Science.gov

Sample records for exhibits ppargamma ligand

  1. Revealing a steroid receptor ligand as a unique PPAR[gamma] agonist

    SciTech Connect

    Lin, Shengchen; Han, Ying; Shi, Yuzhe

    2012-06-28

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) regulates metabolic homeostasis and is a molecular target for anti-diabetic drugs. We report here the identification of a steroid receptor ligand, RU-486, as an unexpected PPAR{gamma} agonist, thereby uncovering a novel signaling route for this steroid drug. Similar to rosiglitazone, RU-486 modulates the expression of key PPAR{gamma} target genes and promotes adipocyte differentiation, but with a lower adipogenic activity. Structural and functional studies of receptor-ligand interactions reveal the molecular basis for a unique binding mode for RU-486 in the PPAR{gamma} ligand-binding pocket with distinctive properties and epitopes, providing the molecular mechanisms for the discrimination ofmore » RU-486 from thiazolidinediones (TZDs) drugs. Our findings together indicate that steroid compounds may represent an alternative approach for designing non-TZD PPAR{gamma} ligands in the treatment of insulin resistance.« less

  2. PPAR{gamma} ligands induce growth inhibition and apoptosis through p63 and p73 in human ovarian cancer cells

    SciTech Connect

    Kim, Soyeon; Innovative Research Institute for Cell Therapy, Seoul National University College of Medicine and Hospital, Seoul; Lee, Jae-Jung

    2011-03-18

    Research highlights: {yields} PPAR{gamma} ligands increased the rate of apoptosis and inhibition of proliferation in ovarian cancer cells. {yields} PPAR{gamma} ligands induced p63 and p73 expression, but not p53. {yields} p63 and p73 leads to an increase in p21 expression and apoptosis in ovarian cancer cells with treatment PPAR{gamma} ligands. {yields} These findings suggest that PPAR{gamma} ligands suppressed growth of ovarian cancer cells through upregulation of p63 and p73. -- Abstract: Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists, including thiazolidinediones (TZDs), can induce anti-proliferation, differentiation, and apoptosis in various cancer cell types. This study investigated the mechanism of the anticancer effectmore » of TZDs on human ovarian cancer. Six human ovarian cancer cell lines (NIH:OVCAR3, SKOV3, SNU-251, SNU-8, SNU-840, and 2774) were treated with the TZD, which induced dose-dependent inhibition of cell growth. Additionally, these cell lines exhibited various expression levels of PPAR{gamma} protein as revealed by Western blotting. Flow cytometry showed that the cell cycle was arrested at the G1 phase, as demonstrated by the appearance of a sub-G1 peak. This observation was corroborated by the finding of increased levels of Bax, p21, PARP, and cleaved caspase 3 in TGZ-treated cells. Interestingly, when we determined the effect of p53-induced growth inhibition in these three human ovarian cancer cells, we found that they either lacked p53 or contained a mutant form of p53. Furthermore, TGZ induced the expression of endogenous or exogenous p63 and p73 proteins and p63- or p73-directed short hairpin (si) RNAs inhibited the ability of TGZ to regulate expression of p21 in these cells. Thus, our results suggest that PPAR{gamma} ligands can induce growth suppression of ovarian cancer cells and mediate p63 and p73 expression, leading to enhanced growth inhibition and apoptosis. The tumor suppressive effects of PPAR{gamma

  3. Expression of peroxisome proliferator-activated receptor gamma (PPAR-gamma) in canine nasal carcinomas.

    PubMed

    Paciello, O; Borzacchiello, G; Varricchio, E; Papparella, S

    2007-10-01

    Peroxisome proliferator-activated receptor gamma (PPAR-gamma) is a ligand-activated transcriptional factor belonging to the steroid receptor superfamily. PPAR-gamma is expressed in multiple normal and neoplastic tissues, such as the breast, colon, lung, ovary and placenta. In addition to adipogenic and anti-inflammatory effects, PPAR-gamma activation has been shown to be anti-proliferative by its differentiation-promoting effect, suggesting that activation of PPAR-gamma may be useful in slowing or arresting the proliferation of de-differentiated tumour cells. In this study, we investigated the expression of PPAR-gamma in normal and neoplastic canine nasal epithelium. Twenty-five samples composed of five normal nasal epithelia and 20 canine nasal carcinomas, were immunohistochemically stained for PPAR-gamma. The specificity of the antibody was verified by Western Blot analysis. Confocal laser scanning microscopical investigation was also performed. In normal epithelium, the staining pattern was cytoplasmic and polarized at the cellular free edge. In carcinomas, the neoplastic cells showed mainly strong cytoplasmatic PPAR-gamma expression; moreover, perinuclear immunoreactivity was also detected and few neoplastic cells exhibited a nuclear positivity. Our results demonstrate different patterns of PPAR-gamma expression in normal canine nasal epithelium when compared with canine nasal carcinoma. The importance of this transcription factor in the pathophysiology of several different tumours has stimulated much research in this field and has opened new opportunities for the treatment of the tumours.

  4. Peroxisome proliferator-activated receptor (PPAR)gamma is highly expressed in normal human pituitary gland.

    PubMed

    Bogazzi, F; Russo, D; Locci, M T; Chifenti, B; Ultimieri, F; Raggi, F; Viacava, P; Cecchetti, D; Cosci, C; Sardella, C; Acerbi, G; Gasperi, M; Martino, E

    2005-11-01

    Expression of peroxisome proliferator-activated receptor (PPAR)gamma in normal pituitary seems to be restricted to ACTH-secreting cells. The aim of the study was to evaluate the expression of PPARgamma in normal human pituitary tissue and to study its localization in the pituitary secreting cells. Normal pituitary tissue samples were obtained form 11 patients with non-secreting adenoma who underwent surgical excision of the tumor. Expression of PPARgamma was evaluated by immunostaining and western blotting; localization of PPARgamma in each pituitary secreting cell lineage was evaluated by double immunofluorescence using confocal microscopy. Pituitary non-functioning adenomas served as Controls. PPARgamma was highly expressed in all pituitary samples with a (mean +/- SD) 81 +/- 6.5% of stained cells; expression of PPARgamma was confirmed by western blotting. Non-functioning pituitary adenomas had 74 +/- 11% PPARgamma positive cells. Expression of PPARy was either in cytoplasm or nuclei. In addition, treatment of GH3 cells, with a PPARgamma ligand was associated with traslocation of the receptor from cytoplasm into the nucleus. Double immunostaining revealed that every pituitary secreting cell (GH, TSH, LH, FSH, PRL and ACTH) had PPARgamma expressed. The present study demonstrated that PPARgamma is highly expressed in every normal pituitary secreting cell lineage. It can translocate into the nucleus by ligand binding; however, its role in pituitary hormone regulation remains to be elucidated.

  5. A PPARgamma mutant serves as a dominant negative inhibitor of PPAR signaling and is localized in the nucleus.

    PubMed

    Berger, J; Patel, H V; Woods, J; Hayes, N S; Parent, S A; Clemas, J; Leibowitz, M D; Elbrecht, A; Rachubinski, R A; Capone, J P; Moller, D E

    2000-04-25

    The peroxisomal proliferator-activated receptors (PPARs) are members of the nuclear receptor superfamily that act as ligand-activated transcription factors. PPARgamma plays a critical role in regulating adipocyte differentiation and lipid metabolism. Recently, thiazolidinedione (TZD) and select non-TZD antidiabetic agents have been identified as PPARgamma agonists. To further characterize this receptor subclass, a mutant hPPARgamma lacking five carboxyl-terminal amino acids was produced (hPPARgamma2Delta500). In COS-1 cells transfected with PPAR-responsive reporter constructs, the mutant receptor could not be activated by a potent PPARgamma agonist. When cotransfected with hPPARgamma2 or hPPARalpha, hPPARgamma2Delta500 abrogated wild-type receptor activity in a dose-responsive manner. hPPARgamma2Delta500 was also impaired with respect to binding of a high-affinity radioligand. In addition, its conformation was unaffected by normally saturating concentrations of PPARgamma agonist as determined by protease protection experiments. Electrophoretic mobility shift assays demonstrated that hPPARgamma2Delta500 and hPPARgamma2 both formed heterodimeric complexes with human retinoidxreceptor alpha (hRXRalpha) and could bind a peroxisome proliferator-responsive element (PPRE) with similar affinity. Therefore, hPPARgamma2Delta500 appears to repress PPAR activity by competing with wild type receptor to dimerize with RXR and bind the PPRE. In addition, the mutant receptor may titrate out factors required for PPAR-regulated transcriptional activation. Both hPPARgamma2 and hPPARgamma2Delta500 localized to the nucleus of transiently transfected COS-1 cells as determined by immunofluorescence using a PPARgamma-specific antibody. Thus, nuclear localization of PPARgamma occurs independently of its activation state. The dominant negative mutant, hPPARgamma2Delta500, may prove useful in further studies to characterize PPAR functions both in vitro and in vivo

  6. PPARgamma agonists inhibit TGF-beta-PKA signaling in glomerulosclerosis.

    PubMed

    Zou, Rong; Xu, Gang; Liu, Xiao-cheng; Han, Min; Jiang, Jing-jing; Huang, Qian; He, Yong; Yao, Ying

    2010-01-01

    To study the probable mechanisms of the anti-glomerulosclerosis effects induced by peroxisome proliferator-activated receptor gamma (PPARgamma) agonists in rat intraglomerular mesangial cells (MCs). Cells were transfected with the pTAL-PPRE-tk-Luc(+) plasmid and then treated with different concentrations of PPARgamma agonist, either troglitazone or telmisartan, for the indicated times. Promega luciferase assays were subsequently used for the detection of PPARgamma activation. Protein expression levels were assessed by Western blot, and PepTag assays were used for the non-radioactive detection of protein kinase A (PKA) activity. The deposition of alpha-smooth muscle actin (alpha-SMA) and p-cyclic AMP responsive element binding protein (pCREB) were analyzed by confocal laser scanning. Both troglitazone and telmisartan remarkably inhibit the PKA activation and pCREB expression that is stimulated by TGF-beta. The PPARgamma agonists also inhibited alpha-SMA and collagen IV protein expression by blocking PKA activation. PPARgamma ligands effectively suppress the activation of MCs and the accumulation of collagen IV stimulated by TGF-beta in vitro. The renal protection provided by PPARgamma agonists is partly mediated via their blockade of TGF-beta/PKA signaling.

  7. A peroxisome proliferator-activated receptor ligand MCC-555 imparts anti-proliferative response in pancreatic cancer cells by PPARgamma-independent up-regulation of KLF4

    SciTech Connect

    Min, Kyung-Won; Zhang, Xiaobo; College of Animal Science and Technology, Northwest A and F University, Yangling, Shaanxi, 712100

    2012-09-01

    MCC-555 is a novel PPARα/γ dual ligand of the thiazolidinedione class and was recently developed as an anti-diabetic drug with unique properties. MCC-555 also has anti-proliferative activity through growth inhibition and apoptosis induction in several cancer cell types. Our group has shown that MCC-555 targets several proteins in colorectal tumorigenesis including nonsteroidal anti-inflammatory drug (NSAID)-activated gene (NAG-1) which plays an important role in chemoprevention responsible for chemopreventive compounds. NAG-1 is a member of the TGF-β superfamily and is involved in tumor progression and development; however, NAG-1's roles in pancreatic cancer have not been studied. In this report, we found thatmore » MCC-555 alters not only NAG-1 expression, but also p21 and cyclin D1 expression. NAG-1 and p21 expression was not blocked by PPARγ-specific antagonist GW9662, suggesting that MCC-555-induced NAG-1 and p21 expression is independent of PPARγ activation. However, decreasing cyclin D1 by MCC-555 seems to be affected by PPARγ activation. Further, we found that the GC box located in the NAG-1 promoter play an important role in NAG-1 transactivation by MCC-555. Subsequently, we screened several transcription factors that may bind to the GC box region in the NAG-1 promoter and found that KLF4 potentially binds to this region. Expression of KLF4 precedes NAG-1 and p21 expression in the presence of MCC-555, whereas blocking KLF4 expression using specific KLF4 siRNA showed that both NAG-1 and p21 expression by MCC-555 was blocked. In conclusion, MCC-555's actions on anti-proliferation involve both PPARγ-dependent and -independent pathways, thereby enhancing anti-tumorigenesis in pancreatic cancer cells. -- Highlights: ► PPARα/γ ligand MCC-555 exhibits anti-proliferative activity in pancreatic cancer cells. ► MCC-555 affects KLF4 expression following by NAG-1 and p21 expression in a PPARγ independent manner. ► MCC-555 also affects cyclin D1 down

  8. Peroxisome proliferator-activated receptor (PPAR)-gamma expression in human vascular smooth muscle cells: inhibition of growth, migration, and c-fos expression by the peroxisome proliferator-activated receptor (PPAR)-gamma activator troglitazone.

    PubMed

    Benson, S; Wu, J; Padmanabhan, S; Kurtz, T W; Pershadsingh, H A

    2000-01-01

    This study was conducted to determine whether cultured human coronary artery and aorta vascular smooth muscle (VSM) cells express the nuclear transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma); whether the thiazolidinedione troglitazone, a ligand for PPARgamma, would inhibit c-fos expression by these cells; and whether troglitazone would inhibit proliferation and migration induced in these cells by mitogenic growth factors. Using immunoblotting and reverse-transcriptase polymerase chain reaction (RT-PCR) techniques, we show that both human aorta and coronary artery VSM cell lines expressed PPARgamma protein and mRNA for both PPARgamma isoforms, PPARgamma1 and PPARgamma2. Immunocytochemical staining localized the PPARgamma protein primarily within the nucleus. Troglitazone inhibited basic fibroblast growth factor and platelet-derived growth factor-BB induced DNA synthesis in a dose-dependent manner and downregulated the growth-factor-induced expression of c-fos. Troglitazone also inhibited the migration of coronary artery VSM cells along a platelet-derived growth factor-BB concentration gradient. These findings demonstrate for the first time the expression and nuclear localization of PPARgamma in human coronary artery and aorta VSM cells. The data also suggest that the downregulation of c-fos expression, growth-factor-induced proliferation, and migration by VSM may, in part, be mediated by activation of the PPARgamma receptor.

  9. The orphan nuclear receptor DAX-1 acts as a novel transcriptional corepressor of PPAR{gamma}

    SciTech Connect

    Kim, Gwang Sik; Lee, Gha Young; Nedumaran, Balachandar

    2008-05-30

    DAX-1 is an atypical nuclear receptor (NR) which functions primarily as a transcriptional corepressor of other NRs via heterodimerization. Peroxisome proliferator-activated receptor (PPAR) {gamma} is a ligand-dependent NR which performs a key function in adipogenesis. In this study, we evaluated a novel cross-talk mechanism between DAX-1 and PPAR{gamma}. Transient transfection assays demonstrated that DAX-1 inhibits the transactivity of PPAR{gamma} in a dose-dependent manner. DAX-1 directly competed with the PPAR{gamma} coactivator (PGC)-1{alpha} for binding to PPAR{gamma}. Endogenous levels of DAX-1 were significantly lower in differentiated 3T3-L1 adipocytes as compared to preadipocytes. Using a retroviral expression system, we demonstrated that DAX-1 overexpressionmore » downregulates the expression of PPAR{gamma} target genes, resulting in an attenuation of adipogenesis in 3T3-L1 cells. Our results suggest that DAX-1 acts as a corepressor of PPAR{gamma} and performs a potential function in the regulation of PPAR{gamma}-mediated cellular differentiation.« less

  10. The PPAR{gamma} coding region and its role in visceral obesity

    SciTech Connect

    Boon Yin, Khoo; Institute for Research in Molecular Medicine; Najimudin, Nazalan

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) is a ligand activated transcription factor, plays many essential roles of biological function in higher organisms. The PPAR{gamma} is mainly expressed in adipose tissue. It regulates the transcriptional activity of genes by binding with other transcription factor. The PPAR{gamma} coding region has been found to be closest to that of monkey in ours and other research groups. Thus, monkey is a more suitable animal model for future PPAR{gamma} studying, although mice and rat are frequently being used. The PPAR{gamma} is involved in regulating alterations of adipose tissue masses result from changes in mature adipocyte sizemore » and/or number through a complex interplay process called adipogenesis. However, the role of PPAR{gamma} in negatively regulating the process of adipogenesis remains unclear. This review may help we investigate the differential expression of key transcription factor in adipose tissue in response to visceral obesity-induced diet in vivo. The study may also provide valuable information to define a more appropriate physiological condition in adipogenesis which may help to prevent diseases cause by negative regulation of the transcription factors in adipose tissue.« less

  11. Metabolic actions of estrogen receptor beta (ERbeta) are mediated by a negative cross-talk with PPARgamma.

    PubMed

    Foryst-Ludwig, Anna; Clemenz, Markus; Hohmann, Stephan; Hartge, Martin; Sprang, Christiane; Frost, Nikolaj; Krikov, Maxim; Bhanot, Sanjay; Barros, Rodrigo; Morani, Andrea; Gustafsson, Jan-Ake; Unger, Thomas; Kintscher, Ulrich

    2008-06-27

    Estrogen receptors (ER) are important regulators of metabolic diseases such as obesity and insulin resistance (IR). While ERalpha seems to have a protective role in such diseases, the function of ERbeta is not clear. To characterize the metabolic function of ERbeta, we investigated its molecular interaction with a master regulator of insulin signaling/glucose metabolism, the PPARgamma, in vitro and in high-fat diet (HFD)-fed ERbeta -/- mice (betaERKO) mice. Our in vitro experiments showed that ERbeta inhibits ligand-mediated PPARgamma-transcriptional activity. That resulted in a blockade of PPARgamma-induced adipocytic gene expression and in decreased adipogenesis. Overexpression of nuclear coactivators such as SRC1 and TIF2 prevented the ERbeta-mediated inhibition of PPARgamma activity. Consistent with the in vitro data, we observed increased PPARgamma activity in gonadal fat from HFD-fed betaERKO mice. In consonance with enhanced PPARgamma activation, HFD-fed betaERKO mice showed increased body weight gain and fat mass in the presence of improved insulin sensitivity. To directly demonstrate the role of PPARgamma in HFD-fed betaERKO mice, PPARgamma signaling was disrupted by PPARgamma antisense oligonucleotide (ASO). Blockade of adipose PPARgamma by ASO reversed the phenotype of betaERKO mice with an impairment of insulin sensitization and glucose tolerance. Finally, binding of SRC1 and TIF2 to the PPARgamma-regulated adiponectin promoter was enhanced in gonadal fat from betaERKO mice indicating that the absence of ERbeta in adipose tissue results in exaggerated coactivator binding to a PPARgamma target promoter. Collectively, our data provide the first evidence that ERbeta-deficiency protects against diet-induced IR and glucose intolerance which involves an augmented PPARgamma signaling in adipose tissue. Moreover, our data suggest that the coactivators SRC1 and TIF2 are involved in this interaction. Impairment of insulin and glucose metabolism by ERbeta may have

  12. Regulation of PPAR{gamma} function by TNF-{alpha}

    SciTech Connect

    Ye Jianping

    2008-09-26

    The nuclear receptor PPAR{gamma} is a lipid sensor that regulates lipid metabolism through gene transcription. Inhibition of PPAR{gamma} activity by TNF-{alpha} is involved in pathogenesis of insulin resistance, atherosclerosis, inflammation, and cancer cachexia. PPAR{gamma} activity is regulated by TNF-{alpha} at pre-translational and post-translational levels. Activation of serine kinases including IKK, ERK, JNK, and p38 may be involved in the TNF-regulation of PPAR{gamma}. Of the four kinases, IKK is a dominant signaling molecule in the TNF-regulation of PPAR{gamma}. IKK acts through at least two mechanisms: inhibition of PPAR{gamma} expression and activation of PPAR{gamma} corepressor. In this review article, literature is reviewedmore » with a focus on the mechanisms of PPAR{gamma} inhibition by TNF-{alpha}.« less

  13. Pharmacological correction of a defect in PPAR-gamma signaling ameliorates disease severity in Cftr-deficient mice.

    PubMed

    Harmon, Gregory S; Dumlao, Darren S; Ng, Damian T; Barrett, Kim E; Dennis, Edward A; Dong, Hui; Glass, Christopher K

    2010-03-01

    Cystic fibrosis is caused by mutations in the cystic fibrosis transmembrane conductance regulator (encoded by Cftr) that impair its role as an apical chloride channel that supports bicarbonate transport. Individuals with cystic fibrosis show retained, thickened mucus that plugs airways and obstructs luminal organs as well as numerous other abnormalities that include inflammation of affected organs, alterations in lipid metabolism and insulin resistance. Here we show that colonic epithelial cells and whole lung tissue from Cftr-deficient mice show a defect in peroxisome proliferator-activated receptor-gamma (PPAR-gamma, encoded by Pparg) function that contributes to a pathological program of gene expression. Lipidomic analysis of colonic epithelial cells suggests that this defect results in part from reduced amounts of the endogenous PPAR-gamma ligand 15-keto-prostaglandin E(2) (15-keto-PGE(2)). Treatment of Cftr-deficient mice with the synthetic PPAR-gamma ligand rosiglitazone partially normalizes the altered gene expression pattern associated with Cftr deficiency and reduces disease severity. Rosiglitazone has no effect on chloride secretion in the colon, but it increases expression of the genes encoding carbonic anhydrases 4 and 2 (Car4 and Car2), increases bicarbonate secretion and reduces mucus retention. These studies reveal a reversible defect in PPAR-gamma signaling in Cftr-deficient cells that can be pharmacologically corrected to ameliorate the severity of the cystic fibrosis phenotype in mice.

  14. Polymeric particles conjugated with a ligand to VCAM-1 exhibit selective, avid, and focal adhesion to sites of atherosclerosis.

    PubMed

    Deosarkar, Sudhir P; Malgor, Ramiro; Fu, Jie; Kohn, Leonard D; Hanes, Justin; Goetz, Douglas J

    2008-10-01

    The increased expression of VCAM-1 on endothelial segments within plaque regions could be used as a target to deliver polymeric drug carriers selectively to sites of atherosclerosis. We probed the hypothesis that polymeric particles conjugated with a ligand for VCAM-1 exhibit selective and avid adhesion to sites of atherosclerosis. Particles made from polystyrene or the biodegradable polymer poly(sebacic acid)-block-polyethylene glycol (PSA-PEG) were conjugated with an antibody to VCAM-1 (alpha-VCAM-1) or IgG (negative control). The particles were injected into the jugular vein of ApoE(-/-) (a murine model of atherosclerosis) or wild type mice and their adhesion to the aorta determined. alpha-VCAM-1 particles exhibited significantly greater adhesion to ApoE(-/-) mouse aorta [32 +/- 5 (mean +/- SEM) particles/mm(2) for polystyrene particles and 31 +/- 7 particles/mm(2) for PSA-PEG particles] compared to the level of adhesion to wild type mouse aorta (18 +/- 1 particles/mm(2) for polystyrene particles and 6 +/- 1 particles/mm(2) for PSA-PEG particles). Within ApoE(-/-) mice, the alpha-VCAM-1 particles exhibited significantly greater adhesion to the aorta (32 +/- 5 particles/mm(2) for polystyrene particles and 31 +/- 7 particles/mm(2) for PSA-PEG particles) compared to the adhesion of IgG particles (1 +/- 1 particles/mm(2) for polystyrene particles and 2 +/- 1 particles/mm(2) for PSA-PEG particles). Detailed analysis of the adhesion revealed that alpha-VCAM-1 particles exhibited focal adhesion to plaque regions, in particular the periphery of the plaques, within the ApoE(-/-) mouse aorta. Combined the data demonstrate that polymeric particles conjugated with a ligand to VCAM-1 exhibit selective, avid and focal adhesion to sites of atherosclerosis providing strong evidence that VCAM-1 ligand bearing polymeric particles could be used for targeting drugs selectively to atherosclerotic tissue.

  15. The adenosine deaminases of Plasmodium vivax and Plasmodium falciparum exhibit surprising differences in ligand specificity

    PubMed Central

    Ivanov, Andrei A.; Matsumura, Ichiro

    2012-01-01

    Plasmodium vivax and P. falciparum cause malaria, so proteins essential for their survival in vivo are potential anti-malarial drug targets. Adenosine deaminases (ADA) catalyze the irreversible conversion of adenosine into inosine, and play a critical role in the purine salvage pathways of Plasmodia and their mammalian hosts. Currently, the number of selective inhibitors of Plasmodium ADAs is limited. One potent and widely used inhibitor of the human ADA (hADA), erythro-9-(2-hydroxy-3-nonly)adenine (EHNA), is a very weak inhibitor (Ki = 120uM) of P. falciparum ADA (pfADA). EHNA-like compounds are thus excluded from consideration as potential inhibitors of Plasmodium ADA in general. However, EHNA activity in P. vivax ADA (pvADA) has not been reported. Here we applied computational molecular modeling to identify the mechanisms of the ligand recognition unique for P. vivax and P. falciparum ADA. Based on the computational studies, we performed molecular biology experiments to show that EHNA is at least 60-fold more potent against pvADA (Ki = 1.9uM) than against pfADA. The D172A pvADA mutant is bound even more tightly (Ki = 0.9uM). These results improve our understanding of the mechanisms of ADA ligand recognition and species-selectivity, and facilitate the rational design of novel EHNA-based ADA inhibitors as anti-malarial drugs. To demonstrate a practical application of our findings we have computationally predicted a novel potential inhibitor of pvADA selective versus the human ADA. PMID:22481078

  16. Synthesis and pharmacological characterization of novel xanthine carboxylate amides as A2A adenosine receptor ligands exhibiting bronchospasmolytic activity.

    PubMed

    Yadav, Rakesh; Bansal, Ranju; Rohilla, Suman; Kachler, Sonja; Klotz, Karl-Norbert

    2016-04-01

    The carboxylate amides of 8-phenyl-1,3-dimethylxanthine described herein represent a new series of selective ligands of the adenosine A2A receptors exhibiting bronchospasmolytic activity. The effects of location of 8-phenyl substitutions on the adenosine receptor (AR) binding affinities of the newly synthesized xanthines have also been studied. The compounds displayed moderate to potent binding affinities toward various adenosine receptor subtypes when evaluated through radioligand binding studies. However, most of the compounds showed the maximum affinity for the A2A subtype, some with high selectivity versus all other subtypes. Xanthine carboxylate amide 13b with a diethylaminoethylamino moiety at the para-position of the 8-phenylxanthine scaffold was identified as the most potent A2A adenosine receptor ligand with Ki=0.06μM. Similarly potent and highly A2A-selective are the isovanillin derivatives 16a and 16d. In addition, the newly synthesized xanthine derivatives showed good in vivo bronchospasmolytic activity when tested in guinea pigs. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. CD8+ recent thymic emigrants exhibit increased responses to low affinity ligands and improved access to peripheral sites of inflammation

    PubMed Central

    Berkley, Amy M.; Fink, Pamela J.

    2014-01-01

    To explore the TCR sensitivity of recent thymic emigrants (RTEs), we triggered T cells with altered peptide ligands (APLs). Upon peptide stimulation in vitro, RTEs exhibited increased TCR signal transduction, and following infection in vivo with APL-expressing bacteria, CD8 RTEs expanded to a greater extent in response to low affinity antigens than their mature T cell counterparts. RTEs skewed to short-lived effector cells in response to all APLs but were also characterized by diminished cytokine production. RTEs responding to infection expressed increased levels of VLA-4, with consequent improved entry into inflamed tissue and pathogen clearance. These positive outcomes were offset by the capacity of RTEs to elicit autoimmunity. Overall, salient features of CD8 RTE biology should inform strategies to improve neonatal vaccination and therapies for cancer and HIV, as RTEs make up a large proportion of the T cells in lymphodepleted environments. PMID:25172492

  18. The PPARgamma agonist FMOC-L-leucine protects both mature and immature brain.

    PubMed

    Maurois, Pierre; Rocchi, Stéphane; Pages, Nicole; Bac, Pierre; Stables, James P; Gressens, Pierre; Vamecq, Joseph

    2008-01-01

    (N-[9-fluorenylmethoxycarbonyl]-)-L-leucine (FMOC-L-leucine) and rosiglitazone, two ligands of peroxisome proliferator-activated receptor gamma (PPARgamma), were evaluated in mature (adult mice) and immature (pups) brain injury models. In adult magnesium-deficient mice, a model responsive to both neuroprotective and anti-seizure compounds, FMOC-L-leucine, but not rosiglitazone, protected against audiogenic seizures. The protection afforded by FMOC-L-leucine was alleviated by the PPARgamma antagonist GW9662 (1-2 mg/kg) and was induced in 50% animals by 4.8+/-1.2 mg/kg. At this dose, FMOC-L-leucine modified audiogenic seizure phase durations in convulsing mice differently than prototype antiepileptic drugs did. FMOC-L-leucine (up to 100 mg/kg) was inactive in the 6 Hz seizure test, an adult animal model largely responsive to anti-seizure drugs. In a model of neonatal brain injury, FMOC-L-leucine (4 microg/kg) was neuroprotective against cerebral ibotenate toxicity. It reduced significantly the size of lesions in grey but not in white matter, while rosiglitazone (10 microg/kg) was inactive. Taken as a whole, the present data support neuroprotective potentialities of FMOC-L-leucine towards both mature and immature brain. The PPAR-based protection of immature brain is more important as it is known that classic adult brain protectants (GABA(A) activators, N-methyl-D-aspartate and sodium channel blockers) may be toxic for immature brain. The PPARgamma agonist FMOC-L-leucine is likely to be devoid of these classic protective mechanisms because of its inactivity in the 6 Hz seizure test, its activity in the audiogenic test being explained by neuroprotective rather than intrinsic anti-seizure mechanisms. Targeting PPARs might be thus a promising way to protect immature brain.

  19. Selective binding of the fluorescent dye 1-anilinonaphthalene-8-sulfonic acid to peroxisome proliferator-activated receptor gamma allows ligand identification and characterization.

    PubMed

    Zorrilla, Silvia; Garzón, Beatriz; Pérez-Sala, Dolores

    2010-04-01

    Peroxisome proliferator-activated receptor gamma (PPARgamma) is a member of the nuclear receptor superfamily involved in insulin sensitization, atherosclerosis, inflammation, and carcinogenesis. PPARgamma transcriptional activity is modulated by specific ligands that promote conformational changes allowing interaction with coactivators. Here we show that the fluorophore 1-anilinonaphthalene-8-sulfonic acid (ANS) binds to PPARgamma-LBD (ligand binding domain), displaying negligible interaction with other nuclear receptors such as PPARalpha and retinoid X receptor alpha (RXRalpha). ANS binding is competed by PPARgamma agonists such as rosiglitazone, 15-deoxy-Delta(12,14)-prostaglandin J(2) (15d-PGJ(2)), and 9,10-dihydro-15-deoxy-Delta(12,14)-prostaglandin J(2) (CAY10410). Moreover, the affinity of PPARgamma for these ligands, determined through ANS competition titrations, is within the range of that reported previously, thereby suggesting that ANS competition could be useful in the screening and characterization of novel PPARgamma agonists. In contrast, gel-based competition assays showed limited performance with noncovalently bound ligands. We applied the ANS binding assay to characterize a biotinylated analog of 15d-PGJ(2) that does not activate PPAR in cells. We found that although this compound bound to PPARgamma with low affinity, it failed to promote PPARgamma interaction with a fluorescent SRC-1 peptide, indicating a lack of receptor activation. Therefore, combined approaches using ANS and fluorescent coactivator peptides to monitor PPARgamma binding and interactions may provide valuable strategies to fully understand the role of PPARgamma ligands. Copyright 2009 Elsevier Inc. All rights reserved.

  20. Separation, characterization and dose-effect relationship of the PPARgamma-activating bio-active constituents in the Chinese herb formulation 'San-Ao decoction'.

    PubMed

    Zhou, Ling; Tang, Yu-Ping; Gao, Lu; Fan, Xin-Sheng; Liu, Chun-Mei; Wu, De-Kang

    2009-10-09

    San-ao decoction (SAD), comprising Herba Ephedrae, Radix et Rhizoma Glycyrrhizae and Seneb Armeniacae Amarum, is one of the most popular traditional Chinese medicine (TCM) formulae for asthma. Peroxisome proliferator-activated receptors (PPARs) areey regulators of lipid and glucose metabolism and have become important therapeutic targets for various deseases, PPARgamma activation might exhibit anti-inflammatory properties in different chronic inflammatory processes. The EtOAc fraction of SAD showed a significant effect on PPARgamma activation. A simple and rapid method has been established for separation and characterization of the main compounds in the PPARgamma-activating fraction of SAD by ultra-fast HPLC coupled with quadropole time-of-flight mass pectrometry (UPLC-Q-TOF/MS). A total of 10 compounds were identified in the activating fraction of SAD, including amygdalin (1), liquiritin (2), 6'-acetyliquiritin (3), liquiritigenin (4), isoliquiritigenin (5), formononetin (6), licoisoflavanone (7), glycycoumarin (8), glycyrol (9) and uercetin (10). The results also characterized formononetin as a predominant component in this fraction. The dose-effect relationship comparison study of formononetin and the EtOAc fraction of SAD by adding formononetin was performed, the results suggested that formononetin was the major component of the EtOAc fraction of SAD responsible for activating PPARgamma, and the method will possibly be applied to study the complex biological active constituents of other TCMs.

  1. PPARgamma is not a critical mediator of primary monocyte differentiation or foam cell formation.

    PubMed

    Patel, Lisa; Charlton, Steven J; Marshall, Ian C; Moore, Gary B T; Coxon, Phil; Moores, Kitty; Clapham, John C; Newman, Suzanna J; Smith, Stephen A; Macphee, Colin H

    2002-01-18

    In the present report we clarify the role of PPARgamma in differentiation and function of human-derived monocyte/macrophages in vitro. Rosiglitazone, a selective PPARgamma activator, had no effect on the kinetics of appearance of monocyte/macrophage differentiation markers or on cell size or granularity. Depletion of PPARgamma by more than 90% using antisense oligonucleotides did not influence accumulation of oxidized LDL or prevent the upregulation of CD36 that normally accompanies oxLDL treatment. In contrast, PPARgamma depletion reduced the expression of ABCA1 and LXRalpha mRNAs. Metalloproteinase-9 expression, a marker of atherosclerotic plaque vulnerability, was suppressed by rosiglitazone. We conclude that activation of PPARgamma does not affect monocyte/macrophage differentiation. In addition, PPARgamma is not absolutely required for oxLDL-driven lipid accumulation, but is required for full expression of ABCA1 and LXRalpha. Our data support a role for rosiglitazone as a potential directly acting antiatherosclerotic agent.

  2. Conjugated linoleic acid ameliorates inflammation-induced colorectal cancer in mice through activation of PPARgamma.

    PubMed

    Evans, Nicholas P; Misyak, Sarah A; Schmelz, Eva M; Guri, Amir J; Hontecillas, Raquel; Bassaganya-Riera, Josep

    2010-03-01

    Conjugated linoleic acid (CLA) exerts a protective effect on experimental inflammatory bowel disease and shows promise as a chemopreventive agent against colorectal cancer (CRC) in mice, although the mechanisms by which it exerts its beneficial effects against malignancies in the gut are not completely understood. Mice lacking PPARgamma in immune and epithelial cells and PPARgamma-expressing littermates were fed either control or CLA-supplemented (1 g CLA/100 g) diets to determine the role of PPARgamma in inflammation-induced CRC. To induce tumor formation and colitis, mice were treated with azoxymethane and then challenged with 2% dextran sodium sulfate, respectively. Dietary CLA ameliorated disease activity, decreased colitis, and prevented adenocarcinoma formation in the PPARgamma-expressing floxed mice but not in the tissue-specific PPARgamma-null mice. Dietary CLA supplementation significantly decreased the percentages of macrophages in the mesenteric lymph nodes (MLN) regardless of the genotype and increased regulatory T cell numbers in MLN of PPARgamma-expressing, but not in the tissue-specific, PPARgamma-null mice. Colonic tumor necrosis factor-alpha mRNA expression was significantly suppressed in CLA-fed, PPARgamma-expressing mice. This study suggests CLA ameliorates colitis and prevents tumor formation in part through a PPARgamma-dependent mechanism.

  3. Pentameric ligand-gated ion channels exhibit distinct transmembrane domain archetypes for folding/expression and function.

    PubMed

    Therien, J P Daniel; Baenziger, John E

    2017-03-27

    Although transmembrane helix-helix interactions must be strong enough to drive folding, they must still permit the inter-helix movements associated with conformational change. Interactions between the outermost M4 and adjacent M1 and M3 α-helices of pentameric ligand-gated ion channels have been implicated in folding and function. Here, we evaluate the role of different physical interactions at this interface in the function of two prokaryotic homologs, GLIC and ELIC. Strikingly, disruption of most interactions in GLIC lead to either a reduction or a complete loss of expression and/or function, while analogous disruptions in ELIC often lead to gains in function. Structural comparisons suggest that GLIC and ELIC represent distinct transmembrane domain archetypes. One archetype, exemplified by GLIC, the glycine and GABA receptors and the glutamate activated chloride channel, has extensive aromatic contacts that govern M4-M1/M3 interactions and that are essential for expression and function. The other archetype, exemplified by ELIC and both the nicotinic acetylcholine and serotonin receptors, has relatively few aromatic contacts that are detrimental to function. These archetypes likely have evolved different mechanisms to balance the need for strong M4 "binding" to M1/M3 to promote folding/expression, and the need for weaker interactions that allow for greater conformational flexibility.

  4. Copper (II) complexes of bidentate ligands exhibit potent anti-cancer activity regardless of platinum sensitivity status.

    PubMed

    Wehbe, Mohamed; Lo, Cody; Leung, Ada W Y; Dragowska, Wieslawa H; Ryan, Gemma M; Bally, Marcel B

    2017-12-01

    Insensitivity to platinum, either through inherent or acquired resistance, is a major clinical problem in the treatment of many solid tumors. Here, we explored the therapeutic potential of diethyldithiocarbamate (DDC), pyrithione (Pyr), plumbagin (Plum), 8-hydroxyquinoline (8-HQ), clioquinol (CQ) copper complexes in a panel of cancer cell lines that differ in their sensitivity to platins (cisplatin/carboplatin) using a high-content imaging system. Our data suggest that the copper complexes were effective against both platinum sensitive (IC 50  ~ 1 μM platinum) and insensitive (IC 50  > 5 μM platinum) cell lines. Furthermore, copper complexes of DDC, Pyr and 8-HQ had greater therapeutic activity compared to the copper-free ligands in all cell lines; whereas the copper-dependent activities of Plum and CQ were cell-line specific. Four of the copper complexes (Cu(DDC) 2 , Cu(Pyr) 2 , Cu(Plum) 2 and Cu(8-HQ) 2 ) showed IC 50 values less than that of cisplatin in all tested cell lines. The complex copper DDC (Cu(DDC) 2 ) was selected for in vivo evaluation due to its low nano-molar range activity in vitro and the availability of an injectable liposomal formulation. Liposomal (Cu(DDC) 2 ) was tested in a fast-growing platinum-resistant A2780-CP ovarian xenograft model and was found to achieve a statistically significant reduction (50%; p < 0.05) in tumour size. This work supports the potential use of copper-based therapeutics to treat cancers that are insensitive to platinum drugs.

  5. Unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not promote human monocyte differentiation toward alternative macrophages

    SciTech Connect

    Bouhlel, Mohamed Amine; Inserm U545, F-59000 Lille; UDSL, F-59000 Lille

    2009-08-28

    Macrophages adapt their response to micro-environmental signals. While Th1 cytokines promote pro-inflammatory M1 macrophages, Th2 cytokines promote an 'alternative' anti-inflammatory M2 macrophage phenotype. Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors expressed in macrophages where they control the inflammatory response. It has been shown that PPAR{gamma} promotes the differentiation of monocytes into anti-inflammatory M2 macrophages in humans and mice, while a role for PPAR{beta}/{delta} in this process has been reported only in mice and no data are available for PPAR{alpha}. Here, we show that in contrast to PPAR{gamma}, expression of PPAR{alpha} and PPAR{beta}/{delta} overall does not correlate with the expressionmore » of M2 markers in human atherosclerotic lesions, whereas a positive correlation with genes of lipid metabolism exists. Moreover, unlike PPAR{gamma}, PPAR{alpha} or PPAR{beta}/{delta} activation does not influence human monocyte differentiation into M2 macrophages in vitro. Thus, PPAR{alpha} and PPAR{beta}/{delta} do not appear to modulate the alternative differentiation of human macrophages.« less

  6. O-GlcNAc modification of PPAR{gamma} reduces its transcriptional activity

    SciTech Connect

    Ji, Suena; Park, Sang Yoon; Roth, Juergen

    2012-01-27

    Highlights: Black-Right-Pointing-Pointer We found that PPAR{gamma} is modified by O-GlcNAc in 3T3-L1 adipocytes. Black-Right-Pointing-Pointer The Thr54 of PPAR{gamma}1 is the major O-GlcNAc site. Black-Right-Pointing-Pointer Transcriptional activity of PPAR{gamma}1 was decreased on treatment with the OGA inhibitor. -- Abstract: The peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}), a member of the nuclear receptor superfamily, is a key regulator of adipogenesis and is important for the homeostasis of the adipose tissue. The {beta}-O-linked N-acetylglucosamine (O-GlcNAc) modification, a posttranslational modification on various nuclear and cytoplasmic proteins, is involved in the regulation of protein function. Here, we report that PPAR{gamma} is modified by O-GlcNAc in 3T3-L1more » adipocytes. Mass spectrometric analysis and mutant studies revealed that the threonine 54 of the N-terminal AF-1 domain of PPAR{gamma} is the major O-GlcNAc site. Transcriptional activity of wild type PPAR{gamma} was decreased 30% by treatment with the specific O-GlcNAcase (OGA) inhibitor, but the T54A mutant of PPAR{gamma} did not respond to inhibitor treatment. In 3T3-L1 cells, an increase in O-GlcNAc modification by OGA inhibitor reduced PPAR{gamma} transcriptional activity and terminal adipocyte differentiation. Our results suggest that the O-GlcNAc state of PPAR{gamma} influences its transcriptional activity and is involved in adipocyte differentiation.« less

  7. Cutting edge: CD8+ recent thymic emigrants exhibit increased responses to low-affinity ligands and improved access to peripheral sites of inflammation.

    PubMed

    Berkley, Amy M; Fink, Pamela J

    2014-10-01

    To explore the TCR sensitivity of recent thymic emigrants (RTEs), we triggered T cells with altered peptide ligands (APLs). Upon peptide stimulation in vitro, RTEs exhibited increased TCR signal transduction, and following infection in vivo with APL-expressing bacteria, CD8 RTEs expanded to a greater extent in response to low-affinity Ags than did their mature T cell counterparts. RTEs skewed to short-lived effector cells in response to all APLs but also were characterized by diminished cytokine production. RTEs responding to infection expressed increased levels of VLA-4, with consequent improved entry into inflamed tissue and pathogen clearance. These positive outcomes were offset by the capacity of RTEs to elicit autoimmunity. Overall, salient features of CD8 RTE biology should inform strategies to improve neonatal vaccination and therapies for cancer and HIV, because RTEs make up a large proportion of the T cells in lymphodepleted environments. Copyright © 2014 by The American Association of Immunologists, Inc.

  8. PPAR-{gamma} agonist protects against intestinal injury during necrotizing enterocolitis

    SciTech Connect

    Baregamian, Naira; Mourot, Joshua M.; Ballard, Amie R.

    2009-02-06

    Necrotizing enterocolitis (NEC) remains a lethal condition for many premature infants. Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}), a member of the nuclear hormone receptor family, has been shown to play a protective role in cellular inflammatory responses; however, its role in NEC is not clearly defined. We sought to examine the expression of PPAR-{gamma} in the intestine using an ischemia-reperfusion (I/R) model of NEC, and to assess whether PPAR-{gamma} agonist treatment would ameliorate I/R-induced gut injury. Swiss-Webster mice were randomized to receive sham (control) or I/R injury to the gut induced by transient occlusion of superior mesenteric artery for 45 min withmore » variable periods of reperfusion. I/R injury resulted in early induction of PPAR-{gamma} expression and activation of NF-{kappa}B in small intestine. Pretreatment with PPAR-{gamma} agonist, 15d-PGJ{sub 2}, attenuated intestinal NF-{kappa}B response and I/R-induced gut injury. Activation of PPAR-{gamma} demonstrated a protective effect on small bowel during I/R-induced gut injury.« less

  9. Cell death is induced by ciglitazone, a peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) agonist, independently of PPAR{gamma} in human glioma cells

    SciTech Connect

    Lee, Myoung Woo; Kim, Dae Seong; Kim, Hye Ryung

    Highlights: Black-Right-Pointing-Pointer Greater than 30 {mu}M ciglitazone induces cell death in glioma cells. Black-Right-Pointing-Pointer Cell death by ciglitazone is independent of PPAR{gamma} in glioma cells. Black-Right-Pointing-Pointer CGZ induces cell death by the loss of MMP via decreased Akt. -- Abstract: Peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}) regulates multiple signaling pathways, and its agonists induce apoptosis in various cancer cells. However, their role in cell death is unclear. In this study, the relationship between ciglitazone (CGZ) and PPAR{gamma} in CGZ-induced cell death was examined. At concentrations of greater than 30 {mu}M, CGZ, a synthetic PPAR{gamma} agonist, activated caspase-3 and induced apoptosis inmore » T98G cells. Treatment of T98G cells with less than 30 {mu}M CGZ effectively induced cell death after pretreatment with 30 {mu}M of the PPAR{gamma} antagonist GW9662, although GW9662 alone did not induce cell death. This cell death was also observed when cells were co-treated with CGZ and GW9662, but was not observed when cells were treated with CGZ prior to GW9662. In cells in which PPAR{gamma} was down-regulated cells by siRNA, lower concentrations of CGZ (<30 {mu}M) were sufficient to induce cell death, although higher concentrations of CGZ ( Greater-Than-Or-Slanted-Equal-To 30 {mu}M) were required to induce cell death in control T98G cells, indicating that CGZ effectively induces cell death in T98G cells independently of PPAR{gamma}. Treatment with GW9662 followed by CGZ resulted in a down-regulation of Akt activity and the loss of mitochondrial membrane potential (MMP), which was accompanied by a decrease in Bcl-2 expression and an increase in Bid cleavage. These data suggest that CGZ is capable of inducing apoptotic cell death independently of PPAR{gamma} in glioma cells, by down-regulating Akt activity and inducing MMP collapse.« less

  10. 15-Deoxy-{delta}{sup 12,14}-prostaglandin J{sub 2} down-regulates CXCR4 on carcinoma cells through PPAR{gamma}- and NF{kappa}B-mediated pathways

    SciTech Connect

    Richard, Cynthia Lee; Lowthers, Erica Lauren; Blay, Jonathan

    2007-10-01

    The chemokine receptor CXCR4 plays a key role in the metastasis of colorectal cancer and its growth at metastatic sites. Here, we have investigated the mechanisms by which CXCR4 on cancer cells might be regulated by eicosanoids present within the colorectal tumor microenvironment. We show that prostaglandins PGE{sub 2}, PGA{sub 2}, PGD{sub 2}, PGJ{sub 2} and 15dPGJ{sub 2} each down-regulates CXCR4 receptor expression on human colorectal carcinoma cells to differing degrees. The most potent of these were PGD{sub 2} and its metabolites PGJ{sub 2} and 15dPGJ{sub 2}. Down-regulation was most rapid with the end-product 15dPGJ{sub 2} and was accompanied bymore » a marked reduction in CXCR4 mRNA. 15dPGJ{sub 2} is known to be a ligand for the nuclear receptor PPAR{gamma}. Down-regulation of CXCR4 was also observed with the PPAR{gamma} agonist rosiglitazone, while 15dPGJ{sub 2}-induced CXCR4 down-regulation was substantially diminished by the PPAR{gamma} antagonists GW9662 and T0070907. These data support the involvement of PPAR{gamma}. However, the 15dPGJ{sub 2} analogue CAY10410, which can act on PPAR{gamma} but which lacks the intrinsic cyclopentenone structure found in 15dPGJ{sub 2}, down-regulated CXCR4 substantially less potently than 15dPGJ{sub 2}. The cyclopentenone grouping is known to inhibit the activity of NF{kappa}B. Consistent with an additional role for NF{kappa}B, we found that the cyclopentenone prostaglandin PGA{sub 2} and cyclopentenone itself could also down-regulate CXCR4. Immunolocalization studies showed that the cellular context was sufficient to trigger a focal nuclear pattern of NF{kappa}B p50 and that 15dPGJ{sub 2} interfered with this p50 nuclear localization. These data suggest that 15dPGJ{sub 2} can down-regulate CXCR4 on cancer cells through both PPAR{gamma} and NF{kappa}B. 15dPGJ{sub 2}, present within the tumor microenvironment, may act to down-regulate CXCR4 and impact upon the overall process of tumor expansion.« less

  11. Effects of the η(5)-C5H4(i)Pr Ligand on the Properties Exhibited by Its Tungsten Nitrosyl Complexes.

    PubMed

    Fabulyak, Diana; Baillie, Rhett A; Patrick, Brian O; Legzdins, Peter; Rosenfeld, Devon C

    2016-02-15

    Reaction of Na[η(5)-C5H4(i)Pr] with W(CO)6 in refluxing THF for 4 days generates a solution of Na[(η(5)-C5H4(i)Pr)W(CO)3] that when treated with N-methyl-N-nitroso-p-toluenesulfonamide at ambient temperatures affords (η(5)-C5H4(i)Pr)W(NO)(CO)2 (1) that is isolable in good yield as an analytically pure orange oil. Treatment of 1 with an equimolar amount of I2 in Et2O at ambient temperatures affords (η(5)-C5H4(i)Pr)W(NO)I2 (2) as a dark brown solid in excellent yield. Sequential treatment at low temperatures of 2 with 0.5 equiv of Mg(CH2CMe3)2 and Mg(CH2CH═CMe2)2 in Et2O produces the alkyl allyl complex, (η(5)-C5H4(i)Pr)W(NO)(CH2CMe3)(η(3)-CH2CHCMe2) (3), as a thermally sensitive yellow liquid. Complex 3 may also be synthesized, albeit in low yield, in one vessel at low temperatures by reacting 1 first with 1 equiv of PCl5 and then with the binary magnesium reagents specified above. Interestingly, similar treatment of 1 in Et2O with PCl5 and only 0.5 equiv of Mg(CH2CH═CMe2)2 results in the formation of the unusual complex (η(5)-C5H4(i)Pr)W(NO)(PCl2CMe2CH═CH2)Cl2 (4), which probably is formed via a metathesis reaction of the binary magnesium reagent with (η(5)-C5H4(i)Pr)W(NO)(PCl3)Cl2. The C-D activation of C6D6 by complex 3 has been investigated and compared to that exhibited by its η(5)-C5Me5, η(5)-C5Me4H, and η(5)-C5Me4(n)Pr analogues. Kinetic analyses of the various activations have established that the presence of the η(5)-C5H4(i)Pr ligand significantly increases the rate of the reaction, an outcome that can be attributed to a combination of steric and electronic factors. In addition, mechanistic studies have established that in solution 3 loses neopentane under ambient conditions to generate exclusively the 16e η(2)-diene intermediate complex (η(5)-C5H4(i)Pr)W(NO)(η(2)-CH2═CMeCH═CH2), which then effects the subsequent C-D activations. This behavior contrasts with that exhibited by the η(5)-C5Me5 analogue of 3 which forms both η(2

  12. A Large-Surface-Area Boracite-Network-Topology Porous MOF Constructed from a Conjugated Ligand Exhibiting a High Hydrogen Uptake Capacity

    SciTech Connect

    Wang, Xi-Sen; Ma, Shengqian; Yuan, Daqiang

    2009-01-01

    A new porous metal-organic framework, PCN-20 with a twisted boracite net topology, was constructed based on a highly conjugated planar tricarboxylate ligand; PCN-20 possesses a large Langmuir surface area of over 4200 m(2)/g as well as demonstrates a high hydrogen uptake capacity of 6.2 wt % at 77 K and 50 bar.

  13. Identification and characterization of novel peroxisome proliferator-activated receptor-gamma (PPAR-gamma) transcriptional variants in pig and human.

    PubMed

    Omi, T; Brenig, B; Spilar Kramer, S; Iwamoto, S; Stranzinger, G; Neuenschwander, S

    2005-04-01

    The peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the steroid/thyroid/retinoid receptor superfamily, and is primarily expressed in fat tissue. To date, two major PPAR-gamma isoforms have been identified in pig, PPAR-gamma1 and PPAR-gamma2. Porcine PPAR-gamma1a consists of two leader exons, designated A1 and A2, followed by six exons containing the open reading frame. Here, we report the isolation and characterization of three novel PPAR-gamma1 transcripts. PPAR-gamma1b is derived from exon A1, with exon A2 spliced out. PPAR-gamma1c and PPAR-gamma1d are derived from the new exon, A', containing exon A2 (gamma1c) or without exon A2 (gamma1d). Based on PCR analysis of PAC clones that included sequences from the 5'-untranslated region of the PPAR-gamma gene, the new A' exon is located between the known exons A1 and A2. We also isolated the human homologue to exon A', as well as the two new PPAR-gamma1c and -gamma1d splice variants, from human adipose tissue. Studies of the expression of porcine PPAR-gamma by real time reverse transcription-polymerase chain reaction analysis show that transcripts derived from exon A1 were not expressed at significantly different levels in visceral fat (lamina subserosa) or subcutaneous fat (back fat, inner and outer layer). In contrast, exon A'-derived transcripts were expressed at progressively higher levels in the inner and outer layers of subcutaneous fat than in visceral fat. The same expression pattern was also observed for PPAR-gamma2. We hypothesize that there are three promoters, which differentially regulate PPAR-gamma1 and PPAR-gamma2 gene expression, depending on the specific localization of the fat tissue.

  14. Chronic allograft nephropathy: expression and localization of PAI-1 and PPAR-gamma.

    PubMed

    Revelo, Monica P; Federspiel, Charles; Helderman, Harold; Fogo, Agnes B

    2005-12-01

    Chronic allograft nephropathy (CAN) is a major cause of loss of renal allografts. Mechanisms postulated to be involved include sequelae of rejection, warm ischaemia time, drug toxicity, ongoing hypertension and dyslipidaemia. Plasminogen activator inhibitor-1 (PAI-1) is implicated not only in thrombosis, but also in fibrosis, by inhibiting matrix degradation, and is expressed in renal parenchymal cells as well as in macrophages. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) is a member of the steroid receptor superfamily, and plays a major beneficial role in lipid regulation, insulin sensitivity and macrophage function, factors that may play a role in CAN. We therefore studied the expression of these molecules in CAN. All renal biopsy/nephrectomy files from Vanderbilt and Nashville VAMC from a 6 year period were reviewed to identify all renal transplant biopsies or nephrectomies more than 6 months after transplant with CAN. CAN was defined as fibrosis in the graft, vascular, interstitial or glomerular. All cases were scored for severity of fibrosis in vasculature (0-3 scale), glomeruli (% affected with either segmental and/or global sclerosis) and interstitial fibrosis (% of sample affected). PAI-1 and PPAR-gamma immunostaining was assessed on a 0-3 scale in glomeruli, vessels and tubules. Eighty-two patients with a total of 106 samples met entry criteria. The population consisted of 59 Caucasians and 23 African-Americans; 49 males, 33 females with average age 37.9+/-1.7 years. Average time after transplant at time of biopsy was 60.5+/-4.9 months (range 7-229). Glomerulosclerosis extent in CAN was on average 26.5+/-2.4% compared with 3.6+/-1.2% in normal control kidneys from native kidney cancer nephrectomies and 0% in transplanted kidney biopsies from patients obtained > or =6 months after transplantation without CAN. Native control kidneys showed mild interstitial fibrosis (8.0+/-1.2%), whereas transplant controls showed very minimal fibrosis (2

  15. Ligand and coactivator identity determines the requirement of the charge clamp for coactivation of the peroxisome proliferator-activated receptor gamma.

    PubMed

    Wu, Yifei; Chin, William W; Wang, Yong; Burris, Thomas P

    2003-03-07

    The activation function 2 (AF-2)-dependent recruitment of coactivator is essential for gene activation by nuclear receptors. We show that the peroxisome proliferator-activated receptor gamma (PPARgamma) (NR1C3) coactivator-1 (PGC-1) requires both the intact AF-2 domain of PPARgamma and the LXXLL domain of PGC-1 for ligand-dependent and ligand-independent interaction and coactivation. Although the AF-2 domain of PPARgamma is absolutely required for PGC-1-mediated coactivation, this coactivator displayed a unique lack of requirement for the charge clamp of the ligand-binding domain of the receptor that is thought to be essential for LXXLL motif recognition. The mutation of a single serine residue adjacent to the core LXXLL motif of PGC-1 led to restoration of the typical charge clamp requirement. Thus, the unique structural features of the PGC-1 LXXLL motif appear to mediate an atypical mode of interaction with PPARgamma. Unexpectedly, we discovered that various ligands display variability in terms of their requirement for the charge clamp of PPARgamma for coactivation by PGC-1. This ligand-selective variable requirement for the charge clamp was coactivator-specific. Thus, distinct structural determinants, which may be unique for a particular ligand, are utilized by the receptor to recognize the coactivator. Our data suggest that even subtle differences in ligand structure are perceived by the receptor and translated into a unique display of the coactivator-binding surface of the ligand-binding domain, allowing for differential recognition of coactivators that may underlie distinct pharmacological profiles observed for ligands of a particular nuclear receptor.

  16. Development of Novel Nonagonist PPAR-Gamma Ligands for Lung Cancer Treatment

    DTIC Science & Technology

    2016-08-01

    Affymetrix gene expression profiling. To get the purest representation of this gene set, we generated fibroblasts from the brown adipose tissue of mice... tissues . It has been shown that p53 plays an important role in metabolism and adipose tissue function, and this may be modulated by PPARγ expression as...presentations. Poster Presentation: Melin J. Khandekar, Alex S. Banks , Dina Laznik- Bogoslavski, James P. White, Jang H. Choi, Kwok-kin Wong, Ted

  17. Development of novel non agoinst PPAR-gamma ligands for lung cancer treatment

    DTIC Science & Technology

    2017-08-01

    Melin Khandekar, M.D., Ph.D. CONTRACTING ORGANIZATION : Massachusetts General Hospital Boston, MA 02114 REPORT DATE: August 2017 TYPE OF REPORT...5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Massachusetts General Hospital 55 Fruit St. Boston, MA 02114 55 AND...ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) U.S

  18. Telmisartan prevented cognitive decline partly due to PPAR-{gamma} activation

    SciTech Connect

    Mogi, Masaki; Li Jianmei; Tsukuda, Kana

    Telmisartan is a unique angiotensin receptor blocker (ARB) and partial agonist of peroxisome proliferator-activated receptor (PPAR)-{gamma}. Here, we investigated the preventive effect of telmisartan on cognitive decline in Alzheimer disease. In ddY mice, intracerebroventricular injection of A{beta} 1-40 significantly attenuated their cognitive function evaluated by shuttle avoidance test. Pretreatment with a non-hypotensive dose of telmisartan significantly inhibited such cognitive decline. Interestingly, co-treatment with GW9662, a PPAR-{gamma} antagonist, partially inhibited this improvement of cognitive decline. Another ARB, losartan, which has less PPAR-{gamma} agonistic effect, also inhibited A{beta}-injection-induced cognitive decline; however the effect was smaller than that of telmisartan and was notmore » affected by GW9662. Immunohistochemical staining for A{beta} showed the reduced A{beta} deposition in telmisartan-treated mice. However, this reduction was not observed in mice co-administered GW9662. These findings suggest that ARB has a preventive effect on cognitive impairment in Alzheimer disease, and telmisartan, with PPAR-{gamma} activation, could exert a stronger effect.« less

  19. HCV core protein induces hepatic lipid accumulation by activating SREBP1 and PPAR{gamma}

    SciTech Connect

    Kim, Kook Hwan; Hong, Sung Pyo; Kim, KyeongJin

    2007-04-20

    Hepatic steatosis is a common feature in patients with chronic hepatitis C virus (HCV) infection. HCV core protein plays an important role in the development of hepatic steatosis in HCV infection. Because SREBP1 (sterol regulatory element binding protein 1) and PPAR{gamma} (peroxisome proliferators-activated receptor {gamma}) are involved in the regulation of lipid metabolism of hepatocyte, we sought to determine whether HCV core protein may impair the expression and activity of SREBP1 and PPAR{gamma}. In this study, it was demonstrated that HCV core protein increases the gene expression of SREBP1 not only in Chang liver, Huh7, and HepG2 cells transiently transfectedmore » with HCV core protein expression plasmid, but also in Chang liver-core stable cells. Furthermore, HCV core protein enhanced the transcriptional activity of SREBP1. In addition, HCV core protein elevated PPAR{gamma} transcriptional activity. However, HCV core protein had no effect on PPAR{gamma} gene expression. Finally, we showed that HCV core protein stimulates the genes expression of lipogenic enzyme and fatty acid uptake associated protein. Therefore, our finding provides a new insight into the mechanism of hepatic steatosis by HCV infection.« less

  20. Bis-Indole-Derived NR4A1 Ligands and Metformin Exhibit NR4A1-Dependent Glucose Metabolism and Uptake in C2C12 Cells.

    PubMed

    Mohankumar, Kumaravel; Lee, Jehoon; Wu, Chia Shan; Sun, Yuxiang; Safe, Stephen

    2018-05-01

    Treatment of C2C12 muscle cells with metformin or the NR4A1 ligand 1,1-bis(3'-indolyl)-1-(p-hydroxyphenyl)methane (DIM-C-pPhOH) induced NR4A1 and Glut4 messenger RNA and protein expression. Similar results were observed with buttressed (3- or 3,5-substituted) analogs of DIM-C-pPhOH, including 1,1-bis(3'-indolyl)-1-(3-chloro-4-hydroxy-5-methoxyphenyl)methane (DIM-C-pPhOH-3-Cl-5-OCH3), and the buttressed analogs were more potent than DIM-C-pPhOH NR4A1 agonists. Metformin and the bis-indole substituted analogs also induced expression of several glycolytic genes and Rab4, which has previously been linked to enhancing cell membrane accumulation of Glut4 and overall glucose uptake in C2C12 cells, and these responses were also observed after treatment with metformin and the NR4A1 ligands. The role of NR4A1 in mediating the responses induced by the bis-indoles and metformin was determined by knockdown of NR4A1, and this resulted in attenuating the gene and protein expression and enhanced glucose uptake responses induced by these compounds. Our results demonstrate that the bis-indole-derived NR4A1 ligands represent a class of drugs that enhance glucose uptake in C2C12 muscle cells, and we also show that the effects of metformin in this cell line are NR4A1-dependent.

  1. B61, a ligand for the Eck receptor protein-tyrosine kinase, exhibits neurotrophic activity in cultures of rat spinal cord neurons.

    PubMed

    Magal, E; Holash, J A; Toso, R J; Chang, D; Lindberg, R A; Pasquale, E B

    1996-03-15

    Although the Eph subfamily represents the largest group of receptor protein-tyrosine kinases, the biological roles of the Eph-related receptors and their ligands are not well understood. B61 has been identified recently by receptor affinity chromatography as a ligand for the Eph-related receptor Eck (Bartley et al.: Nature 368:558-560, 1994). Here we show that Eck immunoreactivity is localized in areas of the embryonic rat spinal cord that are rich in axons, suggesting that Eck plays a role in this region of the developing nervous system. To examine the biological function of Eck, monolayer cultures of dissociated cells from embryonic rat spinal cord were treated with soluble B61. With an ED50 of approximately 10 ng/ml, B61 treatment improved the survival of the overall neuronal population. Furthermore, in the presence of B61 neurites were longer and more elaborated. B61 similarly affected survival and neurite length in cultures enriched in motor neurons. These neurotrophic effects of B61 were not observed in the presence of anti-Eck antibodies, indicating that these effects are likely to be mediated by the Eck receptor.

  2. Charge and Spin States in Schiff Base Metal Complexes with a Disiloxane Unit Exhibiting a Strong Noninnocent Ligand Character: Synthesis, Structure, Spectroelectrochemistry, and Theoretical Calculations.

    PubMed

    Cazacu, Maria; Shova, Sergiu; Soroceanu, Alina; Machata, Peter; Bucinsky, Lukas; Breza, Martin; Rapta, Peter; Telser, Joshua; Krzystek, J; Arion, Vladimir B

    2015-06-15

    Mononuclear nickel(II), copper(II), and manganese(III) complexes with a noninnocent tetradentate Schiff base ligand containing a disiloxane unit were prepared in situ by reaction of 3,5-di-tert-butyl-2-hydroxybenzaldehyde with 1,3-bis(3-aminopropyl)tetramethyldisiloxane followed by addition of the appropriate metal(II) salt. The ligand H2L resulting from these reactions is a 2:1 condensation product of 3,5-di-tert-butyl-2-hydroxybenzaldehyde with 1,3-bis(3-aminopropyl)tetramethyldisiloxane. The resulting metal complexes, NiL·0.5CH2Cl2, CuL·1.5H2O, and MnL(OAc)·0.15H2O, were characterized by elemental analysis, spectroscopic methods (IR, UV-vis, X-band EPR, HFEPR, (1)H NMR), ESI mass spectrometry, and single crystal X-ray diffraction. Taking into account the well-known strong stabilizing effects of tert-butyl groups in positions 3 and 5 of the aromatic ring on phenoxyl radicals, we studied the one-electron and two-electron oxidation of the compounds using both experimental (chiefly spectroelectrochemistry) and computational (DFT) techniques. The calculated spin-density distribution and localized orbitals analysis revealed the oxidation locus and the effect of the electrochemical electron transfer on the molecular structure of the complexes, while time-dependent DFT calculations helped to explain the absorption spectra of the electrochemically generated species. Hyperfine coupling constants, g-tensors, and zero-field splitting parameters have been calculated at the DFT level of theory. Finally, the CASSCF approach has been employed to theoretically explore the zero-field splitting of the S = 2 MnL(OAc) complex for comparison purposes with the DFT and experimental HFEPR results. It is found that the D parameter sign strongly depends on the metal coordination geometry.

  3. The Differential Interactions of Peroxisome Proliferator-Activated Receptor [gamma] Ligands with Tyr473 Is a Physical Basis for Their Unique Biological Activities

    SciTech Connect

    Einstein, Monica; Akiyama, Taro E.; Castriota, Gino A.

    2008-08-01

    Despite their proven antidiabetic efficacy, widespread use of peroxisome proliferator-activated receptor (PPAR){gamma} agonists has been limited by adverse cardiovascular effects. To overcome this shortcoming, selective PPAR{gamma} modulators (SPPAR{gamma}Ms) have been identified that have antidiabetic efficacy comparable with full agonists with improved tolerability in preclinical species. The results of structural studies support the proposition that SPPAR{gamma}Ms interact with PPAR{gamma} differently from full agonists, thereby providing a physical basis for their novel activities. Herein, we describe a novel PPAR{gamma} ligand, SPPAR{gamma}M2. This compound was a partial agonist in a cell-based transcriptional activity assay, with diminished adipogenic activity and an attenuated gene signaturemore » in cultured human adipocytes. X-ray cocrystallography studies demonstrated that, unlike rosiglitazone, SPPAR{gamma}M2 did not interact with the Tyr473 residue located within helix 12 of the ligand binding domain (LBD). Instead, SPPAR{gamma}M2 was found to bind to and activate human PPAR{gamma} in which the Tyr473 residue had been mutated to alanine (hPPAR{gamma}Y473A), with potencies similar to those observed with the wild-type receptor (hPPAR{gamma}WT). In additional studies, we found that the intrinsic binding and functional potencies of structurally distinct SPPAR{gamma}Ms were not diminished by the Y473A mutation, whereas those of various thiazolidinedione (TZD) and non-TZD PPAR{gamma} full agonists were reduced in a correlative manner. These results directly demonstrate the important role of Tyr473 in mediating the interaction of full agonists but not SPPAR{gamma}Ms with the PPAR{gamma} LBD, thereby providing a precise molecular determinant for their differing pharmacologies.« less

  4. Minimalist hybrid ligand/receptor-based pharmacophore model for CXCR4 applied to a small-library of marine natural products led to the identification of phidianidine a as a new CXCR4 ligand exhibiting antagonist activity.

    PubMed

    Vitale, Rosa Maria; Gatti, Monica; Carbone, Marianna; Barbieri, Federica; Felicità, Vera; Gavagnin, Margherita; Florio, Tullio; Amodeo, Pietro

    2013-12-20

    Here, we present a minimal hybrid ligand/receptor-based pharmacophore model (PM) for CXCR4, a chemokine receptor deeply involved in several pathologies, such as HIV infection, rheumatoid arthritis, cancer development/progression, and metastasization. This model, considerably simpler than those thus far proposed for this receptor, has been used to search for new CXCR4 inhibitors in a small marine natural product library available at ICB-CNR Institute (Pozzuoli, NA, Italy), since natural products, with their naturally selected chemical and functional diversity, represent a rich source of bioactive scaffolds; computational approaches allow searching for new scaffolds with a minimal waste of possibly precious natural product samples; and our "stripped-down" model substantially increases the probabilities of identifying potential hits even in small-sized libraries. This search, also validated by a systematic virtual screening of the same library, has led to the identification of a new CXCR4 ligand, phidianidine A (PHIA). Docking studies supported PHIA activity and suggested its possible binding modes to CXCR4. Using the CXCR4-expressing/CXCR7-negative GH4C1 cell line we show that PHIA inhibits CXCL12-induced DNA synthesis, cell migration, and ERK1/2 activation. The specificity of these effects was confirmed by the lack of PHIA activity in GH4C1 cells, in which siRNA highly reduces CXCR4 expression and the lack of cytoxicity of PHIA was also verified. Thus, PHIA represents a promising lead for a new family of CXCR4 modulators with wide margins of improvement in potency and specificity offered by the small and very simple underlying PM.

  5. Thiazolidinedione, a peroxisome proliferator-activated receptor-gamma ligand, modulates the E-cadherin/beta-catenin system in a human pancreatic cancer cell line, BxPC-3.

    PubMed

    Ohta, Tetsuo; Elnemr, Ayman; Yamamoto, Miyuki; Ninomiya, Itasu; Fushida, Sachio; Nishimura, Gen-Ichi; Fujimura, Takashi; Kitagawa, Hirohisa; Kayahara, Masato; Shimizu, Koichi; Yi, Shuangqin; Miwa, Koichi

    2002-07-01

    Activation of peroxisome proliferator-activated receptor (PPAR)-gamma induces terminal differentiation and growth inhibition associated with G1 cell cycle arrest in some cancer cells. The multifunctional molecule beta-catenin performs important roles in intercellular adhesion and signal transduction. However, no report has focused on actions of PPAR-gamma in regulating the E-cadherin/beta-catenin system. We examined whether thiazolidinedione (TZD), a potent PPAR-gamma ligand, could modulate the E-cadherin/beta-catenin system in a human pancreatic cancer cell line, BxPC-3, that has been found to express PPAR-gamma. According to Western blotting, TZD markedly increased differentiation markers including E-cadherin and carcinoembryonic antigen, while beta-catenin did not change significantly. In untreated cells, fluorescence immunostaining demonstrated beta-catenin predominantly in the cytoplasm and/or nucleus; in TZD-treated cells, beta-catenin localization had dramatically shifted to the plasma membrane, in association with increased E-cadherin at this site. Thus, a PPAR-gamma ligand appears to participate not only in induction of differentiation in pancreatic cancer cells, but also in the regulation of the E-cadherin/beta-catenin system. Such ligands may prove clinically useful as cytostatic anticancer agents.

  6. The flavone hispidulin, a benzodiazepine receptor ligand with positive allosteric properties, traverses the blood–brain barrier and exhibits anticonvulsive effects

    PubMed Central

    Kavvadias, Dominique; Sand, Philipp; Youdim, Kuresh A; Qaiser, M Zeeshan; Rice-Evans, Catherine; Baur, Roland; Sigel, Erwin; Rausch, Wolf-Dieter; Riederer, Peter; Schreier, Peter

    2004-01-01

    The functional characterization of hispidulin (4′,5,7-trihydroxy-6-methoxyflavone), a potent benzodiazepine (BZD) receptor ligand, was initiated to determine its potential as a modulator of central nervous system activity. After chemical synthesis, hispidulin was investigated at recombinant GABAA/BZD receptors expressed by Xenopus laevis oocytes. Concentrations of 50 nM and higher stimulated the GABA-induced chloride currents at tested receptor subtypes (α1−3,5,6β2γ2S) indicating positive allosteric properties. Maximal stimulation at α1β2γ2S was observed with 10 μM hispidulin. In contrast to diazepam, hispidulin modulated the α6β2γ2S-GABAA receptor subtype. When fed to seizure-prone Mongolian gerbils (Meriones unguiculatus) in a model of epilepsy, hispidulin (10 mg kg−1 body weight (BW) per day) and diazepam (2 mg kg−1 BW per day) markedly reduced the number of animals suffering from seizures after 7 days of treatment (30 and 25% of animals in the respective treatment groups, vs 80% in the vehicle group). Permeability across the blood–brain barrier for the chemically synthesized, 14C-labelled hispidulin was confirmed by a rat in situ perfusion model. With an uptake rate (Kin) of 1.14 ml min−1 g−1, measurements approached the values obtained with highly penetrating compounds such as diazepam. Experiments with Caco-2 cells predict that orally administered hispidulin enters circulation in its intact form. At a concentration of 30 μM, the flavone crossed the monolayer without degradation as verified by the absence of glucuronidated metabolites. PMID:15231642

  7. PPARgamma gene polymorphism is associated with exercise-mediated changes of insulin resistance in healthy men.

    PubMed

    Kahara, Toshio; Takamura, Toshinari; Hayakawa, Tetsuo; Nagai, Yukihiro; Yamaguchi, Hiromi; Katsuki, Tatsuo; Katsuki, Ken-Ichi; Katsuki, Michio; Kobayashi, Ken-Ichi

    2003-02-01

    Exercise training improves insulin sensitivity, but individual responses vary greatly. Peroxisome proliferator-activated receptor-gamma (PPARgamma) is a regulator of adipose cell differentiation and plays an important role in systemic insulin action. We investigated whether PPARgamma gene polymorphism affects insulin resistance in response to exercise in Japanese healthy men. The exercise program at an individual intensity of 50% of the maximal heart rate was performed for 20 to 60 min/d, and 2 to 3 days per week to attain a level of physical activity of 700 kcal/wk. The program was conducted for 3 months without any dietary intervention, and the clinical and metabolic characteristics were examined before and after the exercise program. Body mass index (BMI) did not change significantly after the exercise program, whereas percentage of body fat (% body fat), fasting plasma glucose (FPG), and serum leptin levels decreased significantly. Pro12Ala polymorphism in PPARgamma gene was performed on genomic DNA isolated from human leukocytes and examined with polymerase chain reaction (PCR) and subsequent restriction enzyme analysis using BstU-I. In this study, the Ala allele did not correlate with fasting immunoreactive insulin (IRI) and homeostasis model assessment-insulin resistance index (HOMA-R) at baseline, but did so with the changes in IRI and HOMA-R after exercise (DeltaIRI, Pro/Pro 0.55 +/- 3.49 microU/mL v Pro/Ala -2.83 +/- 1.47 microU/mL, P <.05; DeltaHOMA-R, Pro/Pro 0.09 +/- 0.86 v Pro/Ala -0.61 +/- 0.32, P <.05). This result suggests that the Ala allele is associated with improvement in insulin resistance after exercise. We conclude that PPARgamma gene polymorphism may be a reliable indicator of whether exercise will have a beneficial effect as part of the treatment of insulin resistance syndrome. Copyright 2003, Elsevier Science (USA). All rights reserved.

  8. PPARgamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes.

    PubMed

    Wang, Hong-Mei; Zhao, Yan-Xin; Zhang, Shi; Liu, Gui-Dong; Kang, Wen-Yan; Tang, Hui-Dong; Ding, Jian-Qing; Chen, Sheng-Di

    2010-01-01

    Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder. Accumulating data indicate that astrocytes play an important role in the neuroinflammation related to the pathogenesis of AD. It has been shown that microglia and astrocytes are activated in AD brain and amyloid-beta (Abeta) can increase the expression of cyclooxygenase 2 (COX-2), interleukin-1, and interleukin-6. Suppressing the inflammatory response caused by activated astrocytes may help to inhibit the development of AD. Curcumin is a major constituent of the yellow curry spice turmeric and proved to be a potential anti-inflammatory drug in arthritis and colitis. There is a low age-adjusted prevalence of AD in India, a country where turmeric powder is commonly used as a culinary compound. Curcumin has been shown to suppress activated astroglia in amyloid-beta protein precursor transgenic mice. The real mechanism by which curcumin inhibits activated astroglia is poorly understood. Here we report that the expression of COX-2 and glial fibrillary acidic protein were enhanced and that of peroxisome proliferator-activated receptor gamma (PPARgamma) was decreased in Abeta(25-35)-treated astrocytes. In line with these results, nuclear factor-kappaB translocation was increased in the presence of Abeta. All these can be reversed by the pretreatment of curcumin. Furthermore, GW9662, a PPARgamma antagonist, can abolish the anti-inflammatory effect of curcumin. These results show that curcumin might act as a PPARgamma agonist to inhibit the inflammation in Abeta-treated astrocytes.

  9. Synthesis and structure of a heptanuclear nickel(II) complex uniquely exhibiting four distinct binding modes, two of which are novel, for a hydroxamate ligand.

    PubMed

    Gaynor, Declan; Starikova, Zoya A; Ostrovsky, Sergei; Haase, Wolfgang; Nolan, Kevin B

    2002-03-07

    The reaction of 2-(dimethylamino)phenylhydroxamic acid (2-dmAphaH) with NiSO(4).6H2O gives the complex [Ni7(2-dmAphaH-1)2(2-dmApha)8(H2O)2]SO(4).15H2O uniquely exhibiting four distinct hydroxamate binding modes, two of which are novel, and showing both antiferromagnetic and ferromagnetic interactions in contrast to [Cu5(2-dmAphaH-1)4(HSO4)2(MeOH)2].2MeOH, a strongly antiferromagnetic metallacrown formed with CuSO(4).5H2O.

  10. In vitro screening of 200 pesticides for agonistic activity via mouse peroxisome proliferator-activated receptor (PPAR){alpha} and PPAR{gamma} and quantitative analysis of in vivo induction pathway

    SciTech Connect

    Takeuchi, Shinji; Matsuda, Tadashi; Kobayashi, Satoshi

    2006-12-15

    Peroxisome proliferator-activated receptors (PPARs) are ligand-dependent transcription factors and key regulators of lipid metabolism and cell differentiation. However, there have been few studies reporting on a variety of environmental chemicals, which may interact with these receptors. In the present study, we characterized mouse PPAR{alpha} and PPAR{gamma} agonistic activities of 200 pesticides (29 organochlorines, 11 diphenyl ethers, 56 organophosphorus pesticides, 12 pyrethroids, 22 carbamates, 11 acid amides, 7 triazines, 8 ureas and 44 others) by in vitro reporter gene assays using CV-1 monkey kidney cells. Three of the 200 pesticides, diclofop-methyl, pyrethrins and imazalil, which have different chemical structures, showed PPAR{alpha}-mediatedmore » transcriptional activities in a dose-dependent manner. On the other hand, none of the 200 pesticides showed PPAR{gamma} agonistic activity at concentrations {<=} 10{sup -5} M. To investigate the in vivo effects of diclofop-methyl, pyrethrins and imazalil, we examined the gene expression of PPAR{alpha}-inducible cytochrome P450 4As (CYP4As) in the liver of female mice intraperitoneally injected with these compounds ({<=} 300 mg/kg). RT-PCR revealed significantly high induction levels of CYP4A10 and CYP4A14 mRNAs in diclofop-methyl- and pyrethrins-treated mice, whereas imazalil induced almost no gene expressions of CYP4As. In particular, diclofop-methyl induced as high levels of CYP4A mRNAs as WY-14643, a potent PPAR{alpha} agonist. Thus, most of the 200 pesticides tested do not activate PPAR{alpha} or PPAR{gamma} in in vitro assays, but only diclofop-methyl and pyrethrins induce PPAR{alpha} agonistic activity in vivo as well as in vitro.« less

  11. Lipid-binding proteins modulate ligand-dependent trans-activation by peroxisome proliferator-activated receptors and localize to the nucleus as well as the cytoplasm.

    PubMed

    Helledie, T; Antonius, M; Sorensen, R V; Hertzel, A V; Bernlohr, D A; Kølvraa, S; Kristiansen, K; Mandrup, S

    2000-11-01

    Peroxisome proliferator-activated receptors (PPARs) are activated by a variety of fatty acids, eicosanoids, and hypolipidemic and insulin-sensitizing drugs. Many of these compounds bind avidly to members of a family of small lipid-binding proteins, the fatty acid-binding proteins (FABPs). Fatty acids are activated to CoA esters, which bind with high affinity to the acyl-CoA-binding protein (ACBP). Thus, the availability of known and potential PPAR ligands may be regulated by lipid-binding proteins. In this report we show by transient transfection of CV-1 cells that coexpression of ACBP and adipocyte lipid-binding protein (ALBP) exerts a ligand- and PPAR subtype-specific attenuation of PPAR-mediated trans-activation, suggesting that lipid-binding proteins, when expressed at high levels, may function as negative regulators of PPAR activation by certain ligands. Expression of ACBP, ALBP, and keratinocyte lipid-binding protein (KLBP) is induced during adipocyte differentiation, a process during which PPARgamma plays a prominent role. We present evidence that endogenous ACBP, ALBP, and KLBP not only localize to the cytoplasm but also exhibit a prominent nuclear localization in 3T3-L1 adipocytes. In addition, forced expression of ACBP, ALBP, and KLBP in CV-1 cells resulted in a substantial accumulation of all three proteins in the nucleus. These results suggest that lipid-binding proteins, contrary to the general assumption, may exert their action in the nucleus as well as in the cytoplasm.

  12. Irbesartan increased PPAR{gamma} activity in vivo in white adipose tissue of atherosclerotic mice and improved adipose tissue dysfunction

    SciTech Connect

    Iwai, Masaru; Kanno, Harumi; Senba, Izumi

    2011-03-04

    Research highlights: {yields} Atherosclerotic apolipoprotein E-deficient (ApoEKO) mice were treated with irbesartan. {yields} Irbesartan decreased white adipose tissue weight without affecting body weight. {yields} DNA-binding for PPAR{gamma} was increased in white adipose tissue in vivo by irbesartan. {yields} Irbesartan increased adipocyte number in white adipose tissue. {yields} Irbesatan increased the expression of adiponectin and leptin in white adipose tissue. -- Abstract: The effect of the PPAR{gamma} agonistic action of an AT{sub 1} receptor blocker, irbesartan, on adipose tissue dysfunction was explored using atherosclerotic model mice. Adult male apolipoprotein E-deficient (ApoEKO) mice at 9 weeks of age were treated with amore » high-cholesterol diet (HCD) with or without irbesartan at a dose of 50 mg/kg/day for 4 weeks. The weight of epididymal and retroperitoneal adipose tissue was decreased by irbesartan without changing food intake or body weight. Treatment with irbesartan increased the expression of PPAR{gamma} in white adipose tissue and the DNA-binding activity of PPAR{gamma} in nuclear extract prepared from adipose tissue. The expression of adiponectin, leptin and insulin receptor was also increased by irbesartan. These results suggest that irbesartan induced activation of PPAR{gamma} and improved adipose tissue dysfunction including insulin resistance.« less

  13. Comparative gene expression profiles induced by PPAR{gamma} and PPAR{alpha}/{gamma} agonists in rat hepatocytes

    SciTech Connect

    Rogue, Alexandra; Universite de Rennes 1, 35065 Rennes Cedex; Biologie Servier, 45520 Gidy

    2011-07-01

    Species-differential toxic effects have been described with PPAR{alpha} and PPAR{gamma} agonists between rodent and human liver. PPAR{alpha} agonists (fibrates) are potent hypocholesterolemic agents in humans while they induce peroxisome proliferation and tumors in rodent liver. By contrast, PPAR{gamma} agonists (glitazones) and even dual PPAR{alpha}/{gamma} agonists (glitazars) have caused idiosyncratic hepatic and nonhepatic toxicities in human without evidence of any damage in rodent during preclinical studies. The mechanisms involved in such differences remain largely unknown. Several studies have identified the major target genes of PPAR{alpha} agonists in rodent liver while no comprehensive analysis has been performed on gene expression changes inducedmore » by PPAR{gamma} and dual PPAR{alpha}/{gamma} agonists. Here, we investigated transcriptomes of rat hepatocytes after 24 h treatment with two PPAR{gamma} (troglitazone and rosiglitazone) and two PPAR{alpha}/{gamma} (muraglitazar and tesaglitazar) agonists. Although, hierarchical clustering revealed a gene expression profile characteristic of each PPAR agonist class, only a limited number of genes was specifically deregulated by glitazars. Functional analyses showed that many genes known as PPAR{alpha} targets were also modulated by both PPAR{gamma} and PPAR{alpha}/{gamma} agonists and quantitative differences in gene expression profiles were observed between these two classes. Moreover, most major genes modulated in rat hepatocytes were also found to be deregulated in rat liver after tesaglitazar treatment. Taken altogether, these results support the conclusion that differential toxic effects of PPAR{alpha} and PPAR{gamma} agonists in rodent liver do not result from transcriptional deregulation of major PPAR target genes but rather from qualitative and/or quantitative differential responses of a small subset of genes.« less

  14. Proteomic profiling of human plasma exosomes identifies PPAR{gamma} as an exosome-associated protein

    SciTech Connect

    Looze, Christopher; Yui, David; Leung, Lester

    Exosomes are nanovesicles that are released from cells as a mechanism of cell-free intercellular communication. Only a limited number of proteins have been identified from the plasma exosome proteome. Here, we developed a multi-step fractionation scheme incorporating gel exclusion chromatography, rate zonal centrifugation through continuous sucrose gradients, and high-speed centrifugation to purify exosomes from human plasma. Exosome-associated proteins were separated by SDS-PAGE and 66 proteins were identified by LC-MS/MS, which included both cellular and extracellular proteins. Furthermore, we identified and characterized peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}), a nuclear receptor that regulates adipocyte differentiation and proliferation, as well as immune and inflammatorymore » cell functions, as a novel component of plasma-derived exosomes. Given the important role of exosomes as intercellular messengers, the discovery of PPAR{gamma} as a component of human plasma exosomes identifies a potential new pathway for the paracrine transfer of nuclear receptors.« less

  15. Expression of peroxisome proliferator-activated receptors (PPARS) in human astrocytic cells: PPARgamma agonists as inducers of apoptosis.

    PubMed

    Chattopadhyay, N; Singh, D P; Heese, O; Godbole, M M; Sinohara, T; Black, P M; Brown, E M

    2000-07-01

    We report the isolation by RT-PCR of partial cDNAs encoding the human peroxisome proliferator-activated receptor (PPAR) isoforms PPARbeta and -gamma in human primary astrocytes (HPA) as well as in the human malignant astrocytoma cell line T98G. In contrast, we failed to detect PPARalpha mRNA in either of these two cell types. Because PPARbeta is ubiquitously expressed but has, as yet, no known function, we pursued our functional studies of these cells with regard to PPARgamma. To that end, we showed that PPARgamma protein is abundantly expressed in both cell types, having a molecular weight of approximately 50 kDa. Immunocytochemistry revealed a predominantly nuclear localization of this receptor. Moreover, incubation of the two cell types with 1-12 mcM 15-deoxy PGJ(2) or 1-12 mcM ciglitazone, both of which are agonists of PPARgamma, induced loss of cellular viability as assessed by the MTT assay after a 4 hr incubation. Reduced cellular viability as a consequence of exposure to PGJ(2) or ciglitazone resulted from induction of apoptosis, as assessed by DNA fragmentation and Hoechst staining, and involves activation of the CPP32 (caspase-3) protease. These data show that modulation of the process of apoptosis is one function of PPARgamma in cells derived from the human astrocytic lineage. Copyright 2000 Wiley-Liss, Inc.

  16. The synthetic ligand of peroxisome proliferator-activated receptor-gamma ciglitazone affects human glioblastoma cell lines.

    PubMed

    Strakova, Nicol; Ehrmann, Jiri; Dzubak, Petr; Bouchal, Jan; Kolar, Zdenek

    2004-06-01

    Glioblastoma multiforme is the most common malignant brain tumor in adults, and it is among the most lethal of all cancers. Recent studies have shown that ligand activation of peroxisome proliferator-activated receptor (PPAR)-gamma can induce differentiation and inhibit proliferation of several cancer cells. In this study, we have investigated whether one PPARgamma ligand in particular, ciglitazone, inhibits cell viability and, additionally, whether it affects the cell cycle and apoptosis of human glioblastoma cell lines T98G, U-87 MG, A172, and U-118 MG. All glioblastoma cell lines were found to express PPARgamma protein, and following treatment with ciglitazone, localization was unchanged. Ciglitazone inhibited viability in a dose-dependent manner in all four tested glioblastoma cells after 24 h of treatment. Analysis of the cell cycle showed arrest in the G(1) phase and partial block in G(2)/M phase of the cell cycle. Cyclin D1 and cyclin B expression was decreased. Phosphorylation of Rb protein dropped as well. We found that ciglitazone was followed by increased expression of p27(Kip1) and p21(Waf1/Cip1). It also led to apoptosis induction: bax expression in T98G was elevated. Expression of the antiapoptotic protein bcl-2 was reduced in U-118 MG and U-87 MG and showed a slight decrease in A172 cells. Flow cytometry confirmed the induction of apoptosis. Moreover, PPARgamma ligand decreased telomerase activity in U-87 MG and U-118 MG cell lines. Our results demonstrate that ciglitazone inhibits the viability of human glioblastoma cell lines via induction of apoptosis; as a result, this ligand may offer potential new therapy for the treatment of central nervous system neoplasms.

  17. Azelaic acid modulates the inflammatory response in normal human keratinocytes through PPARgamma activation.

    PubMed

    Mastrofrancesco, Arianna; Ottaviani, Monica; Aspite, Nicaela; Cardinali, Giorgia; Izzo, Enzo; Graupe, Klaus; Zouboulis, Christos C; Camera, Emanuela; Picardo, Mauro

    2010-09-01

    Azelaic acid (AzA), a nine-carbon dicarboxylic acid, is an agent for the topical treatment of acne. It has also been shown to be effective in rosacea; however, the mechanism of action has not been clarified. Because inflammation is a common feature of both conditions, we investigated the effects of azelaic acid on the inflammatory response of normal human keratinocytes to ultraviolet B light, which is a photosensitizer agent in rosacea. AzA, at 20 mM, a concentration achievable following topical application of a 15% gel, suppresses ultraviolet B light-induced interleukins-1beta, -6 and tumor necrosis factor-alpha mRNA expression and protein secretion. Mechanistically, azelaic acid significantly reduced the ultraviolet B light-induced nuclear translocation of nuclear factor kB p65 subunit and the phosphorylation of the p38 mitogen and stress-activated protein kinase. Moreover, as peroxisome proliferators-activated receptor gamma, (PPARgamma) which has a crucial role in the control of inflammation, is activated by fatty acids and products of lipid peroxidation, we further investigated the effect of azelaic acid on the expression of this nuclear receptor. AzA induced peroxisome proliferators-activated receptor-gamma mRNA and its transcriptional activity. The PPARgamma antagonist GW9662 abrogated the inhibitory effects of AzA on the UVB-induced pro-inflammatory cytokines release and on the cell proliferation. Our study provides new insights into the molecular mechanisms of the activity of azelaic acid and lands additional evidences for its therapeutic effects on inflammatory skin diseases, such as rosacea.

  18. Exhibiting Lives

    ERIC Educational Resources Information Center

    Golden, Deborah; Elbaz-Luwisch, Freema

    2007-01-01

    This paper examines some of the dilemmas that accompany the emergence of the personal voice in scholarly work, by taking a close, grounded look at the way in which these unfolded in a specific academic course. As part of the course, entitled "A cultural approach to the life cycle", students were asked to participate in a group exhibition in which…

  19. Oxidized LDL binding to LOX-1 upregulates VEGF expression in cultured bovine chondrocytes through activation of PPAR-{gamma}

    SciTech Connect

    Kanata, Sohya; Akagi, Masao; Nishimura, Shunji

    It has been reported that vascular endothelial growth factor (VEGF) and its receptors play an important role in the destruction of articular cartilage in osteoarthritis through increased production of matrix metalloproteinases. We investigated whether the oxidized low-density lipoprotein (ox-LDL) binding to lectin-like ox-LDL receptor-1 (LOX-1) upregulates VEGF expression in cultured bovine articular chondrocytes (BACs). Ox-LDL markedly increased VEGF mRNA expression and protein release in time- and dose-dependent manners, which was significantly suppressed by anti-LOX-1 antibody pretreatment. Activation of peroxisome proliferator-activated receptor (PPAR)-{gamma} was evident in BACs with ox-LDL addition and was attenuated by anti-LOX-1 antibody. The specific PPAR-{gamma} inhibitor GW9662more » suppressed ox-LDL-induced VEGF expression. These results suggest that the ox-LDL/LOX-1 system upregulates VEGF expression in articular cartilage, at least in part, through activation of PPAR-{gamma} and supports the hypothesis that ox-LDL is involved in cartilage degradation via LOX-1.« less

  20. Neuroprotective effect of the new thiadiazolidinone NP00111 against oxygen-glucose deprivation in rat hippocampal slices: implication of ERK1/2 and PPARgamma receptors.

    PubMed

    Rosa, Angelo O; Egea, Javier; Martínez, Ana; García, Antonio G; López, Manuela G

    2008-07-01

    Thiadiazolidinones (TDZDs) are small molecules that inhibit glycogen synthase kinase 3-beta (GSK3-beta) activity in a non competitive manner to ATP. NP00111, a new TDZD, besides causing inhibition of GSK-3beta, has also shown to be an agonist of PPARgamma . Since phosphorylation and consequent inhibition of GSK-3beta by PI-3K/Akt and agonism of PPARgamma have shown to afford neuroprotection in several in vitro and in vivo models, we have studied the potential neuroprotective effect of NP00111 in an "in vitro" model of ischemia-reperfusion. NP00111, at the concentration of 10 microM, significantly protected adult rat hippocampal slices subjected to oxygen and glucose deprivation (OGD) for 1 h followed by 3 h re-oxygenation, measured as lactic dehydrogenase (LDH) released to the extracellular media. The protective effects of NP00111 were more pronounced during the re-oxygenation period in comparison to the OGD period. Other GSK-3beta inhibitors like lithium or AR-A014418 did not afford protection in this model. However, the PPARgamma agonist rosiglitazone was protective at 3 microM. Protection afforded by NP00111 and rosiglitazone were prevented by the PPARgamma antagonist GW9662, suggesting that both NP00111 and rosiglitazone were preventing cell death caused by oxygen-glucose deprivation via activation of PPARgamma. NP00111 increased by two fold phosphorylation of ERK1/2 and its protective effects were lost when the hippocampal slices were co-incubated with the mitogen-activated protein kinase (MAPK) inhibitor PD98059. In conclusion, the novel TDZD NP00111 was protective against OGD in rat hippocampal slices by a mechanism related to phosphorylation of ERK1/2 via activation of PPARgamma.

  1. Transforming growth factor-{beta} inhibits CCAAT/enhancer-binding protein expression and PPAR{gamma} activity in unloaded bone marrow stromal cells

    SciTech Connect

    Ahdjoudj, S.; Kaabeche, K.; Holy, X.

    2005-02-01

    The molecular mechanisms regulating the adipogenic differentiation of bone marrow stromal cells in vivo remain largely unknown. In this study, we investigated the regulatory effects of transforming growth factor beta-2 (TGF-{beta}2) on transcription factors involved in adipogenic differentiation induced by hind limb suspension in rat bone marrow stromal cells in vivo. Time course real-time quantitative reverse-transcription polymerase chain reaction (RT-PCR) analysis of gene expression showed that skeletal unloading progressively increases the expression of CCAAT/enhancer-binding protein (C/EBP){alpha} and C/EBP{beta} {alpha} at 5 days in bone marrow stromal cells resulting in increased peroxisome proliferator-activated receptor {gamma} (PPAR{gamma}2) transcripts at 7 days. TGF-{beta}2more » administration in unloaded rats corrected the rise in C/EBP{alpha} and C/EBP{beta} transcripts induced by unloading in bone marrow stromal cells. This resulted in inhibition of PPAR{gamma}2 expression that was associated with increased Runx2 expression. Additionally, the inhibition of C/EBP{alpha} and C/EBP{beta} expression by TGF-{beta}2 was associated with increased PPAR{gamma} serine phosphorylation in bone marrow stromal cells, a mechanism that inhibits PPAR{gamma} transactivating activity. The sequential inhibitory effect of TGF-{beta}2 on C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma}2 resulted in reduced LPL expression and abolition of bone marrow stromal cell adipogenic differentiation, which contributed to prevent bone loss induced by skeletal unloading. We conclude that TGF-{beta}2 inhibits the excessive adipogenic differentiation of bone marrow stromal cells induced by skeletal unloading by inhibiting C/EBP{alpha}, C/EBP{beta}, and PPAR{gamma} expression and activity, which provides a sequential mechanism by which TGF-{beta}2 regulates adipogenic differentiation of bone marrow stromal cells in vivo.« less

  2. PPAR{gamma} activates ABCA1 gene transcription but reduces the level of ABCA1 protein in HepG2 cells

    SciTech Connect

    Mogilenko, Denis A., E-mail: denis@iem.sp.ru; Department of Embryology, St. Petersburg State University, 199034 St. Petersburg; Shavva, Vladimir S.

    Research highlights: {yields} PPAR{gamma} activates ABCA1 gene expression but decreases ABCA1 protein content in human hepatoma cell line HepG2. {yields} Treatment of HepG2 cells with PPAR{gamma} agonist GW1929 leads to dissociation of LXR{beta} from ABCA1-LXR{beta} complex. {yields} Inhibition of protein kinases MEK1/2 abolishes PPAR{gamma}-mediated dissociation of LXR{beta} from ABCA1/LXR{beta} complex. {yields} Activation of PPAR{gamma} leads to increasing of the level of LXR{beta} associated with LXRE within ABCA1 gene promoter. -- Abstract: Synthesis of ABCA1 protein in liver is necessary for high-density lipoproteins (HDL) formation in mammals. Nuclear receptor PPAR{gamma} is known as activator of ABCA1 expression, but details of PPAR{gamma}-mediatedmore » regulation of ABCA1 at both transcriptional and post-transcriptional levels in hepatocytes have not still been well elucidated. In this study we have shown, that PPAR{gamma} activates ABCA1 gene transcription in human hepatoma cells HepG2 through increasing of LXR{beta} binding with promoter region of ABCA1 gene. Treatment of HepG2 cells with PPAR{gamma} agonist GW1929 leads to dissociation of LXR{beta} from ABCA1/LXR{beta} complex and to nuclear translocation of this nuclear receptor resulting in reduction of ABCA1 protein level 24 h after treatment. Inhibition of protein kinases MEK1/2 abolishes PPAR{gamma}-mediated dissociation of LXR{beta} from ABCA1/LXR{beta} complex, but does not block PPAR{gamma}-dependent down-regulation of ABCA1 protein in HepG2 cells. These data suggest that PPAR{gamma} may be important for regulation of the level of hepatic ABCA1 protein and indicate the new interplays between PPAR{gamma}, LXR{beta} and MEK1/2 in regulation of ABCA1 mRNA and protein expression.« less

  3. 3D chiral and 2D achiral cobalt(ii) compounds constructed from a 4-(benzimidazole-1-yl)benzoic ligand exhibiting field-induced single-ion-magnet-type slow magnetic relaxation.

    PubMed

    Wang, Yu-Ling; Chen, Lin; Liu, Cai-Ming; Du, Zi-Yi; Chen, Li-Li; Liu, Qing-Yan

    2016-05-04

    Organizing magnetically isolated 3d transition metal ions, which behave as single-ion magnet (SIM) units, in a coordination network is a promising approach to design novel single-molecule magnets (SMMs). Herein 3D chiral and 2D achiral cobalt(ii) coordination compounds based on single metal nodes with a 4-(benzimidazole-1-yl)benzoic acid (Hbmzbc) ligand, namely, [Co(bmzbc)2(1,2-etdio)]n () (1,2-etdio = 1,2-ethanediol) and [Co(bmzbc)2(Hbmzbc)]n (), have been synthesized and structurally characterized. The 3D chiral structure with 2-fold interpenetrating qtz topological nets consisting of totally achiral components was obtained via spontaneous resolution, while the achiral structure is a 2D (4,4) net. In both structures, individual cobalt(ii) ions are spatially well separated by the long organic ligands in the well-defined networks. Magnetic measurements on and showed field-induced slow magnetic relaxation resulting from single-ion anisotropy of the individual Co(ii) ions. Analysis of the dynamic ac susceptibilities with the Arrhenius law afforded an anisotropy energy barrier of 16.8(3) and 31.3(2) K under a 2 kOe static magnetic field for and , respectively. The distinct coordination environments of the Co(ii) ions in and lead to the different anisotropic energy barriers.

  4. Stabilization of peroxisome proliferator-activated receptor alpha by the ligand.

    PubMed

    Hirotani, M; Tsukamoto, T; Bourdeaux, J; Sadano, H; Osumi, T

    2001-10-19

    Peroxisome proliferator-activated receptor (PPAR) constitutes a subfamily among a large group of ligand-activated transcription factors, the nuclear receptor superfamily. We studied the effects of ligand on the intracellular behaviors of PPARalpha. Although nuclear localization of PPARalpha was not affected by a selective ligand, Wy14643, we observed that exogenously expressed PPARalpha was rapidly degraded in HeLa cells, and the ligand significantly stabilized the protein. The stability of PPARalpha was also improved by coexpression of the heterodimer partner retinoid X receptor (RXR) alpha, and further stabilization was not observed with the ligand. These results indicate that PPARalpha is stabilized through heterodimerization with RXR, and the excess protein unpaired with RXR is rapidly turned over, if not bound by an appropriate ligand. These observations on PPARalpha are in sharp contrast to the ligand-stimulated degradation reported on PPARgamma. The ligand-dependent stabilization would have physiological significance when the synthesis of PPARalpha is elevated exceeding the available level of RXR. Copyright 2001 Academic Press.

  5. Analysis of PGC-1{alpha} variants Gly482Ser and Thr612Met concerning their PPAR{gamma}2-coactivation function

    SciTech Connect

    Nitz, Inke; Ewert, Agnes; Klapper, Maja

    2007-02-09

    Peroxisome proliferator-activated receptor-{gamma} coactivator-1{alpha} (PGC-1{alpha}) is a cofactor involved in adaptive thermogenesis, fatty acid oxidation, and gluconeogenesis. Dysfunctions of this protein are likely to contribute to the development of obesity and the metabolic syndrome. This is in part but not definitely confirmed by results of population studies. The aim of this study was to investigate if common genetic variants rs8192678 (Gly482Ser) and rs3736265 (Thr612Met) in the PGC-1{alpha} gene lead to a functional consequence in cofactor activity using peroxisome proliferator-activated receptor-{gamma} 2 (PPAR{gamma}2) as interacting transcription factor. Reporter gene assays in HepG2 cells with wildtype and mutant proteins of both PGC1{alpha}more » and PPAR{gamma}2 (Pro12Ala, rs1801282) using the acyl-CoA-binding protein (ACBP) promoter showed no difference in coactivator activity. This is First study implicating that the Gly482Ser and Thr612Met polymorphisms in PGC-1{alpha} and Pro12Ala polymorphism in PPAR{gamma}2 do not affect the functional integrity of these proteins.« less

  6. Evaluation of glucose metabolism and reproductive hormones in polycystic ovary syndrome on the basis of peroxisome proliferator-activated receptor (PPAR)-gamma2 Pro12Ala genotype.

    PubMed

    Tok, E C; Aktas, A; Ertunc, D; Erdal, E M; Dilek, S

    2005-06-01

    Peroxisome proliferator-activated receptor (PPAR)-gamma2 Pro12Ala polymorphism has been suggested as a protective factor for polycystic ovary syndrome (PCOS). In this study, we aimed to investigate metabolic features and reproductive hormones in women with PCOS and compare these features with control women on the basis of Pro12Ala genotype. This study involved 60 randomly selected women with PCOS and 60 controls. Main outcome measures were anthropometric measures, variables of glucose metabolism and reproductive hormones. All the patients were genotyped for Pro12Ala variant of PPAR-gamma2 gene. Patients with Pro12Ala polymorphism were more obese in both groups. Furthermore, they had lower fasting insulin levels, were less insulin-resistant and were less glucose-intolerant as demonstrated by 2 h glucose concentrations. However, there was no difference in reproductive hormone levels on the basis of Pro12Ala genotype. Both control women and women with PCOS had significant differences in glucose metabolism on the basis of PPAR-gamma2 Pro12Ala polymorphism. Pro12Ala variant may break the process that leads to PCOS in susceptible women, instead of being a direct causal relationship between Pro12Ala polymorphism and PCOS.

  7. PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPAR{gamma} activation in the liver

    SciTech Connect

    Oishi, Katsutaka, E-mail: k-ooishi@aist.go.jp; Uchida, Daisuke; Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki

    Research highlights: {yields} PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression. {yields} Hepatic expressions of PPAR{gamma} and PCG-1{alpha} are induced by a ketogenic diet. {yields} PPAR{gamma} antagonist attenuates a ketogenic diet-induced PAI-1 expression. {yields} Ketogenic diet advances the phase of circadian clock in a PPAR{alpha}-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD).more » To determine whether peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPAR{alpha}-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPAR{alpha}-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPAR{alpha} target genes such as Cyp4A10 and FGF21 was damped in PPAR{alpha}-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPAR{alpha}-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPAR{alpha} activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPAR{gamma} and its coactivator PCG-1{alpha} were more effectively induced in PPAR{alpha}-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPAR{gamma} antagonist, in both WT and PPAR

  8. PPAR{gamma} agonist pioglitazone reduces matrix metalloproteinase-9 activity and neuronal damage after focal cerebral ischemia

    SciTech Connect

    Lee, Seong-Ryong; Chronic Disease Research Center and Institute for Medical Science, School of Medicine, Keimyung University, Taegu; Kim, Hahn-Young

    2009-02-27

    Pioglitazone, a peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonist, has shown protective effects against ischemic insult in various tissues. Pioglitazone is also reported to reduce matrix metalloproteinase (MMP) activity. MMPs can remodel extracellular matrix components in many pathological conditions. The current study was designed to investigate whether the neuroprotection of pioglitazone is related to its MMP inhibition in focal cerebral ischemia. Mice were subjected to 90 min focal ischemia and reperfusion. In gel zymography, pioglitazone reduced the upregulation of active form of MMP-9 after ischemia. In in situ zymograms, pioglitazone also reduced the gelatinase activity induced by ischemia. After co-incubation withmore » pioglitazone, in situ gelatinase activity was directly reduced. Pioglitazone reduced the infarct volume significantly compared with controls. These results demonstrate that pioglitazone may reduce MMP-9 activity and neuronal damage following focal ischemia. The reduction of MMP-9 activity may have a possible therapeutic effect for the management of brain injury after focal ischemia.« less

  9. Downregulation of microRNA-29 by antisense inhibitors and a PPAR-gamma agonist protects against myocardial ischaemia-reperfusion injury.

    PubMed

    Ye, Yumei; Hu, Zhaoyong; Lin, Yu; Zhang, Congfang; Perez-Polo, Jose R

    2010-08-01

    MicroRNAs (miRNAs) regulate various cardiac processes including cell proliferation and apoptosis. Pioglitazone (PIO), a peroxisome proliferator-activated receptor (PPAR)-gamma agonist, protects against myocardial ischaemia-reperfusion (IR) injury. We assessed the effects of PPAR-gamma activation on myocardial miRNA levels and the role of miRNAs in IR injury. We evaluated the expression changes of miRNAs in the rat heart after PIO administration using miRNA arrays and then confirmed the result by northern blot. miR-29a and c levels decreased remarkably after 7-day treatment with PIO. In H9c2 cells, the effects of PIO and rosiglitazone on miR-29 expression levels were blocked by a selective PPAR-gamma inhibitor GW9662. Downregulation of miR-29 by antisense inhibitor or by PIO protected H9c2 cells from simulated IR injury, indicated as increased cell survival and decreased caspase-3 activity. In contrast, overexpressing miR-29 promoted apoptosis and completely blocked the protective effect of PIO. Antagomirs against miR-29a or -29c significantly reduced myocardial infarct size and apoptosis in hearts subjected to IR injury. Western blot analyses demonstrated that Mcl-2, an anti-apoptotic Bcl-2 family member, was increased by miR-29 inhibition. Downregulation of miR-29 protected hearts against IR injury. The modulation of miRNAs can be achieved by pharmacological intervention. These findings provide a rationale for the development of miRNA-based strategies for the attenuation of IR injury.

  10. Activation of peroxisome proliferator-activated receptor-{gamma} (PPAR{gamma}) induces cell death through MAPK-dependent mechanism in osteoblastic cells

    SciTech Connect

    Kim, Sung Hun; Yoo, Chong Il; Medical Research Institute, College of Medicine, Pusan National University, Pusan, 602-739

    2006-09-01

    The present study was undertaken to determine the role of the mitogen-activated protein kinase (MAPK) subfamilies in cell death induced by PPAR{gamma} agonists in osteoblastic cells. Ciglitazone and troglitazone, PPAR{gamma} agonists, resulted in a concentration- and time-dependent cell death, which was largely attributed to apoptosis. But a PPAR{alpha} agonist ciprofibrate did not affect the cell death. Ciglitazone caused reactive oxygen species (ROS) generation and ciglitazone-induced cell death was prevented by antioxidants, suggesting an important role of ROS generation in the ciglitazone-induced cell death. ROS generation and cell death induced by ciglitazone were inhibited by the PPAR{gamma} antagonist GW9662. Ciglitazone treatmentmore » caused activation of extracellular signal-regulated kinase (ERK) and p38. Activation of ERK was dependent on epidermal growth factor receptor (EGFR) and that of p38 was independent. Ciglitazone-induced cell death was significantly prevented by PD98059, an inhibitor of ERK upstream kinase MEK1/2, and SB203580, a p38 inhibitor. Ciglitazone treatment increased Bax expression and caused a loss of mitochondrial membrane potential, and its effect was prevented by N-acetylcysteine, PD98059, and SB203580. Ciglitazone induced caspase activation, which was prevented by PD98059 and SB203580. The general caspase inhibitor z-DEVD-FMK and the specific inhibitor of caspases-3 DEVD-CHO exerted the protective effect against the ciglitazone-induced cell death. The EGFR inhibitors AG1478 and suramin protected against the ciglitazone-induced cell death. Taken together, these findings suggest that the MAPK signaling pathways play an active role in mediating the ciglitazone-induced cell death of osteoblasts and function upstream of a mitochondria-dependent mechanism. These data may provide a novel insight into potential therapeutic strategies for treatment of osteoporosis.« less

  11. The PPARgamma agonist pioglitazone is effective in the MPTP mouse model of Parkinson's disease through inhibition of monoamine oxidase B.

    PubMed

    Quinn, L P; Crook, B; Hows, M E; Vidgeon-Hart, M; Chapman, H; Upton, N; Medhurst, A D; Virley, D J

    2008-05-01

    The peroxisome proliferator-activated receptor-gamma (PPARgamma) agonist pioglitazone has previously been shown to attenuate dopaminergic cell loss in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of Parkinson's disease, an effect attributed to its anti-inflammatory properties. In the present investigation, we provide evidence that pioglitazone is effective in the MPTP mouse model, not via an anti-inflammatory action, but through inhibition of MAO-B, the enzyme required to biotransform MPTP to its active neurotoxic metabolite 1-methyl-4-phenylpyridinium (MPP+). Mice were treated with pioglitazone (20 mg kg(-1) b.i.d. (twice a day), p.o., for 7 days), prior and post or post-MPTP (30 mg kg(-1) s.c.) treatment. Mice were then assessed for motor impairments on a beam-walking apparatus and for reductions in TH immunoreactivity in the substantia nigra and depletions in striatal dopamine. The effects of pioglitazone on striatal MPP+ levels and MAO-B activity were also assessed. Mice treated with MPTP showed deficits in motor performance, marked depletions in striatal dopamine levels and a concomitant reduction in TH immunoreactivity in the substantia nigra. Pretreatment with pioglitazone completely prevented these effects of MPTP. However, pretreatment with pioglitazone also significantly inhibited the MPTP-induced production of striatal MPP+ and the activity of MAO-B in the striatum. The neuroprotection observed with pioglitazone pretreatment in the MPTP mouse model was due to the blockade of the conversion of MPTP to its active toxic metabolite MPP+, via inhibition of MAO-B.

  12. In vitro glucose uptake activity of Aegles marmelos and Syzygium cumini by activation of Glut-4, PI3 kinase and PPARgamma in L6 myotubes.

    PubMed

    Anandharajan, R; Jaiganesh, S; Shankernarayanan, N P; Viswakarma, R A; Balakrishnan, A

    2006-06-01

    The purpose of the present study is to investigate the effect of methanolic extracts of Aegles marmelos and Syzygium cumini on a battery of targets glucose transporter (Glut-4), peroxisome proliferator activator receptor gamma (PPARgamma) and phosphatidylinositol 3' kinase (PI3 kinase) involved in glucose transport. A. marmelos and S. cumini are anti-diabetic medicinal plants being used in Indian traditional medicine. Different solvent extracts extracted sequentially were analysed for glucose uptake activity at each step and methanol extracts were found to be significantly active at 100ng/ml dose comparable with insulin and rosiglitazone. Elevation of Glut-4, PPARgamma and PI3 kinase by A. marmelos and S. cumini in association with glucose transport supported the up-regulation of glucose uptake. The inhibitory effect of cycloheximide on A. marmelos- and S. cumini-mediated glucose uptake suggested that new protein synthesis is required for the elevated glucose transport. Current observation concludes that methanolic extracts of A. marmelos and S. cumini activate glucose transport in a PI3 kinase-dependent fashion.

  13. Evidence for greater oxidative substrate flexibility in male carriers of the Pro 12 Ala polymorphism in PPARgamma2.

    PubMed

    Thamer, C; Haap, M; Volk, A; Maerker, E; Becker, R; Bachmann, O; Machicao, F; Häring, H U; Stumvoll, M

    2002-03-01

    The Pro12Ala polymorphism of the peroxisome proliferator-activated receptor gamma2 (PPARgamma2) gene is associated with reduced type 2 diabetes risk and increased insulin sensitivity. It is possible that the oxidative shift from lipid to glucose as a fuel is more efficient in Ala allele carriers. To test this hypothesis, we examined carbohydrate and lipid oxidation by indirect calorimetry in lean, glucose tolerant subjects with (X/Ala, n = 25) and without the Pro12Ala polymorphism (Pro/Pro, n = 73) basally and after insulin stimulation during a 2-hour eugylcaemic hyperinsulinaemic clamp. Insulin sensitivity was non-significantly greater in X/Ala (0.13 +/- 0.01 micromol/kg/min/pM) than in Pro/Pro (0.12 +/- 0.01 micromol/kg/min/pM, p = 0.27). Basally, there were no lipid nor carbohydrate oxidation differences between the groups. Interestingly, the decrease in lipid oxidation during insulin stimulation was significantly greater in male X/Ala (- 0.51 +/- 0.06 mg/kg/min) than in male Pro/Pro (- 0.35 +/- 0.04 mg/kg/min, p = 0.03). No difference was observed in females. Analogously, the change in carbohydrate oxidation in male X/Ala (1.34 +/- 0.2 mg/kg/min) was significantly greater than in male Pro/Pro (1.03 +/- 0.12 mg/kg/min, p = 0.05). The respiratory quotient increased more, but not significantly more, in male X/Ala (0.11 +/- 0.01) than in male Pro/Pro subjects (0.08 +/- 0.01, p = 0.08) but similarly in females. These results indicate that the mechanism by which the Ala allele improves insulin sensitivity might involve enhanced suppression of lipid oxidation permitting more efficient (predominantly non-oxidative) glucose disposal. It is unclear why this could be demonstrated only in males, although gender differences in substrate oxidation are well documented.

  14. Autocrine signal transmission with extracellular ligand degradation

    NASA Astrophysics Data System (ADS)

    Muratov, C B; Posta, F; Shvartsman, S Y

    2009-03-01

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand-receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers.

  15. An Exhibit for Touching.

    ERIC Educational Resources Information Center

    Hunt, Susan

    1979-01-01

    An exhibit designed for visually handicapped persons presented by the Kalamazoo (Michigan) Institute of Art included bronze sculptures and oil paintings from the institute's permanent collection. (CL)

  16. San Rafael Schools Exhibit.

    ERIC Educational Resources Information Center

    San Rafael City Schools, CA.

    The San Rafael City Schools' exhibit which was displayed at the 1983 Marin County Fair (California) is described. The exhibit, entitled "Education - A Real Winner," consisted of 12 display panels illustrating the following aspects of the school system: (1) early history from 1861; (2) present board and administration; (3) present schools…

  17. Visitors Center Exhibits

    NASA Technical Reports Server (NTRS)

    1997-01-01

    A child enjoys building his own LEGO model at a play table which was included in the exhibit 'Travel in Space' World Show. The exhibit consisted of 21 displays designed to teach children about flight and space travel from the Wright brothers to future generations of space vehicles.

  18. Communicating Science through Exhibitions

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.; Harold, J.; Morrow, C.

    It is critically important for the public to better understand the scientific process. Museum exhibitions are an important part of informal science education that can effectively reach public audiences as well as school groups. They provide an important gateway for the public to learn about compelling scientific endeavors. There are many ways for scientists to help develop science exhibitions. The Space Science Institute (SSI) is a national leader in producing traveling science exhibitions and their associated educational programming (i.e. interactive websites, educator workshops, public talks, instructional materials). Two of its exhibitions, Space Weather Center and MarsQuest, are currently on tour. Another exhibition, Alien Earths, is in development. The Space Weather Center was developed in partnership with various research missions at NASA's Goddard Space Flight Center. MarsQuest is a 5000 square-foot traveling exhibition. The exhibit's second 3-year tour began this January at the Detroit Science Center. It is enabling millions of Americans to share in the excitement of the scientific exploration of Mars and to learn more about their own planet in the process. The 3,000 square-foot traveling exhibition, called Alien Earths, will bring origins-related research and discoveries to students and the American public. Alien Earths has four interrelated exhibit areas: Our Place in Space, Star Birth, PlanetQuest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in ``habitable zones'' around other stars; and finally they will be able to learn about how scientists are looking for signs of life beyond Earth. Besides the exhibits, SSI is also developing interactive web sites based on exhibit themes. New technologies are transforming the Web from a static medium to an interactive environment with tremendous

  19. New Hurricane Exhibit

    NASA Image and Video Library

    2007-08-29

    A new exhibit in StenniSphere depicting NASA's role in hurricane prediction and research and SSC's role in helping the region recover from Hurricane Katrina. The cyclone-shaped exhibit focuses on the effects of the Aug. 29, 2005 storm and outlines how NASA is working to improve weather forecasting. Through photos, 3-D models and digital animations, the exhibit tells the story of what happened inside the storm and how NASA's scientific research can increase the accuracy of hurricane tracking and modeling.

  20. New Hurricane Exhibit

    NASA Technical Reports Server (NTRS)

    2007-01-01

    A new exhibit in StenniSphere depicting NASA's role in hurricane prediction and research and SSC's role in helping the region recover from Hurricane Katrina. The cyclone-shaped exhibit focuses on the effects of the Aug. 29, 2005 storm and outlines how NASA is working to improve weather forecasting. Through photos, 3-D models and digital animations, the exhibit tells the story of what happened inside the storm and how NASA's scientific research can increase the accuracy of hurricane tracking and modeling.

  1. Birth weight and blood lipid levels in Spanish adolescents: influence of selected APOE, APOC3 and PPARgamma2 gene polymorphisms. The AVENA Study.

    PubMed

    Ruiz, Jonatan R; Labayen, Idoia; Ortega, Francisco B; Moreno, Luis A; González-Lamuño, Domingo; Martí, Amelia; Nova, Esther; Fuentes, Miguel García; Redondo-Figuero, Carlos; Martínez, J Alfredo; Sjöström, Michael; Castillo, Manuel J

    2008-11-10

    There is increasing evidence indicating that genes involved in certain metabolic processes of cardiovascular diseases may be of particular influence in people with low body weight at birth. We examined whether the apolipoprotein (APO) E, APOC3 and the peroxisome proliferator-activated receptor-gamma-2 (PPARgamma2) polymorphisms influence the association between low birth weight and blood lipid levels in healthy adolescents aged 13-18.5 years. A cross-sectional study of 502 Spanish adolescents born at term was conducted. Total (TC) and high density lipoprotein cholesterol (HDLc), triglycerides (TG), apolipoprotein (apo) A and B, and lipoprotein(a) [Lp(a)] were measured. Low density lipoprotein cholesterol (LDLc), TC-HDLc, TC/HDLc and apoB/apoA were calculated. Low birth weight was associated with higher levels of TC, LDLc, apoB, Lp(a), TC-HDLc, TC/HDLc and apoB/apoA in males with the APOE epsilon3epsilon4 genotype, whereas in females, it was associated with lower HDLc and higher TG levels. In males with the APOC3 S1/S2 genotype, low birth weight was associated with lower apoA and higher Lp(a), yet this association was not observed in females. There were no associations between low birth weight and blood lipids in any of the PPARgamma2 genotypes. The results indicate that low birth weight has a deleterious influence on lipid profile particularly in adolescents with the APOE epsilon3/epsilon4 genotype. These findings suggest that intrauterine environment interact with the genetic background affecting the lipid profile in later life.

  2. Effects of the PPAR{gamma} agonist troglitazone on endothelial cells in vivo and in vitro: Differences between human and mouse

    SciTech Connect

    Kakiuchi-Kiyota, Satoko; Vetro, Joseph A.; Suzuki, Shugo

    2009-05-15

    Peroxisome proliferator-activated receptor gamma (PPAR{gamma}) agonists and PPAR{gamma}/{alpha} dual agonists have been or are being developed for clinical use in the treatment of type 2 diabetes mellitus and hyperlipidemias. A common tumor finding in rodent carcinogenicity studies for these agonists is hemangioma/hemangiosarcoma in mice but not in rats. We hypothesized that increased endothelial cell proliferation may be involved in the mechanism of PPAR agonist-induced vascular tumors in mice, and we investigated the effects on endothelial cells utilizing troglitazone, the first clinically used PPAR{gamma} agonist, in vivo and in vitro. Troglitazone (400 and 800 mg/kg/day) induced hemangiosarcomas in mice in amore » 2-year bioassay. We showed that troglitazone increased endothelial cell proliferation in brown and white adipose tissue and liver in mice at sarcomagenic doses after 4 weeks of treatment. Troglitazone was cytotoxic both to human dermal microvascular endothelial cells (HMEC1) and mouse mammary fat pad microvascular endothelial cells (MFP MVEC) at high concentrations. However, MFP MVEC were more resistant to the cytotoxic effects of troglitazone based on the much lower LC{sub 50} in HMEC1 (17.4 {mu}M) compared to MFP MVEC (92.2 {mu}M). Troglitazone increased the proliferation and survival of MFP MVEC but not HMEC1 in growth factor reduced conditions. Our data demonstrate that troglitazone may induce hemangiosarcomas in mice, at least in part, through enhancement of survival and proliferation of microvascular endothelial cells. Such an effect does not occur with human cells, suggesting that human may react differently to exposure to PPAR agonists compared with mice.« less

  3. Children's Art Exhibit

    ERIC Educational Resources Information Center

    Roselle, Marsha L.

    1973-01-01

    Within the past ten years, a sufficient number of specialists in art education have been added to the faculty of the Iowa City Community Schools to relieve the classroom teacher of the responsibility of teaching elementary art classes. The resultant improvement in the quality of the elementary art program led to the creation of the exhibit series.…

  4. Exhibitions in Sight

    ERIC Educational Resources Information Center

    Wasserman, Burton

    1977-01-01

    Today, few artists make serving vessels on a monumental scale. Here artists compete in this unique area of specialization prompted by the Campbell Museum in Camden, New Jersey, which is dedicated to collecting and exhibiting the very best in soup tureens. (Author/RK)

  5. Alan Bean Art Exhibit

    NASA Image and Video Library

    2009-07-19

    NASA Apollo 12 Astronaut and Artist Alan Bean gives remarks at the opening of the exhibit "Alan Bean: Painting Apollo, First Artist on Another World" at the National Air and Space Museum, Monday, July 20, 2009 in Washington. The show opening coincided with the 40th anniversary celebration of Apollo. Photo Credit: (NASA/Bill Ingalls)

  6. Alan Bean Art Exhibit

    NASA Image and Video Library

    2009-07-19

    Former NASA Astronaut and U.S. Senator John Glenn is seen at the opening of the exhibit "Alan Bean: Painting Apollo, First Artist on Another World" at the National Air and Space Museum, Monday, July 20, 2009 in Washington. The show opening coincided with the 40th anniversary celebration of Apollo. Photo Credit: (NASA/Carla Cioffi)

  7. Exhibitions in Sight.

    ERIC Educational Resources Information Center

    Wasserman, Burton

    1978-01-01

    Early in the eighteenth century, Pompeii was discovered, a city that had been hidden for sixteen centuries by volcanic lava. There is a traveling exhibition of the sculptures, friezes, mosaics, and paintings being shown around the United States. Described is the history and contents of "Pompeii--A.D. 79." (RK)

  8. Exhibition Spaces/Galleries.

    ERIC Educational Resources Information Center

    American School & University, 2003

    2003-01-01

    Presents educational exhibition space/galleries considered outstanding in a competition, which judged the most outstanding learning environments at educational institutions nationwide. Jurors spent two days reviewing projects, highlighting concepts and ideas that made them exceptional. For each citation, the article offers information on the firm,…

  9. International Space Station exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The International Space Station (ISS) exhibit in StenniSphere at John C. Stennis Space Center in Hancock County, Miss., gives visitors an up-close look at the largest international peacetime project in history. Step inside a module of the ISS and glimpse how astronauts will live and work in space. Currently, 16 countries contribute resources and hardware to the ISS. When complete, the orbiting research facility will be larger than a football field.

  10. Starship 2040 Exhibit

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This photograph shows Justin Varnadore, son of a Marshall TV employee, at the controls of one of the many displays within the Starship 2040 exhibit on display at Joe Davis Stadium in Huntsville, Alabama. Developed by the Space Transportation Directorate at Marshall Space Flight Center (MSFC), the Starship 2040 exhibit is housed in a 48-ft (14.6-m) tractor and trailer rig, permitting it to travel around the Nation, demonstrating NASA's vision of what commercial spaceflight might be like 40 years from now. All the irnovations suggested aboard the exhibit (automated vehicle health monitoring systems, high-energy propulsion drive, navigational aids, and emergency and safety systems) are based on concepts and technologies now being studied at NASA Centers and partner institutions around the Nation. NASA is the Nation's premier agency for development of the space transportation system, including future-generation reusable launch vehicles. Such systems, the keys to a 'real' Starship 2040, require revolutionary advances in critical aerospace technologies, from thermal, magnetic, chemical, and propellantless propulsion systems to new energy sources such as space solar power or antimatter propulsion. These and other advances are now being studied, developed, and tested at NASA field centers and partner institutions all over the Nation.

  11. Starship 2040 Exhibit

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This photograph shows onlookers viewing displays within the Starship 2040 exhibit on display at Joe Davis Stadium in Huntsville, Alabama. Developed by the Space Transportation Directorate at Marshall Space Flight Center (MSFC), the Starship 2040 exhibit is housed in a 48-ft (14.6-m) tractor and trailer rig, permitting it to travel around the Nation, demonstrating NASA's vision of what commercial spaceflight might be like 40 years from now. All the irnovations suggested aboard the exhibit (automated vehicle health monitoring systems, high-energy propulsion drive, navigational aids, and emergency and safety systems) are based on concepts and technologies now being studied at NASA Centers and partner institutions around the Nation. NASA is the Nation's premier agency for development of the space transportation system, including future-generation reusable launch vehicles. Such systems, the keys to a 'real' Starship 2040, require revolutionary advances in critical aerospace technologies, from thermal, magnetic, chemical, and propellantless propulsion systems to new energy sources such as space solar power or antimatter propulsion. These and other advances are now being studied, developed, and tested at NASA field centers and partner institutions all over the Nation.

  12. Online Exhibits & Concept Maps

    NASA Astrophysics Data System (ADS)

    Douma, M.

    2009-12-01

    Presenting the complexity of geosciences to the public via the Internet poses a number of challenges. For example, utilizing various - and sometimes redundant - Web 2.0 tools can quickly devour limited time. Do you tweet? Do you write press releases? Do you create an exhibit or concept map? The presentation will provide participants with a context for utilizing Web 2.0 tools by briefly highlighting methods of online scientific communication across several dimensions. It will address issues of: * breadth and depth (e.g. from narrow topics to well-rounded views), * presentation methods (e.g. from text to multimedia, from momentary to enduring), * sources and audiences (e.g. for experts or for the public, content developed by producers to that developed by users), * content display (e.g. from linear to non-linear, from instructive to entertaining), * barriers to entry (e.g. from an incumbent advantage to neophyte accessible, from amateur to professional), * cost and reach (e.g. from cheap to expensive), and * impact (e.g. the amount learned, from anonymity to brand awareness). Against this backdrop, the presentation will provide an overview of two methods of online information dissemination, exhibits and concept maps, using the WebExhibits online museum (www.webexhibits.org) and SpicyNodes information visualization tool (www.spicynodes.org) as examples, with tips on how geoscientists can use either to communicate their science. Richly interactive online exhibits can serve to engage a large audience, appeal to visitors with multiple learning styles, prompt exploration and discovery, and present a topic’s breadth and depth. WebExhibits, which was among the first online museums, delivers interactive information, virtual experiments, and hands-on activities to the public. While large, multidisciplinary exhibits on topics like “Color Vision and Art” or “Calendars Through the Ages” require teams of scholars, user interface experts, professional writers and editors

  13. Repairing Hubble Exhibit Reception

    NASA Image and Video Library

    2014-04-23

    Individuals in attendance who had a hand in the development or servicing of the Hubble Space Telescope pose for a group photo at an event unveiling a new exhibit featuring Hubble's Corrective Optics Space Telescope Axial Replacement (COSTAR) and the WFPC2 on Wednesday, April 23, 2014 at the Smithsonian National Air and Space Museum in Washington, DC. COSTAR and WFPC2 were installed in Hubble during the first space shuttle servicing mission in 1993 and returned to Earth on the fifth and final servicing mission in 2009. Photo Credit: (NASA/Joel Kowsky)

  14. Cell-specific targeting by heterobivalent ligands.

    PubMed

    Josan, Jatinder S; Handl, Heather L; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M; Vagner, Josef; Mash, Eugene A; Hruby, Victor J; Gillies, Robert J

    2011-07-20

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach--to specifically target combinations of cell-surface receptors using heteromultivalent ligands ("receptor combination approach"). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle(4), dPhe(7)]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20-50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH(2). Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging.

  15. Cell-Specific Targeting by Heterobivalent Ligands

    PubMed Central

    Josan, Jatinder S.; Handl, Heather L.; Sankaranarayanan, Rajesh; Xu, Liping; Lynch, Ronald M.; Vagner, Josef; Mash, Eugene A.; Hruby, Victor J.; Gillies, Robert J.

    2012-01-01

    Current cancer therapies exploit either differential metabolism or targeting to specific individual gene products that are overexpressed in aberrant cells. The work described herein proposes an alternative approach—to specifically target combinations of cell-surface receptors using heteromultivalent ligands (“receptor combination approach”). As a proof-of-concept that functionally unrelated receptors can be noncovalently cross-linked with high avidity and specificity, a series of heterobivalent ligands (htBVLs) were constructed from analogues of the melanocortin peptide ligand ([Nle4, DPhe7]-α-MSH) and the cholecystokinin peptide ligand (CCK-8). Binding of these ligands to cells expressing the human Melanocortin-4 receptor and the Cholecystokinin-2 receptor was analyzed. The MSH(7) and CCK(6) were tethered with linkers of varying rigidity and length, constructed from natural and/or synthetic building blocks. Modeling data suggest that a linker length of 20–50 Å is needed to simultaneously bind these two different G-protein coupled receptors (GPCRs). These ligands exhibited up to 24-fold enhancement in binding affinity to cells that expressed both (bivalent binding), compared to cells with only one (monovalent binding) of the cognate receptors. The htBVLs had up to 50-fold higher affinity than that of a monomeric CCK ligand, i.e., Ac-CCK(6)-NH2. Cell-surface targeting of these two cell types with labeled heteromultivalent ligand demonstrated high avidity and specificity, thereby validating the receptor combination approach. This ability to noncovalently cross-link heterologous receptors and target individual cells using a receptor combination approach opens up new possibilities for specific cell targeting in vivo for therapy or imaging. PMID:21639139

  16. Starship 2040 Exhibit

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This photograph shows the Starship 2040 on display at Joe Davis Stadium in Huntsville, Alabama. Developed by the Space Transportation Directorate at Marshall Space Flight Center (MSFC), the Starship 2040 exhibit is housed in a 48-ft (14.6-m) tractor and trailer rig, permitting it to travel around the Nation, demonstrating NASA's vision of what commercial spaceflight might be like 40 years from now. All the irnovations suggested aboard the exhibit (automated vehicle health monitoring systems, high-energy propulsion drive, navigational aids, and emergency and safety systems) are based on concepts and technologies now being studied at NASA Centers and partner institutions around the Nation. NASA is the Nation's premier agency for development of the space transportation system, including future-generation reusable launch vehicles. Such systems, the keys to a 'real' Starship 2040, require revolutionary advances in critical aerospace technologies, from thermal, magnetic, chemical, and propellantless propulsion systems to new energy sources such as space solar power or antimatter propulsion. These and other advances are now being studied, developed, and tested at NASA field centers and partner institutions all over the Nation.

  17. Strong Ligand-Protein Interactions Derived from Diffuse Ligand Interactions with Loose Binding Sites.

    PubMed

    Marsh, Lorraine

    2015-01-01

    Many systems in biology rely on binding of ligands to target proteins in a single high-affinity conformation with a favorable ΔG. Alternatively, interactions of ligands with protein regions that allow diffuse binding, distributed over multiple sites and conformations, can exhibit favorable ΔG because of their higher entropy. Diffuse binding may be biologically important for multidrug transporters and carrier proteins. A fine-grained computational method for numerical integration of total binding ΔG arising from diffuse regional interaction of a ligand in multiple conformations using a Markov Chain Monte Carlo (MCMC) approach is presented. This method yields a metric that quantifies the influence on overall ligand affinity of ligand binding to multiple, distinct sites within a protein binding region. This metric is essentially a measure of dispersion in equilibrium ligand binding and depends on both the number of potential sites of interaction and the distribution of their individual predicted affinities. Analysis of test cases indicates that, for some ligand/protein pairs involving transporters and carrier proteins, diffuse binding contributes greatly to total affinity, whereas in other cases the influence is modest. This approach may be useful for studying situations where "nonspecific" interactions contribute to biological function.

  18. Heroes and Legends Exhibit

    NASA Image and Video Library

    2016-11-07

    Inside the Heroes and Legends attraction at the Kennedy Space Center Visitor Complex, the Sigma 7 Mercury spacecraft in this exhibit was piloted by astronaut Wally Schirra during his six-orbit mission on Oct. 3, 1962. For display purposes, it is shown here attached to a Redstone launch vehicle like the one that boosted astronauts Alan Shepard and Gus Grissom on sub-orbital flights in 1961. Schirra's capsule was actually launched by the more powerful Atlas rocket in order to reach orbit. The new facility looks back to the pioneering efforts of Mercury, Gemini and Apollo. It sets the stage by providing the background and context for space exploration and the legendary men and women who pioneered the nation's journey into space.

  19. Sibling-based association study of the PPARgamma2 Pro12Ala polymorphism and metabolic variables in Chinese and Japanese hypertension families: a SAPPHIRe study. Stanford Asian-Pacific Program in Hypertension and Insulin Resistance.

    PubMed

    Chuang, L M; Hsiung, C A; Chen, Y D; Ho, L T; Sheu, W H; Pei, D; Nakatsuka, C H; Cox, D; Pratt, R E; Lei, H H; Tai, T Y

    2001-11-01

    The peroxisome proliferator activated receptor (PPAR) gamma2 is a transcription factor that has been shown to be involved in adipocyte differentiation, adipogenesis, and insulin sensitivity. To address the role of PPARgamma2 in glucose homeostasis and insulin sensitivity, among many other objectives, we conducted a sibling-controlled association study in a multicenter program - the Stanford Asian-Pacific Program in Hypertension and Insulin Resistance (SAPPHIRe). Approximately 2525 subjects in 734 Chinese and Japanese families have been recruited from six field centers for SAPPHIRe. In total, 1702 subjects including parents and siblings from 449 families have been genotyped for PPARgamma2, of which 328 families were Chinese and 121 Japanese. Only 88 subjects of the 1525 siblings screened for the P12A polymorphism were found to be carriers of the A variant, the most common variant of the PPARgamma2 gene. A variant frequencies of the siblings were 4.27% in Chinese and 2.72% in Japanese. A sibling-controlled association study was performed through genetically discordant sibships (i.e., P/P genotype vs. P/A + A/A genotypes). Specifically, we examined whether there were differences in metabolic variables between the discordant siblings within families. In total, 88 subjects carrying either 1 or 2 A alleles had at least one sibling who was discordant for the P12A polymorphism, yielding a total of 180 individuals from 47 families for analyses, among which 92 siblings were homozygous for wild-type P allele. Siblings with the A variant tended to have lower levels of fasting plasma glucose (OG-10), and lower glucose levels at 60 min following oral glucose loading after adjusting for age, gender, and body mass index. Using a mixed model treating family as a random effect, we found that P12A polymorphism of the PPARgamma2 gene contributes significantly to the variance in fasting plasma glucose, glucose level at 60 min, and insulin-resistance homeostasis model assessment. Our

  20. Sigma Receptor (σR) Ligands with Antiproliferative and Anticancer Activity.

    PubMed

    Georgiadis, Markos-Orestis; Karoutzou, Olga; Foscolos, Angeliki-Sofia; Papanastasiou, Ioannis

    2017-08-25

    Sigma receptor (σR) ligands have proven to be useful as cancer diagnostics and anticancer therapeutics and their ligands have been developed as molecular probes in oncology. Moreover, various σR ligands generate cancer cell death in vitro and in vivo. These σR ligands have exhibited promising results against numerous human and rodent cancers and are investigated under preclinical and clinical study trials, indicating a new category of drugs in cancer therapy.

  1. PPAR-gamma pathways attenuate pulmonary granuloma formation in a carbon nanotube induced murine model of sarcoidosis.

    PubMed

    McPeek, Matthew; Malur, Anagha; Tokarz, Debra A; Murray, Gina; Barna, Barbara P; Thomassen, Mary Jane

    2018-06-15

    Peroxisome proliferator activated receptor gamma (PPARγ), a ligand activated nuclear transcription factor, is constitutively expressed in alveolar macrophages of healthy individuals. PPARγ deficiencies have been noted in several lung diseases including the alveolar macrophages of pulmonary sarcoidosis patients. We have previously described a murine model of multiwall carbon nanotubes (MWCNT) induced pulmonary granulomatous inflammation which bears striking similarities to pulmonary sarcoidosis, including the deficiency of alveolar macrophage PPARγ. Further studies demonstrate alveolar macrophage PPARγ deficiency exacerbates MWCNT-induced pulmonary granulomas. Based on these observations we hypothesized that activation of PPARγ via administration of the PPARγ-specific ligand rosiglitazone would limit MWCNT-induced granuloma formation and promote PPARγ-dependent pathways. Results presented here show that rosiglitazone significantly limits the frequency and severity of MWCNT-induced pulmonary granulomas. Furthermore, rosiglitazone attenuates alveolar macrophage NF-κB activity and downregulates the expression of the pro-inflammatory mediators, CCL2 and osteopontin. PPARγ activation via rosiglitazone also prevents the MWCNT-induced deficiency of PPARγ-regulated ATP-binding cassette lipid transporter-G1 (ABCG1) expression. ABCG1 is crucial to pulmonary lipid homeostasis. ABCG1 deficiency results in lipid accumulation which promotes pro-inflammatory macrophage activation. Our results indicate that restoration of homeostatic ABCG1 levels by rosiglitazone correlates with both reduced pulmonary lipid accumulation, and decreased alveolar macrophage activation. These data confirm and further support our previous observations that PPARγ pathways are critical in regulating MWCNT-induced pulmonary granulomatous inflammation. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Chelating ligands for nanocrystals' surface functionalization.

    PubMed

    Querner, Claudia; Reiss, Peter; Bleuse, Joël; Pron, Adam

    2004-09-22

    A new family of ligands for the surface functionalization of CdSe nanocrystals is proposed, namely alkyl or aryl derivatives of carbodithioic acids (R-C(S)SH). The main advantages of these new ligands are as follows: they nearly quantitatively exchange the initial surface ligands (TOPO) in very mild conditions; they significantly improve the resistance of nanocrystals against photooxidation because of their ability of strong chelate-type binding to metal atoms; their relatively simple preparation via Grignard intermediates facilitates the development of new bifunctional ligands containing, in addition to the anchoring carbodithioate group, a second function, which enables the grafting of molecules or macromolecules of interest on the nanocrystal surface. To give an example of this approach, we report, for the first time, the grafting of an electroactive oligomer from the polyaniline family-aniline tetramer-on CdSe nanocrystals after their functionalization with 4-formyldithiobenzoic acid. The grafting proceeds via a condensation reaction between the aldehyde group of the ligand and the terminal primary amine group of the tetramer. The resulting organic/inorganic hybrid exhibits complete extinction of the fluorescence of its constituents, indicating efficient charge or energy transfer between the organic and the inorganic semiconductors.

  3. PPAR{gamma} activation abolishes LDL-induced proliferation of human aortic smooth muscle cells via SOD-mediated down-regulation of superoxide

    SciTech Connect

    Heo, Kyung-Sun; Department of Pharmacy, Chungnam National University, Yuseong, Daejeon; Kim, Dong-Uk

    Native LDL would be a mitogenic and chemotactic stimulus of VSMC proliferation and differentiation in the atherosclerotic lesion where endothelial disruption occurred. In previous studies, our group investigated the molecular mechanisms by which LDL induces IL-8 production and by which PPAR{alpha} activation abolishes LDL effects in human aortic SMCs (hAoSMCs). Herein is the first report of PPAR{gamma} activation by troglitazone (TG) exerting its inhibitory effects on LDL-induced cell proliferation via generation not of H{sub 2}O{sub 2}, but of O2?-, and the subsequent activation of Erk1/2 in hAoSMCs. Moreover, in this study TG abolished the LDL-accelerated G{sub 1}-S progression to controlmore » levels via down-regulation of active cyclinD1/CDK4 and cyclinE/CDK2 complexes and up-regulation of p21{sup Cip1} expression. TG exerted its anti-proliferative effects through the up-regulation of basal superoxide dismutase (SOD) expression. This data suggests that the regulation of O2?- is located at the crossroads between LDL signaling and cell proliferation.« less

  4. Identification of PPARgamma Partial Agonists of Natural Origin (I): Development of a Virtual Screening Procedure and In Vitro Validation

    PubMed Central

    Guasch, Laura; Sala, Esther; Castell-Auví, Anna; Cedó, Lidia; Liedl, Klaus R.; Wolber, Gerhard; Muehlbacher, Markus; Mulero, Miquel; Pinent, Montserrat; Ardévol, Anna; Valls, Cristina; Pujadas, Gerard; Garcia-Vallvé, Santiago

    2012-01-01

    Background Although there are successful examples of the discovery of new PPARγ agonists, it has recently been of great interest to identify new PPARγ partial agonists that do not present the adverse side effects caused by PPARγ full agonists. Consequently, the goal of this work was to design, apply and validate a virtual screening workflow to identify novel PPARγ partial agonists among natural products. Methodology/Principal Findings We have developed a virtual screening procedure based on structure-based pharmacophore construction, protein-ligand docking and electrostatic/shape similarity to discover novel scaffolds of PPARγ partial agonists. From an initial set of 89,165 natural products and natural product derivatives, 135 compounds were identified as potential PPARγ partial agonists with good ADME properties. Ten compounds that represent ten new chemical scaffolds for PPARγ partial agonists were selected for in vitro biological testing, but two of them were not assayed due to solubility problems. Five out of the remaining eight compounds were confirmed as PPARγ partial agonists: they bind to PPARγ, do not or only moderately stimulate the transactivation activity of PPARγ, do not induce adipogenesis of preadipocyte cells and stimulate the insulin-induced glucose uptake of adipocytes. Conclusions/Significance We have demonstrated that our virtual screening protocol was successful in identifying novel scaffolds for PPARγ partial agonists. PMID:23226391

  5. Role of ligands in permanganate oxidation of organics.

    PubMed

    Jiang, Jin; Pang, Su-Yan; Ma, Jun

    2010-06-01

    We previously demonstrated that several ligands such as phosphate, pyrophosphate, EDTA, and humic acid could significantly enhance permanganate oxidation of triclosan (one phenolic biocide), which was explained by the contribution of ligand-stabilized reactive manganese intermediates in situ formed upon permanganate reduction. To further understand the underlying mechanism, we comparatively investigated the influence of ligands on permanganate oxidation of bisphenol A (BPA, one phenolic endocrine-disrupting chemical), carbamazepine (CBZ, a pharmaceutical containing the olefinic group), and methyl p-tolyl sulfoxide (TMSO, a typical oxygen-atom acceptor). Selected ligands exerted oxidation enhancement for BPA but had negligible influence for CBZ and TMSO. This was mainly attributed to the effects of identified Mn(III) complexes, which would otherwise disproportionate spontaneously in the absence of ligands. The one-electron oxidant Mn(III) species exhibited no reactivity toward CBZ and TMSO for which the two-electron oxygen donation may be the primary oxidation mechanism but readily oxidized BPA. The latter case was a function of pH, the complexing ligand, and the molar [Mn(III)]:[ligand] ratio, generally consistent with the patterns of ligand-affected permanganate oxidation. Moreover, the combination of the one-electron reduction of Mn(III) (Mn(III) + e(-) -->Mn(II)) and the Mn(VII)/Mn(II) reaction in excess ligands (Mn(VII) + 4Mn(II) ----> (ligands) 5Mn(III)) suggested a catalytic role of the Mn(III)/Mn(II) pair in permanganate oxidation of some phenolics in the presence of ligands.

  6. PPAR-gamma agonist pioglitazone modifies craving intensity and brain white matter integrity in patients with primary cocaine use disorder: a double-blind randomized controlled pilot trial.

    PubMed

    Schmitz, Joy M; Green, Charles E; Hasan, Khader M; Vincent, Jessica; Suchting, Robert; Weaver, Michael F; Moeller, F Gerard; Narayana, Ponnada A; Cunningham, Kathryn A; Dineley, Kelly T; Lane, Scott D

    2017-10-01

    Pioglitazone (PIO), a potent agonist of PPAR-gamma, is a promising candidate treatment for cocaine use disorder (CUD). We tested the effects of PIO on targeted mechanisms relevant to CUD: cocaine craving and brain white matter (WM) integrity. Feasibility, medication compliance and tolerability were evaluated. Two-arm double-blind randomized controlled proof-of-concept pilot trial of PIO or placebo (PLC). Single-site out-patient treatment research clinic in Houston, TX, USA. Thirty treatment-seeking adults, 18 to 60 years old, with CUD. Eighteen participants (8 = PIO; 10 = PLC) completed diffusion tensor imaging (DTI) of WM integrity at pre-/post-treatment. Study medication was dispensed at thrice weekly visits along with once-weekly cognitive behavioral therapy for 12 weeks. Measures of target engagement mechanisms of interest included cocaine craving assessed by the Brief Substance Craving Scale (BSCS), the Obsessive Compulsive Drug Use Scale (OCDUS), a visual analog scale (VAS) and change in WM integrity. Feasibility measures included number completing treatment, medication compliance (riboflavin detection) and tolerability (side effects, serious adverse events). Target engagement change in mechanisms of interest, defined as a ≥ 0.75 Bayesian posterior probability of an interaction existing favoring PIO over PLC, was demonstrated on measures of craving (BSCS, VAS) and WM integrity indexed by fractional anisotropy (FA) values. Outcomes indicated greater decrease in craving and greater increase in FA values in the PIO group. Feasibility was demonstrated by high completion rates among those starting treatment (21/26 = 80%) and medication compliance (≥ 80%). There were no reported serious adverse events for PIO. Compared with placebo, patients receiving pioglitazone show a higher likelihood of reduced cocaine craving and improved brain white matter integrity as a function of time in treatment. Pioglitazone shows good feasibility as a treatment for cocaine

  7. Exhibition

    Science.gov Websites

    It! What is Soil? Chip Off the Old Block Soil Forming Factors Matters of Life and Death Underneath It have been sizing up soils. Today, soil scientists analyze soils and predict how they will behave. But Big Picture TheBigPicture How well do you know the world beneath your feet? Take our Soil Quiz and

  8. LigandRNA: computational predictor of RNA–ligand interactions

    PubMed Central

    Philips, Anna; Milanowska, Kaja; Łach, Grzegorz; Bujnicki, Janusz M.

    2013-01-01

    RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA–small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA–ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a “meta-predictor” leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl. PMID:24145824

  9. Analysis of macromolecules, ligands and macromolecule-ligand complexes

    DOEpatents

    Von Dreele, Robert B [Los Alamos, NM

    2008-12-23

    A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.

  10. Therapeutic androgen receptor ligands

    PubMed Central

    Allan, George F.; Sui, Zhihua

    2003-01-01

    In the past several years, the concept of tissue-selective nuclear receptor ligands has emerged. This concept has come to fruition with estrogens, with the successful marketing of drugs such as raloxifene. The discovery of raloxifene and other selective estrogen receptor modulators (SERMs) has raised the possibility of generating selective compounds for other pathways, including androgens (that is, selective androgen receptor modulators, or SARMs). PMID:16604181

  11. EGF receptor ligands: recent advances.

    PubMed

    Singh, Bhuminder; Carpenter, Graham; Coffey, Robert J

    2016-01-01

    Seven ligands bind to and activate the mammalian epidermal growth factor (EGF) receptor (EGFR/ERBB1/HER1): EGF, transforming growth factor-alpha (TGFA), heparin-binding EGF-like growth factor (HBEGF), betacellulin (BTC), amphiregulin (AREG), epiregulin (EREG), and epigen (EPGN). Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR.

  12. EGF receptor ligands: recent advances

    PubMed Central

    Singh, Bhuminder; Carpenter, Graham; Coffey, Robert J.

    2016-01-01

    Seven ligands bind to and activate the mammalian epidermal growth factor (EGF) receptor (EGFR/ERBB1/HER1): EGF, transforming growth factor-alpha (TGFA), heparin-binding EGF-like growth factor (HBEGF), betacellulin (BTC), amphiregulin (AREG), epiregulin (EREG), and epigen (EPGN). Of these, EGF, TGFA, HBEGF, and BTC are thought to be high-affinity ligands, whereas AREG, EREG, and EPGN constitute low-affinity ligands. This focused review is meant to highlight recent studies related to actions of the individual EGFR ligands, the interesting biology that has been uncovered, and relevant advances related to ligand interactions with the EGFR. PMID:27635238

  13. Ligand solvation in molecular docking.

    PubMed

    Shoichet, B K; Leach, A R; Kuntz, I D

    1999-01-01

    Solvation plays an important role in ligand-protein association and has a strong impact on comparisons of binding energies for dissimilar molecules. When databases of such molecules are screened for complementarity to receptors of known structure, as often occurs in structure-based inhibitor discovery, failure to consider ligand solvation often leads to putative ligands that are too highly charged or too large. To correct for the different charge states and sizes of the ligands, we calculated electrostatic and non-polar solvation free energies for molecules in a widely used molecular database, the Available Chemicals Directory (ACD). A modified Born equation treatment was used to calculate the electrostatic component of ligand solvation. The non-polar component of ligand solvation was calculated based on the surface area of the ligand and parameters derived from the hydration energies of apolar ligands. These solvation energies were subtracted from the ligand-receptor interaction energies. We tested the usefulness of these corrections by screening the ACD for molecules that complemented three proteins of known structure, using a molecular docking program. Correcting for ligand solvation improved the rankings of known ligands and discriminated against molecules with inappropriate charge states and sizes.

  14. Traveling Exhibitions: translating current science into effective science exhibitions

    NASA Astrophysics Data System (ADS)

    Dusenbery, P.; Morrow, C.; Harold, J.

    The Space Science Institute (SSI) of Boulder, Colorado has recently developed two museum exhibits called the Space Weather Center and MarsQuest. It is currently planning to develop two other exhibitions called Cosmic Origins and InterActive Earth. Museum exhibitions provide research scientists the opportunity to engage in a number of activities that are vital to the success of earth and space outreach programs. The Space Weather Center was developed in partnership with various research missions at NASA's Goddard Space Flight Center. The focus of the presentation will be on the Institute's MarsQuest exhibition. This project is a 5000 square-foot, 2.5M, traveling exhibition that is now touring the country. The exhibit's 3-year tour is enabling millions of Americans to share in the excitement of the scientific exploration of Mars and learn more about their own planet in the process. The associated planetarium show and education program will also be described, with particular emphasis on workshops to orient host museum staff (e.g. museum educators and docents). The workshops make innovative connections between the exhibitions interactive experiences and lesson plans aligned with the National Science Education Standards. SSI is also developing an interactive web site called MarsQuest On-line. The linkage between the web site, education program and exhibit will be discussed. MarsQuest and SSI's other exhibitions are good models for actively involving scientists and their discoveries to help improve informal science education in the museum community and for forging a stronger connection between formal and informal education.

  15. Against the Odds Exhibition Opens

    MedlinePlus

    ... the National Institutes of Health in Bethesda, Md. Photo courtesy of Bill Branson NIH Director Dr. Elias ... addresses visitors to the opening of the exhibition. Photo courtesy of Bill Branson Brothers Niko and Theo ...

  16. Ligand Depot: a data warehouse for ligands bound to macromolecules.

    PubMed

    Feng, Zukang; Chen, Li; Maddula, Himabindu; Akcan, Ozgur; Oughtred, Rose; Berman, Helen M; Westbrook, John

    2004-09-01

    Ligand Depot is an integrated data resource for finding information about small molecules bound to proteins and nucleic acids. The initial release (version 1.0, November, 2003) focuses on providing chemical and structural information for small molecules found as part of the structures deposited in the Protein Data Bank. Ligand Depot accepts keyword-based queries and also provides a graphical interface for performing chemical substructure searches. A wide variety of web resources that contain information on small molecules may also be accessed through Ligand Depot. Ligand Depot is available at http://ligand-depot.rutgers.edu/. Version 1.0 supports multiple operating systems including Windows, Unix, Linux and the Macintosh operating system. The current drawing tool works in Internet Explorer, Netscape and Mozilla on Windows, Unix and Linux.

  17. Nanoparticle Superlattices: The Roles of Soft Ligands

    PubMed Central

    Si, Kae Jye; Chen, Yi; Shi, Qianqian

    2017-01-01

    Abstract Nanoparticle superlattices are periodic arrays of nanoscale inorganic building blocks including metal nanoparticles, quantum dots and magnetic nanoparticles. Such assemblies can exhibit exciting new collective properties different from those of individual nanoparticle or corresponding bulk materials. However, fabrication of nanoparticle superlattices is nontrivial because nanoparticles are notoriously difficult to manipulate due to complex nanoscale forces among them. An effective way to manipulate these nanoscale forces is to use soft ligands, which can prevent nanoparticles from disordered aggregation, fine‐tune the interparticle potential as well as program lattice structures and interparticle distances – the two key parameters governing superlattice properties. This article aims to review the up‐to‐date advances of superlattices from the viewpoint of soft ligands. We first describe the theories and design principles of soft‐ligand‐based approach and then thoroughly cover experimental techniques developed from soft ligands such as molecules, polymer and DNA. Finally, we discuss the remaining challenges and future perspectives in nanoparticle superlattices. PMID:29375958

  18. Iron chelating ligand for iron overload diseases.

    PubMed

    Ozbolat, G; Tuli, A

    2018-01-01

    Iron overloads are a serious clinical condition in the health of humans and are therefore a key target in drug development. In this study, iron(III) complex of 8-hydroxyquinoline-5 sulphonic acid was synthesized and structurally characterized in its solid state and solution state by FT-IR, UV-Vis, elemental analysis, magnetic susceptibility and 1H-NMR. The catalase activities of complex were investigated. It was showed that the complex has the catalase activity. It is suggested that this type of complex may constitute a new and interesting basis for the future search for new and more potential drugs. The electrochemical behaviour patterns of the ligand and complex were examined as supporting electrolyte and platinum electrode for cyclic voltammetry. The electrochemistry studies showed that the reductions in free ligand and complex take place differently.The cytotoxicity was evaluated by MTT assay. The complex exhibited a very high cytotoxic activity and showed a cytotoxic effect that was much better than that of the ligand.The observed cytotoxicity could be pursued to obtain a potential drug. These results indicate that using the 8-hydroxyquinoline-5 sulphonic acid for this aim in further studies is appropriate (Tab. 1, Fig. 4, Ref. 18). Text in PDF www.elis.sk.

  19. Screening of medicinal plants for PPPAR-alpha and PPAR-gamma activation and evaluation of their effects on glucose uptake and 3T3-L1 adipogenesis

    USDA-ARS?s Scientific Manuscript database

    Medicinal plants are a rich source of ligands for nuclear receptors. The present study was aimed to screen a collection of plant extracts for PPAR-alpha/gamma activating properties and identify the active extract that can stimulate cellular glucose uptake without enhancing the adipogenesis. A report...

  20. Considering High-Tech Exhibits?

    ERIC Educational Resources Information Center

    Routman, Emily

    1994-01-01

    Discusses a variety of high-tech exhibit media used in The Living World, an educational facility operated by The Saint Louis Zoo. Considers the strengths and weaknesses of holograms, video, animatronics, video-equipped microscopes, and computer interactives. Computer interactives are treated with special attention. (LZ)

  1. AWEA WINDPOWER 2019 Conference & Exhibition

    Science.gov Websites

    than go through menu items. Book a Booth Learn Exhibit Sponsor Register AWEA Wind Power May 20-23 2019 . Book Your Booth Sponsor Sponsoring AWEA WINDPOWER 2019 gives you the opportunity to broadcast your

  2. A web server for analysis, comparison and prediction of protein ligand binding sites.

    PubMed

    Singh, Harinder; Srivastava, Hemant Kumar; Raghava, Gajendra P S

    2016-03-25

    One of the major challenges in the field of system biology is to understand the interaction between a wide range of proteins and ligands. In the past, methods have been developed for predicting binding sites in a protein for a limited number of ligands. In order to address this problem, we developed a web server named 'LPIcom' to facilitate users in understanding protein-ligand interaction. Analysis, comparison and prediction modules are available in the "LPIcom' server to predict protein-ligand interacting residues for 824 ligands. Each ligand must have at least 30 protein binding sites in PDB. Analysis module of the server can identify residues preferred in interaction and binding motif for a given ligand; for example residues glycine, lysine and arginine are preferred in ATP binding sites. Comparison module of the server allows comparing protein-binding sites of multiple ligands to understand the similarity between ligands based on their binding site. This module indicates that ATP, ADP and GTP ligands are in the same cluster and thus their binding sites or interacting residues exhibit a high level of similarity. Propensity-based prediction module has been developed for predicting ligand-interacting residues in a protein for more than 800 ligands. In addition, a number of web-based tools have been integrated to facilitate users in creating web logo and two-sample between ligand interacting and non-interacting residues. In summary, this manuscript presents a web-server for analysis of ligand interacting residue. This server is available for public use from URL http://crdd.osdd.net/raghava/lpicom .

  3. Perfluorinated Ligands in Organometallic Chemistry

    DTIC Science & Technology

    1989-12-12

    C49t00ooVER ,or C M’ AD"OV’~mDecember 12) 199IFinal 1/1/86 to 8/31/89C smuS. FUNOING NUMgIERS cJ Perfluorinated Ligands in Organometallic Chemistry 612...compounds, stabilized by tridentate perfluorinated ligands. Dinuclear rhodium complexes of OFCOT undergo a selective C-F bond activation reaction...hexafluorocyclooctatrieneyne ligand. Stereospecific cleavage of a fluorinated C-C bond,#-bond in perfluorocyclopropene by platinum and iridium complexes has been achieved

  4. Two novel mixed-ligand complexes containing organosulfonate ligands.

    PubMed

    Li, Mingtian; Huang, Jun; Zhou, Xuan; Fang, Hua; Ding, Liyun

    2008-07-01

    The structures reported herein, viz. bis(4-aminonaphthalene-1-sulfonato-kappaO)bis(4,5-diazafluoren-9-one-kappa(2)N,N')copper(II), [Cu(C(10)H(8)NO(3)S)(2)(C(11)H(6)N(2)O)(2)], (I), and poly[[[diaquacadmium(II)]-bis(mu-4-aminonaphthalene-1-sulfonato)-kappa(2)O:N;kappa(2)N:O] dihydrate], {[Cd(C(10)H(8)NO(3)S)(2)(H(2)O)(2)].2H(2)O}(n), (II), are rare examples of sulfonate-containing complexes where the anion does not fulfill a passive charge-balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the Cu(II) atom, and the asymmetric unit contains one-half of a Cu atom, one complete 4-aminonaphthalene-1-sulfonate (ans) ligand and one 4,5-diazafluoren-9-one (DAFO) ligand. The Cu(II) atom has an elongated distorted octahedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules. Complex (II) is polymeric and its crystal structure is built up by one-dimensional chains and solvent water molecules. Here also the cation (a Cd(II) atom) lies on a crystallographic inversion center and adopts a slightly distorted octahedral geometry. Each ans anion serves as a bridging ligand linking two Cd(II) atoms into one-dimensional infinite chains along the [010] direction, with each Cd(II) center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant pi-pi stacking interactions between adjacent ligands and hydrogen bonds contribute to the formation of two- and three-dimensional networks.

  5. Science on a Sphere exhibit

    NASA Image and Video Library

    2009-03-31

    Students from Xavier University Preparatory School in New Orleans view the newest exhibit at StenniSphere, the visitor center at NASA's John C. Stennis Space Center - Science on a Sphere, a 68-inch global presentation of planetary data. StenniSphere is only the third NASA visitor center to offer the computer system, which uses four projectors to display data on a globe and present a dynamic, revolving, animated view of Earth and other planets.

  6. Science on a Sphere exhibit

    NASA Technical Reports Server (NTRS)

    2009-01-01

    Students from Xavier University Preparatory School in New Orleans view the newest exhibit at StenniSphere, the visitor center at NASA's John C. Stennis Space Center - Science on a Sphere, a 68-inch global presentation of planetary data. StenniSphere is only the third NASA visitor center to offer the computer system, which uses four projectors to display data on a globe and present a dynamic, revolving, animated view of Earth and other planets.

  7. Adiponectin Receptors Form Homomers and Heteromers Exhibiting Distinct Ligand Binding and Intracellular Signaling Properties*

    PubMed Central

    Almabouada, Farid; Diaz-Ruiz, Alberto; Rabanal-Ruiz, Yoana; Peinado, Juan R.; Vazquez-Martinez, Rafael; Malagon, Maria M.

    2013-01-01

    Adiponectin binds to two widely expressed receptors (AdipoR1 and AdipoR2) that contain seven transmembrane domains but, unlike G-protein coupled receptors, present an extracellular C terminus and a cytosolic N terminus. Recently, AdipoR1 was found to associate in high order complexes. However, it is still unknown whether AdipoR2 may also form homomers or heteromers with AdipoR1 or if such interactions may be functionally relevant. Herein, we have analyzed the oligomerization pattern of AdipoRs by FRET and immunoprecipitation and evaluated both the internalization of AdipoRs in response to various adiponectin isoforms and the effect of adiponectin binding to different AdipoR combinations on AMP-activated protein kinase phosphorylation and peroxisome proliferator-activated receptor α activation. Transfection of HEK293AD cells with AdipoR1 and AdipoR2 showed that both receptors colocalize at both the plasma membrane and the endoplasmic reticulum. Co-transfection with the different AdipoR pairs yielded high FRET efficiencies in non-stimulated cells, which indicates that AdipoR1 and AdipoR2 form homo- and heteromeric complexes under resting conditions. Live FRET imaging suggested that both homo- and heteromeric AdipoR complexes dissociate in response to adiponectin, but heteromers separate faster than homomers. Finally, phosphorylation of AMP-activated protein kinase in response to adiponectin was delayed in cells wherein heteromer formation was favored. In sum, our findings indicate that AdipoR1 and AdipoR2 form homo- and heteromers that present unique interaction behaviors and signaling properties. This raises the possibility that the pleiotropic, tissue-dependent functions of adiponectin depend on the expression levels of AdipoR1 and AdipoR2 and, therefore, on the steady-state proportion of homo- and heteromeric complexes. PMID:23255609

  8. Adiponectin receptors form homomers and heteromers exhibiting distinct ligand binding and intracellular signaling properties.

    PubMed

    Almabouada, Farid; Diaz-Ruiz, Alberto; Rabanal-Ruiz, Yoana; Peinado, Juan R; Vazquez-Martinez, Rafael; Malagon, Maria M

    2013-02-01

    Adiponectin binds to two widely expressed receptors (AdipoR1 and AdipoR2) that contain seven transmembrane domains but, unlike G-protein coupled receptors, present an extracellular C terminus and a cytosolic N terminus. Recently, AdipoR1 was found to associate in high order complexes. However, it is still unknown whether AdipoR2 may also form homomers or heteromers with AdipoR1 or if such interactions may be functionally relevant. Herein, we have analyzed the oligomerization pattern of AdipoRs by FRET and immunoprecipitation and evaluated both the internalization of AdipoRs in response to various adiponectin isoforms and the effect of adiponectin binding to different AdipoR combinations on AMP-activated protein kinase phosphorylation and peroxisome proliferator-activated receptor α activation. Transfection of HEK293AD cells with AdipoR1 and AdipoR2 showed that both receptors colocalize at both the plasma membrane and the endoplasmic reticulum. Co-transfection with the different AdipoR pairs yielded high FRET efficiencies in non-stimulated cells, which indicates that AdipoR1 and AdipoR2 form homo- and heteromeric complexes under resting conditions. Live FRET imaging suggested that both homo- and heteromeric AdipoR complexes dissociate in response to adiponectin, but heteromers separate faster than homomers. Finally, phosphorylation of AMP-activated protein kinase in response to adiponectin was delayed in cells wherein heteromer formation was favored. In sum, our findings indicate that AdipoR1 and AdipoR2 form homo- and heteromers that present unique interaction behaviors and signaling properties. This raises the possibility that the pleiotropic, tissue-dependent functions of adiponectin depend on the expression levels of AdipoR1 and AdipoR2 and, therefore, on the steady-state proportion of homo- and heteromeric complexes.

  9. Collaborative virtual environments art exhibition

    NASA Astrophysics Data System (ADS)

    Dolinsky, Margaret; Anstey, Josephine; Pape, Dave E.; Aguilera, Julieta C.; Kostis, Helen-Nicole; Tsoupikova, Daria

    2005-03-01

    This panel presentation will exhibit artwork developed in CAVEs and discuss how art methodologies enhance the science of VR through collaboration, interaction and aesthetics. Artists and scientists work alongside one another to expand scientific research and artistic expression and are motivated by exhibiting collaborative virtual environments. Looking towards the arts, such as painting and sculpture, computer graphics captures a visual tradition. Virtual reality expands this tradition to not only what we face, but to what surrounds us and even what responds to our body and its gestures. Art making that once was isolated to the static frame and an optimal point of view is now out and about, in fully immersive mode within CAVEs. Art knowledge is a guide to how the aesthetics of 2D and 3D worlds affect, transform, and influence the social, intellectual and physical condition of the human body through attention to psychology, spiritual thinking, education, and cognition. The psychological interacts with the physical in the virtual in such a way that each facilitates, enhances and extends the other, culminating in a "go together" world. Attention to sharing art experience across high-speed networks introduces a dimension of liveliness and aliveness when we "become virtual" in real time with others.

  10. Crows spontaneously exhibit analogical reasoning.

    PubMed

    Smirnova, Anna; Zorina, Zoya; Obozova, Tanya; Wasserman, Edward

    2015-01-19

    Analogical reasoning is vital to advanced cognition and behavioral adaptation. Many theorists deem analogical thinking to be uniquely human and to be foundational to categorization, creative problem solving, and scientific discovery. Comparative psychologists have long been interested in the species generality of analogical reasoning, but they initially found it difficult to obtain empirical support for such thinking in nonhuman animals (for pioneering efforts, see [2, 3]). Researchers have since mustered considerable evidence and argument that relational matching-to-sample (RMTS) effectively captures the essence of analogy, in which the relevant logical arguments are presented visually. In RMTS, choice of test pair BB would be correct if the sample pair were AA, whereas choice of test pair EF would be correct if the sample pair were CD. Critically, no items in the correct test pair physically match items in the sample pair, thus demanding that only relational sameness or differentness is available to support accurate choice responding. Initial evidence suggested that only humans and apes can successfully learn RMTS with pairs of sample and test items; however, monkeys have subsequently done so. Here, we report that crows too exhibit relational matching behavior. Even more importantly, crows spontaneously display relational responding without ever having been trained on RMTS; they had only been trained on identity matching-to-sample (IMTS). Such robust and uninstructed relational matching behavior represents the most convincing evidence yet of analogical reasoning in a nonprimate species, as apes alone have spontaneously exhibited RMTS behavior after only IMTS training. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Designing ligands to bind proteins

    PubMed Central

    Whitesides, George M.; Krishnamurthy, Vijay M.

    2009-01-01

    The ability to design drugs (so-called ‘rational drug design’) has been one of the long-term objectives of chemistry for 50 years. It is an exceptionally difficult problem, and many of its parts lie outside the expertise of chemistry. The much more limited problem – how to design tight-binding ligands (rational ligand design) – would seem to be one that chemistry could solve, but has also proved remarkably recalcitrant. The question is ‘Why is it so difficult?’ and the answer is ‘We still don't entirely know’. This perspective discusses some of the technical issues – potential functions, protein plasticity, enthalpy/entropy compensation, and others – that contribute, and suggests areas where fundamental understanding of protein–ligand interactions falls short of what is needed. It surveys recent technological developments (in particular, isothermal titration calorimetry) that will, hopefully, make now the time for serious progress in this area. It concludes with the calorimetric examination of the association of a series of systematically varied ligands with a model protein. The counterintuitive thermodynamic results observed serve to illustrate that, even in relatively simple systems, understanding protein–ligand association is challenging. PMID:16817982

  12. PDB-Ligand: a ligand database based on PDB for the automated and customized classification of ligand-binding structures.

    PubMed

    Shin, Jae-Min; Cho, Doo-Ho

    2005-01-01

    PDB-Ligand (http://www.idrtech.com/PDB-Ligand/) is a three-dimensional structure database of small molecular ligands that are bound to larger biomolecules deposited in the Protein Data Bank (PDB). It is also a database tool that allows one to browse, classify, superimpose and visualize these structures. As of May 2004, there are about 4870 types of small molecular ligands, experimentally determined as a complex with protein or DNA in the PDB. The proteins that a given ligand binds are often homologous and present the same binding structure to the ligand. However, there are also many instances wherein a given ligand binds to two or more unrelated proteins, or to the same or homologous protein in different binding environments. PDB-Ligand serves as an interactive structural analysis and clustering tool for all the ligand-binding structures in the PDB. PDB-Ligand also provides an easier way to obtain a number of different structure alignments of many related ligand-binding structures based on a simple and flexible ligand clustering method. PDB-Ligand will be a good resource for both a better interpretation of ligand-binding structures and the development of better scoring functions to be used in many drug discovery applications.

  13. Conformational diversity of flexible ligand in metal-organic frameworks controlled by size-matching mixed ligands

    NASA Astrophysics Data System (ADS)

    Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi; Yu, Lei; Xie, Yi-Xin; Han, Lei

    2015-12-01

    Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H2ndc) or 4,4‧-(hydroxymethylene)dibenzoic acid (H2hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd2(2,6-ndc)2(bpp)(DMF)]·2DMF (1) and [Cd3(hmdb)3(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional 'Lucky Clover' shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations in 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process.

  14. Two rare indium-based porous metal-metalloporphyrin frameworks exhibiting interesting CO 2 uptake

    SciTech Connect

    Gao, Wen-Yang; Zhang, Zhuxiu; Cash, Lindsay

    2014-01-13

    Two rare indium-based porous metal–metalloporphyrin frameworks (MMPFs), MMPF-7 and MMPF-8, were constructed by self-assembly of In(III) and two custom-designed porphyrin–tetracarboxylate ligands. MMPF-7 and MMPF-8 possess the pts topology and exhibit interesting CO 2 adsorption properties.

  15. Regulation of expression of the ligand for CD40 on T helper lymphocytes.

    PubMed

    Castle, B E; Kishimoto, K; Stearns, C; Brown, M L; Kehry, M R

    1993-08-15

    Activated Th cells deliver contact-dependent signals to resting B lymphocytes that initiate and drive B cell proliferation. Recently, a ligand for the B lymphocyte membrane protein, CD40, has been identified that delivers contact-dependent Th cell signals to B cells. A dimeric soluble form of CD40 was produced and used to further characterize the regulation of expression of the CD40 ligand. Expression of the CD40 ligand was rapidly induced after Th lymphocyte activation, and its stability depended upon whether Th cells were activated with soluble or plastic-bound stimuli. Th cells activated with soluble stimuli rapidly turned over cell-surface CD40 ligand whereas Th cells activated with plastic-bound stimuli exhibited more stable CD40 ligand expression for up to 48 h. Removal of activated Th cells from the plastic-bound stimulus resulted in a rapid turnover of CD40 ligand, suggesting that continuous stimulation could maintain CD40 ligand expression. Ligation by soluble CD40 could also stabilize expression of CD40 ligand on the Th cell surface. Both CD40 ligand and IL-2 were transiently synthesized from 1 to 12 h after Th cell activation and had similar kinetics of synthesis. In Con A-activated Th cells newly synthesized CD40 ligand exhibited an initial high turnover (1.5 h t1/2) and after 5 h of Th cell activation became more stable (10-h t1/2). In Th cells activated with plastic-bound anti-CD3, CD40 ligand exhibited a similar biphasic turnover except that the rapid turnover phase began significantly later. This delay could allow more time for newly synthesized CD40 ligand to assemble or associate with other molecules and thus become stabilized on the cell surface. Newly synthesized CD40 ligand in Con A-activated Th cells appeared to not be efficient in delivering Th cell-dependent contact signals to resting B cells, implying the need for assembly or accessory proteins. Regulation of CD40 ligand expression was consistent with all the characteristics of Th cell

  16. Ligand-induced Epitope Masking

    PubMed Central

    Mould, A. Paul; Askari, Janet A.; Byron, Adam; Takada, Yoshikazu; Jowitt, Thomas A.; Humphries, Martin J.

    2016-01-01

    We previously demonstrated that Arg-Gly-Asp (RGD)-containing ligand-mimetic inhibitors of integrins are unable to dissociate pre-formed integrin-fibronectin complexes (IFCs). These observations suggested that amino acid residues involved in integrin-fibronectin binding become obscured in the ligand-occupied state. Because the epitopes of some function-blocking anti-integrin monoclonal antibodies (mAbs) lie near the ligand-binding pocket, it follows that the epitopes of these mAbs may become shielded in the ligand-occupied state. Here, we tested whether function-blocking mAbs directed against α5β1 can interact with the integrin after it forms a complex with an RGD-containing fragment of fibronectin. We showed that the anti-α5 subunit mAbs JBS5, SNAKA52, 16, and P1D6 failed to disrupt IFCs and hence appeared unable to bind to the ligand-occupied state. In contrast, the allosteric anti-β1 subunit mAbs 13, 4B4, and AIIB2 could dissociate IFCs and therefore were able to interact with the ligand-bound state. However, another class of function-blocking anti-β1 mAbs, exemplified by Lia1/2, could not disrupt IFCs. This second class of mAbs was also distinguished from 13, 4B4, and AIIB2 by their ability to induce homotypic cell aggregation. Although the epitope of Lia1/2 was closely overlapping with those of 13, 4B4, and AIIB2, it appeared to lie closer to the ligand-binding pocket. A new model of the α5β1-fibronectin complex supports our hypothesis that the epitopes of mAbs that fail to bind to the ligand-occupied state lie within, or very close to, the integrin-fibronectin interface. Importantly, our findings imply that the efficacy of some therapeutic anti-integrin mAbs could be limited by epitope masking. PMID:27484800

  17. Small potent ligands to the insulin-regulated aminopeptidase (IRAP)/AT(4) receptor.

    PubMed

    Axén, Andreas; Andersson, Hanna; Lindeberg, Gunnar; Rönnholm, Harriet; Kortesmaa, Jarkko; Demaegdt, Heidi; Vauquelin, Georges; Karlén, Anders; Hallberg, Mathias

    2007-07-01

    Angiotensin IV analogs encompassing aromatic scaffolds replacing parts of the backbone of angiotensin IV have been synthesized and evaluated in biological assays. Several of the ligands displayed high affinities to the insulin-regulated aminopeptidase (IRAP)/AT(4) receptor. Displacement of the C-terminal of angiotensin IV with an o-substituted aryl acetic acid derivative delivered the ligand 4, which exhibited the highest binding affinity (K(i) = 1.9 nM). The high affinity of this ligand provides support to the hypothesis that angiotensin IV adopts a gamma-turn in the C-terminal of its bioactive conformation. Ligand (4) inhibits both human IRAP and aminopeptidase N-activity and induces proliferation of adult neural stem cells at low concentrations. Furthermore, ligand 4 is degraded considerably more slowly in membrane preparations than angiotensin IV. Hence, it might constitute a suitable research tool for biological studies of the (IRAP)/AT(4) receptor.

  18. New multifunctional ligands for potential use in the design therapeutic or diagnostic radiopharmaceutical imaging agents

    DOEpatents

    Katti, Kattesh V.; Volkert, Wynn A.; Ketring, Alan R.; Singh, Prahlad R.

    1997-01-01

    A class of diagnostic and therapeutic compounds derived from phosphinimines that include ligands containing either a single phosphinimine functionality or both a phosphinimine group and a phosphine or arsine group, or an aminato group, or a second phosphinimine moiety. These phosphinimine ligands are complexed to early transition metal radionuclides (e.g. .sup.99m Tc or .sup.186 Re/.sup.188 Re) or late transition metals (e.g., .sup.105 Rh or .sup.109 Pd). The complexes with these metals .sup.186 Re/.sup.188 Re, .sup.99m Tc and .sup.109 Pd exhibit a high in vitro and high in vivo stability. The complexes are formed in high yields and can be neutral or charged. These ligands can also be used to form stable compounds with paramagnetic transition metals (e.g. Fe and Mn) for potential use as MRI contrast agents. Applications for the use of ligands and making the ligands are also disclosed.

  19. Dye-ligand affinity systems.

    PubMed

    Denizli, A; Pişkin, E

    2001-10-30

    Dye-ligands have been considered as one of the important alternatives to natural counterparts for specific affinity chromatography. Dye-ligands are able to bind most types of proteins, in some cases in a remarkably specific manner. They are commercially available, inexpensive, and can easily be immobilized, especially on matrices bearing hydroxyl groups. Although dyes are all synthetic in nature, they are still classified as affinity ligands because they interact with the active sites of many proteins mimicking the structure of the substrates, cofactors, or binding agents for those proteins. A number of textile dyes, known as reactive dyes, have been used for protein purification. Most of these reactive dyes consist of a chromophore (either azo dyes, anthraquinone, or phathalocyanine), linked to a reactive group (often a mono- or dichlorotriazine ring). The interaction between the dye ligand and proteins can be by complex combination of electrostatic, hydrophobic, hydrogen bonding. Selection of the supporting matrix is the first important consideration in dye-affinity systems. There are several methods for immobilization of dye molecules onto the support matrix, in which usually several intermediate steps are followed. Both the adsorption and elution steps should carefully be optimized/designed for a successful separation. Dye-affinity systems in the form of spherical sorbents or as affinity membranes have been used in protein separation.

  20. Multidentate oligomeric ligands to enhance the biocompatibility of iron oxide and other metal nanoparticles

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Palui, Goutam; Ji, Xin; Aldeek, Fadi; Mattoussi, Hedi

    2014-03-01

    We prepared a set of multi-coordinating and reactive amphiphilic polymer ligands and used them for surface-functionalizing magnetic iron oxide nanoparticles. The amphiphilic oligomers were prepared by coupling (via one step nucleophilic addition) several dopamine anchoring groups, polyethylene glycol moieties and reactive groups onto a poly(isobutylene-alt-maleic anhydride) chain. The availability of several anchoring groups in the same ligand greatly enhances the ligand affinity to the nanoparticle surfaces, via multiplecoordination, while the hydrophilic and reactive groups promote colloidal stability in buffer media and allow subsequent conjugation to target biomolecules. The hydrophilic nanoparticles capped with these polymers maintain compact size and exhibit great long term colloidal stability.

  1. Divalent Naphthalene Diimide Ligands Display High Selectivity for the Human Telomeric G‐quadruplex in K+ Buffer

    PubMed Central

    Street, Steven T. G.; Chin, Donovan N.; Hollingworth, Gregory J.; Berry, Monica

    2017-01-01

    Abstract Selective G‐quadruplex ligands offer great promise for the development of anti‐cancer therapies. A novel series of divalent cationic naphthalene diimide ligands that selectively bind to the hybrid form of the human telomeric G‐quadruplex in K+ buffer are described herein. We demonstrate that an imidazolium‐bearing mannoside‐conjugate is the most selective ligand to date for this quadruplex against several other quadruplex and duplex structures. We also show that a similarly selective methylpiperazine‐bearing ligand was more toxic to HeLa cancer cells than doxorubicin, whilst exhibiting three times less toxicity towards fetal lung fibroblasts WI‐38. PMID:28257554

  2. An alternate binding site for PPARγ ligands

    PubMed Central

    Hughes, Travis S.; Giri, Pankaj Kumar; de Vera, Ian Mitchelle S.; Marciano, David P.; Kuruvilla, Dana S.; Shin, Youseung; Blayo, Anne-Laure; Kamenecka, Theodore M.; Burris, Thomas P.; Griffin, Patrick R.; Kojetin, Douglas J.

    2014-01-01

    PPARγ is a target for insulin sensitizing drugs such as glitazones, which improve plasma glucose maintenance in patients with diabetes. Synthetic ligands have been designed to mimic endogenous ligand binding to a canonical ligand-binding pocket to hyperactivate PPARγ. Here we reveal that synthetic PPARγ ligands also bind to an alternate site, leading to unique receptor conformational changes that impact coregulator binding, transactivation and target gene expression. Using structure-function studies we show that alternate site binding occurs at pharmacologically relevant ligand concentrations, and is neither blocked by covalently bound synthetic antagonists nor by endogenous ligands indicating non-overlapping binding with the canonical pocket. Alternate site binding likely contributes to PPARγ hyperactivation in vivo, perhaps explaining why PPARγ full and partial or weak agonists display similar adverse effects. These findings expand our understanding of PPARγ activation by ligands and suggest that allosteric modulators could be designed to fine tune PPARγ activity without competing with endogenous ligands. PMID:24705063

  3. Use of the peroxisome proliferator-activated receptor (PPAR) gamma ligand troglitazone as treatment for refractory breast cancer: a phase II study.

    PubMed

    Burstein, Harold J; Demetri, George D; Mueller, Elisabetta; Sarraf, Pasha; Spiegelman, Bruce M; Winer, Eric P

    2003-06-01

    To evaluate the therapeutic effects of the peroxisome proliferator-activated receptor (PPAR) gamma activating ligand, troglitazone, in patients with refractory metastatic breast cancer. Patients with advanced breast cancer refractory to at least one chemotherapy regimen (ER negative tumors) or two hormonal regimens (ER positive tumors) were treated with troglitazone at 800 mg p.o. QD until disease progression, to determine the percentage of patients free of progression at 6 months. Tumor response, toxicity, and changes in serum tumor markers (CEA, CA27.29) that might reflect alteration in tumor differentiation, were also examined. Twenty-two patients were enrolled before suspension of protocol accrual and treatment when troglitazone was withdrawn from commercial availability following FDA warnings on hepatic toxicity. No objective responses (CR or PR) were observed; only three patients had SD at 8 weeks. Patients came off study for PD (16), DLT (1), FDA withdrawal (2), or other (3) reasons. No patients took troglitazone for more than 20 weeks; all had experienced disease progression or began other systemic therapy within 6 months. All patients with elevated serum tumor markers (CEA and CA27.29) at baseline had rising tumor markers within 8 weeks. While clinical trials among different patient populations might uncover subtle effects on tumor differentiation, PPARgamma activation by troglitazone has little apparent clinical value among patients with treatment-refractory metastatic breast cancer.

  4. Rational Ligand Design for U(VI) and Pu(IV)

    SciTech Connect

    Szigethy, Geza

    2009-08-12

    Nuclear power is an attractive alternative to hydrocarbon-based energy production at a time when moving away from carbon-producing processes is widely accepted as a significant developmental need. Hence, the radioactive actinide power sources for this industry are necessarily becoming more widespread, which is accompanied by the increased risk of exposure to both biological and environmental systems. This, in turn, requires the development of technology designed to remove such radioactive threats efficiently and selectively from contaminated material, whether that be contained nuclear waste streams or the human body. Raymond and coworkers (University of California, Berkeley) have for decades investigated the interactionmore » of biologically-inspired, hard Lewis-base ligands with high-valent, early-actinide cations. It has been established that such ligands bind strongly to the hard Lewis-acidic early actinides, and many poly-bidentate ligands have been developed and shown to be effective chelators of actinide contaminants in vivo. Work reported herein explores the effect of ligand geometry on the linear U(IV) dioxo dication (uranyl, UO 2 2+). The goal is to utilize rational ligand design to develop ligands that exhibit shape selectivity towards linear dioxo cations and provides thermodynamically favorable binding interactions. The uranyl complexes with a series of tetradentate 3-hydroxy-pyridin-2-one (3,2-HOPO) ligands were studied in both the crystalline state as well as in solution. Despite significant geometric differences, the uranyl affinities of these ligands vary only slightly but are better than DTPA, the only FDA-approved chelation therapy for actinide contamination. The terepthalamide (TAM) moiety was combined into tris-beidentate ligands with 1,2- and 3,2-HOPO moieties were combined into hexadentate ligands whose structural preferences and solution thermodynamics were measured with the uranyl cation. In addition to achieving coordinative saturation

  5. A mixed valence zinc dithiolene system with spectator metal and reactor ligands.

    PubMed

    Ratvasky, Stephen C; Mogesa, Benjamin; van Stipdonk, Michael J; Basu, Partha

    2016-08-16

    Neutral complexes of zinc with N,N'-diisopropylpiperazine-2,3-dithione ( i Pr 2 Dt 0 ) and N,N'-dimethylpiperazine-2,3-dithione (Me 2 Dt 0 ) with chloride or maleonitriledithiolate (mnt 2- ) as coligands have been synthesized and characterized. The molecular structures of these zinc complexes have been determined using single crystal X-ray diffractometry. Complexes recrystallize in monoclinic P type systems with zinc adopting a distorted tetrahedral geometry. Two zinc complexes with mixed-valent dithiolene ligands exhibit ligand-to-ligand charge transfer bands. Optimized geometries, molecular vibrations and electronic structures of charge-transfer complexes were calculated using density functional theory (B3LYP/6-311G+(d,p) level). Redox orbitals are shown to be almost exclusively ligand in nature, with a HOMO based heavily on the electron-rich maleonitriledithiolate ligand, and a LUMO comprised mostly of the electron-deficient dithione ligand. Charge transfer is thus believed to proceed from dithiolate HOMO to dithione LUMO, showing ligand-to-ligand redox interplay across a d 10 metal.

  6. Alternative Affinity Ligands for Immunoglobulins.

    PubMed

    Kruljec, Nika; Bratkovič, Tomaž

    2017-08-16

    The demand for recombinant therapeutic antibodies and Fc-fusion proteins is expected to increase in the years to come. Hence, extensive efforts are concentrated on improving the downstream processing. In particular, the development of better-affinity chromatography matrices, supporting robust time- and cost-effective antibody purification, is warranted. With the advances in molecular design and high-throughput screening approaches from chemical and biological combinatorial libraries, novel affinity ligands representing alternatives to bacterial immunoglobulin (Ig)-binding proteins have entered the scene. Here, we review the design, development, and properties of diverse classes of alternative antibody-binding ligands, ranging from engineered versions of Ig-binding proteins, to artificial binding proteins, peptides, aptamers, and synthetic small-molecular-weight compounds. We also provide examples of applications for the novel affinity matrices in chromatography and beyond.

  7. Ligand-regulated peptide aptamers.

    PubMed

    Miller, Russell A

    2009-01-01

    The peptide aptamer approach employs high-throughput selection to identify members of a randomized peptide library displayed from a scaffold protein by virtue of their interaction with a target molecule. Extending this approach, we have developed a peptide aptamer scaffold protein that can impart small-molecule control over the aptamer-target interaction. This ligand-regulated peptide (LiRP) scaffold, consisting of the protein domains FKBP12, FRB, and GST, binds to the cell-permeable small-molecule rapamycin and the binding of this molecule can prevent the interaction of the randomizable linker region connecting FKBP12 with FRB. Here we present a detailed protocol for the creation of a peptide aptamer plasmid library, selection of peptide aptamers using the LiRP scaffold in a yeast two-hybrid system, and the screening of those peptide aptamers for a ligand-regulated interaction.

  8. Presentation of Ligands on Hydroxylapatite

    NASA Technical Reports Server (NTRS)

    Chu, Barbara C. F.; Orgel, Leslie E.

    1997-01-01

    Conjugates of biotin with the decamer of glutamic acid (glu(sub 10)) and the trimer of D,L-2-amino-5-phosphonovaleric acid (I) have been synthesized, and it has been shown that they mediate the binding of avidin to hydroxylapatite. In a similar way a conjugate of methotrexate with glu(sub 10) mediates the binding of dihydrofolate reductase to the mineral. The presentation of ligands on the hydroxylapatite component of bone may find applications in clinical medicine.

  9. New ligands for melanocortin receptors.

    PubMed

    Kaelin, C B; Candille, S I; Yu, B; Jackson, P; Thompson, D A; Nix, M A; Binkley, J; Millhauser, G L; Barsh, G S

    2008-12-01

    Named originally for their effects on peripheral end organs, the melanocortin system controls a diverse set of physiological processes through a series of five G-protein-coupled receptors and several sets of small peptide ligands. The central melanocortin system plays an essential role in homeostatic regulation of body weight, in which two alternative ligands, alpha-melanocyte-stimulating hormone and agouti-related protein, stimulate and inhibit receptor signaling in several key brain regions that ultimately affect food intake and energy expenditure. Much of what we know about the relationship between central melanocortin signaling and body weight regulation stems from genetic studies. Comparative genomic studies indicate that melanocortin receptors used for controlling pigmentation and body weight regulation existed more than 500 million years ago in primitive vertebrates, but that fine-grained control of melanocortin receptors through neuropeptides and endogenous antagonists developed more recently. Recent studies based on dog coat-color genetics revealed a new class of melanocortin ligands, the beta-defensins, which reveal the potential for cross talk between the melanocortin and the immune systems.

  10. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    SciTech Connect

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni

    2014-07-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H{sub 2}adbc), terephthalic acid (H{sub 2}tpa), thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) and 1,4-benzenedithioacetic acid (H{sub 2}bdtc), four 3D structures [Co{sub 2}L{sub 2}(adbc)]{sub n}·nH{sub 2}O (2), [Co{sub 2}L{sub 2}(tpa)]{sub n}more » (3), [Co{sub 2}L{sub 2}(tdc)]{sub n} (4), [Co{sub 2}L{sub 2}(bdtc)(H{sub 2}O)]{sub n} (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions.« less

  11. Mixed-ligand Pt(II) dithione-dithiolato complexes: influence of the dicyanobenzodithiolato ligand on the second-order NLO properties.

    PubMed

    Espa, Davide; Pilia, Luca; Marchiò, Luciano; Artizzu, Flavia; Serpe, Angela; Mercuri, Maria Laura; Simão, Dulce; Almeida, Manuel; Pizzotti, Maddalena; Tessore, Francesca; Deplano, Paola

    2012-03-28

    The mixed-ligand dithiolene complex [Pt(Bz(2)pipdt)(dcbdt)] (1) bearing the two ligands Bz(2)pipdt = 1,4-dibenzyl-piperazine-3,2-dithione and dcbdt = dicyanobenzodithiolato, has been synthesized, characterized and studied to evaluate its second-order optical nonlinearity. The dithione/dithiolato character of the two ligands gives rise to an asymmetric distribution of the charge in the molecule. This is reflected by structural data showing that in the C(2)S(2)PtS(2)C(2) dithiolene core the four sulfur atoms define a square-planar coordination environment of the metal where the Pt-S bond distances involving the two ligands are similar, while the C-S bond distances in the C(2)S(2) units exhibit a significant difference in Bz(2)pipdt (dithione) and dcbdt (dithiolato). 1 shows a moderately strong absorption peak in the visible region, which can be related to a HOMO-LUMO transition, where the dcbdt ligand (dithiolato) contributes mostly to the HOMO, and the Bz(2)pipdt one (dithione) mostly to the LUMO. Thus this transition has ligand-to-ligand charge transfer (CT) character with some contribution of the metal and undergoes negative solvatochromism and molecular quadratic optical nonlinearity (μβ(0) = -1296 × 10(-48) esu), which was determined by the EFISH (electric-field-induced second-harmonic generation) technique and compared with the values of similar complexes on varying the dithiolato ligand (mnt = maleonitriledithiolato, dmit = 2-thioxo-1,3-dithiole-4,5-dithiolato). Theoretical calculations help to elucidate the role of the dithiolato ligands in affecting the molecular quadratic optical nonlinearity of these complexes.

  12. Hepatitis B virus X protein modulates peroxisome proliferator-activated receptor gamma through protein-protein interaction.

    PubMed

    Choi, Youn-Hee; Kim, Ha-il; Seong, Je Kyung; Yu, Dae-Yeul; Cho, Hyeseong; Lee, Mi-Ock; Lee, Jae Myun; Ahn, Yong-ho; Kim, Se Jong; Park, Jeon Han

    2004-01-16

    Ligand activation of peroxisome proliferator-activated receptor gamma (PPARgamma) has been reported to induce growth inhibition and apoptosis in various cancers including hepatocellular carcinoma (HCC). However, the effect of hepatitis B virus X protein (HBx) on PPARgamma activation has not been characterized in hepatitis B virus (HBV)-associated HCC. Herein, we demonstrated that HBx counteracted growth inhibition caused by PPARgamma ligand in HBx-associated HCC cells. We found that HBx bound to DNA binding domain of PPARgamma and HBx/PPARgamma interaction blocked nuclear localization and binding to recognition site of PPARgamma. HBx significantly suppressed a PPARgamma-mediated transactivation. These results suggest that HBx modulates PPARgamma function through protein-protein interaction.

  13. 32 CFR 705.24 - Exhibits.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Exhibits. 705.24 Section 705.24 National Defense... inform the public of the Navy's mission and operations. (2) To disseminate technical and scientific... Exhibit Center is to support local Navy recruiters. Requests for exhibits for community relations events...

  14. 32 CFR 705.24 - Exhibits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Exhibits. 705.24 Section 705.24 National Defense... inform the public of the Navy's mission and operations. (2) To disseminate technical and scientific... Exhibit Center is to support local Navy recruiters. Requests for exhibits for community relations events...

  15. 29 CFR 2200.70 - Exhibits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH REVIEW COMMISSION RULES OF PROCEDURE Hearings... separate file designated for rejected exhibits. (e) Return of physical exhibits. A party may on motion request the return of a physical exhibit within 30 days after expiration of the time for filing a petition...

  16. Understanding the molecular differential recognition of muramyl peptide ligands by LRR domains of human NOD receptors.

    PubMed

    Vijayrajratnam, Sukhithasri; Pushkaran, Anju Choorakottayil; Balakrishnan, Aathira; Vasudevan, Anil Kumar; Biswas, Raja; Mohan, Chethampadi Gopi

    2017-07-27

    Human nucleotide-binding oligomerization domain proteins, hNOD1 and hNOD2, are host intracellular receptors with C-terminal leucine-rich repeat (LRR) domains, which recognize specific bacterial peptidoglycan (PG) fragments as their ligands. The specificity of this recognition is dependent on the third amino acid of the stem peptide of the PG ligand, which is usually meso -diaminopimelic acid ( meso DAP) or l-lysine (l-Lys). Since the LRR domains of hNOD receptors had been experimentally shown to confer the PG ligand-sensing specificity, we developed three-dimensional structures of hNOD1-LRR and the hNOD2-LRR to understand the mechanism of differential recognition of muramyl peptide ligands by hNOD receptors. The hNOD1-LRR and hNOD2-LRR receptor models exhibited right-handed curved solenoid shape. The hot-spot residues experimentally proved to be critical for ligand recognition were located in the concavity of the NOD-LRR and formed the recognition site. Our molecular docking analyses and molecular electrostatic potential mapping studies explain the activation of hNOD-LRRs, in response to effective molecular interactions of PG ligands at the recognition site; and conversely, the inability of certain PG ligands to activate hNOD-LRRs, by deviations from the recognition site. Based on molecular docking studies using PG ligands, we propose few residues - G825, D826 and N850 in hNOD1-LRR and L904, G905, W931, L932 and S933 in hNOD2-LRR, evolutionarily conserved across different host species, which may play a major role in ligand recognition. Thus, our integrated experimental and computational approach elucidates the molecular basis underlying the differential recognition of PG ligands by hNOD receptors. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  17. Ligand design for multidimensional magnetic materials: a metallosupramolecular perspective.

    PubMed

    Pardo, Emilio; Ruiz-García, Rafael; Cano, Joan; Ottenwaelder, Xavier; Lescouëzec, Rodrigue; Journaux, Yves; Lloret, Francesc; Julve, Miguel

    2008-06-07

    The aim and scope of this review is to show the general validity of the 'complex-as-ligand' approach for the rational design of metallosupramolecular assemblies of increasing structural and magnetic complexity. This is illustrated herein on the basis of our recent studies on oxamato complexes with transition metal ions looking for the limits of the research avenue opened by Kahn's pioneering research twenty years ago. The use as building blocks of mono-, di- and trinuclear metal complexes with a novel family of aromatic polyoxamato ligands allowed us to move further in the coordination chemistry-based approach to high-nuclearity coordination compounds and high-dimensionality coordination polymers. In order to do so, we have taken advantage of the new developments of metallosupramolecular chemistry and in particular, of the molecular-programmed self-assembly methods that exploit the coordination preferences of metal ions and specifically tailored ligands. The judicious choice of the oxamato metal building block (substitution pattern and steric requirements of the bridging ligand, as well as the electronic configuration and magnetic anisotropy of the metal ion) allowed us to control the overall structure and magnetic properties of the final multidimensional nD products (n = 0-3). These species exhibit interesting magnetic properties which are brand-new targets in the field of molecular magnetism, such as single-molecule or single-chain magnets, and the well-known class of molecule-based magnets. This unique family of molecule-based magnetic materials expands on the reported examples of nD species with cyanide and related oxalato and dithiooxalato analogues. Moreover, the development of new oxamato metal building blocks with potential photo or redox activity at the aromatic ligand counterpart will provide us with addressable, multifunctional molecular materials for future applications in molecular electronics and nanotechnology.

  18. Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove

    PubMed Central

    McMurtrey, Curtis; Trolle, Thomas; Sansom, Tiffany; Remesh, Soumya G; Kaever, Thomas; Bardet, Wilfried; Jackson, Kenneth; McLeod, Rima; Sette, Alessandro; Nielsen, Morten; Zajonc, Dirk M; Blader, Ira J; Peters, Bjoern; Hildebrand, William

    2016-01-01

    HLA class I presentation of pathogen-derived peptide ligands is essential for CD8+ T-cell recognition of Toxoplasma gondii infected cells. Currently, little data exist pertaining to peptides that are presented after T. gondii infection. Herein we purify HLA-A*02:01 complexes from T. gondii infected cells and characterize the peptide ligands using LCMS. We identify 195 T. gondii encoded ligands originating from both secreted and cytoplasmic proteins. Surprisingly, T. gondii ligands are significantly longer than uninfected host ligands, and these longer pathogen-derived peptides maintain a canonical N-terminal binding core yet exhibit a C-terminal extension of 1–30 amino acids. Structural analysis demonstrates that binding of extended peptides opens the HLA class I F’ pocket, allowing the C-terminal extension to protrude through one end of the binding groove. In summary, we demonstrate that unrealized structural flexibility makes MHC class I receptive to parasite-derived ligands that exhibit unique C-terminal peptide extensions. DOI: http://dx.doi.org/10.7554/eLife.12556.001 PMID:26824387

  19. Development of Protein Degradation Inducers of Androgen Receptor by Conjugation of Androgen Receptor Ligands and Inhibitor of Apoptosis Protein Ligands.

    PubMed

    Shibata, Norihito; Nagai, Katsunori; Morita, Yoko; Ujikawa, Osamu; Ohoka, Nobumichi; Hattori, Takayuki; Koyama, Ryokichi; Sano, Osamu; Imaeda, Yasuhiro; Nara, Hiroshi; Cho, Nobuo; Naito, Mikihiko

    2018-01-25

    Targeted protein degradation using small molecules is a novel strategy for drug development. We have developed hybrid molecules named specific and nongenetic inhibitor of apoptosis protein [IAP]-dependent protein erasers (SNIPERs) that recruit IAP ubiquitin ligases to degrade target proteins. Here, we show novel SNIPERs capable of inducing proteasomal degradation of the androgen receptor (AR). Through derivatization of the SNIPER(AR) molecule at the AR ligand and IAP ligand and linker, we developed 42a (SNIPER(AR)-51), which shows effective protein knockdown activity against AR. Consistent with the degradation of the AR protein, 42a inhibits AR-mediated gene expression and proliferation of androgen-dependent prostate cancer cells. In addition, 42a efficiently induces caspase activation and apoptosis in prostate cancer cells, which was not observed in the cells treated with AR antagonists. These results suggest that SNIPER(AR)s could be leads for an anticancer drug against prostate cancers that exhibit AR-dependent proliferation.

  20. Gold Nanoparticle Monolayers from Sequential Interfacial Ligand Exchange and Migration in a Three-Phase System

    PubMed Central

    Yang, Guang; Hallinan, Daniel T.

    2016-01-01

    Using a three-phase system, centimeter-scale monolayer gold nanoparticle (Au NP) films have been prepared that have long-range order and hydrophobic ligands. The system contains an interface between an aqueous phase containing Au NPs and an oil phase containing one of various types of amine ligands, and a water/air interface. As the Au NPs diffuse to the water/oil interface, ligand exchange takes place which temporarily traps them at the water/oil interface. The ligand-exchanged particles then spontaneously migrate to the air/water interface, where they self-assemble, forming a monolayer under certain conditions. The spontaneous formation of the NP film at the air/water interface was due to the minimization of the system Helmholtz free energy. However, the extent of surface functionalization was dictated by kinetics. This decouples interfacial ligand exchange from interfacial self-assembly, while maintaining the simplicity of a single system. The interparticle center-to-center distance was dictated by the amine ligand length. The Au NP monolayers exhibit tunable surface plasma resonance and excellent spatial homogeneity, which is useful for surface-enhanced Raman scattering. The “air/water/oil” self-assembly method developed here not only benefits the fundamental understanding of NP ligand conformations, but is also applicable to the manufacture of plasmonic nanoparticle devices with precisely designed optical properties. PMID:27762394

  1. Synthesis, spectroscopic, coordination and biological activities of some organometallic complexes derived from thio-Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Abou-Hussein, Azza A.; Linert, Wolfgang

    2014-01-01

    Two series of mono- and binuclear complexes cyclic or acyclic thio-ferocine Schiff base ligands, derived from the condensation of 2-aminobenzenthiol (L) with monoacetyl ferrocene in the molar ratio 1:1 or in the molar ratio 1:2 for diacetyl ferocine have been prepared. The condensation reactions yield the corresponding Schiff Base ligands, HLa-Maf and H2Lb-Daf. The chelation of the ligands to metal ions occurs through the sulfur of the thiol group as well as the nitrogen atoms of the azomethine group of the ligands. HLa-Maf acts as monobasic bidentate or dibasic tetradentate, while H2Lb-Daf behaves as twice negatively cargend tetradentate ligand. The structures of these ligands were elucidated by elemental analysis, infrared, ultraviolet-visible spectra, as well as 1H NMR spectra. Reactions of the Schiff bases ligands with ruthenium(III), oxovanadium(IV) and dioxouranium(VI) afforded the corresponding transition metal complexes. The properties of the newly prepared complexes were analyse by elemental analyses, infrared, electronic spectra, 1H NMR as well as the magnetic susceptibility and conductivity measurement. The metal complexes exhibits different geometrical arrangements such as octahedral and square pyramidal coordination. Schiff base ligands and their metal complexes were tested against two pathogenic bacteria as Gram-positive and Gram-negative bacteria as well as one kind of fungi to study their biological activity. All the complexes exhibit antibacterial and antifungal activities against these organisms.

  2. Structural determinants for the inhibitory ligands of orotidine-5′-monophosphate decarboxylase

    SciTech Connect

    Meza-Avina, Maria Elena; Wei, Lianhu; Liu, Yan

    2010-06-14

    In recent years, orotidine-5{prime}-monophosphate decarboxylase (ODCase) has gained renewed attention as a drug target. As a part of continuing efforts to design novel inhibitors of ODCase, we undertook a comprehensive study of potent, structurally diverse ligands of ODCase and analyzed their structural interactions in the active site of ODCase. These ligands comprise of pyrazole or pyrimidine nucleotides including the mononucleotide derivatives of pyrazofurin, barbiturate ribonucleoside, and 5-cyanouridine, as well as, in a computational approach, 1,4-dihydropyridine-based non-nucleoside inhibitors such as nifedipine and nimodipine. All these ligands bind in the active site of ODCase exhibiting distinct interactions paving the way to designmore » novel inhibitors against this interesting enzyme. We propose an empirical model for the ligand structure for rational modifications in new drug design and potentially new lead structures.« less

  3. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    PubMed

    Pérot, Stéphanie; Regad, Leslie; Reynès, Christelle; Spérandio, Olivier; Miteva, Maria A; Villoutreix, Bruno O; Camproux, Anne-Claude

    2013-01-01

    Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely, some key pocket

  4. Insights into an Original Pocket-Ligand Pair Classification: A Promising Tool for Ligand Profile Prediction

    PubMed Central

    Reynès, Christelle; Spérandio, Olivier; Miteva, Maria A.; Villoutreix, Bruno O.; Camproux, Anne-Claude

    2013-01-01

    Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely, some key pocket

  5. Clinical Use of PPARγ Ligands in Cancer

    PubMed Central

    Hatton, Jennifer L.; Yee, Lisa D.

    2008-01-01

    The role of PPARγ in adipocyte differentiation has fueled intense interest in the function of this steroid nuclear receptor for regulation of malignant cell growth and differentiation. Given the antiproliferative and differentiating effects of PPARγ ligands on liposarcoma cells, investigation of PPARγ expression and ligand activation in other solid tumors such as breast, colon, and prostate cancers ensued. The anticancer effects of PPARγ ligands in cell culture and rodent models of a multitude of tumor types suggest broad applicability of these agents to cancer therapy. This review focuses on the clinical use of PPARγ ligands, specifically the thiazolidinediones, for the treatment and prevention of cancer. PMID:19125177

  6. Superconductive microstrip exhibiting negative differential resistivity

    DOEpatents

    Huebener, R.P.; Gallus, D.E.

    1975-10-28

    A device capable of exhibiting negative differential electrical resistivity over a range of values of current and voltage is formed by vapor- depositing a thin layer of a material capable of exhibiting superconductivity on an insulating substrate, establishing electrical connections at opposite ends of the deposited strip, and cooling the alloy into its superconducting range. The device will exhibit negative differential resistivity when biased in the current- induced resistive state.

  7. Equatorial coordination of uranyl: Correlating ligand charge donation with the O yl-U-O yl asymmetric stretch frequency

    DOE PAGES

    Gibson, John K.; de Jong, Wibe A.; van Stipdonk, Michael J.; ...

    2017-10-14

    In uranyl coordination complexes, UO 2(L) n 2+, uranium in the formally dipositive [O=U=O] 2+ moiety is coordinated by n neutral organic electron donor ligands, L. The extent of ligand electron donation, which results in partial reduction of uranyl and weakening of the U=O bonds, is revealed by the magnitude of the red-shift of the uranyl asymmetric stretch frequency, ν 3 . This phenomenon appears in gas-phase complexes in which uranyl is coordinated by electron donor ligands: the ν 3 red-shift increases as the number of ligands and their proton affinity (PA) increases. Because PA is a measure of themore » enthalpy change associated with a proton-ligand interaction, which is much stronger and of a different nature than metal ion-ligand bonding, it is not necessarily expected that ligand PAs should reliably predict uranyl-ligand bonding and the resulting ν 3 red-shift. In this study, ν 3 was measured for uranyl coordinated by ligands with a relatively broad range of PAs, revealing a surprisingly good correlation between PA and ν 3 frequency. From computed ν 3 frequencies for bare UO 2 cations and neutrals, it is inferred that the effective charge of uranyl in UO 2(L) n 2+ complexes can be reduced to near zero upon ligation by sufficiently strong charge-donor ligands. The basis for the correlation between ν 3 and ligand PAs, as well as limitations and deviations from it, are considered. It is demonstrated that the correlation evidently extends to a ligand that exhibits polydentate metal ion coordination.« less

  8. Synthesis, spectroscopic, thermogravimetric and antimicrobial studies of mixed ligands complexes

    NASA Astrophysics Data System (ADS)

    Mahmoud, Walaa H.; Mahmoud, Nessma F.; Mohamed, Gehad G.; El-Sonbati, Adel Z.; El-Bindary, Ashraf A.

    2015-09-01

    An interesting series of mixed ligand complexes have been synthesized by the reaction of metal chloride with guaifenesin (GFS) in the presence of 2-aminoacetic acid (HGly) (1:1:1 molar ratio). The elemental analysis, magnetic moments, molar conductance, spectral (UV-Vis, IR, 1H NMR and ESR) and thermal studies were used to characterize the isolated complexes. The molecular structure of GFS is optimized theoretically and the quantum chemical parameters are calculated. The IR showed that the ligand (GFS) acts as monobasic tridentate through the hydroxyl, phenoxy etheric and methoxy oxygen atoms and co-ligand (HGly) as monobasic bidentate through the deprotonated carboxylate oxygen atom and nitrogen atom of amino group. The molar conductivities showed that all the complexes are non-electrolytes except Cr(III) complex is electrolyte. Electronic and magnetic data proposed the octahedral structure for all complexes under investigation. ESR spectrum for Cu(II) revealed data which confirm the proposed structure. Antibacterial screening of the compounds were carried out in vitro on gram positive (Bacillus subtilis and Staphylococcus aureus), gram negative (Escherichia coli and Neisseria gonorrhoeae) bacteria and for in vitro antifungal activity against Candida albicans organism. However, some complexes showed more chemotherapeutic efficiency than the parent GFS drug. The complexes were also screened for their in vitro anticancer activity against the breast cell line (MFC7) and the results obtained showed that they exhibit a considerable anticancer activity.

  9. Ligand-hole localization in oxides with unusual valence Fe

    PubMed Central

    Chen, Wei-Tin; Saito, Takashi; Hayashi, Naoaki; Takano, Mikio; Shimakawa, Yuichi

    2012-01-01

    Unusual high-valence states of iron are stabilized in a few oxides. A-site-ordered perovskite-structure oxides contain such iron cations and exhibit distinct electronic behaviors at low temperatures, e.g. charge disproportionation (4Fe4+ → 2Fe3+ + 2Fe5+) in CaCu3Fe4O12 and intersite charge transfer (3Cu2+ + 4Fe3.75+ → 3Cu3+ + 4Fe3+) in LaCu3Fe4O12. Here we report the synthesis of solid solutions of CaCu3Fe4O12 and LaCu3Fe4O12 and explain how the instabilities of their unusual valence states of iron are relieved. Although these behaviors look completely different from each other in simple ionic models, they can both be explained by the localization of ligand holes, which are produced by the strong hybridization of iron d and oxygen p orbitals in oxides. The localization behavior in the charge disproportionation of CaCu3Fe4O12 is regarded as charge ordering of the ligand holes, and that in the intersite charge transfer of LaCu3Fe4O12 is regarded as a Mott transition of the ligand holes. PMID:22690318

  10. Multivalent Ion Transport in Polymers via Metal-Ligand Coordination

    NASA Astrophysics Data System (ADS)

    Sanoja, Gabriel; Schauser, Nicole; Evans, Christopher; Majumdar, Shubhaditya; Segalman, Rachel

    Elucidating design rules for multivalent ion conducting polymers is critical for developing novel high-performance materials for electrochemical devices. Herein, we molecularly engineer multivalent ion conducting polymers based on metal-ligand interactions and illustrate that both segmental dynamics and ion coordination kinetics are essential for ion transport through polymers. We present a novel statistical copolymer, poly(ethylene oxide-stat-imidazole glycidyl ether) (i.e., PEO-stat-PIGE), that synergistically combines the structural hierarchy of PEO with the Lewis basicity of tethered imidazole ligands (xIGE = 0.17) required to coordinate a series of transition metal salts containing bis(trifluoromethylsulfonyl)imide anions. Complexes of PEO-stat-PIGE with salts exhibit a nanostructure in which ion-enriched regions alternate with ion-deficient regions, and an ionic conductivity above 10-5 S/cm. Novel normalization schemes that account for ion solvation kinetics are presented to attain a universal scaling relationship for multivalent ion transport in polymers via metal-ligand coordination. AFOSR MURI program under FA9550-12-1.

  11. Protease-Resistant Peptide Ligands from a Knottin Scaffold Library

    PubMed Central

    Getz, Jennifer A.; Rice, Jeffrey J.; Daugherty, Patrick S.

    2011-01-01

    Peptides within the knottin family have been shown to possess inherent stability, making them attractive scaffolds for the development of therapeutic and diagnostic agents. Given its remarkable stability to proteases, the cyclic peptide kalata B1 was employed as a scaffold to create a large knottin library displayed on the surface of E. coli. A library exceeding 109 variants was constructed by randomizing seven amino acids within a loop of the kalata B1 scaffold and screened using fluorescence-activated cell sorting to identify peptide ligands specific for the active site of human thrombin. Refolded thrombin binders exhibited high nanomolar affinities in solution, slow dissociation rates, and were able to inhibit thrombin’s enzymatic activity. Importantly, 80% of a knottin-based thrombin inhibitor remained intact after a two hour incubation both with trypsin and with chymotrypsin, demonstrating that modifying the kalata B1 sequence did not compromise its stability properties. In addition, the knottin variant mediated 20-fold enhanced affinity for thrombin, when compared to the same seven residue binding epitope constrained by a single disulfide bond. Our results indicate that peptide libraries derived from the kalata B1 scaffold can yield high affinity protein ligands that retain the remarkable protease resistance associated with the parent scaffold. More generally, this strategy may prove useful in the development of stable peptide ligands suitable for in vivo applications. PMID:21615106

  12. Memory and Mourning: An Exhibit History

    ERIC Educational Resources Information Center

    Eberle, Scott G.

    2005-01-01

    Mounted by the Strong Museum in Rochester, New York, in 1993, and traveling nationally thereafter, the exhibit Memory and Mourning provided historical and contemporary perspectives to help museum guests explore their own reactions to loss and grief. In the process the exhibit's development team encountered a range of philosophical, historical,…

  13. Science Fiction Exhibits as STEM Gateways

    NASA Astrophysics Data System (ADS)

    Robie, Samantha

    Women continue to hold less than a quarter of all STEM jobs in the United States, prompting many museums to develop programs and exhibits with the express goal of interesting young girls in scientific fields. At the same time, a number of recent museum exhibits have harnessed the popularity of pop culture and science fiction in order to interest general audiences in STEM subject matter, as well as using the exhibits as springboards to expand or shift mission goals and focus. Because science fiction appears to be successful at raising interest in STEM fields, it may be an effective way to garner the interest of young girls in STEM in particular. This research seeks to describe the ways in which museums are currently using science fiction exhibits to interest young girls in STEM fields and careers. Research focused on four institutions across the country hosting three separate exhibits, and included staff interviews and content analysis of exhibit descriptions, promotional materials, a summative evaluation and supplementary exhibit productions. In some ways, science fiction exhibits do serve young girls, primarily through the inclusion of female role models, staff awareness, and prototype testing to ensure interactives are attractive to girls as well as to boys. However, STEM appears to be underutilized, which may be partly due to a concern within the field that the outcome of targeting a specific gender could be construed as "stereotyping".

  14. Encountering Nanotechnology in an Interactive Exhibition

    ERIC Educational Resources Information Center

    Murriello, Sandra E.; Knobel, Marcelo

    2008-01-01

    This article offers findings from a learning sciences-informed evaluation of a nanoscience and nanotechnology exhibition called Nano-Aventura (NanoAdventure), based on four interactive-collaborative games and two narrated videos. This traveling exhibition was developed in Brazil by the Museu Exploratorio de Ciencias for children and teenagers…

  15. 18 CFR 50.7 - Applications: exhibits.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... elements or matters contained in the exhibit. (a) Exhibit A—Articles of incorporation and bylaws. If the applicant is not an individual, a conformed copy of its articles of incorporation and bylaws, or other... following information: (i) Number of circuits, with identification as to whether the circuit is overhead or...

  16. 18 CFR 50.7 - Applications: exhibits.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... elements or matters contained in the exhibit. (a) Exhibit A—Articles of incorporation and bylaws. If the applicant is not an individual, a conformed copy of its articles of incorporation and bylaws, or other... following information: (i) Number of circuits, with identification as to whether the circuit is overhead or...

  17. 18 CFR 50.7 - Applications: exhibits.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... elements or matters contained in the exhibit. (a) Exhibit A—Articles of incorporation and bylaws. If the applicant is not an individual, a conformed copy of its articles of incorporation and bylaws, or other... following information: (i) Number of circuits, with identification as to whether the circuit is overhead or...

  18. 7 CFR Exhibit G to Subpart E of... - Exhibit G to Subpart E of Part 1980

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 14 2012-01-01 2012-01-01 false Exhibit G to Subpart E of Part 1980 G Exhibit G to Subpart E of Part 1980 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING... Program Pt. 1980, Subpt. E, Exh. G Exhibit G to Subpart E of Part 1980 Note: The Exhibit is not published...

  19. 7 CFR Exhibit G to Subpart E of... - Exhibit G to Subpart E of Part 1980

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 14 2013-01-01 2013-01-01 false Exhibit G to Subpart E of Part 1980 G Exhibit G to Subpart E of Part 1980 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING... Program Pt. 1980, Subpt. E, Exh. G Exhibit G to Subpart E of Part 1980 Note: The Exhibit is not published...

  20. 7 CFR Exhibit G to Subpart E of... - Exhibit G to Subpart E of Part 1980

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 14 2014-01-01 2014-01-01 false Exhibit G to Subpart E of Part 1980 G Exhibit G to Subpart E of Part 1980 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING... Program Pt. 1980, Subpt. E, Exh. G Exhibit G to Subpart E of Part 1980 Note: The Exhibit is not published...

  1. 7 CFR Exhibit G to Subpart E of... - Exhibit G to Subpart E of Part 1980

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 14 2010-01-01 2009-01-01 true Exhibit G to Subpart E of Part 1980 G Exhibit G to Subpart E of Part 1980 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING... Program Pt. 1980, Subpt. E, Exh. G Exhibit G to Subpart E of Part 1980 Note: The Exhibit is not published...

  2. 7 CFR Exhibit G to Subpart E of... - Exhibit G to Subpart E of Part 1980

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 14 2011-01-01 2011-01-01 false Exhibit G to Subpart E of Part 1980 G Exhibit G to Subpart E of Part 1980 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING... Program Pt. 1980, Subpt. E, Exh. G Exhibit G to Subpart E of Part 1980 Note: The Exhibit is not published...

  3. Aptamer-based multifunctional ligand-modified UCNPs for targeted PDT and bioimaging.

    PubMed

    Hou, Weijia; Liu, Yuan; Jiang, Ying; Wu, Yuan; Cui, Cheng; Wang, Yanyue; Zhang, Liqin; Teng, I-Ting; Tan, Weihong

    2018-06-14

    We designed an aptamer-based multifunctional ligand which, upon conjugation to the surface of upconversion nanoparticles (UCNPs), could realize phase transfer, covalent photosensitizer (PS) loading, and cancer cell targeting in one simple step. The as-built PDT nanodrug is selectively internalized into cancer cells and it exhibits highly efficient and selective cytotoxicity.

  4. Differential effects of PPAR-{gamma} activation versus chemical or genetic reduction of DPP-4 activity on bone quality in mice.

    PubMed

    Kyle, Kimberly A; Willett, Thomas L; Baggio, Laurie L; Drucker, Daniel J; Grynpas, Marc D

    2011-02-01

    Patients with type 2 diabetes mellitus have an increased risk of fracture that can be further exacerbated by thiazolidinediones. A new class of antidiabetic agents control glucose through reduction of dipeptidyl peptidase-4 (DPP-4) activity; however the importance of DPP-4 for the control of bone quality has not been extensively characterized. We compared the effects of the thiazolidinedione pioglitazone and the DPP-4 inhibitor sitagliptin on bone quality in high-fat diet (HFD)-fed wild-type mice. In complementary studies, we examined bone quality in Dpp4(+/+) vs. Dpp4(-/-) mice. Pioglitazone produced yellow bones with greater bone marrow adiposity and significantly reduced vertebral bone mechanics in male, female, and ovariectomized (OVX) HFD fed female mice. Pioglitazone negatively affected vertebral volumetric bone mineral density, trabecular architecture, and mineral apposition rate in male mice. Sitagliptin treatment of HFD-fed wild-type mice significantly improved vertebral volumetric bone mineral density and trabecular architecture in female mice, but these improvements were lost in females after OVX. Genetic inactivation of Dpp4 did not produce a major bone phenotype in male and female Dpp4(-/-) mice; however, OVX Dpp4(-/-) mice exhibited significantly reduced femoral size and mechanics. These findings delineate the skeletal consequences of pharmacological and genetic reduction of DPP-4 activity and reveal significant differences in the effects of pioglitazone vs. sitagliptin vs. genetic Dpp4 inactivation on bone mechanics in mice.

  5. Understanding ligand effects in gold clusters using mass spectrometry

    SciTech Connect

    Johnson, Grant E.; Laskin, Julia

    This review summarizes recent research on the influence of phosphine ligands on the size, stability, and reactivity of gold clusters synthesized in solution. Sub-nanometer clusters exhibit size- and composition-dependent properties that are unique from those of larger nanoparticles. The highly tunable properties of clusters and their high surface-to-volume ratio make them promising candidates for a variety of technological applications. However, because “each-atom-counts” toward defining cluster properties it is critically important to develop robust synthesis methods to efficiently prepare clusters of predetermined size. For decades phosphines have been known to direct the size-selected synthesis of gold clusters. Despite the preparation ofmore » numerous species it is still not understood how different functional groups at phosphine centers affect the size and properties of gold clusters. Using electrospray ionization mass spectrometry (ESI-MS) it is possible to characterize the effect of ligand substitution on the distribution of clusters formed in solution at defined reaction conditions. In addition, ligand exchange reactions on preformed clusters may be monitored using ESI-MS. Collision induced dissociation (CID) may also be employed to obtain qualitative insight into the fragmentation of mixed ligand clusters and the relative binding energies of differently substituted phosphines. Quantitative ligand binding energies and cluster stability may be determined employing surface induced dissociation (SID) in a custom-built Fourier transform ion cyclotron resonance mass spectrometer (FT-ICR-MS). Rice-Ramsperger-Kassel-Marcus (RRKM) based modeling of the SID data allows dissociation energies and entropy values to be extracted that may be compared with the results of high-level theoretical calculations. The charge reduction and reactivity of atomically precise gold clusters, including partially ligated species generated in the gas-phase by in source CID, on

  6. Museum Exhibitions: Optimizing Development Using Evaluation

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.

    2002-12-01

    The Space Science Institute (SSI) of Boulder, Colorado, has recently developed two museum exhibits called the Space Weather Center and MarsQuest. It is currently planning to develop a third exhibit called InterActive Earth. The Space Weather Center was developed in partnership with various research missions at NASA's Goddard Space Flight Center. The development of these exhibitions included a comprehensive evaluation plan. I will report on the important role evaluation plays in exhibit design and development using MarsQuest and InterActive Earth as models. The centerpiece of SSI's Mars Education Program is the 5,000-square-foot traveling exhibition, MarsQuest: Exploring the Red Planet, which was developed with support from the National Science Foundation (NSF), NASA, and several corporate donors. The MarsQuest exhibit is nearing the end of a highly successful, fully-booked three-year tour. The Institute plans to send an enhanced and updated MarsQuest on a second three-year tour and is also developing Destination: Mars, a mini-version of MarsQuest designed for smaller venues. They are designed to inspire and empower participants to extend the excitement and science content of the exhibitions into classrooms and museum-based education programs in an ongoing fashion. The centerpiece of the InterActive Earth project is a traveling exhibit that will cover about 4,000 square feet. The major goal of the proposed exhibit is to introduce students and the public to the complexity of the interconnections in the Earth system, and thereby, to inspire them to better understand planet Earth. Evaluation must be an integral part of the exhibition development process. For MarsQuest, a 3-phase evaluation (front end, formative and summative) was conducted by Randi Korn and Associates in close association with the development team. Sampling procedures for all three evaluation phases ensured the participation of all audiences, including family groups, students, and adults. Each phase of

  7. Flexible ligand docking using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Oshiro, C. M.; Kuntz, I. D.; Dixon, J. Scott

    1995-04-01

    Two computational techniques have been developed to explore the orientational and conformational space of a flexible ligand within an enzyme. Both methods use the Genetic Algorithm (GA) to generate conformationally flexible ligands in conjunction with algorithms from the DOCK suite of programs to characterize the receptor site. The methods are applied to three enzyme-ligand complexes: dihydrofolate reductase-methotrexate, thymidylate synthase-phenolpthalein and HIV protease-thioketal haloperidol. Conformations and orientations close to the crystallographically determined structures are obtained, as well as alternative structures with low energy. The potential for the GA method to screen a database of compounds is also examined. A collection of ligands is evaluated simultaneously, rather than docking the ligands individually into the enzyme.

  8. Group Additivity in Ligand Binding Affinity: An Alternative Approach to Ligand Efficiency.

    PubMed

    Reynolds, Charles H; Reynolds, Ryan C

    2017-12-26

    Group additivity is a concept that has been successfully applied to a variety of thermochemical and kinetic properties. This includes drug discovery, where functional group additivity is often assumed in ligand binding. Ligand efficiency can be recast as a special case of group additivity where ΔG/HA is the group equivalent (HA is the number of non-hydrogen atoms in a ligand). Analysis of a large data set of protein-ligand binding affinities (K i ) for diverse targets shows that in general ligand binding is distinctly nonlinear. It is possible to create a group equivalent scheme for ligand binding, but only in the context of closely related proteins, at least with regard to size. This finding has broad implications for drug design from both experimental and computational points of view. It also offers a path forward for a more general scheme to assess the efficiency of ligand binding.

  9. CO 2 Hydrogenation Catalysts with Deprotonated Picolinamide Ligands

    DOE PAGES

    Kanega, Ryoichi; Onishi, Naoya; Szalda, David J.; ...

    2017-08-21

    In an effort to design concepts for highly active catalysts for the hydrogenation of CO 2 to formate in basic water, we have prepared in this paper several catalysts with picolinic acid, picolinamide, and its derivatives, and we investigated their catalytic activity. The CO 2 hydrogenation catalyst having a 4-hydroxy-N-methylpicolinamidate ligand exhibited excellent activity even under ambient conditions (0.1 MPa, 25 °C) in basic water, exhibiting a TON of 14700, a TOF of 167 h –1, and producing a 0.64 M formate concentration. Finally, its high catalytic activity originates from strong electron donation by the anionic amide moiety in additionmore » to the phenolic O – functionality.« less

  10. Synthesis, spectral and electrochemical studies of binuclear Ru(III) complexes containing dithiosemicarbazone ligand

    NASA Astrophysics Data System (ADS)

    Kanchana Devi, A.; Ramesh, R.

    2014-01-01

    Synthesis of several new octahedral binuclear ruthenium(III) complexes of the general composition [(EPh3)2(X)Ru-L-Ru(X)(EPh3)2] containing benzene dithiosemicarbazone ligands (where E = P or As; X = Cl or Br; L = binucleating ligands) is presented. All the complexes have been fully characterized by elemental analysis, FT-IR, UV-vis and EPR spectroscopy together with magnetic susceptibility measurements. IR study shows that the dithiosemicarbazone ligands behave as dianionic tridentate ligands coordinating through the oxygen atom of the deprotonated phenolic group, nitrogen atom of the azomethine group and thiolate sulphur. In DMF solution, all the complexes exhibit intense d-d transition and ligand-to-metal charge transfer (LMCT) transition in the visible region. The magnetic moment values of the complexes are in the range 1.78-1.82 BM, which reveals the presence of one unpaired electron on each metal ion. The EPR spectra of the liquid samples at LNT show the presence of three different 'g' values (gx ≠ gy ≠ gz) indicate a rhombic distortion around the ruthenium ion. All the complexes exhibit two quasi-reversible one electron oxidation responses (RuIII-RuIII/RuIII-RuIV; RuIII-RuIV/RuIV-RuIV) within the E1/2 range of 0.61-0.74 V and 0.93-0.98 V respectively, versus Ag/AgCl.

  11. The Making of a Museum Exhibition.

    ERIC Educational Resources Information Center

    Bleecker, Samuel E.

    1979-01-01

    Discusses the preparation of the Reptile and Amphibian exhibition at the American Museum of Natural History. Various steps involved in developing the ten showcases in a six-year period are presented. (SA)

  12. Exhibit of School Architecture, 1996. Special Section.

    ERIC Educational Resources Information Center

    Texas Architect, 1997

    1997-01-01

    Presents selected winners of the Texas 1996 Exhibit of School Architecture Design Competition. The Caudill and honor award-winning projects are listed along with facility photos, brief descriptions, project credits, and the names of the construction companies used. (GR)

  13. Exhibit of School Architecture, 1997. Special Section.

    ERIC Educational Resources Information Center

    Texas Architect, 1998

    1998-01-01

    Presents selected winners of the Texas 1997 Exhibit of School Architecture Design Competition. The Caudill and honor award winning projects are listed along with facility photos, brief descriptions, project credits, and the names of the construction companies used. (GR)

  14. 49 CFR 250.2 - Required exhibits.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...; number of units of locomotives, freight cars, and passenger cars owned and leased; principal commodities carried; and identification of the ten most important industries served. (6) As Exhibit 6, statement as to...

  15. 49 CFR 250.2 - Required exhibits.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...; number of units of locomotives, freight cars, and passenger cars owned and leased; principal commodities carried; and identification of the ten most important industries served. (6) As Exhibit 6, statement as to...

  16. 49 CFR 250.2 - Required exhibits.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...; number of units of locomotives, freight cars, and passenger cars owned and leased; principal commodities carried; and identification of the ten most important industries served. (6) As Exhibit 6, statement as to...

  17. 49 CFR 250.2 - Required exhibits.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...; number of units of locomotives, freight cars, and passenger cars owned and leased; principal commodities carried; and identification of the ten most important industries served. (6) As Exhibit 6, statement as to...

  18. 49 CFR 250.2 - Required exhibits.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...; number of units of locomotives, freight cars, and passenger cars owned and leased; principal commodities carried; and identification of the ten most important industries served. (6) As Exhibit 6, statement as to...

  19. Screening the efficient biological prospects of triazole allied mixed ligand metal complexes

    NASA Astrophysics Data System (ADS)

    Utthra, Ponnukalai Ponya; Kumaravel, Ganesan; Raman, Natarajan

    2017-12-01

    Triazole appended mixed ligand complexes (1-8) of the general formula [ML (bpy/phen)2]Cl2, where M = Cu(II), Co(II), Ni(II) and Zn(II), L = triazole appended Schiff base (E)sbnd N-(4-nitrobenzylidene)-1H-1,2,4-triazol-3-amine and bpy/phen = 2,2‧-bipyridine/1,10-phenanthroline, have been synthesized. The design and synthesis of this elaborate ligand has been performed with the aim of increasing stability and conjugation of 1,2,4 triazole, whose Schiff base derivatives are known as biologically active compounds thereby exploring their DNA binding affinity and other biological applications. The compounds have been comprehensively characterized by elemental analysis, spectroscopic methods (IR, UV-Vis, EPR, 1H and 13C NMR spectroscopy), ESI mass spectrometry and magnetic susceptibility measurements. The complexes were found to exhibit octahedral geometry. The complexes 1-8 were subjected to DNA binding techniques evaluated using UV-Vis absorption, CV, CD, Fluorescence spectroscopy and hydrodynamic measurements. Complex 5 showed a Kb value of 3.9 × 105 M-1. The DNA damaging efficacy for the complexes was observed to be high compared to the ligand. The antimicrobial screening of the compounds against bacterial and fungal strains indicates that the complexes possess excellent antimicrobial activity than the ligand. The overall biological activity of the complexes with phen as a co-ligand possessed superior potential than the ligand.

  20. PPARγ ligand production is tightly linked to clonal expansion during initiation of adipocyte differentiation[S

    PubMed Central

    Hallenborg, Philip; Petersen, Rasmus Koefoed; Feddersen, Søren; Sundekilde, Ulrik; Hansen, Jacob B.; Blagoev, Blagoy; Madsen, Lise; Kristiansen, Karsten

    2014-01-01

    Adipocyte differentiation is orchestrated by the ligand-activated nuclear receptor PPARγ. Endogenous ligands comprise oxidized derivatives of arachidonic acid and structurally similar PUFAs. Although expression of PPARγ peaks in mature adipocytes, ligands are produced primarily at the onset of differentiation. Concomitant with agonist production, murine fibroblasts undergo two rounds of mitosis referred to as mitotic clonal expansion. Here we show that mouse embryonic fibroblasts deficient in either of two cell cycle inhibitors, the transcription factor p53 or its target gene encoding the cyclin-dependent kinase inhibitor p21, exhibit increased adipogenic potential. The antiadipogenic effect of p53 relied on its transcriptional activity and p21 expression but was circumvented by administration of an exogenous PPARγ agonist suggesting a linkage between cell cycling and PPARγ ligand production. Indeed, cell cycle inhibitory compounds decreased PPARγ ligand production in differentiating 3T3-L1 preadipocytes. Furthermore, these inhibitors abolished the release of arachidonic acid induced by the hormonal cocktail initiating adipogenesis. Collectively, our results suggest that murine fibroblasts require clonal expansion for PPARγ ligand production at the onset of adipocyte differentiation. PMID:25312885

  1. Communicating Complex Sciences by Means of Exhibitions

    NASA Astrophysics Data System (ADS)

    Schneider, S.

    2011-12-01

    Earth Sciences will have to take over the leading role in global sustainable policy and in discussions about climate change. Efforts to raise attention within the politically responsible communities as well as in the public are getting more and more support by executive and advisory boards all over the world. But how can you successfully communicate complex sciences? For example, to start communication about climate change, the first step is to encourage people to be concerned about climate change. After that, one has to start thinking about how to present data and how to include the presented data into an unprejudiced context. Therefore, the communication toolbox offers various methods to reach diverse audiences. The R&D programme GEOTECHNOLOGIEN conducts roving exhibitions as one of its most successful communication tools. With roving exhibitions GEOTECHNOLOGIEN is able to get in touch with different audiences at once. The main purpose and theme of these exhibitions is to convey the everyday means of climate change to the visitors. It is within the responsibility of science to communicate the effects of a phenomenon like climate change as well as the impact of research results to the everyday life of people. Currently, a GEOTECHNOLOGIEN roving exhibition on remote sensing with satellites deals with various issues of environmental research, including a chapter on climate change. By following the 3M-concept (Meaning - Memorable - Moving), exhibitions allow to connect the visitors daily environment and personal experiences with the presented issues and objects. Therefore, hands-on exhibits, exciting multimedia effects and high-tech artefacts have to be combined with interpretive text elements to highlight the daily significance of the scientific topics and the exhibition theme respectively. To create such an exhibition, strong conceptual planning has to be conducted. This includes the specification of stern financial as well as time wise milestones. In addition

  2. An Astrobiology Microbes Exhibit and Education Module

    NASA Technical Reports Server (NTRS)

    Lindstrom, Marilyn M.; Allen, Jaclyn S.; Stocco, Karen; Tobola, Kay; Olendzenski, Lorraine

    2001-01-01

    Telling the story of NASA-sponsored scientific research to the public in exhibits is best done by partnerships of scientists and museum professionals. Likewise, preparing classroom activities and training teachers to use them should be done by teams of teachers and scientists. Here we describe how we used such partnerships to develop a new astrobiology augmentation to the Microbes! traveling exhibit and a companion education module. "Additional information is contained in the original extended abstract."

  3. Reaching the Public through Traveling Exhibitions

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.; Harold, J. B.; Morrow, C. A.

    2004-11-01

    The Space Science Institute (SSI) of Boulder, Colorado has recently developed two museum exhibits called Alien Earths and MarsQuest. It has just started to develop another exhibit called Giant Planets. These exhibitions provide research scientists the opportunity to engage in a number of activities that are vital to the success of these major outreach programs. Alien Earths was developed in partnership with various research missions. The focus of the presentation will be on MarsQuest and Giant Planets. MarsQuest is a 5000 square-foot, \\$3M, traveling exhibition that is now touring the country. The exhibit's second 3-year tour will enable millions of Americans to share in the excitement of the scientific exploration of Mars and learn more about their own planet in the process. The associated planetarium show and education program will also be described, with particular emphasis on workshops to orient museum staff (e.g. museum educators and docents) and workshops for master educators near host museums and science centers. The workshops make innovative connections between the exhibition's interactive experiences and lesson plans aligned with the National Science Education Standards. These exhibit programs are good models for actively involving scientists and their discoveries to help improve informal science education in the museum community and for forging a stronger connection between formal and informal education. The presentation will also discuss how Giant Planets, a proposed 3500 square-foot traveling exhibition on the mysteries and discoveries of the outer planets, will be able to take advantage of the connections and resources that have been developed by the MarsQuest project.

  4. Sex differences in science museum exhibit attraction

    NASA Astrophysics Data System (ADS)

    Arámbula Greenfield, Teresa

    This study examines the relative attraction of hands-on, interactive science museum exhibits for females and males. Studies have demonstrated that such exhibits can be effective learning experiences for children, with both academic and affective benefits. Other studies have shown that girls and boys do not always experience the same science-related educational opportunities and that, even when they do, they do not necessarily receive the same benefits from them. These early differences can lead to more serious educational and professional disparities later in life. As interactive museum exhibits represent a science experience that is-readily available to both girls and boys, the question arose as to whether they were being used similarly by the two groups as well as by adult women and men. It was found that both girls and boys used all types of exhibits, but that girls were more likely than boys to use puzzles and exhibits focusing on the human body; boys were more likely than girls to use computers and exhibits illustrating physical science principles. However, this was less true of children accompanied by adults (parents) than it was of unaccompanied children on school field trips who roamed the museum more freely.Received: 16 February 1994; Revised: 3 February 1995;

  5. Correcting ligands, metabolites, and pathways

    PubMed Central

    Ott, Martin A; Vriend, Gert

    2006-01-01

    Background A wide range of research areas in bioinformatics, molecular biology and medicinal chemistry require precise chemical structure information about molecules and reactions, e.g. drug design, ligand docking, metabolic network reconstruction, and systems biology. Most available databases, however, treat chemical structures more as illustrations than as a datafield in its own right. Lack of chemical accuracy impedes progress in the areas mentioned above. We present a database of metabolites called BioMeta that augments the existing pathway databases by explicitly assessing the validity, correctness, and completeness of chemical structure and reaction information. Description The main bulk of the data in BioMeta were obtained from the KEGG Ligand database. We developed a tool for chemical structure validation which assesses the chemical validity and stereochemical completeness of a molecule description. The validation tool was used to examine the compounds in BioMeta, showing that a relatively small number of compounds had an incorrect constitution (connectivity only, not considering stereochemistry) and that a considerable number (about one third) had incomplete or even incorrect stereochemistry. We made a large effort to correct the errors and to complete the structural descriptions. A total of 1468 structures were corrected and/or completed. We also established the reaction balance of the reactions in BioMeta and corrected 55% of the unbalanced (stoichiometrically incorrect) reactions in an automatic procedure. The BioMeta database was implemented in PostgreSQL and provided with a web-based interface. Conclusion We demonstrate that the validation of metabolite structures and reactions is a feasible and worthwhile undertaking, and that the validation results can be used to trigger corrections and improvements to BioMeta, our metabolite database. BioMeta provides some tools for rational drug design, reaction searches, and visualization. It is freely available

  6. Molecular ligand modulation of palladium nanocatalysts for highly efficient and robust heterogeneous oxidation of cyclohexenone to phenol

    DOE PAGES

    Xue, Teng; Lin, Zhaoyang; Chiu, Chin-Yi; ...

    2017-01-06

    Metallic nanoparticles are emerging as an exciting class of heterogeneous catalysts with the potential advantages of exceptional activity, stability, recyclability, and easier separation than homogeneous catalysts. The traditional colloid nanoparticle syntheses usually involve strong surface binding ligands that could passivate the surface active sites and result in poor catalytic activity. The subsequent removal of surface ligands could reactivate the surface but often leads to metal ion leaching and/or severe Ostwald ripening with diminished catalytic activity or poor stability. Molecular ligand engineering represents a powerful strategy for the design of homogeneous molecular catalysts but is insufficiently explored for nanoparticle catalysts tomore » date. We report a systematic investigation on molecular ligand modulation of palladium (Pd) nanoparticle catalysts. Our studies show that β-functional groups of butyric acid ligand on Pd nanoparticles can significantly modulate the catalytic reaction process to modify the catalytic activity and stability for important aerobic reactions. With a β-hydroxybutyric acid ligand, the Pd nanoparticle catalysts exhibit exceptional catalytic activity and stability with an unsaturated turnover number (TON) >3000 for dehydrogenative oxidation of cyclohexenone to phenol, greatly exceeding that of homogeneous Pd(II) catalysts (TON, ~30). This study presents a systematic investigation of molecular ligand modulation of nanoparticle catalysts and could open up a new pathway toward the design and construction of highly efficient and robust heterogeneous catalysts through molecular ligand engineering.« less

  7. Chemistry of Marine Ligands and Siderophores

    PubMed Central

    Vraspir, Julia M.; Butler, Alison

    2011-01-01

    Marine microorganisms are presented with unique challenges to obtain essential metal ions required to survive and thrive in the ocean. The production of organic ligands to complex transition metal ions is one strategy to both facilitate uptake of specific metals, such as iron, and to mitigate the potential toxic effects of other metal ions, such as copper. A number of important trace metal ions are complexed by organic ligands in seawater, including iron, cobalt, nickel, copper, zinc, and cadmium, thus defining the speciation of these metal ions in the ocean. In the case of iron, siderophores have been identified and structurally characterized. Siderophores are low molecular weight iron-binding ligands produced by marine bacteria. Although progress has been made toward the identity of in situ iron-binding ligands, few compounds have been identified that coordinate the other trace metals. Deciphering the chemical structures and production stimuli of naturally produced organic ligands and the organisms they come from is fundamental to understanding metal speciation and bioavailability. The current evidence for marine ligands, with an emphasis on siderophores, and discussion of the importance and implications of metal-binding ligands in controlling metal speciation and cycling within the world’s oceans are presented. PMID:21141029

  8. Core 1-derived O-glycans are essential E-selectin ligands on neutrophils.

    PubMed

    Yago, Tadayuki; Fu, Jianxin; McDaniel, J Michael; Miner, Jonathan J; McEver, Rodger P; Xia, Lijun

    2010-05-18

    Neutrophils roll on E-selectin in inflamed venules through interactions with cell-surface glycoconjugates. The identification of physiologic E-selectin ligands on neutrophils has been elusive. Current evidence suggests that P-selectin glycoprotein ligand-1 (PSGL-1), E-selectin ligand-1 (ESL-1), and CD44 encompass all glycoprotein ligands for E-selectin; that ESL-1 and CD44 use N-glycans to bind to E-selectin; and that neutrophils lacking core 2 O-glycans have partially defective interactions with E-selectin. These data imply that N-glycans on ESL-1 and CD44 and O-glycans on PSGL-1 constitute all E-selectin ligands, with neither glycan subset having a dominant role. The enzyme T-synthase transfers Gal to GalNAcalpha1-Ser/Thr to form the core 1 structure Galbeta1-3GalNAcalpha1-Ser/Thr, a precursor for core 2 and extended core 1 O-glycans that might serve as selectin ligands. Here, using mice lacking T-synthase in endothelial and hematopoietic cells, we found that E-selectin bound to CD44 and ESL-1 in lysates of T-synthase-deficient neutrophils. However, the cells exhibited markedly impaired rolling on E-selectin in vitro and in vivo, failed to activate beta2 integrins while rolling, and did not emigrate into inflamed tissues. These defects were more severe than those of neutrophils lacking PSGL-1, CD44, and the mucin CD43. Our results demonstrate that core 1-derived O-glycans are essential E-selectin ligands; that some of these O-glycans are on protein(s) other than PSGL-1, CD44, and CD43; and that PSGL-1, CD44, and ESL-1 do not constitute all glycoprotein ligands for E-selectin.

  9. Breaking tolerance to self, circulating natural killer cells expressing inhibitory KIR for non-self HLA exhibit effector function after T cell-depleted allogeneic hematopoietic cell transplantation.

    PubMed

    Yu, Junli; Venstrom, Jeffrey M; Liu, Xiao-Rong; Pring, James; Hasan, Reenat S; O'Reilly, Richard J; Hsu, Katharine C

    2009-04-16

    Alloreactive natural killer (NK) cells are an important influence on hematopoietic stem cell transplantation (HSCT) outcome. In HLA-mismatched HSCT, alloreactivity occurs when licensed donor NK cells expressing inhibitory killer Ig-like receptors (KIR) for donor MHC class I ligands recognize the lack of the class I ligands in the mismatched recipient ("missing self"). Studies in HLA-matched HSCT, however, have also demonstrated improved outcome in patients lacking class I ligands for donor inhibitory KIR ("missing ligand"), indicating that classically nonlicensed donor NK cells expressing KIR for non-self MHC class I ligands may exhibit functional competence in HSCT. We examined NK function in 16 recipients of T cell-depleted allografts from HLA-identical or KIR-ligand matched donors after myeloablative therapy. After HSCT, nonlicensed NK cells expressing inhibitory KIR for non-self class I exhibit robust intracellular IFN-gamma and cytotoxic response to target cells lacking cognate ligand, gradually becoming tolerized to self by day 100. These findings could not be correlated with cytokine environment or phenotypic markers of NK development, nor could they be attributed to non-KIR receptors such as CD94/NKG2A. These findings confirm that NK alloreactivity can occur in HLA-matched HSCT, where tolerance to self is either acquired by the stem cell-derived NK cell after exiting the bone marrow or where tolerance to self can be temporarily overcome.

  10. Ligand placement based on prior structures: the guided ligand-replacement method

    SciTech Connect

    Klei, Herbert E.; Bristol-Myers Squibb, Princeton, NJ 08543-4000; Moriarty, Nigel W., E-mail: nwmoriarty@lbl.gov

    2014-01-01

    A new module, Guided Ligand Replacement (GLR), has been developed in Phenix to increase the ease and success rate of ligand placement when prior protein-ligand complexes are available. The process of iterative structure-based drug design involves the X-ray crystal structure determination of upwards of 100 ligands with the same general scaffold (i.e. chemotype) complexed with very similar, if not identical, protein targets. In conjunction with insights from computational models and assays, this collection of crystal structures is analyzed to improve potency, to achieve better selectivity and to reduce liabilities such as absorption, distribution, metabolism, excretion and toxicology. Current methods formore » modeling ligands into electron-density maps typically do not utilize information on how similar ligands bound in related structures. Even if the electron density is of sufficient quality and resolution to allow de novo placement, the process can take considerable time as the size, complexity and torsional degrees of freedom of the ligands increase. A new module, Guided Ligand Replacement (GLR), was developed in Phenix to increase the ease and success rate of ligand placement when prior protein–ligand complexes are available. At the heart of GLR is an algorithm based on graph theory that associates atoms in the target ligand with analogous atoms in the reference ligand. Based on this correspondence, a set of coordinates is generated for the target ligand. GLR is especially useful in two situations: (i) modeling a series of large, flexible, complicated or macrocyclic ligands in successive structures and (ii) modeling ligands as part of a refinement pipeline that can automatically select a reference structure. Even in those cases for which no reference structure is available, if there are multiple copies of the bound ligand per asymmetric unit GLR offers an efficient way to complete the model after the first ligand has been placed. In all of these applications

  11. Ligand-bridged dinuclear cyclometalated Ir(III) complexes: from metallamacrocycles to discrete dimers.

    PubMed

    Chandrasekhar, Vadapalli; Hajra, Tanima; Bera, Jitendra K; Rahaman, S M Wahidur; Satumtira, Nisa; Elbjeirami, Oussama; Omary, Mohammad A

    2012-02-06

    Metallamacrocycles 1, 2, and 3 of the general formula [{Ir(ppy)(2)}(2)(μ-BL)(2)](OTf)(2) (ppyH = 2-phenyl pyridine; BL = 1,2-bis(4-pyridyl)ethane (bpa) (1), 1,3-bis(4-pyridyl)propane (bpp) (2), and trans-1,2-bis(4-pyridyl)ethylene (bpe) (3)) have been synthesized by the reaction of [{(ppy)(2)Ir}(2)(μ-Cl)(2)], first with AgOTf to effect dechlorination and later with various bridging ligands. Open-frame dimers [{Ir(ppy)(2)}(2)(μ-BL)](OTf)(2) were obtained in a similar manner by utilizing N,N'-bis(2-pyridyl)methylene-hydrazine (abp) and N,N'-(bis(2-pyridyl)formylidene)ethane-1,2-diamine (bpfd) (for compounds 4 and 5, respectively) as bridging ligands. Molecular structures of 1, 3, 4, and 5 were established by X-ray crystallography. Cyclic voltammetry experiments reveal weakly interacting "Ir(ppy)(2)" units bridged by ethylene-linked bpe ligand in 3; on the contrary the metal centers are electronically isolated in 1 and 2 where the bridging ligands are based on ethane and propane linkers. The dimer 4 exhibits two accessible reversible reduction couples separated by 570 mV indicating the stability of the one-electron reduced species located on the diimine-based bridge abp. The "Ir(ppy)(2)" units in compound 5 are noninteracting as the electronic conduit is truncated by the ethane spacer in the bpfd bridge. The dinuclear compounds 1-5 show ligand centered (LC) transitions involving ppy ligands and mixed metal to ligand/ligand to ligand charge transfer (MLCT/LLCT) transitions involving both the cyclometalating ppy and bridging ligands (BL) in the UV-vis spectra. For the conjugated bridge bpe in compound 3 and abp in compound 4, the lowest-energy charge-transfer absorptions are red-shifted with enhanced intensity. In accordance with their similar electronic structures, compounds 1 and 2 exhibit identical emissions. The presence of vibronic structures in these compounds indicates a predominantly (3)LC excited states. On the contrary, broad and unstructured

  12. Using Comparative Planetology in Exhibit Development

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.; Harold, J. B.; Morrow, C. A.

    2004-12-01

    It is critically important for the public to better understand the scientific process. Museum exhibitions are an important part of informal science education that can effectively reach public audiences as well as school groups. They provide an important gateway for the public to learn about compelling scientific endeavors. The Space Science Institute (SSI) is a national leader in producing traveling science exhibitions and their associated educational programming (i.e. interactive websites, educator workshops, public talks, instructional materials). The focus of this presentation will be on three of its exhibit projects: MarsQuest (currently on tour), Alien Earths (in fabrication), and Giant Planets (in development). MarsQuest is enabling millions of Americans to share in the excitement of the scientific exploration of Mars and to learn more about their own planet in the process. Alien Earths will bring origins-related research and discoveries to students and the American public. It has four interrelated exhibit areas: Our Place in Space, Star Birth, PlanetQuest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in "habitable zones" around other stars; and finally they will be able to learn about how scientists are looking for signs of life beyond Earth. Giant Planets: Exploring the Outer Solar System will take advantage of the excitement generated by the Cassini mission and bring planetary and origins research and discoveries to students and the public. It will be organized around four thematic areas: Our Solar System; Colossal Worlds; Moons, Rings, and Fields; and Make Space for Kids. Giant Planets will open in 2007. This talk will focus on the importance of making Earth comparisons in the conceptual design of each exhibit and will show several examples of how these comparisons were manifested in

  13. The exploration of the exhibition informatization

    NASA Astrophysics Data System (ADS)

    Zhang, Jiankang

    2017-06-01

    The construction and management of exhibition informatization is the main task and choke point during the process of Chinese exhibition industry’s transformation and promotion. There are three key points expected to realize a breakthrough during the construction of Chinese exhibition informatization, and the three aspects respectively are adopting service outsourcing to construct and maintain the database, adopting advanced chest card technology to collect various kinds of information, developing statistics analysis to maintain good cutomer relations. The success of Chinese exhibition informatization mainly calls for mature suppliers who can provide construction and maintenance of database, the proven technology, a sense of data security, advanced chest card technology, the ability of data mining and analysis and the ability to improve the exhibition service basing on the commercial information got from the data analysis. Several data security measures are expected to apply during the process of system developing, including the measures of the terminal data security, the internet data security, the media data security, the storage data security and the application data security. The informatization of this process is based on the chest card designing. At present, there are several types of chest card technology: bar code chest card; two-dimension code card; magnetic stripe chest card; smart-chip chest card. The information got from the exhibition data will help the organizers to make relevant service strategies, quantify the accumulated indexes of the customers, and improve the level of the customer’s satisfaction and loyalty, what’s more, the information can also provide more additional services like the commercial trips, VIP ceremonial reception.

  14. Synthesis and characterization β-ketoamine ligands

    NASA Astrophysics Data System (ADS)

    Zaid, Nurzati Amani Mohamed; Hassan, Nur Hasyareeda; Karim, Nurul Huda Abd

    2018-04-01

    β-ketoamine ligands are important members of heterodonor ligand because of their ease of preparation and modification of both steric and/or electronic effects. Complexes with β-ketoamine has received much less attention and there has been no study about this complex with β-ketoamine in ionic liquid reported. Two type of β-ketoamine ligands which are 4-amino-3-pentene-2-onato (A) and 3-amino-2-butenoic acid methyl ester (B) have been synthesized in this work. The resulting compound formed was characterized using standard spectroscopic and structural techniques which includes 1H and 13C, NMR spectroscopy and FTIR spectroscopy. The 1H and 13C NMR spectrum displayed all the expected signals with correct integration and multiplicity. And it is proved that there are some differences between two ligands as observed in NMR and FTIR spectrum.

  15. The Retinoid X Receptors and Their Ligands

    PubMed Central

    Dawson, Marcia I.; Xia, Zebin

    2014-01-01

    This chapter presents an overview of the current status of studies on the structural and molecular biology of the retinoid X receptor subtypes α, β, and γ (RXRs, NR2B1–3), their nuclear and cytoplasmic functions, post-transcriptional processing, and recently reported ligands. Points of interest are the different changes in the ligand-binding pocket induced by variously shaped agonists, the communication of the ligand–bound pocket with the coactivator binding surface and the heterodimerization interface, and recently identified ligands that are natural products, those that function as environmental toxins or drugs that had been originally designed to interact with other targets, as well as those that were deliberately designed as RXR-selective transcriptional agonists, synergists, or antagonists. Of these synthetic ligands, the general trend in design appears to be away from fully aromatic rigid structures to those containing partial elements of the flexible tetraene side chain of 9-cis-retinoic acid. PMID:22020178

  16. GW-501516 GlaxoSmithKline/Ligand.

    PubMed

    Pelton, Patricia

    2006-04-01

    GlaxoSmithKline and Ligand are developing GW-501516, a peroxisome proliferator-activator receptor-delta agonist for the potential treatment of dyslipidemia. Phase II clinical trials of this compound are ongoing.

  17. Structures of undecagold clusters: Ligand effect

    NASA Astrophysics Data System (ADS)

    Spivey, Kasi; Williams, Joseph I.; Wang, Lichang

    2006-12-01

    The most stable structure of undecagold, or Au 11, clusters was predicted from our DFT calculations to be planar [L. Xiao, L. Wang, Chem. Phys. Lett. 392 (2004) 452; L. Xiao, B. Tollberg, X. Hu, L. Wang, J. Chem. Phys. 124 (2005) 114309.]. The structures of ligand protected undecagold clusters were shown to be three-dimensional experimentally. In this work, we used DFT calculations to study the ligand effect on the structures of Au 11 clusters. Our results show that the most stable structure of Au 11 is in fact three-dimensional when SCH 3 ligands are attached. This indicates that the structures of small gold clusters are altered substantially in the presence of ligands.

  18. Dual genetically encoded phage-displayed ligands.

    PubMed

    Mohan, Kritika; Weiss, Gregory A

    2014-05-15

    M13 bacteriophage display presents polypeptides as fusions to phage coat proteins. Such phage-displayed ligands offer useful reagents for biosensors. Here, we report a modified phage propagation protocol for the consistent and robust display of two different genetically encoded ligands on the major coat protein, P8. The results demonstrate that the phage surface reaches a saturation point for maximum peptide display. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Affinity Electrophoresis Using Ligands Attached To Polymers

    NASA Technical Reports Server (NTRS)

    Van Alstine, James M.; Snyder, Robert S.; Harris, J. M.; Brooks, D. E.

    1990-01-01

    In new technique, reduction of electrophoretic mobilities by addition of polyethylene glycol to ligands increases electrophoretic separabilities. In immuno-affinity electrophoresis, modification of ligands extends specificity of electrophoretic separation to particles having surface electric-charge structures otherwise making them electrophoretically inseparable. Modification of antibodies by polyethylene glycol greatly reduces ability to aggregate while enhancing ability to affect electrophoretic mobilities of cells. In hydrophobic-affinity electrophoresis, addition of polyethylene glycol reduces tendency toward aggregation of cells or macromolecules.

  20. Graduation by Exhibition: Assessing Genuine Achievement.

    ERIC Educational Resources Information Center

    McDonald, Joseph P.; And Others

    This book describes a strategy for school reform, "planning backwards from exhibitions," which is a collective invention of the Coalition of Essential Schools. The strategy is based on the principle that graduation from high school should be based on genuine achievement. The first article, by Joseph P. McDonald, explains that the purpose of…

  1. 18 CFR 157.14 - Exhibits.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...) Exhibit G—Flow diagrams showing daily design capacity and reflecting operation with and without proposed facilities added. A flow diagram showing daily design capacity and reflecting operating conditions with only existing facilities in operation. A second flow diagram showing daily design capacity and reflecting...

  2. 18 CFR 157.14 - Exhibits.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...) Exhibit G—Flow diagrams showing daily design capacity and reflecting operation with and without proposed facilities added. A flow diagram showing daily design capacity and reflecting operating conditions with only existing facilities in operation. A second flow diagram showing daily design capacity and reflecting...

  3. 18 CFR 157.14 - Exhibits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Exhibit G—Flow diagrams showing daily design capacity and reflecting operation with and without proposed facilities added. A flow diagram showing daily design capacity and reflecting operating conditions with only existing facilities in operation. A second flow diagram showing daily design capacity and reflecting...

  4. 18 CFR 157.14 - Exhibits.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...) Exhibit G—Flow diagrams showing daily design capacity and reflecting operation with and without proposed facilities added. A flow diagram showing daily design capacity and reflecting operating conditions with only existing facilities in operation. A second flow diagram showing daily design capacity and reflecting...

  5. 18 CFR 157.14 - Exhibits.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...) Exhibit G—Flow diagrams showing daily design capacity and reflecting operation with and without proposed facilities added. A flow diagram showing daily design capacity and reflecting operating conditions with only existing facilities in operation. A second flow diagram showing daily design capacity and reflecting...

  6. 18 CFR 50.7 - Applications: exhibits.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 1 2011-04-01 2011-04-01 false Applications: exhibits. 50.7 Section 50.7 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT APPLICATIONS FOR PERMITS TO SITE INTERSTATE...

  7. 18 CFR 50.7 - Applications: exhibits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Applications: exhibits. 50.7 Section 50.7 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION, DEPARTMENT OF ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT APPLICATIONS FOR PERMITS TO SITE INTERSTATE...

  8. Comic Strips to Accompany Science Museum Exhibits

    ERIC Educational Resources Information Center

    Chung, Beom Sun; Park, Eun-mi; Kim, Sang-Hee; Cho, Sook-kyoung; Chung, Min Suk

    2016-01-01

    Science museums make the effort to create exhibits with amusing explanations. However, existing explanation signs with lengthy text are not appealing, and as such, visitors do not pay attention to them. In contrast, conspicuous comic strips composed of simple drawings and humors can attract science museum visitors. This study attempted to reveal…

  9. Science Exhibitions Promote College and Community Interaction.

    ERIC Educational Resources Information Center

    Stout, Dorothy LaLonde

    1991-01-01

    Science exhibitions presented by college students at local elementary schools foster goodwill in the community; give college students an opportunity to share their science as role models; provide elementary school children with a positive, enjoyable approach to science; and can be organized rather easily following guidelines that outline…

  10. After Terror Charges, Artist Exhibits Academic Freedom

    ERIC Educational Resources Information Center

    Wilson, Robin

    2008-01-01

    Steven Kurtz, a professor of visual studies at the State University of New York, has been working with various bacteria as part of his counterculture exhibit artworks for nearly 20 years. Four years ago, federal agents raided his home in a bioterrorism investigation. The federal agents had been called to the house by local police officers…

  11. Do Online Students Exhibit Different Learning Styles

    ERIC Educational Resources Information Center

    Hausler, Joel; Sanders, John W.; Young, Barbara

    2007-01-01

    We examined the relationship between learning styles and student type. This research seeks to examine if online students exhibit different learning styles from onsite students; and, if so, what accommodations relating to learning style differences may be made for online students? Students (N = 80) were asked to complete an online survey in order…

  12. The medial prefrontal cortex exhibits money illusion

    PubMed Central

    Weber, Bernd; Rangel, Antonio; Wibral, Matthias; Falk, Armin

    2009-01-01

    Behavioral economists have proposed that money illusion, which is a deviation from rationality in which individuals engage in nominal evaluation, can explain a wide range of important economic and social phenomena. This proposition stands in sharp contrast to the standard economic assumption of rationality that requires individuals to judge the value of money only on the basis of the bundle of goods that it can buy—its real value—and not on the basis of the actual amount of currency—its nominal value. We used fMRI to investigate whether the brain's reward circuitry exhibits money illusion. Subjects received prizes in 2 different experimental conditions that were identical in real economic terms, but differed in nominal terms. Thus, in the absence of money illusion there should be no differences in activation in reward-related brain areas. In contrast, we found that areas of the ventromedial prefrontal cortex (vmPFC), which have been previously associated with the processing of anticipatory and experienced rewards, and the valuation of goods, exhibited money illusion. We also found that the amount of money illusion exhibited by the vmPFC was correlated with the amount of money illusion exhibited in the evaluation of economic transactions. PMID:19307555

  13. 18 CFR 153.8 - Required exhibits.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Office of Energy Projects, 888 First Street, NE., Washington, DC 20426; (6) Exhibit E-1. If the LNG... Technical Information Service or the Commission's Office of Energy Projects, 888 First Street, NE....8 Section 153.8 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION...

  14. 18 CFR 153.8 - Required exhibits.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Office of Energy Projects, 888 First Street, NE., Washington, DC 20426; (6) Exhibit E-1. If the LNG... Technical Information Service or the Commission's Office of Energy Projects, 888 First Street, NE....8 Section 153.8 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION...

  15. 18 CFR 153.8 - Required exhibits.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Office of Energy Projects, 888 First Street, NE., Washington, DC 20426; (6) Exhibit E-1. If the LNG... Technical Information Service or the Commission's Office of Energy Projects, 888 First Street, NE....8 Section 153.8 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION...

  16. 18 CFR 153.8 - Required exhibits.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Office of Energy Projects, 888 First Street, NE., Washington, DC 20426; (6) Exhibit E-1. If the LNG... Technical Information Service or the Commission's Office of Energy Projects, 888 First Street, NE....8 Section 153.8 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION...

  17. 18 CFR 153.8 - Required exhibits.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Office of Energy Projects, 888 First Street, NE., Washington, DC 20426; (6) Exhibit E-1. If the LNG... Technical Information Service or the Commission's Office of Energy Projects, 888 First Street, NE....8 Section 153.8 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY COMMISSION...

  18. Smoking and Health Experiments, Demonstrations, and Exhibits.

    ERIC Educational Resources Information Center

    Center for Disease Control (DHEW/PHS), Atlanta, GA.

    This booklet of experiments was compiled from various teachers' guides in response to the many requests from students for help in preparing smoking demonstrations and exhibits. The booklet is divided into three sections. Part 1 illustrates a number of experiments, most of which require some laboratory equipment. Part 2 includes a number of…

  19. 34 CFR 101.74 - Exhibits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 1 2010-07-01 2010-07-01 false Exhibits. 101.74 Section 101.74 Education Regulations of the Offices of the Department of Education OFFICE FOR CIVIL RIGHTS, DEPARTMENT OF EDUCATION... objection thereto is filed prior to the hearing or unless good cause is shown at the hearing for failure to...

  20. Semiconductor Quantum Dots with Photoresponsive Ligands.

    PubMed

    Sansalone, Lorenzo; Tang, Sicheng; Zhang, Yang; Thapaliya, Ek Raj; Raymo, Françisco M; Garcia-Amorós, Jaume

    2016-10-01

    Photochromic or photocaged ligands can be anchored to the outer shell of semiconductor quantum dots in order to control the photophysical properties of these inorganic nanocrystals with optical stimulations. One of the two interconvertible states of the photoresponsive ligands can be designed to accept either an electron or energy from the excited quantum dots and quench their luminescence. Under these conditions, the reversible transformations of photochromic ligands or the irreversible cleavage of photocaged counterparts translates into the possibility to switch luminescence with external control. As an alternative to regulating the photophysics of a quantum dot via the photochemistry of its ligands, the photochemistry of the latter can be controlled by relying on the photophysics of the former. The transfer of excitation energy from a quantum dot to a photocaged ligand populates the excited state of the species adsorbed on the nanocrystal to induce a photochemical reaction. This mechanism, in conjunction with the large two-photon absorption cross section of quantum dots, can be exploited to release nitric oxide or to generate singlet oxygen under near-infrared irradiation. Thus, the combination of semiconductor quantum dots and photoresponsive ligands offers the opportunity to assemble nanostructured constructs with specific functions on the basis of electron or energy transfer processes. The photoswitchable luminescence and ability to photoinduce the release of reactive chemicals, associated with the resulting systems, can be particularly valuable in biomedical research and can, ultimately, lead to the realization of imaging probes for diagnostic applications as well as to therapeutic agents for the treatment of cancer.

  1. Fully Flexible Docking of Medium Sized Ligand Libraries with RosettaLigand

    PubMed Central

    DeLuca, Samuel; Khar, Karen; Meiler, Jens

    2015-01-01

    RosettaLigand has been successfully used to predict binding poses in protein-small molecule complexes. However, the RosettaLigand docking protocol is comparatively slow in identifying an initial starting pose for the small molecule (ligand) making it unfeasible for use in virtual High Throughput Screening (vHTS). To overcome this limitation, we developed a new sampling approach for placing the ligand in the protein binding site during the initial ‘low-resolution’ docking step. It combines the translational and rotational adjustments to the ligand pose in a single transformation step. The new algorithm is both more accurate and more time-efficient. The docking success rate is improved by 10–15% in a benchmark set of 43 protein/ligand complexes, reducing the number of models that typically need to be generated from 1000 to 150. The average time to generate a model is reduced from 50 seconds to 10 seconds. As a result we observe an effective 30-fold speed increase, making RosettaLigand appropriate for docking medium sized ligand libraries. We demonstrate that this improved initial placement of the ligand is critical for successful prediction of an accurate binding position in the ‘high-resolution’ full atom refinement step. PMID:26207742

  2. Ligand interaction scan: a general method for engineering ligand-sensitive protein alleles.

    PubMed

    Erster, Oran; Eisenstein, Miriam; Liscovitch, Mordechai

    2007-05-01

    The ligand interaction scan (LIScan) method is a general procedure for engineering small molecule ligand-regulated forms of a protein that is complementary to other 'reverse' genetic and chemical-genetic methods for drug-target validation. It involves insertional mutagenesis by a chemical-genetic 'switch', comprising a genetically encoded peptide module that binds with high affinity to a small-molecule ligand. We demonstrated the method with TEM-1 beta-lactamase, using a tetracysteine hexapeptide insert and a biarsenical fluorescein ligand (FlAsH).

  3. Highly stable biocompatible inorganic nanoparticles by self-assembly of triblock-copolymer ligands.

    PubMed

    Pöselt, Elmar; Fischer, Steffen; Foerster, Stephan; Weller, Horst

    2009-12-15

    A novel type of ligand for biofunctionalization of nanoparticles is presented that comprises tailor-made triblock-copolymers consisting of a polyethylene imine binding block, a hydrophobic polycaprolactone and a terminal functionalized polyethelene oxide block. Phase transfer to water occurs simply by ligand and water addition and removal of the organic solvents. It is shown that the intermediate polycaprolacton block favors the attachment to the particle surface and shields the binding groups effectively from the solution. As a consequence, the particles exhibit an outstanding stability in various aqueous media for biological studies and give easy access to specific coupling reactions at the terminal end groups of the polyethylene oxide block. Controlling the ligand exchange parameters leads to self-assembly to either individual encapsulated nanoparticles or to multifunctional nanobeads.

  4. Exciton in a spherical core/shell nanostructure: Influence of surface ligand

    NASA Astrophysics Data System (ADS)

    Anitha, B.; Nithiananthi, P.

    2018-04-01

    Studies on exciton in an inverted type I spherical GaAs/Al0.3Ga0.7As core/shell nanostructure (CSN) are made using variational method. Dielectric constant and effective mass mismatches of the core and shell materials are considered. The effect of core and the shell dimensions on the exciton binding energy (BE) are analyzed for different shell (Rs) and core radii (Rc). It is observed that with the core and the shell inducement, significant change in BE can be achieved. In addition, the influence of ligand enclosureon the BE as a function of shell thickness (ST) is reviewed. The result exhibits that the presence of ligand considerably affects the BE. Further the transmission probability of exciton for various Rc and Rs are reported. The notable changes are compared and examined with and without ligand inclusion.

  5. Impact of protein and ligand impurities on ITC-derived protein-ligand thermodynamics.

    PubMed

    Grüner, Stefan; Neeb, Manuel; Barandun, Luzi Jakob; Sielaff, Frank; Hohn, Christoph; Kojima, Shun; Steinmetzer, Torsten; Diederich, François; Klebe, Gerhard

    2014-09-01

    The thermodynamic characterization of protein-ligand interactions by isothermal titration calorimetry (ITC) is a powerful tool in drug design, giving valuable insight into the interaction driving forces. ITC is thought to require protein and ligand solutions of high quality, meaning both the absence of contaminants as well as accurately determined concentrations. Ligands synthesized to deviating purity and protein of different pureness were titrated by ITC. Data curation was attempted also considering information from analytical techniques to correct stoichiometry. We used trypsin and tRNA-guanine transglycosylase (TGT), together with high affinity ligands to investigate the effect of errors in protein concentration as well as the impact of ligand impurities on the apparent thermodynamics. We found that errors in protein concentration did not change the thermodynamic properties obtained significantly. However, most ligand impurities led to pronounced changes in binding enthalpy. If protein binding of the respective impurity is not expected, the actual ligand concentration was corrected for and the thus revised data compared to thermodynamic properties obtained with the respective pure ligand. Even in these cases, we observed differences in binding enthalpy of about 4kJ⋅mol(-1), which is considered significant. Our results indicate that ligand purity is the critical parameter to monitor if accurate thermodynamic data of a protein-ligand complex are to be recorded. Furthermore, artificially changing fitting parameters to obtain a sound interaction stoichiometry in the presence of uncharacterized ligand impurities may lead to thermodynamic parameters significantly deviating from the accurate thermodynamic signature. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. A Search for CD36 Ligands from Flavor Volatiles in Foods with an Aldehyde Moiety: Identification of Saturated Aliphatic Aldehydes with 9-16 Carbon Atoms as Potential Ligands of the Receptor.

    PubMed

    Tsuzuki, Satoshi; Amitsuka, Takahiko; Okahashi, Tatsuya; Kimoto, Yusaku; Inoue, Kazuo

    2017-08-09

    Volatile compounds with an aldehyde moiety such as (Z)-9-octadecenal are potential ligands for cluster of differentiation 36 (CD36), a transmembrane receptor that has recently been shown to play a role in mammalian olfaction. In this study, by performing an assay using a peptide mimic of human CD36, we aimed to discover additional ligands for the receptor from volatiles containing a single aldehyde group commonly found in human foods. Straight-chain, saturated aliphatic aldehydes with 9-16 carbons exhibited CD36 ligand activities, albeit to varying degrees. Notably, the activities of tridecanal and tetradecanal were higher than that of oleic acid, the most potent ligand among the fatty acids tested. Among the aldehydes other than aliphatic aldehydes, only phenylacetaldehyde showed a weak activity. These findings make a contribution to our knowledge of recognition mechanisms for flavor volatiles in foods with an aldehyde group.

  7. Offspring from mothers fed a 'junk food' diet in pregnancy and lactation exhibit exacerbated adiposity that is more pronounced in females.

    PubMed

    Bayol, S A; Simbi, B H; Bertrand, J A; Stickland, N C

    2008-07-01

    We have shown previously that a maternal junk food diet during pregnancy and lactation plays a role in predisposing offspring to obesity. Here we show that rat offspring born to mothers fed the same junk food diet rich in fat, sugar and salt develop exacerbated adiposity accompanied by raised circulating glucose, insulin, triglyceride and/or cholesterol by the end of adolescence (10 weeks postpartum) compared with offspring also given free access to junk food from weaning but whose mothers were exclusively fed a balanced chow diet in pregnancy and lactation. Results also showed that offspring from mothers fed the junk food diet in pregnancy and lactation, and which were then switched to a balanced chow diet from weaning, exhibited increased perirenal fat pad mass relative to body weight and adipocyte hypertrophy compared with offspring which were never exposed to the junk food diet. This study shows that the increased adiposity was more enhanced in female than male offspring and gene expression analyses showed raised insulin-like growth factor-1 (IGF-1), insulin receptor substrate (IRS)-1, vascular endothelial growth factor (VEGF)-A, peroxisome proliferator-activated receptor-gamma (PPARgamma), leptin, adiponectin, adipsin, lipoprotein lipase (LPL), Glut 1, Glut 3, but not Glut 4 mRNA expression in females fed the junk food diet throughout the study compared with females never given access to junk food. Changes in gene expression were not as marked in male offspring with only IRS-1, VEGF-A, Glut 4 and LPL being up-regulated in those fed the junk food diet throughout the study compared with males never given access to junk food. This study therefore shows that a maternal junk food diet promotes adiposity in offspring and the earlier onset of hyperglycemia, hyperinsulinemia and/or hyperlipidemia. Male and female offspring also display a different metabolic, cellular and molecular response to junk-food-diet-induced adiposity.

  8. Naval Meteorology and Oceanography Command exhibit entrance

    NASA Technical Reports Server (NTRS)

    2000-01-01

    StenniSphere at NASA's John C. Stennis Space Center in Hancock County, Miss., invites visitors to discover why America comes to Stennis Space Center before going into space. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA and other agencies located at Stennis, such as this one from the Naval Meteorology and Oceanography Command. Visitors can 'travel' three-dimensionally under the sea and check on the weather back home in the Weather Center.

  9. Naval Meteorology and Oceanography Command exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Designed to entertain while educating, StenniSphere at the John C. Stennis Space Center in Hancock County, Miss., includes informative displays and exhibits from NASA and other agencies located at Stennis, such as this one from the Naval Meteorology and Oceanography Command. Visitors can 'travel' three-dimensionally under the sea and check on the weather back home in the Weather Center. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.

  10. Multimodal audio guide for museums and exhibitions

    NASA Astrophysics Data System (ADS)

    Gebbensleben, Sandra; Dittmann, Jana; Vielhauer, Claus

    2006-02-01

    In our paper we introduce a new Audio Guide concept for exploring buildings, realms and exhibitions. Actual proposed solutions work in most cases with pre-defined devices, which users have to buy or borrow. These systems often go along with complex technical installations and require a great degree of user training for device handling. Furthermore, the activation of audio commentary related to the exhibition objects is typically based on additional components like infrared, radio frequency or GPS technology. Beside the necessity of installation of specific devices for user location, these approaches often only support automatic activation with no or limited user interaction. Therefore, elaboration of alternative concepts appears worthwhile. Motivated by these aspects, we introduce a new concept based on usage of the visitor's own mobile smart phone. The advantages in our approach are twofold: firstly the Audio Guide can be used in various places without any purchase and extensive installation of additional components in or around the exhibition object. Secondly, the visitors can experience the exhibition on individual tours only by uploading the Audio Guide at a single point of entry, the Audio Guide Service Counter, and keeping it on her or his personal device. Furthermore, since the user usually is quite familiar with the interface of her or his phone and can thus interact with the application device easily. Our technical concept makes use of two general ideas for location detection and activation. Firstly, we suggest an enhanced interactive number based activation by exploiting the visual capabilities of modern smart phones and secondly we outline an active digital audio watermarking approach, where information about objects are transmitted via an analog audio channel.

  11. Art exhibit focuses on African astronomy

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-07-01

    Connections between Africans and astronomy are the focus of a new exhibition in the National Museum of African Art in Washington, D. C. "African Cosmos: Stellar Arts," which includes artwork, cultural items, and scientific displays from ancient to contemporary times, is the first major exhibit "that brings together arts and science focused on Africa's contribution to keen observations of the heavens over time," curator Christine Mullen Kreamer said at a 20 June news briefing. Among the exhibit's nearly 100 objects are an ancient Egyptian mummy board that includes a representation of the sky goddess Nut, sculptures by the Dogon people of Mali depicting figures in relation to the cosmos, a video that uses data from two square degrees of the Hubble Space Telescope Cosmic Evolution Survey, and a nearly floor-to-ceiling "Rainbow Serpent" constructed of plastic containers by Benin artist Hazoume. An untitled acrylic painting (Figure 1) by South African Gavin Jantjes evokes a myth of the Khoi San people of southern Africa, as it portrays a girl throwing evening fire embers into the night sky, where they remained as the Milky Way.

  12. Expression of nociceptive ligands in canine osteosarcoma.

    PubMed

    Shor, S; Fadl-Alla, B A; Pondenis, H C; Zhang, X; Wycislo, K L; Lezmi, S; Fan, T M

    2015-01-01

    Canine osteosarcoma (OS) is associated with localized pain as a result of tissue injury from tumor infiltration and peritumoral inflammation. Malignant bone pain is caused by stimulation of peripheral pain receptors, termed nociceptors, which reside in the localized tumor microenvironment, including the periosteal and intramedullary bone cavities. Several nociceptive ligands have been determined to participate directly or indirectly in generating bone pain associated with diverse skeletal abnormalities. Canine OS cells actively produce nociceptive ligands with the capacity to directly or indirectly activate peripheral pain receptors residing in the bone tumor microenvironment. Ten dogs with appendicular OS. Expression of nerve growth factor, endothelin-1, and microsomal prostaglandin E synthase-1 was characterized in OS cell lines and naturally occurring OS samples. In 10 dogs with OS, circulating concentrations of nociceptive ligands were quantified and correlated with subjective pain scores and tumor volume in patients treated with standardized palliative therapies. Canine OS cells express and secrete nerve growth factor, endothelin-1, and prostaglandin E2. Naturally occurring OS samples uniformly express nociceptive ligands. In a subset of OS-bearing dogs, circulating nociceptive ligand concentrations were detectable but failed to correlate with pain status. Localized foci of nerve terminal proliferation were identified in a minority of primary bone tumor samples. Canine OS cells express nociceptive ligands, potentially permitting active participation of OS cells in the generation of malignant bone pain. Specific inhibitors of nociceptive ligand signaling pathways might improve pain control in dogs with OS. Copyright © 2015 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of American College of Veterinary Internal Medicine.

  13. Different Epidermal Growth Factor (EGF) Receptor Ligands Show Distinct Kinetics and Biased or Partial Agonism for Homodimer and Heterodimer Formation*

    PubMed Central

    Macdonald-Obermann, Jennifer L.; Pike, Linda J.

    2014-01-01

    The EGF receptor has seven different cognate ligands. Previous work has shown that these different ligands are capable of inducing different biological effects, even in the same cell. To begin to understand the molecular basis for this variation, we used luciferase fragment complementation to measure ligand-induced dimer formation and radioligand binding to study the effect of the ligands on subunit-subunit interactions in EGF receptor (EGFR) homodimers and EGFR/ErbB2 heterodimers. In luciferase fragment complementation imaging studies, amphiregulin (AREG) functioned as a partial agonist, inducing only about half as much total dimerization as the other three ligands. However, unlike the other ligands, AREG showed biphasic kinetics for dimer formation, suggesting that its path for EGF receptor activation involves binding to both monomers and preformed dimers. EGF, TGFα, and betacellulin (BTC) appear to mainly stimulate receptor activation through binding to and dimerization of receptor monomers. In radioligand binding assays, EGF and TGFα exhibited increased affinity for EGFR/ErbB2 heterodimers compared with EGFR homodimers. By contrast, BTC and AREG showed a similar affinity for both dimers. Thus, EGF and TGFα are biased agonists, whereas BTC and AREG are balanced agonists with respect to selectivity of dimer formation. These data suggest that the differences in biological response to different EGF receptor ligands may result from partial agonism for dimer formation, differences in the kinetic pathway utilized to generate activated receptor dimers, and biases in the formation of heterodimers versus homodimers. PMID:25086039

  14. PDBToSDF: Create ligand structure files from PDB file.

    PubMed

    Muppalaneni, Naresh Babu; Rao, Allam Appa

    2011-01-01

    Protein Data Bank (PDB) file contains atomic data for protein and ligand in protein-ligand complexes. Structure data file (SDF) contains data for atoms, bonds, connectivity and coordinates of molecule for ligands. We describe PDBToSDF as a tool to separate the ligand data from pdb file for the calculation of ligand properties like molecular weight, number of hydrogen bond acceptors, hydrogen bond receptors easily.

  15. Circularly Polarized Luminescence in Enantiopure Europium and Terbium Complexes with Modular, All-Oxygen Donor Ligands

    PubMed Central

    Seitz, Michael; Do, King; Ingram, Andrew J.; Moore, Evan G.; Muller, Gilles; Raymond, Kenneth N.

    2009-01-01

    Abstract: Circulaly polarized luminescence from terbium(III) complexed and excited by chiral antenna ligands gives strong emission The modular synthesis of three new octadentate, enantiopure ligands are reported - one with the bidentate chelating unit 2-hydroxyisophthalamide (IAM) and two with 1-hydroxy-2-pyridinone (1,2-HOPO) units. A new design principle is introduced for the chiral, non-racemic hexamines which constitute the central backbones for the presented class of ligands. The terbium(III) complex of the IAM ligand, as well as the europium(III) complexes of the 1,2-HOPO ligands are synthesized and characterized by various techniques (NMR, UV, CD, luminescence spectroscopy). All species exhibit excellent stability and moderate to high luminescence efficiency (quantum yields ΦEu = 0.05–0.08 and ΦTb = 0.30–0.57) in aqueous solution at physiological pH. Special focus is put onto the properties of the complexes in regard to circularly polarized luminescence (CPL). The maximum luminescence dissymmetry factors (glum) in aqueous solution are high with |glum|max = 0.08 – 0.40. Together with the very favorable general properties (good stability, high quantum yields, long lifetimes), the presented lanthanide complexes can be considered as good candidates for analytical probes based on CPL in biologically relevant environments. PMID:19639983

  16. Barley as a green factory for the production of functional Flt3 ligand.

    PubMed

    Erlendsson, Lýdur S; Muench, Marcus O; Hellman, Ulf; Hrafnkelsdóttir, Soffía M; Jonsson, Anders; Balmer, Yves; Mäntylä, Einar; Orvar, Björn L

    2010-02-01

    Biologically active recombinant human Flt3 ligand was expressed and isolated from transgenic barley seeds. Its expression is controlled by a tissue specific promoter that confines accumulation of the recombinant protein to the endosperm tissue of the seed. The recombinant Flt3 ligand variant expressed in the seeds contains an HQ-tag for affinity purification on immobilized metal ion affinity chromatography (IMAC) resin. The tagged protein was purified from seed extracts to near homogeneity using sequential chromatography on IMAC affinity resin and cation exchange resin. We also show that the recombinant Flt3 ligand protein undergoes posttranslational modifications: it is a glycoprotein containing alpha-1,3-fucose and alpha-1,2-xylose. The HQ-tagged Flt3 ligand variant exhibits comparable biological activity to commercial Flt3 ligand. This is the first report showing expression and accumulation of recombinant human growth factor in barley seeds with a yield of active protein similar to a bacterial expression system. The present results demonstrate that plant molecular farming is a viable approach for the bioproduction of human-derived growth factors.

  17. GalaxyDock BP2 score: a hybrid scoring function for accurate protein-ligand docking

    NASA Astrophysics Data System (ADS)

    Baek, Minkyung; Shin, Woong-Hee; Chung, Hwan Won; Seok, Chaok

    2017-07-01

    Protein-ligand docking is a useful tool for providing atomic-level understanding of protein functions in nature and design principles for artificial ligands or proteins with desired properties. The ability to identify the true binding pose of a ligand to a target protein among numerous possible candidate poses is an essential requirement for successful protein-ligand docking. Many previously developed docking scoring functions were trained to reproduce experimental binding affinities and were also used for scoring binding poses. However, in this study, we developed a new docking scoring function, called GalaxyDock BP2 Score, by directly training the scoring power of binding poses. This function is a hybrid of physics-based, empirical, and knowledge-based score terms that are balanced to strengthen the advantages of each component. The performance of the new scoring function exhibits significant improvement over existing scoring functions in decoy pose discrimination tests. In addition, when the score is used with the GalaxyDock2 protein-ligand docking program, it outperformed other state-of-the-art docking programs in docking tests on the Astex diverse set, the Cross2009 benchmark set, and the Astex non-native set. GalaxyDock BP2 Score and GalaxyDock2 with this score are freely available at http://galaxy.seoklab.org/softwares/galaxydock.html.

  18. New multifunctional ligands for potential use in the design therapeutic or diagnostic radiopharmaceutical imaging agents

    DOEpatents

    Katti, K.V.; Volkert, W.A.; Ketring, A.R.; Singh, P.R.

    1997-02-11

    A class of diagnostic and therapeutic compounds are derived from phosphinimines that include ligands containing either a single phosphinimine functionality or both a phosphinimine group and a phosphine or arsine group, or an aminato group, or a second phosphinimine moiety. These phosphinimine ligands are complexed to early transition metal radionuclides (e.g., {sup 99m}Tc or {sup 186}Re/{sup 188}Re) or late transition metals (e.g., {sup 105}Rh or {sup 109}Pd). The complexes with these metals {sup 186}Re/{sup 188}Re, {sup 99m}Tc and {sup 109}Pd exhibit a high in vitro and high in vivo stability. The complexes are formed in high yields and can be neutral or charged. These ligands can also be used to form stable compounds with paramagnetic transition metals (e.g., Fe and Mn) for potential use as MRI contrast agents. Applications for the use of ligands and making the ligands are also disclosed.

  19. Zn and Fe complexes containing a redox active macrocyclic biquinazoline ligand.

    PubMed

    Banerjee, Priyabrata; Company, Anna; Weyhermüller, Thomas; Bill, Eckhard; Hess, Corinna R

    2009-04-06

    A series of iron and zinc complexes has been synthesized, coordinated by the macrocyclic biquinazoline ligand, 2-4:6-8-bis(3,3,4,4-tetramethyldihydropyrrolo)-10-15-(2,2'-biquinazolino)-[15]-1,3,5,8,10,14-hexaene-1,3,7,9,11,14-N(6) (Mabiq). The Mabiq ligand consists of a bipyrimidine moiety and two dihydropyrrole units. The electronic structures of the metal-Mabiq complexes have been characterized using spectroscopic and density-functional theory (DFT) computational methods. The parent zinc complex exhibits a ligand-centered reduction to generate the metal-coordinated Mabiq radical dianion, establishing the redox non-innocence of this ligand. Iron-Mabiq complexes have been isolated in three oxidation states. This redox series includes low-spin ferric and low-spin ferrous species, as well as an intermediate-spin Fe(II) compound. In the latter complex, the iron ion is antiferromagnetically coupled to a Mabiq-centered pi-radical. The results demonstrate the rich redox chemistry and electronic properties of metal complexes coordinated by the Mabiq ligand.

  20. Multiple ligand simultaneous docking: orchestrated dancing of ligands in binding sites of protein.

    PubMed

    Li, Huameng; Li, Chenglong

    2010-07-30

    Present docking methodologies simulate only one single ligand at a time during docking process. In reality, the molecular recognition process always involves multiple molecular species. Typical protein-ligand interactions are, for example, substrate and cofactor in catalytic cycle; metal ion coordination together with ligand(s); and ligand binding with water molecules. To simulate the real molecular binding processes, we propose a novel multiple ligand simultaneous docking (MLSD) strategy, which can deal with all the above processes, vastly improving docking sampling and binding free energy scoring. The work also compares two search strategies: Lamarckian genetic algorithm and particle swarm optimization, which have respective advantages depending on the specific systems. The methodology proves robust through systematic testing against several diverse model systems: E. coli purine nucleoside phosphorylase (PNP) complex with two substrates, SHP2NSH2 complex with two peptides and Bcl-xL complex with ABT-737 fragments. In all cases, the final correct docking poses and relative binding free energies were obtained. In PNP case, the simulations also capture the binding intermediates and reveal the binding dynamics during the recognition processes, which are consistent with the proposed enzymatic mechanism. In the other two cases, conventional single-ligand docking fails due to energetic and dynamic coupling among ligands, whereas MLSD results in the correct binding modes. These three cases also represent potential applications in the areas of exploring enzymatic mechanism, interpreting noisy X-ray crystallographic maps, and aiding fragment-based drug design, respectively. 2010 Wiley Periodicals, Inc.

  1. Small Molecule Ligands of Methyl-Lysine Binding Proteins

    PubMed Central

    Herold, J. Martin; Wigle, Tim J.; Norris, Jacqueline L.; Lam, Robert; Korboukh, Victoria K.; Gao, Cen; Ingerman, Lindsey A.; Kireev, Dmitri B.; Senisterra, Guillermo; Vedadi, Masoud; Tripathy, Ashutosh; Brown, Peter J.; Arrowsmith, Cheryl H.; Jin, Jian; Janzen, William P.; Frye, Stephen V.

    2011-01-01

    Proteins which bind methylated lysines (“readers” of the histone code) are important components in the epigenetic regulation of gene expression and can also modulate other proteins that contain methyl-lysine such as p53 and Rb. Recognition of methyl-lysine marks by MBT domains leads to compaction of chromatin and a repressed transcriptional state. Antagonists of MBT domains would serve as probes to interrogate the functional role of these proteins and initiate the chemical biology of methyl-lysine readers as a target class. Small molecule MBT antagonists were designed based on the structure of histone peptide-MBT complexes and their interaction with MBT domains determined using a chemiluminescent assay and ITC. The ligands discovered antagonize native histone peptide binding, exhibiting 5-fold stronger binding affinity to L3MBTL1 than its preferred histone peptide. The first co-crystal structure of a small molecule bound to L3MBTL1 was determined and provides new insights into binding requirements for further ligand design. PMID:21417280

  2. A General Ligand Design for Gold Catalysis allowing Ligand-Directed Anti Nucleophilic Attack of Alkynes

    PubMed Central

    Wang, Yanzhao; Wang, Zhixun; Li, Yuxue; Wu, Gongde; Cao, Zheng; Zhang, Liming

    2014-01-01

    Most homogenous gold catalyses demand ≥0.5 mol % catalyst loading. Due to the high cost of gold, these reactions are unlikely to be applicable in medium or large scale applications. Here we disclose a novel ligand design based on the privileged biphenyl-2-phosphine framework that offers a potentially general approach to dramatically lowering catalyst loading. In this design, an amide group at the 3’ position of the ligand framework directs and promotes nucleophilic attack at the ligand gold complex-activated alkyne, which is unprecedented in homogeneous gold catalysis considering the spatial challenge of using ligand to reach antiapproaching nucleophile in a linear P-Au-alkyne centroid structure. With such a ligand, the gold(I) complex becomes highly efficient in catalyzing acid addition to alkynes, with a turnover number up to 99,000. Density functional theory calculations support the role of the amide moiety in directing the attack of carboxylic acid via hydrogen bonding. PMID:24704803

  3. Engineering death receptor ligands for cancer therapy.

    PubMed

    Wajant, Harald; Gerspach, Jeannette; Pfizenmaier, Klaus

    2013-05-28

    CD95, TNFR1, TRAILR1 and TRAILR2 belong to a subgroup of TNF receptors which is characterized by a conserved cell death-inducing protein domain that connects these receptors to the apoptotic machinery of the cell. Activation of death receptors in malignant cells attracts increasing attention as a principle to fight cancer. Besides agonistic antibodies the major way to stimulate death receptors is the use of their naturally occurring "death ligands" CD95L, TNF and TRAIL. However, dependent from the concept followed to develop a death ligand-based therapy various limiting aspects have to be taken into consideration on the way to a "bedside" usable drug. Problems arise in particular from the cell associated transmembrane nature of the death ligands, the poor serum half life of the soluble fragments derived from the transmembrane ligands, the ubiquitous expression of the death receptors and the existence of additional non-death receptors of the death ligands. Here, we summarize strategies how these limitations can be overcome by genetic engineering. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  4. Visualizing ligand molecules in twilight electron density

    PubMed Central

    Weichenberger, Christian X.; Pozharski, Edwin; Rupp, Bernhard

    2013-01-01

    Three-dimensional models of protein structures determined by X-ray crystallo­graphy are based on the interpretation of experimentally derived electron-density maps. The real-space correlation coefficient (RSCC) provides an easily comprehensible, objective measure of the residue-based fit of atom coordinates to electron density. Among protein structure models, protein–ligand complexes are of special interest, given their contribution to understanding the molecular underpinnings of biological activity and to drug design. For consumers of such models, it is not trivial to determine the degree to which ligand-structure modelling is biased by subjective electron-density interpretation. A standalone script, Twilight, is presented for the analysis, visualization and annotation of a pre-filtered set of 2815 protein–ligand complexes deposited with the PDB as of 15 January 2012 with ligand RSCC values that are below a threshold of 0.6. It also provides simplified access to the visualization of any protein–ligand complex available from the PDB and annotated by the Uppsala Electron Density Server. The script runs on various platforms and is available for download at http://www.ruppweb.org/twilight/. PMID:23385767

  5. Visualizing ligand molecules in Twilight electron density.

    PubMed

    Weichenberger, Christian X; Pozharski, Edwin; Rupp, Bernhard

    2013-02-01

    Three-dimensional models of protein structures determined by X-ray crystallography are based on the interpretation of experimentally derived electron-density maps. The real-space correlation coefficient (RSCC) provides an easily comprehensible, objective measure of the residue-based fit of atom coordinates to electron density. Among protein structure models, protein-ligand complexes are of special interest, given their contribution to understanding the molecular underpinnings of biological activity and to drug design. For consumers of such models, it is not trivial to determine the degree to which ligand-structure modelling is biased by subjective electron-density interpretation. A standalone script, Twilight, is presented for the analysis, visualization and annotation of a pre-filtered set of 2815 protein-ligand complexes deposited with the PDB as of 15 January 2012 with ligand RSCC values that are below a threshold of 0.6. It also provides simplified access to the visualization of any protein-ligand complex available from the PDB and annotated by the Uppsala Electron Density Server. The script runs on various platforms and is available for download at http://www.ruppweb.org/twilight/.

  6. Design of a Hole Trapping Ligand

    SciTech Connect

    La Croix, Andrew D.; O’Hara, Andrew; Reid, Kemar R.

    A new ligand that covalently attaches to the surface of colloidal CdSe/ CdS nanorods and can simultaneously chelate a molecular metal center is described. The dithiocarbamate$-$bipyridine ligand system facilitates hole transfer through energetic overlap at the inorganic$-$organic interface and conjugation through the organic ligand to a chelated metal center. Density functional theory calculations show that the coordination of the free ligand to a CdS surface causes the formation of two hybridized molecular states that lie in the band gap of CdS. The further chelation of Fe(II) to the bipyridine moiety causes the presence of seven midgap states. Hole transfer frommore » the CdS valence band to the midgap states is dipole allowed and occurs at a faster rate than what is experimentally known for the CdSe/CdS band-edge radiative recombination. In the case of the ligand bound with iron, a two-step process emerges that places the hole on the iron, again at rates much faster than band gap recombination. The system was experimentally assembled and characterized via UV$-$vis absorbance spectroscopy, fluorescence spectroscopy, time-resolved photoluminescence spectroscopy, and energy dispersive X-ray spectroscopy. Lastly, theoretically predicted red shifts in absorbance were observed experimentally, as well as the expected quench in photoluminescence and lifetimes in time-resolved photoluminescence« less

  7. Design of a Hole Trapping Ligand

    DOE PAGES

    La Croix, Andrew D.; O’Hara, Andrew; Reid, Kemar R.; ...

    2017-01-18

    A new ligand that covalently attaches to the surface of colloidal CdSe/ CdS nanorods and can simultaneously chelate a molecular metal center is described. The dithiocarbamate$-$bipyridine ligand system facilitates hole transfer through energetic overlap at the inorganic$-$organic interface and conjugation through the organic ligand to a chelated metal center. Density functional theory calculations show that the coordination of the free ligand to a CdS surface causes the formation of two hybridized molecular states that lie in the band gap of CdS. The further chelation of Fe(II) to the bipyridine moiety causes the presence of seven midgap states. Hole transfer frommore » the CdS valence band to the midgap states is dipole allowed and occurs at a faster rate than what is experimentally known for the CdSe/CdS band-edge radiative recombination. In the case of the ligand bound with iron, a two-step process emerges that places the hole on the iron, again at rates much faster than band gap recombination. The system was experimentally assembled and characterized via UV$-$vis absorbance spectroscopy, fluorescence spectroscopy, time-resolved photoluminescence spectroscopy, and energy dispersive X-ray spectroscopy. Lastly, theoretically predicted red shifts in absorbance were observed experimentally, as well as the expected quench in photoluminescence and lifetimes in time-resolved photoluminescence« less

  8. Mars in their eyes - a cartoon exhibition

    NASA Astrophysics Data System (ADS)

    Pillinger, Pi.

    Recently a collection of 120 cartoons which tell the story of Mars exploration and scientific discovery, past, present and future, was held in London. We discuss the aims of the exhibition, to what extent we believe the original aims were met and report on additional outreach opportunities resulting from the project. The overriding aim was to capitalise on the popular appeal of accessible art - most people admit to enjoying cartoons. This was strengthened by hanging the originals of cartoons which had, mostly, been published in newspapers and magazines in a wide selection of countries. The provenances served to indicate the attraction of Mars to a wide public. We were fortunate to work with the Cartoon Art Trust of the UK who was in the process of relocating to new premises and opening as The Cartoon Museum, in the tourist area of Bloomsbury, central London, very close to the British Museum. "Mars in their Eyes" ran for 10 weeks during April to July 2006; immediately following which a selection of the cartoons was displayed at the week-long Royal Society Summer Exhibition. We explore the differences between the two exhibitions and comment on the various audience responses. We use this comparison to discuss whether a project which is primarily art can be extended to explain science. Does the coupling merely result in dumbing-down of both cultures or is there a true synergy? The experience has led us to coin the phrase "extreme outreach". Projects which are as ambitious as "Mars in their Eyes", without the security of a safe, captive audience, for example at a Science Centre, must be judged by different criteria. Indeed if the project does not meet comparable targets like large visitor numbers, then the honest evaluation of such details can only inform future activities and must not be reflected in the future funding of only "safe" outreach activities.

  9. Cyclodextrin Nanoparticles Bearing 8-Hydroxyquinoline Ligands as Multifunctional Biomaterials.

    PubMed

    Oliveri, Valentina; Bellia, Francesco; Vecchio, Graziella

    2017-03-28

    Cyclodextrins are used as building blocks for the development of a host of polymeric biomaterials. The cyclodextrin polymers have found numerous applications as they exhibit unique features such as mechanical properties, stimuli responsiveness and drug loading ability. Notwithstanding the abundance of cyclodextrin polymers studied, metal-chelating polymers based on cyclodextrins have been poorly explored. Herein we report the synthesis and the characterization of the first metal-chelating β-cyclodextrin polymer bearing 8-hydroxyquinoline ligands. The metal ions (Cu 2+ or Zn 2+ ) can modulate the assembly of the polymer nanoparticles. Moreover, the protective activity of the new chelating polymer against self- and metal-induced Aβ aggregation and free radical species are significantly higher than those of the parent compounds. These synergistic effects suggest that the incorporation of hydroxyquinoline moieties into a soluble β-cyclodextrin polymer could represent a promising strategy to design multifunctional biomaterials. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Structure of myostatin·follistatin-like 3: N-terminal domains of follistatin-type molecules exhibit alternate modes of binding.

    PubMed

    Cash, Jennifer N; Angerman, Elizabeth B; Kattamuri, Chandramohan; Nolan, Kristof; Zhao, Huaying; Sidis, Yisrael; Keutmann, Henry T; Thompson, Thomas B

    2012-01-06

    TGF-β family ligands are involved in a variety of critical physiological processes. For instance, the TGF-β ligand myostatin is a staunch negative regulator of muscle growth and a therapeutic target for muscle-wasting disorders. Therefore, it is important to understand the molecular mechanisms of TGF-β family regulation. One form of regulation is through inhibition by extracellular antagonists such as the follistatin (Fst)-type proteins. Myostatin is tightly controlled by Fst-like 3 (Fstl3), which is the only Fst-type molecule that has been identified in the serum bound to myostatin. Here, we present the crystal structure of myostatin in complex with Fstl3. The structure reveals that the N-terminal domain (ND) of Fstl3 interacts uniquely with myostatin as compared with activin A, because it utilizes different surfaces on the ligand. This results in conformational differences in the ND of Fstl3 that alter its position in the type I receptor-binding site of the ligand. We also show that single point mutations in the ND of Fstl3 are detrimental to ligand binding, whereas corresponding mutations in Fst have little effect. Overall, we have shown that the NDs of Fst-type molecules exhibit distinctive modes of ligand binding, which may affect overall affinity of ligand·Fst-type protein complexes.

  11. Art Therapy Exhibitions: Exploitation or Advocacy?

    PubMed

    Davis, Terri

    2017-01-01

    Promoting awareness of human trafficking by sharing trauma survivors' art and summaries of their life stories suggests ethical complexities that have been typically neglected by bioethicists. Although these survivors voluntarily share the objects they created during art therapy sessions, they are still at risk of harm, including further exploitation, due to their vulnerability, high rates of victim sensitivity, and the mental health consequences of their traumatic experiences. While some argue that the benefits of sublimation and art therapy for human trafficking survivors make sharing their art worth the risk, anti-trafficking organizations and supporters of such art exhibitions have responsibilities to be trauma informed. © 2017 American Medical Association. All Rights Reserved.

  12. QUANTUM: The Exhibition - quantum at the museum

    NASA Astrophysics Data System (ADS)

    Laforest, Martin; Olano, Angela; Day-Hamilton, Tobi

    Distilling the essence of quantum phenomena, and how they are being harnessed to develop powerful quantum technologies, into a series of bite-sized, elementary-school-level pieces is what the scientific outreach team at the University of Waterloo's Institute for Quantum Computing was tasked with. QUANTUM: The Exhibition uses a series of informational panels, multimedia and interactive displays to introduce visitors to quantum phenomena and how they will revolutionize computing, information security and sensing. We'll discuss some of the approaches we took to convey the essence and impact of quantum mechanics and technologies to a lay audience while ensuring scientific accuracy.

  13. Structural Sensitivity of a Prokaryotic Pentameric Ligand-gated Ion Channel to Its Membrane Environment*

    PubMed Central

    Labriola, Jonathan M.; Pandhare, Akash; Jansen, Michaela; Blanton, Michael P.; Corringer, Pierre-Jean; Baenziger, John E.

    2013-01-01

    Although the activity of the nicotinic acetylcholine receptor (nAChR) is exquisitely sensitive to its membrane environment, the underlying mechanisms remain poorly defined. The homologous prokaryotic pentameric ligand-gated ion channel, Gloebacter ligand-gated ion channel (GLIC), represents an excellent model for probing the molecular basis of nAChR sensitivity because of its high structural homology, relative ease of expression, and amenability to crystallographic analysis. We show here that membrane-reconstituted GLIC exhibits structural and biophysical properties similar to those of the membrane-reconstituted nAChR, although GLIC is substantially more thermally stable. GLIC, however, does not possess the same exquisite lipid sensitivity. In particular, GLIC does not exhibit the same propensity to adopt an uncoupled conformation where agonist binding is uncoupled from channel gating. Structural comparisons provide insight into the chemical features that may predispose the nAChR to the formation of an uncoupled state. PMID:23463505

  14. Assessment of automatic ligand building in ARP/wARP.

    PubMed

    Evrard, Guillaume X; Langer, Gerrit G; Perrakis, Anastassis; Lamzin, Victor S

    2007-01-01

    The efficiency of the ligand-building module of ARP/wARP version 6.1 has been assessed through extensive tests on a large variety of protein-ligand complexes from the PDB, as available from the Uppsala Electron Density Server. Ligand building in ARP/wARP involves two main steps: automatic identification of the location of the ligand and the actual construction of its atomic model. The first step is most successful for large ligands. The second step, ligand construction, is more powerful with X-ray data at high resolution and ligands of small to medium size. Both steps are successful for ligands with low to moderate atomic displacement parameters. The results highlight the strengths and weaknesses of both the method of ligand building and the large-scale validation procedure and help to identify means of further improvement.

  15. Lanthanide Triangles Supported by Radical Bridging Ligands.

    PubMed

    Dolinar, Brian S; Alexandropoulos, Dimitris I; Vignesh, Kuduva R; James, Tia'Asia; Dunbar, Kim R

    2018-01-24

    The first examples of metallacycles containing rare earth ions bridged by radicals are reported. The molecular triangles [Ln 3 (hfac) 6 (bptz •- ) 3 ] (Ln = Dy III , Y III ; hfac = 1,1,1,5,5,5-hexafluoro-2,4-pentanedionate; bptz = 3,6-bis(2-pyridyl)-1,2,4,5-tetrazine) consist of lanthanide ions bridged by bptz radical anion (bptz •- ) ligands. Magnetic susceptibility measurements and CASSCF calculations performed on [Dy 3 (hfac) 6 (bptz •- ) 3 ] reveal the presence of antiferromagnetic coupling between the Dy III centers and the bptz •- ligands, with J = -6.62 cm -1 .

  16. Nobiletin enhances differentiation and lipolysis of 3T3-L1 adipocytes

    SciTech Connect

    Saito, Takeshi; Abe, Daigo; Sekiya, Keizo

    2007-06-01

    Nobiletin is a polymethoxylated flavone found in certain citrus fruits. Here we demonstrate that nobiletin enhance differentiation of 3T3-L1 preadipocytes. Nobiletin dose-dependently increased accumulation of lipid droplets in adipocytes. Quantitative RT-PCR analyses indicated that nobiletin increased the expression of genes critical for acquisition of the adipocyte phenotype. Some of them were known peroxisome proliferator activated receptor {gamma} (PPAR{gamma}) targets and PPAR{gamma} itself, however, nobiletin did not exhibit PPAR{gamma} ligand activity. We observed the expression of CCAAT/enhancer binding protein {beta} (C/EBP{beta}), a transcription factor for PPAR{gamma}, was increased by nobiletin. The activation of cAMP-responsive element binding protein (CREB) and extracellular signal-regulatedmore » kinase (ERK), which play important roles in C/EBP{beta} expression were also potentiated by nobiletin. Furthermore, nobiletin stimulated lipolysis in differentiated adipocytes, which is known to be stimulated by cAMP pathway. These results suggested that nobiletin enhanced both differentiation and lipolysis of adipocyte through activation of signaling cascades mediated by cAMP/CREB.« less

  17. Arabidopsis thaliana telomeres exhibit euchromatic features

    PubMed Central

    Vaquero-Sedas, María I.; Gámez-Arjona, Francisco M.; Vega-Palas, Miguel A.

    2011-01-01

    Telomere function is influenced by chromatin structure and organization, which usually involves epigenetic modifications. We describe here the chromatin structure of Arabidopsis thaliana telomeres. Based on the study of six different epigenetic marks we show that Arabidopsis telomeres exhibit euchromatic features. In contrast, subtelomeric regions and telomeric sequences present at interstitial chromosomal loci are heterochromatic. Histone methyltransferases and the chromatin remodeling protein DDM1 control subtelomeric heterochromatin formation. Whereas histone methyltransferases are required for histone H3K92Me and non-CpG DNA methylation, DDM1 directs CpG methylation but not H3K92Me or non-CpG methylation. These results argue that both kinds of proteins participate in different pathways to reinforce subtelomeric heterochromatin formation. PMID:21071395

  18. Nanoporous frameworks exhibiting multiple stimuli responsiveness

    NASA Astrophysics Data System (ADS)

    Kundu, Pintu K.; Olsen, Gregory L.; Kiss, Vladimir; Klajn, Rafal

    2014-04-01

    Nanoporous frameworks are polymeric materials built from rigid molecules, which give rise to their nanoporous structures with applications in gas sorption and storage, catalysis and others. Conceptually new applications could emerge, should these beneficial properties be manipulated by external stimuli in a reversible manner. One approach to render nanoporous frameworks responsive to external signals would be to immobilize molecular switches within their nanopores. Although the majority of molecular switches require conformational freedom to isomerize, and switching in the solid state is prohibited, the nanopores may provide enough room for the switches to efficiently isomerize. Here we describe two families of nanoporous materials incorporating the spiropyran molecular switch. These materials exhibit a variety of interesting properties, including reversible photochromism and acidochromism under solvent-free conditions, light-controlled capture and release of metal ions, as well reversible chromism induced by solvation/desolvation.

  19. Virtual auditorium concepts for exhibition halls

    NASA Astrophysics Data System (ADS)

    Evans, Jack; Himmel, Chad; Knight, Sarah

    2002-11-01

    Many communities lack good performance facilities for symphonic music, opera, dramatic and musical arts, but have basic convention, exhibition or assembly spaces. It should be possible to develop performance space environments within large multipurpose facilities that will accommodate production and presentation of dramatic arts. Concepts for moderate-cost, temporary enhancements that transform boxy spaces into more intimate, acoustically articulated venues will be presented. Acoustical criteria and design parameters will be discussed in the context of creating a virtual auditorium within the building envelope. Physical, economic, and logistical limitations affect implementation. Sound reinforcement system augmentation can supplement the room conversion. Acceptable control of reflection patterns, reverberation, and to some extent, ambient noise, may be achieved with an array of nonpermanent reflector and absorber elements. These elements can sculpture an enclosure to approach the shape and acoustic characteristics of an auditorium. Plan and section illustrations will be included.

  20. Supercomputing meets seismology in earthquake exhibit

    ScienceCinema

    Blackwell, Matt; Rodger, Arthur; Kennedy, Tom

    2018-02-14

    When the California Academy of Sciences created the "Earthquake: Evidence of a Restless Planet" exhibit, they called on Lawrence Livermore to help combine seismic research with the latest data-driven visualization techniques. The outcome is a series of striking visualizations of earthquakes, tsunamis and tectonic plate evolution. Seismic-wave research is a core competency at Livermore. While most often associated with earthquakes, the research has many other applications of national interest, such as nuclear explosion monitoring, explosion forensics, energy exploration, and seismic acoustics. For the Academy effort, Livermore researchers simulated the San Andreas and Hayward fault events at high resolutions. Such calculations require significant computational resources. To simulate the 1906 earthquake, for instance, visualizing 125 seconds of ground motion required over 1 billion grid points, 10,000 time steps, and 7.5 hours of processor time on 2,048 cores of Livermore's Sierra machine.

  1. Slow magnetic relaxation in carbonato-bridged dinuclear lanthanide(III) complexes with 2,3-quinoxalinediolate ligands.

    PubMed

    Vallejo, Julia; Cano, Joan; Castro, Isabel; Julve, Miguel; Lloret, Francesc; Fabelo, Oscar; Cañadillas-Delgado, Laura; Pardo, Emilio

    2012-08-11

    The coordination chemistry of the 2,3-quinoxalinediolate ligand with different lanthanide(III) ions in basic media in air affords a new family of carbonato-bridged M(2)(III) compounds (M = Pr, Gd and Dy), the Dy(2)(III) analogue exhibiting slow magnetic relaxation behaviour typical of single-molecule magnets.

  2. Application of an imaging system to a museum exhibition for developing interactive exhibitions

    NASA Astrophysics Data System (ADS)

    Miyata, Kimiyoshi; Inoue, Yuka; Takiguchi, Takahiro; Tsumura, Norimichi; Nakaguchi, Toshiya; Miyake, Yoichi

    2009-10-01

    In the National Museum of Japanese History, 215,759 artifacts are stored and used for research and exhibitions. In museums, due to the limitation of space in the galleries, a guidance system is required to satisfy visitors' needs and to enhance their understanding of the artifacts. We introduce one exhibition using imaging technology to improve visitors' understanding of a kimono (traditional Japanese clothing) exhibition. In the imaging technology introduced, one data projector, one display with touch panel interface, and magnifiers were used as exhibition tools together with a real kimono. The validity of this exhibition method was confirmed by results from a visitors' interview survey. Second, to further develop the interactive guidance system, an augmented reality system that consisted of cooperation between the projector and a digital video camera was also examined. A white paper board in the observer's hand was used as a projection screen and also as an interface to control the images projected on the board. The basic performance of the proposed system was confirmed; however continuous development was necessary for applying the system to actual exhibitions.

  3. A Traveling Exhibit of Cassini Image Science

    NASA Astrophysics Data System (ADS)

    Burns, Joseph A.; Hedman, M. M.; Tiscareno, M. S.; Ebel, D.; Mac Low, M.; Lovett, L. E.; Burns, J. K.; Schaff, N.; Bilson, E. M.

    2007-10-01

    An exhibit of Cassini's images will open at NYC's American Museum of Natural History in March 2008 and then visit the Johnson Art Museum (Cornell) throughout fall 2008, including during next year's DPS. It is under consideration by several other venues in the States and overseas. The exhibit will feature 40-50 images, ranging from letter size to large posters, taken by remote-sensing instruments aboard Cassini and Huygens. Photos will be organized into a half-dozen thematic clusters (e.g., organized by celestial target or by physical process); a panel will introduce each grouping with individual images identified briefly. The Saturn system is a perfect vehicle to educate citizens about planetary science and origins. The images’ beauty should capture the public's attention, allowing us to then engage their curiosity about the relevant science. Among the Saturn system's broad suite of objects are Enceladus and Titan, two satellites of astrobiological interest; moreover, the rings display many processes active in other astrophysical disks. Several auxiliary ideas will be implemented. In Ithaca, we will project images at night against the museum's sand-colored exterior walls. A 10-12 minute musical composition has been commissioned from Roberto Sierra to open the show. We will encourage school children to participate in a human orrery circling the museum and will seek volunteers to participate in several Saturnalia. At Cornell we will involve the university and local communities, by taping their reactions to the images’ exquisite beauty as well as to their scientific content. Cassini will be the E/PO focus of next year's DPS meeting; those materials will be employed throughout the fall at New York schools and be available to travel with the show. We intend to work with NYC partners to offer teacher credits for associated weekend courses. We will produce classroom materials, including a DVD, for teacher use.

  4. Quiescent Fibroblasts Exhibit High Metabolic Activity

    PubMed Central

    Lemons, Johanna M. S.; Feng, Xiao-Jiang; Bennett, Bryson D.; Legesse-Miller, Aster; Johnson, Elizabeth L.; Raitman, Irene; Pollina, Elizabeth A.; Rabitz, Herschel A.; Rabinowitz, Joshua D.; Coller, Hilary A.

    2010-01-01

    Many cells in mammals exist in the state of quiescence, which is characterized by reversible exit from the cell cycle. Quiescent cells are widely reported to exhibit reduced size, nucleotide synthesis, and metabolic activity. Much lower glycolytic rates have been reported in quiescent compared with proliferating lymphocytes. In contrast, we show here that primary human fibroblasts continue to exhibit high metabolic rates when induced into quiescence via contact inhibition. By monitoring isotope labeling through metabolic pathways and quantitatively identifying fluxes from the data, we show that contact-inhibited fibroblasts utilize glucose in all branches of central carbon metabolism at rates similar to those of proliferating cells, with greater overflow flux from the pentose phosphate pathway back to glycolysis. Inhibition of the pentose phosphate pathway resulted in apoptosis preferentially in quiescent fibroblasts. By feeding the cells labeled glutamine, we also detected a “backwards” flux in the tricarboxylic acid cycle from α-ketoglutarate to citrate that was enhanced in contact-inhibited fibroblasts; this flux likely contributes to shuttling of NADPH from the mitochondrion to cytosol for redox defense or fatty acid synthesis. The high metabolic activity of the fibroblasts was directed in part toward breakdown and resynthesis of protein and lipid, and in part toward excretion of extracellular matrix proteins. Thus, reduced metabolic activity is not a hallmark of the quiescent state. Quiescent fibroblasts, relieved of the biosynthetic requirements associated with generating progeny, direct their metabolic activity to preservation of self integrity and alternative functions beneficial to the organism as a whole. PMID:21049082

  5. DNA binding, anti-inflammatory and analgesic evaluation of metal complexes of N/S/O donor ligands; Synthesis, spectral characterization

    NASA Astrophysics Data System (ADS)

    Kumar Naik, K. H.; Ashok, B.; Naik, Nagaraja; Mulla, Jameel Ahmed S.; Prakasha, Avinash

    2015-04-01

    Transition metal complexes containing tri-dentate NSN donor ligands i.e., 5-((1(aminomethyl)cyclohexyl)methyl)-1,3,4-thiadiazol-2-amine (AMTA) (2) and 5-(2-aminophenyl)-1,3,4-thiadiazol-2-amine (ATA) (4i-ii) have been synthesized. The newly synthesized ligands and their respective complexes were characterized by elemental analysis, molar conductance measurement and various spectral studies [infrared (IR), electronic, and NMR (for ligands only)]. Metal complexes are like [M(AMTA)2], [M(ATA)2] type, where M = Mn(II), Co(II) and Cu(II). The proposed geometries of the complexes are octahedral in nature. The synthesized ligands and their complexes were exhibits effective anti-inflammatory, analgesic and DNA binding activities. All the tested compounds exhibited significant analgesic activity, whereas the compound 4i, 4(ia) and 4(iib) is equipotent with Diclofenac sodium.

  6. [Functional selectivity of opioid receptors ligands].

    PubMed

    Audet, Nicolas; Archer-Lahlou, Elodie; Richard-Lalonde, Mélissa; Piñeyro-Filpo, Graciela

    2010-01-01

    Opiates are the most effective analgesics available for the treatment of severe pain. However, their clinical use is restricted by unwanted side effects such as tolerance, physical dependence and respiratory depression. The strategy to develop new opiates with reduced side effects has mainly focused on the study and production of ligands that specifically bind to different opiate receptors subtypes. However, this strategy has not allowed the production of novel therapeutic ligands with a better side effects profile. Thus, other research strategies need to be explored. One which is receiving increasing attention is the possibility of exploiting ligand ability to stabilize different receptor conformations with distinct signalling profiles. This newly described property, termed functional selectivity, provides a potential means of directing the stimulus generated by an activated receptor towards a specific cellular response. Here we summarize evidence supporting the existence of ligand-specific active conformations for two opioid receptors subtypes (delta and mu), and analyze how functional selectivity may contribute in the production of longer lasting, better tolerated opiate analgesics. double dagger.

  7. Ligand iron catalysts for selective hydrogenation

    DOEpatents

    Casey, Charles P.; Guan, Hairong

    2010-11-16

    Disclosed are iron ligand catalysts for selective hydrogenation of aldehydes, ketones and imines. A catalyst such as dicarbonyl iron hydride hydroxycyclopentadiene) complex uses the OH on the five member ring and hydrogen linked to the iron to facilitate hydrogenation reactions, particularly in the presence of hydrogen gas.

  8. Ligand Exchange Kinetics of Environmentally Relevant Metals

    SciTech Connect

    Panasci, Adele Frances

    2014-07-15

    The interactions of ground water with minerals and contaminants are of broad interest for geochemists but are not well understood. Experiments on the molecular scale can determine reaction parameters (i.e. rates of ligand exchange, activation entropy, activation entropy, and activation volume) that can be used in computations to gain insight into reactions that occur in natural groundwaters. Experiments to determine the rate of isotopic ligand exchange for three environmentally relevant metals, rhodium (Rh), iron (Fe), and neptunium (Np), are described. Many environmental transformations of metals (e.g. reduction) in soil occur at trivalent centers, Fe(III) in particular. Contaminant ions absorb tomore » mineral surfaces via ligand exchange, and the reversal of this reaction can be dangerous, releasing contaminants into the environment. Ferric iron is difficult to study spectroscopically because most of its complexes are paramagnetic and are generally reactive toward ligand exchange; therefore, Rh(III), which is diamagnetic and less reactive, was used to study substitution reactions that are analogous to those that occur on mineral oxide surfaces. Studies on both Np(V) and Np(VI) are important in their own right, as 237Np is a radioactive transuranic element with a half-life of 2 million years.« less

  9. Sensing multiple ligands with single receptor

    NASA Astrophysics Data System (ADS)

    Singh, Vijay; Nemenman, Ilya

    2015-03-01

    Cells use surface receptors to measure concentrations of external ligand molecules. Limits on the accuracy of such sensing are well-known for the scenario where concentration of one molecular species is being determined by one receptor [Endres]. However, in more realistic scenarios, a cognate (high-affinity) ligand competes with many non-cognate (low-affinity) ligands for binding to the receptor. We analyze effects of this competition on the accuracy of sensing. We show that maximum-likelihood statistical inference allows determination of concentrations of multiple ligands, cognate and non-cognate, by the same receptor concurrently. While it is unclear if traditional biochemical circuitry downstream of the receptor can implement such inference exactly, we show that an approximate inference can be performed by coupling the receptor to a kinetic proofreading cascade. We characterize the accuracy of such kinetic proofreading sensing in comparison to the exact maximum-likelihood approach. We acknowledge the support from the James S. McDonnell Foundation and the Human Frontier Science Program.

  10. Exhibition of Stochastic Resonance in Vestibular Perception

    NASA Technical Reports Server (NTRS)

    Galvan-Garza, R. C.; Clark, T. K.; Merfeld, D. M.; Bloomberg, J. J.; Oman, C. M.; Mulavara, A. P.

    2016-01-01

    Astronauts experience sensorimotor changes during spaceflight, particularly during G-transitions. Post flight sensorimotor changes include spatial disorientation, along with postural and gait instability that may degrade operational capabilities of the astronauts and endanger the crew. A sensorimotor countermeasure that mitigates these effects would improve crewmember safety and decrease risk. The goal of this research is to investigate the potential use of stochastic vestibular stimulation (SVS) as a technology to improve sensorimotor function. We hypothesize that low levels of SVS will improve sensorimotor perception through the phenomenon of stochastic resonance (SR), when the response of a nonlinear system to a weak input signal is enhanced by the application of a particular nonzero level of noise. This study aims to advance the development of SVS as a potential countermeasure by 1) demonstrating the exhibition of stochastic resonance in vestibular perception, a vital component of sensorimotor function, 2) investigating the repeatability of SR exhibition, and 3) determining the relative contribution of the semicircular canals (SCC) and otolith (OTO) organs to vestibular perceptual SR. A constant current stimulator was used to deliver bilateral bipolar SVS via electrodes placed on each of the mastoid processes, as previously done. Vestibular perceptual motion recognition thresholds were measured using a 6-degree of freedom MOOG platform and a 150 trial 3-down/1-up staircase procedure. In the first test session, we measured vestibular perceptual thresholds in upright roll-tilt at 0.2 Hz (SCC+OTO) with SVS ranging from 0-700 µA. In a second test session a week later, we re-measured roll-tilt thresholds with 0, optimal (from test session 1), and 1500 µA SVS levels. A subset of these subjects, plus naive subjects, participated in two additional test sessions in which we measured thresholds in supine roll-rotation at 0.2 Hz (SCC) and upright y-translation at 1 Hz

  11. Ligand- and drug-binding studies of membrane proteins revealed through circular dichroism spectroscopy.

    PubMed

    Siligardi, Giuliano; Hussain, Rohanah; Patching, Simon G; Phillips-Jones, Mary K

    2014-01-01

    A great number of membrane proteins have proven difficult to crystallise for use in X-ray crystallographic structural determination or too complex for NMR structural studies. Circular dichroism (CD) is a fast and relatively easy spectroscopic technique to study protein conformational behaviour. In this review examples of the applications of CD and synchrotron radiation CD (SRCD) to membrane protein ligand binding interaction studies are discussed. The availability of SRCD has been an important advancement in recent progress, most particularly because it can be used to extend the spectral region in the far-UV region (important for increasing the accuracy of secondary structure estimations) and for working with membrane proteins available in only small quantities for which SRCD has facilitated molecular recognition studies. Such studies have been accomplished by probing in the near-UV region the local tertiary structure of aromatic amino acid residues upon addition of chiral or non-chiral ligands using long pathlength cells of small volume capacity. In particular, this review describes the most recent use of the technique in the following areas: to obtain quantitative data on ligand binding (exemplified by the FsrC membrane sensor kinase receptor); to distinguish between functionally similar drugs that exhibit different mechanisms of action towards membrane proteins (exemplified by secretory phospholipase A2); and to identify suitable detergent conditions to observe membrane protein-ligand interactions using stabilised proteins (exemplified by the antiseptic transporter SugE). Finally, the importance of characterising in solution the conformational behaviour and ligand binding properties of proteins in both far- and near-UV regions is discussed. This article is part of a Special Issue entitled: Structural and biophysical characterisation of membrane protein-ligand binding. © 2013.

  12. Why do receptor–ligand bonds in cell adhesion cluster into discrete focal-adhesion sites?

    DOE PAGES

    Gao, Zhiwen; Gao, Yanfei

    2016-05-14

    We report that cell adhesion often exhibits the clustering of the receptor–ligand bonds into discrete focal-adhesion sites near the contact edge, thus resembling a rosette shape or a contracting membrane anchored by a small number of peripheral forces. The ligands on the extracellular matrix are immobile, and the receptors in the cell plasma membrane consist of two types: high-affinity integrins (that bond to the substrate ligands and are immobile) and low-affinity integrins (that are mobile and not bonded to the ligands). Thus the adhesion energy density is proportional to the high-affinity integrin density. This paper provides a mechanistic explanation formore » the clustering/assembling of the receptor–ligand bonds from two main points: (1) the cellular contractile force leads to the density evolution of these two types of integrins, and results into a large high-affinity integrin density near the contact edge and (2) the front of a propagating crack into a decreasing toughness field will be unstable and wavy. From this fracture mechanics perspective, the chemomechanical equilibrium is reached when a small number of patches with large receptor–ligand bond density are anticipated to form at the cell periphery, as opposed to a uniform distribution of bonds on the entire interface. Finally, cohesive fracture simulations show that the de-adhesion force can be significantly enhanced by this nonuniform bond density field, but the de-adhesion force anisotropy due to the substrate elastic anisotropy is significantly reduced.« less

  13. Enhanced stability of Janus nanoparticles by covalent cross-linking of surface ligands.

    PubMed

    Song, Yang; Klivansky, Liana M; Liu, Yi; Chen, Shaowei

    2011-12-06

    A mercapto derivative of diacetylene was used as the hydrophilic ligand to prepare Janus nanoparticles by using hydrophobic hexanethiolate-protected gold (AuC6, diameter 5 nm) nanoparticles as the starting materials. The amphiphilic surface characters of the Janus nanoparticles were verified by contact angle measurements, as compared to those of the bulk-exchange counterparts where the two types of ligands were distributed rather homogeneously on the nanoparticle surface. Dynamic light scattering studies showed that the Janus nanoparticles formed stable superstructures in various solvent media that were significantly larger than those by the bulk-exchange counterparts. This was ascribed to the amphiphilic characters of the Janus nanoparticles that rendered the particles to behave analogously to conventional surfactant molecules. Notably, because of the close proximity of the diacetylene moieties on the Janus nanoparticle surface, exposure to UV irradiation led to effective covalent cross-linking between the diacetylene moieties of neighboring ligands, as manifested in UV-vis and fluorescence measurements where the emission characteristics of dimers and trimers of diacetylene were rather well-defined, in addition to the monomeric emission. In contrast, for bulk-exchange nanoparticles, no trimer emission could be identified, and the intensity of dimer emission was markedly lower (though the intensity increased with increasing diacetylene coverage on the particle surface) under the otherwise identical experimental conditions. This is largely because the diacetylene ligands were distributed on the entire particle surface, and it was difficult to find a large number of ligands situated closely so that the stringent topochemical principles for the polymerization of diacetylene derivatives could be met. Importantly, the cross-linked Janus nanoparticles were found to exhibit marked enhancement of the structural integrity, which was attributable to the impeded surface

  14. Characterization of ligand binding to melanocortin 4 receptors using fluorescent peptides with improved kinetic properties.

    PubMed

    Link, Reet; Veiksina, Santa; Rinken, Ago; Kopanchuk, Sergei

    2017-03-15

    Melanocortin 4 (MC 4 ) receptors are important drug targets as they regulate energy homeostasis, eating behaviour and sexual functions. The ligand binding process to these G protein-coupled receptors is subject to considerable complexity. Different steps in the complex dynamic regulation can be characterized by ligand binding kinetics. Optimization of these kinetic parameters in terms of on-rate and residence time can increase the rapid onset of drug action and reduce off-target effects. Fluorescence anisotropy (FA) is one of the homogeneous fluorescence-based assays that enable continuous online monitoring of ligand binding kinetics. FA has been implemented for the kinetic study of melanocortin MC 4 receptors expressed on budded baculoviruses. However, the slow dissociation of the fluorescently labelled peptide NDP-α-MSH does not enable reaching equilibrium nor enable more in-depth study of the binding mechanisms. To overcome this problem, two novel red-shifted fluorescent ligands were designed. These cyclized heptapeptide derivatives (UTBC101 and UTBC102) exhibited nanomolar affinity toward melanocortin MC 4 receptors but had relatively different kinetic properties. The dissociation half-lives of UTBC101 (τ 1/2 =160min) and UTBC102 (τ 1/2 =7min) were shorter compared to that what was previously reported for Cy3B-NDP-α-MSH (τ 1/2 =224min). The significantly shorter dissociation half-life of UTBC102 enables equilibrium in screening assays, whereas the higher affinity of UTBC101 helps to resolve a wider range of competitor potencies. These two ligands are suitable for further kinetic screening of novel melanocortin MC 4 receptor specific ligands and could complement each other in these studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Why do receptor–ligand bonds in cell adhesion cluster into discrete focal-adhesion sites?

    SciTech Connect

    Gao, Zhiwen; Gao, Yanfei

    We report that cell adhesion often exhibits the clustering of the receptor–ligand bonds into discrete focal-adhesion sites near the contact edge, thus resembling a rosette shape or a contracting membrane anchored by a small number of peripheral forces. The ligands on the extracellular matrix are immobile, and the receptors in the cell plasma membrane consist of two types: high-affinity integrins (that bond to the substrate ligands and are immobile) and low-affinity integrins (that are mobile and not bonded to the ligands). Thus the adhesion energy density is proportional to the high-affinity integrin density. This paper provides a mechanistic explanation formore » the clustering/assembling of the receptor–ligand bonds from two main points: (1) the cellular contractile force leads to the density evolution of these two types of integrins, and results into a large high-affinity integrin density near the contact edge and (2) the front of a propagating crack into a decreasing toughness field will be unstable and wavy. From this fracture mechanics perspective, the chemomechanical equilibrium is reached when a small number of patches with large receptor–ligand bond density are anticipated to form at the cell periphery, as opposed to a uniform distribution of bonds on the entire interface. Finally, cohesive fracture simulations show that the de-adhesion force can be significantly enhanced by this nonuniform bond density field, but the de-adhesion force anisotropy due to the substrate elastic anisotropy is significantly reduced.« less

  16. Synthesis and antimalarial activity of metal complexes of cross-bridged tetraazamacrocyclic ligands.

    PubMed

    Hubin, Timothy J; Amoyaw, Prince N-A; Roewe, Kimberly D; Simpson, Natalie C; Maples, Randall D; Carder Freeman, TaRynn N; Cain, Amy N; Le, Justin G; Archibald, Stephen J; Khan, Shabana I; Tekwani, Babu L; Khan, M O Faruk

    2014-07-01

    Using transition metals such as manganese(II), iron(II), cobalt(II), nickel(II), copper(II), and zinc(II), several new metal complexes of cross-bridged tetraazamacrocyclic chelators namely, cyclen- and cyclam-analogs with benzyl groups, were synthesized and screened for in vitro antimalarial activity against chloroquine-resistant (W2) and chloroquine-sensitive (D6) strains of Plasmodium falciparum. The metal-free chelators tested showed little or no antimalarial activity. All the metal complexes of the dibenzyl cross-bridged cyclam ligand exhibited potent antimalarial activity. The Mn(2+) complex of this ligand was the most potent with IC50s of 0.127 and 0.157μM against the chloroquine-sensitive (D6) and chloroquine-resistant (W2) P. falciparum strains, respectively. In general, the dibenzyl hydrophobic ligands showed better anti-malarial activity compared to the activity of monobenzyl ligands, potentially because of their higher lipophilicity and thus better cell penetration ability. The higher antimalarial activity displayed by the manganese complex for the cyclam ligand in comparison to that of the cyclen, correlates with the larger pocket of cyclam compared to that of cyclen which produces a more stable complex with the Mn(2+). Few of the Cu(2+) and Fe(2+) complexes also showed improvement in activity but Ni(2+), Co(2+) and Zn(2+) complexes did not show any improvement in activity upon the metal-free ligands for anti-malarial development. Published by Elsevier Ltd.

  17. Hydrophilic 2,9-bis-triazolyl-1,10-phenanthroline ligands enable selective Am(iii) separation: a step further towards sustainable nuclear energy.

    PubMed

    Edwards, Alyn C; Mocilac, Pavle; Geist, Andreas; Harwood, Laurence M; Sharrad, Clint A; Burton, Neil A; Whitehead, Roger C; Denecke, Melissa A

    2017-05-02

    The first hydrophilic, 1,10-phenanthroline derived ligands consisting of only C, H, O and N atoms for the selective extraction of Am(iii) from spent nuclear fuel are reported herein. One of these 2,9-bis-triazolyl-1,10-phenanthroline (BTrzPhen) ligands combined with a non-selective extracting agent, was found to exhibit process-suitable selectivity for Am(iii) over Eu(iii) and Cm(iii), providing a clear step forward.

  18. Iridium-Catalyzed Asymmetric Hydrogenation of Ketones with Accessible and Modular Ferrocene-Based Amino-phosphine Acid (f-Ampha) Ligands.

    PubMed

    Yu, Jianfei; Long, Jiao; Yang, Yuhong; Wu, Weilong; Xue, Peng; Chung, Lung Wa; Dong, Xiu-Qin; Zhang, Xumu

    2017-02-03

    A series of tridentate ferrocene-based amino-phosphine acid (f-Ampha) ligands have been successfully developed. The f-Ampha ligands are extremely air stable and exhibited excellent performance in the Ir-catalyzed asymmetric hydrogenation of ketones (full conversions, up to >99% ee, and 500 000 TON). DFT calculations were performed to elucidate the reaction mechanism and the importance of the -COOH group. Control experiments also revealed that the -COOH group played a key role in this reaction.

  19. Dissociation of Multisubunit Protein-Ligand Complexes in the Gas Phase. Evidence for Ligand Migration

    NASA Astrophysics Data System (ADS)

    Zhang, Yixuan; Deng, Lu; Kitova, Elena N.; Klassen, John S.

    2013-10-01

    The results of collision-induced dissociation (CID) experiments performed on gaseous protonated and deprotonated ions of complexes of cholera toxin B subunit homopentamer (CTB5) with the pentasaccharide (β-D-Gal p-(1→3)-β-D-Gal pNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Gal p-(1→4)-β-D-Glc p (GM1)) and corresponding glycosphingolipid (β-D-Gal p-(1→3)-β-D-Gal pNAc-(1→4)[α-D-Neu5Ac-(2→3)]-β-D-Gal p-(1→4)-β-D-Glc p-Cer (GM1-Cer)) ligands, and the homotetramer streptavidin (S4) with biotin (B) and 1,2-dipalmitoyl- sn-glycero-3-phosphoethanolamine-N-(biotinyl) (Btl), are reported. The protonated (CTB5 + 5GM1)n+ ions dissociated predominantly by the loss of a single subunit, with the concomitant migration of ligand to another subunit. The simultaneous loss of ligand and subunit was observed as a minor pathway. In contrast, the deprotonated (CTB5 + 5GM1)n- ions dissociated preferentially by the loss of deprotonated ligand; the loss of ligand-bound and ligand-free subunit were minor pathways. The presence of ceramide (Cer) promoted ligand migration and the loss of subunit. The main dissociation pathway for the protonated and deprotonated (S4 + 4B)n+/- ions, as well as for deprotonated (S4 + 4Btl)n- ions, was loss of the ligand. However, subunit loss from the (S4 + 4B)n+ ions was observed as a minor pathway. The (S4 + 4Btl)n+ ions dissociated predominantly by the loss of free and ligand-bound subunit. The charge state of the complex and the collision energy were found to have little effect on the relative contribution of the different dissociation channels. Thermally-driven ligand migration between subunits was captured in the results of molecular dynamics simulations performed on protonated (CTB5 + 5GM1)15+ ions (with a range of charge configurations) at 800 K. Notably, the migration pathway was found to be highly dependent on the charge configuration of the ion. The main conclusion of this study is that the dissociation pathways of multisubunit protein-ligand

  20. Coordination- and Redox-Noninnocent Behavior of Ambiphilic Ligands Containing Antimony.

    PubMed

    Jones, J Stuart; Gabbaï, François P

    2016-05-17

    Stimulated by applications in catalysis, the chemistry of ambiphilic ligands featuring both donor and acceptor functionalities has experienced substantial growth in the past several years. The unique opportunities in catalysis offered by ambiphilic ligands stem from the ability of their acceptor functionalities to play key roles via metal-ligand cooperation or modulation of the reactivity of the metal center. Ligands featuring group 13 centers, most notably boranes, as their acceptor functionalities have undoubtedly spearheaded these developments, with remarkable results having been achieved in catalytic hydrogenation and hydrosilylation. Motivated by these developments as well as by our fundamental interest in the chemistry of heavy group 15 elements, we became fascinated by the possibility of employing antimony centers as Lewis acids within ambiphilic ligands. The chemistry of antimony-based ligands, most often encountered as trivalent stibines, has historically been considered to mirror that of their lighter phosphorus-based congeners. There is growing evidence, however, that antimony-based ligands may display unique coordination behavior and reactivity. Additionally, despite the diverse Lewis acid and redox chemistry that antimony exhibits, there have been only limited efforts to explore this chemistry within the coordination sphere of a transition metal. By incorporation of antimony into the framework of polydentate ligands in order to enforce the main group metal-transition metal interaction, the effect of redox and coordination events at the antimony center on the structure, electronics, and reactivity of the metal complex may be investigated. This Account describes our group's continuing efforts to probe the coordination behavior, reactivity, and application of ambiphilic ligands incorporating antimony centers. Structural and theoretical studies have established that both Sb(III) and Sb(V) centers in polydentate ligands may act as Z-type ligands toward late

  1. Carbon nanotubes exhibit fibrillar pharmacology in primates

    SciTech Connect

    Alidori, Simone; Thorek, Daniel L. J.; Beattie, Bradley J.

    Nanomedicine rests at the nexus of medicine, bioengineering, and biology with great potential for improving health through innovation and development of new drugs and devices. Carbon nanotubes are an example of a fibrillar nanomaterial poised to translate into medical practice. The leading candidate material in this class is ammonium-functionalized carbon nanotubes (fCNT) that exhibits unexpected pharmacological behavior in vivo with important biotechnology applications. Here, we provide a multi-organ evaluation of the distribution, uptake and processing of fCNT in nonhuman primates using quantitative whole body positron emission tomography (PET), compartmental modeling of pharmacokinetic data, serum biomarkers and ex vivo pathology investigation.more » Kidney and liver are the two major organ systems that accumulate and excrete [ 86Y]fCNT in nonhuman primates and accumulation is cell specific as described by compartmental modeling analyses of the quantitative PET data. A serial two-compartment model explains renal processing of tracer-labeled fCNT; hepatic data fits a parallel two-compartment model. These modeling data also reveal significant elimination of the injected activity (>99.8%) from the primate within 3 days (t 1/2 = 11.9 hours). Thus, these favorable results in nonhuman primates provide important insight to the fate of fCNT in vivo and pave the way to further engineering design considerations for sophisticated nanomedicines to aid late stage development and clinical use in man.« less

  2. Carbon nanotubes exhibit fibrillar pharmacology in primates

    DOE PAGES

    Alidori, Simone; Thorek, Daniel L. J.; Beattie, Bradley J.; ...

    2017-08-28

    Nanomedicine rests at the nexus of medicine, bioengineering, and biology with great potential for improving health through innovation and development of new drugs and devices. Carbon nanotubes are an example of a fibrillar nanomaterial poised to translate into medical practice. The leading candidate material in this class is ammonium-functionalized carbon nanotubes (fCNT) that exhibits unexpected pharmacological behavior in vivo with important biotechnology applications. Here, we provide a multi-organ evaluation of the distribution, uptake and processing of fCNT in nonhuman primates using quantitative whole body positron emission tomography (PET), compartmental modeling of pharmacokinetic data, serum biomarkers and ex vivo pathology investigation.more » Kidney and liver are the two major organ systems that accumulate and excrete [ 86Y]fCNT in nonhuman primates and accumulation is cell specific as described by compartmental modeling analyses of the quantitative PET data. A serial two-compartment model explains renal processing of tracer-labeled fCNT; hepatic data fits a parallel two-compartment model. These modeling data also reveal significant elimination of the injected activity (>99.8%) from the primate within 3 days (t 1/2 = 11.9 hours). Thus, these favorable results in nonhuman primates provide important insight to the fate of fCNT in vivo and pave the way to further engineering design considerations for sophisticated nanomedicines to aid late stage development and clinical use in man.« less

  3. A Study of the Structure-Activity Relationship of GABAA-Benzodiazepine Receptor Bivalent Ligands by Conformational Analysis with Low Temperature NMR and X-ray Analysis

    PubMed Central

    Han, Dongmei; Försterling, F. Holger; Li, Xiaoyan; Deschamps, Jeffrey R.; Parrish, Damon; Cao, Hui; Rallapalli, Sundari; Clayton, Terry; Teng, Yun; Majumder, Samarpan; Sankar, Subramaniam; Roth, Bryan L.; Sieghart, Werner; Furtmuller, Roman; Rowlett, James; Weed, Mike R.; Cook, James M.

    2013-01-01

    The stable conformations of GABAA-benzodiazepine receptor bivalent ligands were determined by low temperature NMR spectroscopy and confirmed by single crystal X-ray analysis. The stable conformations in solution correlated well with those in the solid state. The linear conformation was important for these dimers to access the binding site and exhibit potent in vitro affinity and was illustrated for α5 subtype selective ligands. Bivalent ligands with an oxygen-containing linker folded back upon themselves both in solution and the solid state. Dimers which are folded do not bind to Bz receptors. PMID:18790643

  4. Quantum.Ligand.Dock: protein-ligand docking with quantum entanglement refinement on a GPU system.

    PubMed

    Kantardjiev, Alexander A

    2012-07-01

    Quantum.Ligand.Dock (protein-ligand docking with graphic processing unit (GPU) quantum entanglement refinement on a GPU system) is an original modern method for in silico prediction of protein-ligand interactions via high-performance docking code. The main flavour of our approach is a combination of fast search with a special account for overlooked physical interactions. On the one hand, we take care of self-consistency and proton equilibria mutual effects of docking partners. On the other hand, Quantum.Ligand.Dock is the the only docking server offering such a subtle supplement to protein docking algorithms as quantum entanglement contributions. The motivation for development and proposition of the method to the community hinges upon two arguments-the fundamental importance of quantum entanglement contribution in molecular interaction and the realistic possibility to implement it by the availability of supercomputing power. The implementation of sophisticated quantum methods is made possible by parallelization at several bottlenecks on a GPU supercomputer. The high-performance implementation will be of use for large-scale virtual screening projects, structural bioinformatics, systems biology and fundamental research in understanding protein-ligand recognition. The design of the interface is focused on feasibility and ease of use. Protein and ligand molecule structures are supposed to be submitted as atomic coordinate files in PDB format. A customization section is offered for addition of user-specified charges, extra ionogenic groups with intrinsic pK(a) values or fixed ions. Final predicted complexes are ranked according to obtained scores and provided in PDB format as well as interactive visualization in a molecular viewer. Quantum.Ligand.Dock server can be accessed at http://87.116.85.141/LigandDock.html.

  5. Importance of ligand reorganization free energy in protein-ligand binding-affinity prediction.

    PubMed

    Yang, Chao-Yie; Sun, Haiying; Chen, Jianyong; Nikolovska-Coleska, Zaneta; Wang, Shaomeng

    2009-09-30

    Accurate prediction of the binding affinities of small-molecule ligands to their biological targets is fundamental for structure-based drug design but remains a very challenging task. In this paper, we have performed computational studies to predict the binding models of 31 small-molecule Smac (the second mitochondria-derived activator of caspase) mimetics to their target, the XIAP (X-linked inhibitor of apoptosis) protein, and their binding affinities. Our results showed that computational docking was able to reliably predict the binding models, as confirmed by experimentally determined crystal structures of some Smac mimetics complexed with XIAP. However, all the computational methods we have tested, including an empirical scoring function, two knowledge-based scoring functions, and MM-GBSA (molecular mechanics and generalized Born surface area), yield poor to modest prediction for binding affinities. The linear correlation coefficient (r(2)) value between the predicted affinities and the experimentally determined affinities was found to be between 0.21 and 0.36. Inclusion of ensemble protein-ligand conformations obtained from molecular dynamic simulations did not significantly improve the prediction. However, major improvement was achieved when the free-energy change for ligands between their free- and bound-states, or "ligand-reorganization free energy", was included in the MM-GBSA calculation, and the r(2) value increased from 0.36 to 0.66. The prediction was validated using 10 additional Smac mimetics designed and evaluated by an independent group. This study demonstrates that ligand reorganization free energy plays an important role in the overall binding free energy between Smac mimetics and XIAP. This term should be evaluated for other ligand-protein systems and included in the development of new scoring functions. To our best knowledge, this is the first computational study to demonstrate the importance of ligand reorganization free energy for the

  6. All-inorganic Germanium nanocrystal films by cationic ligand exchange

    DOE PAGES

    Wheeler, Lance M.; Nichols, Asa W.; Chernomordik, Boris D.; ...

    2016-01-21

    In this study, we introduce a new paradigm for group IV nanocrystal surface chemistry based on room temperature surface activation that enables ionic ligand exchange. Germanium nanocrystals synthesized in a gas-phase plasma reactor are functionalized with labile, cationic alkylammonium ligands rather than with traditional covalently bound groups. We employ Fourier transform infrared and 1H nuclear magnetic resonance spectroscopies to demonstrate the alkylammonium ligands are freely exchanged on the germanium nanocrystal surface with a variety of cationic ligands, including short inorganic ligands such as ammonium and alkali metal cations. This ionic ligand exchange chemistry is used to demonstrate enhanced transport inmore » germanium nanocrystal films following ligand exchange as well as the first photovoltaic device based on an all-inorganic germanium nanocrystal absorber layer cast from solution. This new ligand chemistry should accelerate progress in utilizing germanium and other group IV nanocrystals for optoelectronic applications.« less

  7. Early/Late Heterobimetallic Tantalum/Rhodium Species Assembled Through a Novel Bifunctional NHC-OH Ligand.

    PubMed

    Srivastava, Ravi; Moneuse, Raphaël; Petit, Julien; Pavard, Paul-Alexis; Dardun, Vincent; Rivat, Madleen; Schiltz, Pauline; Solari, Marius; Jeanneau, Erwann; Veyre, Laurent; Thieuleux, Chloé; Quadrelli, Elsje Alessandra; Camp, Clément

    2018-03-20

    The straightforward synthesis of a new unsymmetrical hydroxy-tethered N-heterocyclic carbene (NHC) ligand, HL, is presented. The free ligand exhibits an unusual OH-carbene hydrogen-bonding interaction. This OH-carbene motif was used to yield 1) the first tantalum complex displaying both a Fischer- and Schrock-type carbene ligand and 2) a unique NHC-based early/late heterobimetallic complex. More specifically, the protonolysis chemistry between the ligand's hydroxy group and imido-alkyl or alkylidene-alkyl tantalum precursor complexes yielded the rare monometallic tantalum-NHC complexes [Ta(XtBu)(L)(CH 2 tBu) 2 ] (X=N, CH), in which the alkoxy-carbene ligand acts as a chelate. In contrast, HL only binds to rhodium through the NHC unit in [Rh(HL)(cod)Cl] (cod=cycloocta-1,5-diene), the hydroxy pendant arm remaining unbound. This bifunctional ligand scaffold successfully promoted the assembly of rhodium/tantalum heterobimetallic complexes upon either 1) the insertion of [Rh(cod)Cl] 2 into the Ta-NHC bond in [Ta(NtBu)(L)(CH 2 tBu) 2 ] or 2) protonolysis between the free hydroxy group in [Rh(HL)(cod)Cl] and one alkyl group in [Ta(NtBu)(CH 2 tBu) 3 ]. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Analysis of nucleoside-binding proteins by ligand-specific elution from dye resin: application to Mycobacterium tuberculosis aldehyde dehydrogenases.

    PubMed

    Kim, Chang-Yub; Webster, Cecelia; Roberts, Justin K M; Moon, Jin Ho; Alipio Lyon, Emily Z; Kim, Heungbok; Yu, Minmin; Hung, Li-Wei; Terwilliger, Thomas C

    2009-12-01

    We show that Cibacron Blue F3GA dye resin chromatography can be used to identify ligands that specifically interact with proteins from Mycobacterium tuberculosis, and that the identification of these ligands can facilitate structure determination by enhancing the quality of crystals. Four native Mtb proteins of the aldehyde dehydrogenase (ALDH) family were previously shown to be specifically eluted from a Cibacron Blue F3GA dye resin with nucleosides. In this study we characterized the nucleoside-binding specificity of one of these ALDH isozymes (recombinant Mtb Rv0223c) and compared these biochemical results with co-crystallization experiments with different Rv0223c-nucleoside pairings. We found that the strongly interacting ligands (NAD and NADH) aided formation of high-quality crystals, permitting solution of the first Mtb ALDH (Rv0223c) structure. Other nucleoside ligands (AMP, FAD, adenosine, GTP and NADP) exhibited weaker binding to Rv0223c, and produced co-crystals diffracting to lower resolution. Difference electron density maps based on crystals of Rv0223c with various nucleoside ligands show most share the binding site where the natural ligand NAD binds. From the high degree of similarity of sequence and structure compared to human mitochondrial ALDH-2 (BLAST Z-score = 53.5 and RMSD = 1.5 A), Rv0223c appears to belong to the ALDH-2 class. An altered oligomerization domain in the Rv0223c structure seems to keep this protein as monomer whereas native human ALDH-2 is a multimer.

  9. Role of ligand-ligand vs. core-core interactions in gold nanoclusters.

    PubMed

    Milowska, Karolina Z; Stolarczyk, Jacek K

    2016-05-14

    The controlled assembly of ligand-coated gold nanoclusters (NCs) into larger structures paves the way for new applications ranging from electronics to nanomedicine. Here, we demonstrate through rigorous density functional theory (DFT) calculations employing novel functionals accounting for van der Waals forces that the ligand-ligand interactions determine whether stable assemblies can be formed. The study of NCs with different core sizes, symmetry forms, ligand lengths, mutual crystal orientations, and in the presence of a solvent suggests that core-to-core van der Waals interactions play a lesser role in the assembly. The dominant interactions originate from combination of steric effects, augmented by ligand bundling on NC facets, and related to them changes in electronic properties induced by neighbouring NCs. We also show that, in contrast to standard colloidal theory approach, DFT correctly reproduces the surprising experimental trends in the strength of the inter-particle interaction observed when varying the length of the ligands. The results underpin the importance of understanding NC interactions in designing gold NCs for a specific function.

  10. Impairment of Fas-ligand-caveolin-1 interaction inhibits Fas-ligand translocation to rafts and Fas-ligand-induced cell death.

    PubMed

    Glukhova, Xenia A; Trizna, Julia A; Proussakova, Olga V; Gogvadze, Vladimir; Beletsky, Igor P

    2018-01-22

    Fas-ligand/CD178 belongs to the TNF family proteins and can induce apoptosis through death receptor Fas/CD95. The important requirement for Fas-ligand-dependent cell death induction is its localization to rafts, cholesterol- and sphingolipid-enriched micro-domains of membrane, involved in regulation of different signaling complexes. Here, we demonstrate that Fas-ligand physically associates with caveolin-1, the main protein component of rafts. Experiments with cells overexpressing Fas-ligand revealed a FasL N-terminal pre-prolin-rich region, which is essential for the association with caveolin-1. We found that the N-terminal domain of Fas-ligand bears two caveolin-binding sites. The first caveolin-binding site binds the N-terminal domain of caveolin-1, whereas the second one appears to interact with the C-terminal domain of caveolin-1. The deletion of both caveolin-binding sites in Fas-ligand impairs its distribution between cellular membranes, and attenuates a Fas-ligand-induced cytotoxicity. These results demonstrate that the interaction of Fas-ligand and caveolin-1 represents a molecular basis for Fas-ligand translocation to rafts, and the subsequent induction of Fas-ligand-dependent cell death. A possibility of a similar association between other TNF family members and caveolin-1 is discussed.

  11. AutoSite: an automated approach for pseudo-ligands prediction—from ligand-binding sites identification to predicting key ligand atoms

    PubMed Central

    Ravindranath, Pradeep Anand; Sanner, Michel F.

    2016-01-01

    Motivation: The identification of ligand-binding sites from a protein structure facilitates computational drug design and optimization, and protein function assignment. We introduce AutoSite: an efficient software tool for identifying ligand-binding sites and predicting pseudo ligand corresponding to each binding site identified. Binding sites are reported as clusters of 3D points called fills in which every point is labelled as hydrophobic or as hydrogen bond donor or acceptor. From these fills AutoSite derives feature points: a set of putative positions of hydrophobic-, and hydrogen-bond forming ligand atoms. Results: We show that AutoSite identifies ligand-binding sites with higher accuracy than other leading methods, and produces fills that better matches the ligand shape and properties, than the fills obtained with a software program with similar capabilities, AutoLigand. In addition, we demonstrate that for the Astex Diverse Set, the feature points identify 79% of hydrophobic ligand atoms, and 81% and 62% of the hydrogen acceptor and donor hydrogen ligand atoms interacting with the receptor, and predict 81.2% of water molecules mediating interactions between ligand and receptor. Finally, we illustrate potential uses of the predicted feature points in the context of lead optimization in drug discovery projects. Availability and Implementation: http://adfr.scripps.edu/AutoDockFR/autosite.html Contact: sanner@scripps.edu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:27354702

  12. Influence of bidentate ligand donor types on the formation and stability in 2 + 1 fac-[MI(CO)3]+ (M = Re, 99mTc) complexes.

    PubMed

    Hayes, Thomas R; Bottorff, Shalina C; Slocumb, Winston S; Barnes, Charles L; Clark, Aurora E; Benny, Paul D

    2017-01-24

    In the last two decades, a number of chelate strategies have been proposed for the fac-[M I (CO) 3 ] + (M = Re, 99m Tc) core in radiopharmaceutical applications. However, the development of new ligands/complexes with improved function and in vivo performance has been limited in recent years. Expanding on our previous studies using the 2 + 1 labeling strategy, a series of bidentate ligands (neutral vs. anionic) containing an aromatic amine in combination with monodentate pyridine analogs or imidazole were explored to determine the influence of the bidentate and monodentate ligands on the formation and stability of the respective complexes. The 2 + 1 complexes with Re and 99m Tc were synthesized in two steps and characterized by standard radio/chemical methods. X-ray characterization and density functional theory analysis of the Re 2 + 1 complexes with the complete bidentate series with 4-dimethylaminopyridine were conducted, indicating enhanced ligand binding energies of the neutral over anionic ligands. In the 99m Tc studies, anionic bidentate ligands had significantly higher formation yields of the 2 + 1 product, but neutral ligands appear to have increased stability in an amino acid challenge assay. Both bidentate series exhibited improved stability by increasing the basicity of the pyridine ligands.

  13. Influence of Bidentate Ligand Donor Types on the Formation and Stability in 2+1 fac-[MI(CO)3]+ (M = Re, 99mTc) Complexes

    PubMed Central

    Hayes, Thomas R.; Bottorff, Shalina C.; Slocumb, Winston S.; Barnes, Charles L.; Clark, Aurora E.; Benny, Paul D.

    2017-01-01

    In the last two decades, a number of chelate strategies have been proposed for the fac-[MI(CO)3]+ (M = Re, 99mTc) core in radiopharmaceutical applications. However, the development of new ligands/complexes with improved function and in vivo performance has been limited in recent years. Expanding on our previous studies using the 2+1 labeling strategy, a series of bidentate ligands (neutral vs. anionic) containing an aromatic amine in combination with monodentate pyridine analogs or imidazole were explored to determine the influence of the bidentate and monodentate ligands on the formation and stability of the respective complexes. The 2+1 complexes with Re and 99mTc were synthesized in two steps and characterized by standard radio/chemical methods. X-ray characterization and density functional theory analysis of the Re 2+1 complexes with the complete bidentate series with 4-dimethylaminopyridine were conducted, indicating enhanced ligand binding energies of the neutral over anionic ligands. In the 99mTc studies, anionic bidentate ligands had significantly higher formation yields of the 2+1 product, but neutral ligands appear to have increased stability in an amino acid challenge assay. Both bidentate series exhibited improved stability by increasing the basicity of the pyridine ligands. PMID:28045466

  14. A molecular dynamics investigation of CDK8/CycC and ligand binding: conformational flexibility and implication in drug discovery

    NASA Astrophysics Data System (ADS)

    Cholko, Timothy; Chen, Wei; Tang, Zhiye; Chang, Chia-en A.

    2018-05-01

    Abnormal activity of cyclin-dependent kinase 8 (CDK8) along with its partner protein cyclin C (CycC) is a common feature of many diseases including colorectal cancer. Using molecular dynamics (MD) simulations, this study determined the dynamics of the CDK8-CycC system and we obtained detailed breakdowns of binding energy contributions for four type-I and five type-II CDK8 inhibitors. We revealed system motions and conformational changes that will affect ligand binding, confirmed the essentialness of CycC for inclusion in future computational studies, and provide guidance in development of CDK8 binders. We employed unbiased all-atom MD simulations for 500 ns on twelve CDK8-CycC systems, including apoproteins and protein-ligand complexes, then performed principal component analysis (PCA) and measured the RMSF of key regions to identify protein dynamics. Binding pocket volume analysis identified conformational changes that accompany ligand binding. Next, H-bond analysis, residue-wise interaction calculations, and MM/PBSA were performed to characterize protein-ligand interactions and find the binding energy. We discovered that CycC is vital for maintaining a proper conformation of CDK8 to facilitate ligand binding and that the system exhibits motion that should be carefully considered in future computational work. Surprisingly, we found that motion of the activation loop did not affect ligand binding. Type-I and type-II ligand binding is driven by van der Waals interactions, but electrostatic energy and entropic penalties affect type-II binding as well. Binding of both ligand types affects protein flexibility. Based on this we provide suggestions for development of tighter-binding CDK8 inhibitors and offer insight that can aid future computational studies.

  15. Reversible ion transportation switch by a ligand-gated synthetic supramolecular ion channel.

    PubMed

    Muraoka, Takahiro; Endo, Takahiro; Tabata, Kazuhito V; Noji, Hiroyuki; Nagatoishi, Satoru; Tsumoto, Kouhei; Li, Rui; Kinbara, Kazushi

    2014-11-05

    Inspired by the regulation of cellular activities found in the ion channel proteins, here we developed membrane-embedded synthetic chiral receptors 1 and 2 with different terminal structures, where receptor 1 has hydrophobic triisopropylsilyl (TIPS) groups and receptor 2 has hydrophilic hydroxy groups. The receptors have ligand-binding units that interact with cationic amphiphiles such as 2-phenethylamine (PA). Conductance study revealed that the receptors hardly show ion transportation at the ligand-free state. After ligand binding involving a conformational change, receptor 1 bearing TIPS termini displays a significant current enhancement due to ion transportation. The current substantially diminishes upon addition of β-cyclodextrin (βCD) that scavenges the ligand from the receptor. Importantly, the receptor again turns into the conductive state by the second addition of PA, and the activation/deactivation of the ion transportation can be repeated. In contrast, receptor 2 bearing the hydroxy terminal groups hardly exhibits ion transportation, suggesting the importance of terminal TIPS groups of 1 that likely anchor the receptor in the membrane.

  16. NMR studies of DNA oligomers and their interactions with minor groove binding ligands

    SciTech Connect

    Fagan, Patricia A.

    1996-05-01

    The cationic peptide ligands distamycin and netropsin bind noncovalently to the minor groove of DNA. The binding site, orientation, stoichiometry, and qualitative affinity of distamycin binding to several short DNA oligomers were investigated by NMR spectroscopy. The oligomers studied contain A,T-rich or I,C-rich binding sites, where I = 2-desaminodeoxyguanosine. I•C base pairs are functional analogs of A•T base pairs in the minor groove. The different behaviors exhibited by distamycin and netropsin binding to various DNA sequences suggested that these ligands are sensitive probes of DNA structure. For sites of five or more base pairs, distamycin can form 1:1 or 2:1more » ligand:DNA complexes. Cooperativity in distamycin binding is low in sites such as AAAAA which has narrow minor grooves, and is higher in sites with wider minor grooves such as ATATAT. The distamycin binding and base pair opening lifetimes of I,C-containing DNA oligomers suggest that the I,C minor groove is structurally different from the A,T minor groove. Molecules which direct chemistry to a specific DNA sequence could be used as antiviral compounds, diagnostic probes, or molecular biology tools. The author studied two ligands in which reactive groups were tethered to a distamycin to increase the sequence specificity of the reactive agent.« less

  17. Self-assembling Gold Nanoparticle Monolayers in a Three-phase System - Overcoming Ligand Size Limitations

    NASA Astrophysics Data System (ADS)

    Yang, Guang; Nanda, Jagjit; Wang, Boya; Chen, Gang; Hallinan, Daniel T., Jr.

    An effective self-assembly technique was developed to prepare centimeter-scale monolayer gold nanoparticle (Au NP) films of long-range order with hydrophobic ligands. Aqueous Au NPs were entrapped in the organic/aqueous interface where the Au NP surface was in situ modified with different types of amine ligands, including amine-terminated polystyrene. The Au NPs then spontaneously relocated to the air/water interface to form an NP monolayer. The spontaneous formation of an Au NP film at the organic/water interface was due to the minimization of the system Helmholtz free energy. Self-assembled Au NP films has a hexagonal close packed structure. The interparticle spacing was dictated by the amine ligand length. Thus-assembled Au NP monolayers exhibit tunable surface plasma resonance and excellent spacial homogeneity of surface-enhanced Raman-scattering. The ``air/water/oil'' self-assembly method developed in this study not only benefits the fundamental understanding of NP ligand conformations, but is also promising to scale up the manufacture of plasmonic nanoparticle devices with precisely designed optical properties. This study was financially supported by start-up funding supplied by the Florida State University and the FAMU-FSU College of Engineering.

  18. Targeting B lymphoma with nanoparticles bearing glycan ligands of CD22.

    PubMed

    Chen, Weihsu C; Sigal, Darren S; Saven, Alan; Paulson, James C

    2012-02-01

    CD22 is a member of the siglec (sialic acid-binding immunoglobulin-like lectin) family expressed on B cells that recognizes glycans of glycoproteins as ligands. Because siglecs exhibit restricted expression on one or a few leukocyte cell types, they have gained attention as attractive targets for cell-directed therapies. Several antibody-based therapies targeting CD22 (Siglec-2) are currently in clinical trials for the treatment of hairy cell leukemia and other B cell lymphomas. As an alternative to antibodies we have developed liposomal nanoparticles decorated with glycan ligands of CD22 that selectively target B cells. Because CD22 is an endocytic receptor, ligand-decorated liposomes are bound by CD22 and rapidly internalized by the cell. When loaded with a toxic cargo such as doxorubicin, they are efficacious in prolonging life in a Daudi B cell lymphoma model. These B cell targeted nanoparticles have been demonstrated to bind and kill malignant B cells from patients with hairy cell leukemia, marginal zone lymphoma and chronic lymphocytic leukemia. The results demonstrate the potential of using CD22 ligand-targeted liposomal nanoparticles as an alternative approach for the treatment of B cell malignancies.

  19. Bioactive ruthenium(II)-arene complexes containing modified 18β-glycyrrhetinic acid ligands.

    PubMed

    Kong, Yaqiong; Chen, Feng; Su, Zhi; Qian, Yong; Wang, Fang-Xin; Wang, Xiuxiu; Zhao, Jing; Mao, Zong-Wan; Liu, Hong-Ke

    2018-05-01

    Metal-arene complexes containing bioactive natural-product derived ligands can have new and unusual properties. We report the synthesis, characterization and antiproliferative activity of two new Ru(II) arene complexes with imidazole (dichlorido complex 1) or bipyridyl (chlorido complex 2) ligands conjugated to 18β-glycyrrhetinic acid, an active triterpenoid metabolite of Glycyrrhiza glabra. In general, the conjugated ligands and complexes showed only moderate activity against HeLa (cervical), MCF-7 (breast) and A2780 (ovarian) cancer cells, although the activity of complex 2 in the former two cell lines approached that of the drug cisplatin. Complex 2 (in contrast to complex 1) also exhibited significant activity towards both Gram-positive S. aureus and Gram-negative E. coil bacteria. Complex 2 can induce condensation of DNA and enhances the generation of intracellular reactive oxygen species (ROS). The conjugation of natural products to ligands in organometallic half-sandwich complexes provides a strategy to enhance their biological activities. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Atypical Signaling and Functional Desensitization Response of MAS Receptor to Peptide Ligands

    PubMed Central

    Tirupula, Kalyan C.; Desnoyer, Russell; Speth, Robert C.; Karnik, Sadashiva S.

    2014-01-01

    MAS is a G protein-coupled receptor (GPCR) implicated in multiple physiological processes. Several physiological peptide ligands such as angiotensin-(1–7), angiotensin fragments and neuropeptide FF (NPFF) are reported to act on MAS. Studies of conventional G protein signaling and receptor desensitization upon stimulation of MAS with the peptide ligands are limited so far. Therefore, we systematically analyzed G protein signals activated by the peptide ligands. MAS-selective non-peptide ligands that were previously shown to activate G proteins were used as controls for comparison on a common cell based assay platform. Activation of MAS by the non-peptide agonist (1) increased intracellular calcium and D-myo-inositol-1-phosphate (IP1) levels which are indicative of the activation of classical Gαq-phospholipase C signaling pathways, (2) decreased Gαi mediated cAMP levels and (3) stimulated Gα12-dependent expression of luciferase reporter. In all these assays, MAS exhibited strong constitutive activity that was inhibited by the non-peptide inverse agonist. Further, in the calcium response assay, MAS was resistant to stimulation by a second dose of the non-peptide agonist after the first activation has waned suggesting functional desensitization. In contrast, activation of MAS by the peptide ligand NPFF initiated a rapid rise in intracellular calcium with very weak IP1 accumulation which is unlike classical Gαq-phospholipase C signaling pathway. NPFF only weakly stimulated MAS-mediated activation of Gα12 and Gαi signaling pathways. Furthermore, unlike non-peptide agonist-activated MAS, NPFF-activated MAS could be readily re-stimulated the second time by the agonists. Functional assays with key ligand binding MAS mutants suggest that NPFF and non-peptide ligands bind to overlapping regions. Angiotensin-(1–7) and other angiotensin fragments weakly potentiated an NPFF-like calcium response at non-physiological concentrations (≥100 µM). Overall, our data

  1. Surface deformation and shear flow in ligand mediated cell adhesion.

    PubMed

    Sircar, Sarthok; Roberts, Anthony J

    2016-10-01

    We present a unified, multiscale model to study the attachment/detachment dynamics of two deforming, charged, near spherical cells, coated with binding ligands and subject to a slow, homogeneous shear flow in a viscous, ionic fluid medium. The binding ligands on the surface of the cells experience both attractive and repulsive forces in an ionic medium and exhibit finite resistance to rotation via bond tilting. The microscale drag forces and couples describing the fluid flow inside the small separation gap between the cells, are calculated using a combination of methods in lubrication theory and previously published numerical results. For a selected range of material and fluid parameters, a hysteretic transition of the sticking probability curves (i.e., the function [Formula: see text]) between the adhesion phase (when [Formula: see text]) and the fragmentation phase (when [Formula: see text]) is attributed to a nonlinear relation between the total nanoscale binding forces and the separation gap between the cells. We show that adhesion is favoured in highly ionic fluids, increased deformability of the cells, elastic binders and a higher fluid shear rate (until a critical threshold value of shear rate is reached). Within a selected range of critical shear rates, the continuation of the limit points (i.e., the turning points where the slope of [Formula: see text] changes sign) predict a bistable region, indicating an abrupt switching between the adhesion and the fragmentation regimes. Although, bistability in the adhesion-fragmentation phase diagram of two deformable, charged cells immersed in an ionic aqueous environment has been identified by some in vitro experiments, but until now, has not been quantified theoretically.

  2. Divergent Ah Receptor Ligand Selectivity during Hominin Evolution

    PubMed Central

    Hubbard, Troy D.; Murray, Iain A.; Bisson, William H.; Sullivan, Alexis P.; Sebastian, Aswathy; Perry, George H.; Jablonski, Nina G.; Perdew, Gary H.

    2016-01-01

    We have identified a fixed nonsynonymous sequence difference between humans (Val381; derived variant) and Neandertals (Ala381; ancestral variant) in the ligand-binding domain of the aryl hydrocarbon receptor (AHR) gene. In an exome sequence analysis of four Neandertal and Denisovan individuals compared with nine modern humans, there are only 90 total nucleotide sites genome-wide for which archaic hominins are fixed for the ancestral nonsynonymous variant and the modern humans are fixed for the derived variant. Of those sites, only 27, including Val381 in the AHR, also have no reported variability in the human dbSNP database, further suggesting that this highly conserved functional variant is a rare event. Functional analysis of the amino acid variant Ala381 within the AHR carried by Neandertals and nonhuman primates indicate enhanced polycyclic aromatic hydrocarbon (PAH) binding, DNA binding capacity, and AHR mediated transcriptional activity compared with the human AHR. Also relative to human AHR, the Neandertal AHR exhibited 150–1000 times greater sensitivity to induction of Cyp1a1 and Cyp1b1 expression by PAHs (e.g., benzo(a)pyrene). The resulting CYP1A1/CYP1B1 enzymes are responsible for PAH first pass metabolism, which can result in the generation of toxic intermediates and perhaps AHR-associated toxicities. In contrast, the human AHR retains the ancestral sensitivity observed in primates to nontoxic endogenous AHR ligands (e.g., indole, indoxyl sulfate). Our findings reveal that a functionally significant change in the AHR occurred uniquely in humans, relative to other primates, that would attenuate the response to many environmental pollutants, including chemicals present in smoke from fire use during cooking. PMID:27486223

  3. Transition-metal phosphors with cyclometalating ligands: fundamentals and applications.

    PubMed

    Chi, Yun; Chou, Pi-Tai

    2010-02-01

    One goal of this critical review is to provide advanced methodologies for systematic preparation of transition-metal based phosphors that show latent applications in the field of organic light emitting diodes (OLEDs). We are therefore reviewing various types of cyclometalating chelates for which the favorable metal-chelate bonding interaction, on the one hand, makes the resulting phosphorescent complexes highly emissive in both fluid and solid states at room temperature. On the other hand, fine adjustment of ligand-centered pi-pi* electronic transitions allows tuning of emission wavelength across the whole visible spectrum. The cyclometalating chelates are then classified according to types of cyclometalating groups, i.e. either aromatic C-H or azolic N-H fragment, and the adjacent donor fragment involved in the formation of metallacycles; the latter is an N-containing heterocycle, N-heterocyclic (NHC) carbene fragment or even diphenylphosphino group. These cyclometalating ligands are capable to react with heavy transition-metal elements, namely: Ru(II), Os(II), Ir(III) and Pt(II), to afford a variety of highly emissive phosphors, for which the photophysical properties as a function of chelate or metal characteristics are systematically discussed. Using Ir(III) complexes as examples, the C--N chelates possessing both C-H site and N-heterocyclic donor group are essential for obtaining phosphors with emission ranging from sky-blue to saturated red, while the N--N chelates such as 2-pyridyl-C-linked azolates are found useful for serving as true-blue chromophores due to their increased ligand-centered pi-pi* energy gap. Lastly, the remaining NHC carbene and benzyl phosphine chelates are highly desirable to serve as ancillary chelates in localizing the electronic transition between the metal and remaining lower energy chromophoric chelates. As for the potential opto-electronic applications, many of them exhibit remarkable performance data, which are convincing to pave a

  4. Enhanced Ligand Sampling for Relative Protein–Ligand Binding Free Energy Calculations

    PubMed Central

    2016-01-01

    Free energy calculations are used to study how strongly potential drug molecules interact with their target receptors. The accuracy of these calculations depends on the accuracy of the molecular dynamics (MD) force field as well as proper sampling of the major conformations of each molecule. However, proper sampling of ligand conformations can be difficult when there are large barriers separating the major ligand conformations. An example of this is for ligands with an asymmetrically substituted phenyl ring, where the presence of protein loops hinders the proper sampling of the different ring conformations. These ring conformations become more difficult to sample when the size of the functional groups attached to the ring increases. The Adaptive Integration Method (AIM) has been developed, which adaptively changes the alchemical coupling parameter λ during the MD simulation so that conformations sampled at one λ can aid sampling at the other λ values. The Accelerated Adaptive Integration Method (AcclAIM) builds on AIM by lowering potential barriers for specific degrees of freedom at intermediate λ values. However, these methods may not work when there are very large barriers separating the major ligand conformations. In this work, we describe a modification to AIM that improves sampling of the different ring conformations, even when there is a very large barrier between them. This method combines AIM with conformational Monte Carlo sampling, giving improved convergence of ring populations and the resulting free energy. This method, called AIM/MC, is applied to study the relative binding free energy for a pair of ligands that bind to thrombin and a different pair of ligands that bind to aspartyl protease β-APP cleaving enzyme 1 (BACE1). These protein–ligand binding free energy calculations illustrate the improvements in conformational sampling and the convergence of the free energy compared to both AIM and AcclAIM. PMID:25906170

  5. Modeling Conformational Transitions and Energetics of Ligand Binding with the Glutamate Receptor Ligand Binding Domain

    NASA Astrophysics Data System (ADS)

    Kurnikova, Maria

    2009-03-01

    Understanding of protein motion and energetics of conformational transitions is crucial to understanding protein function. The glutamate receptor ligand binding domain (GluR2 S1S2) is a two lobe protein, which binds ligand at the interface of two lobes and undergoes conformational transition. The cleft closure conformational transition of S1S2 has been implicated in gating of the ion channel formed by the transmembrane domain of the receptor. In this study we present a composite multi-faceted theoretical analysis of the detailed mechanism of this conformational transition based on rigid cluster decomposition of the protein structure [1] and identifying hydrogen bonds that are responsible for stabilizing the closed conformation [2]. Free energy of the protein reorganization upon ligand binding was calculated using combined Thermodynamic Integration (TI) and Umbrella Sampling (US) simulations [3]. Ligand -- protein interactions in the binding cleft were analyzed using Molecular Dynamics, continuum electrostatics and QM/MM models [4]. All model calculations compare well with corresponding experimental measurements. [4pt] [1] Protein Flexibility using Constraints from Molecular Dynamics Simulations T. Mamonova, B. Hespenheide, R. Straub, M. F. Thorpe, M. G. Kurnikova , Phys. Biol., 2, S137 (2005)[0pt] [2] Theoretical Study of the Glutamate Receptor Ligand Binding Domain Flexibility and Conformational Reorganization T. Mamonova, K. Speranskiy, and M. Kurnikova , Prot.: Struct., Func., Bioinf., 73,656 (2008)[0pt] [3] Energetics of the cleft closing transition and glutamate binding in the Glutamate Receptor ligand Binding Domain T. Mamonova, M. Yonkunas, and M. Kurnikova Biochemistry 47, 11077 (2008)[0pt] [4] On the Binding Determinants of the Glutamate Agonist with the Glutamate Receptor Ligand Binding Domain K. Speranskiy and M. Kurnikova Biochemistry 44, 11208 (2005)

  6. Selective oxoanion separation using a tripodal ligand

    DOEpatents

    Custelcean, Radu; Moyer, Bruce A.; Rajbanshi, Arbin

    2016-02-16

    The present invention relates to urea-functionalized crystalline capsules self-assembled by sodium or potassium cation coordination and by hydrogen-bonding water bridges to selectively encapsulate tetrahedral divalent oxoanions from highly competitive aqueous alkaline solutions and methods using this system for selective anion separations from industrial solutions. The method involves competitive crystallizations using a tripodal tris(urea) functionalized ligand and, in particular, provides a viable approach to sulfate separation from nuclear wastes.

  7. EGFR Activation by Spatially Restricted Ligands

    DTIC Science & Technology

    2006-06-01

    the level of ligand production, that result in human breast cancer. We have integrated genetic and biochemical methods to study (1) the effects of a...and spindle-B encode components of the RAD52 DNA repair pathway and affect meiosis and patterning in Drosophila oogenesis. Genes Dev 12, 2711-2723...findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy or decision

  8. Epithelial chloride channel. Development of inhibitory ligands

    PubMed Central

    1987-01-01

    Chloride channels are present in the majority of epithelial cells, where they mediate absorption or secretion of NaCl. Although the absorptive and secretory channels are well characterized in terms of their electrophysiological behavior, there is a lack of pharmacological ligands that can aid us in further functional and eventually molecular characterization. To obtain such ligands, we prepared membrane vesicles from bovine kidney cortex and apical membrane vesicles from trachea and found that they contain a chloride transport process that is electrically conductive. This conductance was reduced by preincubating the vesicles in media containing ATP or ATP-gamma-S, but not beta- methylene ATP, which suggests that the membranes contain a kinase that can close the channels. We then screened compounds derived from three classes: indanyloxyacetic acid (IAA), anthranilic acid (AA), and ethacrynic acid. We identified potent inhibitors from the IAA and the AA series. We tritiated IAA-94 and measured binding of this ligand to the kidney cortex membrane vesicles and found a high-affinity binding site whose dissociation constant (0.6 microM) was similar to the inhibition constant (1 microM). There was a good correlation between the inhibitory potency of several IAA derivatives and their efficacy in displacing [3H]IAA-94 from its binding site. Further, other chloride channel inhibitors, including AA derivatives, ethacrynic acid, bumetanide, and DIDS, also displaced the ligand from its binding site. A similar conductance was found in apical membrane vesicles from bovine trachea that was also inhibited by IAA-94 and AA-130B, but the inhibitory effects of these compounds were weaker than their effects on the renal cortex channel. The two drugs were also less potent in displacing [3H]IAA-94 from the tracheal binding site. PMID:2450168

  9. Targeting Selectins and Their Ligands in Cancer.

    PubMed

    Natoni, Alessandro; Macauley, Matthew S; O'Dwyer, Michael E

    2016-01-01

    Aberrant glycosylation is a hallmark of cancer cells with increased evidence pointing to a role in tumor progression. In particular, aberrant sialylation of glycoproteins and glycolipids has been linked to increased immune cell evasion, drug evasion, drug resistance, tumor invasiveness, and vascular dissemination, leading to metastases. Hypersialylation of cancer cells is largely the result of overexpression of sialyltransferases (STs). Differentially, humans express twenty different STs in a tissue-specific manner, each of which catalyzes the attachment of sialic acids via different glycosidic linkages (α2-3, α2-6, or α2-8) to the underlying glycan chain. One important mechanism whereby overexpression of STs contributes to an enhanced metastatic phenotype is via the generation of selectin ligands. Selectin ligand function requires the expression of sialyl-Lewis X and its structural isomer sialyl-Lewis A, which are synthesized by the combined action of alpha α1-3-fucosyltransferases, α2-3-sialyltransferases, β1-4-galactosyltranferases, and N-acetyl-β-glucosaminyltransferases. The α2-3-sialyltransferases ST3Gal4 and ST3Gal6 are critical to the generation of functional E- and P-selectin ligands and overexpression of these STs have been linked to increased risk of metastatic disease in solid tumors and poor outcome in multiple myeloma. Thus, targeting selectins and their ligands as well as the enzymes involved in their generation, in particular STs, could be beneficial to many cancer patients. Potential strategies include ST inhibition and the use of selectin antagonists, such as glycomimetic drugs and antibodies. Here, we review ongoing efforts to optimize the potency and selectivity of ST inhibitors, including the potential for targeted delivery approaches, as well as evaluate the potential utility of selectin inhibitors, which are now in early clinical development.

  10. Targeting Selectins and Their Ligands in Cancer

    PubMed Central

    Natoni, Alessandro; Macauley, Matthew S.; O’Dwyer, Michael E.

    2016-01-01

    Aberrant glycosylation is a hallmark of cancer cells with increased evidence pointing to a role in tumor progression. In particular, aberrant sialylation of glycoproteins and glycolipids has been linked to increased immune cell evasion, drug evasion, drug resistance, tumor invasiveness, and vascular dissemination, leading to metastases. Hypersialylation of cancer cells is largely the result of overexpression of sialyltransferases (STs). Differentially, humans express twenty different STs in a tissue-specific manner, each of which catalyzes the attachment of sialic acids via different glycosidic linkages (α2-3, α2-6, or α2-8) to the underlying glycan chain. One important mechanism whereby overexpression of STs contributes to an enhanced metastatic phenotype is via the generation of selectin ligands. Selectin ligand function requires the expression of sialyl-Lewis X and its structural isomer sialyl-Lewis A, which are synthesized by the combined action of alpha α1-3-fucosyltransferases, α2-3-sialyltransferases, β1-4-galactosyltranferases, and N-acetyl-β-glucosaminyltransferases. The α2-3-sialyltransferases ST3Gal4 and ST3Gal6 are critical to the generation of functional E- and P-selectin ligands and overexpression of these STs have been linked to increased risk of metastatic disease in solid tumors and poor outcome in multiple myeloma. Thus, targeting selectins and their ligands as well as the enzymes involved in their generation, in particular STs, could be beneficial to many cancer patients. Potential strategies include ST inhibition and the use of selectin antagonists, such as glycomimetic drugs and antibodies. Here, we review ongoing efforts to optimize the potency and selectivity of ST inhibitors, including the potential for targeted delivery approaches, as well as evaluate the potential utility of selectin inhibitors, which are now in early clinical development. PMID:27148485

  11. Shedding Light on Anesthetic Mechanisms: Application of Photoaffinity Ligands

    PubMed Central

    Woll, Kellie A.; Dailey, William P.; Brannigan, Grace; Eckenhoff, Roderic G.

    2016-01-01

    Anesthetic photoaffinity ligands have had an increasing presence within anesthesiology research. These ligands mimic parent general anesthetics, and allow investigators to study anesthetic interactions with receptors and enzymes; identify novel targets; and determine distribution within biological systems. To date nearly all general anesthetics used in medicine have a corresponding photoaffinity ligand represented in the literature. In this review we examine all aspects of the current methodologies, including ligand design, characterization and deployment. Finally we offer points of consideration and highlight the future outlook as more photoaffinity ligands emerge within the field. PMID:27464974

  12. Shedding Light on Anesthetic Mechanisms: Application of Photoaffinity Ligands.

    PubMed

    Woll, Kellie A; Dailey, William P; Brannigan, Grace; Eckenhoff, Roderic G

    2016-11-01

    Anesthetic photoaffinity ligands have had an increasing presence within anesthesiology research. These ligands mimic parent general anesthetics and allow investigators to study anesthetic interactions with receptors and enzymes; identify novel targets; and determine distribution within biological systems. To date, nearly all general anesthetics used in medicine have a corresponding photoaffinity ligand represented in the literature. In this review, we examine all aspects of the current methodologies, including ligand design, characterization, and deployment. Finally we offer points of consideration and highlight the future outlook as more photoaffinity ligands emerge within the field.

  13. CC chemokine ligand 2 and CXC chemokine ligand 8 as neutrophil chemoattractant factors in canine idiopathic polyarthritis.

    PubMed

    Murakami, Kohei; Maeda, Shingo; Yonezawa, Tomohiro; Matsuki, Naoaki

    2016-12-01

    Canine idiopathic polyarthritis (IPA) is characterized by increased numbers of polymorphonuclear leukocytes (PMNs) in the synovial fluid (SF). In humans, CC chemokine ligand 2 (CCL2) and CXC chemokine ligand 8 (CXCL8) recruit monocytes and neutrophils, respectively, and are involved in various inflammatory disorders. The aim of this study was to assess the roles of these chemokines in driving PMNs infiltration into the joints of dogs with IPA. SF samples were collected from dogs with IPA (n=19) and healthy controls (n=8), and the concentrations of SF CCL2 and CXCL8 were determined by ELISA. Dogs with IPA had significantly higher concentrations of CCL2 (3316±2452pg/ml, mean±SD) and CXCL8 (3668±3879pg/ml) compared with the healthy controls (235±45pg/ml and <15.6pg/ml, respectively). Then, an in vitro chemotaxis assay was performed using a modified Boyden chamber (pore size: 3μm). SF from IPA dogs had a chemoattractant activity for PMNs that purified from the peripheral blood of a healthy dog. We subsequently found that combination treatment with MK-0812 (an antagonist of CCL2 receptor) and repertaxin (an antagonist of CXCL8 receptors) significantly inhibited the migration of PMNs to SF from IPA dogs. Thus, expression of the CCL2 receptor (chemokine (CC motif) receptor 2 (CCR2)) was examined using polymerase chain reaction and immunocytochemistry. Canine peripheral blood PMNs exhibited significantly higher CCR2 mRNA expression levels than those in monocytes. In addition, we observed strong CCR2 expression on PMNs obtained from healthy controls and IPA dogs, although mononuclear cells did not express CCR2. Taken together, the data suggest that CCL2 acts as a canine PMNs chemotactic factor as well as CXCL8 and both CCL2 and CXCL8 facilitate the infiltration of PMNs into the joints of dogs with IPA. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Amino acid ionic liquids as chiral ligands in ligand-exchange chiral separations.

    PubMed

    Liu, Qian; Wu, Kangkang; Tang, Fei; Yao, Lihua; Yang, Fei; Nie, Zhou; Yao, Shouzhuo

    2009-09-28

    Recently, amino acid ionic liquids (AAILs) have attracted much research interest. In this paper, we present the first application of AAILs in chiral separation based on the chiral ligand exchange principle. By using 1-alkyl-3-methylimidazolium L-proline (L-Pro) as a chiral ligand coordinated with copper(II), four pairs of underivatized amino acid enantiomers-dl-phenylalanine (dl-Phe), dl-histidine (dl-His), dl-tryptophane (dl-Trp), and dl-tyrosine (dl-Tyr)-were successfully separated in two major chiral separation techniques, HPLC and capillary electrophoresis (CE), with higher enantioselectivity than conventionally used amino acid ligands (resolution (R(s))=3.26-10.81 for HPLC; R(s)=1.34-4.27 for CE). Interestingly, increasing the alkyl chain length of the AAIL cation remarkably enhanced the enantioselectivity. It was inferred that the alkylmethylimidazolium cations and L-Pro form ion pairs on the surface of the stationary phase or on the inner surface of the capillary. The ternary copper complexes with L-Pro are consequently attached to the support surface, thus inducing an ion-exchange type of retention for the dl-enantiomers. Therefore, the AAIL cation plays an essential role in the separation. This work demonstrates that AAILs are good alternatives to conventional amino acid ligands for ligand-exchange-based chiral separation. It also reveals the tremendous application potential of this new type of task-specific ILs.

  15. Temporary and Travelling Exhibitions. Museums and Monuments, X.

    ERIC Educational Resources Information Center

    Daifuku, Hiroshi; And Others

    The permanent exhibition, the most typical form of museum exhibition, has failed to attract repeated visitation, since visitors quickly become familiar with the objects shown. The temporary exhibition evolved as a result for the need of repeated visitation. The temporary exhibition, set up for a period of one to six months, introduces fresh…

  16. 77 FR 31909 - Culturally Significant Objects Imported for Exhibition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... exhibition ``50th Anniversary Remembrance of the Tragedy at Orly,'' imported from abroad by the High Museum of Art for temporary exhibition within the United States, is of cultural significance. The object is... exhibition or display of the exhibit object at the High Museum of Art in Atlanta, Georgia from on or about...

  17. FT-Raman and FT-IR spectra of some heterobimetallic complexes with phenylcyclopentadienyl ligands

    NASA Astrophysics Data System (ADS)

    Nie, Chong-Shi; Guo, Jianhua; Qian, Changtao; Tan, Ying

    1996-11-01

    The FT-Raman and selected IR spectra of 14 heterobimetallic complexes of (CO) 3CrC 6H 5-C 5H 4M(CO) n(NO) mX (M = transition metal, X = other ligands) are reported. FT-Raman exhibits distinct strong characteristic bands of coordinated C 6H 5-C 5H 4 ligand ring deformation near 1540, 1490 and 1280 cm -1 and the coordinated phenyl ring deformation mode near 1000 cm -1, which are negligible in IR spectra. It is also easy to find the M-CO stretching and M-C-O bending as well as phenyl-M stretching bands in the FT-Raman spectra. The v(CO) IR absorptions in THF solution were reasonably assigned according to the local symmetry of the complexes.

  18. A Synthetic MUC1 Anticancer Vaccine Containing Mannose Ligands for Targeting Macrophages and Dendritic Cells.

    PubMed

    Glaffig, Markus; Stergiou, Natascha; Hartmann, Sebastian; Schmitt, Edgar; Kunz, Horst

    2018-01-08

    A MUC1 anticancer vaccine equipped with covalently linked divalent mannose ligands was found to improve the antigen uptake and presentation by targeting mannose-receptor-positive macrophages and dendritic cells. It induced much stronger specific IgG immune responses in mice than the non-mannosylated reference vaccine. Mannose coupling also led to increased numbers of macrophages, dendritic cells, and CD4 + T cells in the local lymph organs. Comparison of di- and tetravalent mannose ligands revealed an increased binding of the tetravalent version, suggesting that higher valency improves binding to the mannose receptor. The mannose-coupled vaccine and the non-mannosylated reference vaccine induced IgG antibodies that exhibited similar binding to human breast tumor cells. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. ProBiS-ligands: a web server for prediction of ligands by examination of protein binding sites.

    PubMed

    Konc, Janez; Janežič, Dušanka

    2014-07-01

    The ProBiS-ligands web server predicts binding of ligands to a protein structure. Starting with a protein structure or binding site, ProBiS-ligands first identifies template proteins in the Protein Data Bank that share similar binding sites. Based on the superimpositions of the query protein and the similar binding sites found, the server then transposes the ligand structures from those sites to the query protein. Such ligand prediction supports many activities, e.g. drug repurposing. The ProBiS-ligands web server, an extension of the ProBiS web server, is open and free to all users at http://probis.cmm.ki.si/ligands. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. ‘Partial’ competition of heterobivalent ligand binding may be mistaken for allosteric interactions: a comparison of different target interaction models

    PubMed Central

    Vauquelin, Georges; Hall, David; Charlton, Steven J

    2015-01-01

    Background and Purpose Non-competitive drugs that confer allosteric modulation of orthosteric ligand binding are of increasing interest as therapeutic agents. Sought-after advantages include a ceiling level to drug effect and greater receptor-subtype selectivity. It is thus important to determine the mode of interaction of newly identified receptor ligands early in the drug discovery process and binding studies with labelled orthosteric ligands constitute a traditional approach for this. According to the general allosteric ternary complex model, allosteric ligands that exhibit negative cooperativity may generate distinctive ‘competition’ curves: they will not reach baseline levels and their nadir will increase in par with the orthosteric ligand concentration. This behaviour is often considered a key hallmark of allosteric interactions. Experimental Approach The present study is based on differential equation-based simulations. Key Results The differential equation-based simulations revealed that the same ‘competition binding’ pattern was also obtained when a monovalent ligand binds to one of the target sites of a heterobivalent ligand, even if this process is exempt of allosteric interactions. This pattern was not strictly reciprocal when the binding of each of the ligands was recorded. The prominence of this phenomenon may vary from one heterobivalent ligand to another and we suggest that this phenomenon may take place with ligands that have been proposed to bind according to ‘two-domain’ and ‘charnière’ models. Conclusions and Implications The present findings indicate a familiar experimental situation where bivalency may give rise to observations that could inadvertently be interpreted as allosteric binding. Yet, both mechanisms could be differentiated based on alternative experiments and structural considerations. PMID:25537684

  1. Synthesis, characterization and electrochemistry studies of iron(III) complex with curcumin ligand.

    PubMed

    Özbolat, Gülüzar; Yegani, Arash Alizadeh; Tuli, Abdullah

    2018-05-11

    Iron overload is a serious clinical condition for humans and is a key target in drug development. The aim of this study was to investigate the coordination of iron(III) ions with curcumin ligand that may be used in the treatment of iron overload. Iron(III) complex of curcumin was synthesized and structurally characterized in its solid and solution state by FT-IR, UV-Vis, elemental analysis, and magnetic susceptibility. Electrochemical behaviour of the ligand and the complexes were examined using cyclic voltammetry. The cytotoxic activities of the ligand and the iron(III) complex were evaluated by the MTT assay. Curcumin reacted with iron in high concentrations at physiological pH at room temperature. Subsequently, a brown-red complex was formed. Data regarding magnetic susceptibility showed that the complexes with a 1:2 (metal/ligand) mole ratio had octahedral geometry. The complex showed higher anti-oxidant effect towards the cell line ECV304 at IC 50 values of 4.83 compared to curcumin. The complex exhibited very high cytotoxic activity and showed a cytotoxic effect that was much better than that of the ligand. The potentials for redox were calculated as 0.180 V and 0.350 V, respectively. The electrochemistry studies showed that Fe 3+ /Fe 2+ couple redox process occurred at low potentials. This value was within the range of compounds that are expected to show superoxide dismutase activity. This finding indicates that the iron complex is capable of removing free radicals. The observed cytotoxicity could be pursued to obtain a potential drug. Further studies investigating the use of curcumin for this purpose are needed. © 2018 John Wiley & Sons Australia, Ltd.

  2. Liposome-based glioma targeted drug delivery enabled by stable peptide ligands.

    PubMed

    Wei, Xiaoli; Gao, Jie; Zhan, Changyou; Xie, Cao; Chai, Zhilan; Ran, Danni; Ying, Man; Zheng, Ping; Lu, Weiyue

    2015-11-28

    The treatment of glioma is one of the most challenging tasks in clinic. As an intracranial tumor, glioma exhibits many distinctive characteristics from other tumors. In particular, various barriers including enzymatic barriers in the blood and brain capillary endothelial cells, blood-brain barrier (BBB) and blood-brain tumor barrier (BBTB) rigorously prevent drug and drug delivery systems from reaching the tumor site. To tackle this dilemma, we developed a liposomal formulation to circumvent multiple-barriers by modifying the liposome surface with proteolytically stable peptides, (D)CDX and c(RGDyK). (D)CDX is a D-peptide ligand of nicotine acetylcholine receptors (nAChRs) on the BBB, and c(RGDyK) is a ligand of integrin highly expressed on the BBTB and glioma cells. Lysosomal compartments of brain capillary endothelial cells are implicated in the transcytosis of those liposomes. However, both peptide ligands displayed exceptional stability in lysosomal homogenate, ensuring that intact ligands could exert subsequent exocytosis from brain capillary endothelial cells and glioma targeting. In the cellular uptake studies, dually labeled liposomes could target both brain capillary endothelial cells and tumor cells, effectively traversing the BBB and BBTB monolayers, overcoming enzymatic barrier and targeting three-dimensional tumor spheroids. Its targeting ability to intracranial glioma was further verified in vivo by ex vivo imaging and histological studies. As a result, doxorubicin liposomes modified with both (D)CDX and c(RGDyK) presented better anti-glioma effect with prolonged median survival of nude mice bearing glioma than did unmodified liposomes and liposomes modified with individual peptide ligand. In conclusion, the liposome suggested in the present study could effectively overcome multi-barriers and accomplish glioma targeted drug delivery, validating its potential value in improving the therapeutic efficacy of doxorubicin for glioma. Copyright © 2015

  3. Synthesis, X-ray structure and cytotoxic effect of nickel(II) complexes with pyrazole ligands.

    PubMed

    Sobiesiak, Marta; Lorenz, Ingo-Peter; Mayer, Peter; Woźniczka, Magdalena; Kufelnicki, Aleksander; Krajewska, Urszula; Rozalski, Marek; Budzisz, Elzbieta

    2011-12-01

    Here we present the synthesis of the new Ni(II) complexes with chelating ligands 1-benzothiazol-2-yl-3,5-dimethyl-1H-pyrazole (a), 5-(2-hydroxyphenyl)-3-methyl-1-(2-pyridylo)-1H-pyrazole-4-carboxylic acid methyl ester (b) and 1-benzothiazol-2-yl-5-(2-hydroxyphenyl)-3-methyl-1H-pyrazole-4-carboxylic acid methyl ester (c). These ligands a-c create solid complexes with Ni(II). The crystal and molecular structures of two complexes were determined by X-ray diffraction method. Thermal stability of two complexes with ligand c by TG/DTG and DSC methods were also shown. Cytotoxic activity of all the complexes against three tumour cell lines and to normal endothelial cells (HUVEC) was also estimated. Complexes with ligand c exhibited relatively high cytotoxic activity towards HL-60 and NALM-6 leukaemia cells and WM-115 melanoma cells. Cytotoxic effectiveness of one of these complexes against melanoma WM-115 cells was two times higher than that of cisplatin. The protonation constant log K=9.63 of ligand b corresponding to the phenol 2-hydroxy group has been determined in 10% (v/v) DMSO/water solution (25°C). The coordination modes (formation of two monomeric species: NiL and NiL(2)) in the complexes with Ni(II) are discussed for b on the basis of the potentiometric and UV/Vis data. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  4. Defining the property space for chromatographic ligands from a homologous series of mixed-mode ligands.

    PubMed

    Woo, James A; Chen, Hong; Snyder, Mark A; Chai, Yiming; Frost, Russell G; Cramer, Steven M

    2015-08-14

    A homologous ligand library based on the commercially-available Nuvia cPrime ligand was generated to systematically explore various features of a multimodal cation-exchange ligand and to identify structural variants that had significantly altered chromatographic selectivity. Substitution of the polar amide bond with more hydrophobic chemistries was found to enhance retention while remaining hydrophobically-selective for aromatic residues. In contrast, increasing the solvent exposure of the aromatic ring was observed to strengthen the ligand affinity for both types of hydrophobic residues. An optimal linker length between the charged and hydrophobic moieties was also observed to enhance retention, balancing the steric accessibility of the hydrophobic moiety with its ability to interact independently of the charged group. The weak pKa of the carboxylate charge group was found to have a notable impact on protein retention on Nuvia cPrime at lower pH, increasing hydrophobic interactions with the protein. Substituting the charged group with a sulfonic acid allowed this strong MM ligand to retain its electrostatic-dominant character in this lower pH range. pH gradient experiments were also carried out to further elucidate this pH dependent behavior. A single QSAR model was generated using this accumulated experimental data to predict protein retention across a range of multimodal and ion exchange systems. This model could correctly predict the retention of proteins on resins that were not included in the original model and could prove quite powerful as an in silico approach toward designing more effective and differentiated multimodal ligands. Copyright © 2015. Published by Elsevier B.V.

  5. Proteins with similar architecture exhibit similar large-scale dynamic behavior.

    PubMed Central

    Keskin, O; Jernigan, R L; Bahar, I

    2000-01-01

    We have investigated the similarities and differences in the computed dynamic fluctuations exhibited by six members of a protein fold family with a coarse-grained Gaussian network model. Specifically, we consider the cofactor binding fragment of CysB; the lysine/arginine/ornithine-binding protein (LAO); the enzyme porphobilinogen deaminase (PBGD); the ribose-binding protein (RBP); the N-terminal lobe of ovotransferrin in apo-form (apo-OVOT); and the leucine/isoleucine/valine-binding protein (LIVBP). All have domains that resemble a Rossmann fold, but there are also some significant differences. Results indicate that similar global dynamic behavior is preserved for the members of a fold family, and that differences usually occur in regions only where specific function is localized. The present work is a computational demonstration that the scaffold of a protein fold may be utilized for diverse purposes. LAO requires a bound ligand before it conforms to the large-scale fluctuation behavior of the three other members of the family, CysB, PBGD, and RBP, all of which contain a substrate (cofactor) at the active site cleft. The dynamics of the ligand-free enzymes LIVBP and apo-OVOT, on the other hand, concur with that of unliganded LAO. The present results suggest that it is possible to construct structure alignments based on dynamic fluctuation behavior. PMID:10733987

  6. Near-infrared-emitting colloidal Ag2S quantum dots exhibiting upconversion luminescence

    NASA Astrophysics Data System (ADS)

    Zhang, Yanyan; Jiang, Danyu; Yang, Wei; Wang, Dandan; Zheng, Huiping; Du, Yuansheng; Li, Xi; Li, Qiang

    2017-02-01

    Ag2S quantum dots (QDs) coated with thioglycolic acid (Ag2S QDs-TGA) have been synthesized in an organic solvent via a stepwise addition of reagents. When excited by a 980 nm laser, the near-infrared-emitting colloidal Ag2S QDs-TGA exhibit upconversion luminescence (UCL). The observed photoluminescence (PL) was attributed to the presence of ligand-modified Ag2S on the QD surfaces. Hence, upon dilution of the solution, the PL intensity initially increased before subsequently decreasing, accompanied by a blue shift in the PL spectra. The PL phenomena can be attributed to the increase in the amount of ligand-modified Ag2S on the QD surfaces upon dilution, which in turn affected the fluorescence resonance energy transfer (FRET) and re-emission of the surface energy level. The relations between the emission intensity of Ag2S QDs-TGA and the excitation power are investigated, and the results confirm that the UCL in Ag2S QDs-TGA can be ascribed to a two-photon-assisted absorption process via a real energy state.

  7. Redox chemistry of nickel(II) complexes supported by a series of noninnocent β-diketiminate ligands.

    PubMed

    Takaichi, June; Morimoto, Yuma; Ohkubo, Kei; Shimokawa, Chizu; Hojo, Takayuki; Mori, Seiji; Asahara, Haruyasu; Sugimoto, Hideki; Fujieda, Nobutaka; Nishiwaki, Nagatoshi; Fukuzumi, Shunichi; Itoh, Shinobu

    2014-06-16

    Nickel complexes of a series of β-diketiminate ligands ((R)L(-), deprotonated form of 2-substituted N-[3-(phenylamino)allylidene]aniline derivatives (R)LH, R = Me, H, Br, CN, and NO2) have been synthesized and structurally characterized. One-electron oxidation of the neutral complexes [Ni(II)((R)L(-))2] by AgSbF6 or [Ru(III)(bpy)3](PF6)3 (bpy = 2,2'-bipyridine) gave the corresponding metastable cationic complexes, which exhibit an EPR spectrum due to a doublet species (S = 1/2) and a characteristic absorption band in near IR region ascribable to a ligand-to-ligand intervalence charge-transfer (LLIVCT) transition. DFT calculations have indicated that the divalent oxidation state of nickel ion (Ni(II)) is retained, whereas one of the β-diketiminate ligands is oxidized to give formally a mixed-valence complex, [Ni(II)((R)L(-))((R)L(•))](+). Thus, the doublet spin state of the oxidized cationic complex can be explained by taking account of the antiferromagnetic interaction between the high-spin nickel(II) ion (S = 1) and the organic radical (S = 1/2) of supporting ligand. A single-crystal structure of one of the cationic complexes (R = H) has been successfully determined to show that both ligands in the cationic complex are structurally equivalent. On the basis of theoretical analysis of the LLIVCT band and DFT calculations as well as the crystal structure, the mixed-valence complexes have been assigned to Robin-Day class III species, where the radical spin is equally delocalized between the two ligands to give the cationic complex, which is best described as [Ni(II)((R)L(0.5•-))2](+). One-electron reduction of the neutral complexes with decamethylcobaltocene gave the anionic complexes when the ligand has the electron-withdrawing substituent (R = CN, NO2, Br). The generated anionic complexes exhibited EPR spectra due to a doublet species (S = 1/2) but showed no LLIVCT band in the near-IR region. Thus, the reduced complexes are best described as the d(9) nickel

  8. Ligand cluster-based protein network and ePlatton, a multi-target ligand finder.

    PubMed

    Du, Yu; Shi, Tieliu

    2016-01-01

    Small molecules are information carriers that make cells aware of external changes and couple internal metabolic and signalling pathway systems with each other. In some specific physiological status, natural or artificial molecules are used to interact with selective biological targets to activate or inhibit their functions to achieve expected biological and physiological output. Millions of years of evolution have optimized biological processes and pathways and now the endocrine and immune system cannot work properly without some key small molecules. In the past thousands of years, the human race has managed to find many medicines against diseases by trail-and-error experience. In the recent decades, with the deepening understanding of life and the progress of molecular biology, researchers spare no effort to design molecules targeting one or two key enzymes and receptors related to corresponding diseases. But recent studies in pharmacogenomics have shown that polypharmacology may be necessary for the effects of drugs, which challenge the paradigm, 'one drug, one target, one disease'. Nowadays, cheminformatics and structural biology can help us reasonably take advantage of the polypharmacology to design next-generation promiscuous drugs and drug combination therapies. 234,591 protein-ligand interactions were extracted from ChEMBL. By the 2D structure similarity, 13,769 ligand emerged from 156,151 distinct ligands which were recognized by 1477 proteins. Ligand cluster- and sequence-based protein networks (LCBN, SBN) were constructed, compared and analysed. For assisting compound designing, exploring polypharmacology and finding possible drug combination, we integrated the pathway, disease, drug adverse reaction and the relationship of targets and ligand clusters into the web platform, ePlatton, which is available at http://www.megabionet.org/eplatton. Although there were some disagreements between the LCBN and SBN, communities in both networks were largely the same

  9. A two-dimensional layered Cd(II) coordination polymer with a three-dimensional supramolecular architecture incorporating mixed multidentate N- and O-donor ligands.

    PubMed

    Huang, Qiu-Ying; Su, Ming-Yang; Meng, Xiang-Ru

    2015-06-01

    The combination of N-heterocyclic and multicarboxylate ligands is a good choice for the construction of metal-organic frameworks. In the title coordination polymer, poly[bis{μ2-1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole-κ(2)N(3):N(4)}(μ4-butanedioato-κ(4)O(1):O(1'):O(4):O(4'))(μ2-butanedioato-κ(2)O(1):O(4))dicadmium], [Cd(C4H4O4)(C9H8N6)]n, each Cd(II) ion exhibits an irregular octahedral CdO4N2 coordination geometry and is coordinated by four O atoms from three carboxylate groups of three succinate (butanedioate) ligands and two N atoms from two 1-[(1H-benzimidazol-2-yl)methyl]-1H-tetrazole (bimt) ligands. Cd(II) ions are connected by two kinds of crystallographically independent succinate ligands to generate a two-dimensional layered structure with bimt ligands located on each side of the layer. Adjacent layers are further connected by hydrogen bonding, leading to a three-dimensional supramolecular architecture in the solid state. Thermogravimetric analysis of the title polymer shows that it is stable up to 529 K and then loses weight from 529 to 918 K, corresponding to the decomposition of the bimt ligands and succinate groups. The polymer exhibits a strong fluorescence emission in the solid state at room temperature.

  10. Ligand combination strategy for the preparation of novel low-dimensional and open-framework metal cluster materials

    NASA Astrophysics Data System (ADS)

    Anokhina, Ekaterina V.

    Low-dimensional and open-framework materials containing transition metals have a wide range of applications in redox catalysis, solid-state batteries, and electronic and magnetic devices. This dissertation reports on research carried out with the goal to develop a strategy for the preparation of low-dimensional and open-framework materials using octahedral metal clusters as building blocks. Our approach takes its roots from crystal engineering principles where the desired framework topologies are achieved through building block design. The key idea of this work is to induce directional bonding preferences in the cluster units using a combination of ligands with a large difference in charge density. This investigation led to the preparation and characterization of a new family of niobium oxychloride cluster compounds with original structure types exhibiting 1ow-dimensional or open-framework character. Most of these materials have framework topologies unprecedented in compounds containing octahedral clusters. Comparative analysis of their structural features indicates that the novel cluster connectivity patterns in these systems are the result of complex interplay between the effects of anisotropic ligand arrangement in the cluster unit and optimization of ligand-counterion electrostatic interactions. The important role played by these factors sets niobium oxychloride systems apart from cluster compounds with one ligand type or statistical ligand distribution where the main structure-determining factor is the total number of ligands. These results provide a blueprint for expanding the ligand combination strategy to other transition metal cluster systems and for the future rational design of cluster-based materials.

  11. Synthesis, structural elucidation, biological, antioxidant and nuclease activities of some 5-Fluorouracil-amino acid mixed ligand complexes

    NASA Astrophysics Data System (ADS)

    Shobana, Sutha; Subramaniam, Perumal; Mitu, Liviu; Dharmaraja, Jeyaprakash; Arvind Narayan, Sundaram

    2015-01-01

    Some biologically active mixed ligand complexes (1-9) have been synthesized from 5-Fluorouracil (5-FU; A) and amino acids (B) such as glycine (gly), L-alanine (ala) and L-valine (val) with Ni(II), Cu(II) and Zn(II) ions. The synthesized mixed ligand complexes (1-9) were characterized by various physico-chemical, spectral, thermal and morphological studies. 5-Fluorouracil and its mixed ligand complexes have been tested for their in vitro biological activities against some pathogenic bacterial and fungal species by the agar well diffusion method. The in vitro antioxidant activities of 5-Fluorouracil and its complexes have also been investigated by using the DPPH assay method. The results demonstrate that Cu(II) mixed ligand complexes (4-6) exhibit potent biological as well as antioxidant activities compared to 5-Fluorouracil and Ni(II) (1-3) and Zn(II) (7-9) mixed ligand complexes. Further, the cleaving activities of CT DNA under aerobic conditions show moderate activity with the synthesized Cu(II) and Ni(II) mixed ligand complexes (1-6) while no activity is seen with Zn(II) complexes (7-9). Binding studies of CT DNA with these complexes show a decrease in intensity of the charge transfer band to the extent of 5-15% along with a minor red shift. The free energy change values (Δ‡G) calculated from intrinsic binding constants indicate that the interaction between mixed ligand complex and DNA is spontaneous.

  12. Cooperative Allosteric Ligand Binding in Calmodulin

    NASA Astrophysics Data System (ADS)

    Nandigrami, Prithviraj

    Conformational dynamics is often essential for a protein's function. For example, proteins are able to communicate the effect of binding at one site to a distal region of the molecule through changes in its conformational dynamics. This so called allosteric coupling fine tunes the sensitivity of ligand binding to changes in concentration. A conformational change between a "closed" (apo) and an "open" (holo) conformation upon ligation often produces this coupling between binding sites. Enhanced sensitivity between the unbound and bound ensembles leads to a sharper binding curve. There are two basic conceptual frameworks that guide our visualization about ligand binding mechanisms. First, a ligand can stabilize the unstable "open" state from a dynamic ensemble of conformations within the unbound basin. This binding mechanism is called conformational selection. Second, a ligand can weakly bind to the low-affinity "closed" state followed by a conformational transition to the "open" state. In this dissertation, I focus on molecular dynamics simulations to understand microscopic origins of ligand binding cooperativity. A minimal model of allosteric binding transitions must include ligand binding/unbinding events, while capturing the transition mechanism between two distinct meta-stable free energy basins. Due in part to computational timescales limitations, work in this dissertation describes large-scale conformational transitions through a simplified, coarse-grained model based on the energy basins defined by the open and closed conformations of the protein Calmodulin (CaM). CaM is a ubiquitous calcium-binding protein consisting of two structurally similar globular domains connected by a flexible linker. The two domains of CaM, N-terminal domain (nCaM) and C-terminal domain (cCaM) consists of two helix-loop-helix motifs (the EF-hands) connected by a flexible linker. Each domain of CaM consists of two binding loops and binds 2 calcium ions each. The intact domain binds

  13. Synthesis, crystal structure, fluorescence and electrochemical studies of a new tridentate Schiff base ligand and its nickel(II) and palladium(II) complexes

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Soleymanpour, Ahmad; Kholghi Oskouei, Nasim; Notash, Behrouz; Rezvani, Seyyed Ahmad

    2014-07-01

    A new unsymmetrical tridentate Schiff base ligand was derived from the 1:1 M condensation of ortho-vanillin with 2-mercaptoethylamine. Nickel and palladium complexes were obtained by the reaction of the tridentate Schiff base ligand with nickel(II) acetate tetrahydrate and palladium(II) acetate in 2:1 M ratio. In nickel and palladium complexes the ligand was coordinated to metals via the imine N and enolic O atoms. The S groups of Schiff bases were not coordinated to the metals and S-S coupling was occured. The complexes have been found to possess 1:2 Metal:Ligand stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The complexes exhibited octahedral coordination geometry. The emission spectra of the ligand and its complexes were studied in methanol. Electrochemical properties of the ligand and its metal complexes were investigated in the CH3CN solvent at the 100 mV s-1 scan rate. The ligand and metal complexes showed both reversible and quasi-reversible processes at this scan rate. The Schiff base and its complexes have been characterized by IR, 1H NMR, UV/Vis, elemental analyses and conductometry. The crystal structure of nickel complex has been determined by single crystal X-ray diffraction.

  14. C-H functionalization: thoroughly tuning ligands at a metal ion, a chemist can greatly enhance catalyst's activity and selectivity.

    PubMed

    Shul'pin, Georgiy B

    2013-09-28

    This brief essay consists of a few "exciting stories" devoted to relations within a metal-complex catalyst between a metal ion and a coordinated ligand. When, as in the case of a human couple, the rapport of the partners is cordial and a love cements these relations, a chemist finds an ideal married couple, in other words he obtains a catalyst of choice which allows him to functionalize C-H bonds very efficiently and selectively. Examples of such lucky marriages in the catalytic world of ions and ligands are discussed here. Activity of the catalyst is characterized by turnover number (TON) or turnover frequency (TOF) as well as by yield of a target product. Introducing a chelating N,N- or N,O-ligand to the catalyst molecule (this can be an iron or manganese derivative) sharply enhances its activity. However, the activity of vanadium derivatives (with additionally added to the solution pyrazinecarboxylic acid, PCA) as well as of various osmium complexes does not dramatically depend on the nature of ligands surrounding metal ions. Complexes of these metals are very efficient catalysts in oxidations with H2O2. Osmium derivatives are record-holders exhibiting extremely high TONs whereas vanadium complexes are on the second position. Finally, elegant examples of alkane functionalization on the ions of non-transition metals (aluminium, gallium etc.) are described when one ligand within the metal complex (namely, hydroperoxyl ligand HOO(-)) helps other ligand of this complex (H2O2 molecule coordinated to the metal) to disintegrate into two species, generating very reactive hydroxyl radical. Hydrogen peroxide molecule, even ligated to the metal ion, is perfectly stable without the assistance of the neighboring HOO(-) ligand. This ligand can be easily oxidized donating an electron to its partner ligand (H2O2). In an analogous case, when the central ion in the catalyst is a transition metal, this ion changing its oxidation state can donate an electron to the coordinated H2O2

  15. An oxadiazole-functionalized ligand and its yellow-emitting Re(I) complex for organoelectronic application

    NASA Astrophysics Data System (ADS)

    Hu, Ge; Guo, Lei; Wei, Sheng; Zhang, Shuang

    2012-06-01

    A Re(I) complex of Re(CO)3(PTO)Br with 2-(pyridin-2-yl)-5-p-tolyl-1,3,4-oxadiazole (PTO) as the diamine ligand is synthesized, resulting in a phosphorescent emitter which contains oxadiazole functional moiety. Single crystal analysis confirms that oxadiazole moiety of PTO ligand participates in the coordination with Re center. Coordination ability difference between N atom from pyridine ring and that from oxadiazole moiety is found. Density functional theory calculation on the crystal suggests that the onset electronic transition owns a mixed character of metal-to-ligand-charge-transfer and ligand-to-ligand-charge-transfer. Upon photon excitation, Re(CO)3(PTO)Br exhibits a yellow emission peaking at 549 nm with a short excited state lifetime of 0.15 μs. Further measurements suggest that Re(CO)3(PTO)Br owns HOMO and LUMO energy levels of -5.79 V and -3.49 V and a high decomposition temperature of 322 °C. The optimal electroluminescence device using Re(CO)3(PTO)Br as the emitting dopant shows an orange light of 598 nm, with a maximum luminance of 4600 cd/m2 and a maximum current efficiency of 11.5 cd/A.

  16. The coordination- and photochemistry of copper(i) complexes: variation of N^N ligands from imidazole to tetrazole.

    PubMed

    Bergmann, Larissa; Braun, Carolin; Nieger, Martin; Bräse, Stefan

    2018-01-02

    The prediction of coordination modes is of high importance when structure-property relationships are discussed. Herein, the coordination chemistry of copper(i) with pyridine-amines with a varying number of coordinating N-atoms, namely pyridine-benzimidazole, -triazole and -tetrazole, or their deprotonated analogues, and different phosphines was systematically studied and the photoluminescence properties of all synthesized complexes examined and related to DFT data. Each complex was characterized by single-crystal X-ray analysis and elemental analysis, and a set of prediction rules derived for the coordination chemistry of copper(i) with these ligands. A mononuclear cationic coordination motif was found for PPh 3 or DPEPhos with all N^N ligands, which exhibits blue to green luminescence of MLCT character d(Cu) → π*(pyridine-amine ligand) with quantum yields up to 46%. With the deprotonated N^N ligands, mononuclear neutral complexes were only expected with DPEPhos. The emission's nature of this complex type is strongly dependent on the electronic effects of the N^N ligand and was characterized as (ML + IL)CT transition. In contrast to the high quantum yields up to 78% for the tetrazolate complexes (as reported before), the triazolate and imidazolate based complexes show much lower emission efficiencies below 10%. Besides the mononuclear copper(i) complexes, cluster-type complexes were obtained, which show moderate luminescence in the blue to green region of the visible spectrum (469-505 nm).

  17. Electrical and Plasmonic Properties of Ligand-Free Sn(4+) -Doped In2 O3 (ITO) Nanocrystals.

    PubMed

    Jagadeeswararao, Metikoti; Pal, Somnath; Nag, Angshuman; Sarma, D D

    2016-03-03

    Sn(4+) -doped In2 O3 (ITO) is a benchmark transparent conducting oxide material. We prepared ligand-free but colloidal ITO (8 nm, 10 % Sn(4+) ) nanocrystals (NCs) by using a post-synthesis surface-modification reaction. (CH3 )3 OBF4 removes the native oleylamine ligand from NC surfaces to give ligand-free, positively charged NCs that form a colloidal dispersion in polar solvents. Both oleylamine-capped and ligand-free ITO NCs exhibit intense absorption peaks, due to localized surface plasmon resonance (LSPR) at around λ=1950 nm. Compared with oleylamine-capped NCs, the electrical resistivity of ligand-free ITO NCs is lower by an order of magnitude (≈35 mΩ cm(-1) ). Resistivity over a wide range of temperatures can be consistently described as a composite of metallic ITO grains embedded in an insulating matrix by using a simple equivalent circuit, which provides an insight into the conduction mechanism in these systems. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Diarylethene-containing cyclometalated platinum(II) complexes: tunable photochromism via metal coordination and rational ligand design.

    PubMed

    Chan, Jacky Chi-Hung; Lam, Wai Han; Wong, Hok-Lai; Zhu, Nianyong; Wong, Wing-Tak; Yam, Vivian Wing-Wah

    2011-08-17

    The synthesis, characterization, electrochemistry, photophysics and photochromic behavior of a new class of cyclometalated platinum(II) complexes [Pt(C(∧)N)(O(∧)O)] (1a-5a and 1b-5b), where C(∧)N is a cyclometalating 2-(2'-thienyl)pyridyl (thpy) or 2-(2'-thienothienyl)pyridyl (tthpy) ligand containing the photochromic dithienylethene (DTE) unit and O(∧)O is a β-diketonato ligand of acetylacetonato (acac) or hexafluoroacetylacetonato (hfac), have been reported. The X-ray crystal structures of five of the complexes have also been determined. The electrochemical studies reveal that the first quasi-reversible reduction couple, and hence the nature of lowest unoccupied molecular orbital (LUMO) of the complexes, is sensitive to the nature of the ancillary O(∧)O ligands. Upon photoexcitation, complexes 1a-3a and 1b-3b exhibit drastic color changes, ascribed to the reversible photochromic behavior, which is found to be sensitive to the substituents on the pyridyl ring and the extent of π-conjugation of the C(∧)N ligand as well as the nature of the ancillary ligand. The thermal bleaching kinetics of complex 1a has been studied in toluene at various temperatures, and the activation barrier for the thermal cycloreversion of the complex has been determined. Density functional theory (DFT) calculations have been performed to provide an insight into the electrochemical, photophysical and photochromic properties.

  19. NiXantphos: a deprotonatable ligand for room-temperature palladium-catalyzed cross-couplings of aryl chlorides.

    PubMed

    Zhang, Jiadi; Bellomo, Ana; Trongsiriwat, Nisalak; Jia, Tiezheng; Carroll, Patrick J; Dreher, Spencer D; Tudge, Matthew T; Yin, Haolin; Robinson, Jerome R; Schelter, Eric J; Walsh, Patrick J

    2014-04-30

    Although the past 15 years have witnessed the development of sterically bulky and electron-rich alkylphosphine ligands for palladium-catalyzed cross-couplings with aryl chlorides, examples of palladium catalysts based on either triarylphosphine or bidentate phosphine ligands for efficient room temperature cross-coupling reactions with unactivated aryl chlorides are rare. Herein we report a palladium catalyst based on NiXantphos, a deprotonatable chelating aryldiphosphine ligand, to oxidatively add unactivated aryl chlorides at room temperature. Surprisingly, comparison of an extensive array of ligands revealed that under the basic reaction conditions the resultant heterobimetallic Pd-NiXantphos catalyst system outperformed all the other mono- and bidentate ligands in a deprotonative cross-coupling process (DCCP) with aryl chlorides. The DCCP with aryl chlorides affords a variety of triarylmethane products, a class of compounds with various applications and interesting biological activity. Additionally, the DCCP exhibits remarkable chemoselectivity in the presence of aryl chloride substrates bearing heteroaryl groups and sensitive functional groups that are known to undergo 1,2-addition, aldol reaction, and O-, N-, enolate-α-, and C(sp(2))-H arylations. The advantages and importance of the Pd-NiXantphos catalyst system outlined herein make it a valuable contribution for applications in Pd-catalyzed arylation reactions with aryl chlorides.

  20. NiXantphos: A Deprotonatable Ligand for Room-Temperature Palladium-Catalyzed Cross-Couplings of Aryl Chlorides

    PubMed Central

    2015-01-01

    Although the past 15 years have witnessed the development of sterically bulky and electron-rich alkylphosphine ligands for palladium-catalyzed cross-couplings with aryl chlorides, examples of palladium catalysts based on either triarylphosphine or bidentate phosphine ligands for efficient room temperature cross-coupling reactions with unactivated aryl chlorides are rare. Herein we report a palladium catalyst based on NiXantphos, a deprotonatable chelating aryldiphosphine ligand, to oxidatively add unactivated aryl chlorides at room temperature. Surprisingly, comparison of an extensive array of ligands revealed that under the basic reaction conditions the resultant heterobimetallic Pd–NiXantphos catalyst system outperformed all the other mono- and bidentate ligands in a deprotonative cross-coupling process (DCCP) with aryl chlorides. The DCCP with aryl chlorides affords a variety of triarylmethane products, a class of compounds with various applications and interesting biological activity. Additionally, the DCCP exhibits remarkable chemoselectivity in the presence of aryl chloride substrates bearing heteroaryl groups and sensitive functional groups that are known to undergo 1,2-addition, aldol reaction, and O-, N-, enolate-α-, and C(sp2)–H arylations. The advantages and importance of the Pd–NiXantphos catalyst system outlined herein make it a valuable contribution for applications in Pd-catalyzed arylation reactions with aryl chlorides. PMID:24745758

  1. Synthesis, characterization, thermal and biological evaluation of Cu (II), Co (II) and Ni (II) complexes of azo dye ligand containing sulfamethaxazole moiety

    NASA Astrophysics Data System (ADS)

    Mallikarjuna, N. M.; Keshavayya, J.; Maliyappa, M. R.; Shoukat Ali, R. A.; Venkatesh, Talavara

    2018-08-01

    A novel bioactive Cu (II), Co (II) and Ni (II) complexes of the azo dye ligand (L) derived from sulfamethoxazole were synthesized. The structures of the newly synthesized compounds were characterized by elemental analysis, molar conductance, magnetic susceptibility, FTIR, UV-visible, 1H NMR, mass, thermal and powder XRD spectral techniques. Molar conductivity measurements in DMSO solution confirmed the non-electrolytic nature of the complexes. All the synthesized metal complexes were found to be monomeric and showed square planar geometry except the Co (II) complex which has six coordinate, octahedral environment. The metal complexes have exhibited potential growth inhibitory effect against tested bacterial strains as compared to the free ligand. The ligand and complexes have also shown significant antioxidant and Calf Thymus DNA cleavage activities. Further, the in silico molecular docking studies were performed to predict the possible binding sites of the ligand (L) and its metal complexes with target receptor Glu-6P.

  2. Binding constant of cell adhesion receptors and substrate-immobilized ligands depends on the distribution of ligands

    NASA Astrophysics Data System (ADS)

    Li, Long; Hu, Jinglei; Xu, Guangkui; Song, Fan

    2018-01-01

    Cell-cell adhesion and the adhesion of cells to tissues and extracellular matrix, which are pivotal for immune response, tissue development, and cell locomotion, depend sensitively on the binding constant of receptor and ligand molecules anchored on the apposing surfaces. An important question remains of whether the immobilization of ligands affects the affinity of binding with cell adhesion receptors. We have investigated the adhesion of multicomponent membranes to a flat substrate coated with immobile ligands using Monte Carlo simulations of a statistical mesoscopic model with biologically relevant parameters. We find that the binding of the adhesion receptors to ligands immobilized on the substrate is strongly affected by the ligand distribution. In the case of ligand clusters, the receptor-ligand binding constant can be significantly enhanced due to the less translational entropy loss of lipid-raft domains in the model cell membranes upon the formation of additional complexes. For ligands randomly or uniformly immobilized on the substrate, the binding constant is rather decreased since the receptors localized in lipid-raft domains have to pay an energetic penalty in order to bind ligands. Our findings help to understand why cell-substrate adhesion experiments for measuring the impact of lipid rafts on the receptor-ligand interactions led to contradictory results.

  3. Analysis of the HIV-2 protease's adaptation to various ligands: characterization of backbone asymmetry using a structural alphabet.

    PubMed

    Triki, Dhoha; Cano Contreras, Mario Enrique; Flatters, Delphine; Visseaux, Benoit; Descamps, Diane; Camproux, Anne-Claude; Regad, Leslie

    2018-01-15

    The HIV-2 protease (PR2) is a homodimer of 99 residues with asymmetric assembly and binding various ligands. We propose an exhaustive study of the local structural asymmetry between the two monomers of all available PR2 structures complexed with various inhibitors using a structural alphabet approach. On average, PR2 exhibits asymmetry in 31% of its positions-i.e., exhibiting different backbone local conformations in the two monomers. This asymmetry was observed all along its structure, particularly in the elbow and flap regions. We first differentiated structural asymmetry conserved in most PR2 structures from the one specific to some PR2. Then, we explored the origin of the detected asymmetry in PR2. We localized asymmetry that could be induced by PR2's flexibility, allowing transition from the semi-open to closed conformations and the asymmetry potentially induced by ligand binding. This latter could be important for the PR2's adaptation to diverse ligands. Our results highlighted some differences between asymmetry of PR2 bound to darunavir and amprenavir that could explain their differences of affinity. This knowledge is critical for a better description of PR2's recognition and adaptation to various ligands and for a better understanding of the resistance of PR2 to most PR2 inhibitors, a major antiretroviral class.

  4. Thermometric titration studies of mixed ligand complexes of thorium.

    PubMed

    Kugler, G C; Carey, G H

    1970-10-01

    Mixed-ligand chelates consisting of two different multidentate ligands linked to a central thorium(IV) ion have been prepared in aqueous solution and their heats of formation studied thermo metrically. Pyrocatechol, tiron, chromotropic acid, potassium hydrogen phthalate, 8-hydroxyquinoline-S-sulphonic acid, iminodiacetic acid, 5-sulphosalicylic acid and salicylic acid were used as the secondary ligands, while ethylenediaminetetra-acetate and 1, 2-diaminocyclohexane-N,N,N',N'-tetra-acetate were used as primary ligands. DeltaH values for the overall reactions are given, and where possible, the DeltaH and DeltaS values for the specific secondary ligand addition were calculated. The overall stability of the mixed-ligand chelates and the enhanced stability of EDTA mixed chelates relative to the analogous DCTA chelates were found to be due to entropy rather than enthalpy effects.

  5. Selectivity in ligand recognition of G-quadruplex loops.

    PubMed

    Campbell, Nancy H; Patel, Manisha; Tofa, Amina B; Ghosh, Ragina; Parkinson, Gary N; Neidle, Stephen

    2009-03-03

    A series of disubstituted acridine ligands have been cocrystallized with a bimolecular DNA G-quadruplex. The ligands have a range of cyclic amino end groups of varying size. The crystal structures show that the diagonal loop in this quadruplex results in a large cavity for these groups, in contrast to the steric constraints imposed by propeller loops in human telomeric quadruplexes. We conclude that the nature of the loop has a significant influence on ligand selectivity for particular quadruplex folds.

  6. Ligand binding by repeat proteins: natural and designed

    PubMed Central

    Grove, Tijana Z; Cortajarena, Aitziber L; Regan, Lynne

    2012-01-01

    Repeat proteins contain tandem arrays of small structural motifs. As a consequence of this architecture, they adopt non-globular, extended structures that present large, highly specific surfaces for ligand binding. Here we discuss recent advances toward understanding the functional role of this unique modular architecture. We showcase specific examples of natural repeat proteins interacting with diverse ligands and also present examples of designed repeat protein–ligand interactions. PMID:18602006

  7. Selective high affinity polydentate ligands and methods of making such

    DOEpatents

    DeNardo, Sally; DeNardo, Gerald; Balhorn, Rodney

    2010-02-16

    This invention provides novel polydentate selective high affinity ligands (SHALs) that can be used in a variety of applications in a manner analogous to the use of antibodies. SHALs typically comprise a multiplicity of ligands that each bind different region son the target molecule. The ligands are joined directly or through a linker thereby forming a polydentate moiety that typically binds the target molecule with high selectivity and avidity.

  8. Continuous microfluidic assortment of interactive ligands (CMAIL)

    NASA Astrophysics Data System (ADS)

    Hsiao, Yi-Hsing; Huang, Chao-Yang; Hu, Chih-Yung; Wu, Yen-Yu; Wu, Chung-Hsiun; Hsu, Chia-Hsien; Chen, Chihchen

    2016-08-01

    Finding an interactive ligand-receptor pair is crucial to many applications, including the development of monoclonal antibodies. Biopanning, a commonly used technique for affinity screening, involves a series of washing steps and is lengthy and tedious. Here we present an approach termed continuous microfluidic assortment of interactive ligands, or CMAIL, for the screening and sorting of antigen-binding single-chain variable antibody fragments (scFv) displayed on bacteriophages (phages). Phages carrying native negative charges on their coat proteins were electrophoresed through a hydrogel matrix functionalized with target antigens under two alternating orthogonal electric fields. During the weak horizontal electric field phase, phages were differentially swept laterally depending on their affinity for the antigen, and all phages were electrophoresed down to be collected during the strong vertical electric field phase. Phages of different affinity were spatially separated, allowing the continuous operation. More than 105 CFU (colony forming unit) antigen-interacting phages were isolated with ~100% specificity from a phage library containing 3 × 109 individual members within 40 minutes of sorting using CMAIL. CMAIL is rapid, sensitive, specific, and does not employ washing, elution or magnetic beads. In conclusion, we have developed an efficient and cost-effective method for isolating and sorting affinity reagents involving phage display.

  9. Unconventional ligands and modulators of nicotinic receptors.

    PubMed

    Pereira, Edna F R; Hilmas, Corey; Santos, Mariton D; Alkondon, Manickavasagom; Maelicke, Alfred; Albuquerque, Edson X

    2002-12-01

    Evidence gathered from epidemiologic and behavioral studies have indicated that neuronal nicotinic receptors (nAChRs) are intimately involved in the pathogenesis of a number of neurologic disorders, including Alzheimer's disease, Parkinson's disease, and schizophrenia. In the mammalian brain, neuronal nAChRs, in addition to mediating fast synaptic transmission, modulate fast synaptic transmission mediated by the major excitatory and inhibitory neurotransmitters glutamate and GABA, respectively. Of major interest, however, is the fact that the activity of the different subtypes of neuronal nAChR is also subject to modulation by substances of endogenous origin such as choline, the tryptophan metabolite kynurenic acid, neurosteroids, and beta-amyloid peptides and by exogenous substances, including the so-called nicotinic allosteric potentiating ligands, of which galantamine is the prototype, and psychotomimetic drugs such as phencyclidine and ketamine. The present article reviews and discusses the effects of unconventional ligands on nAChR activity and briefly describes the potential benefits of using some of these compounds in the treatment of neuropathologic conditions in which nAChR function/expression is known to be altered. Copyright 2002 Wiley Periodicals, Inc.

  10. Novel Somatostatin Receptor Ligands Therapies for Acromegaly

    PubMed Central

    Paragliola, Rosa Maria; Salvatori, Roberto

    2018-01-01

    Surgery is considered the treatment of choice in acromegaly, but patients with persistent disease after surgery or in whom surgery cannot be considered require medical therapy. Somatostatin receptor ligands (SRLs) octreotide (OCT), lanreotide, and the more recently approved pasireotide, characterized by a broader receptor ligand binding profile, are considered the mainstay in the medical management of acromegaly. However, in the attempt to offer a more efficacious and better tolerated medical approach, recent research has been aimed to override some limitations related to the use of currently approved drugs and novel SRLs therapies, with potential attractive features, have been proposed. These include both new formulation of older molecules and new molecules. Novel OCT formulations are aimed in particular to improve patients’ compliance and to reduce injection discomfort. They include an investigational ready-to-use subcutaneous depot OCT formulation (CAM2029), delivered via prefilled syringes and oral OCT that uses a “transient permeability enhancer” technology, which allows for OCT oral absorption. Another new delivery system is a long-lasting OCT implant (VP-003), which provide stable doses of OCT throughout a period of several months. Finally, a new SRL DG3173 (somatoprim) seems to be more selective for GH secretion, suggesting possible advantages in the presence of hyperglycemia or diabetes. How much these innovations will actually be beneficial to acromegaly patients in real clinical practice remains to be seen. PMID:29563895

  11. Vitamin D receptor ligands for osteoporosis.

    PubMed

    Cheskis, Boris J; Freedman, Leonard P; Nagpal, Sunil

    2006-10-01

    1alpha,25-Dihydroxyvitamin D3 (1,25-(OH)2D3), the biologically active metabolite of vitamin D, mediates its actions via the vitamin D receptor (VDR), a member of the superfamily of steroid/thyroid hormone/retinoid receptors. 1,25-(OH)2D3 is required for calcium and phosphorus homeostasis, and for normal skeletal development as well as maintenance of skeletal architecture. Two VDR ligands, calcitriol (1,25-(OH)2D3) and its synthetic analog alfacalcidol (1alpha-hydroxyvitamin D3), have been approved for the treatment of osteoporosis. However, the use of calcitriol and alfacalcidol is limited by their major side effect, hypercalcemia, which is mediated mainly by VDR activity in the small intestine. In order to identify VDR ligands with less hypercalcemia liability, a number of pharmaceutical companies are pursuing efforts to develop synthetic vitamin D analogs. This review discusses the mechanism of action of vitamin D, and summarizes the currently approved anti-osteoporotic VDR agonists and compounds that are under development. The future directions of vitamin D research for the discovery of novel VDR agonists for osteoporosis are also discussed.

  12. Ligand-Induced Conformational Change in the α7 Nicotinic Receptor Ligand Binding Domain

    PubMed Central

    Henchman, Richard H.; Wang, Hai-Long; Sine, Steven M.; Taylor, Palmer; McCammon, J. Andrew

    2005-01-01

    Molecular dynamics simulations of a homology model of the ligand binding domain of the α7 nicotinic receptor are conducted with a range of bound ligands to induce different conformational states. Four simulations of 15 ns each are run with no ligand, antagonist d-tubocurarine (dTC), agonist acetylcholine (ACh), and agonist ACh with potentiator Ca2+, to give insight into the conformations of the active and inactive states of the receptor and suggest the mechanism for conformational change. The main structural factor distinguishing the active and inactive states is that a more open, symmetric arrangement of the five subunits arises for the two agonist simulations, whereas a more closed and asymmetric arrangement results for the apo and dTC cases. Most of the difference arises in the lower portion of the ligand binding domain near its connection to the adjacent transmembrane domain. The transfer of the more open state to the transmembrane domain could then promote ion flow through the channel. Variation in how subunits pack together with no ligand bound appears to give rise to asymmetry in the apo case. The presence of dTC expands the receptor but induces rotations in alternate directions in adjacent subunits that lead to an asymmetric arrangement as in the apo case. Ca2+ appears to promote a slightly greater expansion in the subunits than ACh alone by stabilizing the C-loop and ACh positions. Although the simulations are unlikely to be long enough to view the full conformational changes between open and closed states, a collection of different motions at a range of length scales are observed that are likely to participate in the conformational change. PMID:15665135

  13. Synthesis, spectral and magnetic studies of mono- and bi-nuclear metal complexes of a new bis(tridentate NO2) Schiff base ligand derived from 4,6-diacetylresorcinol and ethanolamine.

    PubMed

    Shebl, Magdy

    2009-07-15

    A new bis(tridentate NO2) Schiff base ligand, H(4)L, was prepared by the reaction of the bifunctional carbonyl compound; 4,6-diacetylresorcinol (DAR) with ethanolamine. The ligand reacted with iron(III), cobalt(II), nickel(II), copper(II), zinc(II), cadmium(II), cerium(III) and uranyl(VI) ions, in absence and in presence of LiOH, to yield mono- and bi-nuclear complexes with different coordinating sites. The ligand and its metal complexes were characterized by elemental analyses, IR, (1)H NMR, electronic, ESR and mass spectra, conductivity and magnetic susceptibility measurements as well as thermal analyses. In absence of LiOH, mononuclear complexes (2, 3 and 5-9) as well as binuclear complexes (1 and 4) were obtained. In mononuclear complexes, the ligand acted as a neutral, mono- and di-basic/bi- and tetra-dentate ligand while in binuclear complexes (1 and 4), the ligand acted as a bis(mono- or di-basic/tridentate) ligand. On the other hand, in presence of LiOH, only binuclear complexes (10-15) were obtained in which the ligand acted as a bis(dibasic tridentate) ligand. The metal complexes exhibited different geometrical arrangements such as octahedral, tetrahedral, square planar, square pyramidal and pentagonal bipyramidal arrangements.

  14. Implicit ligand theory for relative binding free energies

    NASA Astrophysics Data System (ADS)

    Nguyen, Trung Hai; Minh, David D. L.

    2018-03-01

    Implicit ligand theory enables noncovalent binding free energies to be calculated based on an exponential average of the binding potential of mean force (BPMF)—the binding free energy between a flexible ligand and rigid receptor—over a precomputed ensemble of receptor configurations. In the original formalism, receptor configurations were drawn from or reweighted to the apo ensemble. Here we show that BPMFs averaged over a holo ensemble yield binding free energies relative to the reference ligand that specifies the ensemble. When using receptor snapshots from an alchemical simulation with a single ligand, the new statistical estimator outperforms the original.

  15. Ligand diffusion in proteins via enhanced sampling in molecular dynamics.

    PubMed

    Rydzewski, J; Nowak, W

    2017-12-01

    Computational simulations in biophysics describe the dynamics and functions of biological macromolecules at the atomic level. Among motions particularly important for life are the transport processes in heterogeneous media. The process of ligand diffusion inside proteins is an example of a complex rare event that can be modeled using molecular dynamics simulations. The study of physical interactions between a ligand and its biological target is of paramount importance for the design of novel drugs and enzymes. Unfortunately, the process of ligand diffusion is difficult to study experimentally. The need for identifying the ligand egress pathways and understanding how ligands migrate through protein tunnels has spurred the development of several methodological approaches to this problem. The complex topology of protein channels and the transient nature of the ligand passage pose difficulties in the modeling of the ligand entry/escape pathways by canonical molecular dynamics simulations. In this review, we report a methodology involving a reconstruction of the ligand diffusion reaction coordinates and the free-energy profiles along these reaction coordinates using enhanced sampling of conformational space. We illustrate the above methods on several ligand-protein systems, including cytochromes and G-protein-coupled receptors. The methods are general and may be adopted to other transport processes in living matter. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Superior serum half life of albumin tagged TNF ligands

    SciTech Connect

    Mueller, Nicole; Schneider, Britta; Pfizenmaier, Klaus

    2010-06-11

    Due to their immune stimulating and apoptosis inducing properties, ligands of the TNF family attract increasing interest as therapeutic proteins. A general limitation of in vivo applications of recombinant soluble TNF ligands is their notoriously rapid clearance from circulation. To improve the serum half life of the TNF family members TNF, TWEAK and TRAIL, we genetically fused soluble variants of these molecules to human serum albumin (HSA). The serum albumin-TNF ligand fusion proteins were found to be of similar bioactivity as the corresponding HSA-less counterparts. Upon intravenous injection (i.v.), serum half life of HSA-TNF ligand fusion proteins, as determined bymore » ELISA, was around 15 h as compared to approximately 1 h for all of the recombinant control TNF ligands without HSA domain. Moreover, serum samples collected 6 or 24 h after i.v. injection still contained high TNF ligand bioactivity, demonstrating that there is only limited degradation/inactivation of circulating HSA-TNF ligand fusion proteins in vivo. In a xenotransplantation model, significantly less of the HSA-TRAIL fusion protein compared to the respective control TRAIL protein was required to achieve inhibition of tumor growth indicating that the increased half life of HSA-TNF ligand fusion proteins translates into better therapeutic action in vivo. In conclusion, our data suggest that genetic fusion to serum albumin is a powerful and generally applicable mean to improve bioavailability and in vivo activity of TNF ligands.« less

  17. Crystallization of bi-functional ligand protein complexes.

    PubMed

    Antoni, Claudia; Vera, Laura; Devel, Laurent; Catalani, Maria Pia; Czarny, Bertrand; Cassar-Lajeunesse, Evelyn; Nuti, Elisa; Rossello, Armando; Dive, Vincent; Stura, Enrico Adriano

    2013-06-01

    Homodimerization is important in signal transduction and can play a crucial role in many other biological systems. To obtaining structural information for the design of molecules able to control the signalization pathways, the proteins involved will have to be crystallized in complex with ligands that induce dimerization. Bi-functional drugs have been generated by linking two ligands together chemically and the relative crystallizability of complexes with mono-functional and bi-functional ligands has been evaluated. There are problems associated with crystallization with such ligands, but overall, the advantages appear to be greater than the drawbacks. The study involves two matrix metalloproteinases, MMP-12 and MMP-9. Using flexible and rigid linkers we show that it is possible to control the crystal packing and that by changing the ligand-enzyme stoichiometric ratio, one can toggle between having one bi-functional ligand binding to two enzymes and having the same ligand bound to each enzyme. The nature of linker and its point of attachment on the ligand can be varied to aid crystallization, and such variations can also provide valuable structural information about the interactions made by the linker with the protein. We report here the crystallization and structure determination of seven ligand-dimerized complexes. These results suggest that the use of bi-functional drugs can be extended beyond the realm of protein dimerization to include all drug design projects. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. African Past: Migrant Present. A Guide to the Exhibition.

    ERIC Educational Resources Information Center

    Twining, Mary Arnold; Roark-Calnek, Sue

    This exhibit guide describes an exhibition of African folk arts produced by seasonal migrant farmworkers in western New York State. Workers come from the American South, Haiti, Puerto Rico, and Jamaica. The exhibition pieces were collected through the BOCES Geneseo Migrant Center's Folk Arts Program and Creative Artists Migrant Program Services…

  19. A Salamander Tale: Effective Exhibits and Attitude Change

    ERIC Educational Resources Information Center

    Rollins, Jeffrey; Watson, Sunnie Lee

    2017-01-01

    Little information exists regarding intention behind the design and development of Extension outreach and educational exhibits. An evaluation of response to the exhibit "A Salamander Tale" indicates that the methods used to develop the exhibit resulted in an effective way to present information to an adult audience. Survey questions were…

  20. 76 FR 68808 - Culturally Significant Objects Imported for Exhibition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-07

    ... also determine that the exhibition or display of the exhibit objects at the Onassis Cultural Center... Century AD,'' imported from abroad for temporary exhibition within the United States, are of cultural... Cultural Affairs, Department of State. [FR Doc. 2011-28805 Filed 11-4-11; 8:45 am] BILLING CODE 4710-05-P ...

  1. 78 FR 7849 - Culturally Significant Objects Imported for Exhibition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-04

    ... Century,'' imported from abroad for temporary exhibition within the United States, are of cultural... also determine that the exhibition or display of the exhibit objects at The Yale Center for British Art..., Bureau of Educational and Cultural Affairs, Department of State. [FR Doc. 2013-02401 Filed 2-1-13; 8:45...

  2. Online Cultural Heritage Exhibitions: A Survey of Strategic Issues

    ERIC Educational Resources Information Center

    Liew, Chern Li

    2006-01-01

    Purpose: This paper seeks to report findings from a study that looked at a range of strategic issues faced in the development, management and maintenance of online cultural heritage exhibitions. The study examined exhibitions from different types of cultural agencies and asked questions about whether, for instance, the exhibitions are part of the…

  3. 75 FR 3862 - Photography in Public Exhibit Space

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-25

    ... exhibit cases for displaying the Charters and other NAE documents to provide better clarity for viewing... documents from damaging exposure to light sources. NARA used filters in earlier exhibit cases. Although... exhibit lighting at its source to remove all ultraviolet and high energy visible light. One commenter...

  4. Asia: A Guide to Traveling Exhibitions and Displays.

    ERIC Educational Resources Information Center

    ASIA Society, New York, NY.

    The resource guide provides information on sources of exhibitions and materials for display which depict the peoples and culture of Asia. The major portion of the booklet represents one of the original Asia Society's exhibitions. The first section suggests several organizations which offer traveling exhibitions. Under each organization the kinds…

  5. Minor Structural Change to Tertiary Sulfonamide RORc Ligands Led to Opposite Mechanisms of Action

    PubMed Central

    2014-01-01

    A minor structural change to tertiary sulfonamide RORc ligands led to distinct mechanisms of action. Co-crystal structures of two compounds revealed mechanistically consistent protein conformational changes. Optimized phenylsulfonamides were identified as RORc agonists while benzylsulfonamides exhibited potent inverse agonist activity. Compounds behaving as agonists in our biochemical assay also gave rise to an increased production of IL-17 in human PBMCs whereas inverse agonists led to significant suppression of IL-17 under the same assay conditions. The most potent inverse agonist compound showed >180-fold selectivity over the ROR isoforms as well as all other nuclear receptors that were profiled. PMID:25815138

  6. Enzyme-Inspired Chiral Secondary-Phosphine-Oxide Ligand with Dual Noncovalent Interactions for Asymmetric Hydrogenation.

    PubMed

    Chen, Caiyou; Zhang, Zhefan; Jin, Shicheng; Fan, Xiangru; Geng, Mingyu; Zhou, Yan; Wen, Songwei; Wang, Xinrui; Chung, Lung Wa; Dong, Xiu-Qin; Zhang, Xumu

    2017-06-06

    Inspired by the unique character of enzymes, we developed novel chiral SPO (secondary-phosphine-oxide) ligand (SPO-Wudaphos) which can enter into both ion pair and H-bond noncovalent interactions. The novel chiral SPO-Wudaphos exhibited excellent results in the asymmetric hydrogenation of α-methylene-γ-keto carboxylic acids, affording the chiral γ-keto acids with up to over 99 % ee. A series of control experiments and DFT calculations were conducted to illustrate the critical roles of both the ion pair and H-bond noncovalent interactions. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Structural basis for the ligand-binding specificity of fatty acid-binding proteins (pFABP4 and pFABP5) in gentoo penguin.

    PubMed

    Lee, Chang Woo; Kim, Jung Eun; Do, Hackwon; Kim, Ryeo-Ok; Lee, Sung Gu; Park, Hyun Ho; Chang, Jeong Ho; Yim, Joung Han; Park, Hyun; Kim, Il-Chan; Lee, Jun Hyuck

    2015-09-11

    Fatty acid-binding proteins (FABPs) are involved in transporting hydrophobic fatty acids between various aqueous compartments of the cell by directly binding ligands inside their β-barrel cavities. Here, we report the crystal structures of ligand-unbound pFABP4, linoleate-bound pFABP4, and palmitate-bound pFABP5, obtained from gentoo penguin (Pygoscelis papua), at a resolution of 2.1 Å, 2.2 Å, and 2.3 Å, respectively. The pFABP4 and pFABP5 proteins have a canonical β-barrel structure with two short α-helices that form a cap region and fatty acid ligand binding sites in the hydrophobic cavity within the β-barrel structure. Linoleate-bound pFABP4 and palmitate-bound pFABP5 possess different ligand-binding modes and a unique ligand-binding pocket due to several sequence dissimilarities (A76/L78, T30/M32, underlining indicates pFABP4 residues) between the two proteins. Structural comparison revealed significantly different conformational changes in the β3-β4 loop region (residues 57-62) as well as the flipped Phe60 residue of pFABP5 than that in pFABP4 (the corresponding residue is Phe58). A ligand-binding study using fluorophore displacement assays shows that pFABP4 has a relatively strong affinity for linoleate as compared to pFABP5. In contrast, pFABP5 exhibits higher affinity for palmitate than that for pFABP4. In conclusion, our high-resolution structures and ligand-binding studies provide useful insights into the ligand-binding preferences of pFABPs based on key protein-ligand interactions. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Calculating the mean time to capture for tethered ligands and its effect on the chemical equilibrium of bound ligand pairs.

    PubMed

    Shen, Lu; Decker, Caitlin G; Maynard, Heather D; Levine, Alex J

    2016-09-01

    We present here the calculation of the mean time to capture of a tethered ligand to the receptor. This calculation is then used to determine the shift in the partitioning between (1) free, (2) singly bound, and (3) doubly bound ligands in chemical equilibrium as a function of the length of the tether. These calculations are used in the research article Fibroblast Growth Factor 2 Dimer with Superagonist in vitro Activity Improves Granulation Tissue Formation During Wound Healing (Decker et al., in press [1]) to explain quantitatively how changes in polymeric linker length in the ligand dimers modifies the efficacy of these molecules relative to that of free ligands.

  9. High-throughput screening of dye-ligands for chromatography.

    PubMed

    Kumar, Sunil; Punekar, Narayan S

    2014-01-01

    Dye-ligand-based chromatography has become popular after Cibacron Blue, the first reactive textile dye, found application for protein purification. Many other textile dyes have since been successfully used to purify a number of proteins and enzymes. While the exact nature of their interaction with target proteins is often unclear, dye-ligands are thought to mimic the structural features of their corresponding substrates, cofactors, etc. The dye-ligand affinity matrices are therefore considered pseudo-affinity matrices. In addition, dye-ligands may simply bind with proteins due to electrostatic, hydrophobic, and hydrogen-bonding interactions. Because of their low cost, ready availability, and structural stability, dye-ligand affinity matrices have gained much popularity. Choice of a large number of dye structures offers a range of matrices to be prepared and tested. When presented in the high-throughput screening mode, these dye-ligand matrices provide a formidable tool for protein purification. One could pick from the list of dye-ligands already available or build a systematic library of such structures for use. A high-throughput screen may be set up to choose best dye-ligand matrix as well as ideal conditions for binding and elution, for a given protein. The mode of operation could be either manual or automated. The technology is available to test the performance of dye-ligand matrices in small volumes in an automated liquid-handling workstation. Screening a systematic library of dye-ligand structures can help establish a structure-activity relationship. While the origins of dye-ligand chromatography lay in exploiting pseudo-affinity, it is now possible to design very specific biomimetic dye structures. High-throughput screening will be of value in this endeavor as well.

  10. Small Molecule Inhibition of Ligand-Stimulated RAGE-DIAPH1 Signal Transduction

    PubMed Central

    Manigrasso, Michaele B.; Pan, Jinhong; Rai, Vivek; Zhang, Jinghua; Reverdatto, Sergey; Quadri, Nosirudeen; DeVita, Robert J.; Ramasamy, Ravichandran; Shekhtman, Alexander; Schmidt, Ann Marie

    2016-01-01

    The receptor for advanced glycation endproducts (RAGE) binds diverse ligands linked to chronic inflammation and disease. NMR spectroscopy and x-ray crystallization studies of the extracellular domains of RAGE indicate that RAGE ligands bind by distinct charge- and hydrophobicity-dependent mechanisms. The cytoplasmic tail (ct) of RAGE is essential for RAGE ligand-mediated signal transduction and consequent modulation of gene expression and cellular properties. RAGE signaling requires interaction of ctRAGE with the intracellular effector, mammalian diaphanous 1 or DIAPH1. We screened a library of 58,000 small molecules and identified 13 small molecule competitive inhibitors of ctRAGE interaction with DIAPH1. These compounds, which exhibit in vitro and in vivo inhibition of RAGE-dependent molecular processes, present attractive molecular scaffolds for the development of therapeutics against RAGE-mediated diseases, such as those linked to diabetic complications, Alzheimer’s disease, and chronic inflammation, and provide support for the feasibility of inhibition of protein-protein interaction (PPI). PMID:26936329

  11. Investigation on biomolecular interactions of nickel(II) complexes with monoanionic bidentate ligands

    NASA Astrophysics Data System (ADS)

    Jayamani, Arumugam; Sethupathi, Murugan; Ojwach, Stephen O.; Sengottuvelan, Nallathambi

    2018-01-01

    Reactions of monoanionic bidentate ligands 5-methylsalicylaldehyde (5-msal), 5-bromosalicylaldehyde (5-brsal), 5-nitrosalicylaldehyde (5-nsal) and 2-hydroxy-1-naphthaldehyde (2-hnap) with nickel perchlorate hexahydrate produced nickel(II) complexes 1-4, respectively. Single crystal X-ray analyses of complexes 1 and 2 confirmed bidentate mode of the ligands with O˄O coordination to give square planar geometry around nickel atoms. Complexes 1-4 showed one quasi-reversible redox peak at cathodic region (-0.67 to -0.80 V) and one redox peak at anodic region (+1.08 to +1.44 V) assignable to the Ni(II)/Ni(I) and Ni(II)/Ni(III) redox couples, respectively. The complexes exhibited good bovine serum albumin (BSA) binding abilities with a maximum binding constant of 1.96 × 105 M-1. The binding of complexes with calf thymus DNA (ctDNA) showed that the binding affinity is consistent with an increase in steric bulk of the ligands. The nuclease activity of the complexes showed efficient oxidative cleavage in the presence of hydrogen peroxide as an oxidizing agent. The complexes showed higher zone of inhibition when screened for antimicrobial activity against bacteria and human pathogenic fungi.

  12. Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor

    SciTech Connect

    Bokoch, Michael P.; Zou, Yaozhong; Rasmussen, Søren G.F.

    G-protein-coupled receptors (GPCRs) are seven-transmembrane proteins that mediate most cellular responses to hormones and neurotransmitters. They are the largest group of therapeutic targets for a broad spectrum of diseases. Recent crystal structures of GPCRs have revealed structural conservation extending from the orthosteric ligand-binding site in the transmembrane core to the cytoplasmic G-protein-coupling domains. In contrast, the extracellular surface (ECS) of GPCRs is remarkably diverse and is therefore an ideal target for the discovery of subtype-selective drugs. However, little is known about the functional role of the ECS in receptor activation, or about conformational coupling of this surface to the nativemore » ligand-binding pocket. Here we use NMR spectroscopy to investigate ligand-specific conformational changes around a central structural feature in the ECS of the {beta}{sub 2} adrenergic receptor: a salt bridge linking extracellular loops 2 and 3. Small-molecule drugs that bind within the transmembrane core and exhibit different efficacies towards G-protein activation (agonist, neutral antagonist and inverse agonist) also stabilize distinct conformations of the ECS. We thereby demonstrate conformational coupling between the ECS and the orthosteric binding site, showing that drugs targeting this diverse surface could function as allosteric modulators with high subtype selectivity. Moreover, these studies provide a new insight into the dynamic behaviour of GPCRs not addressable by static, inactive-state crystal structures.« less

  13. Propeptide cleavage conditions sortilin/neurotensin receptor-3 for ligand binding.

    PubMed

    Munck Petersen, C; Nielsen, M S; Jacobsen, C; Tauris, J; Jacobsen, L; Gliemann, J; Moestrup, S K; Madsen, P

    1999-02-01

    We recently reported the isolation and sequencing of sortilin, a new putative sorting receptor that binds receptor-associated protein (RAP). The luminal N-terminus of sortilin comprises a consensus sequence for cleavage by furin, R41WRR44, which precedes a truncation originally found in sortilin isolated from human brain. We now show that the truncation results from cellular processing. Sortilin is synthesized as a proform which, in late Golgi compartments, is converted to the mature receptor by furin-mediated cleavage of a 44 residue N-terminal propeptide. We further demonstrate that the propeptide exhibits pH-dependent high affinity binding to fully processed sortilin, that the binding is competed for by RAP and the newly discovered sortilin ligand neurotensin, and that prevention of propeptide cleavage essentially prevents binding of RAP and neurotensin. The findings evidence that the propeptide sterically hinders ligands from gaining access to overlapping binding sites in prosortilin, and that cleavage and release of the propeptide preconditions sortilin for full functional activity. Although proteolytic processing is involved in the maturation of several receptors, the described exposure of previously concealed ligand-binding sites after furin-mediated cleavage of propeptide represents a novel mechanism in receptor activation.

  14. Propeptide cleavage conditions sortilin/neurotensin receptor-3 for ligand binding.

    PubMed Central

    Munck Petersen, C; Nielsen, M S; Jacobsen, C; Tauris, J; Jacobsen, L; Gliemann, J; Moestrup, S K; Madsen, P

    1999-01-01

    We recently reported the isolation and sequencing of sortilin, a new putative sorting receptor that binds receptor-associated protein (RAP). The luminal N-terminus of sortilin comprises a consensus sequence for cleavage by furin, R41WRR44, which precedes a truncation originally found in sortilin isolated from human brain. We now show that the truncation results from cellular processing. Sortilin is synthesized as a proform which, in late Golgi compartments, is converted to the mature receptor by furin-mediated cleavage of a 44 residue N-terminal propeptide. We further demonstrate that the propeptide exhibits pH-dependent high affinity binding to fully processed sortilin, that the binding is competed for by RAP and the newly discovered sortilin ligand neurotensin, and that prevention of propeptide cleavage essentially prevents binding of RAP and neurotensin. The findings evidence that the propeptide sterically hinders ligands from gaining access to overlapping binding sites in prosortilin, and that cleavage and release of the propeptide preconditions sortilin for full functional activity. Although proteolytic processing is involved in the maturation of several receptors, the described exposure of previously concealed ligand-binding sites after furin-mediated cleavage of propeptide represents a novel mechanism in receptor activation. PMID:9927419

  15. Novel ligands of Choline Acetyltransferase designed by in silico molecular docking, hologram QSAR and lead optimization

    NASA Astrophysics Data System (ADS)

    Kumar, Rajnish; Långström, Bengt; Darreh-Shori, Taher

    2016-08-01

    Recent reports have brought back the acetylcholine synthesizing enzyme, choline acetyltransferase in the mainstream research in dementia and the cholinergic anti-inflammatory pathway. Here we report, a specific strategy for the design of novel ChAT ligands based on molecular docking, Hologram Quantitative Structure Activity Relationship (HQSAR) and lead optimization. Molecular docking was performed on a series of ChAT inhibitors to decipher the molecular fingerprint of their interaction with the active site of ChAT. Then robust statistical fragment HQSAR models were developed. A library of novel ligands was generated based on the pharmacophoric and shape similarity scoring function, and evaluated in silico for their molecular interactions with ChAT. Ten of the top scoring invented compounds are reported here. We confirmed the activity of α-NETA, the only commercially available ChAT inhibitor, and one of the seed compounds in our model, using a new simple colorimetric ChAT assay (IC50 ~ 88 nM). In contrast, α-NETA exhibited an IC50 of ~30 μM for the ACh-degrading cholinesterases. In conclusion, the overall results may provide useful insight for discovering novel ChAT ligands and potential positron emission tomography tracers as in vivo functional biomarkers of the health of central cholinergic system in neurodegenerative disorders, such as Alzheimer’s disease.

  16. Syntheses, crystal structures, anticancer activities of three reduce Schiff base ligand based transition metal complexes

    NASA Astrophysics Data System (ADS)

    Chang, Hui-Qin; Jia, Lei; Xu, Jun; Zhu, Tao-Feng; Xu, Zhou-Qing; Chen, Ru-Hua; Ma, Tie-Liang; Wang, Yuan; Wu, Wei-Na

    2016-02-01

    Three nickel(II) complexes, [Ni2(L1)2(tren)2(H2O)](ClO4)3 (1), [NiL2(tren)2](ClO4)·2.5H2O (2), [NiL2(tren)2]I·1.5H2O·CH3OH (3) based on amino acid reduced Schiff ligands are synthesized and characterized by physico-chemical and spectroscopic methods. The results show that in all complexes, the amino acid ligand is deprotonated and acts as an anionic ligand. In the dinuclear complex 1, each Ni(II) atom has a distorted octahedron geometry while with different coordination environment. However, the complexes 2 and 3 are mononuclear, almost with the same coordination environment. Furthermore, in vitro experiments are carried out, including MTT assay, Annexin V/PI flow cytometry and western blotting, to assess whether the complexes have antitumor effect. And the results show that all the three complexes have moderate anticancer activity towards human hepatic cancer (HepG2), human cervical cancer (HeLa) and human prostate (PC3) cell lines, in a concentration dependent way. The complex 1 exhibit higher cytotoxicity than the other two complexes and can induce human hepatic cancer cell (HepG2) to cell apoptosis by activating caspase 3.

  17. Multitarget-directed tricyclic pyridazinones as G protein-coupled receptor ligands and cholinesterase inhibitors.

    PubMed

    Pau, Amedeo; Catto, Marco; Pinna, Giovanni; Frau, Simona; Murineddu, Gabriele; Asproni, Battistina; Curzu, Maria M; Pisani, Leonardo; Leonetti, Francesco; Loza, Maria Isabel; Brea, José; Pinna, Gérard A; Carotti, Angelo

    2015-06-01

    By following a multitarget ligand design approach, a library of 47 compounds was prepared, and they were tested as binders of selected G protein-coupled receptors (GPCRs) and inhibitors of acetyl and/or butyryl cholinesterase. The newly designed ligands feature pyridazinone-based tricyclic scaffolds connected through alkyl chains of variable length to proper amine moieties (e.g., substituted piperazines or piperidines) for GPCR and cholinesterase (ChE) molecular recognition. The compounds were tested at three different GPCRs, namely serotoninergic 5-HT1A, adrenergic α1A, and dopaminergic D2 receptors. Our main goal was the discovery of compounds that exhibit, in addition to ChE inhibition, antagonist activity at 5-HT1A because of its involvement in neuronal deficits typical of Alzheimer's and other neurodegenerative diseases. Ligands with nanomolar affinity for the tested GPCRs were discovered, but most of them behaved as dual antagonists of α1A and 5-HT1A receptors. Nevertheless, several compounds displaying this GPCR affinity profile also showed moderate to good inhibition of AChE and BChE, thus deserving further investigations to exploit the therapeutic potential of such unusual biological profiles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Rational design of class I MHC ligands

    NASA Astrophysics Data System (ADS)

    Rognan, D.; Scapozza, L.; Folkers, G.; Daser, Angelika

    1995-04-01

    From the knowledge of the three-dimensional structure of a class I MHC protein, several non natural peptides were designed in order to either optimize the interactions of one secondary anchor amino acid with its HLA binding pocket or to substitute the non interacting part with spacer residues. All peptides were synthesized and tested for binding to the class I MHC protein in an in vitro reconstitution assay. As predicted, the non natural peptides present an enhanced binding to the HLA-B27 molecule with respect to their natural parent peptides. This study constitutes the first step towards the rational design of non peptidic MHC ligands that should be very promising tools for the selective immunotherapy of autoimmune diseases.

  19. Effect of organic ligands on Mg partitioning and Mg isotope fractionation during low-temperature precipitation of calcite

    NASA Astrophysics Data System (ADS)

    Mavromatis, Vasileios; Immenhauser, Adrian; Buhl, Dieter; Purgstaller, Bettina; Baldermann, Andre; Dietzel, Martin

    2016-04-01

    Calcite growth experiments have been performed at 25 oC and 1 bar pCO2 in the presence of aqueous Mg and six organic ligands in the concentration range from 10-5 to 10-3 M. These experiments were performed in order to quantify the effect of distinct organic ligands on the Mg partitioning and Mg stable isotope fractionation during its incorporation in calcite at similar growth rates normalized to total surface area. The organic ligands used in this study comprise of (i) acetate acid, (ii) citrate, (iii) glutamate, (iv) salicylate, (v) glycine and (vi) ethylenediaminetetraacetic acid (EDTA), containing carboxyl- and amino-groups. These fuctional groups are required for bacterial activity and growth as well as related to biotic and abiotic mineralization processes occurring in sedimentary and earliest diagenetic aquatic environments (e.g. soil, cave, lacustrine, marine). The results obtained in this study indicate that the presence of organic ligands promotes an increase in the partition coefficient of Mg in calcite (DMg = (Mg/Ca)calcite (Mg/Ca)fluid). This behaviour can be explained by the temporal formation of aqueous Mg-ligand complexes that are subsequently adsorbed on the calcite surfaces and thereby reducing the active growth sites of calcite. The increase of DMg values as a function of the supersaturation degree of calcite in the fluid phase can be described by the linear equation LogDMg =0.3694 (±0.0329)×SIcalcite - 1.9066 (±0.0147); R2=0.92 In contrast, the presence of organic ligands, with exception of citrate, does not significantly affect the Mg isotope fractionation factor between calcite and reactive fluid (Δ26Mgcalcite-fluid = -2.5 ±0.1). Citrate likely exhibits larger fractionation between the Mg-ligand complexes and free aqueous Mg2+, compared to the other organic ligands studied in this work, as evidenced by the smaller Δ26Mgcalcite-fluid values. These results indicate that in Earth's surface calcite precipitating environments that are

  20. P2X receptor ligands and pain.

    PubMed

    Shieh, Char-Chang; Jarvis, Michael F; Lee, Chih-Hung; Perner, Richard J

    2006-08-01

    P2X receptors belong to a superfamily of ligand-gated ion channels that conduct the influx of Ca(2+), Na(+) and K(+) cations following activation by extracellular nucleotides such as ATP. Molecular cloning studies have identified seven subunits, namely P2X(1-7), that share approximately 40 - 50% identity in amino acid sequences within the subfamily. Using gene-silencing, pharmacological and electrophysiological approaches, recent studies have revealed roles for P2X(2), P2X(3), P2X(4) and P2X(7) receptors in nociceptive signalling. Homomeric P2X(3) and heteromeric P2X(2/3) receptors are highly localised in the peripheral sensory afferent neurons that conduct nociceptive sensory information to the spinal chord and brain. The discovery of A-317491, a selective and potent non-nucleotide P2X(3) antagonist, provided a pharmacological tool to determine the site and mode of action of P2X(3)-containing receptors in different pain behaviours, including neuropathic, inflammatory and visceral pain. Other P2X receptors (P2X(4) and P2X(7)) that are predominantly expressed in microglia, macrophages and cells of immune origin can trigger the release of cytokines, such as IL-1-beta and TNF-alpha. Genetic disruption of P2X(4) and P2X(7) signalling has been demonstrated to reduce inflammatory and neuropathic pain, suggesting that these two receptors might serve as integrators of neuroinflammation and pain. This article provides an overview of recent scientific literature and patents focusing on P2X(3), P2X(4) and P2X(7) receptors, and the identification of small molecule ligands for the potential treatment of neuropathic and inflammatory pain.

  1. Homoleptic nickel(II) complexes of redox-tunable pincer-type ligands.

    PubMed

    Hewage, Jeewantha S; Wanniarachchi, Sarath; Morin, Tyler J; Liddle, Brendan J; Banaszynski, Megan; Lindeman, Sergey V; Bennett, Brian; Gardinier, James R

    2014-10-06

    Different synthetic methods have been developed to prepare eight new redox-active pincer-type ligands, H(X,Y), that have pyrazol-1-yl flanking donors attached to an ortho-position of each ring of a diarylamine anchor and that have different groups, X and Y, at the para-aryl positions. Together with four previously known H(X,Y) ligands, a series of 12 Ni(X,Y)2 complexes were prepared in high yields by a simple one-pot reaction. Six of the 12 derivatives were characterized by single-crystal X-ray diffraction, which showed tetragonally distorted hexacoordinate nickel(II) centers. The nickel(II) complexes exhibit two quasi-reversible one-electron oxidation waves in their cyclic voltammograms, with half-wave potentials that varied over a remarkable 700 mV range with the average of the Hammett σ(p) parameters of the para-aryl X, Y groups. The one- and two-electron oxidized derivatives [Ni(Me,Me)2](BF4)n (n = 1, 2) were prepared synthetically, were characterized by X-band EPR, electronic spectroscopy, and single-crystal X-ray diffraction (for n = 2), and were studied computationally by DFT methods. The dioxidized complex, [Ni(Me,Me)2](BF4)2, is an S = 2 species, with nickel(II) bound to two ligand radicals. The mono-oxidized complex [Ni(Me,Me)2](BF4), prepared by comproportionation, is best described as nickel(II) with one ligand centered radical. Neither the mono- nor the dioxidized derivative shows any substantial electronic coupling between the metal and their bound ligand radicals because of the orthogonal nature of their magnetic orbitals. On the other hand, weak electronic communication occurs between ligands in the mono-oxidized complex as evident from the intervalence charge transfer (IVCT) transition found in the near-IR absorption spectrum. Band shape analysis of the IVCT transition allowed comparisons of the strength of the electronic interaction with that in the related, previously known, Robin-Day class II mixed valence complex, [Ga(Me,Me)2](2+).

  2. Oxoiron(IV) Tetramethylcyclam Complexes with Axial Carboxylate Ligands: Effect of Tethering the Carboxylate on Reactivity.

    PubMed

    Bigelow, Jennifer O; England, Jason; Klein, Johannes E M N; Farquhar, Erik R; Frisch, Jonathan R; Martinho, Marlène; Mandal, Debasish; Münck, Eckard; Shaik, Sason; Que, Lawrence

    2017-03-20

    Oxoiron(IV) species are implicated as reactive intermediates in nonheme monoiron oxygenases, often acting as the agent for hydrogen-atom transfer from substrate. A histidine is the most likely ligand trans to the oxo unit in most enzymes characterized thus far but is replaced by a carboxylate in the case of isopenicillin N synthase. As the effect of a trans carboxylate ligand on the properties of the oxoiron(IV) unit has not been systematically studied, we have synthesized and characterized four oxoiron(IV) complexes supported by the tetramethylcyclam (TMC) macrocycle and having a carboxylate ligand trans to the oxo unit. Two complexes have acetate or propionate axial ligands, while the other two have the carboxylate functionality tethered to the macrocyclic ligand framework by one or two methylene units. Interestingly, these four complexes exhibit substrate oxidation rates that differ by more than 100-fold, despite having E p,c values for the reduction of the Fe═O unit that span a range of only 130 mV. Eyring parameters for 1,4-cyclohexadiene oxidation show that reactivity differences originate from differences in activation enthalpy between complexes with tethered carboxylates and those with untethered carboxylates, in agreement with computational results. As noted previously for the initial subset of four complexes, the logarithms of the oxygen atom transfer rates of 11 complexes of the Fe IV (O)TMC(X) series increase linearly with the observed E p,c values, reflecting the electrophilicity of the Fe═O unit. In contrast, no correlation with E p,c values is observed for the corresponding hydrogen atom transfer (HAT) reaction rates; instead, the HAT rates increase as the computed triplet-quintet spin state gap narrows, consistent with Shaik's two-state-reactivity model. In fact, the two complexes with untethered carboxylates are among the most reactive HAT agents in this series, demonstrating that the axial ligand can play a key role in tuning the HAT

  3. Proteome-wide covalent ligand discovery in native biological systems

    PubMed Central

    Backus, Keriann M.; Correia, Bruno E.; Lum, Kenneth M.; Forli, Stefano; Horning, Benjamin D.; González-Páez, Gonzalo E.; Chatterjee, Sandip; Lanning, Bryan R.; Teijaro, John R.; Olson, Arthur J.; Wolan, Dennis W.; Cravatt, Benjamin F.

    2016-01-01

    Small molecules are powerful tools for investigating protein function and can serve as leads for new therapeutics. Most human proteins, however, lack small-molecule ligands, and entire protein classes are considered “undruggable” 1,2. Fragment-based ligand discovery (FBLD) can identify small-molecule probes for proteins that have proven difficult to target using high-throughput screening of complex compound libraries 1,3. Although reversibly binding ligands are commonly pursued, covalent fragments provide an alternative route to small-molecule probes 4–10, including those that can access regions of proteins that are difficult to access through binding affinity alone 5,10,11. In this manuscript, we report a quantitative analysis of cysteine-reactive small-molecule fragments screened against thousands of proteins. Covalent ligands were identified for >700 cysteines found in both druggable proteins and proteins deficient in chemical probes, including transcription factors, adaptor/scaffolding proteins, and uncharacterized proteins. Among the atypical ligand-protein interactions discovered were compounds that react preferentially with pro- (inactive) caspases. We used these ligands to distinguish extrinsic apoptosis pathways in human cell lines versus primary human T-cells, showing that the former is largely mediated by caspase-8 while the latter depends on both caspase-8 and −10. Fragment-based covalent ligand discovery provides a greatly expanded portrait of the ligandable proteome and furnishes compounds that can illuminate protein functions in native biological systems. PMID:27309814

  4. Models of protein-ligand crystal structures: trust, but verify.

    PubMed

    Deller, Marc C; Rupp, Bernhard

    2015-09-01

    X-ray crystallography provides the most accurate models of protein-ligand structures. These models serve as the foundation of many computational methods including structure prediction, molecular modelling, and structure-based drug design. The success of these computational methods ultimately depends on the quality of the underlying protein-ligand models. X-ray crystallography offers the unparalleled advantage of a clear mathematical formalism relating the experimental data to the protein-ligand model. In the case of X-ray crystallography, the primary experimental evidence is the electron density of the molecules forming the crystal. The first step in the generation of an accurate and precise crystallographic model is the interpretation of the electron density of the crystal, typically carried out by construction of an atomic model. The atomic model must then be validated for fit to the experimental electron density and also for agreement with prior expectations of stereochemistry. Stringent validation of protein-ligand models has become possible as a result of the mandatory deposition of primary diffraction data, and many computational tools are now available to aid in the validation process. Validation of protein-ligand complexes has revealed some instances of overenthusiastic interpretation of ligand density. Fundamental concepts and metrics of protein-ligand quality validation are discussed and we highlight software tools to assist in this process. It is essential that end users select high quality protein-ligand models for their computational and biological studies, and we provide an overview of how this can be achieved.

  5. Transient Ligand Docking Sites in Cerebratulus lacteus Mini-Hemoglobin

    PubMed Central

    Deng, Pengchi; Nienhaus, Karin; Palladino, Pasquale; Olson, John S.; Blouin, George; Moens, Luc; Dewilde, Sylvia; Geuens, Eva; Nienhaus, G. Ulrich

    2007-01-01

    The monomeric hemoglobin of the nemertean worm Cerebratulus lacteus functions as an oxygen storage protein to maintain neural activity under hypoxic conditions. It shares a large, apolar matrix tunnel with other small hemoglobins, which has been implicated as a potential ligand migration pathway. Here we explore ligand migration and binding within the distal heme pocket, to which the tunnel provides access to ligands from the outside. FTIR/TDS experiments performed at cryogenic temperatures reveal the presence of three transient ligand docking sites within the distal pocket, the primary docking site B on top of pyrrole C and secondary sites C and D. Site C is assigned to a cavity adjacent to the distal portion of the heme pocket, surrounded by the B and E helices. It has an opening to the apolar tunnel and is expected to be on the pathway for ligand entry and exit, whereas site D, circumscribed by TyrB10, GlnE7, and the CD corner, most likely is located on a side pathway of ligand migration. Flash photolysis experiments at ambient temperatures indicate that the rate-limiting step for ligand binding to CerHb is migration through the apolar channel to site C. Movement from C to B and iron-ligand bond formation involve low energy barriers and thus are very rapid processes in the wt protein. PMID:17531406

  6. Synthesis of 3-alkyl naphthalenes as novel estrogen receptor ligands

    SciTech Connect

    Fang, Jing; Akwabi-Ameyaw, Adwoa; Britton, Jonathan E.

    2009-06-24

    A series of estrogen receptor ligands based on a 3-alkyl naphthalene scaffold was synthesized using an intramolecular enolate-alkyne cycloaromatization as the key step. Several of these compounds bearing a C6-OH group were shown to be high affinity ligands. All compounds had similar ER{alpha} and ER{beta} binding affinity ranging from micromolar to low nanomolar.

  7. Ligand-modified metal clusters for gas separation and purification

    SciTech Connect

    Okrut, Alexander; Ouyang, Xiaoying; Runnebaum, Ron

    2017-02-21

    Provided is an organic ligand-bound metal surface that selects one gaseous species over another. The species can be closely sized molecular species having less than 1 Angstrom difference in kinetic diameter. In one embodiment, the species comprise carbon monoxide and ethylene. Such organic ligand-bound metal surfaces can be successfully used in gas phase separations or purifications, sensing, and in catalysis.

  8. Polymerization catalysts containing electron-withdrawing amide ligands

    DOEpatents

    Watkin, John G.; Click, Damon R.

    2002-01-01

    The present invention describes methods of making a series of amine-containing organic compounds which are used as ligands for group 3-10 and lanthanide metal compounds. The ligands have electron-withdrawing groups bonded to them. The metal compounds, when combined with a cocatalyst, are catalysts for the polymerization of olefins.

  9. Identifying Marine Copper-Binding Ligands in Seawater

    NASA Astrophysics Data System (ADS)

    Whitby, H.; Hollibaugh, J. T.; Maldonado, M. T.; Ouchi, S.; van den Berg, S. M.

    2016-02-01

    Complexation reactions are important because they affect the bioavailability of trace metals such as copper and iron. For example, organic complexation can determine whether copper is a limiting or a toxic micronutrient at natural levels. Copper competes with iron for complexing ligands, and when iron is limiting, copper can also substitute for iron in some metabolic pathways. The speciation of copper can be measured using complexing capacity titrations, which provide the concentration of individual ligand classes (L1, L2 etc.) and the complex stabilities (log K). Using methods recently developed in our laboratory, we show that the ligands within these classes can be measured independently of titrations, thus confirming the titration method and simultaneously identifying the ligands within each class. Thiols were identified as the L1 ligand class and humic compounds as the weaker L2 class in samples from coastal Georgia, USA, collected monthly from April to December. Log K values of the ligand complexes were consistent with values expected for thiols and humic substances. Recent results from culture studies and from samples collected along Line P, a coastal - oceanic transect in the HNLC region of the NE subarctic Pacific, will be presented in comparison to the estuarine results. This comparison will help to broaden our perspective on copper complexation and the ligands responsible, furthering our understanding of ligand sources and life cycles.

  10. Improved ligand geometries in crystallographic refinement using AFITT in PHENIX

    DOE PAGES

    Janowski, Pawel A.; Moriarty, Nigel W.; Kelley, Brian P.; ...

    2016-08-31

    Modern crystal structure refinement programs rely on geometry restraints to overcome the challenge of a low data-to-parameter ratio. While the classical Engh and Huber restraints work well for standard amino-acid residues, the chemical complexity of small-molecule ligands presents a particular challenge. Most current approaches either limit ligand restraints to those that can be readily described in the Crystallographic Information File (CIF) format, thus sacrificing chemical flexibility and energetic accuracy, or they employ protocols that substantially lengthen the refinement time, potentially hindering rapid automated refinement workflows.PHENIX–AFITTrefinement uses a full molecular-mechanics force field for user-selected small-molecule ligands during refinement, eliminating the potentiallymore » difficult problem of finding or generating high-quality geometry restraints. It is fully integrated with a standard refinement protocol and requires practically no additional steps from the user, making it ideal for high-throughput workflows.PHENIX–AFITTrefinements also handle multiple ligands in a single model, alternate conformations and covalently bound ligands. Here, the results of combiningAFITTand thePHENIXsoftware suite on a data set of 189 protein–ligand PDB structures are presented. Refinements usingPHENIX–AFITTsignificantly reduce ligand conformational energy and lead to improved geometries without detriment to the fit to the experimental data. Finally, for the data presented,PHENIX–AFITTrefinements result in more chemically accurate models for small-molecule ligands.« less

  11. Multifunctional ligand for use as a diagnostic or therapeutic pharmaceutical

    DOEpatents

    Katti, K.V.; Volkert, W.A.; Ketring, A.R.; Singh, P.R.

    1996-05-14

    A compound and method of making a compound for use as a diagnostic or therapeutic pharmaceutical are revealed. The ligand comprises either a phosphorous or germanium core and at least two hydrazine groups forming a ligand for bonding to a metal extending from the phosphorous or germanium core.

  12. How to Compute Labile Metal-Ligand Equilibria

    ERIC Educational Resources Information Center

    de Levie, Robert

    2007-01-01

    The different methods used for computing labile metal-ligand complexes, which are suitable for an iterative computer solution, are illustrated. The ligand function has allowed students to relegate otherwise tedious iterations to a computer, while retaining complete control over what is calculated.

  13. Technetium radiodiagnostic fatty acids derived from bisamide bisthiol ligands

    DOEpatents

    Jones, Alun G.; Lister-James, John; Davison, Alan

    1988-05-24

    A bisamide-bisthiol ligand containing fatty acid substituted thiol useful for producing Tc-labelled radiodiagnostic imaging agents is described. The ligand forms a complex with the radionuclide .sup.99m Tc suitable for administration as a radiopharmaceutical to obtain images of the heart for diagnosis of myocardial disfunction.

  14. Hajdu Cheney Mouse Mutants Exhibit Osteopenia, Increased Osteoclastogenesis, and Bone Resorption.

    PubMed

    Canalis, Ernesto; Schilling, Lauren; Yee, Siu-Pok; Lee, Sun-Kyeong; Zanotti, Stefano

    2016-01-22

    Notch receptors are determinants of cell fate and function and play a central role in skeletal development and bone remodeling. Hajdu Cheney syndrome, a disease characterized by osteoporosis and fractures, is associated with NOTCH2 mutations resulting in a truncated stable protein and gain-of-function. We created a mouse model reproducing the Hajdu Cheney syndrome by introducing a 6955C→T mutation in the Notch2 locus leading to a Q2319X change at the amino acid level. Notch2(Q2319X) heterozygous mutants were smaller and had shorter femurs than controls; and at 1 month of age they exhibited cancellous and cortical bone osteopenia. As the mice matured, cancellous bone volume was restored partially in male but not female mice, whereas cortical osteopenia persisted in both sexes. Cancellous bone histomorphometry revealed an increased number of osteoclasts and bone resorption, without a decrease in osteoblast number or bone formation. Osteoblast differentiation and function were not affected in Notch2(Q2319X) cells. The pre-osteoclast cell pool, osteoclast differentiation, and bone resorption in response to receptor activator of nuclear factor κB ligand in vitro were increased in Notch2(Q2319X) mutants. These effects were suppressed by the γ-secretase inhibitor LY450139. In conclusion, Notch2(Q2319X) mice exhibit cancellous and cortical bone osteopenia, enhanced osteoclastogenesis, and increased bone resorption. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Derivatization of inhibitor of apoptosis protein (IAP) ligands yields improved inducers of estrogen receptor α degradation.

    PubMed

    Ohoka, Nobumichi; Morita, Yoko; Nagai, Katsunori; Shimokawa, Kenichiro; Ujikawa, Osamu; Fujimori, Ikuo; Ito, Masahiro; Hayase, Youji; Okuhira, Keiichiro; Shibata, Norihito; Hattori, Takayuki; Sameshima, Tomoya; Sano, Osamu; Koyama, Ryokichi; Imaeda, Yasuhiro; Nara, Hiroshi; Cho, Nobuo; Naito, Mikihiko

    2018-05-04

    Aberrant expression of proteins often underlies many diseases, including cancer. A recently developed approach in drug development is small molecule-mediated, selective degradation of dysregulated proteins. We have devised a protein-knockdown system that utilizes chimeric molecules termed specific and nongenetic IAP-dependent protein erasers (SNIPERs) to induce ubiquitylation and proteasomal degradation of various target proteins. SNIPER(ER)-87 consists of an inhibitor of apoptosis protein (IAP) ligand LCL161 derivative that is conjugated to the estrogen receptor α (ERα) ligand 4-hydroxytamoxifen by a PEG linker, and we have previously reported that this SNIPER efficiently degrades the ERα protein. Here, we report that derivatization of the IAP ligand module yields SNIPER(ER)s with superior protein-knockdown activity. These improved SNIPER(ER)s exhibited higher binding affinities to IAPs and induced more potent degradation of ERα than does SNIPER(ER)-87. Further, they induced simultaneous degradation of cellular inhibitor of apoptosis protein 1 (cIAP1) and delayed degradation of X-linked IAP (XIAP). Notably, these reengineered SNIPER(ER)s efficiently induced apoptosis in MCF-7 human breast cancer cells that require IAPs for continued cellular survival. We found that one of these molecules, SNIPER(ER)-110, inhibits the growth of MCF-7 tumor xenografts in mice more potently than the previously characterized SNIPER(ER)-87. Mechanistic analysis revealed that our novel SNIPER(ER)s preferentially recruit XIAP, rather than cIAP1, to degrade ERα. Our results suggest that derivatized IAP ligands could facilitate further development of SNIPERs with potent protein-knockdown and cytocidal activities against cancer cells requiring IAPs for survival. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. 2-Acylpyrroles as mono-anionic O,N-chelating ligands in silicon coordination chemistry.

    PubMed

    Kämpfe, Alexander; Brendler, Erica; Kroke, Edwin; Wagler, Jörg

    2014-07-21

    Kryptopyrrole (2,4-dimethyl-3-ethylpyrrole) was acylated with, for example, benzoyl chloride to afford 2-benzoyl-3,5-dimethyl-4-ethylpyrrole (L(1)H). With SiCl4 this ligand reacts under liberation of HCl and formation of the complex L(1)2SiCl2. In related reactions with HSiCl3 or H2SiCl2, the same chlorosilicon complex is formed under liberation of HCl and H2 or liberation of H2, respectively. The chlorine atoms of L(1)2SiCl2 can be replaced by fluoride and triflate using ZnF2 and Me3Si-OTf, respectively. The use of a supporting base (triethylamine) is required for the complexation of phenyltrichlorosilane and diphenyldichlorosilane. The complexes L(1)2SiCl2, L(1)2SiF2, L(1)2Si(OTf)2, L(1)2SiPhCl, and L(1)2SiPh2 exhibit various configurations of the octahedral silicon coordination spheres (i.e. cis or trans configuration of the monodentate substituents, different orientations of the bidentate chelating ligands relative to each other). Furthermore, cationic silicon complexes L(1)3Si(+) and L(1) SiPh(+) were synthesized by chloride abstraction with GaCl3. In contrast, reaction of L(1)2SiCl2 with a third equivalent of L(1)H in the presence of excess triethylamine produced a charge-neutral hexacoordinate Si complex with a new tetradentate chelating ligand which formed by Si-templated C-C coupling of two ligands L(1). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Dynamic control of chirality in phosphine ligands for enantioselective catalysis

    PubMed Central

    Zhao, Depeng; Neubauer, Thomas M.; Feringa, Ben L.

    2015-01-01

    Chirality plays a fundamental role in biology and chemistry and the precise control of chirality in a catalytic conversion is a key to modern synthesis most prominently seen in the production of pharmaceuticals. In enantioselective metal-based catalysis, access to each product enantiomer is commonly achieved through ligand design with chiral bisphosphines being widely applied as privileged ligands. Switchable phosphine ligands, in which chirality is modulated through an external trigger signal, might offer attractive possibilities to change enantioselectivity in a catalytic process in a non-invasive manner avoiding renewed ligand synthesis. Here we demonstrate that a photoswitchable chiral bisphosphine based on a unidirectional light-driven molecular motor, can be used to invert the stereoselectivity of a palladium-catalysed asymmetric transformation. It is shown that light-induced changes in geometry and helicity of the switchable ligand enable excellent selectivity towards the racemic or individual enantiomers of the product in a Pd-catalysed desymmetrization reaction. PMID:25806856

  18. Identification and characterization of PPARα ligands in the hippocampus

    PubMed Central

    Roy, Avik; Kundu, Madhuchhanda; Jana, Malabendu; Mishra, Rama K.; Yung, Yeni; Luan, Chi-Hao; Gonzalez, Frank J.; Pahan, Kalipada

    2016-01-01

    Peroxisome proliferator-activated receptor alpha (PPARα) regulates hepatic fatty acid catabolism and mediates the metabolic response to starvation. Recently, we have found that PPARα is constitutively activated in nuclei of hippocampal neurons and controls plasticity via direct transcriptional activation of CREB. Here, three endogenous ligands of PPARα, 3-hydroxy-(2,2)-dimethyl butyrate, hexadecanamide, and 9-octadecenamide were discovered in mouse brain hippocampus. Mass spectrometric detection of these compounds in mouse hippocampal nuclear extracts, in silico interaction studies, time-resolved FRET analyses, and thermal shift assay clearly indicated that these three compounds served as ligands of PPARα. Site-directed mutagenesis studies further revealed that PPARα Tyr 464 and Tyr 314 were involved in binding these hippocampal ligands. Moreover, these ligands activated PPARα and upregulated synaptic function of hippocampal neurons. These results highlight the discovery of hippocampal ligands of PPARα capable of modulating synaptic functions. PMID:27748752

  19. Identification and characterization of PPARα ligands in the hippocampus.

    PubMed

    Roy, Avik; Kundu, Madhuchhanda; Jana, Malabendu; Mishra, Rama K; Yung, Yeni; Luan, Chi-Hao; Gonzalez, Frank J; Pahan, Kalipada

    2016-12-01

    Peroxisome proliferator-activated receptor-α (PPARα) regulates hepatic fatty acid catabolism and mediates the metabolic response to starvation. Recently we found that PPARα is constitutively activated in nuclei of hippocampal neurons and controls plasticity via direct transcriptional activation of CREB. Here we report the discovery of three endogenous PPARα ligands-3-hydroxy-(2,2)-dimethyl butyrate, hexadecanamide, and 9-octadecenamide-in mouse brain hippocampus. Mass spectrometric detection of these compounds in mouse hippocampal nuclear extracts, in silico interaction studies, time-resolved FRET analyses, and thermal shift assay results clearly indicated that these three compounds served as ligands of PPARα. Site-directed mutagenesis studies further revealed that PPARα Y464 and Y314 are involved in binding these hippocampal ligands. Moreover, these ligands activated PPARα and upregulated the synaptic function of hippocampal neurons. These results highlight the discovery of hippocampal ligands of PPARα capable of modulating synaptic functions.

  20. QSAR modeling of GPCR ligands: methodologies and examples of applications.

    PubMed

    Tropsha, A; Wang, S X

    2006-01-01

    GPCR ligands represent not only one of the major classes of current drugs but the major continuing source of novel potent pharmaceutical agents. Because 3D structures of GPCRs as determined by experimental techniques are still unavailable, ligand-based drug discovery methods remain the major computational molecular modeling approaches to the analysis of growing data sets of tested GPCR ligands. This paper presents an overview of modern Quantitative Structure Activity Relationship (QSAR) modeling. We discuss the critical issue of model validation and the strategy for applying the successfully validated QSAR models to virtual screening of available chemical databases. We present several examples of applications of validated QSAR modeling approaches to GPCR ligands. We conclude with the comments on exciting developments in the QSAR modeling of GPCR ligands that focus on the study of emerging data sets of compounds with dual or even multiple activities against two or more of GPCRs.

  1. Ligand binding was acquired during evolution of nuclear receptors

    PubMed Central

    Escriva, Hector; Safi, Rachid; Hänni, Catherine; Langlois, Marie-Claire; Saumitou-Laprade, Pierre; Stehelin, Dominique; Capron, André; Pierce, Raymond; Laudet, Vincent

    1997-01-01

    The nuclear receptor (NR) superfamily comprises, in addition to ligand-activated transcription factors, members for which no ligand has been identified to date. We demonstrate that orphan receptors are randomly distributed in the evolutionary tree and that there is no relationship between the position of a given liganded receptor in the tree and the chemical nature of its ligand. NRs are specific to metazoans, as revealed by a screen of NR-related sequences in early- and non-metazoan organisms. The analysis of the NR gene duplication pattern during the evolution of metazoans shows that the present NR diversity arose from two waves of gene duplications. Strikingly, our results suggest that the ancestral NR was an orphan receptor that acquired ligand-binding ability during subsequent evolution. PMID:9192646

  2. Ligand Electron Density Shape Recognition Using 3D Zernike Descriptors

    NASA Astrophysics Data System (ADS)

    Gunasekaran, Prasad; Grandison, Scott; Cowtan, Kevin; Mak, Lora; Lawson, David M.; Morris, Richard J.

    We present a novel approach to crystallographic ligand density interpretation based on Zernike shape descriptors. Electron density for a bound ligand is expanded in an orthogonal polynomial series (3D Zernike polynomials) and the coefficients from this expansion are employed to construct rotation-invariant descriptors. These descriptors can be compared highly efficiently against large databases of descriptors computed from other molecules. In this manuscript we describe this process and show initial results from an electron density interpretation study on a dataset containing over a hundred OMIT maps. We could identify the correct ligand as the first hit in about 30 % of the cases, within the top five in a further 30 % of the cases, and giving rise to an 80 % probability of getting the correct ligand within the top ten matches. In all but a few examples, the top hit was highly similar to the correct ligand in both shape and chemistry. Further extensions and intrinsic limitations of the method are discussed.

  3. Systematic Introduction of Aromatic Rings to Diphosphine Ligands for Emission Color Tuning of Dinuclear Copper(I) Iodide Complexes.

    PubMed

    Okano, Yuka; Ohara, Hiroki; Kobayashi, Atsushi; Yoshida, Masaki; Kato, Masako

    2016-06-06

    We have newly synthesized two solution-stable luminescent dinuclear copper(I) complexes, [Cu2(μ-I)2(dpppy)2] (Cu-py) and [Cu2(μ-I)2(dpppyz)2] (Cu-pyz), where dpppy = 2,3-bis(diphenylphosphino)pyridine and dpppyz = 2,3-bis(diphenylphosphino)pyrazine, using chelating diphosphine ligands composed of N-heteroaromatic rings. X-ray analysis clearly indicates that the molecular structures of Cu-py and Cu-pyz are almost identical with that of the parent complex, [Cu2(μ-I)2(dppb)2] [Cu-bz; dppb = 2,3-bis(diphenylphosphino)benzene]. Complexes Cu-py and Cu-pyz exhibit luminescence [emission quantum yield (Φem) = 0.48 and 0.02, respectively] in the solid state at 298 K. A wide emission color tuning, from 497 to 638 nm (energy = 0.55 eV, with an emission color ranging from green to reddish-orange), was achieved in the solid state by the introduction of pyridinic N atoms into the bridging phenyl group between the two diphenylphosphine groups. Density functional theory calculations suggest that the emission could originate from the effective combination of the metal-to-ligand charge-transfer excited state with the halide-to-ligand charge-transfer excited state. Thus, the emission color change is due to stabilization of the π* levels of the central aryl group in the diphosphine ligand. Furthermore, these copper(I) complexes exhibit thermally activated delayed fluorescence at 298 K because of the small singlet-triplet energy difference (ΔE = 523 and 564 cm(-1) for Cu-py and Cu-pyz, respectively). The stability of these complexes in chloroform, due to the rigid bonds between the diphosphine ligands and the Cu(I) ions, enables the preparation of emissive poly(methyl methacrylate) films by the solution-doping technique.

  4. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2

    SciTech Connect

    Perez-Aguilar, Jose Manuel; Shan, Jufang; LeVine, Michael V.

    With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT 2AR) in the absence of ligand and bound to four distinct serotonergic agonists. Themore » 5-HT 2AR is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT 2AR agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT 2AR interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. Lastly, the findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT 2AR activation.« less

  5. A functional selectivity mechanism at the serotonin-2A GPCR involves ligand-dependent conformations of intracellular loop 2

    DOE PAGES

    Perez-Aguilar, Jose Manuel; Shan, Jufang; LeVine, Michael V.; ...

    2014-10-14

    With recent progress in determination of G protein-coupled receptor (GPCR) structure with crystallography, a variety of other experimental approaches (e.g., NMR spectroscopy, fluorescent-based assays, mass spectrometry techniques) are also being used to characterize state-specific and ligand-specific conformational states. MD simulations offer a powerful complementary approach to elucidate the dynamic features associated with ligand-specific GPCR conformations. To shed light on the conformational elements and dynamics of the important aspect of GPCR functional selectivity, we carried out unbiased microsecond-length MD simulations of the human serotonin 2A receptor (5-HT 2AR) in the absence of ligand and bound to four distinct serotonergic agonists. Themore » 5-HT 2AR is a suitable system to study the structural features involved in the ligand-dependent conformational heterogeneity of GPCRs because it is well-characterized experimentally and exhibits a strong agonist-specific phenotype in that some 5-HT 2AR agonists induce LSD-like hallucinations, while others lack this psychoactive property entirely. Here we report evidence for structural and dynamic differences in 5-HT 2AR interacting with such pharmacologically distinct ligands, hallucinogens, and nonhallucinogens obtained from all-atom MD simulations. Differential ligand binding contacts were identified for structurally similar hallucinogens and nonhallucinogens and found to correspond to different conformations in the intracellular loop 2 (ICL2). From the different ICL2 conformations, functional selective phenotypes are suggested through effects on dimerization and/or distinct direct interaction with effector proteins. Lastly, the findings are presented in the context of currently proposed hallucinogenesis mechanisms, and ICL2 is proposed as a fine-tuning selective switch that can differentiates modes of 5-HT 2AR activation.« less

  6. Ruthenium(II) bipyridine complexes bearing new keto-enol azoimine ligands: synthesis, structure, electrochemistry and DFT calculations.

    PubMed

    Al-Noaimi, Mousa; Awwadi, Firas F; Mansi, Ahmad; Abdel-Rahman, Obadah S; Hammoudeh, Ayman; Warad, Ismail

    2015-01-25

    The novel azoimine ligand, Ph-NH-N=C(COCH3)-NHPh(C≡CH) (H2L), was synthesized and its molecular structure was determined by X-ray crystallography. Catalytic hydration of the terminal acetylene of H2L in the presence of RuCl3·3H2O in ethanol at reflux temperature yielded a ketone (L1=Ph-N=N-C(COCH3)=N-Ph(COCH3) and an enol (L2=Ph-N=N-C(COCH3)=N-PhC(OH)=CH2) by Markovnikov addition of water. Two mixed-ligand ruthenium complexes having general formula, trans-[Ru(bpy)(Y)Cl2] (1-2) (where Y=L1 (1) and Y=L2 (2), bpy is 2.2'-bipyrdine) were achieved by the stepwise addition of equimolar amounts of (H2L) and bpy ligands to RuCl3·3H2O in absolute ethanol. Theses complexes were characterized by elemental analyses and spectroscopic (IR, UV-Vis, and NMR (1D (1)H NMR, (13)C NMR, (DEPT-135), (DEPT-90), 2D (1)H-(1)H and (13)C-(1)H correlation (HMQC) spectroscopy)). The two complexes exhibit a quasi-reversible one electron Ru(II)/Ru(III) oxidation couple at 604 mV vs. ferrocene/ferrocenium (Cp2Fe(0/+)) couple along with one electron ligand reduction at -1010 mV. The crystal structure of complex 1 showed that the bidentate ligand L1 coordinates to Ru(II) by the azo- and imine-nitrogen donor atoms. The complex adopts a distorted trans octahedral coordination geometry of chloride ligands. The electronic spectra of 1 and 1+ in dichloromethane have been modeled by time-dependent density functional theory (TD-DFT). Copyright © 2014 Elsevier B.V. All rights reserved.

  7. The Eugenides Foundation Interactive Exhibition of Science and Technology

    NASA Astrophysics Data System (ADS)

    Kontogiannis, Ioannis

    2010-01-01

    The Interactive Exhibition of Science and Technology is installed in an area of 1200 m2 at the Eugenides Foundation. 65 interactive exhibits, designed by the "Cites des Science et de l' Industrie" are organised in themes, stimulate the visitors' mind and provoke scientific thinking. Parallel activities take place inside the exhibition, such as live science demonstrations, performed by young scientists. Extra material such as news bulletins (short news, science comics and portraits), educational paths and treasure-hunting based games, all available online as well, are prepared on a monthly basis and provided along with the visit to the exhibition. Through these exhibits and activities, scientific facts are made simple and easy to comprehend using modern presentation tools. We present details on how this exhibition acts complementary to the science education provided by schools, making it a highly sophisticated educational tool.

  8. Evolutionary Dynamics of Influenza A Viruses in US Exhibition Swine

    PubMed Central

    Nelson, Martha I.; Wentworth, David E.; Das, Suman R.; Sreevatsan, Srinand; Killian, Mary L.; Nolting, Jacqueline M.; Slemons, Richard D.; Bowman, Andrew S.

    2016-01-01

    The role of exhibition swine in influenza A virus transmission was recently demonstrated by >300 infections with influenza A(H3N2) variant viruses among individuals who attended agricultural fairs. Through active influenza A virus surveillance in US exhibition swine and whole-genome sequencing of 380 isolates, we demonstrate that exhibition swine are actively involved in the evolution of influenza A viruses, including zoonotic strains. First, frequent introduction of influenza A viruses from commercial swine populations provides new genetic diversity in exhibition pigs each year locally. Second, genomic reassortment between viruses cocirculating in exhibition swine increases viral diversity. Third, viral migration between exhibition swine in neighboring states demonstrates that movements of exhibition pigs contributes to the spread of genetic diversity. The unexpected frequency of viral exchange between commercial and exhibition swine raises questions about the understudied interface between these populations. Overall, the complexity of viral evolution in exhibition swine indicates that novel viruses are likely to continually reemerge, presenting threats to humans. PMID:26243317

  9. Developing Ligands for Palladium(II)-Catalyzed C–H Functionalization: Intimate Dialogue between Ligand and Substrate

    PubMed Central

    Engle, Keary M.; Yu, Jin-Quan

    2013-01-01

    Homogeneous transition metal–catalyzed reactions are indispensable to all facets of modern chemical synthesis. It is thus difficult to imagine that for much of the early 20th century, the reactivity and selectivity of all known homogeneous metal catalysts paled in comparison to their heterogeneous and biological counterparts. In the intervening decades, advances in ligand design bridged this divide, such that today some of the most demanding bond-forming events are mediated by ligand-supported homogeneous metal species. While ligand design has propelled many areas of homogeneous catalysis, in the field of Pd(II)-catalyzed C–H functionalization, suitable ligand scaffolds are lacking, which has hampered the development of broadly practical transformations based on C–H functionalization logic. In this review, we offer an account of our research employing three ligand scaffolds, mono-N-protected amino acids, 2,6-disubstituted pyridines, and 2,2′-bipyridines, to address challenges posed by several synthetically versatile substrate classes. Drawing on this work, we discuss principles of ligand design, such as the need to match a ligand to a particular substrate class, and how ligand traits such as tunability and modularity can be advantageous in reaction discovery. PMID:23565982

  10. Luminescence of ytterbium(III) in mixed-ligand compounds with cinnamic acid and neutral phosphorus-containing ligands

    NASA Astrophysics Data System (ADS)

    Kalinovskaya, I. V.

    2014-09-01

    The luminescence spectral characteristics of mixed-ligand compounds of ytterbium(III) with cinnamic acid and neutral phosphorus-containing ligands were studied by luminescence spectroscopy. The intensity of luminescence of the compounds was determined. The highest intensity of luminescence was found for the ytterbium(III) compound with triphenylphosphine oxide.

  11. Synthesis, characterization, single crystal X-ray determination, fluorescence and electrochemical studies of new dinuclear nickel(II) and oxovanadium(IV) complexes containing double Schiff base ligands

    NASA Astrophysics Data System (ADS)

    Shafaatian, Bita; Ozbakzaei, Zahra; Notash, Behrouz; Rezvani, S. Ahmad

    2015-04-01

    A series of new bimetallic complexes of nickel(II) and vanadium(IV) have been synthesized by the reaction of the new double bidentate Schiff base ligands with nickel acetate and vanadyl acetylacetonate in 1:1 M ratio. In nickel and also vanadyl complexes the ligands were coordinated to the metals via the imine N and enolic O atoms. The complexes have been found to possess 1:1 metals to ligands stoichiometry and the molar conductance data revealed that the metal complexes were non-electrolytes. The nickel and vanadyl complexes exhibited distorted square planar and square pyramidal coordination geometries, respectively. The emission spectra of the ligands and their complexes were studied in methanol. Electrochemical properties of the ligands and their metal complexes were also investigated in DMSO solvent at 150 mV s-1 scan rate. The ligands and metal complexes showed both quasi-reversible and irreversible processes at this scan rate. The Schiff bases and their complexes have been characterized by FT-IR, 1H NMR, UV/Vis spectroscopies, elemental analysis and conductometry. The crystal structure of the nickel complex has been determined by single crystal X-ray diffraction.

  12. Boosting Affinity by Correct Ligand Preorganization for the S2 Pocket of Thrombin: A Study by Isothermal Titration Calorimetry, Molecular Dynamics, and High-Resolution Crystal Structures.

    PubMed

    Rühmann, Eggert H; Rupp, Melinda; Betz, Michael; Heine, Andreas; Klebe, Gerhard

    2016-02-04

    Structural preorganization to fix bioactive conformations at protein binding sites is a popular strategy to enhance binding affinity during late-stage optimization. The rationale for this enhancement relates to entropic advantages assigned to rigidified versus flexible ligands. We analyzed a narrow series of peptidomimetics binding to thrombin. The individual ligands exhibit at P2 a conformationally flexible glycine, more restricted alanine, N-methylglycine, N-methylhomoalanine, and largely rigidified proline moiety. Overall, affinity was found to increase by a factor of 1000, explained partly by an entropic advantage. All ligands adopt the same binding mode with small deviations. The residual mobility of the bound ligands is decreased across the series, and a protein side chain differs in its order/disorder behavior along with changes in the surface-water network pattern established across the newly generated protein-ligand surfaces. The enthalpy/entropy inventory displays a rather complex picture and emphasizes that thermodynamics can only be compared in terms of relative differences within a structurally similar ligand series. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Tricyclic antidepressants exhibit variable pharmacological profiles at the α2A adrenergic receptor

    PubMed Central

    Cottingham, Christopher; Percival, Stefanie; Birky, Tana; Wang, Qin

    2014-01-01

    Antidepressant mechanisms of action remain shrouded in mystery, greatly hindering our ability to develop therapeutics which can fully treat patients suffering from depressive disorders. In an attempt to shed new light on this topic, we have undertaken a series of studies investigating actions of tricyclic antidepressant drugs (TCAs) at the α2A adrenergic receptor (AR), a centrally important receptor, dysregulation of which has been linked to depression. Our previous work established a particular TCA, desipramine, as an arrestin-biased α2AAR ligand driving receptor endocytosis and downregulation but not canonical heterotrimeric G protein-mediated signaling. The present work is aimed at broadening our understanding of how members of the TCA drug class act at the α2AAR, as we have selected the closely related but subtly different TCAs imipramine and amitriptyline for evaluation. Our data demonstrate that these drugs do also function as direct arrestin-biased α2AAR ligands. However, these data reveal differences in receptor affinity and in the extent/nature of arrestin recruitment to and endocytosis of α2AARs. Specifically, amitriptyline exhibits an approximately 14-fold stronger interaction with the receptor, is a weaker driver of arrestin recruitment, and preferentially recruits a different arrestin subtype. Extent of endocytosis is similar for all TCAs studied so far, and occurs in an arrestin-dependent manner, although imipramine uniquely retains a slight ability to drive α2AAR endocytosis in arrestin-null cells. These findings signify an important expansion of our mechanistic understanding of antidepressant pharmacology, and provide useful insights for future medicinal chemistry efforts. PMID:25128275

  14. Gas adsorption and gas mixture separations using mixed-ligand MOF material

    DOEpatents

    Hupp, Joseph T [Northfield, IL; Mulfort, Karen L [Chicago, IL; Snurr, Randall Q [Evanston, IL; Bae, Youn-Sang [Evanston, IL

    2011-01-04

    A method of separating a mixture of carbon dioxiode and hydrocarbon gas using a mixed-ligand, metal-organic framework (MOF) material having metal ions coordinated to carboxylate ligands and pyridyl ligands.

  15. Scoring ligand similarity in structure-based virtual screening.

    PubMed

    Zavodszky, Maria I; Rohatgi, Anjali; Van Voorst, Jeffrey R; Yan, Honggao; Kuhn, Leslie A

    2009-01-01

    Scoring to identify high-affinity compounds remains a challenge in virtual screening. On one hand, protein-ligand scoring focuses on weighting favorable and unfavorable interactions between the two molecules. Ligand-based scoring, on the other hand, focuses on how well the shape and chemistry of each ligand candidate overlay on a three-dimensional reference ligand. Our hypothesis is that a hybrid approach, using ligand-based scoring to rank dockings selected by protein-ligand scoring, can ensure that high-ranking molecules mimic the shape and chemistry of a known ligand while also complementing the binding site. Results from applying this approach to screen nearly 70 000 National Cancer Institute (NCI) compounds for thrombin inhibitors tend to support the hypothesis. EON ligand-based ranking of docked molecules yielded the majority (4/5) of newly discovered, low to mid-micromolar inhibitors from a panel of 27 assayed compounds, whereas ranking docked compounds by protein-ligand scoring alone resulted in one new inhibitor. Since the results depend on the choice of scoring function, an analysis of properties was performed on the top-scoring docked compounds according to five different protein-ligand scoring functions, plus EON scoring using three different reference compounds. The results indicate that the choice of scoring function, even among scoring functions measuring the same types of interactions, can have an unexpectedly large effect on which compounds are chosen from screening. Furthermore, there was almost no overlap between the top-scoring compounds from protein-ligand versus ligand-based scoring, indicating the two approaches provide complementary information. Matchprint analysis, a new addition to the SLIDE (Screening Ligands by Induced-fit Docking, Efficiently) screening toolset, facilitated comparison of docked molecules' interactions with those of known inhibitors. The majority of interactions conserved among top-scoring compounds for a given scoring

  16. A single-ligand ultra-microporous MOF for precombustion CO2 capture and hydrogen purification

    PubMed Central

    Nandi, Shyamapada; De Luna, Phil; Daff, Thomas D.; Rother, Jens; Liu, Ming; Buchanan, William; Hawari, Ayman I.; Woo, Tom K.; Vaidhyanathan, Ramanathan

    2015-01-01

    Metal organic frameworks (MOFs) built from a single small ligand typically have high stability, are rigid, and have syntheses that are often simple and easily scalable. However, they are normally ultra-microporous and do not have large surface areas amenable to gas separation applications. We report an ultra-microporous (3.5 and 4.8 Å pores) Ni-(4-pyridylcarboxylate)2 with a cubic framework that exhibits exceptionally high CO2/H2 selectivities (285 for 20:80 and 230 for 40:60 mixtures at 10 bar, 40°C) and working capacities (3.95 mmol/g), making it suitable for hydrogen purification under typical precombustion CO2 capture conditions (1- to 10-bar pressure swing). It exhibits facile CO2 adsorption-desorption cycling and has CO2 self-diffusivities of ~3 × 10−9 m2/s, which is two orders higher than that of zeolite 13X and comparable to other top-performing MOFs for this application. Simulations reveal a high density of binding sites that allow for favorable CO2-CO2 interactions and large cooperative binding energies. Ultra-micropores generated by a small ligand ensures hydrolytic, hydrostatic stabilities, shelf life, and stability toward humid gas streams. PMID:26824055

  17. A single-ligand ultra-microporous MOF for precombustion CO2 capture and hydrogen purification.

    PubMed

    Nandi, Shyamapada; De Luna, Phil; Daff, Thomas D; Rother, Jens; Liu, Ming; Buchanan, William; Hawari, Ayman I; Woo, Tom K; Vaidhyanathan, Ramanathan

    2015-12-01

    Metal organic frameworks (MOFs) built from a single small ligand typically have high stability, are rigid, and have syntheses that are often simple and easily scalable. However, they are normally ultra-microporous and do not have large surface areas amenable to gas separation applications. We report an ultra-microporous (3.5 and 4.8 Å pores) Ni-(4-pyridylcarboxylate)2 with a cubic framework that exhibits exceptionally high CO2/H2 selectivities (285 for 20:80 and 230 for 40:60 mixtures at 10 bar, 40°C) and working capacities (3.95 mmol/g), making it suitable for hydrogen purification under typical precombustion CO2 capture conditions (1- to 10-bar pressure swing). It exhibits facile CO2 adsorption-desorption cycling and has CO2 self-diffusivities of ~3 × 10(-9) m(2)/s, which is two orders higher than that of zeolite 13X and comparable to other top-performing MOFs for this application. Simulations reveal a high density of binding sites that allow for favorable CO2-CO2 interactions and large cooperative binding energies. Ultra-micropores generated by a small ligand ensures hydrolytic, hydrostatic stabilities, shelf life, and stability toward humid gas streams.

  18. Electronic spectra and photophysics of platinum(II) complexes with alpha-diimine ligands - Solid-state effects. I - Monomers and ligand pi dimers

    NASA Technical Reports Server (NTRS)

    Miskowski, Vincent M.; Houlding, Virginia H.

    1989-01-01

    Two types of emission behavior for Pt(II) complexes containing alpha-diimine ligands have been observed in dilute solution. If the complex also has weak field ligands such as chloride, ligand field (d-d) excited states become the lowest energy excited states. If only strong field ligands are present, a diimine 3(pi-pi/asterisk/) state becomes the lowest. In none of the cases studied did metal-to-ligand charge transfer excited state lie lowest.

  19. Binding Modes of Ligands Using Enhanced Sampling (BLUES): Rapid Decorrelation of Ligand Binding Modes via Nonequilibrium Candidate Monte Carlo.

    PubMed

    Gill, Samuel C; Lim, Nathan M; Grinaway, Patrick B; Rustenburg, Ariën S; Fass, Josh; Ross, Gregory A; Chodera, John D; Mobley, David L

    2018-05-31

    Accurately predicting protein-ligand binding affinities and binding modes is a major goal in computational chemistry, but even the prediction of ligand binding modes in proteins poses major challenges. Here, we focus on solving the binding mode prediction problem for rigid fragments. That is, we focus on computing the dominant placement, conformation, and orientations of a relatively rigid, fragment-like ligand in a receptor, and the populations of the multiple binding modes which may be relevant. This problem is important in its own right, but is even more timely given the recent success of alchemical free energy calculations. Alchemical calculations are increasingly used to predict binding free energies of ligands to receptors. However, the accuracy of these calculations is dependent on proper sampling of the relevant ligand binding modes. Unfortunately, ligand binding modes may often be uncertain, hard to predict, and/or slow to interconvert on simulation time scales, so proper sampling with current techniques can require prohibitively long simulations. We need new methods which dramatically improve sampling of ligand binding modes. Here, we develop and apply a nonequilibrium candidate Monte Carlo (NCMC) method to improve sampling of ligand binding modes. In this technique, the ligand is rotated and subsequently allowed to relax in its new position through alchemical perturbation before accepting or rejecting the rotation and relaxation as a nonequilibrium Monte Carlo move. When applied to a T4 lysozyme model binding system, this NCMC method shows over 2 orders of magnitude improvement in binding mode sampling efficiency compared to a brute force molecular dynamics simulation. This is a first step toward applying this methodology to pharmaceutically relevant binding of fragments and, eventually, drug-like molecules. We are making this approach available via our new Binding modes of ligands using enhanced sampling (BLUES) package which is freely available on GitHub.

  20. A multimodal histamine ligand for chromatographic purification of plasmid DNA.

    PubMed

    Černigoj, Urh; Vidic, Urška; Barut, Miloš; Podgornik, Aleš; Peterka, Matjaž; Štrancar, Aleš

    2013-03-15

    To exploit different chromatographic modes for efficient plasmid DNA (pDNA) purification a novel monolithic chromatographic support bearing multimodal histamine (HISA) groups was developed and characterized. Electrostatic charge of HISA groups depends on the pH of the mobile phase, being neutral above pH 7 and becoming positively charged below. As a consequence, HISA groups exhibit predominantly ion-exchange character at low pH values, which decreases with titration of the HISA groups resulting in increased hydrophobicity. This feature enabled separation of supercoiled (sc) pDNA from other plasmid isoforms (and other process related impurities) by adjusting salt or pH gradient. The dynamic binding capacity (DBC) for a 5.1kbp large plasmid at pH 5 was 4.0 mg/ml under low salt binding conditions, remaining relatively high (3.0 mg/ml) even in the presence of 1.0 M NaCl due to the multimodal nature of HISA ligand. Only slightly lower DBC (2.7 mg/ml) was determined under preferentially hydrophobic conditions in 3.0 M (NH(4))(2)SO(4), pH 7.4. Open circular and sc pDNA isoforms were baseline separated in descending (NH(4))(2)SO(4) gradient. Furthermore, an efficient plasmid DNA separation was possible both on analytical as well as on preparative scale by applying the descending pH gradient at a constant concentration (above 3.0 M) of (NH(4))(2)SO(4). Copyright © 2013 Elsevier B.V. All rights reserved.

  1. A Content-Oriented Model for Science Exhibit Engineering

    ERIC Educational Resources Information Center

    Achiam, Marianne Foss

    2013-01-01

    Recently, science museums have begun to review their educational purposes and redesign their pedagogies. At the most basic level, this entails accounting for the performance of individual exhibits, and indeed, in some cases, research indicates shortcomings in exhibit design: While often successful in prompting visitors to carry out intended…

  2. 7 CFR Exhibit B to Subpart B of... - Servicing Company

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 12 2013-01-01 2013-01-01 false Servicing Company B Exhibit B to Subpart B of Part 1806 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL... GENERAL REGULATIONS INSURANCE National Flood Insurance Pt. 1806, Subpt. B, Exh. B Exhibit B to Subpart B...

  3. 7 CFR Exhibit B to Subpart B of... - Servicing Company

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 12 2014-01-01 2013-01-01 true Servicing Company B Exhibit B to Subpart B of Part 1806 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL... GENERAL REGULATIONS INSURANCE National Flood Insurance Pt. 1806, Subpt. B, Exh. B Exhibit B to Subpart B...

  4. 7 CFR Exhibit B to Subpart B of... - Servicing Company

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 12 2012-01-01 2012-01-01 false Servicing Company B Exhibit B to Subpart B of Part 1806 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL... GENERAL REGULATIONS INSURANCE National Flood Insurance Pt. 1806, Subpt. B, Exh. B Exhibit B to Subpart B...

  5. 7 CFR Exhibit B to Subpart B of... - Servicing Company

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 12 2011-01-01 2011-01-01 false Servicing Company B Exhibit B to Subpart B of Part 1806 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL... GENERAL REGULATIONS INSURANCE National Flood Insurance Pt. 1806, Subpt. B, Exh. B Exhibit B to Subpart B...

  6. 7 CFR Exhibit B to Subpart B of... - Servicing Company

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Servicing Company B Exhibit B to Subpart B of Part 1806 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL... GENERAL REGULATIONS INSURANCE National Flood Insurance Pt. 1806, Subpt. B, Exh. B Exhibit B to Subpart B...

  7. 75 FR 6079 - Culturally Significant Objects Imported for Exhibition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... DEPARTMENT OF STATE [PUBLIC NOTICE 6894] Culturally Significant Objects Imported for Exhibition Determinations: ``Compass and Rule: Architecture as Mathematical Practice in England, 1500-1750'' SUMMARY: Notice... objects to be included in the exhibition ``Compass and Rule: Architecture as Mathematical Practice in...

  8. Online Cultural Heritage Exhibitions: A Survey of Information Retrieval Features

    ERIC Educational Resources Information Center

    Liew, Chern Li

    2005-01-01

    Purpose: What kinds of online cultural heritage exhibitions are now available on the internet? How far have these cultural heritage institutions voyaged in terms of harnessing the power of information and communication technology and the interactivity of multimedia systems to exhibit cultural heritage resources? This study aims to highlight the…

  9. Perspectives on ... Multiculturalism and Library Exhibits: Sites of Contested Representation

    ERIC Educational Resources Information Center

    Reece, Gwendolyn J.

    2005-01-01

    This article analyzes a multicultural library exhibit presenting the Palestinian/Israeli conflict as a site of contested representation. Qualitative methodology is used to interrogate the exhibit and its audience reception. Drawing on insights from critical pedagogy, implications for libraries arising from this case study are given and suggestions…

  10. 14 CFR 77.59 - Subpoenas of witnesses and exhibits.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Section 77.59 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... for any witness or exhibit that he determines may be material and relevant to the issues of the... witnesses and exhibits, he shall advise the presiding officer far enough in advance that the presiding...

  11. 14 CFR 77.59 - Subpoenas of witnesses and exhibits.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... Section 77.59 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... issue subpoenas for any witness or exhibit that he determines may be material and relevant to the issues... his necessary witnesses and exhibits, he shall advise the presiding officer far enough in advance that...

  12. 7 CFR Exhibit A to Subpart L of... - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true [Reserved] A Exhibit A to Subpart L of Part 1940 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS... Funds Exhibit A to Subpart L of Part 1940 [Reserved] ...

  13. 7 CFR Exhibit A to Subpart Jj of... - Agreement Form

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Agreement Form A Exhibit A to Subpart JJ of Part 2045.... A Exhibit A to Subpart JJ of Part 2045—Agreement Form for utilization of employees of (official... Agreement, date ___ between, , a (political subdivision), (educational), (charitable), (or nonprofit) an...

  14. 7 CFR Exhibit A to Subpart Jj of... - Agreement Form

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Agreement Form A Exhibit A to Subpart JJ of Part 2045.... A Exhibit A to Subpart JJ of Part 2045—Agreement Form for utilization of employees of (official... Agreement, date ___ between, , a (political subdivision), (educational), (charitable), (or nonprofit) an...

  15. 76 FR 61472 - Culturally Significant Objects Imported for Exhibition

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-04

    ... DEPARTMENT OF STATE [Public Notice: 7634] Culturally Significant Objects Imported for Exhibition Determinations: ``The Game of Kings: Medieval Ivory Chessmen From the Isle of Lewis'' SUMMARY: Notice is hereby... objects to be included in the exhibition ``The Game of Kings: Medieval Ivory Chessmen from the Isle of...

  16. 7 CFR Exhibit C to Subpart N of... - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true [Reserved] C Exhibit C to Subpart N of Part 1944 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS...) PROGRAM REGULATIONS (CONTINUED) HOUSING Housing Preservation Grants Exhibit C to Subpart N of Part 1944...

  17. 27 CFR 7.42 - Exhibiting certificates to Government officials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Exhibiting certificates to Government officials. 7.42 Section 7.42 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... certificate of label approval shall, upon demand exhibit such certificate to a duly authorized representative...

  18. 27 CFR 4.51 - Exhibiting certificates to Government officials.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Exhibiting certificates to Government officials. 4.51 Section 4.51 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND... approval or a certificate of exemption shall, upon demand, exhibit such certificate to a duly authorized...

  19. Modelling the Future: Exhibitions and the Materiality of Education

    ERIC Educational Resources Information Center

    Lawn, Martin, Ed.

    2009-01-01

    The role of World Exhibitions in the 19th and early 20th centuries was to confirm a relation between the nation state and modernity. As a display about industries, inventions and identities, the Exhibition, in a sense, put entire nations into an elevated, viewable space. It is a significant element in modernity as comparisons can be made, progress…

  20. 7 CFR Exhibit A to Subpart B of... - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false [Reserved] A Exhibit A to Subpart B of Part 1900 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS... REGULATIONS GENERAL Adverse Decisions and Administrative Appeals Exhibit A to Subpart B of Part 1900 [Reserved] ...

  1. Outreach to Science Faculty and Students through Research Exhibitions

    ERIC Educational Resources Information Center

    Chan, Tina; Hebblethwaite, Chris

    2014-01-01

    Penfield Library at the State University of New York at Oswego (SUNY Oswego) has a gallery exhibit space near the front entrance that is used to showcase student-faculty research and art class projects. This article features the library's outreach efforts to science faculty and students through research exhibitions. The library held an exhibition…

  2. 19 CFR 212.11 - Net worth exhibit.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 3 2010-04-01 2010-04-01 false Net worth exhibit. 212.11 Section 212.11 Customs Duties UNITED STATES INTERNATIONAL TRADE COMMISSION INVESTIGATIONS OF UNFAIR PRACTICES IN IMPORT TRADE IMPLEMENTATION OF THE EQUAL ACCESS TO JUSTICE ACT Information Required From Applicants § 212.11 Net worth exhibit...

  3. The Development of Validated Museum Exhibits. Final Report.

    ERIC Educational Resources Information Center

    Nicol, Elizabeth H.

    Exhibit development, as conceived in this report, is an evolutionary process, drawing the museum visitor into the collaborative venture of testing and improving the exhibits. The findings of contemporary learning research were put to work in the arrangement of activities and specimens that engaged children through self-instructional sequences. The…

  4. 46 CFR 169.805 - Exhibition of merchant mariner credentials.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Exhibition of merchant mariner credentials. 169.805 Section 169.805 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Operations § 169.805 Exhibition of merchant mariner credentials. Officers on any vessel...

  5. 46 CFR 169.805 - Exhibition of merchant mariner credentials.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Exhibition of merchant mariner credentials. 169.805 Section 169.805 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) NAUTICAL SCHOOLS SAILING SCHOOL VESSELS Operations § 169.805 Exhibition of merchant mariner credentials. Officers on any vessel...

  6. Using Museum Exhibits: An Innovation in Experiential Learning

    ERIC Educational Resources Information Center

    Das, Satarupa

    2015-01-01

    Museum exhibits can be a tool in experiential learning. While instructors have documented various methods of experiential learning, they have not sufficiently explored such learning from museum exhibits. Museum researchers, however, have long found a satisfying cognitive component to museum visits. This paper narrates the author's design to…

  7. 7 CFR Exhibit G to Subpart G of... - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 13 2011-01-01 2009-01-01 true [Reserved] G Exhibit G to Subpart G of Part 1940 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS...) PROGRAM REGULATIONS (CONTINUED) GENERAL Environmental Program Exhibit G to Subpart G of Part 1940...

  8. 7 CFR Exhibit G to Subpart G of... - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 13 2012-01-01 2012-01-01 false [Reserved] G Exhibit G to Subpart G of Part 1940 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS...) PROGRAM REGULATIONS (CONTINUED) GENERAL Environmental Program Exhibit G to Subpart G of Part 1940...

  9. 7 CFR Exhibit G to Subpart G of... - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 13 2013-01-01 2013-01-01 false [Reserved] G Exhibit G to Subpart G of Part 1940 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS...) PROGRAM REGULATIONS (CONTINUED) GENERAL Environmental Program Exhibit G to Subpart G of Part 1940...

  10. 7 CFR Exhibit G to Subpart G of... - [Reserved

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 13 2014-01-01 2013-01-01 true [Reserved] G Exhibit G to Subpart G of Part 1940 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS...) PROGRAM REGULATIONS (CONTINUED) GENERAL Environmental Program Exhibit G to Subpart G of Part 1940...

  11. 7 CFR Exhibits A-B to Subpart G... - [Reserved

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 12 2013-01-01 2013-01-01 false [Reserved] A Exhibits A-B to Subpart G to Part 1822 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS..., Procedures, and Authorizations Exhibits A-B to Subpart G to Part 1822 [Reserved] ...

  12. 7 CFR Exhibit G to Subpart G of... - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true [Reserved] G Exhibit G to Subpart G of Part 1940 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS...) PROGRAM REGULATIONS (CONTINUED) GENERAL Environmental Program Exhibit G to Subpart G of Part 1940...

  13. 7 CFR Exhibit G to Subpart A of... - Performance Bond

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 12 2013-01-01 2013-01-01 false Performance Bond G Exhibit G to Subpart A of Part 1924 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL.... 1924, Subpt. A, Exh. G Exhibit G to Subpart A of Part 1924—Performance Bond KNOW ALL PERSONS BY THESE...

  14. Informing the Development of Science Exhibitions through Educational Research

    ERIC Educational Resources Information Center

    Laherto, Antti

    2013-01-01

    This paper calls for greater use of educational research in the development of science exhibitions. During the past few decades, museums and science centres throughout the world have placed increasing emphasis on their educational function. Although exhibitions are the primary means of promoting visitors' learning, educational research is not…

  15. 7 CFR Exhibit C to Subpart N of... - [Reserved

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 13 2011-01-01 2009-01-01 true [Reserved] C Exhibit C to Subpart N of Part 1944 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS...) PROGRAM REGULATIONS (CONTINUED) HOUSING Housing Preservation Grants Exhibit C to Subpart N of Part 1944...

  16. 7 CFR Exhibit C to Subpart N of... - [Reserved

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 13 2012-01-01 2012-01-01 false [Reserved] C Exhibit C to Subpart N of Part 1944 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS...) PROGRAM REGULATIONS (CONTINUED) HOUSING Housing Preservation Grants Exhibit C to Subpart N of Part 1944...

  17. 7 CFR Exhibit A to Subpart C of... - [Reserved

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false [Reserved] A Exhibit A to Subpart C of Part 1924 Agriculture Regulations of the Department of Agriculture (Continued) RURAL HOUSING SERVICE, RURAL BUSINESS... REGULATIONS CONSTRUCTION AND REPAIR Planning and Performing Site Development Work Exhibit A to Subpart C of...

  18. 32 CFR 705.26 - Exhibit availability report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Exhibit availability report. 705.26 Section 705.26 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.26 Exhibit availability report. (a) A center...

  19. 32 CFR 705.25 - Navy Exhibit Center.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Navy Exhibit Center. 705.25 Section 705.25 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY UNITED STATES NAVY REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.25 Navy Exhibit Center. (a) The center is a...

  20. Data Collection Methods for Evaluating Museum Programs and Exhibitions

    ERIC Educational Resources Information Center

    Nelson, Amy Crack; Cohn, Sarah

    2015-01-01

    Museums often evaluate various aspects of their audiences' experiences, be it what they learn from a program or how they react to an exhibition. Each museum program or exhibition has its own set of goals, which can drive what an evaluator studies and how an evaluation evolves. When designing an evaluation, data collection methods are purposefully…

  1. 7 CFR Exhibit G to Subpart A of... - Performance Bond

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 12 2012-01-01 2012-01-01 false Performance Bond G Exhibit G to Subpart A of Part.... 1924, Subpt. A, Exh. G Exhibit G to Subpart A of Part 1924—Performance Bond KNOW ALL PERSONS BY THESE... and faithful performance of the CONTRACT as so amended. The term “Amendment”, wherever used in this...

  2. 7 CFR Exhibit G to Subpart A of... - Performance Bond

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 12 2010-01-01 2010-01-01 false Performance Bond G Exhibit G to Subpart A of Part.... 1924, Subpt. A, Exh. G Exhibit G to Subpart A of Part 1924—Performance Bond KNOW ALL PERSONS BY THESE... and faithful performance of the CONTRACT as so amended. The term “Amendment”, wherever used in this...

  3. 7 CFR Exhibit G to Subpart A of... - Performance Bond

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 12 2011-01-01 2011-01-01 false Performance Bond G Exhibit G to Subpart A of Part.... 1924, Subpt. A, Exh. G Exhibit G to Subpart A of Part 1924—Performance Bond KNOW ALL PERSONS BY THESE... and faithful performance of the CONTRACT as so amended. The term “Amendment”, wherever used in this...

  4. 7 CFR Exhibit G to Subpart A of... - Performance Bond

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 12 2014-01-01 2013-01-01 true Performance Bond G Exhibit G to Subpart A of Part 1924.... A, Exh. G Exhibit G to Subpart A of Part 1924—Performance Bond KNOW ALL PERSONS BY THESE PRESENTS... and faithful performance of the CONTRACT as so amended. The term “Amendment”, wherever used in this...

  5. A Critical Appraisal of State Level Science Exhibition

    ERIC Educational Resources Information Center

    Nath, Baiju K.

    2007-01-01

    Science exhibitions are really great opportunities to students as well as teachers to disseminate knowledge that they have, and to experience a variety of new inventions and innovations that also need wide dissemination. The great significance of exhibition is that it fosters acquisition of different process skills leading to the development of…

  6. Designing Art Exhibitions in an Educational Virtual World

    ERIC Educational Resources Information Center

    Julian, June; Crooks, Julian

    2011-01-01

    Demonstrating the multiple features of the Cerulean Gallery in Second Life, this research report showcases several exemplar exhibits created by students, artists, and museums. Located in The Educational Media Center, a Second Life teaching and social space, the Cerulean Gallery exhibits functioned as case studies that tested its effectiveness as…

  7. Efficient Cp*Ir Catalysts with Imidazoline Ligands for CO 2 Hydrogenation: Cp*Ir Catalysts with Imidazoline Ligands for CO 2 Hydrogenation

    DOE PAGES

    Xu, Shaoan; Onishi, Naoya; Tsurusaki, Akihiro; ...

    2015-11-09

    Here, we report newly developed iridium catalysts with electron-donating imidazoline moieties as ligands for the hydrogenation of CO 2 to formate in aqueous solution. Interestingly, these new complexes promote CO 2 hydrogenation much more effectively than their imidazole analogues and exhibit a turnover frequency (TOF) of 1290 h –1 for the bisimidazoline complex compared to that of 20 h –1 for the bisimidazole complex at 1 MPa and 50 °C. Additionally, the hydrogenation proceeds smoothly even under atmospheric pressure at room temperature. The TOF of 43 h –1 for the bisimidazoline complex is comparable to that of a dinuclear complexmore » (70 h –1, highest TOF reported) [Nat. Chem. 2012, 4, 383], which incorporates proton-responsive ligands with pendent-OH groups in the second coordination sphere. The catalytic activity of the complex with an N-methylated imidazoline moiety is much the same as that of the corresponding pyridylimidazoline analogue. Our result and the UV/Vis titrations of the imidazoline complexes indicate that the high activity is not attributable to the deprotonation of NH on the imidazoline under the reaction conditions.« less

  8. Methyl group reorientation under ligand binding probed by pseudocontact shifts.

    PubMed

    Lescanne, Mathilde; Ahuja, Puneet; Blok, Anneloes; Timmer, Monika; Akerud, Tomas; Ubbink, Marcellus

    2018-06-02

    Liquid-state NMR spectroscopy is a powerful technique to elucidate binding properties of ligands on proteins. Ligands binding in hydrophobic pockets are often in close proximity to methyl groups and binding can lead to subtle displacements of methyl containing side chains to accommodate the ligand. To establish whether pseudocontact shifts can be used to characterize ligand binding and the effects on methyl groups, the N-terminal domain of HSP90 was tagged with caged lanthanoid NMR probe 5 at three positions and titrated with a ligand. Binding was monitored using the resonances of leucine and valine methyl groups. The pseudocontact shifts (PCS) caused by ytterbium result in enhanced dispersion of the methyl spectrum, allowing more resonances to be observed. The effects of tag attachment on the spectrum and ligand binding are small. Significant changes in PCS were observed upon ligand binding, indicating displacements of several methyl groups. By determining the cross-section of PCS iso-surfaces generated by two or three paramagnetic centers, the new position of a methyl group can be estimated, showing displacements in the range of 1-3 Å for methyl groups in the binding site. The information about such subtle but significant changes may be used to improve docking studies and can find application in fragment-based drug discovery.

  9. Effects of electrostatic interactions on ligand dissociation kinetics

    NASA Astrophysics Data System (ADS)

    Erbaş, Aykut; de la Cruz, Monica Olvera; Marko, John F.

    2018-02-01

    We study unbinding of multivalent cationic ligands from oppositely charged polymeric binding sites sparsely grafted on a flat neutral substrate. Our molecular dynamics simulations are suggested by single-molecule studies of protein-DNA interactions. We consider univalent salt concentrations spanning roughly a 1000-fold range, together with various concentrations of excess ligands in solution. To reveal the ionic effects on unbinding kinetics of spontaneous and facilitated dissociation mechanisms, we treat electrostatic interactions both at a Debye-Hückel (DH) (or implicit ions, i.e., use of an electrostatic potential with a prescribed decay length) level and by the more precise approach of considering all ionic species explicitly in the simulations. We find that the DH approach systematically overestimates unbinding rates, relative to the calculations where all ion pairs are present explicitly in solution, although many aspects of the two types of calculation are qualitatively similar. For facilitated dissociation (FD) (acceleration of unbinding by free ligands in solution) explicit-ion simulations lead to unbinding at lower free-ligand concentrations. Our simulations predict a variety of FD regimes as a function of free-ligand and ion concentrations; a particularly interesting regime is at intermediate concentrations of ligands where nonelectrostatic binding strength controls FD. We conclude that explicit-ion electrostatic modeling is an essential component to quantitatively tackle problems in molecular ligand dissociation, including nucleic-acid-binding proteins.

  10. Structural Analysis of Chemokine Receptor–Ligand Interactions

    PubMed Central

    2017-01-01

    This review focuses on the construction and application of structural chemokine receptor models for the elucidation of molecular determinants of chemokine receptor modulation and the structure-based discovery and design of chemokine receptor ligands. A comparative analysis of ligand binding pockets in chemokine receptors is presented, including a detailed description of the CXCR4, CCR2, CCR5, CCR9, and US28 X-ray structures, and their implication for modeling molecular interactions of chemokine receptors with small-molecule ligands, peptide ligands, and large antibodies and chemokines. These studies demonstrate how the integration of new structural information on chemokine receptors with extensive structure–activity relationship and site-directed mutagenesis data facilitates the prediction of the structure of chemokine receptor–ligand complexes that have not been crystallized. Finally, a review of structure-based ligand discovery and design studies based on chemokine receptor crystal structures and homology models illustrates the possibilities and challenges to find novel ligands for chemokine receptors. PMID:28165741

  11. Pulmonary Delivery of Anti-Tubercular Drugs Using Ligand Anchored pH Sensitive Liposomes for the Treatment of Pulmonary Tuberculosis.

    PubMed

    Bhardwaj, Ankur; Grobler, Anne; Rath, Goutam; Goyal, Amit Kumar; Jain, Amit Kumar; Mehta, Abhinav

    2016-01-01

    Mycobacterium tuberculosis (M. TB) remains the prime cause of bacterial mortality and morbidity world-wide. Therefore, effective delivery and targeting of drug to the cellular tropics is essentially required to generate significant results for tuberculosis treatment. The aim of the present study was to develop and characterize ligand anchored pH sensitive liposomes (TPSL) as dry powder inhaler for the targeted delivery of drugs in the target site i.e. lungs. Ligand anchored PSL (TPSL) was prepared by thin film hydration for the combined delivery of Isoniazid (INH) and Ciprofloxacin HCl (CIP HCl) using 4-aminophenyl-α-D mannopyranoside (Man) as surface functionalized ligand and characterized using different parameters. It was observed that size of the ligand anchored liposomes (TPSL) was slightly more than the non-ligand anchored liposomes (PSL). Drug release was studied at different pH for 24 hrs and it was observed that liposomes exhibited slow release at alkaline pH (58-64%) as compared to macrophage pH (81-87%) where it increased dramatically due to the destabilization of pH sensitive liposome (PSL). In vitro cellular uptake study showed that much higher concentration was achieved in the alveolar macrophage using ligand anchored liposomes as compared to its counterpart. In vivo study showed that maximum drug accumulation was achieved in the lung by delivering drug using ligand anchored PSL as compared to conventional PSL. It was concluded that ligand anchored pH sensitive liposome is one of the promising systems for the targeted drug therapy in pulmonary tuberculosis.

  12. Dynamic Seeding of Perfusing Human Umbilical Vein Endothelial Cells (HUVECs) onto Dual-Function Cell Adhesion Ligands: Arg-Gly-Asp (RGD)-Streptavidin and Biotinylated Fibronectin

    PubMed Central

    Anamelechi, Charles C.; Clermont, Edward C.; Novak, Matthew T.; Reichert, William M.

    2014-01-01

    Surfaces decorated with high affinity ligands can be used to facilitate rapid attachment of endothelial cells; however, standard equilibrium cell detachment studies are poorly suited for assessing these initial adhesion events. Here, a dynamic seeding and cell retention method was used to examine the initial attachment of perfusing human umbilical vein endothelial cells (HUVECs) to bare Teflon-AF substrates, substrates pre-adsorbed with fibronectin alone, or substrates co-pre-adsorbed with two dual-function cell-adhesion ligands: biotinylated fibronectin (bFN) and RGD-streptavidin mutant (RGD-SA). Cell attachment was evaluated as a function of cell trypsinization (integrin digestion), surface protein formulation, and cell perfusion rate. Surfaces co-pre-adsorbed with bFN and RGD-SA showed the highest density of attached cells after 8 min of perfusion and the highest percent retention when subjected to shear flow at 60 dynes/cm2 for 2 min. Surfaces with no ligand treatment showed the lowest cell attachment and retention under flow in all cases. HUVECs trypsinized with mild 0.025% trypsin/ethylenediaminetetraacetic acid (EDTA) showed greater cell adhesion after perfusion and higher percent retention after shear flow than those trypsinized using harsher 0.05% trypsin/EDTA. The preferential affinities of the two dual-function ligands for α5β1 and αvβ3 integrins were also examined by surface plasmon resonance (SPR) spectroscopy. The dynamic cell seeding studies confirmed that the dual-function ligand system promotes HUVEC adhesion and retention at short time points when tested using a perfusion assay. SPR studies showed that the two ligands exhibited equal affinity for both α5β1 and αvβ3 integrins but that the combined ligands bound more total integrins than the two ligands tested separately. PMID:19348476

  13. Differential expression of ligands for NKG2D and DNAM-1 receptors by epithelial ovarian cancer-derived exosomes and its influence on NK cell cytotoxicity.

    PubMed

    Labani-Motlagh, Alireza; Israelsson, Pernilla; Ottander, Ulrika; Lundin, Eva; Nagaev, Ivan; Nagaeva, Olga; Dehlin, Eva; Baranov, Vladimir; Mincheva-Nilsson, Lucia

    2016-04-01

    Cancers constitutively produce and secrete into the blood and other biofluids 30-150 nm-sized endosomal vehicles called exosomes. Cancer-derived exosomes exhibit powerful influence on a variety of biological mechanisms to the benefit of the tumors that produce them. We studied the immunosuppressive ability of epithelial ovarian cancer (EOC) exosomes on two cytotoxic pathways of importance for anticancer immunity-the NKG2D receptor-ligand pathway and the DNAM-1-PVR/nectin-2 pathway. Using exosomes, isolated from EOC tumor explant and EOC cell-line culture supernatants, and ascitic fluid from EOC patients, we studied the expression of NKG2D and DNAM-1 ligands on EOC exosomes and their ability to downregulate the cognate receptors. Our results show that EOC exosomes differentially and constitutively express NKG2D ligands from both MICA/B and ULBP families on their surface, while DNAM-1 ligands are more seldom expressed and not associated with the exosomal membrane surface. Consequently, the NKG2D ligand-bearing EOC exosomes significantly downregulated the NKG2D receptor expression on peripheral blood mononuclear cells (PBMC) while the DNAM-1 receptor was unaffected. The downregulation of NKG2D receptor expression was coupled to inhibition of NKG2D receptor-ligand-mediated degranulation and cytotoxicity measured in vitro with OVCAR-3 and K562 cells as targets. The EOC exosomes acted as a decoy impairing the NKG2D mediated cytotoxicity while the DNAM-1 receptor-ligand system remained unchanged. Taken together, our results support and explain the mechanism behind the recently reported finding that in EOC, NK-cell recognition and killing of tumor cells was mainly dependent on DNAM-1 signaling while the contribution of the NKG2D receptor-ligand pathway was complementary and uncertain.

  14. Ligand-binding specificity and promiscuity of the main lignocellulolytic enzyme families as revealed by active-site architecture analysis.

    PubMed

    Tian, Li; Liu, Shijia; Wang, Shuai; Wang, Lushan

    2016-03-24

    Biomass can be converted into sugars by a series of lignocellulolytic enzymes, which belong to the glycoside hydrolase (GH) families summarized in CAZy databases. Here, using a structural bioinformatics method, we analyzed the active site architecture of the main lignocellulolytic enzyme families. The aromatic amino acids Trp/Tyr and polar amino acids Glu/Asp/Asn/Gln/Arg occurred at higher frequencies in the active site architecture than in the whole enzyme structure. And the number of potential subsites was significantly different among different families. In the cellulase and xylanase families, the conserved amino acids in the active site architecture were mostly found at the -2 to +1 subsites, while in β-glucosidase they were mainly concentrated at the -1 subsite. Families with more conserved binding amino acid residues displayed strong selectivity for their ligands, while those with fewer conserved binding amino acid residues often exhibited promiscuity when recognizing ligands. Enzymes with different activities also tended to bind different hydroxyl oxygen atoms on the ligand. These results may help us to better understand the common and unique structural bases of enzyme-ligand recognition from different families and provide a theoretical basis for the functional evolution and rational design of major lignocellulolytic enzymes.

  15. Ligand-Enhanced Abiotic Iron Oxidation and the Effects of Chemical versus Biological Iron Cycling in Anoxic Environments

    PubMed Central

    2013-01-01

    This study introduces a newly isolated, genetically tractable bacterium (Pseudogulbenkiania sp. strain MAI-1) and explores the extent to which its nitrate-dependent iron-oxidation activity is directly biologically catalyzed. Specifically, we focused on the role of iron chelating ligands in promoting chemical oxidation of Fe(II) by nitrite under anoxic conditions. Strong organic ligands such as nitrilotriacetate and citrate can substantially enhance chemical oxidation of Fe(II) by nitrite at circumneutral pH. We show that strain MAI-1 exhibits unambiguous biological Fe(II) oxidation despite a significant contribution (∼30–35%) from ligand-enhanced chemical oxidation. Our work with the model denitrifying strain Paracoccus denitrificans further shows that ligand-enhanced chemical oxidation of Fe(II) by microbially produced nitrite can be an important general side effect of biological denitrification. Our assessment of reaction rates derived from literature reports of anaerobic Fe(II) oxidation, both chemical and biological, highlights the potential competition and likely co-occurrence of chemical Fe(II) oxidation (mediated by microbial production of nitrite) and truly biological Fe(II) oxidation. PMID:23402562

  16. Effects of multiple organic ligands on size uniformity and optical properties of ZnSe quantum dots

    SciTech Connect

    Archana, J., E-mail: archana.jayaram@yahoo.com; Navaneethan, M.; Hayakawa, Y.

    2012-08-15

    Highlights: ► Highly monodispersed ZnSe quantum dots have been synthesized by wet chemical route. ► Strong quantum confinement effect have been observed in ∼ 4 nm ZnSe quantum dots. ► Enhanced ultraviolet near band emission have been obtained using long chain polymer. -- Abstract: The effects of multi-ligands on the formation and optical transitions of ZnSe quantum dots have been investigated. The dots are synthesized using 3-mercapto-1,2-propanediol and polyvinylpyrrolidone ligands, and have been characterized by X-ray diffraction, transmission electron microscopy (TEM), UV–visible absorption spectroscopy, photoluminescence spectroscopy, and Fourier transform infrared spectroscopy. TEM reveals high monodispersion with an average size ofmore » 4 nm. Polymer-stabilized, organic ligand-passivated ZnSe quantum dots exhibit strong UV emission at 326 nm and strong quantum confinement in the UV–visible absorption spectrum. Uniform size and suppressed surface trap emission are observed when the polymer ligand is used. The possible growth mechanism is discussed.« less

  17. A Coordination Network with Ligand-Centered Redox Activity Based on facial-[CrIII (2-mercaptophenolato)3 ]3- Metalloligands.

    PubMed

    Wakizaka, Masanori; Matsumoto, Takeshi; Kobayashi, Atsushi; Kato, Masako; Chang, Ho-Chol

    2017-07-21

    The design of redox-active metal-organic frameworks and coordination networks (CNs), which exhibit metal- and/or ligand-centered redox activity, has recently received increased attention. In this study, the redox-active metalloligand (RML) [Me 4 N] 3 fac-[Cr III (mp) 3 ] (1) (mp=2-mercaptophenolato) was synthesized and characterized by single-crystal X-ray diffraction analysis, and its reversible ligand-centered one-electron oxidation was examined by cyclic voltammetry and spectroelectrochemical measurements. Since complex 1 contains O/S coordination sites in three directions, complexation with K + ions led to the formation of the two-dimensional honeycomb sheet-structured [K 3 fac-{Cr III (mp) 3 }(H 2 O) 6 ] n (2⋅6 H 2 O), which is the first example of a redox-active CN constructed from a RML with o-disubstituted benzene ligands. Herein, we unambiguously demonstrate the ligand-centered redox activity of the RML within the CN 2⋅6 H 2 O in the solid state. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Ligand-Enhanced Optical Response of Gold Nanomolecules and Its Fragment Projection Analysis: The Case of Au 30 (SR) 18

    SciTech Connect

    Sementa, Luca; Barcaro, Giovanni; Baseggio, Oscar

    Here we investigate via first-principles simulations the optical absorption spectra of three different Au30(SR)18 monolayer-protected clusters (MPC): Au30(StBu)18, which is known in the literature and whose crystal structure is available, and two species – Au30(SPh)18 and Au30(SPh-pNO2)18 – which have been designed by replacing the tert-butyl organic residues with aromatic ones so as to investigate the effects of ligand replacement on the optical response of Au nanomolecules. In analogy with previously studied but rather different Au23(SR)16- anionic species, a substantial ligand-enhancement of the absorption intensity in the optical region is obtained for the Au30(SPhpNO2)18 neutral MPC. This demonstrates that usingmore » conjugated aromatic ligands with properly chosen electron withdrawal substituents and exhibiting steric hindrance so as to also achieve charge decompression at the surface is a general approach to enhance MPC photo-absorption intensity in the optical region. Moreover, the ligand-enhancement phenomenon is subjected to a detailed analysis based on fragment projection of electronic excited states and on induced transition densities, leading to a better understanding of its physical origin, thus opening avenues to its more precise control and exploitation.« less

  19. Cosmic Origins: A Traveling Science Exhibit and Education Program

    NASA Astrophysics Data System (ADS)

    Dusenbery, P. B.; Morrow, C. A.; Harold, J.

    2003-12-01

    The Space Science Institute of Boulder, Colorado, is developing a 3,000 square-foot traveling exhibition, called Cosmic Origins, which will bring origins-related research and discoveries to students and the American public. Cosmic Origins will have three interrelated exhibit areas: Star Formation, Planet Quest, and Search for Life. Exhibit visitors will explore the awesome events surrounding the birth of stars and planets; they will join scientists in the hunt for planets outside our solar system including those that may be in "habitable zones" around other stars; and finally they will be able to learn about the wide range of conditions for life on Earth and how scientists are looking for signs of life beyond Earth. Visitors will also learn about the tools scientists' use, such as space-based and ground-based telescopes, to improve our understanding of the cosmos. Exhibit content will address age-old questions that form the basis of NASA's Origins and Astrobiology programs: Where did we come from? Are we alone? In addition to the exhibit, our project will include workshops for educators and docents at host sites, as well as a public Web site that will use a virtual rendering of exhibit content. The exhibit's size will permit it to visit medium sized museums in underserved regions of the country. It will begin its 3-year tour to 9 host museums and science centers in early 2005. A second 3-year tour is also planned for 2008. The Association of Science-Technology Centers (ASTC) will manage the exhibit's national tour. Current partners in the Cosmic Origins project include ASTC, the Denver Museum of Nature and Science, Lawrence Hall of Science, NASA Astrobiology Institute, NASA missions (e.g. PlanetQuest, SIRTF, and Kepler), New York Hall of Science, the SETI Institute, and the Space Telescope Science Institute. The exhibition is supported by grants from NSF and NASA. This report will focus on the Planet Quest part of the exhibition.

  20. Developmental Changes in Soluble CD40 Ligand

    PubMed Central

    Cholette, Jill M.; Blumberg, Neil; Phipps, Richard P.; McDermott, Michael P.; Gettings, Kelly F.; Lerner, Norma B.

    2008-01-01

    Objectives To determine if soluble CD40 ligand (sCD40L; formally CD154) levels vary with age and to identify age-dependent ranges in healthy pediatric and adult populations. Study design sCD40L was measured in 25 neonates, 74 children (3 months –15 years) and 20 adults using an enzyme-linked immunosorbent assay. For age group comparisons, Mann-Whitney tests were performed. Correlation coefficients assessed relationships between plasma and serum sCD40L. Results Plasma sCD40L levels were higher in neonates than in all other age groups, (p<0.001). All grouped pediatric plasma levels were significantly higher than in adults (p<0.0001). There were no significant differences in plasma sCD40L between pediatric age groups. Serum levels were significantly higher in neonates than in any other age group (p <0.0001). Pediatric and adult serum sCD40L levels were not significantly different. Conclusions Plasma sCD40L levels are highest at birth and remain higher than those in adults throughout childhood. Reasons for such developmental changes remain to be investigated. Age appropriate reference ranges should be used when sCD40L is being evaluated in pediatric disorders. PMID:18154898