the SIC of binary and ternary mixtures of LNC ingredients. The SIC of the LNC formulations depended on the mass mixing ratio of the MHS/triglycerides but not on the presence of lecithin. The CMC/SIC values measured by the Wilhelmy plate method were higher than those obtained using drop tensiometry because of the longer duration of the tensiometry measurement. In conclusion, the surfactant-like properties of the LNCs offer new possibilities for medical and pharmaceutical applications. PMID:28796777

  7. Small-scale heat detection using catalytic microengines irradiated by laser

    NASA Astrophysics Data System (ADS)

    Liu, Zhaoqian; Li, Jinxing; Wang, Jiao; Huang, Gaoshan; Liu, Ran; Mei, Yongfeng

    2013-01-01

    We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection.We demonstrate a novel approach to modulating the motion speed of catalytic microtubular engines via laser irradiation/heating with regard to small-scale heat detection. Laser irradiation on the engines leads to a thermal heating effect and thus enhances the engine speed. During a laser on/off period, the motion behaviour of a microengine can be repeatable and reversible, demonstrating a regulation of motion speeds triggered by laser illumination. Also, the engine velocity exhibits a linear dependence on laser power in various fuel concentrations, which implies an application potential as local heat sensors. Our work may hold great promise in applications such as lab on a chip, micro/nano factories, and environmental detection. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr32494f

  8. Surface active properties of lipid nanocapsules.

    PubMed

    Mouzouvi, Celia R A; Umerska, Anita; Bigot, André K; Saulnier, Patrick

    2017-01-01

    Lipid nanocapsules (LNCs) are biomimetic nanocarriers used for the encapsulation of a broad variety of active ingredients. Similar to surface active compounds, LNCs contain both hydrophilic and hydrophobic parts in their structure. Moreover, the components of LNCs, macrogol 15 hydroxystearate (MHS) and lecithin, are known for their surface active properties. Therefore, the aim of this paper was to investigate the capability of the LNCs to decrease surface tension using two techniques: drop tensiometry and the Wilhelmy plate method. LNCs with diameters ranging from 30 to 100 nm were successfully obtained using a phase inversion technique. The LNCs' properties, such as size and zeta potential, depend on the composition. LNCs exhibit a lower limiting surface tension compared to MHS (34.8-35.0 mN/m and 37.7-38.8 mN/m, respectively), as confirmed by both drop tensiometry and the Wilhelmy plate method. LNCs have exhibited a saturated interfacial concentration (SIC) that was 10-fold higher than the critical micellar concentration (CMC) of MHS or the SIC of binary and ternary mixtures of LNC ingredients. The SIC of the LNC formulations depended on the mass mixing ratio of the MHS/triglycerides but not on the presence of lecithin. The CMC/SIC values measured by the Wilhelmy plate method were higher than those obtained using drop tensiometry because of the longer duration of the tensiometry measurement. In conclusion, the surfactant-like properties of the LNCs offer new possibilities for medical and pharmaceutical applications.

  9. Mice expressing a “hyper-sensitive” form of the CB1 cannabinoid receptor (CB1) show modestly enhanced alcohol preference and consumption

    PubMed Central

    Gonek, Maciej; Zee, Michael L.; Farnsworth, Jill C.; Amin, Randa A.; Andrews, Mary-Jeanette; Davis, Brian J.; Mackie, Ken; Morgan, Daniel J.

    2017-01-01

    We recently characterized S426A/S430A mutant mice expressing a desensitization-resistant form of the CB1 receptor. These mice display an enhanced response to endocannabinoids and ∆9-THC. In this study, S426A/S430A mutants were used as a novel model to test whether ethanol consumption, morphine dependence, and reward for these drugs are potentiated in mice with a “hyper-sensitive” form of CB1. Using an unlimited-access, two-bottle choice, voluntary drinking paradigm, S426A/S430A mutants exhibit modestly increased intake and preference for low (6%) but not higher concentrations of ethanol. S426A/S430A mutants and wild-type mice show similar taste preference for sucrose and quinine, exhibit normal sensitivity to the hypothermic and ataxic effects of ethanol, and have normal blood ethanol concentrations following administration of ethanol. S426A/S430A mutants develop robust conditioned place preference for ethanol (2 g/kg), morphine (10 mg/kg), and cocaine (10 mg/kg), demonstrating that drug reward is not changed in S426A/S430A mutants. Precipitated morphine withdrawal is also unchanged in opioid-dependent S426A/S430A mutant mice. Although ethanol consumption is modestly changed by enhanced CB1 signaling, reward, tolerance, and acute sensitivity to ethanol and morphine are normal in this model. PMID:28426670

  10. Energetic aspects of the light activation of two chloroplast enzymes: fructose-1,6-bisphosphatase and NADP-malate dehydrogenase.

    PubMed

    Miginiac-Maslow, M; Jacquot, J P; Droux, M

    1985-09-01

    The light energy requirements for photoactivation of two chloroplast enzymes: fructose-1,6-bisphosphatase and NADP-malate dehydrogenase were studied in a reconstituted chloroplast system. This system comprised isolated pea thylakoids, ferredoxin (Fd), ferredoxin-thioredoxin reductase (FTR) thioredoxinm and f (Tdm, Tdf) and the photoactivatable enzyme. Light-saturation curves of the photoactivation process were established with once washed thylakoids which did not require the addition of Td for light activation. They exhibited a plateau at 10 W·m(-2) under nitrogen and 50 W·m(-2) under air, while NADP photoreduction was saturated at 240 W·m(-2). Cyclic and pseudocyclic phosphorylations saturated at identical levels as enzyme photoactivations. All these observations suggested that the shift of the light saturation plateau towards higher values under air was due to competing oxygen-dependent reactions. With twice washed thylakoids, which required Td for enzyme light-activation, photophosphorylation was stimulated under N2 by the addition of the components of the photoactivation system. Its rate increased with increasing Td concentrations, just as did the enzyme photoactivation rate, while varying the target enzyme concentration had only a weak effect. Considering that Td concentrations were in a large excess over target enzyme concentrations, it may be assumed that the observed ATP synthesis was essentially dependent on the rate of Td reduction.Under air, Fd-dependent pseudo-cyclic photophosphorylation was not stimulated by the addition of the other enzyme photoactivation components, suggesting that an important site of action of O2 was located at the level of Fd.

  11. Sublethal effects of fenpyroximate and pyridaben on two predatory mite species, Neoseiulus womersleyi and Phytoseiulus persimilis (Acari, Phytoseiidae).

    PubMed

    Park, Jung-Joon; Kim, Minsik; Lee, Joon-Ho; Shin, Key-Il; Lee, Sung Eun; Kim, Jeong-Gyu; Cho, Kijong

    2011-07-01

    Laboratory bioassays were conducted to evaluate the sublethal effects of fenpyroximate and pyridaben on life-table parameters of two predatory mites species, Neoseiulus (= Amblyseius) womersleyi and Phytoseiulus persimilis. In these assays, young adult females were treated with three sublethal concentrations of each acaricide. The life-table parameters were calculated at each acaricide concentration, and compared using bootstrap procedures. For each acaricide, the LC(50) estimates for both species were similar, yet the two species exhibited completely different susceptibility when the population growth rate was used as the endpoint. Exposure to both acaricides reduced the net reproduction rate (R (o)) in a concentration-dependent manner and their EC(50)s were equivalent to less than LC(7). Two different scales of population-level endpoints were estimated to compare the total effect between the species and treatments: the first endpoint values were based on the net reproductive rate (fecundity λ) and the second endpoint values incorporated the mean egg hatchability into the net reproductive rate (vitality λ). The fecundity λ decreased in a concentration-dependent manner for both acaricide treatments, but the vitality λ decreased abruptly after treatment of N. womersleyi with pyridaben. The change in the patterns of λ revealed that the acaricide effects at the population level strongly depended on the life-history characteristics of the predatory mite species and the chemical mode of action. When the total effects of the two acaricides on N. womersleyi and P. persimilis were considered, fenpyroximate was found to be the most compatible acaricide for the augmentative release of N. womersleyi after treatment.

  12. Spanwise vorticity and wall normal velocity structure in the inertial region of turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Cuevas Bautista, Juan Carlos; Morrill-Winter, Caleb; White, Christopher; Chini, Gregory; Klewicki, Joseph

    2017-11-01

    The Reynolds shear stress gradient is a leading order mechanism on the inertial domain of turbulent wall-flows. This quantity can be described relative to the sum of two velocity-vorticity correlations, vωz and wωy . Recent studies suggest that the first of these correlates with the step-like structure of the instantaneous streamwise velocity profile on the inertial layer. This structure is comprised of large zones of uniform momentum segregated by slender regions of concentrated vorticity. In this talk we study the contributions of the v and ωz motions to the vorticity transport (vωz) mechanism through the use of experimental data at large friction Reynolds numbers, δ+. The primary contributions to v and ωz were estimated by identifying the peak wavelengths of their streamwise spectra. The magnitudes of these peaks are of the same order, and are shown to exhibit a weak δ+ dependence. The peak wavelengths of v, however, exhibit a strong wall-distance (y) dependence, while the peak wavelengths of ωz show only a weak y dependence, and remain almost O (√{δ+}) in size throughout the inertial domain. This research was partially supported by the National Science Foundation and partially supported by the Australian Research Council.

  13. Antioxidative properties of harmane and beta-carboline alkaloids.

    PubMed

    Tse, S Y; Mak, I T; Dickens, B F

    1991-07-15

    beta-Carboline alkaloids are derived as a result of condensation between indoleamine (e.g. tryptamine) and short-chain carboxylic acid (e.g. pyruvic acid) or aldehyde (e.g. acetaldehyde), a reaction that occurs readily at room temperature. These compounds have been found endogenously in human and animal tissues and may be formed as a byproduct of secondary metabolism: their endogenous functions however, are not well understood. Indoles and tryptophan derivatives exhibit antioxidative actions by scavenging free radicals and forming resonance stabilized indolyl radicals. Harmane and related compounds exhibited concentration-dependent inhibition of lipid peroxidation (measured as thiobarbiturate reactive products) in a hepatic microsomal preparation incubated with either enzymatic dependent (Fe3+ ADP/NADPH) or non-enzymatic dependent (Fe3+ ADP/dihydroxyfumarate) oxygen radical producing systems. Alkaloids with hydroxyl substitution and a partially desaturated pyridyl ring were found to have the highest antioxidative potencies. Substitution of a hydroxyl group by a methoxyl group at the 6-position resulted in a decrease of greater than 10-fold in the antioxidative activities. Harmane showed high efficacy in an enzymatic system but low efficacy in a non-enzymatic system. The antioxidative effects of harmane in the former system may be attributed to its ability to inhibit oxidative enzymes in the microsomal system. These results suggest that beta-carbolines may also serve as endogenous antioxidants.

  14. Energy management by enhanced glycolysis in G1-phase in human colon cancer cells in vitro and in vivo.

    PubMed

    Bao, Yan; Mukai, Kuniaki; Hishiki, Takako; Kubo, Akiko; Ohmura, Mitsuyo; Sugiura, Yuki; Matsuura, Tomomi; Nagahata, Yoshiko; Hayakawa, Noriyo; Yamamoto, Takehiro; Fukuda, Ryo; Saya, Hideyuki; Suematsu, Makoto; Minamishima, Yoji Andrew

    2013-09-01

    Activation of aerobic glycolysis in cancer cells is well known as the Warburg effect, although its relation to cell- cycle progression remains unknown. In this study, human colon cancer cells were labeled with a cell-cycle phase-dependent fluorescent marker Fucci to distinguish cells in G1-phase and those in S + G2/M phases. Fucci-labeled cells served as splenic xenograft transplants in super-immunodeficient NOG mice and exhibited multiple metastases in the livers, frozen sections of which were analyzed by semiquantitative microscopic imaging mass spectrometry. Results showed that cells in G1-phase exhibited higher concentrations of ATP, NADH, and UDP-N-acetylglucosamine than those in S and G2-M phases, suggesting accelerated glycolysis in G1-phase cells in vivo. Quantitative determination of metabolites in cells synchronized in S, G2-M, and G1 phases suggested that efflux of lactate was elevated significantly in G1-phase. By contrast, ATP production in G2-M was highly dependent on mitochondrial respiration, whereas cells in S-phase mostly exhibited an intermediary energy metabolism between G1 and G2-M phases. Isogenic cells carrying a p53-null mutation appeared more active in glycolysis throughout the cell cycle than wild-type cells. Thus, as the cell cycle progressed from G2-M to G1 phases, the dependency of energy production on glycolysis was increased while the mitochondrial energy production was reciprocally decreased. These results shed light on distinct features of the phase-specific phenotypes of metabolic systems in cancer cells. ©2013 AACR.

  15. Low concentrations of doxycycline attenuates FasL-induced apoptosis in HeLa cells.

    PubMed

    Yoon, Jung Mi; Koppula, Sushruta; Huh, Se Jong; Hur, Sun Jin; Kim, Chan Gil

    2015-07-24

    Doxycycline (DC) has been shown to possess non-antibiotic properties including Fas/Fas Ligand (FasL)-mediated apoptosis against several tumor types in the concentration range of 10-40 µg/mL. However, the effect of DC in apoptotic signaling at much low concentrations was not studied. The present study investigated the attenuation effect of low dose of DC on FasL-induced apoptosis in HeLa cell by the methods of MTT assay, fluorescence microscopy, DNA fragmentation, flow cytometry analysis, and western blotting. In the present findings we showed that low concentration of DC (<2.0 µg/mL) exhibited protective effects against FasL-induced apoptosis in HeLa cells. FasL treatment to HeLa cells resulted in a concentration-dependent induction of cell death, and treatment with low concentrations of DC (0.1-2 µg/mL) significantly (p < 0.001) attenuated the FasL-induced cell death as measured by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Further, the FasL-induced apoptotic features in HeLa cells, such as morphological changes, DNA fragmentation and cell cycle arrest was also inhibited by DC (0.5 µg/mL). Tetracycline and minocycline also showed similar anti-apoptotic effects but were not significant when compared to DC, tested at same concentrations. Further, DC (0.01-16 µg/mL) did not influence the hydrogen peroxide- or cisplatin-induced intrinsic apoptotic pathway in HeLa cells. Protein analysis using Western blotting confirmed that FasL-induced cleavage/activation of caspase-8 and caspase-3, were inhibited by DC treatment at low concentration (0.5 µg/mL). Considering the overall data, we report for the first time that DC exhibited anti-apoptotic effects at low concentrations in HeLa cells by inhibition of caspase activation via FasL-induced extrinsic pathway.

  16. Carrier lifetimes in polar InGaN-based LEDs

    NASA Astrophysics Data System (ADS)

    Wang, Lai; Jin, Jie; Hao, Zhibiao; Luo, Yi

    2018-02-01

    Measurement of carrier lifetime is very important to understand the physics in light-emitting diodes (LEDs), as it builds a link between carrier concentration and excitation power or current density. In this paper, we present our study on optical and electrical characterizations on carrier lifetimes in polar InGaN-based LEDs. First, a carrier rate equation model is proposed to explain the non-exponential nature of time-resolved photoluminescence (TRPL) decay curves, wherein exciton recombination is replaced by bimolecular recombination, considering the influence of polarization field on electron-hole pairs. Then, nonradiative recombination and radiative recombination coefficients can be deduced from fitting and used to calculate the radiative recombination efficiency. By comparing with the temperature-dependent photoluminescence (TDPL) and power-dependent photoluminescence (PDPL), it is found these three methods provide the consistent results. Second, differential carrier lifetimes depending on injection current are measured in commercial near-ultraviolet (NUV), blue and green LEDs. It is found that carrier lifetime is longer in green one and shorter in NUV one, which is attributed to the influence of polarization-induced quantum confined Stark effect (QCSE). This result implies the carrier density is higher in green LED while lower NUV LED, even the injection current is the same. By ignoring Auger recombination and fitting the efficiency-current and carrier lifetime-current curves simultaneously, the dependence of injection efficiency on carrier concentration in different LED samples are plotted. The NUV LED, which has the shallowest InGaN quantum well, actually exhibits the most serious efficiency droop versus carrier concentration. Then, the approaches to overcome the efficiency droop are discussed.

  17. Concentration dependence of luminescence efficiency of Dy3+ ions in strontium zinc phosphate glasses mixed with Pb3 O4.

    PubMed

    Kumar, Valluri Ravi; Giridhar, G; Veeraiah, N

    2017-02-01

    In this work we synthesized SrO-ZnO-P 2 O 5 glasses mixed with Pb 3 O 4 (heavy metal oxide) and doped with different amounts of Dy 2 O 3 (0.1 to 1.0 mol%). Subsequently their emission and decay characteristics were investigated as a function of Dy 2 O 3 concentration. The emission spectra exhibited three principal emission bands in the visible region corresponding to 4 F 9 /2  →  6 H 15 /2 (482 nm), 6 H 13 /2 (574 nm) and 6 H 11 /2 (663 nm) transitions. With increase in the concentration of Dy 2 O 3 (upto 0.8 mol%) a considerable increase in the intensity of these bands was observed and, for further increase, quenching of photoluminescence (PL) output was observed. Using emission spectra, various radiative parameters were evaluated and all these parameters were found to increase with increase in Dy 2 O 3 concentration. The Y/B integral emission intensity ratio of Dy 3 + ions evaluated from these spectra exhibited a decreasing trend with increase in the Dy 2 O 3 concentration up to 0.8 mol%. Quenching of luminescence observed in the case of the glasses doped with 1.0 mol% is attributed to clustering of Dy 3 + ions. The quantitative analysis of these results together with infra-red (IR) spectral studies indicated that 0.8 mol% is the optimum concentration of Dy 3 + ions needed to achieve maximum luminescence efficiency. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Relative importance of school bus-related microenvironments to children's pollutant exposure.

    PubMed

    Behrentz, Eduardo; Sabin, Lisa D; Winer, Arthur M; Fitz, Dennis R; Pankratz, David V; Colome, Steven D; Fruin, Scott A

    2005-10-01

    Real-time concentrations of black carbon, particle-bound polycyclic aromatic hydrocarbons, nitrogen dioxide, and fine particulate counts, as well as integrated and real-time fine particulate matter (PM2.5) mass concentrations were measured inside school buses during long commutes on Los Angeles Unified School District bus routes, at bus stops along the routes, at the bus loading/unloading zone in front of the selected school, and at nearby urban "background" sites. Across all of the pollutants, mean concentrations during bus commutes were higher than in any other microenvironment. Mean exposures (mean concentration times time spent in a particular microenvironment) in bus commutes were between 50 and 200 times greater than those for the loading/unloading microenvironment, and 20-40 times higher than those for the bus stops, depending on the pollutant. Although the analyzed school bus commutes represented only 10% of a child's day, on average they contributed one-third of a child's 24-hr overall black carbon exposure during a school day. For species closely related to vehicle exhaust, the within- cabin exposures were generally dominated by the effect of surrounding traffic when windows were open and by the bus's own exhaust when windows were closed. Low-emitting buses generally exhibited high concentrations only when traveling behind a diesel vehicle, whereas high-emitting buses exhibited high concentrations both when following other diesel vehicles and when idling without another diesel vehicle in front of the bus. To reduce school bus commute exposures, we recommend minimizing commute times, avoiding caravanning with other school buses, using the cleanest buses for the longest bus routes, maintaining conventional diesel buses to eliminate visible emissions, and transitioning to cleaner fuels and advanced particulate control technologies as soon as possible.

  19. Scale-up of a physiologically-based pharmacokinetic model to predict the disposition of monoclonal antibodies in monkeys.

    PubMed

    Glassman, Patrick M; Chen, Yang; Balthasar, Joseph P

    2015-10-01

    Preclinical assessment of monoclonal antibody (mAb) disposition during drug development often includes investigations in non-human primate models. In many cases, mAb exhibit non-linear disposition that relates to mAb-target binding [i.e., target-mediated disposition (TMD)]. The goal of this work was to develop a physiologically-based pharmacokinetic (PBPK) model to predict non-linear mAb disposition in plasma and in tissues in monkeys. Physiological parameters for monkeys were collected from several sources, and plasma data for several mAbs associated with linear pharmacokinetics were digitized from prior literature reports. The digitized data displayed great variability; therefore, parameters describing inter-antibody variability in the rates of pinocytosis and convection were estimated. For prediction of the disposition of individual antibodies, we incorporated tissue concentrations of target proteins, where concentrations were estimated based on categorical immunohistochemistry scores, and with assumed localization of target within the interstitial space of each organ. Kinetics of target-mAb binding and target turnover, in the presence or absence of mAb, were implemented. The model was then employed to predict concentration versus time data, via Monte Carlo simulation, for two mAb that have been shown to exhibit TMD (2F8 and tocilizumab). Model predictions, performed a priori with no parameter fitting, were found to provide good prediction of dose-dependencies in plasma clearance, the areas under plasma concentration versu time curves, and the time-course of plasma concentration data. This PBPK model may find utility in predicting plasma and tissue concentration versus time data and, potentially, the time-course of receptor occupancy (i.e., mAb-target binding) to support the design and interpretation of preclinical pharmacokinetic-pharmacodynamic investigations in non-human primates.

  20. Protective effect of zinc against ischemic neuronal injury in a middle cerebral artery occlusion model.

    PubMed

    Kitamura, Youji; Iida, Yasuhiko; Abe, Jun; Ueda, Masashi; Mifune, Masaki; Kasuya, Fumiyo; Ohta, Masayuki; Igarashi, Kazuo; Saito, Yutaka; Saji, Hideo

    2006-02-01

    In this study, we investigated the effect of vesicular zinc on ischemic neuronal injury. In cultured neurons, addition of a low concentration (under 100 microM) of zinc inhibited both glutamate-induced calcium influx and neuronal death. In contrast, a higher concentration (over 150 microM) of zinc decreased neuronal viability, although calcium influx was inhibited. These results indicate that zinc exhibits biphasic effects depending on its concentration. Furthermore, in cultured neurons, co-addition of glutamate and CaEDTA, which binds extra-cellular zinc, increased glutamate-induced calcium influx and aggravated the neurotoxicity of glutamate. In a rat transient middle cerebral artery occlusion (MCAO) model, the infarction volume, which is related to the neurotoxicity of glutamate, increased rapidly on the intracerebral ventricular injection of CaEDTA 30 min prior to occlusion. These results suggest that zinc released from synaptic vesicles may provide a protective effect against ischemic neuronal injury.

  1. Thermal bubble inkjet printing of water-based graphene oxide and graphene inks on heated substrate

    NASA Astrophysics Data System (ADS)

    Huang, Simin; Shen, Ruoxi; Qian, Bo; Li, Lingying; Wang, Wenhao; Lin, Guanghui; Zhang, Xiaofei; Li, Peng; Xie, Yonglin

    2018-04-01

    Stable-jetting water-based graphene oxide (GO) and graphene (GR) inks without any surfactant or stabilizer are prepared from an unstable-jetting water-based starting solvent, with many thermal bubble inkjet satellite drops, by simply increasing the material concentration. The concentration-dependent thermal bubble inkjet droplet generation process is studied in detail. To overcome the low concentration properties of water-based thermal bubble inkjet inks, the substrate temperature is tuned below 60 °C to achieve high-quality print lines. Due to the difference in hydrophilicity and hydrophobicity of the 2D materials, the printed GO lines show a different forming mechanism from that of the GR lines. The printed GO lines are reduced by thermal annealing and by ascorbic acid, respectively. The reduced GO lines exhibit electrical conductivity of the same order of magnitude as that of the GR lines.

  2. Emission characteristics in solution-processed asymmetric white alternating current field-induced polymer electroluminescent devices

    NASA Astrophysics Data System (ADS)

    Chen, Yonghua; Xia, Yingdong; Smith, Gregory M.; Gu, Yu; Yang, Chuluo; Carroll, David L.

    2013-01-01

    In this work, the emission characteristics of a blue fluorophor poly(9, 9-dioctylfluorene) (PFO) combined with a red emitting dye: Bis(2-methyl-dibenzo[f,h]quinoxaline)(acetylacetonate)iridium (III) [Ir(MDQ)2(acac)], are examined in two different asymmetric white alternating current field-induced polymer electroluminescent (FIPEL) device structures. The first is a top-contact device in which the triplet transfer is observed resulting in the concentration-dependence of the emission similar to the standard organic light-emitting diode (OLED) structure. The second is a bottom-contact device which, however, exhibits concentration-independence of emission. Specifically, both dye emission and polymer emission are found for the concentrations as high as 10% by weight of the dye in the emitter. We attribute this to the significant different carrier injection characteristics of the two FIPEL devices. Our results suggest a simple and easy way to realize high-quality white emission.

  3. The effect of polymer composition on the gelation behavior of PLGA-g-PEG biodegradable thermoreversible gels.

    PubMed

    Tarasevich, B J; Gutowska, A; Li, X S; Jeong, B-M

    2009-04-01

    Graft copolymers consisting of a poly(D,L-lactic acid-co-glycolic acid) backbone grafted with polyethylene glycol side chains were synthesized and formed thermoreversible gels in aqueous solutions that exhibited solution behavior at low temperature and sol-to-gel transitions at higher temperature. The composition of the polymer and relative amounts of polylactic acid, glycolic acid, and ethylene glycol were varied by controlling the precursor concentrations and reaction temperature. The gelation temperature could be systematically tailored from 15 to 34 degrees C by increasing the concentration of polyethylene glycol in the graft copolymer. The gelation temperature also depended on the polymer molecular weight and concentration. This work has importance for the development of water soluble gels with tailored compositions and gelation temperatures for use in tissue engineering and as injectable depots for drug delivery. Copyright 2008 Wiley Periodicals, Inc.

  4. The effects of deposition parameters on surface morphology and crystallographic orientation of electroless Ni-B coatings

    NASA Astrophysics Data System (ADS)

    Bulbul, Ferhat

    2011-02-01

    Electroless Ni-B coatings were deposited on AISI 304 stainless steels by electroless deposition method, which was performed for nine different test conditions at various levels of temperature, concentration of NaBH4, concentration of NiCl2, and time, using the Taguchi L9(34) experimental method. The effects of deposition parameters on the crystallographic orientation of electroless Ni-B coatings were investigated using SEM and XRD equipment. SEM analysis revealed that the Ni-B coatings developed six types (pea-like, maize-like, primary nodular, blackberry-like or grapes-like, broccoli-like, and cauliflower-like) of morphological structures depending on the deposition parameters. XRD results also showed that these structures exhibited different levels of amorphous character. The concentration of NaBH4 had the most dominant effect on the morphological and crystallographic development of electroless Ni-B coatings.

  5. Sucralose Destabilization of Protein Structure.

    PubMed

    Chen, Lee; Shukla, Nimesh; Cho, Inha; Cohn, Erin; Taylor, Erika A; Othon, Christina M

    2015-04-16

    Sucralose is a commonly employed artificial sweetener that behaves very differently than its natural disaccharide counterpart, sucrose, in terms of its interaction with biomolecules. The presence of sucralose in solution is found to destabilize the native structure of two model protein systems: the globular protein bovine serum albumin and an enzyme staphylococcal nuclease. The melting temperature of these proteins decreases as a linear function of sucralose concentration. We correlate this destabilization to the increased polarity of the molecule. The strongly polar nature is manifested as a large dielectric friction exerted on the excited-state rotational diffusion of tryptophan using time-resolved fluorescence anisotropy. Tryptophan exhibits rotational diffusion proportional to the measured bulk viscosity for sucrose solutions over a wide range of concentrations, consistent with a Stokes-Einstein model. For sucralose solutions, however, the diffusion is dependent on the concentration, strongly diverging from the viscosity predictions, and results in heterogeneous rotational diffusion.

  6. Theoretical investigation of structural, mechanical and electronic properties of GaAs1-xNx alloys under ambient and high pressure

    NASA Astrophysics Data System (ADS)

    Li, Jian; Han, Xiuxun; Dong, Chen; Fan, Changzeng

    2017-12-01

    Using first-principles total energy calculations, we have studied the structural, mechanical and electronic properties of GaAs1-xNx ternary semiconductor alloys with the zinc-blende crystal structure over the whole nitrogen concentration range (with x from 0 to 1) within density functional theory (DFT) framework. To obtain the ideal band gap, we employ the semi-empirical approach called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U). The calculated results illustrate the varying lattice constants and band gap in GaAs1-xNx alloys as functions of the nitrogen concentration x. According to the pressure dependence of the lattice constants and volume, the higher N concentration alloy exhibits the better anti-compressibility. In addition, an increasing band gap is predicted under 20 GPa pressure for GaAs1-xNx alloys.

  7. Altering the concentration of silica tunes the functional properties of collagen-silica composite scaffolds to suit various clinical requirements.

    PubMed

    Perumal, Sathiamurthi; Ramadass, Satiesh Kumar; Gopinath, Arun; Madhan, Balaraman; Shanmugam, Ganesh; Rajadas, Jayakumar; Mandal, Asit Baran

    2015-12-01

    The success of a tissue engineering scaffold depends on a fine balance being achieved between the physicochemical and biological properties. This study attempts to understand the influence of silica concentration on the functional properties of collagen-silica (CS) composite scaffolds for soft tissue engineering applications. Increasing the ratio of silica to collagen (0.25, 0.5, 0.75, 1.0, 1.25, 1.5 and 2.0 w/w) gave a marked advantage in terms of improving the water uptake and compressive modulus of the CS scaffolds, while also enhancing the biological stability and the turnover time. With increase in silica concentration the water uptake and compressive modulus increased concurrently, whereas it was not so for surface porous architecture and biocompatibility which are crucial for cell adhesion and infiltration. Silica:collagen ratio of ≤1 exhibits favourable surface biocompatibility, and any further increase in silica concentration has a detrimental effect. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Dielectric dispersion of short single-stranded DNA in aqueous solutions with and without added salt.

    PubMed

    Katsumoto, Yoichi; Omori, Shinji; Yamamoto, Daisuke; Yasuda, Akio; Asami, Koji

    2007-01-01

    Dielectric spectroscopy measurements were performed for aqueous solutions of short single-stranded DNA with 30 to 120 bases of thymine over a frequency range of 10;{5} to 10;{8}Hz . Dielectric dispersion was found to include two relaxation processes in the ranges from 10;{5} to 10;{6} and from 10;{6} to 10;{8}Hz , respectively, with the latter mainly discussed in this study. The dielectric increment and the relaxation time of the high-frequency relaxation of DNA in solutions without added salt exhibited concentration and polymer-length dependences eventually identical to those for dilute polyion solutions described in previous studies. For solutions with added salt, on the other hand, those dielectric parameters were independent of salt concentration up to a certain critical value and started to decrease with further increasing salt concentration. This critical behavior is well explained by our newly extended cell model that takes into account the spatial distribution of loosely bound counterions around DNA molecules as a function of salt concentration.

  9. Impact of generalized Fourier's and Fick's laws on MHD 3D second grade nanofluid flow with variable thermal conductivity and convective heat and mass conditions

    NASA Astrophysics Data System (ADS)

    Ramzan, M.; Bilal, M.; Chung, Jae Dong; Lu, Dian Chen; Farooq, Umer

    2017-09-01

    A mathematical model has been established to study the magnetohydrodynamic second grade nanofluid flow past a bidirectional stretched surface. The flow is induced by Cattaneo-Christov thermal and concentration diffusion fluxes. Novel characteristics of Brownian motion and thermophoresis are accompanied by temperature dependent thermal conductivity and convective heat and mass boundary conditions. Apposite transformations are betrothed to transform a system of nonlinear partial differential equations to nonlinear ordinary differential equations. Analytic solutions of the obtained nonlinear system are obtained via a convergent method. Graphs are plotted to examine how velocity, temperature, and concentration distributions are affected by varied physical involved parameters. Effects of skin friction coefficients along the x- and y-direction versus various parameters are also shown through graphs and are well debated. Our findings show that velocities along both the x and y axes exhibit a decreasing trend for the Hartmann number. Moreover, temperature and concentration distributions are decreasing functions of thermal and concentration relaxation parameters.

  10. Enhancing reproducibility of SALDI MS detection by concentrating analytes within laser spot.

    PubMed

    Teng, Fei; Zhu, Qunyan; Wang, Yalei; Du, Juan; Lu, Nan

    2018-03-01

    Surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI TOF MS) has become one of the most important analytical methods due to its less interference at low molecular weight range. However, it is still a challenge to obtain a good reproducibility of SALDI TOF MS because of the inhomogeneous distribution of analyte molecules induced by coffee ring effect. We propose a universal and reliable method to eliminate the coffee ring effect by concentrating all the analyte molecules within the laser spot. This method exhibits an excellent reproducibility of spot-to-spot and substrate-to-substrate, and the relative standard deviations (RSDs) for different concentrations are lower than 12.6%. It also performs good linear dependency (R 2 > 0.98) in the log-log plot with the concentration range of 1nM to 1μM, and the limit of detection for R6G is down to 1fmol. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Assessing the microstructural and rheological changes induced by food additives on potato puree.

    PubMed

    Dankar, Iman; Haddarah, Amira; El Omar, Fawaz; Sepulcre, Francesc; Pujolà, Montserrat

    2018-02-01

    The effects of agar, alginate, lecithin and glycerol on the rheological properties of commercial potato puree were investigated and interpreted in terms of starch microstructural changes, and the applicability of the Cox-Merz rule was evaluated. Each additive was applied separately at two concentrations (0.5 and 1%). Microscopic observations revealed more swollen starch aggregations in lecithin and glycerol compared with those of potato puree and agar, consequently affecting the rheological properties of potato puree. All samples exhibited shear thinning non-Newtonian behaviour. Rheological measurements were strongly concentration dependent. At 0.5% concentration, additives exerted decreases in all the rheological properties of potato puree in the order of glycerol>alginate>lecithin>agar, while at 1% concentration, the order changed to glycerol>lecithin>alginate, whereas 1% agar behaved differently, increasing all rheological values. This study also showed that agar and alginate in addition to potato puree could be valuable and advantageous for further technological processes, such as 3D printing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Surface tension and density of Si-Ge melts

    NASA Astrophysics Data System (ADS)

    Ricci, Enrica; Amore, Stefano; Giuranno, Donatella; Novakovic, Rada; Tuissi, Ausonio; Sobczak, Natalia; Nowak, Rafal; Korpala, Bartłomiej; Bruzda, Grzegorz

    2014-06-01

    In this work, the surface tension and density of Si-Ge liquid alloys were determined by the pendant drop method. Over the range of measurements, both properties show a linear temperature dependence and a nonlinear concentration dependence. Indeed, the density decreases with increasing silicon content exhibiting positive deviation from ideality, while the surface tension increases and deviates negatively with respect to the ideal solution model. Taking into account the Si-Ge phase diagram, a simple lens type, the surface tension behavior of the Si-Ge liquid alloys was analyzed in the framework of the Quasi-Chemical Approximation for the Regular Solutions model. The new experimental results were compared with a few data available in the literature, obtained by the containerless method.

  13. Analysis of the normal-state magnetic susceptibility of La sub 2 minus x Sr sub x CuO sub 4+ y (abstract) (US)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filipkowski, M.E.; Budnick, J.I.

    1991-11-15

    We describe a quantitative analysis of the low-temperature ({ital T}{lt}300 K) susceptibility ({chi}({ital T})) of La{sub 2{minus}x}Sr{sub x}CuO{sub 4+y} for dopant concentrations in the vicinity of the superconducting phase boundary (SPB) at {ital x}=0.055. This analysis is based on a phenomenological model for the temperature dependence consisting of a Curie-like 1/{ital T} term plus a term linear in {ital T}. We find that the former exhibits nontrivial doping dependence at the SPB, while the {ital T}-linear part accepts decomposition into a Pauli contribution and a portion which can be understood using spin-wave theory.

  14. Structural and Functional Consequences of Increased Tubulin Glycosylation in Diabetes Mellitus

    NASA Astrophysics Data System (ADS)

    Williams, Stuart K.; Howarth, Nancy L.; Devenny, James J.; Bitensky, Mark W.

    1982-11-01

    The extent of in vitro nonenzymatic glycosylation of purified rat brain tubulin was dependent on time and glucose concentration. Tubulin glycosylation profoundly inhibited GTP-dependent tubulin polymerization. Electron microscopy and NaDodSO4/polyacrylamide gel electrophoresis showed that glycosylated tubulin forms high molecular weight amorphous aggregates that are not disrupted by detergents or reducing agents. The amount of covalently bound NaB3H4-reducible sugars in tubulin recovered from brain of streptozotocin-induced diabetic rats was dramatically increased as compared with tubulin recovered from normal rat brain. Moreover, tubulin recovered from diabetic rat brain exhibited less GTP-induced polymerization than tubulin from nondiabetic controls. The possible implications of these data for diabetic neuropathy are discussed.

  15. General strategy for biodetection in high ionic strength solutions using transistor-based nanoelectronic sensors.

    PubMed

    Gao, Ning; Zhou, Wei; Jiang, Xiaocheng; Hong, Guosong; Fu, Tian-Ming; Lieber, Charles M

    2015-03-11

    Transistor-based nanoelectronic sensors are capable of label-free real-time chemical and biological detection with high sensitivity and spatial resolution, although the short Debye screening length in high ionic strength solutions has made difficult applications relevant to physiological conditions. Here, we describe a new and general strategy to overcome this challenge for field-effect transistor (FET) sensors that involves incorporating a porous and biomolecule permeable polymer layer on the FET sensor. This polymer layer increases the effective screening length in the region immediately adjacent to the device surface and thereby enables detection of biomolecules in high ionic strength solutions in real-time. Studies of silicon nanowire field-effect transistors with additional polyethylene glycol (PEG) modification show that prostate specific antigen (PSA) can be readily detected in solutions with phosphate buffer (PB) concentrations as high as 150 mM, while similar devices without PEG modification only exhibit detectable signals for concentrations ≤10 mM. Concentration-dependent measurements exhibited real-time detection of PSA with a sensitivity of at least 10 nM in 100 mM PB with linear response up to the highest (1000 nM) PSA concentrations tested. The current work represents an important step toward general application of transistor-based nanoelectronic detectors for biochemical sensing in physiological environments and is expected to open up exciting opportunities for in vitro and in vivo biological sensing relevant to basic biology research through medicine.

  16. Beyond assembly bias: exploring secondary halo biases for cluster-size haloes

    NASA Astrophysics Data System (ADS)

    Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.

    2018-03-01

    Secondary halo bias, commonly known as `assembly bias', is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalo properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. This results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.

  17. Ion exchange membranes as novel passive sampling material for organic ions: application for the determination of freely dissolved concentrations.

    PubMed

    Oemisch, Luise; Goss, Kai-Uwe; Endo, Satoshi

    2014-11-28

    Many studies in pharmacology, toxicology and environmental science require a method for determining the freely dissolved concentration of a target substance. A recently developed tool for this purpose is equilibrium passive sampling with polymeric materials. However, this method has rarely been applied to ionic organic substances, primarily due to limited availability of convenient sorption materials. This study introduces ion exchange membranes (IEMs) as a novel passive sampling material for organic ions. The partitioning of 4-ethylbenzene-1-sulfonate, 2,4-dichlorophenoxyacetic acid and pentachlorophenol to one anion exchange membrane (FAS) and of difenzoquat, nicotine and verapamil to one cation exchange membrane (FKS) was investigated. All test substances exhibited a sufficiently high affinity for the respective IEM with logarithmic IEM-water partition coefficients >2.3. Sorption equilibrium was established quickly, within several hours for the FAS membrane and within 1-3 days for the FKS membrane. For permanently charged substances the partitioning to the IEMs was independent of pH, but was influenced by the salt composition of the test solution. For all test substances sorption to IEM was dependent on the substance concentration. Bovine serum albumin-water partition coefficients determined by passive sampling with IEMs agree well with those determined by the conventional dialysis method. The results of this study indicate that IEMs exhibit the potential to measure freely dissolved concentrations of organic ions in a simple and time-saving manner. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Phytoaccumulation of heavy metals in natural plants thriving on wastewater effluent at Hattar industrial estate, Pakistan.

    PubMed

    Irshad, Muhammad; Ahmad, Sajjad; Pervez, Arshid; Inoue, Mitsuhiro

    2015-01-01

    The objective of this research was to compare the potential of native plants for the phytoaccumulation of heavy metals (HM). Thirteen predominant plant species (including trees, bushes and grasses) namely Ricinus communis, Ipomoea carnea, Cannabis sativa, Parthenium hysterophorus, Acacia nilotica, Dalbergia sissoo, Acacia modesta, Solanum nigrum, Xanthium stromarium, Chenopodium album, Cynodon dactylon, Eleusine indica, and Dactyloctenium aegyptium were collected from the wastewater originated from Hattar industrial estate of Pakistan, Plants shoots and roots were analyzed for heavy metals/metalloid: Pb, Cr, Cd, Zn, Fe, Ni, and As. Among plant species, the accumulation potential for HM varied depending on the type of element. Regardless of the plant species, HM concentrations varied in the order of Fe>Zn>Cr>Pb>Ni>Cd>As. Tree species of R. communis, A. nilotica, A. modesta, and D. sissoo exhibited an enhanced concentrations of metals. Accumulation pattern of Fe, Pb, Cd, and As in plants could be related to the HM composition of soil and wastewater. Most of the species exhibited higher HM composition in the root as compared to shoot. The species that found with greater ability to absorb HM in the root, got higher HM concentrations in its shoot. Shoot tissue concentrations of HM were attained by the species as D. sissoo>A. modesta>A. nilotica>R. communis>I. carnea>C. album>E. indica>P. hysterophorus>S. nigrum>C. sativa>D. aegyptium>X. strumarium>C. dactylon. Based on results, tree plants were noticed as higher accumulators of HM in polluted soils.

  19. Melanin-originated carbonaceous dots for triple negative breast cancer diagnosis by fluorescence and photoacoustic dual-mode imaging.

    PubMed

    Xiao, Wei; Li, Yuan; Hu, Chuan; Huang, Yuan; He, Qin; Gao, Huile

    2017-07-01

    Carbonaceous dots exhibit increasing applications in diagnosis and drug delivery due to excellent photostability and biocompatibility properties. However, relative short excitation and emission of melanin carbonaceous dots (MCDs) limit the applicability in fluorescence bioimaging. Furthermore, the generally poor spatial resolution of fluorescence imaging limits potential in vivo applications. Due to a variety of beneficial properties, in this study, MCDs were prepared exhibiting great potential in fluorescence and photoacoustic dual-mode bioimaging. The MCDs exhibited a long excitation peak at 615nm and emission peak at 650nm, further highlighting the applicability in fluorescence imaging, while the absorbance peak at 633nm renders MCDs suitable for photoacoustic imaging. In vivo, the photoacoustic signal of MCDs was linearly correlated with the concentration of MCDs. Moreover, the MCDs were shown to be taken up into triple negative breast cancer cell line 4T1 in both a time- and concentration-dependent manner. In vivo fluorescence and photoacoustic imaging of subcutaneous 4T1 tumor demonstrated that MCDs could passively target triple negative breast cancer tissue by enhanced permeability and retention effects and may therefore be used for tumor dual-mode imaging. Furthermore, fluorescence distribution in tissue slices suggested that MCDs may distribute in 4T1 tumor with high efficacy. In conclusion, the MCDs studied offer potential application in fluorescence and photoacoustic dual-mode imaging. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Relationship of follicle size and concentrations of estradiol among cows exhibiting or not exhibiting estrus during a fixed-time AI protocol

    USDA-ARS?s Scientific Manuscript database

    Cows exhibiting estrus near the time of fixed-time AI had greater pregnancy success than cows showing no estrus. The objective of this study was to determine the relationship between follicle size and peak estradiol concentration between cows that did or did not exhibit estrus during a fixed-time AI...

  1. Seasonal Variability in European Radon Measurements

    NASA Astrophysics Data System (ADS)

    Groves-Kirkby, C. J.; Denman, A. R.; Phillips, P. S.; Crockett, R. G. M.; Sinclair, J. M.

    2009-04-01

    In temperate climates, domestic radon concentration levels are generally seasonally dependent, the level in the home reflecting the convolution of two time-dependent functions. These are the source soil-gas radon concentration itself, and the principal force driving radon into the building from the soil, namely the pressure-difference between interior and exterior environment. While the meteorological influence can be regarded as relatively uniform on a European scale, its variability being defined largely by the influence of North-Atlantic weather systems, soil-gas radon is generally more variable as it is essentially geologically dependent. Seasonal variability of domestic radon concentration can therefore be expected to exhibit geographical variability, as is indeed the case. To compensate for the variability of domestic radon levels when assessing the long term radon health risks, the results of individual short-term measurements are generally converted to equivalent mean annual levels by application of a Seasonal Correction Factor (SCF). This is a multiplying factor, typically derived from measurements of a large number of homes, applied to the measured short-term radon concentration to provide a meaningful annual mean concentration for dose-estimation purposes. Following concern as to the universal applicability of a single SCF set, detailed studies in both the UK and France have reported location-specific SCF sets for different regions of each country. Further results indicate that SCFs applicable to the UK differ significantly from those applicable elsewhere in Europe and North America in both amplitude and phase, supporting the thesis that seasonal variability in indoor radon concentration cannot realistically be compensated for by a single national or international SCF scheme. Published data characterising the seasonal variability of European national domestic radon concentrations, has been collated and analysed, with the objective of identifying correlations between published datasets and local geographic/geological conditions. Available data included regional SCF figures from the United Kingdom and from France, together with nationally-consolidated results from a number of other European countries. Analysis of this data shows significant variability between different countries and from region to region within those countries where regional data is available. Overall, radon-rich sedimentary geologies, particularly high porosity limestones etc., exhibit high seasonal variation, while radon-rich igneous geologies demonstrate relatively constant, albeit somewhat higher, radon concentration levels. Examples of the former can be found in the Pennines and South Downs in England, Languedoc and Brittany in France. Greatest variability is found in Switzerland, still subject to the ongoing Alpine orogeny, where the inhabited part of the country is largely overlain with recently-deposited light, porous sediments. Low-variability high-radon regions include the granite-rich Cornwall/Devon peninsular in England, and Auvergne and the Ardennes in France, all components of the Devonian-Carboniferous Hercynian belt, which extends from the Iberian peninsular through South-West Ireland and South-West England to France and Germany.

  2. Kinetics of Zn sorption-desorption using a thin disk flow method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hinz, C.; Selim, H.M.

    1999-02-01

    In this study the authors investigated the kinetics of Zn sorption and desorption using a short column or thin disk method. The method is based on continuous flow through a thin soil layer where the effluent was collected using a fraction collector. Two soils were used: a Windsor soil and Mahan soil. Breakthrough results (BTCs) for different flow velocities indicated that Zn sorption is instantaneous and equilibrium retention is dominant when a pulse of Zn with a concentration of 2.62 [times] 10[sup [minus]5] M is applied. However, based on flow interruption, time-dependent Zn sorption-desorption processes were most pronounced when themore » applied Zn pulse concentration was two orders of magnitude lower. This confirms earlier findings of concentration-dependent kinetics from batch experiments on Windsor soil. The removal of organic matter and iron oxide, based on peroxide and peroxide/dithionite-treatments, resulted in doubling and quadrupling Zn retention, respectively, compared with the untreated Windsor soil. Differences between the untreated, peroxide-, and peroxide/dithionite-treated Windsor soils were most pronounced at low input Zn concentrations, suggesting that more specific sites became available as a result of the different treatments. At high input Zn concentrations, increases of specific sites may not be significant. For the treated soil, stronger sorption and desorption kinetic behavior was exhibited compared with the untreated soil. Diffusion into soil minerals or surface-controlled reactions may cause such behavior.« less

  3. Thermal equilibrium concentrations and effects of negatively charged Ga vacancies in n-type GaAs

    NASA Astrophysics Data System (ADS)

    Tan, T. Y.; You, H.-M.; Gösele, U. M.

    1993-03-01

    We have calculated the thermal equilibrium concentrations of the various negatively charged Ga vacancy species in GaAs. The triply-negatively-charged Ga vacancy, V {Ga/3-}, has been emphasized, since it dominates Ga self-diffusion and Ga-Al interdiffusion under intrinsic and n-doping conditions, as well as the diffusion of Si donor atoms occupying Ga sites. Under strong n-doping conditions, the thermal equilibrium V {Ga/3-}concentration, C_{V_{_{Ga} }^{3 - } }^{eq} (n), has been found to exhibit a temperature independence or a negative temperature dependence, i.e., the C_{V_{_{Ga} }^{3 - } }^{eq} (n) value is either unchanged or increases as the temperature is lowered. This is quite contrary to the normal point defect behavior for which the point defect thermal equilibrium concentration decreases as the temperature is lowered. This C_{V_{_{Ga} }^{3 - } }^{eq} (n) property provides explanations to a number of outstanding experimental results, either requiring the interpretation that V {Ga/3-}has attained its thermal equilibrium concentration at the onset of each experiment, or requiring mechanisms involving point defect non-equilibrium phenomena.

  4. [Effect on the microbicidal efficacy of formaldehyde, glutardialdehyde, peracetic acid, chloramine T (N-chloro-4-toluenesulfonamide), m-cresol, ethanol and benzyldimethyldodecacylammonium bromide by blood (model experiments for chemical disinfection of instruments)].

    PubMed

    Spicher, G; Peters, J

    1998-02-01

    In a preceding paper (Zbl. Hyg. 191 [1991] 457-477) we reported on the dependence of the microbicidal efficacy of active agents of the disinfection of instruments on the amount of coagulated blood adhering to the instruments. In the present investigation, we were interested in the dependence of the microbicidal effects on the amount of blood in the solutions of the active agents. Test areas of 2 cm2 were contaminated with 50 and 100 microliters coagulating blood, respectively, containing cells of Staphylococcus aureus as test germ. The solutions of the microbicidal agents were contaminated with heparinized blood up to a concentration of 4% immediately before starting the disinfection and 24 hours before, respectively. After a period of action lasting 1 hour at 20 degrees C, the relative number of test germs capable of multiplying (N/N0) was determined. The concentration of the microbicidal substances reducing the relative number of test germs capable to multiply to 10(-4) served for estimating the dependence of the microbicidal efficacy of the agents on the blood content of the solutions. The experimental results depended on the thickness of the layer of coagulated blood. The dependence of the efficacy of the microbicidal substances on the blood content of the solutions was the higher the thinner the blood layer was. At a thickness of the layer of the coagulated blood of 0.25 mm, a blood content of the solution of 4%, and applying it immediately after adding the blood, the concentration of glutardialdehyde had to be 1.6 times that without blood to reach the same microbicidal efficacy. When applying the solution 24 hours after adding the blood, the concentration of glutardialdehyde had to be 4.2 times that without blood. The quaternary ammonium compound reacted faster with the blood than did glutardialdehyde; the respective factors were 2.6 and 4.5. The concentration factors of chloramine T were 3.3 and 3.8. Under the conditions of the test, peracetic acid exhibited small concentration factors: 1.3 and 1.6. The microbicidal efficacy of ethanol, formaldehyde and m-cresol soap solution was not or only slightly altered by the amount of blood in the solution of the microbicidal agent.

  5. The susceptibility of soil enzymes to inhibition by leaf litter tannins is dependent on the tannin chemistry, enzyme class and vegetation history.

    PubMed

    Triebwasser, Daniella J; Tharayil, Nishanth; Preston, Caroline M; Gerard, Patrick D

    2012-12-01

    By inhibiting soil enzymes, tannins play an important role in soil carbon (C) and nitrogen (N) mineralization. The role of tannin chemistry in this inhibitory process, in conjunction with enzyme classes and isoforms, is less well understood. Here, we compared the inhibition efficiencies of mixed tannins (MTs, mostly limited to angiosperms) and condensed tannins (CTs, produced mostly by gymnosperms) against the potential activity of β-glucosidase (BG), N-acetyl-glucosaminidase (NAG), and peroxidase in two soils that differed in their vegetation histories. Compared with CTs, MTs exhibited 50% more inhibition of almond (Prunus dulcis) BG activity and greater inhibition of the potential NAG activity in the gymnosperm-acclimatized soils. CTs exhibited lower BG inhibition in the angiosperm-acclimated soils, whereas both types of tannins exhibited higher peroxidase inhibition in the angiosperm soils than in gymnosperm soils. At all of the tested tannin concentrations, irrespective of the tannin type and site history, the potential peroxidase activity was inhibited two-fold more than the hydrolase activity and was positively associated with the redox-buffering efficiency of tannins. Our finding that the inhibitory activities and mechanisms of MTs and CTs are dependent on the vegetative history and enzyme class is novel and furthers our understanding of the role of tannins and soil isoenzymes in decomposition. © 2012 The Authors. New Phytologist © 2012 New Phytologist Trust.

  6. Gold Nanocluster-Mediated Cellular Death under Electromagnetic Radiation.

    PubMed

    Cifuentes-Rius, Anna; Ivask, Angela; Das, Shreya; Penya-Auladell, Nuria; Fabregas, Laura; Fletcher, Nicholas L; Houston, Zachary H; Thurecht, Kristofer J; Voelcker, Nicolas H

    2017-11-29

    Gold nanoclusters (Au NCs) have become a promising nanomaterial for cancer therapy because of their biocompatibility and fluorescent properties. In this study, the effect of ultrasmall protein-stabilized 2 nm Au NCs on six types of mammalian cells (fibroblasts, B-lymphocytes, glioblastoma, neuroblastoma, and two types of prostate cancer cells) under electromagnetic radiation is investigated. Cellular association of Au NCs in vitro is concentration-dependent, and Au NCs have low intrinsic toxicity. However, when Au NC-incubated cells are exposed to a 1 GHz electromagnetic field (microwave radiation), cell viability significantly decreases, thus demonstrating that Au NCs exhibit specific microwave-dependent cytotoxicity, likely resulting from localized heating. Upon i.v. injection in mice, Au NCs are still present at 24 h post administration. Considering the specific microwave-dependent cytotoxicity and low intrinsic toxicity, our work suggests the potential of Au NCs as effective and safe nanomedicines for cancer therapy.

  7. Temperature Coefficients of Electrical Conductivity and Conduction Mechanisms in Butyl Rubber-Carbon Black Composites

    NASA Astrophysics Data System (ADS)

    Alzamil, M. A.; Alfaramawi, K.; Abboudy, S.; Abulnasr, L.

    2018-02-01

    Electrical properties of butyl rubber filled with General Purpose Furnace (GPF) carbon black were studied. The carbon black concentration ( X) in the compound was X = 40, 60, 70, 80, and 100 parts by weight per hundred parts by weight of rubber (phr). The corresponding volume fractions of GPF carbon black were 0.447 ± 0.022, 0.548 ± 0.027, 0.586 ± 0.029, 0.618 ± 0.031 and 0.669 ± 0.034, respectively. The concentration dependence of conductivity ( σ ) at constant temperature showed that σ follows a percolation theory; σ ∝ ( {X - Xo } )^{γ } , where X o is the concentration at percolation threshold. The exponent γ was found as 6.6 (at room temperature 30°C). This value agrees with other experimental values obtained by many authors for different rubber-carbon black systems. Electron tunneling between the aggregates, which are dispersed in the insulator rubber, was mainly the conduction process proposed at constant temperature in the butyl-GPF carbon black composites. Temperature dependence of conductivity was investigated in the temperature range from 30°C up to 120°C. All samples exhibit negative temperature coefficients of conductivity (NTCC). The values obtained are - 0.130°C-1, - 0.019°C-1, - 0.0082°C-1, - 0.0094°C-1, and - 0.072°C-1 for carbon black concentrations of 40 phr, 60 phr, 70 phr, 80 phr, and 100 phr, respectively. The samples of concentrations 40 phr and 60 phr have also positive temperature coefficients of conductivity (PTCC) of values + 0.031 and + 0.013, respectively. Electrical conduction at different temperatures showed various mechanisms depending on the carbon black concentration and/or the interval of temperature. The hopping conduction mechanism was noticed at the lower temperature region while carrier thermal activation mechanisms were recorded at the higher temperature range.

  8. Tributyltin-induced endoplasmic reticulum stress and its Ca{sup 2+}-mediated mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isomura, Midori; Kotake, Yaichiro, E-mail: yaichiro@hiroshima-u.ac.jp; Masuda, Kyoichi

    2013-10-01

    Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca{sup 2+} signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca{sup 2+} homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700 nM TBT induced ER stress markers suchmore » as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca{sup 2+} depletion, and to test this idea, we examined the effect of TBT on intracellular Ca{sup 2+} concentration using fura-2 AM, a Ca{sup 2+} fluorescent probe. TBT increased intracellular Ca{sup 2+} concentration in a TBT-concentration-dependent manner, and Ca{sup 2+} increase in 700 nM TBT was mainly blocked by 50 μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca{sup 2+} concentration by releasing Ca{sup 2+} from ER, thereby causing ER stress. - Highlights: • We established that tributyltin induces endoplasmic reticulum (ER) stress. • Tributyltin induces ER stress markers in a concentration-dependent manner. • Tributyltin increases Ca{sup 2+} release from ER, thereby causing ER stress. • Dibutyltin and monobutyltin did not increase GRP78 or intracellular Ca{sup 2+}.« less

  9. TBT-induced imposex in marine neogastropods is mediated by an increasing androgen level

    NASA Astrophysics Data System (ADS)

    Bettin, C.; Oehlmann, J.; Stroben, E.

    1996-09-01

    Tributyltin (TBT) exposure at different concentrations (5, 60, and 100 ng TBT as Sn/l) induces a concentration- and time-dependent imposex (=pseudohermaphroditism) development in female Nucella lapillus and Hinia reticulata. In both species the average imposex stage, termed as vas deferens sequence (VDS) index, and the average female penis length increases with increasing TBT concentration and duration of TBT exposure. Testosterone added at a concentration of 500 ng/l induces a faster and more intensive imposex development compared to that induced by the TBT concentrations used in the present experiments. Radioimmunological determination of endogenous steroid content reveals increasing testosterone titres in female gastropods exposed to TBT which correlate with the TBT concentration used and the duration of the experiment. The most marked and highest increase of the endogenous testosterone level is exhibited by females, of both species exposed to testosterone. Simulataneous exposure to TBT and to the antiandrogen cyproterone acetate which suppresses imposex development completely in N. lapillus and reduces imposex development strongly in H. reticulata proves that the imposex-inducing effects of TBT are mediated by an increasing androgen level and are not caused directly by the organotin compound itself. Further-more, TBT-induced imposex development can be suppressed in both snails by adding estrogens to the aqueous medium. These observations suggest that TBT causes an inhibition of the cytochrome P-450 dependent aromatase system which catalyses the aromatization of androgens to estrogens. The increase of the androgen content or the shift of the androgen-estrogen balance in favour of androgens induces the development of pseudohermaphroditism in marine prosobranchs. Artificial inhibition of the cytochrome P-450 dependent aromatase system using SH 489 (1-methyl-1,4-androstadiene-3,17-dione) as a steroidal aromatase inhibitor and flavone as a nonsteroidal aromatase inhibitor induces imposex development in N. lapillus as well as in H. reticulata.

  10. Digital photography provides a fast, reliable, and noninvasive method to estimate anthocyanin pigment concentration in reproductive and vegetative plant tissues.

    PubMed

    Del Valle, José C; Gallardo-López, Antonio; Buide, Mª Luisa; Whittall, Justen B; Narbona, Eduardo

    2018-03-01

    Anthocyanin pigments have become a model trait for evolutionary ecology as they often provide adaptive benefits for plants. Anthocyanins have been traditionally quantified biochemically or more recently using spectral reflectance. However, both methods require destructive sampling and can be labor intensive and challenging with small samples. Recent advances in digital photography and image processing make it the method of choice for measuring color in the wild. Here, we use digital images as a quick, noninvasive method to estimate relative anthocyanin concentrations in species exhibiting color variation. Using a consumer-level digital camera and a free image processing toolbox, we extracted RGB values from digital images to generate color indices. We tested petals, stems, pedicels, and calyces of six species, which contain different types of anthocyanin pigments and exhibit different pigmentation patterns. Color indices were assessed by their correlation to biochemically determined anthocyanin concentrations. For comparison, we also calculated color indices from spectral reflectance and tested the correlation with anthocyanin concentration. Indices perform differently depending on the nature of the color variation. For both digital images and spectral reflectance, the most accurate estimates of anthocyanin concentration emerge from anthocyanin content-chroma ratio, anthocyanin content-chroma basic, and strength of green indices. Color indices derived from both digital images and spectral reflectance strongly correlate with biochemically determined anthocyanin concentration; however, the estimates from digital images performed better than spectral reflectance in terms of r 2 and normalized root-mean-square error. This was particularly noticeable in a species with striped petals, but in the case of striped calyces, both methods showed a comparable relationship with anthocyanin concentration. Using digital images brings new opportunities to accurately quantify the anthocyanin concentrations in both floral and vegetative tissues. This method is efficient, completely noninvasive, applicable to both uniform and patterned color, and works with samples of any size.

  11. Isolation and immunomodulatory properties of a flavonoid, casticin from Vitex agnus-castus.

    PubMed

    Mesaik, M Ahmed; Murad, Shahnaz; Khan, Khalid Mohammed; Tareen, Rasool Bakhsh; Ahmed, Aqeel; Choudhary, Muhammad Iqbal

    2009-11-01

    Casticin (1), a flavonoid isolated from the aerial parts of Vitex agnus-castus, was found to be a potent immunomodulatory and cytotoxic compound. The activity was tested in vitro for chemiluminescence, chemotaxis, T-cell proliferation and cytotoxicity. Casticin (1) exhibited a significant inhibitory effect on monocyte oxidative burst in a dose dependent manner. It was found to have a significant suppressive effect on the chemotaxic action at higher concentrations on fMLP (10(-8) m) stimulated neutrophils. It also showed a potent suppressive effect on PHA stimulated T-cell (PMBC).

  12. Ventilation Control of Volatile Organic Compounds in New U.S. Homes: Results of a Controlled Field Study in Nine Residential Units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willem, Henry; Hult, Erin L.; Hotchi, Toshifumi

    2013-01-01

    In order to optimize strategies to remove airborne contaminants in residences, it is necessary to determine how contaminant concentrations respond to changes in the air exchange rate. The impact of air exchange rate on the indoor concentrations of 39 target volatile organic compounds (VOCs) was assessed by measuring air exchange rates and VOC concentrations at three ventilation settings in nine residences. Active sampling methods were used for VOC concentration measurements, and passive perfluorocarbon tracer gas emitters with active sampling were used to determine the overall air exchange rate corresponding to the VOC measurements at each ventilation setting. The concentration levelsmore » and emission rates of the target VOCs varied by as much as two orders of magnitude across sites. Aldehyde and terpene compounds were typically the chemical classes with highest concentrations, followed by alkanes, aromatics, and siloxanes. For each home, VOC concentrations tended to decrease as the air exchange rate was increased, however, measurement uncertainty was significant. The indoor concentration was inversely proportional to air exchange rate for most compounds. For a subset of compounds including formaldehyde, however, the indoor concentration exhibited a non-linear dependence on the timescale for air exchange« less

  13. Ventilation Control of Volatile Organic Compounds in New U.S. Homes: Results of a Controlled Field Study in Nine Residential Units

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willem, Henry; Hult, Erin L.; Hotchi, Toshifumi

    2013-01-23

    In order to optimize strategies to remove airborne contaminants in residences, it is necessary to determine how contaminant concentrations respond to changes in the air exchange rate. The impact of air exchange rate on the indoor concentrations of 39 target volatile organic compounds (VOCs) was assessed by measuring air exchange rates and VOC concentrations at three ventilation settings in nine residences. Active sampling methods were used for VOC concentration measurements, and passive perfluorocarbon tracer gas emitters with active sampling were used to determine the overall air exchange rate corresponding to the VOC measurements at each ventilation setting. The concentration levelsmore » and emission rates of the target VOCs varied by as much as two orders of magnitude across sites. Aldehyde and terpene compounds were typically the chemical classes with highest concentrations, followed by alkanes, aromatics, and siloxanes. For each home, VOC concentrations tended to decrease as the air exchange rate was increased, however, measurement uncertainty was significant. The indoor concentration was inversely proportional to air exchange rate for most compounds. For a subset of compounds including formaldehyde, however, the indoor concentration exhibited a non-linear dependence on the timescale for air exchange.« less

  14. Harmonic force spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules.

    PubMed

    Sung, Jongmin; Nag, Suman; Mortensen, Kim I; Vestergaard, Christian L; Sutton, Shirley; Ruppel, Kathleen; Flyvbjerg, Henrik; Spudich, James A

    2015-08-04

    Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using 'harmonic force spectroscopy'. In this method, harmonic oscillation of the sample stage of a laser trap immediately, automatically and randomly applies sinusoidally varying loads to a single motor molecule interacting with a single track along which it moves. The experimental protocol and the data analysis are simple, fast and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human β-cardiac myosin molecules interacting with an actin filament at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load, in qualitative agreement with cardiac muscle, which contracts with a velocity inversely proportional to external load.

  15. Harmonic force spectroscopy measures load-dependent kinetics of individual human β-cardiac myosin molecules

    PubMed Central

    Sung, Jongmin; Nag, Suman; Mortensen, Kim I.; Vestergaard, Christian L.; Sutton, Shirley; Ruppel, Kathleen; Flyvbjerg, Henrik; Spudich, James A.

    2015-01-01

    Molecular motors are responsible for numerous cellular processes from cargo transport to heart contraction. Their interactions with other cellular components are often transient and exhibit kinetics that depend on load. Here, we measure such interactions using ‘harmonic force spectroscopy'. In this method, harmonic oscillation of the sample stage of a laser trap immediately, automatically and randomly applies sinusoidally varying loads to a single motor molecule interacting with a single track along which it moves. The experimental protocol and the data analysis are simple, fast and efficient. The protocol accumulates statistics fast enough to deliver single-molecule results from single-molecule experiments. We demonstrate the method's performance by measuring the force-dependent kinetics of individual human β-cardiac myosin molecules interacting with an actin filament at physiological ATP concentration. We show that a molecule's ADP release rate depends exponentially on the applied load, in qualitative agreement with cardiac muscle, which contracts with a velocity inversely proportional to external load. PMID:26239258

  16. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration.

    PubMed

    Sheard, Michael A; Ghent, Matthew V; Cabral, Daniel J; Lee, Joanne C; Khankaldyyan, Vazgen; Ji, Lingyun; Wu, Samuel Q; Kang, Min H; Sposto, Richard; Asgharzadeh, Shahab; Reynolds, C Patrick

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival, expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. Copyright © 2015. Published by Elsevier Inc.

  17. Uncertainty of streamwater solute fluxes in five contrasting headwater catchments including model uncertainty and natural variability (Invited)

    NASA Astrophysics Data System (ADS)

    Aulenbach, B. T.; Burns, D. A.; Shanley, J. B.; Yanai, R. D.; Bae, K.; Wild, A.; Yang, Y.; Dong, Y.

    2013-12-01

    There are many sources of uncertainty in estimates of streamwater solute flux. Flux is the product of discharge and concentration (summed over time), each of which has measurement uncertainty of its own. Discharge can be measured almost continuously, but concentrations are usually determined from discrete samples, which increases uncertainty dependent on sampling frequency and how concentrations are assigned for the periods between samples. Gaps between samples can be estimated by linear interpolation or by models that that use the relations between concentration and continuously measured or known variables such as discharge, season, temperature, and time. For this project, developed in cooperation with QUEST (Quantifying Uncertainty in Ecosystem Studies), we evaluated uncertainty for three flux estimation methods and three different sampling frequencies (monthly, weekly, and weekly plus event). The constituents investigated were dissolved NO3, Si, SO4, and dissolved organic carbon (DOC), solutes whose concentration dynamics exhibit strongly contrasting behavior. The evaluation was completed for a 10-year period at five small, forested watersheds in Georgia, New Hampshire, New York, Puerto Rico, and Vermont. Concentration regression models were developed for each solute at each of the three sampling frequencies for all five watersheds. Fluxes were then calculated using (1) a linear interpolation approach, (2) a regression-model method, and (3) the composite method - which combines the regression-model method for estimating concentrations and the linear interpolation method for correcting model residuals to the observed sample concentrations. We considered the best estimates of flux to be derived using the composite method at the highest sampling frequencies. We also evaluated the importance of sampling frequency and estimation method on flux estimate uncertainty; flux uncertainty was dependent on the variability characteristics of each solute and varied for different reporting periods (e.g. 10-year, study period vs. annually vs. monthly). The usefulness of the two regression model based flux estimation approaches was dependent upon the amount of variance in concentrations the regression models could explain. Our results can guide the development of optimal sampling strategies by weighing sampling frequency with improvements in uncertainty in stream flux estimates for solutes with particular characteristics of variability. The appropriate flux estimation method is dependent on a combination of sampling frequency and the strength of concentration regression models. Sites: Biscuit Brook (Frost Valley, NY), Hubbard Brook Experimental Forest and LTER (West Thornton, NH), Luquillo Experimental Forest and LTER (Luquillo, Puerto Rico), Panola Mountain (Stockbridge, GA), Sleepers River Research Watershed (Danville, VT)

  18. Scaling Behavior for Ionic Transport and its Fluctuations in Individual Carbon Nanotubes

    PubMed Central

    Secchi, Eleonora; Niguès, Antoine; Jubin, Laetitia; Siria, Alessandro; Bocquet, Lydéric

    2016-01-01

    In this Letter, we perform an experimental study of ionic transport and current fluctuations inside individual carbon nanotubes (CNTs). The conductance exhibits a power law behavior at low salinity, with an exponent close to 1/3 versus the salt concentration in this regime. This behavior is rationalized in terms of a salinity dependent surface charge, which is accounted for on the basis of a model for hydroxide adsorption at the (hydrophobic) carbon surface. This is in contrast to boron nitride nanotubes which exhibit a constant surface conductance. Further, we measure the low frequency noise of the ionic current in CNTs and show that the amplitude of the noise scales with the surface charge, with data collapsing on a master curve for the various studied CNTs at a given pH. PMID:27127970

  19. Surface enhanced Raman scattering, antibacterial and antifungal active triangular gold nanoparticles

    NASA Astrophysics Data System (ADS)

    Smitha, S. L.; Gopchandran, K. G.

    2013-02-01

    Shape controlled syntheses of gold nanoparticles have attracted a great deal of attention as their optical, electronic, magnetic and biological properties are strongly dependent on the size and shape of the particles. Here is a report on the surface enhanced Raman scattering (SERS) activity of Cinnamomum zeylanicum leaf broth reduced gold nanoparticles consisting of triangular and spherical like particles, using 2-aminothiophenol (2-ATP) and crystal violet (CV) as probe molecules. Nanoparticles prepared with a minimum leaf broth concentration, having a greater number of triangular like particles exhibit a SERS activity of the order of 107. The synthesized nanoparticles exhibit efficient antibacterial activity against the tested gram negative bacterium Escherichia coli and gram positive bacterium Staphylococcus aureus. Investigations on the antifungal activity of the synthesized nanoparticles against Aspergillus niger and Fusarium oxysporum positive is also discussed.

  20. Effect of hemoglobin- and Perflubron-based oxygen carriers on common clinical laboratory tests.

    PubMed

    Ma, Z; Monk, T G; Goodnough, L T; McClellan, A; Gawryl, M; Clark, T; Moreira, P; Keipert, P E; Scott, M G

    1997-09-01

    Polymerized hemoglobin solutions (Hb-based oxygen carriers; HBOCs) and a second-generation perfluorocarbon (PFC) emulsion (Perflubron) are in clinical trials as temporary oxygen carriers ("blood substitutes"). Plasma and serum samples from patients receiving HBOCs look markedly red, whereas those from patients receiving PFC appear to be lipemic. Because hemolysis and lipemia are well-known interferents in many assays, we examined the effects of these substances on clinical chemistry, immunoassay, therapeutic drug, and coagulation tests. HBOC concentrations up to 50 g/L caused essentially no interference for Na, K, Cl, urea, total CO2, P, uric acid, Mg, creatinine, and glucose values determined by the Hitachi 747 or Vitros 750 analyzers (or both) or for immunoassays of lidocaine, N-acetylprocainamide, procainamide, digoxin, phenytoin, quinidine, or theophylline performed on the Abbott AxSym or TDx. Gentamycin and vancomycin assays on the AxSym exhibited a significant positive and negative interference, respectively. Immunoassays for TSH on the Abbott IMx and for troponin I on the Dade Stratus were unaffected by HBOC at this concentration. Tests for total protein, albumin, LDH, AST, ALT, GGT, amylase, lipase, and cholesterol were significantly affected to various extents at different HBOC concentrations on the Hitachi 747 and Vitros 750. The CK-MB assay on the Stratus exhibited a negative interference at 5 g/L HBOC. HBOC interference in coagulation tests was method-dependent-fibrometer-based methods on the BBL Fibro System were free from interference, but optical-based methods on the MLA 1000C exhibited interferences at 20 g/L HBOC. A 1:20 dilution of the PFC-based oxygen carrier (600 g/L) caused no interference on any of these chemistry or immunoassay tests except for amylase and ammonia on the Vitros 750 and plasma iron on the Hitachi 747.

  1. A cationic amphiphilic peptide ABP-CM4 exhibits selective cytotoxicity against leukemia cells.

    PubMed

    Chen, Yu Qing; Min, Cui; Sang, Ming; Han, Yang Yang; Ma, Xiao; Xue, Xiao Qing; Zhang, Shuang Quan

    2010-08-01

    Some cationic antibacterial peptides exhibit a broad spectrum of cytotoxic activity against cancer cells, which could provide a new class of anticancer drugs. In the present study, the anticancer activity of ABP-CM4, an antibacterial peptide from Bombyx mori, against leukemic cell lines THP-1, K562 and U937 was evaluated, and the cytotoxicity compared with the effects on non-cancerous mammalian cells, including peripheral blood mononuclear cells (PBMCs), HEK-293 and erythrocytes. ABP-CM4 reduced the number of viable cells of the leukemic cell lines after exposure for 24h. The reduction was concentration dependent, and the IC50 values ranged from 14 to 18 microM. Conversely, ABP-CM4, even at 120 microM, exhibited no cytotoxicity toward HEK-293 or PBMCs, indicating that there was no significant effect on these two types of non-cancer cells. ABP-CM4 at a concentration of 200 microM had no hemolytic activity on mammalian erythrocytes. Together, these results suggested a selective cytotoxicity in leukemia cells. Flow cytometry demonstrated that the binding activity of ABP-CM4 to leukemia cells was much higher than that to HEK-293 or PBMCs, and there was almost no binding to erythrocytes. FITC-labeled ABP-CM4 molecules were examined under a confocal microscope and found to be concentrated at the surface of leukemia cells and changes of the cell membrane were determined by a cell permeability assay, which led us to the conclusion that ABP-CM4 could act at the cell membrane for its anticancer activity on leukemia cells. Collectively, our results indicated that ABP-CM4 has the potential for development as a novel antileukemic agent. Copyright 2010 Elsevier Inc. All rights reserved.

  2. Aliphatic and aromatic plant biopolymer dynamics in soil particles isolated from sequential density fractionation

    NASA Astrophysics Data System (ADS)

    Caldwell, B.; Filley, T.; Sollins, P.; Lajtha, K.; Swanston, C.; Kleber, M.; Kramer, M.

    2007-12-01

    A recent multi-layer-based soil organic matter-mineral interaction mechanistic model to describe the nature of soil organic matter-mineral surface mechanism for soil organic matter stabilization predicts that proteinaceous and aliphatic materials establish the core of strong binding-interactions upon which other organic matter is layered. A key methodology providing data underpinning this hypothesis is sequential density fractionation where soil is partitioned into particles of increasing density with the assumption that a partial control on organic matter distribution through density series is the thickness of its layering. Four soils of varying mineralogy and texture were investigated for their biopolymer, isotopic, and mineralogical properties. Light fractions (<1.8 g/cm3), although dominanted by organic detritus, did not always contain the highest concentration of lignin and substituted fatty acids from cutin and suberin while heavier fractions, 1.8-2.6 g/cm3, exhibited a progressive decrease in concentration in plant derived biopolymers with density. Extractable lignin phenols exhibited a progressive oxidation state with density. The concentration of biopolymers roughly mirrored the C:N ratio of soil particles which dropped consistently with increasing particle density. Although, in all soils, both lignin phenols and SFA concentration generally decreased with increasing density the ratio SFA/lignin varied with density and depending upon the soil. All soils, except the oxisol, exhibited an increase in SFA with respect to lignin suggesting a selective stabilization of those material with respect to lignin. In the oxisol, which showed little variation in its hematite dominated mineralogy across density, SFA/lignin remained constant, potentially indicating a greater capacity to stabilize lignin in that system. Interestingly, the lignin oxidation state increased with density in the oxisol. Given the variation in soil character, the consistency in these trends it suggests a general phenomenon of progressive decay in plant derived material with thinness of mineral coating but an overall relative increase in aliphatic character-all consistent with the multi-layer model.

  3. Chronic intermittent ethanol inhalation increases ethanol self-administration in both C57BL/6J and DBA/2J mice.

    PubMed

    McCool, Brian A; Chappell, Ann M

    2015-03-01

    Inbred mouse strains provide significant opportunities to understand the genetic mechanisms controlling ethanol-directed behaviors and neurobiology. They have been specifically employed to understand cellular mechanisms contributing to ethanol consumption, acute intoxication, and sensitivities to chronic effects. However, limited ethanol consumption by some strains has restricted our understanding of clinically relevant endpoints such as dependence-related ethanol intake. Previous work with a novel tastant-substitution procedure using monosodium glutamate (MSG or umami flavor) has shown that the procedure greatly enhances ethanol consumption by mouse strains that express limited drinking phenotypes using other methods. In the current study, we employ this MSG-substitution procedure to examine how ethanol dependence, induced with passive vapor inhalation, modifies ethanol drinking in C57BL/6J and DBA/2J mice. These strains represent 'high' and 'low' drinking phenotypes, respectively. We found that the MSG substitution greatly facilitates ethanol drinking in both strains, and likewise, ethanol dependence increased ethanol consumption regardless of strain. However, DBA/2J mice exhibited greater sensitivity dependence-enhanced drinking, as represented by consumption behaviors directed at lower ethanol concentrations and relative to baseline intake levels. DBA/2J mice also exhibited significant withdrawal-associated anxiety-like behavior while C57BL/6J mice did not. These findings suggest that the MSG-substitution procedure can be employed to examine dependence-enhanced ethanol consumption across a range of drinking phenotypes, and that C57BL/6J and DBA/2J mice may represent unique neurobehavioral pathways for developing dependence-enhanced ethanol consumption. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Cannabidiol-induced apoptosis in primary lymphocytes is associated with oxidative stress-dependent activation of caspase-8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, H.-Y.; Chu, R.-M.; Wang, C.-C.

    2008-02-01

    We recently reported that cannabidiol (CBD) exhibited a generalized suppressive effect on T-cell functional activities in splenocytes directly exposed to CBD in vitro or isolated from CBD-administered mice. To investigate the potential mechanisms of CBD effects on T cells, we characterized the pro-apoptotic effect of CBD on primary lymphocytes. The apoptosis of splenocytes was markedly enhanced following CBD exposure in a time- and concentration-dependent manner, as evidenced by nuclear hypodiploidity and DNA strand breaks. Exposure of splenocytes to CBD elicited an early production of reactive oxygen species (ROS) with the peak response at 1 h post CBD treatment. In parallelmore » with the ROS production, a gradual diminishment in the cellular glutathione (GSH) content was detected in CBD-treated splenocytes. Both CBD-mediated ROS production and GSH diminishment were remarkably attenuated by the presence of N-acetyl-L-cysteine (NAC), a thiol antioxidant. In addition, CBD treatment significantly stimulated the activation of caspase-8, which was abrogated in the presence of NAC or GSH. Pretreatment of splenocytes with a cell-permeable inhibitor for caspase-8 significantly attenuated, in a concentration-dependent manner, CBD-mediated apoptosis, but not ROS production. Collectively, the present study demonstrated that the apoptotic effect of CBD in primary lymphocytes is closely associated with oxidative stress-dependent activation of caspase-8.« less

  5. State-dependent behavior alters endocrine–energy relationship: Implications for conservation and management

    USGS Publications Warehouse

    Jesmer, Brett R.; Goheen, Jacob R.; Monteith, Kevin L.; Kauffman, Matthew J.

    2017-01-01

    Glucocorticoids (GC) and triiodothyronine (T3) are two endocrine markers commonly used to quantify resource limitation, yet the relationships between these markers and the energetic state of animals has been studied primarily in small-bodied species in captivity. Free-ranging animals, however, adjust energy intake in accordance with their energy reserves, a behavior known as state-dependent foraging. Further, links between life-history strategies and metabolic allometries cause energy intake and energy reserves to be more strongly coupled in small animals relative to large animals. Because GC and T3 may reflect energy intake or energy reserves, state-dependent foraging and body size may cause endocrine–energy relationships to vary among taxa and environments. To extend the utility of endocrine markers to large-bodied, free-ranging animals, we evaluated how state-dependent foraging, energy reserves, and energy intake influenced fecal GC and fecal T3 concentrations in free-ranging moose (Alces alces). Compared with individuals possessing abundant energy reserves, individuals with few energy reserves had higher energy intake and high fecal T3 concentrations, thereby supporting state-dependent foraging. Although fecal GC did not vary strongly with energy reserves, individuals with higher fecal GC tended to have fewer energy reserves and substantially greater energy intake than those with low fecal GC. Consequently, individuals with greater energy intake had both high fecal T3 and high fecal GC concentrations, a pattern inconsistent with previous documentation from captive animal studies. We posit that a positive relationship between GC and T3 may be expected in animals exhibiting state-dependent foraging if GC is associated with increased foraging and energy intake. Thus, we recommend that additional investigations of GC– and T3–energy relationships be conducted in free-ranging animals across a diversity of body size and life-history strategies before these endocrine markers are applied broadly to wildlife conservation and management.

  6. Indoor 222Rn concentration in the exhibition and storage rooms of Polish geological museums.

    PubMed

    Długosz-Lisiecka, Magdalena; Krystek, Marcin; Raczyński, Paweł; Głuszek, Ewa; Kietlińska-Michalik, Barbara; Niechwedowicz, Mariusz

    2017-03-01

    The radon exhaled from radioactive mineral collections exhibited in five Polish geological museums may influence its total indoor concentration. Radon concentrations measured in the exhibition halls do not pose a risk for visitors or museum staff. However, air exceeding the ICRP (2007) action limit for workers (equal to 300Bq/m 3 ) was noted in the storage rooms of two museums. Significant 222 Rn activity concentrations equal to more than ~300kBq/m 3 were measured inside lead containers where radioactive minerals were stored. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Validation of ethnopharmacological uses of Heliotropium strigosum Willd. as spasmolytic, bronchodilator and vasorelaxant remedy.

    PubMed

    Janbaz, Khalid H; Javed, Sana; Saqib, Fatima; Imran, Imran; Zia-Ul-Haq, Muhammad; De Feo, Vincenzo

    2015-06-06

    Heliotropium strigosum is used in traditional medicine to manage gastrointestinal pain, respiratory distress and vascular disorders. The present study was undertaken to provide scientific evidences for these folkloric uses by in vitro experimental settings. A crude methanol extract of the Heliotropium strigosum (Hs.Cr) was tested in vitro on isolated rabbit jejunum preparations to detect the possible presence of spasmolytic activity. Moreover, isolated rabbit tracheal and aorta preparations were used to ascertain the relaxant effects of the extract. The Hs.Cr exhibited relaxant effects in rabbit jejunum in a concentration dependent manner (0.01-3.0 mg/ml). The Hs.Cr also relaxed K(+) (80 mM)-induced spastic contractions in rabbit jejunum and shifted the Ca(2+) concentration response curves towards right. The extract relaxed carbachol (1 μM)- as well as K(+) (80 mM)-induced contractions in rabbit trachea at concentrations ranging from 0.01 to 10 mg/ml. Moreover, Hs.Cr. also relaxed (0.01-3.0 mg/ml) the phenylephrine (1 μM)- and K(+) (80 mM)-induced contractions in isolated rabbit aorta. The Hs.Cr was found to exhibit spasmolytic, bronchodilator and vasorelaxant activities on isolated rabbit jejunum, trachea and aorta preparations, likely mediated through Ca(2+) channel blockade. This finding may provide a scientific basis for the folkloric uses of the plant.

  8. Cancer-suppressive potential of extracts of endemic plant Helichrysum zivojinii: effects on cell migration, invasion and angiogenesis.

    PubMed

    Matić, Ivana Z; Aljancić, Ivana; Vajs, Vlatka; Jadranin, Milka; Gligorijević, Nevenka; Milosavljević, Slobodan; Juranić, Zorica D

    2013-09-01

    Helichrysum zivojinii Cernjavski & Soska is an endemic plant species that grows in the National Park Galicica in Macedonia. Five extracts were isolated as fractions from the aerial parts of the plant: a n-hexane extract (1), a dichloromethane extract (2), an ethyl-acetate extract (3), a n-butanol extract (4) and a methanol extract (5). A dose-dependent cytotoxic activity of the extracts on MDA-MB-231 and EA.hy926 cells was observed. Extracts exhibited more pronounced cytotoxic actions on MDA-MB-231 cells than on EA.hy926 cells. The n-hexane extract (1), at a non-toxic concentration, exhibited an inhibitory effect on the migration as well the invasiveness of MDA-MB-231 cells. The dichloromethane extract (2), at a non-toxic concentration, demonstrated inhibition of MDA-MB-231 cells invasion. Each of the five extracts applied at non-toxic concentrations inhibited migration of EA.hy926 cells. The prominent inhibitory effect of the n-hexane extract on EA.hy926 cells migration was associated with a notable anti-angiogenic action of this extract. The other four tested extracts demonstrated mild anti-angiogenic activity. Our data highlight the prominent anticancer potential of n-hexane (1) and dichloromethane (2) extracts, which could be attributed to their very pronounced and selective cytotoxic activities as well as their anti-invasive and anti-angiogenic properties.

  9. Pharmacokinetics and dromotropic activity of ajmaline in rats with hyperthyroidism.

    PubMed Central

    Hashimoto, Y.; Yasuhara, M.; Kamiya, A.; Okumura, K.; Hori, R.

    1989-01-01

    1. The pharmacokinetics and the dromotropic action (increased PQ interval) of intravenously administered ajmaline (2 mg kg-1) were studied in hyperthyroid rats with sinus tachycardia. The hyperthyroidism was induced by intraperitoneal injection of 3,5,3'-triiodo-L-thyronine (0.5 mg kg-1) for 4 days. 2. The change in the ajmaline concentration in whole blood could be described by a biexponential equation. The steady state distribution volume of ajmaline decreased from 4.81 l kg-1 in control rats to 3.80 l kg-1 in hyperthyroid rats and the total body blood clearance was slightly higher in hyperthyroid rats than in control rats. 3. Ajmaline exhibited a saturable binding to rat plasma proteins, and one kind of binding site was found in the observed range of concentrations. The binding capacity was 2 fold higher in hyperthyroid rats than in control rats. 4. On the basis of the plasma unbound concentration, ajmaline exhibited an increased negative dromotropic activity in hyperthyroid rats compared with control rats. 5. A positive correlation was found between the pacing rate and the dromotropic action of ajmaline on atrioventricular conduction in isolated perfused hearts. There was no significant difference in the rate-dependence of the effect of ajmaline on the heart between control and hyperthyroid rats. 6. Our findings suggest that the increased dromotropic activity of ajmaline is mainly due to the increased heart rate in hyperthyroid rats. PMID:2924068

  10. Estimation of the activation energy in the Belousov-Zhabotinsky reaction by temperature effect on excitable waves.

    PubMed

    Zhang, Jinzhong; Zhou, Luqun; Ouyang, Qi

    2007-02-15

    We report the temperature effect on the propagation of excitable traveling waves in a quasi-two-dimensional Belousov-Zhabotinsky reaction-diffusion system. The onset of excitable waves as a function of the sulfuric acid concentration and temperature is identified, on which the sulfuric acid concentration exhibits an Arrhenius dependence on temperature. On the basis of this experimental data, the activation energy of the self-catalyzed reaction in the Oregonator model is estimated to be 83-113 kJ/mol, which is further supported by our numerical simulations. The estimation proceeds without analyzing detailed reaction steps but rather through observing the global dynamic behaviors in the BZ reaction. For a supplement, the wave propagation velocities are calculated based on our results and compared with the experimental observations.

  11. NMR (Nuclear Magnetic Resonance) and macromolecular migration in a melt or in concentrated solutions

    NASA Technical Reports Server (NTRS)

    Addad, J. P. C.

    1983-01-01

    The purpose of this paper is to analyze the migration process of long polymer molecules in a melt or in concentrated solutions as it may be observed from the dynamics of the transverse magnetization of nuclear spins linked to these chains. The low frequency viscoelastic relaxation of polymer systems is known to be mainly controlled by the mechanism of dissociation of topological constraints excited on chains and which are called entanglements. This mechanism exhibits a strong dependence upon the chain molecular weight. These topological constraints also govern the diffusion process of polymer chains. So, the accurate description of the diffusion motion of a chain may be a convenient way to characterize disentanglement processes necessarily involved in any model proposed to explain viscoelastic effects.

  12. Equilibrium concentration profiles and sedimentation kinetics of colloidal gels under gravitational stress

    NASA Astrophysics Data System (ADS)

    Buzzaccaro, S.; Secchi, E.; Brambilla, G.; Piazza, R.; Cipelletti, L.

    2012-07-01

    We study the sedimentation of colloidal gels by using a combination of light scattering, polarimetry and video imaging. The asymptotic concentration profiles φ(z,t → ∞) exhibit remarkable scaling properties: profiles for gels prepared at different initial volume fractions and particle interactions can be superimposed onto a single master curve by using suitable reduced variables. We show theoretically that this behavior stems from a power law dependence of the compressive elastic modulus versus φ, which we directly test experimentally. The sedimentation kinetics comprises an initial latency stage, followed by a rapid collapse where the gel height h decreases at constant velocity and a final compaction stage characterized by a stretched exponential relaxation of h toward a plateau. Analogies and differences with previous works are briefly discussed.

  13. Mechanical Overstimulation of Hair Bundles: Suppression and Recovery of Active Motility

    PubMed Central

    Kao, Albert; Meenderink, Sebastiaan W. F.; Bozovic, Dolores

    2013-01-01

    We explore the effects of high-amplitude mechanical stimuli on hair bundles of the bullfrog sacculus. Under in vitro conditions, these bundles exhibit spontaneous limit cycle oscillations. Prolonged deflection exerted two effects. First, it induced an offset in the position of the bundle. Recovery to the original position displayed two distinct time scales, suggesting the existence of two adaptive mechanisms. Second, the stimulus suppressed spontaneous oscillations, indicating a change in the hair bundle’s dynamic state. After cessation of the stimulus, active bundle motility recovered with time. Both effects were dependent on the duration of the imposed stimulus. External calcium concentration also affected the recovery to the oscillatory state. Our results indicate that both offset in the bundle position and calcium concentration control the dynamic state of the bundle. PMID:23505461

  14. Comparison of antigenic and allergenic components of Holoptelea integrifolia pollen collected from different source materials.

    PubMed

    Malik, P; Singh, A B; Gangal, S V; Babu, C R

    1991-05-01

    Antigenic extracts prepared from pollen samples collected at weekly intervals during the same season did not exhibit significant variation in protein concentration. Stored pollen samples from different years, however, showed highly significant variations in protein concentration. The protein content of samples from different ecozones of India also varied (CV = +/- 32%). The IEF and SDS-PAGE patterns were almost identical in samples from the same season, but were variable in the samples stored from different years and different parts of India. IgE binding proteins from different samples also varied depending on the overall protein profiles. Almost all the patients, however, showed IgE binding to four proteins at 50, 60, 66 and 70 kD, indicating the important allergenic components of Holoptelea integrifolia.

  15. Ethylene regulates Apple (Malus x domestica) fruit softening through a dose x time-dependent mechanism and through differential sensitivities and dependencies of cell wall-modifying genes.

    PubMed

    Ireland, Hilary S; Gunaseelan, Kularajathevan; Muddumage, Ratnasiri; Tacken, Emma J; Putterill, Jo; Johnston, Jason W; Schaffer, Robert J

    2014-05-01

    In fleshy fruit species that have a strong requirement for ethylene to ripen, ethylene is synthesized autocatalytically, producing increasing concentrations as the fruits ripen. Apple fruit with the ACC OXIDASE 1 (ACO1) gene suppressed cannot produce ethylene autocatalytically at ripening. Using these apple lines, an ethylene sensitivity dependency model was previously proposed, with traits such as softening showing a high dependency for ethylene as well as low sensitivity. In this study, it is shown that the molecular control of fruit softening is a complex process, with different cell wall-related genes being independently regulated and exhibiting differential sensitivities to and dependencies on ethylene at the transcriptional level. This regulation is controlled through a dose × time mechanism, which results in a temporal transcriptional response that would allow for progressive cell wall disassembly and thus softening. This research builds on the sensitivity dependency model and shows that ethylene-dependent traits can progress over time to the same degree with lower levels of ethylene. This suggests that a developmental clock measuring cumulative ethylene controls the fruit ripening process.

  16. Antioxidant effects of 14 Chinese traditional medicinal herbs against human low-density lipoprotein oxidation.

    PubMed

    Lin, Hsin-Hung; Charles, Albert Linton; Hsieh, Chang-Wei; Lee, Ya-Chi; Ciou, Jhih-Ying

    2015-01-01

    The relationship between the antioxidant activities and inhibitory effect of 14 Chinese medicinal herbs against oxidized low-density lipoprotein (LDL) formation was evaluated. Prolongation of the lag phase of LDL oxidation depended on the concentration of the herbs. The concentration of each herb that was able to prolong the lag time by about two-fold was calculated and expressed as doubling-time concentration. The lower the doubling-time concentration, the stronger the inhibitory effect exhibited toward LDL oxidation. Among them, Chrysanthemi Flos (Chrysanthemum morifolium ramat; gān jú huā), Crataegi Fructus (Crataegus pinnatifida Bge. var. major N.E.Br.; shān zhā), and Roselle (Hibiscus sabdariffa Linn.; luò shén) showed significant inhibitory effects. Correlation coefficients between doubling-time concentration and radical-scavenging activities were high; the total phenolic content was also high. In conclusion, phenolic compounds contributed not only to antioxidant activities, but also to the inhibitory effect against LDL oxidation. Chrysanthemi Flos, Crataegi Fructus, and H. sabdariffa, with lower doubling-time concentrations, could be potent phytochemical agents to reduce LDL oxidation and prevent the progression of atherosclerosis.

  17. Evaluation of pharmacokinetics and the stability of daptomycin in serum at various temperatures.

    PubMed

    Ogami, Chika; Tsuji, Yasuhiro; Kasai, Hidefumi; Hiraki, Yoichi; Yamamoto, Yoshihiro; Matsunaga, Kazuhisa; Karube, Yoshiharu; To, Hideto

    2017-04-01

    Daptomycin exhibits concentration-dependent antibacterial activity. By monitoring daptomycin serum concentrations, clinicians may be able to predict the effectiveness of treatments for infections more accurately. However, it has been reported that daptomycin concentrations in plasma samples stored at -20°C decrease approximately 25% after 4 weeks. The aim of this study was to evaluate the stability of daptomycin in serum at various temperatures. Daptomycin serum samples were prepared and stored at different temperatures. The stability of daptomycin under various conditions was evaluated by sequential measurements of concentration. Although the loss of concentration of daptomycin in serum samples stored in freezers (-80°C and -20°C) was less than 10% after 168days (6 months), the concentrations in samples stored in a refrigerator (4°C) decreased by more than 70% over the same period. Furthermore, daptomycin concentrations in serum samples stored at close to body temperature (35°C, 37°C, and 39°C) decreased by more than 50% after only 24h. The results of the present study demonstrate that the measurement of serum concentrations of daptomycin needs to be performed rapidly. Furthermore, the degradation of daptomycin in serum may be involved in its elimination from the living body. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  18. Preparation and anticoagulant activity of N-succinyl chitosan sulfates.

    PubMed

    Wang, Tan; Zhou, Yue; Xie, Weiguo; Chen, Lingyun; Zheng, Hua; Fan, Lihong

    2012-12-01

    In order to develop a promising substitute for heparin, N-succinyl chitosan (NSC) was chemically modified by sulfating agent N(SO(3)Na)(3), which were synthesized with sodium bisulfite and sodium nitrite in aqueous solution. The N-succinyl chitosan sulfates (NSCS) products were characterized by infrared spectroscopy (FT-IR) and (13)C NMR. The degree of substitution (DS) of NSCS depended on the ratio of sulfating agent to N-succinyl chitosan, reaction temperature, reaction time and pH of sulfation agent. N-succinyl chitosan sulfates with DS of 1.97 were obtained under optimal conditions. The in vitro coagulation assay of NSCS was determined by activated partial thromboplastin time (APTT), prothrombin time (PT) and thrombin time (TT) assays. The results showed that NSCS obviously prolonged APTT. The anticoagulant activity strongly depended on DS, molecular weight (M(w)) and concentration of NSCS. The anticoagulant activity of NSCS promoted with the increase of DS and concentration, and NSCS exhibited the best anticoagulant activity with the M(w) of 1.37×10(4). Copyright © 2012. Published by Elsevier B.V.

  19. Physical characterization of dibasic calcium phosphate dihydrate and anhydrate.

    PubMed

    Miyazaki, Tamaki; Sivaprakasam, Kannan; Tantry, Jaidev; Suryanarayanan, Raj

    2009-03-01

    The dehydration of different commercial brands of dibasic calcium phosphate dihydrate (DCPD; CaHPO(4).2H(2)O) was examined over a range of temperatures and water vapor pressures. To determine the main factors affecting the physical stability of DCPD, the baseline characterization of DCPD and dibasic calcium phosphate anhydrate (DCPA; CaHPO(4)) was conducted by thermogravimetric analysis, differential scanning calorimetry and X-ray diffractometry. The surface area and the DCPA content (present as an impurity) depended on the commercial source of DCPD. The larger particles contained a higher concentration of DCPA and the anhydrate exhibited a concentration-dependent acceleratory effect on the dehydration of DCPD. Unlike DCPD, DCPA is physically stable and resisted hydration even when dispersed in water for over 7 months in the temperature range of 4-50 degrees C. In dosage forms containing DCPD, there is a potential for phase transformation to DCPA, while the reverse transition, that is, DCPA --> DCPD appears to be extremely unlikely. Thus, the risk of physical transformation can be minimized by using DCPA in formulations. (c) 2008 Wiley-Liss, Inc. and the American Pharmacists Association

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sarma, Abhisakh; Sanyal, Milan K., E-mail: milank.sanyal@saha.ac.in

    In-situ x-ray diffraction technique has been used to study the growth process of gold incorporated polypyrrole nanotubes that exhibit colossal dielectric constant due to existence of quasi-one-dimensional charge density wave state. These composite nanotubes were formed within nanopores of a polycarbonate membrane by flowing pyrrole monomer from one side and mixture of ferric chloride and chloroauric acid from other side in a sample cell that allows collection of x-ray data during the reaction. The size of the gold nanoparticle embedded in the walls of the nanotubes was found to be dependent on chloroauric acid concentration for nanowires having diameter moremore » than 100 nm. For lower diameter nanotubes the nanoparticle size become independent of chloroauric acid concentration and depends on the diameter of nanotubes only. The result of this study also shows that for 50 nm gold-polypyrrole composite nanotubes obtained with 5.3 mM chloroauric acid gives colossal dielectric constant of about 10{sup 7}. This value remain almost constant over a frequency range from 1Hz to 10{sup 6} Hz even at 80 K temperature.« less

  1. Screening of Enzyme Biomarker for Nanotoxicity of Zinc Oxide in OREOCHROMIS MOSSAMBICUS

    NASA Astrophysics Data System (ADS)

    Subramanian, Periasamy; Bupesh, Giridharan

    2011-06-01

    Experiments were conducted to determine the effects of Zinc oxide (ZnO) nanoparticles (NPs) on fish models. Oreochromis mossambicus was orally administered with ZnO NPs (50-100 nm) once and its effects at five different concentrations (60 ppm-100 ppm) were observed for 12 days. Enzymatic assays were performed at every three days interval in the vital tissues of liver, gill, muscle and kidney. The defense enzymes, ethoxyresorufin O-deethylase (EROD) and glutathione S transferase (GST) exerted a dose dependent elevation up to 6 days. This hike then declines in higher concentrations and extended duration. Whereas the tissue damaging enzymes, glutamate oxaloacetic transaminase (GOT), glutamate pyruvic transaminase (GPT) and alkaline phosphatase (ALP) as well as the antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) exhibited a dose and duration dependent increase until the end of the experiment. Among these enzymes, the antioxidant enzymes response to ZnO NP toxicity on fish showed notable continuous induction. This study demonstrates that antioxidant enzymes responses in O. mossambicus could be used as a biomarker for the early detection of nanotoxicity.

  2. [Estimation of mercury in the urine of cigarette smokers].

    PubMed

    Kulikowska-Karpińska, Elżbieta; Zdanowicz, Magdalena; Gałażyn-Sidorczuk, Małgorzata

    Cigarette smoking is one of the most common habits of the modern world. According to a NATPOL PLU study, every third adult Pole is dependent on nicotine. Tobacco smoke contains about 5,000 components, of which over 1,000 are very toxic chemical substances (3,4-benzopyrene, heavy metals, free radicals, hydrogen cyanide, nitrogen oxides and N-nitrosamines). Exposure to tobacco smoke is an example of a complex, with a significant number of interactions. To assess the concentration of copper in the urine of smokers. Based on the results, an attempt was made to determine whether smoking can affect the level of copper in the body. The study involved 170 healthy volunteers, 99 smokers and 71 non-smokers (control group). The age of patients in both groups were in the range of 20-60 years. The mean age for men and women was 41 years. The average length of cigarette smoking was 18 years for women and 21 years for men, and the number of cigarettes smoked 1-40 ⁄ 24. The urine concentrations of Cu were determined by atomic absorption spectrometry (AAS) and serum creatinine kinetic method using a set of BIOLAB. Cu concentration in urine was expressed in mg / g creatinine. Smokers were found to have reduced levels of copper in the urine, depending on sex, age and brand of cigarettes. In male smokers, copper concentration in the urine was dependent on age and time of smoking, whereas among women this relationship was not observed. Cigarette smoking significantly influences the level of copper in the urine. Both female and male smokers showed reduced levels of copper in the urine, which may indicate its increased accumulation in the body. Excessive accumulation of copper is very dangerous since it may exhibit toxic effects towards many organs and systems.

  3. Effects of temperature and particles on nitrification in a eutrophic coastal bay in southern China

    NASA Astrophysics Data System (ADS)

    Zheng, Zhen-Zhen; Wan, Xianhui; Xu, Min Nina; Hsiao, Silver Sung-Yun; Zhang, Yao; Zheng, Li-Wei; Wu, Yanhua; Zou, Wenbin; Kao, Shuh-Ji

    2017-09-01

    Despite being the only link between reduced and oxidized nitrogen, the impact of environmental factors on nitrification, temperature and particles, in particular, remains unclear for coastal zones. By using the 15NH4+-labeling technique, we determined nitrification rates in bulk (NTRB) and free-living (NTRF, after removing particles >3 μm) for water samples with varying particle concentrations (as sampled at different tidal stages) during autumn, winter, and summer in a eutrophic coastal bay in southern China. The highest NTRB occurred in autumn, when particle concentrations were highest. In general, particle-associated nitrification rates (NTRP, >3 μm) were higher than NTRF and increased with particle abundance. Regardless of seasonally distinctive temperature and particle concentrations, nitrification exhibited consistent temperature dependence in all cases (including bulk, particle-associated, and free-living) with a Q10 value of 2.2. Meanwhile, the optimum temperature for NTRP was 29°C, 5°C higher than that for NTRF although the causes for such a difference remained unclear. Strong temperature dependence and particle association suggest that nitrification is sensitive to temperature change (seasonality and global warming) and to ocean dynamics (wave and tide). Our results can potentially be applied to biogeochemical models of the nitrogen cycle for future predictions.

  4. A numerical model for density-and-viscosity-dependent flows in two-dimensional variably saturated porous media

    NASA Astrophysics Data System (ADS)

    Boufadel, Michel C.; Suidan, Makram T.; Venosa, Albert D.

    1999-04-01

    We present a formulation for water flow and solute transport in two-dimensional variably saturated media that accounts for the effects of the solute on water density and viscosity. The governing equations are cast in a dimensionless form that depends on six dimensionless groups of parameters. These equations are discretized in space using the Galerkin finite element formulation and integrated in time using the backward Euler scheme with mass lumping. The modified Picard method is used to linearize the water flow equation. The resulting numerical model, the MARUN model, is verified by comparison to published numerical results. It is then used to investigate beach hydraulics at seawater concentration (about 30 g l -1) in the context of nutrients delivery for bioremediation of oil spills on beaches. Numerical simulations that we conducted in a rectangular section of a hypothetical beach revealed that buoyancy in the unsaturated zone is significant in soils that are fine textured, with low anisotropy ratio, and/or exhibiting low physical dispersion. In such situations, application of dissolved nutrients to a contaminated beach in a freshwater solution is superior to their application in a seawater solution. Concentration-engendered viscosity effects were negligible with respect to concentration-engendered density effects for the cases that we considered.

  5. A novel type of ATP block on a Ca(2+)-activated K(+) channel from bullfrog erythrocytes.

    PubMed

    Shindo, M; Imai, Y; Sohma, Y

    2000-07-01

    Using the patch-clamp technique, we have identified an intermediate conductance Ca(2+)-activated K(+) channel from bullfrog (Rana catesbeiana) erythrocytes and have investigated the regulation of channel activity by cytosolic ATP. The channel was highly selective for K(+) over Na(+), gave a linear I-V relationship with symmetrical 117.5 mM K(+) solutions and had a single-channel conductance of 60 pS. Channel activity was dependent on Ca(2+) concentration (K(1/2) = 600 nM) but voltage-independent. These basic characteristics are similar to those of human and frog erythrocyte Ca(2+)-activated K(+) (Gardos) channels previously reported. However, cytoplasmic application of ATP reduced channel activity with block exhibiting a novel bell-shaped concentration dependence. The channel was inhibited most by approximately 10 microM ATP (P(0) reduced to 5% of control) but less blocked by lower and higher concentrations of ATP. Moreover, the novel type of ATP block did not require Mg(2+), was independent of PKA or PKC, and was mimicked by a nonhydrolyzable ATP analog, AMP-PNP. This suggests that ATP exerts its effect by direct binding to sites on the channel or associated regulatory proteins, but not by phosphorylation of either of these components.

  6. Fluorescence recognition of chiral amino alcohols by using a novel ionic liquid sensor.

    PubMed

    Cai, Pengfei; Wu, Datong; Zhao, Xiaoyong; Pan, Yuanjiang

    2017-08-07

    A novel task-specific ionic liquid derived from l-phenylalaninol was prepared as an enantioselective fluorescent sensor for the first time. Fluorescent chiral ionic liquid 1 (FCIL1) is found to exhibit highly enantioselective fluorescence enhancements toward both aromatic and non-aromatic chiral amino alcohols. When (S)-FCIL1 was treated with the enantiomers of phenylalaninol, a great fluorescence enhancement at 349 nm could be observed and the value of the enantiomeric fluorescence difference (ef) is 5.92. This demonstrated that the chiral sensor (S)-FCIL1 exhibited an excellent enantioselective response behaviour to d-phenylalaninol. Besides that, both the fluorescence intensity at 349 nm (I 349 ) and the ratio of I 349 to I 282 depend linearly on the concentration of amino alcohols. Both the concentration and the enantiomeric composition could be determined by using the chiral ionic liquid. Differently, the sensor treated with the enantiomers of 2-amino-1-butanol showed an opposite result: the fluorescence intensity of the S-enantiomer is higher than that of the R-enantiomer. Furthermore, the size of the substituents on the chiral carbon might be important for the enantioselective fluorescent response.

  7. Effects of Eichhornia crassipes and Ceratophyllum demersum on Soil and Water Environments and Nutrient Removal in Wetland Microcosms.

    PubMed

    Sung, Kijune; Lee, Geun-Joo; Munster, Clyde

    2015-01-01

    Wetland plants are important components that influence the biogeochemistry of wetland ecosystems. Therefore, remediation performance in wetlands can differ depending on the growth forms of plants. In this study, the effects of Eichhornia crassipes (floating plant) and Ceratophyllum demersum (submerged plant) on the wetland soil and water environments were investigated using a microcosm study with simulated hydrology of retention-type wetlands between rainfall events. The C. demersum microcosm (SP) showed the fastest recovery with a diel fluctuation pattern of dissolved oxygen, pH, and oxidation-reduction potential (ORP) from the impacts of nutrient inflow. Moreover, SP exhibited the lowest decrease in sediment ORP, the highest dehydrogenase activity, and more organic forms of nitrogen and phosphorus. E. crassipes microcosms exhibited the lowest water temperature, and efficiently controlled algae. In the presence of plants, the total nitrogen and phosphorus concentrations in water rapidly decreased, and the composition of organic and inorganic nutrient forms was altered along with a decrease in concentration. The results indicate that wetland plants help retain nutrients in the system, but the effects varied based on the wetland plant growth forms.

  8. Enzymatically crosslinked silk-hyaluronic acid hydrogels.

    PubMed

    Raia, Nicole R; Partlow, Benjamin P; McGill, Meghan; Kimmerling, Erica Palma; Ghezzi, Chiara E; Kaplan, David L

    2017-07-01

    In this study, silk fibroin and hyaluronic acid (HA) were enzymatically crosslinked to form biocompatible composite hydrogels with tunable mechanical properties similar to that of native tissues. The formation of di-tyrosine crosslinks between silk fibroin proteins via horseradish peroxidase has resulted in a highly elastic hydrogel but exhibits time-dependent stiffening related to silk self-assembly and crystallization. Utilizing the same method of crosslinking, tyramine-substituted HA forms hydrophilic and bioactive hydrogels that tend to have limited mechanics and degrade rapidly. To address the limitations of these singular component scaffolds, HA was covalently crosslinked with silk, forming a composite hydrogel that exhibited both mechanical integrity and hydrophilicity. The composite hydrogels were assessed using unconfined compression and infrared spectroscopy to reveal of the physical properties over time in relation to polymer concentration. In addition, the hydrogels were characterized by enzymatic degradation and for cytotoxicity. Results showed that increasing HA concentration, decreased gelation time, increased degradation rate, and reduced changes that were observed over time in mechanics, water retention, and crystallization. These hydrogel composites provide a biologically relevant system with controllable temporal stiffening and elasticity, thus offering enhanced tunable scaffolds for short or long term applications in tissue engineering. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Structure dependent resistivity and dielectric characteristics of tantalum oxynitride thin films produced by magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Cristea, D.; Crisan, A.; Cretu, N.; Borges, J.; Lopes, C.; Cunha, L.; Ion, V.; Dinescu, M.; Barradas, N. P.; Alves, E.; Apreutesei, M.; Munteanu, D.

    2015-11-01

    The main purpose of this work is to present and to interpret the change of electrical properties of TaxNyOz thin films, produced by DC reactive magnetron sputtering. Some parameters were varied during deposition: the flow of the reactive gases mixture (N2 and O2, with a constant concentration ratio of 17:3); the substrate voltage bias (grounded, -50 V or -100 V) and the substrate (glass, (1 0 0) Si or high speed steel). The obtained films exhibit significant differences. The variation of the deposition parameters induces variations of the composition, microstructure and morphology. These differences cause variation of the electrical resistivity essentially correlated with the composition and structural changes. The gradual decrease of the Ta concentration in the films induces amorphization and causes a raise of the resistivity. The dielectric characteristics of some of the high resistance TaxNyOz films were obtained in the samples with a capacitor-like design (deposited onto high speed steel, with gold pads deposited on the dielectric TaxNyOz films). Some of these films exhibited dielectric constant values higher than those reported for other tantalum based dielectric films.

  10. Chemoprevention by essential oil of turmeric leaves (Curcuma longa L.) on the growth of Aspergillus flavus and aflatoxin production.

    PubMed

    Sindhu, S; Chempakam, B; Leela, N K; Suseela Bhai, R

    2011-05-01

    Turmeric is well known for a wide range of medicinal properties. Essential oil of turmeric leaves (Curcuma longa L.) were evaluated at varying concentrations of 0.01, 0.05, 0.1, 0.5, 0.75, 1.0 and 1.5% (v/v) in Yeast Extract Sucrose (YES) broth inoculated with spore suspension of Aspergillus flavus of 10(6)conidia/ml. These were evaluated for their potential in the control of aflatoxigenic fungus A. flavus and aflatoxin production. Turmeric leaf oil exhibited 95.3% and 100% inhibition of toxin production respectively at 1.0% and 1.5%. The extent of inhibition of fungal growth and aflatoxin production was dependent on the concentration of essential oil used. The oil exhibited significant inhibition of fungal growth as well as aflatoxins B(1) and G(1) production. The LD(50) and LD(90) were also determined. GC-MS analysis of the oil showed α-phellandrene, p-cymene and terpinolene as the major components in turmeric leaf oil. The possibility of using these phytochemical components as bio-preservatives for storage of spices is discussed. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Dimethylamine as a major alkyl amine species in particles and cloud water: Observations in semi-arid and coastal regions.

    PubMed

    Youn, J-S; Crosbie, E; Maudlin, L C; Wang, Z; Sorooshian, A

    2015-12-01

    Aerosol and cloud water measurements of dimethylamine (DMA), the most abundant amine in this study, were conducted in semi-arid (Tucson, Arizona) and marine (Nucleation in California Experiment, NiCE; central coast of California) areas. In both regions, DMA exhibits a unimodal aerosol mass size distribution with a dominant peak between 0.18 and 0.56 μm. Particulate DMA concentrations increase as a function of marine biogenic emissions, sulfate, BVOC emissions, and aerosol-phase water. Such data supports biogenic sources of DMA, aminium salt formation, and partitioning of DMA to condensed phases. DMA concentrations exhibit positive correlations with various trace elements and most especially vanadium, which warrants additional investigation. Cloud water DMA levels are enhanced significantly during wildfire periods unlike particulate DMA levels, including in droplet residual particles, due to effective dissolution of DMA into cloud water and probably DMA volatilization after drop evaporation. DMA:NH + 4 molar ratios peak between 0.18 and 1.0 μm depending on the site and time of year, suggesting that DMA competes better with NH 3 in those sizes in terms of reactive uptake by particles.

  12. Comparative Toxicity of Preservatives on Immortalized Corneal and Conjunctival Epithelial Cells

    PubMed Central

    Ahdoot, Michael; Marcus, Edward; Asbell, Penny A.

    2009-01-01

    Abstract Purpose Nearly all eye drops contain preservatives to decrease contamination. Nonpreservatives such as disodium-ethylene diamine tetra-acetate (EDTA) and phosphate-buffered saline are also regularly added as buffering agents. These components can add to the toxicity of eye drops and cause ocular surface disease. To evaluate the potential toxicity of these common components and their comparative effects on the ocular surface, a tissue culture model utilizing immortalized corneal and conjunctival epithelial cells was utilized. Methods Immortalized human conjunctival and corneal epithelial cells were grown. At confluency, medium was replaced with 100 μL of varying concentrations of preservatives: benzalkonium chloride (BAK), methyl paraben (MP), sodium perborate (SP), chlorobutanol (Cbl), and stabilized thimerosal (Thi); varying concentrations of buffer: EDTA; media (viable control); and formalin (dead control). After 1 h, solutions were replaced with 150 μL of MTT (3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazonium bromide). After 4 h, solutions decanted, 100 μL of acid isopropanol added, and the optical density determined at 572 nm to evaluate cell viability. Results Conjunctival and corneal cell toxicity was seen with all preservatives. Depending upon concentration, BAK exhibited from 56% to 89% toxicity. In comparison, Cbl exhibited from 50% to 86%, MP from 30% to 76%, SP from 23% to 59%, and Thi from 70% to 95%. EDTA with minimal toxicity (from 6% to 59%) was indistinguishable from SP. Conclusions Generally, the order of decreasing toxicity at the most commonly used concentrations: Thi (0.0025%) > BAK (0.025%) > Cbl (0.25%) > MP (0.01%) > SP (0.0025%) ≈ EDTA (0.01%). Even at low concentration, these agents will cause some degree of ocular tissue damage. PMID:19284328

  13. In vitro assessment of the role of DpC in the treatment of head and neck squamous cell carcinoma.

    PubMed

    Xu, Ye-Xing; Zeng, Man-Li; Yu, Di; Ren, Jie; Li, Fen; Zheng, Anyuan; Wang, Yong-Ping; Chen, Chen; Tao, Ze-Zhang

    2018-05-01

    The present study aimed to investigate the antitumor efficacy of di-2-pyridylketone-4-cyclohexyl-4-methyl-3-thiosemicarbazone (DpC) and di-2-pyridylketone-4,4,-dimethyl-3-thiosemicarbazone (Dp44mT) on head and neck squamous cell carcinoma (HNSCC) cells. The proliferation and apoptosis of HNSCC cells treated with the iron chelators DpC and Dp44mT were detected. The mechanism of DpC-induced apoptosis on HNSCC cells was investigated. The human HNSCC cell lines FaDu, Cal-27 and SCC-9 were cultured in vitro and exposed to gradient concentrations of DpC and Dp44mT. A Cell Counting Kit-8 assay was used to detect the viability of FaDu, Cal-27, SCC-9 cells. Double staining with annexin V and propidium iodide was performed for the detection of the proportion of apoptotic FaDu, Cal-27 and SCC-9 cells following treatment. The nuclear damage to Cal-27 cells that were treated with DpC was detected by Hoechst staining. Finally, western blot analysis was used to detect the expression of proteins associated with the DNA damage pathway in Cal-27 cells that were treated with DpC. The CCK-8 assay showed that treatment with DpC and Dp44mT was able to markedly inhibit the viability of FaDu, Cal-27 and SCC-9 cells in a concentration-dependent manner. In comparison to Dp44mT, treatment with DpC exhibited a more effective inhibitory effect on the viability of HNSCC cells. The proportion of apoptotic cells detected by flow cytometry increased in a dose-dependent manner in all cell lines following DpC and Dp44mT treatment, with the proportion of apoptotic HNSCC cells induced by DpC treatment being significantly higher compared with Dp44mT (P<0.05). The results of Hoechst staining revealed that the nuclei of Cal-27 cells exhibited morphological changes in response to DpC treatment, including karyopyknosis and nuclear fragmentation. The expression of DNA damage-associated proteins, including phosphorylated (p)-serine-protein kinase ATM, p-serine/threonine-protein kinase Chk1 (p-Chk-1), p-serine/threonine-protein kinase ATR (p-ATR), p-Chk-2, poly (ADP-ribose) polymerase, p-histone H2AX, breast cancer type 1 susceptibility protein, p-tumor protein P53, increased with increasing concentration of DpC in Cal-27 cells. Treatment with DpC and Dp44mT markedly inhibited cell viability and increased the apoptotic rates in human HNSCC cells in a concentration-dependent manner. DpC exhibited a stronger antitumor effect compared with Dp44mT, potentially inducing the apoptosis of HNSCC cells via the upregulation of DNA damage repair-associated proteins.

  14. Ab initio investigation of the structural and electronic properties of the MgFBrxCl1-x quaternary alloy

    NASA Astrophysics Data System (ADS)

    Mokhtari, Ali; Alidoosti, Mohammad

    2014-11-01

    In the present work, we have performed first principles calculations to study the structural and electronic properties of the MgFBrxCl1-x quaternary alloys using the pseudo-potential plane wave approach within the framework of density functional theory. By using the optimized initial parameters, we have obtained the physical quantities such as equilibrium lattice constants a and c, cohesive energy and band gap and then fitted the results by a quadratic expression for all x compositions. The results of bulk modulus exhibit nearly linear concentration dependence (LCD) but other quantities show nonlinear dependence. Finally, we have calculated the total and angular momentum decomposed (partial) density of states and determined the contributions of different orbitals of each atoms.

  15. Highly pH-responsive sensor based on amplified spontaneous emission coupled to colorimetry.

    PubMed

    Zhang, Qi; Castro Smirnov, Jose R; Xia, Ruidong; Pedrosa, Jose M; Rodriguez, Isabel; Cabanillas-Gonzalez, Juan; Huang, Wei

    2017-04-07

    We demonstrated a simple, directly-readable approach for high resolution pH sensing. The method was based on sharp changes in Amplified Spontaneous Emission (ASE) of a Stilbene 420 (ST) laser dye triggered by the pH-dependent absorption of Bromocresol Green (BG). The ASE threshold of BG:ST solution mixtures exhibited a strong dependence on BG absorption, which was drastically changed by the variations of the pH of BG solution. As a result, ASE on-off or off-on was observed with different pH levels achieved by ammonia doping. By changing the concentration of the BG solution and the BG:ST blend ratio, this approach allowed to detect pH changes with a sensitivity down to 0.05 in the 10-11 pH range.

  16. Magnetotransport of proton-irradiated BaFe 2As 2 and BaFe 1.985Co 0.015As 2 single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moseley, D. A.; Yates, K. A.; Peng, N.

    2015-02-17

    In this paper, we study the magnetotransport properties of the ferropnictide crystals BaFe 2As 2 and BaFe 1.985Co 0.015As 2. These materials exhibit a high field linear magnetoresistance that has been attributed to the quantum linear magnetoresistance model. In this model, the linear magnetoresistance is dependent on the concentration of scattering centers in the material. By using proton-beam irradiation to change the defect scattering density, we find that the dependence of the magnitude of the linear magnetoresistance on scattering quite clearly contravenes this prediction. Finally, a number of other scaling trends in the magnetoresistance and high field Hall data aremore » observed and discussed.« less

  17. Influence of the growth method on degradation of InGaN laser diodes

    NASA Astrophysics Data System (ADS)

    Bojarska, Agata; Muzioł, Grzegorz; Skierbiszewski, Czesław; Grzanka, Ewa; Wiśniewski, Przemysław; Makarowa, Irina; Czernecki, Robert; Suski, Tadek; Perlin, Piotr

    2017-09-01

    We demonstrate the influence of the operation current density and temperature on the degradation rate of InGaN laser diodes grown via metalorganic vapor-phase epitaxy (MOVPE) and plasma-assisted molecular beam epitaxy (PAMBE). The degradation rate of the MOVPE devices shows an exponential dependence on the temperature, with an activation energy of 0.38-0.43 eV, and a linear dependence on the operating current density. In comparison, the MBE-grown lasers exhibit a higher activation energy, on the order of 1 eV, and typically a lower degradation rate, resulting in a service time exceeding 50,000 h. We suggest that this difference may be related to the lower concentration of H in the Mg-doped MBE-grown GaN.

  18. Anti-arthritic activity of aqueous-methanolic extract and various fractions of Berberis orthobotrys Bien ex Aitch.

    PubMed

    Alamgeer; Uttra, Ambreen Malik; Hasan, Umme Habiba

    2017-07-18

    The roots and stem bark of Berberis orthobotrys (Berberidaceae) have long been used traditionally to treat joint pain. Though, it has not been pharmacologically assessed for rheumatoid arthritis. The current study explores anti-arthritic activity and phytochemical analysis of aqueous-methanolic extract (30:70) and fractions (ethyl acetate, n-butanol, and aqueous) of Berberis orthobotrys roots. Anti-arthritic potential was evaluated in vitro using protein denaturation (bovine serum albumin and egg albumin) and membrane stabilization methods at 12.5-800 μg/ml concentration and in vivo via turpentine oil, formaldehyde and Complete Freund Adjuvant (CFA) models at 50, 100 and 150 mg/kg doses. Also, in vitro antioxidant ability was appraised by reducing power assay. Moreover, total flavonoid content, Fourier transform infrared spectroscopy and High performance liquid chromatography of n-butanol fraction were performed. The results revealed concentration dependent inhibition of albumin denaturation and notable RBC membrane stabilization, with maximum results obtained at 800 μg/ml. Similarly, plant exhibited dose dependent anti-arthritic effect in turpentine oil and formaldehyde models, with maximum activity observed at 150 mg/kg. The results of CFA model depicted better protection against arthritic lesions and body weight alterations. Also, B.orthobotrys remarkably ameliorated altered hematological parameters, rheumatoid factor and positively modified radiographic and histopathological changes. Additionally, plant exhibited remarkable anti-oxidant activity. Moreover, phytochemical analysis revealed polyphenols and flavonoids. Taken together, these results support traditional use of B.orthobotrys as potent anti-arthritic agent that may be proposed for rheumatoid arthritis treatment.

  19. L-type voltage-dependent calcium channel is involved in the snake venom group IA secretory phospholipase A2-induced neuronal apoptosis.

    PubMed

    Yagami, Tatsurou; Yamamoto, Yasuhiro; Kohma, Hiromi; Nakamura, Tsutomu; Takasu, Nobuo; Okamura, Noboru

    2013-03-01

    Snake venom group IA secretory phospholipase A2 (sPLA2-IA) is known as a neurotoxin. Snake venom sPLA2s are neurotoxic in vivo and in vitro, causing synergistic neurotoxicity to cortical cultures when applied with toxic concentrations of glutamate. However, it has not yet been cleared sufficiently how sPLA2-IA exerts neurotoxicity. Here, we found sPLA2-IA induced neuronal cell death in a concentration-dependent manner. This death was a delayed response requiring a latent time for 6h. sPLA2-IA-induced neuronal cell death was accompanied with apoptotic blebbing, condensed chromatin, and fragmented DNA, exhibiting apoptotic features. NMDA receptor blockers suppressed the neurotoxicity of sPLA2-IA, but an AMPA receptor blocker did not. Interestingly, L-type voltage-dependent Ca(2+) channel (L-VDCC) blocker significantly protected neurons from the sPLA2-IA-induced apoptosis. On the other hand, neither N-VDCC blockers nor P/Q-VDCC blocker did. In conclusion, we demonstrated that sPLA2-IA induced neuronal cell death via apoptosis. Furthermore, the present study suggests that not only NMDA receptor but also L-VDCC contributed to the neurotoxicity of snake venom sPLA2-IA. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Top-level dynamics and the regulated gene response of feed-forward loop transcriptional motifs.

    PubMed

    Mayo, Michael; Abdelzaher, Ahmed; Perkins, Edward J; Ghosh, Preetam

    2014-09-01

    Feed-forward loops are hierarchical three-node transcriptional subnetworks, wherein a top-level protein regulates the activity of a target gene via two paths: a direct-regulatory path, and an indirect route, whereby the top-level proteins act implicitly through an intermediate transcription factor. Using a transcriptional network of the model bacterium Escherichia coli, we confirmed that nearly all types of feed-forward loop were significantly overrepresented in the bacterial network. We then used mathematical modeling to study their dynamics by manipulating the rise times of the top-level protein concentration, termed the induction time, through alteration of the protein destruction rates. Rise times of the regulated proteins exhibited two qualitatively different regimes, depending on whether top-level inductions were "fast" or "slow." In the fast regime, rise times were nearly independent of rapid top-level inductions, indicative of biological robustness, and occurred when RNA production rate-limits the protein yield. Alternatively, the protein rise times were dependent upon slower top-level inductions, greater than approximately one bacterial cell cycle. An equation is given for this crossover, which depends upon three parameters of the direct-regulatory path: transcriptional cooperation at the DNA-binding site, a protein-DNA dissociation constant, and the relative magnitude of the top-level protien concentration.

  1. The role of amoebocytes in endotoxin-mediated coagulation in the innate immunity of Achatina fulica snails.

    PubMed

    Biswas, C; Mandal, C

    1999-02-01

    Achatina amoebocyte lysate (AAL) derived from amoebocytes of Achatina fulica was activated by Gram-negative bacterial endotoxins in a time-dependent manner resulting in gel formation/coagulation. The activation and maximum proliferation of amoebocytes was observed 40 min after intramuscular injection (20 microg/snail) of endotoxin. Endotoxin-mediated proteolytic activity of AAL towards a serine-protease-specific chromogenic substrate was maximum at pH 8.0, 37 degrees C and within 15 min in a divalent-cation-dependent manner. The AAL activity induced by the endotoxin was directly dependent on the endotoxin concentration, showed a high specificity and saturated at higher endotoxin concentrations. An endotoxin-sensitive factor (ESF) was purified from AAL to apparent homogeneity by single-step affinity chromatography on a heparin-Sepharose 4B column. Native ESF of molecular weight 140 000 was composed of two identical subunits of molecular weight 70 000 attached through non-covalent association. A strong binding to endotoxin (Escherichia coli 055:B5) was exhibited by ESF with a 40-fold higher biological activity than AAL. The ESF was shown to have a unique Phe-Ile active site with regard to its alternate activation by alpha-chymotrypsin instead of endotoxin. The ESF was characterized as a serine protease type as evidenced by potent inhibition with specific inhibitors.

  2. [Effect of bemethyl on cytochrome P-450-dependent monoxygenases in the human liver and lymphocytes].

    PubMed

    Sorokina, E A; Sibiriak, S V; Sergeeva, S A

    2002-01-01

    Effects of the actoprotector bemithyl (50 mg/kg, p.o.) upon a single or five-fold administration on the cytochrome P-450 and b5 content and the isoform-specific and nonspecific monooxygenase activity [aminopyrine-N-demethylase, aniline-p-hydroxylase, 4-nitroanisole-o-demethylase,2,5-diphenyloxazole-p-hydroxylase, 7-ethoxyresorufin-o-deethylase (EROD), benzyloxyresorufin-o-debenzylase (BROD)] in rat liver were evaluated. In addition, the influence of bemithyl (0.(1)-100 microM) on the development of EROD and BROD activity was studied on the mitogen-stimulated human lymphocytes in vitro. Administered in rats, bemithyl exhibited the properties of a cytochrome P-450 inductor of the mixed type, which was manifested by an increase in the total cytochrome P-450 content in liver microsomes and in the monooxygenase activity related to both Ah-receptor-dependent and -independent isoforms (except for the aniline-p-hydroxylase activity). The induction of the monooxygenase activity realized by Ah-receptor-dependent isoforms (4-nitroanisole-o-demethylase, 2,5-diphenyloxazole-p-hydroxylase, and EROD activity) was more pronounced, reaching maximum upon a single drug administration. Acting upon the human lymphocytes in vitro, high concentrations of bemithyl increased expression of the EROD activity, while low drug concentrations stimulated the BROD activity.

  3. Importance of contraction history on muscle force of porcine urinary bladder smooth muscle.

    PubMed

    Menzel, Robin; Böl, Markus; Siebert, Tobias

    2017-02-01

    The purpose of this study was to provide a comprehensive dataset of porcine urinary bladder smooth muscle properties. Particularly, the history dependence of force production, namely force depression (FD) following shortening and force enhancement (FE) following stretch, was analysed. During active micturition, the circumference of the urinary bladder changes enormously. Thus, FD might be an important phenomenon during smooth muscle contraction. Electrically stimulated, intact urinary bladder strips from pigs (n = 10) were suspended in an aerated-filled organ bath, and different isometric, isotonic, and isokinetic contraction protocols were performed to determine the force-length and the force-velocity relation. FD and FE were assessed in concentric and eccentric contractions with different ramp lengths and ramp velocities. Bladder smooth muscles exhibit considerable amounts of FD and FE. The amount of FD increased significantly with ramp length, while FE did not change. However, FE and FD were independent of ramp velocity. The results imply that smooth muscle bladder strips exhibit similar muscle properties and history-dependent behaviour compared to striated muscles. The provided dataset of muscle properties is important for bladder modelling as well as for the analyses and interpretation of dynamic bladder filling and voiding.

  4. Differential sensitivity of immature and mature ventral mesencephalic neurons to rotenone induced neurotoxicity in vitro.

    PubMed

    Satish Bollimpelli, V; Kondapi, Anand K

    2015-12-25

    Rotenone induced neuronal toxicity in ventral mesencephalic (VM) dopaminergic (DA) neurons in culture is widely accepted as an important model for the investigation of Parkinson's disease (PD). However, little is known about developmental stage dependent toxic effects of rotenone on VM neurons in vitro. The objective of present study is to investigate the effect of rotenone on developing VM neurons at immature versus mature stages. Primary VM neurons were cultured in the absence of glial cells. Exposure of VM neurons to rotenone for 2 days induced cell death in both immature and mature neurons in a concentration-dependent manner, but to a greater extent in mature neurons. While rotenone-treated mature VM neurons showed α-synuclein aggregation and sensitivity to DA neurons, immature VM neurons exhibited only DA neuronal sensitivity but not α-synuclein aggregation. In addition, on rotenone treatment, enhancement of caspase-3 activity and reactive oxygen species (ROS) production were higher in mature VM neurons than in immature neurons. These results suggest that even though both mature and immature VM neurons are sensitive to rotenone, their manifestations differ from each other, with only mature VM neurons exhibiting Parkinsonian conditions. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Whole-body concentrations of elements in three fish species from offshore oil platforms and natural areas in the Southern California Bight, USA

    USGS Publications Warehouse

    Love, Milton S.; Saiki, Michael K.; May, Thomas W.; Yee, Julie L.

    2013-01-01

    elements. Forty-two elements were excluded from statistical comparisons as they (1) consisted of major cations that were unlikely to accumulate to potentially toxic concentrations; (2) were not detected by the analytical procedures; or (3) were detected at concentrations too low to yield reliable quantitative measurements. The remaining 21 elements consisted of aluminum, arsenic, barium, cadmium, chromium, cobalt, copper, gallium, iron, lead, lithium, manganese, mercury, nickel, rubidium, selenium, strontium, tin, titanium, vanadium, and zinc. Statistical comparisons of these elements indicated that none consistently exhibited higher concentrations at oil platforms than at natural areas. However, the concentrations of copper, selenium, titanium, and vanadium in Pacific sanddab were unusual because small individuals exhibited either no differences between oil platforms and natural areas or significantly lower concentrations at oil platforms than at natural areas, whereas large individuals exhibited significantly higher concentrations at oil platforms than at natural areas.

  6. Intrauterine growth-restricted sheep fetuses exhibit smaller hindlimb muscle fibers and lower proportions of insulin-sensitive Type I fibers near term.

    PubMed

    Yates, Dustin T; Cadaret, Caitlin N; Beede, Kristin A; Riley, Hannah E; Macko, Antoni R; Anderson, Miranda J; Camacho, Leticia E; Limesand, Sean W

    2016-06-01

    Intrauterine growth restriction (IUGR) reduces muscle mass and insulin sensitivity in offspring. Insulin sensitivity varies among muscle fiber types, with Type I fibers being most sensitive. Differences in fiber-type ratios are associated with insulin resistance in adults, and thus we hypothesized that near-term IUGR sheep fetuses exhibit reduced size and proportions of Type I fibers. Placental insufficiency-induced IUGR fetuses were ∼54% smaller (P < 0.05) than controls and exhibited hypoxemia and hypoglycemia, which contributed to 6.9-fold greater (P < 0.05) plasma norepinephrine and ∼53% lower (P < 0.05) plasma insulin concentrations. IUGR semitendinosus muscles contained less (P < 0.05) myosin heavy chain-I protein (MyHC-I) and proportionally fewer (P < 0.05) Type I and Type I/IIa fibers than controls, but MyHC-II protein concentrations, Type II fibers, and Type IIx fibers were not different. IUGR biceps femoris muscles exhibited similar albeit less dramatic differences in fiber type proportions. Type I and IIa fibers are more responsive to adrenergic and insulin regulation than Type IIx and may be more profoundly impaired by the high catecholamines and low insulin in our IUGR fetuses, leading to their proportional reduction. In both muscles, fibers of each type were uniformly smaller (P < 0.05) in IUGR fetuses than controls, which indicates that fiber hypertrophy is not dependent on type but rather on other factors such as myoblast differentiation or protein synthesis. Together, our findings show that IUGR fetal muscles develop smaller fibers and have proportionally fewer Type I fibers, which is indicative of developmental adaptations that may help explain the link between IUGR and adulthood insulin resistance. Copyright © 2016 the American Physiological Society.

  7. Beyond assembly bias: exploring secondary halo biases for cluster-size haloes

    DOE PAGES

    Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.

    2017-12-01

    Secondary halo bias, commonly known as ‘assembly bias’, is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalomore » properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. Lastly, this results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.« less

  8. Right-handed double-helix ultrashort DNA yields chiral nematic phases with both right- and left-handed director twist

    PubMed Central

    Zanchetta, Giuliano; Giavazzi, Fabio; Nakata, Michi; Buscaglia, Marco; Cerbino, Roberto; Clark, Noel A.; Bellini, Tommaso

    2010-01-01

    Concentrated solutions of duplex-forming DNA oligomers organize into various mesophases among which is the nematic (N∗), which exhibits a macroscopic chiral helical precession of molecular orientation because of the chirality of the DNA molecule. Using a quantitative analysis of the transmission spectra in polarized optical microscopy, we have determined the handedness and pitch of this chiral nematic helix for a large number of sequences ranging from 8 to 20 bases. The B-DNA molecule exhibits a right-handed molecular double-helix structure that, for long molecules, always yields N∗ phases with left-handed pitch in the μm range. We report here that ultrashort oligomeric duplexes show an extremely diverse behavior, with both left- and right-handed N∗ helices and pitches ranging from macroscopic down to 0.3 μm. The behavior depends on the length and the sequence of the oligomers, and on the nature of the end-to-end interactions between helices. In particular, the N∗ handedness strongly correlates with the oligomer length and concentration. Right-handed phases are found only for oligomers shorter than 14 base pairs, and for the sequences having the transition to the N∗ phase at concentration larger than 620 mg/mL. Our findings indicate that in short DNA, the intermolecular double-helical interactions switch the preferred liquid crystal handedness when the columns of stacked duplexes are forced at high concentrations to separations comparable to the DNA double-helix pitch, a regime still to be theoretically described. PMID:20876125

  9. Compensation of native donor doping in ScN: Carrier concentration control and p-type ScN

    NASA Astrophysics Data System (ADS)

    Saha, Bivas; Garbrecht, Magnus; Perez-Taborda, Jaime A.; Fawey, Mohammed H.; Koh, Yee Rui; Shakouri, Ali; Martin-Gonzalez, Marisol; Hultman, Lars; Sands, Timothy D.

    2017-06-01

    Scandium nitride (ScN) is an emerging indirect bandgap rocksalt semiconductor that has attracted significant attention in recent years for its potential applications in thermoelectric energy conversion devices, as a semiconducting component in epitaxial metal/semiconductor superlattices and as a substrate material for high quality GaN growth. Due to the presence of oxygen impurities and native defects such as nitrogen vacancies, sputter-deposited ScN thin-films are highly degenerate n-type semiconductors with carrier concentrations in the (1-6) × 1020 cm-3 range. In this letter, we show that magnesium nitride (MgxNy) acts as an efficient hole dopant in ScN and reduces the n-type carrier concentration, turning ScN into a p-type semiconductor at high doping levels. Employing a combination of high-resolution X-ray diffraction, transmission electron microscopy, and room temperature optical and temperature dependent electrical measurements, we demonstrate that p-type Sc1-xMgxN thin-film alloys (a) are substitutional solid solutions without MgxNy precipitation, phase segregation, or secondary phase formation within the studied compositional region, (b) exhibit a maximum hole-concentration of 2.2 × 1020 cm-3 and a hole mobility of 21 cm2/Vs, (c) do not show any defect states inside the direct gap of ScN, thus retaining their basic electronic structure, and (d) exhibit alloy scattering dominating hole conduction at high temperatures. These results demonstrate MgxNy doped p-type ScN and compare well with our previous reports on p-type ScN with manganese nitride (MnxNy) doping.

  10. Beyond assembly bias: exploring secondary halo biases for cluster-size haloes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Yao-Yuan; Zentner, Andrew R.; Wechsler, Risa H.

    Secondary halo bias, commonly known as ‘assembly bias’, is the dependence of halo clustering on a halo property other than mass. This prediction of the Λ Cold Dark Matter cosmology is essential to modelling the galaxy distribution to high precision and interpreting clustering measurements. As the name suggests, different manifestations of secondary halo bias have been thought to originate from halo assembly histories. We show conclusively that this is incorrect for cluster-size haloes. We present an up-to-date summary of secondary halo biases of high-mass haloes due to various halo properties including concentration, spin, several proxies of assembly history, and subhalomore » properties. While concentration, spin, and the abundance and radial distribution of subhaloes exhibit significant secondary biases, properties that directly quantify halo assembly history do not. In fact, the entire assembly histories of haloes in pairs are nearly identical to those of isolated haloes. In general, a global correlation between two halo properties does not predict whether or not these two properties exhibit similar secondary biases. For example, assembly history and concentration (or subhalo abundance) are correlated for both paired and isolated haloes, but follow slightly different conditional distributions in these two cases. Lastly, this results in a secondary halo bias due to concentration (or subhalo abundance), despite the lack of assembly bias in the strict sense for cluster-size haloes. Due to this complexity, caution must be exercised in using any one halo property as a proxy to study the secondary bias due to another property.« less

  11. DNA polymerase gamma inhibition by vitamin K3 induces mitochondria-mediated cytotoxicity in human cancer cells.

    PubMed

    Sasaki, Ryohei; Suzuki, Yoko; Yonezawa, Yuko; Ota, Yosuke; Okamoto, Yoshiaki; Demizu, Yusuke; Huang, Peng; Yoshida, Hiromi; Sugimura, Kazuro; Mizushina, Yoshiyuki

    2008-05-01

    Among the vitamin K (VK) compounds, VK3 exhibits distinct cytotoxic activity in cancer cells and is thought to affect redox cycling; however, the underlying mechanisms remain unclear. Here we demonstrate that VK3 selectively inhibits DNA polymerase (pol) gamma, the key enzyme responsible for mitochondrial DNA replication and repair. VK3 at 30 microM inhibited pol gamma by more than 80%, caused impairment of mitochondrial DNA replication and repair, and induced a significant increase in reactive oxygen species (ROS), leading to apoptosis. At a lower concentration (3 microM), VK3 did not cause a significant increase in ROS, but was able to effectively inhibit cell proliferation, which could be reversed by supplementing glycolytic substrates. The cytotoxic action of VK3 was independent of p53 tumor suppressor gene status. Interestingly, VK3 only inhibited pol gamma but did not affect other pol including human pol alpha, pol beta, pol delta, and pol epsilon. VK1 and VK2 exhibited no inhibitory effect on any of the pol tested. These data together suggest that the inhibition of pol gamma by VK3 is relatively specific, and that this compound seems to exert its anticancer activity by two possible mechanisms in a concentration-dependent manner: (1) induction of ROS-mediated cell death at high concentrations; and (2) inhibition of cell proliferation at lower concentrations likely through the suppression of mitochondrial respiratory function. These findings may explain various cytotoxic actions induced by VK3, and may pave the way for the further use of VK3.

  12. Effect of low concentrations of benzalkonium chloride on acanthamoebal survival and its potential impact on empirical therapy of infectious keratitis.

    PubMed

    Tu, Elmer Y; Shoff, Megan E; Gao, Weihua; Joslin, Charlotte E

    2013-05-01

    The significant antiacanthamoebal effect of benzalkonium chloride, at or below concentrations used for preservation of common ophthalmic preparations, should be understood both when choosing empiric antibiotic therapy for infectious keratitis and when assessing the persistent rise in Acanthamoeba cases in the United States since 2003. To characterize the antiacanthamoebal efficacy of low concentrations of benzalkonium chloride (BAK) for drug preservation and therapeutic effect against Acanthamoeba. Experimental study with a review of the literature. Laboratory. A concentration of 10(4) trophozoites of 3 well-characterized clinical strains of Acanthamoeba were exposed at 0.5, 2.0, 3.5, 5.0, and 6.5 hours to BAK (0.001%, 0.002%, and 0.003%), moxifloxacin hydrochloride (0.5%), and moxifloxacin (0.5%) + BAK (0.001% and 0.003%) with hydrogen peroxide (3%) and amoeba saline controls. Amoeba survival was calculated using the most probable number method recorded as log kill values. The relationship of BAK concentration and exposure time as well as the relative effect of BAK and moxifloxacin on acanthamoebal survival were analyzed. Amoebicidal activity of BAK is both time dependent and concentration dependent in pooled and strain-stratified analyses (P < .001). Moxifloxacin demonstrated no significant independent inhibitory effect or additive effect to BAK efficacy on acanthamoebal survival. The profound antiacanthamoebal effect of BAK, 0.003%, was similar to that of hydrogen peroxide for certain strains. Low concentrations of BAK, previously demonstrated to concentrate and persist in ocular surface epithelium, exhibit significant antiacanthamoebal activity in vitro at or below concentrations found in commercially available ophthalmic anti-infectives. The unexplained persistence of the Acanthamoeba keratitis outbreak in the United States, clusters abroad, and clinical studies reporting resolution or modification of Acanthamoeba keratitis without specific antiacanthamoebal therapy suggests that other contributing factors should be considered, including changes in the formulations used for empirical therapy of presumed infectious keratitis occurring in the same period.

  13. Studies on the concentration dependence of specific rotation of Alpha lactose monohydrate (α-LM) aqueous solutions and growth of α-LM single crystals

    NASA Astrophysics Data System (ADS)

    Vinodhini, K.; Divya Bharathi, R.; Srinivasan, K.

    2018-02-01

    Lactose is an optically active substance. As it is one of the reducing sugars, exhibits mutarotation in solution when it dissolves in any solvent. In solution, lactose exists in two isomeric forms, alpha-Lactose (α-L) and beta-lactose (β-L) through the mutarotation reaction. Mutarotation produces a dynamic equilibrium between two isomers in a solution and kinetics of this process determines the growth rate of alpha lactose monohydrate (α-LM) crystals. Since no data were available on the specific rotation of aqueous α-LM solutions at different concentrations at 33 °C, the initial experiments were carried out on the specific rotation of aqueous α-LM solutions at different concentrations at 33 °C. The specific rotations of the solutions were decreased with increasing time through the mutarotation reaction. The initial and final (equilibrium) specific rotations of the solutions were determined by using automatic digital polarimeter. The compositions of α and β-L in all prepared solutions were calculated from initial and final optical rotations by the method of Sharp and Doob. The composition of α-L decreased whereas, the composition of β-L increased in solutions with increasing concentration of α-LM at 33 °C. Experimental results revealed that this method could be easily and safely employed to study the dependence of specific rotation of solutions on their concentration. The effect of β-lactose on the morphology of nucleated α-LM single crystals has been studied at different experimental conditions.

  14. Tributyltin-induced endoplasmic reticulum stress and its Ca(2+)-mediated mechanism.

    PubMed

    Isomura, Midori; Kotake, Yaichiro; Masuda, Kyoichi; Miyara, Masatsugu; Okuda, Katsuhiro; Samizo, Shigeyoshi; Sanoh, Seigo; Hosoi, Toru; Ozawa, Koichiro; Ohta, Shigeru

    2013-10-01

    Organotin compounds, especially tributyltin chloride (TBT), have been widely used in antifouling paints for marine vessels, but exhibit various toxicities in mammals. The endoplasmic reticulum (ER) is a multifunctional organelle that controls post-translational modification and intracellular Ca(2+) signaling. When the capacity of the quality control system of ER is exceeded under stress including ER Ca(2+) homeostasis disruption, ER functions are impaired and unfolded proteins are accumulated in ER lumen, which is called ER stress. Here, we examined whether TBT causes ER stress in human neuroblastoma SH-SY5Y cells. We found that 700nM TBT induced ER stress markers such as CHOP, GRP78, spliced XBP1 mRNA and phosphorylated eIF2α. TBT also decreased the cell viability both concentration- and time-dependently. Dibutyltin and monobutyltin did not induce ER stress markers. We hypothesized that TBT induces ER stress via Ca(2+) depletion, and to test this idea, we examined the effect of TBT on intracellular Ca(2+) concentration using fura-2 AM, a Ca(2+) fluorescent probe. TBT increased intracellular Ca(2+) concentration in a TBT-concentration-dependent manner, and Ca(2+) increase in 700nM TBT was mainly blocked by 50μM dantrolene, a ryanodine receptor antagonist (about 70% inhibition). Dantrolene also partially but significantly inhibited TBT-induced GRP78 expression and cell death. These results suggest that TBT increases intracellular Ca(2+) concentration by releasing Ca(2+) from ER, thereby causing ER stress. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Effects of high pressure processing on activity and structure of soluble acid invertase in mango pulp, crude extract, purified form and model systems.

    PubMed

    Li, Renjie; Wang, Yongtao; Ling, Jiangang; Liao, Xiaojun

    2017-09-15

    The effects of high pressure processing (HPP) on the activity of soluble acid invertase (SAI) in mango pulp, crude extract, purified SAI and purified SAI in model systems (pectin, bovine serum albumin (BSA), sugars and pH 3-7) were investigated. The activity of SAI in mango pulp was increased after HPP, and that in crude extract stayed unchanged. The activity of purified SAI was decreased after HPP at 45 and 50°C. Pectin exhibited a concentration-dependent protection for purified SAI against HPP at 50°C/600MPa for 30min. Pectin that had an esterification degree (DE) of 85% exhibited a greater protection than pectin that had a DE of 20-34%. BSA, acidic pH (3-6) and sucrose also exhibited protection for purified SAI against HPP. HPP at 50°C/600MPa for 30min disrupted the secondary structure and tertiary structure of purified SAI, but no aggregation of purified SAI was observed after HPP. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Anti- and pro-oxidant effects of quercetin in copper-induced low density lipoprotein oxidation. Quercetin as an effective antioxidant against pro-oxidant effects of urate.

    PubMed

    Filipe, Paulo; Haigle, Josiane; Silva, João Nuno; Freitas, João; Fernandes, Afonso; Mazière, Jean-Claude; Mazière, Cécile; Santus, René; Morlière, Patrice

    2004-05-01

    We recently reported that, depending on its concentration, urate is either a pro- or an antioxidant in Cu(2+)-induced low-density lipoprotein (LDL) oxidation. We also previously demonstrated an antioxidant synergy between urate and some flavonoids in the Cu(2+)-induced oxidation of diluted serum. As a result, the effect of the flavonoid quercetin on the Cu(2+)-induced oxidation of isolated LDL has been studied either in the presence or absence of urate. We demonstrate that, like urate, quercetin alone, at low concentration, exhibits a pro-oxidant activity. The pro-oxidant behavior depends on the Cu(2+) concentration but it is not observed at high Cu(2+) concentration. When compared with urate, the switch between the pro- and the antioxidant activities occurs at much lower quercetin concentrations. As for urate, the pro-oxidant character of quercetin is related to its ability to reduce Cu(2+) with the formation of semioxidized quercetin and Cu(+) with an expected yield larger than that obtained with urate owing to a more favorable redox potential. It is also shown that the pro-oxidant activity of urate can be inhibited by quercetin. An electron transfer between quercetin and semioxidized urate leading to the repair of urate could account for this observation as suggested by recently published pulse radiolysis data. It is anticipated that the interactions between quercetin-Cu(2+)-LDL and urate, which are tightly controlled by their respective concentration, determine the balance between the pro- and antioxidant behaviors. Moreover, as already observed with other antioxidants, it is demonstrated that quercetin alone behaves as a pro-oxidant towards preoxidized LDL.

  17. Hormetic effects of noncoplanar PCB exposed to human lung fibroblast cells (HELF) and possible role of oxidative stress.

    PubMed

    Hashmi, Muhammad Zaffar; Khan, Kiran Yasmin; Hu, Jinxing; Naveedullah; Su, Xiaomei; Abbas, Ghulam; Yu, Chunna; Shen, Chaofeng

    2015-12-01

    Hormesis, a biphasic dose-response phenomenon, which is characterized by stimulation of an end point at a low-dose and inhibition at a high-dose. In the present study we used human lungs fibroblast (HELF) cells as a test model to evaluate the role of oxidative stress (OS) in hormetic effects of non coplanar PCB 101. Results from 3-(4,5-dime-thylthiazol-2-yl)-2,5-diphenyltetrazo-lium bromide (MTT) assay indicated that PCB101 at lower concentrations (10(-5) to 10(-1) μg mL(-1) ) stimulated HELF cell proliferation and inhibited at high concentrations (1, 5, 10, and 20 μg mL(-1) ) in a dose- and time-dependent manner. Reactive oxygen species (ROS), malondialdehyde (MDA) and superoxide dismutase (SOD) (except 48 h) showed a significant increase at higher concentrations of PCB 101 than those at the lower concentrations with the passage of time. Antioxidant enzymes such as glutathione peroxidase (GSH-Px) exhibited decreasing trends in dose and time dependent manner. Lipid peroxidation assay resulted in a significant increase (P < 0.05) of MDA level in PCB 101-treated HELF cells compared with controls, suggesting that OS plays a key role in PCB 101-induced toxicity. Comet assay indicated a significant increase in genotoxicity at higher concentrations of PCB 101 exposure compared to lower concentrations. Overall, we found that HELF cell proliferation was higher at low ROS level and vice versa, which revealed activation of cell signaling-mediated hormetic mechanisms. The results suggested that PCB 101 has hormetic effects to HELF cells and these were associated with oxidative stress. © 2014 Wiley Periodicals, Inc.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rosli, Nur Shafawati binti; Rahman, Azhar Abdul; Aziz, Azlan Abdul

    Gold nanoparticles (AuNPs) received a great deal of attention for biomedical applications, especially in diagnostic imaging and therapeutics. Even though AuNPs have potential benefits in biomedical applications, the impact of AuNPs on human and environmental health still remains unclear. The use of AuNPs which is a high-atomic-number materials, provide advantages in terms of radiation dose enhancement. However, before this can become a clinical reality, cytotoxicity of the AuNPs has to be carefully evaluated. Cytotoxicity test is a rapid, standardized test that is very sensitive to determine whether the nanoparticles produced are harmful or benign on cellular components. In this workmore » the size and concentration dependence of AuNPs cytotoxicity in breast cancer cell lines (MCF-7) are tested by using WST-1 assay. The sizes of AuNPs tested were 13 nm, 50 nm, and 70 nm. The cells were seeded in the 96-well plate and were treated with different concentrations of AuNPs by serial dilution for each size of AuNPs. The high concentration of AuNPs exhibit lower cell viability compared to low concentration of AuNPs. We quantified the toxicity of AuNPs in MCF-7 cell lines by determining the IC{sub 50} values in WST-1 assays. The IC{sub 50} values (inhibitory concentrations that effected 50% growth inhibition) of 50 nm AuNPs is lower than 13 nm and 70 nm AuNPs. Mean that, 50nm AuNPs are more toxic to the MCF-7 cells compared to smaller and larger sizes AuNPs. The presented results clearly indicate that the cytotoxicity of AuNPs depend not only on the concentration, but also the size of the nanoparticles.« less

  19. Electronic conductivity studies on oxyhalide glasses containing TMO

    NASA Astrophysics Data System (ADS)

    Vijayatha, D.; Viswanatha, R.; Sujatha, B.; Narayana Reddy, C.

    2016-05-01

    Microwave-assisted synthesis is cleaner, more economical and much faster than conventional methods. The development of new routes for the synthesis of solid materials is an integral part of material science and technology. The electronic conductivity studies on xPbCl2 - 60 PbO - (40-x) V2O5 (1 ≥ x ≤ 10) glass system has been carried out over a wide range of composition and temperature (300 K to 423 K). X-ray diffraction study confirms the amorphous nature of the samples. The Scanning electron microscopic studies reveal the formation of cluster like morphology in PbCl2 containing glasses. The d.c conductivity exhibits Arrhenius behaviour and increases with V2O5 concentration. Analysis of the results is interpreted in view Austin-Mott's small polaron model of electron transport. Activation energies calculated using regression analysis exhibit composition dependent trend and the variation is explained in view of the structure of lead-vanadate glass.

  20. Comparison of cytotoxicity and genotoxicity induced by the extracts of methanol and gasoline engine exhausts.

    PubMed

    Zhang, Zunzhen; Che, Wangjun; Liang, Ying; Wu, Mei; Li, Na; Shu, Ya; Liu, Fang; Wu, Desheng

    2007-09-01

    Gasoline engine exhaust has been considered a major source of air pollution in China, and methanol is considered as a potential substitute for gasoline fuel. In this study, the genotoxicity and cytotoxicity of organic extracts of condensate, particulate matters (PM) and semivolatile organic compounds (SVOC) of gasoline and absolute methanol engine exhaust were examined by using MTT assay, micronucleus assay, comet assay and Ames test. The results have showed that gasoline engine exhaust exhibited stronger cytotoxicity to human lung carcinoma cell lines (A549 cell) than methanol engine exhaust. Furthermore, gasoline engine exhaust increased micronucleus formation, induced DNA damage in A549 cells and increased TA98 revertants in the presence of metabolic activating enzymes in a concentration-dependent manner. In contrast, methanol engine exhaust failed to exhibit these adverse effects. The results suggest methanol may be used as a cleaner fuel for automobile.

  1. Antioxidant and mercury chelating activity of Psidium guajava var. pomifera L. leaves hydroalcoholic extract.

    PubMed

    Pinho, Antonio Ivanildo; Oliveira, Cláudia Sirlene; Lovato, Fabricio Luís; Waczuk, Emily Pansera; Piccoli, Bruna Candia; Boligon, Aline Augusti; Leite, Nadghia Figueredo; Coutinho, Henrique Douglas Melo; Posser, Thais; Da Rocha, João Batista Teixeira; Franco, Jeferson Luis

    2017-01-01

    Mercury (Hg) is widely distributed in the environment and is known to produce several adverse effects in organisms. The aim of the present study was to examine the in vitro antioxidant activity and Hg chelating ability of the hydroalcoholic extract of Psidium guajava leaves (HEPG). In addition, the potential protective effects of HEPG against Hg(II) were evaluated using a yeast model (Saccharomyces cerevisiae). HEPG was found to exert significant antioxidant activity in 2,2-diphenyl-1-picrylhydrazyl scavenger and inhibition of lipid peroxidation induced by Fe(II) assays in a concentration-dependent manner. The extract also exhibited significant Hg(II) chelating activity. In yeast, Hg(II) induced a significant decrease in cell viability. In contrast, HEPG partially prevented the fall in cell viability induced by Hg(II). In conclusion, HEPG exhibited protective effects against Hg(II)-mediated toxicity, which may be related to both antioxidant and Hg(II)-chelating activities.

  2. The carbon isotopic composition of ecosystem breath

    NASA Astrophysics Data System (ADS)

    Ehleringer, J.

    2008-05-01

    At the global scale, there are repeatable annual fluctuations in the concentration and isotopic composition of atmospheric carbon dioxide, sometimes referred to as the "breathing of the planet". Vegetation components within ecosystems fix carbon dioxide through photosynthesis into stable organic compounds; simultaneously both vegetation and heterotrophic components of the ecosystem release previously fixed carbon as respiration. These two-way fluxes influencing carbon dioxide exchange between the biosphere and the atmosphere impact both the concentration and isotopic composition of carbon dioxide within the convective boundary layer. Over space, the compounding effects of gas exchange activities from ecosystems become reflected in both regional and global changes in the concentration and isotopic composition of atmospheric carbon dioxide. When these two parameters are plotted against each other, there are significant linear relationships between the carbon isotopic composition and inverse concentration of atmospheric carbon dioxide. At the ecosystem scale, these "Keeling plots" intercepts of C3-dominated ecosystems describe the carbon isotope ratio of biospheric gas exchange. Using Farquhar's model, these carbon isotope values can be translated into quantitative measures of the drought-dependent control of photosynthesis by stomata as water availability changes through time. This approach is useful in aggregating the influences of drought across regional landscapes as it provides a quantitative measure of stomatal influence on photosynthetic gas exchange at the ecosystem-to-region scales. Multi-year analyses of the drought-dependent trends across terrestrial ecosystems show a repeated pattern with water stress in all but one C3-ecosystem type. Ecosystems that are dominated by ring-porous trees appear not to exhibit a dynamic stomatal response to water stress and therefore, there is little dependence of the carbon isotope ratio of gas exchange on site water balance. The mechanistic basis for this pattern is defined; the implications of climate change on ring-porous versus diffuse-porous vegetation and therefore on future atmospheric carbon dioxide isotope-concentration patterns is discussed.

  3. Concentration-Dependent Inhibitory Effect of Baicalin on the Plasma Protein Binding and Metabolism of Chlorzoxazone, a CYP2E1 Probe Substrate, in Rats In Vitro and In Vivo

    PubMed Central

    Gao, Na; Zou, Dan; Qiao, Hai-Ling

    2013-01-01

    Some of the components found in herbs may be inhibitors or inducers of cytochrome P450 enzymes, which may therefore result in undesired herb-drug interactions. As a component extracted from Radix Scutellariae, the direct effect of baicalin on cytochrome P450 has not been investigated sufficiently. In this study, we investigated concentration-dependent inhibitory effect of baicalin on the plasma protein binding and metabolism of chlorzoxazone (CZN), a model CYP2E1 probe substrate, in rats in vitro and in vivo. Animal experiment was a randomized, three-period crossover design. Significant changes in pharmacokinetic parameters of CZN such as Cmax, t1/2 and Vd were observed after treatment with baicalin in vivo (P<0.05). Cmax decreased by 25% and 33%, whereas t1/2 increased by 34% and 53%, Vd increased by 37% and 50% in 225 mg/kg and 450 mg/kg baicalin-treated rats, respectively. The AUC and CL of CZN were not affected (P>0.05). Correlation analysis showed that the changes in CZN concentrations and baicalin concentrations were in good correlation (r>0.99). In vitro experiments, baicalin decreased the formation of 6-OH-chlorzoxazone in a concentration-dependent manner and exhibited a competitive inhibition in rat liver microsomes, with a Ki value of 145.8 µM. The values of Cmax/Ki were 20 and 39 after treatment with baicalin (225 and 450 mg/kg), respectively. Protein binding experiments in vivo showed that the plasma free-fraction (fu) of CZN increased 2.6-fold immediately after baicalin treatment (450 mg/kg) and in vitro showed that baicalin (125–2500 mg/L) increased the unbound CZN from 1.63% to 3.58%. The results indicate that pharmacokinetic changes in CZN are induced by inhibitory effect of baicalin on the plasma protein binding of CZN and CYP2E1 activity. PMID:23301016

  4. MICEST: a Potential Tool for Non-invasive Detection of Molecular Changes in Alzheimer’s Disease

    PubMed Central

    Haris, Mohammad; Singh, Anup; Cai, Kejia; Nath, Kavindra; Crescenzi, Rachelle; Kogan, Feliks; Hariharan, Hari; Reddy, Ravinder

    2012-01-01

    Myo-Inositol (mIns) is a marker of glial cells proliferation and has been shown to increase in early Alzheimer’s disease (AD) pathology. mIns exhibits a concentration dependent chemical-exchange-saturation-transfer (CEST) effect (MICEST) between its hydroxyl groups and bulk water protons. Using the endogenous MICEST technique brain mIns concentration and glial cells proliferation can be mapped at high spatial resolution. The high resolution mapping of mIns was performed using MICEST technique on ~20 months old APP-PS1 transgenic mouse model of AD as well as on age matched wild type (WT) control (n=5). The APP-PS1 mice show ~50% higher MICEST contrast than WT control with concomitant increase in mIns concentration as measured through proton spectroscopy. Immunostaining against glial-fibric-acidic protein also depicts proliferative glial cells in larger extent in APP-PS1 than WT mice, which correspond to the higher mIns concentration. Potential significance of MICEST in early detection of AD pathology is discussed in detail. PMID:23041110

  5. Concentration of acrylamide in a polyacrylamide gel affects VP4 gene coding assignment of group A equine rotavirus strains with P[12] specificity

    PubMed Central

    2010-01-01

    Background It is universally acknowledged that genome segment 4 of group A rotavirus, the major etiologic agent of severe diarrhea in infants and neonatal farm animals, encodes outer capsid neutralization and protective antigen VP4. Results To determine which genome segment of three group A equine rotavirus strains (H-2, FI-14 and FI-23) with P[12] specificity encodes the VP4, we analyzed dsRNAs of strains H-2, FI-14 and FI-23 as well as their reassortants by polyacrylamide gel electrophoresis (PAGE) at varying concentrations of acrylamide. The relative position of the VP4 gene of the three equine P[12] strains varied (either genome segment 3 or 4) depending upon the concentration of acrylamide. The VP4 gene bearing P[3], P[4], P[6], P[7], P[8] or P[18] specificity did not exhibit this phenomenon when the PAGE running conditions were varied. Conclusions The concentration of acrylamide in a PAGE gel affected VP4 gene coding assignment of equine rotavirus strains bearing P[12] specificity. PMID:20573245

  6. Effect of total solids content and temperature on the rheological behaviour of reconstituted whole milk concentrates.

    PubMed

    Trinh, Binh; Trinh, Khanh Tuoc; Haisman, Derek

    2007-02-01

    This work investigated the combined effect of solids content, heating and storage temperatures on the rheological behaviour of reconstituted whole milk concentrates. The powder was reconstituted at 35 degrees C in a custom built recombination rig to various total solids content (TS) from 10-48% TS. The concentrates were then heated to 45-85 degrees C and stored at the heating temperature. The rheological behaviour shifter from Newtonian behaviour (below 30% TS) to power law (below 40% TS), with the yield stress observed from 40% TS upwards and time-dependent behaviour was noticed above 44% TS. Higher heating temperatures tend to promote non-Newtonian behaviour at lower solids content. The viscosity-solid content curve showed an exponential relationship, while the viscosity-temperature curve exhibited a minimum at 65-75 degrees C above 46% TS. During age thickening, the yield stress and the consistency coefficient increased, while the flow behaviour index decreased with storage time. This indicated that the milk concentrates deviated away from Newtonian behaviour during age thickening.

  7. Mobile measurements of air pollutants with an instrumented car in populated areas

    NASA Astrophysics Data System (ADS)

    Weber, Konradin; Scharifi, Emad; Fischer, Christian; Pohl, Tobias; Lange, Martin; Boehlke, Christoph

    2017-04-01

    Detailed mobile measurement of gases and fine particulate matter has been reported in the literature to be suitable to exhibit the air pollutants concentration in populated areas. This concentration is linked to the increase of number of cars, construction areas, industries and other emission sources. However, fixed measurement stations, mostly operated by environmental agencies, are limited in numbers and cannot cover a large area in monitoring. For this reason, to overcome this drawback, mobile measurements of the variability of gases (such as O3, NO, NO2) and particulate matter concentration were carried out during this study using an instrumented car. This car was able to deliver measurement results of all these compounds in a large area. The experimental results in this work demonstrate a large spatial variability of gases and fine particulate matters mainly depended on the traffic density and the location. These effects are especially obvious in the city core and the high traffic roads. In terms of fine particulate matter, this becomes evident for PM 10 and PM 2.5, where the mass and number concentration increases with arriving these zones.

  8. The impact of meteorology on ozone in Houston

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eder, B.K.; Davis, J.M.; Nychka, D.

    1997-12-31

    This paper compares the results from both a one-stage hierarchical clustering technique (average linkage) and a two-stage technique (average linkage then k-means) as part of an objective meteorological Classification scheme designed to better elucidate ozone`s dependence on meteorology in the Houston, Texas, area. When applied to twelve years of meteorological data (1981-1992), each technique identified seven statistically distinct meteorological regimes, the majority of which exhibited significantly different daily 1-hour maximum ozone (O{sub 3}) concentrations. While both clustering approaches proved successful, the two-stage approach did appear superior in terms of better segregation of the mean O{sub 3}, concentrations. Both approaches indicatedmore » that the largest mean daily one-hour maximum concentrations are associated with migrating anticyclones and not with the quasi-permanent Bermuda High that often dominates the southeastern United States during the summer. As a result, maximum ozone concentrations are just as likely during the months of April, May, September and October as they are during the summer months. These findings support and help explain the unique O{sub 3}, climatology experienced by the Houston area.« less

  9. Continuum modelling of silicon diffusion in indium gallium arsenide

    NASA Astrophysics Data System (ADS)

    Aldridge, Henry Lee, Jr.

    A possible method to overcome the physical limitations experienced by continued transistor scaling and continue improvements in performance and power consumption is integration of III-V semiconductors as alternative channel materials for logic devices. Indium Gallium Arsenide (InGaAs) is such a material from the III-V semiconductor family, which exhibit superior electron mobilities and injection velocities than that of silicon. In order for InGaAs integration to be realized, contact resistances must be minimized through maximizing activation of dopants in this material. Additionally, redistribution of dopants during processing must be clearly understood and ultimately controlled at the nanometer-scale. In this work, the activation and diffusion behavior of silicon, a prominent n-type dopant in InGaAs, has been characterized and subsequently modelled using the Florida Object Oriented Process and Device Simulator (FLOOPS). In contrast to previous reports, silicon exhibits non-negligible diffusion in InGaAs, even for smaller thermal budget rapid thermal anneals (RTAs). Its diffusion is heavily concentration-dependent, with broadening "shoulder-like" profiles when doping levels exceed 1-3x1019cm -3, for both ion-implanted and Molecular Beam Epitaxy (MBE)-grown cases. Likewise a max net-activation value of ˜1.7x1019cm -3 is consistently reached with enough thermal processing, regardless of doping method. In line with experimental results and several ab-initio calculation results, rapid concentration-dependent diffusion of Si in InGaAs and the upper limits of its activation is believed to be governed by cation vacancies that serve as compensating defects in heavily n-type regions of InGaAs. These results are ultimately in line with an amphoteric defect model, where the activation limits of dopants are an intrinsic limitation of the material, rather than governed by individual dopant species or their methods of incorporation. As a result a Fermi level dependent point defect diffusion model and activation limit model were subsequently developed in FLOOPS with outputs in good agreement with experimental results.

  10. Cracked rocks with positive and negative Poisson's ratio: real-crack properties extracted from pressure dependence of elastic-wave velocities

    NASA Astrophysics Data System (ADS)

    Zaitsev, Vladimir Y.; Radostin, Andrey V.; Dyskin, Arcady V.; Pasternak, Elena

    2017-04-01

    We report results of analysis of literature data on P- and S-wave velocities of rocks subjected to variable hydrostatic pressure. Out of about 90 examined samples, in more than 40% of the samples the reconstructed Poisson's ratios are negative for lowest confining pressure with gradual transition to the conventional positive values at higher pressure. The portion of rocks exhibiting negative Poisson's ratio appeared to be unexpectedly high. To understand the mechanism of negative Poisson's ratio, pressure dependences of P- and S-wave velocities were analyzed using the effective medium model in which the reduction in the elastic moduli due to cracks is described in terms of compliances with respect to shear and normal loading that are imparted to the rock by the presence of cracks. This is in contrast to widely used descriptions of effective cracked medium based on a specific crack model (e.g., penny-shape crack) in which the ratio between normal and shear compliances of such a crack is strictly predetermined. The analysis of pressure-dependences of the elastic wave velocities makes it possible to reveal the ratio between pure normal and shear compliances (called q-ratio below) for real defects and quantify their integral content in the rock. The examination performed demonstrates that a significant portion (over 50%) of cracks exhibit q-ratio several times higher than that assumed for the conventional penny-shape cracks. This leads to faster reduction of the Poisson's ratio with increasing the crack concentration. Samples with negative Poisson's ratio are characterized by elevated q-ratio and simultaneously crack concentration. Our results clearly indicate that the traditional crack model is not adequate for a significant portion of rocks and that the interaction between the opposite crack faces leading to domination of the normal compliance and reduced shear displacement discontinuity can play an important role in the mechanical behavior of rocks.

  11. In vitro cytotoxicity of Manville Code 100 glass fibers: Effect of fiber length on human alveolar macrophages

    PubMed Central

    Zeidler-Erdely, Patti C; Calhoun, William J; Ameredes, Bill T; Clark, Melissa P; Deye, Gregory J; Baron, Paul; Jones, William; Blake, Terri; Castranova, Vincent

    2006-01-01

    Background Synthetic vitreous fibers (SVFs) are inorganic noncrystalline materials widely used in residential and industrial settings for insulation, filtration, and reinforcement purposes. SVFs conventionally include three major categories: fibrous glass, rock/slag/stone (mineral) wool, and ceramic fibers. Previous in vitro studies from our laboratory demonstrated length-dependent cytotoxic effects of glass fibers on rat alveolar macrophages which were possibly associated with incomplete phagocytosis of fibers ≥ 17 μm in length. The purpose of this study was to examine the influence of fiber length on primary human alveolar macrophages, which are larger in diameter than rat macrophages, using length-classified Manville Code 100 glass fibers (8, 10, 16, and 20 μm). It was hypothesized that complete engulfment of fibers by human alveolar macrophages could decrease fiber cytotoxicity; i.e. shorter fibers that can be completely engulfed might not be as cytotoxic as longer fibers. Human alveolar macrophages, obtained by segmental bronchoalveolar lavage of healthy, non-smoking volunteers, were treated with three different concentrations (determined by fiber number) of the sized fibers in vitro. Cytotoxicity was assessed by monitoring cytosolic lactate dehydrogenase release and loss of function as indicated by a decrease in zymosan-stimulated chemiluminescence. Results Microscopic analysis indicated that human alveolar macrophages completely engulfed glass fibers of the 20 μm length. All fiber length fractions tested exhibited equal cytotoxicity on a per fiber basis, i.e. increasing lactate dehydrogenase and decreasing chemiluminescence in the same concentration-dependent fashion. Conclusion The data suggest that due to the larger diameter of human alveolar macrophages, compared to rat alveolar macrophages, complete phagocytosis of longer fibers can occur with the human cells. Neither incomplete phagocytosis nor length-dependent toxicity was observed in fiber-exposed human macrophage cultures. In contrast, rat macrophages exhibited both incomplete phagocytosis of long fibers and length-dependent toxicity. The results of the human and rat cell studies suggest that incomplete engulfment may enhance cytotoxicity of fiber glass. However, the possibility should not be ruled out that differences between human versus rat macrophages other than cell diameter could account for differences in fiber effects. PMID:16569233

  12. Assessment of anoxia tolerance and photoperiod dependence of GABAergic polarity in the pond snail Lymnaea stagnalis.

    PubMed

    Buck, Leslie T; Bond, Hilary C; Malik, Aqsa

    2017-01-01

    The pond snail Lymnaea stagnalis is reported to be anoxia-tolerant and if the tolerance mechanism is similar to that of the anoxia-tolerant painted turtle, GABA should play an important role. A potentially confounding factor investigating the role of GABA in anoxia tolerance are reports that GABA has both inhibitory and excitatory effects within L. stagnalis central ganglion. We therefore set out to determine if seasonality or photoperiod has an impact on: 1) the anoxia-tolerance of the intact pond snail, and 2) the response of isolated neuroganglia cluster F neurons to exogenous GABA application. L. stagnalis maintained on a natural summer light cycle were unable to survive any period of anoxic exposure, while those maintained on a natural winter light cycle survived a maximum of 4h. Using intracellular sharp electrode recordings from pedal ganglia cluster F neurons we show that there is a photoperiod dependent shift in the response to GABA. Snails exposed to a 16h:8h light:dark cycle in an environmental chamber (induced summer phenotype) exhibited hyperpolarizing inhibitory responses and those exposed to a 8h:16h light:dark cycle (induced winter phenotype) exhibited depolarizing excitatory responses to GABA application. Using gramicidin-perforated patch recordings we also found a photoperiod dependent shift in the reversal potential for GABA. We conclude that the opposing responses of L. stagnalis central neurons to GABA results from a shift in intracellular chloride concentration that is photoperiod dependent and is likely mediated through the relative efficacy of cation chloride co-transporters. Although the physiological ramifications of the photoperiod dependent shift are unknown this work potentially has important implications for the impact of artificial light pollution on animal health. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Chamaecyparis obtusa Suppresses Virulence Genes in Streptococcus mutans

    PubMed Central

    Kim, Eun-Hee; Kang, Sun-Young; Park, Bog-Im; Kim, Young-Hoi; Lee, Young-Rae; Hoe, Jin-Hee; Choi, Na-Young; Ra, Ji-Young; An, So-Youn; You, Yong-Ouk

    2016-01-01

    Chamaecyparis obtusa (C. obtusa) is known to have antimicrobial effects and has been used as a medicinal plant and in forest bathing. This study aimed to evaluate the anticariogenic activity of essential oil of C. obtusa on Streptococcus mutans, which is one of the most important bacterial causes of dental caries and dental biofilm formation. Essential oil from C. obtusa was extracted, and its effect on bacterial growth, acid production, and biofilm formation was evaluated. C. obtusa essential oil exhibited concentration-dependent inhibition of bacterial growth over 0.025 mg/mL, with 99% inhibition at a concentration of 0.2 mg/mL. The bacterial biofilm formation and acid production were also significantly inhibited at the concentration greater than 0.025 mg/mL. The result of LIVE/DEAD® BacLight™ Bacterial Viability Kit showed a concentration-dependent bactericidal effect on S. mutans and almost all bacteria were dead over 0.8 mg/mL. Real-time PCR analysis showed that gene expression of some virulence factors such as brpA, gbpB, gtfC, and gtfD was also inhibited. In GC and GC-MS analysis, the major components were found to be α-terpinene (40.60%), bornyl acetate (12.45%), α-pinene (11.38%), β-pinene (7.22%), β-phellandrene (3.45%), and α-terpinolene (3.40%). These results show that C. obtusa essential oil has anticariogenic effect on S. mutans. PMID:27293453

  14. Compositional effects on the chemorheological properties and forming behavior of aqueous alumina-poly(vinyl alcohol) gelcasting suspensions

    NASA Astrophysics Data System (ADS)

    Morissette, Sherry L.

    A new gelcasting system based on aqueous, alumina-poly(vinyl alcohol) (PVA) suspensions cross-linked by an organotitanate coupling agent has been developed. Both the chemorheological properties and forming behavior of this system exhibited a strong compositional dependence. A sol- gel phase diagram was established, which yielded the critical titanium concentration [Ti] c required for gelation at a given PVA volume fraction, as well as the minimum PVA volume fraction ( fminPVA = 0.0245) and titanium PVA concentration ([Ti]min = 9.984 x 10--4 g Ti/ml) below which gelation was not observed irrespective of solution composition. The gelation time of suspensions of constant PVA volume fraction ( fsolnPVA ) decreased with increasing cross-linking agent concentration, PVA temperature, and solids volume fraction. The steady-state viscosity and elastic modulus of polymer solutions ( fsolnPVA = 0.05) of varying [Ti] were well described by the PVA percolation model, giving scaling exponents of 0.84 and 1.79, respectively. The steady-state elastic modulus of gel casting suspensions, which provides a measure of their handling strength in the as-gelled state, increased with increasing solids volume fraction. Gelcasting suspensions were used as feedstock for solid free-form fabrication (SFF) of ceramic components. The influence of processing conditions (e.g., tip diameter, mixing rate, table speed, etc.) and suspension rheology on deposition behavior was investigated. Continuous printablity was achieved for tip diameters ranging from dt = 0.254 -- 1.370 mm for all mixing rates (Rmix 5 -- 300 rpm) and suspension compositions (i.e., fAl2O3 = 0.45, φPVA = 0.275, [Ti] 0 -- 6.30 x 10--3 g Ti/ml) probed, where the minimum tip diameter for continuous printing was 0.203 mm. Printed lines were uniform with good edge definition. Line dimensions were independent of mixing rate for the given process conditions. The as-cast alumina volume fraction ( fAl2O3 ) depended on casting conditions and cross-linking agent concentration, where fAl2O3 decreased with increasing tip diameter and increased with increasing cross-linking agent concentration. Free-fomied Al2O3 components exhibited uniform particle packing and had minimal macro-defects (e.g., slumping or stair casing) and no detectable micro-defects (e.g., bubbles or cracking).

  15. Anomalies in the equilibrium and nonequilibrium properties of correlated ions in complex molecular environments

    NASA Astrophysics Data System (ADS)

    Mahakrishnan, Sathiya; Chakraborty, Subrata; Vijay, Amrendra

    2017-11-01

    Emergent statistical attributes, and therefore the equations of state, of an assembly of interacting charge carriers embedded within a complex molecular environment frequently exhibit a variety of anomalies, particularly in the high-density (equivalently, the concentration) regime, which are not well understood, because they do not fall under the low-concentration phenomenologies of Debye-Hückel-Onsager and Poisson-Nernst-Planck, including their variants. To go beyond, we here use physical concepts and mathematical tools from quantum scattering theory, transport theory with the Stosszahlansatz of Boltzmann, and classical electrodynamics (Lorentz gauge) and obtain analytical expressions both for the average and the frequency-wave vector-dependent longitudinal and transverse current densities, diffusion coefficient, and the charge density, and therefore the analytical expressions for (a) the chemical potential, activity coefficient, and the equivalent conductivity for strong electrolytes and (b) the current-voltage characteristics for ion-transport processes in complex molecular environments. Using a method analogous to the notion of Debye length and thence the electrical double layer, we here identify a pair of characteristic length scales (longitudinal and the transverse), which, being wave vector and frequency dependent, manifestly exhibit nontrivial fluctuations in space-time. As a unifying theme, we advance a quantity (inverse length dimension), gscat(a ), which embodies all dynamical interactions, through various quantum scattering lengths, relevant to molecular species a, and the analytical behavior which helps us to rationalize the properties of strong electrolytes, including anomalies, in all concentration regimes. As an example, the behavior of gscat(a ) in the high-concentration regime explains the anomalous increase of the Debye length with concentration, as seen in a recent experiment on electrolyte solutions. We also put forth an extension of the standard diffusion equation, which manifestly incorporates the effects arising from the underlying microscopic collisions among constituent molecular species. Furthermore, we show a nontrivial connection between the current-voltage characteristics of electrolyte solutions and the Landauer's approach to electrical conduction in mesoscopic solids and thereby establish a definite conceptual bridge between the two disjoint subjects. For numerical insight, we present results on the aqueous solution of KCl as an example of strong electrolyte, and the transport (conduction as well as diffusion) of K+ ions in water, as an example of ion transport across the voltage-gated channels in biological cells.

  16. Anomalies in the equilibrium and nonequilibrium properties of correlated ions in complex molecular environments.

    PubMed

    Mahakrishnan, Sathiya; Chakraborty, Subrata; Vijay, Amrendra

    2017-11-01

    Emergent statistical attributes, and therefore the equations of state, of an assembly of interacting charge carriers embedded within a complex molecular environment frequently exhibit a variety of anomalies, particularly in the high-density (equivalently, the concentration) regime, which are not well understood, because they do not fall under the low-concentration phenomenologies of Debye-Hückel-Onsager and Poisson-Nernst-Planck, including their variants. To go beyond, we here use physical concepts and mathematical tools from quantum scattering theory, transport theory with the Stosszahlansatz of Boltzmann, and classical electrodynamics (Lorentz gauge) and obtain analytical expressions both for the average and the frequency-wave vector-dependent longitudinal and transverse current densities, diffusion coefficient, and the charge density, and therefore the analytical expressions for (a) the chemical potential, activity coefficient, and the equivalent conductivity for strong electrolytes and (b) the current-voltage characteristics for ion-transport processes in complex molecular environments. Using a method analogous to the notion of Debye length and thence the electrical double layer, we here identify a pair of characteristic length scales (longitudinal and the transverse), which, being wave vector and frequency dependent, manifestly exhibit nontrivial fluctuations in space-time. As a unifying theme, we advance a quantity (inverse length dimension), g_{scat}^{(a)}, which embodies all dynamical interactions, through various quantum scattering lengths, relevant to molecular species a, and the analytical behavior which helps us to rationalize the properties of strong electrolytes, including anomalies, in all concentration regimes. As an example, the behavior of g_{scat}^{(a)} in the high-concentration regime explains the anomalous increase of the Debye length with concentration, as seen in a recent experiment on electrolyte solutions. We also put forth an extension of the standard diffusion equation, which manifestly incorporates the effects arising from the underlying microscopic collisions among constituent molecular species. Furthermore, we show a nontrivial connection between the current-voltage characteristics of electrolyte solutions and the Landauer's approach to electrical conduction in mesoscopic solids and thereby establish a definite conceptual bridge between the two disjoint subjects. For numerical insight, we present results on the aqueous solution of KCl as an example of strong electrolyte, and the transport (conduction as well as diffusion) of K^{+} ions in water, as an example of ion transport across the voltage-gated channels in biological cells.

  17. Hepatectomy-Related Hypophosphatemia: A Novel Phosphaturic Factor in the Liver-Kidney Axis

    PubMed Central

    Nomura, Kengo; Miyagawa, Atsumi; Shiozaki, Yuji; Sasaki, Shohei; Kaneko, Ichiro; Ito, Mikiko; Kido, Shinsuke; Segawa, Hiroko; Sano, Mitsue; Fukuwatari, Tsutomu; Shibata, Katsumi

    2014-01-01

    Marked hypophosphatemia is common after major hepatic resection, but the pathophysiologic mechanism remains unknown. We used a partial hepatectomy (PH) rat model to investigate the molecular basis of hypophosphatemia. PH rats exhibited hypophosphatemia and hyperphosphaturia. In renal and intestinal brush-border membrane vesicles isolated from PH rats, Na+-dependent phosphate (Pi) uptake decreased by 50%–60%. PH rats also exhibited significantly decreased levels of renal and intestinal Na+-dependent Pi transporter proteins (NaPi-IIa [NaPi-4], NaPi-IIb, and NaPi-IIc). Parathyroid hormone was elevated at 6 hours after PH. Hyperphosphaturia persisted, however, even after thyroparathyroidectomy in PH rats. Moreover, DNA microarray data revealed elevated levels of nicotinamide phosphoribosyltransferase (Nampt) mRNA in the kidney after PH, and Nampt protein levels and total NAD concentration increased significantly in the proximal tubules. PH rats also exhibited markedly increased levels of the Nampt substrate, urinary nicotinamide (NAM), and NAM catabolites. In vitro analyses using opossum kidney cells revealed that NAM alone did not affect endogenous NaPi-4 levels. However, in cells overexpressing Nampt, the addition of NAM led to a marked decrease in cell surface expression of NaPi-4 that was blocked by treatment with FK866, a specific Nampt inhibitor. Furthermore, FK866-treated mice showed elevated renal Pi reabsorption and hypophosphaturia. These findings indicate that hepatectomy-induced hypophosphatemia is due to abnormal NAM metabolism, including Nampt activation in renal proximal tubular cells. PMID:24262791

  18. High affinity capture and concentration of quinacrine in polymorphonuclear neutrophils via vacuolar ATPase-mediated ion trapping: Comparison with other peripheral blood leukocytes and implications for the distribution of cationic drugs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roy, Caroline; Gagné, Valérie; Fernandes, Maria J.G.

    Many cationic drugs are concentrated in acidic cell compartments due to low retro-diffusion of the protonated molecule (ion trapping), with an ensuing vacuolar and autophagic cytopathology. In solid tissues, there is evidence that phagocytic cells, e.g., histiocytes, preferentially concentrate cationic drugs. We hypothesized that peripheral blood leukocytes could differentially take up a fluorescent model cation, quinacrine, depending on their phagocytic competence. Quinacrine transport parameters were determined in purified or total leukocyte suspensions at 37 °C. Purified polymorphonuclear leukocytes (PMNLs, essentially neutrophils) exhibited a quinacrine uptake velocity inferior to that of lymphocytes, but a consistently higher affinity (apparent K{sub M} 1.1more » vs. 6.3 μM, respectively). However, the vacuolar (V)-ATPase inhibitor bafilomycin A1 prevented quinacrine transport or initiated its release in either cell type. PMNLs capture most of the quinacrine added at low concentrations to fresh peripheral blood leukocytes compared with lymphocytes and monocytes (cytofluorometry). Accumulation of the autophagy marker LC3-II occurred rapidly and at low drug concentrations in quinacrine-treated PMNLs (significant at ≥ 2.5 μM, ≥ 2 h). Lymphocytes contained more LAMP1 than PMNLs, suggesting that the mass of lysosomes and late endosomes is a determinant of quinacrine uptake V{sub max}. PMNLs, however, exhibited the highest capacity for pinocytosis (uptake of fluorescent dextran into endosomes). The selectivity of quinacrine distribution in peripheral blood leukocytes may be determined by the collaboration of a non-concentrating plasma membrane transport mechanism, tentatively identified as pinocytosis in PMNLs, with V-ATPase-mediated concentration. Intracellular reservoirs of cationic drugs are a potential source of toxicity (e.g., loss of lysosomal function in phagocytes). - Highlights: • Quinacrine is concentrated in acidic organelles via V-ATPase-mediated ion trapping. • Human peripheral blood leukocytes capture and concentrate quinacrine. • Polymorphonuclear leukocytes do so with higher apparent affinity. • Polymorphonuclear are also more competent than lymphocytes for pinocytosis.« less

  19. Notch sensitivity and stress redistribution in three ceramic-matrix composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackin, T.J.; He, M.Y.; Evans, A.G.

    Fiber-reinforced ceramic-matrix composites (CMCs) depend upon inelastic mechanisms to diffuse stress concentrations associated with holes, notches, and cracks. These mechanisms consist of fiber debonding and pullout, multiple matrix cracking, and shear band formation. In order to understand these effects, experiments have bee conducted on several double-edge-notched CMCs that exhibit different stress redistribution mechanisms. Stresses have been measured an d mechanisms identified by using a combination of methods including X0-ray imaging, edge replication, and thermoelastic analysis. Multiple matrix cracking was found to be the most effective stress redistribution mechanism.

  20. Synthesis and Antiproliferative Activity of 2,5-bis(3′-Indolyl)pyrroles, Analogues of the Marine Alkaloid Nortopsentin

    PubMed Central

    Carbone, Anna; Parrino, Barbara; Barraja, Paola; Spanò, Virginia; Cirrincione, Girolamo; Diana, Patrizia; Maier, Armin; Kelter, Gerhard; Fiebig, Heinz-Herbert

    2013-01-01

    2,5-bis(3′-Indolyl)pyrroles, analogues of the marine alkaloid nortopsentin, were conveniently prepared through a three step procedure in good overall yields. Derivatives 1a and 1b exhibited concentration-dependent antitumor activity towards a panel of 42 human tumor cell lines with mean IC50 values of 1.54 μM and 0.67 μM, respectively. Investigating human tumor xenografts in an ex-vivo clonogenic assay revealed selective antitumor activity, whereas sensitive tumor models were scattered among various tumor histotypes. PMID:23455514

  1. Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics.

    PubMed

    Umezawa, Keitaro; Yoshida, Masafumi; Kamiya, Mako; Yamasoba, Tatsuya; Urano, Yasuteru

    2017-03-01

    Alterations in glutathione (GSH) homeostasis are associated with a variety of diseases and cellular functions, and therefore, real-time live-cell imaging and quantification of GSH dynamics are important for understanding pathophysiological processes. However, existing fluorescent probes are unsuitable for these purposes due to their irreversible fluorogenic mechanisms or slow reaction rates. In this work, we have successfully overcome these problems by establishing a design strategy inspired by Mayr's work on nucleophilic reaction kinetics. The synthesized probes exhibit concentration-dependent, reversible and rapid absorption/fluorescence changes (t 1/2  = 620 ms at [GSH] = 1 mM), as well as appropriate K d values (1-10 mM: within the range of intracellular GSH concentrations). We also developed FRET-based ratiometric probes, and demonstrated that they are useful for quantifying GSH concentration in various cell types and also for real-time live-cell imaging of GSH dynamics with temporal resolution of seconds.

  2. Rational design of reversible fluorescent probes for live-cell imaging and quantification of fast glutathione dynamics

    NASA Astrophysics Data System (ADS)

    Umezawa, Keitaro; Yoshida, Masafumi; Kamiya, Mako; Yamasoba, Tatsuya; Urano, Yasuteru

    2017-03-01

    Alterations in glutathione (GSH) homeostasis are associated with a variety of diseases and cellular functions, and therefore, real-time live-cell imaging and quantification of GSH dynamics are important for understanding pathophysiological processes. However, existing fluorescent probes are unsuitable for these purposes due to their irreversible fluorogenic mechanisms or slow reaction rates. In this work, we have successfully overcome these problems by establishing a design strategy inspired by Mayr's work on nucleophilic reaction kinetics. The synthesized probes exhibit concentration-dependent, reversible and rapid absorption/fluorescence changes (t1/2 = 620 ms at [GSH] = 1 mM), as well as appropriate Kd values (1-10 mM: within the range of intracellular GSH concentrations). We also developed FRET-based ratiometric probes, and demonstrated that they are useful for quantifying GSH concentration in various cell types and also for real-time live-cell imaging of GSH dynamics with temporal resolution of seconds.

  3. Accumulation and depuration of trace metals in Southern Toads, Bufo Terrestris, exposed to coal combustion waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.; Hassan, S.; Mendonca, M.

    2009-02-15

    Accumulation and depuration of metals by an organism are underrepresented in the literature. We collected southern toads (Bufo terrestris) from coal by-product (ash)-contaminated and uncontaminated sites to examine metal concentrations over time. Toads were placed in four exposure regimes, then sacrificed periodically over a 5-month period, and whole-body metal levels were measured. Toads exposed to ash accumulated significant concentrations of metals. Metal concentrations changed throughout the experiment, and profiles of accumulation and depuration differed depending on the metal and exposure regime. Ash-exposed toads exhibited elevated levels of 11 of 18 metals measured. Increases ranged from 47.5% for Pb to moremore » than 5000% for As. Eight of 18 metals did not change in control toads, while 10 of 18 metals decreased in toads removed from ash, ranging from -25% for Co to -96% for Tl. Seven metals that decreased in toads removed from ash did not change in control toads.« less

  4. Phytochemical contents and biological evaluation of Ruta chalepennsis L. growing in Saudi Arabia.

    PubMed

    Alotaibi, Shorok M; Saleem, Monerah S; Al-Humaidi, Jehan G

    2018-05-01

    Phytochemical screening of Ruta chalepensis L. exhibited the presence of different chemical groups. The dried aerial parts of the plant was total extracted by ethanol and successively using chloroform, ethyl acetate and Butanol, out of the successive extracts four compounds namely, scopletin, kaempferol, quercetin, quercetin 3- O -α-L-rhamno glucopyranosyl (Rutin) were isolated and biological evaluations. Total ethanol and successive extracts; chloroform, ethyl acetate and Butanol were produced excellent antimicrobial activities against gram negative bacteria, gram positive bacteria and fungi. Ethyl acetate extract was the best for inhibition of the microorganism's growth. All extracts (total ethanol, and successive extracts) showed DPPH radical scavenging activity in a concentration-dependent manner. The best antioxidant activity was obtained by ethyl acetate & n -butanol extract (94.28%, IC 50  = 56.6 µg/ml). Also All extracts (total ethanol, and successive extracts) showed anticoagulant activity at higher concentration with prolonged clotting time 6:30 and 4:30 s at 10 mg/ml concentrations, respectively.

  5. Phase behaviour of oat β-glucan/sodium caseinate mixtures varying in molecular weight.

    PubMed

    Agbenorhevi, Jacob K; Kontogiorgos, Vassilis; Kasapis, Stefan

    2013-05-01

    The isothermal phase behaviour at 5 °C of mixtures of sodium caseinate and oat β-glucan isolates varying in molecular weight (MW) was investigated by means of phase diagram construction, rheometry, fluorescence microscopy and electrophoresis. Phase diagrams indicated that the compatibility of the β-glucan/sodium caseinate system increases as β-glucan MW decreases. Images of mixtures taken at various biopolymer concentrations revealed phase separated domains. Results also revealed that at the state of thermodynamic equilibrium, lower MW samples yielded considerable viscosity in the mixture. At equivalent hydrodynamic volume of β-glucan in the mixtures, samples varying in molecular weight exhibited similar flow behaviour. A deviation dependent on the protein concentration was observed for the high MW sample in the concentrated regime due to the size of β-glucan aggregates formed. Results demonstrate that by controlling the structural features of β-glucan in mixtures with sodium caseinate, informed manipulation of rheological properties in these systems can be achieved. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Preservation of high glycolytic phenotype by establishing new acute lymphoblastic leukemia cell lines at physiologic oxygen concentration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheard, Michael A., E-mail: msheard@chla.usc.edu; Ghent, Matthew V., E-mail: mattghent@gmail.com; Cabral, Daniel J., E-mail: dcabral14@gmail.com

    2015-05-15

    Cancer cells typically exhibit increased glycolysis and decreased mitochondrial oxidative phosphorylation, and they continue to exhibit some elevation in glycolysis even under aerobic conditions. However, it is unclear whether cancer cell lines employ a high level of glycolysis comparable to that of the original cancers from which they were derived, even if their culture conditions are changed to physiologically relevant oxygen concentrations. From three childhood acute lymphoblastic leukemia (ALL) patients we established three new pairs of cell lines in both atmospheric (20%) and physiologic (bone marrow level, 5%) oxygen concentrations. Cell lines established in 20% oxygen exhibited lower proliferation, survival,more » expression of glycolysis genes, glucose consumption, and lactate production. Interestingly, the effects of oxygen concentration used during cell line initiation were only partially reversible when established cell cultures were switched from one oxygen concentration to another for eight weeks. These observations indicate that ALL cell lines established at atmospheric oxygen concentration can exhibit relatively low levels of glycolysis and these levels are semi-permanent, suggesting that physiologic oxygen concentrations may be needed from the time of cell line initiation to preserve the high level of glycolysis commonly exhibited by leukemias in vivo. - Highlights: • Establishing new ALL cell lines in 5% oxygen resulted in higher glycolytic expression and function. • Establishing new ALL cell lines in 5% oxygen resulted in higher proliferation and lower cell death. • The divergent metabolic phenotypes selected in 5% and 20% oxygen are semi-permanent.« less

  7. Physiological and molecular characterization of an IRK-type inward rectifier K+ channel in a tumour mast cell line.

    PubMed

    Wischmeyer, E; Lentes, K U; Karschin, A

    1995-04-01

    The basophilic leucaemia cell line RBL-2H3 exhibits a robust inwardly rectifying potassium current, IKIR, which is likely to be modulated by G proteins. We examined the physiological and molecular properties of this KIR conductance to define the nature of the underlying channel species. The macroscopic conductance revealed characteristics typical of classical K+ inward rectifiers of the IRK type. Channel gating was rapid, first order (tau approximately 1 ms at -100 mV) and steeply voltage dependent. Both activation potential and slope conductance were dependent on extracellular K+ concentration ([K+]o) and inward rectification persisted in the absence of internal Mg2+. The current was susceptible to a concentration- and voltage-dependent block by extracellular Na+, Cs+ and Ba2+. Initial IKIR whole-cell amplitudes as well as current rundown were dependent on the presence of 1 mM internal ATP. Perfusion of intracellular guanosine 5'-Q-(3-thiotriphosphate) (GTP[gamma S]) suppressed IKIR with an average half-time of decline of approximately 400 s. It was demonstrated that the dominant IRK-type 25 pS conductance channel was indeed suppressed by 100 microM preloaded GTP[gamma S]. Reverse transcriptase-polymerase chain reactions (RT-PCR) with RBL cell poly(A)+ RNA identified a full length K+ inward rectifier with 94% base pair homology to the recently cloned mouse IRK1 channel. It is concluded that RBL cells express a classical voltage-dependent IRK-type K+ inward rectifier RBL-IRK1 which is negatively controlled by G proteins.

  8. Competition effects in cation binding to humic acid: Conditional affinity spectra for fixed total metal concentration conditions

    NASA Astrophysics Data System (ADS)

    David, Calin; Mongin, Sandrine; Rey-Castro, Carlos; Galceran, Josep; Companys, Encarnació; Garcés, José Luis; Salvador, José; Puy, Jaume; Cecilia, Joan; Lodeiro, Pablo; Mas, Francesc

    2010-09-01

    Information on the Pb and Cd binding to a purified Aldrich humic acid (HA) is obtained from the influence of different fixed total metal concentrations on the acid-base titrations of this ligand. NICA (Non-Ideal Competitive Adsorption) isotherm has been used for a global quantitative description of the binding, which has then been interpreted by plotting the Conditional Affinity Spectra of the H + binding at fixed total metal concentrations (CAScTM). This new physicochemical tool, here introduced, allows the interpretation of binding results in terms of distributions of proton binding energies. A large increase in the acidity of the phenolic sites as the total metal concentration increases, especially in presence of Pb, is revealed from the shift of the CAScTM towards lower affinities. The variance of the CAScTM distribution, which can be used as a direct measure of the heterogeneity, also shows a significant dependence on the total metal concentration. A discussion of the factors that influence the heterogeneity of the HA under the conditions of each experiment is provided, so that the smoothed pattern exhibited by the titration curves can be justified.

  9. Enhancement of delayed-rectifier potassium conductance by low concentrations of local anaesthetics in spinal sensory neurones

    PubMed Central

    Olschewski, Andrea; Wolff, Matthias; Bräu, Michael E; Hempelmann, Gunter; Vogel, Werner; Safronov, Boris V

    2002-01-01

    Combining the patch-clamp recordings in slice preparation with the ‘entire soma isolation' method we studied action of several local anaesthetics on delayed-rectifier K+ currents in spinal dorsal horn neurones.Bupivacaine, lidocaine and mepivacaine at low concentrations (1–100 μM) enhanced delayed-rectifier K+ current in intact neurones within the spinal cord slice, while exhibiting a partial blocking effect at higher concentrations (>100 μM). In isolated somata 0.1–10 μM bupivacaine enhanced delayed-rectifier K+ current by shifting its steady-state activation characteristic and the voltage-dependence of the activation time constant to more negative potentials by 10–20 mV.Detailed analysis has revealed that bupivacaine also increased the maximum delayed-rectifier K+ conductance by changing the open probability, rather than the unitary conductance, of the channel.It is concluded that local anaesthetics show a dual effect on delayed-rectifier K+ currents by potentiating them at low concentrations and partially suppressing at high concentrations. The phenomenon observed demonstrated the complex action of local anaesthetics during spinal and epidural anaesthesia, which is not restricted to a suppression of Na+ conductance only. PMID:12055132

  10. Solid-contact potentiometric polymer membrane microelectrodes for the detection of silver ions at the femtomole level

    PubMed Central

    Rubinova, Nastassia; Chumbimuni-Torres, Karin; Bakker, Eric

    2010-01-01

    In recent years, ion-selective electrodes based on polymer membranes have been shown to exhibit detection limits that are often in the nanomolar concentration range, and thus drastically lower than traditionally accepted. Since potentiometry is less dependent on scaling laws that other established analytical techniques, their performance in confined sample volumes is explored here. Solid-contact silver-selective microelectrodes, with a sodium-selective microelectrode as a reference, were inserted into a micropipette tip used as a 50-μl sample. The observed potential stabilities, reproducibilities and detection limits were attractive and largely matched that for large 100-ml samples. This should pave the way for further experiments to detecting ultra-small total ion concentrations by potentiometry, especially when used as a transducer after an amplification step in bioanalysis. PMID:20543910

  11. ENZYMATIC POLYMERIZATION OF PHENOLS IN ROOM TEMPERATURE IONIC LIQUIDS

    PubMed Central

    Eker, Bilge; Zagorevski, Dmitri; Zhu, Guangyu; Linhardt, Robert J.; Dordick, Jonathan S.

    2009-01-01

    Soybean peroxidase (SBP) was used to catalyze the polymerization of phenols in room-temperature ionic liquids (RTILs). Phenolic polymers with number average molecular weights ranging from 1200 to 4100 D were obtained depending on the composition of the reaction medium and the nature of the phenol. Specifically, SBP was highly active in methylimidazolium-containing RTILs, including 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM(BF4)), and 1-butyl-3-methylpyridinium tetrafluoroborate (BMPy(BF4)) with the ionic liquid content as high as 90% (v/v); the balance being aqueous buffer. Gel permeation chromatography and MALDI-TOF analysis indicated that higher molecular weight polymers can be synthesized in the presence of higher RTIL concentrations, with selective control over polymer size achieved by varying the RTIL concentration. The resulting polyphenols exhibited high thermostability and possessed thermosetting properties. PMID:20161409

  12. A KINETIC ANALYSIS OF THE ENDOGENOUS RESPIRATION OF BAKERS' YEAST

    PubMed Central

    Stier, T. J. B.; Stannard, J. N.

    1936-01-01

    The process of endogenous respiration of two strains of bakers' yeast, Saccharomyces cerevisiae, was examined kinetically. The rate of respiration with respect to time in a non-nutrient medium was found to exhibit two phases: (a) a period of constant rate of O2 consumption and CO2 production (R.Q. = 1) characteristic of cells with ample concentrations of stored material; (b) a first order decline in rate of respiration with respect to time, where the rate was proportional to the concentration of some substrate, S. (R.Q. = 1 throughout second phase.) The nature of this substrate was reexamined and the evidence summarized confirms the notion that it is a carbohydrate, probably glycogen. These phases of endogenous respiration were shown to depend upon the age of the culture and the amount of substrate available. PMID:19872942

  13. Tricholoma matsutake 1-Ocen-3-ol and methyl cinnamate repel mycophagous Proisotoma minuta (Collembola: Insecta)

    PubMed Central

    Shimano, Satoshi; Suzuki, Masahiro

    2007-01-01

    Two major volatiles produced by the mycelia and fruiting bodies of Tricholoma matsutake (1-octen-3-ol and methyl cinnamate) repel a mycophagous collembolan, Proisotoma minuta. Aggregation of the collembolans on their diet was significantly inhibited by exposure to 1 ppm methyl cinnamate or 10 to 100 ppm 1-octen-3-ol. The aggregation activity decreased dose-dependently upon exposure to 1-octen-3-ol at concentrations higher than 0.01 ppm. Aggregation in the presence of methyl cinnamate exhibited three phases: no significant effect at concentrations ranging from 0.001 to 0.1 ppm, significant inhibition from 1 to 100 ppm, and strong inhibition at 1,000 ppm. These results may explain why certain collembolan species do not prefer T. matsutake fruiting bodies. PMID:18066606

  14. Global Diffusion Pattern and Hot SPOT Analysis of Vaccine-Preventable Diseases

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Fan, F.; Zanoni, I. Holly; Li, Y.

    2017-10-01

    Spatial characteristics reveal the concentration of vaccine-preventable disease in Africa and the Near East and that disease dispersion is variable depending on disease. The exception is whooping cough, which has a highly variable center of concentration from year to year. Measles exhibited the only statistically significant spatial autocorrelation among all the diseases under investigation. Hottest spots of measles are in Africa and coldest spots are in United States, warm spots are in Near East and cool spots are in Western Europe. Finally, cases of measles could not be explained by the independent variables, including Gini index, health expenditure, or rate of immunization. Since the literature confirms that each of the selected variables is considered determinants of disease dissemination, it is anticipated that the global dataset of disease cases was influenced by reporting bias.

  15. Fe₃O₄⁻Silicone Mixture as Flexible Actuator.

    PubMed

    Song, Kahye; Cha, Youngsu

    2018-05-08

    In this study, we introduce Fe₃O₄-silicone flexible composite actuators fabricated by combining silicone and iron oxide particles. The actuators exploit the flexibility of silicone and the electric conductivity of iron oxide particles. These actuators are activated by electrostatic force using the properties of the metal particles. Herein, we investigate the characteristic changes in actuation performance by increasing the concentration of iron oxide from 1% to 20%. The developed flexible actuators exhibit a resonant frequency near 3 Hz and their actuation amplitudes increase with increasing input voltage. We found that the actuator can move well at metal particle concentrations >2.5%. We also studied the changes in actuation behavior, depending on the portion of the Fe₃O₄-silicone in the length. Overall, we experimentally analyzed the characteristics of the newly proposed metal particle-silicone composite actuators.

  16. A rational quantitative approach to determine the best dosing regimen for a target therapeutic effect: a unified formalism for antibiotic evaluation.

    PubMed

    Li, Jun; Nekka, Fahima

    2013-02-21

    The determination of an optimal dosing regimen is a critical step to enhance the drug efficacy and avoid toxicity. Rational dosing recommendations based on mathematical considerations are increasingly being adopted in the process of drug development and use. In this paper, we propose a quantitative approach to evaluate the efficacy of antibiotic agents. By integrating both pharmacokinetic (PK) and pharmacodynamic (PD) information, this approach gives rise to a unified formalism able to measure the cause-effect of dosing regimens. This new pharmaco-metric allows to cover a whole range of antibiotics, including the two well known concentration and time dependent classes, through the introduction of the Hill-dependency concept. As a direct fallout, our formalism opens a new path toward the bioequivalence evaluation in terms of PK and PD, which associates the in vivo drug concentration and the in vitro drug effect. Using this new approach, we succeeded to reveal unexpected, but relevant behaviors of drug performance when different drug regimens and drug classes are considered. Of particular notice, we found that the doses required to reach the same therapeutic effect, when scheduled differently, exhibit completely different tendencies for concentration and time dependent drugs. Moreover, we theoretically confirmed the previous experimental results of the superiority of the once daily regimen of aminoglycosides. The proposed methodology is appealing for its computational features and can easily be applicable to design fair clinical protocols or rationalize prescription decisions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Grapefruit juice and its constituents augment colchicine intestinal absorption: potential hazardous interaction and the role of p-glycoprotein.

    PubMed

    Dahan, Arik; Amidon, Gordon L

    2009-04-01

    To investigate the potential interaction between grapefruit juice (GFJ) and the oral microtubule polymerization inhibitor colchicine, a P-gp and CYP3A4 substrate. Colchicine intestinal epithelial transport was investigated across Caco-2 cell monolayers in both AP-BL and BL-AP directions, in the absence/presence of known P-gp inhibitors (verapamil and quinidine). The concentration-dependent effects of GFJ and its major constituents (6'-7'-dihydroxybergamottin, naringin and naringenin) on colchicine Caco-2 mucosal secretion were examined. The effect of GFJ on colchicine intestinal-permeability was then investigated in-situ in the rat perfusion model, in both jejunum and ileum. Colchicine exhibited 20-fold higher BL-AP than AP-BL Caco-2 permeability, indicative of net mucosal secretion, which was reduced by verapamil/quinidine. Colchicine AP-BL permeability was increased and BL-AP was decreased by GFJ in a concentration-dependent manner (IC(50) values of 0.75% and 0.46% respectively), suggesting inhibition of efflux transport, rather than metabolizing enzyme. Similar effects obtained following pre-experiment incubation with GFJ, even though the juice was not present throughout the transepithelial study. 6'-7'-Dihydroxybergamottin, naringin and naringenin displayed concentration-dependent inhibition on colchicine BL-AP secretion (IC(50) values of 90, 592 and 11.6 microM respectively). Ten percent GFJ doubled colchicine rat in-situ ileal permeability, and increased 1.5-fold jejunal permeability. The data suggest that GFJ may augment colchicine oral bioavailability. Due to colchicine narrow therapeutic-index and severely toxic side-effects, awareness of this interaction is prudent.

  18. The effect of physician and health plan market concentration on prices in commercial health insurance markets.

    PubMed

    Schneider, John E; Li, Pengxiang; Klepser, Donald G; Peterson, N Andrew; Brown, Timothy T; Scheffler, Richard M

    2008-03-01

    The objective of this paper is to describe the market structure of health plans (HPs) and physician organizations (POs) in California, a state with high levels of managed care penetration and selective contracting. First we calculate Herfindahl-Hirschman (HHI) concentration indices for HPs and POs in 42 California counties. We then estimate a multivariable regression model to examine the relationship between concentration measures and the prices paid by HPs to POs. Price data is from Medstat MarketScan databases. The findings show that any California counties exhibit what the Department of Justice would consider high HHI concentration measures, in excess of 1,800. More than three quarters of California counties exhibit HP concentration indices over 1,800, and 83% of counties have PO concentration levels in excess of 1,800. Half of the study counties exhibited PO concentration levels in excess of 3,600, compared to only 24% for plans. Multivariate price models suggest that PO concentration is associated with higher physician prices (p < or = 0.05), whereas HP concentration does not appear to be significantly associated with higher outpatient commercial payer prices.

  19. Relationship of follicle size and concentrations of estradiol among cows that do and do not exhibit estrus during a fixed-time AI protocol

    USDA-ARS?s Scientific Manuscript database

    Cows that exhibited estrus around the time of fixed-time AI had greater pregnancy success compared to cows that did not. The objective of this study was to determine the relationship between follicle size and peak estradiol concentration between cows that did or did not exhibit estrus during a fixed...

  20. Size-dependent Toxicity of Gold Nanoparticles on Human Embryonic Stem Cells and Their Neural Derivatives

    PubMed Central

    Senut, Marie-Claude; Zhang, Yanhua; Liu, Fangchao; Sen, Arko; Ruden, Douglas M.; Mao, Guangzhao

    2016-01-01

    This study explores the use of human embryonic stem cells (hESCs) for assessing nanotoxicology, specifically, the effect of gold nanoparticles (AuNPs) of different core sizes (1.5 nm, 4 nm, and 14 nm) on the viability, pluripotency, neuronal differentiation, and DNA methylation of hESCs. The hESCs exposed to 1.5 nm thiolate-capped AuNPs exhibited loss of cohesiveness and detachment suggesting ongoing cell death at concentrations as low as 0.1 µg/mL. The cells exposed to 1.5 nm AuNPs at this concentration did not form embryoid bodies but rather disintegrated into single cells within 48 hours. Cell death caused by 1.5 nm AuNPs also occurred in hESC-derived neural progenitor cells. None of the other nanoparticles exhibited toxic effects on the hESCs at concentrations as high as 10 µg/mL during a 19 day neural differentiation period. Thiolate-capped 4 nm AuNPs at 10 µg/mL caused a dramatic decrease in global DNA methylation (5mC) and a corresponding increase in global DNA hydroxymethylation (5hmC) of the hESC’s DNA in only 24 hours. This work identifies a type of AuNPs highly toxic to hESCs and demonstrates the potential of hESCs in predicting nanotoxicity and characterizing their ability to alter the DNA methylation and hydroxymethylation patterns in the cells. PMID:26676601

  1. Effects of ACTH on corticosteroid and progesterone levels in female baboons depending on the phase of the menstrual cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todua, T.N.; Goncharov, N.P.; Katsiya, G.V.

    To study the effect of ACTH on the endocrine function of steroid producing glands depending on the level of sex hormones in the body, a comparative study of the dynamics of steroid hormones in the follicular and luteal phases of the menstrual cycle in response to a standard does of ACTH was undertaken in experiments on hamadryad baboons. Concentrations of corticosterone, 11-deoxycortisol, and progesterone were determined in duplicate samples of plasma by radioimmunoassay. It is shown that the sensitivity of the adrenals to a single injection of ACTH is independent of the phase of the menstrual cycle and the inhibitorymore » effects of ACTH on progesterone secretion is exhibited only in the presence of an actively functioning corpus luteus of the ovary.« less

  2. Effect of morphology and solvent on two-photon absorption of nano zinc oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kavitha, M.K.; Haripadmam, P.C.; Gopinath, Pramod

    Highlights: ► ZnO nanospheres and triangular structures synthesis by novel precipitation technique. ► The effect of precursor concentration on the size and shape of nano ZnO. ► Open aperture Z-scan measurements of the ZnO nanoparticle dispersions. ► Nanospheres exhibit higher two photon absorption coefficient than triangular nanostructures. ► Nanospheres dispersed in water exhibit higher two photon absorption coefficient than its dispersion in 2-propanol. - Abstract: In this paper, we report the effect of morphology and solvent on the two-photon absorption of nano zinc oxide. Zinc oxide nanoparticles in two different morphologies like nanospheres and triangular nanostructures are synthesized by novelmore » precipitation technique and their two-photon absorption coefficient is measured using open aperture Z-scan technique. Experimental results show that the zinc oxide nanospheres exhibit higher two-photon absorption coefficient than the zinc oxide triangular nanostructures. The zinc oxide nanospheres dispersed in water exhibit higher two-photon absorption coefficient than that of its dispersion in 2-propanol. The zinc oxide nanospheres dispersed in water shows a decrease in two-photon absorption coefficient with an increase in on-axis irradiance. The result confirms the dependence of shape and solvent on the two-photon absorption of nano zinc oxide.« less

  3. Light Scattering Characterization of Elastin-Like Polypeptide Trimer Micelles

    NASA Astrophysics Data System (ADS)

    Tsuper, Ilona; Terrano, Daniel; Maraschky, Adam; Holland, Nolan; Streletzky, Kiril

    The elastin-like polypeptides (ELP) nanoparticles are composed of three-armed star polypeptides connected by a negatively charged foldon. Each of the three arms extending from the foldon domain includes 20 repeats of the (GVGVP) amino acid sequence. The ELP polymer chains are soluble at room temperature and become insoluble at the transition temperature (close to 50 ° C), forming micelles. The size and shape of the micelle are dependent on the temperature and the pH of the solution, and on the concentration of the phosphate buffered saline (PBS). The depolarized dynamic light scattering (DDLS) was employed to study the structure and dynamics of micelles at 62 ° C. The solution was maintained at an approximate pH level of 7.3 - 7.5, while varying PBS concentration. At low salt concentrations (<15 mM), the micelle radius was about 10nm but not very reproducible on account of unstable pH levels arising from low buffer concentrations. At intermediate salt concentrations (15 - 60 mM), the system formed spherically-shaped micelles, exhibiting a steady growth in the hydrodynamic radius (Rh) from 10 to 21 nm, with increasing PBS concentration. Interestingly, higher salt concentrations (>60 mM) displayed an apparent elongation of the micelles evident by a significant VH signal, along with a surge in the apparent Rh. A model of micelle growth (and potential elongation) with increase in salt concentration is considered.

  4. Multiple regression analysis to assess the role of plankton on the distribution and speciation of mercury in water of a contaminated lagoon.

    PubMed

    Stoichev, T; Tessier, E; Amouroux, D; Almeida, C M; Basto, M C P; Vasconcelos, V M

    2016-11-15

    Spatial and seasonal variation of mercury species aqueous concentrations and distributions was carried out during six sampling campaigns at four locations within Laranjo Bay, the most mercury-contaminated area of the Aveiro Lagoon (Portugal). Inorganic mercury (IHg(II)) and methylmercury (MeHg) were determined in filter-retained (IHgPART, MeHgPART) and filtered (<0.45μm) fractions (IHg(II)DISS, MeHgDISS). The concentrations of IHgPART depended on site and on dilution with downstream particles. Similar processes were evidenced for MeHgPART, however, its concentrations increased for particles rich in phaeophytin (Pha). The concentrations of MeHgDISS, and especially those of IHg(II)DISS, increased with Pha concentrations in the water. Multiple regression models are able to depict MeHgPART, IHg(II)DISS and MeHgDISS concentrations with salinity and Pha concentrations exhibiting additive statistical effects and allowing separation of possible addition and removal processes. A link between phytoplankton/algae and consumers' grazing pressure in the contaminated area can be involved to increase concentrations of IHg(II)DISS and MeHgPART. These processes could lead to suspended particles enriched with MeHg and to the enhancement of IHg(II) and MeHg availability in surface waters and higher transfer to the food web. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Removal of copper ions from aqueous solutions by means of micellar-enhanced ultrafiltration

    NASA Astrophysics Data System (ADS)

    Kowalska, Izabela; Klimonda, Aleksandra

    2017-11-01

    The aim of the study was to assess the usefulness of micellar-enhanced ultrafiltration (MEUF) for removal of copper ions from water solutions in comparison with classic ultrafiltration process. The tests were conducted in a semi-pilot membrane installation with the use of ultrafiltration module KOCH/ROMICON® at a transmembrane pressure of 0.05 MPa. The effect of concentration of copper ions on ultrafiltration process efficiency was investigated. The second part of the tests concerned the removal of copper ions by MEUF under wide range of anionic surfactant concentration (0.25, 1, and 5 CMC (critical micelle concentration)). Concentration of copper ions in model solutions was equal to 5, 20, and 50 mg Cu/L. Furthermore, the effect of surfactant leakage to the permeate side during filtration was evaluated. Conducted experiments confirmed effectiveness of MEUF in copper ions removal. For the highest copper concentration in the feed (i.e. 50 mg/L), the average concentration of copper ions in the permeate ranged from 1.2-4.7 mg Cu/L depending on surfactant concentration. During filtration experiments, UF module exhibited stable transport properties for model solutions containing copper. For the highest concentration of metal, the decrease of permeate flux did not exceed 11% after 60 minutes of filtration. In the presence of the surfactant, a slight deterioration of transport properties was observed.

  6. Exposure to volatile organic compounds for individuals with occupations associated with potential exposure to motor vehicle exhaust and/or gasoline vapor emissions.

    PubMed

    Jo, W K; Song, K B

    2001-03-26

    Workers who work near volatile organic compounds (VOCs) source(s), motor vehicle exhausts and/or gasoline vapor emissions, are suspected to be exposed to highly-elevated VOC levels during their work-time. This study confirmed this suspicion and evaluated the work-time exposure VOCs for traffic police officers, parking garage attendants, service station attendants, roadside storekeepers and underground storekeepers, by measuring the concentrations of six aromatic VOCs in workplace air, or personal air and breath samples. For nearly all target VOCs, the post-work breath concentrations of the workers were slightly or significantly higher than the pre-work breath concentrations, depending on the compound and occupation. Furthermore, both the pre- and post-work breath concentrations of the workers showed elevated levels compared with a control group of college students. The post-work breath concentrations were significantly correlated with the personal air concentrations, while the pre-work breath concentrations were not. Smoking workers were not always exposed to higher aromatic VOC levels than non-smoking workers. The breath and personal air concentrations for all the target compounds were both higher for underground parking garage attendants than for ground-level parking attendants. For all the target compounds except toluene, storekeepers exhibited similar levels of exposure for all store types. Print shopkeepers recorded the highest toluene exposure.

  7. Electric Double Layer electrostatics of spherical polyelectrolyte brushes with pH-dependent charge density

    NASA Astrophysics Data System (ADS)

    Li, Hao; Chen, Guang; Sinha, Shayandev; Das, Siddhartha; Soft Matter, Interfaces,; Energy Laboratory (Smiel) Team

    Understanding the electric double layer (EDL) electrostatics of spherical polyelectrolyte (PE) brushes, which are spherical particles grafted with PE layers, is essential for appropriate use of PE-grfated micro-nanoparticles for targeted drug delivery, oil recovery, water harvesting, emulsion stabilization, emulsion breaking, etc. Here we elucidate the EDL electrostatics of spherical PE brushes for the case where the PE exhibits pH-dependent charge density. This pH-dependence necessitates the consideration of explicit hydrogen ion concentration, which in turn dictates the distribution of monomers along the length of the grafted PE. This monomer distribution is shown to be a function of the nature of the sphere (metallic or a charged or uncharged dielectric or a liquid-filled sphere). All the calculations are performed for the case where the PE electrostatics can be decoupled from the PE elastic and excluded volume effects. Initial predictions are also provided for the case where such decoupling is not possible.

  8. Emissions of nitrogen-containing organic compounds from the burning of herbaceous and arboraceous biomass: Fuel composition dependence and the variability of commonly used nitrile tracers

    NASA Astrophysics Data System (ADS)

    Coggon, Matthew M.; Veres, Patrick R.; Yuan, Bin; Koss, Abigail; Warneke, Carsten; Gilman, Jessica B.; Lerner, Brian M.; Peischl, Jeff; Aikin, Kenneth C.; Stockwell, Chelsea E.; Hatch, Lindsay E.; Ryerson, Thomas B.; Roberts, James M.; Yokelson, Robert J.; Gouw, Joost A.

    2016-09-01

    Volatile organic compounds (VOCs) emitted from residential wood and crop residue burning were measured in Colorado, U.S. When compared to the emissions from crop burning, residential wood burning exhibited markedly lower concentrations of acetonitrile, a commonly used biomass burning tracer. For both herbaceous and arboraceous fuels, the emissions of nitrogen-containing VOCs (NVOCs) strongly depend on the fuel nitrogen content; therefore, low NVOC emissions from residential wood burning result from the combustion of low-nitrogen fuel. Consequently, the emissions of compounds hazardous to human health, such as HNCO and HCN, and the formation of secondary pollutants, such as ozone generated by NOx, are likely to depend on fuel nitrogen. These results also demonstrate that acetonitrile may not be a suitable tracer for domestic burning in urban areas. Wood burning emissions may be best identified through analysis of the emissions profile rather than reliance on a single tracer species.

  9. Uptake and depuration of PCB-153 in edible shrimp Palaemonetes varians and human health risk assessment.

    PubMed

    Grilo, T F; Cardoso, P G; Pato, P; Duarte, A C; Pardal, M A

    2014-03-01

    A medium-term mesocosm exposure study was conducted to elucidate bioaccumulation and depuration of polychlorinated biphenyl congener 153 (PCB-153) in edible shrimp Palaemonetes varians. Over the 15-day exposure period, shrimp under different exposure concentrations exhibited a significant increase in PCB-153 concentration compared with control organisms. Distinct bioaccumulation patterns and uptake rates were observed depending on the exposure concentrations. For low PCB-153 exposure levels (0.25μgL(-1)), accumulation followed a saturation model, reaching an apparent steady state after fifteen days exposure. For intermediate (2.5μgL(-1)) and high PCB-153 levels (25μgL(-1)), accumulation was faster and linear. In addition, the bioaccumulation rate was not proportional to PCB-153 concentration, and the bioaccumulation was higher at intermediate exposure concentrations. Regarding the depuration phase, P. varians lost up to 30% of PCB-153 after 72h and levels continued slowly to decrease until the end of the 30-d experimental period. However, PCB-153 levels in shrimp did not reach background values, and those exposed to moderate and high PCB-153 concentrations presented contamination levels much higher than the regulatory limit for human food consumption (75ngg(-1) ww for Σ6 PCB). Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Contribution of orosensory stimulation to strain differences in oil intake by mice.

    PubMed

    Glendinning, John I; Feld, Natalie; Goodman, Leora; Bayor, Rouane

    2008-10-20

    Little is known about why animals differ in daily intake of oils. Here, we tested the hypothesis that the oral acceptability of oil is a key determinant of daily intake. To this end, we examined short- and long-term ingestive responses of eight mouse strains (FVB/NJ, SWR/J, SM/J, C57BL/6J, BALB/cJ, 129P3/J, DBA/2J and AKR/J) to Intralipid, a stable emulsion of soybean oil. In Experiment 1, we compared orosensory responsiveness (as indicated by initial licking rates) of eight mouse strains to a range of concentrations of Intralipid and sucrose. We included sucrose because there are two natural alleles of Tas1r3 (the gene that encodes the T1R3 sweet taste receptor), and strains with the Tas1r3Sac-b allele exhibit higher daily intake of sucrose and oil than strains with the Tas1r3Sac-d allele. All strains exhibited concentration-dependent increases in lick rates for both sucrose and Intralipid, but the extent of these increases varied greatly across strains. The strains with the Tas1r3Sac-b allele licked more vigorously for sucrose at concentrations < or =0.3 M, but not for Intralipid at any concentration. In Experiment 2, we ran the mice through 24-h preference tests, in which they had a choice between water and each of four concentrations of Intralipid (1, 5, 10 and 20%). The strains differed greatly in daily intake of Intralipid, particularly at the 1 and 5% concentrations. Regression analyses revealed that strain differences in orosensory responsiveness reliably predicted strain differences in daily intake of 1 and 5% Intralipid, but not 10 or 20% Intralipid. These findings indicate (i) that Tas1r3 genotype does not modulate orosensory stimulation from oil, (ii) that orosensory stimulation contributes to strain differences in daily intake of dilute oil emulsions, but not concentrated ones, and (iii) that daily intake of concentrated oil emulsions is controlled primarily by post-oral satiety mechanisms.

  11. The stress response to environmental change in captive cheetahs (Acinonyx jubatus).

    PubMed

    Wells, Amy; Terio, Karen A; Ziccardi, Michael H; Munson, Linda

    2004-03-01

    The captive North American cheetah (Acinonyx jubatus) population is not self-sustaining because of high prevalences of unusual diseases and poor reproductive success. Cheetahs are commonly moved between zoos for breeding purposes to maintain genetic diversity within the captive population, and movement may exacerbate infertility and disease. Fecal corticoids were analyzed by radioimmunoassay to measure the stress response of cheetahs to movement between facilities. Fecal samples were collected from 15 cheetahs for 14 days before movement and for at least 30 days after movement. For each cheetah, premovement fecal corticoid concentrations were used to determine baseline and then compared with trends in postmovement concentrations. In general, postmovement corticoid concentrations either increased (n = 8), did not change (n = 2), or decreased (n = 5). Although individual animal differences occurred, corticoid concentrations increased for most animals moved on-exhibit and decreased in animals moved off-exhibit. Animals moving on-exhibit had an 18-times greater risk of having corticoids elevated more than two standard deviations above baseline for 30 days after movement compared with animals that moved off-exhibit. In addition, greater day-to-day variation in corticoids occurred in animals moved on-exhibit. In general, animals with initially low baseline corticoid concentrations had a greater postmovement corticoid response than cheetahs with initially high baseline levels. These results indicate that some cheetahs have a prolonged stress response when moved between facilities, and the magnitude and character of this response is influenced by the exhibit environment.

  12. Effects of anhydrous AlCl3 dopant on the structural, optical and electrical properties of PVA-PVP polymer composite films

    NASA Astrophysics Data System (ADS)

    Shanmugam, G.; Krishnakumar, V.

    2018-05-01

    Polymer composite films based on PVA-PVP with AlCl3 as the dopant at different concentrations were prepared using solution casting technique. XRD patterns reveal the increase in amorphousity of the films with AlCl3 doping. Optical absorption studies exhibit that the values of optical absorption coefficient, direct and indirect optical band gaps are found to decrease with increase in AlCl3 concentration. It confirms the charge transfer in complexes between the polymer and the dopant. The dielectric studies show the increase in dielectric constant at low frequency with increasing AlCl3 concentration and temperature. The ac conductivity and ionic conductivity increase with the AlCl3 content and the maximum value at room temperature is found to be 6.89 × 10-4 and 8.05 × 10-5 S/cm for higher AlCl3 doped PVA-PVP film. The estimated ionic conductivity value is three or four orders of magnitude greater than those obtained in the certain representative polymer-salt complexes as reported earlier. Electrical modulus plots confirm the removal of electrode polarization and the low conductivity relaxation time with Al doping. The activation energy estimated from the temperature dependent dc conductivity plot is agreed well with the migration energy calculated from the temperature dependent electric modulus plot.

  13. Inverse size scaling of the nucleolus by a concentration-dependent phase transition.

    PubMed

    Weber, Stephanie C; Brangwynne, Clifford P

    2015-03-02

    Just as organ size typically increases with body size, the size of intracellular structures changes as cells grow and divide. Indeed, many organelles, such as the nucleus [1, 2], mitochondria [3], mitotic spindle [4, 5], and centrosome [6], exhibit size scaling, a phenomenon in which organelle size depends linearly on cell size. However, the mechanisms of organelle size scaling remain unclear. Here, we show that the size of the nucleolus, a membraneless organelle important for cell-size homeostasis [7], is coupled to cell size by an intracellular phase transition. We find that nucleolar size directly scales with cell size in early C. elegans embryos. Surprisingly, however, when embryo size is altered, we observe inverse scaling: nucleolar size increases in small cells and decreases in large cells. We demonstrate that this seemingly contradictory result arises from maternal loading of a fixed number rather than a fixed concentration of nucleolar components, which condense into nucleoli only above a threshold concentration. Our results suggest that the physics of phase transitions can dictate whether an organelle assembles, and, if so, its size, providing a mechanistic link between organelle assembly and cell size. Since the nucleolus is known to play a key role in cell growth, this biophysical readout of cell size could provide a novel feedback mechanism for growth control. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Characterization of melatonin binding sites in the Harderian gland and median eminence of the rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lopez-Gonzalez, M.A.; Calvo, J.R.; Rubio, A.

    The characterization of specific melatonin binding sites in the Harderian gland (HG) and median eminence (ME) of the rat was studied using ({sup 125}I)melatonin. Binding of melatonin to membrane crude preparations of both tissues was dependent on time and temperature. Thus, maximal binding was obtained at 37{degree}C after 30-60 min incubation. Binding was also dependent on protein concentration. The specific binding of ({sup 125}I)melatonin was saturable, exhibiting only the class of binding sites in both tissues. The dissociation constants (Kd) were 170 and 190 pM for ME and HG, respectively. The concentration of the binding sites in ME was 8more » fmol/mg protein, and in the HG 4 fmol/mg protein. In competition studies, binding of ({sup 125}I)melatonin to ME or HG was inhibited by increasing concentration of native melatonin; 50% inhibition was observed at about 702 and 422 nM for ME and HG, respectively. Additionally, the ({sup 125}I)melatonin binding to the crude membranes was not affected by the addition of different drugs such as norepinephrine, isoproterenol, phenylephrine, propranolol, or prazosin. The results confirm the presence of melatonin binding sites in median eminence and show, for the first time, the existence of melatonin binding sites in the Harderian gland.« less

  15. The effect of surface charge of glycerol monooleate-based nanoparticles on the round window membrane permeability and cochlear distribution.

    PubMed

    Liu, Hongzhuo; Chen, Shichao; Zhou, Yanyan; Che, Xin; Bao, Zhihong; Li, Sanming; Xu, Jinghua

    2013-11-01

    The aim of this study is to elucidate the impact of surface charge of glycerol monooleate-based nanoparticles (NPs) on the cellular uptake and its distribution in the cochlea. These NPs are modified using varied concentration of anionic or cationic lipid. Upon dilution, these lipid mixtures self-assemble to form a series of cubic NPs with various surface charges, but with similar particle size. Positively charged NPs exhibited dose-dependent cytotoxicities against L929 cells proportional to the concentration of cationic lipid; whereas negatively charged NPs did not show obvious cytotoxic properties as compared to unmodified NPs. Meanwhile, confocal microscopy and flow cytometry results suggested that NPs with high positive surface charge were taken up more efficiently by L929 cells. The permeability of round window membrane (RWM) was high for highly positively charged NPs, which is likely due to their highly cellular uptake efficiency and consequently high concentration gradient between RWM and cochlear fluid. More importantly, 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) modified NPs greatly facilitated broadly distribution in cochlea, favoring the treatment of hearing loss of low frequencies. Taken together, these findings about charge-dependent of NPs on RWM permeability and cochlear distribution could serve as guideline in the rational design of NP for drug and gene delivery to inner ear.

  16. Effect of bisphosphonates on macrophagic THP-1 cell survival in bisphosphonate-related osteonecrosis of the jaw (BRONJ).

    PubMed

    Hoefert, Sebastian; Sade Hoefert, Claudia; Munz, Adelheid; Schmitz, Inge; Grimm, Martin; Yuan, Anna; Northoff, Hinnak; Reinert, Siegmar; Alexander, Dorothea

    2016-03-01

    Immune deficiency and bacterial infection have been suggested to play a role in the pathophysiology of bisphosphonate-related osteonecrosis of the jaw (BRONJ). Zoledronate was previously found to promote THP-1 cell death. To examine this hypothesis with all commonly prescribed bisphosphonates, we tested the effect of (nitrogen-containing) ibandronate, risedronate, alendronate, pamidronate, and (non-nitrogen-containing) clodronate on macrophagic THP-1 cells. Activated THP-1 cells were exposed to .5 to 50 μM of nitrogen-containing bisphosphonates and .5 to 500 μM of clodronate. Cell adherence and survival were assessed in vitro using the xCELLigence real-time monitoring system. Results were confirmed histologically and verified with Live/Dead staining. All bisphosphonates inhibited THP-1 cell adherence and survival dose and time dependently, significant for zoledronate, alendronate, pamidronate, and clodronate in high concentrations (50 μM and 500 μM; P < .05). Low concentrations (0.5 μM) of risedronate, alendronate, and pamidronate prolonged the inflexion points of THP-1 cell survival compared with controls (P < .05). THP-1 cells exhibited no cytomorphologic changes at all concentrations. Commonly prescribed bisphosphonates inhibit the survival of macrophagic THP-1 cells dose-dependently without altering morphology. This may suggest a local immune dysfunction reflective of individual bisphosphonate potency leading to the pathogenesis of BRONJ. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Effect of protease inhibitors on angiotensin-converting enzyme activity in human T-lymphocytes.

    PubMed

    Petrov, V; Fagard, R; Lijnen, P

    2000-05-01

    The purpose of these investigations was to determine whether the aminopeptidase B and leucine aminopeptidase inhibitor bestatin, the chymase inhibitor chymostatin, the calpain inhibitor E-64, and the neutral serine protease inhibitor leupeptin affect the angiotensin converting enzyme (ACE) activity in T-lymphocytes. ACE activity in homogenates of T-lymphocytes or in intact T-lymphocytes in suspension was measured by determining fluorimetrically histidyl-leucine, formed from the conversion of hippuryl-histidyl-leucine, coupled with ophtaldialdehyde. The effect of various concentrations (10(-9) to 10(-3) mol/L) of the angiotensin-converting enzyme inhibitors lisinopril and captopril and of the various protease inhibitors on ACE activity was studied. Lisinopril and captopril reduced the ACE activity in homogenates of T-lymphocytes in a concentration-dependent manner. Lisinopril exhibited a more pronounced inhibition of ACE in T-lymphocytes than did captopril. Chymostatin and E-64 had no effect on the ACE activity in T-lymphocytes, whereas leupeptin inhibited its activity in a dose-dependent fashion. Bestatin, on the contrary, increased the ACE activity in homogenates of T-lymphocytes as well as in intact T-lymphocytes in proportion to the concentration. Our data showed that the ACE activity in T-lymphocytes was stimulated by bestatin and inhibited by leupeptin, whereas chymostatin and E-64 did not affect the ACE activity in T-lymphocytes.

  18. Low and moderate photosynthetically active radiation affects the flavonol glycosides and hydroxycinnamic acid derivatives in kale (Brassica oleracea var. sabellica) dependent on two low temperatures.

    PubMed

    Neugart, Susanne; Fiol, Michaela; Schreiner, Monika; Rohn, Sascha; Zrenner, Rita; Kroh, Lothar W; Krumbein, Angelika

    2013-11-01

    Kale (Brassica oleracea var. sabellica) contains a large number of naturally occurring structurally different non-acylated and acylated flavonol glycosides as well as hydroxycinnamic acid derivatives. The objective of this study was to determine the effect of low and moderate photosynthetic active radiation (PAR) and how these levels interact with low temperature in these phenolic compounds. Juvenile kale plants were treated with PAR levels from 200 to 800 μmol m(-2) s(-1) at 5 and 10 °C under defined conditions in climate chambers. Of the investigated 20 compounds, 11 and 17 compounds were influenced by PAR and temperature, respectively. In addition, an interaction between PAR and temperature was found for eight compounds. The response of the phenolic compounds to PAR was structure-dependent. While quercetin triglycosides increased with higher PAR at 5 and 10 °C, the kaempferol triglycosides exhibited the highest concentrations at 400 μmol m(-2) s(-1). In contrast, kaempferol diglycosides exhibited the highest concentrations at increased PAR levels of 600 and 800 μmol m(-2) s(-1) at 10 °C. However, key genes of flavonol biosynthesis were influenced by temperature but remained unaffected by PAR. Furthermore, there was no interaction between the PAR level and the low temperature in the response of hydroxycinnamic acid derivatives in kale with the exception of caffeoylquinic acid, which decreased with higher PAR levels of 600 and 800 μmol m(-2) s(-1) and at a lower temperature. In conclusion, PAR and its interaction with temperature could be a suitable tool for modifying the profile of phenolic compounds. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  19. Electrically controlled lens and prism using nanoscale polymer-dispersed and polymer-networked liquid crystals

    NASA Astrophysics Data System (ADS)

    Fan, Yun Hsing; Ren, Hongwen; Wu, Shin Tson

    2004-05-01

    Inhomogeneous nanoscale polymer-dispersed liquid crystal (PDLC) devices having gradient nanoscale droplet distribution were fabricated. This gradient refractive index nanoscale (GRIN) PDLC film was obtained by exposing the LC/ monomer with a uniform ultraviolet (UV) light through a patterned photomask. The monomer and LC were mixed at 70: 30 wt% ratio. The area exposed to a weaker UV intensity would produce a larger droplet size, and vice versa. Owing to the nanoscale LC droplets involved, the GRIN PDLC devices are highly transparent in the whole visible region. The gradient refractive index profile can be used as switchable prism gratings, Fresnel lens, and positive and negative lenses with tunable focal lengths. Such a GRIN PDLC device is a broadband device and independent of light polarization. The diffraction efficiency of the lens is controllable by the applied voltage. The major advantages of the GRIN PDLC devices are in simple fabrication process, polarization-independent, and fast switching speed, although the required driving voltage is higher than 100 Vrms. To lower the driving voltage, the technique of polymer-networked liquid crystal (PNLC) has been developed. The PNLC was also produced by exposing the LC/monomer mixture with a uniform UV light through a patterned photomask. However, the monomer concentration in PNLC is only around 2-5 wt%. The formed PNLC structure exhibits a gradient polymer network distribution. The LC in the regions stabilized by a higher polymer concentration exhibits a higher threshold voltage. By using this technique, prism grating, tunable electronic lens and Fresnel lens have been demonstrated. The driving voltage is around 10 Vrms. A drawback of this kind of device is polarization dependence. To overcome the polarization dependence, stacking two orthogonal homogeneous PNLC lens is considered.

  20. Two structurally distinct inhibitors of glycogen synthase kinase 3 induced centromere positive micronuclei in human lymphoblastoid TK6 cells.

    PubMed

    Mishima, Masayuki; Tanaka, Kenji; Takeiri, Akira; Harada, Asako; Kubo, Chiyomi; Sone, Sachiko; Nishimura, Yoshikazu; Tachibana, Yukako; Okazaki, Makoto

    2008-08-25

    Glycogen synthase kinase 3 (GSK3) is an attractive novel pharmacological target. Inhibition of GSK3 is recently regarded as one of the viable approaches to therapy for Alzheimer's disease, cancer, diabetes mellitus, osteoporosis, and bipolar mood disorder. Here, we have investigated the aneugenic potential of two potent and highly specific inhibitors of GSK3 by using an in vitro micronucleus test with human lymphoblastoid TK6 cells. One inhibitor was a newly synthesized maleimide derivative and the other was a previously known aminopyrimidine derivative. Both compounds elicited statistically significant and concentration-dependent increases in micronucleated cells. One hundred micronuclei (MN) of each were analyzed using centromeric DNA staining with fluorescence in situ hybridization. Both the two structurally distinct compounds induced centromere-positive micronuclei (CMN). Calculated from the frequency of MN cells and the percentage of CMN, CMN cell incidence after treatment with the maleimide compound at 1.2 microM, 2.4 microM, and 4.8 microM was 11.6, 27.7, and 56.3 per 1000 cells, respectively; the negative control was 4.5. CMN cell incidence after the treatment with the aminopyrimidine compound at 1.8 microM, 3.6 microM, and 5.4 microM was 6.7, 9.8 and 17.2 per 1000 cells, respectively. Both compounds exhibited concentration-dependent increase in the number of mitotic cells. The frequency of CMN cells correlated well with mitotic cell incidence after treatment with either compound. Furthermore, both inhibitors induced abnormal mitotic cells with asymmetric mitotic spindles and lagging anaphase chromosomes. These results lend further support to the hypothesis that the inhibition of GSK3 activity affects microtubule function and exhibits an aneugenic mode of action.

  1. Validation of membrane vesicle-based breast cancer resistance protein and multidrug resistance protein 2 assays to assess drug transport and the potential for drug-drug interaction to support regulatory submissions.

    PubMed

    Elsby, Robert; Smith, Veronica; Fox, Lisa; Stresser, David; Butters, Caroline; Sharma, Pradeep; Surry, Dominic D

    2011-09-01

    Breast cancer resistance protein (BCRP) and multidrug resistance protein 2 (MRP2) can play a role in the absorption, distribution, metabolism, and excretion of drugs, impacting on the potential for drug-drug interactions. This study has characterized insect cell- and mammalian cell-derived ABC-transporter-expressing membrane vesicle test systems and validated methodologies for evaluation of candidate drugs as substrates or inhibitors of BCRP or MRP2. Concentration-dependent uptake of BCRP ([³H]oestrone 3-sulfate, [³H]methotrexate, [³H]rosuvastatin) and MRP2 ([³H]oestradiol 17β-glucuronide, [³H]pravastatin, carboxydichlorofluorescein) substrates, and inhibitory potencies (IC₅₀) of BCRP (sulfasalazine, novobiocin, fumitremorgin C) and MRP2 (benzbromarone, MK-571, terfenadine) inhibitors were determined. The apparent K(m) for probes [³H]oestrone 3-sulfate and [³H]oestradiol 17β-glucuronide was determined in insect cell vesicles to be 7.4 ± 1.7 and 105 ± 8.3 µM, respectively. All other substrates exhibited significant uptake ratios. Positive control inhibitors sulfasalazine and benzbromarone gave IC₅₀ values of 0.74 ± 0.18 and 36 ± 6.1 µM, respectively. All other inhibitors exhibited concentration-dependent inhibition. There was no significant difference in parameters generated between test systems. On the basis of the validation results, acceptance criteria to identify substrates/inhibitors of BCRP and MRP2 were determined for insect cell vesicles. The approach builds on earlier validations to support drug registration and extends from those cell-based systems to encompass assay formats using membrane vesicles.

  2. Enhanced magnetostrictive properties of nanocrystalline Dy3+ substituted Fe-rich Co0.8Fe2.2O4 for sensor applications

    NASA Astrophysics Data System (ADS)

    Kharat, Shahaji P.; Swadipta, Roy; Kambale, R. C.; Kolekar, Y. D.; Ramana, C. V.

    2017-10-01

    We report on the enhanced magnetostrictive properties of nanocrystalline Dysprosium (Dy3+) substituted iron-rich cobalt ferrites (Co0.8Fe(2.2-x)DyxO4, referred to as CFDO). The CFDO samples with a variable Dy concentration (x = 0.000-0.075) were synthesized by the sol-gel auto-combustion method. The phase purity and crystal structure were confirmed from X-ray diffraction analyses coupled with Rietveld refinement. Surface morphology analysis using scanning electron microscopy imaging indicates the agglomerated magnetic particles with a non-uniform particle size distribution, which is desirable to transfer the strain. The magnetostriction coefficient (λ11) measurements indicate that the CFDO with Dy concentration x = 0.025 exhibits the highest strain sensitivity, (dλ/dH) ˜1.432 nm/A (for H ≤ 1000 Oe). On the other hand, the magnetostriction coefficient (λ12) measurements indicate that the Dy concentration x = 0.075 exhibits the larger (dλ/dH) ˜ 0.615 nm/A (for H ≤ 1000 Oe). The maximum λ11value of 166 ppm (at H = 3300 Oe) was observed for a compound with Dy concentration x = 0.050. Magnetization measurements indicate that the saturation magnetization and coercivity of CFDO samples are dependent on the Dy3+content; the highest value of squareness ratio of 0.424 was observed for x = 0.050. The interplay between strain sensitivity (dλ/dH) and instantaneous susceptibility (dM/dH), as derived from magnetostriction and magnetization results, demonstrates that these CFDO materials may be useful for developing torque/stress sensors, as a constituent magnetostrictive phase for making the magnetoelectric composite materials and thus suitable for magnetoelectric sensor applications.

  3. Safety assessment of thiolated polymers: effect on ciliary beat frequency in human nasal epithelial cells.

    PubMed

    Palmberger, Thomas F; Augustijns, Patrick; Vetter, Anja; Bernkop-Schnürch, Andreas

    2011-12-01

    The aim of this study was to investigate the nasal safety of gel formulations of thiolated polymers (thiomers) by assessing their effect on ciliary beat frequency (CBF) in human nasal epithelial cells. Poly(acrylic acid) 450 kDa-cysteine (PAA-cys) and alginate-cysteine (alg-cys) were synthesized by covalent attachment of L-cysteine to the polymeric backbone. The cationic polymer chitosan-thiobutylamidine (chito-TBA) was synthesized by attaching iminothiolane to chitosan. CBF using was measured by a photometric system. CBF was measured before incubating the cells with test gels, during incubation and after washing out the polymeric test gels to evaluate reversibility of cilio-inhibition. The influence of viscosity on CBF was determined by using hydroxyethylcellulose (HEC)-gels of various concentrations. Ciliary beating was observed to be affected by viscosity, but cilia were still beating in the presence of a HEC-gel displaying an apparent viscosity of 25 Pa.s. In case of thiolated polymers and their unmodified control, a concentration-dependent decrease in CBF could be observed. PAA-cys, alg-cys, chito-TBA and their corresponding unmodified controls exhibited a moderate cilio-inhibitory effect, followed by a partial recovery of CBF when used at a concentration of 1%. Alg-cys 2% and chito-TBA 2% (m/v) gels exhibited severe cilio-inhibition, which was partially reversible. L-cysteine and reduced glutathione led to mild cilio-inhibition at concentrations of 3% (m/v). Taking into account that dilution after application and cilio-modifying effects is usually more pronounced under in vitro conditions, thiomers can be considered as suitable excipients for nasal drug delivery systems.

  4. Evolution of trace elements in the planetary boundary layer in southern China: Effects of dust storms and aerosol-cloud interactions

    NASA Astrophysics Data System (ADS)

    Li, Tao; Wang, Yan; Zhou, Jie; Wang, Tao; Ding, Aijun; Nie, Wei; Xue, Likun; Wang, Xinfeng; Wang, Wenxing

    2017-03-01

    Aerosols and cloud water were analyzed at a mountaintop in the planetary boundary layer in southern China during March-May 2009, when two Asian dust storms occurred, to investigate the effects of aerosol-cloud interactions (ACIs) on chemical evolution of atmospheric trace elements. Fe, Al, and Zn predominated in both coarse and fine aerosols, followed by high concentrations of toxic Pb, As, and Cd. Most of these aerosol trace elements, which were affected by dust storms, exhibited various increases in concentrations but consistent decreases in solubility. Zn, Fe, Al, and Pb were the most abundant trace elements in cloud water. The trace element concentrations exhibited logarithmic inverse relationships with the cloud liquid water content and were found highly pH dependent with minimum concentrations at the threshold of pH 5.0. The calculation of Visual MINTEQ model showed that 80.7-96.3% of Fe(II), Zn(II), Pb(II), and Cu(II) existed in divalent free ions, while 71.7% of Fe(III) and 71.5% of Al(III) were complexed by oxalate and fluoride, respectively. ACIs could markedly change the speciation distributions of trace elements in cloud water by pH modification. The in-cloud scavenging of aerosol trace elements likely reached a peak after the first 2-3 h of cloud processing, with scavenging ratios between 0.12 for Cr and 0.57 for Pb. The increases of the trace element solubility (4-33%) were determined in both in-cloud aerosols and postcloud aerosols. These results indicated the significant importance of aerosol-cloud interactions to the evolution of trace elements during the first several cloud condensation/evaporation cycles.

  5. Feedbacks between earlywood anatomy and non-structural carbohydrates affect spring phenology and wood production in ring-porous oaks

    NASA Astrophysics Data System (ADS)

    Pérez-de-Lis, Gonzalo; García-González, Ignacio; Rozas, Vicente; Olano, José Miguel

    2016-10-01

    Non-structural carbohydrates (NSC) play a central role in the construction and maintenance of a tree's vascular system, but feedbacks between the NSC status of trees and wood formation are not fully understood. We aimed to evaluate multiple dependencies among wood anatomy, winter NSC, and phenology for coexisting temperate (Quercus robur) and sub-Mediterranean (Q. pyrenaica) oaks along a water-availability gradient in the NW Iberian Peninsula. Sapwood NSC concentrations were quantified at three sites in December 2012 (N = 240). Leaf phenology and wood anatomy were surveyed in 2013. Structural equation modelling was used to analyse the interplay among hydraulic diameter (Dh), winter NSC, budburst date, and earlywood vessel production (EVP), while the effect of Dh and EVP on latewood width was assessed by using a mixed-effects model. NSC and wood production increased under drier conditions for both species. Q. robur showed a narrower Dh and lower soluble sugar (SS) concentration (3.88-5.08 % dry matter) than Q. pyrenaica (4.06-5.57 % dry matter), but Q. robur exhibited larger EVP and wider latewood (1403 µm) than Q. pyrenaica (667 µm). Stem diameter and Dh had a positive effect on SS concentrations, which were related to an earlier leaf flushing in both species. Sapwood sugar content appeared to limit EVP exclusively in Q. pyrenaica. In turn, Dh and EVP were found to be key predictors of latewood growth. Our results confirm that sapwood SS concentrations are involved in modulating growth resumption and xylem production in spring. Q. pyrenaica exhibited a tighter control of carbohydrate allocation to wood formation than Q. robur, which would play a role in protecting against environmental stress in the sub-Mediterranean area.

  6. An experimental model of COD abatement in MBBR based on biofilm growth dynamic and on substrates' removal kinetics.

    PubMed

    Siciliano, Alessio; De Rosa, Salvatore

    2016-08-01

    In this study, the performance of a lab-scale Moving Bed Biofilm Reactor (MBBR) under different operating conditions was analysed. Moreover, the dependence of the reaction rates both from the concentration and biodegradability of substrates and from the biofilm surface density, by means of several batch kinetic tests, was investigated. The reactor controls exhibited an increasing COD (Chemical Oxygen Demand) removal, reaching maximum yields (close to 90%) for influent loadings of up to12.5 gCOD/m(2)d. From this value, the pilot plant performance decreased to yields of only about 55% for influent loadings greater than 16 gCOD/m(2)d. In response to the influent loading increase, the biofilm surface density exhibited a logistic growing trend until reaching a maximum amount of total attached solids of about 9.5 g/m(2). The kinetic test results indicated that the COD removal rates for rapidly biodegradable, rapidly hydrolysable and slowly biodegradable substrates were not affected by the organic matter concentrations. Instead, first-order kinetics were detected with respect to biofilm surface density. The experimental results permitted the formulation of a mathematical model to predict the MBBR organic matter removal efficiency. The validity of the model was successfully tested in the lab-scale plant.

  7. A novel microsphere with a three-layer structure for duodenum-specific drug delivery.

    PubMed

    Zhu, Xi; Zhou, Dan; Jin, Yun; Song, Yu-pin; Zhang, Zhi-rong; Huang, Yuan

    2011-07-15

    Owing to the quick elimination of drug from duodenum and the depth of Helicobacter pylori (H. pylori) colonized in mucus, antibiotic therapy often fails in the eradication of H. pylori infection for duodenal ulcer. A novel duodenum-specific microsphere (DSM) consisting of three-layer structure was developed to enhance the drug concentration and retention time in duodenal mucus layer. Firstly a core-shell mucoadhesive microsphere was prepared with a novel emulsification/coagulation coating method by introducing drug loaded Eudragit cores into a thiolated chitosan mucoadhesive layer. Then the obtained core-shell mucoadhesive microspheres were further coated with hydroxypropyl methylcellulose acetate maleate as the pH-sensitive layer for the trigger of mucoadhesion and drug release in duodenum. From the fluorescence microscopic and scanning electron microscopic images, the three-layer structure was successfully established. The microspheres exhibited a duodenum-specific trigger performance, good mucoadhesive property and pH-dependent drug release. In vivo study performed in rats demonstrated that DSM exhibited about 3-fold augmentation of AUC and about 5-fold augmentation of C(max) for duodenal mucus drug concentration compared with free drug suspension. These results suggest that the three-layer structure microspheres may provide a promising approach for duodenum-targeting drug delivery system. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Do cancer cells in human and meristematic cells in plant exhibit similar responses toward plant extracts with cytotoxic activities?

    PubMed

    Khalifa, Noha S; Barakat, Hoda S; Elhallouty, Salwa; Salem, Dina

    2015-01-01

    We examined the effect of water extracts of Persea americana fruit, and of the leaves of Tabernamontana divericata, Nerium oleander and Annona cherimolia (positive control) on Vicia faba root cells. We had confirmed in our previously published data the cytotoxicity of these plant extracts on four human cancer cell lines: liver (HepG-2), lung (A549), colon (HT-29) and breast (MCF-7). Vicia faba roots were soaked in plant extracts at dilutions of 100, 1,250, 2,500, 5,000, 10,000, 20,000 ppm for 4 and 24 h. All treatments resulted in a significant reduction in the mitotic index in a dose dependant manner. Root cells treated with T. divericata, N. oleander and A. cherimolia exhibited a decrease in prophase cell percentage, increase in micronuclei and chromosomal abnormalities as concentration increased. The P. americana treatment showed the highest cytotoxic effect on cancer cells, prophase cell percentage increased linearly with the applied concentration and no micronuclei were detected. This study shows that root tip assay of beans can be used in initial screening for new plant extracts to validate their use as candidates for containing active cytotoxic agents against malignant cells. This will greatly help in exploring new plant extracts as drugs for cancer treatment.

  9. Photophysical and morphological implications of single-strand conjugated polymer folding in solution

    DOE PAGES

    Fauvell, Thomas J.; Zheng, Tianyue; Jackson, Nicholas E.; ...

    2016-04-08

    Organic semiconductors have garnered substantial interest in optoelectronics, but their device performances exhibit strong dependencies on material crystallinity and packing. In an effort to understand the interactions dictating the morphological and photophysical properties of a high-performing photovoltaic polymer, PTB7, a series of short oligomers and low molecular weight polymers of PTB7 were synthesized. Chain-length dependent optical studies of these oligomers demonstrate that PTB7’s low-energy visible absorption is largely due to self-aggregation-induced ordering, rather than in-chain charge transfer, as previously thought. By examining molecular weight and concentration dependent optical properties, supplemented by molecular dynamics simulations, we attribute polymeric PTB7’s unique midgapmore » fluorescence and concentration independent absorption spectrum to an interplay between low molecular weight unaggregated strands and high-molecular weight self-aggregated (folded) strands. Specifically, we propose that the onset of PTB7 self-folding occurs between 7 and 13 repeat units, but the aggregates characteristic of polymeric PTB7 only develop at lengths of ~30 repeat units. Atomistic molecular dynamics simulations of PTB7 corroborate these conclusions, and a simple relation is proposed which quantifies the free-energy of conjugated polymer folding. Lastly, this study provides detailed guidance in the design of intra- and interchain contributions to the photophysical and morphological properties of polymeric semiconductors.« less

  10. Extracellular localization of catalase is associated with the transformed state of malignant cells.

    PubMed

    Böhm, Britta; Heinzelmann, Sonja; Motz, Manfred; Bauer, Georg

    2015-12-01

    Oncogenic transformation is dependent on activated membrane-associated NADPH oxidase (NOX). However, the resultant extracellular superoxide anions are also driving the NO/peroxynitrite and the HOCl pathway, which eliminates NOX-expressing transformed cells through selective apoptosis induction. Tumor progression is dependent on dominant interference with intercellular apoptosis-inducing ROS signaling through membrane-associated catalase, which decomposes H2O2 and peroxynitrite and oxidizes NO. Particularly, the decomposition of extracellular peroxynitrite strictly requires membrane-associated catalase. We utilized small interfering RNA (siRNA)-mediated knockdown of catalase and neutralizing antibodies directed against the enzyme in combination with challenging H2O2 or peroxynitrite to determine activity and localization of catalase in cells from three distinct steps of multistage oncogenesis. Nontransformed cells did not generate extracellular superoxide anions and only showed intracellular catalase activity. Transformed cells showed superoxide anion-dependent intercellular apoptosis-inducing ROS signaling in the presence of suboptimal catalase activity in their membrane. Tumor cells exhibited tight control of intercellular apoptosis-inducing ROS signaling through a high local concentration of membrane-associated catalase. These data demonstrate that translocation of catalase to the outside of the cell membrane is already associated with the transformation step. A strong local increase in the concentration of membrane-associated catalase is achieved during tumor progression and is controlled by tumor cell-derived H2O2 and by transglutaminase.

  11. Cas IIgly Induces Apoptosis in Glioma C6 Cells In Vitro and In Vivo through Caspase-Dependent and Caspase-Independent Mechanisms1

    PubMed Central

    Trejo-Solís, Cristina; Palencia, Guadalupe; Zúñiga, Sergio; Rodríguez-Ropon, Andrea; Osorio-Rico, Laura; Torres Luvia, Sanchez; Gracia-Mora, Isabel; Marquez-Rosado, Lucrecia; Sánchez, Aurora; Moreno-García, Miguel E; Cruz, Arturo; Bravo-Gómez, María Elena; Ruiz-Ramírez, Lena; Rodríguez-Enriquez, Sara; Sotelo, Julio

    2005-01-01

    Abstract In this work, we investigated the effects of Casiopeina II-gly (Cas IIgly)—a new copper compound exhibiting antineoplastic activity—on glioma C6 cells under both in vitro and in vivo conditions, as an approach to identify potential therapeutic agents against malignant glioma. The exposure of C6 cells to Cas IIgly significantly inhibited cell proliferation, increased reactive oxygen species (ROS) formation, and induced apoptosis in a dose-dependent manner. In cultured C6 cells, Cas IIgly caused mitochondrio-nuclear translocation of apoptosis induction factor (AIF) and endonuclease G at all concentrations tested; in contrast, fragmentation of nucleosomal DNA, cytochrome c release, and caspase-3 activation were observed at high concentrations. Administration of N-acetyl-l-cystein, an antioxidant, resulted in significant inhibition of AIF translocation, nucleosomal DNA fragmentation, and caspase-3 activation induced by Cas IIgly. These results suggest that caspase-dependent and caspase-independent pathways both participate in apoptotic events elicited by Cas IIgly. ROS formation induced by Cas IIgly might also be involved in the mitochondrio-nuclear translocation of AIF and apoptosis. In addition, treatment of glioma C6-positive rats with Cas IIgly reduced tumor volume and mitotic and cell proliferation indexes, and increased apoptotic index. Our findings support the use of Cas IIgly for the treatment of malignant gliomas. PMID:16036107

  12. Nitrate transport in the cyanobacterium Anacystis nidulans R2. Kinetic and energetic aspects.

    PubMed Central

    Rodríguez, R; Lara, C; Guerrero, M G

    1992-01-01

    Nitrate transport has been studied in the cyanobacterium Anacystis nidulans R2 by monitoring intracellular nitrate accumulation in intact cells of the mutant strain FM6, which lacks nitrate reductase activity and is therefore unable to reduce the transported nitrate. Kinetic analysis of nitrate transport as a function of external nitrate concentration revealed apparent substrate inhibition, with a peak velocity at 20-25 microM-nitrate. A Ks (NO3-) of 1 microM was calculated. Nitrate transport exhibited a stringent requirement for Na+. Neither Li+ nor K+ could substitute for Na+. Monensin depressed nitrate transport in a concentration-dependent manner, inhibition being more than 60% at 2 microM, indicating that the Na(+)-dependence of active nitrate transport relies on the maintenance of a Na+ electrochemical gradient. The operation of an Na+/NO3- symport system is suggested. Nitrite behaved as an effective competitive inhibitor of nitrate transport, with a Ki (NO2-) of 3 microM. The time course of nitrite inhibition of nitrate transport was consistent with competitive inhibition by mixed alternative substrates. Nitrate and nitrite might be transported by the same carrier. PMID:1554347

  13. In C. elegans, high levels of dsRNA allow RNAi in the absence of RDE-4.

    PubMed

    Habig, Jeffrey W; Aruscavage, P Joseph; Bass, Brenda L

    2008-01-01

    C. elegans Dicer requires an accessory double-stranded RNA binding protein, RDE-4, to enact the first step of RNA interference, the cleavage of dsRNA to produce siRNA. While RDE-4 is typically essential for RNAi, we report that in the presence of high concentrations of trigger dsRNA, rde-4 deficient animals are capable of silencing a transgene. By multiple criteria the silencing occurs by the canonical RNAi pathway. For example, silencing is RDE-1 dependent and exhibits a decrease in the targeted mRNA in response to an increase in siRNA. We also find that high concentrations of dsRNA trigger lead to increased accumulation of primary siRNAs, consistent with the existence of a rate-limiting step during the conversion of primary to secondary siRNAs. Our studies also revealed that transgene silencing occurs at low levels in the soma, even in the presence of ADARs, and that at least some siRNAs accumulate in a temperature-dependent manner. We conclude that an RNAi response varies with different conditions, and this may allow an organism to tailor a response to specific environmental signals.

  14. In C. elegans, High Levels of dsRNA Allow RNAi in the Absence of RDE-4

    PubMed Central

    Habig, Jeffrey W.; Aruscavage, P. Joseph; Bass, Brenda L.

    2008-01-01

    C. elegans Dicer requires an accessory double-stranded RNA binding protein, RDE-4, to enact the first step of RNA interference, the cleavage of dsRNA to produce siRNA. While RDE-4 is typically essential for RNAi, we report that in the presence of high concentrations of trigger dsRNA, rde-4 deficient animals are capable of silencing a transgene. By multiple criteria the silencing occurs by the canonical RNAi pathway. For example, silencing is RDE-1 dependent and exhibits a decrease in the targeted mRNA in response to an increase in siRNA. We also find that high concentrations of dsRNA trigger lead to increased accumulation of primary siRNAs, consistent with the existence of a rate-limiting step during the conversion of primary to secondary siRNAs. Our studies also revealed that transgene silencing occurs at low levels in the soma, even in the presence of ADARs, and that at least some siRNAs accumulate in a temperature-dependent manner. We conclude that an RNAi response varies with different conditions, and this may allow an organism to tailor a response to specific environmental signals. PMID:19112503

  15. Dual utilization of NADPH and NADH cofactors enhances xylitol production in engineered Saccharomyces cerevisiae.

    PubMed

    Jo, Jung-Hyun; Oh, Sun-Young; Lee, Hyeun-Soo; Park, Yong-Cheol; Seo, Jin-Ho

    2015-12-01

    Xylitol, a natural sweetener, can be produced by hydrogenation of xylose in hemicelluloses. In microbial processes, utilization of only NADPH cofactor limited commercialization of xylitol biosynthesis. To overcome this drawback, Saccharomyces cerevisiae D452-2 was engineered to express two types of xylose reductase (XR) with either NADPH-dependence or NADH-preference. Engineered S. cerevisiae DWM expressing both the XRs exhibited higher xylitol productivity than the yeast strain expressing NADPH-dependent XR only (DWW) in both batch and glucose-limited fed-batch cultures. Furthermore, the coexpression of S. cerevisiae ZWF1 and ACS1 genes in the DWM strain increased intracellular concentrations of NADPH and NADH and improved maximum xylitol productivity by 17%, relative to that for the DWM strain. Finally, the optimized fed-batch fermentation of S. cerevisiae DWM-ZWF1-ACS1 resulted in 196.2 g/L xylitol concentration, 4.27 g/L h productivity and almost the theoretical yield. Expression of the two types of XR utilizing both NADPH and NADH is a promising strategy to meet the industrial demands for microbial xylitol production. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Effect of different aging techniques on the polysaccharide and phenolic composition and sensory characteristics of Syrah red wines fermented using different yeast strains.

    PubMed

    del Barrio-Galán, Rubén; Medel-Marabolí, Marcela; Peña-Neira, Álvaro

    2015-07-15

    The effect of high levels of the polysaccharide Saccharomyces cerevisiae yeast strain (HPS) and another conventional yeast strain (FERM) on the polysaccharide and phenolic composition of Syrah red wines during alcoholic fermentation and subsequent aging on lees, with or without oak wood chips, and on inactive dry yeast was investigated. The HPS yeast released higher amounts of polysaccharides during alcoholic fermentation than FERM yeast (485 g L(-1) and 403 g L(-1), respectively) and after the aging period (516 g L(-1) and 500 g L(-1), respectively). The different aging techniques increased the polysaccharide concentration; the concentration was dependent on the aging technique applied. The interaction of the polysaccharides with the phenolic compounds depended on the yeast strain, aging technique, aging period and compound analysed. The HPS wines exhibited better sensory characteristics than the FERM wines after alcoholic fermentation; however, during the aging period, it was difficult to determine which technique produced the best wine due to the interactions of aging technique, aging period and sensory attribute evaluated. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Design of pH-responsive nanoparticles of terpolymer of poly(methacrylic acid), polysorbate 80 and starch for delivery of doxorubicin.

    PubMed

    Shalviri, Alireza; Chan, Ho Ka; Raval, Gaurav; Abdekhodaie, Mohammad J; Liu, Qiang; Heerklotz, Heiko; Wu, Xiao Yu

    2013-01-01

    This work focused on the design of new pH-responsive nanoparticles for controlled delivery of anticancer drug doxorubicin (Dox). Nanoparticles of poly(methacrylic acid)-polysorbate 80-grafted starch (PMAA-PS 80-g-St) were synthesized by using a one-pot method that enabled simultaneous grafting of PMAA and PS 80 onto starch and nanoparticle formation in an aqueous medium. The particles were characterized by FTIR, (1)H NMR, TEM, DLS, and potentiometric titration. Dox loading and in vitro release from the nanoparticles were investigated. The FTIR and (1)H NMR confirmed the chemical composition of the graft terpolymer. The nanoparticles were relatively spherical with narrow size distribution and porous morphology. They exhibited pH-dependent swelling in a physiological pH range. The particle size and magnitude of phase transition were dependent on polymer composition and formulation parameters such as concentrations of surfactant and cross-linking agent and total monomer concentration. The nanoparticles with optimized compositions showed high loading capacity for Dox and sustained Dox release. The results suggest that the new pH-responsive terpolymer nanoparticles are useful in controlled drug delivery. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Feasibility of Estimating Constituent Concentrations and Loads Based on Data Recorded by Acoustic Instrumentation

    USGS Publications Warehouse

    Lietz, A.C.

    2002-01-01

    The acoustic Doppler current profiler (ADCP) and acoustic Doppler velocity meter (ADVM) were used to estimate constituent concentrations and loads at a sampling site along the Hendry-Collier County boundary in southwestern Florida. The sampling site is strategically placed within a highly managed canal system that exhibits low and rapidly changing water conditions. With the ADCP and ADVM, flow can be gaged more accurately rather than by conventional field-data collection methods. An ADVM velocity rating relates measured velocity determined by the ADCP (dependent variable) with the ADVM velocity (independent variable) by means of regression analysis techniques. The coefficient of determination (R2) for this rating is 0.99 at the sampling site. Concentrations and loads of total phosphorus, total Kjeldahl nitrogen, and total nitrogen (dependent variables) were related to instantaneous discharge, acoustic backscatter, stage, or water temperature (independent variables) recorded at the time of sampling. Only positive discharges were used for this analysis. Discharges less than 100 cubic feet per second generally are considered inaccurate (probably as a result of acoustic ray bending and vertical temperature gradients in the water column). Of the concentration models, only total phosphorus was statistically significant at the 95-percent confidence level (p-value less than 0.05). Total phosphorus had an adjusted R2 of 0.93, indicating most of the variation in the concentration can be explained by the discharge. All of the load models for total phosphorus, total Kjeldahl nitrogen, and total nitrogen were statistically significant. Most of the variation in load can be explained by the discharge as reflected in the adjusted R2 for total phosphorus (0.98), total Kjeldahl nitrogen (0.99), and total nitrogen (0.99).

  19. Oxidative stress and antioxidant responses to increasing concentrations of trivalent chromium in the Andean crop species Chenopodium quinoa Willd.

    PubMed

    Scoccianti, Valeria; Bucchini, Anahi E; Iacobucci, Marta; Ruiz, Karina B; Biondi, Stefania

    2016-11-01

    Quinoa (Chenopodium quinoa Willd), an ancient Andean seed crop, exhibits exceptional nutritional properties and resistance to abiotic stress. The species' tolerance to heavy metals has, however, not yet been investigated nor its ability to take up and translocate chromium (Cr). This study aimed to investigate the metabolic adjustments occurring upon exposure of quinoa to several concentrations (0.01-5mM) of CrCl3. Young hydroponically grown plants were used to evaluate Cr uptake, growth, oxidative stress, and other biochemical parameters three and/or seven days after treatment. Leaves accumulated the lowest amounts of Cr, while roots and stems accumulated the most at low and at high metal concentrations, respectively. Fresh weight and photosynthetic pigments were reduced only by the higher Cr(III) doses. Substantially increased lipid peroxidation, hydrogen peroxide, and proline levels were observed only with 5mM Cr(III). Except for a significant decrease at day 7 with 5mM Cr(III), total polyphenols and flavonoids maintained control levels in Cr(III)-treated plants, whereas antioxidant activity increased in a dose-dependent manner. Maximum polyamine accumulation was observed in 1mM CrCl3-treated plants. Even though α- and γ-tocopherols also showed enhanced levels only with the 1mM concentration, tyrosine aminotransferase (TAT, EC 2.6.1.5) activity increased under Cr(III) treatment in a dose- and time-dependent manner. Taken together, results suggest that polyamines, tocopherols, and TAT activity could contribute to tolerance to 1mM Cr(III), but not to the highest concentration that, instead, generated oxidative stress. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Cytotoxic Effects of Nonionic Iodinated Contrast Agent on Human Adipose-derived Mesenchymal Stem Cells.

    PubMed

    Wu, Tao; Nie, Hai; Dietz, Allan B; Salek, David R; Smith, Jay; van Wijnen, Andre J; Qu, Wenchun

    2018-05-31

    Transplantation of mesenchymal stem cells (MSCs) is a promising therapy for degenerative spine conditions. However, cell therapy for painful spine degeneration presently requires use of contrast agents during fluoroscopy-guided injections and the effects of these agents on MSCs represents a gap in knowledge. To investigate the biological effects of contrast media that are co-injected with MSCs. Prospective observational study. Academic medical center. Patient-derived clinical-grade culture expanded MSCs. Iohexol(Omnipaque300) was reduced to 12.5%, 25%, 50% and 100% of the stock solution and incubated with MSCs for 30 minutes, 4 hours and 48 hours. We also used complete media and 12.5%, 25%, 50%, 100% of phosphate buffered saline (PBS) as control group. We examined cytotoxicity of Iohexol at different concentrations and exposure duration, as well as the potential for recovery over time. Cell counts, mitochondrial activity, and quantitative real time reverse-transcriptase polymerase chain reaction (qRT-PCR) of related genes were analyzed immediately after exposure (day 0) and after two days of exposure (day 2). Human MSCs exhibit a time- and concentration-dependent cytotoxic response to iodinated CM. A brief 30min exposure did not affect MSCs function and viability. However, extended treatment with iohexol for 4 hours at 50% or higher concentration had a significant impact on both viability and gene expression in MSCs. CM (Omnipaque300) is cytotoxic to MSCs in a time-and concentration-dependent manner. Hence, the concentration of CM that accompanies MSC injections should be carefully considered during mesenchymal stem cell therapy for disc degenerative diseases. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  1. Gender differences in methionine accumulation and metabolism in freshly isolated mouse hepatocytes: Potential roles in toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dever, Joseph T.; Elfarra, Adnan A.

    L-Methionine (Met) is hepatotoxic at high concentrations. Because Met toxicity in freshly isolated mouse hepatocytes is gender-dependent, the goal of this study was to assess the roles of Met accumulation and metabolism in the increased sensitivity of male hepatocytes to Met toxicity compared with female hepatocytes. Male hepatocytes incubated with Met (30 mM) at 37 {sup o}C exhibited higher levels of intracellular Met at 0.5, 1.0, and 1.5 h, respectively, compared to female hepatocytes. Conversely, female hepatocytes had higher levels of S-adenosyl-L-methionine compared to male hepatocytes. Female hepatocytes also exhibited higher L-methionine-L-sulfoxide levels relative to control hepatocytes, whereas the increasesmore » in L-methionine-D-sulfoxide (Met-D-O) levels were similar in hepatocytes of both genders. Addition of aminooxyacetic acid (AOAA), an inhibitor of Met transamination, significantly increased Met levels at 1.5 h and increased Met-D-O levels at 1.0 and 1.5 h only in Met-exposed male hepatocytes. No gender differences in cytosolic Met transamination activity by glutamine transaminase K were detected. However, female mouse liver cytosol exhibited higher methionine-DL-sulfoxide (MetO) reductase activity than male mouse liver cytosol at low (0.25 and 0.5 mM) MetO concentrations. Collectively, these results suggest that increased cellular Met accumulation, decreased Met transmethylation, and increased Met and MetO transamination in male mouse hepatocytes may be contributing to the higher sensitivity of the male mouse hepatocytes to Met toxicity in comparison with female mouse hepatocytes.« less

  2. 2D SnO2 Nanosheets: Synthesis, Characterization, Structures, and Excellent Sensing Performance to Ethylene Glycol

    PubMed Central

    Wan, Wenjin; Li, Yuehua; Ren, Xingping; Zhao, Yinping; Gao, Fan; Zhao, Heyun

    2018-01-01

    Two dimensional (2D)SnO2 nanosheets were synthesized by a substrate-free hydrothermal route using sodium stannate and sodium hydroxide in a mixed solvent of absolute ethanol and deionized water at a lower temperature of 130 °C. The characterization results of the morphology, microstructure, and surface properties of the as-prepared products demonstrated that SnO2 nanosheets with a tetragonal rutile structure, were composed of oriented SnO2 nanoparticles with a diameter of 6–12 nm. The X-ray diffraction (XRD) and high-resolution transmission electron microscope (FETEM) results demonstrated that the dominant exposed surface of the SnO2 nanoparticles was (101), but not (110). The growth and formation was supposed to follow the oriented attachment mechanism. The SnO2 nanosheets exhibited an excellent sensing response toward ethylene glycol at a lower optimal operating voltage of 3.4 V. The response to 400 ppm ethylene glycol reaches 395 at 3.4 V. Even under the low concentration of 5, 10, and 20 ppm, the sensor exhibited a high response of 6.9, 7.8, and 12.0 to ethylene glycol, respectively. The response of the SnO2 nanosheets exhibited a linear dependence on the ethylene glycol concentration from 5 to 1000 ppm. The excellent sensing performance was attributed to the present SnO2 nanoparticles with small size close to the Debye length, the larger specific surface, the high-energy exposed facets of the (101) surface, and the synergistic effects of the SnO2 nanoparticles of the nanosheets. PMID:29462938

  3. Supramolecular structures and assembly and luminescent properties of quinacridone derivatives.

    PubMed

    Ye, Kaiqi; Wang, Jia; Sun, Hui; Liu, Yu; Mu, Zhongcheng; Li, Fei; Jiang, Shimei; Zhang, Jingying; Zhang, Hongxing; Wang, Yue; Che, Chi-Ming

    2005-04-28

    The synthesis and single-crystal X-ray structures of two quinacridone derivatives, N,N'-di(n-butyl)quinacridone (1) and N,N'-di(n-butyl)-1,3,8,10-tetramethylquinacridone (2), are reported, and the 1H NMR, absorption, photoluminescent (PL), and electroluminescent (EL) characteristics are presented. Both these crystal structures are characterized by intermolecular pi...pi and hydrogen bonding interactions. The intermolecular pi...pi interactions lead to the formation of molecular columns in the solids of 1 and 2, and the interplanar contact distances between two adjacent molecules are 3.48 and 3.55 angstroms, respectively. Crystals of 1 display shorter intermolecular pi...pi contacts and higher density than 2. These results suggest that tighter intermolecular interactions exist in 1. The 1H NMR, absorption, and PL spectra of 1 and 2 in solutions exhibit concentration-dependent properties. The PL quantum yields of 1 in solutions decrease more quickly with the increase of concentration compared to that of 2 in solutions. For solid thin films of Alq3:1 (Alq3 = tris(8-hydroxyquinolinato)aluminum), emission intensities dramatically decrease and obvious red shifts are observed when the dopant concentration is above 4.2%, while for films of Alq3:2, a similar phenomenon occurs when the concentration is above 6.7%. EL devices with Alq3:1 as emitting layer only show high efficiencies (20.3-14.5 cd/A) within the narrow dopant concentration range of 0.5-1.0%. In contrast, high efficiencies (21.5-12.0 cd/A) are achieved for a wider dopant concentration range of 0.5-5.0% when Alq3:2 films are employed as emitting layer. The different PL and EL concentration-dependent properties of the solid thin films Alq3:1 and Alq3:2 are attributed to their different molecular packing characteristics in the solid state.

  4. Modeling Interactions among Individual P2 Receptors to Explain Complex Response Patterns over a Wide Range of ATP Concentrations

    PubMed Central

    Xing, Shu; Grol, Matthew W.; Grutter, Peter H.; Dixon, S. Jeffrey; Komarova, Svetlana V.

    2016-01-01

    Extracellular ATP acts on the P2X family of ligand-gated ion channels and several members of the P2Y family of G protein-coupled receptors to mediate intercellular communication among many cell types including bone-forming osteoblasts. It is known that multiple P2 receptors are expressed on osteoblasts (P2X2,5,6,7 and P2Y1,2,4,6). In the current study, we investigated complex interactions within the P2 receptor network using mathematical modeling. To characterize individual P2 receptors, we extracted data from published studies of overexpressed human and rodent (rat and mouse) receptors and fit their dependencies on ATP concentration using the Hill equation. Next, we examined responses induced by an ensemble of endogenously expressed P2 receptors. Murine osteoblastic cells (MC3T3-E1 cells) were loaded with fluo-4 and stimulated with varying concentrations of extracellular ATP. Elevations in the concentration of cytosolic free calcium ([Ca2+]i) were monitored by confocal microscopy. Dependence of the calcium response on ATP concentration exhibited a complex pattern that was not explained by the simple addition of individual receptor responses. Fitting the experimental data with a combination of Hill equations from individual receptors revealed that P2Y1 and P2X7 mediated the rise in [Ca2+]i at very low and high ATP concentrations, respectively. Interestingly, to describe responses at intermediate ATP concentrations, we had to assume that a receptor with a K1∕2 in that range (e.g. P2Y4 or P2X5) exerts an inhibitory effect. This study provides new insights into the interactions among individual P2 receptors in producing an ensemble response to extracellular ATP. PMID:27468270

  5. DRP-1 is required for BH3 mimetic-mediated mitochondrial fragmentation and apoptosis

    PubMed Central

    Milani, Mateus; Byrne, Dominic P; Greaves, Georgia; Butterworth, Michael; Cohen, Gerald M; Eyers, Patrick A; Varadarajan, Shankar

    2017-01-01

    The concept of using BH3 mimetics as anticancer agents has been substantiated by the efficacy of selective drugs, such as Navitoclax and Venetoclax, in treating BCL-2-dependent haematological malignancies. However, most solid tumours depend on MCL-1 for survival, which is highly amplified in multiple cancers and a major factor determining chemoresistance. Most MCL-1 inhibitors that have been generated so far, while demonstrating early promise in vitro, fail to exhibit specificity and potency in a cellular context. To address the lack of standardised assays for benchmarking the in vitro binding of putative inhibitors before analysis of their cellular effects, we developed a rapid differential scanning fluorimetry (DSF)-based assay, and used it to screen a panel of BH3 mimetics. We next contrasted their binding signatures with their ability to induce apoptosis in a MCL-1 dependent cell line. Of all the MCL-1 inhibitors tested, only A-1210477 induced rapid, concentration-dependent apoptosis, which strongly correlated with a thermal protective effect on MCL-1 in the DSF assay. In cells that depend on both MCL-1 and BCL-XL, A-1210477 exhibited marked synergy with A-1331852, a BCL-XL specific inhibitor, to induce cell death. Despite this selectivity and potency, A-1210477 induced profound structural changes in the mitochondrial network in several cell lines that were not phenocopied following MCL-1 RNA interference or transcriptional repression, suggesting that A-1210477 induces mitochondrial fragmentation in an MCL-1-independent manner. However, A-1210477-induced mitochondrial fragmentation was dependent upon DRP-1, and silencing expression levels of DRP-1 diminished not just mitochondrial fragmentation but also BH3 mimetic-mediated apoptosis. These findings provide new insights into MCL-1 ligands, and the interplay between DRP-1 and the anti-apoptotic BCL-2 family members in the regulation of apoptosis. PMID:28079887

  6. Toxicity of triphenyltin and tributyltin to the freshwater mudsnail Potamopyrgus antipodarum in a new sediment biotest.

    PubMed

    Duft, Martina; Schulte-Oehlmann, Ulrike; Tillmann, Michaela; Markert, Bernd; Oehlmann, Jörg

    2003-01-01

    The effects of two suspected endocrine-disrupting chemicals, the xeno-androgens triphenyltin (TPT) and tributyltin (TBT), were investigated in a new whole-sediment biotest with the freshwater mudsnail Potamopyrgus antipodarum (Gastropoda, Prosobranchia). Artificial sediments were spiked with seven concentrations, ranging from 10 to 500 microg nominal TPT-Sn/kg dry weight and TBT-Sn/kg dry weight, respectively. We analyzed the responses of the test species after two, four, and eight weeks exposure. For both compounds, P. antipodarum exhibited a sharp decline in the number of embryos sheltered in its brood pouch in a time- and concentration-dependent manner in comparison to the control sediment. The number of new, still unshelled embryos turned out to be the most sensitive parameter. The lowest-observed-effect concentration (LOEC) was equivalent to the lowest administered concentration (10 microg/kg of each test compound) for most parameters and thus no no-observed-effect concentration (NOEC) could be established. The calculation of effect concentrations (EC10) resulted in even lower values for both substances (EC10 after eight weeks for unshelled embryos: 0.03 microg TPT-Sn/kg, EC10 after four weeks for unshelled embryos: 0.98 microg TBT-Sn/kg). Our results indicate that P. antipodarum is highly sensitive to both endocrine disruptors TPT and TBT at environmentally relevant concentrations.

  7. Aerosol characteristics in the entrainment interface layer in relation to the marine boundary layer and free troposphere

    NASA Astrophysics Data System (ADS)

    Dadashazar, Hossein; Braun, Rachel A.; Crosbie, Ewan; Chuang, Patrick Y.; Woods, Roy K.; Jonsson, Haflidi H.; Sorooshian, Armin

    2018-02-01

    This study uses airborne data from two field campaigns off the California coast to characterize aerosol size distribution characteristics in the entrainment interface layer (EIL), a thin and turbulent layer above marine stratocumulus cloud tops, which separates the stratocumulus-topped boundary layer (STBL) from the free troposphere (FT). The vertical bounds of the EIL are defined in this work based on considerations of buoyancy and turbulence using thermodynamic and dynamic data. Aerosol number concentrations are examined from three different probes with varying particle diameter (Dp) ranges: > 3 nm, > 10 nm, and 0.11-3.4 µm. Relative to the EIL and FT layers, the sub-cloud (SUB) layer exhibited lower aerosol number concentrations and higher surface area concentrations. High particle number concentrations between 3 and 10 nm in the EIL are indicative of enhanced nucleation, assisted by high actinic fluxes, cool and moist air, and much lower surface area concentrations than the STBL. Slopes of number concentration versus altitude in the EIL were correlated with the particle number concentration difference between the SUB and lower FT layers. The EIL aerosol size distribution was influenced by varying degrees from STBL aerosol versus subsiding FT aerosol depending on the case examined. These results emphasize the important role of the EIL in influencing nucleation and aerosol-cloud-climate interactions.

  8. The influences of temperature and naloxone on the antinociceptive activity of Corchorus olitorius L. in mice.

    PubMed

    Zakaria, Z A; Safarul, M; Valsala, R; Sulaiman, M R; Fatimah, C A; Somchit, M N; Mat Jais, A M

    2005-07-01

    A series of preliminary studies was carried out to evaluate the antinociceptive (pain relief) activity of the aqueous extract of Corchorus olitorius L. leaves (COAE) and to determine the influence of temperature and opioid receptors on COAE activity using the abdominal constriction and hot plate tests in mice. COAE, at concentrations of 10, 25, 50, 75, and 100%, showed both peripheral and central antinociception that are non-concentration- and concentration-dependent respectively. The peripheral activity was clearly observed at a concentration of 25% and diminished at a concentration of 100%, while the central activity was observed at all the concentrations of COAE used. Furthermore, the insignificant results obtained indicated that this peripheral activity (at concentrations of 25 and 50%) was comparable to that of morphine (0.8 mg/kg). Pre-heating COAE at a temperature of 80 degrees C and 100 degrees C, or 60 degrees C and 80 degrees C was found to enhance its peripheral and central antinociception respectively. Pre-treatment with naloxone (10 mg/kg), a general opioid receptor antagonist, for 5 min, followed by COAE, was found to completely block its peripheral, but not central, antinociceptive activity. Based on this observation, we conclude that the antinociceptive activity exhibited by C. olitorius is enhanced by the increase in temperature and may be mediated peripherally, but not centrally, at least in part, via an opioid receptor.

  9. Fusion of small unilamellar vesicles induced by bovine serum albumin fragments.

    PubMed

    Garcia, L A; Schenkman, S; Araujo, P S; Chaimovich, H

    1983-07-01

    The limited pepsin proteolysis products of bovine serum albumin, fragment A (residues 307-586) and fragment B (residues 1-306), induced the fusion of small unilamellar vesicles of egg phosphatidyl choline at concentrations near 5 microM. Fusion was demonstrated and analyzed on the basis of: a) time-dependent changes in absorbance; b) dilution of the fluorescent label 2-(10-(1-pyrene)decanoyl) phosphatidyl choline, incorporated into a small percentage of the vesicles, as measured by the decrease in the excimer to monomer (E/M) ratio; c) increase of the average hydrodynamic radius of the liposomes, estimated by Sepharose 4B filtration, and d) the strict inverse relationship between the size of the liposomes and their E/M ratios. Albumin fragment B, like albumin, induced the formation of large aggregates in which rapid cooperative fusion produced vesicles having a large hydrodynamic radius. Fragment A did not produce large aggregates and the initial fusion products exhibited a hydrodynamic radius. Fragment A did not produce large aggregates and the initial fusion products exhibited a hydrodynamic radius smaller than those obtained with fragment B. Albumin and fragments A and B are fusogenic only at pH below 4.0. These data discussed in terms of a general model for a signal-dependent protein-induced membrane fusion.

  10. Molecular Dynamics Simulations of Star Polymeric Molecules with Diblock Arms, a Comparative Study.

    PubMed

    Swope, William C; Carr, Amber C; Parker, Amanda J; Sly, Joseph; Miller, Robert D; Rice, Julia E

    2012-10-09

    We have performed all atom explicit solvent molecular dynamics simulations of three different star polymeric systems in water, each star molecule consisting of 16 diblock copolymer arms bound to a small adamantane core. The arms of each system consist of an inner "hydrophobic" block (either polylactide, polyvalerolactone, or polyethylene) and an outer hydrophilic block (polyethylene oxide, PEO). These models exhibit unusual structure very close to the core (clearly an artifact of our model) but which we believe becomes "normal" or bulk-like at relatively short distances from this core. We report on a number of temperature-dependent thermodynamic (structural/energetic) properties as well as kinetic properties. Our observations suggest that under physiological conditions, the hydrophobic regions of these systems may be solid and glassy, with only rare and shallow penetration by water, and that a sharp boundary exists between the hydrophobic cores and either the PEO or water. The PEO in these models is seen to be fully water-solvated at low temperatures but tends to phase separate from water as the temperature is increased, reminiscent of a lower critical solution temperature exhibited by PEO-water mixtures. Water penetration concentration and depth is composition and temperature dependent with greater water penetration for the most ester-rich star polymer.

  11. Antifeedant activity of plant extracts to an insect Helopeltis theivora.

    PubMed

    Dolui, A K; Debnath, M

    2010-09-01

    The different solvent extracts (viz Petroleum ether Ethyl acetate and Methanol) obtained from leaves and flowers of Heliotropium indicum and Spilanthes calva were screened for antifeedant activity against Helopeltis theivora. All the six different extracts showed antifeedant activity at four different concentrations. The methanolic extracts of leaves of Heliotropium indicum and Spilanthes calva exhibited significant activity at 4% concentration. The numbers of spots produced were only 18.67 and 22.67 respectively which are significantly less than the numberof spots produced in control (104.00 and 93.33 respectively). The treatment with methanolic extracts of flowers of both the plants significantly reduced the number of feeding spots to 22.33 and 23.67 respectively in comparison to the control values of 101.33. All the activities are dose dependent. The mean results with SEM (mean +/- SE) were statistically significant at 1% level (p<0.01) for three observations.

  12. Photoluminescence properties of novel KBaBP2O8:M (M = Pb2+ and Bi3+) phosphors

    NASA Astrophysics Data System (ADS)

    Han, Bing; Zhang, Jie; Li, Pengju; Li, Jianliang; Bian, Yang; Shi, Hengzhen

    2014-11-01

    A series of novel inorganic phosphors KBa1-xPbxBP2O8 and K1+xBa1-2xBixBP2O8 (0.01 ⩽ x ⩽ 0.08) were synthesized by using a solid-state reaction technique at high-temperature and their photoluminescence properties were investigated. The dependence of the emission intensity on the Pb2+ and Bi3+ concentration for the KBa1-xPbxBP2O8 and K1+xBa1-2xBixBP2O8 was studied, in which the optimal concentration as well as the critical transfer distance Rc for Pb2+ and Bi3+ was obtained and determined. The as-prepared phosphors can be effectively excited with ultraviolet (UV), and exhibit UV - blue emission with large Stokes shift. The above work indicates these phosphors could be potential candidates for application in UV lamps industry.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Fan; Parker, Jack C.; Watson, David B

    This study investigates uranium and technetium sorption onto aluminum and iron hydroxides during titration of acidic groundwater. The contaminated groundwater exhibits oxic conditions with high concentrations of NO{sub 3}{sup -}, SO{sub 4}{sup 2-}, U, Tc, and various metal cations. More than 90% of U and Tc was removed from the aqueous phase as Al and Fe precipitated above pH 5.5, but was partially resolublized at higher pH values. An equilibrium hydrolysis and precipitation reaction model adequately described variations in aqueous concentrations of metal cations. An anion exchange reaction model was incorporated to simulate sulfate, U and Tc sorption onto variablymore » charged (pH-dependent) Al and Fe hydroxides. Modeling results indicate that competitive sorption/desorption on mixed mineral phases needs to be considered to adequately predict U and Tc mobility. The model could be useful for future studies of the speciation of U, Tc and co-existing ions during pre- and post-groundwater treatment practices.« less

  14. Discovery of a low-systemic-exposure DGAT-1 inhibitor with a picolinoylpyrrolidine-2-carboxylic acid moiety.

    PubMed

    Yan, Jianwei; Wang, Gaihong; Dang, Xiangyu; Guo, Binbin; Chen, Wuhong; Wang, Ting; Zeng, Limin; Wang, Heyao; Hu, Youhong

    2017-09-01

    A series of diacylglycerol O-acyltransferase 1 (DGAT-1) inhibitors with a picolinoylpyrrolidine-2-carboxylic acid moiety were designed and synthesized. Of these compounds, compound 22 exhibited excellent DGAT-1-inhibitory activity (hDGAT-1 enzyme assay, 50% inhibitory concentration [IC 50 ]=3.5±0.9nM) and effectively reduced the intracellular triglyceride contents in 3T3-L1, HepG2 and Caco-2 cells. A preliminary study of the plasma and tissue distributions of compound 22 in mice revealed low plasma exposure and high concentrations in different segments of the intestine and liver, which may facilitate targeting DGAT-1. Furthermore, in an acute lipid challenge test, compound 22 showed a dose-dependent inhibitory effect on high-serum triglycerides in C57/KSJ mice induced by olive oil (1, 3, and 10mg/kg, i.g.). Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiberg, Gustav K. H., E-mail: gustav.wiberg@gmail.com, E-mail: m.arenz@chem.ku.dk; Fleige, Michael; Arenz, Matthias, E-mail: gustav.wiberg@gmail.com, E-mail: m.arenz@chem.ku.dk

    2015-02-15

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allowsmore » an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.« less

  16. Arteriovenous carboxyhemoglobin difference in critical illness: fiction or fact?

    PubMed

    Westphal, Martin; Eletr, Dina; Bone, Hans Georg; Ertmer, Christian; Weber, Thomas Peter; Aken, Hugo Van; Booke, Michael

    2002-12-06

    It is still unclear whether the paradoxical arteriovenous carboxyhemoglobin (COHb) difference found in critical illness is due to increased COHb production by the lung, or whether this gradient is caused by technical artifacts using spectrophotometry. In healthy and matched endotoxemic sheep, blood gases were analyzed with a standard ABL 625 and the updated version, an ABL 725. The latter one was accurately calibrated for COHb wavelengths (SAT 100) to eliminate the FCOHb dependency on oxygen tension. All endotoxemic sheep exhibited a hypotensive-hyperdynamic circulation and a pulmonary hypertension. Interestingly, arteriovenous COHb difference occurred in both healthy and endotoxemic sheep (P<0.001 each). Arterial and central venous COHb concentrations determined with the ABL 625 were significantly lower than those measured with the ABL 725 (P<0.001 each). We conclude that (a) arteriovenous COHb difference per se does not reflect critical illness and (b) measurements with an ABL 625 underestimate COHb concentrations.

  17. Doping and compensation in Al-rich AlGaN grown on single crystal AlN and sapphire by MOCVD

    NASA Astrophysics Data System (ADS)

    Bryan, Isaac; Bryan, Zachary; Washiyama, Shun; Reddy, Pramod; Gaddy, Benjamin; Sarkar, Biplab; Breckenridge, M. Hayden; Guo, Qiang; Bobea, Milena; Tweedie, James; Mita, Seiji; Irving, Douglas; Collazo, Ramon; Sitar, Zlatko

    2018-02-01

    In order to understand the influence of dislocations on doping and compensation in Al-rich AlGaN, thin films were grown by metal organic chemical vapor deposition (MOCVD) on different templates on sapphire and low dislocation density single crystalline AlN. AlGaN grown on AlN exhibited the highest conductivity, carrier concentration, and mobility for any doping concentration due to low threading dislocation related compensation and reduced self-compensation. The onset of self-compensation, i.e., the "knee behavior" in conductivity, was found to depend only on the chemical potential of silicon, strongly indicating the cation vacancy complex with Si as the source of self-compensation. However, the magnitude of self-compensation was found to increase with an increase in dislocation density, and consequently, AlGaN grown on AlN substrates demonstrated higher conductivity over the entire doping range.

  18. Localized stress fluctuations drive shear thickening in dense suspensions

    NASA Astrophysics Data System (ADS)

    Rathee, Vikram; Blair, Daniel L.; Urbach, Jeffrey S.

    2017-08-01

    Dense particulate suspensions exhibit a dramatic increase in average viscosity above a critical, material-dependent shear stress. This thickening changes from continuous to discontinuous as the concentration is increased. Using direct measurements of spatially resolved surface stresses in the continuous thickening regime, we report the existence of clearly defined dynamic localized regions of substantially increased stress that appear intermittently at stresses above the critical stress. With increasing applied stress, these regions occupy an increasing fraction of the system, and the increase accounts quantitatively for the observed shear thickening. The regions represent high-viscosity fluid phases, with a size determined by the distance between the shearing surfaces and a viscosity that is nearly independent of shear rate but that increases rapidly with concentration. Thus, we find that continuous shear thickening arises from increasingly frequent localized discontinuous transitions between distinct fluid phases with widely differing viscosities.

  19. Capillary trapping in thin-film flows of particles

    NASA Astrophysics Data System (ADS)

    Sauret, Alban; Gomez, Michael; Dressaire, Emilie

    Flows of suspensions have been modeled on a continuum level by using constitutive relations to capture how the viscosity varies with the particle concentration. However, in thin liquid films, where the thickness of the liquid layer is comparable to the particle size, the particles deform the liquid interface, which leads to local interactions. These effects modify the transport of particles and could result in the contamination of the surface and the loss of transported material. Here, we characterize how capillary interactions affect the transport and deposition of non-Brownian particles moving in thin liquid films. We focus on gravitational drainage flows, in which the film thickness becomes comparable to the particle size. Depending on the concentration of particles, we find that the dynamics of the drainage exhibits behavior that cannot be captured with a Newtonian model, due to the deposition of particles on the substrate. ANR-16-CE30-0009 and CNRS-PICS-07242.

  20. Osmotic-pressure-controlled concentration of colloidal particles in thin-shelled capsules

    NASA Astrophysics Data System (ADS)

    Kim, Shin-Hyun; Park, Jin-Gyu; Choi, Tae Min; Manoharan, Vinothan N.; Weitz, David A.

    2014-01-01

    Colloidal crystals are promising structures for photonic applications requiring dynamic control over optical properties. However, for ease of processing and reconfigurability, the crystals should be encapsulated to form ‘ink’ capsules rather than confined in a thin film. Here we demonstrate a class of encapsulated colloidal photonic structures whose optical properties can be controlled through osmotic pressure. The ordering and separation of the particles within the microfluidically created capsules can be tuned by changing the colloidal concentration through osmotic pressure-induced control of the size of the individual capsules, modulating photonic stop band. The rubber capsules exhibit a reversible change in the diffracted colour, depending on osmotic pressure, a property we call osmochromaticity. The high encapsulation efficiency and capsule uniformity of this microfluidic approach, combined with the highly reconfigurable shapes and the broad control over photonic properties, make this class of structures particularly suitable for photonic applications such as electronic inks and reflective displays.

  1. Gas diffusion electrode setup for catalyst testing in concentrated phosphoric acid at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Wiberg, Gustav K. H.; Fleige, Michael; Arenz, Matthias

    2015-02-01

    We present a detailed description of the construction and testing of an electrochemical cell setup allowing the investigation of a gas diffusion electrode containing carbon supported high surface area catalysts. The setup is designed for measurements in concentrated phosphoric acid at elevated temperature, i.e., very close to the actual conditions in high temperature proton exchange membrane fuel cells (HT-PEMFCs). The cell consists of a stainless steel flow field and a PEEK plastic cell body comprising the electrochemical cell, which exhibits a three electrode configuration. The cell body and flow field are braced using a KF-25 vacuum flange clamp, which allows an easy assembly of the setup. As demonstrated, the setup can be used to investigate temperature dependent electrochemical processes on high surface area type electrocatalysts, but it also enables quick screening tests of HT-PEMFC catalysts under realistic conditions.

  2. Fe3O4–Silicone Mixture as Flexible Actuator

    PubMed Central

    Song, Kahye

    2018-01-01

    In this study, we introduce Fe3O4-silicone flexible composite actuators fabricated by combining silicone and iron oxide particles. The actuators exploit the flexibility of silicone and the electric conductivity of iron oxide particles. These actuators are activated by electrostatic force using the properties of the metal particles. Herein, we investigate the characteristic changes in actuation performance by increasing the concentration of iron oxide from 1% to 20%. The developed flexible actuators exhibit a resonant frequency near 3 Hz and their actuation amplitudes increase with increasing input voltage. We found that the actuator can move well at metal particle concentrations >2.5%. We also studied the changes in actuation behavior, depending on the portion of the Fe3O4-silicone in the length. Overall, we experimentally analyzed the characteristics of the newly proposed metal particle-silicone composite actuators. PMID:29738466

  3. Investigation of the bipolar effect in the thermoelectric material CaMg2Bi2 using a first-principles study.

    PubMed

    Gong, J J; Hong, A J; Shuai, J; Li, L; Yan, Z B; Ren, Z F; Liu, J-M

    2016-06-28

    The bipolar effect in relatively narrow band-gap thermoelectric (TE) compounds is a negative process deteriorating the TE properties particularly at higher temperatures. In this work, we investigate the TE performance of the compound CaMg2Bi2 using the first-principles calculation and semi-classical Boltzmann transport theory in combination with our experimental data. It is revealed that this compound exhibits a remarkable bipolar effect and temperature-dependent carrier concentration. The bipolar effect imposes remarkable influence on all the electron-transport related TE parameters. An effective carrier concentration neff as a function of temperature is proposed to account for the bipolar effect induced carrier excitations. The as-evaluated TE parameters then show good consistency with measured results. This work may shed light on our understanding of the bipolar effect in TE compounds.

  4. Small mammal-heavy metal concentrations from mined and control sites

    USGS Publications Warehouse

    Smith, G.J.; Rongstad, O.J.

    1982-01-01

    Total body concentrations of zinc, copper, cadmium, lead, nickel, mercury and arsenic were determined for Peromyscus maniculatus and Microtus pennsylvanicus from an active zinc-copper mine near Timmins, Ontario, Canada, and a proposed zinc-copper mine near Crandon, Wisconsin, USA. Metal concentrations were evaluated with respect to area, species, sex and age groups. Metal concentrations in Peromyscus from the proposed mine site were not different from those collected in a third area where no mine or deposit exists. This is probably due to the 30 m of glacial material over the proposed mine site deposit. A statistical interaction between area, species, sex and age was observed for zinc and copper concentrations in small mammals we examined. Peromyscus from the mine site had consistently higher metal concentrations than Peromyscus from the control site. Greater total body cadmium and lead concentrations in adult?compared with juvenile?Peromyscus collected at the mine site suggests age-dependent accumulation of these toxic metals. Microtus did not exhibit this age-related response, and responded to other environmental metals more erratically and to a lesser degree. Differences in the response of these two species to environmental metal exposure may be due to differences in food habits. Nickel, mercury and arsenic concentrations in small mammals from the mine site were not different from controls. Heavy metal concentrations are also presented for Sorex cinereus, Blarina brevicauda and Zapus hudsonicus without respect to age and sex cohorts. Peromyscus may be a potentially important species for the monitoring of heavy metal pollution.

  5. Effect of Temperature and Nutrient Manipulations on eelgrass ...

    EPA Pesticide Factsheets

    Global climate change will have a large impact on the three predominate drivers of estuarine seagrass productivity, temperature, light and nutrients. I experimentally evaluate the response of Pacific Northwest Z. marina to interactive effects of temperature and nutrient conditions. Experimental manipulations were conducted hydroponically in acrylic chambers and spanned a range of temperatures and nutrient concentrations. Preliminary single factor experiments were conducted to evaluate physiological tolerances to temperature and nitrogen concentrations. Eelgrass exhibited a linear increase in specific growth with increasing NH4 concentration (range from 10 to 1000 µM); in contrast, there was no significant relationship between specific growth rate and increasing NO3 concentration over the same concentration range. Leaf growth metrics all exhibited strong linear relationships with increasing water temperature (temperature range 4-25 ºC). In the factorial experiment, plants were exposed to 3 temperatures (10, 18 and 25 ºC) and 3 nitrate concentrations (10, 30 and 100 µM) with 3 replicate chambers per treatment combination. Most metrics (leaf elongation, growth, specific growth, wasting index) exhibited a significant temperature effect indicating the importance of temperature on metabolic rates. Tissue stable isotope ratios and C:N values exhibited a significant nutrient effect and in some cases a significant temperature effect. Whole plant non structur

  6. Antiproliferative activity of pristimerin isolated from Maytenus ilicifolia (Celastraceae) in human HL-60 cells.

    PubMed

    Costa, Patricia Marçal da; Ferreira, Paulo Michel Pinheiro; Bolzani, Vanderlan da Silva; Furlan, Maysa; de Freitas Formenton Macedo Dos Santos, Vânia Aparecida; Corsino, Joaquim; de Moraes, Manoel Odorico; Costa-Lotufo, Letícia Veras; Montenegro, Raquel Carvalho; Pessoa, Cláudia

    2008-06-01

    Pristimerin has been shown to be cytotoxic to several cancer cell lines. In the present work, the cytotoxicity of pristimerin was evaluated in human tumor cell lines and in human peripheral blood mononuclear cells (PBMC). This work also examined the effects of pristimerin (0.4; 0.8 and 1.7 microM) in HL-60 cells, after 6, 12 and 24h of exposure. Pristimerin reduced the number of viable cells and increased number of non-viable cells in a concentration-dependent manner by tripan blue test showing morphological changes consistent with apoptosis. Nevertheless, pristimerin was not selective to cancer cells, since it inhibited PBMC proliferation with an IC50 of 0.88 microM. DNA synthesis inhibition assessed by 5-bromo-2'-deoxyuridine (BrdU) incorporation in HL-60 cells was 70% and 83% for the concentrations of 0.4 and 0.8 microM, respectively. Pristimerin (10 and 20 microM) was not able to inhibit topoisomerase I. In AO/EB (acridine orange/ethidium bromide) staining, all tested concentrations reduced the number of HL-60 viable cells, with the occurrence of necrosis and apoptosis in a concentration-dependent manner, results in agreement with trypan blue exclusion findings. The analysis of membrane integrity and internucleosomal DNA fragmentation by flow cytometry in the presence of pristimerin indicated that treated cells underwent apoptosis. The present data point to the importance of pristimerin as representative of an emerging class of potential anticancer chemicals, exhibiting an antiproliferative effect by inhibiting DNA synthesis and triggering apoptosis.

  7. Bioaccessibility of platinum group elements in automotive catalytic converter particulates.

    PubMed

    Turner, Andrew; Price, Simon

    2008-12-15

    The bioaccessibilities of the platinum group elements (PGE): Rh, Pd, and Pt; and the catalyzator poison, Pb, have been determined in particles derived from milled automotive catalytic converters using a physiologically based extraction test (PBET) that simulates, sequentially, the chemical conditions encountered in the human stomach and intestine. PGE accessibility, relative to total metal concentration, was generally less than a few percent, but increased in the stomach with decreasing pH (from 4 to 1) and/or increasing chloride concentration, and with decreasing particle concentration. In most cases, bioaccessibility increased from the acidic stomach to the neutral, carbonate-rich intestine. Bioaccessibility of Pb displayed similar pH and particle concentration dependencies to PGE in the stomach, but this metal exhibited significantly greater mobilization (up to 80%) overall and a reduction in accessibility from the stomach to intestine. Reaction kinetics of PGE dissolution in the stomach at pH 2.5 were modeled using a combined surface reaction-diffusion controlled mechanism with rate constants of 0.068, 0.031, and 0.015 (microg L(-1))(-1) h(-1) for Rh, Pd, and Pt, respectively. For Pb, however, mobilization proceeded via a different mechanism whose time-dependence was fitted with an empirical, logarithmic equation. Overall, PGE bioaccessibility appeared to be controlled by dissolution rates of metallic nanoparticles in the stomach, and solubility and kinetic constraints on inorganic species (chlorides, hydroxychlorides, and carbanatochlorides) and undefined organic complexes formed in the simulated gastrointestinal tract. Further studies are required to elucidate any effects engendered by the long-term oral exposure of small quantities of these species.

  8. Epithelial cell biocompatibility of silica nanospheres for contrast-enhanced ultrasound molecular imaging

    NASA Astrophysics Data System (ADS)

    Chiriacò, Fernanda; Conversano, Francesco; Soloperto, Giulia; Casciaro, Ernesto; Ragusa, Andrea; Sbenaglia, Enzo Antonio; Dipaola, Lucia; Casciaro, Sergio

    2013-07-01

    Nanosized particles are receiving increasing attention as future contrast agents (CAs) for ultrasound (US) molecular imaging, possibly decorated on its surface with biological recognition agents for targeted delivery and deposition of therapeutics. In particular, silica nanospheres (SiNSs) have been demonstrated to be feasible in terms of contrast enhancement on conventional US systems. In this work, we evaluated the cytotoxicity of SiNSs on breast cancer (MCF-7) and HeLa (cervical cancer) cells employing NSs with sizes ranging from 160 to 330 nm and concentration range of 1.5-5 mg/mL. Cell viability was evaluated in terms of size, dose and time dependence, performing the MTT reduction assay with coated and uncoated SiNSs. Whereas uncoated SiNSs caused a variable significant decrease in cell viability on both cell lines mainly depending on size and exposure time, PEGylated SiNSs (SiNSs-PEG) exhibit a high level of biocompatibility. In fact, after 72-h incubation, viability of both cell types was above the cutoff value of 70 % at concentration up to 5 mg/mL. We also investigated the acoustical behavior of coated and uncoated SiNSs within conventional diagnostic US fields in order to determine a suitable configuration, in terms of particle size and concentration, for their employment as targetable CAs. Our results indicate that the employment of SiNSs with diameters around 240 nm assures the most effective contrast enhancement even at the lowest tested concentration, coupled with the possibility of targeting all tumor tissues, being the SiNSs still in a size range where reticuloendothelial system trapping effect is relatively low.

  9. Chromonic liquid crystalline nematic phase exhibited in binary mixture of two liquid crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Govindaiah, T. N., E-mail: tngovi.phy@gmail.com; Sreepad, H. R.; Sridhar, K. N.

    2015-06-24

    A binary mixture of abietic acid and orthophosphoric acid (H{sub 3}PO{sub 4}) exhibits co-existence of biphasic region of Nematic+Isotropic (N+I), lyotropic Nematic (ND) and Smectic-G (SmG) phases. The mixture exhibits N+I, N and SmG phases at different concentrations and at different temperatures. Mixtures with all concentrations of abietic acid exhibit I→N+I→N→SmG phases sequentially when the specimen is cooled from its isotropic melt. These phases have been characterized by using differential scanning calorimetric, X-ray diffraction, and optical texture studies.

  10. Dose-Dependent AMPK-Dependent and Independent Mechanisms of Berberine and Metformin Inhibition of mTORC1, ERK, DNA Synthesis and Proliferation in Pancreatic Cancer Cells

    PubMed Central

    Ming, Ming; Sinnett-Smith, James; Wang, Jia; Soares, Heloisa P.; Young, Steven H.; Eibl, Guido; Rozengurt, Enrique

    2014-01-01

    Natural products represent a rich reservoir of potential small chemical molecules exhibiting anti-proliferative and chemopreventive properties. Here, we show that treatment of pancreatic ductal adenocarcinoma (PDAC) cells (PANC-1, MiaPaCa-2) with the isoquinoline alkaloid berberine (0.3–6 µM) inhibited DNA synthesis and proliferation of these cells and delay the progression of their cell cycle in G1. Berberine treatment also reduced (by 70%) the growth of MiaPaCa-2 cell growth when implanted into the flanks of nu/nu mice. Mechanistic studies revealed that berberine decreased mitochondrial membrane potential and intracellular ATP levels and induced potent AMPK activation, as shown by phosphorylation of AMPK α subunit at Thr-172 and acetyl-CoA carboxylase (ACC) at Ser79. Furthermore, berberine dose-dependently inhibited mTORC1 (phosphorylation of S6K at Thr389 and S6 at Ser240/244) and ERK activation in PDAC cells stimulated by insulin and neurotensin or fetal bovine serum. Knockdown of α1 and α2 catalytic subunit expression of AMPK reversed the inhibitory effect produced by treatment with low concentrations of berberine on mTORC1, ERK and DNA synthesis in PDAC cells. However, at higher concentrations, berberine inhibited mitogenic signaling (mTORC1 and ERK) and DNA synthesis through an AMPK-independent mechanism. Similar results were obtained with metformin used at doses that induced either modest or pronounced reductions in intracellular ATP levels, which were virtually identical to the decreases in ATP levels obtained in response to berberine. We propose that berberine and metformin inhibit mitogenic signaling in PDAC cells through dose-dependent AMPK-dependent and independent pathways. PMID:25493642

  11. Nisin ZP, a Bacteriocin and Food Preservative, Inhibits Head and Neck Cancer Tumorigenesis and Prolongs Survival

    PubMed Central

    Kamarajan, Pachiyappan; Hayami, Takayuki; Matte, Bibiana; Liu, Yang; Danciu, Theodora; Ramamoorthy, Ayyalusamy; Worden, Francis; Kapila, Sunil; Kapila, Yvonne

    2015-01-01

    The use of small antimicrobial peptides or bacteriocins, like nisin, to treat cancer is a new approach that holds great promise. Nisin exemplifies this new approach because it has been used safely in humans for many years as a food preservative, and recent laboratory studies support its anti-tumor potential in head and neck cancer. Previously, we showed that nisin (2.5%, low content) has antitumor potential in head and neck squamous cell carcinoma (HNSCC) in vitro and in vivo. The current studies explored a naturally occurring variant of nisin (nisin ZP; 95%, high content) for its antitumor effects in vitro and in vivo. Nisin ZP induced the greatest level of apoptosis in HNSCC cells compared to low content nisin. HNSCC cells treated with increasing concentrations of nisin ZP exhibited increasing levels of apoptosis and decreasing levels of cell proliferation, clonogenic capacity, and sphere formation. Nisin ZP induced apoptosis through a calpain-dependent pathway in HNSCC cells but not in human oral keratinocytes. Nisin ZP also induced apoptosis dose-dependently in human umbilical vein endothelial cells (HUVEC) with concomitant decreases in vascular sprout formation in vitro and reduced intratumoral microvessel density in vivo. Nisin ZP reduced tumorigenesis in vivo and long-term treatment with nisin ZP extended survival. In addition, nisin treated mice exhibited normal organ histology with no evidence of inflammation, fibrosis or necrosis. In summary, nisin ZP exhibits greater antitumor effects than low content nisin, and thus has the potential to serve as a novel therapeutic for HNSCC. PMID:26132406

  12. Impacts of winter storms on air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Zhang, Weiqing; Perrie, Will; Vagle, Svein

    2006-07-01

    The objective of this study is to investigate air-sea gas exchange during winter storms, using field measurements from Ocean Station Papa in the Northeast Pacific (50°N, 145°W). We show that increasing gas transfer rates are coincident with increasing winds and deepening depth of bubble penetration, and that this process depends on sea state. Wave-breaking is shown to be an important factor in the gas transfer velocity during the peaks of the storms, increasing the flux rates by up to 20%. Gas transfer rates and concentrations can exhibit asymmetry, reflecting a sudden increase with the onset of a storm, and gradual recovery stages.

  13. Inhibition of tomato (Solanum lycopersicum L.) root growth by cyanamide is not always accompanied with enhancement of ROS production.

    PubMed

    Soltys, Dorota; Gniazdowska, Agnieszka; Bogatek, Renata

    2013-05-01

    Mode of action of allelochemicals in target plants is currently widely studied. Cyanamide is one of the newly discovered allelochemical, biosynthesized in hairy vetch. Recently, it has been recognized that cyanamide is plant growth inhibitor, which affects mitosis in root tip cells and causes,e.g., disorder in phytohormonal balance. We also demonstrated that CA may act as oxidative stress agent but it strictly depends on plant species, exposure time and doses. Roots of tomato seedling treated with water solution of 1.2 mM cyanamide did not exhibit elevated reactive oxygen species concentration during the whole culture period.

  14. Smooth muscle relaxing flavonoids and terpenoids from Conyza filaginoides.

    PubMed

    Mata, R; Rojas, A; Acevedo, L; Estrada, S; Calzada, F; Rojas, I; Bye, R; Linares, E

    1997-02-01

    Activity-guided fractionation of the smooth muscle relaxing, chloroform-methanol (1:1) extract of Conyza filaginoides (D.C.) Hieron (Asteraceae) led to the isolation of three flavonoids (quercetin 3-glucoside, rutin, and pinostrobin), one sterol (alpha-spinasterol), a sesquiterpenoid (beta-caryophyllene 4,5-alpha-oxide), and two triterpenoids (erythrodiol and 3-beta-tridecanoyloxy-28-hydroxyolean-12-ene). 3-beta-Tridecanoyloxy-28-hydroxy-olean-12-ene is a new naturally occurring terpenoid. All the isolated compounds induced a concentration-dependent inhibition of the spontaneous contractions of rat ileum. The spasmolytic activity exhibited by the extract and active principles tends to support the traditional use of C filaginoides as an antispasmodic agent.

  15. Chemical sensors are hybrid-input memristors

    NASA Astrophysics Data System (ADS)

    Sysoev, V. I.; Arkhipov, V. E.; Okotrub, A. V.; Pershin, Y. V.

    2018-04-01

    Memristors are two-terminal electronic devices whose resistance depends on the history of input signal (voltage or current). Here we demonstrate that the chemical gas sensors can be considered as memristors with a generalized (hybrid) input, namely, with the input consisting of the voltage, analyte concentrations and applied temperature. The concept of hybrid-input memristors is demonstrated experimentally using a single-walled carbon nanotubes chemical sensor. It is shown that with respect to the hybrid input, the sensor exhibits some features common with memristors such as the hysteretic input-output characteristics. This different perspective on chemical gas sensors may open new possibilities for smart sensor applications.

  16. Platypus and opossum calcitonins exhibit strong activities, even though they belong to mammals.

    PubMed

    Yamashita, Teruhito; Udagawa, Nobuyuki; Thirukonda, Gnanasagar Janardhanan; Uehara, Shunsuke; Yamauchi, Hirose; Suzuki, Nobuo; Li, Feng; Kobayashi, Yasuhiro; Takahashi, Naoyuki

    2017-05-15

    In mammalian assay systems, calcitonin peptides of non-mammalian species exhibit stronger activity than those of mammals. Recently, comparative analyses of a wide-range of species revealed that platypus and opossum, which diverged early from other mammals, possess calcitonins that are more similar in amino acid sequence to those of non-mammals than mammals. We herein determined whether platypus and opossum calcitonins exhibit similar biological activities to those of non-mammalian calcitonins using an assay of actin ring formation in mouse osteoclasts. We also compared the dose-dependent effects of each calcitonin on cAMP production in osteoclasts. Consistent with the strong similarities in their primary amino acid sequences, platypus and opossum calcitonins disrupted actin rings with similar efficacies to that of salmon calcitonin. Human calcitonin exhibited the weakest inhibitory potency and required a 100-fold higher concentration (EC 50 =3×10 -11 M) than that of salmon calcitonin (EC 50 =2×10 -13 M). Platypus and opossum calcitonins also induced cAMP production in osteoclast cultures with the same efficacies as that of salmon calcitonin. Thus, platypus and opossum calcitonins exhibited strong biological activities, similar to those of the salmon. In addition, phylogenetic analysis revealed that platypus and opossum calcitonins clustered with the salmon-type group but not human- or porcine-type group. These results suggest that platypus and opossum calcitonins are classified into the salmon-type group, in terms of the biological activities and amino acid sequences. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Effects of extraction methods on the antioxidant activities of polysaccharides from Agaricus blazei Murrill.

    PubMed

    Jia, Shaoyi; Li, Feng; Liu, Yong; Ren, Haitao; Gong, Guili; Wang, Yanyan; Wu, Songhai

    2013-11-01

    Five polysaccharides were obtained from Agaricus blazei Murrill (ABM) through different extraction methods including hot water extraction, single enzyme extraction (pectinase, cellulase or papain) and compound enzymes extraction (cellulase:pectinase:papain). Their characteristics such as the polysaccharide yield, polysaccharide content, protein content, infrared spectra were determined, and antioxidant activities were investigated on the basis of hydroxyl radical, DPPH free radical, ABTS free radical and reducing power. The results showed that five extracts exhibited antioxidant activities in a concentration-dependent manner. Compared with other methods, the compound enzymes extraction method was found to present the highest polysaccharides yield (17.44%). Moreover, compound enzymes extracts exhibited the strongest reducing power and highest scavenging rates on hydroxyl radicals, DPPH radicals and ABTS radicals. On the contrary, hot water extraction method had the lowest polysaccharides yield of 11.95%, whose extracts also exhibited the lowest antioxidant activities. Overall, the available data obtained in vitro models suggested that ABM extracts were natural antioxidants and compound enzymes extraction was an appropriate, mild and effective extracting method for obtaining the polysaccharide extracts from Agaricus blazei Murrill (ABM). Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Synthesis of iron oxides nanoparticles with very high saturation magnetization form TEA-Fe(III) complex via electrochemical deposition for supercapacitor applications

    NASA Astrophysics Data System (ADS)

    Elrouby, Mahmoud; Abdel-Mawgoud, A. M.; El-Rahman, Rehab Abd

    2017-11-01

    This work is devoted to the synthesis of magnetic iron oxides nanoparticles with very high saturation magnetization to be qualified for supercapacitor applications using, a simple electrodeposition technique. It is found that the electrochemical reduction process depends on concentration, temperature, deposition potential and the scan rate of potential. The nature of electrodeposition process has been characterized via voltammetric and chronoamperometric techniques. The morphology of the electrodeposits has been investigated using scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The structure and phase content of these investigated electrodeposits have been examined and calculated. The obtained iron oxides show a high saturation magnetization (Ms) of about 229 emu g-1. The data exhibited a relation between Ms of electrodeposited iron oxide and specific capacitance. This relation exhibits that the highest Ms value of electrodeposited iron oxides gives also highest specific capacitance of about 725 Fg-1. Moreover, the electrodeposited iron oxides exhibit a very good stability. The new characteristics of the electro synthesized iron oxides at our optimized conditions, strongly qualify them as a valuable material for high-performance supercapacitor applications.

  19. Nanoparticles Induce Changes of the Electrical Activity of Neuronal Networks on Microelectrode Array Neurochips

    PubMed Central

    Gramowski, Alexandra; Flossdorf, Juliane; Bhattacharya, Kunal; Jonas, Ludwig; Lantow, Margareta; Rahman, Qamar; Schiffmann, Dietmar; Weiss, Dieter G.; Dopp, Elke

    2010-01-01

    Background Nanomaterials are extensively used in industry and daily life, but little is known about possible health effects. An intensified research regarding toxicity of nanomaterials is urgently needed. Several studies have demonstrated that nanoparticles (NPs; diameter < 100 nm) can be transported to the central nervous system; however, interference of NPs with the electrical activity of neurons has not yet been shown. Objectives/methods We investigated the acute electrophysiological effects of carbon black (CB), hematite (Fe2O3), and titanium dioxide (TiO2) NPs in primary murine cortical networks on microelectrode array (MEA) neurochips. Uptake of NPs was studied by transmission electron microscopy (TEM), and intracellular formation of reactive oxygen species (ROS) was studied by flow cytometry. Results The multiparametric assessment of electrical activity changes caused by the NPs revealed an NP-specific and concentration-dependent inhibition of the firing patterns. The number of action potentials and the frequency of their patterns (spike and burst rates) showed a significant particle-dependent decrease and significant differences in potency. Further, we detected the uptake of CB, Fe2O3, and TiO2 into glial cells and neurons by TEM. Additionally, 24 hr exposure to TiO2 NPs caused intracellular formation of ROS in neuronal and glial cells, whereas exposure to CB and Fe2O3 NPs up to a concentration of 10 μg/cm2 did not induce significant changes in free radical levels. Conclusion NPs at low particle concentrations are able to exhibit a neurotoxic effect by disturbing the electrical activity of neuronal networks, but the underlying mechanisms depend on the particle type. PMID:20457553

  20. Pyridine 2,4-dicarboxylic acid suppresses tomato seedling growth

    NASA Astrophysics Data System (ADS)

    Fragkostefanakis, Sotirios; Kaloudas, Dimitrios; Kalaitzis, Panagiotis

    2018-01-01

    Pyridine 2,4-dicarboxylic acid is a structural analogue of 2-oxoglutarate and is known to inhibit 2-oxoglutare-dependent dioxygenases. The effect of this inhibitor in tomato seedlings grown in MS media supplied with various concentrations of PDCA was investigated, resulting in shorter roots and hypocotyls in a dose-dependent manner. The partial inhibition of growth in roots was more drastic compared to hypocotyls and was attributed to a decrease in the elongation of root and hypocotyl cells. Concentrations of 100 and 250 μΜ of PDCA decreased hydroxyproline content in roots while only the 250 μΜ treatment reduced the hydroxyproline content in shoots. Seedlings treated with 100 μΜ PDCA exhibited enhanced growth of hypocotyl and cotyledon cells and higher hydroxyproline content resulting in cotyledons with greater surface area. However, no alterations in hypocotyl length were observed. Prolyl 4 hydroxylases (P4Hs) are involved in the O-glycosylation of AGPs and were also highly expressed during seedling growth. Moreover PDCA induced a decrease in the accumulation of HRGPs and particularly in AGPs-bound epitopes in a dose dependent-manner while more drastic reduction were observed in roots compared to shoots. In addition, bulged root epidermal cells were observed at the high concentration of 250 μΜ which is characteristic of root tissues with glycosylation defects. These results indicate that PDCA induced pleiotropic effects during seedling growth while further studies are required to better investigate the physiological significance of this 2-oxoglutarate analogue. This pharmacological approach might be used as a tool to better understand the physiological significance of HRGPs and probably P4Hs in various growth and developmental programs in plants.

  1. Crowding Induces Complex Ergodic Diffusion and Dynamic Elongation of Large DNA Molecules

    PubMed Central

    Chapman, Cole D.; Gorczyca, Stephanie; Robertson-Anderson, Rae M.

    2015-01-01

    Despite the ubiquity of molecular crowding in living cells, the effects of crowding on the dynamics of genome-sized DNA are poorly understood. Here, we track single, fluorescent-labeled large DNA molecules (11, 115 kbp) diffusing in dextran solutions that mimic intracellular crowding conditions (0–40%), and determine the effects of crowding on both DNA mobility and conformation. Both DNAs exhibit ergodic Brownian motion and comparable mobility reduction in all conditions; however, crowder size (10 vs. 500 kDa) plays a critical role in the underlying diffusive mechanisms and dependence on crowder concentration. Surprisingly, in 10-kDa dextran, crowder influence saturates at ∼20% with an ∼5× drop in DNA diffusion, in stark contrast to exponentially retarded mobility, coupled to weak anomalous subdiffusion, with increasing concentration of 500-kDa dextran. Both DNAs elongate into lower-entropy states (compared to random coil conformations) when crowded, with elongation states that are gamma distributed and fluctuate in time. However, the broadness of the distribution of states and the time-dependence and length scale of elongation length fluctuations depend on both DNA and crowder size with concentration having surprisingly little impact. Results collectively show that mobility reduction and coil elongation of large crowded DNAs are due to a complex interplay between entropic effects and crowder mobility. Although elongation and initial mobility retardation are driven by depletion interactions, subdiffusive dynamics, and the drastic exponential slowing of DNA, up to ∼300×, arise from the reduced mobility of larger crowders. Our results elucidate the highly important and widely debated effects of cellular crowding on genome-sized DNA. PMID:25762333

  2. Feasibility studies of concomitant administration of optimized formulation of probiotic-loaded Vancomycin hydrochloride pellets for colon delivery.

    PubMed

    Avachat, Amelia M; Shinde, Amol S

    2016-01-01

    Objective of this study was to develop Vancomycin HCl pellets loaded with Saccharomyces boulardii (S.b.) for pH-dependent system and CODES™ for augmenting the efficacy of Vancomycin HCl in the treatment of colitis. Pellets were prepared by extrusion-spheronization. In the pH-dependent system, the pellets were coated with Eudragit FS 30D. These pellets exhibited spherical form and a uniform surface coating. The CODES™ system consisted of three components: core containing mannitol, drug and probiotic, an inner acid-soluble coating layer, and an outer layer of enteric coating material. Statistical factorial design was used to optimize both formulations. Scanning electron micrographs of coated pellets revealed uniform coating. In vitro drug release of these coated pellets was studied sequentially in various buffers with (2%) and without rat cecal content for a period of 12 h. From the optimized pH-dependent formulation, F6 (20% w/w coating level and 15% w/v concentration of polymer), higher amount of probiotic was released in earlier time phase (first 5 h) as compared to the CODES™ and so R5 [containing acid-soluble inner coating layer (15% w/w coating level and 12% w/v concentration of Eudragit E100), and an outer layer of enteric coating material (12% w/w coating level and 10% w/v concentration of Eudragit L100)] was considered as the best formulation after confirming in vivo X-ray studies conducted on rabbits, suggesting that Vancomycin HCl and S.b. may be co-administered as pellets [CODES™] to enhance the effectiveness of Vancomycin HCl in the treatment of colitis without its associated side effects, which can only be confirmed after clinical trials.

  3. GABAergic miniature postsynaptic currents in septal neurons show differential allosteric sensitivity after binge-like ethanol exposure.

    PubMed

    DuBois, Dustin W; Trzeciakowski, Jerome P; Parrish, Alan R; Frye, Gerald D

    2006-05-17

    Binge-like ethanol treatment of septal neurons blunts GABAAR-mediated miniature postsynaptic currents (mPSCs), suggesting it arrests synaptic development. Ethanol may disrupt postsynaptic maturation by blunting feedback signaling through immature GABAARs. Here, the impact of ethanol on the sensitivity of mPSCs to zolpidem, zinc and 3alpha-hydroxy-5alpha-pregnan-20-one (3alpha-OH-DHP) was tested. The decay phase of mPSCs showed concentration-dependent potentiation by zolpidem (0.03-100 microM), which was substantially blunted after ethanol exposure. Since zolpidem potentiation exhibited a substantial age-dependent increase in untreated neurons, this finding supported the idea that ethanol arrests synaptic development. GABAAR alpha1 subunit protein also increased with age in untreated neurons, paralleling enhanced sensitivity to zolpidem. Surprisingly, alpha1 levels were not reduced by binge ethanol even though mPSCs were relatively zolpidem-insensitive. Zinc (3-30 microM) decreased mPSC parameters in a concentration- and age-related manner with older untreated cells showing less inhibition. However, there was no increase in mPSC zinc sensitivity after binge ethanol as would be expected if a general arrest of synaptic maturation had occurred. 3alpha-OH-DHP (3-1000 nM) induced concentration-dependent potentiation of mPSC decay. Although potentiation was age-independent, binge ethanol treatment exaggerated sensitivity to this neurosteroid. Finally, chronic picrotoxin pretreatment (100 microM) intended to mimic GABAAR inhibition from ethanol pretreatment did not significantly change mPSC modulation by zolpidem, zinc or 3alpha-OH-DHP. These results suggest that binge ethanol treatment selectively arrests a subset of processes important for maturation of postsynaptic GABAA Rs. However, it is unlikely that ethanol causes a broad arrest of postsynaptic development through a direct inhibition of GABAAR signaling.

  4. Charge carrier dynamics and relaxation in (polyethylene oxide-lithium-salt)-based polymer electrolyte containing 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide as ionic liquid

    NASA Astrophysics Data System (ADS)

    Karmakar, A.; Ghosh, A.

    2011-11-01

    In this paper we report the dynamics of charge carriers and relaxation in polymer electrolytes based on polyethylene oxide (PEO), lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) and 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (BMPTFSI) ionic liquid prepared by solution cast technique. It has been observed that the incorporation of BMPTFSI into PEO-LiTFSI electrolyte is an effective way for increasing the amorphous phase to a large extent. It has also been observed that both the glass transition and melting temperatures decrease with the increase of BMPTFSI concentration. The ionic conductivity of these polymer electrolytes increases with the increase of BMPTFSI concentration. The highest ionic conductivity obtained at 25 °C is ˜3×10-4 S cm-1 for the electrolyte containing 60 wt % BMPTFSI and ethylene oxide (EO)/Li ratio of 20. The temperature dependence of the dc conductivity and the hopping frequency show Vogel-Tamman-Fulcher type behavior indicating a strong coupling between the ionic and the polymer chain segmental motions. The frequency dependence of the ac conductivity exhibits a power law with an exponent n which decreases with the increase of temperature. The scaling of the ac conductivity indicates that relaxation dynamics of charge carriers follows a common mechanism for all temperatures and BMPTFSI concentrations. We have also presented the electric modulus data which have been analyzed in the framework of a Havriliak-Negami equation and the shape parameters obtained by the analysis show slight temperature dependence, but change sharply with BMPTFSI concentration. The stretched exponent β obtained from Kohlrausch-Williams-Watts fit to the modulus data is much lower than unity signifying that the relaxation is highly nonexponential. The decay function obtained from analysis of experimental modulus data is highly asymmetric with time.

  5. Fractional Models Simulating Non-Fickian Behavior in Four-Stage Single-Well Push-Pull Tests

    NASA Astrophysics Data System (ADS)

    Chen, Kewei; Zhan, Hongbin; Yang, Qiang

    2017-11-01

    Four-stage single-well push-pull (SWPP) tracer tests, including injection, chasing, resting, and pumping, were conducted in a fractured aquifer at Newark basin. An anomalous transport phenomenon observed in the SWPP tests is the linear decline of breakthrough curves (BTCs) at late time with slope of -1.8 in log-log plots. A time-dependent fractional model is developed to interpret the anomalous transport behavior. This model considers a time-dependent power law memory function and a time-dependent fractional advection-dispersion operator. The fractional advection-dispersion equations (fADE) are solved in a radial coordinate system using the implicit Euler method. A semi-analytical solution of the first-order rate-limited mobile-immobile model (FORMIM) is derived for comparison. It is found that both the nonlocal transport in time and space can produce the long-tailed BTC. A smaller time-fractional or space-fractional index leads to a lower peak concentration and a larger late-time slope. The mass distribution of the fractional-in-space (FS) model exhibits power law decline at the leading plume edge. Early breakthrough during pumping is not observed because the mobile mass at the start of pumping is nonzero and more concentrated near the wellbore. The capacity ratio is an important factor that affects the peak concentration. A larger capacity ratio leads to greater peak concentration. A smaller time-fractional index in the injection, chasing, or resting stage will move the BTC downward and the slope of the late time BTC is determined by the space-fractional index over all stages and the time-fractional index in the pumping stage. The capability of the existing models to recover the BTC of the SWPP test is discussed and some guidelines for how to choose the appropriate model to interpret the SWPP test data are proposed.

  6. Living on the edge of chaos: minimally nonlinear models of genetic regulatory dynamics.

    PubMed

    Hanel, Rudolf; Pöchacker, Manfred; Thurner, Stefan

    2010-12-28

    Linearized catalytic reaction equations (modelling, for example, the dynamics of genetic regulatory networks), under the constraint that expression levels, i.e. molecular concentrations of nucleic material, are positive, exhibit non-trivial dynamical properties, which depend on the average connectivity of the reaction network. In these systems, an inflation of the edge of chaos and multi-stability have been demonstrated to exist. The positivity constraint introduces a nonlinearity, which makes chaotic dynamics possible. Despite the simplicity of such minimally nonlinear systems, their basic properties allow us to understand the fundamental dynamical properties of complex biological reaction networks. We analyse the Lyapunov spectrum, determine the probability of finding stationary oscillating solutions, demonstrate the effect of the nonlinearity on the effective in- and out-degree of the active interaction network, and study how the frequency distributions of oscillatory modes of such a system depend on the average connectivity.

  7. BC8 Silicon (Si-III) is a Narrow-Gap Semiconductor

    NASA Astrophysics Data System (ADS)

    Zhang, Haidong; Liu, Hanyu; Wei, Kaya; Kurakevych, Oleksandr O.; Le Godec, Yann; Liu, Zhenxian; Martin, Joshua; Guerrette, Michael; Nolas, George S.; Strobel, Timothy A.

    2017-04-01

    Large-volume, phase-pure synthesis of BC8 silicon (I a 3 ¯ , c I 16 ) has enabled bulk measurements of optical, electronic, and thermal properties. Unlike previous reports that conclude BC8-Si is semimetallic, we demonstrate that this phase is a direct band gap semiconductor with a very small energy gap and moderate carrier concentration and mobility at room temperature, based on far- and midinfrared optical spectroscopy, temperature-dependent electrical conductivity, Seebeck and heat capacity measurements. Samples exhibit a plasma wavelength near 11 μ m , indicating potential for infrared plasmonic applications. Thermal conductivity is reduced by 1-2 orders of magnitude depending on temperature as compared with the diamond cubic (DC-Si) phase. The electronic structure and dielectric properties can be reproduced by first-principles calculations with hybrid functionals after adjusting the level of exact Hartree-Fock (HF) exchange mixing. These results clarify existing limited and controversial experimental data sets and ab initio calculations.

  8. Laser diode absorption spectroscopy for accurate CO(2) line parameters at 2 microm: consequences for space-based DIAL measurements and potential biases.

    PubMed

    Joly, Lilian; Marnas, Fabien; Gibert, Fabien; Bruneau, Didier; Grouiez, Bruno; Flamant, Pierre H; Durry, Georges; Dumelie, Nicolas; Parvitte, Bertrand; Zéninari, Virginie

    2009-10-10

    Space-based active sensing of CO(2) concentration is a very promising technique for the derivation of CO(2) surface fluxes. There is a need for accurate spectroscopic parameters to enable accurate space-based measurements to address global climatic issues. New spectroscopic measurements using laser diode absorption spectroscopy are presented for the preselected R30 CO(2) absorption line ((20(0)1)(III)<--(000) band) and four others. The line strength, air-broadening halfwidth, and its temperature dependence have been investigated. The results exhibit significant improvement for the R30 CO(2) absorption line: 0.4% on the line strength, 0.15% on the air-broadening coefficient, and 0.45% on its temperature dependence. Analysis of potential biases of space-based DIAL CO(2) mixing ratio measurements associated to spectroscopic parameter uncertainties are presented.

  9. Influence of Coulomb interaction of tunable shapes on the collective transport of ultradilute two-dimensional holes.

    PubMed

    Huang, Jian; Pfeiffer, L N; West, K W

    2014-01-24

    In high quality updoped GaAs field-effect transistors, the two-dimensional charge carrier concentrations can be tuned to very low values similar to the density of electrons on helium surfaces. An important interaction effect, screening of the Coulomb interaction by the gate, rises as a result of the large charge spacing comparable to the distance between the channel and the gate. Based on the results of the temperature (T) dependence of the resistivity from measuring four different samples, a power-law characteristic is found for charge densities ≤2×10(9)  cm(-2). Moreover, the exponent exhibits a universal dependence on a single dimensionless parameter, the ratio between the mean carrier separation and the distance to the metallic gate that screens the Coulomb interaction. Thus, the electronic properties are tuned through varying the shape of the interaction potential.

  10. Multiple sedimenting species of properdin in human serum and interaction of purified properdin with the third component of complement

    PubMed Central

    1976-01-01

    Normal human serum subjected to sucrose density gradient analysis exhibited multiple sedimenting species of properdin antigen. Properdin antigen distribution was dependent on serum concentration, ionic strength, temperature, and the presence of C3, and was not dependent on the presence of divalent metal cations or blood coagulation. In mixtures of purified components, properdin sedimented heavier in the presence of C3, C3b, or C3c. Addition of factor B to mixtures containing C3 and properdin was without effect. These data provide insights into earlier discrepancies concerning the sedimentation behavior of partially purified properdin, indicate a propensity of some constituents of the alternative pathway to form protein-protein complexes, and suggest caution in interpretation of immunopathological studies in which properdin deposits are found in the presence of C3. PMID:2647

  11. Tuning charge transport in pentacene thin-film transistors using the strain-induced electron-phonon coupling modification

    NASA Astrophysics Data System (ADS)

    Lin, Yow-Jon; Chang, Hsing-Cheng; Liu, Day-Shan

    2015-03-01

    Tuning charge transport in the bottom-contact pentacene-based organic thin-film transistors (OTFTs) using a MoO x capping layer that serves to the electron-phonon coupling modification is reported. For OTFTs with a MoO x front gate, the enhanced field-effect carrier mobility is investigated. The time domain data confirm the electron-trapping model. To understand the origin of a mobility enhancement, an analysis of the temperature-dependent Hall-effect characteristics is presented. Similarly, the Hall-effect carrier mobility was dramatically increased by capping a MoO x layer on the pentacene front surface. However, the carrier concentration is not affected. The Hall-effect carrier mobility exhibits strong temperature dependence, indicating the dominance of tunneling (hopping) at low (high) temperatures. A mobility enhancement is considered to come from the electron-phonon coupling modification that results from the contribution of long-lifetime electron trapping.

  12. Room temperature magnetism and metal to semiconducting transition in dilute Fe doped Sb1-xSex semiconducting alloy thin films

    NASA Astrophysics Data System (ADS)

    Agrawal, Naveen; Sarkar, Mitesh; Chawda, Mukesh; Ganesan, V.; Bodas, Dhananjay

    2015-02-01

    The magnetism was observed in very dilute Fe doped alloy thin film Fe0.008Sb1-xSex, for x = 0.01 to 0.10. These thin films were grown on silicon substrate using thermal evaporation technique. Structural, electrical, optical, charge carrier concentration measurement, surface morphology and magnetic properties were observed using glancing incidence x-ray diffraction (GIXRD), four probe resistivity, photoluminescence, Hall measurement, atomic force microscopy (AFM) and magnetic force microscopy (MFM) techniques, respectively. No peaks of iron were seen in GIXRD. The resistivity results show that activation energy increases with increase in selenium (Se) concentration. The Arrhenius plot reveals metallic behavior below room temperature. The low temperature conduction is explained by variable range-hopping mechanism, which fits very well in the temperature range 150-300 K. The decrease in density of states has been observed with increasing selenium concentration (x = 0.01 to 0.10). There is a metal-to-semiconductor phase transition observed above room temperature. This transition temperature is Se concentration dependent. The particle size distribution ˜47-61 nm is evaluated using AFM images. These thin films exhibit ferromagnetic interactions at room temperature.

  13. The importance of chain length for the polyphosphate enhancement of acidic potassium permanganate chemiluminescence.

    PubMed

    Holland, Brendan J; Adcock, Jacqui L; Nesterenko, Pavel N; Peristyy, Anton; Stevenson, Paul G; Barnett, Neil W; Conlan, Xavier A; Francis, Paul S

    2014-09-09

    Sodium polyphosphate is commonly used to enhance chemiluminescence reactions with acidic potassium permanganate through a dual enhancement mechanism, but commercially available polyphosphates vary greatly in composition. We have examined the influence of polyphosphate composition and concentration on both the dual enhancement mechanism of chemiluminescence intensity and the stability of the reagent under analytically useful conditions. The average chain length (n) provides a convenient characterisation, but materials with similar values can exhibit markedly different distributions of phosphate oligomers. There is a minimum polyphosphate chain length (∼6) required for a large enhancement of the emission intensity, but no further advantage was obtained using polyphosphate materials with much longer average chain lengths. Providing there is a sufficient average chain length, the optimum concentration of polyphosphate is dependent on the analyte and in some cases, may be lower than the quantities previously used in routine detection. However, the concentration of polyphosphate should not be lowered in permanganate reagents that have been partially reduced to form high concentrations of the key manganese(III) co-reactant, as this intermediate needs to be stabilised to prevent formation of insoluble manganese(IV). Copyright © 2014 Elsevier B.V. All rights reserved.

  14. In vitro evaluation of free radical scavenging activity of Codariocalyx motorius root extract.

    PubMed

    Chidambaram, Uma; Pachamuthu, Vanitha; Natarajan, Suganya; Elango, Bhakkiyalakshmi; Suriyanarayanan; Ramkumar, Kunga Mohan

    2013-03-01

    To determine the phenolic content in Codariocalyx motorius root extract and to evaluate its antioxidant properties using various in vitro assay systems. The antioxidant activity was evaluated based on scavenging of 1,1-diphenyl-2-picrylhydrazyl, hydroxyl radicals, superoxide anions, nitric oxide, hydrogen peroxide, peroxynitrite, reducing power and by inhibition of lipid peroxidation which was estimated in terms of thiobarbituric acid reactive substances. The root extract of the Codariocalyx motorius (C. motorius) exhibited potent total antioxidant activity that increased with increasing amount of extract concentration, which was compared with standard drug such as quercetin, butylated hydroxytoluene, tocopherol at different concentrations. The different concentrations of the extracts showed inhibition on lipid peroxidation. In addition, the extracts had effective reducing power, free radical scavenging, super oxide anion scavenging, nitric oxide scavenging, lipid peroxidation, and total phenolic content depending on concentration. High correlation between total phenolic contents and scavenging potential of different reactive oxygen species (r(2)=0.831-0.978) indicated the polyphenols as the main antioxidants. Codariocalyx motorius (C. motorius) root possess the highly active antioxidant substance which can be used for the treatment of oxidative stress-related diseases. Copyright © 2013 Hainan Medical College. Published by Elsevier B.V. All rights reserved.

  15. Temperature Dependence of the Mechanical Properties of Equiatomic Solid Solution Alloys with FCC Crystal Structures

    DOE PAGES

    Wu, Zhenggang; Bei, Hongbin; Pharr, George M.; ...

    2014-10-03

    We found that compared to decades-old theories of strengthening in dilute solid solutions, the mechanical behavior of concentrated solid solutions is relatively poorly understood. A special subset of these materials includes alloys in which the constituent elements are present in equal atomic proportions, including the high-entropy alloys of recent interest. A unique characteristic of equiatomic alloys is the absence of “solvent” and “solute” atoms, resulting in a breakdown of the textbook picture of dislocations moving through a solvent lattice and encountering discrete solute obstacles. Likewise, to clarify the mechanical behavior of this interesting new class of materials, we investigate heremore » a family of equiatomic binary, ternary and quaternary alloys based on the elements Fe, Ni, Co, Cr and Mn that were previously shown to be single-phase face-centered cubic (fcc) solid solutions. The alloys were arc-melted, drop-cast, homogenized, cold-rolled and recrystallized to produce equiaxed microstructures with comparable grain sizes. Tensile tests were performed at an engineering strain rate of 10 -3 s -1 at temperatures in the range 77–673 K. Unalloyed fcc Ni was processed similarly and tested for comparison. The flow stresses depend to varying degrees on temperature, with some (e.g. NiCoCr, NiCoCrMn and FeNiCoCr) exhibiting yield and ultimate strengths that increase strongly with decreasing temperature, while others (e.g. NiCo and Ni) exhibit very weak temperature dependencies. Moreover, to better understand this behavior, the temperature dependencies of the yield strength and strain hardening were analyzed separately. Lattice friction appears to be the predominant component of the temperature-dependent yield stress, possibly because the Peierls barrier height decreases with increasing temperature due to a thermally induced increase of dislocation width. In the early stages of plastic flow (5–13% strain, depending on material), the temperature dependence of strain hardening is due mainly to the temperature dependence of the shear modulus. In all the equiatomic alloys, ductility and strength increase with decreasing temperature down to 77 K. Keywords« less

  16. Estimating in vivo airway surface liquid concentration in trials of inhaled antibiotics.

    PubMed

    Hasan, M A; Lange, C F

    2007-01-01

    Antibiotic drugs exhibit concentration dependence in their efficacy. Therefore, ensuring appropriate concentration of these drugs in the relevant body fluid is important for obtaining the desired therapeutic and physiological action. Until recently there had been no suitable method available to measure or estimate concentration of drugs in the human airways resulting from inhaled aerosols or to determine the amount of inhaled antibiotics required to ensure minimum inhibitory concentration of a drug in the airway surface liquid (ASL). In this paper a numerical method is used for estimating local concentration of inhaled pharmaceutical aerosols in different generations of the human tracheobronchial airways. The method utilizes a mathematical lung deposition model to estimate amounts of aerosols depositing in different lung generations, and a recent ASL model along with deposition results to assess the concentration of deposited drugs immediately following inhalation. Examples of concentration estimates for two case studies: one for the antibiotic tobramycin against Pseudomonas aeruginosa, and another for taurolidine against Burkholderia cepacia are presented. The aerosol characteristics, breathing pattern and properties of nebulized solutions were adopted from two recent clinical studies on efficacy of these drugs in cystic fibrosis (CF) patients and from other sources in the literature. While the clinically effective tobramycin showed a concentration higher than the required in vivo concentration, that for the ineffective taurolidine was found to be below the speculated required in vivo concentration. Results of this study thus show that the mathematical ASL model combined with the lung deposition model can be an effective tool for helping decide the optimum dosage of inhaled antibiotic drugs delivered during human clinical trials.

  17. Surface ozone concentrations in Europe: Links with the regional-scale atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Davies, T. D.; Kelly, P. M.; Low, P. S.; Pierce, C. E.

    1992-06-01

    Daily surface ozone observations from 1978 (1976 for some analyses) to 1988 for Bottesford (United Kingdom), Cabauw, Kloosterburen (The Netherlands), Hohenpeissenberg, Neuglobsow, Hamburg, and Arkona (Germany) are used to analyze links between surface ozone variations and the atmospheric circulation. A daily Europe-wide synoptic classification highlights marked differences between surface ozone/meteorology relationships in summer and winter. These relationships are characterized by correlations between daily surface ozone concentrations at each station and a local subregional surface pressure gradient (a wind speed index). Although there are geographical variations, which are explicable in terms of regional climatology, there are distinct annual cycles. In summer, the surface ozone/wind speed relationship exhibits the expected negative sign; however, in winter, the relationship is, in the main, strongly positive, especially at those stations which are more influenced by the vigorous westerlies. Spring and autumn exhibit negative, positive, or transitional (between summer and winter) behavior, depending on geographical position. It is suggested that these relationships reflect the importance of vertical exchange from the free troposphere to the surface in the nonsummer months. Composite surface pressure patterns and surface pressure anomaly (from the long-term mean) patterns associated with high surface ozone concentrations on daily and seasonal time scales are consistent with the surface ozone/wind speed relationships. Moreover, they demonstrate that high surface ozone concentrations, in a climatological time frame, can be associated with mean surface pressure patterns which have a synoptic reality and are robust. Such an approach may be useful in interpreting past variations in surface ozone and may help to isolate the effect of human activity. It is also possible that assessments can be made of the effect of projected future changes in the atmospheric circulation. This potential is illustrated by the fact that up to 65% of the interannual variance in 6-month mean surface ozone concentrations can be explained by the subregional wind speed index.

  18. Effect of Concentration on the Electrochemistry and Speciation of the Magnesium Aluminum Chloride Complex Electrolyte Solution.

    PubMed

    See, Kimberly A; Liu, Yao-Min; Ha, Yeyoung; Barile, Christopher J; Gewirth, Andrew A

    2017-10-18

    Magnesium batteries offer an opportunity to use naturally abundant Mg and achieve large volumetric capacities reaching over four times that of conventional Li-based intercalation anodes. High volumetric capacity is enabled by the use of a Mg metal anode in which charge is stored via electrodeposition and stripping processes, however, electrolytes that support efficient Mg electrodeposition and stripping are few and are often prepared from highly reactive compounds. One interesting electrolyte solution that supports Mg deposition and stripping without the use of highly reactive reagents is the magnesium aluminum chloride complex (MACC) electrolyte. The MACC exhibits high Coulombic efficiencies and low deposition overpotentials following an electrolytic conditioning protocol that stabilizes species necessary for such behavior. Here, we discuss the effect of the MgCl 2 and AlCl 3 concentrations on the deposition overpotential, current density, and the conditioning process. Higher concentrations of MACC exhibit enhanced Mg electrodeposition current density and much faster conditioning. An increase in the salt concentrations causes a shift in the complex equilibria involving both cations. The conditioning process is strongly dependent on the concentration suggesting that the electrolyte is activated through a change in speciation of electrolyte complexes and is not simply due to the annihilation of electrolyte impurities. Additionally, the presence of the [Mg 2 (μ-Cl) 3 ·6THF] + in the electrolyte solution is again confirmed through careful analysis of experimental Raman spectra coupled with simulation and direct observation of the complex in sonic spray ionization mass spectrometry. Importantly, we suggest that the ∼210 cm -1 mode commonly observed in the Raman spectra of many Mg electrolytes is indicative of the C 3v symmetric [Mg 2 (μ-Cl) 3 ·6THF] + . The 210 cm -1 mode is present in many electrolytes containing MgCl 2 , so its assignment is of broad interest to the Mg electrolyte community.

  19. Zinc-ion-dependent acid phosphatase exhibits magnesium-ion-dependent myo-inositol-1-phosphatase activity.

    PubMed

    Fujimoto, S; Okano, I; Tanaka, Y; Sumida, Y; Tsuda, J; Kawakami, N; Shimohama, S

    1996-06-01

    We have purified bovine brain Zn(2+)-dependent acid phosphatase (Zn(2+)-APase), which requires Zn2+ ions to hydrolyze the substrate p-nitrophenyl phosphate (pNPP) in an acidic environment. The substrate specificity and metal requirement of Zn(2+)-APase at a physiological pH was also studied. The enzyme exhibited hydrolytic activity on myo-inositol-1- and -2-monophosphates, 2'-adenosine monophosphate, 2'-guanosine monophosphate, and the alpha- and beta-glycerophosphates, glucose-1-phosphate, and fructose-6-phosphate in 50 mM Tris-HCl buffer (pH 7.4) in the presence of Mg2+ ions, but not on pNPP and phosphotyrosine. Zn2+, Mn2+ and Co2+ ions were less effective for activation. Among the above substrates, myo-inositol-1-phosphate was the most susceptible to hydrolysis by the enzyme in the presence of 3 mM Mg2+ ions. The enzyme exhibited an optimum pH at around 8 for myo-inositol-1-phosphate in the presence of 3 mM Mg2+ ions. The Mg(2+)-dependent myo-inositol-1-phosphatase activity of the enzyme was significantly inhibited by Li+ ions. The Zn(2+)-dependent p-nitrophenyl phosphatase activity and Mg(2+)-dependent myo-inositol-1-phosphatase activity of the purified enzyme fraction exhibited similar behavior on Sephadex G-100 and Mono Q colomns. These findings suggest that Zn(2+)-APase also exhibits Mg(2+)-dependent myo-inositol-1-phosphatase activity under physiological conditions.

  20. Mutating the Conserved Q-loop Glutamine 1291 Selectively Disrupts Adenylate Kinase-dependent Channel Gating of the ATP-binding Cassette (ABC) Adenylate Kinase Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) and Reduces Channel Function in Primary Human Airway Epithelia*

    PubMed Central

    Dong, Qian; Ernst, Sarah E.; Ostedgaard, Lynda S.; Shah, Viral S.; Ver Heul, Amanda R.; Welsh, Michael J.; Randak, Christoph O.

    2015-01-01

    The ATP-binding cassette (ABC) transporter cystic fibrosis transmembrane conductance regulator (CFTR) and two other non-membrane-bound ABC proteins, Rad50 and a structural maintenance of chromosome (SMC) protein, exhibit adenylate kinase activity in the presence of physiologic concentrations of ATP and AMP or ADP (ATP + AMP ⇆ 2 ADP). The crystal structure of the nucleotide-binding domain of an SMC protein in complex with the adenylate kinase bisubstrate inhibitor P1,P5-di(adenosine-5′) pentaphosphate (Ap5A) suggests that AMP binds to the conserved Q-loop glutamine during the adenylate kinase reaction. Therefore, we hypothesized that mutating the corresponding residue in CFTR, Gln-1291, selectively disrupts adenylate kinase-dependent channel gating at physiologic nucleotide concentrations. We found that substituting Gln-1291 with bulky side-chain amino acids abolished the effects of Ap5A, AMP, and adenosine 5′-monophosphoramidate on CFTR channel function. 8-Azidoadenosine 5′-monophosphate photolabeling of the AMP-binding site and adenylate kinase activity were disrupted in Q1291F CFTR. The Gln-1291 mutations did not alter the potency of ATP at stimulating current or ATP-dependent gating when ATP was the only nucleotide present. However, when physiologic concentrations of ADP and AMP were added, adenylate kinase-deficient Q1291F channels opened significantly less than wild type. Consistent with this result, we found that Q1291F CFTR displayed significantly reduced Cl− channel function in well differentiated primary human airway epithelia. These results indicate that a highly conserved residue of an ABC transporter plays an important role in adenylate kinase-dependent CFTR gating. Furthermore, the results suggest that adenylate kinase activity is important for normal CFTR channel function in airway epithelia. PMID:25887396

Top